python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0 /* * Physical device callbacks for vfio_ccw * * Copyright IBM Corp. 2017 * Copyright Red Hat, Inc. 2019 * * Author(s): Dong Jia Shi <[email protected]> * Xiao Feng Ren <[email protected]> * Cornelia Huck <[email protected]> */ #include <linux/vfio.h> #include <linux/nospec.h> #include <linux/slab.h> #include "vfio_ccw_private.h" static const struct vfio_device_ops vfio_ccw_dev_ops; static int vfio_ccw_mdev_reset(struct vfio_ccw_private *private) { /* * If the FSM state is seen as Not Operational after closing * and re-opening the mdev, return an error. */ vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_CLOSE); vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_OPEN); if (private->state == VFIO_CCW_STATE_NOT_OPER) return -EINVAL; return 0; } static void vfio_ccw_dma_unmap(struct vfio_device *vdev, u64 iova, u64 length) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); /* Drivers MUST unpin pages in response to an invalidation. */ if (!cp_iova_pinned(&private->cp, iova, length)) return; vfio_ccw_mdev_reset(private); } static int vfio_ccw_mdev_init_dev(struct vfio_device *vdev) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); mutex_init(&private->io_mutex); private->state = VFIO_CCW_STATE_STANDBY; INIT_LIST_HEAD(&private->crw); INIT_WORK(&private->io_work, vfio_ccw_sch_io_todo); INIT_WORK(&private->crw_work, vfio_ccw_crw_todo); private->cp.guest_cp = kcalloc(CCWCHAIN_LEN_MAX, sizeof(struct ccw1), GFP_KERNEL); if (!private->cp.guest_cp) goto out_free_private; private->io_region = kmem_cache_zalloc(vfio_ccw_io_region, GFP_KERNEL | GFP_DMA); if (!private->io_region) goto out_free_cp; private->cmd_region = kmem_cache_zalloc(vfio_ccw_cmd_region, GFP_KERNEL | GFP_DMA); if (!private->cmd_region) goto out_free_io; private->schib_region = kmem_cache_zalloc(vfio_ccw_schib_region, GFP_KERNEL | GFP_DMA); if (!private->schib_region) goto out_free_cmd; private->crw_region = kmem_cache_zalloc(vfio_ccw_crw_region, GFP_KERNEL | GFP_DMA); if (!private->crw_region) goto out_free_schib; return 0; out_free_schib: kmem_cache_free(vfio_ccw_schib_region, private->schib_region); out_free_cmd: kmem_cache_free(vfio_ccw_cmd_region, private->cmd_region); out_free_io: kmem_cache_free(vfio_ccw_io_region, private->io_region); out_free_cp: kfree(private->cp.guest_cp); out_free_private: mutex_destroy(&private->io_mutex); return -ENOMEM; } static int vfio_ccw_mdev_probe(struct mdev_device *mdev) { struct subchannel *sch = to_subchannel(mdev->dev.parent); struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); struct vfio_ccw_private *private; int ret; private = vfio_alloc_device(vfio_ccw_private, vdev, &mdev->dev, &vfio_ccw_dev_ops); if (IS_ERR(private)) return PTR_ERR(private); dev_set_drvdata(&parent->dev, private); VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: create\n", sch->schid.cssid, sch->schid.ssid, sch->schid.sch_no); ret = vfio_register_emulated_iommu_dev(&private->vdev); if (ret) goto err_put_vdev; dev_set_drvdata(&mdev->dev, private); return 0; err_put_vdev: dev_set_drvdata(&parent->dev, NULL); vfio_put_device(&private->vdev); return ret; } static void vfio_ccw_mdev_release_dev(struct vfio_device *vdev) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); struct vfio_ccw_crw *crw, *temp; list_for_each_entry_safe(crw, temp, &private->crw, next) { list_del(&crw->next); kfree(crw); } kmem_cache_free(vfio_ccw_crw_region, private->crw_region); kmem_cache_free(vfio_ccw_schib_region, private->schib_region); kmem_cache_free(vfio_ccw_cmd_region, private->cmd_region); kmem_cache_free(vfio_ccw_io_region, private->io_region); kfree(private->cp.guest_cp); mutex_destroy(&private->io_mutex); } static void vfio_ccw_mdev_remove(struct mdev_device *mdev) { struct subchannel *sch = to_subchannel(mdev->dev.parent); struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); struct vfio_ccw_private *private = dev_get_drvdata(&parent->dev); VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: remove\n", sch->schid.cssid, sch->schid.ssid, sch->schid.sch_no); vfio_unregister_group_dev(&private->vdev); dev_set_drvdata(&parent->dev, NULL); vfio_put_device(&private->vdev); } static int vfio_ccw_mdev_open_device(struct vfio_device *vdev) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); int ret; /* Device cannot simply be opened again from this state */ if (private->state == VFIO_CCW_STATE_NOT_OPER) return -EINVAL; ret = vfio_ccw_register_async_dev_regions(private); if (ret) return ret; ret = vfio_ccw_register_schib_dev_regions(private); if (ret) goto out_unregister; ret = vfio_ccw_register_crw_dev_regions(private); if (ret) goto out_unregister; vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_OPEN); if (private->state == VFIO_CCW_STATE_NOT_OPER) { ret = -EINVAL; goto out_unregister; } return ret; out_unregister: vfio_ccw_unregister_dev_regions(private); return ret; } static void vfio_ccw_mdev_close_device(struct vfio_device *vdev) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_CLOSE); vfio_ccw_unregister_dev_regions(private); } static ssize_t vfio_ccw_mdev_read_io_region(struct vfio_ccw_private *private, char __user *buf, size_t count, loff_t *ppos) { loff_t pos = *ppos & VFIO_CCW_OFFSET_MASK; struct ccw_io_region *region; int ret; if (pos + count > sizeof(*region)) return -EINVAL; mutex_lock(&private->io_mutex); region = private->io_region; if (copy_to_user(buf, (void *)region + pos, count)) ret = -EFAULT; else ret = count; mutex_unlock(&private->io_mutex); return ret; } static ssize_t vfio_ccw_mdev_read(struct vfio_device *vdev, char __user *buf, size_t count, loff_t *ppos) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); unsigned int index = VFIO_CCW_OFFSET_TO_INDEX(*ppos); if (index >= VFIO_CCW_NUM_REGIONS + private->num_regions) return -EINVAL; switch (index) { case VFIO_CCW_CONFIG_REGION_INDEX: return vfio_ccw_mdev_read_io_region(private, buf, count, ppos); default: index -= VFIO_CCW_NUM_REGIONS; return private->region[index].ops->read(private, buf, count, ppos); } return -EINVAL; } static ssize_t vfio_ccw_mdev_write_io_region(struct vfio_ccw_private *private, const char __user *buf, size_t count, loff_t *ppos) { loff_t pos = *ppos & VFIO_CCW_OFFSET_MASK; struct ccw_io_region *region; int ret; if (pos + count > sizeof(*region)) return -EINVAL; if (!mutex_trylock(&private->io_mutex)) return -EAGAIN; region = private->io_region; if (copy_from_user((void *)region + pos, buf, count)) { ret = -EFAULT; goto out_unlock; } vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_IO_REQ); ret = (region->ret_code != 0) ? region->ret_code : count; out_unlock: mutex_unlock(&private->io_mutex); return ret; } static ssize_t vfio_ccw_mdev_write(struct vfio_device *vdev, const char __user *buf, size_t count, loff_t *ppos) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); unsigned int index = VFIO_CCW_OFFSET_TO_INDEX(*ppos); if (index >= VFIO_CCW_NUM_REGIONS + private->num_regions) return -EINVAL; switch (index) { case VFIO_CCW_CONFIG_REGION_INDEX: return vfio_ccw_mdev_write_io_region(private, buf, count, ppos); default: index -= VFIO_CCW_NUM_REGIONS; return private->region[index].ops->write(private, buf, count, ppos); } return -EINVAL; } static int vfio_ccw_mdev_get_device_info(struct vfio_ccw_private *private, struct vfio_device_info *info) { info->flags = VFIO_DEVICE_FLAGS_CCW | VFIO_DEVICE_FLAGS_RESET; info->num_regions = VFIO_CCW_NUM_REGIONS + private->num_regions; info->num_irqs = VFIO_CCW_NUM_IRQS; return 0; } static int vfio_ccw_mdev_get_region_info(struct vfio_ccw_private *private, struct vfio_region_info *info, unsigned long arg) { int i; switch (info->index) { case VFIO_CCW_CONFIG_REGION_INDEX: info->offset = 0; info->size = sizeof(struct ccw_io_region); info->flags = VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE; return 0; default: /* all other regions are handled via capability chain */ { struct vfio_info_cap caps = { .buf = NULL, .size = 0 }; struct vfio_region_info_cap_type cap_type = { .header.id = VFIO_REGION_INFO_CAP_TYPE, .header.version = 1 }; int ret; if (info->index >= VFIO_CCW_NUM_REGIONS + private->num_regions) return -EINVAL; info->index = array_index_nospec(info->index, VFIO_CCW_NUM_REGIONS + private->num_regions); i = info->index - VFIO_CCW_NUM_REGIONS; info->offset = VFIO_CCW_INDEX_TO_OFFSET(info->index); info->size = private->region[i].size; info->flags = private->region[i].flags; cap_type.type = private->region[i].type; cap_type.subtype = private->region[i].subtype; ret = vfio_info_add_capability(&caps, &cap_type.header, sizeof(cap_type)); if (ret) return ret; info->flags |= VFIO_REGION_INFO_FLAG_CAPS; if (info->argsz < sizeof(*info) + caps.size) { info->argsz = sizeof(*info) + caps.size; info->cap_offset = 0; } else { vfio_info_cap_shift(&caps, sizeof(*info)); if (copy_to_user((void __user *)arg + sizeof(*info), caps.buf, caps.size)) { kfree(caps.buf); return -EFAULT; } info->cap_offset = sizeof(*info); } kfree(caps.buf); } } return 0; } static int vfio_ccw_mdev_get_irq_info(struct vfio_irq_info *info) { switch (info->index) { case VFIO_CCW_IO_IRQ_INDEX: case VFIO_CCW_CRW_IRQ_INDEX: case VFIO_CCW_REQ_IRQ_INDEX: info->count = 1; info->flags = VFIO_IRQ_INFO_EVENTFD; break; default: return -EINVAL; } return 0; } static int vfio_ccw_mdev_set_irqs(struct vfio_ccw_private *private, uint32_t flags, uint32_t index, void __user *data) { struct eventfd_ctx **ctx; if (!(flags & VFIO_IRQ_SET_ACTION_TRIGGER)) return -EINVAL; switch (index) { case VFIO_CCW_IO_IRQ_INDEX: ctx = &private->io_trigger; break; case VFIO_CCW_CRW_IRQ_INDEX: ctx = &private->crw_trigger; break; case VFIO_CCW_REQ_IRQ_INDEX: ctx = &private->req_trigger; break; default: return -EINVAL; } switch (flags & VFIO_IRQ_SET_DATA_TYPE_MASK) { case VFIO_IRQ_SET_DATA_NONE: { if (*ctx) eventfd_signal(*ctx, 1); return 0; } case VFIO_IRQ_SET_DATA_BOOL: { uint8_t trigger; if (get_user(trigger, (uint8_t __user *)data)) return -EFAULT; if (trigger && *ctx) eventfd_signal(*ctx, 1); return 0; } case VFIO_IRQ_SET_DATA_EVENTFD: { int32_t fd; if (get_user(fd, (int32_t __user *)data)) return -EFAULT; if (fd == -1) { if (*ctx) eventfd_ctx_put(*ctx); *ctx = NULL; } else if (fd >= 0) { struct eventfd_ctx *efdctx; efdctx = eventfd_ctx_fdget(fd); if (IS_ERR(efdctx)) return PTR_ERR(efdctx); if (*ctx) eventfd_ctx_put(*ctx); *ctx = efdctx; } else return -EINVAL; return 0; } default: return -EINVAL; } } int vfio_ccw_register_dev_region(struct vfio_ccw_private *private, unsigned int subtype, const struct vfio_ccw_regops *ops, size_t size, u32 flags, void *data) { struct vfio_ccw_region *region; region = krealloc(private->region, (private->num_regions + 1) * sizeof(*region), GFP_KERNEL); if (!region) return -ENOMEM; private->region = region; private->region[private->num_regions].type = VFIO_REGION_TYPE_CCW; private->region[private->num_regions].subtype = subtype; private->region[private->num_regions].ops = ops; private->region[private->num_regions].size = size; private->region[private->num_regions].flags = flags; private->region[private->num_regions].data = data; private->num_regions++; return 0; } void vfio_ccw_unregister_dev_regions(struct vfio_ccw_private *private) { int i; for (i = 0; i < private->num_regions; i++) private->region[i].ops->release(private, &private->region[i]); private->num_regions = 0; kfree(private->region); private->region = NULL; } static ssize_t vfio_ccw_mdev_ioctl(struct vfio_device *vdev, unsigned int cmd, unsigned long arg) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); int ret = 0; unsigned long minsz; switch (cmd) { case VFIO_DEVICE_GET_INFO: { struct vfio_device_info info; minsz = offsetofend(struct vfio_device_info, num_irqs); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; ret = vfio_ccw_mdev_get_device_info(private, &info); if (ret) return ret; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } case VFIO_DEVICE_GET_REGION_INFO: { struct vfio_region_info info; minsz = offsetofend(struct vfio_region_info, offset); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz) return -EINVAL; ret = vfio_ccw_mdev_get_region_info(private, &info, arg); if (ret) return ret; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } case VFIO_DEVICE_GET_IRQ_INFO: { struct vfio_irq_info info; minsz = offsetofend(struct vfio_irq_info, count); if (copy_from_user(&info, (void __user *)arg, minsz)) return -EFAULT; if (info.argsz < minsz || info.index >= VFIO_CCW_NUM_IRQS) return -EINVAL; ret = vfio_ccw_mdev_get_irq_info(&info); if (ret) return ret; if (info.count == -1) return -EINVAL; return copy_to_user((void __user *)arg, &info, minsz) ? -EFAULT : 0; } case VFIO_DEVICE_SET_IRQS: { struct vfio_irq_set hdr; size_t data_size; void __user *data; minsz = offsetofend(struct vfio_irq_set, count); if (copy_from_user(&hdr, (void __user *)arg, minsz)) return -EFAULT; ret = vfio_set_irqs_validate_and_prepare(&hdr, 1, VFIO_CCW_NUM_IRQS, &data_size); if (ret) return ret; data = (void __user *)(arg + minsz); return vfio_ccw_mdev_set_irqs(private, hdr.flags, hdr.index, data); } case VFIO_DEVICE_RESET: return vfio_ccw_mdev_reset(private); default: return -ENOTTY; } } /* Request removal of the device*/ static void vfio_ccw_mdev_request(struct vfio_device *vdev, unsigned int count) { struct vfio_ccw_private *private = container_of(vdev, struct vfio_ccw_private, vdev); struct device *dev = vdev->dev; if (private->req_trigger) { if (!(count % 10)) dev_notice_ratelimited(dev, "Relaying device request to user (#%u)\n", count); eventfd_signal(private->req_trigger, 1); } else if (count == 0) { dev_notice(dev, "No device request channel registered, blocked until released by user\n"); } } static const struct vfio_device_ops vfio_ccw_dev_ops = { .init = vfio_ccw_mdev_init_dev, .release = vfio_ccw_mdev_release_dev, .open_device = vfio_ccw_mdev_open_device, .close_device = vfio_ccw_mdev_close_device, .read = vfio_ccw_mdev_read, .write = vfio_ccw_mdev_write, .ioctl = vfio_ccw_mdev_ioctl, .request = vfio_ccw_mdev_request, .dma_unmap = vfio_ccw_dma_unmap, .bind_iommufd = vfio_iommufd_emulated_bind, .unbind_iommufd = vfio_iommufd_emulated_unbind, .attach_ioas = vfio_iommufd_emulated_attach_ioas, .detach_ioas = vfio_iommufd_emulated_detach_ioas, }; struct mdev_driver vfio_ccw_mdev_driver = { .device_api = VFIO_DEVICE_API_CCW_STRING, .max_instances = 1, .driver = { .name = "vfio_ccw_mdev", .owner = THIS_MODULE, .mod_name = KBUILD_MODNAME, }, .probe = vfio_ccw_mdev_probe, .remove = vfio_ccw_mdev_remove, };
linux-master
drivers/s390/cio/vfio_ccw_ops.c
// SPDX-License-Identifier: GPL-2.0 /* * Tracepoint definitions for s390_cio * * Copyright IBM Corp. 2015 * Author(s): Peter Oberparleiter <[email protected]> */ #include <asm/crw.h> #include "cio.h" #define CREATE_TRACE_POINTS #include "trace.h" EXPORT_TRACEPOINT_SYMBOL(s390_cio_stsch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_msch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_tsch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_tpi); EXPORT_TRACEPOINT_SYMBOL(s390_cio_ssch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_csch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_hsch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_xsch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_rsch); EXPORT_TRACEPOINT_SYMBOL(s390_cio_chsc);
linux-master
drivers/s390/cio/trace.c
// SPDX-License-Identifier: GPL-2.0 /* * Linux for s390 qdio support, buffer handling, qdio API and module support. * * Copyright IBM Corp. 2000, 2008 * Author(s): Utz Bacher <[email protected]> * Jan Glauber <[email protected]> * 2.6 cio integration by Cornelia Huck <[email protected]> */ #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/kmemleak.h> #include <linux/delay.h> #include <linux/gfp.h> #include <linux/io.h> #include <linux/atomic.h> #include <asm/debug.h> #include <asm/qdio.h> #include <asm/ipl.h> #include "cio.h" #include "css.h" #include "device.h" #include "qdio.h" #include "qdio_debug.h" MODULE_AUTHOR("Utz Bacher <[email protected]>,"\ "Jan Glauber <[email protected]>"); MODULE_DESCRIPTION("QDIO base support"); MODULE_LICENSE("GPL"); static inline int do_siga_sync(unsigned long schid, unsigned long out_mask, unsigned long in_mask, unsigned int fc) { int cc; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[schid]\n" " lgr 2,%[out]\n" " lgr 3,%[in]\n" " siga 0\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (cc) : [fc] "d" (fc), [schid] "d" (schid), [out] "d" (out_mask), [in] "d" (in_mask) : "cc", "0", "1", "2", "3"); return cc; } static inline int do_siga_input(unsigned long schid, unsigned long mask, unsigned long fc) { int cc; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[schid]\n" " lgr 2,%[mask]\n" " siga 0\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (cc) : [fc] "d" (fc), [schid] "d" (schid), [mask] "d" (mask) : "cc", "0", "1", "2"); return cc; } /** * do_siga_output - perform SIGA-w/wt function * @schid: subchannel id or in case of QEBSM the subchannel token * @mask: which output queues to process * @bb: busy bit indicator, set only if SIGA-w/wt could not access a buffer * @fc: function code to perform * @aob: asynchronous operation block * * Returns condition code. * Note: For IQDC unicast queues only the highest priority queue is processed. */ static inline int do_siga_output(unsigned long schid, unsigned long mask, unsigned int *bb, unsigned long fc, unsigned long aob) { int cc; asm volatile( " lgr 0,%[fc]\n" " lgr 1,%[schid]\n" " lgr 2,%[mask]\n" " lgr 3,%[aob]\n" " siga 0\n" " lgr %[fc],0\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (cc), [fc] "+&d" (fc) : [schid] "d" (schid), [mask] "d" (mask), [aob] "d" (aob) : "cc", "0", "1", "2", "3"); *bb = fc >> 31; return cc; } /** * qdio_do_eqbs - extract buffer states for QEBSM * @q: queue to manipulate * @state: state of the extracted buffers * @start: buffer number to start at * @count: count of buffers to examine * @auto_ack: automatically acknowledge buffers * * Returns the number of successfully extracted equal buffer states. * Stops processing if a state is different from the last buffers state. */ static int qdio_do_eqbs(struct qdio_q *q, unsigned char *state, int start, int count, int auto_ack) { int tmp_count = count, tmp_start = start, nr = q->nr; unsigned int ccq = 0; qperf_inc(q, eqbs); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_eqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count, auto_ack); switch (ccq) { case 0: case 32: /* all done, or next buffer state different */ return count - tmp_count; case 96: /* not all buffers processed */ qperf_inc(q, eqbs_partial); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "EQBS part:%02x", tmp_count); return count - tmp_count; case 97: /* no buffer processed */ DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "EQBS again:%2d", ccq); goto again; default: DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq); DBF_ERROR("%4x EQBS ERROR", SCH_NO(q)); DBF_ERROR("%3d%3d%2d", count, tmp_count, nr); q->handler(q->irq_ptr->cdev, QDIO_ERROR_GET_BUF_STATE, q->nr, q->first_to_check, count, q->irq_ptr->int_parm); return 0; } } /** * qdio_do_sqbs - set buffer states for QEBSM * @q: queue to manipulate * @state: new state of the buffers * @start: first buffer number to change * @count: how many buffers to change * * Returns the number of successfully changed buffers. * Does retrying until the specified count of buffer states is set or an * error occurs. */ static int qdio_do_sqbs(struct qdio_q *q, unsigned char state, int start, int count) { unsigned int ccq = 0; int tmp_count = count, tmp_start = start; int nr = q->nr; qperf_inc(q, sqbs); if (!q->is_input_q) nr += q->irq_ptr->nr_input_qs; again: ccq = do_sqbs(q->irq_ptr->sch_token, state, nr, &tmp_start, &tmp_count); switch (ccq) { case 0: case 32: /* all done, or active buffer adapter-owned */ WARN_ON_ONCE(tmp_count); return count - tmp_count; case 96: /* not all buffers processed */ DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "SQBS again:%2d", ccq); qperf_inc(q, sqbs_partial); goto again; default: DBF_ERROR("%4x ccq:%3d", SCH_NO(q), ccq); DBF_ERROR("%4x SQBS ERROR", SCH_NO(q)); DBF_ERROR("%3d%3d%2d", count, tmp_count, nr); q->handler(q->irq_ptr->cdev, QDIO_ERROR_SET_BUF_STATE, q->nr, q->first_to_check, count, q->irq_ptr->int_parm); return 0; } } /* * Returns number of examined buffers and their common state in *state. * Requested number of buffers-to-examine must be > 0. */ static inline int get_buf_states(struct qdio_q *q, unsigned int bufnr, unsigned char *state, unsigned int count, int auto_ack) { unsigned char __state = 0; int i = 1; if (is_qebsm(q)) return qdio_do_eqbs(q, state, bufnr, count, auto_ack); /* get initial state: */ __state = q->slsb.val[bufnr]; /* Bail out early if there is no work on the queue: */ if (__state & SLSB_OWNER_CU) goto out; for (; i < count; i++) { bufnr = next_buf(bufnr); /* stop if next state differs from initial state: */ if (q->slsb.val[bufnr] != __state) break; } out: *state = __state; return i; } static inline int get_buf_state(struct qdio_q *q, unsigned int bufnr, unsigned char *state, int auto_ack) { return get_buf_states(q, bufnr, state, 1, auto_ack); } /* wrap-around safe setting of slsb states, returns number of changed buffers */ static inline int set_buf_states(struct qdio_q *q, int bufnr, unsigned char state, int count) { int i; if (is_qebsm(q)) return qdio_do_sqbs(q, state, bufnr, count); /* Ensure that all preceding changes to the SBALs are visible: */ mb(); for (i = 0; i < count; i++) { WRITE_ONCE(q->slsb.val[bufnr], state); bufnr = next_buf(bufnr); } /* Make our SLSB changes visible: */ mb(); return count; } static inline int set_buf_state(struct qdio_q *q, int bufnr, unsigned char state) { return set_buf_states(q, bufnr, state, 1); } /* set slsb states to initial state */ static void qdio_init_buf_states(struct qdio_irq *irq_ptr) { struct qdio_q *q; int i; for_each_input_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_INPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); for_each_output_queue(irq_ptr, q, i) set_buf_states(q, 0, SLSB_P_OUTPUT_NOT_INIT, QDIO_MAX_BUFFERS_PER_Q); } static inline int qdio_siga_sync(struct qdio_q *q, unsigned int output, unsigned int input) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_SYNC; int cc; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-s:%1d", q->nr); qperf_inc(q, siga_sync); if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } cc = do_siga_sync(schid, output, input, fc); if (unlikely(cc)) DBF_ERROR("%4x SIGA-S:%2d", SCH_NO(q), cc); return (cc) ? -EIO : 0; } static inline int qdio_sync_input_queue(struct qdio_q *q) { return qdio_siga_sync(q, 0, q->mask); } static inline int qdio_sync_output_queue(struct qdio_q *q) { return qdio_siga_sync(q, q->mask, 0); } static inline int qdio_siga_sync_q(struct qdio_q *q) { if (q->is_input_q) return qdio_sync_input_queue(q); else return qdio_sync_output_queue(q); } static int qdio_siga_output(struct qdio_q *q, unsigned int count, unsigned int *busy_bit, unsigned long aob) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_WRITE; u64 start_time = 0; int retries = 0, cc; if (queue_type(q) == QDIO_IQDIO_QFMT && !multicast_outbound(q)) { if (count > 1) fc = QDIO_SIGA_WRITEM; else if (aob) fc = QDIO_SIGA_WRITEQ; } if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } again: cc = do_siga_output(schid, q->mask, busy_bit, fc, aob); /* hipersocket busy condition */ if (unlikely(*busy_bit)) { retries++; if (!start_time) { start_time = get_tod_clock_fast(); goto again; } if (get_tod_clock_fast() - start_time < QDIO_BUSY_BIT_PATIENCE) goto again; } if (retries) { DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "%4x cc2 BB1:%1d", SCH_NO(q), q->nr); DBF_DEV_EVENT(DBF_WARN, q->irq_ptr, "count:%u", retries); } return cc; } static inline int qdio_siga_input(struct qdio_q *q) { unsigned long schid = *((u32 *) &q->irq_ptr->schid); unsigned int fc = QDIO_SIGA_READ; int cc; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-r:%1d", q->nr); qperf_inc(q, siga_read); if (is_qebsm(q)) { schid = q->irq_ptr->sch_token; fc |= QDIO_SIGA_QEBSM_FLAG; } cc = do_siga_input(schid, q->mask, fc); if (unlikely(cc)) DBF_ERROR("%4x SIGA-R:%2d", SCH_NO(q), cc); return (cc) ? -EIO : 0; } int debug_get_buf_state(struct qdio_q *q, unsigned int bufnr, unsigned char *state) { if (qdio_need_siga_sync(q->irq_ptr)) qdio_siga_sync_q(q); return get_buf_state(q, bufnr, state, 0); } static inline void qdio_stop_polling(struct qdio_q *q) { if (!q->u.in.batch_count) return; qperf_inc(q, stop_polling); /* show the card that we are not polling anymore */ set_buf_states(q, q->u.in.batch_start, SLSB_P_INPUT_NOT_INIT, q->u.in.batch_count); q->u.in.batch_count = 0; } static inline void account_sbals(struct qdio_q *q, unsigned int count) { q->q_stats.nr_sbal_total += count; q->q_stats.nr_sbals[ilog2(count)]++; } static void process_buffer_error(struct qdio_q *q, unsigned int start, int count) { /* special handling for no target buffer empty */ if (queue_type(q) == QDIO_IQDIO_QFMT && !q->is_input_q && q->sbal[start]->element[15].sflags == 0x10) { qperf_inc(q, target_full); DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "OUTFULL FTC:%02x", start); return; } DBF_ERROR("%4x BUF ERROR", SCH_NO(q)); DBF_ERROR((q->is_input_q) ? "IN:%2d" : "OUT:%2d", q->nr); DBF_ERROR("FTC:%3d C:%3d", start, count); DBF_ERROR("F14:%2x F15:%2x", q->sbal[start]->element[14].sflags, q->sbal[start]->element[15].sflags); } static inline void inbound_handle_work(struct qdio_q *q, unsigned int start, int count, bool auto_ack) { /* ACK the newest SBAL: */ if (!auto_ack) set_buf_state(q, add_buf(start, count - 1), SLSB_P_INPUT_ACK); if (!q->u.in.batch_count) q->u.in.batch_start = start; q->u.in.batch_count += count; } static int get_inbound_buffer_frontier(struct qdio_q *q, unsigned int start, unsigned int *error) { unsigned char state = 0; int count; q->timestamp = get_tod_clock_fast(); count = atomic_read(&q->nr_buf_used); if (!count) return 0; if (qdio_need_siga_sync(q->irq_ptr)) qdio_sync_input_queue(q); count = get_buf_states(q, start, &state, count, 1); if (!count) return 0; switch (state) { case SLSB_P_INPUT_PRIMED: DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in prim:%1d %02x", q->nr, count); inbound_handle_work(q, start, count, is_qebsm(q)); if (atomic_sub_return(count, &q->nr_buf_used) == 0) qperf_inc(q, inbound_queue_full); if (q->irq_ptr->perf_stat_enabled) account_sbals(q, count); return count; case SLSB_P_INPUT_ERROR: DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in err:%1d %02x", q->nr, count); *error = QDIO_ERROR_SLSB_STATE; process_buffer_error(q, start, count); inbound_handle_work(q, start, count, false); if (atomic_sub_return(count, &q->nr_buf_used) == 0) qperf_inc(q, inbound_queue_full); if (q->irq_ptr->perf_stat_enabled) account_sbals_error(q, count); return count; case SLSB_CU_INPUT_EMPTY: if (q->irq_ptr->perf_stat_enabled) q->q_stats.nr_sbal_nop++; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "in nop:%1d %#02x", q->nr, start); return 0; case SLSB_P_INPUT_NOT_INIT: case SLSB_P_INPUT_ACK: /* We should never see this state, throw a WARN: */ default: dev_WARN_ONCE(&q->irq_ptr->cdev->dev, 1, "found state %#x at index %u on queue %u\n", state, start, q->nr); return 0; } } int qdio_inspect_input_queue(struct ccw_device *cdev, unsigned int nr, unsigned int *bufnr, unsigned int *error) { struct qdio_irq *irq = cdev->private->qdio_data; unsigned int start; struct qdio_q *q; int count; if (!irq) return -ENODEV; q = irq->input_qs[nr]; start = q->first_to_check; *error = 0; count = get_inbound_buffer_frontier(q, start, error); if (count == 0) return 0; *bufnr = start; q->first_to_check = add_buf(start, count); return count; } EXPORT_SYMBOL_GPL(qdio_inspect_input_queue); static inline int qdio_inbound_q_done(struct qdio_q *q, unsigned int start) { unsigned char state = 0; if (!atomic_read(&q->nr_buf_used)) return 1; if (qdio_need_siga_sync(q->irq_ptr)) qdio_sync_input_queue(q); get_buf_state(q, start, &state, 0); if (state == SLSB_P_INPUT_PRIMED || state == SLSB_P_INPUT_ERROR) /* more work coming */ return 0; return 1; } static int get_outbound_buffer_frontier(struct qdio_q *q, unsigned int start, unsigned int *error) { unsigned char state = 0; int count; q->timestamp = get_tod_clock_fast(); count = atomic_read(&q->nr_buf_used); if (!count) return 0; if (qdio_need_siga_sync(q->irq_ptr)) qdio_sync_output_queue(q); count = get_buf_states(q, start, &state, count, 0); if (!count) return 0; switch (state) { case SLSB_P_OUTPUT_PENDING: *error = QDIO_ERROR_SLSB_PENDING; fallthrough; case SLSB_P_OUTPUT_EMPTY: /* the adapter got it */ DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out empty:%1d %02x", q->nr, count); atomic_sub(count, &q->nr_buf_used); if (q->irq_ptr->perf_stat_enabled) account_sbals(q, count); return count; case SLSB_P_OUTPUT_ERROR: DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out error:%1d %02x", q->nr, count); *error = QDIO_ERROR_SLSB_STATE; process_buffer_error(q, start, count); atomic_sub(count, &q->nr_buf_used); if (q->irq_ptr->perf_stat_enabled) account_sbals_error(q, count); return count; case SLSB_CU_OUTPUT_PRIMED: /* the adapter has not fetched the output yet */ if (q->irq_ptr->perf_stat_enabled) q->q_stats.nr_sbal_nop++; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "out primed:%1d", q->nr); return 0; case SLSB_P_OUTPUT_HALTED: return 0; case SLSB_P_OUTPUT_NOT_INIT: /* We should never see this state, throw a WARN: */ default: dev_WARN_ONCE(&q->irq_ptr->cdev->dev, 1, "found state %#x at index %u on queue %u\n", state, start, q->nr); return 0; } } int qdio_inspect_output_queue(struct ccw_device *cdev, unsigned int nr, unsigned int *bufnr, unsigned int *error) { struct qdio_irq *irq = cdev->private->qdio_data; unsigned int start; struct qdio_q *q; int count; if (!irq) return -ENODEV; q = irq->output_qs[nr]; start = q->first_to_check; *error = 0; count = get_outbound_buffer_frontier(q, start, error); if (count == 0) return 0; *bufnr = start; q->first_to_check = add_buf(start, count); return count; } EXPORT_SYMBOL_GPL(qdio_inspect_output_queue); static int qdio_kick_outbound_q(struct qdio_q *q, unsigned int count, unsigned long aob) { int retries = 0, cc; unsigned int busy_bit; if (!qdio_need_siga_out(q->irq_ptr)) return 0; DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w:%1d", q->nr); retry: qperf_inc(q, siga_write); cc = qdio_siga_output(q, count, &busy_bit, aob); switch (cc) { case 0: break; case 2: if (busy_bit) { while (++retries < QDIO_BUSY_BIT_RETRIES) { mdelay(QDIO_BUSY_BIT_RETRY_DELAY); goto retry; } DBF_ERROR("%4x cc2 BBC:%1d", SCH_NO(q), q->nr); cc = -EBUSY; } else { DBF_DEV_EVENT(DBF_INFO, q->irq_ptr, "siga-w cc2:%1d", q->nr); cc = -ENOBUFS; } break; case 1: case 3: DBF_ERROR("%4x SIGA-W:%1d", SCH_NO(q), cc); cc = -EIO; break; } if (retries) { DBF_ERROR("%4x cc2 BB2:%1d", SCH_NO(q), q->nr); DBF_ERROR("count:%u", retries); } return cc; } static inline void qdio_set_state(struct qdio_irq *irq_ptr, enum qdio_irq_states state) { DBF_DEV_EVENT(DBF_INFO, irq_ptr, "newstate: %1d", state); irq_ptr->state = state; mb(); } static void qdio_irq_check_sense(struct qdio_irq *irq_ptr, struct irb *irb) { if (irb->esw.esw0.erw.cons) { DBF_ERROR("%4x sense:", irq_ptr->schid.sch_no); DBF_ERROR_HEX(irb, 64); DBF_ERROR_HEX(irb->ecw, 64); } } /* PCI interrupt handler */ static void qdio_int_handler_pci(struct qdio_irq *irq_ptr) { if (unlikely(irq_ptr->state != QDIO_IRQ_STATE_ACTIVE)) return; qdio_deliver_irq(irq_ptr); irq_ptr->last_data_irq_time = S390_lowcore.int_clock; } static void qdio_handle_activate_check(struct qdio_irq *irq_ptr, unsigned long intparm, int cstat, int dstat) { unsigned int first_to_check = 0; DBF_ERROR("%4x ACT CHECK", irq_ptr->schid.sch_no); DBF_ERROR("intp :%lx", intparm); DBF_ERROR("ds: %2x cs:%2x", dstat, cstat); /* zfcp wants this: */ if (irq_ptr->nr_input_qs) first_to_check = irq_ptr->input_qs[0]->first_to_check; irq_ptr->error_handler(irq_ptr->cdev, QDIO_ERROR_ACTIVATE, 0, first_to_check, 0, irq_ptr->int_parm); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); /* * In case of z/VM LGR (Live Guest Migration) QDIO recovery will happen. * Therefore we call the LGR detection function here. */ lgr_info_log(); } static void qdio_establish_handle_irq(struct qdio_irq *irq_ptr, int cstat, int dstat) { DBF_DEV_EVENT(DBF_INFO, irq_ptr, "qest irq"); if (cstat) goto error; if (dstat & ~(DEV_STAT_DEV_END | DEV_STAT_CHN_END)) goto error; if (!(dstat & DEV_STAT_DEV_END)) goto error; qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ESTABLISHED); return; error: DBF_ERROR("%4x EQ:error", irq_ptr->schid.sch_no); DBF_ERROR("ds: %2x cs:%2x", dstat, cstat); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); } /* qdio interrupt handler */ void qdio_int_handler(struct ccw_device *cdev, unsigned long intparm, struct irb *irb) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int cstat, dstat; if (!intparm || !irq_ptr) { ccw_device_get_schid(cdev, &schid); DBF_ERROR("qint:%4x", schid.sch_no); return; } if (irq_ptr->perf_stat_enabled) irq_ptr->perf_stat.qdio_int++; if (IS_ERR(irb)) { DBF_ERROR("%4x IO error", irq_ptr->schid.sch_no); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ERR); wake_up(&cdev->private->wait_q); return; } qdio_irq_check_sense(irq_ptr, irb); cstat = irb->scsw.cmd.cstat; dstat = irb->scsw.cmd.dstat; switch (irq_ptr->state) { case QDIO_IRQ_STATE_INACTIVE: qdio_establish_handle_irq(irq_ptr, cstat, dstat); break; case QDIO_IRQ_STATE_CLEANUP: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); break; case QDIO_IRQ_STATE_ESTABLISHED: case QDIO_IRQ_STATE_ACTIVE: if (cstat & SCHN_STAT_PCI) { qdio_int_handler_pci(irq_ptr); return; } if (cstat || dstat) qdio_handle_activate_check(irq_ptr, intparm, cstat, dstat); break; case QDIO_IRQ_STATE_STOPPED: break; default: WARN_ON_ONCE(1); } wake_up(&cdev->private->wait_q); } /** * qdio_get_ssqd_desc - get qdio subchannel description * @cdev: ccw device to get description for * @data: where to store the ssqd * * Returns 0 or an error code. The results of the chsc are stored in the * specified structure. */ int qdio_get_ssqd_desc(struct ccw_device *cdev, struct qdio_ssqd_desc *data) { struct subchannel_id schid; if (!cdev || !cdev->private) return -EINVAL; ccw_device_get_schid(cdev, &schid); DBF_EVENT("get ssqd:%4x", schid.sch_no); return qdio_setup_get_ssqd(NULL, &schid, data); } EXPORT_SYMBOL_GPL(qdio_get_ssqd_desc); static int qdio_cancel_ccw(struct qdio_irq *irq, int how) { struct ccw_device *cdev = irq->cdev; long timeout; int rc; spin_lock_irq(get_ccwdev_lock(cdev)); qdio_set_state(irq, QDIO_IRQ_STATE_CLEANUP); if (how & QDIO_FLAG_CLEANUP_USING_CLEAR) rc = ccw_device_clear(cdev, QDIO_DOING_CLEANUP); else /* default behaviour is halt */ rc = ccw_device_halt(cdev, QDIO_DOING_CLEANUP); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x SHUTD ERR", irq->schid.sch_no); DBF_ERROR("rc:%4d", rc); return rc; } timeout = wait_event_interruptible_timeout(cdev->private->wait_q, irq->state == QDIO_IRQ_STATE_INACTIVE || irq->state == QDIO_IRQ_STATE_ERR, 10 * HZ); if (timeout <= 0) rc = (timeout == -ERESTARTSYS) ? -EINTR : -ETIME; return rc; } /** * qdio_shutdown - shut down a qdio subchannel * @cdev: associated ccw device * @how: use halt or clear to shutdown */ int qdio_shutdown(struct ccw_device *cdev, int how) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; int rc; if (!irq_ptr) return -ENODEV; WARN_ON_ONCE(irqs_disabled()); ccw_device_get_schid(cdev, &schid); DBF_EVENT("qshutdown:%4x", schid.sch_no); mutex_lock(&irq_ptr->setup_mutex); /* * Subchannel was already shot down. We cannot prevent being called * twice since cio may trigger a shutdown asynchronously. */ if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { mutex_unlock(&irq_ptr->setup_mutex); return 0; } /* * Indicate that the device is going down. */ qdio_set_state(irq_ptr, QDIO_IRQ_STATE_STOPPED); qdio_shutdown_debug_entries(irq_ptr); rc = qdio_cancel_ccw(irq_ptr, how); qdio_shutdown_thinint(irq_ptr); qdio_shutdown_irq(irq_ptr); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); mutex_unlock(&irq_ptr->setup_mutex); if (rc) return rc; return 0; } EXPORT_SYMBOL_GPL(qdio_shutdown); /** * qdio_free - free data structures for a qdio subchannel * @cdev: associated ccw device */ int qdio_free(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; if (!irq_ptr) return -ENODEV; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qfree:%4x", schid.sch_no); DBF_DEV_EVENT(DBF_ERR, irq_ptr, "dbf abandoned"); mutex_lock(&irq_ptr->setup_mutex); irq_ptr->debug_area = NULL; cdev->private->qdio_data = NULL; mutex_unlock(&irq_ptr->setup_mutex); qdio_free_queues(irq_ptr); free_page((unsigned long) irq_ptr->qdr); free_page(irq_ptr->chsc_page); kfree(irq_ptr->ccw); free_page((unsigned long) irq_ptr); return 0; } EXPORT_SYMBOL_GPL(qdio_free); /** * qdio_allocate - allocate qdio queues and associated data * @cdev: associated ccw device * @no_input_qs: allocate this number of Input Queues * @no_output_qs: allocate this number of Output Queues */ int qdio_allocate(struct ccw_device *cdev, unsigned int no_input_qs, unsigned int no_output_qs) { struct subchannel_id schid; struct qdio_irq *irq_ptr; int rc = -ENOMEM; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qallocate:%4x", schid.sch_no); if (no_input_qs > QDIO_MAX_QUEUES_PER_IRQ || no_output_qs > QDIO_MAX_QUEUES_PER_IRQ) return -EINVAL; irq_ptr = (void *) get_zeroed_page(GFP_KERNEL); if (!irq_ptr) return -ENOMEM; irq_ptr->ccw = kmalloc(sizeof(*irq_ptr->ccw), GFP_KERNEL | GFP_DMA); if (!irq_ptr->ccw) goto err_ccw; /* kmemleak doesn't scan the page-allocated irq_ptr: */ kmemleak_not_leak(irq_ptr->ccw); irq_ptr->cdev = cdev; mutex_init(&irq_ptr->setup_mutex); if (qdio_allocate_dbf(irq_ptr)) goto err_dbf; DBF_DEV_EVENT(DBF_ERR, irq_ptr, "alloc niq:%1u noq:%1u", no_input_qs, no_output_qs); /* * Allocate a page for the chsc calls in qdio_establish. * Must be pre-allocated since a zfcp recovery will call * qdio_establish. In case of low memory and swap on a zfcp disk * we may not be able to allocate memory otherwise. */ irq_ptr->chsc_page = get_zeroed_page(GFP_KERNEL); if (!irq_ptr->chsc_page) goto err_chsc; /* qdr is used in ccw1.cda which is u32 */ irq_ptr->qdr = (struct qdr *) get_zeroed_page(GFP_KERNEL | GFP_DMA); if (!irq_ptr->qdr) goto err_qdr; rc = qdio_allocate_qs(irq_ptr, no_input_qs, no_output_qs); if (rc) goto err_queues; cdev->private->qdio_data = irq_ptr; qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); return 0; err_queues: free_page((unsigned long) irq_ptr->qdr); err_qdr: free_page(irq_ptr->chsc_page); err_chsc: err_dbf: kfree(irq_ptr->ccw); err_ccw: free_page((unsigned long) irq_ptr); return rc; } EXPORT_SYMBOL_GPL(qdio_allocate); static void qdio_trace_init_data(struct qdio_irq *irq, struct qdio_initialize *data) { DBF_DEV_EVENT(DBF_ERR, irq, "qfmt:%1u", data->q_format); DBF_DEV_EVENT(DBF_ERR, irq, "qpff%4x", data->qib_param_field_format); DBF_DEV_HEX(irq, &data->qib_param_field, sizeof(void *), DBF_ERR); DBF_DEV_EVENT(DBF_ERR, irq, "niq:%1u noq:%1u", data->no_input_qs, data->no_output_qs); DBF_DEV_HEX(irq, &data->input_handler, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->output_handler, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->int_parm, sizeof(long), DBF_ERR); DBF_DEV_HEX(irq, &data->input_sbal_addr_array, sizeof(void *), DBF_ERR); DBF_DEV_HEX(irq, &data->output_sbal_addr_array, sizeof(void *), DBF_ERR); } /** * qdio_establish - establish queues on a qdio subchannel * @cdev: associated ccw device * @init_data: initialization data */ int qdio_establish(struct ccw_device *cdev, struct qdio_initialize *init_data) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; struct ciw *ciw; long timeout; int rc; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qestablish:%4x", schid.sch_no); if (!irq_ptr) return -ENODEV; if (init_data->no_input_qs > irq_ptr->max_input_qs || init_data->no_output_qs > irq_ptr->max_output_qs) return -EINVAL; /* Needed as error_handler: */ if (!init_data->input_handler) return -EINVAL; if (init_data->no_output_qs && !init_data->output_handler) return -EINVAL; if (!init_data->input_sbal_addr_array || !init_data->output_sbal_addr_array) return -EINVAL; if (!init_data->irq_poll) return -EINVAL; ciw = ccw_device_get_ciw(cdev, CIW_TYPE_EQUEUE); if (!ciw) { DBF_ERROR("%4x NO EQ", schid.sch_no); return -EIO; } mutex_lock(&irq_ptr->setup_mutex); qdio_trace_init_data(irq_ptr, init_data); qdio_setup_irq(irq_ptr, init_data); rc = qdio_establish_thinint(irq_ptr); if (rc) goto err_thinint; /* establish q */ irq_ptr->ccw->cmd_code = ciw->cmd; irq_ptr->ccw->flags = CCW_FLAG_SLI; irq_ptr->ccw->count = ciw->count; irq_ptr->ccw->cda = (u32) virt_to_phys(irq_ptr->qdr); spin_lock_irq(get_ccwdev_lock(cdev)); ccw_device_set_options_mask(cdev, 0); rc = ccw_device_start(cdev, irq_ptr->ccw, QDIO_DOING_ESTABLISH, 0, 0); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x est IO ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%4x", rc); goto err_ccw_start; } timeout = wait_event_interruptible_timeout(cdev->private->wait_q, irq_ptr->state == QDIO_IRQ_STATE_ESTABLISHED || irq_ptr->state == QDIO_IRQ_STATE_ERR, HZ); if (timeout <= 0) { rc = (timeout == -ERESTARTSYS) ? -EINTR : -ETIME; goto err_ccw_timeout; } if (irq_ptr->state != QDIO_IRQ_STATE_ESTABLISHED) { rc = -EIO; goto err_ccw_error; } qdio_setup_ssqd_info(irq_ptr); /* qebsm is now setup if available, initialize buffer states */ qdio_init_buf_states(irq_ptr); mutex_unlock(&irq_ptr->setup_mutex); qdio_print_subchannel_info(irq_ptr); qdio_setup_debug_entries(irq_ptr); return 0; err_ccw_timeout: qdio_cancel_ccw(irq_ptr, QDIO_FLAG_CLEANUP_USING_CLEAR); err_ccw_error: err_ccw_start: qdio_shutdown_thinint(irq_ptr); err_thinint: qdio_shutdown_irq(irq_ptr); qdio_set_state(irq_ptr, QDIO_IRQ_STATE_INACTIVE); mutex_unlock(&irq_ptr->setup_mutex); return rc; } EXPORT_SYMBOL_GPL(qdio_establish); /** * qdio_activate - activate queues on a qdio subchannel * @cdev: associated cdev */ int qdio_activate(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; struct subchannel_id schid; struct ciw *ciw; int rc; ccw_device_get_schid(cdev, &schid); DBF_EVENT("qactivate:%4x", schid.sch_no); if (!irq_ptr) return -ENODEV; ciw = ccw_device_get_ciw(cdev, CIW_TYPE_AQUEUE); if (!ciw) { DBF_ERROR("%4x NO AQ", schid.sch_no); return -EIO; } mutex_lock(&irq_ptr->setup_mutex); if (irq_ptr->state == QDIO_IRQ_STATE_INACTIVE) { rc = -EBUSY; goto out; } irq_ptr->ccw->cmd_code = ciw->cmd; irq_ptr->ccw->flags = CCW_FLAG_SLI; irq_ptr->ccw->count = ciw->count; irq_ptr->ccw->cda = 0; spin_lock_irq(get_ccwdev_lock(cdev)); ccw_device_set_options(cdev, CCWDEV_REPORT_ALL); rc = ccw_device_start(cdev, irq_ptr->ccw, QDIO_DOING_ACTIVATE, 0, DOIO_DENY_PREFETCH); spin_unlock_irq(get_ccwdev_lock(cdev)); if (rc) { DBF_ERROR("%4x act IO ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%4x", rc); goto out; } /* wait for subchannel to become active */ msleep(5); switch (irq_ptr->state) { case QDIO_IRQ_STATE_STOPPED: case QDIO_IRQ_STATE_ERR: rc = -EIO; break; default: qdio_set_state(irq_ptr, QDIO_IRQ_STATE_ACTIVE); rc = 0; } out: mutex_unlock(&irq_ptr->setup_mutex); return rc; } EXPORT_SYMBOL_GPL(qdio_activate); /** * handle_inbound - reset processed input buffers * @q: queue containing the buffers * @bufnr: first buffer to process * @count: how many buffers are emptied */ static int handle_inbound(struct qdio_q *q, int bufnr, int count) { int overlap; qperf_inc(q, inbound_call); /* If any processed SBALs are returned to HW, adjust our tracking: */ overlap = min_t(int, count - sub_buf(q->u.in.batch_start, bufnr), q->u.in.batch_count); if (overlap > 0) { q->u.in.batch_start = add_buf(q->u.in.batch_start, overlap); q->u.in.batch_count -= overlap; } count = set_buf_states(q, bufnr, SLSB_CU_INPUT_EMPTY, count); atomic_add(count, &q->nr_buf_used); if (qdio_need_siga_in(q->irq_ptr)) return qdio_siga_input(q); return 0; } /** * qdio_add_bufs_to_input_queue - process buffers on an Input Queue * @cdev: associated ccw_device for the qdio subchannel * @q_nr: queue number * @bufnr: buffer number * @count: how many buffers to process */ int qdio_add_bufs_to_input_queue(struct ccw_device *cdev, unsigned int q_nr, unsigned int bufnr, unsigned int count) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q) return -EINVAL; if (!irq_ptr) return -ENODEV; DBF_DEV_EVENT(DBF_INFO, irq_ptr, "addi b:%02x c:%02x", bufnr, count); if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE) return -EIO; if (!count) return 0; return handle_inbound(irq_ptr->input_qs[q_nr], bufnr, count); } EXPORT_SYMBOL_GPL(qdio_add_bufs_to_input_queue); /** * handle_outbound - process filled outbound buffers * @q: queue containing the buffers * @bufnr: first buffer to process * @count: how many buffers are filled * @aob: asynchronous operation block */ static int handle_outbound(struct qdio_q *q, unsigned int bufnr, unsigned int count, struct qaob *aob) { unsigned char state = 0; int used, rc = 0; qperf_inc(q, outbound_call); count = set_buf_states(q, bufnr, SLSB_CU_OUTPUT_PRIMED, count); used = atomic_add_return(count, &q->nr_buf_used); if (used == QDIO_MAX_BUFFERS_PER_Q) qperf_inc(q, outbound_queue_full); if (queue_type(q) == QDIO_IQDIO_QFMT) { unsigned long phys_aob = aob ? virt_to_phys(aob) : 0; WARN_ON_ONCE(!IS_ALIGNED(phys_aob, 256)); rc = qdio_kick_outbound_q(q, count, phys_aob); } else if (qdio_need_siga_sync(q->irq_ptr)) { rc = qdio_sync_output_queue(q); } else if (count < QDIO_MAX_BUFFERS_PER_Q && get_buf_state(q, prev_buf(bufnr), &state, 0) > 0 && state == SLSB_CU_OUTPUT_PRIMED) { /* The previous buffer is not processed yet, tack on. */ qperf_inc(q, fast_requeue); } else { rc = qdio_kick_outbound_q(q, count, 0); } return rc; } /** * qdio_add_bufs_to_output_queue - process buffers on an Output Queue * @cdev: associated ccw_device for the qdio subchannel * @q_nr: queue number * @bufnr: buffer number * @count: how many buffers to process * @aob: asynchronous operation block */ int qdio_add_bufs_to_output_queue(struct ccw_device *cdev, unsigned int q_nr, unsigned int bufnr, unsigned int count, struct qaob *aob) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (bufnr >= QDIO_MAX_BUFFERS_PER_Q || count > QDIO_MAX_BUFFERS_PER_Q) return -EINVAL; if (!irq_ptr) return -ENODEV; DBF_DEV_EVENT(DBF_INFO, irq_ptr, "addo b:%02x c:%02x", bufnr, count); if (irq_ptr->state != QDIO_IRQ_STATE_ACTIVE) return -EIO; if (!count) return 0; return handle_outbound(irq_ptr->output_qs[q_nr], bufnr, count, aob); } EXPORT_SYMBOL_GPL(qdio_add_bufs_to_output_queue); /** * qdio_start_irq - enable interrupt processing for the device * @cdev: associated ccw_device for the qdio subchannel * * Return codes * 0 - success * 1 - irqs not started since new data is available */ int qdio_start_irq(struct ccw_device *cdev) { struct qdio_q *q; struct qdio_irq *irq_ptr = cdev->private->qdio_data; unsigned int i; if (!irq_ptr) return -ENODEV; for_each_input_queue(irq_ptr, q, i) qdio_stop_polling(q); clear_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state); /* * We need to check again to not lose initiative after * resetting the ACK state. */ if (test_nonshared_ind(irq_ptr)) goto rescan; for_each_input_queue(irq_ptr, q, i) { if (!qdio_inbound_q_done(q, q->first_to_check)) goto rescan; } return 0; rescan: if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state)) return 0; else return 1; } EXPORT_SYMBOL(qdio_start_irq); /** * qdio_stop_irq - disable interrupt processing for the device * @cdev: associated ccw_device for the qdio subchannel * * Return codes * 0 - interrupts were already disabled * 1 - interrupts successfully disabled */ int qdio_stop_irq(struct ccw_device *cdev) { struct qdio_irq *irq_ptr = cdev->private->qdio_data; if (!irq_ptr) return -ENODEV; if (test_and_set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state)) return 0; else return 1; } EXPORT_SYMBOL(qdio_stop_irq); static int __init init_QDIO(void) { int rc; rc = qdio_debug_init(); if (rc) return rc; rc = qdio_setup_init(); if (rc) goto out_debug; rc = qdio_thinint_init(); if (rc) goto out_cache; return 0; out_cache: qdio_setup_exit(); out_debug: qdio_debug_exit(); return rc; } static void __exit exit_QDIO(void) { qdio_thinint_exit(); qdio_setup_exit(); qdio_debug_exit(); } module_init(init_QDIO); module_exit(exit_QDIO);
linux-master
drivers/s390/cio/qdio_main.c
// SPDX-License-Identifier: GPL-2.0 /* * Functions for assembling fcx enabled I/O control blocks. * * Copyright IBM Corp. 2008 * Author(s): Peter Oberparleiter <[email protected]> */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/string.h> #include <linux/io.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/module.h> #include <asm/fcx.h> #include "cio.h" /** * tcw_get_intrg - return pointer to associated interrogate tcw * @tcw: pointer to the original tcw * * Return a pointer to the interrogate tcw associated with the specified tcw * or %NULL if there is no associated interrogate tcw. */ struct tcw *tcw_get_intrg(struct tcw *tcw) { return phys_to_virt(tcw->intrg); } EXPORT_SYMBOL(tcw_get_intrg); /** * tcw_get_data - return pointer to input/output data associated with tcw * @tcw: pointer to the tcw * * Return the input or output data address specified in the tcw depending * on whether the r-bit or the w-bit is set. If neither bit is set, return * %NULL. */ void *tcw_get_data(struct tcw *tcw) { if (tcw->r) return phys_to_virt(tcw->input); if (tcw->w) return phys_to_virt(tcw->output); return NULL; } EXPORT_SYMBOL(tcw_get_data); /** * tcw_get_tccb - return pointer to tccb associated with tcw * @tcw: pointer to the tcw * * Return pointer to the tccb associated with this tcw. */ struct tccb *tcw_get_tccb(struct tcw *tcw) { return phys_to_virt(tcw->tccb); } EXPORT_SYMBOL(tcw_get_tccb); /** * tcw_get_tsb - return pointer to tsb associated with tcw * @tcw: pointer to the tcw * * Return pointer to the tsb associated with this tcw. */ struct tsb *tcw_get_tsb(struct tcw *tcw) { return phys_to_virt(tcw->tsb); } EXPORT_SYMBOL(tcw_get_tsb); /** * tcw_init - initialize tcw data structure * @tcw: pointer to the tcw to be initialized * @r: initial value of the r-bit * @w: initial value of the w-bit * * Initialize all fields of the specified tcw data structure with zero and * fill in the format, flags, r and w fields. */ void tcw_init(struct tcw *tcw, int r, int w) { memset(tcw, 0, sizeof(struct tcw)); tcw->format = TCW_FORMAT_DEFAULT; tcw->flags = TCW_FLAGS_TIDAW_FORMAT(TCW_TIDAW_FORMAT_DEFAULT); if (r) tcw->r = 1; if (w) tcw->w = 1; } EXPORT_SYMBOL(tcw_init); static inline size_t tca_size(struct tccb *tccb) { return tccb->tcah.tcal - 12; } static u32 calc_dcw_count(struct tccb *tccb) { int offset; struct dcw *dcw; u32 count = 0; size_t size; size = tca_size(tccb); for (offset = 0; offset < size;) { dcw = (struct dcw *) &tccb->tca[offset]; count += dcw->count; if (!(dcw->flags & DCW_FLAGS_CC)) break; offset += sizeof(struct dcw) + ALIGN((int) dcw->cd_count, 4); } return count; } static u32 calc_cbc_size(struct tidaw *tidaw, int num) { int i; u32 cbc_data; u32 cbc_count = 0; u64 data_count = 0; for (i = 0; i < num; i++) { if (tidaw[i].flags & TIDAW_FLAGS_LAST) break; /* TODO: find out if padding applies to total of data * transferred or data transferred by this tidaw. Assumption: * applies to total. */ data_count += tidaw[i].count; if (tidaw[i].flags & TIDAW_FLAGS_INSERT_CBC) { cbc_data = 4 + ALIGN(data_count, 4) - data_count; cbc_count += cbc_data; data_count += cbc_data; } } return cbc_count; } /** * tcw_finalize - finalize tcw length fields and tidaw list * @tcw: pointer to the tcw * @num_tidaws: the number of tidaws used to address input/output data or zero * if no tida is used * * Calculate the input-/output-count and tccbl field in the tcw, add a * tcat the tccb and terminate the data tidaw list if used. * * Note: in case input- or output-tida is used, the tidaw-list must be stored * in contiguous storage (no ttic). The tcal field in the tccb must be * up-to-date. */ void tcw_finalize(struct tcw *tcw, int num_tidaws) { struct tidaw *tidaw; struct tccb *tccb; struct tccb_tcat *tcat; u32 count; /* Terminate tidaw list. */ tidaw = tcw_get_data(tcw); if (num_tidaws > 0) tidaw[num_tidaws - 1].flags |= TIDAW_FLAGS_LAST; /* Add tcat to tccb. */ tccb = tcw_get_tccb(tcw); tcat = (struct tccb_tcat *) &tccb->tca[tca_size(tccb)]; memset(tcat, 0, sizeof(*tcat)); /* Calculate tcw input/output count and tcat transport count. */ count = calc_dcw_count(tccb); if (tcw->w && (tcw->flags & TCW_FLAGS_OUTPUT_TIDA)) count += calc_cbc_size(tidaw, num_tidaws); if (tcw->r) tcw->input_count = count; else if (tcw->w) tcw->output_count = count; tcat->count = ALIGN(count, 4) + 4; /* Calculate tccbl. */ tcw->tccbl = (sizeof(struct tccb) + tca_size(tccb) + sizeof(struct tccb_tcat) - 20) >> 2; } EXPORT_SYMBOL(tcw_finalize); /** * tcw_set_intrg - set the interrogate tcw address of a tcw * @tcw: the tcw address * @intrg_tcw: the address of the interrogate tcw * * Set the address of the interrogate tcw in the specified tcw. */ void tcw_set_intrg(struct tcw *tcw, struct tcw *intrg_tcw) { tcw->intrg = (u32)virt_to_phys(intrg_tcw); } EXPORT_SYMBOL(tcw_set_intrg); /** * tcw_set_data - set data address and tida flag of a tcw * @tcw: the tcw address * @data: the data address * @use_tidal: zero of the data address specifies a contiguous block of data, * non-zero if it specifies a list if tidaws. * * Set the input/output data address of a tcw (depending on the value of the * r-flag and w-flag). If @use_tidal is non-zero, the corresponding tida flag * is set as well. */ void tcw_set_data(struct tcw *tcw, void *data, int use_tidal) { if (tcw->r) { tcw->input = virt_to_phys(data); if (use_tidal) tcw->flags |= TCW_FLAGS_INPUT_TIDA; } else if (tcw->w) { tcw->output = virt_to_phys(data); if (use_tidal) tcw->flags |= TCW_FLAGS_OUTPUT_TIDA; } } EXPORT_SYMBOL(tcw_set_data); /** * tcw_set_tccb - set tccb address of a tcw * @tcw: the tcw address * @tccb: the tccb address * * Set the address of the tccb in the specified tcw. */ void tcw_set_tccb(struct tcw *tcw, struct tccb *tccb) { tcw->tccb = virt_to_phys(tccb); } EXPORT_SYMBOL(tcw_set_tccb); /** * tcw_set_tsb - set tsb address of a tcw * @tcw: the tcw address * @tsb: the tsb address * * Set the address of the tsb in the specified tcw. */ void tcw_set_tsb(struct tcw *tcw, struct tsb *tsb) { tcw->tsb = virt_to_phys(tsb); } EXPORT_SYMBOL(tcw_set_tsb); /** * tccb_init - initialize tccb * @tccb: the tccb address * @size: the maximum size of the tccb * @sac: the service-action-code to be user * * Initialize the header of the specified tccb by resetting all values to zero * and filling in defaults for format, sac and initial tcal fields. */ void tccb_init(struct tccb *tccb, size_t size, u32 sac) { memset(tccb, 0, size); tccb->tcah.format = TCCB_FORMAT_DEFAULT; tccb->tcah.sac = sac; tccb->tcah.tcal = 12; } EXPORT_SYMBOL(tccb_init); /** * tsb_init - initialize tsb * @tsb: the tsb address * * Initialize the specified tsb by resetting all values to zero. */ void tsb_init(struct tsb *tsb) { memset(tsb, 0, sizeof(*tsb)); } EXPORT_SYMBOL(tsb_init); /** * tccb_add_dcw - add a dcw to the tccb * @tccb: the tccb address * @tccb_size: the maximum tccb size * @cmd: the dcw command * @flags: flags for the dcw * @cd: pointer to control data for this dcw or NULL if none is required * @cd_count: number of control data bytes for this dcw * @count: number of data bytes for this dcw * * Add a new dcw to the specified tccb by writing the dcw information specified * by @cmd, @flags, @cd, @cd_count and @count to the tca of the tccb. Return * a pointer to the newly added dcw on success or -%ENOSPC if the new dcw * would exceed the available space as defined by @tccb_size. * * Note: the tcal field of the tccb header will be updates to reflect added * content. */ struct dcw *tccb_add_dcw(struct tccb *tccb, size_t tccb_size, u8 cmd, u8 flags, void *cd, u8 cd_count, u32 count) { struct dcw *dcw; int size; int tca_offset; /* Check for space. */ tca_offset = tca_size(tccb); size = ALIGN(sizeof(struct dcw) + cd_count, 4); if (sizeof(struct tccb_tcah) + tca_offset + size + sizeof(struct tccb_tcat) > tccb_size) return ERR_PTR(-ENOSPC); /* Add dcw to tca. */ dcw = (struct dcw *) &tccb->tca[tca_offset]; memset(dcw, 0, size); dcw->cmd = cmd; dcw->flags = flags; dcw->count = count; dcw->cd_count = cd_count; if (cd) memcpy(&dcw->cd[0], cd, cd_count); tccb->tcah.tcal += size; return dcw; } EXPORT_SYMBOL(tccb_add_dcw); /** * tcw_add_tidaw - add a tidaw to a tcw * @tcw: the tcw address * @num_tidaws: the current number of tidaws * @flags: flags for the new tidaw * @addr: address value for the new tidaw * @count: count value for the new tidaw * * Add a new tidaw to the input/output data tidaw-list of the specified tcw * (depending on the value of the r-flag and w-flag) and return a pointer to * the new tidaw. * * Note: the tidaw-list is assumed to be contiguous with no ttics. The caller * must ensure that there is enough space for the new tidaw. The last-tidaw * flag for the last tidaw in the list will be set by tcw_finalize. */ struct tidaw *tcw_add_tidaw(struct tcw *tcw, int num_tidaws, u8 flags, void *addr, u32 count) { struct tidaw *tidaw; /* Add tidaw to tidaw-list. */ tidaw = ((struct tidaw *) tcw_get_data(tcw)) + num_tidaws; memset(tidaw, 0, sizeof(struct tidaw)); tidaw->flags = flags; tidaw->count = count; tidaw->addr = virt_to_phys(addr); return tidaw; } EXPORT_SYMBOL(tcw_add_tidaw);
linux-master
drivers/s390/cio/fcx.c
// SPDX-License-Identifier: GPL-2.0 /* * Driver for s390 eadm subchannels * * Copyright IBM Corp. 2012 * Author(s): Sebastian Ott <[email protected]> */ #include <linux/kernel_stat.h> #include <linux/completion.h> #include <linux/workqueue.h> #include <linux/spinlock.h> #include <linux/device.h> #include <linux/module.h> #include <linux/timer.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/io.h> #include <asm/css_chars.h> #include <asm/debug.h> #include <asm/isc.h> #include <asm/cio.h> #include <asm/scsw.h> #include <asm/eadm.h> #include "eadm_sch.h" #include "ioasm.h" #include "cio.h" #include "css.h" #include "orb.h" MODULE_DESCRIPTION("driver for s390 eadm subchannels"); MODULE_LICENSE("GPL"); #define EADM_TIMEOUT (7 * HZ) static DEFINE_SPINLOCK(list_lock); static LIST_HEAD(eadm_list); static debug_info_t *eadm_debug; #define EADM_LOG(imp, txt) do { \ debug_text_event(eadm_debug, imp, txt); \ } while (0) static void EADM_LOG_HEX(int level, void *data, int length) { debug_event(eadm_debug, level, data, length); } static void orb_init(union orb *orb) { memset(orb, 0, sizeof(union orb)); orb->eadm.compat1 = 1; orb->eadm.compat2 = 1; orb->eadm.fmt = 1; orb->eadm.x = 1; } static int eadm_subchannel_start(struct subchannel *sch, struct aob *aob) { union orb *orb = &get_eadm_private(sch)->orb; int cc; orb_init(orb); orb->eadm.aob = (u32)virt_to_phys(aob); orb->eadm.intparm = (u32)virt_to_phys(sch); orb->eadm.key = PAGE_DEFAULT_KEY >> 4; EADM_LOG(6, "start"); EADM_LOG_HEX(6, &sch->schid, sizeof(sch->schid)); cc = ssch(sch->schid, orb); switch (cc) { case 0: sch->schib.scsw.eadm.actl |= SCSW_ACTL_START_PEND; break; case 1: /* status pending */ case 2: /* busy */ return -EBUSY; case 3: /* not operational */ return -ENODEV; } return 0; } static int eadm_subchannel_clear(struct subchannel *sch) { int cc; cc = csch(sch->schid); if (cc) return -ENODEV; sch->schib.scsw.eadm.actl |= SCSW_ACTL_CLEAR_PEND; return 0; } static void eadm_subchannel_timeout(struct timer_list *t) { struct eadm_private *private = from_timer(private, t, timer); struct subchannel *sch = private->sch; spin_lock_irq(sch->lock); EADM_LOG(1, "timeout"); EADM_LOG_HEX(1, &sch->schid, sizeof(sch->schid)); if (eadm_subchannel_clear(sch)) EADM_LOG(0, "clear failed"); spin_unlock_irq(sch->lock); } static void eadm_subchannel_set_timeout(struct subchannel *sch, int expires) { struct eadm_private *private = get_eadm_private(sch); if (expires == 0) del_timer(&private->timer); else mod_timer(&private->timer, jiffies + expires); } static void eadm_subchannel_irq(struct subchannel *sch) { struct eadm_private *private = get_eadm_private(sch); struct eadm_scsw *scsw = &sch->schib.scsw.eadm; struct irb *irb = this_cpu_ptr(&cio_irb); blk_status_t error = BLK_STS_OK; EADM_LOG(6, "irq"); EADM_LOG_HEX(6, irb, sizeof(*irb)); inc_irq_stat(IRQIO_ADM); if ((scsw->stctl & (SCSW_STCTL_ALERT_STATUS | SCSW_STCTL_STATUS_PEND)) && scsw->eswf == 1 && irb->esw.eadm.erw.r) error = BLK_STS_IOERR; if (scsw->fctl & SCSW_FCTL_CLEAR_FUNC) error = BLK_STS_TIMEOUT; eadm_subchannel_set_timeout(sch, 0); if (private->state != EADM_BUSY) { EADM_LOG(1, "irq unsol"); EADM_LOG_HEX(1, irb, sizeof(*irb)); private->state = EADM_NOT_OPER; css_sched_sch_todo(sch, SCH_TODO_EVAL); return; } scm_irq_handler(phys_to_virt(scsw->aob), error); private->state = EADM_IDLE; if (private->completion) complete(private->completion); } static struct subchannel *eadm_get_idle_sch(void) { struct eadm_private *private; struct subchannel *sch; unsigned long flags; spin_lock_irqsave(&list_lock, flags); list_for_each_entry(private, &eadm_list, head) { sch = private->sch; spin_lock(sch->lock); if (private->state == EADM_IDLE) { private->state = EADM_BUSY; list_move_tail(&private->head, &eadm_list); spin_unlock(sch->lock); spin_unlock_irqrestore(&list_lock, flags); return sch; } spin_unlock(sch->lock); } spin_unlock_irqrestore(&list_lock, flags); return NULL; } int eadm_start_aob(struct aob *aob) { struct eadm_private *private; struct subchannel *sch; unsigned long flags; int ret; sch = eadm_get_idle_sch(); if (!sch) return -EBUSY; spin_lock_irqsave(sch->lock, flags); eadm_subchannel_set_timeout(sch, EADM_TIMEOUT); ret = eadm_subchannel_start(sch, aob); if (!ret) goto out_unlock; /* Handle start subchannel failure. */ eadm_subchannel_set_timeout(sch, 0); private = get_eadm_private(sch); private->state = EADM_NOT_OPER; css_sched_sch_todo(sch, SCH_TODO_EVAL); out_unlock: spin_unlock_irqrestore(sch->lock, flags); return ret; } EXPORT_SYMBOL_GPL(eadm_start_aob); static int eadm_subchannel_probe(struct subchannel *sch) { struct eadm_private *private; int ret; private = kzalloc(sizeof(*private), GFP_KERNEL | GFP_DMA); if (!private) return -ENOMEM; INIT_LIST_HEAD(&private->head); timer_setup(&private->timer, eadm_subchannel_timeout, 0); spin_lock_irq(sch->lock); set_eadm_private(sch, private); private->state = EADM_IDLE; private->sch = sch; sch->isc = EADM_SCH_ISC; ret = cio_enable_subchannel(sch, (u32)virt_to_phys(sch)); if (ret) { set_eadm_private(sch, NULL); spin_unlock_irq(sch->lock); kfree(private); goto out; } spin_unlock_irq(sch->lock); spin_lock_irq(&list_lock); list_add(&private->head, &eadm_list); spin_unlock_irq(&list_lock); out: return ret; } static void eadm_quiesce(struct subchannel *sch) { struct eadm_private *private = get_eadm_private(sch); DECLARE_COMPLETION_ONSTACK(completion); int ret; spin_lock_irq(sch->lock); if (private->state != EADM_BUSY) goto disable; if (eadm_subchannel_clear(sch)) goto disable; private->completion = &completion; spin_unlock_irq(sch->lock); wait_for_completion_io(&completion); spin_lock_irq(sch->lock); private->completion = NULL; disable: eadm_subchannel_set_timeout(sch, 0); do { ret = cio_disable_subchannel(sch); } while (ret == -EBUSY); spin_unlock_irq(sch->lock); } static void eadm_subchannel_remove(struct subchannel *sch) { struct eadm_private *private = get_eadm_private(sch); spin_lock_irq(&list_lock); list_del(&private->head); spin_unlock_irq(&list_lock); eadm_quiesce(sch); spin_lock_irq(sch->lock); set_eadm_private(sch, NULL); spin_unlock_irq(sch->lock); kfree(private); } static void eadm_subchannel_shutdown(struct subchannel *sch) { eadm_quiesce(sch); } /** * eadm_subchannel_sch_event - process subchannel event * @sch: subchannel * @process: non-zero if function is called in process context * * An unspecified event occurred for this subchannel. Adjust data according * to the current operational state of the subchannel. Return zero when the * event has been handled sufficiently or -EAGAIN when this function should * be called again in process context. */ static int eadm_subchannel_sch_event(struct subchannel *sch, int process) { struct eadm_private *private; unsigned long flags; spin_lock_irqsave(sch->lock, flags); if (!device_is_registered(&sch->dev)) goto out_unlock; if (work_pending(&sch->todo_work)) goto out_unlock; if (cio_update_schib(sch)) { css_sched_sch_todo(sch, SCH_TODO_UNREG); goto out_unlock; } private = get_eadm_private(sch); if (private->state == EADM_NOT_OPER) private->state = EADM_IDLE; out_unlock: spin_unlock_irqrestore(sch->lock, flags); return 0; } static struct css_device_id eadm_subchannel_ids[] = { { .match_flags = 0x1, .type = SUBCHANNEL_TYPE_ADM, }, { /* end of list */ }, }; MODULE_DEVICE_TABLE(css, eadm_subchannel_ids); static struct css_driver eadm_subchannel_driver = { .drv = { .name = "eadm_subchannel", .owner = THIS_MODULE, }, .subchannel_type = eadm_subchannel_ids, .irq = eadm_subchannel_irq, .probe = eadm_subchannel_probe, .remove = eadm_subchannel_remove, .shutdown = eadm_subchannel_shutdown, .sch_event = eadm_subchannel_sch_event, }; static int __init eadm_sch_init(void) { int ret; if (!css_general_characteristics.eadm) return -ENXIO; eadm_debug = debug_register("eadm_log", 16, 1, 16); if (!eadm_debug) return -ENOMEM; debug_register_view(eadm_debug, &debug_hex_ascii_view); debug_set_level(eadm_debug, 2); isc_register(EADM_SCH_ISC); ret = css_driver_register(&eadm_subchannel_driver); if (ret) goto cleanup; return ret; cleanup: isc_unregister(EADM_SCH_ISC); debug_unregister(eadm_debug); return ret; } static void __exit eadm_sch_exit(void) { css_driver_unregister(&eadm_subchannel_driver); isc_unregister(EADM_SCH_ISC); debug_unregister(eadm_debug); } module_init(eadm_sch_init); module_exit(eadm_sch_exit);
linux-master
drivers/s390/cio/eadm_sch.c
// SPDX-License-Identifier: GPL-2.0 /* * Functions for registration of I/O interruption subclasses on s390. * * Copyright IBM Corp. 2008 * Authors: Sebastian Ott <[email protected]> */ #include <linux/spinlock.h> #include <linux/module.h> #include <asm/isc.h> static unsigned int isc_refs[MAX_ISC + 1]; static DEFINE_SPINLOCK(isc_ref_lock); /** * isc_register - register an I/O interruption subclass. * @isc: I/O interruption subclass to register * * The number of users for @isc is increased. If this is the first user to * register @isc, the corresponding I/O interruption subclass mask is enabled. * * Context: * This function must not be called in interrupt context. */ void isc_register(unsigned int isc) { if (isc > MAX_ISC) { WARN_ON(1); return; } spin_lock(&isc_ref_lock); if (isc_refs[isc] == 0) ctl_set_bit(6, 31 - isc); isc_refs[isc]++; spin_unlock(&isc_ref_lock); } EXPORT_SYMBOL_GPL(isc_register); /** * isc_unregister - unregister an I/O interruption subclass. * @isc: I/O interruption subclass to unregister * * The number of users for @isc is decreased. If this is the last user to * unregister @isc, the corresponding I/O interruption subclass mask is * disabled. * Note: This function must not be called if isc_register() hasn't been called * before by the driver for @isc. * * Context: * This function must not be called in interrupt context. */ void isc_unregister(unsigned int isc) { spin_lock(&isc_ref_lock); /* check for misuse */ if (isc > MAX_ISC || isc_refs[isc] == 0) { WARN_ON(1); goto out_unlock; } if (isc_refs[isc] == 1) ctl_clear_bit(6, 31 - isc); isc_refs[isc]--; out_unlock: spin_unlock(&isc_ref_lock); } EXPORT_SYMBOL_GPL(isc_unregister);
linux-master
drivers/s390/cio/isc.c
// SPDX-License-Identifier: GPL-2.0 /* * driver for channel subsystem * * Copyright IBM Corp. 2002, 2010 * * Author(s): Arnd Bergmann ([email protected]) * Cornelia Huck ([email protected]) */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/export.h> #include <linux/init.h> #include <linux/device.h> #include <linux/slab.h> #include <linux/errno.h> #include <linux/list.h> #include <linux/reboot.h> #include <linux/proc_fs.h> #include <linux/genalloc.h> #include <linux/dma-mapping.h> #include <asm/isc.h> #include <asm/crw.h> #include "css.h" #include "cio.h" #include "blacklist.h" #include "cio_debug.h" #include "ioasm.h" #include "chsc.h" #include "device.h" #include "idset.h" #include "chp.h" int css_init_done = 0; int max_ssid; #define MAX_CSS_IDX 0 struct channel_subsystem *channel_subsystems[MAX_CSS_IDX + 1]; static struct bus_type css_bus_type; int for_each_subchannel(int(*fn)(struct subchannel_id, void *), void *data) { struct subchannel_id schid; int ret; init_subchannel_id(&schid); do { do { ret = fn(schid, data); if (ret) break; } while (schid.sch_no++ < __MAX_SUBCHANNEL); schid.sch_no = 0; } while (schid.ssid++ < max_ssid); return ret; } struct cb_data { void *data; struct idset *set; int (*fn_known_sch)(struct subchannel *, void *); int (*fn_unknown_sch)(struct subchannel_id, void *); }; static int call_fn_known_sch(struct device *dev, void *data) { struct subchannel *sch = to_subchannel(dev); struct cb_data *cb = data; int rc = 0; if (cb->set) idset_sch_del(cb->set, sch->schid); if (cb->fn_known_sch) rc = cb->fn_known_sch(sch, cb->data); return rc; } static int call_fn_unknown_sch(struct subchannel_id schid, void *data) { struct cb_data *cb = data; int rc = 0; if (idset_sch_contains(cb->set, schid)) rc = cb->fn_unknown_sch(schid, cb->data); return rc; } static int call_fn_all_sch(struct subchannel_id schid, void *data) { struct cb_data *cb = data; struct subchannel *sch; int rc = 0; sch = get_subchannel_by_schid(schid); if (sch) { if (cb->fn_known_sch) rc = cb->fn_known_sch(sch, cb->data); put_device(&sch->dev); } else { if (cb->fn_unknown_sch) rc = cb->fn_unknown_sch(schid, cb->data); } return rc; } int for_each_subchannel_staged(int (*fn_known)(struct subchannel *, void *), int (*fn_unknown)(struct subchannel_id, void *), void *data) { struct cb_data cb; int rc; cb.data = data; cb.fn_known_sch = fn_known; cb.fn_unknown_sch = fn_unknown; if (fn_known && !fn_unknown) { /* Skip idset allocation in case of known-only loop. */ cb.set = NULL; return bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch); } cb.set = idset_sch_new(); if (!cb.set) /* fall back to brute force scanning in case of oom */ return for_each_subchannel(call_fn_all_sch, &cb); idset_fill(cb.set); /* Process registered subchannels. */ rc = bus_for_each_dev(&css_bus_type, NULL, &cb, call_fn_known_sch); if (rc) goto out; /* Process unregistered subchannels. */ if (fn_unknown) rc = for_each_subchannel(call_fn_unknown_sch, &cb); out: idset_free(cb.set); return rc; } static void css_sch_todo(struct work_struct *work); static int css_sch_create_locks(struct subchannel *sch) { sch->lock = kmalloc(sizeof(*sch->lock), GFP_KERNEL); if (!sch->lock) return -ENOMEM; spin_lock_init(sch->lock); mutex_init(&sch->reg_mutex); return 0; } static void css_subchannel_release(struct device *dev) { struct subchannel *sch = to_subchannel(dev); sch->config.intparm = 0; cio_commit_config(sch); kfree(sch->driver_override); kfree(sch->lock); kfree(sch); } static int css_validate_subchannel(struct subchannel_id schid, struct schib *schib) { int err; switch (schib->pmcw.st) { case SUBCHANNEL_TYPE_IO: case SUBCHANNEL_TYPE_MSG: if (!css_sch_is_valid(schib)) err = -ENODEV; else if (is_blacklisted(schid.ssid, schib->pmcw.dev)) { CIO_MSG_EVENT(6, "Blacklisted device detected " "at devno %04X, subchannel set %x\n", schib->pmcw.dev, schid.ssid); err = -ENODEV; } else err = 0; break; default: err = 0; } if (err) goto out; CIO_MSG_EVENT(4, "Subchannel 0.%x.%04x reports subchannel type %04X\n", schid.ssid, schid.sch_no, schib->pmcw.st); out: return err; } struct subchannel *css_alloc_subchannel(struct subchannel_id schid, struct schib *schib) { struct subchannel *sch; int ret; ret = css_validate_subchannel(schid, schib); if (ret < 0) return ERR_PTR(ret); sch = kzalloc(sizeof(*sch), GFP_KERNEL | GFP_DMA); if (!sch) return ERR_PTR(-ENOMEM); sch->schid = schid; sch->schib = *schib; sch->st = schib->pmcw.st; ret = css_sch_create_locks(sch); if (ret) goto err; INIT_WORK(&sch->todo_work, css_sch_todo); sch->dev.release = &css_subchannel_release; sch->dev.dma_mask = &sch->dma_mask; device_initialize(&sch->dev); /* * The physical addresses for some of the dma structures that can * belong to a subchannel need to fit 31 bit width (e.g. ccw). */ ret = dma_set_coherent_mask(&sch->dev, DMA_BIT_MASK(31)); if (ret) goto err; /* * But we don't have such restrictions imposed on the stuff that * is handled by the streaming API. */ ret = dma_set_mask(&sch->dev, DMA_BIT_MASK(64)); if (ret) goto err; return sch; err: kfree(sch); return ERR_PTR(ret); } static int css_sch_device_register(struct subchannel *sch) { int ret; mutex_lock(&sch->reg_mutex); dev_set_name(&sch->dev, "0.%x.%04x", sch->schid.ssid, sch->schid.sch_no); ret = device_add(&sch->dev); mutex_unlock(&sch->reg_mutex); return ret; } /** * css_sch_device_unregister - unregister a subchannel * @sch: subchannel to be unregistered */ void css_sch_device_unregister(struct subchannel *sch) { mutex_lock(&sch->reg_mutex); if (device_is_registered(&sch->dev)) device_unregister(&sch->dev); mutex_unlock(&sch->reg_mutex); } EXPORT_SYMBOL_GPL(css_sch_device_unregister); static void ssd_from_pmcw(struct chsc_ssd_info *ssd, struct pmcw *pmcw) { int i; int mask; memset(ssd, 0, sizeof(struct chsc_ssd_info)); ssd->path_mask = pmcw->pim; for (i = 0; i < 8; i++) { mask = 0x80 >> i; if (pmcw->pim & mask) { chp_id_init(&ssd->chpid[i]); ssd->chpid[i].id = pmcw->chpid[i]; } } } static void ssd_register_chpids(struct chsc_ssd_info *ssd) { int i; int mask; for (i = 0; i < 8; i++) { mask = 0x80 >> i; if (ssd->path_mask & mask) chp_new(ssd->chpid[i]); } } void css_update_ssd_info(struct subchannel *sch) { int ret; ret = chsc_get_ssd_info(sch->schid, &sch->ssd_info); if (ret) ssd_from_pmcw(&sch->ssd_info, &sch->schib.pmcw); ssd_register_chpids(&sch->ssd_info); } static ssize_t type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct subchannel *sch = to_subchannel(dev); return sprintf(buf, "%01x\n", sch->st); } static DEVICE_ATTR_RO(type); static ssize_t modalias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct subchannel *sch = to_subchannel(dev); return sprintf(buf, "css:t%01X\n", sch->st); } static DEVICE_ATTR_RO(modalias); static ssize_t driver_override_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct subchannel *sch = to_subchannel(dev); int ret; ret = driver_set_override(dev, &sch->driver_override, buf, count); if (ret) return ret; return count; } static ssize_t driver_override_show(struct device *dev, struct device_attribute *attr, char *buf) { struct subchannel *sch = to_subchannel(dev); ssize_t len; device_lock(dev); len = snprintf(buf, PAGE_SIZE, "%s\n", sch->driver_override); device_unlock(dev); return len; } static DEVICE_ATTR_RW(driver_override); static struct attribute *subch_attrs[] = { &dev_attr_type.attr, &dev_attr_modalias.attr, &dev_attr_driver_override.attr, NULL, }; static struct attribute_group subch_attr_group = { .attrs = subch_attrs, }; static const struct attribute_group *default_subch_attr_groups[] = { &subch_attr_group, NULL, }; static ssize_t chpids_show(struct device *dev, struct device_attribute *attr, char *buf) { struct subchannel *sch = to_subchannel(dev); struct chsc_ssd_info *ssd = &sch->ssd_info; ssize_t ret = 0; int mask; int chp; for (chp = 0; chp < 8; chp++) { mask = 0x80 >> chp; if (ssd->path_mask & mask) ret += sprintf(buf + ret, "%02x ", ssd->chpid[chp].id); else ret += sprintf(buf + ret, "00 "); } ret += sprintf(buf + ret, "\n"); return ret; } static DEVICE_ATTR_RO(chpids); static ssize_t pimpampom_show(struct device *dev, struct device_attribute *attr, char *buf) { struct subchannel *sch = to_subchannel(dev); struct pmcw *pmcw = &sch->schib.pmcw; return sprintf(buf, "%02x %02x %02x\n", pmcw->pim, pmcw->pam, pmcw->pom); } static DEVICE_ATTR_RO(pimpampom); static ssize_t dev_busid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct subchannel *sch = to_subchannel(dev); struct pmcw *pmcw = &sch->schib.pmcw; if ((pmcw->st == SUBCHANNEL_TYPE_IO && pmcw->dnv) || (pmcw->st == SUBCHANNEL_TYPE_MSG && pmcw->w)) return sysfs_emit(buf, "0.%x.%04x\n", sch->schid.ssid, pmcw->dev); else return sysfs_emit(buf, "none\n"); } static DEVICE_ATTR_RO(dev_busid); static struct attribute *io_subchannel_type_attrs[] = { &dev_attr_chpids.attr, &dev_attr_pimpampom.attr, &dev_attr_dev_busid.attr, NULL, }; ATTRIBUTE_GROUPS(io_subchannel_type); static const struct device_type io_subchannel_type = { .groups = io_subchannel_type_groups, }; int css_register_subchannel(struct subchannel *sch) { int ret; /* Initialize the subchannel structure */ sch->dev.parent = &channel_subsystems[0]->device; sch->dev.bus = &css_bus_type; sch->dev.groups = default_subch_attr_groups; if (sch->st == SUBCHANNEL_TYPE_IO) sch->dev.type = &io_subchannel_type; css_update_ssd_info(sch); /* make it known to the system */ ret = css_sch_device_register(sch); if (ret) { CIO_MSG_EVENT(0, "Could not register sch 0.%x.%04x: %d\n", sch->schid.ssid, sch->schid.sch_no, ret); return ret; } return ret; } static int css_probe_device(struct subchannel_id schid, struct schib *schib) { struct subchannel *sch; int ret; sch = css_alloc_subchannel(schid, schib); if (IS_ERR(sch)) return PTR_ERR(sch); ret = css_register_subchannel(sch); if (ret) put_device(&sch->dev); return ret; } static int check_subchannel(struct device *dev, const void *data) { struct subchannel *sch; struct subchannel_id *schid = (void *)data; sch = to_subchannel(dev); return schid_equal(&sch->schid, schid); } struct subchannel * get_subchannel_by_schid(struct subchannel_id schid) { struct device *dev; dev = bus_find_device(&css_bus_type, NULL, &schid, check_subchannel); return dev ? to_subchannel(dev) : NULL; } /** * css_sch_is_valid() - check if a subchannel is valid * @schib: subchannel information block for the subchannel */ int css_sch_is_valid(struct schib *schib) { if ((schib->pmcw.st == SUBCHANNEL_TYPE_IO) && !schib->pmcw.dnv) return 0; if ((schib->pmcw.st == SUBCHANNEL_TYPE_MSG) && !schib->pmcw.w) return 0; return 1; } EXPORT_SYMBOL_GPL(css_sch_is_valid); static int css_evaluate_new_subchannel(struct subchannel_id schid, int slow) { struct schib schib; int ccode; if (!slow) { /* Will be done on the slow path. */ return -EAGAIN; } /* * The first subchannel that is not-operational (ccode==3) * indicates that there aren't any more devices available. * If stsch gets an exception, it means the current subchannel set * is not valid. */ ccode = stsch(schid, &schib); if (ccode) return (ccode == 3) ? -ENXIO : ccode; return css_probe_device(schid, &schib); } static int css_evaluate_known_subchannel(struct subchannel *sch, int slow) { int ret = 0; if (sch->driver) { if (sch->driver->sch_event) ret = sch->driver->sch_event(sch, slow); else dev_dbg(&sch->dev, "Got subchannel machine check but " "no sch_event handler provided.\n"); } if (ret != 0 && ret != -EAGAIN) { CIO_MSG_EVENT(2, "eval: sch 0.%x.%04x, rc=%d\n", sch->schid.ssid, sch->schid.sch_no, ret); } return ret; } static void css_evaluate_subchannel(struct subchannel_id schid, int slow) { struct subchannel *sch; int ret; sch = get_subchannel_by_schid(schid); if (sch) { ret = css_evaluate_known_subchannel(sch, slow); put_device(&sch->dev); } else ret = css_evaluate_new_subchannel(schid, slow); if (ret == -EAGAIN) css_schedule_eval(schid); } /** * css_sched_sch_todo - schedule a subchannel operation * @sch: subchannel * @todo: todo * * Schedule the operation identified by @todo to be performed on the slow path * workqueue. Do nothing if another operation with higher priority is already * scheduled. Needs to be called with subchannel lock held. */ void css_sched_sch_todo(struct subchannel *sch, enum sch_todo todo) { CIO_MSG_EVENT(4, "sch_todo: sched sch=0.%x.%04x todo=%d\n", sch->schid.ssid, sch->schid.sch_no, todo); if (sch->todo >= todo) return; /* Get workqueue ref. */ if (!get_device(&sch->dev)) return; sch->todo = todo; if (!queue_work(cio_work_q, &sch->todo_work)) { /* Already queued, release workqueue ref. */ put_device(&sch->dev); } } EXPORT_SYMBOL_GPL(css_sched_sch_todo); static void css_sch_todo(struct work_struct *work) { struct subchannel *sch; enum sch_todo todo; int ret; sch = container_of(work, struct subchannel, todo_work); /* Find out todo. */ spin_lock_irq(sch->lock); todo = sch->todo; CIO_MSG_EVENT(4, "sch_todo: sch=0.%x.%04x, todo=%d\n", sch->schid.ssid, sch->schid.sch_no, todo); sch->todo = SCH_TODO_NOTHING; spin_unlock_irq(sch->lock); /* Perform todo. */ switch (todo) { case SCH_TODO_NOTHING: break; case SCH_TODO_EVAL: ret = css_evaluate_known_subchannel(sch, 1); if (ret == -EAGAIN) { spin_lock_irq(sch->lock); css_sched_sch_todo(sch, todo); spin_unlock_irq(sch->lock); } break; case SCH_TODO_UNREG: css_sch_device_unregister(sch); break; } /* Release workqueue ref. */ put_device(&sch->dev); } static struct idset *slow_subchannel_set; static DEFINE_SPINLOCK(slow_subchannel_lock); static DECLARE_WAIT_QUEUE_HEAD(css_eval_wq); static atomic_t css_eval_scheduled; static int __init slow_subchannel_init(void) { atomic_set(&css_eval_scheduled, 0); slow_subchannel_set = idset_sch_new(); if (!slow_subchannel_set) { CIO_MSG_EVENT(0, "could not allocate slow subchannel set\n"); return -ENOMEM; } return 0; } static int slow_eval_known_fn(struct subchannel *sch, void *data) { int eval; int rc; spin_lock_irq(&slow_subchannel_lock); eval = idset_sch_contains(slow_subchannel_set, sch->schid); idset_sch_del(slow_subchannel_set, sch->schid); spin_unlock_irq(&slow_subchannel_lock); if (eval) { rc = css_evaluate_known_subchannel(sch, 1); if (rc == -EAGAIN) css_schedule_eval(sch->schid); /* * The loop might take long time for platforms with lots of * known devices. Allow scheduling here. */ cond_resched(); } return 0; } static int slow_eval_unknown_fn(struct subchannel_id schid, void *data) { int eval; int rc = 0; spin_lock_irq(&slow_subchannel_lock); eval = idset_sch_contains(slow_subchannel_set, schid); idset_sch_del(slow_subchannel_set, schid); spin_unlock_irq(&slow_subchannel_lock); if (eval) { rc = css_evaluate_new_subchannel(schid, 1); switch (rc) { case -EAGAIN: css_schedule_eval(schid); rc = 0; break; case -ENXIO: case -ENOMEM: case -EIO: /* These should abort looping */ spin_lock_irq(&slow_subchannel_lock); idset_sch_del_subseq(slow_subchannel_set, schid); spin_unlock_irq(&slow_subchannel_lock); break; default: rc = 0; } /* Allow scheduling here since the containing loop might * take a while. */ cond_resched(); } return rc; } static void css_slow_path_func(struct work_struct *unused) { unsigned long flags; CIO_TRACE_EVENT(4, "slowpath"); for_each_subchannel_staged(slow_eval_known_fn, slow_eval_unknown_fn, NULL); spin_lock_irqsave(&slow_subchannel_lock, flags); if (idset_is_empty(slow_subchannel_set)) { atomic_set(&css_eval_scheduled, 0); wake_up(&css_eval_wq); } spin_unlock_irqrestore(&slow_subchannel_lock, flags); } static DECLARE_DELAYED_WORK(slow_path_work, css_slow_path_func); struct workqueue_struct *cio_work_q; void css_schedule_eval(struct subchannel_id schid) { unsigned long flags; spin_lock_irqsave(&slow_subchannel_lock, flags); idset_sch_add(slow_subchannel_set, schid); atomic_set(&css_eval_scheduled, 1); queue_delayed_work(cio_work_q, &slow_path_work, 0); spin_unlock_irqrestore(&slow_subchannel_lock, flags); } void css_schedule_eval_all(void) { unsigned long flags; spin_lock_irqsave(&slow_subchannel_lock, flags); idset_fill(slow_subchannel_set); atomic_set(&css_eval_scheduled, 1); queue_delayed_work(cio_work_q, &slow_path_work, 0); spin_unlock_irqrestore(&slow_subchannel_lock, flags); } static int __unset_validpath(struct device *dev, void *data) { struct idset *set = data; struct subchannel *sch = to_subchannel(dev); struct pmcw *pmcw = &sch->schib.pmcw; /* Here we want to make sure that we are considering only those subchannels * which do not have an operational device attached to it. This can be found * with the help of PAM and POM values of pmcw. OPM provides the information * about any path which is currently vary-off, so that we should not consider. */ if (sch->st == SUBCHANNEL_TYPE_IO && (sch->opm & pmcw->pam & pmcw->pom)) idset_sch_del(set, sch->schid); return 0; } static int __unset_online(struct device *dev, void *data) { struct idset *set = data; struct subchannel *sch = to_subchannel(dev); if (sch->st == SUBCHANNEL_TYPE_IO && sch->config.ena) idset_sch_del(set, sch->schid); return 0; } void css_schedule_eval_cond(enum css_eval_cond cond, unsigned long delay) { unsigned long flags; struct idset *set; /* Find unregistered subchannels. */ set = idset_sch_new(); if (!set) { /* Fallback. */ css_schedule_eval_all(); return; } idset_fill(set); switch (cond) { case CSS_EVAL_NO_PATH: bus_for_each_dev(&css_bus_type, NULL, set, __unset_validpath); break; case CSS_EVAL_NOT_ONLINE: bus_for_each_dev(&css_bus_type, NULL, set, __unset_online); break; default: break; } /* Apply to slow_subchannel_set. */ spin_lock_irqsave(&slow_subchannel_lock, flags); idset_add_set(slow_subchannel_set, set); atomic_set(&css_eval_scheduled, 1); queue_delayed_work(cio_work_q, &slow_path_work, delay); spin_unlock_irqrestore(&slow_subchannel_lock, flags); idset_free(set); } void css_wait_for_slow_path(void) { flush_workqueue(cio_work_q); } /* Schedule reprobing of all subchannels with no valid operational path. */ void css_schedule_reprobe(void) { /* Schedule with a delay to allow merging of subsequent calls. */ css_schedule_eval_cond(CSS_EVAL_NO_PATH, 1 * HZ); } EXPORT_SYMBOL_GPL(css_schedule_reprobe); /* * Called from the machine check handler for subchannel report words. */ static void css_process_crw(struct crw *crw0, struct crw *crw1, int overflow) { struct subchannel_id mchk_schid; struct subchannel *sch; if (overflow) { css_schedule_eval_all(); return; } CIO_CRW_EVENT(2, "CRW0 reports slct=%d, oflw=%d, " "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc, crw0->erc, crw0->rsid); if (crw1) CIO_CRW_EVENT(2, "CRW1 reports slct=%d, oflw=%d, " "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", crw1->slct, crw1->oflw, crw1->chn, crw1->rsc, crw1->anc, crw1->erc, crw1->rsid); init_subchannel_id(&mchk_schid); mchk_schid.sch_no = crw0->rsid; if (crw1) mchk_schid.ssid = (crw1->rsid >> 4) & 3; if (crw0->erc == CRW_ERC_PMOD) { sch = get_subchannel_by_schid(mchk_schid); if (sch) { css_update_ssd_info(sch); put_device(&sch->dev); } } /* * Since we are always presented with IPI in the CRW, we have to * use stsch() to find out if the subchannel in question has come * or gone. */ css_evaluate_subchannel(mchk_schid, 0); } static void __init css_generate_pgid(struct channel_subsystem *css, u32 tod_high) { struct cpuid cpu_id; if (css_general_characteristics.mcss) { css->global_pgid.pgid_high.ext_cssid.version = 0x80; css->global_pgid.pgid_high.ext_cssid.cssid = css->id_valid ? css->cssid : 0; } else { css->global_pgid.pgid_high.cpu_addr = stap(); } get_cpu_id(&cpu_id); css->global_pgid.cpu_id = cpu_id.ident; css->global_pgid.cpu_model = cpu_id.machine; css->global_pgid.tod_high = tod_high; } static void channel_subsystem_release(struct device *dev) { struct channel_subsystem *css = to_css(dev); mutex_destroy(&css->mutex); kfree(css); } static ssize_t real_cssid_show(struct device *dev, struct device_attribute *a, char *buf) { struct channel_subsystem *css = to_css(dev); if (!css->id_valid) return -EINVAL; return sprintf(buf, "%x\n", css->cssid); } static DEVICE_ATTR_RO(real_cssid); static ssize_t rescan_store(struct device *dev, struct device_attribute *a, const char *buf, size_t count) { CIO_TRACE_EVENT(4, "usr-rescan"); css_schedule_eval_all(); css_complete_work(); return count; } static DEVICE_ATTR_WO(rescan); static ssize_t cm_enable_show(struct device *dev, struct device_attribute *a, char *buf) { struct channel_subsystem *css = to_css(dev); int ret; mutex_lock(&css->mutex); ret = sprintf(buf, "%x\n", css->cm_enabled); mutex_unlock(&css->mutex); return ret; } static ssize_t cm_enable_store(struct device *dev, struct device_attribute *a, const char *buf, size_t count) { struct channel_subsystem *css = to_css(dev); unsigned long val; int ret; ret = kstrtoul(buf, 16, &val); if (ret) return ret; mutex_lock(&css->mutex); switch (val) { case 0: ret = css->cm_enabled ? chsc_secm(css, 0) : 0; break; case 1: ret = css->cm_enabled ? 0 : chsc_secm(css, 1); break; default: ret = -EINVAL; } mutex_unlock(&css->mutex); return ret < 0 ? ret : count; } static DEVICE_ATTR_RW(cm_enable); static umode_t cm_enable_mode(struct kobject *kobj, struct attribute *attr, int index) { return css_chsc_characteristics.secm ? attr->mode : 0; } static struct attribute *cssdev_attrs[] = { &dev_attr_real_cssid.attr, &dev_attr_rescan.attr, NULL, }; static struct attribute_group cssdev_attr_group = { .attrs = cssdev_attrs, }; static struct attribute *cssdev_cm_attrs[] = { &dev_attr_cm_enable.attr, NULL, }; static struct attribute_group cssdev_cm_attr_group = { .attrs = cssdev_cm_attrs, .is_visible = cm_enable_mode, }; static const struct attribute_group *cssdev_attr_groups[] = { &cssdev_attr_group, &cssdev_cm_attr_group, NULL, }; static int __init setup_css(int nr) { struct channel_subsystem *css; int ret; css = kzalloc(sizeof(*css), GFP_KERNEL); if (!css) return -ENOMEM; channel_subsystems[nr] = css; dev_set_name(&css->device, "css%x", nr); css->device.groups = cssdev_attr_groups; css->device.release = channel_subsystem_release; /* * We currently allocate notifier bits with this (using * css->device as the device argument with the DMA API) * and are fine with 64 bit addresses. */ ret = dma_coerce_mask_and_coherent(&css->device, DMA_BIT_MASK(64)); if (ret) { kfree(css); goto out_err; } mutex_init(&css->mutex); ret = chsc_get_cssid_iid(nr, &css->cssid, &css->iid); if (!ret) { css->id_valid = true; pr_info("Partition identifier %01x.%01x\n", css->cssid, css->iid); } css_generate_pgid(css, (u32) (get_tod_clock() >> 32)); ret = device_register(&css->device); if (ret) { put_device(&css->device); goto out_err; } css->pseudo_subchannel = kzalloc(sizeof(*css->pseudo_subchannel), GFP_KERNEL); if (!css->pseudo_subchannel) { device_unregister(&css->device); ret = -ENOMEM; goto out_err; } css->pseudo_subchannel->dev.parent = &css->device; css->pseudo_subchannel->dev.release = css_subchannel_release; mutex_init(&css->pseudo_subchannel->reg_mutex); ret = css_sch_create_locks(css->pseudo_subchannel); if (ret) { kfree(css->pseudo_subchannel); device_unregister(&css->device); goto out_err; } dev_set_name(&css->pseudo_subchannel->dev, "defunct"); ret = device_register(&css->pseudo_subchannel->dev); if (ret) { put_device(&css->pseudo_subchannel->dev); device_unregister(&css->device); goto out_err; } return ret; out_err: channel_subsystems[nr] = NULL; return ret; } static int css_reboot_event(struct notifier_block *this, unsigned long event, void *ptr) { struct channel_subsystem *css; int ret; ret = NOTIFY_DONE; for_each_css(css) { mutex_lock(&css->mutex); if (css->cm_enabled) if (chsc_secm(css, 0)) ret = NOTIFY_BAD; mutex_unlock(&css->mutex); } return ret; } static struct notifier_block css_reboot_notifier = { .notifier_call = css_reboot_event, }; #define CIO_DMA_GFP (GFP_KERNEL | __GFP_ZERO) static struct gen_pool *cio_dma_pool; /* Currently cio supports only a single css */ struct device *cio_get_dma_css_dev(void) { return &channel_subsystems[0]->device; } struct gen_pool *cio_gp_dma_create(struct device *dma_dev, int nr_pages) { struct gen_pool *gp_dma; void *cpu_addr; dma_addr_t dma_addr; int i; gp_dma = gen_pool_create(3, -1); if (!gp_dma) return NULL; for (i = 0; i < nr_pages; ++i) { cpu_addr = dma_alloc_coherent(dma_dev, PAGE_SIZE, &dma_addr, CIO_DMA_GFP); if (!cpu_addr) return gp_dma; gen_pool_add_virt(gp_dma, (unsigned long) cpu_addr, dma_addr, PAGE_SIZE, -1); } return gp_dma; } static void __gp_dma_free_dma(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data) { size_t chunk_size = chunk->end_addr - chunk->start_addr + 1; dma_free_coherent((struct device *) data, chunk_size, (void *) chunk->start_addr, (dma_addr_t) chunk->phys_addr); } void cio_gp_dma_destroy(struct gen_pool *gp_dma, struct device *dma_dev) { if (!gp_dma) return; /* this is quite ugly but no better idea */ gen_pool_for_each_chunk(gp_dma, __gp_dma_free_dma, dma_dev); gen_pool_destroy(gp_dma); } static int cio_dma_pool_init(void) { /* No need to free up the resources: compiled in */ cio_dma_pool = cio_gp_dma_create(cio_get_dma_css_dev(), 1); if (!cio_dma_pool) return -ENOMEM; return 0; } void *cio_gp_dma_zalloc(struct gen_pool *gp_dma, struct device *dma_dev, size_t size) { dma_addr_t dma_addr; unsigned long addr; size_t chunk_size; if (!gp_dma) return NULL; addr = gen_pool_alloc(gp_dma, size); while (!addr) { chunk_size = round_up(size, PAGE_SIZE); addr = (unsigned long) dma_alloc_coherent(dma_dev, chunk_size, &dma_addr, CIO_DMA_GFP); if (!addr) return NULL; gen_pool_add_virt(gp_dma, addr, dma_addr, chunk_size, -1); addr = gen_pool_alloc(gp_dma, size); } return (void *) addr; } void cio_gp_dma_free(struct gen_pool *gp_dma, void *cpu_addr, size_t size) { if (!cpu_addr) return; memset(cpu_addr, 0, size); gen_pool_free(gp_dma, (unsigned long) cpu_addr, size); } /* * Allocate dma memory from the css global pool. Intended for memory not * specific to any single device within the css. The allocated memory * is not guaranteed to be 31-bit addressable. * * Caution: Not suitable for early stuff like console. */ void *cio_dma_zalloc(size_t size) { return cio_gp_dma_zalloc(cio_dma_pool, cio_get_dma_css_dev(), size); } void cio_dma_free(void *cpu_addr, size_t size) { cio_gp_dma_free(cio_dma_pool, cpu_addr, size); } /* * Now that the driver core is running, we can setup our channel subsystem. * The struct subchannel's are created during probing. */ static int __init css_bus_init(void) { int ret, i; ret = chsc_init(); if (ret) return ret; chsc_determine_css_characteristics(); /* Try to enable MSS. */ ret = chsc_enable_facility(CHSC_SDA_OC_MSS); if (ret) max_ssid = 0; else /* Success. */ max_ssid = __MAX_SSID; ret = slow_subchannel_init(); if (ret) goto out; ret = crw_register_handler(CRW_RSC_SCH, css_process_crw); if (ret) goto out; if ((ret = bus_register(&css_bus_type))) goto out; /* Setup css structure. */ for (i = 0; i <= MAX_CSS_IDX; i++) { ret = setup_css(i); if (ret) goto out_unregister; } ret = register_reboot_notifier(&css_reboot_notifier); if (ret) goto out_unregister; ret = cio_dma_pool_init(); if (ret) goto out_unregister_rn; airq_init(); css_init_done = 1; /* Enable default isc for I/O subchannels. */ isc_register(IO_SCH_ISC); return 0; out_unregister_rn: unregister_reboot_notifier(&css_reboot_notifier); out_unregister: while (i-- > 0) { struct channel_subsystem *css = channel_subsystems[i]; device_unregister(&css->pseudo_subchannel->dev); device_unregister(&css->device); } bus_unregister(&css_bus_type); out: crw_unregister_handler(CRW_RSC_SCH); idset_free(slow_subchannel_set); chsc_init_cleanup(); pr_alert("The CSS device driver initialization failed with " "errno=%d\n", ret); return ret; } static void __init css_bus_cleanup(void) { struct channel_subsystem *css; for_each_css(css) { device_unregister(&css->pseudo_subchannel->dev); device_unregister(&css->device); } bus_unregister(&css_bus_type); crw_unregister_handler(CRW_RSC_SCH); idset_free(slow_subchannel_set); chsc_init_cleanup(); isc_unregister(IO_SCH_ISC); } static int __init channel_subsystem_init(void) { int ret; ret = css_bus_init(); if (ret) return ret; cio_work_q = create_singlethread_workqueue("cio"); if (!cio_work_q) { ret = -ENOMEM; goto out_bus; } ret = io_subchannel_init(); if (ret) goto out_wq; /* Register subchannels which are already in use. */ cio_register_early_subchannels(); /* Start initial subchannel evaluation. */ css_schedule_eval_all(); return ret; out_wq: destroy_workqueue(cio_work_q); out_bus: css_bus_cleanup(); return ret; } subsys_initcall(channel_subsystem_init); static int css_settle(struct device_driver *drv, void *unused) { struct css_driver *cssdrv = to_cssdriver(drv); if (cssdrv->settle) return cssdrv->settle(); return 0; } int css_complete_work(void) { int ret; /* Wait for the evaluation of subchannels to finish. */ ret = wait_event_interruptible(css_eval_wq, atomic_read(&css_eval_scheduled) == 0); if (ret) return -EINTR; flush_workqueue(cio_work_q); /* Wait for the subchannel type specific initialization to finish */ return bus_for_each_drv(&css_bus_type, NULL, NULL, css_settle); } /* * Wait for the initialization of devices to finish, to make sure we are * done with our setup if the search for the root device starts. */ static int __init channel_subsystem_init_sync(void) { css_complete_work(); return 0; } subsys_initcall_sync(channel_subsystem_init_sync); #ifdef CONFIG_PROC_FS static ssize_t cio_settle_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos) { int ret; /* Handle pending CRW's. */ crw_wait_for_channel_report(); ret = css_complete_work(); return ret ? ret : count; } static const struct proc_ops cio_settle_proc_ops = { .proc_open = nonseekable_open, .proc_write = cio_settle_write, .proc_lseek = no_llseek, }; static int __init cio_settle_init(void) { struct proc_dir_entry *entry; entry = proc_create("cio_settle", S_IWUSR, NULL, &cio_settle_proc_ops); if (!entry) return -ENOMEM; return 0; } device_initcall(cio_settle_init); #endif /*CONFIG_PROC_FS*/ int sch_is_pseudo_sch(struct subchannel *sch) { if (!sch->dev.parent) return 0; return sch == to_css(sch->dev.parent)->pseudo_subchannel; } static int css_bus_match(struct device *dev, struct device_driver *drv) { struct subchannel *sch = to_subchannel(dev); struct css_driver *driver = to_cssdriver(drv); struct css_device_id *id; /* When driver_override is set, only bind to the matching driver */ if (sch->driver_override && strcmp(sch->driver_override, drv->name)) return 0; for (id = driver->subchannel_type; id->match_flags; id++) { if (sch->st == id->type) return 1; } return 0; } static int css_probe(struct device *dev) { struct subchannel *sch; int ret; sch = to_subchannel(dev); sch->driver = to_cssdriver(dev->driver); ret = sch->driver->probe ? sch->driver->probe(sch) : 0; if (ret) sch->driver = NULL; return ret; } static void css_remove(struct device *dev) { struct subchannel *sch; sch = to_subchannel(dev); if (sch->driver->remove) sch->driver->remove(sch); sch->driver = NULL; } static void css_shutdown(struct device *dev) { struct subchannel *sch; sch = to_subchannel(dev); if (sch->driver && sch->driver->shutdown) sch->driver->shutdown(sch); } static int css_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct subchannel *sch = to_subchannel(dev); int ret; ret = add_uevent_var(env, "ST=%01X", sch->st); if (ret) return ret; ret = add_uevent_var(env, "MODALIAS=css:t%01X", sch->st); return ret; } static struct bus_type css_bus_type = { .name = "css", .match = css_bus_match, .probe = css_probe, .remove = css_remove, .shutdown = css_shutdown, .uevent = css_uevent, }; /** * css_driver_register - register a css driver * @cdrv: css driver to register * * This is mainly a wrapper around driver_register that sets name * and bus_type in the embedded struct device_driver correctly. */ int css_driver_register(struct css_driver *cdrv) { cdrv->drv.bus = &css_bus_type; return driver_register(&cdrv->drv); } EXPORT_SYMBOL_GPL(css_driver_register); /** * css_driver_unregister - unregister a css driver * @cdrv: css driver to unregister * * This is a wrapper around driver_unregister. */ void css_driver_unregister(struct css_driver *cdrv) { driver_unregister(&cdrv->drv); } EXPORT_SYMBOL_GPL(css_driver_unregister);
linux-master
drivers/s390/cio/css.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2007, 2012 * Author(s): Peter Oberparleiter <[email protected]> */ #include <linux/vmalloc.h> #include <linux/bitmap.h> #include <linux/bitops.h> #include "idset.h" #include "css.h" struct idset { int num_ssid; int num_id; unsigned long bitmap[]; }; static inline unsigned long bitmap_size(int num_ssid, int num_id) { return BITS_TO_LONGS(num_ssid * num_id) * sizeof(unsigned long); } static struct idset *idset_new(int num_ssid, int num_id) { struct idset *set; set = vmalloc(sizeof(struct idset) + bitmap_size(num_ssid, num_id)); if (set) { set->num_ssid = num_ssid; set->num_id = num_id; memset(set->bitmap, 0, bitmap_size(num_ssid, num_id)); } return set; } void idset_free(struct idset *set) { vfree(set); } void idset_fill(struct idset *set) { memset(set->bitmap, 0xff, bitmap_size(set->num_ssid, set->num_id)); } static inline void idset_add(struct idset *set, int ssid, int id) { set_bit(ssid * set->num_id + id, set->bitmap); } static inline void idset_del(struct idset *set, int ssid, int id) { clear_bit(ssid * set->num_id + id, set->bitmap); } static inline int idset_contains(struct idset *set, int ssid, int id) { return test_bit(ssid * set->num_id + id, set->bitmap); } struct idset *idset_sch_new(void) { return idset_new(max_ssid + 1, __MAX_SUBCHANNEL + 1); } void idset_sch_add(struct idset *set, struct subchannel_id schid) { idset_add(set, schid.ssid, schid.sch_no); } void idset_sch_del(struct idset *set, struct subchannel_id schid) { idset_del(set, schid.ssid, schid.sch_no); } /* Clear ids starting from @schid up to end of subchannel set. */ void idset_sch_del_subseq(struct idset *set, struct subchannel_id schid) { int pos = schid.ssid * set->num_id + schid.sch_no; bitmap_clear(set->bitmap, pos, set->num_id - schid.sch_no); } int idset_sch_contains(struct idset *set, struct subchannel_id schid) { return idset_contains(set, schid.ssid, schid.sch_no); } int idset_is_empty(struct idset *set) { return bitmap_empty(set->bitmap, set->num_ssid * set->num_id); } void idset_add_set(struct idset *to, struct idset *from) { int len = min(to->num_ssid * to->num_id, from->num_ssid * from->num_id); bitmap_or(to->bitmap, to->bitmap, from->bitmap, len); }
linux-master
drivers/s390/cio/idset.c
// SPDX-License-Identifier: GPL-2.0 /* * Recognize and maintain s390 storage class memory. * * Copyright IBM Corp. 2012 * Author(s): Sebastian Ott <[email protected]> */ #include <linux/device.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/err.h> #include <asm/eadm.h> #include "chsc.h" static struct device *scm_root; #define to_scm_dev(n) container_of(n, struct scm_device, dev) #define to_scm_drv(d) container_of(d, struct scm_driver, drv) static int scmdev_probe(struct device *dev) { struct scm_device *scmdev = to_scm_dev(dev); struct scm_driver *scmdrv = to_scm_drv(dev->driver); return scmdrv->probe ? scmdrv->probe(scmdev) : -ENODEV; } static void scmdev_remove(struct device *dev) { struct scm_device *scmdev = to_scm_dev(dev); struct scm_driver *scmdrv = to_scm_drv(dev->driver); if (scmdrv->remove) scmdrv->remove(scmdev); } static int scmdev_uevent(const struct device *dev, struct kobj_uevent_env *env) { return add_uevent_var(env, "MODALIAS=scm:scmdev"); } static struct bus_type scm_bus_type = { .name = "scm", .probe = scmdev_probe, .remove = scmdev_remove, .uevent = scmdev_uevent, }; /** * scm_driver_register() - register a scm driver * @scmdrv: driver to be registered */ int scm_driver_register(struct scm_driver *scmdrv) { struct device_driver *drv = &scmdrv->drv; drv->bus = &scm_bus_type; return driver_register(drv); } EXPORT_SYMBOL_GPL(scm_driver_register); /** * scm_driver_unregister() - deregister a scm driver * @scmdrv: driver to be deregistered */ void scm_driver_unregister(struct scm_driver *scmdrv) { driver_unregister(&scmdrv->drv); } EXPORT_SYMBOL_GPL(scm_driver_unregister); void scm_irq_handler(struct aob *aob, blk_status_t error) { struct aob_rq_header *aobrq = (void *) aob->request.data; struct scm_device *scmdev = aobrq->scmdev; struct scm_driver *scmdrv = to_scm_drv(scmdev->dev.driver); scmdrv->handler(scmdev, aobrq->data, error); } EXPORT_SYMBOL_GPL(scm_irq_handler); #define scm_attr(name) \ static ssize_t show_##name(struct device *dev, \ struct device_attribute *attr, char *buf) \ { \ struct scm_device *scmdev = to_scm_dev(dev); \ int ret; \ \ device_lock(dev); \ ret = sprintf(buf, "%u\n", scmdev->attrs.name); \ device_unlock(dev); \ \ return ret; \ } \ static DEVICE_ATTR(name, S_IRUGO, show_##name, NULL); scm_attr(persistence); scm_attr(oper_state); scm_attr(data_state); scm_attr(rank); scm_attr(release); scm_attr(res_id); static struct attribute *scmdev_attrs[] = { &dev_attr_persistence.attr, &dev_attr_oper_state.attr, &dev_attr_data_state.attr, &dev_attr_rank.attr, &dev_attr_release.attr, &dev_attr_res_id.attr, NULL, }; static struct attribute_group scmdev_attr_group = { .attrs = scmdev_attrs, }; static const struct attribute_group *scmdev_attr_groups[] = { &scmdev_attr_group, NULL, }; static void scmdev_release(struct device *dev) { struct scm_device *scmdev = to_scm_dev(dev); kfree(scmdev); } static void scmdev_setup(struct scm_device *scmdev, struct sale *sale, unsigned int size, unsigned int max_blk_count) { dev_set_name(&scmdev->dev, "%016llx", (unsigned long long) sale->sa); scmdev->nr_max_block = max_blk_count; scmdev->address = sale->sa; scmdev->size = 1UL << size; scmdev->attrs.rank = sale->rank; scmdev->attrs.persistence = sale->p; scmdev->attrs.oper_state = sale->op_state; scmdev->attrs.data_state = sale->data_state; scmdev->attrs.rank = sale->rank; scmdev->attrs.release = sale->r; scmdev->attrs.res_id = sale->rid; scmdev->dev.parent = scm_root; scmdev->dev.bus = &scm_bus_type; scmdev->dev.release = scmdev_release; scmdev->dev.groups = scmdev_attr_groups; } /* * Check for state-changes, notify the driver and userspace. */ static void scmdev_update(struct scm_device *scmdev, struct sale *sale) { struct scm_driver *scmdrv; bool changed; device_lock(&scmdev->dev); changed = scmdev->attrs.rank != sale->rank || scmdev->attrs.oper_state != sale->op_state; scmdev->attrs.rank = sale->rank; scmdev->attrs.oper_state = sale->op_state; if (!scmdev->dev.driver) goto out; scmdrv = to_scm_drv(scmdev->dev.driver); if (changed && scmdrv->notify) scmdrv->notify(scmdev, SCM_CHANGE); out: device_unlock(&scmdev->dev); if (changed) kobject_uevent(&scmdev->dev.kobj, KOBJ_CHANGE); } static int check_address(struct device *dev, const void *data) { struct scm_device *scmdev = to_scm_dev(dev); const struct sale *sale = data; return scmdev->address == sale->sa; } static struct scm_device *scmdev_find(struct sale *sale) { struct device *dev; dev = bus_find_device(&scm_bus_type, NULL, sale, check_address); return dev ? to_scm_dev(dev) : NULL; } static int scm_add(struct chsc_scm_info *scm_info, size_t num) { struct sale *sale, *scmal = scm_info->scmal; struct scm_device *scmdev; int ret; for (sale = scmal; sale < scmal + num; sale++) { scmdev = scmdev_find(sale); if (scmdev) { scmdev_update(scmdev, sale); /* Release reference from scm_find(). */ put_device(&scmdev->dev); continue; } scmdev = kzalloc(sizeof(*scmdev), GFP_KERNEL); if (!scmdev) return -ENODEV; scmdev_setup(scmdev, sale, scm_info->is, scm_info->mbc); ret = device_register(&scmdev->dev); if (ret) { /* Release reference from device_initialize(). */ put_device(&scmdev->dev); return ret; } } return 0; } int scm_update_information(void) { struct chsc_scm_info *scm_info; u64 token = 0; size_t num; int ret; scm_info = (void *)__get_free_page(GFP_KERNEL | GFP_DMA); if (!scm_info) return -ENOMEM; do { ret = chsc_scm_info(scm_info, token); if (ret) break; num = (scm_info->response.length - (offsetof(struct chsc_scm_info, scmal) - offsetof(struct chsc_scm_info, response)) ) / sizeof(struct sale); ret = scm_add(scm_info, num); if (ret) break; token = scm_info->restok; } while (token); free_page((unsigned long)scm_info); return ret; } static int scm_dev_avail(struct device *dev, void *unused) { struct scm_driver *scmdrv = to_scm_drv(dev->driver); struct scm_device *scmdev = to_scm_dev(dev); if (dev->driver && scmdrv->notify) scmdrv->notify(scmdev, SCM_AVAIL); return 0; } int scm_process_availability_information(void) { return bus_for_each_dev(&scm_bus_type, NULL, NULL, scm_dev_avail); } static int __init scm_init(void) { int ret; ret = bus_register(&scm_bus_type); if (ret) return ret; scm_root = root_device_register("scm"); if (IS_ERR(scm_root)) { bus_unregister(&scm_bus_type); return PTR_ERR(scm_root); } scm_update_information(); return 0; } subsys_initcall_sync(scm_init);
linux-master
drivers/s390/cio/scm.c
// SPDX-License-Identifier: GPL-2.0 /* * bus driver for ccwgroup * * Copyright IBM Corp. 2002, 2012 * * Author(s): Arnd Bergmann ([email protected]) * Cornelia Huck ([email protected]) */ #include <linux/module.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/device.h> #include <linux/init.h> #include <linux/ctype.h> #include <linux/dcache.h> #include <asm/cio.h> #include <asm/ccwdev.h> #include <asm/ccwgroup.h> #include "device.h" #define CCW_BUS_ID_SIZE 10 /* In Linux 2.4, we had a channel device layer called "chandev" * that did all sorts of obscure stuff for networking devices. * This is another driver that serves as a replacement for just * one of its functions, namely the translation of single subchannels * to devices that use multiple subchannels. */ static struct bus_type ccwgroup_bus_type; static void __ccwgroup_remove_symlinks(struct ccwgroup_device *gdev) { int i; char str[16]; for (i = 0; i < gdev->count; i++) { sprintf(str, "cdev%d", i); sysfs_remove_link(&gdev->dev.kobj, str); sysfs_remove_link(&gdev->cdev[i]->dev.kobj, "group_device"); } } /** * ccwgroup_set_online() - enable a ccwgroup device * @gdev: target ccwgroup device * * This function attempts to put the ccwgroup device into the online state. * Returns: * %0 on success and a negative error value on failure. */ int ccwgroup_set_online(struct ccwgroup_device *gdev) { struct ccwgroup_driver *gdrv = to_ccwgroupdrv(gdev->dev.driver); int ret = -EINVAL; if (atomic_cmpxchg(&gdev->onoff, 0, 1) != 0) return -EAGAIN; if (gdev->state == CCWGROUP_ONLINE) goto out; if (gdrv->set_online) ret = gdrv->set_online(gdev); if (ret) goto out; gdev->state = CCWGROUP_ONLINE; out: atomic_set(&gdev->onoff, 0); return ret; } EXPORT_SYMBOL(ccwgroup_set_online); /** * ccwgroup_set_offline() - disable a ccwgroup device * @gdev: target ccwgroup device * @call_gdrv: Call the registered gdrv set_offline function * * This function attempts to put the ccwgroup device into the offline state. * Returns: * %0 on success and a negative error value on failure. */ int ccwgroup_set_offline(struct ccwgroup_device *gdev, bool call_gdrv) { struct ccwgroup_driver *gdrv = to_ccwgroupdrv(gdev->dev.driver); int ret = -EINVAL; if (atomic_cmpxchg(&gdev->onoff, 0, 1) != 0) return -EAGAIN; if (gdev->state == CCWGROUP_OFFLINE) goto out; if (!call_gdrv) { ret = 0; goto offline; } if (gdrv->set_offline) ret = gdrv->set_offline(gdev); if (ret) goto out; offline: gdev->state = CCWGROUP_OFFLINE; out: atomic_set(&gdev->onoff, 0); return ret; } EXPORT_SYMBOL(ccwgroup_set_offline); static ssize_t ccwgroup_online_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ccwgroup_device *gdev = to_ccwgroupdev(dev); unsigned long value; int ret; device_lock(dev); if (!dev->driver) { ret = -EINVAL; goto out; } ret = kstrtoul(buf, 0, &value); if (ret) goto out; if (value == 1) ret = ccwgroup_set_online(gdev); else if (value == 0) ret = ccwgroup_set_offline(gdev, true); else ret = -EINVAL; out: device_unlock(dev); return (ret == 0) ? count : ret; } static ssize_t ccwgroup_online_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ccwgroup_device *gdev = to_ccwgroupdev(dev); int online; online = (gdev->state == CCWGROUP_ONLINE) ? 1 : 0; return scnprintf(buf, PAGE_SIZE, "%d\n", online); } /* * Provide an 'ungroup' attribute so the user can remove group devices no * longer needed or accidentally created. Saves memory :) */ static void ccwgroup_ungroup(struct ccwgroup_device *gdev) { mutex_lock(&gdev->reg_mutex); if (device_is_registered(&gdev->dev)) { __ccwgroup_remove_symlinks(gdev); device_unregister(&gdev->dev); } mutex_unlock(&gdev->reg_mutex); } static ssize_t ccwgroup_ungroup_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ccwgroup_device *gdev = to_ccwgroupdev(dev); int rc = 0; /* Prevent concurrent online/offline processing and ungrouping. */ if (atomic_cmpxchg(&gdev->onoff, 0, 1) != 0) return -EAGAIN; if (gdev->state != CCWGROUP_OFFLINE) { rc = -EINVAL; goto out; } if (device_remove_file_self(dev, attr)) ccwgroup_ungroup(gdev); else rc = -ENODEV; out: if (rc) { /* Release onoff "lock" when ungrouping failed. */ atomic_set(&gdev->onoff, 0); return rc; } return count; } static DEVICE_ATTR(ungroup, 0200, NULL, ccwgroup_ungroup_store); static DEVICE_ATTR(online, 0644, ccwgroup_online_show, ccwgroup_online_store); static struct attribute *ccwgroup_dev_attrs[] = { &dev_attr_online.attr, &dev_attr_ungroup.attr, NULL, }; ATTRIBUTE_GROUPS(ccwgroup_dev); static void ccwgroup_ungroup_workfn(struct work_struct *work) { struct ccwgroup_device *gdev = container_of(work, struct ccwgroup_device, ungroup_work); ccwgroup_ungroup(gdev); put_device(&gdev->dev); } static void ccwgroup_release(struct device *dev) { struct ccwgroup_device *gdev = to_ccwgroupdev(dev); unsigned int i; for (i = 0; i < gdev->count; i++) { struct ccw_device *cdev = gdev->cdev[i]; unsigned long flags; if (cdev) { spin_lock_irqsave(cdev->ccwlock, flags); if (dev_get_drvdata(&cdev->dev) == gdev) dev_set_drvdata(&cdev->dev, NULL); spin_unlock_irqrestore(cdev->ccwlock, flags); put_device(&cdev->dev); } } kfree(gdev); } static int __ccwgroup_create_symlinks(struct ccwgroup_device *gdev) { char str[16]; int i, rc; for (i = 0; i < gdev->count; i++) { rc = sysfs_create_link(&gdev->cdev[i]->dev.kobj, &gdev->dev.kobj, "group_device"); if (rc) { for (--i; i >= 0; i--) sysfs_remove_link(&gdev->cdev[i]->dev.kobj, "group_device"); return rc; } } for (i = 0; i < gdev->count; i++) { sprintf(str, "cdev%d", i); rc = sysfs_create_link(&gdev->dev.kobj, &gdev->cdev[i]->dev.kobj, str); if (rc) { for (--i; i >= 0; i--) { sprintf(str, "cdev%d", i); sysfs_remove_link(&gdev->dev.kobj, str); } for (i = 0; i < gdev->count; i++) sysfs_remove_link(&gdev->cdev[i]->dev.kobj, "group_device"); return rc; } } return 0; } static int __get_next_id(const char **buf, struct ccw_dev_id *id) { unsigned int cssid, ssid, devno; int ret = 0, len; char *start, *end; start = (char *)*buf; end = strchr(start, ','); if (!end) { /* Last entry. Strip trailing newline, if applicable. */ end = strchr(start, '\n'); if (end) *end = '\0'; len = strlen(start) + 1; } else { len = end - start + 1; end++; } if (len <= CCW_BUS_ID_SIZE) { if (sscanf(start, "%2x.%1x.%04x", &cssid, &ssid, &devno) != 3) ret = -EINVAL; } else ret = -EINVAL; if (!ret) { id->ssid = ssid; id->devno = devno; } *buf = end; return ret; } /** * ccwgroup_create_dev() - create and register a ccw group device * @parent: parent device for the new device * @gdrv: driver for the new group device * @num_devices: number of slave devices * @buf: buffer containing comma separated bus ids of slave devices * * Create and register a new ccw group device as a child of @parent. Slave * devices are obtained from the list of bus ids given in @buf. * Returns: * %0 on success and an error code on failure. * Context: * non-atomic */ int ccwgroup_create_dev(struct device *parent, struct ccwgroup_driver *gdrv, int num_devices, const char *buf) { struct ccwgroup_device *gdev; struct ccw_dev_id dev_id; int rc, i; if (num_devices < 1) return -EINVAL; gdev = kzalloc(struct_size(gdev, cdev, num_devices), GFP_KERNEL); if (!gdev) return -ENOMEM; atomic_set(&gdev->onoff, 0); mutex_init(&gdev->reg_mutex); mutex_lock(&gdev->reg_mutex); INIT_WORK(&gdev->ungroup_work, ccwgroup_ungroup_workfn); gdev->count = num_devices; gdev->dev.bus = &ccwgroup_bus_type; gdev->dev.parent = parent; gdev->dev.release = ccwgroup_release; device_initialize(&gdev->dev); for (i = 0; i < num_devices && buf; i++) { rc = __get_next_id(&buf, &dev_id); if (rc != 0) goto error; gdev->cdev[i] = get_ccwdev_by_dev_id(&dev_id); /* * All devices have to be of the same type in * order to be grouped. */ if (!gdev->cdev[i] || !gdev->cdev[i]->drv || gdev->cdev[i]->drv != gdev->cdev[0]->drv || gdev->cdev[i]->id.driver_info != gdev->cdev[0]->id.driver_info) { rc = -EINVAL; goto error; } /* Don't allow a device to belong to more than one group. */ spin_lock_irq(gdev->cdev[i]->ccwlock); if (dev_get_drvdata(&gdev->cdev[i]->dev)) { spin_unlock_irq(gdev->cdev[i]->ccwlock); rc = -EINVAL; goto error; } dev_set_drvdata(&gdev->cdev[i]->dev, gdev); spin_unlock_irq(gdev->cdev[i]->ccwlock); } /* Check for sufficient number of bus ids. */ if (i < num_devices) { rc = -EINVAL; goto error; } /* Check for trailing stuff. */ if (i == num_devices && buf && strlen(buf) > 0) { rc = -EINVAL; goto error; } /* Check if the devices are bound to the required ccw driver. */ if (gdrv && gdrv->ccw_driver && gdev->cdev[0]->drv != gdrv->ccw_driver) { rc = -EINVAL; goto error; } dev_set_name(&gdev->dev, "%s", dev_name(&gdev->cdev[0]->dev)); if (gdrv) { gdev->dev.driver = &gdrv->driver; rc = gdrv->setup ? gdrv->setup(gdev) : 0; if (rc) goto error; } rc = device_add(&gdev->dev); if (rc) goto error; rc = __ccwgroup_create_symlinks(gdev); if (rc) { device_del(&gdev->dev); goto error; } mutex_unlock(&gdev->reg_mutex); return 0; error: mutex_unlock(&gdev->reg_mutex); put_device(&gdev->dev); return rc; } EXPORT_SYMBOL(ccwgroup_create_dev); static int ccwgroup_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct ccwgroup_device *gdev = to_ccwgroupdev(data); if (action == BUS_NOTIFY_UNBOUND_DRIVER) { get_device(&gdev->dev); schedule_work(&gdev->ungroup_work); } return NOTIFY_OK; } static struct notifier_block ccwgroup_nb = { .notifier_call = ccwgroup_notifier }; static int __init init_ccwgroup(void) { int ret; ret = bus_register(&ccwgroup_bus_type); if (ret) return ret; ret = bus_register_notifier(&ccwgroup_bus_type, &ccwgroup_nb); if (ret) bus_unregister(&ccwgroup_bus_type); return ret; } static void __exit cleanup_ccwgroup(void) { bus_unregister_notifier(&ccwgroup_bus_type, &ccwgroup_nb); bus_unregister(&ccwgroup_bus_type); } module_init(init_ccwgroup); module_exit(cleanup_ccwgroup); /************************** driver stuff ******************************/ static void ccwgroup_remove(struct device *dev) { struct ccwgroup_device *gdev = to_ccwgroupdev(dev); struct ccwgroup_driver *gdrv = to_ccwgroupdrv(dev->driver); if (gdrv->remove) gdrv->remove(gdev); } static void ccwgroup_shutdown(struct device *dev) { struct ccwgroup_device *gdev = to_ccwgroupdev(dev); struct ccwgroup_driver *gdrv = to_ccwgroupdrv(dev->driver); if (!dev->driver) return; if (gdrv->shutdown) gdrv->shutdown(gdev); } static struct bus_type ccwgroup_bus_type = { .name = "ccwgroup", .dev_groups = ccwgroup_dev_groups, .remove = ccwgroup_remove, .shutdown = ccwgroup_shutdown, }; bool dev_is_ccwgroup(struct device *dev) { return dev->bus == &ccwgroup_bus_type; } EXPORT_SYMBOL(dev_is_ccwgroup); /** * ccwgroup_driver_register() - register a ccw group driver * @cdriver: driver to be registered * * This function is mainly a wrapper around driver_register(). */ int ccwgroup_driver_register(struct ccwgroup_driver *cdriver) { /* register our new driver with the core */ cdriver->driver.bus = &ccwgroup_bus_type; return driver_register(&cdriver->driver); } EXPORT_SYMBOL(ccwgroup_driver_register); /** * ccwgroup_driver_unregister() - deregister a ccw group driver * @cdriver: driver to be deregistered * * This function is mainly a wrapper around driver_unregister(). */ void ccwgroup_driver_unregister(struct ccwgroup_driver *cdriver) { driver_unregister(&cdriver->driver); } EXPORT_SYMBOL(ccwgroup_driver_unregister); /** * ccwgroup_probe_ccwdev() - probe function for slave devices * @cdev: ccw device to be probed * * This is a dummy probe function for ccw devices that are slave devices in * a ccw group device. * Returns: * always %0 */ int ccwgroup_probe_ccwdev(struct ccw_device *cdev) { return 0; } EXPORT_SYMBOL(ccwgroup_probe_ccwdev); /** * ccwgroup_remove_ccwdev() - remove function for slave devices * @cdev: ccw device to be removed * * This is a remove function for ccw devices that are slave devices in a ccw * group device. It sets the ccw device offline and also deregisters the * embedding ccw group device. */ void ccwgroup_remove_ccwdev(struct ccw_device *cdev) { struct ccwgroup_device *gdev; /* Ignore offlining errors, device is gone anyway. */ ccw_device_set_offline(cdev); /* If one of its devices is gone, the whole group is done for. */ spin_lock_irq(cdev->ccwlock); gdev = dev_get_drvdata(&cdev->dev); if (!gdev) { spin_unlock_irq(cdev->ccwlock); return; } /* Get ccwgroup device reference for local processing. */ get_device(&gdev->dev); spin_unlock_irq(cdev->ccwlock); /* Unregister group device. */ ccwgroup_ungroup(gdev); /* Release ccwgroup device reference for local processing. */ put_device(&gdev->dev); } EXPORT_SYMBOL(ccwgroup_remove_ccwdev); MODULE_LICENSE("GPL");
linux-master
drivers/s390/cio/ccwgroup.c
// SPDX-License-Identifier: GPL-2.0 /* * CCW device SENSE ID I/O handling. * * Copyright IBM Corp. 2002, 2009 * Author(s): Cornelia Huck <[email protected]> * Martin Schwidefsky <[email protected]> * Peter Oberparleiter <[email protected]> */ #include <linux/kernel.h> #include <linux/string.h> #include <linux/types.h> #include <linux/errno.h> #include <asm/ccwdev.h> #include <asm/setup.h> #include <asm/cio.h> #include <asm/diag.h> #include "cio.h" #include "cio_debug.h" #include "device.h" #include "io_sch.h" #define SENSE_ID_RETRIES 256 #define SENSE_ID_TIMEOUT (10 * HZ) #define SENSE_ID_MIN_LEN 4 #define SENSE_ID_BASIC_LEN 7 /** * diag210_to_senseid - convert diag 0x210 data to sense id information * @senseid: sense id * @diag: diag 0x210 data * * Return 0 on success, non-zero otherwise. */ static int diag210_to_senseid(struct senseid *senseid, struct diag210 *diag) { static struct { int class, type, cu_type; } vm_devices[] = { { 0x08, 0x01, 0x3480 }, { 0x08, 0x02, 0x3430 }, { 0x08, 0x10, 0x3420 }, { 0x08, 0x42, 0x3424 }, { 0x08, 0x44, 0x9348 }, { 0x08, 0x81, 0x3490 }, { 0x08, 0x82, 0x3422 }, { 0x10, 0x41, 0x1403 }, { 0x10, 0x42, 0x3211 }, { 0x10, 0x43, 0x3203 }, { 0x10, 0x45, 0x3800 }, { 0x10, 0x47, 0x3262 }, { 0x10, 0x48, 0x3820 }, { 0x10, 0x49, 0x3800 }, { 0x10, 0x4a, 0x4245 }, { 0x10, 0x4b, 0x4248 }, { 0x10, 0x4d, 0x3800 }, { 0x10, 0x4e, 0x3820 }, { 0x10, 0x4f, 0x3820 }, { 0x10, 0x82, 0x2540 }, { 0x10, 0x84, 0x3525 }, { 0x20, 0x81, 0x2501 }, { 0x20, 0x82, 0x2540 }, { 0x20, 0x84, 0x3505 }, { 0x40, 0x01, 0x3278 }, { 0x40, 0x04, 0x3277 }, { 0x40, 0x80, 0x2250 }, { 0x40, 0xc0, 0x5080 }, { 0x80, 0x00, 0x3215 }, }; int i; /* Special case for osa devices. */ if (diag->vrdcvcla == 0x02 && diag->vrdcvtyp == 0x20) { senseid->cu_type = 0x3088; senseid->cu_model = 0x60; senseid->reserved = 0xff; return 0; } for (i = 0; i < ARRAY_SIZE(vm_devices); i++) { if (diag->vrdcvcla == vm_devices[i].class && diag->vrdcvtyp == vm_devices[i].type) { senseid->cu_type = vm_devices[i].cu_type; senseid->reserved = 0xff; return 0; } } return -ENODEV; } /** * diag210_get_dev_info - retrieve device information via diag 0x210 * @cdev: ccw device * * Returns zero on success, non-zero otherwise. */ static int diag210_get_dev_info(struct ccw_device *cdev) { struct ccw_dev_id *dev_id = &cdev->private->dev_id; struct senseid *senseid = &cdev->private->dma_area->senseid; struct diag210 diag_data; int rc; if (dev_id->ssid != 0) return -ENODEV; memset(&diag_data, 0, sizeof(diag_data)); diag_data.vrdcdvno = dev_id->devno; diag_data.vrdclen = sizeof(diag_data); rc = diag210(&diag_data); CIO_TRACE_EVENT(4, "diag210"); CIO_HEX_EVENT(4, &rc, sizeof(rc)); CIO_HEX_EVENT(4, &diag_data, sizeof(diag_data)); if (rc != 0 && rc != 2) goto err_failed; if (diag210_to_senseid(senseid, &diag_data)) goto err_unknown; return 0; err_unknown: CIO_MSG_EVENT(0, "snsid: device 0.%x.%04x: unknown diag210 data\n", dev_id->ssid, dev_id->devno); return -ENODEV; err_failed: CIO_MSG_EVENT(0, "snsid: device 0.%x.%04x: diag210 failed (rc=%d)\n", dev_id->ssid, dev_id->devno, rc); return -ENODEV; } /* * Initialize SENSE ID data. */ static void snsid_init(struct ccw_device *cdev) { cdev->private->flags.esid = 0; memset(&cdev->private->dma_area->senseid, 0, sizeof(cdev->private->dma_area->senseid)); cdev->private->dma_area->senseid.cu_type = 0xffff; } /* * Check for complete SENSE ID data. */ static int snsid_check(struct ccw_device *cdev, void *data) { struct cmd_scsw *scsw = &cdev->private->dma_area->irb.scsw.cmd; int len = sizeof(struct senseid) - scsw->count; /* Check for incomplete SENSE ID data. */ if (len < SENSE_ID_MIN_LEN) goto out_restart; if (cdev->private->dma_area->senseid.cu_type == 0xffff) goto out_restart; /* Check for incompatible SENSE ID data. */ if (cdev->private->dma_area->senseid.reserved != 0xff) return -EOPNOTSUPP; /* Check for extended-identification information. */ if (len > SENSE_ID_BASIC_LEN) cdev->private->flags.esid = 1; return 0; out_restart: snsid_init(cdev); return -EAGAIN; } /* * Process SENSE ID request result. */ static void snsid_callback(struct ccw_device *cdev, void *data, int rc) { struct ccw_dev_id *id = &cdev->private->dev_id; struct senseid *senseid = &cdev->private->dma_area->senseid; int vm = 0; if (rc && MACHINE_IS_VM) { /* Try diag 0x210 fallback on z/VM. */ snsid_init(cdev); if (diag210_get_dev_info(cdev) == 0) { rc = 0; vm = 1; } } CIO_MSG_EVENT(2, "snsid: device 0.%x.%04x: rc=%d %04x/%02x " "%04x/%02x%s\n", id->ssid, id->devno, rc, senseid->cu_type, senseid->cu_model, senseid->dev_type, senseid->dev_model, vm ? " (diag210)" : ""); ccw_device_sense_id_done(cdev, rc); } /** * ccw_device_sense_id_start - perform SENSE ID * @cdev: ccw device * * Execute a SENSE ID channel program on @cdev to update its sense id * information. When finished, call ccw_device_sense_id_done with a * return code specifying the result. */ void ccw_device_sense_id_start(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct ccw_request *req = &cdev->private->req; struct ccw1 *cp = cdev->private->dma_area->iccws; CIO_TRACE_EVENT(4, "snsid"); CIO_HEX_EVENT(4, &cdev->private->dev_id, sizeof(cdev->private->dev_id)); /* Data setup. */ snsid_init(cdev); /* Channel program setup. */ cp->cmd_code = CCW_CMD_SENSE_ID; cp->cda = (u32)virt_to_phys(&cdev->private->dma_area->senseid); cp->count = sizeof(struct senseid); cp->flags = CCW_FLAG_SLI; /* Request setup. */ memset(req, 0, sizeof(*req)); req->cp = cp; req->timeout = SENSE_ID_TIMEOUT; req->maxretries = SENSE_ID_RETRIES; req->lpm = sch->schib.pmcw.pam & sch->opm; req->check = snsid_check; req->callback = snsid_callback; ccw_request_start(cdev); }
linux-master
drivers/s390/cio/device_id.c
// SPDX-License-Identifier: GPL-2.0 /* * S/390 common I/O debugfs interface * * Copyright IBM Corp. 2021 * Author(s): Vineeth Vijayan <[email protected]> */ #include <linux/debugfs.h> #include "cio_debug.h" struct dentry *cio_debugfs_dir; /* Create the debugfs directory for CIO under the arch_debugfs_dir * i.e /sys/kernel/debug/s390/cio */ static int __init cio_debugfs_init(void) { cio_debugfs_dir = debugfs_create_dir("cio", arch_debugfs_dir); return 0; } subsys_initcall(cio_debugfs_init);
linux-master
drivers/s390/cio/cio_debugfs.c
// SPDX-License-Identifier: GPL-2.0 /* * Tracepoint definitions for vfio_ccw * * Copyright IBM Corp. 2019 * Author(s): Eric Farman <[email protected]> */ #define CREATE_TRACE_POINTS #include "vfio_ccw_trace.h" EXPORT_TRACEPOINT_SYMBOL(vfio_ccw_chp_event); EXPORT_TRACEPOINT_SYMBOL(vfio_ccw_fsm_async_request); EXPORT_TRACEPOINT_SYMBOL(vfio_ccw_fsm_event); EXPORT_TRACEPOINT_SYMBOL(vfio_ccw_fsm_io_request);
linux-master
drivers/s390/cio/vfio_ccw_trace.c
// SPDX-License-Identifier: GPL-2.0 /* * Channel report handling code * * Copyright IBM Corp. 2000, 2009 * Author(s): Ingo Adlung <[email protected]>, * Martin Schwidefsky <[email protected]>, * Cornelia Huck <[email protected]>, */ #include <linux/mutex.h> #include <linux/kthread.h> #include <linux/init.h> #include <linux/wait.h> #include <asm/crw.h> #include <asm/ctl_reg.h> #include "ioasm.h" static DEFINE_MUTEX(crw_handler_mutex); static crw_handler_t crw_handlers[NR_RSCS]; static atomic_t crw_nr_req = ATOMIC_INIT(0); static DECLARE_WAIT_QUEUE_HEAD(crw_handler_wait_q); /** * crw_register_handler() - register a channel report word handler * @rsc: reporting source code to handle * @handler: handler to be registered * * Returns %0 on success and a negative error value otherwise. */ int crw_register_handler(int rsc, crw_handler_t handler) { int rc = 0; if ((rsc < 0) || (rsc >= NR_RSCS)) return -EINVAL; mutex_lock(&crw_handler_mutex); if (crw_handlers[rsc]) rc = -EBUSY; else crw_handlers[rsc] = handler; mutex_unlock(&crw_handler_mutex); return rc; } /** * crw_unregister_handler() - unregister a channel report word handler * @rsc: reporting source code to handle */ void crw_unregister_handler(int rsc) { if ((rsc < 0) || (rsc >= NR_RSCS)) return; mutex_lock(&crw_handler_mutex); crw_handlers[rsc] = NULL; mutex_unlock(&crw_handler_mutex); } /* * Retrieve CRWs and call function to handle event. */ static int crw_collect_info(void *unused) { struct crw crw[2]; int ccode, signal; unsigned int chain; repeat: signal = wait_event_interruptible(crw_handler_wait_q, atomic_read(&crw_nr_req) > 0); if (unlikely(signal)) atomic_inc(&crw_nr_req); chain = 0; while (1) { crw_handler_t handler; if (unlikely(chain > 1)) { struct crw tmp_crw; printk(KERN_WARNING"%s: Code does not support more " "than two chained crws; please report to " "[email protected]!\n", __func__); ccode = stcrw(&tmp_crw); printk(KERN_WARNING"%s: crw reports slct=%d, oflw=%d, " "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", __func__, tmp_crw.slct, tmp_crw.oflw, tmp_crw.chn, tmp_crw.rsc, tmp_crw.anc, tmp_crw.erc, tmp_crw.rsid); printk(KERN_WARNING"%s: This was crw number %x in the " "chain\n", __func__, chain); if (ccode != 0) break; chain = tmp_crw.chn ? chain + 1 : 0; continue; } ccode = stcrw(&crw[chain]); if (ccode != 0) break; printk(KERN_DEBUG "crw_info : CRW reports slct=%d, oflw=%d, " "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", crw[chain].slct, crw[chain].oflw, crw[chain].chn, crw[chain].rsc, crw[chain].anc, crw[chain].erc, crw[chain].rsid); /* Check for overflows. */ if (crw[chain].oflw) { int i; pr_debug("%s: crw overflow detected!\n", __func__); mutex_lock(&crw_handler_mutex); for (i = 0; i < NR_RSCS; i++) { if (crw_handlers[i]) crw_handlers[i](NULL, NULL, 1); } mutex_unlock(&crw_handler_mutex); chain = 0; continue; } if (crw[0].chn && !chain) { chain++; continue; } mutex_lock(&crw_handler_mutex); handler = crw_handlers[crw[chain].rsc]; if (handler) handler(&crw[0], chain ? &crw[1] : NULL, 0); mutex_unlock(&crw_handler_mutex); /* chain is always 0 or 1 here. */ chain = crw[chain].chn ? chain + 1 : 0; } if (atomic_dec_and_test(&crw_nr_req)) wake_up(&crw_handler_wait_q); goto repeat; return 0; } void crw_handle_channel_report(void) { atomic_inc(&crw_nr_req); wake_up(&crw_handler_wait_q); } void crw_wait_for_channel_report(void) { crw_handle_channel_report(); wait_event(crw_handler_wait_q, atomic_read(&crw_nr_req) == 0); } /* * Machine checks for the channel subsystem must be enabled * after the channel subsystem is initialized */ static int __init crw_machine_check_init(void) { struct task_struct *task; task = kthread_run(crw_collect_info, NULL, "kmcheck"); if (IS_ERR(task)) return PTR_ERR(task); ctl_set_bit(14, 28); /* enable channel report MCH */ return 0; } device_initcall(crw_machine_check_init);
linux-master
drivers/s390/cio/crw.c
// SPDX-License-Identifier: GPL-2.0 /* * Async I/O region for vfio_ccw * * Copyright Red Hat, Inc. 2019 * * Author(s): Cornelia Huck <[email protected]> */ #include <linux/vfio.h> #include "vfio_ccw_private.h" static ssize_t vfio_ccw_async_region_read(struct vfio_ccw_private *private, char __user *buf, size_t count, loff_t *ppos) { unsigned int i = VFIO_CCW_OFFSET_TO_INDEX(*ppos) - VFIO_CCW_NUM_REGIONS; loff_t pos = *ppos & VFIO_CCW_OFFSET_MASK; struct ccw_cmd_region *region; int ret; if (pos + count > sizeof(*region)) return -EINVAL; mutex_lock(&private->io_mutex); region = private->region[i].data; if (copy_to_user(buf, (void *)region + pos, count)) ret = -EFAULT; else ret = count; mutex_unlock(&private->io_mutex); return ret; } static ssize_t vfio_ccw_async_region_write(struct vfio_ccw_private *private, const char __user *buf, size_t count, loff_t *ppos) { unsigned int i = VFIO_CCW_OFFSET_TO_INDEX(*ppos) - VFIO_CCW_NUM_REGIONS; loff_t pos = *ppos & VFIO_CCW_OFFSET_MASK; struct ccw_cmd_region *region; int ret; if (pos + count > sizeof(*region)) return -EINVAL; if (!mutex_trylock(&private->io_mutex)) return -EAGAIN; region = private->region[i].data; if (copy_from_user((void *)region + pos, buf, count)) { ret = -EFAULT; goto out_unlock; } vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_ASYNC_REQ); ret = region->ret_code ? region->ret_code : count; out_unlock: mutex_unlock(&private->io_mutex); return ret; } static void vfio_ccw_async_region_release(struct vfio_ccw_private *private, struct vfio_ccw_region *region) { } static const struct vfio_ccw_regops vfio_ccw_async_region_ops = { .read = vfio_ccw_async_region_read, .write = vfio_ccw_async_region_write, .release = vfio_ccw_async_region_release, }; int vfio_ccw_register_async_dev_regions(struct vfio_ccw_private *private) { return vfio_ccw_register_dev_region(private, VFIO_REGION_SUBTYPE_CCW_ASYNC_CMD, &vfio_ccw_async_region_ops, sizeof(struct ccw_cmd_region), VFIO_REGION_INFO_FLAG_READ | VFIO_REGION_INFO_FLAG_WRITE, private->cmd_region); }
linux-master
drivers/s390/cio/vfio_ccw_async.c
// SPDX-License-Identifier: GPL-2.0 /* * CIO inject interface * * Copyright IBM Corp. 2021 * Author(s): Vineeth Vijayan <[email protected]> */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/mm.h> #include <linux/debugfs.h> #include <asm/chpid.h> #include "cio_inject.h" #include "cio_debug.h" static DEFINE_SPINLOCK(crw_inject_lock); DEFINE_STATIC_KEY_FALSE(cio_inject_enabled); static struct crw *crw_inject_data; /** * crw_inject : Initiate the artificial CRW inject * @crw: The data which needs to be injected as new CRW. * * The CRW handler is called, which will use the provided artificial * data instead of the CRW from the underlying hardware. * * Return: 0 on success */ static int crw_inject(struct crw *crw) { int rc = 0; struct crw *copy; unsigned long flags; copy = kmemdup(crw, sizeof(*crw), GFP_KERNEL); if (!copy) return -ENOMEM; spin_lock_irqsave(&crw_inject_lock, flags); if (crw_inject_data) { kfree(copy); rc = -EBUSY; } else { crw_inject_data = copy; } spin_unlock_irqrestore(&crw_inject_lock, flags); if (!rc) crw_handle_channel_report(); return rc; } /** * stcrw_get_injected: Copy the artificial CRW data to CRW struct. * @crw: The target CRW pointer. * * Retrieve an injected CRW data. Return 0 on success, 1 if no * injected-CRW is available. The function reproduces the return * code of the actual STCRW function. */ int stcrw_get_injected(struct crw *crw) { int rc = 1; unsigned long flags; spin_lock_irqsave(&crw_inject_lock, flags); if (crw_inject_data) { memcpy(crw, crw_inject_data, sizeof(*crw)); kfree(crw_inject_data); crw_inject_data = NULL; rc = 0; } spin_unlock_irqrestore(&crw_inject_lock, flags); return rc; } /* The debugfs write handler for crw_inject nodes operation */ static ssize_t crw_inject_write(struct file *file, const char __user *buf, size_t lbuf, loff_t *ppos) { u32 slct, oflw, chn, rsc, anc, erc, rsid; struct crw crw; char *buffer; int rc; if (!static_branch_likely(&cio_inject_enabled)) { pr_warn("CIO inject is not enabled - ignoring CRW inject\n"); return -EINVAL; } buffer = vmemdup_user(buf, lbuf); if (IS_ERR(buffer)) return -ENOMEM; rc = sscanf(buffer, "%x %x %x %x %x %x %x", &slct, &oflw, &chn, &rsc, &anc, &erc, &rsid); kvfree(buffer); if (rc != 7) { pr_warn("crw_inject: Invalid format (need <solicited> <overflow> <chaining> <rsc> <ancillary> <erc> <rsid>)\n"); return -EINVAL; } memset(&crw, 0, sizeof(crw)); crw.slct = slct; crw.oflw = oflw; crw.chn = chn; crw.rsc = rsc; crw.anc = anc; crw.erc = erc; crw.rsid = rsid; rc = crw_inject(&crw); if (rc) return rc; return lbuf; } /* Debugfs write handler for inject_enable node*/ static ssize_t enable_inject_write(struct file *file, const char __user *buf, size_t lbuf, loff_t *ppos) { unsigned long en = 0; int rc; rc = kstrtoul_from_user(buf, lbuf, 10, &en); if (rc) return rc; switch (en) { case 0: static_branch_disable(&cio_inject_enabled); break; case 1: static_branch_enable(&cio_inject_enabled); break; } return lbuf; } static const struct file_operations crw_fops = { .owner = THIS_MODULE, .write = crw_inject_write, }; static const struct file_operations cio_en_fops = { .owner = THIS_MODULE, .write = enable_inject_write, }; static int __init cio_inject_init(void) { /* enable_inject node enables the static branching */ debugfs_create_file("enable_inject", 0200, cio_debugfs_dir, NULL, &cio_en_fops); debugfs_create_file("crw_inject", 0200, cio_debugfs_dir, NULL, &crw_fops); return 0; } device_initcall(cio_inject_init);
linux-master
drivers/s390/cio/cio_inject.c
// SPDX-License-Identifier: GPL-2.0 /* * channel program interfaces * * Copyright IBM Corp. 2017 * * Author(s): Dong Jia Shi <[email protected]> * Xiao Feng Ren <[email protected]> */ #include <linux/ratelimit.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/highmem.h> #include <linux/iommu.h> #include <linux/vfio.h> #include <asm/idals.h> #include "vfio_ccw_cp.h" #include "vfio_ccw_private.h" struct page_array { /* Array that stores pages need to pin. */ dma_addr_t *pa_iova; /* Array that receives the pinned pages. */ struct page **pa_page; /* Number of pages pinned from @pa_iova. */ int pa_nr; }; struct ccwchain { struct list_head next; struct ccw1 *ch_ccw; /* Guest physical address of the current chain. */ u64 ch_iova; /* Count of the valid ccws in chain. */ int ch_len; /* Pinned PAGEs for the original data. */ struct page_array *ch_pa; }; /* * page_array_alloc() - alloc memory for page array * @pa: page_array on which to perform the operation * @len: number of pages that should be pinned from @iova * * Attempt to allocate memory for page array. * * Usage of page_array: * We expect (pa_nr == 0) and (pa_iova == NULL), any field in * this structure will be filled in by this function. * * Returns: * 0 if page array is allocated * -EINVAL if pa->pa_nr is not initially zero, or pa->pa_iova is not NULL * -ENOMEM if alloc failed */ static int page_array_alloc(struct page_array *pa, unsigned int len) { if (pa->pa_nr || pa->pa_iova) return -EINVAL; if (len == 0) return -EINVAL; pa->pa_nr = len; pa->pa_iova = kcalloc(len, sizeof(*pa->pa_iova), GFP_KERNEL); if (!pa->pa_iova) return -ENOMEM; pa->pa_page = kcalloc(len, sizeof(*pa->pa_page), GFP_KERNEL); if (!pa->pa_page) { kfree(pa->pa_iova); return -ENOMEM; } return 0; } /* * page_array_unpin() - Unpin user pages in memory * @pa: page_array on which to perform the operation * @vdev: the vfio device to perform the operation * @pa_nr: number of user pages to unpin * @unaligned: were pages unaligned on the pin request * * Only unpin if any pages were pinned to begin with, i.e. pa_nr > 0, * otherwise only clear pa->pa_nr */ static void page_array_unpin(struct page_array *pa, struct vfio_device *vdev, int pa_nr, bool unaligned) { int unpinned = 0, npage = 1; while (unpinned < pa_nr) { dma_addr_t *first = &pa->pa_iova[unpinned]; dma_addr_t *last = &first[npage]; if (unpinned + npage < pa_nr && *first + npage * PAGE_SIZE == *last && !unaligned) { npage++; continue; } vfio_unpin_pages(vdev, *first, npage); unpinned += npage; npage = 1; } pa->pa_nr = 0; } /* * page_array_pin() - Pin user pages in memory * @pa: page_array on which to perform the operation * @vdev: the vfio device to perform pin operations * @unaligned: are pages aligned to 4K boundary? * * Returns number of pages pinned upon success. * If the pin request partially succeeds, or fails completely, * all pages are left unpinned and a negative error value is returned. * * Requests to pin "aligned" pages can be coalesced into a single * vfio_pin_pages request for the sake of efficiency, based on the * expectation of 4K page requests. Unaligned requests are probably * dealing with 2K "pages", and cannot be coalesced without * reworking this logic to incorporate that math. */ static int page_array_pin(struct page_array *pa, struct vfio_device *vdev, bool unaligned) { int pinned = 0, npage = 1; int ret = 0; while (pinned < pa->pa_nr) { dma_addr_t *first = &pa->pa_iova[pinned]; dma_addr_t *last = &first[npage]; if (pinned + npage < pa->pa_nr && *first + npage * PAGE_SIZE == *last && !unaligned) { npage++; continue; } ret = vfio_pin_pages(vdev, *first, npage, IOMMU_READ | IOMMU_WRITE, &pa->pa_page[pinned]); if (ret < 0) { goto err_out; } else if (ret > 0 && ret != npage) { pinned += ret; ret = -EINVAL; goto err_out; } pinned += npage; npage = 1; } return ret; err_out: page_array_unpin(pa, vdev, pinned, unaligned); return ret; } /* Unpin the pages before releasing the memory. */ static void page_array_unpin_free(struct page_array *pa, struct vfio_device *vdev, bool unaligned) { page_array_unpin(pa, vdev, pa->pa_nr, unaligned); kfree(pa->pa_page); kfree(pa->pa_iova); } static bool page_array_iova_pinned(struct page_array *pa, u64 iova, u64 length) { u64 iova_pfn_start = iova >> PAGE_SHIFT; u64 iova_pfn_end = (iova + length - 1) >> PAGE_SHIFT; u64 pfn; int i; for (i = 0; i < pa->pa_nr; i++) { pfn = pa->pa_iova[i] >> PAGE_SHIFT; if (pfn >= iova_pfn_start && pfn <= iova_pfn_end) return true; } return false; } /* Create the list of IDAL words for a page_array. */ static inline void page_array_idal_create_words(struct page_array *pa, unsigned long *idaws) { int i; /* * Idal words (execept the first one) rely on the memory being 4k * aligned. If a user virtual address is 4K aligned, then it's * corresponding kernel physical address will also be 4K aligned. Thus * there will be no problem here to simply use the phys to create an * idaw. */ for (i = 0; i < pa->pa_nr; i++) { idaws[i] = page_to_phys(pa->pa_page[i]); /* Incorporate any offset from each starting address */ idaws[i] += pa->pa_iova[i] & (PAGE_SIZE - 1); } } static void convert_ccw0_to_ccw1(struct ccw1 *source, unsigned long len) { struct ccw0 ccw0; struct ccw1 *pccw1 = source; int i; for (i = 0; i < len; i++) { ccw0 = *(struct ccw0 *)pccw1; if ((pccw1->cmd_code & 0x0f) == CCW_CMD_TIC) { pccw1->cmd_code = CCW_CMD_TIC; pccw1->flags = 0; pccw1->count = 0; } else { pccw1->cmd_code = ccw0.cmd_code; pccw1->flags = ccw0.flags; pccw1->count = ccw0.count; } pccw1->cda = ccw0.cda; pccw1++; } } #define idal_is_2k(_cp) (!(_cp)->orb.cmd.c64 || (_cp)->orb.cmd.i2k) /* * Helpers to operate ccwchain. */ #define ccw_is_read(_ccw) (((_ccw)->cmd_code & 0x03) == 0x02) #define ccw_is_read_backward(_ccw) (((_ccw)->cmd_code & 0x0F) == 0x0C) #define ccw_is_sense(_ccw) (((_ccw)->cmd_code & 0x0F) == CCW_CMD_BASIC_SENSE) #define ccw_is_noop(_ccw) ((_ccw)->cmd_code == CCW_CMD_NOOP) #define ccw_is_tic(_ccw) ((_ccw)->cmd_code == CCW_CMD_TIC) #define ccw_is_idal(_ccw) ((_ccw)->flags & CCW_FLAG_IDA) #define ccw_is_skip(_ccw) ((_ccw)->flags & CCW_FLAG_SKIP) #define ccw_is_chain(_ccw) ((_ccw)->flags & (CCW_FLAG_CC | CCW_FLAG_DC)) /* * ccw_does_data_transfer() * * Determine whether a CCW will move any data, such that the guest pages * would need to be pinned before performing the I/O. * * Returns 1 if yes, 0 if no. */ static inline int ccw_does_data_transfer(struct ccw1 *ccw) { /* If the count field is zero, then no data will be transferred */ if (ccw->count == 0) return 0; /* If the command is a NOP, then no data will be transferred */ if (ccw_is_noop(ccw)) return 0; /* If the skip flag is off, then data will be transferred */ if (!ccw_is_skip(ccw)) return 1; /* * If the skip flag is on, it is only meaningful if the command * code is a read, read backward, sense, or sense ID. In those * cases, no data will be transferred. */ if (ccw_is_read(ccw) || ccw_is_read_backward(ccw)) return 0; if (ccw_is_sense(ccw)) return 0; /* The skip flag is on, but it is ignored for this command code. */ return 1; } /* * is_cpa_within_range() * * @cpa: channel program address being questioned * @head: address of the beginning of a CCW chain * @len: number of CCWs within the chain * * Determine whether the address of a CCW (whether a new chain, * or the target of a TIC) falls within a range (including the end points). * * Returns 1 if yes, 0 if no. */ static inline int is_cpa_within_range(u32 cpa, u32 head, int len) { u32 tail = head + (len - 1) * sizeof(struct ccw1); return (head <= cpa && cpa <= tail); } static inline int is_tic_within_range(struct ccw1 *ccw, u32 head, int len) { if (!ccw_is_tic(ccw)) return 0; return is_cpa_within_range(ccw->cda, head, len); } static struct ccwchain *ccwchain_alloc(struct channel_program *cp, int len) { struct ccwchain *chain; chain = kzalloc(sizeof(*chain), GFP_KERNEL); if (!chain) return NULL; chain->ch_ccw = kcalloc(len, sizeof(*chain->ch_ccw), GFP_DMA | GFP_KERNEL); if (!chain->ch_ccw) goto out_err; chain->ch_pa = kcalloc(len, sizeof(*chain->ch_pa), GFP_KERNEL); if (!chain->ch_pa) goto out_err; list_add_tail(&chain->next, &cp->ccwchain_list); return chain; out_err: kfree(chain->ch_ccw); kfree(chain); return NULL; } static void ccwchain_free(struct ccwchain *chain) { list_del(&chain->next); kfree(chain->ch_pa); kfree(chain->ch_ccw); kfree(chain); } /* Free resource for a ccw that allocated memory for its cda. */ static void ccwchain_cda_free(struct ccwchain *chain, int idx) { struct ccw1 *ccw = &chain->ch_ccw[idx]; if (ccw_is_tic(ccw)) return; kfree(phys_to_virt(ccw->cda)); } /** * ccwchain_calc_length - calculate the length of the ccw chain. * @iova: guest physical address of the target ccw chain * @cp: channel_program on which to perform the operation * * This is the chain length not considering any TICs. * You need to do a new round for each TIC target. * * The program is also validated for absence of not yet supported * indirect data addressing scenarios. * * Returns: the length of the ccw chain or -errno. */ static int ccwchain_calc_length(u64 iova, struct channel_program *cp) { struct ccw1 *ccw = cp->guest_cp; int cnt = 0; do { cnt++; /* * We want to keep counting if the current CCW has the * command-chaining flag enabled, or if it is a TIC CCW * that loops back into the current chain. The latter * is used for device orientation, where the CCW PRIOR to * the TIC can either jump to the TIC or a CCW immediately * after the TIC, depending on the results of its operation. */ if (!ccw_is_chain(ccw) && !is_tic_within_range(ccw, iova, cnt)) break; ccw++; } while (cnt < CCWCHAIN_LEN_MAX + 1); if (cnt == CCWCHAIN_LEN_MAX + 1) cnt = -EINVAL; return cnt; } static int tic_target_chain_exists(struct ccw1 *tic, struct channel_program *cp) { struct ccwchain *chain; u32 ccw_head; list_for_each_entry(chain, &cp->ccwchain_list, next) { ccw_head = chain->ch_iova; if (is_cpa_within_range(tic->cda, ccw_head, chain->ch_len)) return 1; } return 0; } static int ccwchain_loop_tic(struct ccwchain *chain, struct channel_program *cp); static int ccwchain_handle_ccw(u32 cda, struct channel_program *cp) { struct vfio_device *vdev = &container_of(cp, struct vfio_ccw_private, cp)->vdev; struct ccwchain *chain; int len, ret; /* Copy 2K (the most we support today) of possible CCWs */ ret = vfio_dma_rw(vdev, cda, cp->guest_cp, CCWCHAIN_LEN_MAX * sizeof(struct ccw1), false); if (ret) return ret; /* Convert any Format-0 CCWs to Format-1 */ if (!cp->orb.cmd.fmt) convert_ccw0_to_ccw1(cp->guest_cp, CCWCHAIN_LEN_MAX); /* Count the CCWs in the current chain */ len = ccwchain_calc_length(cda, cp); if (len < 0) return len; /* Need alloc a new chain for this one. */ chain = ccwchain_alloc(cp, len); if (!chain) return -ENOMEM; chain->ch_len = len; chain->ch_iova = cda; /* Copy the actual CCWs into the new chain */ memcpy(chain->ch_ccw, cp->guest_cp, len * sizeof(struct ccw1)); /* Loop for tics on this new chain. */ ret = ccwchain_loop_tic(chain, cp); if (ret) ccwchain_free(chain); return ret; } /* Loop for TICs. */ static int ccwchain_loop_tic(struct ccwchain *chain, struct channel_program *cp) { struct ccw1 *tic; int i, ret; for (i = 0; i < chain->ch_len; i++) { tic = &chain->ch_ccw[i]; if (!ccw_is_tic(tic)) continue; /* May transfer to an existing chain. */ if (tic_target_chain_exists(tic, cp)) continue; /* Build a ccwchain for the next segment */ ret = ccwchain_handle_ccw(tic->cda, cp); if (ret) return ret; } return 0; } static int ccwchain_fetch_tic(struct ccw1 *ccw, struct channel_program *cp) { struct ccwchain *iter; u32 ccw_head; list_for_each_entry(iter, &cp->ccwchain_list, next) { ccw_head = iter->ch_iova; if (is_cpa_within_range(ccw->cda, ccw_head, iter->ch_len)) { ccw->cda = (__u32) (addr_t) (((char *)iter->ch_ccw) + (ccw->cda - ccw_head)); return 0; } } return -EFAULT; } static unsigned long *get_guest_idal(struct ccw1 *ccw, struct channel_program *cp, int idaw_nr) { struct vfio_device *vdev = &container_of(cp, struct vfio_ccw_private, cp)->vdev; unsigned long *idaws; unsigned int *idaws_f1; int idal_len = idaw_nr * sizeof(*idaws); int idaw_size = idal_is_2k(cp) ? PAGE_SIZE / 2 : PAGE_SIZE; int idaw_mask = ~(idaw_size - 1); int i, ret; idaws = kcalloc(idaw_nr, sizeof(*idaws), GFP_DMA | GFP_KERNEL); if (!idaws) return ERR_PTR(-ENOMEM); if (ccw_is_idal(ccw)) { /* Copy IDAL from guest */ ret = vfio_dma_rw(vdev, ccw->cda, idaws, idal_len, false); if (ret) { kfree(idaws); return ERR_PTR(ret); } } else { /* Fabricate an IDAL based off CCW data address */ if (cp->orb.cmd.c64) { idaws[0] = ccw->cda; for (i = 1; i < idaw_nr; i++) idaws[i] = (idaws[i - 1] + idaw_size) & idaw_mask; } else { idaws_f1 = (unsigned int *)idaws; idaws_f1[0] = ccw->cda; for (i = 1; i < idaw_nr; i++) idaws_f1[i] = (idaws_f1[i - 1] + idaw_size) & idaw_mask; } } return idaws; } /* * ccw_count_idaws() - Calculate the number of IDAWs needed to transfer * a specified amount of data * * @ccw: The Channel Command Word being translated * @cp: Channel Program being processed * * The ORB is examined, since it specifies what IDAWs could actually be * used by any CCW in the channel program, regardless of whether or not * the CCW actually does. An ORB that does not specify Format-2-IDAW * Control could still contain a CCW with an IDAL, which would be * Format-1 and thus only move 2K with each IDAW. Thus all CCWs within * the channel program must follow the same size requirements. */ static int ccw_count_idaws(struct ccw1 *ccw, struct channel_program *cp) { struct vfio_device *vdev = &container_of(cp, struct vfio_ccw_private, cp)->vdev; u64 iova; int size = cp->orb.cmd.c64 ? sizeof(u64) : sizeof(u32); int ret; int bytes = 1; if (ccw->count) bytes = ccw->count; if (ccw_is_idal(ccw)) { /* Read first IDAW to check its starting address. */ /* All subsequent IDAWs will be 2K- or 4K-aligned. */ ret = vfio_dma_rw(vdev, ccw->cda, &iova, size, false); if (ret) return ret; /* * Format-1 IDAWs only occupy the first 32 bits, * and bit 0 is always off. */ if (!cp->orb.cmd.c64) iova = iova >> 32; } else { iova = ccw->cda; } /* Format-1 IDAWs operate on 2K each */ if (!cp->orb.cmd.c64) return idal_2k_nr_words((void *)iova, bytes); /* Using the 2K variant of Format-2 IDAWs? */ if (cp->orb.cmd.i2k) return idal_2k_nr_words((void *)iova, bytes); /* The 'usual' case is 4K Format-2 IDAWs */ return idal_nr_words((void *)iova, bytes); } static int ccwchain_fetch_ccw(struct ccw1 *ccw, struct page_array *pa, struct channel_program *cp) { struct vfio_device *vdev = &container_of(cp, struct vfio_ccw_private, cp)->vdev; unsigned long *idaws; unsigned int *idaws_f1; int ret; int idaw_nr; int i; /* Calculate size of IDAL */ idaw_nr = ccw_count_idaws(ccw, cp); if (idaw_nr < 0) return idaw_nr; /* Allocate an IDAL from host storage */ idaws = get_guest_idal(ccw, cp, idaw_nr); if (IS_ERR(idaws)) { ret = PTR_ERR(idaws); goto out_init; } /* * Allocate an array of pages to pin/translate. * The number of pages is actually the count of the idaws * required for the data transfer, since we only only support * 4K IDAWs today. */ ret = page_array_alloc(pa, idaw_nr); if (ret < 0) goto out_free_idaws; /* * Copy guest IDAWs into page_array, in case the memory they * occupy is not contiguous. */ idaws_f1 = (unsigned int *)idaws; for (i = 0; i < idaw_nr; i++) { if (cp->orb.cmd.c64) pa->pa_iova[i] = idaws[i]; else pa->pa_iova[i] = idaws_f1[i]; } if (ccw_does_data_transfer(ccw)) { ret = page_array_pin(pa, vdev, idal_is_2k(cp)); if (ret < 0) goto out_unpin; } else { pa->pa_nr = 0; } ccw->cda = (__u32) virt_to_phys(idaws); ccw->flags |= CCW_FLAG_IDA; /* Populate the IDAL with pinned/translated addresses from page */ page_array_idal_create_words(pa, idaws); return 0; out_unpin: page_array_unpin_free(pa, vdev, idal_is_2k(cp)); out_free_idaws: kfree(idaws); out_init: ccw->cda = 0; return ret; } /* * Fetch one ccw. * To reduce memory copy, we'll pin the cda page in memory, * and to get rid of the cda 2G limitation of ccw1, we'll translate * direct ccws to idal ccws. */ static int ccwchain_fetch_one(struct ccw1 *ccw, struct page_array *pa, struct channel_program *cp) { if (ccw_is_tic(ccw)) return ccwchain_fetch_tic(ccw, cp); return ccwchain_fetch_ccw(ccw, pa, cp); } /** * cp_init() - allocate ccwchains for a channel program. * @cp: channel_program on which to perform the operation * @orb: control block for the channel program from the guest * * This creates one or more ccwchain(s), and copies the raw data of * the target channel program from @orb->cmd.iova to the new ccwchain(s). * * Limitations: * 1. Supports idal(c64) ccw chaining. * 2. Supports 4k idaw. * * Returns: * %0 on success and a negative error value on failure. */ int cp_init(struct channel_program *cp, union orb *orb) { struct vfio_device *vdev = &container_of(cp, struct vfio_ccw_private, cp)->vdev; /* custom ratelimit used to avoid flood during guest IPL */ static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 1); int ret; /* this is an error in the caller */ if (cp->initialized) return -EBUSY; /* * We only support prefetching the channel program. We assume all channel * programs executed by supported guests likewise support prefetching. * Executing a channel program that does not specify prefetching will * typically not cause an error, but a warning is issued to help identify * the problem if something does break. */ if (!orb->cmd.pfch && __ratelimit(&ratelimit_state)) dev_warn( vdev->dev, "Prefetching channel program even though prefetch not specified in ORB"); INIT_LIST_HEAD(&cp->ccwchain_list); memcpy(&cp->orb, orb, sizeof(*orb)); /* Build a ccwchain for the first CCW segment */ ret = ccwchain_handle_ccw(orb->cmd.cpa, cp); if (!ret) cp->initialized = true; return ret; } /** * cp_free() - free resources for channel program. * @cp: channel_program on which to perform the operation * * This unpins the memory pages and frees the memory space occupied by * @cp, which must have been returned by a previous call to cp_init(). * Otherwise, undefined behavior occurs. */ void cp_free(struct channel_program *cp) { struct vfio_device *vdev = &container_of(cp, struct vfio_ccw_private, cp)->vdev; struct ccwchain *chain, *temp; int i; if (!cp->initialized) return; cp->initialized = false; list_for_each_entry_safe(chain, temp, &cp->ccwchain_list, next) { for (i = 0; i < chain->ch_len; i++) { page_array_unpin_free(&chain->ch_pa[i], vdev, idal_is_2k(cp)); ccwchain_cda_free(chain, i); } ccwchain_free(chain); } } /** * cp_prefetch() - translate a guest physical address channel program to * a real-device runnable channel program. * @cp: channel_program on which to perform the operation * * This function translates the guest-physical-address channel program * and stores the result to ccwchain list. @cp must have been * initialized by a previous call with cp_init(). Otherwise, undefined * behavior occurs. * For each chain composing the channel program: * - On entry ch_len holds the count of CCWs to be translated. * - On exit ch_len is adjusted to the count of successfully translated CCWs. * This allows cp_free to find in ch_len the count of CCWs to free in a chain. * * The S/390 CCW Translation APIS (prefixed by 'cp_') are introduced * as helpers to do ccw chain translation inside the kernel. Basically * they accept a channel program issued by a virtual machine, and * translate the channel program to a real-device runnable channel * program. * * These APIs will copy the ccws into kernel-space buffers, and update * the guest physical addresses with their corresponding host physical * addresses. Then channel I/O device drivers could issue the * translated channel program to real devices to perform an I/O * operation. * * These interfaces are designed to support translation only for * channel programs, which are generated and formatted by a * guest. Thus this will make it possible for things like VFIO to * leverage the interfaces to passthrough a channel I/O mediated * device in QEMU. * * We support direct ccw chaining by translating them to idal ccws. * * Returns: * %0 on success and a negative error value on failure. */ int cp_prefetch(struct channel_program *cp) { struct ccwchain *chain; struct ccw1 *ccw; struct page_array *pa; int len, idx, ret; /* this is an error in the caller */ if (!cp->initialized) return -EINVAL; list_for_each_entry(chain, &cp->ccwchain_list, next) { len = chain->ch_len; for (idx = 0; idx < len; idx++) { ccw = &chain->ch_ccw[idx]; pa = &chain->ch_pa[idx]; ret = ccwchain_fetch_one(ccw, pa, cp); if (ret) goto out_err; } } return 0; out_err: /* Only cleanup the chain elements that were actually translated. */ chain->ch_len = idx; list_for_each_entry_continue(chain, &cp->ccwchain_list, next) { chain->ch_len = 0; } return ret; } /** * cp_get_orb() - get the orb of the channel program * @cp: channel_program on which to perform the operation * @sch: subchannel the operation will be performed against * * This function returns the address of the updated orb of the channel * program. Channel I/O device drivers could use this orb to issue a * ssch. */ union orb *cp_get_orb(struct channel_program *cp, struct subchannel *sch) { union orb *orb; struct ccwchain *chain; struct ccw1 *cpa; /* this is an error in the caller */ if (!cp->initialized) return NULL; orb = &cp->orb; orb->cmd.intparm = (u32)virt_to_phys(sch); orb->cmd.fmt = 1; /* * Everything built by vfio-ccw is a Format-2 IDAL. * If the input was a Format-1 IDAL, indicate that * 2K Format-2 IDAWs were created here. */ if (!orb->cmd.c64) orb->cmd.i2k = 1; orb->cmd.c64 = 1; if (orb->cmd.lpm == 0) orb->cmd.lpm = sch->lpm; chain = list_first_entry(&cp->ccwchain_list, struct ccwchain, next); cpa = chain->ch_ccw; orb->cmd.cpa = (__u32)virt_to_phys(cpa); return orb; } /** * cp_update_scsw() - update scsw for a channel program. * @cp: channel_program on which to perform the operation * @scsw: I/O results of the channel program and also the target to be * updated * * @scsw contains the I/O results of the channel program that pointed * to by @cp. However what @scsw->cpa stores is a host physical * address, which is meaningless for the guest, which is waiting for * the I/O results. * * This function updates @scsw->cpa to its coressponding guest physical * address. */ void cp_update_scsw(struct channel_program *cp, union scsw *scsw) { struct ccwchain *chain; u32 cpa = scsw->cmd.cpa; u32 ccw_head; if (!cp->initialized) return; /* * LATER: * For now, only update the cmd.cpa part. We may need to deal with * other portions of the schib as well, even if we don't return them * in the ioctl directly. Path status changes etc. */ list_for_each_entry(chain, &cp->ccwchain_list, next) { ccw_head = (u32)(u64)chain->ch_ccw; /* * On successful execution, cpa points just beyond the end * of the chain. */ if (is_cpa_within_range(cpa, ccw_head, chain->ch_len + 1)) { /* * (cpa - ccw_head) is the offset value of the host * physical ccw to its chain head. * Adding this value to the guest physical ccw chain * head gets us the guest cpa. */ cpa = chain->ch_iova + (cpa - ccw_head); break; } } scsw->cmd.cpa = cpa; } /** * cp_iova_pinned() - check if an iova is pinned for a ccw chain. * @cp: channel_program on which to perform the operation * @iova: the iova to check * @length: the length to check from @iova * * If the @iova is currently pinned for the ccw chain, return true; * else return false. */ bool cp_iova_pinned(struct channel_program *cp, u64 iova, u64 length) { struct ccwchain *chain; int i; if (!cp->initialized) return false; list_for_each_entry(chain, &cp->ccwchain_list, next) { for (i = 0; i < chain->ch_len; i++) if (page_array_iova_pinned(&chain->ch_pa[i], iova, length)) return true; } return false; }
linux-master
drivers/s390/cio/vfio_ccw_cp.c
// SPDX-License-Identifier: GPL-2.0 /* * Finite state machine for vfio-ccw device handling * * Copyright IBM Corp. 2017 * Copyright Red Hat, Inc. 2019 * * Author(s): Dong Jia Shi <[email protected]> * Cornelia Huck <[email protected]> */ #include <linux/vfio.h> #include <asm/isc.h> #include "ioasm.h" #include "vfio_ccw_private.h" static int fsm_io_helper(struct vfio_ccw_private *private) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); union orb *orb; int ccode; __u8 lpm; unsigned long flags; int ret; spin_lock_irqsave(sch->lock, flags); orb = cp_get_orb(&private->cp, sch); if (!orb) { ret = -EIO; goto out; } VFIO_CCW_TRACE_EVENT(5, "stIO"); VFIO_CCW_TRACE_EVENT(5, dev_name(&sch->dev)); /* Issue "Start Subchannel" */ ccode = ssch(sch->schid, orb); VFIO_CCW_HEX_EVENT(5, &ccode, sizeof(ccode)); switch (ccode) { case 0: /* * Initialize device status information */ sch->schib.scsw.cmd.actl |= SCSW_ACTL_START_PEND; ret = 0; private->state = VFIO_CCW_STATE_CP_PENDING; break; case 1: /* Status pending */ case 2: /* Busy */ ret = -EBUSY; break; case 3: /* Device/path not operational */ { lpm = orb->cmd.lpm; if (lpm != 0) sch->lpm &= ~lpm; else sch->lpm = 0; if (cio_update_schib(sch)) ret = -ENODEV; else ret = sch->lpm ? -EACCES : -ENODEV; break; } default: ret = ccode; } out: spin_unlock_irqrestore(sch->lock, flags); return ret; } static int fsm_do_halt(struct vfio_ccw_private *private) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); unsigned long flags; int ccode; int ret; spin_lock_irqsave(sch->lock, flags); VFIO_CCW_TRACE_EVENT(2, "haltIO"); VFIO_CCW_TRACE_EVENT(2, dev_name(&sch->dev)); /* Issue "Halt Subchannel" */ ccode = hsch(sch->schid); VFIO_CCW_HEX_EVENT(2, &ccode, sizeof(ccode)); switch (ccode) { case 0: /* * Initialize device status information */ sch->schib.scsw.cmd.actl |= SCSW_ACTL_HALT_PEND; ret = 0; break; case 1: /* Status pending */ case 2: /* Busy */ ret = -EBUSY; break; case 3: /* Device not operational */ ret = -ENODEV; break; default: ret = ccode; } spin_unlock_irqrestore(sch->lock, flags); return ret; } static int fsm_do_clear(struct vfio_ccw_private *private) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); unsigned long flags; int ccode; int ret; spin_lock_irqsave(sch->lock, flags); VFIO_CCW_TRACE_EVENT(2, "clearIO"); VFIO_CCW_TRACE_EVENT(2, dev_name(&sch->dev)); /* Issue "Clear Subchannel" */ ccode = csch(sch->schid); VFIO_CCW_HEX_EVENT(2, &ccode, sizeof(ccode)); switch (ccode) { case 0: /* * Initialize device status information */ sch->schib.scsw.cmd.actl = SCSW_ACTL_CLEAR_PEND; /* TODO: check what else we might need to clear */ ret = 0; break; case 3: /* Device not operational */ ret = -ENODEV; break; default: ret = ccode; } spin_unlock_irqrestore(sch->lock, flags); return ret; } static void fsm_notoper(struct vfio_ccw_private *private, enum vfio_ccw_event event) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: notoper event %x state %x\n", sch->schid.cssid, sch->schid.ssid, sch->schid.sch_no, event, private->state); /* * TODO: * Probably we should send the machine check to the guest. */ css_sched_sch_todo(sch, SCH_TODO_UNREG); private->state = VFIO_CCW_STATE_NOT_OPER; /* This is usually handled during CLOSE event */ cp_free(&private->cp); } /* * No operation action. */ static void fsm_nop(struct vfio_ccw_private *private, enum vfio_ccw_event event) { } static void fsm_io_error(struct vfio_ccw_private *private, enum vfio_ccw_event event) { pr_err("vfio-ccw: FSM: I/O request from state:%d\n", private->state); private->io_region->ret_code = -EIO; } static void fsm_io_busy(struct vfio_ccw_private *private, enum vfio_ccw_event event) { private->io_region->ret_code = -EBUSY; } static void fsm_io_retry(struct vfio_ccw_private *private, enum vfio_ccw_event event) { private->io_region->ret_code = -EAGAIN; } static void fsm_async_error(struct vfio_ccw_private *private, enum vfio_ccw_event event) { struct ccw_cmd_region *cmd_region = private->cmd_region; pr_err("vfio-ccw: FSM: %s request from state:%d\n", cmd_region->command == VFIO_CCW_ASYNC_CMD_HSCH ? "halt" : cmd_region->command == VFIO_CCW_ASYNC_CMD_CSCH ? "clear" : "<unknown>", private->state); cmd_region->ret_code = -EIO; } static void fsm_async_retry(struct vfio_ccw_private *private, enum vfio_ccw_event event) { private->cmd_region->ret_code = -EAGAIN; } static void fsm_disabled_irq(struct vfio_ccw_private *private, enum vfio_ccw_event event) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); /* * An interrupt in a disabled state means a previous disable was not * successful - should not happen, but we try to disable again. */ cio_disable_subchannel(sch); } inline struct subchannel_id get_schid(struct vfio_ccw_private *p) { struct subchannel *sch = to_subchannel(p->vdev.dev->parent); return sch->schid; } /* * Deal with the ccw command request from the userspace. */ static void fsm_io_request(struct vfio_ccw_private *private, enum vfio_ccw_event event) { union orb *orb; union scsw *scsw = &private->scsw; struct ccw_io_region *io_region = private->io_region; char *errstr = "request"; struct subchannel_id schid = get_schid(private); private->state = VFIO_CCW_STATE_CP_PROCESSING; memcpy(scsw, io_region->scsw_area, sizeof(*scsw)); if (scsw->cmd.fctl & SCSW_FCTL_START_FUNC) { orb = (union orb *)io_region->orb_area; /* Don't try to build a cp if transport mode is specified. */ if (orb->tm.b) { io_region->ret_code = -EOPNOTSUPP; VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: transport mode\n", schid.cssid, schid.ssid, schid.sch_no); errstr = "transport mode"; goto err_out; } io_region->ret_code = cp_init(&private->cp, orb); if (io_region->ret_code) { VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: cp_init=%d\n", schid.cssid, schid.ssid, schid.sch_no, io_region->ret_code); errstr = "cp init"; goto err_out; } io_region->ret_code = cp_prefetch(&private->cp); if (io_region->ret_code) { VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: cp_prefetch=%d\n", schid.cssid, schid.ssid, schid.sch_no, io_region->ret_code); errstr = "cp prefetch"; cp_free(&private->cp); goto err_out; } /* Start channel program and wait for I/O interrupt. */ io_region->ret_code = fsm_io_helper(private); if (io_region->ret_code) { VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: fsm_io_helper=%d\n", schid.cssid, schid.ssid, schid.sch_no, io_region->ret_code); errstr = "cp fsm_io_helper"; cp_free(&private->cp); goto err_out; } return; } else if (scsw->cmd.fctl & SCSW_FCTL_HALT_FUNC) { VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: halt on io_region\n", schid.cssid, schid.ssid, schid.sch_no); /* halt is handled via the async cmd region */ io_region->ret_code = -EOPNOTSUPP; goto err_out; } else if (scsw->cmd.fctl & SCSW_FCTL_CLEAR_FUNC) { VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: clear on io_region\n", schid.cssid, schid.ssid, schid.sch_no); /* clear is handled via the async cmd region */ io_region->ret_code = -EOPNOTSUPP; goto err_out; } err_out: private->state = VFIO_CCW_STATE_IDLE; trace_vfio_ccw_fsm_io_request(scsw->cmd.fctl, schid, io_region->ret_code, errstr); } /* * Deal with an async request from userspace. */ static void fsm_async_request(struct vfio_ccw_private *private, enum vfio_ccw_event event) { struct ccw_cmd_region *cmd_region = private->cmd_region; switch (cmd_region->command) { case VFIO_CCW_ASYNC_CMD_HSCH: cmd_region->ret_code = fsm_do_halt(private); break; case VFIO_CCW_ASYNC_CMD_CSCH: cmd_region->ret_code = fsm_do_clear(private); break; default: /* should not happen? */ cmd_region->ret_code = -EINVAL; } trace_vfio_ccw_fsm_async_request(get_schid(private), cmd_region->command, cmd_region->ret_code); } /* * Got an interrupt for a normal io (state busy). */ static void fsm_irq(struct vfio_ccw_private *private, enum vfio_ccw_event event) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); struct irb *irb = this_cpu_ptr(&cio_irb); VFIO_CCW_TRACE_EVENT(6, "IRQ"); VFIO_CCW_TRACE_EVENT(6, dev_name(&sch->dev)); memcpy(&private->irb, irb, sizeof(*irb)); queue_work(vfio_ccw_work_q, &private->io_work); if (private->completion) complete(private->completion); } static void fsm_open(struct vfio_ccw_private *private, enum vfio_ccw_event event) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); int ret; spin_lock_irq(sch->lock); sch->isc = VFIO_CCW_ISC; ret = cio_enable_subchannel(sch, (u32)(unsigned long)sch); if (ret) goto err_unlock; private->state = VFIO_CCW_STATE_IDLE; spin_unlock_irq(sch->lock); return; err_unlock: spin_unlock_irq(sch->lock); vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_NOT_OPER); } static void fsm_close(struct vfio_ccw_private *private, enum vfio_ccw_event event) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); int ret; spin_lock_irq(sch->lock); if (!sch->schib.pmcw.ena) goto err_unlock; ret = cio_disable_subchannel(sch); if (ret == -EBUSY) ret = vfio_ccw_sch_quiesce(sch); if (ret) goto err_unlock; private->state = VFIO_CCW_STATE_STANDBY; spin_unlock_irq(sch->lock); cp_free(&private->cp); return; err_unlock: spin_unlock_irq(sch->lock); vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_NOT_OPER); } /* * Device statemachine */ fsm_func_t *vfio_ccw_jumptable[NR_VFIO_CCW_STATES][NR_VFIO_CCW_EVENTS] = { [VFIO_CCW_STATE_NOT_OPER] = { [VFIO_CCW_EVENT_NOT_OPER] = fsm_nop, [VFIO_CCW_EVENT_IO_REQ] = fsm_io_error, [VFIO_CCW_EVENT_ASYNC_REQ] = fsm_async_error, [VFIO_CCW_EVENT_INTERRUPT] = fsm_disabled_irq, [VFIO_CCW_EVENT_OPEN] = fsm_nop, [VFIO_CCW_EVENT_CLOSE] = fsm_nop, }, [VFIO_CCW_STATE_STANDBY] = { [VFIO_CCW_EVENT_NOT_OPER] = fsm_notoper, [VFIO_CCW_EVENT_IO_REQ] = fsm_io_error, [VFIO_CCW_EVENT_ASYNC_REQ] = fsm_async_error, [VFIO_CCW_EVENT_INTERRUPT] = fsm_disabled_irq, [VFIO_CCW_EVENT_OPEN] = fsm_open, [VFIO_CCW_EVENT_CLOSE] = fsm_notoper, }, [VFIO_CCW_STATE_IDLE] = { [VFIO_CCW_EVENT_NOT_OPER] = fsm_notoper, [VFIO_CCW_EVENT_IO_REQ] = fsm_io_request, [VFIO_CCW_EVENT_ASYNC_REQ] = fsm_async_request, [VFIO_CCW_EVENT_INTERRUPT] = fsm_irq, [VFIO_CCW_EVENT_OPEN] = fsm_notoper, [VFIO_CCW_EVENT_CLOSE] = fsm_close, }, [VFIO_CCW_STATE_CP_PROCESSING] = { [VFIO_CCW_EVENT_NOT_OPER] = fsm_notoper, [VFIO_CCW_EVENT_IO_REQ] = fsm_io_retry, [VFIO_CCW_EVENT_ASYNC_REQ] = fsm_async_retry, [VFIO_CCW_EVENT_INTERRUPT] = fsm_irq, [VFIO_CCW_EVENT_OPEN] = fsm_notoper, [VFIO_CCW_EVENT_CLOSE] = fsm_close, }, [VFIO_CCW_STATE_CP_PENDING] = { [VFIO_CCW_EVENT_NOT_OPER] = fsm_notoper, [VFIO_CCW_EVENT_IO_REQ] = fsm_io_busy, [VFIO_CCW_EVENT_ASYNC_REQ] = fsm_async_request, [VFIO_CCW_EVENT_INTERRUPT] = fsm_irq, [VFIO_CCW_EVENT_OPEN] = fsm_notoper, [VFIO_CCW_EVENT_CLOSE] = fsm_close, }, };
linux-master
drivers/s390/cio/vfio_ccw_fsm.c
// SPDX-License-Identifier: GPL-1.0+ /* * Copyright IBM Corp. 2002, 2009 * * Author(s): Martin Schwidefsky ([email protected]) * Cornelia Huck ([email protected]) */ #include <linux/export.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/device.h> #include <linux/delay.h> #include <linux/completion.h> #include <asm/ccwdev.h> #include <asm/idals.h> #include <asm/chpid.h> #include <asm/fcx.h> #include "cio.h" #include "cio_debug.h" #include "css.h" #include "chsc.h" #include "device.h" #include "chp.h" /** * ccw_device_set_options_mask() - set some options and unset the rest * @cdev: device for which the options are to be set * @flags: options to be set * * All flags specified in @flags are set, all flags not specified in @flags * are cleared. * Returns: * %0 on success, -%EINVAL on an invalid flag combination. */ int ccw_device_set_options_mask(struct ccw_device *cdev, unsigned long flags) { /* * The flag usage is mutal exclusive ... */ if ((flags & CCWDEV_EARLY_NOTIFICATION) && (flags & CCWDEV_REPORT_ALL)) return -EINVAL; cdev->private->options.fast = (flags & CCWDEV_EARLY_NOTIFICATION) != 0; cdev->private->options.repall = (flags & CCWDEV_REPORT_ALL) != 0; cdev->private->options.pgroup = (flags & CCWDEV_DO_PATHGROUP) != 0; cdev->private->options.force = (flags & CCWDEV_ALLOW_FORCE) != 0; cdev->private->options.mpath = (flags & CCWDEV_DO_MULTIPATH) != 0; return 0; } /** * ccw_device_set_options() - set some options * @cdev: device for which the options are to be set * @flags: options to be set * * All flags specified in @flags are set, the remainder is left untouched. * Returns: * %0 on success, -%EINVAL if an invalid flag combination would ensue. */ int ccw_device_set_options(struct ccw_device *cdev, unsigned long flags) { /* * The flag usage is mutal exclusive ... */ if (((flags & CCWDEV_EARLY_NOTIFICATION) && (flags & CCWDEV_REPORT_ALL)) || ((flags & CCWDEV_EARLY_NOTIFICATION) && cdev->private->options.repall) || ((flags & CCWDEV_REPORT_ALL) && cdev->private->options.fast)) return -EINVAL; cdev->private->options.fast |= (flags & CCWDEV_EARLY_NOTIFICATION) != 0; cdev->private->options.repall |= (flags & CCWDEV_REPORT_ALL) != 0; cdev->private->options.pgroup |= (flags & CCWDEV_DO_PATHGROUP) != 0; cdev->private->options.force |= (flags & CCWDEV_ALLOW_FORCE) != 0; cdev->private->options.mpath |= (flags & CCWDEV_DO_MULTIPATH) != 0; return 0; } /** * ccw_device_clear_options() - clear some options * @cdev: device for which the options are to be cleared * @flags: options to be cleared * * All flags specified in @flags are cleared, the remainder is left untouched. */ void ccw_device_clear_options(struct ccw_device *cdev, unsigned long flags) { cdev->private->options.fast &= (flags & CCWDEV_EARLY_NOTIFICATION) == 0; cdev->private->options.repall &= (flags & CCWDEV_REPORT_ALL) == 0; cdev->private->options.pgroup &= (flags & CCWDEV_DO_PATHGROUP) == 0; cdev->private->options.force &= (flags & CCWDEV_ALLOW_FORCE) == 0; cdev->private->options.mpath &= (flags & CCWDEV_DO_MULTIPATH) == 0; } /** * ccw_device_is_pathgroup() - determine if paths to this device are grouped * @cdev: ccw device * * Return non-zero if there is a path group, zero otherwise. */ int ccw_device_is_pathgroup(struct ccw_device *cdev) { return cdev->private->flags.pgroup; } EXPORT_SYMBOL(ccw_device_is_pathgroup); /** * ccw_device_is_multipath() - determine if device is operating in multipath mode * @cdev: ccw device * * Return non-zero if device is operating in multipath mode, zero otherwise. */ int ccw_device_is_multipath(struct ccw_device *cdev) { return cdev->private->flags.mpath; } EXPORT_SYMBOL(ccw_device_is_multipath); /** * ccw_device_clear() - terminate I/O request processing * @cdev: target ccw device * @intparm: interruption parameter to be returned upon conclusion of csch * * ccw_device_clear() calls csch on @cdev's subchannel. * Returns: * %0 on success, * -%ENODEV on device not operational, * -%EINVAL on invalid device state. * Context: * Interrupts disabled, ccw device lock held */ int ccw_device_clear(struct ccw_device *cdev, unsigned long intparm) { struct subchannel *sch; int ret; if (!cdev || !cdev->dev.parent) return -ENODEV; sch = to_subchannel(cdev->dev.parent); if (!sch->schib.pmcw.ena) return -EINVAL; if (cdev->private->state == DEV_STATE_NOT_OPER) return -ENODEV; if (cdev->private->state != DEV_STATE_ONLINE && cdev->private->state != DEV_STATE_W4SENSE) return -EINVAL; ret = cio_clear(sch); if (ret == 0) cdev->private->intparm = intparm; return ret; } /** * ccw_device_start_timeout_key() - start a s390 channel program with timeout and key * @cdev: target ccw device * @cpa: logical start address of channel program * @intparm: user specific interruption parameter; will be presented back to * @cdev's interrupt handler. Allows a device driver to associate * the interrupt with a particular I/O request. * @lpm: defines the channel path to be used for a specific I/O request. A * value of 0 will make cio use the opm. * @key: storage key to be used for the I/O * @flags: additional flags; defines the action to be performed for I/O * processing. * @expires: timeout value in jiffies * * Start a S/390 channel program. When the interrupt arrives, the * IRQ handler is called, either immediately, delayed (dev-end missing, * or sense required) or never (no IRQ handler registered). * This function notifies the device driver if the channel program has not * completed during the time specified by @expires. If a timeout occurs, the * channel program is terminated via xsch, hsch or csch, and the device's * interrupt handler will be called with an irb containing ERR_PTR(-%ETIMEDOUT). * The interruption handler will echo back the @intparm specified here, unless * another interruption parameter is specified by a subsequent invocation of * ccw_device_halt() or ccw_device_clear(). * Returns: * %0, if the operation was successful; * -%EBUSY, if the device is busy, or status pending; * -%EACCES, if no path specified in @lpm is operational; * -%ENODEV, if the device is not operational. * Context: * Interrupts disabled, ccw device lock held */ int ccw_device_start_timeout_key(struct ccw_device *cdev, struct ccw1 *cpa, unsigned long intparm, __u8 lpm, __u8 key, unsigned long flags, int expires) { struct subchannel *sch; int ret; if (!cdev || !cdev->dev.parent) return -ENODEV; sch = to_subchannel(cdev->dev.parent); if (!sch->schib.pmcw.ena) return -EINVAL; if (cdev->private->state == DEV_STATE_NOT_OPER) return -ENODEV; if (cdev->private->state == DEV_STATE_VERIFY) { /* Remember to fake irb when finished. */ if (!cdev->private->flags.fake_irb) { cdev->private->flags.fake_irb = FAKE_CMD_IRB; cdev->private->intparm = intparm; return 0; } else /* There's already a fake I/O around. */ return -EBUSY; } if (cdev->private->state != DEV_STATE_ONLINE || ((sch->schib.scsw.cmd.stctl & SCSW_STCTL_PRIM_STATUS) && !(sch->schib.scsw.cmd.stctl & SCSW_STCTL_SEC_STATUS)) || cdev->private->flags.doverify) return -EBUSY; ret = cio_set_options (sch, flags); if (ret) return ret; /* Adjust requested path mask to exclude unusable paths. */ if (lpm) { lpm &= sch->lpm; if (lpm == 0) return -EACCES; } ret = cio_start_key (sch, cpa, lpm, key); switch (ret) { case 0: cdev->private->intparm = intparm; if (expires) ccw_device_set_timeout(cdev, expires); break; case -EACCES: case -ENODEV: dev_fsm_event(cdev, DEV_EVENT_VERIFY); break; } return ret; } /** * ccw_device_start_key() - start a s390 channel program with key * @cdev: target ccw device * @cpa: logical start address of channel program * @intparm: user specific interruption parameter; will be presented back to * @cdev's interrupt handler. Allows a device driver to associate * the interrupt with a particular I/O request. * @lpm: defines the channel path to be used for a specific I/O request. A * value of 0 will make cio use the opm. * @key: storage key to be used for the I/O * @flags: additional flags; defines the action to be performed for I/O * processing. * * Start a S/390 channel program. When the interrupt arrives, the * IRQ handler is called, either immediately, delayed (dev-end missing, * or sense required) or never (no IRQ handler registered). * The interruption handler will echo back the @intparm specified here, unless * another interruption parameter is specified by a subsequent invocation of * ccw_device_halt() or ccw_device_clear(). * Returns: * %0, if the operation was successful; * -%EBUSY, if the device is busy, or status pending; * -%EACCES, if no path specified in @lpm is operational; * -%ENODEV, if the device is not operational. * Context: * Interrupts disabled, ccw device lock held */ int ccw_device_start_key(struct ccw_device *cdev, struct ccw1 *cpa, unsigned long intparm, __u8 lpm, __u8 key, unsigned long flags) { return ccw_device_start_timeout_key(cdev, cpa, intparm, lpm, key, flags, 0); } /** * ccw_device_start() - start a s390 channel program * @cdev: target ccw device * @cpa: logical start address of channel program * @intparm: user specific interruption parameter; will be presented back to * @cdev's interrupt handler. Allows a device driver to associate * the interrupt with a particular I/O request. * @lpm: defines the channel path to be used for a specific I/O request. A * value of 0 will make cio use the opm. * @flags: additional flags; defines the action to be performed for I/O * processing. * * Start a S/390 channel program. When the interrupt arrives, the * IRQ handler is called, either immediately, delayed (dev-end missing, * or sense required) or never (no IRQ handler registered). * The interruption handler will echo back the @intparm specified here, unless * another interruption parameter is specified by a subsequent invocation of * ccw_device_halt() or ccw_device_clear(). * Returns: * %0, if the operation was successful; * -%EBUSY, if the device is busy, or status pending; * -%EACCES, if no path specified in @lpm is operational; * -%ENODEV, if the device is not operational. * Context: * Interrupts disabled, ccw device lock held */ int ccw_device_start(struct ccw_device *cdev, struct ccw1 *cpa, unsigned long intparm, __u8 lpm, unsigned long flags) { return ccw_device_start_key(cdev, cpa, intparm, lpm, PAGE_DEFAULT_KEY, flags); } /** * ccw_device_start_timeout() - start a s390 channel program with timeout * @cdev: target ccw device * @cpa: logical start address of channel program * @intparm: user specific interruption parameter; will be presented back to * @cdev's interrupt handler. Allows a device driver to associate * the interrupt with a particular I/O request. * @lpm: defines the channel path to be used for a specific I/O request. A * value of 0 will make cio use the opm. * @flags: additional flags; defines the action to be performed for I/O * processing. * @expires: timeout value in jiffies * * Start a S/390 channel program. When the interrupt arrives, the * IRQ handler is called, either immediately, delayed (dev-end missing, * or sense required) or never (no IRQ handler registered). * This function notifies the device driver if the channel program has not * completed during the time specified by @expires. If a timeout occurs, the * channel program is terminated via xsch, hsch or csch, and the device's * interrupt handler will be called with an irb containing ERR_PTR(-%ETIMEDOUT). * The interruption handler will echo back the @intparm specified here, unless * another interruption parameter is specified by a subsequent invocation of * ccw_device_halt() or ccw_device_clear(). * Returns: * %0, if the operation was successful; * -%EBUSY, if the device is busy, or status pending; * -%EACCES, if no path specified in @lpm is operational; * -%ENODEV, if the device is not operational. * Context: * Interrupts disabled, ccw device lock held */ int ccw_device_start_timeout(struct ccw_device *cdev, struct ccw1 *cpa, unsigned long intparm, __u8 lpm, unsigned long flags, int expires) { return ccw_device_start_timeout_key(cdev, cpa, intparm, lpm, PAGE_DEFAULT_KEY, flags, expires); } /** * ccw_device_halt() - halt I/O request processing * @cdev: target ccw device * @intparm: interruption parameter to be returned upon conclusion of hsch * * ccw_device_halt() calls hsch on @cdev's subchannel. * The interruption handler will echo back the @intparm specified here, unless * another interruption parameter is specified by a subsequent invocation of * ccw_device_clear(). * Returns: * %0 on success, * -%ENODEV on device not operational, * -%EINVAL on invalid device state, * -%EBUSY on device busy or interrupt pending. * Context: * Interrupts disabled, ccw device lock held */ int ccw_device_halt(struct ccw_device *cdev, unsigned long intparm) { struct subchannel *sch; int ret; if (!cdev || !cdev->dev.parent) return -ENODEV; sch = to_subchannel(cdev->dev.parent); if (!sch->schib.pmcw.ena) return -EINVAL; if (cdev->private->state == DEV_STATE_NOT_OPER) return -ENODEV; if (cdev->private->state != DEV_STATE_ONLINE && cdev->private->state != DEV_STATE_W4SENSE) return -EINVAL; ret = cio_halt(sch); if (ret == 0) cdev->private->intparm = intparm; return ret; } /** * ccw_device_resume() - resume channel program execution * @cdev: target ccw device * * ccw_device_resume() calls rsch on @cdev's subchannel. * Returns: * %0 on success, * -%ENODEV on device not operational, * -%EINVAL on invalid device state, * -%EBUSY on device busy or interrupt pending. * Context: * Interrupts disabled, ccw device lock held */ int ccw_device_resume(struct ccw_device *cdev) { struct subchannel *sch; if (!cdev || !cdev->dev.parent) return -ENODEV; sch = to_subchannel(cdev->dev.parent); if (!sch->schib.pmcw.ena) return -EINVAL; if (cdev->private->state == DEV_STATE_NOT_OPER) return -ENODEV; if (cdev->private->state != DEV_STATE_ONLINE || !(sch->schib.scsw.cmd.actl & SCSW_ACTL_SUSPENDED)) return -EINVAL; return cio_resume(sch); } /** * ccw_device_get_ciw() - Search for CIW command in extended sense data. * @cdev: ccw device to inspect * @ct: command type to look for * * During SenseID, command information words (CIWs) describing special * commands available to the device may have been stored in the extended * sense data. This function searches for CIWs of a specified command * type in the extended sense data. * Returns: * %NULL if no extended sense data has been stored or if no CIW of the * specified command type could be found, * else a pointer to the CIW of the specified command type. */ struct ciw *ccw_device_get_ciw(struct ccw_device *cdev, __u32 ct) { int ciw_cnt; if (cdev->private->flags.esid == 0) return NULL; for (ciw_cnt = 0; ciw_cnt < MAX_CIWS; ciw_cnt++) if (cdev->private->dma_area->senseid.ciw[ciw_cnt].ct == ct) return cdev->private->dma_area->senseid.ciw + ciw_cnt; return NULL; } /** * ccw_device_get_path_mask() - get currently available paths * @cdev: ccw device to be queried * Returns: * %0 if no subchannel for the device is available, * else the mask of currently available paths for the ccw device's subchannel. */ __u8 ccw_device_get_path_mask(struct ccw_device *cdev) { struct subchannel *sch; if (!cdev->dev.parent) return 0; sch = to_subchannel(cdev->dev.parent); return sch->lpm; } /** * ccw_device_get_chp_desc() - return newly allocated channel-path descriptor * @cdev: device to obtain the descriptor for * @chp_idx: index of the channel path * * On success return a newly allocated copy of the channel-path description * data associated with the given channel path. Return %NULL on error. */ struct channel_path_desc_fmt0 *ccw_device_get_chp_desc(struct ccw_device *cdev, int chp_idx) { struct subchannel *sch; struct chp_id chpid; sch = to_subchannel(cdev->dev.parent); chp_id_init(&chpid); chpid.id = sch->schib.pmcw.chpid[chp_idx]; return chp_get_chp_desc(chpid); } /** * ccw_device_get_util_str() - return newly allocated utility strings * @cdev: device to obtain the utility strings for * @chp_idx: index of the channel path * * On success return a newly allocated copy of the utility strings * associated with the given channel path. Return %NULL on error. */ u8 *ccw_device_get_util_str(struct ccw_device *cdev, int chp_idx) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct channel_path *chp; struct chp_id chpid; u8 *util_str; chp_id_init(&chpid); chpid.id = sch->schib.pmcw.chpid[chp_idx]; chp = chpid_to_chp(chpid); util_str = kmalloc(sizeof(chp->desc_fmt3.util_str), GFP_KERNEL); if (!util_str) return NULL; mutex_lock(&chp->lock); memcpy(util_str, chp->desc_fmt3.util_str, sizeof(chp->desc_fmt3.util_str)); mutex_unlock(&chp->lock); return util_str; } /** * ccw_device_get_id() - obtain a ccw device id * @cdev: device to obtain the id for * @dev_id: where to fill in the values */ void ccw_device_get_id(struct ccw_device *cdev, struct ccw_dev_id *dev_id) { *dev_id = cdev->private->dev_id; } EXPORT_SYMBOL(ccw_device_get_id); /** * ccw_device_tm_start_timeout_key() - perform start function * @cdev: ccw device on which to perform the start function * @tcw: transport-command word to be started * @intparm: user defined parameter to be passed to the interrupt handler * @lpm: mask of paths to use * @key: storage key to use for storage access * @expires: time span in jiffies after which to abort request * * Start the tcw on the given ccw device. Return zero on success, non-zero * otherwise. */ int ccw_device_tm_start_timeout_key(struct ccw_device *cdev, struct tcw *tcw, unsigned long intparm, u8 lpm, u8 key, int expires) { struct subchannel *sch; int rc; sch = to_subchannel(cdev->dev.parent); if (!sch->schib.pmcw.ena) return -EINVAL; if (cdev->private->state == DEV_STATE_VERIFY) { /* Remember to fake irb when finished. */ if (!cdev->private->flags.fake_irb) { cdev->private->flags.fake_irb = FAKE_TM_IRB; cdev->private->intparm = intparm; return 0; } else /* There's already a fake I/O around. */ return -EBUSY; } if (cdev->private->state != DEV_STATE_ONLINE) return -EIO; /* Adjust requested path mask to exclude unusable paths. */ if (lpm) { lpm &= sch->lpm; if (lpm == 0) return -EACCES; } rc = cio_tm_start_key(sch, tcw, lpm, key); if (rc == 0) { cdev->private->intparm = intparm; if (expires) ccw_device_set_timeout(cdev, expires); } return rc; } EXPORT_SYMBOL(ccw_device_tm_start_timeout_key); /** * ccw_device_tm_start_key() - perform start function * @cdev: ccw device on which to perform the start function * @tcw: transport-command word to be started * @intparm: user defined parameter to be passed to the interrupt handler * @lpm: mask of paths to use * @key: storage key to use for storage access * * Start the tcw on the given ccw device. Return zero on success, non-zero * otherwise. */ int ccw_device_tm_start_key(struct ccw_device *cdev, struct tcw *tcw, unsigned long intparm, u8 lpm, u8 key) { return ccw_device_tm_start_timeout_key(cdev, tcw, intparm, lpm, key, 0); } EXPORT_SYMBOL(ccw_device_tm_start_key); /** * ccw_device_tm_start() - perform start function * @cdev: ccw device on which to perform the start function * @tcw: transport-command word to be started * @intparm: user defined parameter to be passed to the interrupt handler * @lpm: mask of paths to use * * Start the tcw on the given ccw device. Return zero on success, non-zero * otherwise. */ int ccw_device_tm_start(struct ccw_device *cdev, struct tcw *tcw, unsigned long intparm, u8 lpm) { return ccw_device_tm_start_key(cdev, tcw, intparm, lpm, PAGE_DEFAULT_KEY); } EXPORT_SYMBOL(ccw_device_tm_start); /** * ccw_device_tm_start_timeout() - perform start function * @cdev: ccw device on which to perform the start function * @tcw: transport-command word to be started * @intparm: user defined parameter to be passed to the interrupt handler * @lpm: mask of paths to use * @expires: time span in jiffies after which to abort request * * Start the tcw on the given ccw device. Return zero on success, non-zero * otherwise. */ int ccw_device_tm_start_timeout(struct ccw_device *cdev, struct tcw *tcw, unsigned long intparm, u8 lpm, int expires) { return ccw_device_tm_start_timeout_key(cdev, tcw, intparm, lpm, PAGE_DEFAULT_KEY, expires); } EXPORT_SYMBOL(ccw_device_tm_start_timeout); /** * ccw_device_get_mdc() - accumulate max data count * @cdev: ccw device for which the max data count is accumulated * @mask: mask of paths to use * * Return the number of 64K-bytes blocks all paths at least support * for a transport command. Return value 0 indicates failure. */ int ccw_device_get_mdc(struct ccw_device *cdev, u8 mask) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct channel_path *chp; struct chp_id chpid; int mdc = 0, i; /* Adjust requested path mask to excluded varied off paths. */ if (mask) mask &= sch->lpm; else mask = sch->lpm; chp_id_init(&chpid); for (i = 0; i < 8; i++) { if (!(mask & (0x80 >> i))) continue; chpid.id = sch->schib.pmcw.chpid[i]; chp = chpid_to_chp(chpid); if (!chp) continue; mutex_lock(&chp->lock); if (!chp->desc_fmt1.f) { mutex_unlock(&chp->lock); return 0; } if (!chp->desc_fmt1.r) mdc = 1; mdc = mdc ? min_t(int, mdc, chp->desc_fmt1.mdc) : chp->desc_fmt1.mdc; mutex_unlock(&chp->lock); } return mdc; } EXPORT_SYMBOL(ccw_device_get_mdc); /** * ccw_device_tm_intrg() - perform interrogate function * @cdev: ccw device on which to perform the interrogate function * * Perform an interrogate function on the given ccw device. Return zero on * success, non-zero otherwise. */ int ccw_device_tm_intrg(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); if (!sch->schib.pmcw.ena) return -EINVAL; if (cdev->private->state != DEV_STATE_ONLINE) return -EIO; if (!scsw_is_tm(&sch->schib.scsw) || !(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_START_PEND)) return -EINVAL; return cio_tm_intrg(sch); } EXPORT_SYMBOL(ccw_device_tm_intrg); /** * ccw_device_get_schid() - obtain a subchannel id * @cdev: device to obtain the id for * @schid: where to fill in the values */ void ccw_device_get_schid(struct ccw_device *cdev, struct subchannel_id *schid) { struct subchannel *sch = to_subchannel(cdev->dev.parent); *schid = sch->schid; } EXPORT_SYMBOL_GPL(ccw_device_get_schid); /** * ccw_device_pnso() - Perform Network-Subchannel Operation * @cdev: device on which PNSO is performed * @pnso_area: request and response block for the operation * @oc: Operation Code * @resume_token: resume token for multiblock response * @cnc: Boolean change-notification control * * pnso_area must be allocated by the caller with get_zeroed_page(GFP_KERNEL) * * Returns 0 on success. */ int ccw_device_pnso(struct ccw_device *cdev, struct chsc_pnso_area *pnso_area, u8 oc, struct chsc_pnso_resume_token resume_token, int cnc) { struct subchannel_id schid; ccw_device_get_schid(cdev, &schid); return chsc_pnso(schid, pnso_area, oc, resume_token, cnc); } EXPORT_SYMBOL_GPL(ccw_device_pnso); /** * ccw_device_get_cssid() - obtain Channel Subsystem ID * @cdev: device to obtain the CSSID for * @cssid: The resulting Channel Subsystem ID */ int ccw_device_get_cssid(struct ccw_device *cdev, u8 *cssid) { struct device *sch_dev = cdev->dev.parent; struct channel_subsystem *css = to_css(sch_dev->parent); if (css->id_valid) *cssid = css->cssid; return css->id_valid ? 0 : -ENODEV; } EXPORT_SYMBOL_GPL(ccw_device_get_cssid); /** * ccw_device_get_iid() - obtain MIF-image ID * @cdev: device to obtain the MIF-image ID for * @iid: The resulting MIF-image ID */ int ccw_device_get_iid(struct ccw_device *cdev, u8 *iid) { struct device *sch_dev = cdev->dev.parent; struct channel_subsystem *css = to_css(sch_dev->parent); if (css->id_valid) *iid = css->iid; return css->id_valid ? 0 : -ENODEV; } EXPORT_SYMBOL_GPL(ccw_device_get_iid); /** * ccw_device_get_chpid() - obtain Channel Path ID * @cdev: device to obtain the Channel Path ID for * @chp_idx: Index of the channel path * @chpid: The resulting Channel Path ID */ int ccw_device_get_chpid(struct ccw_device *cdev, int chp_idx, u8 *chpid) { struct subchannel *sch = to_subchannel(cdev->dev.parent); int mask; if ((chp_idx < 0) || (chp_idx > 7)) return -EINVAL; mask = 0x80 >> chp_idx; if (!(sch->schib.pmcw.pim & mask)) return -ENODEV; *chpid = sch->schib.pmcw.chpid[chp_idx]; return 0; } EXPORT_SYMBOL_GPL(ccw_device_get_chpid); /** * ccw_device_get_chid() - obtain Channel ID associated with specified CHPID * @cdev: device to obtain the Channel ID for * @chp_idx: Index of the channel path * @chid: The resulting Channel ID */ int ccw_device_get_chid(struct ccw_device *cdev, int chp_idx, u16 *chid) { struct chp_id cssid_chpid; struct channel_path *chp; int rc; chp_id_init(&cssid_chpid); rc = ccw_device_get_chpid(cdev, chp_idx, &cssid_chpid.id); if (rc) return rc; chp = chpid_to_chp(cssid_chpid); if (!chp) return -ENODEV; mutex_lock(&chp->lock); if (chp->desc_fmt1.flags & 0x10) *chid = chp->desc_fmt1.chid; else rc = -ENODEV; mutex_unlock(&chp->lock); return rc; } EXPORT_SYMBOL_GPL(ccw_device_get_chid); /* * Allocate zeroed dma coherent 31 bit addressable memory using * the subchannels dma pool. Maximal size of allocation supported * is PAGE_SIZE. */ void *ccw_device_dma_zalloc(struct ccw_device *cdev, size_t size) { void *addr; if (!get_device(&cdev->dev)) return NULL; addr = cio_gp_dma_zalloc(cdev->private->dma_pool, &cdev->dev, size); if (IS_ERR_OR_NULL(addr)) put_device(&cdev->dev); return addr; } EXPORT_SYMBOL(ccw_device_dma_zalloc); void ccw_device_dma_free(struct ccw_device *cdev, void *cpu_addr, size_t size) { if (!cpu_addr) return; cio_gp_dma_free(cdev->private->dma_pool, cpu_addr, size); put_device(&cdev->dev); } EXPORT_SYMBOL(ccw_device_dma_free); EXPORT_SYMBOL(ccw_device_set_options_mask); EXPORT_SYMBOL(ccw_device_set_options); EXPORT_SYMBOL(ccw_device_clear_options); EXPORT_SYMBOL(ccw_device_clear); EXPORT_SYMBOL(ccw_device_halt); EXPORT_SYMBOL(ccw_device_resume); EXPORT_SYMBOL(ccw_device_start_timeout); EXPORT_SYMBOL(ccw_device_start); EXPORT_SYMBOL(ccw_device_start_timeout_key); EXPORT_SYMBOL(ccw_device_start_key); EXPORT_SYMBOL(ccw_device_get_ciw); EXPORT_SYMBOL(ccw_device_get_path_mask); EXPORT_SYMBOL_GPL(ccw_device_get_chp_desc); EXPORT_SYMBOL_GPL(ccw_device_get_util_str);
linux-master
drivers/s390/cio/device_ops.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2008, 2009 * * Author: Jan Glauber ([email protected]) */ #include <linux/seq_file.h> #include <linux/debugfs.h> #include <linux/uaccess.h> #include <linux/export.h> #include <linux/slab.h> #include <asm/debug.h> #include "qdio_debug.h" #include "qdio.h" debug_info_t *qdio_dbf_setup; debug_info_t *qdio_dbf_error; static struct dentry *debugfs_root; #define QDIO_DEBUGFS_NAME_LEN 10 #define QDIO_DBF_NAME_LEN 20 struct qdio_dbf_entry { char dbf_name[QDIO_DBF_NAME_LEN]; debug_info_t *dbf_info; struct list_head dbf_list; }; static LIST_HEAD(qdio_dbf_list); static DEFINE_MUTEX(qdio_dbf_list_mutex); static debug_info_t *qdio_get_dbf_entry(char *name) { struct qdio_dbf_entry *entry; debug_info_t *rc = NULL; mutex_lock(&qdio_dbf_list_mutex); list_for_each_entry(entry, &qdio_dbf_list, dbf_list) { if (strcmp(entry->dbf_name, name) == 0) { rc = entry->dbf_info; break; } } mutex_unlock(&qdio_dbf_list_mutex); return rc; } static void qdio_clear_dbf_list(void) { struct qdio_dbf_entry *entry, *tmp; mutex_lock(&qdio_dbf_list_mutex); list_for_each_entry_safe(entry, tmp, &qdio_dbf_list, dbf_list) { list_del(&entry->dbf_list); debug_unregister(entry->dbf_info); kfree(entry); } mutex_unlock(&qdio_dbf_list_mutex); } int qdio_allocate_dbf(struct qdio_irq *irq_ptr) { char text[QDIO_DBF_NAME_LEN]; struct qdio_dbf_entry *new_entry; DBF_EVENT("irq:%8lx", (unsigned long)irq_ptr); /* allocate trace view for the interface */ snprintf(text, QDIO_DBF_NAME_LEN, "qdio_%s", dev_name(&irq_ptr->cdev->dev)); irq_ptr->debug_area = qdio_get_dbf_entry(text); if (irq_ptr->debug_area) DBF_DEV_EVENT(DBF_ERR, irq_ptr, "dbf reused"); else { irq_ptr->debug_area = debug_register(text, 2, 1, 16); if (!irq_ptr->debug_area) return -ENOMEM; if (debug_register_view(irq_ptr->debug_area, &debug_hex_ascii_view)) { debug_unregister(irq_ptr->debug_area); return -ENOMEM; } debug_set_level(irq_ptr->debug_area, DBF_WARN); DBF_DEV_EVENT(DBF_ERR, irq_ptr, "dbf created"); new_entry = kzalloc(sizeof(struct qdio_dbf_entry), GFP_KERNEL); if (!new_entry) { debug_unregister(irq_ptr->debug_area); return -ENOMEM; } strscpy(new_entry->dbf_name, text, QDIO_DBF_NAME_LEN); new_entry->dbf_info = irq_ptr->debug_area; mutex_lock(&qdio_dbf_list_mutex); list_add(&new_entry->dbf_list, &qdio_dbf_list); mutex_unlock(&qdio_dbf_list_mutex); } return 0; } static int qstat_show(struct seq_file *m, void *v) { unsigned char state; struct qdio_q *q = m->private; int i; if (!q) return 0; seq_printf(m, "Timestamp: %llx\n", q->timestamp); seq_printf(m, "Last Data IRQ: %llx Last AI: %llx\n", q->irq_ptr->last_data_irq_time, last_ai_time); seq_printf(m, "nr_used: %d ftc: %d\n", atomic_read(&q->nr_buf_used), q->first_to_check); if (q->is_input_q) { seq_printf(m, "batch start: %u batch count: %u\n", q->u.in.batch_start, q->u.in.batch_count); seq_printf(m, "DSCI: %x IRQs disabled: %u\n", *(u8 *)q->irq_ptr->dsci, test_bit(QDIO_IRQ_DISABLED, &q->irq_ptr->poll_state)); } seq_printf(m, "SBAL states:\n"); seq_printf(m, "|0 |8 |16 |24 |32 |40 |48 |56 63|\n"); for (i = 0; i < QDIO_MAX_BUFFERS_PER_Q; i++) { debug_get_buf_state(q, i, &state); switch (state) { case SLSB_P_INPUT_NOT_INIT: case SLSB_P_OUTPUT_NOT_INIT: seq_printf(m, "N"); break; case SLSB_P_OUTPUT_PENDING: seq_printf(m, "P"); break; case SLSB_P_INPUT_PRIMED: case SLSB_CU_OUTPUT_PRIMED: seq_printf(m, "+"); break; case SLSB_P_INPUT_ACK: seq_printf(m, "A"); break; case SLSB_P_INPUT_ERROR: case SLSB_P_OUTPUT_ERROR: seq_printf(m, "x"); break; case SLSB_CU_INPUT_EMPTY: case SLSB_P_OUTPUT_EMPTY: seq_printf(m, "-"); break; case SLSB_P_INPUT_HALTED: case SLSB_P_OUTPUT_HALTED: seq_printf(m, "."); break; default: seq_printf(m, "?"); } if (i == 63) seq_printf(m, "\n"); } seq_printf(m, "\n"); seq_printf(m, "|64 |72 |80 |88 |96 |104 |112 | 127|\n"); seq_printf(m, "\nSBAL statistics:"); if (!q->irq_ptr->perf_stat_enabled) { seq_printf(m, " disabled\n"); return 0; } seq_printf(m, "\n1 2.. 4.. 8.. " "16.. 32.. 64.. 128\n"); for (i = 0; i < ARRAY_SIZE(q->q_stats.nr_sbals); i++) seq_printf(m, "%-10u ", q->q_stats.nr_sbals[i]); seq_printf(m, "\nError NOP Total\n%-10u %-10u %-10u\n\n", q->q_stats.nr_sbal_error, q->q_stats.nr_sbal_nop, q->q_stats.nr_sbal_total); return 0; } DEFINE_SHOW_ATTRIBUTE(qstat); static int ssqd_show(struct seq_file *m, void *v) { struct ccw_device *cdev = m->private; struct qdio_ssqd_desc ssqd; int rc; rc = qdio_get_ssqd_desc(cdev, &ssqd); if (rc) return rc; seq_hex_dump(m, "", DUMP_PREFIX_NONE, 16, 4, &ssqd, sizeof(ssqd), false); return 0; } DEFINE_SHOW_ATTRIBUTE(ssqd); static char *qperf_names[] = { "Assumed adapter interrupts", "QDIO interrupts", "SIGA read", "SIGA write", "SIGA sync", "Inbound calls", "Inbound stop_polling", "Inbound queue full", "Outbound calls", "Outbound queue full", "Outbound fast_requeue", "Outbound target_full", "QEBSM eqbs", "QEBSM eqbs partial", "QEBSM sqbs", "QEBSM sqbs partial", "Discarded interrupts" }; static int qperf_show(struct seq_file *m, void *v) { struct qdio_irq *irq_ptr = m->private; unsigned int *stat; int i; if (!irq_ptr) return 0; if (!irq_ptr->perf_stat_enabled) { seq_printf(m, "disabled\n"); return 0; } stat = (unsigned int *)&irq_ptr->perf_stat; for (i = 0; i < ARRAY_SIZE(qperf_names); i++) seq_printf(m, "%26s:\t%u\n", qperf_names[i], *(stat + i)); return 0; } static ssize_t qperf_seq_write(struct file *file, const char __user *ubuf, size_t count, loff_t *off) { struct seq_file *seq = file->private_data; struct qdio_irq *irq_ptr = seq->private; struct qdio_q *q; unsigned long val; int ret, i; if (!irq_ptr) return 0; ret = kstrtoul_from_user(ubuf, count, 10, &val); if (ret) return ret; switch (val) { case 0: irq_ptr->perf_stat_enabled = 0; memset(&irq_ptr->perf_stat, 0, sizeof(irq_ptr->perf_stat)); for_each_input_queue(irq_ptr, q, i) memset(&q->q_stats, 0, sizeof(q->q_stats)); for_each_output_queue(irq_ptr, q, i) memset(&q->q_stats, 0, sizeof(q->q_stats)); break; case 1: irq_ptr->perf_stat_enabled = 1; break; } return count; } static int qperf_seq_open(struct inode *inode, struct file *filp) { return single_open(filp, qperf_show, file_inode(filp)->i_private); } static const struct file_operations debugfs_perf_fops = { .owner = THIS_MODULE, .open = qperf_seq_open, .read = seq_read, .write = qperf_seq_write, .llseek = seq_lseek, .release = single_release, }; static void setup_debugfs_entry(struct dentry *parent, struct qdio_q *q) { char name[QDIO_DEBUGFS_NAME_LEN]; snprintf(name, QDIO_DEBUGFS_NAME_LEN, "%s_%d", q->is_input_q ? "input" : "output", q->nr); debugfs_create_file(name, 0444, parent, q, &qstat_fops); } void qdio_setup_debug_entries(struct qdio_irq *irq_ptr) { struct qdio_q *q; int i; irq_ptr->debugfs_dev = debugfs_create_dir(dev_name(&irq_ptr->cdev->dev), debugfs_root); debugfs_create_file("statistics", S_IFREG | S_IRUGO | S_IWUSR, irq_ptr->debugfs_dev, irq_ptr, &debugfs_perf_fops); debugfs_create_file("ssqd", 0444, irq_ptr->debugfs_dev, irq_ptr->cdev, &ssqd_fops); for_each_input_queue(irq_ptr, q, i) setup_debugfs_entry(irq_ptr->debugfs_dev, q); for_each_output_queue(irq_ptr, q, i) setup_debugfs_entry(irq_ptr->debugfs_dev, q); } void qdio_shutdown_debug_entries(struct qdio_irq *irq_ptr) { debugfs_remove_recursive(irq_ptr->debugfs_dev); } int __init qdio_debug_init(void) { debugfs_root = debugfs_create_dir("qdio", NULL); qdio_dbf_setup = debug_register("qdio_setup", 16, 1, 16); debug_register_view(qdio_dbf_setup, &debug_hex_ascii_view); debug_set_level(qdio_dbf_setup, DBF_INFO); DBF_EVENT("dbf created\n"); qdio_dbf_error = debug_register("qdio_error", 4, 1, 16); debug_register_view(qdio_dbf_error, &debug_hex_ascii_view); debug_set_level(qdio_dbf_error, DBF_INFO); DBF_ERROR("dbf created\n"); return 0; } void qdio_debug_exit(void) { qdio_clear_dbf_list(); debugfs_remove_recursive(debugfs_root); debug_unregister(qdio_dbf_setup); debug_unregister(qdio_dbf_error); }
linux-master
drivers/s390/cio/qdio_debug.c
// SPDX-License-Identifier: GPL-2.0 /* * S/390 common I/O routines -- blacklisting of specific devices * * Copyright IBM Corp. 1999, 2013 * Author(s): Ingo Adlung ([email protected]) * Cornelia Huck ([email protected]) * Arnd Bergmann ([email protected]) */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/init.h> #include <linux/vmalloc.h> #include <linux/proc_fs.h> #include <linux/seq_file.h> #include <linux/ctype.h> #include <linux/device.h> #include <linux/uaccess.h> #include <asm/cio.h> #include <asm/ipl.h> #include "blacklist.h" #include "cio.h" #include "cio_debug.h" #include "css.h" #include "device.h" /* * "Blacklisting" of certain devices: * Device numbers given in the commandline as cio_ignore=... won't be known * to Linux. * * These can be single devices or ranges of devices */ /* 65536 bits for each set to indicate if a devno is blacklisted or not */ #define __BL_DEV_WORDS ((__MAX_SUBCHANNEL + (8*sizeof(long) - 1)) / \ (8*sizeof(long))) static unsigned long bl_dev[__MAX_SSID + 1][__BL_DEV_WORDS]; typedef enum {add, free} range_action; /* * Function: blacklist_range * (Un-)blacklist the devices from-to */ static int blacklist_range(range_action action, unsigned int from_ssid, unsigned int to_ssid, unsigned int from, unsigned int to, int msgtrigger) { if ((from_ssid > to_ssid) || ((from_ssid == to_ssid) && (from > to))) { if (msgtrigger) pr_warn("0.%x.%04x to 0.%x.%04x is not a valid range for cio_ignore\n", from_ssid, from, to_ssid, to); return 1; } while ((from_ssid < to_ssid) || ((from_ssid == to_ssid) && (from <= to))) { if (action == add) set_bit(from, bl_dev[from_ssid]); else clear_bit(from, bl_dev[from_ssid]); from++; if (from > __MAX_SUBCHANNEL) { from_ssid++; from = 0; } } return 0; } static int pure_hex(char **cp, unsigned int *val, int min_digit, int max_digit, int max_val) { int diff; diff = 0; *val = 0; while (diff <= max_digit) { int value = hex_to_bin(**cp); if (value < 0) break; *val = *val * 16 + value; (*cp)++; diff++; } if ((diff < min_digit) || (diff > max_digit) || (*val > max_val)) return 1; return 0; } static int parse_busid(char *str, unsigned int *cssid, unsigned int *ssid, unsigned int *devno, int msgtrigger) { char *str_work; int val, rc, ret; rc = 1; if (*str == '\0') goto out; /* old style */ str_work = str; val = simple_strtoul(str, &str_work, 16); if (*str_work == '\0') { if (val <= __MAX_SUBCHANNEL) { *devno = val; *ssid = 0; *cssid = 0; rc = 0; } goto out; } /* new style */ str_work = str; ret = pure_hex(&str_work, cssid, 1, 2, __MAX_CSSID); if (ret || (str_work[0] != '.')) goto out; str_work++; ret = pure_hex(&str_work, ssid, 1, 1, __MAX_SSID); if (ret || (str_work[0] != '.')) goto out; str_work++; ret = pure_hex(&str_work, devno, 4, 4, __MAX_SUBCHANNEL); if (ret || (str_work[0] != '\0')) goto out; rc = 0; out: if (rc && msgtrigger) pr_warn("%s is not a valid device for the cio_ignore kernel parameter\n", str); return rc; } static int blacklist_parse_parameters(char *str, range_action action, int msgtrigger) { unsigned int from_cssid, to_cssid, from_ssid, to_ssid, from, to; int rc, totalrc; char *parm; range_action ra; totalrc = 0; while ((parm = strsep(&str, ","))) { rc = 0; ra = action; if (*parm == '!') { if (ra == add) ra = free; else ra = add; parm++; } if (strcmp(parm, "all") == 0) { from_cssid = 0; from_ssid = 0; from = 0; to_cssid = __MAX_CSSID; to_ssid = __MAX_SSID; to = __MAX_SUBCHANNEL; } else if (strcmp(parm, "ipldev") == 0) { if (ipl_info.type == IPL_TYPE_CCW) { from_cssid = 0; from_ssid = ipl_info.data.ccw.dev_id.ssid; from = ipl_info.data.ccw.dev_id.devno; } else if (ipl_info.type == IPL_TYPE_FCP || ipl_info.type == IPL_TYPE_FCP_DUMP) { from_cssid = 0; from_ssid = ipl_info.data.fcp.dev_id.ssid; from = ipl_info.data.fcp.dev_id.devno; } else { continue; } to_cssid = from_cssid; to_ssid = from_ssid; to = from; } else if (strcmp(parm, "condev") == 0) { if (console_devno == -1) continue; from_cssid = to_cssid = 0; from_ssid = to_ssid = 0; from = to = console_devno; } else { rc = parse_busid(strsep(&parm, "-"), &from_cssid, &from_ssid, &from, msgtrigger); if (!rc) { if (parm != NULL) rc = parse_busid(parm, &to_cssid, &to_ssid, &to, msgtrigger); else { to_cssid = from_cssid; to_ssid = from_ssid; to = from; } } } if (!rc) { rc = blacklist_range(ra, from_ssid, to_ssid, from, to, msgtrigger); if (rc) totalrc = -EINVAL; } else totalrc = -EINVAL; } return totalrc; } static int __init blacklist_setup (char *str) { CIO_MSG_EVENT(6, "Reading blacklist parameters\n"); if (blacklist_parse_parameters(str, add, 1)) return 0; return 1; } __setup ("cio_ignore=", blacklist_setup); /* Checking if devices are blacklisted */ /* * Function: is_blacklisted * Returns 1 if the given devicenumber can be found in the blacklist, * otherwise 0. * Used by validate_subchannel() */ int is_blacklisted (int ssid, int devno) { return test_bit (devno, bl_dev[ssid]); } #ifdef CONFIG_PROC_FS /* * Function: blacklist_parse_proc_parameters * parse the stuff which is piped to /proc/cio_ignore */ static int blacklist_parse_proc_parameters(char *buf) { int rc; char *parm; parm = strsep(&buf, " "); if (strcmp("free", parm) == 0) { rc = blacklist_parse_parameters(buf, free, 0); /* * Evaluate the subchannels without an online device. This way, * no path-verification will be triggered on those subchannels * and it avoids unnecessary delays. */ css_schedule_eval_cond(CSS_EVAL_NOT_ONLINE, 0); } else if (strcmp("add", parm) == 0) rc = blacklist_parse_parameters(buf, add, 0); else if (strcmp("purge", parm) == 0) return ccw_purge_blacklisted(); else return -EINVAL; return rc; } /* Iterator struct for all devices. */ struct ccwdev_iter { int devno; int ssid; int in_range; }; static void * cio_ignore_proc_seq_start(struct seq_file *s, loff_t *offset) { struct ccwdev_iter *iter = s->private; if (*offset >= (__MAX_SUBCHANNEL + 1) * (__MAX_SSID + 1)) return NULL; memset(iter, 0, sizeof(*iter)); iter->ssid = *offset / (__MAX_SUBCHANNEL + 1); iter->devno = *offset % (__MAX_SUBCHANNEL + 1); return iter; } static void cio_ignore_proc_seq_stop(struct seq_file *s, void *it) { } static void * cio_ignore_proc_seq_next(struct seq_file *s, void *it, loff_t *offset) { struct ccwdev_iter *iter; loff_t p = *offset; (*offset)++; if (p >= (__MAX_SUBCHANNEL + 1) * (__MAX_SSID + 1)) return NULL; iter = it; if (iter->devno == __MAX_SUBCHANNEL) { iter->devno = 0; iter->ssid++; if (iter->ssid > __MAX_SSID) return NULL; } else iter->devno++; return iter; } static int cio_ignore_proc_seq_show(struct seq_file *s, void *it) { struct ccwdev_iter *iter; iter = it; if (!is_blacklisted(iter->ssid, iter->devno)) /* Not blacklisted, nothing to output. */ return 0; if (!iter->in_range) { /* First device in range. */ if ((iter->devno == __MAX_SUBCHANNEL) || !is_blacklisted(iter->ssid, iter->devno + 1)) { /* Singular device. */ seq_printf(s, "0.%x.%04x\n", iter->ssid, iter->devno); return 0; } iter->in_range = 1; seq_printf(s, "0.%x.%04x-", iter->ssid, iter->devno); return 0; } if ((iter->devno == __MAX_SUBCHANNEL) || !is_blacklisted(iter->ssid, iter->devno + 1)) { /* Last device in range. */ iter->in_range = 0; seq_printf(s, "0.%x.%04x\n", iter->ssid, iter->devno); } return 0; } static ssize_t cio_ignore_write(struct file *file, const char __user *user_buf, size_t user_len, loff_t *offset) { char *buf; ssize_t rc, ret, i; if (*offset) return -EINVAL; if (user_len > 65536) user_len = 65536; buf = vzalloc(user_len + 1); /* maybe better use the stack? */ if (buf == NULL) return -ENOMEM; if (strncpy_from_user (buf, user_buf, user_len) < 0) { rc = -EFAULT; goto out_free; } i = user_len - 1; while ((i >= 0) && (isspace(buf[i]) || (buf[i] == 0))) { buf[i] = '\0'; i--; } ret = blacklist_parse_proc_parameters(buf); if (ret) rc = ret; else rc = user_len; out_free: vfree (buf); return rc; } static const struct seq_operations cio_ignore_proc_seq_ops = { .start = cio_ignore_proc_seq_start, .stop = cio_ignore_proc_seq_stop, .next = cio_ignore_proc_seq_next, .show = cio_ignore_proc_seq_show, }; static int cio_ignore_proc_open(struct inode *inode, struct file *file) { return seq_open_private(file, &cio_ignore_proc_seq_ops, sizeof(struct ccwdev_iter)); } static const struct proc_ops cio_ignore_proc_ops = { .proc_open = cio_ignore_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release_private, .proc_write = cio_ignore_write, }; static int cio_ignore_proc_init (void) { struct proc_dir_entry *entry; entry = proc_create("cio_ignore", S_IFREG | S_IRUGO | S_IWUSR, NULL, &cio_ignore_proc_ops); if (!entry) return -ENOENT; return 0; } __initcall (cio_ignore_proc_init); #endif /* CONFIG_PROC_FS */
linux-master
drivers/s390/cio/blacklist.c
// SPDX-License-Identifier: GPL-2.0 /* * qdio queue initialization * * Copyright IBM Corp. 2008 * Author(s): Jan Glauber <[email protected]> */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/io.h> #include <asm/ebcdic.h> #include <asm/qdio.h> #include "cio.h" #include "css.h" #include "device.h" #include "ioasm.h" #include "chsc.h" #include "qdio.h" #include "qdio_debug.h" #define QBUFF_PER_PAGE (PAGE_SIZE / sizeof(struct qdio_buffer)) static struct kmem_cache *qdio_q_cache; /** * qdio_free_buffers() - free qdio buffers * @buf: array of pointers to qdio buffers * @count: number of qdio buffers to free */ void qdio_free_buffers(struct qdio_buffer **buf, unsigned int count) { int pos; for (pos = 0; pos < count; pos += QBUFF_PER_PAGE) free_page((unsigned long) buf[pos]); } EXPORT_SYMBOL_GPL(qdio_free_buffers); /** * qdio_alloc_buffers() - allocate qdio buffers * @buf: array of pointers to qdio buffers * @count: number of qdio buffers to allocate */ int qdio_alloc_buffers(struct qdio_buffer **buf, unsigned int count) { int pos; for (pos = 0; pos < count; pos += QBUFF_PER_PAGE) { buf[pos] = (void *) get_zeroed_page(GFP_KERNEL); if (!buf[pos]) { qdio_free_buffers(buf, count); return -ENOMEM; } } for (pos = 0; pos < count; pos++) if (pos % QBUFF_PER_PAGE) buf[pos] = buf[pos - 1] + 1; return 0; } EXPORT_SYMBOL_GPL(qdio_alloc_buffers); /** * qdio_reset_buffers() - reset qdio buffers * @buf: array of pointers to qdio buffers * @count: number of qdio buffers that will be zeroed */ void qdio_reset_buffers(struct qdio_buffer **buf, unsigned int count) { int pos; for (pos = 0; pos < count; pos++) memset(buf[pos], 0, sizeof(struct qdio_buffer)); } EXPORT_SYMBOL_GPL(qdio_reset_buffers); static void __qdio_free_queues(struct qdio_q **queues, unsigned int count) { struct qdio_q *q; unsigned int i; for (i = 0; i < count; i++) { q = queues[i]; free_page((unsigned long) q->slib); kmem_cache_free(qdio_q_cache, q); } } void qdio_free_queues(struct qdio_irq *irq_ptr) { __qdio_free_queues(irq_ptr->input_qs, irq_ptr->max_input_qs); irq_ptr->max_input_qs = 0; __qdio_free_queues(irq_ptr->output_qs, irq_ptr->max_output_qs); irq_ptr->max_output_qs = 0; } static int __qdio_allocate_qs(struct qdio_q **irq_ptr_qs, int nr_queues) { struct qdio_q *q; int i; for (i = 0; i < nr_queues; i++) { q = kmem_cache_zalloc(qdio_q_cache, GFP_KERNEL); if (!q) { __qdio_free_queues(irq_ptr_qs, i); return -ENOMEM; } q->slib = (struct slib *) __get_free_page(GFP_KERNEL); if (!q->slib) { kmem_cache_free(qdio_q_cache, q); __qdio_free_queues(irq_ptr_qs, i); return -ENOMEM; } irq_ptr_qs[i] = q; } return 0; } int qdio_allocate_qs(struct qdio_irq *irq_ptr, int nr_input_qs, int nr_output_qs) { int rc; rc = __qdio_allocate_qs(irq_ptr->input_qs, nr_input_qs); if (rc) return rc; rc = __qdio_allocate_qs(irq_ptr->output_qs, nr_output_qs); if (rc) { __qdio_free_queues(irq_ptr->input_qs, nr_input_qs); return rc; } irq_ptr->max_input_qs = nr_input_qs; irq_ptr->max_output_qs = nr_output_qs; return 0; } static void setup_queues_misc(struct qdio_q *q, struct qdio_irq *irq_ptr, qdio_handler_t *handler, int i) { struct slib *slib = q->slib; /* queue must be cleared for qdio_establish */ memset(q, 0, sizeof(*q)); memset(slib, 0, PAGE_SIZE); q->slib = slib; q->irq_ptr = irq_ptr; q->mask = 1 << (31 - i); q->nr = i; q->handler = handler; } static void setup_storage_lists(struct qdio_q *q, struct qdio_irq *irq_ptr, struct qdio_buffer **sbals_array, int i) { struct qdio_q *prev; int j; DBF_HEX(&q, sizeof(void *)); q->sl = (struct sl *)((char *)q->slib + PAGE_SIZE / 2); /* fill in sbal */ for (j = 0; j < QDIO_MAX_BUFFERS_PER_Q; j++) q->sbal[j] = *sbals_array++; /* fill in slib */ if (i > 0) { prev = (q->is_input_q) ? irq_ptr->input_qs[i - 1] : irq_ptr->output_qs[i - 1]; prev->slib->nsliba = (unsigned long)q->slib; } q->slib->sla = (unsigned long)q->sl; q->slib->slsba = (unsigned long)&q->slsb.val[0]; /* fill in sl */ for (j = 0; j < QDIO_MAX_BUFFERS_PER_Q; j++) q->sl->element[j].sbal = virt_to_phys(q->sbal[j]); } static void setup_queues(struct qdio_irq *irq_ptr, struct qdio_initialize *qdio_init) { struct qdio_q *q; int i; for_each_input_queue(irq_ptr, q, i) { DBF_EVENT("inq:%1d", i); setup_queues_misc(q, irq_ptr, qdio_init->input_handler, i); q->is_input_q = 1; setup_storage_lists(q, irq_ptr, qdio_init->input_sbal_addr_array[i], i); } for_each_output_queue(irq_ptr, q, i) { DBF_EVENT("outq:%1d", i); setup_queues_misc(q, irq_ptr, qdio_init->output_handler, i); q->is_input_q = 0; setup_storage_lists(q, irq_ptr, qdio_init->output_sbal_addr_array[i], i); } } static void check_and_setup_qebsm(struct qdio_irq *irq_ptr, unsigned char qdioac, unsigned long token) { if (!(irq_ptr->qib.rflags & QIB_RFLAGS_ENABLE_QEBSM)) goto no_qebsm; if (!(qdioac & AC1_SC_QEBSM_AVAILABLE) || (!(qdioac & AC1_SC_QEBSM_ENABLED))) goto no_qebsm; irq_ptr->sch_token = token; DBF_EVENT("V=V:1"); DBF_EVENT("%8lx", irq_ptr->sch_token); return; no_qebsm: irq_ptr->sch_token = 0; irq_ptr->qib.rflags &= ~QIB_RFLAGS_ENABLE_QEBSM; DBF_EVENT("noV=V"); } /* * If there is a qdio_irq we use the chsc_page and store the information * in the qdio_irq, otherwise we copy it to the specified structure. */ int qdio_setup_get_ssqd(struct qdio_irq *irq_ptr, struct subchannel_id *schid, struct qdio_ssqd_desc *data) { struct chsc_ssqd_area *ssqd; int rc; DBF_EVENT("getssqd:%4x", schid->sch_no); if (!irq_ptr) { ssqd = (struct chsc_ssqd_area *)__get_free_page(GFP_KERNEL); if (!ssqd) return -ENOMEM; } else { ssqd = (struct chsc_ssqd_area *)irq_ptr->chsc_page; } rc = chsc_ssqd(*schid, ssqd); if (rc) goto out; if (!(ssqd->qdio_ssqd.flags & CHSC_FLAG_QDIO_CAPABILITY) || !(ssqd->qdio_ssqd.flags & CHSC_FLAG_VALIDITY) || (ssqd->qdio_ssqd.sch != schid->sch_no)) rc = -EINVAL; if (!rc) memcpy(data, &ssqd->qdio_ssqd, sizeof(*data)); out: if (!irq_ptr) free_page((unsigned long)ssqd); return rc; } void qdio_setup_ssqd_info(struct qdio_irq *irq_ptr) { unsigned char qdioac; int rc; rc = qdio_setup_get_ssqd(irq_ptr, &irq_ptr->schid, &irq_ptr->ssqd_desc); if (rc) { DBF_ERROR("%4x ssqd ERR", irq_ptr->schid.sch_no); DBF_ERROR("rc:%x", rc); /* all flags set, worst case */ qdioac = AC1_SIGA_INPUT_NEEDED | AC1_SIGA_OUTPUT_NEEDED | AC1_SIGA_SYNC_NEEDED; } else qdioac = irq_ptr->ssqd_desc.qdioac1; check_and_setup_qebsm(irq_ptr, qdioac, irq_ptr->ssqd_desc.sch_token); irq_ptr->qdioac1 = qdioac; DBF_EVENT("ac 1:%2x 2:%4x", qdioac, irq_ptr->ssqd_desc.qdioac2); DBF_EVENT("3:%4x qib:%4x", irq_ptr->ssqd_desc.qdioac3, irq_ptr->qib.ac); } static void qdio_fill_qdr_desc(struct qdesfmt0 *desc, struct qdio_q *queue) { desc->sliba = virt_to_phys(queue->slib); desc->sla = virt_to_phys(queue->sl); desc->slsba = virt_to_phys(&queue->slsb); desc->akey = PAGE_DEFAULT_KEY >> 4; desc->bkey = PAGE_DEFAULT_KEY >> 4; desc->ckey = PAGE_DEFAULT_KEY >> 4; desc->dkey = PAGE_DEFAULT_KEY >> 4; } static void setup_qdr(struct qdio_irq *irq_ptr, struct qdio_initialize *qdio_init) { struct qdesfmt0 *desc = &irq_ptr->qdr->qdf0[0]; int i; memset(irq_ptr->qdr, 0, sizeof(struct qdr)); irq_ptr->qdr->qfmt = qdio_init->q_format; irq_ptr->qdr->ac = qdio_init->qdr_ac; irq_ptr->qdr->iqdcnt = qdio_init->no_input_qs; irq_ptr->qdr->oqdcnt = qdio_init->no_output_qs; irq_ptr->qdr->iqdsz = sizeof(struct qdesfmt0) / 4; /* size in words */ irq_ptr->qdr->oqdsz = sizeof(struct qdesfmt0) / 4; irq_ptr->qdr->qiba = virt_to_phys(&irq_ptr->qib); irq_ptr->qdr->qkey = PAGE_DEFAULT_KEY >> 4; for (i = 0; i < qdio_init->no_input_qs; i++) qdio_fill_qdr_desc(desc++, irq_ptr->input_qs[i]); for (i = 0; i < qdio_init->no_output_qs; i++) qdio_fill_qdr_desc(desc++, irq_ptr->output_qs[i]); } static void setup_qib(struct qdio_irq *irq_ptr, struct qdio_initialize *init_data) { memset(&irq_ptr->qib, 0, sizeof(irq_ptr->qib)); irq_ptr->qib.qfmt = init_data->q_format; irq_ptr->qib.pfmt = init_data->qib_param_field_format; irq_ptr->qib.rflags = init_data->qib_rflags; if (css_general_characteristics.qebsm) irq_ptr->qib.rflags |= QIB_RFLAGS_ENABLE_QEBSM; if (init_data->no_input_qs) irq_ptr->qib.isliba = (unsigned long)(irq_ptr->input_qs[0]->slib); if (init_data->no_output_qs) irq_ptr->qib.osliba = (unsigned long)(irq_ptr->output_qs[0]->slib); memcpy(irq_ptr->qib.ebcnam, dev_name(&irq_ptr->cdev->dev), 8); ASCEBC(irq_ptr->qib.ebcnam, 8); if (init_data->qib_param_field) memcpy(irq_ptr->qib.parm, init_data->qib_param_field, sizeof(irq_ptr->qib.parm)); } void qdio_setup_irq(struct qdio_irq *irq_ptr, struct qdio_initialize *init_data) { struct ccw_device *cdev = irq_ptr->cdev; irq_ptr->qdioac1 = 0; memset(&irq_ptr->ssqd_desc, 0, sizeof(irq_ptr->ssqd_desc)); memset(&irq_ptr->perf_stat, 0, sizeof(irq_ptr->perf_stat)); irq_ptr->debugfs_dev = NULL; irq_ptr->sch_token = irq_ptr->perf_stat_enabled = 0; irq_ptr->state = QDIO_IRQ_STATE_INACTIVE; irq_ptr->error_handler = init_data->input_handler; irq_ptr->int_parm = init_data->int_parm; irq_ptr->nr_input_qs = init_data->no_input_qs; irq_ptr->nr_output_qs = init_data->no_output_qs; ccw_device_get_schid(cdev, &irq_ptr->schid); setup_queues(irq_ptr, init_data); irq_ptr->irq_poll = init_data->irq_poll; set_bit(QDIO_IRQ_DISABLED, &irq_ptr->poll_state); setup_qib(irq_ptr, init_data); /* fill input and output descriptors */ setup_qdr(irq_ptr, init_data); /* qdr, qib, sls, slsbs, slibs, sbales are filled now */ /* set our IRQ handler */ spin_lock_irq(get_ccwdev_lock(cdev)); irq_ptr->orig_handler = cdev->handler; cdev->handler = qdio_int_handler; spin_unlock_irq(get_ccwdev_lock(cdev)); } void qdio_shutdown_irq(struct qdio_irq *irq) { struct ccw_device *cdev = irq->cdev; /* restore IRQ handler */ spin_lock_irq(get_ccwdev_lock(cdev)); cdev->handler = irq->orig_handler; cdev->private->intparm = 0; spin_unlock_irq(get_ccwdev_lock(cdev)); } void qdio_print_subchannel_info(struct qdio_irq *irq_ptr) { dev_info(&irq_ptr->cdev->dev, "qdio: %s on SC %x using AI:%d QEBSM:%d PRI:%d TDD:%d SIGA:%s%s%s\n", (irq_ptr->qib.qfmt == QDIO_QETH_QFMT) ? "OSA" : ((irq_ptr->qib.qfmt == QDIO_ZFCP_QFMT) ? "ZFCP" : "HS"), irq_ptr->schid.sch_no, is_thinint_irq(irq_ptr), (irq_ptr->sch_token) ? 1 : 0, pci_out_supported(irq_ptr) ? 1 : 0, css_general_characteristics.aif_tdd, qdio_need_siga_in(irq_ptr) ? "R" : " ", qdio_need_siga_out(irq_ptr) ? "W" : " ", qdio_need_siga_sync(irq_ptr) ? "S" : " "); } int __init qdio_setup_init(void) { qdio_q_cache = kmem_cache_create("qdio_q", sizeof(struct qdio_q), 256, 0, NULL); if (!qdio_q_cache) return -ENOMEM; /* Check for OSA/FCP thin interrupts (bit 67). */ DBF_EVENT("thinint:%1d", (css_general_characteristics.aif_osa) ? 1 : 0); /* Check for QEBSM support in general (bit 58). */ DBF_EVENT("cssQEBSM:%1d", css_general_characteristics.qebsm); return 0; } void qdio_setup_exit(void) { kmem_cache_destroy(qdio_q_cache); }
linux-master
drivers/s390/cio/qdio_setup.c
// SPDX-License-Identifier: GPL-2.0 /* * S/390 common I/O routines -- low level i/o calls * * Copyright IBM Corp. 1999, 2008 * Author(s): Ingo Adlung ([email protected]) * Cornelia Huck ([email protected]) * Arnd Bergmann ([email protected]) * Martin Schwidefsky ([email protected]) */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/ftrace.h> #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/device.h> #include <linux/kernel_stat.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <asm/cio.h> #include <asm/delay.h> #include <asm/irq.h> #include <asm/irq_regs.h> #include <asm/setup.h> #include <asm/ipl.h> #include <asm/chpid.h> #include <asm/airq.h> #include <asm/isc.h> #include <linux/sched/cputime.h> #include <asm/fcx.h> #include <asm/nmi.h> #include <asm/crw.h> #include "cio.h" #include "css.h" #include "chsc.h" #include "ioasm.h" #include "io_sch.h" #include "blacklist.h" #include "cio_debug.h" #include "chp.h" #include "trace.h" debug_info_t *cio_debug_msg_id; debug_info_t *cio_debug_trace_id; debug_info_t *cio_debug_crw_id; DEFINE_PER_CPU_ALIGNED(struct irb, cio_irb); EXPORT_PER_CPU_SYMBOL(cio_irb); /* * Function: cio_debug_init * Initializes three debug logs for common I/O: * - cio_msg logs generic cio messages * - cio_trace logs the calling of different functions * - cio_crw logs machine check related cio messages */ static int __init cio_debug_init(void) { cio_debug_msg_id = debug_register("cio_msg", 16, 1, 11 * sizeof(long)); if (!cio_debug_msg_id) goto out_unregister; debug_register_view(cio_debug_msg_id, &debug_sprintf_view); debug_set_level(cio_debug_msg_id, 2); cio_debug_trace_id = debug_register("cio_trace", 16, 1, 16); if (!cio_debug_trace_id) goto out_unregister; debug_register_view(cio_debug_trace_id, &debug_hex_ascii_view); debug_set_level(cio_debug_trace_id, 2); cio_debug_crw_id = debug_register("cio_crw", 8, 1, 8 * sizeof(long)); if (!cio_debug_crw_id) goto out_unregister; debug_register_view(cio_debug_crw_id, &debug_sprintf_view); debug_set_level(cio_debug_crw_id, 4); return 0; out_unregister: debug_unregister(cio_debug_msg_id); debug_unregister(cio_debug_trace_id); debug_unregister(cio_debug_crw_id); return -1; } arch_initcall (cio_debug_init); int cio_set_options(struct subchannel *sch, int flags) { struct io_subchannel_private *priv = to_io_private(sch); priv->options.suspend = (flags & DOIO_ALLOW_SUSPEND) != 0; priv->options.prefetch = (flags & DOIO_DENY_PREFETCH) != 0; priv->options.inter = (flags & DOIO_SUPPRESS_INTER) != 0; return 0; } static int cio_start_handle_notoper(struct subchannel *sch, __u8 lpm) { char dbf_text[15]; if (lpm != 0) sch->lpm &= ~lpm; else sch->lpm = 0; CIO_MSG_EVENT(2, "cio_start: 'not oper' status for " "subchannel 0.%x.%04x!\n", sch->schid.ssid, sch->schid.sch_no); if (cio_update_schib(sch)) return -ENODEV; sprintf(dbf_text, "no%s", dev_name(&sch->dev)); CIO_TRACE_EVENT(0, dbf_text); CIO_HEX_EVENT(0, &sch->schib, sizeof (struct schib)); return (sch->lpm ? -EACCES : -ENODEV); } int cio_start_key (struct subchannel *sch, /* subchannel structure */ struct ccw1 * cpa, /* logical channel prog addr */ __u8 lpm, /* logical path mask */ __u8 key) /* storage key */ { struct io_subchannel_private *priv = to_io_private(sch); union orb *orb = &priv->orb; int ccode; CIO_TRACE_EVENT(5, "stIO"); CIO_TRACE_EVENT(5, dev_name(&sch->dev)); memset(orb, 0, sizeof(union orb)); /* sch is always under 2G. */ orb->cmd.intparm = (u32)virt_to_phys(sch); orb->cmd.fmt = 1; orb->cmd.pfch = priv->options.prefetch == 0; orb->cmd.spnd = priv->options.suspend; orb->cmd.ssic = priv->options.suspend && priv->options.inter; orb->cmd.lpm = (lpm != 0) ? lpm : sch->lpm; /* * for 64 bit we always support 64 bit IDAWs with 4k page size only */ orb->cmd.c64 = 1; orb->cmd.i2k = 0; orb->cmd.key = key >> 4; /* issue "Start Subchannel" */ orb->cmd.cpa = (u32)virt_to_phys(cpa); ccode = ssch(sch->schid, orb); /* process condition code */ CIO_HEX_EVENT(5, &ccode, sizeof(ccode)); switch (ccode) { case 0: /* * initialize device status information */ sch->schib.scsw.cmd.actl |= SCSW_ACTL_START_PEND; return 0; case 1: /* status pending */ case 2: /* busy */ return -EBUSY; case 3: /* device/path not operational */ return cio_start_handle_notoper(sch, lpm); default: return ccode; } } EXPORT_SYMBOL_GPL(cio_start_key); int cio_start (struct subchannel *sch, struct ccw1 *cpa, __u8 lpm) { return cio_start_key(sch, cpa, lpm, PAGE_DEFAULT_KEY); } EXPORT_SYMBOL_GPL(cio_start); /* * resume suspended I/O operation */ int cio_resume (struct subchannel *sch) { int ccode; CIO_TRACE_EVENT(4, "resIO"); CIO_TRACE_EVENT(4, dev_name(&sch->dev)); ccode = rsch (sch->schid); CIO_HEX_EVENT(4, &ccode, sizeof(ccode)); switch (ccode) { case 0: sch->schib.scsw.cmd.actl |= SCSW_ACTL_RESUME_PEND; return 0; case 1: return -EBUSY; case 2: return -EINVAL; default: /* * useless to wait for request completion * as device is no longer operational ! */ return -ENODEV; } } EXPORT_SYMBOL_GPL(cio_resume); /* * halt I/O operation */ int cio_halt(struct subchannel *sch) { int ccode; if (!sch) return -ENODEV; CIO_TRACE_EVENT(2, "haltIO"); CIO_TRACE_EVENT(2, dev_name(&sch->dev)); /* * Issue "Halt subchannel" and process condition code */ ccode = hsch (sch->schid); CIO_HEX_EVENT(2, &ccode, sizeof(ccode)); switch (ccode) { case 0: sch->schib.scsw.cmd.actl |= SCSW_ACTL_HALT_PEND; return 0; case 1: /* status pending */ case 2: /* busy */ return -EBUSY; default: /* device not operational */ return -ENODEV; } } EXPORT_SYMBOL_GPL(cio_halt); /* * Clear I/O operation */ int cio_clear(struct subchannel *sch) { int ccode; if (!sch) return -ENODEV; CIO_TRACE_EVENT(2, "clearIO"); CIO_TRACE_EVENT(2, dev_name(&sch->dev)); /* * Issue "Clear subchannel" and process condition code */ ccode = csch (sch->schid); CIO_HEX_EVENT(2, &ccode, sizeof(ccode)); switch (ccode) { case 0: sch->schib.scsw.cmd.actl |= SCSW_ACTL_CLEAR_PEND; return 0; default: /* device not operational */ return -ENODEV; } } EXPORT_SYMBOL_GPL(cio_clear); /* * Function: cio_cancel * Issues a "Cancel Subchannel" on the specified subchannel * Note: We don't need any fancy intparms and flags here * since xsch is executed synchronously. * Only for common I/O internal use as for now. */ int cio_cancel (struct subchannel *sch) { int ccode; if (!sch) return -ENODEV; CIO_TRACE_EVENT(2, "cancelIO"); CIO_TRACE_EVENT(2, dev_name(&sch->dev)); ccode = xsch (sch->schid); CIO_HEX_EVENT(2, &ccode, sizeof(ccode)); switch (ccode) { case 0: /* success */ /* Update information in scsw. */ if (cio_update_schib(sch)) return -ENODEV; return 0; case 1: /* status pending */ return -EBUSY; case 2: /* not applicable */ return -EINVAL; default: /* not oper */ return -ENODEV; } } EXPORT_SYMBOL_GPL(cio_cancel); /** * cio_cancel_halt_clear - Cancel running I/O by performing cancel, halt * and clear ordinally if subchannel is valid. * @sch: subchannel on which to perform the cancel_halt_clear operation * @iretry: the number of the times remained to retry the next operation * * This should be called repeatedly since halt/clear are asynchronous * operations. We do one try with cio_cancel, three tries with cio_halt, * 255 tries with cio_clear. The caller should initialize @iretry with * the value 255 for its first call to this, and keep using the same * @iretry in the subsequent calls until it gets a non -EBUSY return. * * Returns 0 if device now idle, -ENODEV for device not operational, * -EBUSY if an interrupt is expected (either from halt/clear or from a * status pending), and -EIO if out of retries. */ int cio_cancel_halt_clear(struct subchannel *sch, int *iretry) { int ret; if (cio_update_schib(sch)) return -ENODEV; if (!sch->schib.pmcw.ena) /* Not operational -> done. */ return 0; /* Stage 1: cancel io. */ if (!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_HALT_PEND) && !(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_CLEAR_PEND)) { if (!scsw_is_tm(&sch->schib.scsw)) { ret = cio_cancel(sch); if (ret != -EINVAL) return ret; } /* * Cancel io unsuccessful or not applicable (transport mode). * Continue with asynchronous instructions. */ *iretry = 3; /* 3 halt retries. */ } /* Stage 2: halt io. */ if (!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_CLEAR_PEND)) { if (*iretry) { *iretry -= 1; ret = cio_halt(sch); if (ret != -EBUSY) return (ret == 0) ? -EBUSY : ret; } /* Halt io unsuccessful. */ *iretry = 255; /* 255 clear retries. */ } /* Stage 3: clear io. */ if (*iretry) { *iretry -= 1; ret = cio_clear(sch); return (ret == 0) ? -EBUSY : ret; } /* Function was unsuccessful */ return -EIO; } EXPORT_SYMBOL_GPL(cio_cancel_halt_clear); static void cio_apply_config(struct subchannel *sch, struct schib *schib) { schib->pmcw.intparm = sch->config.intparm; schib->pmcw.mbi = sch->config.mbi; schib->pmcw.isc = sch->config.isc; schib->pmcw.ena = sch->config.ena; schib->pmcw.mme = sch->config.mme; schib->pmcw.mp = sch->config.mp; schib->pmcw.csense = sch->config.csense; schib->pmcw.mbfc = sch->config.mbfc; if (sch->config.mbfc) schib->mba = sch->config.mba; } static int cio_check_config(struct subchannel *sch, struct schib *schib) { return (schib->pmcw.intparm == sch->config.intparm) && (schib->pmcw.mbi == sch->config.mbi) && (schib->pmcw.isc == sch->config.isc) && (schib->pmcw.ena == sch->config.ena) && (schib->pmcw.mme == sch->config.mme) && (schib->pmcw.mp == sch->config.mp) && (schib->pmcw.csense == sch->config.csense) && (schib->pmcw.mbfc == sch->config.mbfc) && (!sch->config.mbfc || (schib->mba == sch->config.mba)); } /* * cio_commit_config - apply configuration to the subchannel */ int cio_commit_config(struct subchannel *sch) { int ccode, retry, ret = 0; struct schib schib; struct irb irb; if (stsch(sch->schid, &schib) || !css_sch_is_valid(&schib)) return -ENODEV; for (retry = 0; retry < 5; retry++) { /* copy desired changes to local schib */ cio_apply_config(sch, &schib); ccode = msch(sch->schid, &schib); if (ccode < 0) /* -EIO if msch gets a program check. */ return ccode; switch (ccode) { case 0: /* successful */ if (stsch(sch->schid, &schib) || !css_sch_is_valid(&schib)) return -ENODEV; if (cio_check_config(sch, &schib)) { /* commit changes from local schib */ memcpy(&sch->schib, &schib, sizeof(schib)); return 0; } ret = -EAGAIN; break; case 1: /* status pending */ ret = -EBUSY; if (tsch(sch->schid, &irb)) return ret; break; case 2: /* busy */ udelay(100); /* allow for recovery */ ret = -EBUSY; break; case 3: /* not operational */ return -ENODEV; } } return ret; } EXPORT_SYMBOL_GPL(cio_commit_config); /** * cio_update_schib - Perform stsch and update schib if subchannel is valid. * @sch: subchannel on which to perform stsch * Return zero on success, -ENODEV otherwise. */ int cio_update_schib(struct subchannel *sch) { struct schib schib; if (stsch(sch->schid, &schib) || !css_sch_is_valid(&schib)) return -ENODEV; memcpy(&sch->schib, &schib, sizeof(schib)); return 0; } EXPORT_SYMBOL_GPL(cio_update_schib); /** * cio_enable_subchannel - enable a subchannel. * @sch: subchannel to be enabled * @intparm: interruption parameter to set */ int cio_enable_subchannel(struct subchannel *sch, u32 intparm) { int ret; CIO_TRACE_EVENT(2, "ensch"); CIO_TRACE_EVENT(2, dev_name(&sch->dev)); if (sch_is_pseudo_sch(sch)) return -EINVAL; if (cio_update_schib(sch)) return -ENODEV; sch->config.ena = 1; sch->config.isc = sch->isc; sch->config.intparm = intparm; ret = cio_commit_config(sch); if (ret == -EIO) { /* * Got a program check in msch. Try without * the concurrent sense bit the next time. */ sch->config.csense = 0; ret = cio_commit_config(sch); } CIO_HEX_EVENT(2, &ret, sizeof(ret)); return ret; } EXPORT_SYMBOL_GPL(cio_enable_subchannel); /** * cio_disable_subchannel - disable a subchannel. * @sch: subchannel to disable */ int cio_disable_subchannel(struct subchannel *sch) { int ret; CIO_TRACE_EVENT(2, "dissch"); CIO_TRACE_EVENT(2, dev_name(&sch->dev)); if (sch_is_pseudo_sch(sch)) return 0; if (cio_update_schib(sch)) return -ENODEV; sch->config.ena = 0; ret = cio_commit_config(sch); CIO_HEX_EVENT(2, &ret, sizeof(ret)); return ret; } EXPORT_SYMBOL_GPL(cio_disable_subchannel); /* * do_cio_interrupt() handles all normal I/O device IRQ's */ static irqreturn_t do_cio_interrupt(int irq, void *dummy) { struct tpi_info *tpi_info; struct subchannel *sch; struct irb *irb; set_cpu_flag(CIF_NOHZ_DELAY); tpi_info = &get_irq_regs()->tpi_info; trace_s390_cio_interrupt(tpi_info); irb = this_cpu_ptr(&cio_irb); if (!tpi_info->intparm) { /* Clear pending interrupt condition. */ inc_irq_stat(IRQIO_CIO); tsch(tpi_info->schid, irb); return IRQ_HANDLED; } sch = phys_to_virt(tpi_info->intparm); spin_lock(sch->lock); /* Store interrupt response block to lowcore. */ if (tsch(tpi_info->schid, irb) == 0) { /* Keep subchannel information word up to date. */ memcpy (&sch->schib.scsw, &irb->scsw, sizeof (irb->scsw)); /* Call interrupt handler if there is one. */ if (sch->driver && sch->driver->irq) sch->driver->irq(sch); else inc_irq_stat(IRQIO_CIO); } else inc_irq_stat(IRQIO_CIO); spin_unlock(sch->lock); return IRQ_HANDLED; } void __init init_cio_interrupts(void) { irq_set_chip_and_handler(IO_INTERRUPT, &dummy_irq_chip, handle_percpu_irq); if (request_irq(IO_INTERRUPT, do_cio_interrupt, 0, "I/O", NULL)) panic("Failed to register I/O interrupt\n"); } #ifdef CONFIG_CCW_CONSOLE static struct subchannel *console_sch; static struct lock_class_key console_sch_key; /* * Use cio_tsch to update the subchannel status and call the interrupt handler * if status had been pending. Called with the subchannel's lock held. */ void cio_tsch(struct subchannel *sch) { struct irb *irb; int irq_context; irb = this_cpu_ptr(&cio_irb); /* Store interrupt response block to lowcore. */ if (tsch(sch->schid, irb) != 0) /* Not status pending or not operational. */ return; memcpy(&sch->schib.scsw, &irb->scsw, sizeof(union scsw)); /* Call interrupt handler with updated status. */ irq_context = in_interrupt(); if (!irq_context) { local_bh_disable(); irq_enter(); } kstat_incr_irq_this_cpu(IO_INTERRUPT); if (sch->driver && sch->driver->irq) sch->driver->irq(sch); else inc_irq_stat(IRQIO_CIO); if (!irq_context) { irq_exit(); _local_bh_enable(); } } static int cio_test_for_console(struct subchannel_id schid, void *data) { struct schib schib; if (stsch(schid, &schib) != 0) return -ENXIO; if ((schib.pmcw.st == SUBCHANNEL_TYPE_IO) && schib.pmcw.dnv && (schib.pmcw.dev == console_devno)) { console_irq = schid.sch_no; return 1; /* found */ } return 0; } static int cio_get_console_sch_no(void) { struct subchannel_id schid; struct schib schib; init_subchannel_id(&schid); if (console_irq != -1) { /* VM provided us with the irq number of the console. */ schid.sch_no = console_irq; if (stsch(schid, &schib) != 0 || (schib.pmcw.st != SUBCHANNEL_TYPE_IO) || !schib.pmcw.dnv) return -1; console_devno = schib.pmcw.dev; } else if (console_devno != -1) { /* At least the console device number is known. */ for_each_subchannel(cio_test_for_console, NULL); } return console_irq; } struct subchannel *cio_probe_console(void) { struct subchannel_id schid; struct subchannel *sch; struct schib schib; int sch_no, ret; sch_no = cio_get_console_sch_no(); if (sch_no == -1) { pr_warn("No CCW console was found\n"); return ERR_PTR(-ENODEV); } init_subchannel_id(&schid); schid.sch_no = sch_no; ret = stsch(schid, &schib); if (ret) return ERR_PTR(-ENODEV); sch = css_alloc_subchannel(schid, &schib); if (IS_ERR(sch)) return sch; lockdep_set_class(sch->lock, &console_sch_key); isc_register(CONSOLE_ISC); sch->config.isc = CONSOLE_ISC; sch->config.intparm = (u32)virt_to_phys(sch); ret = cio_commit_config(sch); if (ret) { isc_unregister(CONSOLE_ISC); put_device(&sch->dev); return ERR_PTR(ret); } console_sch = sch; return sch; } int cio_is_console(struct subchannel_id schid) { if (!console_sch) return 0; return schid_equal(&schid, &console_sch->schid); } void cio_register_early_subchannels(void) { int ret; if (!console_sch) return; ret = css_register_subchannel(console_sch); if (ret) put_device(&console_sch->dev); } #endif /* CONFIG_CCW_CONSOLE */ /** * cio_tm_start_key - perform start function * @sch: subchannel on which to perform the start function * @tcw: transport-command word to be started * @lpm: mask of paths to use * @key: storage key to use for storage access * * Start the tcw on the given subchannel. Return zero on success, non-zero * otherwise. */ int cio_tm_start_key(struct subchannel *sch, struct tcw *tcw, u8 lpm, u8 key) { int cc; union orb *orb = &to_io_private(sch)->orb; memset(orb, 0, sizeof(union orb)); orb->tm.intparm = (u32)virt_to_phys(sch); orb->tm.key = key >> 4; orb->tm.b = 1; orb->tm.lpm = lpm ? lpm : sch->lpm; orb->tm.tcw = (u32)virt_to_phys(tcw); cc = ssch(sch->schid, orb); switch (cc) { case 0: return 0; case 1: case 2: return -EBUSY; default: return cio_start_handle_notoper(sch, lpm); } } EXPORT_SYMBOL_GPL(cio_tm_start_key); /** * cio_tm_intrg - perform interrogate function * @sch: subchannel on which to perform the interrogate function * * If the specified subchannel is running in transport-mode, perform the * interrogate function. Return zero on success, non-zero otherwie. */ int cio_tm_intrg(struct subchannel *sch) { int cc; if (!to_io_private(sch)->orb.tm.b) return -EINVAL; cc = xsch(sch->schid); switch (cc) { case 0: case 2: return 0; case 1: return -EBUSY; default: return -ENODEV; } } EXPORT_SYMBOL_GPL(cio_tm_intrg);
linux-master
drivers/s390/cio/cio.c
// SPDX-License-Identifier: GPL-2.0 /* * Functions for incremental construction of fcx enabled I/O control blocks. * * Copyright IBM Corp. 2008 * Author(s): Peter Oberparleiter <[email protected]> */ #include <linux/kernel.h> #include <linux/types.h> #include <linux/string.h> #include <linux/io.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/module.h> #include <asm/fcx.h> #include <asm/itcw.h> /* * struct itcw - incremental tcw helper data type * * This structure serves as a handle for the incremental construction of a * tcw and associated tccb, tsb, data tidaw-list plus an optional interrogate * tcw and associated data. The data structures are contained inside a single * contiguous buffer provided by the user. * * The itcw construction functions take care of overall data integrity: * - reset unused fields to zero * - fill in required pointers * - ensure required alignment for data structures * - prevent data structures to cross 4k-byte boundary where required * - calculate tccb-related length fields * - optionally provide ready-made interrogate tcw and associated structures * * Restrictions apply to the itcws created with these construction functions: * - tida only supported for data address, not for tccb * - only contiguous tidaw-lists (no ttic) * - total number of bytes required per itcw may not exceed 4k bytes * - either read or write operation (may not work with r=0 and w=0) * * Example: * struct itcw *itcw; * void *buffer; * size_t size; * * size = itcw_calc_size(1, 2, 0); * buffer = kmalloc(size, GFP_KERNEL | GFP_DMA); * if (!buffer) * return -ENOMEM; * itcw = itcw_init(buffer, size, ITCW_OP_READ, 1, 2, 0); * if (IS_ERR(itcw)) * return PTR_ER(itcw); * itcw_add_dcw(itcw, 0x2, 0, NULL, 0, 72); * itcw_add_tidaw(itcw, 0, 0x30000, 20); * itcw_add_tidaw(itcw, 0, 0x40000, 52); * itcw_finalize(itcw); * */ struct itcw { struct tcw *tcw; struct tcw *intrg_tcw; int num_tidaws; int max_tidaws; int intrg_num_tidaws; int intrg_max_tidaws; }; /** * itcw_get_tcw - return pointer to tcw associated with the itcw * @itcw: address of the itcw * * Return pointer to the tcw associated with the itcw. */ struct tcw *itcw_get_tcw(struct itcw *itcw) { return itcw->tcw; } EXPORT_SYMBOL(itcw_get_tcw); /** * itcw_calc_size - return the size of an itcw with the given parameters * @intrg: if non-zero, add an interrogate tcw * @max_tidaws: maximum number of tidaws to be used for data addressing or zero * if no tida is to be used. * @intrg_max_tidaws: maximum number of tidaws to be used for data addressing * by the interrogate tcw, if specified * * Calculate and return the number of bytes required to hold an itcw with the * given parameters and assuming tccbs with maximum size. * * Note that the resulting size also contains bytes needed for alignment * padding as well as padding to ensure that data structures don't cross a * 4k-boundary where required. */ size_t itcw_calc_size(int intrg, int max_tidaws, int intrg_max_tidaws) { size_t len; int cross_count; /* Main data. */ len = sizeof(struct itcw); len += /* TCW */ sizeof(struct tcw) + /* TCCB */ TCCB_MAX_SIZE + /* TSB */ sizeof(struct tsb) + /* TIDAL */ max_tidaws * sizeof(struct tidaw); /* Interrogate data. */ if (intrg) { len += /* TCW */ sizeof(struct tcw) + /* TCCB */ TCCB_MAX_SIZE + /* TSB */ sizeof(struct tsb) + /* TIDAL */ intrg_max_tidaws * sizeof(struct tidaw); } /* Maximum required alignment padding. */ len += /* Initial TCW */ 63 + /* Interrogate TCCB */ 7; /* TIDAW lists may not cross a 4k boundary. To cross a * boundary we need to add a TTIC TIDAW. We need to reserve * one additional TIDAW for a TTIC that we may need to add due * to the placement of the data chunk in memory, and a further * TIDAW for each page boundary that the TIDAW list may cross * due to it's own size. */ if (max_tidaws) { cross_count = 1 + ((max_tidaws * sizeof(struct tidaw) - 1) >> PAGE_SHIFT); len += cross_count * sizeof(struct tidaw); } if (intrg_max_tidaws) { cross_count = 1 + ((intrg_max_tidaws * sizeof(struct tidaw) - 1) >> PAGE_SHIFT); len += cross_count * sizeof(struct tidaw); } return len; } EXPORT_SYMBOL(itcw_calc_size); #define CROSS4K(x, l) (((x) & ~4095) != ((x + l) & ~4095)) static inline void *fit_chunk(addr_t *start, addr_t end, size_t len, int align, int check_4k) { addr_t addr; addr = ALIGN(*start, align); if (check_4k && CROSS4K(addr, len)) { addr = ALIGN(addr, 4096); addr = ALIGN(addr, align); } if (addr + len > end) return ERR_PTR(-ENOSPC); *start = addr + len; return (void *) addr; } /** * itcw_init - initialize incremental tcw data structure * @buffer: address of buffer to use for data structures * @size: number of bytes in buffer * @op: %ITCW_OP_READ for a read operation tcw, %ITCW_OP_WRITE for a write * operation tcw * @intrg: if non-zero, add and initialize an interrogate tcw * @max_tidaws: maximum number of tidaws to be used for data addressing or zero * if no tida is to be used. * @intrg_max_tidaws: maximum number of tidaws to be used for data addressing * by the interrogate tcw, if specified * * Prepare the specified buffer to be used as an incremental tcw, i.e. a * helper data structure that can be used to construct a valid tcw by * successive calls to other helper functions. Note: the buffer needs to be * located below the 2G address limit. The resulting tcw has the following * restrictions: * - no tccb tidal * - input/output tidal is contiguous (no ttic) * - total data should not exceed 4k * - tcw specifies either read or write operation * * On success, return pointer to the resulting incremental tcw data structure, * ERR_PTR otherwise. */ struct itcw *itcw_init(void *buffer, size_t size, int op, int intrg, int max_tidaws, int intrg_max_tidaws) { struct itcw *itcw; void *chunk; addr_t start; addr_t end; int cross_count; /* Check for 2G limit. */ start = (addr_t) buffer; end = start + size; if ((virt_to_phys(buffer) + size) > (1 << 31)) return ERR_PTR(-EINVAL); memset(buffer, 0, size); /* ITCW. */ chunk = fit_chunk(&start, end, sizeof(struct itcw), 1, 0); if (IS_ERR(chunk)) return chunk; itcw = chunk; /* allow for TTIC tidaws that may be needed to cross a page boundary */ cross_count = 0; if (max_tidaws) cross_count = 1 + ((max_tidaws * sizeof(struct tidaw) - 1) >> PAGE_SHIFT); itcw->max_tidaws = max_tidaws + cross_count; cross_count = 0; if (intrg_max_tidaws) cross_count = 1 + ((intrg_max_tidaws * sizeof(struct tidaw) - 1) >> PAGE_SHIFT); itcw->intrg_max_tidaws = intrg_max_tidaws + cross_count; /* Main TCW. */ chunk = fit_chunk(&start, end, sizeof(struct tcw), 64, 0); if (IS_ERR(chunk)) return chunk; itcw->tcw = chunk; tcw_init(itcw->tcw, (op == ITCW_OP_READ) ? 1 : 0, (op == ITCW_OP_WRITE) ? 1 : 0); /* Interrogate TCW. */ if (intrg) { chunk = fit_chunk(&start, end, sizeof(struct tcw), 64, 0); if (IS_ERR(chunk)) return chunk; itcw->intrg_tcw = chunk; tcw_init(itcw->intrg_tcw, 1, 0); tcw_set_intrg(itcw->tcw, itcw->intrg_tcw); } /* Data TIDAL. */ if (max_tidaws > 0) { chunk = fit_chunk(&start, end, sizeof(struct tidaw) * itcw->max_tidaws, 16, 0); if (IS_ERR(chunk)) return chunk; tcw_set_data(itcw->tcw, chunk, 1); } /* Interrogate data TIDAL. */ if (intrg && (intrg_max_tidaws > 0)) { chunk = fit_chunk(&start, end, sizeof(struct tidaw) * itcw->intrg_max_tidaws, 16, 0); if (IS_ERR(chunk)) return chunk; tcw_set_data(itcw->intrg_tcw, chunk, 1); } /* TSB. */ chunk = fit_chunk(&start, end, sizeof(struct tsb), 8, 0); if (IS_ERR(chunk)) return chunk; tsb_init(chunk); tcw_set_tsb(itcw->tcw, chunk); /* Interrogate TSB. */ if (intrg) { chunk = fit_chunk(&start, end, sizeof(struct tsb), 8, 0); if (IS_ERR(chunk)) return chunk; tsb_init(chunk); tcw_set_tsb(itcw->intrg_tcw, chunk); } /* TCCB. */ chunk = fit_chunk(&start, end, TCCB_MAX_SIZE, 8, 0); if (IS_ERR(chunk)) return chunk; tccb_init(chunk, TCCB_MAX_SIZE, TCCB_SAC_DEFAULT); tcw_set_tccb(itcw->tcw, chunk); /* Interrogate TCCB. */ if (intrg) { chunk = fit_chunk(&start, end, TCCB_MAX_SIZE, 8, 0); if (IS_ERR(chunk)) return chunk; tccb_init(chunk, TCCB_MAX_SIZE, TCCB_SAC_INTRG); tcw_set_tccb(itcw->intrg_tcw, chunk); tccb_add_dcw(chunk, TCCB_MAX_SIZE, DCW_CMD_INTRG, 0, NULL, sizeof(struct dcw_intrg_data), 0); tcw_finalize(itcw->intrg_tcw, 0); } return itcw; } EXPORT_SYMBOL(itcw_init); /** * itcw_add_dcw - add a dcw to the itcw * @itcw: address of the itcw * @cmd: the dcw command * @flags: flags for the dcw * @cd: address of control data for this dcw or NULL if none is required * @cd_count: number of control data bytes for this dcw * @count: number of data bytes for this dcw * * Add a new dcw to the specified itcw by writing the dcw information specified * by @cmd, @flags, @cd, @cd_count and @count to the tca of the tccb. Return * a pointer to the newly added dcw on success or -%ENOSPC if the new dcw * would exceed the available space. * * Note: the tcal field of the tccb header will be updated to reflect added * content. */ struct dcw *itcw_add_dcw(struct itcw *itcw, u8 cmd, u8 flags, void *cd, u8 cd_count, u32 count) { return tccb_add_dcw(tcw_get_tccb(itcw->tcw), TCCB_MAX_SIZE, cmd, flags, cd, cd_count, count); } EXPORT_SYMBOL(itcw_add_dcw); /** * itcw_add_tidaw - add a tidaw to the itcw * @itcw: address of the itcw * @flags: flags for the new tidaw * @addr: address value for the new tidaw * @count: count value for the new tidaw * * Add a new tidaw to the input/output data tidaw-list of the specified itcw * (depending on the value of the r-flag and w-flag). Return a pointer to * the new tidaw on success or -%ENOSPC if the new tidaw would exceed the * available space. * * Note: TTIC tidaws are automatically added when needed, so explicitly calling * this interface with the TTIC flag is not supported. The last-tidaw flag * for the last tidaw in the list will be set by itcw_finalize. */ struct tidaw *itcw_add_tidaw(struct itcw *itcw, u8 flags, void *addr, u32 count) { struct tidaw *following; if (itcw->num_tidaws >= itcw->max_tidaws) return ERR_PTR(-ENOSPC); /* * Is the tidaw, which follows the one we are about to fill, on the next * page? Then we have to insert a TTIC tidaw first, that points to the * tidaw on the new page. */ following = ((struct tidaw *) tcw_get_data(itcw->tcw)) + itcw->num_tidaws + 1; if (itcw->num_tidaws && !((unsigned long) following & ~PAGE_MASK)) { tcw_add_tidaw(itcw->tcw, itcw->num_tidaws++, TIDAW_FLAGS_TTIC, following, 0); if (itcw->num_tidaws >= itcw->max_tidaws) return ERR_PTR(-ENOSPC); } return tcw_add_tidaw(itcw->tcw, itcw->num_tidaws++, flags, addr, count); } EXPORT_SYMBOL(itcw_add_tidaw); /** * itcw_set_data - set data address and tida flag of the itcw * @itcw: address of the itcw * @addr: the data address * @use_tidal: zero of the data address specifies a contiguous block of data, * non-zero if it specifies a list if tidaws. * * Set the input/output data address of the itcw (depending on the value of the * r-flag and w-flag). If @use_tidal is non-zero, the corresponding tida flag * is set as well. */ void itcw_set_data(struct itcw *itcw, void *addr, int use_tidal) { tcw_set_data(itcw->tcw, addr, use_tidal); } EXPORT_SYMBOL(itcw_set_data); /** * itcw_finalize - calculate length and count fields of the itcw * @itcw: address of the itcw * * Calculate tcw input-/output-count and tccbl fields and add a tcat the tccb. * In case input- or output-tida is used, the tidaw-list must be stored in * continuous storage (no ttic). The tcal field in the tccb must be * up-to-date. */ void itcw_finalize(struct itcw *itcw) { tcw_finalize(itcw->tcw, itcw->num_tidaws); } EXPORT_SYMBOL(itcw_finalize);
linux-master
drivers/s390/cio/itcw.c
// SPDX-License-Identifier: GPL-2.0 /* * Channel path related status regions for vfio_ccw * * Copyright IBM Corp. 2020 * * Author(s): Farhan Ali <[email protected]> * Eric Farman <[email protected]> */ #include <linux/slab.h> #include <linux/vfio.h> #include "vfio_ccw_private.h" static ssize_t vfio_ccw_schib_region_read(struct vfio_ccw_private *private, char __user *buf, size_t count, loff_t *ppos) { struct subchannel *sch = to_subchannel(private->vdev.dev->parent); unsigned int i = VFIO_CCW_OFFSET_TO_INDEX(*ppos) - VFIO_CCW_NUM_REGIONS; loff_t pos = *ppos & VFIO_CCW_OFFSET_MASK; struct ccw_schib_region *region; int ret; if (pos + count > sizeof(*region)) return -EINVAL; mutex_lock(&private->io_mutex); region = private->region[i].data; if (cio_update_schib(sch)) { ret = -ENODEV; goto out; } memcpy(region, &sch->schib, sizeof(*region)); if (copy_to_user(buf, (void *)region + pos, count)) { ret = -EFAULT; goto out; } ret = count; out: mutex_unlock(&private->io_mutex); return ret; } static ssize_t vfio_ccw_schib_region_write(struct vfio_ccw_private *private, const char __user *buf, size_t count, loff_t *ppos) { return -EINVAL; } static void vfio_ccw_schib_region_release(struct vfio_ccw_private *private, struct vfio_ccw_region *region) { } static const struct vfio_ccw_regops vfio_ccw_schib_region_ops = { .read = vfio_ccw_schib_region_read, .write = vfio_ccw_schib_region_write, .release = vfio_ccw_schib_region_release, }; int vfio_ccw_register_schib_dev_regions(struct vfio_ccw_private *private) { return vfio_ccw_register_dev_region(private, VFIO_REGION_SUBTYPE_CCW_SCHIB, &vfio_ccw_schib_region_ops, sizeof(struct ccw_schib_region), VFIO_REGION_INFO_FLAG_READ, private->schib_region); } static ssize_t vfio_ccw_crw_region_read(struct vfio_ccw_private *private, char __user *buf, size_t count, loff_t *ppos) { unsigned int i = VFIO_CCW_OFFSET_TO_INDEX(*ppos) - VFIO_CCW_NUM_REGIONS; loff_t pos = *ppos & VFIO_CCW_OFFSET_MASK; struct ccw_crw_region *region; struct vfio_ccw_crw *crw; int ret; if (pos + count > sizeof(*region)) return -EINVAL; crw = list_first_entry_or_null(&private->crw, struct vfio_ccw_crw, next); if (crw) list_del(&crw->next); mutex_lock(&private->io_mutex); region = private->region[i].data; if (crw) memcpy(&region->crw, &crw->crw, sizeof(region->crw)); if (copy_to_user(buf, (void *)region + pos, count)) ret = -EFAULT; else ret = count; region->crw = 0; mutex_unlock(&private->io_mutex); kfree(crw); /* Notify the guest if more CRWs are on our queue */ if (!list_empty(&private->crw) && private->crw_trigger) eventfd_signal(private->crw_trigger, 1); return ret; } static ssize_t vfio_ccw_crw_region_write(struct vfio_ccw_private *private, const char __user *buf, size_t count, loff_t *ppos) { return -EINVAL; } static void vfio_ccw_crw_region_release(struct vfio_ccw_private *private, struct vfio_ccw_region *region) { } static const struct vfio_ccw_regops vfio_ccw_crw_region_ops = { .read = vfio_ccw_crw_region_read, .write = vfio_ccw_crw_region_write, .release = vfio_ccw_crw_region_release, }; int vfio_ccw_register_crw_dev_regions(struct vfio_ccw_private *private) { return vfio_ccw_register_dev_region(private, VFIO_REGION_SUBTYPE_CCW_CRW, &vfio_ccw_crw_region_ops, sizeof(struct ccw_crw_region), VFIO_REGION_INFO_FLAG_READ, private->crw_region); }
linux-master
drivers/s390/cio/vfio_ccw_chp.c
// SPDX-License-Identifier: GPL-2.0 /* * Channel subsystem I/O instructions. */ #include <linux/export.h> #include <asm/asm-extable.h> #include <asm/chpid.h> #include <asm/schid.h> #include <asm/crw.h> #include "ioasm.h" #include "orb.h" #include "cio.h" #include "cio_inject.h" static inline int __stsch(struct subchannel_id schid, struct schib *addr) { unsigned long r1 = *(unsigned int *)&schid; int ccode = -EIO; asm volatile( " lgr 1,%[r1]\n" " stsch %[addr]\n" "0: ipm %[cc]\n" " srl %[cc],28\n" "1:\n" EX_TABLE(0b, 1b) : [cc] "+&d" (ccode), [addr] "=Q" (*addr) : [r1] "d" (r1) : "cc", "1"); return ccode; } int stsch(struct subchannel_id schid, struct schib *addr) { int ccode; ccode = __stsch(schid, addr); trace_s390_cio_stsch(schid, addr, ccode); return ccode; } EXPORT_SYMBOL(stsch); static inline int __msch(struct subchannel_id schid, struct schib *addr) { unsigned long r1 = *(unsigned int *)&schid; int ccode = -EIO; asm volatile( " lgr 1,%[r1]\n" " msch %[addr]\n" "0: ipm %[cc]\n" " srl %[cc],28\n" "1:\n" EX_TABLE(0b, 1b) : [cc] "+&d" (ccode) : [r1] "d" (r1), [addr] "Q" (*addr) : "cc", "1"); return ccode; } int msch(struct subchannel_id schid, struct schib *addr) { int ccode; ccode = __msch(schid, addr); trace_s390_cio_msch(schid, addr, ccode); return ccode; } static inline int __tsch(struct subchannel_id schid, struct irb *addr) { unsigned long r1 = *(unsigned int *)&schid; int ccode; asm volatile( " lgr 1,%[r1]\n" " tsch %[addr]\n" " ipm %[cc]\n" " srl %[cc],28" : [cc] "=&d" (ccode), [addr] "=Q" (*addr) : [r1] "d" (r1) : "cc", "1"); return ccode; } int tsch(struct subchannel_id schid, struct irb *addr) { int ccode; ccode = __tsch(schid, addr); trace_s390_cio_tsch(schid, addr, ccode); return ccode; } static inline int __ssch(struct subchannel_id schid, union orb *addr) { unsigned long r1 = *(unsigned int *)&schid; int ccode = -EIO; asm volatile( " lgr 1,%[r1]\n" " ssch %[addr]\n" "0: ipm %[cc]\n" " srl %[cc],28\n" "1:\n" EX_TABLE(0b, 1b) : [cc] "+&d" (ccode) : [r1] "d" (r1), [addr] "Q" (*addr) : "cc", "memory", "1"); return ccode; } int ssch(struct subchannel_id schid, union orb *addr) { int ccode; ccode = __ssch(schid, addr); trace_s390_cio_ssch(schid, addr, ccode); return ccode; } EXPORT_SYMBOL(ssch); static inline int __csch(struct subchannel_id schid) { unsigned long r1 = *(unsigned int *)&schid; int ccode; asm volatile( " lgr 1,%[r1]\n" " csch\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (ccode) : [r1] "d" (r1) : "cc", "1"); return ccode; } int csch(struct subchannel_id schid) { int ccode; ccode = __csch(schid); trace_s390_cio_csch(schid, ccode); return ccode; } EXPORT_SYMBOL(csch); int tpi(struct tpi_info *addr) { int ccode; asm volatile( " tpi %[addr]\n" " ipm %[cc]\n" " srl %[cc],28" : [cc] "=&d" (ccode), [addr] "=Q" (*addr) : : "cc"); trace_s390_cio_tpi(addr, ccode); return ccode; } int chsc(void *chsc_area) { typedef struct { char _[4096]; } addr_type; int cc = -EIO; asm volatile( " .insn rre,0xb25f0000,%[chsc_area],0\n" "0: ipm %[cc]\n" " srl %[cc],28\n" "1:\n" EX_TABLE(0b, 1b) : [cc] "+&d" (cc), "+m" (*(addr_type *)chsc_area) : [chsc_area] "d" (chsc_area) : "cc"); trace_s390_cio_chsc(chsc_area, cc); return cc; } EXPORT_SYMBOL(chsc); static inline int __rsch(struct subchannel_id schid) { unsigned long r1 = *(unsigned int *)&schid; int ccode; asm volatile( " lgr 1,%[r1]\n" " rsch\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (ccode) : [r1] "d" (r1) : "cc", "memory", "1"); return ccode; } int rsch(struct subchannel_id schid) { int ccode; ccode = __rsch(schid); trace_s390_cio_rsch(schid, ccode); return ccode; } static inline int __hsch(struct subchannel_id schid) { unsigned long r1 = *(unsigned int *)&schid; int ccode; asm volatile( " lgr 1,%[r1]\n" " hsch\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (ccode) : [r1] "d" (r1) : "cc", "1"); return ccode; } int hsch(struct subchannel_id schid) { int ccode; ccode = __hsch(schid); trace_s390_cio_hsch(schid, ccode); return ccode; } EXPORT_SYMBOL(hsch); static inline int __xsch(struct subchannel_id schid) { unsigned long r1 = *(unsigned int *)&schid; int ccode; asm volatile( " lgr 1,%[r1]\n" " xsch\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (ccode) : [r1] "d" (r1) : "cc", "1"); return ccode; } int xsch(struct subchannel_id schid) { int ccode; ccode = __xsch(schid); trace_s390_cio_xsch(schid, ccode); return ccode; } static inline int __stcrw(struct crw *crw) { int ccode; asm volatile( " stcrw %[crw]\n" " ipm %[cc]\n" " srl %[cc],28\n" : [cc] "=&d" (ccode), [crw] "=Q" (*crw) : : "cc"); return ccode; } static inline int _stcrw(struct crw *crw) { #ifdef CONFIG_CIO_INJECT if (static_branch_unlikely(&cio_inject_enabled)) { if (stcrw_get_injected(crw) == 0) return 0; } #endif return __stcrw(crw); } int stcrw(struct crw *crw) { int ccode; ccode = _stcrw(crw); trace_s390_cio_stcrw(crw, ccode); return ccode; }
linux-master
drivers/s390/cio/ioasm.c
// SPDX-License-Identifier: GPL-1.0+ /* * bus driver for ccw devices * * Copyright IBM Corp. 2002, 2008 * Author(s): Arnd Bergmann ([email protected]) * Cornelia Huck ([email protected]) * Martin Schwidefsky ([email protected]) */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/export.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/errno.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/device.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/timer.h> #include <linux/kernel_stat.h> #include <linux/sched/signal.h> #include <linux/dma-mapping.h> #include <asm/ccwdev.h> #include <asm/cio.h> #include <asm/param.h> /* HZ */ #include <asm/cmb.h> #include <asm/isc.h> #include "chp.h" #include "cio.h" #include "cio_debug.h" #include "css.h" #include "device.h" #include "ioasm.h" #include "io_sch.h" #include "blacklist.h" #include "chsc.h" static struct timer_list recovery_timer; static DEFINE_SPINLOCK(recovery_lock); static int recovery_phase; static const unsigned long recovery_delay[] = { 3, 30, 300 }; static atomic_t ccw_device_init_count = ATOMIC_INIT(0); static DECLARE_WAIT_QUEUE_HEAD(ccw_device_init_wq); static struct bus_type ccw_bus_type; /******************* bus type handling ***********************/ /* The Linux driver model distinguishes between a bus type and * the bus itself. Of course we only have one channel * subsystem driver and one channel system per machine, but * we still use the abstraction. T.R. says it's a good idea. */ static int ccw_bus_match (struct device * dev, struct device_driver * drv) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_driver *cdrv = to_ccwdrv(drv); const struct ccw_device_id *ids = cdrv->ids, *found; if (!ids) return 0; found = ccw_device_id_match(ids, &cdev->id); if (!found) return 0; cdev->id.driver_info = found->driver_info; return 1; } /* Store modalias string delimited by prefix/suffix string into buffer with * specified size. Return length of resulting string (excluding trailing '\0') * even if string doesn't fit buffer (snprintf semantics). */ static int snprint_alias(char *buf, size_t size, const struct ccw_device_id *id, const char *suffix) { int len; len = snprintf(buf, size, "ccw:t%04Xm%02X", id->cu_type, id->cu_model); if (len > size) return len; buf += len; size -= len; if (id->dev_type != 0) len += snprintf(buf, size, "dt%04Xdm%02X%s", id->dev_type, id->dev_model, suffix); else len += snprintf(buf, size, "dtdm%s", suffix); return len; } /* Set up environment variables for ccw device uevent. Return 0 on success, * non-zero otherwise. */ static int ccw_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct ccw_device *cdev = to_ccwdev(dev); const struct ccw_device_id *id = &(cdev->id); int ret; char modalias_buf[30]; /* CU_TYPE= */ ret = add_uevent_var(env, "CU_TYPE=%04X", id->cu_type); if (ret) return ret; /* CU_MODEL= */ ret = add_uevent_var(env, "CU_MODEL=%02X", id->cu_model); if (ret) return ret; /* The next two can be zero, that's ok for us */ /* DEV_TYPE= */ ret = add_uevent_var(env, "DEV_TYPE=%04X", id->dev_type); if (ret) return ret; /* DEV_MODEL= */ ret = add_uevent_var(env, "DEV_MODEL=%02X", id->dev_model); if (ret) return ret; /* MODALIAS= */ snprint_alias(modalias_buf, sizeof(modalias_buf), id, ""); ret = add_uevent_var(env, "MODALIAS=%s", modalias_buf); return ret; } static void io_subchannel_irq(struct subchannel *); static int io_subchannel_probe(struct subchannel *); static void io_subchannel_remove(struct subchannel *); static void io_subchannel_shutdown(struct subchannel *); static int io_subchannel_sch_event(struct subchannel *, int); static int io_subchannel_chp_event(struct subchannel *, struct chp_link *, int); static void recovery_func(struct timer_list *unused); static struct css_device_id io_subchannel_ids[] = { { .match_flags = 0x1, .type = SUBCHANNEL_TYPE_IO, }, { /* end of list */ }, }; static int io_subchannel_settle(void) { int ret; ret = wait_event_interruptible(ccw_device_init_wq, atomic_read(&ccw_device_init_count) == 0); if (ret) return -EINTR; flush_workqueue(cio_work_q); return 0; } static struct css_driver io_subchannel_driver = { .drv = { .owner = THIS_MODULE, .name = "io_subchannel", }, .subchannel_type = io_subchannel_ids, .irq = io_subchannel_irq, .sch_event = io_subchannel_sch_event, .chp_event = io_subchannel_chp_event, .probe = io_subchannel_probe, .remove = io_subchannel_remove, .shutdown = io_subchannel_shutdown, .settle = io_subchannel_settle, }; int __init io_subchannel_init(void) { int ret; timer_setup(&recovery_timer, recovery_func, 0); ret = bus_register(&ccw_bus_type); if (ret) return ret; ret = css_driver_register(&io_subchannel_driver); if (ret) bus_unregister(&ccw_bus_type); return ret; } /************************ device handling **************************/ static ssize_t devtype_show (struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_device_id *id = &(cdev->id); if (id->dev_type != 0) return sprintf(buf, "%04x/%02x\n", id->dev_type, id->dev_model); else return sprintf(buf, "n/a\n"); } static ssize_t cutype_show (struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_device_id *id = &(cdev->id); return sprintf(buf, "%04x/%02x\n", id->cu_type, id->cu_model); } static ssize_t modalias_show (struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_device_id *id = &(cdev->id); int len; len = snprint_alias(buf, PAGE_SIZE, id, "\n"); return len > PAGE_SIZE ? PAGE_SIZE : len; } static ssize_t online_show (struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); return sprintf(buf, cdev->online ? "1\n" : "0\n"); } int ccw_device_is_orphan(struct ccw_device *cdev) { return sch_is_pseudo_sch(to_subchannel(cdev->dev.parent)); } static void ccw_device_unregister(struct ccw_device *cdev) { mutex_lock(&cdev->reg_mutex); if (device_is_registered(&cdev->dev)) { /* Undo device_add(). */ device_del(&cdev->dev); } mutex_unlock(&cdev->reg_mutex); if (cdev->private->flags.initialized) { cdev->private->flags.initialized = 0; /* Release reference from device_initialize(). */ put_device(&cdev->dev); } } static void io_subchannel_quiesce(struct subchannel *); /** * ccw_device_set_offline() - disable a ccw device for I/O * @cdev: target ccw device * * This function calls the driver's set_offline() function for @cdev, if * given, and then disables @cdev. * Returns: * %0 on success and a negative error value on failure. * Context: * enabled, ccw device lock not held */ int ccw_device_set_offline(struct ccw_device *cdev) { struct subchannel *sch; int ret, state; if (!cdev) return -ENODEV; if (!cdev->online || !cdev->drv) return -EINVAL; if (cdev->drv->set_offline) { ret = cdev->drv->set_offline(cdev); if (ret != 0) return ret; } spin_lock_irq(cdev->ccwlock); sch = to_subchannel(cdev->dev.parent); cdev->online = 0; /* Wait until a final state or DISCONNECTED is reached */ while (!dev_fsm_final_state(cdev) && cdev->private->state != DEV_STATE_DISCONNECTED) { spin_unlock_irq(cdev->ccwlock); wait_event(cdev->private->wait_q, (dev_fsm_final_state(cdev) || cdev->private->state == DEV_STATE_DISCONNECTED)); spin_lock_irq(cdev->ccwlock); } do { ret = ccw_device_offline(cdev); if (!ret) break; CIO_MSG_EVENT(0, "ccw_device_offline returned %d, device " "0.%x.%04x\n", ret, cdev->private->dev_id.ssid, cdev->private->dev_id.devno); if (ret != -EBUSY) goto error; state = cdev->private->state; spin_unlock_irq(cdev->ccwlock); io_subchannel_quiesce(sch); spin_lock_irq(cdev->ccwlock); cdev->private->state = state; } while (ret == -EBUSY); spin_unlock_irq(cdev->ccwlock); wait_event(cdev->private->wait_q, (dev_fsm_final_state(cdev) || cdev->private->state == DEV_STATE_DISCONNECTED)); /* Inform the user if set offline failed. */ if (cdev->private->state == DEV_STATE_BOXED) { pr_warn("%s: The device entered boxed state while being set offline\n", dev_name(&cdev->dev)); } else if (cdev->private->state == DEV_STATE_NOT_OPER) { pr_warn("%s: The device stopped operating while being set offline\n", dev_name(&cdev->dev)); } /* Give up reference from ccw_device_set_online(). */ put_device(&cdev->dev); return 0; error: cdev->private->state = DEV_STATE_OFFLINE; dev_fsm_event(cdev, DEV_EVENT_NOTOPER); spin_unlock_irq(cdev->ccwlock); /* Give up reference from ccw_device_set_online(). */ put_device(&cdev->dev); return -ENODEV; } /** * ccw_device_set_online() - enable a ccw device for I/O * @cdev: target ccw device * * This function first enables @cdev and then calls the driver's set_online() * function for @cdev, if given. If set_online() returns an error, @cdev is * disabled again. * Returns: * %0 on success and a negative error value on failure. * Context: * enabled, ccw device lock not held */ int ccw_device_set_online(struct ccw_device *cdev) { int ret; int ret2; if (!cdev) return -ENODEV; if (cdev->online || !cdev->drv) return -EINVAL; /* Hold on to an extra reference while device is online. */ if (!get_device(&cdev->dev)) return -ENODEV; spin_lock_irq(cdev->ccwlock); ret = ccw_device_online(cdev); spin_unlock_irq(cdev->ccwlock); if (ret == 0) wait_event(cdev->private->wait_q, dev_fsm_final_state(cdev)); else { CIO_MSG_EVENT(0, "ccw_device_online returned %d, " "device 0.%x.%04x\n", ret, cdev->private->dev_id.ssid, cdev->private->dev_id.devno); /* Give up online reference since onlining failed. */ put_device(&cdev->dev); return ret; } spin_lock_irq(cdev->ccwlock); /* Check if online processing was successful */ if ((cdev->private->state != DEV_STATE_ONLINE) && (cdev->private->state != DEV_STATE_W4SENSE)) { spin_unlock_irq(cdev->ccwlock); /* Inform the user that set online failed. */ if (cdev->private->state == DEV_STATE_BOXED) { pr_warn("%s: Setting the device online failed because it is boxed\n", dev_name(&cdev->dev)); } else if (cdev->private->state == DEV_STATE_NOT_OPER) { pr_warn("%s: Setting the device online failed because it is not operational\n", dev_name(&cdev->dev)); } /* Give up online reference since onlining failed. */ put_device(&cdev->dev); return -ENODEV; } spin_unlock_irq(cdev->ccwlock); if (cdev->drv->set_online) ret = cdev->drv->set_online(cdev); if (ret) goto rollback; spin_lock_irq(cdev->ccwlock); cdev->online = 1; spin_unlock_irq(cdev->ccwlock); return 0; rollback: spin_lock_irq(cdev->ccwlock); /* Wait until a final state or DISCONNECTED is reached */ while (!dev_fsm_final_state(cdev) && cdev->private->state != DEV_STATE_DISCONNECTED) { spin_unlock_irq(cdev->ccwlock); wait_event(cdev->private->wait_q, (dev_fsm_final_state(cdev) || cdev->private->state == DEV_STATE_DISCONNECTED)); spin_lock_irq(cdev->ccwlock); } ret2 = ccw_device_offline(cdev); if (ret2) goto error; spin_unlock_irq(cdev->ccwlock); wait_event(cdev->private->wait_q, (dev_fsm_final_state(cdev) || cdev->private->state == DEV_STATE_DISCONNECTED)); /* Give up online reference since onlining failed. */ put_device(&cdev->dev); return ret; error: CIO_MSG_EVENT(0, "rollback ccw_device_offline returned %d, " "device 0.%x.%04x\n", ret2, cdev->private->dev_id.ssid, cdev->private->dev_id.devno); cdev->private->state = DEV_STATE_OFFLINE; spin_unlock_irq(cdev->ccwlock); /* Give up online reference since onlining failed. */ put_device(&cdev->dev); return ret; } static int online_store_handle_offline(struct ccw_device *cdev) { if (cdev->private->state == DEV_STATE_DISCONNECTED) { spin_lock_irq(cdev->ccwlock); ccw_device_sched_todo(cdev, CDEV_TODO_UNREG_EVAL); spin_unlock_irq(cdev->ccwlock); return 0; } if (cdev->drv && cdev->drv->set_offline) return ccw_device_set_offline(cdev); return -EINVAL; } static int online_store_recog_and_online(struct ccw_device *cdev) { /* Do device recognition, if needed. */ if (cdev->private->state == DEV_STATE_BOXED) { spin_lock_irq(cdev->ccwlock); ccw_device_recognition(cdev); spin_unlock_irq(cdev->ccwlock); wait_event(cdev->private->wait_q, cdev->private->flags.recog_done); if (cdev->private->state != DEV_STATE_OFFLINE) /* recognition failed */ return -EAGAIN; } if (cdev->drv && cdev->drv->set_online) return ccw_device_set_online(cdev); return -EINVAL; } static int online_store_handle_online(struct ccw_device *cdev, int force) { int ret; ret = online_store_recog_and_online(cdev); if (ret && !force) return ret; if (force && cdev->private->state == DEV_STATE_BOXED) { ret = ccw_device_stlck(cdev); if (ret) return ret; if (cdev->id.cu_type == 0) cdev->private->state = DEV_STATE_NOT_OPER; ret = online_store_recog_and_online(cdev); if (ret) return ret; } return 0; } static ssize_t online_store (struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ccw_device *cdev = to_ccwdev(dev); int force, ret; unsigned long i; /* Prevent conflict between multiple on-/offline processing requests. */ if (atomic_cmpxchg(&cdev->private->onoff, 0, 1) != 0) return -EAGAIN; /* Prevent conflict between internal I/Os and on-/offline processing. */ if (!dev_fsm_final_state(cdev) && cdev->private->state != DEV_STATE_DISCONNECTED) { ret = -EAGAIN; goto out; } /* Prevent conflict between pending work and on-/offline processing.*/ if (work_pending(&cdev->private->todo_work)) { ret = -EAGAIN; goto out; } if (!strncmp(buf, "force\n", count)) { force = 1; i = 1; ret = 0; } else { force = 0; ret = kstrtoul(buf, 16, &i); } if (ret) goto out; device_lock(dev); switch (i) { case 0: ret = online_store_handle_offline(cdev); break; case 1: ret = online_store_handle_online(cdev, force); break; default: ret = -EINVAL; } device_unlock(dev); out: atomic_set(&cdev->private->onoff, 0); return (ret < 0) ? ret : count; } static ssize_t available_show (struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); struct subchannel *sch; if (ccw_device_is_orphan(cdev)) return sprintf(buf, "no device\n"); switch (cdev->private->state) { case DEV_STATE_BOXED: return sprintf(buf, "boxed\n"); case DEV_STATE_DISCONNECTED: case DEV_STATE_DISCONNECTED_SENSE_ID: case DEV_STATE_NOT_OPER: sch = to_subchannel(dev->parent); if (!sch->lpm) return sprintf(buf, "no path\n"); else return sprintf(buf, "no device\n"); default: /* All other states considered fine. */ return sprintf(buf, "good\n"); } } static ssize_t initiate_logging(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct subchannel *sch = to_subchannel(dev); int rc; rc = chsc_siosl(sch->schid); if (rc < 0) { pr_warn("Logging for subchannel 0.%x.%04x failed with errno=%d\n", sch->schid.ssid, sch->schid.sch_no, rc); return rc; } pr_notice("Logging for subchannel 0.%x.%04x was triggered\n", sch->schid.ssid, sch->schid.sch_no); return count; } static ssize_t vpm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct subchannel *sch = to_subchannel(dev); return sprintf(buf, "%02x\n", sch->vpm); } static DEVICE_ATTR_RO(devtype); static DEVICE_ATTR_RO(cutype); static DEVICE_ATTR_RO(modalias); static DEVICE_ATTR_RW(online); static DEVICE_ATTR(availability, 0444, available_show, NULL); static DEVICE_ATTR(logging, 0200, NULL, initiate_logging); static DEVICE_ATTR_RO(vpm); static struct attribute *io_subchannel_attrs[] = { &dev_attr_logging.attr, &dev_attr_vpm.attr, NULL, }; static const struct attribute_group io_subchannel_attr_group = { .attrs = io_subchannel_attrs, }; static struct attribute * ccwdev_attrs[] = { &dev_attr_devtype.attr, &dev_attr_cutype.attr, &dev_attr_modalias.attr, &dev_attr_online.attr, &dev_attr_cmb_enable.attr, &dev_attr_availability.attr, NULL, }; static const struct attribute_group ccwdev_attr_group = { .attrs = ccwdev_attrs, }; static const struct attribute_group *ccwdev_attr_groups[] = { &ccwdev_attr_group, NULL, }; static int match_dev_id(struct device *dev, const void *data) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_dev_id *dev_id = (void *)data; return ccw_dev_id_is_equal(&cdev->private->dev_id, dev_id); } /** * get_ccwdev_by_dev_id() - obtain device from a ccw device id * @dev_id: id of the device to be searched * * This function searches all devices attached to the ccw bus for a device * matching @dev_id. * Returns: * If a device is found its reference count is increased and returned; * else %NULL is returned. */ struct ccw_device *get_ccwdev_by_dev_id(struct ccw_dev_id *dev_id) { struct device *dev; dev = bus_find_device(&ccw_bus_type, NULL, dev_id, match_dev_id); return dev ? to_ccwdev(dev) : NULL; } EXPORT_SYMBOL_GPL(get_ccwdev_by_dev_id); static void ccw_device_do_unbind_bind(struct ccw_device *cdev) { int ret; mutex_lock(&cdev->reg_mutex); if (device_is_registered(&cdev->dev)) { device_release_driver(&cdev->dev); ret = device_attach(&cdev->dev); WARN_ON(ret == -ENODEV); } mutex_unlock(&cdev->reg_mutex); } static void ccw_device_release(struct device *dev) { struct ccw_device *cdev; cdev = to_ccwdev(dev); cio_gp_dma_free(cdev->private->dma_pool, cdev->private->dma_area, sizeof(*cdev->private->dma_area)); cio_gp_dma_destroy(cdev->private->dma_pool, &cdev->dev); /* Release reference of parent subchannel. */ put_device(cdev->dev.parent); kfree(cdev->private); kfree(cdev); } static struct ccw_device * io_subchannel_allocate_dev(struct subchannel *sch) { struct ccw_device *cdev; struct gen_pool *dma_pool; int ret; cdev = kzalloc(sizeof(*cdev), GFP_KERNEL); if (!cdev) { ret = -ENOMEM; goto err_cdev; } cdev->private = kzalloc(sizeof(struct ccw_device_private), GFP_KERNEL | GFP_DMA); if (!cdev->private) { ret = -ENOMEM; goto err_priv; } cdev->dev.dma_mask = sch->dev.dma_mask; ret = dma_set_coherent_mask(&cdev->dev, sch->dev.coherent_dma_mask); if (ret) goto err_coherent_mask; dma_pool = cio_gp_dma_create(&cdev->dev, 1); if (!dma_pool) { ret = -ENOMEM; goto err_dma_pool; } cdev->private->dma_pool = dma_pool; cdev->private->dma_area = cio_gp_dma_zalloc(dma_pool, &cdev->dev, sizeof(*cdev->private->dma_area)); if (!cdev->private->dma_area) { ret = -ENOMEM; goto err_dma_area; } return cdev; err_dma_area: cio_gp_dma_destroy(dma_pool, &cdev->dev); err_dma_pool: err_coherent_mask: kfree(cdev->private); err_priv: kfree(cdev); err_cdev: return ERR_PTR(ret); } static void ccw_device_todo(struct work_struct *work); static int io_subchannel_initialize_dev(struct subchannel *sch, struct ccw_device *cdev) { struct ccw_device_private *priv = cdev->private; int ret; priv->cdev = cdev; priv->int_class = IRQIO_CIO; priv->state = DEV_STATE_NOT_OPER; priv->dev_id.devno = sch->schib.pmcw.dev; priv->dev_id.ssid = sch->schid.ssid; INIT_WORK(&priv->todo_work, ccw_device_todo); INIT_LIST_HEAD(&priv->cmb_list); init_waitqueue_head(&priv->wait_q); timer_setup(&priv->timer, ccw_device_timeout, 0); mutex_init(&cdev->reg_mutex); atomic_set(&priv->onoff, 0); cdev->ccwlock = sch->lock; cdev->dev.parent = &sch->dev; cdev->dev.release = ccw_device_release; cdev->dev.bus = &ccw_bus_type; cdev->dev.groups = ccwdev_attr_groups; /* Do first half of device_register. */ device_initialize(&cdev->dev); ret = dev_set_name(&cdev->dev, "0.%x.%04x", cdev->private->dev_id.ssid, cdev->private->dev_id.devno); if (ret) goto out_put; if (!get_device(&sch->dev)) { ret = -ENODEV; goto out_put; } priv->flags.initialized = 1; spin_lock_irq(sch->lock); sch_set_cdev(sch, cdev); spin_unlock_irq(sch->lock); return 0; out_put: /* Release reference from device_initialize(). */ put_device(&cdev->dev); return ret; } static struct ccw_device * io_subchannel_create_ccwdev(struct subchannel *sch) { struct ccw_device *cdev; int ret; cdev = io_subchannel_allocate_dev(sch); if (!IS_ERR(cdev)) { ret = io_subchannel_initialize_dev(sch, cdev); if (ret) cdev = ERR_PTR(ret); } return cdev; } static void io_subchannel_recog(struct ccw_device *, struct subchannel *); static void sch_create_and_recog_new_device(struct subchannel *sch) { struct ccw_device *cdev; /* Need to allocate a new ccw device. */ cdev = io_subchannel_create_ccwdev(sch); if (IS_ERR(cdev)) { /* OK, we did everything we could... */ css_sch_device_unregister(sch); return; } /* Start recognition for the new ccw device. */ io_subchannel_recog(cdev, sch); } /* * Register recognized device. */ static void io_subchannel_register(struct ccw_device *cdev) { struct subchannel *sch; int ret, adjust_init_count = 1; unsigned long flags; sch = to_subchannel(cdev->dev.parent); /* * Check if subchannel is still registered. It may have become * unregistered if a machine check hit us after finishing * device recognition but before the register work could be * queued. */ if (!device_is_registered(&sch->dev)) goto out_err; css_update_ssd_info(sch); /* * io_subchannel_register() will also be called after device * recognition has been done for a boxed device (which will already * be registered). We need to reprobe since we may now have sense id * information. */ mutex_lock(&cdev->reg_mutex); if (device_is_registered(&cdev->dev)) { if (!cdev->drv) { ret = device_reprobe(&cdev->dev); if (ret) /* We can't do much here. */ CIO_MSG_EVENT(0, "device_reprobe() returned" " %d for 0.%x.%04x\n", ret, cdev->private->dev_id.ssid, cdev->private->dev_id.devno); } adjust_init_count = 0; goto out; } /* make it known to the system */ ret = device_add(&cdev->dev); if (ret) { CIO_MSG_EVENT(0, "Could not register ccw dev 0.%x.%04x: %d\n", cdev->private->dev_id.ssid, cdev->private->dev_id.devno, ret); spin_lock_irqsave(sch->lock, flags); sch_set_cdev(sch, NULL); spin_unlock_irqrestore(sch->lock, flags); mutex_unlock(&cdev->reg_mutex); /* Release initial device reference. */ put_device(&cdev->dev); goto out_err; } out: cdev->private->flags.recog_done = 1; mutex_unlock(&cdev->reg_mutex); wake_up(&cdev->private->wait_q); out_err: if (adjust_init_count && atomic_dec_and_test(&ccw_device_init_count)) wake_up(&ccw_device_init_wq); } /* * subchannel recognition done. Called from the state machine. */ void io_subchannel_recog_done(struct ccw_device *cdev) { if (css_init_done == 0) { cdev->private->flags.recog_done = 1; return; } switch (cdev->private->state) { case DEV_STATE_BOXED: /* Device did not respond in time. */ case DEV_STATE_NOT_OPER: cdev->private->flags.recog_done = 1; /* Remove device found not operational. */ ccw_device_sched_todo(cdev, CDEV_TODO_UNREG); if (atomic_dec_and_test(&ccw_device_init_count)) wake_up(&ccw_device_init_wq); break; case DEV_STATE_OFFLINE: /* * We can't register the device in interrupt context so * we schedule a work item. */ ccw_device_sched_todo(cdev, CDEV_TODO_REGISTER); break; } } static void io_subchannel_recog(struct ccw_device *cdev, struct subchannel *sch) { /* Increase counter of devices currently in recognition. */ atomic_inc(&ccw_device_init_count); /* Start async. device sensing. */ spin_lock_irq(sch->lock); ccw_device_recognition(cdev); spin_unlock_irq(sch->lock); } static int ccw_device_move_to_sch(struct ccw_device *cdev, struct subchannel *sch) { struct subchannel *old_sch; int rc, old_enabled = 0; old_sch = to_subchannel(cdev->dev.parent); /* Obtain child reference for new parent. */ if (!get_device(&sch->dev)) return -ENODEV; if (!sch_is_pseudo_sch(old_sch)) { spin_lock_irq(old_sch->lock); old_enabled = old_sch->schib.pmcw.ena; rc = 0; if (old_enabled) rc = cio_disable_subchannel(old_sch); spin_unlock_irq(old_sch->lock); if (rc == -EBUSY) { /* Release child reference for new parent. */ put_device(&sch->dev); return rc; } } mutex_lock(&sch->reg_mutex); rc = device_move(&cdev->dev, &sch->dev, DPM_ORDER_PARENT_BEFORE_DEV); mutex_unlock(&sch->reg_mutex); if (rc) { CIO_MSG_EVENT(0, "device_move(0.%x.%04x,0.%x.%04x)=%d\n", cdev->private->dev_id.ssid, cdev->private->dev_id.devno, sch->schid.ssid, sch->schib.pmcw.dev, rc); if (old_enabled) { /* Try to re-enable the old subchannel. */ spin_lock_irq(old_sch->lock); cio_enable_subchannel(old_sch, (u32)virt_to_phys(old_sch)); spin_unlock_irq(old_sch->lock); } /* Release child reference for new parent. */ put_device(&sch->dev); return rc; } /* Clean up old subchannel. */ if (!sch_is_pseudo_sch(old_sch)) { spin_lock_irq(old_sch->lock); sch_set_cdev(old_sch, NULL); spin_unlock_irq(old_sch->lock); css_schedule_eval(old_sch->schid); } /* Release child reference for old parent. */ put_device(&old_sch->dev); /* Initialize new subchannel. */ spin_lock_irq(sch->lock); cdev->ccwlock = sch->lock; if (!sch_is_pseudo_sch(sch)) sch_set_cdev(sch, cdev); spin_unlock_irq(sch->lock); if (!sch_is_pseudo_sch(sch)) css_update_ssd_info(sch); return 0; } static int ccw_device_move_to_orph(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct channel_subsystem *css = to_css(sch->dev.parent); return ccw_device_move_to_sch(cdev, css->pseudo_subchannel); } static void io_subchannel_irq(struct subchannel *sch) { struct ccw_device *cdev; cdev = sch_get_cdev(sch); CIO_TRACE_EVENT(6, "IRQ"); CIO_TRACE_EVENT(6, dev_name(&sch->dev)); if (cdev) dev_fsm_event(cdev, DEV_EVENT_INTERRUPT); else inc_irq_stat(IRQIO_CIO); } void io_subchannel_init_config(struct subchannel *sch) { memset(&sch->config, 0, sizeof(sch->config)); sch->config.csense = 1; } static void io_subchannel_init_fields(struct subchannel *sch) { if (cio_is_console(sch->schid)) sch->opm = 0xff; else sch->opm = chp_get_sch_opm(sch); sch->lpm = sch->schib.pmcw.pam & sch->opm; sch->isc = cio_is_console(sch->schid) ? CONSOLE_ISC : IO_SCH_ISC; CIO_MSG_EVENT(6, "Detected device %04x on subchannel 0.%x.%04X" " - PIM = %02X, PAM = %02X, POM = %02X\n", sch->schib.pmcw.dev, sch->schid.ssid, sch->schid.sch_no, sch->schib.pmcw.pim, sch->schib.pmcw.pam, sch->schib.pmcw.pom); io_subchannel_init_config(sch); } /* * Note: We always return 0 so that we bind to the device even on error. * This is needed so that our remove function is called on unregister. */ static int io_subchannel_probe(struct subchannel *sch) { struct io_subchannel_private *io_priv; struct ccw_device *cdev; int rc; if (cio_is_console(sch->schid)) { rc = sysfs_create_group(&sch->dev.kobj, &io_subchannel_attr_group); if (rc) CIO_MSG_EVENT(0, "Failed to create io subchannel " "attributes for subchannel " "0.%x.%04x (rc=%d)\n", sch->schid.ssid, sch->schid.sch_no, rc); /* * The console subchannel already has an associated ccw_device. * Register it and exit. */ cdev = sch_get_cdev(sch); rc = device_add(&cdev->dev); if (rc) { /* Release online reference. */ put_device(&cdev->dev); goto out_schedule; } if (atomic_dec_and_test(&ccw_device_init_count)) wake_up(&ccw_device_init_wq); return 0; } io_subchannel_init_fields(sch); rc = cio_commit_config(sch); if (rc) goto out_schedule; rc = sysfs_create_group(&sch->dev.kobj, &io_subchannel_attr_group); if (rc) goto out_schedule; /* Allocate I/O subchannel private data. */ io_priv = kzalloc(sizeof(*io_priv), GFP_KERNEL | GFP_DMA); if (!io_priv) goto out_schedule; io_priv->dma_area = dma_alloc_coherent(&sch->dev, sizeof(*io_priv->dma_area), &io_priv->dma_area_dma, GFP_KERNEL); if (!io_priv->dma_area) { kfree(io_priv); goto out_schedule; } set_io_private(sch, io_priv); css_schedule_eval(sch->schid); return 0; out_schedule: spin_lock_irq(sch->lock); css_sched_sch_todo(sch, SCH_TODO_UNREG); spin_unlock_irq(sch->lock); return 0; } static void io_subchannel_remove(struct subchannel *sch) { struct io_subchannel_private *io_priv = to_io_private(sch); struct ccw_device *cdev; cdev = sch_get_cdev(sch); if (!cdev) goto out_free; ccw_device_unregister(cdev); spin_lock_irq(sch->lock); sch_set_cdev(sch, NULL); set_io_private(sch, NULL); spin_unlock_irq(sch->lock); out_free: dma_free_coherent(&sch->dev, sizeof(*io_priv->dma_area), io_priv->dma_area, io_priv->dma_area_dma); kfree(io_priv); sysfs_remove_group(&sch->dev.kobj, &io_subchannel_attr_group); } static void io_subchannel_verify(struct subchannel *sch) { struct ccw_device *cdev; cdev = sch_get_cdev(sch); if (cdev) dev_fsm_event(cdev, DEV_EVENT_VERIFY); else css_schedule_eval(sch->schid); } static void io_subchannel_terminate_path(struct subchannel *sch, u8 mask) { struct ccw_device *cdev; cdev = sch_get_cdev(sch); if (!cdev) return; if (cio_update_schib(sch)) goto err; /* Check for I/O on path. */ if (scsw_actl(&sch->schib.scsw) == 0 || sch->schib.pmcw.lpum != mask) goto out; if (cdev->private->state == DEV_STATE_ONLINE) { ccw_device_kill_io(cdev); goto out; } if (cio_clear(sch)) goto err; out: /* Trigger path verification. */ dev_fsm_event(cdev, DEV_EVENT_VERIFY); return; err: dev_fsm_event(cdev, DEV_EVENT_NOTOPER); } static int io_subchannel_chp_event(struct subchannel *sch, struct chp_link *link, int event) { struct ccw_device *cdev = sch_get_cdev(sch); int mask, chpid, valid_bit; int path_event[8]; mask = chp_ssd_get_mask(&sch->ssd_info, link); if (!mask) return 0; switch (event) { case CHP_VARY_OFF: sch->opm &= ~mask; sch->lpm &= ~mask; if (cdev) cdev->private->path_gone_mask |= mask; io_subchannel_terminate_path(sch, mask); break; case CHP_VARY_ON: sch->opm |= mask; sch->lpm |= mask; if (cdev) cdev->private->path_new_mask |= mask; io_subchannel_verify(sch); break; case CHP_OFFLINE: if (cio_update_schib(sch)) return -ENODEV; if (cdev) cdev->private->path_gone_mask |= mask; io_subchannel_terminate_path(sch, mask); break; case CHP_ONLINE: if (cio_update_schib(sch)) return -ENODEV; sch->lpm |= mask & sch->opm; if (cdev) cdev->private->path_new_mask |= mask; io_subchannel_verify(sch); break; case CHP_FCES_EVENT: /* Forward Endpoint Security event */ for (chpid = 0, valid_bit = 0x80; chpid < 8; chpid++, valid_bit >>= 1) { if (mask & valid_bit) path_event[chpid] = PE_PATH_FCES_EVENT; else path_event[chpid] = PE_NONE; } if (cdev && cdev->drv && cdev->drv->path_event) cdev->drv->path_event(cdev, path_event); break; } return 0; } static void io_subchannel_quiesce(struct subchannel *sch) { struct ccw_device *cdev; int ret; spin_lock_irq(sch->lock); cdev = sch_get_cdev(sch); if (cio_is_console(sch->schid)) goto out_unlock; if (!sch->schib.pmcw.ena) goto out_unlock; ret = cio_disable_subchannel(sch); if (ret != -EBUSY) goto out_unlock; if (cdev->handler) cdev->handler(cdev, cdev->private->intparm, ERR_PTR(-EIO)); while (ret == -EBUSY) { cdev->private->state = DEV_STATE_QUIESCE; cdev->private->iretry = 255; ret = ccw_device_cancel_halt_clear(cdev); if (ret == -EBUSY) { ccw_device_set_timeout(cdev, HZ/10); spin_unlock_irq(sch->lock); wait_event(cdev->private->wait_q, cdev->private->state != DEV_STATE_QUIESCE); spin_lock_irq(sch->lock); } ret = cio_disable_subchannel(sch); } out_unlock: spin_unlock_irq(sch->lock); } static void io_subchannel_shutdown(struct subchannel *sch) { io_subchannel_quiesce(sch); } static int device_is_disconnected(struct ccw_device *cdev) { if (!cdev) return 0; return (cdev->private->state == DEV_STATE_DISCONNECTED || cdev->private->state == DEV_STATE_DISCONNECTED_SENSE_ID); } static int recovery_check(struct device *dev, void *data) { struct ccw_device *cdev = to_ccwdev(dev); struct subchannel *sch; int *redo = data; spin_lock_irq(cdev->ccwlock); switch (cdev->private->state) { case DEV_STATE_ONLINE: sch = to_subchannel(cdev->dev.parent); if ((sch->schib.pmcw.pam & sch->opm) == sch->vpm) break; fallthrough; case DEV_STATE_DISCONNECTED: CIO_MSG_EVENT(3, "recovery: trigger 0.%x.%04x\n", cdev->private->dev_id.ssid, cdev->private->dev_id.devno); dev_fsm_event(cdev, DEV_EVENT_VERIFY); *redo = 1; break; case DEV_STATE_DISCONNECTED_SENSE_ID: *redo = 1; break; } spin_unlock_irq(cdev->ccwlock); return 0; } static void recovery_work_func(struct work_struct *unused) { int redo = 0; bus_for_each_dev(&ccw_bus_type, NULL, &redo, recovery_check); if (redo) { spin_lock_irq(&recovery_lock); if (!timer_pending(&recovery_timer)) { if (recovery_phase < ARRAY_SIZE(recovery_delay) - 1) recovery_phase++; mod_timer(&recovery_timer, jiffies + recovery_delay[recovery_phase] * HZ); } spin_unlock_irq(&recovery_lock); } else CIO_MSG_EVENT(3, "recovery: end\n"); } static DECLARE_WORK(recovery_work, recovery_work_func); static void recovery_func(struct timer_list *unused) { /* * We can't do our recovery in softirq context and it's not * performance critical, so we schedule it. */ schedule_work(&recovery_work); } void ccw_device_schedule_recovery(void) { unsigned long flags; CIO_MSG_EVENT(3, "recovery: schedule\n"); spin_lock_irqsave(&recovery_lock, flags); if (!timer_pending(&recovery_timer) || (recovery_phase != 0)) { recovery_phase = 0; mod_timer(&recovery_timer, jiffies + recovery_delay[0] * HZ); } spin_unlock_irqrestore(&recovery_lock, flags); } static int purge_fn(struct device *dev, void *data) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_dev_id *id = &cdev->private->dev_id; struct subchannel *sch = to_subchannel(cdev->dev.parent); spin_lock_irq(cdev->ccwlock); if (is_blacklisted(id->ssid, id->devno) && (cdev->private->state == DEV_STATE_OFFLINE) && (atomic_cmpxchg(&cdev->private->onoff, 0, 1) == 0)) { CIO_MSG_EVENT(3, "ccw: purging 0.%x.%04x\n", id->ssid, id->devno); ccw_device_sched_todo(cdev, CDEV_TODO_UNREG); css_sched_sch_todo(sch, SCH_TODO_UNREG); atomic_set(&cdev->private->onoff, 0); } spin_unlock_irq(cdev->ccwlock); /* Abort loop in case of pending signal. */ if (signal_pending(current)) return -EINTR; return 0; } /** * ccw_purge_blacklisted - purge unused, blacklisted devices * * Unregister all ccw devices that are offline and on the blacklist. */ int ccw_purge_blacklisted(void) { CIO_MSG_EVENT(2, "ccw: purging blacklisted devices\n"); bus_for_each_dev(&ccw_bus_type, NULL, NULL, purge_fn); return 0; } void ccw_device_set_disconnected(struct ccw_device *cdev) { if (!cdev) return; ccw_device_set_timeout(cdev, 0); cdev->private->flags.fake_irb = 0; cdev->private->state = DEV_STATE_DISCONNECTED; if (cdev->online) ccw_device_schedule_recovery(); } void ccw_device_set_notoper(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); CIO_TRACE_EVENT(2, "notoper"); CIO_TRACE_EVENT(2, dev_name(&sch->dev)); ccw_device_set_timeout(cdev, 0); cio_disable_subchannel(sch); cdev->private->state = DEV_STATE_NOT_OPER; } enum io_sch_action { IO_SCH_UNREG, IO_SCH_ORPH_UNREG, IO_SCH_UNREG_CDEV, IO_SCH_ATTACH, IO_SCH_UNREG_ATTACH, IO_SCH_ORPH_ATTACH, IO_SCH_REPROBE, IO_SCH_VERIFY, IO_SCH_DISC, IO_SCH_NOP, }; static enum io_sch_action sch_get_action(struct subchannel *sch) { struct ccw_device *cdev; cdev = sch_get_cdev(sch); if (cio_update_schib(sch)) { /* Not operational. */ if (!cdev) return IO_SCH_UNREG; if (ccw_device_notify(cdev, CIO_GONE) != NOTIFY_OK) return IO_SCH_UNREG; return IO_SCH_ORPH_UNREG; } /* Operational. */ if (!cdev) return IO_SCH_ATTACH; if (sch->schib.pmcw.dev != cdev->private->dev_id.devno) { if (ccw_device_notify(cdev, CIO_GONE) != NOTIFY_OK) return IO_SCH_UNREG_ATTACH; return IO_SCH_ORPH_ATTACH; } if ((sch->schib.pmcw.pam & sch->opm) == 0) { if (ccw_device_notify(cdev, CIO_NO_PATH) != NOTIFY_OK) return IO_SCH_UNREG_CDEV; return IO_SCH_DISC; } if (device_is_disconnected(cdev)) return IO_SCH_REPROBE; if (cdev->online) return IO_SCH_VERIFY; if (cdev->private->state == DEV_STATE_NOT_OPER) return IO_SCH_UNREG_ATTACH; return IO_SCH_NOP; } /** * io_subchannel_sch_event - process subchannel event * @sch: subchannel * @process: non-zero if function is called in process context * * An unspecified event occurred for this subchannel. Adjust data according * to the current operational state of the subchannel and device. Return * zero when the event has been handled sufficiently or -EAGAIN when this * function should be called again in process context. */ static int io_subchannel_sch_event(struct subchannel *sch, int process) { unsigned long flags; struct ccw_device *cdev; struct ccw_dev_id dev_id; enum io_sch_action action; int rc = -EAGAIN; spin_lock_irqsave(sch->lock, flags); if (!device_is_registered(&sch->dev)) goto out_unlock; if (work_pending(&sch->todo_work)) goto out_unlock; cdev = sch_get_cdev(sch); if (cdev && work_pending(&cdev->private->todo_work)) goto out_unlock; action = sch_get_action(sch); CIO_MSG_EVENT(2, "event: sch 0.%x.%04x, process=%d, action=%d\n", sch->schid.ssid, sch->schid.sch_no, process, action); /* Perform immediate actions while holding the lock. */ switch (action) { case IO_SCH_REPROBE: /* Trigger device recognition. */ ccw_device_trigger_reprobe(cdev); rc = 0; goto out_unlock; case IO_SCH_VERIFY: /* Trigger path verification. */ io_subchannel_verify(sch); rc = 0; goto out_unlock; case IO_SCH_DISC: ccw_device_set_disconnected(cdev); rc = 0; goto out_unlock; case IO_SCH_ORPH_UNREG: case IO_SCH_ORPH_ATTACH: ccw_device_set_disconnected(cdev); break; case IO_SCH_UNREG_CDEV: case IO_SCH_UNREG_ATTACH: case IO_SCH_UNREG: if (!cdev) break; if (cdev->private->state == DEV_STATE_SENSE_ID) { /* * Note: delayed work triggered by this event * and repeated calls to sch_event are synchronized * by the above check for work_pending(cdev). */ dev_fsm_event(cdev, DEV_EVENT_NOTOPER); } else ccw_device_set_notoper(cdev); break; case IO_SCH_NOP: rc = 0; goto out_unlock; default: break; } spin_unlock_irqrestore(sch->lock, flags); /* All other actions require process context. */ if (!process) goto out; /* Handle attached ccw device. */ switch (action) { case IO_SCH_ORPH_UNREG: case IO_SCH_ORPH_ATTACH: /* Move ccw device to orphanage. */ rc = ccw_device_move_to_orph(cdev); if (rc) goto out; break; case IO_SCH_UNREG_CDEV: case IO_SCH_UNREG_ATTACH: spin_lock_irqsave(sch->lock, flags); sch_set_cdev(sch, NULL); spin_unlock_irqrestore(sch->lock, flags); /* Unregister ccw device. */ ccw_device_unregister(cdev); break; default: break; } /* Handle subchannel. */ switch (action) { case IO_SCH_ORPH_UNREG: case IO_SCH_UNREG: css_sch_device_unregister(sch); break; case IO_SCH_ORPH_ATTACH: case IO_SCH_UNREG_ATTACH: case IO_SCH_ATTACH: dev_id.ssid = sch->schid.ssid; dev_id.devno = sch->schib.pmcw.dev; cdev = get_ccwdev_by_dev_id(&dev_id); if (!cdev) { sch_create_and_recog_new_device(sch); break; } rc = ccw_device_move_to_sch(cdev, sch); if (rc) { /* Release reference from get_ccwdev_by_dev_id() */ put_device(&cdev->dev); goto out; } spin_lock_irqsave(sch->lock, flags); ccw_device_trigger_reprobe(cdev); spin_unlock_irqrestore(sch->lock, flags); /* Release reference from get_ccwdev_by_dev_id() */ put_device(&cdev->dev); break; default: break; } return 0; out_unlock: spin_unlock_irqrestore(sch->lock, flags); out: return rc; } static void ccw_device_set_int_class(struct ccw_device *cdev) { struct ccw_driver *cdrv = cdev->drv; /* Note: we interpret class 0 in this context as an uninitialized * field since it translates to a non-I/O interrupt class. */ if (cdrv->int_class != 0) cdev->private->int_class = cdrv->int_class; else cdev->private->int_class = IRQIO_CIO; } #ifdef CONFIG_CCW_CONSOLE int __init ccw_device_enable_console(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); int rc; if (!cdev->drv || !cdev->handler) return -EINVAL; io_subchannel_init_fields(sch); rc = cio_commit_config(sch); if (rc) return rc; sch->driver = &io_subchannel_driver; io_subchannel_recog(cdev, sch); /* Now wait for the async. recognition to come to an end. */ spin_lock_irq(cdev->ccwlock); while (!dev_fsm_final_state(cdev)) ccw_device_wait_idle(cdev); /* Hold on to an extra reference while device is online. */ get_device(&cdev->dev); rc = ccw_device_online(cdev); if (rc) goto out_unlock; while (!dev_fsm_final_state(cdev)) ccw_device_wait_idle(cdev); if (cdev->private->state == DEV_STATE_ONLINE) cdev->online = 1; else rc = -EIO; out_unlock: spin_unlock_irq(cdev->ccwlock); if (rc) /* Give up online reference since onlining failed. */ put_device(&cdev->dev); return rc; } struct ccw_device * __init ccw_device_create_console(struct ccw_driver *drv) { struct io_subchannel_private *io_priv; struct ccw_device *cdev; struct subchannel *sch; sch = cio_probe_console(); if (IS_ERR(sch)) return ERR_CAST(sch); io_priv = kzalloc(sizeof(*io_priv), GFP_KERNEL | GFP_DMA); if (!io_priv) goto err_priv; io_priv->dma_area = dma_alloc_coherent(&sch->dev, sizeof(*io_priv->dma_area), &io_priv->dma_area_dma, GFP_KERNEL); if (!io_priv->dma_area) goto err_dma_area; set_io_private(sch, io_priv); cdev = io_subchannel_create_ccwdev(sch); if (IS_ERR(cdev)) { dma_free_coherent(&sch->dev, sizeof(*io_priv->dma_area), io_priv->dma_area, io_priv->dma_area_dma); set_io_private(sch, NULL); put_device(&sch->dev); kfree(io_priv); return cdev; } cdev->drv = drv; ccw_device_set_int_class(cdev); return cdev; err_dma_area: kfree(io_priv); err_priv: put_device(&sch->dev); return ERR_PTR(-ENOMEM); } void __init ccw_device_destroy_console(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct io_subchannel_private *io_priv = to_io_private(sch); set_io_private(sch, NULL); dma_free_coherent(&sch->dev, sizeof(*io_priv->dma_area), io_priv->dma_area, io_priv->dma_area_dma); put_device(&sch->dev); put_device(&cdev->dev); kfree(io_priv); } /** * ccw_device_wait_idle() - busy wait for device to become idle * @cdev: ccw device * * Poll until activity control is zero, that is, no function or data * transfer is pending/active. * Called with device lock being held. */ void ccw_device_wait_idle(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); while (1) { cio_tsch(sch); if (sch->schib.scsw.cmd.actl == 0) break; udelay(100); } } #endif /** * get_ccwdev_by_busid() - obtain device from a bus id * @cdrv: driver the device is owned by * @bus_id: bus id of the device to be searched * * This function searches all devices owned by @cdrv for a device with a bus * id matching @bus_id. * Returns: * If a match is found, its reference count of the found device is increased * and it is returned; else %NULL is returned. */ struct ccw_device *get_ccwdev_by_busid(struct ccw_driver *cdrv, const char *bus_id) { struct device *dev; dev = driver_find_device_by_name(&cdrv->driver, bus_id); return dev ? to_ccwdev(dev) : NULL; } /************************** device driver handling ************************/ /* This is the implementation of the ccw_driver class. The probe, remove * and release methods are initially very similar to the device_driver * implementations, with the difference that they have ccw_device * arguments. * * A ccw driver also contains the information that is needed for * device matching. */ static int ccw_device_probe (struct device *dev) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_driver *cdrv = to_ccwdrv(dev->driver); int ret; cdev->drv = cdrv; /* to let the driver call _set_online */ ccw_device_set_int_class(cdev); ret = cdrv->probe ? cdrv->probe(cdev) : -ENODEV; if (ret) { cdev->drv = NULL; cdev->private->int_class = IRQIO_CIO; return ret; } return 0; } static void ccw_device_remove(struct device *dev) { struct ccw_device *cdev = to_ccwdev(dev); struct ccw_driver *cdrv = cdev->drv; struct subchannel *sch; int ret; if (cdrv->remove) cdrv->remove(cdev); spin_lock_irq(cdev->ccwlock); if (cdev->online) { cdev->online = 0; ret = ccw_device_offline(cdev); spin_unlock_irq(cdev->ccwlock); if (ret == 0) wait_event(cdev->private->wait_q, dev_fsm_final_state(cdev)); else CIO_MSG_EVENT(0, "ccw_device_offline returned %d, " "device 0.%x.%04x\n", ret, cdev->private->dev_id.ssid, cdev->private->dev_id.devno); /* Give up reference obtained in ccw_device_set_online(). */ put_device(&cdev->dev); spin_lock_irq(cdev->ccwlock); } ccw_device_set_timeout(cdev, 0); cdev->drv = NULL; cdev->private->int_class = IRQIO_CIO; sch = to_subchannel(cdev->dev.parent); spin_unlock_irq(cdev->ccwlock); io_subchannel_quiesce(sch); __disable_cmf(cdev); } static void ccw_device_shutdown(struct device *dev) { struct ccw_device *cdev; cdev = to_ccwdev(dev); if (cdev->drv && cdev->drv->shutdown) cdev->drv->shutdown(cdev); __disable_cmf(cdev); } static struct bus_type ccw_bus_type = { .name = "ccw", .match = ccw_bus_match, .uevent = ccw_uevent, .probe = ccw_device_probe, .remove = ccw_device_remove, .shutdown = ccw_device_shutdown, }; /** * ccw_driver_register() - register a ccw driver * @cdriver: driver to be registered * * This function is mainly a wrapper around driver_register(). * Returns: * %0 on success and a negative error value on failure. */ int ccw_driver_register(struct ccw_driver *cdriver) { struct device_driver *drv = &cdriver->driver; drv->bus = &ccw_bus_type; return driver_register(drv); } /** * ccw_driver_unregister() - deregister a ccw driver * @cdriver: driver to be deregistered * * This function is mainly a wrapper around driver_unregister(). */ void ccw_driver_unregister(struct ccw_driver *cdriver) { driver_unregister(&cdriver->driver); } static void ccw_device_todo(struct work_struct *work) { struct ccw_device_private *priv; struct ccw_device *cdev; struct subchannel *sch; enum cdev_todo todo; priv = container_of(work, struct ccw_device_private, todo_work); cdev = priv->cdev; sch = to_subchannel(cdev->dev.parent); /* Find out todo. */ spin_lock_irq(cdev->ccwlock); todo = priv->todo; priv->todo = CDEV_TODO_NOTHING; CIO_MSG_EVENT(4, "cdev_todo: cdev=0.%x.%04x todo=%d\n", priv->dev_id.ssid, priv->dev_id.devno, todo); spin_unlock_irq(cdev->ccwlock); /* Perform todo. */ switch (todo) { case CDEV_TODO_ENABLE_CMF: cmf_reenable(cdev); break; case CDEV_TODO_REBIND: ccw_device_do_unbind_bind(cdev); break; case CDEV_TODO_REGISTER: io_subchannel_register(cdev); break; case CDEV_TODO_UNREG_EVAL: if (!sch_is_pseudo_sch(sch)) css_schedule_eval(sch->schid); fallthrough; case CDEV_TODO_UNREG: spin_lock_irq(sch->lock); sch_set_cdev(sch, NULL); spin_unlock_irq(sch->lock); ccw_device_unregister(cdev); break; default: break; } /* Release workqueue ref. */ put_device(&cdev->dev); } /** * ccw_device_sched_todo - schedule ccw device operation * @cdev: ccw device * @todo: todo * * Schedule the operation identified by @todo to be performed on the slow path * workqueue. Do nothing if another operation with higher priority is already * scheduled. Needs to be called with ccwdev lock held. */ void ccw_device_sched_todo(struct ccw_device *cdev, enum cdev_todo todo) { CIO_MSG_EVENT(4, "cdev_todo: sched cdev=0.%x.%04x todo=%d\n", cdev->private->dev_id.ssid, cdev->private->dev_id.devno, todo); if (cdev->private->todo >= todo) return; cdev->private->todo = todo; /* Get workqueue ref. */ if (!get_device(&cdev->dev)) return; if (!queue_work(cio_work_q, &cdev->private->todo_work)) { /* Already queued, release workqueue ref. */ put_device(&cdev->dev); } } /** * ccw_device_siosl() - initiate logging * @cdev: ccw device * * This function is used to invoke model-dependent logging within the channel * subsystem. */ int ccw_device_siosl(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); return chsc_siosl(sch->schid); } EXPORT_SYMBOL_GPL(ccw_device_siosl); EXPORT_SYMBOL(ccw_device_set_online); EXPORT_SYMBOL(ccw_device_set_offline); EXPORT_SYMBOL(ccw_driver_register); EXPORT_SYMBOL(ccw_driver_unregister); EXPORT_SYMBOL(get_ccwdev_by_busid);
linux-master
drivers/s390/cio/device.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2000, 2009 * Author(s): Utz Bacher <[email protected]> * Cornelia Huck <[email protected]> * Jan Glauber <[email protected]> */ #include <linux/io.h> #include <linux/slab.h> #include <linux/kernel_stat.h> #include <linux/atomic.h> #include <linux/rculist.h> #include <asm/debug.h> #include <asm/qdio.h> #include <asm/airq.h> #include <asm/isc.h> #include <asm/tpi.h> #include "cio.h" #include "ioasm.h" #include "qdio.h" #include "qdio_debug.h" /* * Restriction: only 63 iqdio subchannels would have its own indicator, * after that, subsequent subchannels share one indicator */ #define TIQDIO_NR_NONSHARED_IND 63 #define TIQDIO_NR_INDICATORS (TIQDIO_NR_NONSHARED_IND + 1) #define TIQDIO_SHARED_IND 63 /* device state change indicators */ struct indicator_t { u32 ind; /* u32 because of compare-and-swap performance */ atomic_t count; /* use count, 0 or 1 for non-shared indicators */ }; /* list of thin interrupt input queues */ static LIST_HEAD(tiq_list); static DEFINE_MUTEX(tiq_list_lock); static struct indicator_t *q_indicators; u64 last_ai_time; /* returns addr for the device state change indicator */ static u32 *get_indicator(void) { int i; for (i = 0; i < TIQDIO_NR_NONSHARED_IND; i++) if (!atomic_cmpxchg(&q_indicators[i].count, 0, 1)) return &q_indicators[i].ind; /* use the shared indicator */ atomic_inc(&q_indicators[TIQDIO_SHARED_IND].count); return &q_indicators[TIQDIO_SHARED_IND].ind; } static void put_indicator(u32 *addr) { struct indicator_t *ind = container_of(addr, struct indicator_t, ind); if (!addr) return; atomic_dec(&ind->count); } static inline int references_shared_dsci(struct qdio_irq *irq_ptr) { return irq_ptr->dsci == &q_indicators[TIQDIO_SHARED_IND].ind; } int test_nonshared_ind(struct qdio_irq *irq_ptr) { if (!is_thinint_irq(irq_ptr)) return 0; if (references_shared_dsci(irq_ptr)) return 0; if (*irq_ptr->dsci) return 1; else return 0; } static inline u32 clear_shared_ind(void) { if (!atomic_read(&q_indicators[TIQDIO_SHARED_IND].count)) return 0; return xchg(&q_indicators[TIQDIO_SHARED_IND].ind, 0); } /** * tiqdio_thinint_handler - thin interrupt handler for qdio * @airq: pointer to adapter interrupt descriptor * @tpi_info: interrupt information (e.g. floating vs directed -- unused) */ static void tiqdio_thinint_handler(struct airq_struct *airq, struct tpi_info *tpi_info) { u64 irq_time = S390_lowcore.int_clock; u32 si_used = clear_shared_ind(); struct qdio_irq *irq; last_ai_time = irq_time; inc_irq_stat(IRQIO_QAI); /* protect tiq_list entries, only changed in activate or shutdown */ rcu_read_lock(); list_for_each_entry_rcu(irq, &tiq_list, entry) { /* only process queues from changed sets */ if (unlikely(references_shared_dsci(irq))) { if (!si_used) continue; } else { if (!*irq->dsci) continue; xchg(irq->dsci, 0); } qdio_deliver_irq(irq); irq->last_data_irq_time = irq_time; QDIO_PERF_STAT_INC(irq, adapter_int); } rcu_read_unlock(); } static struct airq_struct tiqdio_airq = { .handler = tiqdio_thinint_handler, .isc = QDIO_AIRQ_ISC, }; static int set_subchannel_ind(struct qdio_irq *irq_ptr, int reset) { struct chsc_scssc_area *scssc = (void *)irq_ptr->chsc_page; u64 summary_indicator_addr, subchannel_indicator_addr; int rc; if (reset) { summary_indicator_addr = 0; subchannel_indicator_addr = 0; } else { summary_indicator_addr = virt_to_phys(tiqdio_airq.lsi_ptr); subchannel_indicator_addr = virt_to_phys(irq_ptr->dsci); } rc = chsc_sadc(irq_ptr->schid, scssc, summary_indicator_addr, subchannel_indicator_addr, tiqdio_airq.isc); if (rc) { DBF_ERROR("%4x SSI r:%4x", irq_ptr->schid.sch_no, scssc->response.code); goto out; } DBF_EVENT("setscind"); DBF_HEX(&summary_indicator_addr, sizeof(summary_indicator_addr)); DBF_HEX(&subchannel_indicator_addr, sizeof(subchannel_indicator_addr)); out: return rc; } int qdio_establish_thinint(struct qdio_irq *irq_ptr) { int rc; if (!is_thinint_irq(irq_ptr)) return 0; irq_ptr->dsci = get_indicator(); DBF_HEX(&irq_ptr->dsci, sizeof(void *)); rc = set_subchannel_ind(irq_ptr, 0); if (rc) { put_indicator(irq_ptr->dsci); return rc; } mutex_lock(&tiq_list_lock); list_add_rcu(&irq_ptr->entry, &tiq_list); mutex_unlock(&tiq_list_lock); return 0; } void qdio_shutdown_thinint(struct qdio_irq *irq_ptr) { if (!is_thinint_irq(irq_ptr)) return; mutex_lock(&tiq_list_lock); list_del_rcu(&irq_ptr->entry); mutex_unlock(&tiq_list_lock); synchronize_rcu(); /* reset adapter interrupt indicators */ set_subchannel_ind(irq_ptr, 1); put_indicator(irq_ptr->dsci); } int __init qdio_thinint_init(void) { int rc; q_indicators = kcalloc(TIQDIO_NR_INDICATORS, sizeof(struct indicator_t), GFP_KERNEL); if (!q_indicators) return -ENOMEM; rc = register_adapter_interrupt(&tiqdio_airq); if (rc) { DBF_EVENT("RTI:%x", rc); kfree(q_indicators); return rc; } return 0; } void __exit qdio_thinint_exit(void) { WARN_ON(!list_empty(&tiq_list)); unregister_adapter_interrupt(&tiqdio_airq); kfree(q_indicators); }
linux-master
drivers/s390/cio/qdio_thinint.c
// SPDX-License-Identifier: GPL-2.0 /* * Support for adapter interruptions * * Copyright IBM Corp. 1999, 2007 * Author(s): Ingo Adlung <[email protected]> * Cornelia Huck <[email protected]> * Arnd Bergmann <[email protected]> * Peter Oberparleiter <[email protected]> */ #include <linux/init.h> #include <linux/irq.h> #include <linux/kernel_stat.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/rculist.h> #include <linux/slab.h> #include <linux/dmapool.h> #include <asm/airq.h> #include <asm/isc.h> #include <asm/cio.h> #include "cio.h" #include "cio_debug.h" #include "ioasm.h" static DEFINE_SPINLOCK(airq_lists_lock); static struct hlist_head airq_lists[MAX_ISC+1]; static struct dma_pool *airq_iv_cache; /** * register_adapter_interrupt() - register adapter interrupt handler * @airq: pointer to adapter interrupt descriptor * * Returns 0 on success, or -EINVAL. */ int register_adapter_interrupt(struct airq_struct *airq) { char dbf_txt[32]; if (!airq->handler || airq->isc > MAX_ISC) return -EINVAL; if (!airq->lsi_ptr) { airq->lsi_ptr = cio_dma_zalloc(1); if (!airq->lsi_ptr) return -ENOMEM; airq->flags |= AIRQ_PTR_ALLOCATED; } snprintf(dbf_txt, sizeof(dbf_txt), "rairq:%p", airq); CIO_TRACE_EVENT(4, dbf_txt); isc_register(airq->isc); spin_lock(&airq_lists_lock); hlist_add_head_rcu(&airq->list, &airq_lists[airq->isc]); spin_unlock(&airq_lists_lock); return 0; } EXPORT_SYMBOL(register_adapter_interrupt); /** * unregister_adapter_interrupt - unregister adapter interrupt handler * @airq: pointer to adapter interrupt descriptor */ void unregister_adapter_interrupt(struct airq_struct *airq) { char dbf_txt[32]; if (hlist_unhashed(&airq->list)) return; snprintf(dbf_txt, sizeof(dbf_txt), "urairq:%p", airq); CIO_TRACE_EVENT(4, dbf_txt); spin_lock(&airq_lists_lock); hlist_del_rcu(&airq->list); spin_unlock(&airq_lists_lock); synchronize_rcu(); isc_unregister(airq->isc); if (airq->flags & AIRQ_PTR_ALLOCATED) { cio_dma_free(airq->lsi_ptr, 1); airq->lsi_ptr = NULL; airq->flags &= ~AIRQ_PTR_ALLOCATED; } } EXPORT_SYMBOL(unregister_adapter_interrupt); static irqreturn_t do_airq_interrupt(int irq, void *dummy) { struct tpi_info *tpi_info; struct airq_struct *airq; struct hlist_head *head; set_cpu_flag(CIF_NOHZ_DELAY); tpi_info = &get_irq_regs()->tpi_info; trace_s390_cio_adapter_int(tpi_info); head = &airq_lists[tpi_info->isc]; rcu_read_lock(); hlist_for_each_entry_rcu(airq, head, list) if (*airq->lsi_ptr != 0) airq->handler(airq, tpi_info); rcu_read_unlock(); return IRQ_HANDLED; } void __init init_airq_interrupts(void) { irq_set_chip_and_handler(THIN_INTERRUPT, &dummy_irq_chip, handle_percpu_irq); if (request_irq(THIN_INTERRUPT, do_airq_interrupt, 0, "AIO", NULL)) panic("Failed to register AIO interrupt\n"); } static inline unsigned long iv_size(unsigned long bits) { return BITS_TO_LONGS(bits) * sizeof(unsigned long); } /** * airq_iv_create - create an interrupt vector * @bits: number of bits in the interrupt vector * @flags: allocation flags * @vec: pointer to pinned guest memory if AIRQ_IV_GUESTVEC * * Returns a pointer to an interrupt vector structure */ struct airq_iv *airq_iv_create(unsigned long bits, unsigned long flags, unsigned long *vec) { struct airq_iv *iv; unsigned long size; iv = kzalloc(sizeof(*iv), GFP_KERNEL); if (!iv) goto out; iv->bits = bits; iv->flags = flags; size = iv_size(bits); if (flags & AIRQ_IV_CACHELINE) { if ((cache_line_size() * BITS_PER_BYTE) < bits || !airq_iv_cache) goto out_free; iv->vector = dma_pool_zalloc(airq_iv_cache, GFP_KERNEL, &iv->vector_dma); if (!iv->vector) goto out_free; } else if (flags & AIRQ_IV_GUESTVEC) { iv->vector = vec; } else { iv->vector = cio_dma_zalloc(size); if (!iv->vector) goto out_free; } if (flags & AIRQ_IV_ALLOC) { iv->avail = kmalloc(size, GFP_KERNEL); if (!iv->avail) goto out_free; memset(iv->avail, 0xff, size); iv->end = 0; } else iv->end = bits; if (flags & AIRQ_IV_BITLOCK) { iv->bitlock = kzalloc(size, GFP_KERNEL); if (!iv->bitlock) goto out_free; } if (flags & AIRQ_IV_PTR) { size = bits * sizeof(unsigned long); iv->ptr = kzalloc(size, GFP_KERNEL); if (!iv->ptr) goto out_free; } if (flags & AIRQ_IV_DATA) { size = bits * sizeof(unsigned int); iv->data = kzalloc(size, GFP_KERNEL); if (!iv->data) goto out_free; } spin_lock_init(&iv->lock); return iv; out_free: kfree(iv->ptr); kfree(iv->bitlock); kfree(iv->avail); if (iv->flags & AIRQ_IV_CACHELINE && iv->vector) dma_pool_free(airq_iv_cache, iv->vector, iv->vector_dma); else if (!(iv->flags & AIRQ_IV_GUESTVEC)) cio_dma_free(iv->vector, size); kfree(iv); out: return NULL; } EXPORT_SYMBOL(airq_iv_create); /** * airq_iv_release - release an interrupt vector * @iv: pointer to interrupt vector structure */ void airq_iv_release(struct airq_iv *iv) { kfree(iv->data); kfree(iv->ptr); kfree(iv->bitlock); if (iv->flags & AIRQ_IV_CACHELINE) dma_pool_free(airq_iv_cache, iv->vector, iv->vector_dma); else if (!(iv->flags & AIRQ_IV_GUESTVEC)) cio_dma_free(iv->vector, iv_size(iv->bits)); kfree(iv->avail); kfree(iv); } EXPORT_SYMBOL(airq_iv_release); /** * airq_iv_alloc - allocate irq bits from an interrupt vector * @iv: pointer to an interrupt vector structure * @num: number of consecutive irq bits to allocate * * Returns the bit number of the first irq in the allocated block of irqs, * or -1UL if no bit is available or the AIRQ_IV_ALLOC flag has not been * specified */ unsigned long airq_iv_alloc(struct airq_iv *iv, unsigned long num) { unsigned long bit, i, flags; if (!iv->avail || num == 0) return -1UL; spin_lock_irqsave(&iv->lock, flags); bit = find_first_bit_inv(iv->avail, iv->bits); while (bit + num <= iv->bits) { for (i = 1; i < num; i++) if (!test_bit_inv(bit + i, iv->avail)) break; if (i >= num) { /* Found a suitable block of irqs */ for (i = 0; i < num; i++) clear_bit_inv(bit + i, iv->avail); if (bit + num >= iv->end) iv->end = bit + num + 1; break; } bit = find_next_bit_inv(iv->avail, iv->bits, bit + i + 1); } if (bit + num > iv->bits) bit = -1UL; spin_unlock_irqrestore(&iv->lock, flags); return bit; } EXPORT_SYMBOL(airq_iv_alloc); /** * airq_iv_free - free irq bits of an interrupt vector * @iv: pointer to interrupt vector structure * @bit: number of the first irq bit to free * @num: number of consecutive irq bits to free */ void airq_iv_free(struct airq_iv *iv, unsigned long bit, unsigned long num) { unsigned long i, flags; if (!iv->avail || num == 0) return; spin_lock_irqsave(&iv->lock, flags); for (i = 0; i < num; i++) { /* Clear (possibly left over) interrupt bit */ clear_bit_inv(bit + i, iv->vector); /* Make the bit positions available again */ set_bit_inv(bit + i, iv->avail); } if (bit + num >= iv->end) { /* Find new end of bit-field */ while (iv->end > 0 && !test_bit_inv(iv->end - 1, iv->avail)) iv->end--; } spin_unlock_irqrestore(&iv->lock, flags); } EXPORT_SYMBOL(airq_iv_free); /** * airq_iv_scan - scan interrupt vector for non-zero bits * @iv: pointer to interrupt vector structure * @start: bit number to start the search * @end: bit number to end the search * * Returns the bit number of the next non-zero interrupt bit, or * -1UL if the scan completed without finding any more any non-zero bits. */ unsigned long airq_iv_scan(struct airq_iv *iv, unsigned long start, unsigned long end) { unsigned long bit; /* Find non-zero bit starting from 'ivs->next'. */ bit = find_next_bit_inv(iv->vector, end, start); if (bit >= end) return -1UL; clear_bit_inv(bit, iv->vector); return bit; } EXPORT_SYMBOL(airq_iv_scan); int __init airq_init(void) { airq_iv_cache = dma_pool_create("airq_iv_cache", cio_get_dma_css_dev(), cache_line_size(), cache_line_size(), PAGE_SIZE); if (!airq_iv_cache) return -ENOMEM; return 0; }
linux-master
drivers/s390/cio/airq.c
// SPDX-License-Identifier: GPL-2.0 /* * VFIO based Physical Subchannel device driver * * Copyright IBM Corp. 2017 * Copyright Red Hat, Inc. 2019 * * Author(s): Dong Jia Shi <[email protected]> * Xiao Feng Ren <[email protected]> * Cornelia Huck <[email protected]> */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/mdev.h> #include <asm/isc.h> #include "chp.h" #include "ioasm.h" #include "css.h" #include "vfio_ccw_private.h" struct workqueue_struct *vfio_ccw_work_q; struct kmem_cache *vfio_ccw_io_region; struct kmem_cache *vfio_ccw_cmd_region; struct kmem_cache *vfio_ccw_schib_region; struct kmem_cache *vfio_ccw_crw_region; debug_info_t *vfio_ccw_debug_msg_id; debug_info_t *vfio_ccw_debug_trace_id; /* * Helpers */ int vfio_ccw_sch_quiesce(struct subchannel *sch) { struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); struct vfio_ccw_private *private = dev_get_drvdata(&parent->dev); DECLARE_COMPLETION_ONSTACK(completion); int iretry, ret = 0; /* * Probably an impossible situation, after being called through * FSM callbacks. But in the event it did, register a warning * and return as if things were fine. */ if (WARN_ON(!private)) return 0; iretry = 255; do { ret = cio_cancel_halt_clear(sch, &iretry); if (ret == -EIO) { pr_err("vfio_ccw: could not quiesce subchannel 0.%x.%04x!\n", sch->schid.ssid, sch->schid.sch_no); break; } /* * Flush all I/O and wait for * cancel/halt/clear completion. */ private->completion = &completion; spin_unlock_irq(sch->lock); if (ret == -EBUSY) wait_for_completion_timeout(&completion, 3*HZ); private->completion = NULL; flush_workqueue(vfio_ccw_work_q); spin_lock_irq(sch->lock); ret = cio_disable_subchannel(sch); } while (ret == -EBUSY); return ret; } void vfio_ccw_sch_io_todo(struct work_struct *work) { struct vfio_ccw_private *private; struct irb *irb; bool is_final; bool cp_is_finished = false; private = container_of(work, struct vfio_ccw_private, io_work); irb = &private->irb; is_final = !(scsw_actl(&irb->scsw) & (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)); if (scsw_is_solicited(&irb->scsw)) { cp_update_scsw(&private->cp, &irb->scsw); if (is_final && private->state == VFIO_CCW_STATE_CP_PENDING) { cp_free(&private->cp); cp_is_finished = true; } } mutex_lock(&private->io_mutex); memcpy(private->io_region->irb_area, irb, sizeof(*irb)); mutex_unlock(&private->io_mutex); /* * Reset to IDLE only if processing of a channel program * has finished. Do not overwrite a possible processing * state if the interrupt was unsolicited, or if the final * interrupt was for HSCH or CSCH. */ if (cp_is_finished) private->state = VFIO_CCW_STATE_IDLE; if (private->io_trigger) eventfd_signal(private->io_trigger, 1); } void vfio_ccw_crw_todo(struct work_struct *work) { struct vfio_ccw_private *private; private = container_of(work, struct vfio_ccw_private, crw_work); if (!list_empty(&private->crw) && private->crw_trigger) eventfd_signal(private->crw_trigger, 1); } /* * Css driver callbacks */ static void vfio_ccw_sch_irq(struct subchannel *sch) { struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); struct vfio_ccw_private *private = dev_get_drvdata(&parent->dev); /* * The subchannel should still be disabled at this point, * so an interrupt would be quite surprising. As with an * interrupt while the FSM is closed, let's attempt to * disable the subchannel again. */ if (!private) { VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: unexpected interrupt\n", sch->schid.cssid, sch->schid.ssid, sch->schid.sch_no); cio_disable_subchannel(sch); return; } inc_irq_stat(IRQIO_CIO); vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_INTERRUPT); } static void vfio_ccw_free_parent(struct device *dev) { struct vfio_ccw_parent *parent = container_of(dev, struct vfio_ccw_parent, dev); kfree(parent); } static int vfio_ccw_sch_probe(struct subchannel *sch) { struct pmcw *pmcw = &sch->schib.pmcw; struct vfio_ccw_parent *parent; int ret = -ENOMEM; if (pmcw->qf) { dev_warn(&sch->dev, "vfio: ccw: does not support QDIO: %s\n", dev_name(&sch->dev)); return -ENODEV; } parent = kzalloc(struct_size(parent, mdev_types, 1), GFP_KERNEL); if (!parent) return -ENOMEM; dev_set_name(&parent->dev, "parent"); parent->dev.parent = &sch->dev; parent->dev.release = &vfio_ccw_free_parent; ret = device_register(&parent->dev); if (ret) goto out_free; dev_set_drvdata(&sch->dev, parent); parent->mdev_type.sysfs_name = "io"; parent->mdev_type.pretty_name = "I/O subchannel (Non-QDIO)"; parent->mdev_types[0] = &parent->mdev_type; ret = mdev_register_parent(&parent->parent, &sch->dev, &vfio_ccw_mdev_driver, parent->mdev_types, 1); if (ret) goto out_unreg; VFIO_CCW_MSG_EVENT(4, "bound to subchannel %x.%x.%04x\n", sch->schid.cssid, sch->schid.ssid, sch->schid.sch_no); return 0; out_unreg: device_del(&parent->dev); out_free: put_device(&parent->dev); dev_set_drvdata(&sch->dev, NULL); return ret; } static void vfio_ccw_sch_remove(struct subchannel *sch) { struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); mdev_unregister_parent(&parent->parent); device_unregister(&parent->dev); dev_set_drvdata(&sch->dev, NULL); VFIO_CCW_MSG_EVENT(4, "unbound from subchannel %x.%x.%04x\n", sch->schid.cssid, sch->schid.ssid, sch->schid.sch_no); } static void vfio_ccw_sch_shutdown(struct subchannel *sch) { struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); struct vfio_ccw_private *private = dev_get_drvdata(&parent->dev); if (!private) return; vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_CLOSE); vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_NOT_OPER); } /** * vfio_ccw_sch_event - process subchannel event * @sch: subchannel * @process: non-zero if function is called in process context * * An unspecified event occurred for this subchannel. Adjust data according * to the current operational state of the subchannel. Return zero when the * event has been handled sufficiently or -EAGAIN when this function should * be called again in process context. */ static int vfio_ccw_sch_event(struct subchannel *sch, int process) { struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); struct vfio_ccw_private *private = dev_get_drvdata(&parent->dev); unsigned long flags; int rc = -EAGAIN; spin_lock_irqsave(sch->lock, flags); if (!device_is_registered(&sch->dev)) goto out_unlock; if (work_pending(&sch->todo_work)) goto out_unlock; rc = 0; if (cio_update_schib(sch)) { if (private) vfio_ccw_fsm_event(private, VFIO_CCW_EVENT_NOT_OPER); } out_unlock: spin_unlock_irqrestore(sch->lock, flags); return rc; } static void vfio_ccw_queue_crw(struct vfio_ccw_private *private, unsigned int rsc, unsigned int erc, unsigned int rsid) { struct vfio_ccw_crw *crw; /* * If unable to allocate a CRW, just drop the event and * carry on. The guest will either see a later one or * learn when it issues its own store subchannel. */ crw = kzalloc(sizeof(*crw), GFP_ATOMIC); if (!crw) return; /* * Build the CRW based on the inputs given to us. */ crw->crw.rsc = rsc; crw->crw.erc = erc; crw->crw.rsid = rsid; list_add_tail(&crw->next, &private->crw); queue_work(vfio_ccw_work_q, &private->crw_work); } static int vfio_ccw_chp_event(struct subchannel *sch, struct chp_link *link, int event) { struct vfio_ccw_parent *parent = dev_get_drvdata(&sch->dev); struct vfio_ccw_private *private = dev_get_drvdata(&parent->dev); int mask = chp_ssd_get_mask(&sch->ssd_info, link); int retry = 255; if (!private || !mask) return 0; trace_vfio_ccw_chp_event(sch->schid, mask, event); VFIO_CCW_MSG_EVENT(2, "sch %x.%x.%04x: mask=0x%x event=%d\n", sch->schid.cssid, sch->schid.ssid, sch->schid.sch_no, mask, event); if (cio_update_schib(sch)) return -ENODEV; switch (event) { case CHP_VARY_OFF: /* Path logically turned off */ sch->opm &= ~mask; sch->lpm &= ~mask; if (sch->schib.pmcw.lpum & mask) cio_cancel_halt_clear(sch, &retry); break; case CHP_OFFLINE: /* Path is gone */ if (sch->schib.pmcw.lpum & mask) cio_cancel_halt_clear(sch, &retry); vfio_ccw_queue_crw(private, CRW_RSC_CPATH, CRW_ERC_PERRN, link->chpid.id); break; case CHP_VARY_ON: /* Path logically turned on */ sch->opm |= mask; sch->lpm |= mask; break; case CHP_ONLINE: /* Path became available */ sch->lpm |= mask & sch->opm; vfio_ccw_queue_crw(private, CRW_RSC_CPATH, CRW_ERC_INIT, link->chpid.id); break; } return 0; } static struct css_device_id vfio_ccw_sch_ids[] = { { .match_flags = 0x1, .type = SUBCHANNEL_TYPE_IO, }, { /* end of list */ }, }; MODULE_DEVICE_TABLE(css, vfio_ccw_sch_ids); static struct css_driver vfio_ccw_sch_driver = { .drv = { .name = "vfio_ccw", .owner = THIS_MODULE, }, .subchannel_type = vfio_ccw_sch_ids, .irq = vfio_ccw_sch_irq, .probe = vfio_ccw_sch_probe, .remove = vfio_ccw_sch_remove, .shutdown = vfio_ccw_sch_shutdown, .sch_event = vfio_ccw_sch_event, .chp_event = vfio_ccw_chp_event, }; static int __init vfio_ccw_debug_init(void) { vfio_ccw_debug_msg_id = debug_register("vfio_ccw_msg", 16, 1, 11 * sizeof(long)); if (!vfio_ccw_debug_msg_id) goto out_unregister; debug_register_view(vfio_ccw_debug_msg_id, &debug_sprintf_view); debug_set_level(vfio_ccw_debug_msg_id, 2); vfio_ccw_debug_trace_id = debug_register("vfio_ccw_trace", 16, 1, 16); if (!vfio_ccw_debug_trace_id) goto out_unregister; debug_register_view(vfio_ccw_debug_trace_id, &debug_hex_ascii_view); debug_set_level(vfio_ccw_debug_trace_id, 2); return 0; out_unregister: debug_unregister(vfio_ccw_debug_msg_id); debug_unregister(vfio_ccw_debug_trace_id); return -1; } static void vfio_ccw_debug_exit(void) { debug_unregister(vfio_ccw_debug_msg_id); debug_unregister(vfio_ccw_debug_trace_id); } static void vfio_ccw_destroy_regions(void) { kmem_cache_destroy(vfio_ccw_crw_region); kmem_cache_destroy(vfio_ccw_schib_region); kmem_cache_destroy(vfio_ccw_cmd_region); kmem_cache_destroy(vfio_ccw_io_region); } static int __init vfio_ccw_sch_init(void) { int ret; ret = vfio_ccw_debug_init(); if (ret) return ret; vfio_ccw_work_q = create_singlethread_workqueue("vfio-ccw"); if (!vfio_ccw_work_q) { ret = -ENOMEM; goto out_regions; } vfio_ccw_io_region = kmem_cache_create_usercopy("vfio_ccw_io_region", sizeof(struct ccw_io_region), 0, SLAB_ACCOUNT, 0, sizeof(struct ccw_io_region), NULL); if (!vfio_ccw_io_region) { ret = -ENOMEM; goto out_regions; } vfio_ccw_cmd_region = kmem_cache_create_usercopy("vfio_ccw_cmd_region", sizeof(struct ccw_cmd_region), 0, SLAB_ACCOUNT, 0, sizeof(struct ccw_cmd_region), NULL); if (!vfio_ccw_cmd_region) { ret = -ENOMEM; goto out_regions; } vfio_ccw_schib_region = kmem_cache_create_usercopy("vfio_ccw_schib_region", sizeof(struct ccw_schib_region), 0, SLAB_ACCOUNT, 0, sizeof(struct ccw_schib_region), NULL); if (!vfio_ccw_schib_region) { ret = -ENOMEM; goto out_regions; } vfio_ccw_crw_region = kmem_cache_create_usercopy("vfio_ccw_crw_region", sizeof(struct ccw_crw_region), 0, SLAB_ACCOUNT, 0, sizeof(struct ccw_crw_region), NULL); if (!vfio_ccw_crw_region) { ret = -ENOMEM; goto out_regions; } ret = mdev_register_driver(&vfio_ccw_mdev_driver); if (ret) goto out_regions; isc_register(VFIO_CCW_ISC); ret = css_driver_register(&vfio_ccw_sch_driver); if (ret) { isc_unregister(VFIO_CCW_ISC); goto out_driver; } return ret; out_driver: mdev_unregister_driver(&vfio_ccw_mdev_driver); out_regions: vfio_ccw_destroy_regions(); destroy_workqueue(vfio_ccw_work_q); vfio_ccw_debug_exit(); return ret; } static void __exit vfio_ccw_sch_exit(void) { css_driver_unregister(&vfio_ccw_sch_driver); mdev_unregister_driver(&vfio_ccw_mdev_driver); isc_unregister(VFIO_CCW_ISC); vfio_ccw_destroy_regions(); destroy_workqueue(vfio_ccw_work_q); vfio_ccw_debug_exit(); } module_init(vfio_ccw_sch_init); module_exit(vfio_ccw_sch_exit); MODULE_LICENSE("GPL v2");
linux-master
drivers/s390/cio/vfio_ccw_drv.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 2002 * Author(s): Cornelia Huck ([email protected]) * Martin Schwidefsky ([email protected]) * * Status accumulation and basic sense functions. */ #include <linux/module.h> #include <linux/init.h> #include <linux/io.h> #include <asm/ccwdev.h> #include <asm/cio.h> #include "cio.h" #include "cio_debug.h" #include "css.h" #include "device.h" #include "ioasm.h" #include "io_sch.h" /* * Check for any kind of channel or interface control check but don't * issue the message for the console device */ static void ccw_device_msg_control_check(struct ccw_device *cdev, struct irb *irb) { struct subchannel *sch = to_subchannel(cdev->dev.parent); char dbf_text[15]; if (!scsw_is_valid_cstat(&irb->scsw) || !(scsw_cstat(&irb->scsw) & (SCHN_STAT_CHN_DATA_CHK | SCHN_STAT_CHN_CTRL_CHK | SCHN_STAT_INTF_CTRL_CHK))) return; CIO_MSG_EVENT(0, "Channel-Check or Interface-Control-Check " "received" " ... device %04x on subchannel 0.%x.%04x, dev_stat " ": %02X sch_stat : %02X\n", cdev->private->dev_id.devno, sch->schid.ssid, sch->schid.sch_no, scsw_dstat(&irb->scsw), scsw_cstat(&irb->scsw)); sprintf(dbf_text, "chk%x", sch->schid.sch_no); CIO_TRACE_EVENT(0, dbf_text); CIO_HEX_EVENT(0, irb, sizeof(struct irb)); } /* * Some paths became not operational (pno bit in scsw is set). */ static void ccw_device_path_notoper(struct ccw_device *cdev) { struct subchannel *sch; sch = to_subchannel(cdev->dev.parent); if (cio_update_schib(sch)) goto doverify; CIO_MSG_EVENT(0, "%s(0.%x.%04x) - path(s) %02x are " "not operational \n", __func__, sch->schid.ssid, sch->schid.sch_no, sch->schib.pmcw.pnom); sch->lpm &= ~sch->schib.pmcw.pnom; doverify: cdev->private->flags.doverify = 1; } /* * Copy valid bits from the extended control word to device irb. */ static void ccw_device_accumulate_ecw(struct ccw_device *cdev, struct irb *irb) { /* * Copy extended control bit if it is valid... yes there * are condition that have to be met for the extended control * bit to have meaning. Sick. */ cdev->private->dma_area->irb.scsw.cmd.ectl = 0; if ((irb->scsw.cmd.stctl & SCSW_STCTL_ALERT_STATUS) && !(irb->scsw.cmd.stctl & SCSW_STCTL_INTER_STATUS)) cdev->private->dma_area->irb.scsw.cmd.ectl = irb->scsw.cmd.ectl; /* Check if extended control word is valid. */ if (!cdev->private->dma_area->irb.scsw.cmd.ectl) return; /* Copy concurrent sense / model dependent information. */ memcpy(&cdev->private->dma_area->irb.ecw, irb->ecw, sizeof(irb->ecw)); } /* * Check if extended status word is valid. */ static int ccw_device_accumulate_esw_valid(struct irb *irb) { if (!irb->scsw.cmd.eswf && (irb->scsw.cmd.stctl == SCSW_STCTL_STATUS_PEND)) return 0; if (irb->scsw.cmd.stctl == (SCSW_STCTL_INTER_STATUS|SCSW_STCTL_STATUS_PEND) && !(irb->scsw.cmd.actl & SCSW_ACTL_SUSPENDED)) return 0; return 1; } /* * Copy valid bits from the extended status word to device irb. */ static void ccw_device_accumulate_esw(struct ccw_device *cdev, struct irb *irb) { struct irb *cdev_irb; struct sublog *cdev_sublog, *sublog; if (!ccw_device_accumulate_esw_valid(irb)) return; cdev_irb = &cdev->private->dma_area->irb; /* Copy last path used mask. */ cdev_irb->esw.esw1.lpum = irb->esw.esw1.lpum; /* Copy subchannel logout information if esw is of format 0. */ if (irb->scsw.cmd.eswf) { cdev_sublog = &cdev_irb->esw.esw0.sublog; sublog = &irb->esw.esw0.sublog; /* Copy extended status flags. */ cdev_sublog->esf = sublog->esf; /* * Copy fields that have a meaning for channel data check * channel control check and interface control check. */ if (irb->scsw.cmd.cstat & (SCHN_STAT_CHN_DATA_CHK | SCHN_STAT_CHN_CTRL_CHK | SCHN_STAT_INTF_CTRL_CHK)) { /* Copy ancillary report bit. */ cdev_sublog->arep = sublog->arep; /* Copy field-validity-flags. */ cdev_sublog->fvf = sublog->fvf; /* Copy storage access code. */ cdev_sublog->sacc = sublog->sacc; /* Copy termination code. */ cdev_sublog->termc = sublog->termc; /* Copy sequence code. */ cdev_sublog->seqc = sublog->seqc; } /* Copy device status check. */ cdev_sublog->devsc = sublog->devsc; /* Copy secondary error. */ cdev_sublog->serr = sublog->serr; /* Copy i/o-error alert. */ cdev_sublog->ioerr = sublog->ioerr; /* Copy channel path timeout bit. */ if (irb->scsw.cmd.cstat & SCHN_STAT_INTF_CTRL_CHK) cdev_irb->esw.esw0.erw.cpt = irb->esw.esw0.erw.cpt; /* Copy failing storage address validity flag. */ cdev_irb->esw.esw0.erw.fsavf = irb->esw.esw0.erw.fsavf; if (cdev_irb->esw.esw0.erw.fsavf) { /* ... and copy the failing storage address. */ memcpy(cdev_irb->esw.esw0.faddr, irb->esw.esw0.faddr, sizeof (irb->esw.esw0.faddr)); /* ... and copy the failing storage address format. */ cdev_irb->esw.esw0.erw.fsaf = irb->esw.esw0.erw.fsaf; } /* Copy secondary ccw address validity bit. */ cdev_irb->esw.esw0.erw.scavf = irb->esw.esw0.erw.scavf; if (irb->esw.esw0.erw.scavf) /* ... and copy the secondary ccw address. */ cdev_irb->esw.esw0.saddr = irb->esw.esw0.saddr; } /* FIXME: DCTI for format 2? */ /* Copy authorization bit. */ cdev_irb->esw.esw0.erw.auth = irb->esw.esw0.erw.auth; /* Copy path verification required flag. */ cdev_irb->esw.esw0.erw.pvrf = irb->esw.esw0.erw.pvrf; if (irb->esw.esw0.erw.pvrf) cdev->private->flags.doverify = 1; /* Copy concurrent sense bit. */ cdev_irb->esw.esw0.erw.cons = irb->esw.esw0.erw.cons; if (irb->esw.esw0.erw.cons) cdev_irb->esw.esw0.erw.scnt = irb->esw.esw0.erw.scnt; } /* * Accumulate status from irb to devstat. */ void ccw_device_accumulate_irb(struct ccw_device *cdev, struct irb *irb) { struct irb *cdev_irb; /* * Check if the status pending bit is set in stctl. * If not, the remaining bit have no meaning and we must ignore them. * The esw is not meaningful as well... */ if (!(scsw_stctl(&irb->scsw) & SCSW_STCTL_STATUS_PEND)) return; /* Check for channel checks and interface control checks. */ ccw_device_msg_control_check(cdev, irb); /* Check for path not operational. */ if (scsw_is_valid_pno(&irb->scsw) && scsw_pno(&irb->scsw)) ccw_device_path_notoper(cdev); /* No irb accumulation for transport mode irbs. */ if (scsw_is_tm(&irb->scsw)) { memcpy(&cdev->private->dma_area->irb, irb, sizeof(struct irb)); return; } /* * Don't accumulate unsolicited interrupts. */ if (!scsw_is_solicited(&irb->scsw)) return; cdev_irb = &cdev->private->dma_area->irb; /* * If the clear function had been performed, all formerly pending * status at the subchannel has been cleared and we must not pass * intermediate accumulated status to the device driver. */ if (irb->scsw.cmd.fctl & SCSW_FCTL_CLEAR_FUNC) memset(&cdev->private->dma_area->irb, 0, sizeof(struct irb)); /* Copy bits which are valid only for the start function. */ if (irb->scsw.cmd.fctl & SCSW_FCTL_START_FUNC) { /* Copy key. */ cdev_irb->scsw.cmd.key = irb->scsw.cmd.key; /* Copy suspend control bit. */ cdev_irb->scsw.cmd.sctl = irb->scsw.cmd.sctl; /* Accumulate deferred condition code. */ cdev_irb->scsw.cmd.cc |= irb->scsw.cmd.cc; /* Copy ccw format bit. */ cdev_irb->scsw.cmd.fmt = irb->scsw.cmd.fmt; /* Copy prefetch bit. */ cdev_irb->scsw.cmd.pfch = irb->scsw.cmd.pfch; /* Copy initial-status-interruption-control. */ cdev_irb->scsw.cmd.isic = irb->scsw.cmd.isic; /* Copy address limit checking control. */ cdev_irb->scsw.cmd.alcc = irb->scsw.cmd.alcc; /* Copy suppress suspend bit. */ cdev_irb->scsw.cmd.ssi = irb->scsw.cmd.ssi; } /* Take care of the extended control bit and extended control word. */ ccw_device_accumulate_ecw(cdev, irb); /* Accumulate function control. */ cdev_irb->scsw.cmd.fctl |= irb->scsw.cmd.fctl; /* Copy activity control. */ cdev_irb->scsw.cmd.actl = irb->scsw.cmd.actl; /* Accumulate status control. */ cdev_irb->scsw.cmd.stctl |= irb->scsw.cmd.stctl; /* * Copy ccw address if it is valid. This is a bit simplified * but should be close enough for all practical purposes. */ if ((irb->scsw.cmd.stctl & SCSW_STCTL_PRIM_STATUS) || ((irb->scsw.cmd.stctl == (SCSW_STCTL_INTER_STATUS|SCSW_STCTL_STATUS_PEND)) && (irb->scsw.cmd.actl & SCSW_ACTL_DEVACT) && (irb->scsw.cmd.actl & SCSW_ACTL_SCHACT)) || (irb->scsw.cmd.actl & SCSW_ACTL_SUSPENDED)) cdev_irb->scsw.cmd.cpa = irb->scsw.cmd.cpa; /* Accumulate device status, but not the device busy flag. */ cdev_irb->scsw.cmd.dstat &= ~DEV_STAT_BUSY; /* dstat is not always valid. */ if (irb->scsw.cmd.stctl & (SCSW_STCTL_PRIM_STATUS | SCSW_STCTL_SEC_STATUS | SCSW_STCTL_INTER_STATUS | SCSW_STCTL_ALERT_STATUS)) cdev_irb->scsw.cmd.dstat |= irb->scsw.cmd.dstat; /* Accumulate subchannel status. */ cdev_irb->scsw.cmd.cstat |= irb->scsw.cmd.cstat; /* Copy residual count if it is valid. */ if ((irb->scsw.cmd.stctl & SCSW_STCTL_PRIM_STATUS) && (irb->scsw.cmd.cstat & ~(SCHN_STAT_PCI | SCHN_STAT_INCORR_LEN)) == 0) cdev_irb->scsw.cmd.count = irb->scsw.cmd.count; /* Take care of bits in the extended status word. */ ccw_device_accumulate_esw(cdev, irb); /* * Check whether we must issue a SENSE CCW ourselves if there is no * concurrent sense facility installed for the subchannel. * No sense is required if no delayed sense is pending * and we did not get a unit check without sense information. * * Note: We should check for ioinfo[irq]->flags.consns but VM * violates the ESA/390 architecture and doesn't present an * operand exception for virtual devices without concurrent * sense facility available/supported when enabling the * concurrent sense facility. */ if ((cdev_irb->scsw.cmd.dstat & DEV_STAT_UNIT_CHECK) && !(cdev_irb->esw.esw0.erw.cons)) cdev->private->flags.dosense = 1; } /* * Do a basic sense. */ int ccw_device_do_sense(struct ccw_device *cdev, struct irb *irb) { struct subchannel *sch; struct ccw1 *sense_ccw; int rc; sch = to_subchannel(cdev->dev.parent); /* A sense is required, can we do it now ? */ if (scsw_actl(&irb->scsw) & (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) /* * we received an Unit Check but we have no final * status yet, therefore we must delay the SENSE * processing. We must not report this intermediate * status to the device interrupt handler. */ return -EBUSY; /* * We have ending status but no sense information. Do a basic sense. */ sense_ccw = &to_io_private(sch)->dma_area->sense_ccw; sense_ccw->cmd_code = CCW_CMD_BASIC_SENSE; sense_ccw->cda = virt_to_phys(cdev->private->dma_area->irb.ecw); sense_ccw->count = SENSE_MAX_COUNT; sense_ccw->flags = CCW_FLAG_SLI; rc = cio_start(sch, sense_ccw, 0xff); if (rc == -ENODEV || rc == -EACCES) dev_fsm_event(cdev, DEV_EVENT_VERIFY); return rc; } /* * Add information from basic sense to devstat. */ void ccw_device_accumulate_basic_sense(struct ccw_device *cdev, struct irb *irb) { /* * Check if the status pending bit is set in stctl. * If not, the remaining bit have no meaning and we must ignore them. * The esw is not meaningful as well... */ if (!(scsw_stctl(&irb->scsw) & SCSW_STCTL_STATUS_PEND)) return; /* Check for channel checks and interface control checks. */ ccw_device_msg_control_check(cdev, irb); /* Check for path not operational. */ if (scsw_is_valid_pno(&irb->scsw) && scsw_pno(&irb->scsw)) ccw_device_path_notoper(cdev); if (!(irb->scsw.cmd.dstat & DEV_STAT_UNIT_CHECK) && (irb->scsw.cmd.dstat & DEV_STAT_CHN_END)) { cdev->private->dma_area->irb.esw.esw0.erw.cons = 1; cdev->private->flags.dosense = 0; } /* Check if path verification is required. */ if (ccw_device_accumulate_esw_valid(irb) && irb->esw.esw0.erw.pvrf) cdev->private->flags.doverify = 1; } /* * This function accumulates the status into the private devstat and * starts a basic sense if one is needed. */ int ccw_device_accumulate_and_sense(struct ccw_device *cdev, struct irb *irb) { ccw_device_accumulate_irb(cdev, irb); if ((irb->scsw.cmd.actl & (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) != 0) return -EBUSY; /* Check for basic sense. */ if (cdev->private->flags.dosense && !(irb->scsw.cmd.dstat & DEV_STAT_UNIT_CHECK)) { cdev->private->dma_area->irb.esw.esw0.erw.cons = 1; cdev->private->flags.dosense = 0; return 0; } if (cdev->private->flags.dosense) { ccw_device_do_sense(cdev, irb); return -EBUSY; } return 0; }
linux-master
drivers/s390/cio/device_status.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright IBM Corp. 1999, 2010 * Author(s): Cornelia Huck ([email protected]) * Arnd Bergmann ([email protected]) * Peter Oberparleiter <[email protected]> */ #include <linux/bug.h> #include <linux/workqueue.h> #include <linux/spinlock.h> #include <linux/export.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/jiffies.h> #include <linux/wait.h> #include <linux/mutex.h> #include <linux/errno.h> #include <linux/slab.h> #include <asm/chpid.h> #include <asm/sclp.h> #include <asm/crw.h> #include "cio.h" #include "css.h" #include "ioasm.h" #include "cio_debug.h" #include "chp.h" #define to_channelpath(device) container_of(device, struct channel_path, dev) #define CHP_INFO_UPDATE_INTERVAL 1*HZ enum cfg_task_t { cfg_none, cfg_configure, cfg_deconfigure }; /* Map for pending configure tasks. */ static enum cfg_task_t chp_cfg_task[__MAX_CSSID + 1][__MAX_CHPID + 1]; static DEFINE_SPINLOCK(cfg_lock); /* Map for channel-path status. */ static struct sclp_chp_info chp_info; static DEFINE_MUTEX(info_lock); /* Time after which channel-path status may be outdated. */ static unsigned long chp_info_expires; static struct work_struct cfg_work; /* Wait queue for configure completion events. */ static DECLARE_WAIT_QUEUE_HEAD(cfg_wait_queue); /* Set vary state for given chpid. */ static void set_chp_logically_online(struct chp_id chpid, int onoff) { chpid_to_chp(chpid)->state = onoff; } /* On success return 0 if channel-path is varied offline, 1 if it is varied * online. Return -ENODEV if channel-path is not registered. */ int chp_get_status(struct chp_id chpid) { return (chpid_to_chp(chpid) ? chpid_to_chp(chpid)->state : -ENODEV); } /** * chp_get_sch_opm - return opm for subchannel * @sch: subchannel * * Calculate and return the operational path mask (opm) based on the chpids * used by the subchannel and the status of the associated channel-paths. */ u8 chp_get_sch_opm(struct subchannel *sch) { struct chp_id chpid; int opm; int i; opm = 0; chp_id_init(&chpid); for (i = 0; i < 8; i++) { opm <<= 1; chpid.id = sch->schib.pmcw.chpid[i]; if (chp_get_status(chpid) != 0) opm |= 1; } return opm; } EXPORT_SYMBOL_GPL(chp_get_sch_opm); /** * chp_is_registered - check if a channel-path is registered * @chpid: channel-path ID * * Return non-zero if a channel-path with the given chpid is registered, * zero otherwise. */ int chp_is_registered(struct chp_id chpid) { return chpid_to_chp(chpid) != NULL; } /* * Function: s390_vary_chpid * Varies the specified chpid online or offline */ static int s390_vary_chpid(struct chp_id chpid, int on) { char dbf_text[15]; int status; sprintf(dbf_text, on?"varyon%x.%02x":"varyoff%x.%02x", chpid.cssid, chpid.id); CIO_TRACE_EVENT(2, dbf_text); status = chp_get_status(chpid); if (!on && !status) return 0; set_chp_logically_online(chpid, on); chsc_chp_vary(chpid, on); return 0; } /* * Channel measurement related functions */ static ssize_t chp_measurement_chars_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct channel_path *chp; struct device *device; device = kobj_to_dev(kobj); chp = to_channelpath(device); if (chp->cmg == -1) return 0; return memory_read_from_buffer(buf, count, &off, &chp->cmg_chars, sizeof(chp->cmg_chars)); } static const struct bin_attribute chp_measurement_chars_attr = { .attr = { .name = "measurement_chars", .mode = S_IRUSR, }, .size = sizeof(struct cmg_chars), .read = chp_measurement_chars_read, }; static void chp_measurement_copy_block(struct cmg_entry *buf, struct channel_subsystem *css, struct chp_id chpid) { void *area; struct cmg_entry *entry, reference_buf; int idx; if (chpid.id < 128) { area = css->cub_addr1; idx = chpid.id; } else { area = css->cub_addr2; idx = chpid.id - 128; } entry = area + (idx * sizeof(struct cmg_entry)); do { memcpy(buf, entry, sizeof(*entry)); memcpy(&reference_buf, entry, sizeof(*entry)); } while (reference_buf.values[0] != buf->values[0]); } static ssize_t chp_measurement_read(struct file *filp, struct kobject *kobj, struct bin_attribute *bin_attr, char *buf, loff_t off, size_t count) { struct channel_path *chp; struct channel_subsystem *css; struct device *device; unsigned int size; device = kobj_to_dev(kobj); chp = to_channelpath(device); css = to_css(chp->dev.parent); size = sizeof(struct cmg_entry); /* Only allow single reads. */ if (off || count < size) return 0; chp_measurement_copy_block((struct cmg_entry *)buf, css, chp->chpid); count = size; return count; } static const struct bin_attribute chp_measurement_attr = { .attr = { .name = "measurement", .mode = S_IRUSR, }, .size = sizeof(struct cmg_entry), .read = chp_measurement_read, }; void chp_remove_cmg_attr(struct channel_path *chp) { device_remove_bin_file(&chp->dev, &chp_measurement_chars_attr); device_remove_bin_file(&chp->dev, &chp_measurement_attr); } int chp_add_cmg_attr(struct channel_path *chp) { int ret; ret = device_create_bin_file(&chp->dev, &chp_measurement_chars_attr); if (ret) return ret; ret = device_create_bin_file(&chp->dev, &chp_measurement_attr); if (ret) device_remove_bin_file(&chp->dev, &chp_measurement_chars_attr); return ret; } /* * Files for the channel path entries. */ static ssize_t chp_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *chp = to_channelpath(dev); int status; mutex_lock(&chp->lock); status = chp->state; mutex_unlock(&chp->lock); return status ? sprintf(buf, "online\n") : sprintf(buf, "offline\n"); } static ssize_t chp_status_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct channel_path *cp = to_channelpath(dev); char cmd[10]; int num_args; int error; num_args = sscanf(buf, "%5s", cmd); if (!num_args) return count; /* Wait until previous actions have settled. */ css_wait_for_slow_path(); if (!strncasecmp(cmd, "on", 2) || !strcmp(cmd, "1")) { mutex_lock(&cp->lock); error = s390_vary_chpid(cp->chpid, 1); mutex_unlock(&cp->lock); } else if (!strncasecmp(cmd, "off", 3) || !strcmp(cmd, "0")) { mutex_lock(&cp->lock); error = s390_vary_chpid(cp->chpid, 0); mutex_unlock(&cp->lock); } else error = -EINVAL; return error < 0 ? error : count; } static DEVICE_ATTR(status, 0644, chp_status_show, chp_status_write); static ssize_t chp_configure_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *cp; int status; cp = to_channelpath(dev); status = chp_info_get_status(cp->chpid); if (status < 0) return status; return sysfs_emit(buf, "%d\n", status); } static int cfg_wait_idle(void); static ssize_t chp_configure_write(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct channel_path *cp; int val; char delim; if (sscanf(buf, "%d %c", &val, &delim) != 1) return -EINVAL; if (val != 0 && val != 1) return -EINVAL; cp = to_channelpath(dev); chp_cfg_schedule(cp->chpid, val); cfg_wait_idle(); return count; } static DEVICE_ATTR(configure, 0644, chp_configure_show, chp_configure_write); static ssize_t chp_type_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *chp = to_channelpath(dev); u8 type; mutex_lock(&chp->lock); type = chp->desc.desc; mutex_unlock(&chp->lock); return sprintf(buf, "%x\n", type); } static DEVICE_ATTR(type, 0444, chp_type_show, NULL); static ssize_t chp_cmg_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *chp = to_channelpath(dev); if (!chp) return 0; if (chp->cmg == -1) /* channel measurements not available */ return sprintf(buf, "unknown\n"); return sprintf(buf, "%x\n", chp->cmg); } static DEVICE_ATTR(cmg, 0444, chp_cmg_show, NULL); static ssize_t chp_shared_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *chp = to_channelpath(dev); if (!chp) return 0; if (chp->shared == -1) /* channel measurements not available */ return sprintf(buf, "unknown\n"); return sprintf(buf, "%x\n", chp->shared); } static DEVICE_ATTR(shared, 0444, chp_shared_show, NULL); static ssize_t chp_chid_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *chp = to_channelpath(dev); ssize_t rc; mutex_lock(&chp->lock); if (chp->desc_fmt1.flags & 0x10) rc = sprintf(buf, "%04x\n", chp->desc_fmt1.chid); else rc = 0; mutex_unlock(&chp->lock); return rc; } static DEVICE_ATTR(chid, 0444, chp_chid_show, NULL); static ssize_t chp_chid_external_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *chp = to_channelpath(dev); ssize_t rc; mutex_lock(&chp->lock); if (chp->desc_fmt1.flags & 0x10) rc = sprintf(buf, "%x\n", chp->desc_fmt1.flags & 0x8 ? 1 : 0); else rc = 0; mutex_unlock(&chp->lock); return rc; } static DEVICE_ATTR(chid_external, 0444, chp_chid_external_show, NULL); static ssize_t chp_esc_show(struct device *dev, struct device_attribute *attr, char *buf) { struct channel_path *chp = to_channelpath(dev); ssize_t rc; mutex_lock(&chp->lock); rc = sprintf(buf, "%x\n", chp->desc_fmt1.esc); mutex_unlock(&chp->lock); return rc; } static DEVICE_ATTR(esc, 0444, chp_esc_show, NULL); static ssize_t util_string_read(struct file *filp, struct kobject *kobj, struct bin_attribute *attr, char *buf, loff_t off, size_t count) { struct channel_path *chp = to_channelpath(kobj_to_dev(kobj)); ssize_t rc; mutex_lock(&chp->lock); rc = memory_read_from_buffer(buf, count, &off, chp->desc_fmt3.util_str, sizeof(chp->desc_fmt3.util_str)); mutex_unlock(&chp->lock); return rc; } static BIN_ATTR_RO(util_string, sizeof(((struct channel_path_desc_fmt3 *)0)->util_str)); static struct bin_attribute *chp_bin_attrs[] = { &bin_attr_util_string, NULL, }; static struct attribute *chp_attrs[] = { &dev_attr_status.attr, &dev_attr_configure.attr, &dev_attr_type.attr, &dev_attr_cmg.attr, &dev_attr_shared.attr, &dev_attr_chid.attr, &dev_attr_chid_external.attr, &dev_attr_esc.attr, NULL, }; static struct attribute_group chp_attr_group = { .attrs = chp_attrs, .bin_attrs = chp_bin_attrs, }; static const struct attribute_group *chp_attr_groups[] = { &chp_attr_group, NULL, }; static void chp_release(struct device *dev) { struct channel_path *cp; cp = to_channelpath(dev); kfree(cp); } /** * chp_update_desc - update channel-path description * @chp: channel-path * * Update the channel-path description of the specified channel-path * including channel measurement related information. * Return zero on success, non-zero otherwise. */ int chp_update_desc(struct channel_path *chp) { int rc; rc = chsc_determine_fmt0_channel_path_desc(chp->chpid, &chp->desc); if (rc) return rc; /* * Fetching the following data is optional. Not all machines or * hypervisors implement the required chsc commands. */ chsc_determine_fmt1_channel_path_desc(chp->chpid, &chp->desc_fmt1); chsc_determine_fmt3_channel_path_desc(chp->chpid, &chp->desc_fmt3); chsc_get_channel_measurement_chars(chp); return 0; } /** * chp_new - register a new channel-path * @chpid: channel-path ID * * Create and register data structure representing new channel-path. Return * zero on success, non-zero otherwise. */ int chp_new(struct chp_id chpid) { struct channel_subsystem *css = css_by_id(chpid.cssid); struct channel_path *chp; int ret = 0; mutex_lock(&css->mutex); if (chp_is_registered(chpid)) goto out; chp = kzalloc(sizeof(struct channel_path), GFP_KERNEL); if (!chp) { ret = -ENOMEM; goto out; } /* fill in status, etc. */ chp->chpid = chpid; chp->state = 1; chp->dev.parent = &css->device; chp->dev.groups = chp_attr_groups; chp->dev.release = chp_release; mutex_init(&chp->lock); /* Obtain channel path description and fill it in. */ ret = chp_update_desc(chp); if (ret) goto out_free; if ((chp->desc.flags & 0x80) == 0) { ret = -ENODEV; goto out_free; } dev_set_name(&chp->dev, "chp%x.%02x", chpid.cssid, chpid.id); /* make it known to the system */ ret = device_register(&chp->dev); if (ret) { CIO_MSG_EVENT(0, "Could not register chp%x.%02x: %d\n", chpid.cssid, chpid.id, ret); put_device(&chp->dev); goto out; } if (css->cm_enabled) { ret = chp_add_cmg_attr(chp); if (ret) { device_unregister(&chp->dev); goto out; } } css->chps[chpid.id] = chp; goto out; out_free: kfree(chp); out: mutex_unlock(&css->mutex); return ret; } /** * chp_get_chp_desc - return newly allocated channel-path description * @chpid: channel-path ID * * On success return a newly allocated copy of the channel-path description * data associated with the given channel-path ID. Return %NULL on error. */ struct channel_path_desc_fmt0 *chp_get_chp_desc(struct chp_id chpid) { struct channel_path *chp; struct channel_path_desc_fmt0 *desc; chp = chpid_to_chp(chpid); if (!chp) return NULL; desc = kmalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return NULL; mutex_lock(&chp->lock); memcpy(desc, &chp->desc, sizeof(*desc)); mutex_unlock(&chp->lock); return desc; } /** * chp_process_crw - process channel-path status change * @crw0: channel report-word to handler * @crw1: second channel-report word (always NULL) * @overflow: crw overflow indication * * Handle channel-report-words indicating that the status of a channel-path * has changed. */ static void chp_process_crw(struct crw *crw0, struct crw *crw1, int overflow) { struct chp_id chpid; if (overflow) { css_schedule_eval_all(); return; } CIO_CRW_EVENT(2, "CRW reports slct=%d, oflw=%d, " "chn=%d, rsc=%X, anc=%d, erc=%X, rsid=%X\n", crw0->slct, crw0->oflw, crw0->chn, crw0->rsc, crw0->anc, crw0->erc, crw0->rsid); /* * Check for solicited machine checks. These are * created by reset channel path and need not be * handled here. */ if (crw0->slct) { CIO_CRW_EVENT(2, "solicited machine check for " "channel path %02X\n", crw0->rsid); return; } chp_id_init(&chpid); chpid.id = crw0->rsid; switch (crw0->erc) { case CRW_ERC_IPARM: /* Path has come. */ case CRW_ERC_INIT: chp_new(chpid); chsc_chp_online(chpid); break; case CRW_ERC_PERRI: /* Path has gone. */ case CRW_ERC_PERRN: chsc_chp_offline(chpid); break; default: CIO_CRW_EVENT(2, "Don't know how to handle erc=%x\n", crw0->erc); } } int chp_ssd_get_mask(struct chsc_ssd_info *ssd, struct chp_link *link) { int i; int mask; for (i = 0; i < 8; i++) { mask = 0x80 >> i; if (!(ssd->path_mask & mask)) continue; if (!chp_id_is_equal(&ssd->chpid[i], &link->chpid)) continue; if ((ssd->fla_valid_mask & mask) && ((ssd->fla[i] & link->fla_mask) != link->fla)) continue; return mask; } return 0; } EXPORT_SYMBOL_GPL(chp_ssd_get_mask); static inline int info_bit_num(struct chp_id id) { return id.id + id.cssid * (__MAX_CHPID + 1); } /* Force chp_info refresh on next call to info_validate(). */ static void info_expire(void) { mutex_lock(&info_lock); chp_info_expires = jiffies - 1; mutex_unlock(&info_lock); } /* Ensure that chp_info is up-to-date. */ static int info_update(void) { int rc; mutex_lock(&info_lock); rc = 0; if (time_after(jiffies, chp_info_expires)) { /* Data is too old, update. */ rc = sclp_chp_read_info(&chp_info); chp_info_expires = jiffies + CHP_INFO_UPDATE_INTERVAL ; } mutex_unlock(&info_lock); return rc; } /** * chp_info_get_status - retrieve configure status of a channel-path * @chpid: channel-path ID * * On success, return 0 for standby, 1 for configured, 2 for reserved, * 3 for not recognized. Return negative error code on error. */ int chp_info_get_status(struct chp_id chpid) { int rc; int bit; rc = info_update(); if (rc) return rc; bit = info_bit_num(chpid); mutex_lock(&info_lock); if (!chp_test_bit(chp_info.recognized, bit)) rc = CHP_STATUS_NOT_RECOGNIZED; else if (chp_test_bit(chp_info.configured, bit)) rc = CHP_STATUS_CONFIGURED; else if (chp_test_bit(chp_info.standby, bit)) rc = CHP_STATUS_STANDBY; else rc = CHP_STATUS_RESERVED; mutex_unlock(&info_lock); return rc; } /* Return configure task for chpid. */ static enum cfg_task_t cfg_get_task(struct chp_id chpid) { return chp_cfg_task[chpid.cssid][chpid.id]; } /* Set configure task for chpid. */ static void cfg_set_task(struct chp_id chpid, enum cfg_task_t cfg) { chp_cfg_task[chpid.cssid][chpid.id] = cfg; } /* Fetch the first configure task. Set chpid accordingly. */ static enum cfg_task_t chp_cfg_fetch_task(struct chp_id *chpid) { enum cfg_task_t t = cfg_none; chp_id_for_each(chpid) { t = cfg_get_task(*chpid); if (t != cfg_none) break; } return t; } /* Perform one configure/deconfigure request. Reschedule work function until * last request. */ static void cfg_func(struct work_struct *work) { struct chp_id chpid; enum cfg_task_t t; int rc; spin_lock(&cfg_lock); t = chp_cfg_fetch_task(&chpid); spin_unlock(&cfg_lock); switch (t) { case cfg_configure: rc = sclp_chp_configure(chpid); if (rc) CIO_MSG_EVENT(2, "chp: sclp_chp_configure(%x.%02x)=" "%d\n", chpid.cssid, chpid.id, rc); else { info_expire(); chsc_chp_online(chpid); } break; case cfg_deconfigure: rc = sclp_chp_deconfigure(chpid); if (rc) CIO_MSG_EVENT(2, "chp: sclp_chp_deconfigure(%x.%02x)=" "%d\n", chpid.cssid, chpid.id, rc); else { info_expire(); chsc_chp_offline(chpid); } break; case cfg_none: /* Get updated information after last change. */ info_update(); wake_up_interruptible(&cfg_wait_queue); return; } spin_lock(&cfg_lock); if (t == cfg_get_task(chpid)) cfg_set_task(chpid, cfg_none); spin_unlock(&cfg_lock); schedule_work(&cfg_work); } /** * chp_cfg_schedule - schedule chpid configuration request * @chpid: channel-path ID * @configure: Non-zero for configure, zero for deconfigure * * Schedule a channel-path configuration/deconfiguration request. */ void chp_cfg_schedule(struct chp_id chpid, int configure) { CIO_MSG_EVENT(2, "chp_cfg_sched%x.%02x=%d\n", chpid.cssid, chpid.id, configure); spin_lock(&cfg_lock); cfg_set_task(chpid, configure ? cfg_configure : cfg_deconfigure); spin_unlock(&cfg_lock); schedule_work(&cfg_work); } /** * chp_cfg_cancel_deconfigure - cancel chpid deconfiguration request * @chpid: channel-path ID * * Cancel an active channel-path deconfiguration request if it has not yet * been performed. */ void chp_cfg_cancel_deconfigure(struct chp_id chpid) { CIO_MSG_EVENT(2, "chp_cfg_cancel:%x.%02x\n", chpid.cssid, chpid.id); spin_lock(&cfg_lock); if (cfg_get_task(chpid) == cfg_deconfigure) cfg_set_task(chpid, cfg_none); spin_unlock(&cfg_lock); } static bool cfg_idle(void) { struct chp_id chpid; enum cfg_task_t t; spin_lock(&cfg_lock); t = chp_cfg_fetch_task(&chpid); spin_unlock(&cfg_lock); return t == cfg_none; } static int cfg_wait_idle(void) { if (wait_event_interruptible(cfg_wait_queue, cfg_idle())) return -ERESTARTSYS; return 0; } static int __init chp_init(void) { struct chp_id chpid; int state, ret; ret = crw_register_handler(CRW_RSC_CPATH, chp_process_crw); if (ret) return ret; INIT_WORK(&cfg_work, cfg_func); if (info_update()) return 0; /* Register available channel-paths. */ chp_id_for_each(&chpid) { state = chp_info_get_status(chpid); if (state == CHP_STATUS_CONFIGURED || state == CHP_STATUS_STANDBY) chp_new(chpid); } return 0; } subsys_initcall(chp_init);
linux-master
drivers/s390/cio/chp.c
// SPDX-License-Identifier: GPL-2.0 /* * Handling of internal CCW device requests. * * Copyright IBM Corp. 2009, 2011 * Author(s): Peter Oberparleiter <[email protected]> */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/types.h> #include <linux/err.h> #include <asm/ccwdev.h> #include <asm/cio.h> #include "io_sch.h" #include "cio.h" #include "device.h" #include "cio_debug.h" /** * lpm_adjust - adjust path mask * @lpm: path mask to adjust * @mask: mask of available paths * * Shift @lpm right until @lpm and @mask have at least one bit in common or * until @lpm is zero. Return the resulting lpm. */ int lpm_adjust(int lpm, int mask) { while (lpm && ((lpm & mask) == 0)) lpm >>= 1; return lpm; } /* * Adjust path mask to use next path and reset retry count. Return resulting * path mask. */ static u16 ccwreq_next_path(struct ccw_device *cdev) { struct ccw_request *req = &cdev->private->req; if (!req->singlepath) { req->mask = 0; goto out; } req->retries = req->maxretries; req->mask = lpm_adjust(req->mask >> 1, req->lpm); out: return req->mask; } /* * Clean up device state and report to callback. */ static void ccwreq_stop(struct ccw_device *cdev, int rc) { struct ccw_request *req = &cdev->private->req; if (req->done) return; req->done = 1; ccw_device_set_timeout(cdev, 0); memset(&cdev->private->dma_area->irb, 0, sizeof(struct irb)); if (rc && rc != -ENODEV && req->drc) rc = req->drc; req->callback(cdev, req->data, rc); } /* * (Re-)Start the operation until retries and paths are exhausted. */ static void ccwreq_do(struct ccw_device *cdev) { struct ccw_request *req = &cdev->private->req; struct subchannel *sch = to_subchannel(cdev->dev.parent); struct ccw1 *cp = req->cp; int rc = -EACCES; while (req->mask) { if (req->retries-- == 0) { /* Retries exhausted, try next path. */ ccwreq_next_path(cdev); continue; } /* Perform start function. */ memset(&cdev->private->dma_area->irb, 0, sizeof(struct irb)); rc = cio_start(sch, cp, (u8) req->mask); if (rc == 0) { /* I/O started successfully. */ ccw_device_set_timeout(cdev, req->timeout); return; } if (rc == -ENODEV) { /* Permanent device error. */ break; } if (rc == -EACCES) { /* Permant path error. */ ccwreq_next_path(cdev); continue; } /* Temporary improper status. */ rc = cio_clear(sch); if (rc) break; return; } ccwreq_stop(cdev, rc); } /** * ccw_request_start - perform I/O request * @cdev: ccw device * * Perform the I/O request specified by cdev->req. */ void ccw_request_start(struct ccw_device *cdev) { struct ccw_request *req = &cdev->private->req; if (req->singlepath) { /* Try all paths twice to counter link flapping. */ req->mask = 0x8080; } else req->mask = req->lpm; req->retries = req->maxretries; req->mask = lpm_adjust(req->mask, req->lpm); req->drc = 0; req->done = 0; req->cancel = 0; if (!req->mask) goto out_nopath; ccwreq_do(cdev); return; out_nopath: ccwreq_stop(cdev, -EACCES); } /** * ccw_request_cancel - cancel running I/O request * @cdev: ccw device * * Cancel the I/O request specified by cdev->req. Return non-zero if request * has already finished, zero otherwise. */ int ccw_request_cancel(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct ccw_request *req = &cdev->private->req; int rc; if (req->done) return 1; req->cancel = 1; rc = cio_clear(sch); if (rc) ccwreq_stop(cdev, rc); return 0; } /* * Return the status of the internal I/O started on the specified ccw device. * Perform BASIC SENSE if required. */ static enum io_status ccwreq_status(struct ccw_device *cdev, struct irb *lcirb) { struct irb *irb = &cdev->private->dma_area->irb; struct cmd_scsw *scsw = &irb->scsw.cmd; enum uc_todo todo; /* Perform BASIC SENSE if needed. */ if (ccw_device_accumulate_and_sense(cdev, lcirb)) return IO_RUNNING; /* Check for halt/clear interrupt. */ if (scsw->fctl & (SCSW_FCTL_HALT_FUNC | SCSW_FCTL_CLEAR_FUNC)) return IO_KILLED; /* Check for path error. */ if (scsw->cc == 3 || scsw->pno) return IO_PATH_ERROR; /* Handle BASIC SENSE data. */ if (irb->esw.esw0.erw.cons) { CIO_TRACE_EVENT(2, "sensedata"); CIO_HEX_EVENT(2, &cdev->private->dev_id, sizeof(struct ccw_dev_id)); CIO_HEX_EVENT(2, &cdev->private->dma_area->irb.ecw, SENSE_MAX_COUNT); /* Check for command reject. */ if (irb->ecw[0] & SNS0_CMD_REJECT) return IO_REJECTED; /* Ask the driver what to do */ if (cdev->drv && cdev->drv->uc_handler) { todo = cdev->drv->uc_handler(cdev, lcirb); CIO_TRACE_EVENT(2, "uc_response"); CIO_HEX_EVENT(2, &todo, sizeof(todo)); switch (todo) { case UC_TODO_RETRY: return IO_STATUS_ERROR; case UC_TODO_RETRY_ON_NEW_PATH: return IO_PATH_ERROR; case UC_TODO_STOP: return IO_REJECTED; default: return IO_STATUS_ERROR; } } /* Assume that unexpected SENSE data implies an error. */ return IO_STATUS_ERROR; } /* Check for channel errors. */ if (scsw->cstat != 0) return IO_STATUS_ERROR; /* Check for device errors. */ if (scsw->dstat & ~(DEV_STAT_CHN_END | DEV_STAT_DEV_END)) return IO_STATUS_ERROR; /* Check for final state. */ if (!(scsw->dstat & DEV_STAT_DEV_END)) return IO_RUNNING; /* Check for other improper status. */ if (scsw->cc == 1 && (scsw->stctl & SCSW_STCTL_ALERT_STATUS)) return IO_STATUS_ERROR; return IO_DONE; } /* * Log ccw request status. */ static void ccwreq_log_status(struct ccw_device *cdev, enum io_status status) { struct ccw_request *req = &cdev->private->req; struct { struct ccw_dev_id dev_id; u16 retries; u8 lpm; u8 status; } __attribute__ ((packed)) data; data.dev_id = cdev->private->dev_id; data.retries = req->retries; data.lpm = (u8) req->mask; data.status = (u8) status; CIO_TRACE_EVENT(2, "reqstat"); CIO_HEX_EVENT(2, &data, sizeof(data)); } /** * ccw_request_handler - interrupt handler for I/O request procedure. * @cdev: ccw device * * Handle interrupt during I/O request procedure. */ void ccw_request_handler(struct ccw_device *cdev) { struct irb *irb = this_cpu_ptr(&cio_irb); struct ccw_request *req = &cdev->private->req; enum io_status status; int rc = -EOPNOTSUPP; /* Check status of I/O request. */ status = ccwreq_status(cdev, irb); if (req->filter) status = req->filter(cdev, req->data, irb, status); if (status != IO_RUNNING) ccw_device_set_timeout(cdev, 0); if (status != IO_DONE && status != IO_RUNNING) ccwreq_log_status(cdev, status); switch (status) { case IO_DONE: break; case IO_RUNNING: return; case IO_REJECTED: goto err; case IO_PATH_ERROR: goto out_next_path; case IO_STATUS_ERROR: goto out_restart; case IO_KILLED: /* Check if request was cancelled on purpose. */ if (req->cancel) { rc = -EIO; goto err; } goto out_restart; } /* Check back with request initiator. */ if (!req->check) goto out; switch (req->check(cdev, req->data)) { case 0: break; case -EAGAIN: goto out_restart; case -EACCES: goto out_next_path; default: goto err; } out: ccwreq_stop(cdev, 0); return; out_next_path: /* Try next path and restart I/O. */ if (!ccwreq_next_path(cdev)) { rc = -EACCES; goto err; } out_restart: /* Restart. */ ccwreq_do(cdev); return; err: ccwreq_stop(cdev, rc); } /** * ccw_request_timeout - timeout handler for I/O request procedure * @cdev: ccw device * * Handle timeout during I/O request procedure. */ void ccw_request_timeout(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct ccw_request *req = &cdev->private->req; int rc = -ENODEV, chp; if (cio_update_schib(sch)) goto err; for (chp = 0; chp < 8; chp++) { if ((0x80 >> chp) & sch->schib.pmcw.lpum) pr_warn("%s: No interrupt was received within %lus (CS=%02x, DS=%02x, CHPID=%x.%02x)\n", dev_name(&cdev->dev), req->timeout / HZ, scsw_cstat(&sch->schib.scsw), scsw_dstat(&sch->schib.scsw), sch->schid.cssid, sch->schib.pmcw.chpid[chp]); } if (!ccwreq_next_path(cdev)) { /* set the final return code for this request */ req->drc = -ETIME; } rc = cio_clear(sch); if (rc) goto err; return; err: ccwreq_stop(cdev, rc); } /** * ccw_request_notoper - notoper handler for I/O request procedure * @cdev: ccw device * * Handle notoper during I/O request procedure. */ void ccw_request_notoper(struct ccw_device *cdev) { ccwreq_stop(cdev, -ENODEV); }
linux-master
drivers/s390/cio/ccwreq.c
// SPDX-License-Identifier: GPL-2.0+ /* * Linux on zSeries Channel Measurement Facility support * * Copyright IBM Corp. 2000, 2006 * * Authors: Arnd Bergmann <[email protected]> * Cornelia Huck <[email protected]> * * original idea from Natarajan Krishnaswami <[email protected]> */ #define KMSG_COMPONENT "cio" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/memblock.h> #include <linux/device.h> #include <linux/init.h> #include <linux/list.h> #include <linux/export.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/timex.h> /* get_tod_clock() */ #include <asm/ccwdev.h> #include <asm/cio.h> #include <asm/cmb.h> #include <asm/div64.h> #include "cio.h" #include "css.h" #include "device.h" #include "ioasm.h" #include "chsc.h" /* * parameter to enable cmf during boot, possible uses are: * "s390cmf" -- enable cmf and allocate 2 MB of ram so measuring can be * used on any subchannel * "s390cmf=<num>" -- enable cmf and allocate enough memory to measure * <num> subchannel, where <num> is an integer * between 1 and 65535, default is 1024 */ #define ARGSTRING "s390cmf" /* indices for READCMB */ enum cmb_index { avg_utilization = -1, /* basic and exended format: */ cmb_ssch_rsch_count = 0, cmb_sample_count, cmb_device_connect_time, cmb_function_pending_time, cmb_device_disconnect_time, cmb_control_unit_queuing_time, cmb_device_active_only_time, /* extended format only: */ cmb_device_busy_time, cmb_initial_command_response_time, }; /** * enum cmb_format - types of supported measurement block formats * * @CMF_BASIC: traditional channel measurement blocks supported * by all machines that we run on * @CMF_EXTENDED: improved format that was introduced with the z990 * machine * @CMF_AUTODETECT: default: use extended format when running on a machine * supporting extended format, otherwise fall back to * basic format */ enum cmb_format { CMF_BASIC, CMF_EXTENDED, CMF_AUTODETECT = -1, }; /* * format - actual format for all measurement blocks * * The format module parameter can be set to a value of 0 (zero) * or 1, indicating basic or extended format as described for * enum cmb_format. */ static int format = CMF_AUTODETECT; module_param(format, bint, 0444); /** * struct cmb_operations - functions to use depending on cmb_format * * Most of these functions operate on a struct ccw_device. There is only * one instance of struct cmb_operations because the format of the measurement * data is guaranteed to be the same for every ccw_device. * * @alloc: allocate memory for a channel measurement block, * either with the help of a special pool or with kmalloc * @free: free memory allocated with @alloc * @set: enable or disable measurement * @read: read a measurement entry at an index * @readall: read a measurement block in a common format * @reset: clear the data in the associated measurement block and * reset its time stamp */ struct cmb_operations { int (*alloc) (struct ccw_device *); void (*free) (struct ccw_device *); int (*set) (struct ccw_device *, u32); u64 (*read) (struct ccw_device *, int); int (*readall)(struct ccw_device *, struct cmbdata *); void (*reset) (struct ccw_device *); /* private: */ struct attribute_group *attr_group; }; static struct cmb_operations *cmbops; struct cmb_data { void *hw_block; /* Pointer to block updated by hardware */ void *last_block; /* Last changed block copied from hardware block */ int size; /* Size of hw_block and last_block */ unsigned long long last_update; /* when last_block was updated */ }; /* * Our user interface is designed in terms of nanoseconds, * while the hardware measures total times in its own * unit. */ static inline u64 time_to_nsec(u32 value) { return ((u64)value) * 128000ull; } /* * Users are usually interested in average times, * not accumulated time. * This also helps us with atomicity problems * when reading sinlge values. */ static inline u64 time_to_avg_nsec(u32 value, u32 count) { u64 ret; /* no samples yet, avoid division by 0 */ if (count == 0) return 0; /* value comes in units of 128 µsec */ ret = time_to_nsec(value); do_div(ret, count); return ret; } #define CMF_OFF 0 #define CMF_ON 2 /* * Activate or deactivate the channel monitor. When area is NULL, * the monitor is deactivated. The channel monitor needs to * be active in order to measure subchannels, which also need * to be enabled. */ static inline void cmf_activate(void *area, unsigned int onoff) { /* activate channel measurement */ asm volatile( " lgr 1,%[r1]\n" " lgr 2,%[mbo]\n" " schm\n" : : [r1] "d" ((unsigned long)onoff), [mbo] "d" (area) : "1", "2"); } static int set_schib(struct ccw_device *cdev, u32 mme, int mbfc, unsigned long address) { struct subchannel *sch = to_subchannel(cdev->dev.parent); int ret; sch->config.mme = mme; sch->config.mbfc = mbfc; /* address can be either a block address or a block index */ if (mbfc) sch->config.mba = address; else sch->config.mbi = address; ret = cio_commit_config(sch); if (!mme && ret == -ENODEV) { /* * The task was to disable measurement block updates but * the subchannel is already gone. Report success. */ ret = 0; } return ret; } struct set_schib_struct { u32 mme; int mbfc; unsigned long address; wait_queue_head_t wait; int ret; }; #define CMF_PENDING 1 #define SET_SCHIB_TIMEOUT (10 * HZ) static int set_schib_wait(struct ccw_device *cdev, u32 mme, int mbfc, unsigned long address) { struct set_schib_struct set_data; int ret = -ENODEV; spin_lock_irq(cdev->ccwlock); if (!cdev->private->cmb) goto out; ret = set_schib(cdev, mme, mbfc, address); if (ret != -EBUSY) goto out; /* if the device is not online, don't even try again */ if (cdev->private->state != DEV_STATE_ONLINE) goto out; init_waitqueue_head(&set_data.wait); set_data.mme = mme; set_data.mbfc = mbfc; set_data.address = address; set_data.ret = CMF_PENDING; cdev->private->state = DEV_STATE_CMFCHANGE; cdev->private->cmb_wait = &set_data; spin_unlock_irq(cdev->ccwlock); ret = wait_event_interruptible_timeout(set_data.wait, set_data.ret != CMF_PENDING, SET_SCHIB_TIMEOUT); spin_lock_irq(cdev->ccwlock); if (ret <= 0) { if (set_data.ret == CMF_PENDING) { set_data.ret = (ret == 0) ? -ETIME : ret; if (cdev->private->state == DEV_STATE_CMFCHANGE) cdev->private->state = DEV_STATE_ONLINE; } } cdev->private->cmb_wait = NULL; ret = set_data.ret; out: spin_unlock_irq(cdev->ccwlock); return ret; } void retry_set_schib(struct ccw_device *cdev) { struct set_schib_struct *set_data = cdev->private->cmb_wait; if (!set_data) return; set_data->ret = set_schib(cdev, set_data->mme, set_data->mbfc, set_data->address); wake_up(&set_data->wait); } static int cmf_copy_block(struct ccw_device *cdev) { struct subchannel *sch = to_subchannel(cdev->dev.parent); struct cmb_data *cmb_data; void *hw_block; if (cio_update_schib(sch)) return -ENODEV; if (scsw_fctl(&sch->schib.scsw) & SCSW_FCTL_START_FUNC) { /* Don't copy if a start function is in progress. */ if ((!(scsw_actl(&sch->schib.scsw) & SCSW_ACTL_SUSPENDED)) && (scsw_actl(&sch->schib.scsw) & (SCSW_ACTL_DEVACT | SCSW_ACTL_SCHACT)) && (!(scsw_stctl(&sch->schib.scsw) & SCSW_STCTL_SEC_STATUS))) return -EBUSY; } cmb_data = cdev->private->cmb; hw_block = cmb_data->hw_block; memcpy(cmb_data->last_block, hw_block, cmb_data->size); cmb_data->last_update = get_tod_clock(); return 0; } struct copy_block_struct { wait_queue_head_t wait; int ret; }; static int cmf_cmb_copy_wait(struct ccw_device *cdev) { struct copy_block_struct copy_block; int ret = -ENODEV; spin_lock_irq(cdev->ccwlock); if (!cdev->private->cmb) goto out; ret = cmf_copy_block(cdev); if (ret != -EBUSY) goto out; if (cdev->private->state != DEV_STATE_ONLINE) goto out; init_waitqueue_head(&copy_block.wait); copy_block.ret = CMF_PENDING; cdev->private->state = DEV_STATE_CMFUPDATE; cdev->private->cmb_wait = &copy_block; spin_unlock_irq(cdev->ccwlock); ret = wait_event_interruptible(copy_block.wait, copy_block.ret != CMF_PENDING); spin_lock_irq(cdev->ccwlock); if (ret) { if (copy_block.ret == CMF_PENDING) { copy_block.ret = -ERESTARTSYS; if (cdev->private->state == DEV_STATE_CMFUPDATE) cdev->private->state = DEV_STATE_ONLINE; } } cdev->private->cmb_wait = NULL; ret = copy_block.ret; out: spin_unlock_irq(cdev->ccwlock); return ret; } void cmf_retry_copy_block(struct ccw_device *cdev) { struct copy_block_struct *copy_block = cdev->private->cmb_wait; if (!copy_block) return; copy_block->ret = cmf_copy_block(cdev); wake_up(&copy_block->wait); } static void cmf_generic_reset(struct ccw_device *cdev) { struct cmb_data *cmb_data; spin_lock_irq(cdev->ccwlock); cmb_data = cdev->private->cmb; if (cmb_data) { memset(cmb_data->last_block, 0, cmb_data->size); /* * Need to reset hw block as well to make the hardware start * from 0 again. */ memset(cmb_data->hw_block, 0, cmb_data->size); cmb_data->last_update = 0; } cdev->private->cmb_start_time = get_tod_clock(); spin_unlock_irq(cdev->ccwlock); } /** * struct cmb_area - container for global cmb data * * @mem: pointer to CMBs (only in basic measurement mode) * @list: contains a linked list of all subchannels * @num_channels: number of channels to be measured * @lock: protect concurrent access to @mem and @list */ struct cmb_area { struct cmb *mem; struct list_head list; int num_channels; spinlock_t lock; }; static struct cmb_area cmb_area = { .lock = __SPIN_LOCK_UNLOCKED(cmb_area.lock), .list = LIST_HEAD_INIT(cmb_area.list), .num_channels = 1024, }; /* ****** old style CMB handling ********/ /* * Basic channel measurement blocks are allocated in one contiguous * block of memory, which can not be moved as long as any channel * is active. Therefore, a maximum number of subchannels needs to * be defined somewhere. This is a module parameter, defaulting to * a reasonable value of 1024, or 32 kb of memory. * Current kernels don't allow kmalloc with more than 128kb, so the * maximum is 4096. */ module_param_named(maxchannels, cmb_area.num_channels, uint, 0444); /** * struct cmb - basic channel measurement block * @ssch_rsch_count: number of ssch and rsch * @sample_count: number of samples * @device_connect_time: time of device connect * @function_pending_time: time of function pending * @device_disconnect_time: time of device disconnect * @control_unit_queuing_time: time of control unit queuing * @device_active_only_time: time of device active only * @reserved: unused in basic measurement mode * * The measurement block as used by the hardware. The fields are described * further in z/Architecture Principles of Operation, chapter 17. * * The cmb area made up from these blocks must be a contiguous array and may * not be reallocated or freed. * Only one cmb area can be present in the system. */ struct cmb { u16 ssch_rsch_count; u16 sample_count; u32 device_connect_time; u32 function_pending_time; u32 device_disconnect_time; u32 control_unit_queuing_time; u32 device_active_only_time; u32 reserved[2]; }; /* * Insert a single device into the cmb_area list. * Called with cmb_area.lock held from alloc_cmb. */ static int alloc_cmb_single(struct ccw_device *cdev, struct cmb_data *cmb_data) { struct cmb *cmb; struct ccw_device_private *node; int ret; spin_lock_irq(cdev->ccwlock); if (!list_empty(&cdev->private->cmb_list)) { ret = -EBUSY; goto out; } /* * Find first unused cmb in cmb_area.mem. * This is a little tricky: cmb_area.list * remains sorted by ->cmb->hw_data pointers. */ cmb = cmb_area.mem; list_for_each_entry(node, &cmb_area.list, cmb_list) { struct cmb_data *data; data = node->cmb; if ((struct cmb*)data->hw_block > cmb) break; cmb++; } if (cmb - cmb_area.mem >= cmb_area.num_channels) { ret = -ENOMEM; goto out; } /* insert new cmb */ list_add_tail(&cdev->private->cmb_list, &node->cmb_list); cmb_data->hw_block = cmb; cdev->private->cmb = cmb_data; ret = 0; out: spin_unlock_irq(cdev->ccwlock); return ret; } static int alloc_cmb(struct ccw_device *cdev) { int ret; struct cmb *mem; ssize_t size; struct cmb_data *cmb_data; /* Allocate private cmb_data. */ cmb_data = kzalloc(sizeof(struct cmb_data), GFP_KERNEL); if (!cmb_data) return -ENOMEM; cmb_data->last_block = kzalloc(sizeof(struct cmb), GFP_KERNEL); if (!cmb_data->last_block) { kfree(cmb_data); return -ENOMEM; } cmb_data->size = sizeof(struct cmb); spin_lock(&cmb_area.lock); if (!cmb_area.mem) { /* there is no user yet, so we need a new area */ size = sizeof(struct cmb) * cmb_area.num_channels; WARN_ON(!list_empty(&cmb_area.list)); spin_unlock(&cmb_area.lock); mem = (void*)__get_free_pages(GFP_KERNEL | GFP_DMA, get_order(size)); spin_lock(&cmb_area.lock); if (cmb_area.mem) { /* ok, another thread was faster */ free_pages((unsigned long)mem, get_order(size)); } else if (!mem) { /* no luck */ ret = -ENOMEM; goto out; } else { /* everything ok */ memset(mem, 0, size); cmb_area.mem = mem; cmf_activate(cmb_area.mem, CMF_ON); } } /* do the actual allocation */ ret = alloc_cmb_single(cdev, cmb_data); out: spin_unlock(&cmb_area.lock); if (ret) { kfree(cmb_data->last_block); kfree(cmb_data); } return ret; } static void free_cmb(struct ccw_device *cdev) { struct ccw_device_private *priv; struct cmb_data *cmb_data; spin_lock(&cmb_area.lock); spin_lock_irq(cdev->ccwlock); priv = cdev->private; cmb_data = priv->cmb; priv->cmb = NULL; if (cmb_data) kfree(cmb_data->last_block); kfree(cmb_data); list_del_init(&priv->cmb_list); if (list_empty(&cmb_area.list)) { ssize_t size; size = sizeof(struct cmb) * cmb_area.num_channels; cmf_activate(NULL, CMF_OFF); free_pages((unsigned long)cmb_area.mem, get_order(size)); cmb_area.mem = NULL; } spin_unlock_irq(cdev->ccwlock); spin_unlock(&cmb_area.lock); } static int set_cmb(struct ccw_device *cdev, u32 mme) { u16 offset; struct cmb_data *cmb_data; unsigned long flags; spin_lock_irqsave(cdev->ccwlock, flags); if (!cdev->private->cmb) { spin_unlock_irqrestore(cdev->ccwlock, flags); return -EINVAL; } cmb_data = cdev->private->cmb; offset = mme ? (struct cmb *)cmb_data->hw_block - cmb_area.mem : 0; spin_unlock_irqrestore(cdev->ccwlock, flags); return set_schib_wait(cdev, mme, 0, offset); } /* calculate utilization in 0.1 percent units */ static u64 __cmb_utilization(u64 device_connect_time, u64 function_pending_time, u64 device_disconnect_time, u64 start_time) { u64 utilization, elapsed_time; utilization = time_to_nsec(device_connect_time + function_pending_time + device_disconnect_time); elapsed_time = get_tod_clock() - start_time; elapsed_time = tod_to_ns(elapsed_time); elapsed_time /= 1000; return elapsed_time ? (utilization / elapsed_time) : 0; } static u64 read_cmb(struct ccw_device *cdev, int index) { struct cmb_data *cmb_data; unsigned long flags; struct cmb *cmb; u64 ret = 0; u32 val; spin_lock_irqsave(cdev->ccwlock, flags); cmb_data = cdev->private->cmb; if (!cmb_data) goto out; cmb = cmb_data->hw_block; switch (index) { case avg_utilization: ret = __cmb_utilization(cmb->device_connect_time, cmb->function_pending_time, cmb->device_disconnect_time, cdev->private->cmb_start_time); goto out; case cmb_ssch_rsch_count: ret = cmb->ssch_rsch_count; goto out; case cmb_sample_count: ret = cmb->sample_count; goto out; case cmb_device_connect_time: val = cmb->device_connect_time; break; case cmb_function_pending_time: val = cmb->function_pending_time; break; case cmb_device_disconnect_time: val = cmb->device_disconnect_time; break; case cmb_control_unit_queuing_time: val = cmb->control_unit_queuing_time; break; case cmb_device_active_only_time: val = cmb->device_active_only_time; break; default: goto out; } ret = time_to_avg_nsec(val, cmb->sample_count); out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static int readall_cmb(struct ccw_device *cdev, struct cmbdata *data) { struct cmb *cmb; struct cmb_data *cmb_data; u64 time; unsigned long flags; int ret; ret = cmf_cmb_copy_wait(cdev); if (ret < 0) return ret; spin_lock_irqsave(cdev->ccwlock, flags); cmb_data = cdev->private->cmb; if (!cmb_data) { ret = -ENODEV; goto out; } if (cmb_data->last_update == 0) { ret = -EAGAIN; goto out; } cmb = cmb_data->last_block; time = cmb_data->last_update - cdev->private->cmb_start_time; memset(data, 0, sizeof(struct cmbdata)); /* we only know values before device_busy_time */ data->size = offsetof(struct cmbdata, device_busy_time); data->elapsed_time = tod_to_ns(time); /* copy data to new structure */ data->ssch_rsch_count = cmb->ssch_rsch_count; data->sample_count = cmb->sample_count; /* time fields are converted to nanoseconds while copying */ data->device_connect_time = time_to_nsec(cmb->device_connect_time); data->function_pending_time = time_to_nsec(cmb->function_pending_time); data->device_disconnect_time = time_to_nsec(cmb->device_disconnect_time); data->control_unit_queuing_time = time_to_nsec(cmb->control_unit_queuing_time); data->device_active_only_time = time_to_nsec(cmb->device_active_only_time); ret = 0; out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static void reset_cmb(struct ccw_device *cdev) { cmf_generic_reset(cdev); } static int cmf_enabled(struct ccw_device *cdev) { int enabled; spin_lock_irq(cdev->ccwlock); enabled = !!cdev->private->cmb; spin_unlock_irq(cdev->ccwlock); return enabled; } static struct attribute_group cmf_attr_group; static struct cmb_operations cmbops_basic = { .alloc = alloc_cmb, .free = free_cmb, .set = set_cmb, .read = read_cmb, .readall = readall_cmb, .reset = reset_cmb, .attr_group = &cmf_attr_group, }; /* ******** extended cmb handling ********/ /** * struct cmbe - extended channel measurement block * @ssch_rsch_count: number of ssch and rsch * @sample_count: number of samples * @device_connect_time: time of device connect * @function_pending_time: time of function pending * @device_disconnect_time: time of device disconnect * @control_unit_queuing_time: time of control unit queuing * @device_active_only_time: time of device active only * @device_busy_time: time of device busy * @initial_command_response_time: initial command response time * @reserved: unused * * The measurement block as used by the hardware. May be in any 64 bit physical * location. * The fields are described further in z/Architecture Principles of Operation, * third edition, chapter 17. */ struct cmbe { u32 ssch_rsch_count; u32 sample_count; u32 device_connect_time; u32 function_pending_time; u32 device_disconnect_time; u32 control_unit_queuing_time; u32 device_active_only_time; u32 device_busy_time; u32 initial_command_response_time; u32 reserved[7]; } __packed __aligned(64); static struct kmem_cache *cmbe_cache; static int alloc_cmbe(struct ccw_device *cdev) { struct cmb_data *cmb_data; struct cmbe *cmbe; int ret = -ENOMEM; cmbe = kmem_cache_zalloc(cmbe_cache, GFP_KERNEL); if (!cmbe) return ret; cmb_data = kzalloc(sizeof(*cmb_data), GFP_KERNEL); if (!cmb_data) goto out_free; cmb_data->last_block = kzalloc(sizeof(struct cmbe), GFP_KERNEL); if (!cmb_data->last_block) goto out_free; cmb_data->size = sizeof(*cmbe); cmb_data->hw_block = cmbe; spin_lock(&cmb_area.lock); spin_lock_irq(cdev->ccwlock); if (cdev->private->cmb) goto out_unlock; cdev->private->cmb = cmb_data; /* activate global measurement if this is the first channel */ if (list_empty(&cmb_area.list)) cmf_activate(NULL, CMF_ON); list_add_tail(&cdev->private->cmb_list, &cmb_area.list); spin_unlock_irq(cdev->ccwlock); spin_unlock(&cmb_area.lock); return 0; out_unlock: spin_unlock_irq(cdev->ccwlock); spin_unlock(&cmb_area.lock); ret = -EBUSY; out_free: if (cmb_data) kfree(cmb_data->last_block); kfree(cmb_data); kmem_cache_free(cmbe_cache, cmbe); return ret; } static void free_cmbe(struct ccw_device *cdev) { struct cmb_data *cmb_data; spin_lock(&cmb_area.lock); spin_lock_irq(cdev->ccwlock); cmb_data = cdev->private->cmb; cdev->private->cmb = NULL; if (cmb_data) { kfree(cmb_data->last_block); kmem_cache_free(cmbe_cache, cmb_data->hw_block); } kfree(cmb_data); /* deactivate global measurement if this is the last channel */ list_del_init(&cdev->private->cmb_list); if (list_empty(&cmb_area.list)) cmf_activate(NULL, CMF_OFF); spin_unlock_irq(cdev->ccwlock); spin_unlock(&cmb_area.lock); } static int set_cmbe(struct ccw_device *cdev, u32 mme) { unsigned long mba; struct cmb_data *cmb_data; unsigned long flags; spin_lock_irqsave(cdev->ccwlock, flags); if (!cdev->private->cmb) { spin_unlock_irqrestore(cdev->ccwlock, flags); return -EINVAL; } cmb_data = cdev->private->cmb; mba = mme ? (unsigned long) cmb_data->hw_block : 0; spin_unlock_irqrestore(cdev->ccwlock, flags); return set_schib_wait(cdev, mme, 1, mba); } static u64 read_cmbe(struct ccw_device *cdev, int index) { struct cmb_data *cmb_data; unsigned long flags; struct cmbe *cmb; u64 ret = 0; u32 val; spin_lock_irqsave(cdev->ccwlock, flags); cmb_data = cdev->private->cmb; if (!cmb_data) goto out; cmb = cmb_data->hw_block; switch (index) { case avg_utilization: ret = __cmb_utilization(cmb->device_connect_time, cmb->function_pending_time, cmb->device_disconnect_time, cdev->private->cmb_start_time); goto out; case cmb_ssch_rsch_count: ret = cmb->ssch_rsch_count; goto out; case cmb_sample_count: ret = cmb->sample_count; goto out; case cmb_device_connect_time: val = cmb->device_connect_time; break; case cmb_function_pending_time: val = cmb->function_pending_time; break; case cmb_device_disconnect_time: val = cmb->device_disconnect_time; break; case cmb_control_unit_queuing_time: val = cmb->control_unit_queuing_time; break; case cmb_device_active_only_time: val = cmb->device_active_only_time; break; case cmb_device_busy_time: val = cmb->device_busy_time; break; case cmb_initial_command_response_time: val = cmb->initial_command_response_time; break; default: goto out; } ret = time_to_avg_nsec(val, cmb->sample_count); out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static int readall_cmbe(struct ccw_device *cdev, struct cmbdata *data) { struct cmbe *cmb; struct cmb_data *cmb_data; u64 time; unsigned long flags; int ret; ret = cmf_cmb_copy_wait(cdev); if (ret < 0) return ret; spin_lock_irqsave(cdev->ccwlock, flags); cmb_data = cdev->private->cmb; if (!cmb_data) { ret = -ENODEV; goto out; } if (cmb_data->last_update == 0) { ret = -EAGAIN; goto out; } time = cmb_data->last_update - cdev->private->cmb_start_time; memset (data, 0, sizeof(struct cmbdata)); /* we only know values before device_busy_time */ data->size = offsetof(struct cmbdata, device_busy_time); data->elapsed_time = tod_to_ns(time); cmb = cmb_data->last_block; /* copy data to new structure */ data->ssch_rsch_count = cmb->ssch_rsch_count; data->sample_count = cmb->sample_count; /* time fields are converted to nanoseconds while copying */ data->device_connect_time = time_to_nsec(cmb->device_connect_time); data->function_pending_time = time_to_nsec(cmb->function_pending_time); data->device_disconnect_time = time_to_nsec(cmb->device_disconnect_time); data->control_unit_queuing_time = time_to_nsec(cmb->control_unit_queuing_time); data->device_active_only_time = time_to_nsec(cmb->device_active_only_time); data->device_busy_time = time_to_nsec(cmb->device_busy_time); data->initial_command_response_time = time_to_nsec(cmb->initial_command_response_time); ret = 0; out: spin_unlock_irqrestore(cdev->ccwlock, flags); return ret; } static void reset_cmbe(struct ccw_device *cdev) { cmf_generic_reset(cdev); } static struct attribute_group cmf_attr_group_ext; static struct cmb_operations cmbops_extended = { .alloc = alloc_cmbe, .free = free_cmbe, .set = set_cmbe, .read = read_cmbe, .readall = readall_cmbe, .reset = reset_cmbe, .attr_group = &cmf_attr_group_ext, }; static ssize_t cmb_show_attr(struct device *dev, char *buf, enum cmb_index idx) { return sprintf(buf, "%lld\n", (unsigned long long) cmf_read(to_ccwdev(dev), idx)); } static ssize_t cmb_show_avg_sample_interval(struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); unsigned long count; long interval; count = cmf_read(cdev, cmb_sample_count); spin_lock_irq(cdev->ccwlock); if (count) { interval = get_tod_clock() - cdev->private->cmb_start_time; interval = tod_to_ns(interval); interval /= count; } else interval = -1; spin_unlock_irq(cdev->ccwlock); return sprintf(buf, "%ld\n", interval); } static ssize_t cmb_show_avg_utilization(struct device *dev, struct device_attribute *attr, char *buf) { unsigned long u = cmf_read(to_ccwdev(dev), avg_utilization); return sprintf(buf, "%02lu.%01lu%%\n", u / 10, u % 10); } #define cmf_attr(name) \ static ssize_t show_##name(struct device *dev, \ struct device_attribute *attr, char *buf) \ { return cmb_show_attr((dev), buf, cmb_##name); } \ static DEVICE_ATTR(name, 0444, show_##name, NULL); #define cmf_attr_avg(name) \ static ssize_t show_avg_##name(struct device *dev, \ struct device_attribute *attr, char *buf) \ { return cmb_show_attr((dev), buf, cmb_##name); } \ static DEVICE_ATTR(avg_##name, 0444, show_avg_##name, NULL); cmf_attr(ssch_rsch_count); cmf_attr(sample_count); cmf_attr_avg(device_connect_time); cmf_attr_avg(function_pending_time); cmf_attr_avg(device_disconnect_time); cmf_attr_avg(control_unit_queuing_time); cmf_attr_avg(device_active_only_time); cmf_attr_avg(device_busy_time); cmf_attr_avg(initial_command_response_time); static DEVICE_ATTR(avg_sample_interval, 0444, cmb_show_avg_sample_interval, NULL); static DEVICE_ATTR(avg_utilization, 0444, cmb_show_avg_utilization, NULL); static struct attribute *cmf_attributes[] = { &dev_attr_avg_sample_interval.attr, &dev_attr_avg_utilization.attr, &dev_attr_ssch_rsch_count.attr, &dev_attr_sample_count.attr, &dev_attr_avg_device_connect_time.attr, &dev_attr_avg_function_pending_time.attr, &dev_attr_avg_device_disconnect_time.attr, &dev_attr_avg_control_unit_queuing_time.attr, &dev_attr_avg_device_active_only_time.attr, NULL, }; static struct attribute_group cmf_attr_group = { .name = "cmf", .attrs = cmf_attributes, }; static struct attribute *cmf_attributes_ext[] = { &dev_attr_avg_sample_interval.attr, &dev_attr_avg_utilization.attr, &dev_attr_ssch_rsch_count.attr, &dev_attr_sample_count.attr, &dev_attr_avg_device_connect_time.attr, &dev_attr_avg_function_pending_time.attr, &dev_attr_avg_device_disconnect_time.attr, &dev_attr_avg_control_unit_queuing_time.attr, &dev_attr_avg_device_active_only_time.attr, &dev_attr_avg_device_busy_time.attr, &dev_attr_avg_initial_command_response_time.attr, NULL, }; static struct attribute_group cmf_attr_group_ext = { .name = "cmf", .attrs = cmf_attributes_ext, }; static ssize_t cmb_enable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); return sprintf(buf, "%d\n", cmf_enabled(cdev)); } static ssize_t cmb_enable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t c) { struct ccw_device *cdev = to_ccwdev(dev); unsigned long val; int ret; ret = kstrtoul(buf, 16, &val); if (ret) return ret; switch (val) { case 0: ret = disable_cmf(cdev); break; case 1: ret = enable_cmf(cdev); break; default: ret = -EINVAL; } return ret ? ret : c; } DEVICE_ATTR_RW(cmb_enable); /** * enable_cmf() - switch on the channel measurement for a specific device * @cdev: The ccw device to be enabled * * Enable channel measurements for @cdev. If this is called on a device * for which channel measurement is already enabled a reset of the * measurement data is triggered. * Returns: %0 for success or a negative error value. * Context: * non-atomic */ int enable_cmf(struct ccw_device *cdev) { int ret = 0; device_lock(&cdev->dev); if (cmf_enabled(cdev)) { cmbops->reset(cdev); goto out_unlock; } get_device(&cdev->dev); ret = cmbops->alloc(cdev); if (ret) goto out; cmbops->reset(cdev); ret = sysfs_create_group(&cdev->dev.kobj, cmbops->attr_group); if (ret) { cmbops->free(cdev); goto out; } ret = cmbops->set(cdev, 2); if (ret) { sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); cmbops->free(cdev); } out: if (ret) put_device(&cdev->dev); out_unlock: device_unlock(&cdev->dev); return ret; } /** * __disable_cmf() - switch off the channel measurement for a specific device * @cdev: The ccw device to be disabled * * Returns: %0 for success or a negative error value. * * Context: * non-atomic, device_lock() held. */ int __disable_cmf(struct ccw_device *cdev) { int ret; ret = cmbops->set(cdev, 0); if (ret) return ret; sysfs_remove_group(&cdev->dev.kobj, cmbops->attr_group); cmbops->free(cdev); put_device(&cdev->dev); return ret; } /** * disable_cmf() - switch off the channel measurement for a specific device * @cdev: The ccw device to be disabled * * Returns: %0 for success or a negative error value. * * Context: * non-atomic */ int disable_cmf(struct ccw_device *cdev) { int ret; device_lock(&cdev->dev); ret = __disable_cmf(cdev); device_unlock(&cdev->dev); return ret; } /** * cmf_read() - read one value from the current channel measurement block * @cdev: the channel to be read * @index: the index of the value to be read * * Returns: The value read or %0 if the value cannot be read. * * Context: * any */ u64 cmf_read(struct ccw_device *cdev, int index) { return cmbops->read(cdev, index); } /** * cmf_readall() - read the current channel measurement block * @cdev: the channel to be read * @data: a pointer to a data block that will be filled * * Returns: %0 on success, a negative error value otherwise. * * Context: * any */ int cmf_readall(struct ccw_device *cdev, struct cmbdata *data) { return cmbops->readall(cdev, data); } /* Reenable cmf when a disconnected device becomes available again. */ int cmf_reenable(struct ccw_device *cdev) { cmbops->reset(cdev); return cmbops->set(cdev, 2); } /** * cmf_reactivate() - reactivate measurement block updates * * Use this during resume from hibernate. */ void cmf_reactivate(void) { spin_lock(&cmb_area.lock); if (!list_empty(&cmb_area.list)) cmf_activate(cmb_area.mem, CMF_ON); spin_unlock(&cmb_area.lock); } static int __init init_cmbe(void) { cmbe_cache = kmem_cache_create("cmbe_cache", sizeof(struct cmbe), __alignof__(struct cmbe), 0, NULL); return cmbe_cache ? 0 : -ENOMEM; } static int __init init_cmf(void) { char *format_string; char *detect_string; int ret; /* * If the user did not give a parameter, see if we are running on a * machine supporting extended measurement blocks, otherwise fall back * to basic mode. */ if (format == CMF_AUTODETECT) { if (!css_general_characteristics.ext_mb) { format = CMF_BASIC; } else { format = CMF_EXTENDED; } detect_string = "autodetected"; } else { detect_string = "parameter"; } switch (format) { case CMF_BASIC: format_string = "basic"; cmbops = &cmbops_basic; break; case CMF_EXTENDED: format_string = "extended"; cmbops = &cmbops_extended; ret = init_cmbe(); if (ret) return ret; break; default: return -EINVAL; } pr_info("Channel measurement facility initialized using format " "%s (mode %s)\n", format_string, detect_string); return 0; } device_initcall(init_cmf); EXPORT_SYMBOL_GPL(enable_cmf); EXPORT_SYMBOL_GPL(disable_cmf); EXPORT_SYMBOL_GPL(cmf_read); EXPORT_SYMBOL_GPL(cmf_readall);
linux-master
drivers/s390/cio/cmf.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2001 * * i/o controls for the dasd driver. */ #define KMSG_COMPONENT "dasd" #include <linux/interrupt.h> #include <linux/compat.h> #include <linux/major.h> #include <linux/fs.h> #include <linux/blkpg.h> #include <linux/slab.h> #include <asm/ccwdev.h> #include <asm/schid.h> #include <asm/cmb.h> #include <linux/uaccess.h> #include <linux/dasd_mod.h> /* This is ugly... */ #define PRINTK_HEADER "dasd_ioctl:" #include "dasd_int.h" static int dasd_ioctl_api_version(void __user *argp) { int ver = DASD_API_VERSION; return put_user(ver, (int __user *)argp); } /* * Enable device. * used by dasdfmt after BIODASDDISABLE to retrigger blocksize detection */ static int dasd_ioctl_enable(struct block_device *bdev) { struct dasd_device *base; if (!capable(CAP_SYS_ADMIN)) return -EACCES; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; dasd_enable_device(base); dasd_put_device(base); return 0; } /* * Disable device. * Used by dasdfmt. Disable I/O operations but allow ioctls. */ static int dasd_ioctl_disable(struct block_device *bdev) { struct dasd_device *base; if (!capable(CAP_SYS_ADMIN)) return -EACCES; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; /* * Man this is sick. We don't do a real disable but only downgrade * the device to DASD_STATE_BASIC. The reason is that dasdfmt uses * BIODASDDISABLE to disable accesses to the device via the block * device layer but it still wants to do i/o on the device by * using the BIODASDFMT ioctl. Therefore the correct state for the * device is DASD_STATE_BASIC that allows to do basic i/o. */ dasd_set_target_state(base, DASD_STATE_BASIC); /* * Set i_size to zero, since read, write, etc. check against this * value. */ set_capacity(bdev->bd_disk, 0); dasd_put_device(base); return 0; } /* * Quiesce device. */ static int dasd_ioctl_quiesce(struct dasd_block *block) { unsigned long flags; struct dasd_device *base; base = block->base; if (!capable (CAP_SYS_ADMIN)) return -EACCES; pr_info("%s: The DASD has been put in the quiesce " "state\n", dev_name(&base->cdev->dev)); spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags); dasd_device_set_stop_bits(base, DASD_STOPPED_QUIESCE); spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags); return 0; } /* * Resume device. */ static int dasd_ioctl_resume(struct dasd_block *block) { unsigned long flags; struct dasd_device *base; base = block->base; if (!capable (CAP_SYS_ADMIN)) return -EACCES; pr_info("%s: I/O operations have been resumed " "on the DASD\n", dev_name(&base->cdev->dev)); spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags); dasd_device_remove_stop_bits(base, DASD_STOPPED_QUIESCE); spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags); dasd_schedule_block_bh(block); dasd_schedule_device_bh(base); return 0; } /* * Abort all failfast I/O on a device. */ static int dasd_ioctl_abortio(struct dasd_block *block) { unsigned long flags; struct dasd_device *base; struct dasd_ccw_req *cqr, *n; base = block->base; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (test_and_set_bit(DASD_FLAG_ABORTALL, &base->flags)) return 0; DBF_DEV_EVENT(DBF_NOTICE, base, "%s", "abortall flag set"); spin_lock_irqsave(&block->request_queue_lock, flags); spin_lock(&block->queue_lock); list_for_each_entry_safe(cqr, n, &block->ccw_queue, blocklist) { if (test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) && cqr->callback_data && cqr->callback_data != DASD_SLEEPON_START_TAG && cqr->callback_data != DASD_SLEEPON_END_TAG) { spin_unlock(&block->queue_lock); blk_abort_request(cqr->callback_data); spin_lock(&block->queue_lock); } } spin_unlock(&block->queue_lock); spin_unlock_irqrestore(&block->request_queue_lock, flags); dasd_schedule_block_bh(block); return 0; } /* * Allow I/O on a device */ static int dasd_ioctl_allowio(struct dasd_block *block) { struct dasd_device *base; base = block->base; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (test_and_clear_bit(DASD_FLAG_ABORTALL, &base->flags)) DBF_DEV_EVENT(DBF_NOTICE, base, "%s", "abortall flag unset"); return 0; } /* * performs formatting of _device_ according to _fdata_ * Note: The discipline's format_function is assumed to deliver formatting * commands to format multiple units of the device. In terms of the ECKD * devices this means CCWs are generated to format multiple tracks. */ static int dasd_format(struct dasd_block *block, struct format_data_t *fdata) { struct dasd_device *base; int rc; base = block->base; if (base->discipline->format_device == NULL) return -EPERM; if (base->state != DASD_STATE_BASIC) { pr_warn("%s: The DASD cannot be formatted while it is enabled\n", dev_name(&base->cdev->dev)); return -EBUSY; } DBF_DEV_EVENT(DBF_NOTICE, base, "formatting units %u to %u (%u B blocks) flags %u", fdata->start_unit, fdata->stop_unit, fdata->blksize, fdata->intensity); /* Since dasdfmt keeps the device open after it was disabled, * there still exists an inode for this device. * We must update i_blkbits, otherwise we might get errors when * enabling the device later. */ if (fdata->start_unit == 0) { block->gdp->part0->bd_inode->i_blkbits = blksize_bits(fdata->blksize); } rc = base->discipline->format_device(base, fdata, 1); if (rc == -EAGAIN) rc = base->discipline->format_device(base, fdata, 0); return rc; } static int dasd_check_format(struct dasd_block *block, struct format_check_t *cdata) { struct dasd_device *base; int rc; base = block->base; if (!base->discipline->check_device_format) return -ENOTTY; rc = base->discipline->check_device_format(base, cdata, 1); if (rc == -EAGAIN) rc = base->discipline->check_device_format(base, cdata, 0); return rc; } /* * Format device. */ static int dasd_ioctl_format(struct block_device *bdev, void __user *argp) { struct dasd_device *base; struct format_data_t fdata; int rc; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; if (base->features & DASD_FEATURE_READONLY || test_bit(DASD_FLAG_DEVICE_RO, &base->flags)) { dasd_put_device(base); return -EROFS; } if (copy_from_user(&fdata, argp, sizeof(struct format_data_t))) { dasd_put_device(base); return -EFAULT; } if (bdev_is_partition(bdev)) { pr_warn("%s: The specified DASD is a partition and cannot be formatted\n", dev_name(&base->cdev->dev)); dasd_put_device(base); return -EINVAL; } rc = dasd_format(base->block, &fdata); dasd_put_device(base); return rc; } /* * Check device format */ static int dasd_ioctl_check_format(struct block_device *bdev, void __user *argp) { struct format_check_t cdata; struct dasd_device *base; int rc = 0; if (!argp) return -EINVAL; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; if (bdev_is_partition(bdev)) { pr_warn("%s: The specified DASD is a partition and cannot be checked\n", dev_name(&base->cdev->dev)); rc = -EINVAL; goto out_err; } if (copy_from_user(&cdata, argp, sizeof(cdata))) { rc = -EFAULT; goto out_err; } rc = dasd_check_format(base->block, &cdata); if (rc) goto out_err; if (copy_to_user(argp, &cdata, sizeof(cdata))) rc = -EFAULT; out_err: dasd_put_device(base); return rc; } static int dasd_release_space(struct dasd_device *device, struct format_data_t *rdata) { if (!device->discipline->is_ese && !device->discipline->is_ese(device)) return -ENOTSUPP; if (!device->discipline->release_space) return -ENOTSUPP; return device->discipline->release_space(device, rdata); } /* * Release allocated space */ static int dasd_ioctl_release_space(struct block_device *bdev, void __user *argp) { struct format_data_t rdata; struct dasd_device *base; int rc = 0; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; if (base->features & DASD_FEATURE_READONLY || test_bit(DASD_FLAG_DEVICE_RO, &base->flags)) { rc = -EROFS; goto out_err; } if (bdev_is_partition(bdev)) { pr_warn("%s: The specified DASD is a partition and tracks cannot be released\n", dev_name(&base->cdev->dev)); rc = -EINVAL; goto out_err; } if (copy_from_user(&rdata, argp, sizeof(rdata))) { rc = -EFAULT; goto out_err; } rc = dasd_release_space(base, &rdata); out_err: dasd_put_device(base); return rc; } /* * Swap driver iternal copy relation. */ static int dasd_ioctl_copy_pair_swap(struct block_device *bdev, void __user *argp) { struct dasd_copypair_swap_data_t data; struct dasd_device *device; int rc; if (!capable(CAP_SYS_ADMIN)) return -EACCES; device = dasd_device_from_gendisk(bdev->bd_disk); if (!device) return -ENODEV; if (copy_from_user(&data, argp, sizeof(struct dasd_copypair_swap_data_t))) { dasd_put_device(device); return -EFAULT; } if (memchr_inv(data.reserved, 0, sizeof(data.reserved))) { pr_warn("%s: Invalid swap data specified\n", dev_name(&device->cdev->dev)); dasd_put_device(device); return DASD_COPYPAIRSWAP_INVALID; } if (bdev_is_partition(bdev)) { pr_warn("%s: The specified DASD is a partition and cannot be swapped\n", dev_name(&device->cdev->dev)); dasd_put_device(device); return DASD_COPYPAIRSWAP_INVALID; } if (!device->copy) { pr_warn("%s: The specified DASD has no copy pair set up\n", dev_name(&device->cdev->dev)); dasd_put_device(device); return -ENODEV; } if (!device->discipline->copy_pair_swap) { dasd_put_device(device); return -EOPNOTSUPP; } rc = device->discipline->copy_pair_swap(device, data.primary, data.secondary); dasd_put_device(device); return rc; } #ifdef CONFIG_DASD_PROFILE /* * Reset device profile information */ static int dasd_ioctl_reset_profile(struct dasd_block *block) { dasd_profile_reset(&block->profile); return 0; } /* * Return device profile information */ static int dasd_ioctl_read_profile(struct dasd_block *block, void __user *argp) { struct dasd_profile_info_t *data; int rc = 0; data = kmalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; spin_lock_bh(&block->profile.lock); if (block->profile.data) { data->dasd_io_reqs = block->profile.data->dasd_io_reqs; data->dasd_io_sects = block->profile.data->dasd_io_sects; memcpy(data->dasd_io_secs, block->profile.data->dasd_io_secs, sizeof(data->dasd_io_secs)); memcpy(data->dasd_io_times, block->profile.data->dasd_io_times, sizeof(data->dasd_io_times)); memcpy(data->dasd_io_timps, block->profile.data->dasd_io_timps, sizeof(data->dasd_io_timps)); memcpy(data->dasd_io_time1, block->profile.data->dasd_io_time1, sizeof(data->dasd_io_time1)); memcpy(data->dasd_io_time2, block->profile.data->dasd_io_time2, sizeof(data->dasd_io_time2)); memcpy(data->dasd_io_time2ps, block->profile.data->dasd_io_time2ps, sizeof(data->dasd_io_time2ps)); memcpy(data->dasd_io_time3, block->profile.data->dasd_io_time3, sizeof(data->dasd_io_time3)); memcpy(data->dasd_io_nr_req, block->profile.data->dasd_io_nr_req, sizeof(data->dasd_io_nr_req)); spin_unlock_bh(&block->profile.lock); } else { spin_unlock_bh(&block->profile.lock); rc = -EIO; goto out; } if (copy_to_user(argp, data, sizeof(*data))) rc = -EFAULT; out: kfree(data); return rc; } #else static int dasd_ioctl_reset_profile(struct dasd_block *block) { return -ENOTTY; } static int dasd_ioctl_read_profile(struct dasd_block *block, void __user *argp) { return -ENOTTY; } #endif /* * Return dasd information. Used for BIODASDINFO and BIODASDINFO2. */ static int __dasd_ioctl_information(struct dasd_block *block, struct dasd_information2_t *dasd_info) { struct subchannel_id sch_id; struct ccw_dev_id dev_id; struct dasd_device *base; struct ccw_device *cdev; struct list_head *l; unsigned long flags; int rc; base = block->base; if (!base->discipline || !base->discipline->fill_info) return -EINVAL; rc = base->discipline->fill_info(base, dasd_info); if (rc) return rc; cdev = base->cdev; ccw_device_get_id(cdev, &dev_id); ccw_device_get_schid(cdev, &sch_id); dasd_info->devno = dev_id.devno; dasd_info->schid = sch_id.sch_no; dasd_info->cu_type = cdev->id.cu_type; dasd_info->cu_model = cdev->id.cu_model; dasd_info->dev_type = cdev->id.dev_type; dasd_info->dev_model = cdev->id.dev_model; dasd_info->status = base->state; /* * The open_count is increased for every opener, that includes * the blkdev_get in dasd_scan_partitions. * This must be hidden from user-space. */ dasd_info->open_count = atomic_read(&block->open_count); if (!block->bdev) dasd_info->open_count++; /* * check if device is really formatted * LDL / CDL was returned by 'fill_info' */ if ((base->state < DASD_STATE_READY) || (dasd_check_blocksize(block->bp_block))) dasd_info->format = DASD_FORMAT_NONE; dasd_info->features |= ((base->features & DASD_FEATURE_READONLY) != 0); memcpy(dasd_info->type, base->discipline->name, 4); spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags); list_for_each(l, &base->ccw_queue) dasd_info->chanq_len++; spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags); return 0; } static int dasd_ioctl_information(struct dasd_block *block, void __user *argp, size_t copy_size) { struct dasd_information2_t *dasd_info; int error; dasd_info = kzalloc(sizeof(*dasd_info), GFP_KERNEL); if (!dasd_info) return -ENOMEM; error = __dasd_ioctl_information(block, dasd_info); if (!error && copy_to_user(argp, dasd_info, copy_size)) error = -EFAULT; kfree(dasd_info); return error; } /* * Set read only */ int dasd_set_read_only(struct block_device *bdev, bool ro) { struct dasd_device *base; int rc; /* do not manipulate hardware state for partitions */ if (bdev_is_partition(bdev)) return 0; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; if (!ro && test_bit(DASD_FLAG_DEVICE_RO, &base->flags)) rc = -EROFS; else rc = dasd_set_feature(base->cdev, DASD_FEATURE_READONLY, ro); dasd_put_device(base); return rc; } static int dasd_ioctl_readall_cmb(struct dasd_block *block, unsigned int cmd, struct cmbdata __user *argp) { size_t size = _IOC_SIZE(cmd); struct cmbdata data; int ret; ret = cmf_readall(block->base->cdev, &data); if (!ret && copy_to_user(argp, &data, min(size, sizeof(*argp)))) return -EFAULT; return ret; } int dasd_ioctl(struct block_device *bdev, blk_mode_t mode, unsigned int cmd, unsigned long arg) { struct dasd_block *block; struct dasd_device *base; void __user *argp; int rc; if (is_compat_task()) argp = compat_ptr(arg); else argp = (void __user *)arg; if ((_IOC_DIR(cmd) != _IOC_NONE) && !arg) return -EINVAL; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; block = base->block; rc = 0; switch (cmd) { case BIODASDDISABLE: rc = dasd_ioctl_disable(bdev); break; case BIODASDENABLE: rc = dasd_ioctl_enable(bdev); break; case BIODASDQUIESCE: rc = dasd_ioctl_quiesce(block); break; case BIODASDRESUME: rc = dasd_ioctl_resume(block); break; case BIODASDABORTIO: rc = dasd_ioctl_abortio(block); break; case BIODASDALLOWIO: rc = dasd_ioctl_allowio(block); break; case BIODASDFMT: rc = dasd_ioctl_format(bdev, argp); break; case BIODASDCHECKFMT: rc = dasd_ioctl_check_format(bdev, argp); break; case BIODASDINFO: rc = dasd_ioctl_information(block, argp, sizeof(struct dasd_information_t)); break; case BIODASDINFO2: rc = dasd_ioctl_information(block, argp, sizeof(struct dasd_information2_t)); break; case BIODASDPRRD: rc = dasd_ioctl_read_profile(block, argp); break; case BIODASDPRRST: rc = dasd_ioctl_reset_profile(block); break; case DASDAPIVER: rc = dasd_ioctl_api_version(argp); break; case BIODASDCMFENABLE: rc = enable_cmf(base->cdev); break; case BIODASDCMFDISABLE: rc = disable_cmf(base->cdev); break; case BIODASDREADALLCMB: rc = dasd_ioctl_readall_cmb(block, cmd, argp); break; case BIODASDRAS: rc = dasd_ioctl_release_space(bdev, argp); break; case BIODASDCOPYPAIRSWAP: rc = dasd_ioctl_copy_pair_swap(bdev, argp); break; default: /* if the discipline has an ioctl method try it. */ rc = -ENOTTY; if (base->discipline->ioctl) rc = base->discipline->ioctl(block, cmd, argp); } dasd_put_device(base); return rc; } /** * dasd_biodasdinfo() - fill out the dasd information structure * @disk: [in] pointer to gendisk structure that references a DASD * @info: [out] pointer to the dasd_information2_t structure * * Provide access to DASD specific information. * The gendisk structure is checked if it belongs to the DASD driver by * comparing the gendisk->fops pointer. * If it does not belong to the DASD driver -EINVAL is returned. * Otherwise the provided dasd_information2_t structure is filled out. * * Returns: * %0 on success and a negative error value on failure. */ int dasd_biodasdinfo(struct gendisk *disk, struct dasd_information2_t *info) { struct dasd_device *base; int error; if (disk->fops != &dasd_device_operations) return -EINVAL; base = dasd_device_from_gendisk(disk); if (!base) return -ENODEV; error = __dasd_ioctl_information(base->block, info); dasd_put_device(base); return error; } /* export that symbol_get in partition detection is possible */ EXPORT_SYMBOL_GPL(dasd_biodasdinfo);
linux-master
drivers/s390/block/dasd_ioctl.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Based on.......: linux/drivers/s390/block/mdisk.c * ...............: by Hartmunt Penner <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2000 * */ #define KMSG_COMPONENT "dasd" #include <linux/kernel_stat.h> #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/hdreg.h> #include <linux/bio.h> #include <linux/module.h> #include <linux/init.h> #include <linux/jiffies.h> #include <asm/asm-extable.h> #include <asm/dasd.h> #include <asm/debug.h> #include <asm/diag.h> #include <asm/ebcdic.h> #include <linux/io.h> #include <asm/irq.h> #include <asm/vtoc.h> #include "dasd_int.h" #include "dasd_diag.h" #define PRINTK_HEADER "dasd(diag):" MODULE_LICENSE("GPL"); /* The maximum number of blocks per request (max_blocks) is dependent on the * amount of storage that is available in the static I/O buffer for each * device. Currently each device gets 2 pages. We want to fit two requests * into the available memory so that we can immediately start the next if one * finishes. */ #define DIAG_MAX_BLOCKS (((2 * PAGE_SIZE - sizeof(struct dasd_ccw_req) - \ sizeof(struct dasd_diag_req)) / \ sizeof(struct dasd_diag_bio)) / 2) #define DIAG_MAX_RETRIES 32 #define DIAG_TIMEOUT 50 static struct dasd_discipline dasd_diag_discipline; struct dasd_diag_private { struct dasd_diag_characteristics rdc_data; struct dasd_diag_rw_io iob; struct dasd_diag_init_io iib; blocknum_t pt_block; struct ccw_dev_id dev_id; }; struct dasd_diag_req { unsigned int block_count; struct dasd_diag_bio bio[]; }; static const u8 DASD_DIAG_CMS1[] = { 0xc3, 0xd4, 0xe2, 0xf1 };/* EBCDIC CMS1 */ /* Perform DIAG250 call with block I/O parameter list iob (input and output) * and function code cmd. * In case of an exception return 3. Otherwise return result of bitwise OR of * resulting condition code and DIAG return code. */ static inline int __dia250(void *iob, int cmd) { union register_pair rx = { .even = (unsigned long)iob, }; typedef union { struct dasd_diag_init_io init_io; struct dasd_diag_rw_io rw_io; } addr_type; int cc; cc = 3; asm volatile( " diag %[rx],%[cmd],0x250\n" "0: ipm %[cc]\n" " srl %[cc],28\n" "1:\n" EX_TABLE(0b,1b) : [cc] "+&d" (cc), [rx] "+&d" (rx.pair), "+m" (*(addr_type *)iob) : [cmd] "d" (cmd) : "cc"); return cc | rx.odd; } static inline int dia250(void *iob, int cmd) { diag_stat_inc(DIAG_STAT_X250); return __dia250(iob, cmd); } /* Initialize block I/O to DIAG device using the specified blocksize and * block offset. On success, return zero and set end_block to contain the * number of blocks on the device minus the specified offset. Return non-zero * otherwise. */ static inline int mdsk_init_io(struct dasd_device *device, unsigned int blocksize, blocknum_t offset, blocknum_t *end_block) { struct dasd_diag_private *private = device->private; struct dasd_diag_init_io *iib = &private->iib; int rc; memset(iib, 0, sizeof (struct dasd_diag_init_io)); iib->dev_nr = private->dev_id.devno; iib->block_size = blocksize; iib->offset = offset; iib->flaga = DASD_DIAG_FLAGA_DEFAULT; rc = dia250(iib, INIT_BIO); if ((rc & 3) == 0 && end_block) *end_block = iib->end_block; return rc; } /* Remove block I/O environment for device. Return zero on success, non-zero * otherwise. */ static inline int mdsk_term_io(struct dasd_device * device) { struct dasd_diag_private *private = device->private; struct dasd_diag_init_io *iib = &private->iib; int rc; memset(iib, 0, sizeof (struct dasd_diag_init_io)); iib->dev_nr = private->dev_id.devno; rc = dia250(iib, TERM_BIO); return rc; } /* Error recovery for failed DIAG requests - try to reestablish the DIAG * environment. */ static void dasd_diag_erp(struct dasd_device *device) { int rc; mdsk_term_io(device); rc = mdsk_init_io(device, device->block->bp_block, 0, NULL); if (rc == 4) { if (!(test_and_set_bit(DASD_FLAG_DEVICE_RO, &device->flags))) pr_warn("%s: The access mode of a DIAG device changed to read-only\n", dev_name(&device->cdev->dev)); rc = 0; } if (rc) pr_warn("%s: DIAG ERP failed with rc=%d\n", dev_name(&device->cdev->dev), rc); } /* Start a given request at the device. Return zero on success, non-zero * otherwise. */ static int dasd_start_diag(struct dasd_ccw_req * cqr) { struct dasd_device *device; struct dasd_diag_private *private; struct dasd_diag_req *dreq; int rc; device = cqr->startdev; if (cqr->retries < 0) { DBF_DEV_EVENT(DBF_ERR, device, "DIAG start_IO: request %p " "- no retry left)", cqr); cqr->status = DASD_CQR_ERROR; return -EIO; } private = device->private; dreq = cqr->data; private->iob.dev_nr = private->dev_id.devno; private->iob.key = 0; private->iob.flags = DASD_DIAG_RWFLAG_ASYNC; private->iob.block_count = dreq->block_count; private->iob.interrupt_params = (addr_t) cqr; private->iob.bio_list = dreq->bio; private->iob.flaga = DASD_DIAG_FLAGA_DEFAULT; cqr->startclk = get_tod_clock(); cqr->starttime = jiffies; cqr->retries--; rc = dia250(&private->iob, RW_BIO); switch (rc) { case 0: /* Synchronous I/O finished successfully */ cqr->stopclk = get_tod_clock(); cqr->status = DASD_CQR_SUCCESS; /* Indicate to calling function that only a dasd_schedule_bh() and no timer is needed */ rc = -EACCES; break; case 8: /* Asynchronous I/O was started */ cqr->status = DASD_CQR_IN_IO; rc = 0; break; default: /* Error condition */ cqr->status = DASD_CQR_QUEUED; DBF_DEV_EVENT(DBF_WARNING, device, "dia250 returned rc=%d", rc); dasd_diag_erp(device); rc = -EIO; break; } cqr->intrc = rc; return rc; } /* Terminate given request at the device. */ static int dasd_diag_term_IO(struct dasd_ccw_req * cqr) { struct dasd_device *device; device = cqr->startdev; mdsk_term_io(device); mdsk_init_io(device, device->block->bp_block, 0, NULL); cqr->status = DASD_CQR_CLEAR_PENDING; cqr->stopclk = get_tod_clock(); dasd_schedule_device_bh(device); return 0; } /* Handle external interruption. */ static void dasd_ext_handler(struct ext_code ext_code, unsigned int param32, unsigned long param64) { struct dasd_ccw_req *cqr, *next; struct dasd_device *device; unsigned long expires; unsigned long flags; addr_t ip; int rc; switch (ext_code.subcode >> 8) { case DASD_DIAG_CODE_31BIT: ip = (addr_t) param32; break; case DASD_DIAG_CODE_64BIT: ip = (addr_t) param64; break; default: return; } inc_irq_stat(IRQEXT_DSD); if (!ip) { /* no intparm: unsolicited interrupt */ DBF_EVENT(DBF_NOTICE, "%s", "caught unsolicited " "interrupt"); return; } cqr = (struct dasd_ccw_req *) ip; device = (struct dasd_device *) cqr->startdev; if (strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) { DBF_DEV_EVENT(DBF_WARNING, device, " magic number of dasd_ccw_req 0x%08X doesn't" " match discipline 0x%08X", cqr->magic, *(int *) (&device->discipline->name)); return; } /* get irq lock to modify request queue */ spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); /* Check for a pending clear operation */ if (cqr->status == DASD_CQR_CLEAR_PENDING) { cqr->status = DASD_CQR_CLEARED; dasd_device_clear_timer(device); dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return; } cqr->stopclk = get_tod_clock(); expires = 0; if ((ext_code.subcode & 0xff) == 0) { cqr->status = DASD_CQR_SUCCESS; /* Start first request on queue if possible -> fast_io. */ if (!list_empty(&device->ccw_queue)) { next = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist); if (next->status == DASD_CQR_QUEUED) { rc = dasd_start_diag(next); if (rc == 0) expires = next->expires; } } } else { cqr->status = DASD_CQR_QUEUED; DBF_DEV_EVENT(DBF_DEBUG, device, "interrupt status for " "request %p was %d (%d retries left)", cqr, ext_code.subcode & 0xff, cqr->retries); dasd_diag_erp(device); } if (expires != 0) dasd_device_set_timer(device, expires); else dasd_device_clear_timer(device); dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } /* Check whether device can be controlled by DIAG discipline. Return zero on * success, non-zero otherwise. */ static int dasd_diag_check_device(struct dasd_device *device) { struct dasd_diag_private *private = device->private; struct dasd_diag_characteristics *rdc_data; struct vtoc_cms_label *label; struct dasd_block *block; struct dasd_diag_bio *bio; unsigned int sb, bsize; blocknum_t end_block; int rc; if (private == NULL) { private = kzalloc(sizeof(*private), GFP_KERNEL); if (private == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Allocating memory for private DASD data " "failed\n"); return -ENOMEM; } ccw_device_get_id(device->cdev, &private->dev_id); device->private = private; } block = dasd_alloc_block(); if (IS_ERR(block)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "could not allocate dasd block structure"); device->private = NULL; kfree(private); return PTR_ERR(block); } device->block = block; block->base = device; /* Read Device Characteristics */ rdc_data = &private->rdc_data; rdc_data->dev_nr = private->dev_id.devno; rdc_data->rdc_len = sizeof (struct dasd_diag_characteristics); rc = diag210((struct diag210 *) rdc_data); if (rc) { DBF_DEV_EVENT(DBF_WARNING, device, "failed to retrieve device " "information (rc=%d)", rc); rc = -EOPNOTSUPP; goto out; } device->default_expires = DIAG_TIMEOUT; device->default_retries = DIAG_MAX_RETRIES; /* Figure out position of label block */ switch (private->rdc_data.vdev_class) { case DEV_CLASS_FBA: private->pt_block = 1; break; case DEV_CLASS_ECKD: private->pt_block = 2; break; default: pr_warn("%s: Device type %d is not supported in DIAG mode\n", dev_name(&device->cdev->dev), private->rdc_data.vdev_class); rc = -EOPNOTSUPP; goto out; } DBF_DEV_EVENT(DBF_INFO, device, "%04X: %04X on real %04X/%02X", rdc_data->dev_nr, rdc_data->vdev_type, rdc_data->rdev_type, rdc_data->rdev_model); /* terminate all outstanding operations */ mdsk_term_io(device); /* figure out blocksize of device */ label = (struct vtoc_cms_label *) get_zeroed_page(GFP_KERNEL); if (label == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "No memory to allocate initialization request"); rc = -ENOMEM; goto out; } bio = kzalloc(sizeof(*bio), GFP_KERNEL); if (bio == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "No memory to allocate initialization bio"); rc = -ENOMEM; goto out_label; } rc = 0; end_block = 0; /* try all sizes - needed for ECKD devices */ for (bsize = 512; bsize <= PAGE_SIZE; bsize <<= 1) { mdsk_init_io(device, bsize, 0, &end_block); memset(bio, 0, sizeof(*bio)); bio->type = MDSK_READ_REQ; bio->block_number = private->pt_block + 1; bio->buffer = label; memset(&private->iob, 0, sizeof (struct dasd_diag_rw_io)); private->iob.dev_nr = rdc_data->dev_nr; private->iob.key = 0; private->iob.flags = 0; /* do synchronous io */ private->iob.block_count = 1; private->iob.interrupt_params = 0; private->iob.bio_list = bio; private->iob.flaga = DASD_DIAG_FLAGA_DEFAULT; rc = dia250(&private->iob, RW_BIO); if (rc == 3) { pr_warn("%s: A 64-bit DIAG call failed\n", dev_name(&device->cdev->dev)); rc = -EOPNOTSUPP; goto out_bio; } mdsk_term_io(device); if (rc == 0) break; } if (bsize > PAGE_SIZE) { pr_warn("%s: Accessing the DASD failed because of an incorrect format (rc=%d)\n", dev_name(&device->cdev->dev), rc); rc = -EIO; goto out_bio; } /* check for label block */ if (memcmp(label->label_id, DASD_DIAG_CMS1, sizeof(DASD_DIAG_CMS1)) == 0) { /* get formatted blocksize from label block */ bsize = (unsigned int) label->block_size; block->blocks = (unsigned long) label->block_count; } else block->blocks = end_block; block->bp_block = bsize; block->s2b_shift = 0; /* bits to shift 512 to get a block */ for (sb = 512; sb < bsize; sb = sb << 1) block->s2b_shift++; rc = mdsk_init_io(device, block->bp_block, 0, NULL); if (rc && (rc != 4)) { pr_warn("%s: DIAG initialization failed with rc=%d\n", dev_name(&device->cdev->dev), rc); rc = -EIO; } else { if (rc == 4) set_bit(DASD_FLAG_DEVICE_RO, &device->flags); pr_info("%s: New DASD with %ld byte/block, total size %ld " "KB%s\n", dev_name(&device->cdev->dev), (unsigned long) block->bp_block, (unsigned long) (block->blocks << block->s2b_shift) >> 1, (rc == 4) ? ", read-only device" : ""); rc = 0; } out_bio: kfree(bio); out_label: free_page((long) label); out: if (rc) { device->block = NULL; dasd_free_block(block); device->private = NULL; kfree(private); } return rc; } /* Fill in virtual disk geometry for device. Return zero on success, non-zero * otherwise. */ static int dasd_diag_fill_geometry(struct dasd_block *block, struct hd_geometry *geo) { if (dasd_check_blocksize(block->bp_block) != 0) return -EINVAL; geo->cylinders = (block->blocks << block->s2b_shift) >> 10; geo->heads = 16; geo->sectors = 128 >> block->s2b_shift; return 0; } static dasd_erp_fn_t dasd_diag_erp_action(struct dasd_ccw_req * cqr) { return dasd_default_erp_action; } static dasd_erp_fn_t dasd_diag_erp_postaction(struct dasd_ccw_req * cqr) { return dasd_default_erp_postaction; } /* Create DASD request from block device request. Return pointer to new * request on success, ERR_PTR otherwise. */ static struct dasd_ccw_req *dasd_diag_build_cp(struct dasd_device *memdev, struct dasd_block *block, struct request *req) { struct dasd_ccw_req *cqr; struct dasd_diag_req *dreq; struct dasd_diag_bio *dbio; struct req_iterator iter; struct bio_vec bv; char *dst; unsigned int count; sector_t recid, first_rec, last_rec; unsigned int blksize, off; unsigned char rw_cmd; if (rq_data_dir(req) == READ) rw_cmd = MDSK_READ_REQ; else if (rq_data_dir(req) == WRITE) rw_cmd = MDSK_WRITE_REQ; else return ERR_PTR(-EINVAL); blksize = block->bp_block; /* Calculate record id of first and last block. */ first_rec = blk_rq_pos(req) >> block->s2b_shift; last_rec = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; /* Check struct bio and count the number of blocks for the request. */ count = 0; rq_for_each_segment(bv, req, iter) { if (bv.bv_len & (blksize - 1)) /* Fba can only do full blocks. */ return ERR_PTR(-EINVAL); count += bv.bv_len >> (block->s2b_shift + 9); } /* Paranoia. */ if (count != last_rec - first_rec + 1) return ERR_PTR(-EINVAL); /* Build the request */ cqr = dasd_smalloc_request(DASD_DIAG_MAGIC, 0, struct_size(dreq, bio, count), memdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; dreq = (struct dasd_diag_req *) cqr->data; dreq->block_count = count; dbio = dreq->bio; recid = first_rec; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { memset(dbio, 0, sizeof (struct dasd_diag_bio)); dbio->type = rw_cmd; dbio->block_number = recid + 1; dbio->buffer = dst; dbio++; dst += blksize; recid++; } } cqr->retries = memdev->default_retries; cqr->buildclk = get_tod_clock(); if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = memdev; cqr->memdev = memdev; cqr->block = block; cqr->expires = memdev->default_expires * HZ; cqr->status = DASD_CQR_FILLED; return cqr; } /* Release DASD request. Return non-zero if request was successful, zero * otherwise. */ static int dasd_diag_free_cp(struct dasd_ccw_req *cqr, struct request *req) { int status; status = cqr->status == DASD_CQR_DONE; dasd_sfree_request(cqr, cqr->memdev); return status; } static void dasd_diag_handle_terminated_request(struct dasd_ccw_req *cqr) { if (cqr->retries < 0) cqr->status = DASD_CQR_FAILED; else cqr->status = DASD_CQR_FILLED; }; /* Fill in IOCTL data for device. */ static int dasd_diag_fill_info(struct dasd_device * device, struct dasd_information2_t * info) { struct dasd_diag_private *private = device->private; info->label_block = (unsigned int) private->pt_block; info->FBA_layout = 1; info->format = DASD_FORMAT_LDL; info->characteristics_size = sizeof(private->rdc_data); memcpy(info->characteristics, &private->rdc_data, sizeof(private->rdc_data)); info->confdata_size = 0; return 0; } static void dasd_diag_dump_sense(struct dasd_device *device, struct dasd_ccw_req * req, struct irb *stat) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "dump sense not available for DIAG data"); } /* * Initialize block layer request queue. */ static void dasd_diag_setup_blk_queue(struct dasd_block *block) { unsigned int logical_block_size = block->bp_block; struct request_queue *q = block->gdp->queue; int max; max = DIAG_MAX_BLOCKS << block->s2b_shift; blk_queue_flag_set(QUEUE_FLAG_NONROT, q); q->limits.max_dev_sectors = max; blk_queue_logical_block_size(q, logical_block_size); blk_queue_max_hw_sectors(q, max); blk_queue_max_segments(q, USHRT_MAX); /* With page sized segments each segment can be translated into one idaw/tidaw */ blk_queue_max_segment_size(q, PAGE_SIZE); blk_queue_segment_boundary(q, PAGE_SIZE - 1); blk_queue_dma_alignment(q, PAGE_SIZE - 1); } static int dasd_diag_pe_handler(struct dasd_device *device, __u8 tbvpm, __u8 fcsecpm) { return dasd_generic_verify_path(device, tbvpm); } static struct dasd_discipline dasd_diag_discipline = { .owner = THIS_MODULE, .name = "DIAG", .ebcname = "DIAG", .check_device = dasd_diag_check_device, .pe_handler = dasd_diag_pe_handler, .fill_geometry = dasd_diag_fill_geometry, .setup_blk_queue = dasd_diag_setup_blk_queue, .start_IO = dasd_start_diag, .term_IO = dasd_diag_term_IO, .handle_terminated_request = dasd_diag_handle_terminated_request, .erp_action = dasd_diag_erp_action, .erp_postaction = dasd_diag_erp_postaction, .build_cp = dasd_diag_build_cp, .free_cp = dasd_diag_free_cp, .dump_sense = dasd_diag_dump_sense, .fill_info = dasd_diag_fill_info, }; static int __init dasd_diag_init(void) { if (!MACHINE_IS_VM) { pr_info("Discipline %s cannot be used without z/VM\n", dasd_diag_discipline.name); return -ENODEV; } ASCEBC(dasd_diag_discipline.ebcname, 4); irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL); register_external_irq(EXT_IRQ_CP_SERVICE, dasd_ext_handler); dasd_diag_discipline_pointer = &dasd_diag_discipline; return 0; } static void __exit dasd_diag_cleanup(void) { unregister_external_irq(EXT_IRQ_CP_SERVICE, dasd_ext_handler); irq_subclass_unregister(IRQ_SUBCLASS_SERVICE_SIGNAL); dasd_diag_discipline_pointer = NULL; } module_init(dasd_diag_init); module_exit(dasd_diag_cleanup);
linux-master
drivers/s390/block/dasd_diag.c
// SPDX-License-Identifier: GPL-2.0 /* * Device driver for s390 storage class memory. * * Copyright IBM Corp. 2012 * Author(s): Sebastian Ott <[email protected]> */ #define KMSG_COMPONENT "scm_block" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/slab.h> #include <asm/eadm.h> #include "scm_blk.h" static void scm_notify(struct scm_device *scmdev, enum scm_event event) { struct scm_blk_dev *bdev = dev_get_drvdata(&scmdev->dev); switch (event) { case SCM_CHANGE: pr_info("%lx: The capabilities of the SCM increment changed\n", (unsigned long) scmdev->address); SCM_LOG(2, "State changed"); SCM_LOG_STATE(2, scmdev); break; case SCM_AVAIL: SCM_LOG(2, "Increment available"); SCM_LOG_STATE(2, scmdev); scm_blk_set_available(bdev); break; } } static int scm_probe(struct scm_device *scmdev) { struct scm_blk_dev *bdev; int ret; SCM_LOG(2, "probe"); SCM_LOG_STATE(2, scmdev); if (scmdev->attrs.oper_state != OP_STATE_GOOD) return -EINVAL; bdev = kzalloc(sizeof(*bdev), GFP_KERNEL); if (!bdev) return -ENOMEM; dev_set_drvdata(&scmdev->dev, bdev); ret = scm_blk_dev_setup(bdev, scmdev); if (ret) { dev_set_drvdata(&scmdev->dev, NULL); kfree(bdev); goto out; } out: return ret; } static void scm_remove(struct scm_device *scmdev) { struct scm_blk_dev *bdev = dev_get_drvdata(&scmdev->dev); scm_blk_dev_cleanup(bdev); dev_set_drvdata(&scmdev->dev, NULL); kfree(bdev); } static struct scm_driver scm_drv = { .drv = { .name = "scm_block", .owner = THIS_MODULE, }, .notify = scm_notify, .probe = scm_probe, .remove = scm_remove, .handler = scm_blk_irq, }; int __init scm_drv_init(void) { return scm_driver_register(&scm_drv); } void scm_drv_cleanup(void) { scm_driver_unregister(&scm_drv); }
linux-master
drivers/s390/block/scm_drv.c
// SPDX-License-Identifier: GPL-2.0 /* * PAV alias management for the DASD ECKD discipline * * Copyright IBM Corp. 2007 * Author(s): Stefan Weinhuber <[email protected]> */ #define KMSG_COMPONENT "dasd-eckd" #include <linux/list.h> #include <linux/slab.h> #include <asm/ebcdic.h> #include "dasd_int.h" #include "dasd_eckd.h" #ifdef PRINTK_HEADER #undef PRINTK_HEADER #endif /* PRINTK_HEADER */ #define PRINTK_HEADER "dasd(eckd):" /* * General concept of alias management: * - PAV and DASD alias management is specific to the eckd discipline. * - A device is connected to an lcu as long as the device exists. * dasd_alias_make_device_known_to_lcu will be called wenn the * device is checked by the eckd discipline and * dasd_alias_disconnect_device_from_lcu will be called * before the device is deleted. * - The dasd_alias_add_device / dasd_alias_remove_device * functions mark the point when a device is 'ready for service'. * - A summary unit check is a rare occasion, but it is mandatory to * support it. It requires some complex recovery actions before the * devices can be used again (see dasd_alias_handle_summary_unit_check). * - dasd_alias_get_start_dev will find an alias device that can be used * instead of the base device and does some (very simple) load balancing. * This is the function that gets called for each I/O, so when improving * something, this function should get faster or better, the rest has just * to be correct. */ static void summary_unit_check_handling_work(struct work_struct *); static void lcu_update_work(struct work_struct *); static int _schedule_lcu_update(struct alias_lcu *, struct dasd_device *); static struct alias_root aliastree = { .serverlist = LIST_HEAD_INIT(aliastree.serverlist), .lock = __SPIN_LOCK_UNLOCKED(aliastree.lock), }; static struct alias_server *_find_server(struct dasd_uid *uid) { struct alias_server *pos; list_for_each_entry(pos, &aliastree.serverlist, server) { if (!strncmp(pos->uid.vendor, uid->vendor, sizeof(uid->vendor)) && !strncmp(pos->uid.serial, uid->serial, sizeof(uid->serial))) return pos; } return NULL; } static struct alias_lcu *_find_lcu(struct alias_server *server, struct dasd_uid *uid) { struct alias_lcu *pos; list_for_each_entry(pos, &server->lculist, lcu) { if (pos->uid.ssid == uid->ssid) return pos; } return NULL; } static struct alias_pav_group *_find_group(struct alias_lcu *lcu, struct dasd_uid *uid) { struct alias_pav_group *pos; __u8 search_unit_addr; /* for hyper pav there is only one group */ if (lcu->pav == HYPER_PAV) { if (list_empty(&lcu->grouplist)) return NULL; else return list_first_entry(&lcu->grouplist, struct alias_pav_group, group); } /* for base pav we have to find the group that matches the base */ if (uid->type == UA_BASE_DEVICE) search_unit_addr = uid->real_unit_addr; else search_unit_addr = uid->base_unit_addr; list_for_each_entry(pos, &lcu->grouplist, group) { if (pos->uid.base_unit_addr == search_unit_addr && !strncmp(pos->uid.vduit, uid->vduit, sizeof(uid->vduit))) return pos; } return NULL; } static struct alias_server *_allocate_server(struct dasd_uid *uid) { struct alias_server *server; server = kzalloc(sizeof(*server), GFP_KERNEL); if (!server) return ERR_PTR(-ENOMEM); memcpy(server->uid.vendor, uid->vendor, sizeof(uid->vendor)); memcpy(server->uid.serial, uid->serial, sizeof(uid->serial)); INIT_LIST_HEAD(&server->server); INIT_LIST_HEAD(&server->lculist); return server; } static void _free_server(struct alias_server *server) { kfree(server); } static struct alias_lcu *_allocate_lcu(struct dasd_uid *uid) { struct alias_lcu *lcu; lcu = kzalloc(sizeof(*lcu), GFP_KERNEL); if (!lcu) return ERR_PTR(-ENOMEM); lcu->uac = kzalloc(sizeof(*(lcu->uac)), GFP_KERNEL | GFP_DMA); if (!lcu->uac) goto out_err1; lcu->rsu_cqr = kzalloc(sizeof(*lcu->rsu_cqr), GFP_KERNEL | GFP_DMA); if (!lcu->rsu_cqr) goto out_err2; lcu->rsu_cqr->cpaddr = kzalloc(sizeof(struct ccw1), GFP_KERNEL | GFP_DMA); if (!lcu->rsu_cqr->cpaddr) goto out_err3; lcu->rsu_cqr->data = kzalloc(16, GFP_KERNEL | GFP_DMA); if (!lcu->rsu_cqr->data) goto out_err4; memcpy(lcu->uid.vendor, uid->vendor, sizeof(uid->vendor)); memcpy(lcu->uid.serial, uid->serial, sizeof(uid->serial)); lcu->uid.ssid = uid->ssid; lcu->pav = NO_PAV; lcu->flags = NEED_UAC_UPDATE | UPDATE_PENDING; INIT_LIST_HEAD(&lcu->lcu); INIT_LIST_HEAD(&lcu->inactive_devices); INIT_LIST_HEAD(&lcu->active_devices); INIT_LIST_HEAD(&lcu->grouplist); INIT_WORK(&lcu->suc_data.worker, summary_unit_check_handling_work); INIT_DELAYED_WORK(&lcu->ruac_data.dwork, lcu_update_work); spin_lock_init(&lcu->lock); init_completion(&lcu->lcu_setup); return lcu; out_err4: kfree(lcu->rsu_cqr->cpaddr); out_err3: kfree(lcu->rsu_cqr); out_err2: kfree(lcu->uac); out_err1: kfree(lcu); return ERR_PTR(-ENOMEM); } static void _free_lcu(struct alias_lcu *lcu) { kfree(lcu->rsu_cqr->data); kfree(lcu->rsu_cqr->cpaddr); kfree(lcu->rsu_cqr); kfree(lcu->uac); kfree(lcu); } /* * This is the function that will allocate all the server and lcu data, * so this function must be called first for a new device. * If the return value is 1, the lcu was already known before, if it * is 0, this is a new lcu. * Negative return code indicates that something went wrong (e.g. -ENOMEM) */ int dasd_alias_make_device_known_to_lcu(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; unsigned long flags; struct alias_server *server, *newserver; struct alias_lcu *lcu, *newlcu; struct dasd_uid uid; device->discipline->get_uid(device, &uid); spin_lock_irqsave(&aliastree.lock, flags); server = _find_server(&uid); if (!server) { spin_unlock_irqrestore(&aliastree.lock, flags); newserver = _allocate_server(&uid); if (IS_ERR(newserver)) return PTR_ERR(newserver); spin_lock_irqsave(&aliastree.lock, flags); server = _find_server(&uid); if (!server) { list_add(&newserver->server, &aliastree.serverlist); server = newserver; } else { /* someone was faster */ _free_server(newserver); } } lcu = _find_lcu(server, &uid); if (!lcu) { spin_unlock_irqrestore(&aliastree.lock, flags); newlcu = _allocate_lcu(&uid); if (IS_ERR(newlcu)) return PTR_ERR(newlcu); spin_lock_irqsave(&aliastree.lock, flags); lcu = _find_lcu(server, &uid); if (!lcu) { list_add(&newlcu->lcu, &server->lculist); lcu = newlcu; } else { /* someone was faster */ _free_lcu(newlcu); } } spin_lock(&lcu->lock); list_add(&device->alias_list, &lcu->inactive_devices); private->lcu = lcu; spin_unlock(&lcu->lock); spin_unlock_irqrestore(&aliastree.lock, flags); return 0; } /* * This function removes a device from the scope of alias management. * The complicated part is to make sure that it is not in use by * any of the workers. If necessary cancel the work. */ void dasd_alias_disconnect_device_from_lcu(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; unsigned long flags; struct alias_lcu *lcu; struct alias_server *server; int was_pending; struct dasd_uid uid; lcu = private->lcu; /* nothing to do if already disconnected */ if (!lcu) return; device->discipline->get_uid(device, &uid); spin_lock_irqsave(&lcu->lock, flags); /* make sure that the workers don't use this device */ if (device == lcu->suc_data.device) { spin_unlock_irqrestore(&lcu->lock, flags); cancel_work_sync(&lcu->suc_data.worker); spin_lock_irqsave(&lcu->lock, flags); if (device == lcu->suc_data.device) { dasd_put_device(device); lcu->suc_data.device = NULL; } } was_pending = 0; if (device == lcu->ruac_data.device) { spin_unlock_irqrestore(&lcu->lock, flags); was_pending = 1; cancel_delayed_work_sync(&lcu->ruac_data.dwork); spin_lock_irqsave(&lcu->lock, flags); if (device == lcu->ruac_data.device) { dasd_put_device(device); lcu->ruac_data.device = NULL; } } private->lcu = NULL; spin_unlock_irqrestore(&lcu->lock, flags); spin_lock_irqsave(&aliastree.lock, flags); spin_lock(&lcu->lock); list_del_init(&device->alias_list); if (list_empty(&lcu->grouplist) && list_empty(&lcu->active_devices) && list_empty(&lcu->inactive_devices)) { list_del(&lcu->lcu); spin_unlock(&lcu->lock); _free_lcu(lcu); lcu = NULL; } else { if (was_pending) _schedule_lcu_update(lcu, NULL); spin_unlock(&lcu->lock); } server = _find_server(&uid); if (server && list_empty(&server->lculist)) { list_del(&server->server); _free_server(server); } spin_unlock_irqrestore(&aliastree.lock, flags); } /* * This function assumes that the unit address configuration stored * in the lcu is up to date and will update the device uid before * adding it to a pav group. */ static int _add_device_to_lcu(struct alias_lcu *lcu, struct dasd_device *device, struct dasd_device *pos) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *group; struct dasd_uid uid; spin_lock(get_ccwdev_lock(device->cdev)); private->uid.type = lcu->uac->unit[private->uid.real_unit_addr].ua_type; private->uid.base_unit_addr = lcu->uac->unit[private->uid.real_unit_addr].base_ua; uid = private->uid; spin_unlock(get_ccwdev_lock(device->cdev)); /* if we have no PAV anyway, we don't need to bother with PAV groups */ if (lcu->pav == NO_PAV) { list_move(&device->alias_list, &lcu->active_devices); return 0; } group = _find_group(lcu, &uid); if (!group) { group = kzalloc(sizeof(*group), GFP_ATOMIC); if (!group) return -ENOMEM; memcpy(group->uid.vendor, uid.vendor, sizeof(uid.vendor)); memcpy(group->uid.serial, uid.serial, sizeof(uid.serial)); group->uid.ssid = uid.ssid; if (uid.type == UA_BASE_DEVICE) group->uid.base_unit_addr = uid.real_unit_addr; else group->uid.base_unit_addr = uid.base_unit_addr; memcpy(group->uid.vduit, uid.vduit, sizeof(uid.vduit)); INIT_LIST_HEAD(&group->group); INIT_LIST_HEAD(&group->baselist); INIT_LIST_HEAD(&group->aliaslist); list_add(&group->group, &lcu->grouplist); } if (uid.type == UA_BASE_DEVICE) list_move(&device->alias_list, &group->baselist); else list_move(&device->alias_list, &group->aliaslist); private->pavgroup = group; return 0; }; static void _remove_device_from_lcu(struct alias_lcu *lcu, struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *group; list_move(&device->alias_list, &lcu->inactive_devices); group = private->pavgroup; if (!group) return; private->pavgroup = NULL; if (list_empty(&group->baselist) && list_empty(&group->aliaslist)) { list_del(&group->group); kfree(group); return; } if (group->next == device) group->next = NULL; }; static int suborder_not_supported(struct dasd_ccw_req *cqr) { char *sense; char reason; char msg_format; char msg_no; /* * intrc values ENODEV, ENOLINK and EPERM * will be optained from sleep_on to indicate that no * IO operation can be started */ if (cqr->intrc == -ENODEV) return 1; if (cqr->intrc == -ENOLINK) return 1; if (cqr->intrc == -EPERM) return 1; sense = dasd_get_sense(&cqr->irb); if (!sense) return 0; reason = sense[0]; msg_format = (sense[7] & 0xF0); msg_no = (sense[7] & 0x0F); /* command reject, Format 0 MSG 4 - invalid parameter */ if ((reason == 0x80) && (msg_format == 0x00) && (msg_no == 0x04)) return 1; return 0; } static int read_unit_address_configuration(struct dasd_device *device, struct alias_lcu *lcu) { struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; unsigned long flags; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data)), device, NULL); if (IS_ERR(cqr)) return PTR_ERR(cqr); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->retries = 10; cqr->expires = 20 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x0e; /* Read unit address configuration */ /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)virt_to_phys(prssdp); /* Read Subsystem Data - feature codes */ memset(lcu->uac, 0, sizeof(*(lcu->uac))); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*(lcu->uac)); ccw->cda = (__u32)virt_to_phys(lcu->uac); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* need to unset flag here to detect race with summary unit check */ spin_lock_irqsave(&lcu->lock, flags); lcu->flags &= ~NEED_UAC_UPDATE; spin_unlock_irqrestore(&lcu->lock, flags); rc = dasd_sleep_on(cqr); if (!rc) goto out; if (suborder_not_supported(cqr)) { /* suborder not supported or device unusable for IO */ rc = -EOPNOTSUPP; } else { /* IO failed but should be retried */ spin_lock_irqsave(&lcu->lock, flags); lcu->flags |= NEED_UAC_UPDATE; spin_unlock_irqrestore(&lcu->lock, flags); } out: dasd_sfree_request(cqr, cqr->memdev); return rc; } static int _lcu_update(struct dasd_device *refdev, struct alias_lcu *lcu) { unsigned long flags; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *device, *tempdev; int i, rc; struct dasd_eckd_private *private; spin_lock_irqsave(&lcu->lock, flags); list_for_each_entry_safe(pavgroup, tempgroup, &lcu->grouplist, group) { list_for_each_entry_safe(device, tempdev, &pavgroup->baselist, alias_list) { list_move(&device->alias_list, &lcu->active_devices); private = device->private; private->pavgroup = NULL; } list_for_each_entry_safe(device, tempdev, &pavgroup->aliaslist, alias_list) { list_move(&device->alias_list, &lcu->active_devices); private = device->private; private->pavgroup = NULL; } list_del(&pavgroup->group); kfree(pavgroup); } spin_unlock_irqrestore(&lcu->lock, flags); rc = read_unit_address_configuration(refdev, lcu); if (rc) return rc; spin_lock_irqsave(&lcu->lock, flags); /* * there is another update needed skip the remaining handling * the data might already be outdated * but especially do not add the device to an LCU with pending * update */ if (lcu->flags & NEED_UAC_UPDATE) goto out; lcu->pav = NO_PAV; for (i = 0; i < MAX_DEVICES_PER_LCU; ++i) { switch (lcu->uac->unit[i].ua_type) { case UA_BASE_PAV_ALIAS: lcu->pav = BASE_PAV; break; case UA_HYPER_PAV_ALIAS: lcu->pav = HYPER_PAV; break; } if (lcu->pav != NO_PAV) break; } list_for_each_entry_safe(device, tempdev, &lcu->active_devices, alias_list) { _add_device_to_lcu(lcu, device, refdev); } out: spin_unlock_irqrestore(&lcu->lock, flags); return 0; } static void lcu_update_work(struct work_struct *work) { struct alias_lcu *lcu; struct read_uac_work_data *ruac_data; struct dasd_device *device; unsigned long flags; int rc; ruac_data = container_of(work, struct read_uac_work_data, dwork.work); lcu = container_of(ruac_data, struct alias_lcu, ruac_data); device = ruac_data->device; rc = _lcu_update(device, lcu); /* * Need to check flags again, as there could have been another * prepare_update or a new device a new device while we were still * processing the data */ spin_lock_irqsave(&lcu->lock, flags); if ((rc && (rc != -EOPNOTSUPP)) || (lcu->flags & NEED_UAC_UPDATE)) { DBF_DEV_EVENT(DBF_WARNING, device, "could not update" " alias data in lcu (rc = %d), retry later", rc); if (!schedule_delayed_work(&lcu->ruac_data.dwork, 30*HZ)) dasd_put_device(device); } else { dasd_put_device(device); lcu->ruac_data.device = NULL; lcu->flags &= ~UPDATE_PENDING; } spin_unlock_irqrestore(&lcu->lock, flags); } static int _schedule_lcu_update(struct alias_lcu *lcu, struct dasd_device *device) { struct dasd_device *usedev = NULL; struct alias_pav_group *group; lcu->flags |= NEED_UAC_UPDATE; if (lcu->ruac_data.device) { /* already scheduled or running */ return 0; } if (device && !list_empty(&device->alias_list)) usedev = device; if (!usedev && !list_empty(&lcu->grouplist)) { group = list_first_entry(&lcu->grouplist, struct alias_pav_group, group); if (!list_empty(&group->baselist)) usedev = list_first_entry(&group->baselist, struct dasd_device, alias_list); else if (!list_empty(&group->aliaslist)) usedev = list_first_entry(&group->aliaslist, struct dasd_device, alias_list); } if (!usedev && !list_empty(&lcu->active_devices)) { usedev = list_first_entry(&lcu->active_devices, struct dasd_device, alias_list); } /* * if we haven't found a proper device yet, give up for now, the next * device that will be set active will trigger an lcu update */ if (!usedev) return -EINVAL; dasd_get_device(usedev); lcu->ruac_data.device = usedev; if (!schedule_delayed_work(&lcu->ruac_data.dwork, 0)) dasd_put_device(usedev); return 0; } int dasd_alias_add_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; __u8 uaddr = private->uid.real_unit_addr; struct alias_lcu *lcu = private->lcu; unsigned long flags; int rc; rc = 0; spin_lock_irqsave(&lcu->lock, flags); /* * Check if device and lcu type differ. If so, the uac data may be * outdated and needs to be updated. */ if (private->uid.type != lcu->uac->unit[uaddr].ua_type) { lcu->flags |= UPDATE_PENDING; DBF_DEV_EVENT(DBF_WARNING, device, "%s", "uid type mismatch - trigger rescan"); } if (!(lcu->flags & UPDATE_PENDING)) { rc = _add_device_to_lcu(lcu, device, device); if (rc) lcu->flags |= UPDATE_PENDING; } if (lcu->flags & UPDATE_PENDING) { list_move(&device->alias_list, &lcu->active_devices); private->pavgroup = NULL; _schedule_lcu_update(lcu, device); } spin_unlock_irqrestore(&lcu->lock, flags); return rc; } int dasd_alias_update_add_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; private->lcu->flags |= UPDATE_PENDING; return dasd_alias_add_device(device); } int dasd_alias_remove_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct alias_lcu *lcu = private->lcu; unsigned long flags; /* nothing to do if already removed */ if (!lcu) return 0; spin_lock_irqsave(&lcu->lock, flags); _remove_device_from_lcu(lcu, device); spin_unlock_irqrestore(&lcu->lock, flags); return 0; } struct dasd_device *dasd_alias_get_start_dev(struct dasd_device *base_device) { struct dasd_eckd_private *alias_priv, *private = base_device->private; struct alias_lcu *lcu = private->lcu; struct dasd_device *alias_device; struct alias_pav_group *group; unsigned long flags; if (!lcu) return NULL; if (lcu->pav == NO_PAV || lcu->flags & (NEED_UAC_UPDATE | UPDATE_PENDING)) return NULL; if (unlikely(!(private->features.feature[8] & 0x01))) { /* * PAV enabled but prefix not, very unlikely * seems to be a lost pathgroup * use base device to do IO */ DBF_DEV_EVENT(DBF_ERR, base_device, "%s", "Prefix not enabled with PAV enabled\n"); return NULL; } spin_lock_irqsave(&lcu->lock, flags); group = private->pavgroup; if (!group) { spin_unlock_irqrestore(&lcu->lock, flags); return NULL; } alias_device = group->next; if (!alias_device) { if (list_empty(&group->aliaslist)) { spin_unlock_irqrestore(&lcu->lock, flags); return NULL; } else { alias_device = list_first_entry(&group->aliaslist, struct dasd_device, alias_list); } } if (list_is_last(&alias_device->alias_list, &group->aliaslist)) group->next = list_first_entry(&group->aliaslist, struct dasd_device, alias_list); else group->next = list_first_entry(&alias_device->alias_list, struct dasd_device, alias_list); spin_unlock_irqrestore(&lcu->lock, flags); alias_priv = alias_device->private; if ((alias_priv->count < private->count) && !alias_device->stopped && !test_bit(DASD_FLAG_OFFLINE, &alias_device->flags)) return alias_device; else return NULL; } /* * Summary unit check handling depends on the way alias devices * are handled so it is done here rather then in dasd_eckd.c */ static int reset_summary_unit_check(struct alias_lcu *lcu, struct dasd_device *device, char reason) { struct dasd_ccw_req *cqr; int rc = 0; struct ccw1 *ccw; cqr = lcu->rsu_cqr; memcpy((char *) &cqr->magic, "ECKD", 4); ASCEBC((char *) &cqr->magic, 4); ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RSCK; ccw->flags = CCW_FLAG_SLI; ccw->count = 16; ccw->cda = (__u32)virt_to_phys(cqr->data); ((char *)cqr->data)[0] = reason; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->retries = 255; /* set retry counter to enable basic ERP */ cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->expires = 5 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); return rc; } static void _restart_all_base_devices_on_lcu(struct alias_lcu *lcu) { struct alias_pav_group *pavgroup; struct dasd_device *device; struct dasd_eckd_private *private; /* active and inactive list can contain alias as well as base devices */ list_for_each_entry(device, &lcu->active_devices, alias_list) { private = device->private; if (private->uid.type != UA_BASE_DEVICE) continue; dasd_schedule_block_bh(device->block); dasd_schedule_device_bh(device); } list_for_each_entry(device, &lcu->inactive_devices, alias_list) { private = device->private; if (private->uid.type != UA_BASE_DEVICE) continue; dasd_schedule_block_bh(device->block); dasd_schedule_device_bh(device); } list_for_each_entry(pavgroup, &lcu->grouplist, group) { list_for_each_entry(device, &pavgroup->baselist, alias_list) { dasd_schedule_block_bh(device->block); dasd_schedule_device_bh(device); } } } static void flush_all_alias_devices_on_lcu(struct alias_lcu *lcu) { struct alias_pav_group *pavgroup; struct dasd_device *device, *temp; struct dasd_eckd_private *private; unsigned long flags; LIST_HEAD(active); /* * Problem here ist that dasd_flush_device_queue may wait * for termination of a request to complete. We can't keep * the lcu lock during that time, so we must assume that * the lists may have changed. * Idea: first gather all active alias devices in a separate list, * then flush the first element of this list unlocked, and afterwards * check if it is still on the list before moving it to the * active_devices list. */ spin_lock_irqsave(&lcu->lock, flags); list_for_each_entry_safe(device, temp, &lcu->active_devices, alias_list) { private = device->private; if (private->uid.type == UA_BASE_DEVICE) continue; list_move(&device->alias_list, &active); } list_for_each_entry(pavgroup, &lcu->grouplist, group) { list_splice_init(&pavgroup->aliaslist, &active); } while (!list_empty(&active)) { device = list_first_entry(&active, struct dasd_device, alias_list); spin_unlock_irqrestore(&lcu->lock, flags); dasd_flush_device_queue(device); spin_lock_irqsave(&lcu->lock, flags); /* * only move device around if it wasn't moved away while we * were waiting for the flush */ if (device == list_first_entry(&active, struct dasd_device, alias_list)) { list_move(&device->alias_list, &lcu->active_devices); private = device->private; private->pavgroup = NULL; } } spin_unlock_irqrestore(&lcu->lock, flags); } static void _stop_all_devices_on_lcu(struct alias_lcu *lcu) { struct alias_pav_group *pavgroup; struct dasd_device *device; list_for_each_entry(device, &lcu->active_devices, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_set_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } list_for_each_entry(device, &lcu->inactive_devices, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_set_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } list_for_each_entry(pavgroup, &lcu->grouplist, group) { list_for_each_entry(device, &pavgroup->baselist, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_set_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } list_for_each_entry(device, &pavgroup->aliaslist, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_set_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } } } static void _unstop_all_devices_on_lcu(struct alias_lcu *lcu) { struct alias_pav_group *pavgroup; struct dasd_device *device; list_for_each_entry(device, &lcu->active_devices, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_remove_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } list_for_each_entry(device, &lcu->inactive_devices, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_remove_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } list_for_each_entry(pavgroup, &lcu->grouplist, group) { list_for_each_entry(device, &pavgroup->baselist, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_remove_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } list_for_each_entry(device, &pavgroup->aliaslist, alias_list) { spin_lock(get_ccwdev_lock(device->cdev)); dasd_device_remove_stop_bits(device, DASD_STOPPED_SU); spin_unlock(get_ccwdev_lock(device->cdev)); } } } static void summary_unit_check_handling_work(struct work_struct *work) { struct alias_lcu *lcu; struct summary_unit_check_work_data *suc_data; unsigned long flags; struct dasd_device *device; suc_data = container_of(work, struct summary_unit_check_work_data, worker); lcu = container_of(suc_data, struct alias_lcu, suc_data); device = suc_data->device; /* 1. flush alias devices */ flush_all_alias_devices_on_lcu(lcu); /* 2. reset summary unit check */ spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); dasd_device_remove_stop_bits(device, (DASD_STOPPED_SU | DASD_STOPPED_PENDING)); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); reset_summary_unit_check(lcu, device, suc_data->reason); spin_lock_irqsave(&lcu->lock, flags); _unstop_all_devices_on_lcu(lcu); _restart_all_base_devices_on_lcu(lcu); /* 3. read new alias configuration */ _schedule_lcu_update(lcu, device); lcu->suc_data.device = NULL; dasd_put_device(device); spin_unlock_irqrestore(&lcu->lock, flags); } void dasd_alias_handle_summary_unit_check(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, suc_work); struct dasd_eckd_private *private = device->private; struct alias_lcu *lcu; unsigned long flags; lcu = private->lcu; if (!lcu) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "device not ready to handle summary" " unit check (no lcu structure)"); goto out; } spin_lock_irqsave(&lcu->lock, flags); /* If this device is about to be removed just return and wait for * the next interrupt on a different device */ if (list_empty(&device->alias_list)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "device is in offline processing," " don't do summary unit check handling"); goto out_unlock; } if (lcu->suc_data.device) { /* already scheduled or running */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "previous instance of summary unit check worker" " still pending"); goto out_unlock; } _stop_all_devices_on_lcu(lcu); /* prepare for lcu_update */ lcu->flags |= NEED_UAC_UPDATE | UPDATE_PENDING; lcu->suc_data.reason = private->suc_reason; lcu->suc_data.device = device; dasd_get_device(device); if (!schedule_work(&lcu->suc_data.worker)) dasd_put_device(device); out_unlock: spin_unlock_irqrestore(&lcu->lock, flags); out: clear_bit(DASD_FLAG_SUC, &device->flags); dasd_put_device(device); };
linux-master
drivers/s390/block/dasd_alias.c
// SPDX-License-Identifier: GPL-2.0 /* * Block driver for s390 storage class memory. * * Copyright IBM Corp. 2012 * Author(s): Sebastian Ott <[email protected]> */ #define KMSG_COMPONENT "scm_block" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/mempool.h> #include <linux/module.h> #include <linux/blkdev.h> #include <linux/blk-mq.h> #include <linux/slab.h> #include <linux/list.h> #include <asm/eadm.h> #include "scm_blk.h" debug_info_t *scm_debug; static int scm_major; static mempool_t *aidaw_pool; static DEFINE_SPINLOCK(list_lock); static LIST_HEAD(inactive_requests); static unsigned int nr_requests = 64; static unsigned int nr_requests_per_io = 8; static atomic_t nr_devices = ATOMIC_INIT(0); module_param(nr_requests, uint, S_IRUGO); MODULE_PARM_DESC(nr_requests, "Number of parallel requests."); module_param(nr_requests_per_io, uint, S_IRUGO); MODULE_PARM_DESC(nr_requests_per_io, "Number of requests per IO."); MODULE_DESCRIPTION("Block driver for s390 storage class memory."); MODULE_LICENSE("GPL"); MODULE_ALIAS("scm:scmdev*"); static void __scm_free_rq(struct scm_request *scmrq) { struct aob_rq_header *aobrq = to_aobrq(scmrq); free_page((unsigned long) scmrq->aob); kfree(scmrq->request); kfree(aobrq); } static void scm_free_rqs(void) { struct list_head *iter, *safe; struct scm_request *scmrq; spin_lock_irq(&list_lock); list_for_each_safe(iter, safe, &inactive_requests) { scmrq = list_entry(iter, struct scm_request, list); list_del(&scmrq->list); __scm_free_rq(scmrq); } spin_unlock_irq(&list_lock); mempool_destroy(aidaw_pool); } static int __scm_alloc_rq(void) { struct aob_rq_header *aobrq; struct scm_request *scmrq; aobrq = kzalloc(sizeof(*aobrq) + sizeof(*scmrq), GFP_KERNEL); if (!aobrq) return -ENOMEM; scmrq = (void *) aobrq->data; scmrq->aob = (void *) get_zeroed_page(GFP_DMA); if (!scmrq->aob) goto free; scmrq->request = kcalloc(nr_requests_per_io, sizeof(scmrq->request[0]), GFP_KERNEL); if (!scmrq->request) goto free; INIT_LIST_HEAD(&scmrq->list); spin_lock_irq(&list_lock); list_add(&scmrq->list, &inactive_requests); spin_unlock_irq(&list_lock); return 0; free: __scm_free_rq(scmrq); return -ENOMEM; } static int scm_alloc_rqs(unsigned int nrqs) { int ret = 0; aidaw_pool = mempool_create_page_pool(max(nrqs/8, 1U), 0); if (!aidaw_pool) return -ENOMEM; while (nrqs-- && !ret) ret = __scm_alloc_rq(); return ret; } static struct scm_request *scm_request_fetch(void) { struct scm_request *scmrq = NULL; spin_lock_irq(&list_lock); if (list_empty(&inactive_requests)) goto out; scmrq = list_first_entry(&inactive_requests, struct scm_request, list); list_del(&scmrq->list); out: spin_unlock_irq(&list_lock); return scmrq; } static void scm_request_done(struct scm_request *scmrq) { unsigned long flags; struct msb *msb; u64 aidaw; int i; for (i = 0; i < nr_requests_per_io && scmrq->request[i]; i++) { msb = &scmrq->aob->msb[i]; aidaw = msb->data_addr; if ((msb->flags & MSB_FLAG_IDA) && aidaw && IS_ALIGNED(aidaw, PAGE_SIZE)) mempool_free(virt_to_page((void *)aidaw), aidaw_pool); } spin_lock_irqsave(&list_lock, flags); list_add(&scmrq->list, &inactive_requests); spin_unlock_irqrestore(&list_lock, flags); } static bool scm_permit_request(struct scm_blk_dev *bdev, struct request *req) { return rq_data_dir(req) != WRITE || bdev->state != SCM_WR_PROHIBIT; } static inline struct aidaw *scm_aidaw_alloc(void) { struct page *page = mempool_alloc(aidaw_pool, GFP_ATOMIC); return page ? page_address(page) : NULL; } static inline unsigned long scm_aidaw_bytes(struct aidaw *aidaw) { unsigned long _aidaw = (unsigned long) aidaw; unsigned long bytes = ALIGN(_aidaw, PAGE_SIZE) - _aidaw; return (bytes / sizeof(*aidaw)) * PAGE_SIZE; } struct aidaw *scm_aidaw_fetch(struct scm_request *scmrq, unsigned int bytes) { struct aidaw *aidaw; if (scm_aidaw_bytes(scmrq->next_aidaw) >= bytes) return scmrq->next_aidaw; aidaw = scm_aidaw_alloc(); if (aidaw) memset(aidaw, 0, PAGE_SIZE); return aidaw; } static int scm_request_prepare(struct scm_request *scmrq) { struct scm_blk_dev *bdev = scmrq->bdev; struct scm_device *scmdev = bdev->gendisk->private_data; int pos = scmrq->aob->request.msb_count; struct msb *msb = &scmrq->aob->msb[pos]; struct request *req = scmrq->request[pos]; struct req_iterator iter; struct aidaw *aidaw; struct bio_vec bv; aidaw = scm_aidaw_fetch(scmrq, blk_rq_bytes(req)); if (!aidaw) return -ENOMEM; msb->bs = MSB_BS_4K; scmrq->aob->request.msb_count++; msb->scm_addr = scmdev->address + ((u64) blk_rq_pos(req) << 9); msb->oc = (rq_data_dir(req) == READ) ? MSB_OC_READ : MSB_OC_WRITE; msb->flags |= MSB_FLAG_IDA; msb->data_addr = (u64) aidaw; rq_for_each_segment(bv, req, iter) { WARN_ON(bv.bv_offset); msb->blk_count += bv.bv_len >> 12; aidaw->data_addr = (u64) page_address(bv.bv_page); aidaw++; } scmrq->next_aidaw = aidaw; return 0; } static inline void scm_request_set(struct scm_request *scmrq, struct request *req) { scmrq->request[scmrq->aob->request.msb_count] = req; } static inline void scm_request_init(struct scm_blk_dev *bdev, struct scm_request *scmrq) { struct aob_rq_header *aobrq = to_aobrq(scmrq); struct aob *aob = scmrq->aob; memset(scmrq->request, 0, nr_requests_per_io * sizeof(scmrq->request[0])); memset(aob, 0, sizeof(*aob)); aobrq->scmdev = bdev->scmdev; aob->request.cmd_code = ARQB_CMD_MOVE; aob->request.data = (u64) aobrq; scmrq->bdev = bdev; scmrq->retries = 4; scmrq->error = BLK_STS_OK; /* We don't use all msbs - place aidaws at the end of the aob page. */ scmrq->next_aidaw = (void *) &aob->msb[nr_requests_per_io]; } static void scm_request_requeue(struct scm_request *scmrq) { struct scm_blk_dev *bdev = scmrq->bdev; int i; for (i = 0; i < nr_requests_per_io && scmrq->request[i]; i++) blk_mq_requeue_request(scmrq->request[i], false); atomic_dec(&bdev->queued_reqs); scm_request_done(scmrq); blk_mq_kick_requeue_list(bdev->rq); } static void scm_request_finish(struct scm_request *scmrq) { struct scm_blk_dev *bdev = scmrq->bdev; blk_status_t *error; int i; for (i = 0; i < nr_requests_per_io && scmrq->request[i]; i++) { error = blk_mq_rq_to_pdu(scmrq->request[i]); *error = scmrq->error; if (likely(!blk_should_fake_timeout(scmrq->request[i]->q))) blk_mq_complete_request(scmrq->request[i]); } atomic_dec(&bdev->queued_reqs); scm_request_done(scmrq); } static void scm_request_start(struct scm_request *scmrq) { struct scm_blk_dev *bdev = scmrq->bdev; atomic_inc(&bdev->queued_reqs); if (eadm_start_aob(scmrq->aob)) { SCM_LOG(5, "no subchannel"); scm_request_requeue(scmrq); } } struct scm_queue { struct scm_request *scmrq; spinlock_t lock; }; static blk_status_t scm_blk_request(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *qd) { struct scm_device *scmdev = hctx->queue->queuedata; struct scm_blk_dev *bdev = dev_get_drvdata(&scmdev->dev); struct scm_queue *sq = hctx->driver_data; struct request *req = qd->rq; struct scm_request *scmrq; spin_lock(&sq->lock); if (!scm_permit_request(bdev, req)) { spin_unlock(&sq->lock); return BLK_STS_RESOURCE; } scmrq = sq->scmrq; if (!scmrq) { scmrq = scm_request_fetch(); if (!scmrq) { SCM_LOG(5, "no request"); spin_unlock(&sq->lock); return BLK_STS_RESOURCE; } scm_request_init(bdev, scmrq); sq->scmrq = scmrq; } scm_request_set(scmrq, req); if (scm_request_prepare(scmrq)) { SCM_LOG(5, "aidaw alloc failed"); scm_request_set(scmrq, NULL); if (scmrq->aob->request.msb_count) scm_request_start(scmrq); sq->scmrq = NULL; spin_unlock(&sq->lock); return BLK_STS_RESOURCE; } blk_mq_start_request(req); if (qd->last || scmrq->aob->request.msb_count == nr_requests_per_io) { scm_request_start(scmrq); sq->scmrq = NULL; } spin_unlock(&sq->lock); return BLK_STS_OK; } static int scm_blk_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int idx) { struct scm_queue *qd = kzalloc(sizeof(*qd), GFP_KERNEL); if (!qd) return -ENOMEM; spin_lock_init(&qd->lock); hctx->driver_data = qd; return 0; } static void scm_blk_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int idx) { struct scm_queue *qd = hctx->driver_data; WARN_ON(qd->scmrq); kfree(hctx->driver_data); hctx->driver_data = NULL; } static void __scmrq_log_error(struct scm_request *scmrq) { struct aob *aob = scmrq->aob; if (scmrq->error == BLK_STS_TIMEOUT) SCM_LOG(1, "Request timeout"); else { SCM_LOG(1, "Request error"); SCM_LOG_HEX(1, &aob->response, sizeof(aob->response)); } if (scmrq->retries) SCM_LOG(1, "Retry request"); else pr_err("An I/O operation to SCM failed with rc=%d\n", scmrq->error); } static void scm_blk_handle_error(struct scm_request *scmrq) { struct scm_blk_dev *bdev = scmrq->bdev; unsigned long flags; if (scmrq->error != BLK_STS_IOERR) goto restart; /* For -EIO the response block is valid. */ switch (scmrq->aob->response.eqc) { case EQC_WR_PROHIBIT: spin_lock_irqsave(&bdev->lock, flags); if (bdev->state != SCM_WR_PROHIBIT) pr_info("%lx: Write access to the SCM increment is suspended\n", (unsigned long) bdev->scmdev->address); bdev->state = SCM_WR_PROHIBIT; spin_unlock_irqrestore(&bdev->lock, flags); goto requeue; default: break; } restart: if (!eadm_start_aob(scmrq->aob)) return; requeue: scm_request_requeue(scmrq); } void scm_blk_irq(struct scm_device *scmdev, void *data, blk_status_t error) { struct scm_request *scmrq = data; scmrq->error = error; if (error) { __scmrq_log_error(scmrq); if (scmrq->retries-- > 0) { scm_blk_handle_error(scmrq); return; } } scm_request_finish(scmrq); } static void scm_blk_request_done(struct request *req) { blk_status_t *error = blk_mq_rq_to_pdu(req); blk_mq_end_request(req, *error); } static const struct block_device_operations scm_blk_devops = { .owner = THIS_MODULE, }; static const struct blk_mq_ops scm_mq_ops = { .queue_rq = scm_blk_request, .complete = scm_blk_request_done, .init_hctx = scm_blk_init_hctx, .exit_hctx = scm_blk_exit_hctx, }; int scm_blk_dev_setup(struct scm_blk_dev *bdev, struct scm_device *scmdev) { unsigned int devindex, nr_max_blk; struct request_queue *rq; int len, ret; devindex = atomic_inc_return(&nr_devices) - 1; /* scma..scmz + scmaa..scmzz */ if (devindex > 701) { ret = -ENODEV; goto out; } bdev->scmdev = scmdev; bdev->state = SCM_OPER; spin_lock_init(&bdev->lock); atomic_set(&bdev->queued_reqs, 0); bdev->tag_set.ops = &scm_mq_ops; bdev->tag_set.cmd_size = sizeof(blk_status_t); bdev->tag_set.nr_hw_queues = nr_requests; bdev->tag_set.queue_depth = nr_requests_per_io * nr_requests; bdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; bdev->tag_set.numa_node = NUMA_NO_NODE; ret = blk_mq_alloc_tag_set(&bdev->tag_set); if (ret) goto out; bdev->gendisk = blk_mq_alloc_disk(&bdev->tag_set, scmdev); if (IS_ERR(bdev->gendisk)) { ret = PTR_ERR(bdev->gendisk); goto out_tag; } rq = bdev->rq = bdev->gendisk->queue; nr_max_blk = min(scmdev->nr_max_block, (unsigned int) (PAGE_SIZE / sizeof(struct aidaw))); blk_queue_logical_block_size(rq, 1 << 12); blk_queue_max_hw_sectors(rq, nr_max_blk << 3); /* 8 * 512 = blk_size */ blk_queue_max_segments(rq, nr_max_blk); blk_queue_flag_set(QUEUE_FLAG_NONROT, rq); blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, rq); bdev->gendisk->private_data = scmdev; bdev->gendisk->fops = &scm_blk_devops; bdev->gendisk->major = scm_major; bdev->gendisk->first_minor = devindex * SCM_NR_PARTS; bdev->gendisk->minors = SCM_NR_PARTS; len = snprintf(bdev->gendisk->disk_name, DISK_NAME_LEN, "scm"); if (devindex > 25) { len += snprintf(bdev->gendisk->disk_name + len, DISK_NAME_LEN - len, "%c", 'a' + (devindex / 26) - 1); devindex = devindex % 26; } snprintf(bdev->gendisk->disk_name + len, DISK_NAME_LEN - len, "%c", 'a' + devindex); /* 512 byte sectors */ set_capacity(bdev->gendisk, scmdev->size >> 9); ret = device_add_disk(&scmdev->dev, bdev->gendisk, NULL); if (ret) goto out_cleanup_disk; return 0; out_cleanup_disk: put_disk(bdev->gendisk); out_tag: blk_mq_free_tag_set(&bdev->tag_set); out: atomic_dec(&nr_devices); return ret; } void scm_blk_dev_cleanup(struct scm_blk_dev *bdev) { del_gendisk(bdev->gendisk); put_disk(bdev->gendisk); blk_mq_free_tag_set(&bdev->tag_set); } void scm_blk_set_available(struct scm_blk_dev *bdev) { unsigned long flags; spin_lock_irqsave(&bdev->lock, flags); if (bdev->state == SCM_WR_PROHIBIT) pr_info("%lx: Write access to the SCM increment is restored\n", (unsigned long) bdev->scmdev->address); bdev->state = SCM_OPER; spin_unlock_irqrestore(&bdev->lock, flags); } static bool __init scm_blk_params_valid(void) { if (!nr_requests_per_io || nr_requests_per_io > 64) return false; return true; } static int __init scm_blk_init(void) { int ret = -EINVAL; if (!scm_blk_params_valid()) goto out; ret = register_blkdev(0, "scm"); if (ret < 0) goto out; scm_major = ret; ret = scm_alloc_rqs(nr_requests); if (ret) goto out_free; scm_debug = debug_register("scm_log", 16, 1, 16); if (!scm_debug) { ret = -ENOMEM; goto out_free; } debug_register_view(scm_debug, &debug_hex_ascii_view); debug_set_level(scm_debug, 2); ret = scm_drv_init(); if (ret) goto out_dbf; return ret; out_dbf: debug_unregister(scm_debug); out_free: scm_free_rqs(); unregister_blkdev(scm_major, "scm"); out: return ret; } module_init(scm_blk_init); static void __exit scm_blk_cleanup(void) { scm_drv_cleanup(); debug_unregister(scm_debug); scm_free_rqs(); unregister_blkdev(scm_major, "scm"); } module_exit(scm_blk_cleanup);
linux-master
drivers/s390/block/scm_blk.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Horst Hummel <[email protected]> * Holger Smolinski <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 2000, 2001 * */ #define KMSG_COMPONENT "dasd-eckd" #include <linux/timer.h> #include <asm/idals.h> #define PRINTK_HEADER "dasd_erp(3990): " #include "dasd_int.h" #include "dasd_eckd.h" struct DCTL_data { unsigned char subcommand; /* e.g Inhibit Write, Enable Write,... */ unsigned char modifier; /* Subcommand modifier */ unsigned short res; /* reserved */ } __attribute__ ((packed)); /* ***************************************************************************** * SECTION ERP HANDLING ***************************************************************************** */ /* ***************************************************************************** * 24 and 32 byte sense ERP functions ***************************************************************************** */ /* * DASD_3990_ERP_CLEANUP * * DESCRIPTION * Removes the already build but not necessary ERP request and sets * the status of the original cqr / erp to the given (final) status * * PARAMETER * erp request to be blocked * final_status either DASD_CQR_DONE or DASD_CQR_FAILED * * RETURN VALUES * cqr original cqr */ static struct dasd_ccw_req * dasd_3990_erp_cleanup(struct dasd_ccw_req * erp, char final_status) { struct dasd_ccw_req *cqr = erp->refers; dasd_free_erp_request(erp, erp->memdev); cqr->status = final_status; return cqr; } /* end dasd_3990_erp_cleanup */ /* * DASD_3990_ERP_BLOCK_QUEUE * * DESCRIPTION * Block the given device request queue to prevent from further * processing until the started timer has expired or an related * interrupt was received. */ static void dasd_3990_erp_block_queue(struct dasd_ccw_req *erp, int expires) { struct dasd_device *device = erp->startdev; unsigned long flags; DBF_DEV_EVENT(DBF_INFO, device, "blocking request queue for %is", expires/HZ); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); dasd_device_set_stop_bits(device, DASD_STOPPED_PENDING); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); erp->status = DASD_CQR_FILLED; if (erp->block) dasd_block_set_timer(erp->block, expires); else dasd_device_set_timer(device, expires); } /* * DASD_3990_ERP_INT_REQ * * DESCRIPTION * Handles 'Intervention Required' error. * This means either device offline or not installed. * * PARAMETER * erp current erp * RETURN VALUES * erp modified erp */ static struct dasd_ccw_req * dasd_3990_erp_int_req(struct dasd_ccw_req * erp) { struct dasd_device *device = erp->startdev; /* first time set initial retry counter and erp_function */ /* and retry once without blocking queue */ /* (this enables easier enqueing of the cqr) */ if (erp->function != dasd_3990_erp_int_req) { erp->retries = 256; erp->function = dasd_3990_erp_int_req; } else { /* issue a message and wait for 'device ready' interrupt */ dev_err(&device->cdev->dev, "is offline or not installed - " "INTERVENTION REQUIRED!!\n"); dasd_3990_erp_block_queue(erp, 60*HZ); } return erp; } /* end dasd_3990_erp_int_req */ /* * DASD_3990_ERP_ALTERNATE_PATH * * DESCRIPTION * Repeat the operation on a different channel path. * If all alternate paths have been tried, the request is posted with a * permanent error. * * PARAMETER * erp pointer to the current ERP * * RETURN VALUES * erp modified pointer to the ERP */ static void dasd_3990_erp_alternate_path(struct dasd_ccw_req * erp) { struct dasd_device *device = erp->startdev; __u8 opm; unsigned long flags; /* try alternate valid path */ spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); opm = ccw_device_get_path_mask(device->cdev); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); if (erp->lpm == 0) erp->lpm = dasd_path_get_opm(device) & ~(erp->irb.esw.esw0.sublog.lpum); else erp->lpm &= ~(erp->irb.esw.esw0.sublog.lpum); if ((erp->lpm & opm) != 0x00) { DBF_DEV_EVENT(DBF_WARNING, device, "try alternate lpm=%x (lpum=%x / opm=%x)", erp->lpm, erp->irb.esw.esw0.sublog.lpum, opm); /* reset status to submit the request again... */ erp->status = DASD_CQR_FILLED; erp->retries = 10; } else { dev_err(&device->cdev->dev, "The DASD cannot be reached on any path (lpum=%x" "/opm=%x)\n", erp->irb.esw.esw0.sublog.lpum, opm); /* post request with permanent error */ erp->status = DASD_CQR_FAILED; } } /* end dasd_3990_erp_alternate_path */ /* * DASD_3990_ERP_DCTL * * DESCRIPTION * Setup cqr to do the Diagnostic Control (DCTL) command with an * Inhibit Write subcommand (0x20) and the given modifier. * * PARAMETER * erp pointer to the current (failed) ERP * modifier subcommand modifier * * RETURN VALUES * dctl_cqr pointer to NEW dctl_cqr * */ static struct dasd_ccw_req * dasd_3990_erp_DCTL(struct dasd_ccw_req * erp, char modifier) { struct dasd_device *device = erp->startdev; struct DCTL_data *DCTL_data; struct ccw1 *ccw; struct dasd_ccw_req *dctl_cqr; dctl_cqr = dasd_alloc_erp_request(erp->magic, 1, sizeof(struct DCTL_data), device); if (IS_ERR(dctl_cqr)) { dev_err(&device->cdev->dev, "Unable to allocate DCTL-CQR\n"); erp->status = DASD_CQR_FAILED; return erp; } DCTL_data = dctl_cqr->data; DCTL_data->subcommand = 0x02; /* Inhibit Write */ DCTL_data->modifier = modifier; ccw = dctl_cqr->cpaddr; memset(ccw, 0, sizeof(struct ccw1)); ccw->cmd_code = CCW_CMD_DCTL; ccw->count = 4; ccw->cda = (__u32)virt_to_phys(DCTL_data); dctl_cqr->flags = erp->flags; dctl_cqr->function = dasd_3990_erp_DCTL; dctl_cqr->refers = erp; dctl_cqr->startdev = device; dctl_cqr->memdev = device; dctl_cqr->magic = erp->magic; dctl_cqr->expires = 5 * 60 * HZ; dctl_cqr->retries = 2; dctl_cqr->buildclk = get_tod_clock(); dctl_cqr->status = DASD_CQR_FILLED; return dctl_cqr; } /* end dasd_3990_erp_DCTL */ /* * DASD_3990_ERP_ACTION_1 * * DESCRIPTION * Setup ERP to do the ERP action 1 (see Reference manual). * Repeat the operation on a different channel path. * As deviation from the recommended recovery action, we reset the path mask * after we have tried each path and go through all paths a second time. * This will cover situations where only one path at a time is actually down, * but all paths fail and recover just with the same sequence and timing as * we try to use them (flapping links). * If all alternate paths have been tried twice, the request is posted with * a permanent error. * * PARAMETER * erp pointer to the current ERP * * RETURN VALUES * erp pointer to the ERP * */ static struct dasd_ccw_req *dasd_3990_erp_action_1_sec(struct dasd_ccw_req *erp) { erp->function = dasd_3990_erp_action_1_sec; dasd_3990_erp_alternate_path(erp); return erp; } static struct dasd_ccw_req *dasd_3990_erp_action_1(struct dasd_ccw_req *erp) { erp->function = dasd_3990_erp_action_1; dasd_3990_erp_alternate_path(erp); if (erp->status == DASD_CQR_FAILED && !test_bit(DASD_CQR_VERIFY_PATH, &erp->flags)) { erp->status = DASD_CQR_FILLED; erp->retries = 10; erp->lpm = dasd_path_get_opm(erp->startdev); erp->function = dasd_3990_erp_action_1_sec; } return erp; } /* end dasd_3990_erp_action_1(b) */ /* * DASD_3990_ERP_ACTION_4 * * DESCRIPTION * Setup ERP to do the ERP action 4 (see Reference manual). * Set the current request to PENDING to block the CQR queue for that device * until the state change interrupt appears. * Use a timer (20 seconds) to retry the cqr if the interrupt is still * missing. * * PARAMETER * sense sense data of the actual error * erp pointer to the current ERP * * RETURN VALUES * erp pointer to the ERP * */ static struct dasd_ccw_req * dasd_3990_erp_action_4(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; /* first time set initial retry counter and erp_function */ /* and retry once without waiting for state change pending */ /* interrupt (this enables easier enqueing of the cqr) */ if (erp->function != dasd_3990_erp_action_4) { DBF_DEV_EVENT(DBF_INFO, device, "%s", "dasd_3990_erp_action_4: first time retry"); erp->retries = 256; erp->function = dasd_3990_erp_action_4; } else { if (sense && (sense[25] == 0x1D)) { /* state change pending */ DBF_DEV_EVENT(DBF_INFO, device, "waiting for state change pending " "interrupt, %d retries left", erp->retries); dasd_3990_erp_block_queue(erp, 30*HZ); } else if (sense && (sense[25] == 0x1E)) { /* busy */ DBF_DEV_EVENT(DBF_INFO, device, "busy - redriving request later, " "%d retries left", erp->retries); dasd_3990_erp_block_queue(erp, HZ); } else { /* no state change pending - retry */ DBF_DEV_EVENT(DBF_INFO, device, "redriving request immediately, " "%d retries left", erp->retries); erp->status = DASD_CQR_FILLED; } } return erp; } /* end dasd_3990_erp_action_4 */ /* ***************************************************************************** * 24 byte sense ERP functions (only) ***************************************************************************** */ /* * DASD_3990_ERP_ACTION_5 * * DESCRIPTION * Setup ERP to do the ERP action 5 (see Reference manual). * NOTE: Further handling is done in xxx_further_erp after the retries. * * PARAMETER * erp pointer to the current ERP * * RETURN VALUES * erp pointer to the ERP * */ static struct dasd_ccw_req * dasd_3990_erp_action_5(struct dasd_ccw_req * erp) { /* first of all retry */ erp->retries = 10; erp->function = dasd_3990_erp_action_5; return erp; } /* end dasd_3990_erp_action_5 */ /* * DASD_3990_HANDLE_ENV_DATA * * DESCRIPTION * Handles 24 byte 'Environmental data present'. * Does a analysis of the sense data (message Format) * and prints the error messages. * * PARAMETER * sense current sense data * * RETURN VALUES * void */ static void dasd_3990_handle_env_data(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; char msg_format = (sense[7] & 0xF0); char msg_no = (sense[7] & 0x0F); char errorstring[ERRORLENGTH]; switch (msg_format) { case 0x00: /* Format 0 - Program or System Checks */ if (sense[1] & 0x10) { /* check message to operator bit */ switch (msg_no) { case 0x00: /* No Message */ break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT 0 - Invalid Command\n"); break; case 0x02: dev_warn(&device->cdev->dev, "FORMAT 0 - Invalid Command " "Sequence\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 0 - CCW Count less than " "required\n"); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT 0 - Invalid Parameter\n"); break; case 0x05: dev_warn(&device->cdev->dev, "FORMAT 0 - Diagnostic of Special" " Command Violates File Mask\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT 0 - Channel Returned with " "Incorrect retry CCW\n"); break; case 0x08: dev_warn(&device->cdev->dev, "FORMAT 0 - Reset Notification\n"); break; case 0x09: dev_warn(&device->cdev->dev, "FORMAT 0 - Storage Path Restart\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT 0 - Channel requested " "... %02x\n", sense[8]); break; case 0x0B: dev_warn(&device->cdev->dev, "FORMAT 0 - Invalid Defective/" "Alternate Track Pointer\n"); break; case 0x0C: dev_warn(&device->cdev->dev, "FORMAT 0 - DPS Installation " "Check\n"); break; case 0x0E: dev_warn(&device->cdev->dev, "FORMAT 0 - Command Invalid on " "Secondary Address\n"); break; case 0x0F: dev_warn(&device->cdev->dev, "FORMAT 0 - Status Not As " "Required: reason %02x\n", sense[8]); break; default: dev_warn(&device->cdev->dev, "FORMAT 0 - Reserved\n"); } } else { switch (msg_no) { case 0x00: /* No Message */ break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT 0 - Device Error " "Source\n"); break; case 0x02: dev_warn(&device->cdev->dev, "FORMAT 0 - Reserved\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 0 - Device Fenced - " "device = %02x\n", sense[4]); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT 0 - Data Pinned for " "Device\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 0 - Reserved\n"); } } break; case 0x10: /* Format 1 - Device Equipment Checks */ switch (msg_no) { case 0x00: /* No Message */ break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT 1 - Device Status 1 not as " "expected\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 1 - Index missing\n"); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT 1 - Interruption cannot be " "reset\n"); break; case 0x05: dev_warn(&device->cdev->dev, "FORMAT 1 - Device did not respond to " "selection\n"); break; case 0x06: dev_warn(&device->cdev->dev, "FORMAT 1 - Device check-2 error or Set " "Sector is not complete\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT 1 - Head address does not " "compare\n"); break; case 0x08: dev_warn(&device->cdev->dev, "FORMAT 1 - Device status 1 not valid\n"); break; case 0x09: dev_warn(&device->cdev->dev, "FORMAT 1 - Device not ready\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT 1 - Track physical address did " "not compare\n"); break; case 0x0B: dev_warn(&device->cdev->dev, "FORMAT 1 - Missing device address bit\n"); break; case 0x0C: dev_warn(&device->cdev->dev, "FORMAT 1 - Drive motor switch is off\n"); break; case 0x0D: dev_warn(&device->cdev->dev, "FORMAT 1 - Seek incomplete\n"); break; case 0x0E: dev_warn(&device->cdev->dev, "FORMAT 1 - Cylinder address did not " "compare\n"); break; case 0x0F: dev_warn(&device->cdev->dev, "FORMAT 1 - Offset active cannot be " "reset\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 1 - Reserved\n"); } break; case 0x20: /* Format 2 - 3990 Equipment Checks */ switch (msg_no) { case 0x08: dev_warn(&device->cdev->dev, "FORMAT 2 - 3990 check-2 error\n"); break; case 0x0E: dev_warn(&device->cdev->dev, "FORMAT 2 - Support facility errors\n"); break; case 0x0F: dev_warn(&device->cdev->dev, "FORMAT 2 - Microcode detected error " "%02x\n", sense[8]); break; default: dev_warn(&device->cdev->dev, "FORMAT 2 - Reserved\n"); } break; case 0x30: /* Format 3 - 3990 Control Checks */ switch (msg_no) { case 0x0F: dev_warn(&device->cdev->dev, "FORMAT 3 - Allegiance terminated\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 3 - Reserved\n"); } break; case 0x40: /* Format 4 - Data Checks */ switch (msg_no) { case 0x00: dev_warn(&device->cdev->dev, "FORMAT 4 - Home address area error\n"); break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT 4 - Count area error\n"); break; case 0x02: dev_warn(&device->cdev->dev, "FORMAT 4 - Key area error\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 4 - Data area error\n"); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in home address " "area\n"); break; case 0x05: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in count address " "area\n"); break; case 0x06: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in key area\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in data area\n"); break; case 0x08: dev_warn(&device->cdev->dev, "FORMAT 4 - Home address area error; " "offset active\n"); break; case 0x09: dev_warn(&device->cdev->dev, "FORMAT 4 - Count area error; offset " "active\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT 4 - Key area error; offset " "active\n"); break; case 0x0B: dev_warn(&device->cdev->dev, "FORMAT 4 - Data area error; " "offset active\n"); break; case 0x0C: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in home " "address area; offset active\n"); break; case 0x0D: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in count " "address area; offset active\n"); break; case 0x0E: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in key area; " "offset active\n"); break; case 0x0F: dev_warn(&device->cdev->dev, "FORMAT 4 - No sync byte in data area; " "offset active\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 4 - Reserved\n"); } break; case 0x50: /* Format 5 - Data Check with displacement information */ switch (msg_no) { case 0x00: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the " "home address area\n"); break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the count " "area\n"); break; case 0x02: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the key area\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the data " "area\n"); break; case 0x08: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the " "home address area; offset active\n"); break; case 0x09: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the count area; " "offset active\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the key area; " "offset active\n"); break; case 0x0B: dev_warn(&device->cdev->dev, "FORMAT 5 - Data Check in the data area; " "offset active\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 5 - Reserved\n"); } break; case 0x60: /* Format 6 - Usage Statistics/Overrun Errors */ switch (msg_no) { case 0x00: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel A\n"); break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel B\n"); break; case 0x02: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel C\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel D\n"); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel E\n"); break; case 0x05: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel F\n"); break; case 0x06: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel G\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT 6 - Overrun on channel H\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 6 - Reserved\n"); } break; case 0x70: /* Format 7 - Device Connection Control Checks */ switch (msg_no) { case 0x00: dev_warn(&device->cdev->dev, "FORMAT 7 - RCC initiated by a connection " "check alert\n"); break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT 7 - RCC 1 sequence not " "successful\n"); break; case 0x02: dev_warn(&device->cdev->dev, "FORMAT 7 - RCC 1 and RCC 2 sequences not " "successful\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 7 - Invalid tag-in during " "selection sequence\n"); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT 7 - extra RCC required\n"); break; case 0x05: dev_warn(&device->cdev->dev, "FORMAT 7 - Invalid DCC selection " "response or timeout\n"); break; case 0x06: dev_warn(&device->cdev->dev, "FORMAT 7 - Missing end operation; device " "transfer complete\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT 7 - Missing end operation; device " "transfer incomplete\n"); break; case 0x08: dev_warn(&device->cdev->dev, "FORMAT 7 - Invalid tag-in for an " "immediate command sequence\n"); break; case 0x09: dev_warn(&device->cdev->dev, "FORMAT 7 - Invalid tag-in for an " "extended command sequence\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT 7 - 3990 microcode time out when " "stopping selection\n"); break; case 0x0B: dev_warn(&device->cdev->dev, "FORMAT 7 - No response to selection " "after a poll interruption\n"); break; case 0x0C: dev_warn(&device->cdev->dev, "FORMAT 7 - Permanent path error (DASD " "controller not available)\n"); break; case 0x0D: dev_warn(&device->cdev->dev, "FORMAT 7 - DASD controller not available" " on disconnected command chain\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 7 - Reserved\n"); } break; case 0x80: /* Format 8 - Additional Device Equipment Checks */ switch (msg_no) { case 0x00: /* No Message */ case 0x01: dev_warn(&device->cdev->dev, "FORMAT 8 - Error correction code " "hardware fault\n"); break; case 0x03: dev_warn(&device->cdev->dev, "FORMAT 8 - Unexpected end operation " "response code\n"); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT 8 - End operation with transfer " "count not zero\n"); break; case 0x05: dev_warn(&device->cdev->dev, "FORMAT 8 - End operation with transfer " "count zero\n"); break; case 0x06: dev_warn(&device->cdev->dev, "FORMAT 8 - DPS checks after a system " "reset or selective reset\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT 8 - DPS cannot be filled\n"); break; case 0x08: dev_warn(&device->cdev->dev, "FORMAT 8 - Short busy time-out during " "device selection\n"); break; case 0x09: dev_warn(&device->cdev->dev, "FORMAT 8 - DASD controller failed to " "set or reset the long busy latch\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT 8 - No interruption from device " "during a command chain\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 8 - Reserved\n"); } break; case 0x90: /* Format 9 - Device Read, Write, and Seek Checks */ switch (msg_no) { case 0x00: break; /* No Message */ case 0x06: dev_warn(&device->cdev->dev, "FORMAT 9 - Device check-2 error\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT 9 - Head address did not " "compare\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT 9 - Track physical address did " "not compare while oriented\n"); break; case 0x0E: dev_warn(&device->cdev->dev, "FORMAT 9 - Cylinder address did not " "compare\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT 9 - Reserved\n"); } break; case 0xF0: /* Format F - Cache Storage Checks */ switch (msg_no) { case 0x00: dev_warn(&device->cdev->dev, "FORMAT F - Operation Terminated\n"); break; case 0x01: dev_warn(&device->cdev->dev, "FORMAT F - Subsystem Processing Error\n"); break; case 0x02: dev_warn(&device->cdev->dev, "FORMAT F - Cache or nonvolatile storage " "equipment failure\n"); break; case 0x04: dev_warn(&device->cdev->dev, "FORMAT F - Caching terminated\n"); break; case 0x06: dev_warn(&device->cdev->dev, "FORMAT F - Cache fast write access not " "authorized\n"); break; case 0x07: dev_warn(&device->cdev->dev, "FORMAT F - Track format incorrect\n"); break; case 0x09: dev_warn(&device->cdev->dev, "FORMAT F - Caching reinitiated\n"); break; case 0x0A: dev_warn(&device->cdev->dev, "FORMAT F - Nonvolatile storage " "terminated\n"); break; case 0x0B: dev_warn(&device->cdev->dev, "FORMAT F - Volume is suspended duplex\n"); /* call extended error reporting (EER) */ dasd_eer_write(device, erp->refers, DASD_EER_PPRCSUSPEND); break; case 0x0C: dev_warn(&device->cdev->dev, "FORMAT F - Subsystem status cannot be " "determined\n"); break; case 0x0D: dev_warn(&device->cdev->dev, "FORMAT F - Caching status reset to " "default\n"); break; case 0x0E: dev_warn(&device->cdev->dev, "FORMAT F - DASD Fast Write inhibited\n"); break; default: dev_warn(&device->cdev->dev, "FORMAT F - Reserved\n"); } break; default: /* unknown message format - should not happen internal error 03 - unknown message format */ snprintf(errorstring, ERRORLENGTH, "03 %x02", msg_format); dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", errorstring); break; } /* end switch message format */ } /* end dasd_3990_handle_env_data */ /* * DASD_3990_ERP_COM_REJ * * DESCRIPTION * Handles 24 byte 'Command Reject' error. * * PARAMETER * erp current erp_head * sense current sense data * * RETURN VALUES * erp 'new' erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_com_rej(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->function = dasd_3990_erp_com_rej; /* env data present (ACTION 10 - retry should work) */ if (sense[2] & SNS2_ENV_DATA_PRESENT) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Command Reject - environmental data present"); dasd_3990_handle_env_data(erp, sense); erp->retries = 5; } else if (sense[1] & SNS1_WRITE_INHIBITED) { dev_err(&device->cdev->dev, "An I/O request was rejected" " because writing is inhibited\n"); erp = dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); } else if (sense[7] == SNS7_INVALID_ON_SEC) { dev_err(&device->cdev->dev, "An I/O request was rejected on a copy pair secondary device\n"); /* suppress dump of sense data for this error */ set_bit(DASD_CQR_SUPPRESS_CR, &erp->refers->flags); erp = dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); } else { /* fatal error - set status to FAILED internal error 09 - Command Reject */ if (!test_bit(DASD_CQR_SUPPRESS_CR, &erp->flags)) dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, reason=09\n"); erp = dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); } return erp; } /* end dasd_3990_erp_com_rej */ /* * DASD_3990_ERP_BUS_OUT * * DESCRIPTION * Handles 24 byte 'Bus Out Parity Check' error. * * PARAMETER * erp current erp_head * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_bus_out(struct dasd_ccw_req * erp) { struct dasd_device *device = erp->startdev; /* first time set initial retry counter and erp_function */ /* and retry once without blocking queue */ /* (this enables easier enqueing of the cqr) */ if (erp->function != dasd_3990_erp_bus_out) { erp->retries = 256; erp->function = dasd_3990_erp_bus_out; } else { /* issue a message and wait for 'device ready' interrupt */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "bus out parity error or BOPC requested by " "channel"); dasd_3990_erp_block_queue(erp, 60*HZ); } return erp; } /* end dasd_3990_erp_bus_out */ /* * DASD_3990_ERP_EQUIP_CHECK * * DESCRIPTION * Handles 24 byte 'Equipment Check' error. * * PARAMETER * erp current erp_head * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_equip_check(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->function = dasd_3990_erp_equip_check; if (sense[1] & SNS1_WRITE_INHIBITED) { dev_info(&device->cdev->dev, "Write inhibited path encountered\n"); /* vary path offline internal error 04 - Path should be varied off-line.*/ dev_err(&device->cdev->dev, "An error occurred in the DASD " "device driver, reason=%s\n", "04"); erp = dasd_3990_erp_action_1(erp); } else if (sense[2] & SNS2_ENV_DATA_PRESENT) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Equipment Check - " "environmental data present"); dasd_3990_handle_env_data(erp, sense); erp = dasd_3990_erp_action_4(erp, sense); } else if (sense[1] & SNS1_PERM_ERR) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Equipment Check - retry exhausted or " "undesirable"); erp = dasd_3990_erp_action_1(erp); } else { /* all other equipment checks - Action 5 */ /* rest is done when retries == 0 */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Equipment check or processing error"); erp = dasd_3990_erp_action_5(erp); } return erp; } /* end dasd_3990_erp_equip_check */ /* * DASD_3990_ERP_DATA_CHECK * * DESCRIPTION * Handles 24 byte 'Data Check' error. * * PARAMETER * erp current erp_head * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_data_check(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->function = dasd_3990_erp_data_check; if (sense[2] & SNS2_CORRECTABLE) { /* correctable data check */ /* issue message that the data has been corrected */ dev_emerg(&device->cdev->dev, "Data recovered during retry with PCI " "fetch mode active\n"); /* not possible to handle this situation in Linux */ panic("No way to inform application about the possibly " "incorrect data"); } else if (sense[2] & SNS2_ENV_DATA_PRESENT) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Uncorrectable data check recovered secondary " "addr of duplex pair"); erp = dasd_3990_erp_action_4(erp, sense); } else if (sense[1] & SNS1_PERM_ERR) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Uncorrectable data check with internal " "retry exhausted"); erp = dasd_3990_erp_action_1(erp); } else { /* all other data checks */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Uncorrectable data check with retry count " "exhausted..."); erp = dasd_3990_erp_action_5(erp); } return erp; } /* end dasd_3990_erp_data_check */ /* * DASD_3990_ERP_OVERRUN * * DESCRIPTION * Handles 24 byte 'Overrun' error. * * PARAMETER * erp current erp_head * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_overrun(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->function = dasd_3990_erp_overrun; DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Overrun - service overrun or overrun" " error requested by channel"); erp = dasd_3990_erp_action_5(erp); return erp; } /* end dasd_3990_erp_overrun */ /* * DASD_3990_ERP_INV_FORMAT * * DESCRIPTION * Handles 24 byte 'Invalid Track Format' error. * * PARAMETER * erp current erp_head * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_inv_format(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->function = dasd_3990_erp_inv_format; if (sense[2] & SNS2_ENV_DATA_PRESENT) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Track format error when destaging or " "staging data"); dasd_3990_handle_env_data(erp, sense); erp = dasd_3990_erp_action_4(erp, sense); } else { /* internal error 06 - The track format is not valid*/ dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", "06"); erp = dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); } return erp; } /* end dasd_3990_erp_inv_format */ /* * DASD_3990_ERP_EOC * * DESCRIPTION * Handles 24 byte 'End-of-Cylinder' error. * * PARAMETER * erp already added default erp * RETURN VALUES * erp pointer to original (failed) cqr. */ static struct dasd_ccw_req * dasd_3990_erp_EOC(struct dasd_ccw_req * default_erp, char *sense) { struct dasd_device *device = default_erp->startdev; dev_err(&device->cdev->dev, "The cylinder data for accessing the DASD is inconsistent\n"); /* implement action 7 - BUG */ return dasd_3990_erp_cleanup(default_erp, DASD_CQR_FAILED); } /* end dasd_3990_erp_EOC */ /* * DASD_3990_ERP_ENV_DATA * * DESCRIPTION * Handles 24 byte 'Environmental-Data Present' error. * * PARAMETER * erp current erp_head * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_env_data(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->function = dasd_3990_erp_env_data; DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Environmental data present"); dasd_3990_handle_env_data(erp, sense); /* don't retry on disabled interface */ if (sense[7] != 0x0F) { erp = dasd_3990_erp_action_4(erp, sense); } else { erp->status = DASD_CQR_FILLED; } return erp; } /* end dasd_3990_erp_env_data */ /* * DASD_3990_ERP_NO_REC * * DESCRIPTION * Handles 24 byte 'No Record Found' error. * * PARAMETER * erp already added default ERP * * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_no_rec(struct dasd_ccw_req * default_erp, char *sense) { struct dasd_device *device = default_erp->startdev; /* * In some cases the 'No Record Found' error might be expected and * log messages shouldn't be written then. * Check if the according suppress bit is set. */ if (!test_bit(DASD_CQR_SUPPRESS_NRF, &default_erp->flags)) dev_err(&device->cdev->dev, "The specified record was not found\n"); return dasd_3990_erp_cleanup(default_erp, DASD_CQR_FAILED); } /* end dasd_3990_erp_no_rec */ /* * DASD_3990_ERP_FILE_PROT * * DESCRIPTION * Handles 24 byte 'File Protected' error. * Note: Seek related recovery is not implemented because * wee don't use the seek command yet. * * PARAMETER * erp current erp_head * RETURN VALUES * erp new erp_head - pointer to new ERP */ static struct dasd_ccw_req * dasd_3990_erp_file_prot(struct dasd_ccw_req * erp) { struct dasd_device *device = erp->startdev; /* * In some cases the 'File Protected' error might be expected and * log messages shouldn't be written then. * Check if the according suppress bit is set. */ if (!test_bit(DASD_CQR_SUPPRESS_FP, &erp->flags)) dev_err(&device->cdev->dev, "Accessing the DASD failed because of a hardware error\n"); return dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); } /* end dasd_3990_erp_file_prot */ /* * DASD_3990_ERP_INSPECT_ALIAS * * DESCRIPTION * Checks if the original request was started on an alias device. * If yes, it modifies the original and the erp request so that * the erp request can be started on a base device. * * PARAMETER * erp pointer to the currently created default ERP * * RETURN VALUES * erp pointer to the modified ERP, or NULL */ static struct dasd_ccw_req *dasd_3990_erp_inspect_alias( struct dasd_ccw_req *erp) { struct dasd_ccw_req *cqr = erp->refers; char *sense; if (cqr->block && (cqr->block->base != cqr->startdev)) { sense = dasd_get_sense(&erp->refers->irb); /* * dynamic pav may have changed base alias mapping */ if (!test_bit(DASD_FLAG_OFFLINE, &cqr->startdev->flags) && sense && (sense[0] == 0x10) && (sense[7] == 0x0F) && (sense[8] == 0x67)) { /* * remove device from alias handling to prevent new * requests from being scheduled on the * wrong alias device */ dasd_alias_remove_device(cqr->startdev); /* schedule worker to reload device */ dasd_reload_device(cqr->startdev); } if (cqr->startdev->features & DASD_FEATURE_ERPLOG) { DBF_DEV_EVENT(DBF_ERR, cqr->startdev, "ERP on alias device for request %p," " recover on base device %s", cqr, dev_name(&cqr->block->base->cdev->dev)); } dasd_eckd_reset_ccw_to_base_io(cqr); erp->startdev = cqr->block->base; erp->function = dasd_3990_erp_inspect_alias; return erp; } else return NULL; } /* * DASD_3990_ERP_INSPECT_24 * * DESCRIPTION * Does a detailed inspection of the 24 byte sense data * and sets up a related error recovery action. * * PARAMETER * sense sense data of the actual error * erp pointer to the currently created default ERP * * RETURN VALUES * erp pointer to the (addtitional) ERP */ static struct dasd_ccw_req * dasd_3990_erp_inspect_24(struct dasd_ccw_req * erp, char *sense) { struct dasd_ccw_req *erp_filled = NULL; /* Check sense for .... */ /* 'Command Reject' */ if ((erp_filled == NULL) && (sense[0] & SNS0_CMD_REJECT)) { erp_filled = dasd_3990_erp_com_rej(erp, sense); } /* 'Intervention Required' */ if ((erp_filled == NULL) && (sense[0] & SNS0_INTERVENTION_REQ)) { erp_filled = dasd_3990_erp_int_req(erp); } /* 'Bus Out Parity Check' */ if ((erp_filled == NULL) && (sense[0] & SNS0_BUS_OUT_CHECK)) { erp_filled = dasd_3990_erp_bus_out(erp); } /* 'Equipment Check' */ if ((erp_filled == NULL) && (sense[0] & SNS0_EQUIPMENT_CHECK)) { erp_filled = dasd_3990_erp_equip_check(erp, sense); } /* 'Data Check' */ if ((erp_filled == NULL) && (sense[0] & SNS0_DATA_CHECK)) { erp_filled = dasd_3990_erp_data_check(erp, sense); } /* 'Overrun' */ if ((erp_filled == NULL) && (sense[0] & SNS0_OVERRUN)) { erp_filled = dasd_3990_erp_overrun(erp, sense); } /* 'Invalid Track Format' */ if ((erp_filled == NULL) && (sense[1] & SNS1_INV_TRACK_FORMAT)) { erp_filled = dasd_3990_erp_inv_format(erp, sense); } /* 'End-of-Cylinder' */ if ((erp_filled == NULL) && (sense[1] & SNS1_EOC)) { erp_filled = dasd_3990_erp_EOC(erp, sense); } /* 'Environmental Data' */ if ((erp_filled == NULL) && (sense[2] & SNS2_ENV_DATA_PRESENT)) { erp_filled = dasd_3990_erp_env_data(erp, sense); } /* 'No Record Found' */ if ((erp_filled == NULL) && (sense[1] & SNS1_NO_REC_FOUND)) { erp_filled = dasd_3990_erp_no_rec(erp, sense); } /* 'File Protected' */ if ((erp_filled == NULL) && (sense[1] & SNS1_FILE_PROTECTED)) { erp_filled = dasd_3990_erp_file_prot(erp); } /* other (unknown) error - do default ERP */ if (erp_filled == NULL) { erp_filled = erp; } return erp_filled; } /* END dasd_3990_erp_inspect_24 */ /* ***************************************************************************** * 32 byte sense ERP functions (only) ***************************************************************************** */ /* * DASD_3990_ERPACTION_10_32 * * DESCRIPTION * Handles 32 byte 'Action 10' of Single Program Action Codes. * Just retry and if retry doesn't work, return with error. * * PARAMETER * erp current erp_head * sense current sense data * RETURN VALUES * erp modified erp_head */ static struct dasd_ccw_req * dasd_3990_erp_action_10_32(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->retries = 256; erp->function = dasd_3990_erp_action_10_32; DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Perform logging requested"); return erp; } /* end dasd_3990_erp_action_10_32 */ /* * DASD_3990_ERP_ACTION_1B_32 * * DESCRIPTION * Handles 32 byte 'Action 1B' of Single Program Action Codes. * A write operation could not be finished because of an unexpected * condition. * The already created 'default erp' is used to get the link to * the erp chain, but it can not be used for this recovery * action because it contains no DE/LO data space. * * PARAMETER * default_erp already added default erp. * sense current sense data * * RETURN VALUES * erp new erp or * default_erp in case of imprecise ending or error */ static struct dasd_ccw_req * dasd_3990_erp_action_1B_32(struct dasd_ccw_req * default_erp, char *sense) { struct dasd_device *device = default_erp->startdev; __u32 cpa = 0; struct dasd_ccw_req *cqr; struct dasd_ccw_req *erp; struct DE_eckd_data *DE_data; struct PFX_eckd_data *PFX_data; char *LO_data; /* LO_eckd_data_t */ struct ccw1 *ccw, *oldccw; DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Write not finished because of unexpected condition"); default_erp->function = dasd_3990_erp_action_1B_32; /* determine the original cqr */ cqr = default_erp; while (cqr->refers != NULL) { cqr = cqr->refers; } if (scsw_is_tm(&cqr->irb.scsw)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "32 bit sense, action 1B is not defined" " in transport mode - just retry"); return default_erp; } /* for imprecise ending just do default erp */ if (sense[1] & 0x01) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Imprecise ending is set - just retry"); return default_erp; } /* determine the address of the CCW to be restarted */ /* Imprecise ending is not set -> addr from IRB-SCSW */ cpa = default_erp->refers->irb.scsw.cmd.cpa; if (cpa == 0) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Unable to determine address of the CCW " "to be restarted"); return dasd_3990_erp_cleanup(default_erp, DASD_CQR_FAILED); } /* Build new ERP request including DE/LO */ erp = dasd_alloc_erp_request(cqr->magic, 2 + 1,/* DE/LO + TIC */ sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data), device); if (IS_ERR(erp)) { /* internal error 01 - Unable to allocate ERP */ dev_err(&device->cdev->dev, "An error occurred in the DASD " "device driver, reason=%s\n", "01"); return dasd_3990_erp_cleanup(default_erp, DASD_CQR_FAILED); } /* use original DE */ DE_data = erp->data; oldccw = cqr->cpaddr; if (oldccw->cmd_code == DASD_ECKD_CCW_PFX) { PFX_data = cqr->data; memcpy(DE_data, &PFX_data->define_extent, sizeof(struct DE_eckd_data)); } else memcpy(DE_data, cqr->data, sizeof(struct DE_eckd_data)); /* create LO */ LO_data = erp->data + sizeof(struct DE_eckd_data); if ((sense[3] == 0x01) && (LO_data[1] & 0x01)) { /* should not */ return dasd_3990_erp_cleanup(default_erp, DASD_CQR_FAILED); } if ((sense[7] & 0x3F) == 0x01) { /* operation code is WRITE DATA -> data area orientation */ LO_data[0] = 0x81; } else if ((sense[7] & 0x3F) == 0x03) { /* operation code is FORMAT WRITE -> index orientation */ LO_data[0] = 0xC3; } else { LO_data[0] = sense[7]; /* operation */ } LO_data[1] = sense[8]; /* auxiliary */ LO_data[2] = sense[9]; LO_data[3] = sense[3]; /* count */ LO_data[4] = sense[29]; /* seek_addr.cyl */ LO_data[5] = sense[30]; /* seek_addr.cyl 2nd byte */ LO_data[7] = sense[31]; /* seek_addr.head 2nd byte */ memcpy(&(LO_data[8]), &(sense[11]), 8); /* create DE ccw */ ccw = erp->cpaddr; memset(ccw, 0, sizeof(struct ccw1)); ccw->cmd_code = DASD_ECKD_CCW_DEFINE_EXTENT; ccw->flags = CCW_FLAG_CC; ccw->count = 16; ccw->cda = (__u32)virt_to_phys(DE_data); /* create LO ccw */ ccw++; memset(ccw, 0, sizeof(struct ccw1)); ccw->cmd_code = DASD_ECKD_CCW_LOCATE_RECORD; ccw->flags = CCW_FLAG_CC; ccw->count = 16; ccw->cda = (__u32)virt_to_phys(LO_data); /* TIC to the failed ccw */ ccw++; ccw->cmd_code = CCW_CMD_TIC; ccw->cda = cpa; /* fill erp related fields */ erp->flags = default_erp->flags; erp->function = dasd_3990_erp_action_1B_32; erp->refers = default_erp->refers; erp->startdev = device; erp->memdev = device; erp->magic = default_erp->magic; erp->expires = default_erp->expires; erp->retries = 256; erp->buildclk = get_tod_clock(); erp->status = DASD_CQR_FILLED; /* remove the default erp */ dasd_free_erp_request(default_erp, device); return erp; } /* end dasd_3990_erp_action_1B_32 */ /* * DASD_3990_UPDATE_1B * * DESCRIPTION * Handles the update to the 32 byte 'Action 1B' of Single Program * Action Codes in case the first action was not successful. * The already created 'previous_erp' is the currently not successful * ERP. * * PARAMETER * previous_erp already created previous erp. * sense current sense data * RETURN VALUES * erp modified erp */ static struct dasd_ccw_req * dasd_3990_update_1B(struct dasd_ccw_req * previous_erp, char *sense) { struct dasd_device *device = previous_erp->startdev; __u32 cpa = 0; struct dasd_ccw_req *cqr; struct dasd_ccw_req *erp; char *LO_data; /* struct LO_eckd_data */ struct ccw1 *ccw; DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Write not finished because of unexpected condition" " - follow on"); /* determine the original cqr */ cqr = previous_erp; while (cqr->refers != NULL) { cqr = cqr->refers; } if (scsw_is_tm(&cqr->irb.scsw)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "32 bit sense, action 1B, update," " in transport mode - just retry"); return previous_erp; } /* for imprecise ending just do default erp */ if (sense[1] & 0x01) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Imprecise ending is set - just retry"); previous_erp->status = DASD_CQR_FILLED; return previous_erp; } /* determine the address of the CCW to be restarted */ /* Imprecise ending is not set -> addr from IRB-SCSW */ cpa = previous_erp->irb.scsw.cmd.cpa; if (cpa == 0) { /* internal error 02 - Unable to determine address of the CCW to be restarted */ dev_err(&device->cdev->dev, "An error occurred in the DASD " "device driver, reason=%s\n", "02"); previous_erp->status = DASD_CQR_FAILED; return previous_erp; } erp = previous_erp; /* update the LO with the new returned sense data */ LO_data = erp->data + sizeof(struct DE_eckd_data); if ((sense[3] == 0x01) && (LO_data[1] & 0x01)) { /* should not happen */ previous_erp->status = DASD_CQR_FAILED; return previous_erp; } if ((sense[7] & 0x3F) == 0x01) { /* operation code is WRITE DATA -> data area orientation */ LO_data[0] = 0x81; } else if ((sense[7] & 0x3F) == 0x03) { /* operation code is FORMAT WRITE -> index orientation */ LO_data[0] = 0xC3; } else { LO_data[0] = sense[7]; /* operation */ } LO_data[1] = sense[8]; /* auxiliary */ LO_data[2] = sense[9]; LO_data[3] = sense[3]; /* count */ LO_data[4] = sense[29]; /* seek_addr.cyl */ LO_data[5] = sense[30]; /* seek_addr.cyl 2nd byte */ LO_data[7] = sense[31]; /* seek_addr.head 2nd byte */ memcpy(&(LO_data[8]), &(sense[11]), 8); /* TIC to the failed ccw */ ccw = erp->cpaddr; /* addr of DE ccw */ ccw++; /* addr of LE ccw */ ccw++; /* addr of TIC ccw */ ccw->cda = cpa; erp->status = DASD_CQR_FILLED; return erp; } /* end dasd_3990_update_1B */ /* * DASD_3990_ERP_COMPOUND_RETRY * * DESCRIPTION * Handles the compound ERP action retry code. * NOTE: At least one retry is done even if zero is specified * by the sense data. This makes enqueueing of the request * easier. * * PARAMETER * sense sense data of the actual error * erp pointer to the currently created ERP * * RETURN VALUES * erp modified ERP pointer * */ static void dasd_3990_erp_compound_retry(struct dasd_ccw_req * erp, char *sense) { switch (sense[25] & 0x03) { case 0x00: /* no not retry */ erp->retries = 1; break; case 0x01: /* retry 2 times */ erp->retries = 2; break; case 0x02: /* retry 10 times */ erp->retries = 10; break; case 0x03: /* retry 256 times */ erp->retries = 256; break; default: BUG(); } erp->function = dasd_3990_erp_compound_retry; } /* end dasd_3990_erp_compound_retry */ /* * DASD_3990_ERP_COMPOUND_PATH * * DESCRIPTION * Handles the compound ERP action for retry on alternate * channel path. * * PARAMETER * sense sense data of the actual error * erp pointer to the currently created ERP * * RETURN VALUES * erp modified ERP pointer * */ static void dasd_3990_erp_compound_path(struct dasd_ccw_req * erp, char *sense) { if (sense[25] & DASD_SENSE_BIT_3) { dasd_3990_erp_alternate_path(erp); if (erp->status == DASD_CQR_FAILED && !test_bit(DASD_CQR_VERIFY_PATH, &erp->flags)) { /* reset the lpm and the status to be able to * try further actions. */ erp->lpm = dasd_path_get_opm(erp->startdev); erp->status = DASD_CQR_NEED_ERP; } } erp->function = dasd_3990_erp_compound_path; } /* end dasd_3990_erp_compound_path */ /* * DASD_3990_ERP_COMPOUND_CODE * * DESCRIPTION * Handles the compound ERP action for retry code. * * PARAMETER * sense sense data of the actual error * erp pointer to the currently created ERP * * RETURN VALUES * erp NEW ERP pointer * */ static struct dasd_ccw_req * dasd_3990_erp_compound_code(struct dasd_ccw_req * erp, char *sense) { if (sense[25] & DASD_SENSE_BIT_2) { switch (sense[28]) { case 0x17: /* issue a Diagnostic Control command with an * Inhibit Write subcommand and controller modifier */ erp = dasd_3990_erp_DCTL(erp, 0x20); break; case 0x25: /* wait for 5 seconds and retry again */ erp->retries = 1; dasd_3990_erp_block_queue (erp, 5*HZ); break; default: /* should not happen - continue */ break; } } erp->function = dasd_3990_erp_compound_code; return erp; } /* end dasd_3990_erp_compound_code */ /* * DASD_3990_ERP_COMPOUND_CONFIG * * DESCRIPTION * Handles the compound ERP action for configuration * dependent error. * Note: duplex handling is not implemented (yet). * * PARAMETER * sense sense data of the actual error * erp pointer to the currently created ERP * * RETURN VALUES * erp modified ERP pointer * */ static void dasd_3990_erp_compound_config(struct dasd_ccw_req * erp, char *sense) { if ((sense[25] & DASD_SENSE_BIT_1) && (sense[26] & DASD_SENSE_BIT_2)) { /* set to suspended duplex state then restart internal error 05 - Set device to suspended duplex state should be done */ struct dasd_device *device = erp->startdev; dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", "05"); } erp->function = dasd_3990_erp_compound_config; } /* end dasd_3990_erp_compound_config */ /* * DASD_3990_ERP_COMPOUND * * DESCRIPTION * Does the further compound program action if * compound retry was not successful. * * PARAMETER * sense sense data of the actual error * erp pointer to the current (failed) ERP * * RETURN VALUES * erp (additional) ERP pointer * */ static struct dasd_ccw_req * dasd_3990_erp_compound(struct dasd_ccw_req * erp, char *sense) { if ((erp->function == dasd_3990_erp_compound_retry) && (erp->status == DASD_CQR_NEED_ERP)) { dasd_3990_erp_compound_path(erp, sense); } if ((erp->function == dasd_3990_erp_compound_path) && (erp->status == DASD_CQR_NEED_ERP)) { erp = dasd_3990_erp_compound_code(erp, sense); } if ((erp->function == dasd_3990_erp_compound_code) && (erp->status == DASD_CQR_NEED_ERP)) { dasd_3990_erp_compound_config(erp, sense); } /* if no compound action ERP specified, the request failed */ if (erp->status == DASD_CQR_NEED_ERP) erp->status = DASD_CQR_FAILED; return erp; } /* end dasd_3990_erp_compound */ /* *DASD_3990_ERP_HANDLE_SIM * *DESCRIPTION * inspects the SIM SENSE data and starts an appropriate action * * PARAMETER * sense sense data of the actual error * * RETURN VALUES * none */ void dasd_3990_erp_handle_sim(struct dasd_device *device, char *sense) { /* print message according to log or message to operator mode */ if ((sense[24] & DASD_SIM_MSG_TO_OP) || (sense[1] & 0x10)) { /* print SIM SRC from RefCode */ dev_err(&device->cdev->dev, "SIM - SRC: " "%02x%02x%02x%02x\n", sense[22], sense[23], sense[11], sense[12]); } else if (sense[24] & DASD_SIM_LOG) { /* print SIM SRC Refcode */ dev_warn(&device->cdev->dev, "log SIM - SRC: " "%02x%02x%02x%02x\n", sense[22], sense[23], sense[11], sense[12]); } } /* * DASD_3990_ERP_INSPECT_32 * * DESCRIPTION * Does a detailed inspection of the 32 byte sense data * and sets up a related error recovery action. * * PARAMETER * sense sense data of the actual error * erp pointer to the currently created default ERP * * RETURN VALUES * erp_filled pointer to the ERP * */ static struct dasd_ccw_req * dasd_3990_erp_inspect_32(struct dasd_ccw_req * erp, char *sense) { struct dasd_device *device = erp->startdev; erp->function = dasd_3990_erp_inspect_32; /* check for SIM sense data */ if ((sense[6] & DASD_SIM_SENSE) == DASD_SIM_SENSE) dasd_3990_erp_handle_sim(device, sense); if (sense[25] & DASD_SENSE_BIT_0) { /* compound program action codes (byte25 bit 0 == '1') */ dasd_3990_erp_compound_retry(erp, sense); } else { /* single program action codes (byte25 bit 0 == '0') */ switch (sense[25]) { case 0x00: /* success - use default ERP for retries */ DBF_DEV_EVENT(DBF_DEBUG, device, "%s", "ERP called for successful request" " - just retry"); break; case 0x01: /* fatal error */ dev_err(&device->cdev->dev, "ERP failed for the DASD\n"); erp = dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); break; case 0x02: /* intervention required */ case 0x03: /* intervention required during dual copy */ erp = dasd_3990_erp_int_req(erp); break; case 0x0F: /* length mismatch during update write command internal error 08 - update write command error*/ dev_err(&device->cdev->dev, "An error occurred in the " "DASD device driver, reason=%s\n", "08"); erp = dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); break; case 0x10: /* logging required for other channel program */ erp = dasd_3990_erp_action_10_32(erp, sense); break; case 0x15: /* next track outside defined extend internal error 07 - The next track is not within the defined storage extent */ dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", "07"); erp = dasd_3990_erp_cleanup(erp, DASD_CQR_FAILED); break; case 0x1B: /* unexpected condition during write */ erp = dasd_3990_erp_action_1B_32(erp, sense); break; case 0x1C: /* invalid data */ dev_emerg(&device->cdev->dev, "Data recovered during retry with PCI " "fetch mode active\n"); /* not possible to handle this situation in Linux */ panic ("Invalid data - No way to inform application " "about the possibly incorrect data"); break; case 0x1D: /* state-change pending */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "A State change pending condition exists " "for the subsystem or device"); erp = dasd_3990_erp_action_4(erp, sense); break; case 0x1E: /* busy */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Busy condition exists " "for the subsystem or device"); erp = dasd_3990_erp_action_4(erp, sense); break; default: /* all others errors - default erp */ break; } } return erp; } /* end dasd_3990_erp_inspect_32 */ static void dasd_3990_erp_disable_path(struct dasd_device *device, __u8 lpum) { int pos = pathmask_to_pos(lpum); if (!(device->features & DASD_FEATURE_PATH_AUTODISABLE)) { dev_err(&device->cdev->dev, "Path %x.%02x (pathmask %02x) is operational despite excessive IFCCs\n", device->path[pos].cssid, device->path[pos].chpid, lpum); goto out; } /* no remaining path, cannot disable */ if (!(dasd_path_get_opm(device) & ~lpum)) { dev_err(&device->cdev->dev, "Last path %x.%02x (pathmask %02x) is operational despite excessive IFCCs\n", device->path[pos].cssid, device->path[pos].chpid, lpum); goto out; } dev_err(&device->cdev->dev, "Path %x.%02x (pathmask %02x) is disabled - IFCC threshold exceeded\n", device->path[pos].cssid, device->path[pos].chpid, lpum); dasd_path_remove_opm(device, lpum); dasd_path_add_ifccpm(device, lpum); out: device->path[pos].errorclk = 0; atomic_set(&device->path[pos].error_count, 0); } static void dasd_3990_erp_account_error(struct dasd_ccw_req *erp) { struct dasd_device *device = erp->startdev; __u8 lpum = erp->refers->irb.esw.esw1.lpum; int pos = pathmask_to_pos(lpum); unsigned long clk; if (!device->path_thrhld) return; clk = get_tod_clock(); /* * check if the last error is longer ago than the timeout, * if so reset error state */ if ((tod_to_ns(clk - device->path[pos].errorclk) / NSEC_PER_SEC) >= device->path_interval) { atomic_set(&device->path[pos].error_count, 0); device->path[pos].errorclk = 0; } atomic_inc(&device->path[pos].error_count); device->path[pos].errorclk = clk; /* threshold exceeded disable path if possible */ if (atomic_read(&device->path[pos].error_count) >= device->path_thrhld) dasd_3990_erp_disable_path(device, lpum); } /* ***************************************************************************** * main ERP control functions (24 and 32 byte sense) ***************************************************************************** */ /* * DASD_3990_ERP_CONTROL_CHECK * * DESCRIPTION * Does a generic inspection if a control check occurred and sets up * the related error recovery procedure * * PARAMETER * erp pointer to the currently created default ERP * * RETURN VALUES * erp_filled pointer to the erp */ static struct dasd_ccw_req * dasd_3990_erp_control_check(struct dasd_ccw_req *erp) { struct dasd_device *device = erp->startdev; if (scsw_cstat(&erp->refers->irb.scsw) & (SCHN_STAT_INTF_CTRL_CHK | SCHN_STAT_CHN_CTRL_CHK)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "channel or interface control check"); dasd_3990_erp_account_error(erp); erp = dasd_3990_erp_action_4(erp, NULL); } return erp; } /* * DASD_3990_ERP_INSPECT * * DESCRIPTION * Does a detailed inspection for sense data by calling either * the 24-byte or the 32-byte inspection routine. * * PARAMETER * erp pointer to the currently created default ERP * RETURN VALUES * erp_new contens was possibly modified */ static struct dasd_ccw_req * dasd_3990_erp_inspect(struct dasd_ccw_req *erp) { struct dasd_ccw_req *erp_new = NULL; char *sense; /* if this problem occurred on an alias retry on base */ erp_new = dasd_3990_erp_inspect_alias(erp); if (erp_new) return erp_new; /* sense data are located in the refers record of the * already set up new ERP ! * check if concurrent sens is available */ sense = dasd_get_sense(&erp->refers->irb); if (!sense) erp_new = dasd_3990_erp_control_check(erp); /* distinguish between 24 and 32 byte sense data */ else if (sense[27] & DASD_SENSE_BIT_0) { /* inspect the 24 byte sense data */ erp_new = dasd_3990_erp_inspect_24(erp, sense); } else { /* inspect the 32 byte sense data */ erp_new = dasd_3990_erp_inspect_32(erp, sense); } /* end distinguish between 24 and 32 byte sense data */ return erp_new; } /* * DASD_3990_ERP_ADD_ERP * * DESCRIPTION * This function adds an additional request block (ERP) to the head of * the given cqr (or erp). * For a command mode cqr the erp is initialized as an default erp * (retry TIC). * For transport mode we make a copy of the original TCW (points to * the original TCCB, TIDALs, etc.) but give it a fresh * TSB so the original sense data will not be changed. * * PARAMETER * cqr head of the current ERP-chain (or single cqr if * first error) * RETURN VALUES * erp pointer to new ERP-chain head */ static struct dasd_ccw_req *dasd_3990_erp_add_erp(struct dasd_ccw_req *cqr) { struct dasd_device *device = cqr->startdev; struct ccw1 *ccw; struct dasd_ccw_req *erp; int cplength, datasize; struct tcw *tcw; struct tsb *tsb; if (cqr->cpmode == 1) { cplength = 0; /* TCW needs to be 64 byte aligned, so leave enough room */ datasize = 64 + sizeof(struct tcw) + sizeof(struct tsb); } else { cplength = 2; datasize = 0; } /* allocate additional request block */ erp = dasd_alloc_erp_request(cqr->magic, cplength, datasize, device); if (IS_ERR(erp)) { if (cqr->retries <= 0) { DBF_DEV_EVENT(DBF_ERR, device, "%s", "Unable to allocate ERP request"); cqr->status = DASD_CQR_FAILED; cqr->stopclk = get_tod_clock(); } else { DBF_DEV_EVENT(DBF_ERR, device, "Unable to allocate ERP request " "(%i retries left)", cqr->retries); dasd_block_set_timer(device->block, (HZ << 3)); } return erp; } ccw = cqr->cpaddr; if (cqr->cpmode == 1) { /* make a shallow copy of the original tcw but set new tsb */ erp->cpmode = 1; erp->cpaddr = PTR_ALIGN(erp->data, 64); tcw = erp->cpaddr; tsb = (struct tsb *) &tcw[1]; *tcw = *((struct tcw *)cqr->cpaddr); tcw->tsb = virt_to_phys(tsb); } else if (ccw->cmd_code == DASD_ECKD_CCW_PSF) { /* PSF cannot be chained from NOOP/TIC */ erp->cpaddr = cqr->cpaddr; } else { /* initialize request with default TIC to current ERP/CQR */ ccw = erp->cpaddr; ccw->cmd_code = CCW_CMD_NOOP; ccw->flags = CCW_FLAG_CC; ccw++; ccw->cmd_code = CCW_CMD_TIC; ccw->cda = (__u32)virt_to_phys(cqr->cpaddr); } erp->flags = cqr->flags; erp->function = dasd_3990_erp_add_erp; erp->refers = cqr; erp->startdev = device; erp->memdev = device; erp->block = cqr->block; erp->magic = cqr->magic; erp->expires = cqr->expires; erp->retries = device->default_retries; erp->buildclk = get_tod_clock(); erp->status = DASD_CQR_FILLED; return erp; } /* * DASD_3990_ERP_ADDITIONAL_ERP * * DESCRIPTION * An additional ERP is needed to handle the current error. * Add ERP to the head of the ERP-chain containing the ERP processing * determined based on the sense data. * * PARAMETER * cqr head of the current ERP-chain (or single cqr if * first error) * * RETURN VALUES * erp pointer to new ERP-chain head */ static struct dasd_ccw_req * dasd_3990_erp_additional_erp(struct dasd_ccw_req * cqr) { struct dasd_ccw_req *erp = NULL; /* add erp and initialize with default TIC */ erp = dasd_3990_erp_add_erp(cqr); if (IS_ERR(erp)) return erp; /* inspect sense, determine specific ERP if possible */ if (erp != cqr) { erp = dasd_3990_erp_inspect(erp); } return erp; } /* end dasd_3990_erp_additional_erp */ /* * DASD_3990_ERP_ERROR_MATCH * * DESCRIPTION * Check if the device status of the given cqr is the same. * This means that the failed CCW and the relevant sense data * must match. * I don't distinguish between 24 and 32 byte sense because in case of * 24 byte sense byte 25 and 27 is set as well. * * PARAMETER * cqr1 first cqr, which will be compared with the * cqr2 second cqr. * * RETURN VALUES * match 'boolean' for match found * returns 1 if match found, otherwise 0. */ static int dasd_3990_erp_error_match(struct dasd_ccw_req *cqr1, struct dasd_ccw_req *cqr2) { char *sense1, *sense2; if (cqr1->startdev != cqr2->startdev) return 0; sense1 = dasd_get_sense(&cqr1->irb); sense2 = dasd_get_sense(&cqr2->irb); /* one request has sense data, the other not -> no match, return 0 */ if (!sense1 != !sense2) return 0; /* no sense data in both cases -> check cstat for IFCC */ if (!sense1 && !sense2) { if ((scsw_cstat(&cqr1->irb.scsw) & (SCHN_STAT_INTF_CTRL_CHK | SCHN_STAT_CHN_CTRL_CHK)) == (scsw_cstat(&cqr2->irb.scsw) & (SCHN_STAT_INTF_CTRL_CHK | SCHN_STAT_CHN_CTRL_CHK))) return 1; /* match with ifcc*/ } /* check sense data; byte 0-2,25,27 */ if (!(sense1 && sense2 && (memcmp(sense1, sense2, 3) == 0) && (sense1[27] == sense2[27]) && (sense1[25] == sense2[25]))) { return 0; /* sense doesn't match */ } return 1; /* match */ } /* end dasd_3990_erp_error_match */ /* * DASD_3990_ERP_IN_ERP * * DESCRIPTION * check if the current error already happened before. * quick exit if current cqr is not an ERP (cqr->refers=NULL) * * PARAMETER * cqr failed cqr (either original cqr or already an erp) * * RETURN VALUES * erp erp-pointer to the already defined error * recovery procedure OR * NULL if a 'new' error occurred. */ static struct dasd_ccw_req * dasd_3990_erp_in_erp(struct dasd_ccw_req *cqr) { struct dasd_ccw_req *erp_head = cqr, /* save erp chain head */ *erp_match = NULL; /* save erp chain head */ int match = 0; /* 'boolean' for matching error found */ if (cqr->refers == NULL) { /* return if not in erp */ return NULL; } /* check the erp/cqr chain for current error */ do { match = dasd_3990_erp_error_match(erp_head, cqr->refers); erp_match = cqr; /* save possible matching erp */ cqr = cqr->refers; /* check next erp/cqr in queue */ } while ((cqr->refers != NULL) && (!match)); if (!match) { return NULL; /* no match was found */ } return erp_match; /* return address of matching erp */ } /* END dasd_3990_erp_in_erp */ /* * DASD_3990_ERP_FURTHER_ERP (24 & 32 byte sense) * * DESCRIPTION * No retry is left for the current ERP. Check what has to be done * with the ERP. * - do further defined ERP action or * - wait for interrupt or * - exit with permanent error * * PARAMETER * erp ERP which is in progress with no retry left * * RETURN VALUES * erp modified/additional ERP */ static struct dasd_ccw_req * dasd_3990_erp_further_erp(struct dasd_ccw_req *erp) { struct dasd_device *device = erp->startdev; char *sense = dasd_get_sense(&erp->irb); /* check for 24 byte sense ERP */ if ((erp->function == dasd_3990_erp_bus_out) || (erp->function == dasd_3990_erp_action_1) || (erp->function == dasd_3990_erp_action_4)) { erp = dasd_3990_erp_action_1(erp); } else if (erp->function == dasd_3990_erp_action_1_sec) { erp = dasd_3990_erp_action_1_sec(erp); } else if (erp->function == dasd_3990_erp_action_5) { /* retries have not been successful */ /* prepare erp for retry on different channel path */ erp = dasd_3990_erp_action_1(erp); if (sense && !(sense[2] & DASD_SENSE_BIT_0)) { /* issue a Diagnostic Control command with an * Inhibit Write subcommand */ switch (sense[25]) { case 0x17: case 0x57:{ /* controller */ erp = dasd_3990_erp_DCTL(erp, 0x20); break; } case 0x18: case 0x58:{ /* channel path */ erp = dasd_3990_erp_DCTL(erp, 0x40); break; } case 0x19: case 0x59:{ /* storage director */ erp = dasd_3990_erp_DCTL(erp, 0x80); break; } default: DBF_DEV_EVENT(DBF_WARNING, device, "invalid subcommand modifier 0x%x " "for Diagnostic Control Command", sense[25]); } } /* check for 32 byte sense ERP */ } else if (sense && ((erp->function == dasd_3990_erp_compound_retry) || (erp->function == dasd_3990_erp_compound_path) || (erp->function == dasd_3990_erp_compound_code) || (erp->function == dasd_3990_erp_compound_config))) { erp = dasd_3990_erp_compound(erp, sense); } else { /* * No retry left and no additional special handling * necessary */ dev_err(&device->cdev->dev, "ERP %p has run out of retries and failed\n", erp); erp->status = DASD_CQR_FAILED; } return erp; } /* end dasd_3990_erp_further_erp */ /* * DASD_3990_ERP_HANDLE_MATCH_ERP * * DESCRIPTION * An error occurred again and an ERP has been detected which is already * used to handle this error (e.g. retries). * All prior ERP's are asumed to be successful and therefore removed * from queue. * If retry counter of matching erp is already 0, it is checked if further * action is needed (besides retry) or if the ERP has failed. * * PARAMETER * erp_head first ERP in ERP-chain * erp ERP that handles the actual error. * (matching erp) * * RETURN VALUES * erp modified/additional ERP */ static struct dasd_ccw_req * dasd_3990_erp_handle_match_erp(struct dasd_ccw_req *erp_head, struct dasd_ccw_req *erp) { struct dasd_device *device = erp_head->startdev; struct dasd_ccw_req *erp_done = erp_head; /* finished req */ struct dasd_ccw_req *erp_free = NULL; /* req to be freed */ /* loop over successful ERPs and remove them from chanq */ while (erp_done != erp) { if (erp_done == NULL) /* end of chain reached */ panic(PRINTK_HEADER "Programming error in ERP! The " "original request was lost\n"); /* remove the request from the device queue */ list_del(&erp_done->blocklist); erp_free = erp_done; erp_done = erp_done->refers; /* free the finished erp request */ dasd_free_erp_request(erp_free, erp_free->memdev); } /* end while */ if (erp->retries > 0) { char *sense = dasd_get_sense(&erp->refers->irb); /* check for special retries */ if (sense && erp->function == dasd_3990_erp_action_4) { erp = dasd_3990_erp_action_4(erp, sense); } else if (sense && erp->function == dasd_3990_erp_action_1B_32) { erp = dasd_3990_update_1B(erp, sense); } else if (sense && erp->function == dasd_3990_erp_int_req) { erp = dasd_3990_erp_int_req(erp); } else { /* simple retry */ DBF_DEV_EVENT(DBF_DEBUG, device, "%i retries left for erp %p", erp->retries, erp); /* handle the request again... */ erp->status = DASD_CQR_FILLED; } } else { /* no retry left - check for further necessary action */ /* if no further actions, handle rest as permanent error */ erp = dasd_3990_erp_further_erp(erp); } return erp; } /* end dasd_3990_erp_handle_match_erp */ /* * DASD_3990_ERP_ACTION * * DESCRIPTION * control routine for 3990 erp actions. * Has to be called with the queue lock (namely the s390_irq_lock) acquired. * * PARAMETER * cqr failed cqr (either original cqr or already an erp) * * RETURN VALUES * erp erp-pointer to the head of the ERP action chain. * This means: * - either a ptr to an additional ERP cqr or * - the original given cqr (which's status might * be modified) */ struct dasd_ccw_req * dasd_3990_erp_action(struct dasd_ccw_req * cqr) { struct dasd_ccw_req *erp = NULL; struct dasd_device *device = cqr->startdev; struct dasd_ccw_req *temp_erp = NULL; if (device->features & DASD_FEATURE_ERPLOG) { /* print current erp_chain */ dev_err(&device->cdev->dev, "ERP chain at BEGINNING of ERP-ACTION\n"); for (temp_erp = cqr; temp_erp != NULL; temp_erp = temp_erp->refers) { dev_err(&device->cdev->dev, "ERP %p (%02x) refers to %p\n", temp_erp, temp_erp->status, temp_erp->refers); } } /* double-check if current erp/cqr was successful */ if ((scsw_cstat(&cqr->irb.scsw) == 0x00) && (scsw_dstat(&cqr->irb.scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END))) { DBF_DEV_EVENT(DBF_DEBUG, device, "ERP called for successful request %p" " - NO ERP necessary", cqr); cqr->status = DASD_CQR_DONE; return cqr; } /* check if error happened before */ erp = dasd_3990_erp_in_erp(cqr); if (erp == NULL) { /* no matching erp found - set up erp */ erp = dasd_3990_erp_additional_erp(cqr); if (IS_ERR(erp)) return erp; } else { /* matching erp found - set all leading erp's to DONE */ erp = dasd_3990_erp_handle_match_erp(cqr, erp); } /* * For path verification work we need to stick with the path that was * originally chosen so that the per path configuration data is * assigned correctly. */ if (test_bit(DASD_CQR_VERIFY_PATH, &erp->flags) && cqr->lpm) { erp->lpm = cqr->lpm; } if (device->features & DASD_FEATURE_ERPLOG) { /* print current erp_chain */ dev_err(&device->cdev->dev, "ERP chain at END of ERP-ACTION\n"); for (temp_erp = erp; temp_erp != NULL; temp_erp = temp_erp->refers) { dev_err(&device->cdev->dev, "ERP %p (%02x) refers to %p\n", temp_erp, temp_erp->status, temp_erp->refers); } } /* enqueue ERP request if it's a new one */ if (list_empty(&erp->blocklist)) { cqr->status = DASD_CQR_IN_ERP; /* add erp request before the cqr */ list_add_tail(&erp->blocklist, &cqr->blocklist); } return erp; } /* end dasd_3990_erp_action */
linux-master
drivers/s390/block/dasd_3990_erp.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2009 */ #define KMSG_COMPONENT "dasd-fba" #include <linux/stddef.h> #include <linux/kernel.h> #include <asm/debug.h> #include <linux/slab.h> #include <linux/hdreg.h> /* HDIO_GETGEO */ #include <linux/bio.h> #include <linux/module.h> #include <linux/init.h> #include <linux/io.h> #include <asm/idals.h> #include <asm/ebcdic.h> #include <asm/ccwdev.h> #include "dasd_int.h" #include "dasd_fba.h" #ifdef PRINTK_HEADER #undef PRINTK_HEADER #endif /* PRINTK_HEADER */ #define PRINTK_HEADER "dasd(fba):" #define FBA_DEFAULT_RETRIES 32 #define DASD_FBA_CCW_WRITE 0x41 #define DASD_FBA_CCW_READ 0x42 #define DASD_FBA_CCW_LOCATE 0x43 #define DASD_FBA_CCW_DEFINE_EXTENT 0x63 MODULE_LICENSE("GPL"); static struct dasd_discipline dasd_fba_discipline; static void *dasd_fba_zero_page; struct dasd_fba_private { struct dasd_fba_characteristics rdc_data; }; static struct ccw_device_id dasd_fba_ids[] = { { CCW_DEVICE_DEVTYPE (0x6310, 0, 0x9336, 0), .driver_info = 0x1}, { CCW_DEVICE_DEVTYPE (0x3880, 0, 0x3370, 0), .driver_info = 0x2}, { /* end of list */ }, }; MODULE_DEVICE_TABLE(ccw, dasd_fba_ids); static int dasd_fba_set_online(struct ccw_device *cdev) { return dasd_generic_set_online(cdev, &dasd_fba_discipline); } static struct ccw_driver dasd_fba_driver = { .driver = { .name = "dasd-fba", .owner = THIS_MODULE, .dev_groups = dasd_dev_groups, }, .ids = dasd_fba_ids, .probe = dasd_generic_probe, .remove = dasd_generic_remove, .set_offline = dasd_generic_set_offline, .set_online = dasd_fba_set_online, .notify = dasd_generic_notify, .path_event = dasd_generic_path_event, .int_class = IRQIO_DAS, }; static void define_extent(struct ccw1 * ccw, struct DE_fba_data *data, int rw, int blksize, int beg, int nr) { ccw->cmd_code = DASD_FBA_CCW_DEFINE_EXTENT; ccw->flags = 0; ccw->count = 16; ccw->cda = (__u32)virt_to_phys(data); memset(data, 0, sizeof (struct DE_fba_data)); if (rw == WRITE) (data->mask).perm = 0x0; else if (rw == READ) (data->mask).perm = 0x1; else data->mask.perm = 0x2; data->blk_size = blksize; data->ext_loc = beg; data->ext_end = nr - 1; } static void locate_record(struct ccw1 * ccw, struct LO_fba_data *data, int rw, int block_nr, int block_ct) { ccw->cmd_code = DASD_FBA_CCW_LOCATE; ccw->flags = 0; ccw->count = 8; ccw->cda = (__u32)virt_to_phys(data); memset(data, 0, sizeof (struct LO_fba_data)); if (rw == WRITE) data->operation.cmd = 0x5; else if (rw == READ) data->operation.cmd = 0x6; else data->operation.cmd = 0x8; data->blk_nr = block_nr; data->blk_ct = block_ct; } static int dasd_fba_check_characteristics(struct dasd_device *device) { struct dasd_fba_private *private = device->private; struct ccw_device *cdev = device->cdev; struct dasd_block *block; int readonly, rc; if (!private) { private = kzalloc(sizeof(*private), GFP_KERNEL | GFP_DMA); if (!private) { dev_warn(&device->cdev->dev, "Allocating memory for private DASD " "data failed\n"); return -ENOMEM; } device->private = private; } else { memset(private, 0, sizeof(*private)); } block = dasd_alloc_block(); if (IS_ERR(block)) { DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s", "could not allocate " "dasd block structure"); device->private = NULL; kfree(private); return PTR_ERR(block); } device->block = block; block->base = device; /* Read Device Characteristics */ rc = dasd_generic_read_dev_chars(device, DASD_FBA_MAGIC, &private->rdc_data, 32); if (rc) { DBF_EVENT_DEVID(DBF_WARNING, cdev, "Read device " "characteristics returned error %d", rc); device->block = NULL; dasd_free_block(block); device->private = NULL; kfree(private); return rc; } device->default_expires = DASD_EXPIRES; device->default_retries = FBA_DEFAULT_RETRIES; dasd_path_set_opm(device, LPM_ANYPATH); readonly = dasd_device_is_ro(device); if (readonly) set_bit(DASD_FLAG_DEVICE_RO, &device->flags); /* FBA supports discard, set the according feature bit */ dasd_set_feature(cdev, DASD_FEATURE_DISCARD, 1); dev_info(&device->cdev->dev, "New FBA DASD %04X/%02X (CU %04X/%02X) with %d MB " "and %d B/blk%s\n", cdev->id.dev_type, cdev->id.dev_model, cdev->id.cu_type, cdev->id.cu_model, ((private->rdc_data.blk_bdsa * (private->rdc_data.blk_size >> 9)) >> 11), private->rdc_data.blk_size, readonly ? ", read-only device" : ""); return 0; } static int dasd_fba_do_analysis(struct dasd_block *block) { struct dasd_fba_private *private = block->base->private; int sb, rc; rc = dasd_check_blocksize(private->rdc_data.blk_size); if (rc) { DBF_DEV_EVENT(DBF_WARNING, block->base, "unknown blocksize %d", private->rdc_data.blk_size); return rc; } block->blocks = private->rdc_data.blk_bdsa; block->bp_block = private->rdc_data.blk_size; block->s2b_shift = 0; /* bits to shift 512 to get a block */ for (sb = 512; sb < private->rdc_data.blk_size; sb = sb << 1) block->s2b_shift++; return 0; } static int dasd_fba_fill_geometry(struct dasd_block *block, struct hd_geometry *geo) { if (dasd_check_blocksize(block->bp_block) != 0) return -EINVAL; geo->cylinders = (block->blocks << block->s2b_shift) >> 10; geo->heads = 16; geo->sectors = 128 >> block->s2b_shift; return 0; } static dasd_erp_fn_t dasd_fba_erp_action(struct dasd_ccw_req * cqr) { return dasd_default_erp_action; } static dasd_erp_fn_t dasd_fba_erp_postaction(struct dasd_ccw_req * cqr) { if (cqr->function == dasd_default_erp_action) return dasd_default_erp_postaction; DBF_DEV_EVENT(DBF_WARNING, cqr->startdev, "unknown ERP action %p", cqr->function); return NULL; } static void dasd_fba_check_for_device_change(struct dasd_device *device, struct dasd_ccw_req *cqr, struct irb *irb) { char mask; /* first of all check for state change pending interrupt */ mask = DEV_STAT_ATTENTION | DEV_STAT_DEV_END | DEV_STAT_UNIT_EXCEP; if ((irb->scsw.cmd.dstat & mask) == mask) dasd_generic_handle_state_change(device); }; /* * Builds a CCW with no data payload */ static void ccw_write_no_data(struct ccw1 *ccw) { ccw->cmd_code = DASD_FBA_CCW_WRITE; ccw->flags |= CCW_FLAG_SLI; ccw->count = 0; } /* * Builds a CCW that writes only zeroes. */ static void ccw_write_zero(struct ccw1 *ccw, int count) { ccw->cmd_code = DASD_FBA_CCW_WRITE; ccw->flags |= CCW_FLAG_SLI; ccw->count = count; ccw->cda = (__u32)virt_to_phys(dasd_fba_zero_page); } /* * Helper function to count the amount of necessary CCWs within a given range * with 4k alignment and command chaining in mind. */ static int count_ccws(sector_t first_rec, sector_t last_rec, unsigned int blocks_per_page) { sector_t wz_stop = 0, d_stop = 0; int cur_pos = 0; int count = 0; if (first_rec % blocks_per_page != 0) { wz_stop = first_rec + blocks_per_page - (first_rec % blocks_per_page) - 1; if (wz_stop > last_rec) wz_stop = last_rec; cur_pos = wz_stop - first_rec + 1; count++; } if (last_rec - (first_rec + cur_pos) + 1 >= blocks_per_page) { if ((last_rec - blocks_per_page + 1) % blocks_per_page != 0) d_stop = last_rec - ((last_rec - blocks_per_page + 1) % blocks_per_page); else d_stop = last_rec; cur_pos += d_stop - (first_rec + cur_pos) + 1; count++; } if (cur_pos == 0 || first_rec + cur_pos - 1 < last_rec) count++; return count; } /* * This function builds a CCW request for block layer discard requests. * Each page in the z/VM hypervisor that represents certain records of an FBA * device will be padded with zeros. This is a special behaviour of the WRITE * command which is triggered when no data payload is added to the CCW. * * Note: Due to issues in some z/VM versions, we can't fully utilise this * special behaviour. We have to keep a 4k (or 8 block) alignment in mind to * work around those issues and write actual zeroes to the unaligned parts in * the request. This workaround might be removed in the future. */ static struct dasd_ccw_req *dasd_fba_build_cp_discard( struct dasd_device *memdev, struct dasd_block *block, struct request *req) { struct LO_fba_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; sector_t wz_stop = 0, d_stop = 0; sector_t first_rec, last_rec; unsigned int blksize = block->bp_block; unsigned int blocks_per_page; int wz_count = 0; int d_count = 0; int cur_pos = 0; /* Current position within the extent */ int count = 0; int cplength; int datasize; int nr_ccws; first_rec = blk_rq_pos(req) >> block->s2b_shift; last_rec = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; count = last_rec - first_rec + 1; blocks_per_page = BLOCKS_PER_PAGE(blksize); nr_ccws = count_ccws(first_rec, last_rec, blocks_per_page); /* define extent + nr_ccws * locate record + nr_ccws * single CCW */ cplength = 1 + 2 * nr_ccws; datasize = sizeof(struct DE_fba_data) + nr_ccws * (sizeof(struct LO_fba_data) + sizeof(struct ccw1)); cqr = dasd_smalloc_request(DASD_FBA_MAGIC, cplength, datasize, memdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; define_extent(ccw++, cqr->data, WRITE, blksize, first_rec, count); LO_data = cqr->data + sizeof(struct DE_fba_data); /* First part is not aligned. Calculate range to write zeroes. */ if (first_rec % blocks_per_page != 0) { wz_stop = first_rec + blocks_per_page - (first_rec % blocks_per_page) - 1; if (wz_stop > last_rec) wz_stop = last_rec; wz_count = wz_stop - first_rec + 1; ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, WRITE, cur_pos, wz_count); ccw[-1].flags |= CCW_FLAG_CC; ccw_write_zero(ccw++, wz_count * blksize); cur_pos = wz_count; } /* We can do proper discard when we've got at least blocks_per_page blocks. */ if (last_rec - (first_rec + cur_pos) + 1 >= blocks_per_page) { /* is last record at page boundary? */ if ((last_rec - blocks_per_page + 1) % blocks_per_page != 0) d_stop = last_rec - ((last_rec - blocks_per_page + 1) % blocks_per_page); else d_stop = last_rec; d_count = d_stop - (first_rec + cur_pos) + 1; ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, WRITE, cur_pos, d_count); ccw[-1].flags |= CCW_FLAG_CC; ccw_write_no_data(ccw++); cur_pos += d_count; } /* We might still have some bits left which need to be zeroed. */ if (cur_pos == 0 || first_rec + cur_pos - 1 < last_rec) { if (d_stop != 0) wz_count = last_rec - d_stop; else if (wz_stop != 0) wz_count = last_rec - wz_stop; else wz_count = count; ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, WRITE, cur_pos, wz_count); ccw[-1].flags |= CCW_FLAG_CC; ccw_write_zero(ccw++, wz_count * blksize); } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = memdev; cqr->memdev = memdev; cqr->block = block; cqr->expires = memdev->default_expires * HZ; /* default 5 minutes */ cqr->retries = memdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static struct dasd_ccw_req *dasd_fba_build_cp_regular( struct dasd_device *memdev, struct dasd_block *block, struct request *req) { struct dasd_fba_private *private = block->base->private; unsigned long *idaws; struct LO_fba_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst; int count, cidaw, cplength, datasize; sector_t recid, first_rec, last_rec; unsigned int blksize, off; unsigned char cmd; if (rq_data_dir(req) == READ) { cmd = DASD_FBA_CCW_READ; } else if (rq_data_dir(req) == WRITE) { cmd = DASD_FBA_CCW_WRITE; } else return ERR_PTR(-EINVAL); blksize = block->bp_block; /* Calculate record id of first and last block. */ first_rec = blk_rq_pos(req) >> block->s2b_shift; last_rec = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; /* Check struct bio and count the number of blocks for the request. */ count = 0; cidaw = 0; rq_for_each_segment(bv, req, iter) { if (bv.bv_len & (blksize - 1)) /* Fba can only do full blocks. */ return ERR_PTR(-EINVAL); count += bv.bv_len >> (block->s2b_shift + 9); if (idal_is_needed (page_address(bv.bv_page), bv.bv_len)) cidaw += bv.bv_len / blksize; } /* Paranoia. */ if (count != last_rec - first_rec + 1) return ERR_PTR(-EINVAL); /* 1x define extent + 1x locate record + number of blocks */ cplength = 2 + count; /* 1x define extent + 1x locate record */ datasize = sizeof(struct DE_fba_data) + sizeof(struct LO_fba_data) + cidaw * sizeof(unsigned long); /* * Find out number of additional locate record ccws if the device * can't do data chaining. */ if (private->rdc_data.mode.bits.data_chain == 0) { cplength += count - 1; datasize += (count - 1)*sizeof(struct LO_fba_data); } /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_FBA_MAGIC, cplength, datasize, memdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* First ccw is define extent. */ define_extent(ccw++, cqr->data, rq_data_dir(req), block->bp_block, blk_rq_pos(req), blk_rq_sectors(req)); /* Build locate_record + read/write ccws. */ idaws = (unsigned long *) (cqr->data + sizeof(struct DE_fba_data)); LO_data = (struct LO_fba_data *) (idaws + cidaw); /* Locate record for all blocks for smart devices. */ if (private->rdc_data.mode.bits.data_chain != 0) { ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, rq_data_dir(req), 0, count); } recid = first_rec; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); if (dasd_page_cache) { char *copy = kmem_cache_alloc(dasd_page_cache, GFP_DMA | __GFP_NOWARN); if (copy && rq_data_dir(req) == WRITE) memcpy(copy + bv.bv_offset, dst, bv.bv_len); if (copy) dst = copy + bv.bv_offset; } for (off = 0; off < bv.bv_len; off += blksize) { /* Locate record for stupid devices. */ if (private->rdc_data.mode.bits.data_chain == 0) { ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw, LO_data++, rq_data_dir(req), recid - first_rec, 1); ccw->flags = CCW_FLAG_CC; ccw++; } else { if (recid > first_rec) ccw[-1].flags |= CCW_FLAG_DC; else ccw[-1].flags |= CCW_FLAG_CC; } ccw->cmd_code = cmd; ccw->count = block->bp_block; if (idal_is_needed(dst, blksize)) { ccw->cda = (__u32)virt_to_phys(idaws); ccw->flags = CCW_FLAG_IDA; idaws = idal_create_words(idaws, dst, blksize); } else { ccw->cda = (__u32)virt_to_phys(dst); ccw->flags = 0; } ccw++; dst += blksize; recid++; } } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = memdev; cqr->memdev = memdev; cqr->block = block; cqr->expires = memdev->default_expires * HZ; /* default 5 minutes */ cqr->retries = memdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static struct dasd_ccw_req *dasd_fba_build_cp(struct dasd_device *memdev, struct dasd_block *block, struct request *req) { if (req_op(req) == REQ_OP_DISCARD || req_op(req) == REQ_OP_WRITE_ZEROES) return dasd_fba_build_cp_discard(memdev, block, req); else return dasd_fba_build_cp_regular(memdev, block, req); } static int dasd_fba_free_cp(struct dasd_ccw_req *cqr, struct request *req) { struct dasd_fba_private *private = cqr->block->base->private; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst, *cda; unsigned int blksize, off; int status; if (!dasd_page_cache) goto out; blksize = cqr->block->bp_block; ccw = cqr->cpaddr; /* Skip over define extent & locate record. */ ccw++; if (private->rdc_data.mode.bits.data_chain != 0) ccw++; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { /* Skip locate record. */ if (private->rdc_data.mode.bits.data_chain == 0) ccw++; if (dst) { if (ccw->flags & CCW_FLAG_IDA) cda = *((char **)phys_to_virt(ccw->cda)); else cda = phys_to_virt(ccw->cda); if (dst != cda) { if (rq_data_dir(req) == READ) memcpy(dst, cda, bv.bv_len); kmem_cache_free(dasd_page_cache, (void *)((addr_t)cda & PAGE_MASK)); } dst = NULL; } ccw++; } } out: status = cqr->status == DASD_CQR_DONE; dasd_sfree_request(cqr, cqr->memdev); return status; } static void dasd_fba_handle_terminated_request(struct dasd_ccw_req *cqr) { if (cqr->retries < 0) cqr->status = DASD_CQR_FAILED; else cqr->status = DASD_CQR_FILLED; }; static int dasd_fba_fill_info(struct dasd_device * device, struct dasd_information2_t * info) { struct dasd_fba_private *private = device->private; info->label_block = 1; info->FBA_layout = 1; info->format = DASD_FORMAT_LDL; info->characteristics_size = sizeof(private->rdc_data); memcpy(info->characteristics, &private->rdc_data, sizeof(private->rdc_data)); info->confdata_size = 0; return 0; } static void dasd_fba_dump_sense_dbf(struct dasd_device *device, struct irb *irb, char *reason) { u64 *sense; sense = (u64 *) dasd_get_sense(irb); if (sense) { DBF_DEV_EVENT(DBF_EMERG, device, "%s: %s %02x%02x%02x %016llx %016llx %016llx " "%016llx", reason, scsw_is_tm(&irb->scsw) ? "t" : "c", scsw_cc(&irb->scsw), scsw_cstat(&irb->scsw), scsw_dstat(&irb->scsw), sense[0], sense[1], sense[2], sense[3]); } else { DBF_DEV_EVENT(DBF_EMERG, device, "%s", "SORRY - NO VALID SENSE AVAILABLE\n"); } } static void dasd_fba_dump_sense(struct dasd_device *device, struct dasd_ccw_req * req, struct irb *irb) { char *page; struct ccw1 *act, *end, *last; int len, sl, sct, count; page = (char *) get_zeroed_page(GFP_ATOMIC); if (page == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "No memory to dump sense data"); return; } len = sprintf(page, PRINTK_HEADER " I/O status report for device %s:\n", dev_name(&device->cdev->dev)); len += sprintf(page + len, PRINTK_HEADER " in req: %p CS: 0x%02X DS: 0x%02X\n", req, irb->scsw.cmd.cstat, irb->scsw.cmd.dstat); len += sprintf(page + len, PRINTK_HEADER " device %s: Failing CCW: %p\n", dev_name(&device->cdev->dev), (void *) (addr_t) irb->scsw.cmd.cpa); if (irb->esw.esw0.erw.cons) { for (sl = 0; sl < 4; sl++) { len += sprintf(page + len, PRINTK_HEADER " Sense(hex) %2d-%2d:", (8 * sl), ((8 * sl) + 7)); for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", irb->ecw[8 * sl + sct]); } len += sprintf(page + len, "\n"); } } else { len += sprintf(page + len, PRINTK_HEADER " SORRY - NO VALID SENSE AVAILABLE\n"); } printk(KERN_ERR "%s", page); /* dump the Channel Program */ /* print first CCWs (maximum 8) */ act = req->cpaddr; for (last = act; last->flags & (CCW_FLAG_CC | CCW_FLAG_DC); last++); end = min(act + 8, last); len = sprintf(page, PRINTK_HEADER " Related CP in req: %p\n", req); while (act <= end) { len += sprintf(page + len, PRINTK_HEADER " CCW %p: %08X %08X DAT:", act, ((int *) act)[0], ((int *) act)[1]); for (count = 0; count < 32 && count < act->count; count += sizeof(int)) len += sprintf(page + len, " %08X", ((int *) (addr_t) act->cda) [(count>>2)]); len += sprintf(page + len, "\n"); act++; } printk(KERN_ERR "%s", page); /* print failing CCW area */ len = 0; if (act < ((struct ccw1 *)(addr_t) irb->scsw.cmd.cpa) - 2) { act = ((struct ccw1 *)(addr_t) irb->scsw.cmd.cpa) - 2; len += sprintf(page + len, PRINTK_HEADER "......\n"); } end = min((struct ccw1 *)(addr_t) irb->scsw.cmd.cpa + 2, last); while (act <= end) { len += sprintf(page + len, PRINTK_HEADER " CCW %p: %08X %08X DAT:", act, ((int *) act)[0], ((int *) act)[1]); for (count = 0; count < 32 && count < act->count; count += sizeof(int)) len += sprintf(page + len, " %08X", ((int *) (addr_t) act->cda) [(count>>2)]); len += sprintf(page + len, "\n"); act++; } /* print last CCWs */ if (act < last - 2) { act = last - 2; len += sprintf(page + len, PRINTK_HEADER "......\n"); } while (act <= last) { len += sprintf(page + len, PRINTK_HEADER " CCW %p: %08X %08X DAT:", act, ((int *) act)[0], ((int *) act)[1]); for (count = 0; count < 32 && count < act->count; count += sizeof(int)) len += sprintf(page + len, " %08X", ((int *) (addr_t) act->cda) [(count>>2)]); len += sprintf(page + len, "\n"); act++; } if (len > 0) printk(KERN_ERR "%s", page); free_page((unsigned long) page); } /* * Initialize block layer request queue. */ static void dasd_fba_setup_blk_queue(struct dasd_block *block) { unsigned int logical_block_size = block->bp_block; struct request_queue *q = block->gdp->queue; unsigned int max_bytes, max_discard_sectors; int max; max = DASD_FBA_MAX_BLOCKS << block->s2b_shift; blk_queue_flag_set(QUEUE_FLAG_NONROT, q); q->limits.max_dev_sectors = max; blk_queue_logical_block_size(q, logical_block_size); blk_queue_max_hw_sectors(q, max); blk_queue_max_segments(q, USHRT_MAX); /* With page sized segments each segment can be translated into one idaw/tidaw */ blk_queue_max_segment_size(q, PAGE_SIZE); blk_queue_segment_boundary(q, PAGE_SIZE - 1); q->limits.discard_granularity = logical_block_size; /* Calculate max_discard_sectors and make it PAGE aligned */ max_bytes = USHRT_MAX * logical_block_size; max_bytes = ALIGN_DOWN(max_bytes, PAGE_SIZE); max_discard_sectors = max_bytes / logical_block_size; blk_queue_max_discard_sectors(q, max_discard_sectors); blk_queue_max_write_zeroes_sectors(q, max_discard_sectors); } static int dasd_fba_pe_handler(struct dasd_device *device, __u8 tbvpm, __u8 fcsecpm) { return dasd_generic_verify_path(device, tbvpm); } static struct dasd_discipline dasd_fba_discipline = { .owner = THIS_MODULE, .name = "FBA ", .ebcname = "FBA ", .check_device = dasd_fba_check_characteristics, .do_analysis = dasd_fba_do_analysis, .pe_handler = dasd_fba_pe_handler, .setup_blk_queue = dasd_fba_setup_blk_queue, .fill_geometry = dasd_fba_fill_geometry, .start_IO = dasd_start_IO, .term_IO = dasd_term_IO, .handle_terminated_request = dasd_fba_handle_terminated_request, .erp_action = dasd_fba_erp_action, .erp_postaction = dasd_fba_erp_postaction, .check_for_device_change = dasd_fba_check_for_device_change, .build_cp = dasd_fba_build_cp, .free_cp = dasd_fba_free_cp, .dump_sense = dasd_fba_dump_sense, .dump_sense_dbf = dasd_fba_dump_sense_dbf, .fill_info = dasd_fba_fill_info, }; static int __init dasd_fba_init(void) { int ret; ASCEBC(dasd_fba_discipline.ebcname, 4); dasd_fba_zero_page = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA); if (!dasd_fba_zero_page) return -ENOMEM; ret = ccw_driver_register(&dasd_fba_driver); if (!ret) wait_for_device_probe(); return ret; } static void __exit dasd_fba_cleanup(void) { ccw_driver_unregister(&dasd_fba_driver); free_page((unsigned long)dasd_fba_zero_page); } module_init(dasd_fba_init); module_exit(dasd_fba_cleanup);
linux-master
drivers/s390/block/dasd_fba.c
// SPDX-License-Identifier: GPL-2.0 /* * Character device driver for extended error reporting. * * Copyright IBM Corp. 2005 * extended error reporting for DASD ECKD devices * Author(s): Stefan Weinhuber <[email protected]> */ #define KMSG_COMPONENT "dasd-eckd" #include <linux/init.h> #include <linux/fs.h> #include <linux/kernel.h> #include <linux/miscdevice.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/device.h> #include <linux/poll.h> #include <linux/mutex.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/atomic.h> #include <asm/ebcdic.h> #include "dasd_int.h" #include "dasd_eckd.h" #ifdef PRINTK_HEADER #undef PRINTK_HEADER #endif /* PRINTK_HEADER */ #define PRINTK_HEADER "dasd(eer):" /* * SECTION: the internal buffer */ /* * The internal buffer is meant to store obaque blobs of data, so it does * not know of higher level concepts like triggers. * It consists of a number of pages that are used as a ringbuffer. Each data * blob is stored in a simple record that consists of an integer, which * contains the size of the following data, and the data bytes themselfes. * * To allow for multiple independent readers we create one internal buffer * each time the device is opened and destroy the buffer when the file is * closed again. The number of pages used for this buffer is determined by * the module parmeter eer_pages. * * One record can be written to a buffer by using the functions * - dasd_eer_start_record (one time per record to write the size to the * buffer and reserve the space for the data) * - dasd_eer_write_buffer (one or more times per record to write the data) * The data can be written in several steps but you will have to compute * the total size up front for the invocation of dasd_eer_start_record. * If the ringbuffer is full, dasd_eer_start_record will remove the required * number of old records. * * A record is typically read in two steps, first read the integer that * specifies the size of the following data, then read the data. * Both can be done by * - dasd_eer_read_buffer * * For all mentioned functions you need to get the bufferlock first and keep * it until a complete record is written or read. * * All information necessary to keep track of an internal buffer is kept in * a struct eerbuffer. The buffer specific to a file pointer is strored in * the private_data field of that file. To be able to write data to all * existing buffers, each buffer is also added to the bufferlist. * If the user does not want to read a complete record in one go, we have to * keep track of the rest of the record. residual stores the number of bytes * that are still to deliver. If the rest of the record is invalidated between * two reads then residual will be set to -1 so that the next read will fail. * All entries in the eerbuffer structure are protected with the bufferlock. * To avoid races between writing to a buffer on the one side and creating * and destroying buffers on the other side, the bufferlock must also be used * to protect the bufferlist. */ static int eer_pages = 5; module_param(eer_pages, int, S_IRUGO|S_IWUSR); struct eerbuffer { struct list_head list; char **buffer; int buffersize; int buffer_page_count; int head; int tail; int residual; }; static LIST_HEAD(bufferlist); static DEFINE_SPINLOCK(bufferlock); static DECLARE_WAIT_QUEUE_HEAD(dasd_eer_read_wait_queue); /* * How many free bytes are available on the buffer. * Needs to be called with bufferlock held. */ static int dasd_eer_get_free_bytes(struct eerbuffer *eerb) { if (eerb->head < eerb->tail) return eerb->tail - eerb->head - 1; return eerb->buffersize - eerb->head + eerb->tail -1; } /* * How many bytes of buffer space are used. * Needs to be called with bufferlock held. */ static int dasd_eer_get_filled_bytes(struct eerbuffer *eerb) { if (eerb->head >= eerb->tail) return eerb->head - eerb->tail; return eerb->buffersize - eerb->tail + eerb->head; } /* * The dasd_eer_write_buffer function just copies count bytes of data * to the buffer. Make sure to call dasd_eer_start_record first, to * make sure that enough free space is available. * Needs to be called with bufferlock held. */ static void dasd_eer_write_buffer(struct eerbuffer *eerb, char *data, int count) { unsigned long headindex,localhead; unsigned long rest, len; char *nextdata; nextdata = data; rest = count; while (rest > 0) { headindex = eerb->head / PAGE_SIZE; localhead = eerb->head % PAGE_SIZE; len = min(rest, PAGE_SIZE - localhead); memcpy(eerb->buffer[headindex]+localhead, nextdata, len); nextdata += len; rest -= len; eerb->head += len; if (eerb->head == eerb->buffersize) eerb->head = 0; /* wrap around */ BUG_ON(eerb->head > eerb->buffersize); } } /* * Needs to be called with bufferlock held. */ static int dasd_eer_read_buffer(struct eerbuffer *eerb, char *data, int count) { unsigned long tailindex,localtail; unsigned long rest, len, finalcount; char *nextdata; finalcount = min(count, dasd_eer_get_filled_bytes(eerb)); nextdata = data; rest = finalcount; while (rest > 0) { tailindex = eerb->tail / PAGE_SIZE; localtail = eerb->tail % PAGE_SIZE; len = min(rest, PAGE_SIZE - localtail); memcpy(nextdata, eerb->buffer[tailindex] + localtail, len); nextdata += len; rest -= len; eerb->tail += len; if (eerb->tail == eerb->buffersize) eerb->tail = 0; /* wrap around */ BUG_ON(eerb->tail > eerb->buffersize); } return finalcount; } /* * Whenever you want to write a blob of data to the internal buffer you * have to start by using this function first. It will write the number * of bytes that will be written to the buffer. If necessary it will remove * old records to make room for the new one. * Needs to be called with bufferlock held. */ static int dasd_eer_start_record(struct eerbuffer *eerb, int count) { int tailcount; if (count + sizeof(count) > eerb->buffersize) return -ENOMEM; while (dasd_eer_get_free_bytes(eerb) < count + sizeof(count)) { if (eerb->residual > 0) { eerb->tail += eerb->residual; if (eerb->tail >= eerb->buffersize) eerb->tail -= eerb->buffersize; eerb->residual = -1; } dasd_eer_read_buffer(eerb, (char *) &tailcount, sizeof(tailcount)); eerb->tail += tailcount; if (eerb->tail >= eerb->buffersize) eerb->tail -= eerb->buffersize; } dasd_eer_write_buffer(eerb, (char*) &count, sizeof(count)); return 0; }; /* * Release pages that are not used anymore. */ static void dasd_eer_free_buffer_pages(char **buf, int no_pages) { int i; for (i = 0; i < no_pages; i++) free_page((unsigned long) buf[i]); } /* * Allocate a new set of memory pages. */ static int dasd_eer_allocate_buffer_pages(char **buf, int no_pages) { int i; for (i = 0; i < no_pages; i++) { buf[i] = (char *) get_zeroed_page(GFP_KERNEL); if (!buf[i]) { dasd_eer_free_buffer_pages(buf, i); return -ENOMEM; } } return 0; } /* * SECTION: The extended error reporting functionality */ /* * When a DASD device driver wants to report an error, it calls the * function dasd_eer_write and gives the respective trigger ID as * parameter. Currently there are four kinds of triggers: * * DASD_EER_FATALERROR: all kinds of unrecoverable I/O problems * DASD_EER_PPRCSUSPEND: PPRC was suspended * DASD_EER_NOPATH: There is no path to the device left. * DASD_EER_STATECHANGE: The state of the device has changed. * * For the first three triggers all required information can be supplied by * the caller. For these triggers a record is written by the function * dasd_eer_write_standard_trigger. * * The DASD_EER_STATECHANGE trigger is special since a sense subsystem * status ccw need to be executed to gather the necessary sense data first. * The dasd_eer_snss function will queue the SNSS request and the request * callback will then call dasd_eer_write with the DASD_EER_STATCHANGE * trigger. * * To avoid memory allocations at runtime, the necessary memory is allocated * when the extended error reporting is enabled for a device (by * dasd_eer_probe). There is one sense subsystem status request for each * eer enabled DASD device. The presence of the cqr in device->eer_cqr * indicates that eer is enable for the device. The use of the snss request * is protected by the DASD_FLAG_EER_IN_USE bit. When this flag indicates * that the cqr is currently in use, dasd_eer_snss cannot start a second * request but sets the DASD_FLAG_EER_SNSS flag instead. The callback of * the SNSS request will check the bit and call dasd_eer_snss again. */ #define SNSS_DATA_SIZE 44 #define DASD_EER_BUSID_SIZE 10 struct dasd_eer_header { __u32 total_size; __u32 trigger; __u64 tv_sec; __u64 tv_usec; char busid[DASD_EER_BUSID_SIZE]; } __attribute__ ((packed)); /* * The following function can be used for those triggers that have * all necessary data available when the function is called. * If the parameter cqr is not NULL, the chain of requests will be searched * for valid sense data, and all valid sense data sets will be added to * the triggers data. */ static void dasd_eer_write_standard_trigger(struct dasd_device *device, struct dasd_ccw_req *cqr, int trigger) { struct dasd_ccw_req *temp_cqr; int data_size; struct timespec64 ts; struct dasd_eer_header header; unsigned long flags; struct eerbuffer *eerb; char *sense; /* go through cqr chain and count the valid sense data sets */ data_size = 0; for (temp_cqr = cqr; temp_cqr; temp_cqr = temp_cqr->refers) if (dasd_get_sense(&temp_cqr->irb)) data_size += 32; header.total_size = sizeof(header) + data_size + 4; /* "EOR" */ header.trigger = trigger; ktime_get_real_ts64(&ts); header.tv_sec = ts.tv_sec; header.tv_usec = ts.tv_nsec / NSEC_PER_USEC; strscpy(header.busid, dev_name(&device->cdev->dev), DASD_EER_BUSID_SIZE); spin_lock_irqsave(&bufferlock, flags); list_for_each_entry(eerb, &bufferlist, list) { dasd_eer_start_record(eerb, header.total_size); dasd_eer_write_buffer(eerb, (char *) &header, sizeof(header)); for (temp_cqr = cqr; temp_cqr; temp_cqr = temp_cqr->refers) { sense = dasd_get_sense(&temp_cqr->irb); if (sense) dasd_eer_write_buffer(eerb, sense, 32); } dasd_eer_write_buffer(eerb, "EOR", 4); } spin_unlock_irqrestore(&bufferlock, flags); wake_up_interruptible(&dasd_eer_read_wait_queue); } /* * This function writes a DASD_EER_STATECHANGE trigger. */ static void dasd_eer_write_snss_trigger(struct dasd_device *device, struct dasd_ccw_req *cqr, int trigger) { int data_size; int snss_rc; struct timespec64 ts; struct dasd_eer_header header; unsigned long flags; struct eerbuffer *eerb; snss_rc = (cqr->status == DASD_CQR_DONE) ? 0 : -EIO; if (snss_rc) data_size = 0; else data_size = SNSS_DATA_SIZE; header.total_size = sizeof(header) + data_size + 4; /* "EOR" */ header.trigger = DASD_EER_STATECHANGE; ktime_get_real_ts64(&ts); header.tv_sec = ts.tv_sec; header.tv_usec = ts.tv_nsec / NSEC_PER_USEC; strscpy(header.busid, dev_name(&device->cdev->dev), DASD_EER_BUSID_SIZE); spin_lock_irqsave(&bufferlock, flags); list_for_each_entry(eerb, &bufferlist, list) { dasd_eer_start_record(eerb, header.total_size); dasd_eer_write_buffer(eerb, (char *) &header , sizeof(header)); if (!snss_rc) dasd_eer_write_buffer(eerb, cqr->data, SNSS_DATA_SIZE); dasd_eer_write_buffer(eerb, "EOR", 4); } spin_unlock_irqrestore(&bufferlock, flags); wake_up_interruptible(&dasd_eer_read_wait_queue); } /* * This function is called for all triggers. It calls the appropriate * function that writes the actual trigger records. */ void dasd_eer_write(struct dasd_device *device, struct dasd_ccw_req *cqr, unsigned int id) { if (!device->eer_cqr) return; switch (id) { case DASD_EER_FATALERROR: case DASD_EER_PPRCSUSPEND: dasd_eer_write_standard_trigger(device, cqr, id); break; case DASD_EER_NOPATH: case DASD_EER_NOSPC: case DASD_EER_AUTOQUIESCE: dasd_eer_write_standard_trigger(device, NULL, id); break; case DASD_EER_STATECHANGE: dasd_eer_write_snss_trigger(device, cqr, id); break; default: /* unknown trigger, so we write it without any sense data */ dasd_eer_write_standard_trigger(device, NULL, id); break; } } EXPORT_SYMBOL(dasd_eer_write); /* * Start a sense subsystem status request. * Needs to be called with the device held. */ void dasd_eer_snss(struct dasd_device *device) { struct dasd_ccw_req *cqr; cqr = device->eer_cqr; if (!cqr) /* Device not eer enabled. */ return; if (test_and_set_bit(DASD_FLAG_EER_IN_USE, &device->flags)) { /* Sense subsystem status request in use. */ set_bit(DASD_FLAG_EER_SNSS, &device->flags); return; } /* cdev is already locked, can't use dasd_add_request_head */ clear_bit(DASD_FLAG_EER_SNSS, &device->flags); cqr->status = DASD_CQR_QUEUED; list_add(&cqr->devlist, &device->ccw_queue); dasd_schedule_device_bh(device); } /* * Callback function for use with sense subsystem status request. */ static void dasd_eer_snss_cb(struct dasd_ccw_req *cqr, void *data) { struct dasd_device *device = cqr->startdev; unsigned long flags; dasd_eer_write(device, cqr, DASD_EER_STATECHANGE); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); if (device->eer_cqr == cqr) { clear_bit(DASD_FLAG_EER_IN_USE, &device->flags); if (test_bit(DASD_FLAG_EER_SNSS, &device->flags)) /* Another SNSS has been requested in the meantime. */ dasd_eer_snss(device); cqr = NULL; } spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); if (cqr) /* * Extended error recovery has been switched off while * the SNSS request was running. It could even have * been switched off and on again in which case there * is a new ccw in device->eer_cqr. Free the "old" * snss request now. */ dasd_sfree_request(cqr, device); } /* * Enable error reporting on a given device. */ int dasd_eer_enable(struct dasd_device *device) { struct dasd_ccw_req *cqr = NULL; unsigned long flags; struct ccw1 *ccw; int rc = 0; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); if (device->eer_cqr) goto out; else if (!device->discipline || strcmp(device->discipline->name, "ECKD")) rc = -EMEDIUMTYPE; else if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) rc = -EBUSY; if (rc) goto out; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* SNSS */, SNSS_DATA_SIZE, device, NULL); if (IS_ERR(cqr)) { rc = -ENOMEM; cqr = NULL; goto out; } cqr->startdev = device; cqr->retries = 255; cqr->expires = 10 * HZ; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags); ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_SNSS; ccw->count = SNSS_DATA_SIZE; ccw->flags = 0; ccw->cda = (__u32)virt_to_phys(cqr->data); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->callback = dasd_eer_snss_cb; if (!device->eer_cqr) { device->eer_cqr = cqr; cqr = NULL; } out: spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); if (cqr) dasd_sfree_request(cqr, device); return rc; } /* * Disable error reporting on a given device. */ void dasd_eer_disable(struct dasd_device *device) { struct dasd_ccw_req *cqr; unsigned long flags; int in_use; if (!device->eer_cqr) return; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); cqr = device->eer_cqr; device->eer_cqr = NULL; clear_bit(DASD_FLAG_EER_SNSS, &device->flags); in_use = test_and_clear_bit(DASD_FLAG_EER_IN_USE, &device->flags); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); if (cqr && !in_use) dasd_sfree_request(cqr, device); } /* * SECTION: the device operations */ /* * On the one side we need a lock to access our internal buffer, on the * other side a copy_to_user can sleep. So we need to copy the data we have * to transfer in a readbuffer, which is protected by the readbuffer_mutex. */ static char readbuffer[PAGE_SIZE]; static DEFINE_MUTEX(readbuffer_mutex); static int dasd_eer_open(struct inode *inp, struct file *filp) { struct eerbuffer *eerb; unsigned long flags; eerb = kzalloc(sizeof(struct eerbuffer), GFP_KERNEL); if (!eerb) return -ENOMEM; eerb->buffer_page_count = eer_pages; if (eerb->buffer_page_count < 1 || eerb->buffer_page_count > INT_MAX / PAGE_SIZE) { kfree(eerb); DBF_EVENT(DBF_WARNING, "can't open device since module " "parameter eer_pages is smaller than 1 or" " bigger than %d", (int)(INT_MAX / PAGE_SIZE)); return -EINVAL; } eerb->buffersize = eerb->buffer_page_count * PAGE_SIZE; eerb->buffer = kmalloc_array(eerb->buffer_page_count, sizeof(char *), GFP_KERNEL); if (!eerb->buffer) { kfree(eerb); return -ENOMEM; } if (dasd_eer_allocate_buffer_pages(eerb->buffer, eerb->buffer_page_count)) { kfree(eerb->buffer); kfree(eerb); return -ENOMEM; } filp->private_data = eerb; spin_lock_irqsave(&bufferlock, flags); list_add(&eerb->list, &bufferlist); spin_unlock_irqrestore(&bufferlock, flags); return nonseekable_open(inp,filp); } static int dasd_eer_close(struct inode *inp, struct file *filp) { struct eerbuffer *eerb; unsigned long flags; eerb = (struct eerbuffer *) filp->private_data; spin_lock_irqsave(&bufferlock, flags); list_del(&eerb->list); spin_unlock_irqrestore(&bufferlock, flags); dasd_eer_free_buffer_pages(eerb->buffer, eerb->buffer_page_count); kfree(eerb->buffer); kfree(eerb); return 0; } static ssize_t dasd_eer_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) { int tc,rc; int tailcount,effective_count; unsigned long flags; struct eerbuffer *eerb; eerb = (struct eerbuffer *) filp->private_data; if (mutex_lock_interruptible(&readbuffer_mutex)) return -ERESTARTSYS; spin_lock_irqsave(&bufferlock, flags); if (eerb->residual < 0) { /* the remainder of this record */ /* has been deleted */ eerb->residual = 0; spin_unlock_irqrestore(&bufferlock, flags); mutex_unlock(&readbuffer_mutex); return -EIO; } else if (eerb->residual > 0) { /* OK we still have a second half of a record to deliver */ effective_count = min(eerb->residual, (int) count); eerb->residual -= effective_count; } else { tc = 0; while (!tc) { tc = dasd_eer_read_buffer(eerb, (char *) &tailcount, sizeof(tailcount)); if (!tc) { /* no data available */ spin_unlock_irqrestore(&bufferlock, flags); mutex_unlock(&readbuffer_mutex); if (filp->f_flags & O_NONBLOCK) return -EAGAIN; rc = wait_event_interruptible( dasd_eer_read_wait_queue, eerb->head != eerb->tail); if (rc) return rc; if (mutex_lock_interruptible(&readbuffer_mutex)) return -ERESTARTSYS; spin_lock_irqsave(&bufferlock, flags); } } WARN_ON(tc != sizeof(tailcount)); effective_count = min(tailcount,(int)count); eerb->residual = tailcount - effective_count; } tc = dasd_eer_read_buffer(eerb, readbuffer, effective_count); WARN_ON(tc != effective_count); spin_unlock_irqrestore(&bufferlock, flags); if (copy_to_user(buf, readbuffer, effective_count)) { mutex_unlock(&readbuffer_mutex); return -EFAULT; } mutex_unlock(&readbuffer_mutex); return effective_count; } static __poll_t dasd_eer_poll(struct file *filp, poll_table *ptable) { __poll_t mask; unsigned long flags; struct eerbuffer *eerb; eerb = (struct eerbuffer *) filp->private_data; poll_wait(filp, &dasd_eer_read_wait_queue, ptable); spin_lock_irqsave(&bufferlock, flags); if (eerb->head != eerb->tail) mask = EPOLLIN | EPOLLRDNORM ; else mask = 0; spin_unlock_irqrestore(&bufferlock, flags); return mask; } static const struct file_operations dasd_eer_fops = { .open = &dasd_eer_open, .release = &dasd_eer_close, .read = &dasd_eer_read, .poll = &dasd_eer_poll, .owner = THIS_MODULE, .llseek = noop_llseek, }; static struct miscdevice *dasd_eer_dev = NULL; int __init dasd_eer_init(void) { int rc; dasd_eer_dev = kzalloc(sizeof(*dasd_eer_dev), GFP_KERNEL); if (!dasd_eer_dev) return -ENOMEM; dasd_eer_dev->minor = MISC_DYNAMIC_MINOR; dasd_eer_dev->name = "dasd_eer"; dasd_eer_dev->fops = &dasd_eer_fops; rc = misc_register(dasd_eer_dev); if (rc) { kfree(dasd_eer_dev); dasd_eer_dev = NULL; DBF_EVENT(DBF_ERR, "%s", "dasd_eer_init could not " "register misc device"); return rc; } return 0; } void dasd_eer_exit(void) { if (dasd_eer_dev) { misc_deregister(dasd_eer_dev); kfree(dasd_eer_dev); dasd_eer_dev = NULL; } }
linux-master
drivers/s390/block/dasd_eer.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2001 * */ #define KMSG_COMPONENT "dasd" #include <linux/ctype.h> #include <linux/init.h> #include <asm/debug.h> #include <asm/ebcdic.h> #include <linux/uaccess.h> /* This is ugly... */ #define PRINTK_HEADER "dasd_erp:" #include "dasd_int.h" struct dasd_ccw_req * dasd_alloc_erp_request(unsigned int magic, int cplength, int datasize, struct dasd_device * device) { unsigned long flags; struct dasd_ccw_req *cqr; char *data; int size; /* Sanity checks */ BUG_ON(datasize > PAGE_SIZE || (cplength*sizeof(struct ccw1)) > PAGE_SIZE); size = (sizeof(struct dasd_ccw_req) + 7L) & -8L; if (cplength > 0) size += cplength * sizeof(struct ccw1); if (datasize > 0) size += datasize; spin_lock_irqsave(&device->mem_lock, flags); cqr = (struct dasd_ccw_req *) dasd_alloc_chunk(&device->erp_chunks, size); spin_unlock_irqrestore(&device->mem_lock, flags); if (cqr == NULL) return ERR_PTR(-ENOMEM); memset(cqr, 0, sizeof(struct dasd_ccw_req)); INIT_LIST_HEAD(&cqr->devlist); INIT_LIST_HEAD(&cqr->blocklist); data = (char *) cqr + ((sizeof(struct dasd_ccw_req) + 7L) & -8L); cqr->cpaddr = NULL; if (cplength > 0) { cqr->cpaddr = (struct ccw1 *) data; data += cplength*sizeof(struct ccw1); memset(cqr->cpaddr, 0, cplength*sizeof(struct ccw1)); } cqr->data = NULL; if (datasize > 0) { cqr->data = data; memset(cqr->data, 0, datasize); } cqr->magic = magic; ASCEBC((char *) &cqr->magic, 4); set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); dasd_get_device(device); return cqr; } void dasd_free_erp_request(struct dasd_ccw_req *cqr, struct dasd_device * device) { unsigned long flags; spin_lock_irqsave(&device->mem_lock, flags); dasd_free_chunk(&device->erp_chunks, cqr); spin_unlock_irqrestore(&device->mem_lock, flags); atomic_dec(&device->ref_count); } /* * dasd_default_erp_action just retries the current cqr */ struct dasd_ccw_req * dasd_default_erp_action(struct dasd_ccw_req *cqr) { struct dasd_device *device; device = cqr->startdev; /* just retry - there is nothing to save ... I got no sense data.... */ if (cqr->retries > 0) { DBF_DEV_EVENT(DBF_DEBUG, device, "default ERP called (%i retries left)", cqr->retries); if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) cqr->lpm = dasd_path_get_opm(device); cqr->status = DASD_CQR_FILLED; } else { pr_err("%s: default ERP has run out of retries and failed\n", dev_name(&device->cdev->dev)); cqr->status = DASD_CQR_FAILED; cqr->stopclk = get_tod_clock(); } return cqr; } /* end dasd_default_erp_action */ /* * DESCRIPTION * Frees all ERPs of the current ERP Chain and set the status * of the original CQR either to DASD_CQR_DONE if ERP was successful * or to DASD_CQR_FAILED if ERP was NOT successful. * NOTE: This function is only called if no discipline postaction * is available * * PARAMETER * erp current erp_head * * RETURN VALUES * cqr pointer to the original CQR */ struct dasd_ccw_req *dasd_default_erp_postaction(struct dasd_ccw_req *cqr) { int success; unsigned long startclk, stopclk; struct dasd_device *startdev; BUG_ON(cqr->refers == NULL || cqr->function == NULL); success = cqr->status == DASD_CQR_DONE; startclk = cqr->startclk; stopclk = cqr->stopclk; startdev = cqr->startdev; /* free all ERPs - but NOT the original cqr */ while (cqr->refers != NULL) { struct dasd_ccw_req *refers; refers = cqr->refers; /* remove the request from the block queue */ list_del(&cqr->blocklist); /* free the finished erp request */ dasd_free_erp_request(cqr, cqr->memdev); cqr = refers; } /* set corresponding status to original cqr */ cqr->startclk = startclk; cqr->stopclk = stopclk; cqr->startdev = startdev; if (success) cqr->status = DASD_CQR_DONE; else { cqr->status = DASD_CQR_FAILED; cqr->stopclk = get_tod_clock(); } return cqr; } /* end default_erp_postaction */ void dasd_log_sense(struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_device *device; device = cqr->startdev; if (cqr->intrc == -ETIMEDOUT) { dev_err(&device->cdev->dev, "A timeout error occurred for cqr %p\n", cqr); return; } if (cqr->intrc == -ENOLINK) { dev_err(&device->cdev->dev, "A transport error occurred for cqr %p\n", cqr); return; } /* dump sense data */ if (device->discipline && device->discipline->dump_sense) device->discipline->dump_sense(device, cqr, irb); } void dasd_log_sense_dbf(struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_device *device; device = cqr->startdev; /* dump sense data to s390 debugfeature*/ if (device->discipline && device->discipline->dump_sense_dbf) device->discipline->dump_sense_dbf(device, irb, "log"); } EXPORT_SYMBOL(dasd_log_sense_dbf); EXPORT_SYMBOL(dasd_default_erp_action); EXPORT_SYMBOL(dasd_default_erp_postaction); EXPORT_SYMBOL(dasd_alloc_erp_request); EXPORT_SYMBOL(dasd_free_erp_request); EXPORT_SYMBOL(dasd_log_sense);
linux-master
drivers/s390/block/dasd_erp.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999,2001 * * Device mapping and dasd= parameter parsing functions. All devmap * functions may not be called from interrupt context. In particular * dasd_get_device is a no-no from interrupt context. * */ #define KMSG_COMPONENT "dasd" #include <linux/ctype.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include <asm/debug.h> #include <linux/uaccess.h> #include <asm/ipl.h> /* This is ugly... */ #define PRINTK_HEADER "dasd_devmap:" #define DASD_MAX_PARAMS 256 #include "dasd_int.h" struct kmem_cache *dasd_page_cache; EXPORT_SYMBOL_GPL(dasd_page_cache); /* * dasd_devmap_t is used to store the features and the relation * between device number and device index. To find a dasd_devmap_t * that corresponds to a device number of a device index each * dasd_devmap_t is added to two linked lists, one to search by * the device number and one to search by the device index. As * soon as big minor numbers are available the device index list * can be removed since the device number will then be identical * to the device index. */ struct dasd_devmap { struct list_head list; char bus_id[DASD_BUS_ID_SIZE]; unsigned int devindex; unsigned short features; struct dasd_device *device; struct dasd_copy_relation *copy; unsigned int aq_mask; }; /* * Parameter parsing functions for dasd= parameter. The syntax is: * <devno> : (0x)?[0-9a-fA-F]+ * <busid> : [0-0a-f]\.[0-9a-f]\.(0x)?[0-9a-fA-F]+ * <feature> : ro * <feature_list> : \(<feature>(:<feature>)*\) * <devno-range> : <devno>(-<devno>)?<feature_list>? * <busid-range> : <busid>(-<busid>)?<feature_list>? * <devices> : <devno-range>|<busid-range> * <dasd_module> : dasd_diag_mod|dasd_eckd_mod|dasd_fba_mod * * <dasd> : autodetect|probeonly|<devices>(,<devices>)* */ int dasd_probeonly = 0; /* is true, when probeonly mode is active */ int dasd_autodetect = 0; /* is true, when autodetection is active */ int dasd_nopav = 0; /* is true, when PAV is disabled */ EXPORT_SYMBOL_GPL(dasd_nopav); int dasd_nofcx; /* disable High Performance Ficon */ EXPORT_SYMBOL_GPL(dasd_nofcx); /* * char *dasd[] is intended to hold the ranges supplied by the dasd= statement * it is named 'dasd' to directly be filled by insmod with the comma separated * strings when running as a module. */ static char *dasd[DASD_MAX_PARAMS]; module_param_array(dasd, charp, NULL, S_IRUGO); /* * Single spinlock to protect devmap and servermap structures and lists. */ static DEFINE_SPINLOCK(dasd_devmap_lock); /* * Hash lists for devmap structures. */ static struct list_head dasd_hashlists[256]; int dasd_max_devindex; static struct dasd_devmap *dasd_add_busid(const char *, int); static inline int dasd_hash_busid(const char *bus_id) { int hash, i; hash = 0; for (i = 0; (i < DASD_BUS_ID_SIZE) && *bus_id; i++, bus_id++) hash += *bus_id; return hash & 0xff; } #ifndef MODULE static int __init dasd_call_setup(char *opt) { static int i __initdata; char *tmp; while (i < DASD_MAX_PARAMS) { tmp = strsep(&opt, ","); if (!tmp) break; dasd[i++] = tmp; } return 1; } __setup ("dasd=", dasd_call_setup); #endif /* #ifndef MODULE */ #define DASD_IPLDEV "ipldev" /* * Read a device busid/devno from a string. */ static int dasd_busid(char *str, int *id0, int *id1, int *devno) { unsigned int val; char *tok; /* Interpret ipldev busid */ if (strncmp(DASD_IPLDEV, str, strlen(DASD_IPLDEV)) == 0) { if (ipl_info.type != IPL_TYPE_CCW) { pr_err("The IPL device is not a CCW device\n"); return -EINVAL; } *id0 = 0; *id1 = ipl_info.data.ccw.dev_id.ssid; *devno = ipl_info.data.ccw.dev_id.devno; return 0; } /* Old style 0xXXXX or XXXX */ if (!kstrtouint(str, 16, &val)) { *id0 = *id1 = 0; if (val > 0xffff) return -EINVAL; *devno = val; return 0; } /* New style x.y.z busid */ tok = strsep(&str, "."); if (kstrtouint(tok, 16, &val) || val > 0xff) return -EINVAL; *id0 = val; tok = strsep(&str, "."); if (kstrtouint(tok, 16, &val) || val > 0xff) return -EINVAL; *id1 = val; tok = strsep(&str, "."); if (kstrtouint(tok, 16, &val) || val > 0xffff) return -EINVAL; *devno = val; return 0; } /* * Read colon separated list of dasd features. */ static int __init dasd_feature_list(char *str) { int features, len, rc; features = 0; rc = 0; if (!str) return DASD_FEATURE_DEFAULT; while (1) { for (len = 0; str[len] && str[len] != ':' && str[len] != ')'; len++); if (len == 2 && !strncmp(str, "ro", 2)) features |= DASD_FEATURE_READONLY; else if (len == 4 && !strncmp(str, "diag", 4)) features |= DASD_FEATURE_USEDIAG; else if (len == 3 && !strncmp(str, "raw", 3)) features |= DASD_FEATURE_USERAW; else if (len == 6 && !strncmp(str, "erplog", 6)) features |= DASD_FEATURE_ERPLOG; else if (len == 8 && !strncmp(str, "failfast", 8)) features |= DASD_FEATURE_FAILFAST; else { pr_warn("%.*s is not a supported device option\n", len, str); rc = -EINVAL; } str += len; if (*str != ':') break; str++; } return rc ? : features; } /* * Try to match the first element on the comma separated parse string * with one of the known keywords. If a keyword is found, take the approprate * action and return a pointer to the residual string. If the first element * could not be matched to any keyword then return an error code. */ static int __init dasd_parse_keyword(char *keyword) { int length = strlen(keyword); if (strncmp("autodetect", keyword, length) == 0) { dasd_autodetect = 1; pr_info("The autodetection mode has been activated\n"); return 0; } if (strncmp("probeonly", keyword, length) == 0) { dasd_probeonly = 1; pr_info("The probeonly mode has been activated\n"); return 0; } if (strncmp("nopav", keyword, length) == 0) { if (MACHINE_IS_VM) pr_info("'nopav' is not supported on z/VM\n"); else { dasd_nopav = 1; pr_info("PAV support has be deactivated\n"); } return 0; } if (strncmp("nofcx", keyword, length) == 0) { dasd_nofcx = 1; pr_info("High Performance FICON support has been " "deactivated\n"); return 0; } if (strncmp("fixedbuffers", keyword, length) == 0) { if (dasd_page_cache) return 0; dasd_page_cache = kmem_cache_create("dasd_page_cache", PAGE_SIZE, PAGE_SIZE, SLAB_CACHE_DMA, NULL); if (!dasd_page_cache) DBF_EVENT(DBF_WARNING, "%s", "Failed to create slab, " "fixed buffer mode disabled."); else DBF_EVENT(DBF_INFO, "%s", "turning on fixed buffer mode"); return 0; } return -EINVAL; } /* * Split a string of a device range into its pieces and return the from, to, and * feature parts separately. * e.g.: * 0.0.1234-0.0.5678(ro:erplog) -> from: 0.0.1234 to: 0.0.5678 features: ro:erplog * 0.0.8765(raw) -> from: 0.0.8765 to: null features: raw * 0x4321 -> from: 0x4321 to: null features: null */ static int __init dasd_evaluate_range_param(char *range, char **from_str, char **to_str, char **features_str) { int rc = 0; /* Do we have a range or a single device? */ if (strchr(range, '-')) { *from_str = strsep(&range, "-"); *to_str = strsep(&range, "("); *features_str = strsep(&range, ")"); } else { *from_str = strsep(&range, "("); *features_str = strsep(&range, ")"); } if (*features_str && !range) { pr_warn("A closing parenthesis ')' is missing in the dasd= parameter\n"); rc = -EINVAL; } return rc; } /* * Try to interprete the range string as a device number or a range of devices. * If the interpretation is successful, create the matching dasd_devmap entries. * If interpretation fails or in case of an error, return an error code. */ static int __init dasd_parse_range(const char *range) { struct dasd_devmap *devmap; int from, from_id0, from_id1; int to, to_id0, to_id1; int features; char bus_id[DASD_BUS_ID_SIZE + 1]; char *features_str = NULL; char *from_str = NULL; char *to_str = NULL; int rc = 0; char *tmp; tmp = kstrdup(range, GFP_KERNEL); if (!tmp) return -ENOMEM; if (dasd_evaluate_range_param(tmp, &from_str, &to_str, &features_str)) { rc = -EINVAL; goto out; } if (dasd_busid(from_str, &from_id0, &from_id1, &from)) { rc = -EINVAL; goto out; } to = from; to_id0 = from_id0; to_id1 = from_id1; if (to_str) { if (dasd_busid(to_str, &to_id0, &to_id1, &to)) { rc = -EINVAL; goto out; } if (from_id0 != to_id0 || from_id1 != to_id1 || from > to) { pr_err("%s is not a valid device range\n", range); rc = -EINVAL; goto out; } } features = dasd_feature_list(features_str); if (features < 0) { rc = -EINVAL; goto out; } /* each device in dasd= parameter should be set initially online */ features |= DASD_FEATURE_INITIAL_ONLINE; while (from <= to) { sprintf(bus_id, "%01x.%01x.%04x", from_id0, from_id1, from++); devmap = dasd_add_busid(bus_id, features); if (IS_ERR(devmap)) { rc = PTR_ERR(devmap); goto out; } } out: kfree(tmp); return rc; } /* * Parse parameters stored in dasd[] * The 'dasd=...' parameter allows to specify a comma separated list of * keywords and device ranges. The parameters in that list will be stored as * separate elementes in dasd[]. */ int __init dasd_parse(void) { int rc, i; char *cur; rc = 0; for (i = 0; i < DASD_MAX_PARAMS; i++) { cur = dasd[i]; if (!cur) break; if (*cur == '\0') continue; rc = dasd_parse_keyword(cur); if (rc) rc = dasd_parse_range(cur); if (rc) break; } return rc; } /* * Add a devmap for the device specified by busid. It is possible that * the devmap already exists (dasd= parameter). The order of the devices * added through this function will define the kdevs for the individual * devices. */ static struct dasd_devmap * dasd_add_busid(const char *bus_id, int features) { struct dasd_devmap *devmap, *new, *tmp; int hash; new = kzalloc(sizeof(struct dasd_devmap), GFP_KERNEL); if (!new) return ERR_PTR(-ENOMEM); spin_lock(&dasd_devmap_lock); devmap = NULL; hash = dasd_hash_busid(bus_id); list_for_each_entry(tmp, &dasd_hashlists[hash], list) if (strncmp(tmp->bus_id, bus_id, DASD_BUS_ID_SIZE) == 0) { devmap = tmp; break; } if (!devmap) { /* This bus_id is new. */ new->devindex = dasd_max_devindex++; strscpy(new->bus_id, bus_id, DASD_BUS_ID_SIZE); new->features = features; new->device = NULL; list_add(&new->list, &dasd_hashlists[hash]); devmap = new; new = NULL; } spin_unlock(&dasd_devmap_lock); kfree(new); return devmap; } static struct dasd_devmap * dasd_find_busid_locked(const char *bus_id) { struct dasd_devmap *devmap, *tmp; int hash; devmap = ERR_PTR(-ENODEV); hash = dasd_hash_busid(bus_id); list_for_each_entry(tmp, &dasd_hashlists[hash], list) { if (strncmp(tmp->bus_id, bus_id, DASD_BUS_ID_SIZE) == 0) { devmap = tmp; break; } } return devmap; } /* * Find devmap for device with given bus_id. */ static struct dasd_devmap * dasd_find_busid(const char *bus_id) { struct dasd_devmap *devmap; spin_lock(&dasd_devmap_lock); devmap = dasd_find_busid_locked(bus_id); spin_unlock(&dasd_devmap_lock); return devmap; } /* * Check if busid has been added to the list of dasd ranges. */ int dasd_busid_known(const char *bus_id) { return IS_ERR(dasd_find_busid(bus_id)) ? -ENOENT : 0; } /* * Forget all about the device numbers added so far. * This may only be called at module unload or system shutdown. */ static void dasd_forget_ranges(void) { struct dasd_devmap *devmap, *n; int i; spin_lock(&dasd_devmap_lock); for (i = 0; i < 256; i++) { list_for_each_entry_safe(devmap, n, &dasd_hashlists[i], list) { BUG_ON(devmap->device != NULL); list_del(&devmap->list); kfree(devmap); } } spin_unlock(&dasd_devmap_lock); } /* * Find the device struct by its device index. */ struct dasd_device * dasd_device_from_devindex(int devindex) { struct dasd_devmap *devmap, *tmp; struct dasd_device *device; int i; spin_lock(&dasd_devmap_lock); devmap = NULL; for (i = 0; (i < 256) && !devmap; i++) list_for_each_entry(tmp, &dasd_hashlists[i], list) if (tmp->devindex == devindex) { /* Found the devmap for the device. */ devmap = tmp; break; } if (devmap && devmap->device) { device = devmap->device; dasd_get_device(device); } else device = ERR_PTR(-ENODEV); spin_unlock(&dasd_devmap_lock); return device; } /* * Return devmap for cdev. If no devmap exists yet, create one and * connect it to the cdev. */ static struct dasd_devmap * dasd_devmap_from_cdev(struct ccw_device *cdev) { struct dasd_devmap *devmap; devmap = dasd_find_busid(dev_name(&cdev->dev)); if (IS_ERR(devmap)) devmap = dasd_add_busid(dev_name(&cdev->dev), DASD_FEATURE_DEFAULT); return devmap; } /* * Create a dasd device structure for cdev. */ struct dasd_device * dasd_create_device(struct ccw_device *cdev) { struct dasd_devmap *devmap; struct dasd_device *device; unsigned long flags; int rc; devmap = dasd_devmap_from_cdev(cdev); if (IS_ERR(devmap)) return (void *) devmap; device = dasd_alloc_device(); if (IS_ERR(device)) return device; atomic_set(&device->ref_count, 3); spin_lock(&dasd_devmap_lock); if (!devmap->device) { devmap->device = device; device->devindex = devmap->devindex; device->features = devmap->features; get_device(&cdev->dev); device->cdev = cdev; rc = 0; } else /* Someone else was faster. */ rc = -EBUSY; spin_unlock(&dasd_devmap_lock); if (rc) { dasd_free_device(device); return ERR_PTR(rc); } spin_lock_irqsave(get_ccwdev_lock(cdev), flags); dev_set_drvdata(&cdev->dev, device); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); device->paths_info = kset_create_and_add("paths_info", NULL, &device->cdev->dev.kobj); if (!device->paths_info) dev_warn(&cdev->dev, "Could not create paths_info kset\n"); return device; } /* * allocate a PPRC data structure and call the discipline function to fill */ static int dasd_devmap_get_pprc_status(struct dasd_device *device, struct dasd_pprc_data_sc4 **data) { struct dasd_pprc_data_sc4 *temp; if (!device->discipline || !device->discipline->pprc_status) { dev_warn(&device->cdev->dev, "Unable to query copy relation status\n"); return -EOPNOTSUPP; } temp = kzalloc(sizeof(*temp), GFP_KERNEL); if (!temp) return -ENOMEM; /* get PPRC information from storage */ if (device->discipline->pprc_status(device, temp)) { dev_warn(&device->cdev->dev, "Error during copy relation status query\n"); kfree(temp); return -EINVAL; } *data = temp; return 0; } /* * find an entry in a PPRC device_info array by a given UID * depending on the primary/secondary state of the device it has to be * matched with the respective fields */ static int dasd_devmap_entry_from_pprc_data(struct dasd_pprc_data_sc4 *data, struct dasd_uid uid, bool primary) { int i; for (i = 0; i < DASD_CP_ENTRIES; i++) { if (primary) { if (data->dev_info[i].prim_cu_ssid == uid.ssid && data->dev_info[i].primary == uid.real_unit_addr) return i; } else { if (data->dev_info[i].sec_cu_ssid == uid.ssid && data->dev_info[i].secondary == uid.real_unit_addr) return i; } } return -1; } /* * check the consistency of a specified copy relation by checking * the following things: * * - is the given device part of a copy pair setup * - does the state of the device match the state in the PPRC status data * - does the device UID match with the UID in the PPRC status data * - to prevent misrouted IO check if the given device is present in all * related PPRC status data */ static int dasd_devmap_check_copy_relation(struct dasd_device *device, struct dasd_copy_entry *entry, struct dasd_pprc_data_sc4 *data, struct dasd_copy_relation *copy) { struct dasd_pprc_data_sc4 *tmp_dat; struct dasd_device *tmp_dev; struct dasd_uid uid; int i, j; if (!device->discipline || !device->discipline->get_uid || device->discipline->get_uid(device, &uid)) return 1; i = dasd_devmap_entry_from_pprc_data(data, uid, entry->primary); if (i < 0) { dev_warn(&device->cdev->dev, "Device not part of a copy relation\n"); return 1; } /* double check which role the current device has */ if (entry->primary) { if (data->dev_info[i].flags & 0x80) { dev_warn(&device->cdev->dev, "Copy pair secondary is setup as primary\n"); return 1; } if (data->dev_info[i].prim_cu_ssid != uid.ssid || data->dev_info[i].primary != uid.real_unit_addr) { dev_warn(&device->cdev->dev, "Primary device %s does not match copy pair status primary device %04x\n", dev_name(&device->cdev->dev), data->dev_info[i].prim_cu_ssid | data->dev_info[i].primary); return 1; } } else { if (!(data->dev_info[i].flags & 0x80)) { dev_warn(&device->cdev->dev, "Copy pair primary is setup as secondary\n"); return 1; } if (data->dev_info[i].sec_cu_ssid != uid.ssid || data->dev_info[i].secondary != uid.real_unit_addr) { dev_warn(&device->cdev->dev, "Secondary device %s does not match copy pair status secondary device %04x\n", dev_name(&device->cdev->dev), data->dev_info[i].sec_cu_ssid | data->dev_info[i].secondary); return 1; } } /* * the current device has to be part of the copy relation of all * entries to prevent misrouted IO to another copy pair */ for (j = 0; j < DASD_CP_ENTRIES; j++) { if (entry == &copy->entry[j]) tmp_dev = device; else tmp_dev = copy->entry[j].device; if (!tmp_dev) continue; if (dasd_devmap_get_pprc_status(tmp_dev, &tmp_dat)) return 1; if (dasd_devmap_entry_from_pprc_data(tmp_dat, uid, entry->primary) < 0) { dev_warn(&tmp_dev->cdev->dev, "Copy pair relation does not contain device: %s\n", dev_name(&device->cdev->dev)); kfree(tmp_dat); return 1; } kfree(tmp_dat); } return 0; } /* delete device from copy relation entry */ static void dasd_devmap_delete_copy_relation_device(struct dasd_device *device) { struct dasd_copy_relation *copy; int i; if (!device->copy) return; copy = device->copy; for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].device == device) copy->entry[i].device = NULL; } dasd_put_device(device); device->copy = NULL; } /* * read all required information for a copy relation setup and setup the device * accordingly */ int dasd_devmap_set_device_copy_relation(struct ccw_device *cdev, bool pprc_enabled) { struct dasd_pprc_data_sc4 *data = NULL; struct dasd_copy_entry *entry = NULL; struct dasd_copy_relation *copy; struct dasd_devmap *devmap; struct dasd_device *device; int i, rc = 0; devmap = dasd_devmap_from_cdev(cdev); if (IS_ERR(devmap)) return PTR_ERR(devmap); device = devmap->device; if (!device) return -ENODEV; copy = devmap->copy; /* no copy pair setup for this device */ if (!copy) goto out; rc = dasd_devmap_get_pprc_status(device, &data); if (rc) return rc; /* print error if PPRC is requested but not enabled on storage server */ if (!pprc_enabled) { dev_err(&cdev->dev, "Copy relation not enabled on storage server\n"); rc = -EINVAL; goto out; } if (!data->dev_info[0].state) { dev_warn(&device->cdev->dev, "Copy pair setup requested for device not in copy relation\n"); rc = -EINVAL; goto out; } /* find entry */ for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && strncmp(dev_name(&cdev->dev), copy->entry[i].busid, DASD_BUS_ID_SIZE) == 0) { entry = &copy->entry[i]; break; } } if (!entry) { dev_warn(&device->cdev->dev, "Copy relation entry not found\n"); rc = -EINVAL; goto out; } /* check if the copy relation is valid */ if (dasd_devmap_check_copy_relation(device, entry, data, copy)) { dev_warn(&device->cdev->dev, "Copy relation faulty\n"); rc = -EINVAL; goto out; } dasd_get_device(device); copy->entry[i].device = device; device->copy = copy; out: kfree(data); return rc; } EXPORT_SYMBOL_GPL(dasd_devmap_set_device_copy_relation); /* * Wait queue for dasd_delete_device waits. */ static DECLARE_WAIT_QUEUE_HEAD(dasd_delete_wq); /* * Remove a dasd device structure. The passed referenced * is destroyed. */ void dasd_delete_device(struct dasd_device *device) { struct ccw_device *cdev; struct dasd_devmap *devmap; unsigned long flags; /* First remove device pointer from devmap. */ devmap = dasd_find_busid(dev_name(&device->cdev->dev)); BUG_ON(IS_ERR(devmap)); spin_lock(&dasd_devmap_lock); if (devmap->device != device) { spin_unlock(&dasd_devmap_lock); dasd_put_device(device); return; } devmap->device = NULL; spin_unlock(&dasd_devmap_lock); /* Disconnect dasd_device structure from ccw_device structure. */ spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); dev_set_drvdata(&device->cdev->dev, NULL); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); /* Removve copy relation */ dasd_devmap_delete_copy_relation_device(device); /* * Drop ref_count by 3, one for the devmap reference, one for * the cdev reference and one for the passed reference. */ atomic_sub(3, &device->ref_count); /* Wait for reference counter to drop to zero. */ wait_event(dasd_delete_wq, atomic_read(&device->ref_count) == 0); dasd_generic_free_discipline(device); kset_unregister(device->paths_info); /* Disconnect dasd_device structure from ccw_device structure. */ cdev = device->cdev; device->cdev = NULL; /* Put ccw_device structure. */ put_device(&cdev->dev); /* Now the device structure can be freed. */ dasd_free_device(device); } /* * Reference counter dropped to zero. Wake up waiter * in dasd_delete_device. */ void dasd_put_device_wake(struct dasd_device *device) { wake_up(&dasd_delete_wq); } EXPORT_SYMBOL_GPL(dasd_put_device_wake); /* * Return dasd_device structure associated with cdev. * This function needs to be called with the ccw device * lock held. It can be used from interrupt context. */ struct dasd_device * dasd_device_from_cdev_locked(struct ccw_device *cdev) { struct dasd_device *device = dev_get_drvdata(&cdev->dev); if (!device) return ERR_PTR(-ENODEV); dasd_get_device(device); return device; } /* * Return dasd_device structure associated with cdev. */ struct dasd_device * dasd_device_from_cdev(struct ccw_device *cdev) { struct dasd_device *device; unsigned long flags; spin_lock_irqsave(get_ccwdev_lock(cdev), flags); device = dasd_device_from_cdev_locked(cdev); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); return device; } void dasd_add_link_to_gendisk(struct gendisk *gdp, struct dasd_device *device) { struct dasd_devmap *devmap; devmap = dasd_find_busid(dev_name(&device->cdev->dev)); if (IS_ERR(devmap)) return; spin_lock(&dasd_devmap_lock); gdp->private_data = devmap; spin_unlock(&dasd_devmap_lock); } EXPORT_SYMBOL(dasd_add_link_to_gendisk); struct dasd_device *dasd_device_from_gendisk(struct gendisk *gdp) { struct dasd_device *device; struct dasd_devmap *devmap; if (!gdp->private_data) return NULL; device = NULL; spin_lock(&dasd_devmap_lock); devmap = gdp->private_data; if (devmap && devmap->device) { device = devmap->device; dasd_get_device(device); } spin_unlock(&dasd_devmap_lock); return device; } /* * SECTION: files in sysfs */ /* * failfast controls the behaviour, if no path is available */ static ssize_t dasd_ff_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int ff_flag; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap)) ff_flag = (devmap->features & DASD_FEATURE_FAILFAST) != 0; else ff_flag = (DASD_FEATURE_DEFAULT & DASD_FEATURE_FAILFAST) != 0; return sysfs_emit(buf, ff_flag ? "1\n" : "0\n"); } static ssize_t dasd_ff_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int val; int rc; if (kstrtouint(buf, 0, &val) || val > 1) return -EINVAL; rc = dasd_set_feature(to_ccwdev(dev), DASD_FEATURE_FAILFAST, val); return rc ? : count; } static DEVICE_ATTR(failfast, 0644, dasd_ff_show, dasd_ff_store); /* * readonly controls the readonly status of a dasd */ static ssize_t dasd_ro_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; struct dasd_device *device; int ro_flag = 0; devmap = dasd_find_busid(dev_name(dev)); if (IS_ERR(devmap)) goto out; ro_flag = !!(devmap->features & DASD_FEATURE_READONLY); spin_lock(&dasd_devmap_lock); device = devmap->device; if (device) ro_flag |= test_bit(DASD_FLAG_DEVICE_RO, &device->flags); spin_unlock(&dasd_devmap_lock); out: return sysfs_emit(buf, ro_flag ? "1\n" : "0\n"); } static ssize_t dasd_ro_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ccw_device *cdev = to_ccwdev(dev); struct dasd_device *device; unsigned long flags; unsigned int val; int rc; if (kstrtouint(buf, 0, &val) || val > 1) return -EINVAL; rc = dasd_set_feature(cdev, DASD_FEATURE_READONLY, val); if (rc) return rc; device = dasd_device_from_cdev(cdev); if (IS_ERR(device)) return count; spin_lock_irqsave(get_ccwdev_lock(cdev), flags); val = val || test_bit(DASD_FLAG_DEVICE_RO, &device->flags); if (!device->block || !device->block->gdp || test_bit(DASD_FLAG_OFFLINE, &device->flags)) { spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); goto out; } /* Increase open_count to avoid losing the block device */ atomic_inc(&device->block->open_count); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); set_disk_ro(device->block->gdp, val); atomic_dec(&device->block->open_count); out: dasd_put_device(device); return count; } static DEVICE_ATTR(readonly, 0644, dasd_ro_show, dasd_ro_store); /* * erplog controls the logging of ERP related data * (e.g. failing channel programs). */ static ssize_t dasd_erplog_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int erplog; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap)) erplog = (devmap->features & DASD_FEATURE_ERPLOG) != 0; else erplog = (DASD_FEATURE_DEFAULT & DASD_FEATURE_ERPLOG) != 0; return sysfs_emit(buf, erplog ? "1\n" : "0\n"); } static ssize_t dasd_erplog_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int val; int rc; if (kstrtouint(buf, 0, &val) || val > 1) return -EINVAL; rc = dasd_set_feature(to_ccwdev(dev), DASD_FEATURE_ERPLOG, val); return rc ? : count; } static DEVICE_ATTR(erplog, 0644, dasd_erplog_show, dasd_erplog_store); /* * use_diag controls whether the driver should use diag rather than ssch * to talk to the device */ static ssize_t dasd_use_diag_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int use_diag; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap)) use_diag = (devmap->features & DASD_FEATURE_USEDIAG) != 0; else use_diag = (DASD_FEATURE_DEFAULT & DASD_FEATURE_USEDIAG) != 0; return sprintf(buf, use_diag ? "1\n" : "0\n"); } static ssize_t dasd_use_diag_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_devmap *devmap; unsigned int val; ssize_t rc; devmap = dasd_devmap_from_cdev(to_ccwdev(dev)); if (IS_ERR(devmap)) return PTR_ERR(devmap); if (kstrtouint(buf, 0, &val) || val > 1) return -EINVAL; spin_lock(&dasd_devmap_lock); /* Changing diag discipline flag is only allowed in offline state. */ rc = count; if (!devmap->device && !(devmap->features & DASD_FEATURE_USERAW)) { if (val) devmap->features |= DASD_FEATURE_USEDIAG; else devmap->features &= ~DASD_FEATURE_USEDIAG; } else rc = -EPERM; spin_unlock(&dasd_devmap_lock); return rc; } static DEVICE_ATTR(use_diag, 0644, dasd_use_diag_show, dasd_use_diag_store); /* * use_raw controls whether the driver should give access to raw eckd data or * operate in standard mode */ static ssize_t dasd_use_raw_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int use_raw; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap)) use_raw = (devmap->features & DASD_FEATURE_USERAW) != 0; else use_raw = (DASD_FEATURE_DEFAULT & DASD_FEATURE_USERAW) != 0; return sprintf(buf, use_raw ? "1\n" : "0\n"); } static ssize_t dasd_use_raw_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_devmap *devmap; ssize_t rc; unsigned long val; devmap = dasd_devmap_from_cdev(to_ccwdev(dev)); if (IS_ERR(devmap)) return PTR_ERR(devmap); if ((kstrtoul(buf, 10, &val) != 0) || val > 1) return -EINVAL; spin_lock(&dasd_devmap_lock); /* Changing diag discipline flag is only allowed in offline state. */ rc = count; if (!devmap->device && !(devmap->features & DASD_FEATURE_USEDIAG)) { if (val) devmap->features |= DASD_FEATURE_USERAW; else devmap->features &= ~DASD_FEATURE_USERAW; } else rc = -EPERM; spin_unlock(&dasd_devmap_lock); return rc; } static DEVICE_ATTR(raw_track_access, 0644, dasd_use_raw_show, dasd_use_raw_store); static ssize_t dasd_safe_offline_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ccw_device *cdev = to_ccwdev(dev); struct dasd_device *device; unsigned long flags; int rc; spin_lock_irqsave(get_ccwdev_lock(cdev), flags); device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) { rc = PTR_ERR(device); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); goto out; } if (test_bit(DASD_FLAG_OFFLINE, &device->flags) || test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* Already doing offline processing */ dasd_put_device(device); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); rc = -EBUSY; goto out; } set_bit(DASD_FLAG_SAFE_OFFLINE, &device->flags); dasd_put_device(device); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); rc = ccw_device_set_offline(cdev); out: return rc ? rc : count; } static DEVICE_ATTR(safe_offline, 0200, NULL, dasd_safe_offline_store); static ssize_t dasd_access_show(struct device *dev, struct device_attribute *attr, char *buf) { struct ccw_device *cdev = to_ccwdev(dev); struct dasd_device *device; int count; device = dasd_device_from_cdev(cdev); if (IS_ERR(device)) return PTR_ERR(device); if (!device->discipline) count = -ENODEV; else if (!device->discipline->host_access_count) count = -EOPNOTSUPP; else count = device->discipline->host_access_count(device); dasd_put_device(device); if (count < 0) return count; return sprintf(buf, "%d\n", count); } static DEVICE_ATTR(host_access_count, 0444, dasd_access_show, NULL); static ssize_t dasd_discipline_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; ssize_t len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) goto out; else if (!device->discipline) { dasd_put_device(device); goto out; } else { len = sysfs_emit(buf, "%s\n", device->discipline->name); dasd_put_device(device); return len; } out: len = sysfs_emit(buf, "none\n"); return len; } static DEVICE_ATTR(discipline, 0444, dasd_discipline_show, NULL); static ssize_t dasd_device_status_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; ssize_t len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (!IS_ERR(device)) { switch (device->state) { case DASD_STATE_NEW: len = sysfs_emit(buf, "new\n"); break; case DASD_STATE_KNOWN: len = sysfs_emit(buf, "detected\n"); break; case DASD_STATE_BASIC: len = sysfs_emit(buf, "basic\n"); break; case DASD_STATE_UNFMT: len = sysfs_emit(buf, "unformatted\n"); break; case DASD_STATE_READY: len = sysfs_emit(buf, "ready\n"); break; case DASD_STATE_ONLINE: len = sysfs_emit(buf, "online\n"); break; default: len = sysfs_emit(buf, "no stat\n"); break; } dasd_put_device(device); } else len = sysfs_emit(buf, "unknown\n"); return len; } static DEVICE_ATTR(status, 0444, dasd_device_status_show, NULL); static ssize_t dasd_alias_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; struct dasd_uid uid; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return sprintf(buf, "0\n"); if (device->discipline && device->discipline->get_uid && !device->discipline->get_uid(device, &uid)) { if (uid.type == UA_BASE_PAV_ALIAS || uid.type == UA_HYPER_PAV_ALIAS) { dasd_put_device(device); return sprintf(buf, "1\n"); } } dasd_put_device(device); return sprintf(buf, "0\n"); } static DEVICE_ATTR(alias, 0444, dasd_alias_show, NULL); static ssize_t dasd_vendor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; struct dasd_uid uid; char *vendor; device = dasd_device_from_cdev(to_ccwdev(dev)); vendor = ""; if (IS_ERR(device)) return sysfs_emit(buf, "%s\n", vendor); if (device->discipline && device->discipline->get_uid && !device->discipline->get_uid(device, &uid)) vendor = uid.vendor; dasd_put_device(device); return sysfs_emit(buf, "%s\n", vendor); } static DEVICE_ATTR(vendor, 0444, dasd_vendor_show, NULL); static ssize_t dasd_uid_show(struct device *dev, struct device_attribute *attr, char *buf) { char uid_string[DASD_UID_STRLEN]; struct dasd_device *device; struct dasd_uid uid; char ua_string[3]; device = dasd_device_from_cdev(to_ccwdev(dev)); uid_string[0] = 0; if (IS_ERR(device)) return sysfs_emit(buf, "%s\n", uid_string); if (device->discipline && device->discipline->get_uid && !device->discipline->get_uid(device, &uid)) { switch (uid.type) { case UA_BASE_DEVICE: snprintf(ua_string, sizeof(ua_string), "%02x", uid.real_unit_addr); break; case UA_BASE_PAV_ALIAS: snprintf(ua_string, sizeof(ua_string), "%02x", uid.base_unit_addr); break; case UA_HYPER_PAV_ALIAS: snprintf(ua_string, sizeof(ua_string), "xx"); break; default: /* should not happen, treat like base device */ snprintf(ua_string, sizeof(ua_string), "%02x", uid.real_unit_addr); break; } if (strlen(uid.vduit) > 0) snprintf(uid_string, sizeof(uid_string), "%s.%s.%04x.%s.%s", uid.vendor, uid.serial, uid.ssid, ua_string, uid.vduit); else snprintf(uid_string, sizeof(uid_string), "%s.%s.%04x.%s", uid.vendor, uid.serial, uid.ssid, ua_string); } dasd_put_device(device); return sysfs_emit(buf, "%s\n", uid_string); } static DEVICE_ATTR(uid, 0444, dasd_uid_show, NULL); /* * extended error-reporting */ static ssize_t dasd_eer_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int eer_flag; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap) && devmap->device) eer_flag = dasd_eer_enabled(devmap->device); else eer_flag = 0; return sysfs_emit(buf, eer_flag ? "1\n" : "0\n"); } static ssize_t dasd_eer_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned int val; int rc = 0; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return PTR_ERR(device); if (kstrtouint(buf, 0, &val) || val > 1) return -EINVAL; if (val) rc = dasd_eer_enable(device); else dasd_eer_disable(device); dasd_put_device(device); return rc ? : count; } static DEVICE_ATTR(eer_enabled, 0644, dasd_eer_show, dasd_eer_store); /* * aq_mask controls if the DASD should be quiesced on certain triggers * The aq_mask attribute is interpreted as bitmap of the DASD_EER_* triggers. */ static ssize_t dasd_aq_mask_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; unsigned int aq_mask = 0; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap)) aq_mask = devmap->aq_mask; return sysfs_emit(buf, "%d\n", aq_mask); } static ssize_t dasd_aq_mask_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_devmap *devmap; unsigned int val; if (kstrtouint(buf, 0, &val) || val > DASD_EER_VALID) return -EINVAL; devmap = dasd_devmap_from_cdev(to_ccwdev(dev)); if (IS_ERR(devmap)) return PTR_ERR(devmap); spin_lock(&dasd_devmap_lock); devmap->aq_mask = val; if (devmap->device) devmap->device->aq_mask = devmap->aq_mask; spin_unlock(&dasd_devmap_lock); return count; } static DEVICE_ATTR(aq_mask, 0644, dasd_aq_mask_show, dasd_aq_mask_store); /* * aq_requeue controls if requests are returned to the blocklayer on quiesce * or if requests are only not started */ static ssize_t dasd_aqr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int flag; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap)) flag = (devmap->features & DASD_FEATURE_REQUEUEQUIESCE) != 0; else flag = (DASD_FEATURE_DEFAULT & DASD_FEATURE_REQUEUEQUIESCE) != 0; return sysfs_emit(buf, "%d\n", flag); } static ssize_t dasd_aqr_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { bool val; int rc; if (kstrtobool(buf, &val)) return -EINVAL; rc = dasd_set_feature(to_ccwdev(dev), DASD_FEATURE_REQUEUEQUIESCE, val); return rc ? : count; } static DEVICE_ATTR(aq_requeue, 0644, dasd_aqr_show, dasd_aqr_store); /* * aq_timeouts controls how much retries have to time out until * a device gets autoquiesced */ static ssize_t dasd_aq_timeouts_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; len = sysfs_emit(buf, "%u\n", device->aq_timeouts); dasd_put_device(device); return len; } static ssize_t dasd_aq_timeouts_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned int val; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if ((kstrtouint(buf, 10, &val) != 0) || val > DASD_RETRIES_MAX || val == 0) { dasd_put_device(device); return -EINVAL; } if (val) device->aq_timeouts = val; dasd_put_device(device); return count; } static DEVICE_ATTR(aq_timeouts, 0644, dasd_aq_timeouts_show, dasd_aq_timeouts_store); /* * expiration time for default requests */ static ssize_t dasd_expires_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; len = sysfs_emit(buf, "%lu\n", device->default_expires); dasd_put_device(device); return len; } static ssize_t dasd_expires_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned long val; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if ((kstrtoul(buf, 10, &val) != 0) || (val > DASD_EXPIRES_MAX) || val == 0) { dasd_put_device(device); return -EINVAL; } if (val) device->default_expires = val; dasd_put_device(device); return count; } static DEVICE_ATTR(expires, 0644, dasd_expires_show, dasd_expires_store); static ssize_t dasd_retries_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; len = sysfs_emit(buf, "%lu\n", device->default_retries); dasd_put_device(device); return len; } static ssize_t dasd_retries_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned long val; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if ((kstrtoul(buf, 10, &val) != 0) || (val > DASD_RETRIES_MAX)) { dasd_put_device(device); return -EINVAL; } if (val) device->default_retries = val; dasd_put_device(device); return count; } static DEVICE_ATTR(retries, 0644, dasd_retries_show, dasd_retries_store); static ssize_t dasd_timeout_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; len = sysfs_emit(buf, "%lu\n", device->blk_timeout); dasd_put_device(device); return len; } static ssize_t dasd_timeout_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned long val; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device) || !device->block) return -ENODEV; if ((kstrtoul(buf, 10, &val) != 0) || val > UINT_MAX / HZ) { dasd_put_device(device); return -EINVAL; } if (!device->block->gdp) { dasd_put_device(device); return -ENODEV; } device->blk_timeout = val; blk_queue_rq_timeout(device->block->gdp->queue, val * HZ); dasd_put_device(device); return count; } static DEVICE_ATTR(timeout, 0644, dasd_timeout_show, dasd_timeout_store); static ssize_t dasd_path_reset_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned int val; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if ((kstrtouint(buf, 16, &val) != 0) || val > 0xff) val = 0; if (device->discipline && device->discipline->reset_path) device->discipline->reset_path(device, (__u8) val); dasd_put_device(device); return count; } static DEVICE_ATTR(path_reset, 0200, NULL, dasd_path_reset_store); static ssize_t dasd_hpf_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int hpf; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if (!device->discipline || !device->discipline->hpf_enabled) { dasd_put_device(device); return sysfs_emit(buf, "%d\n", dasd_nofcx); } hpf = device->discipline->hpf_enabled(device); dasd_put_device(device); return sysfs_emit(buf, "%d\n", hpf); } static DEVICE_ATTR(hpf, 0444, dasd_hpf_show, NULL); static ssize_t dasd_reservation_policy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int rc = 0; devmap = dasd_find_busid(dev_name(dev)); if (IS_ERR(devmap)) { rc = sysfs_emit(buf, "ignore\n"); } else { spin_lock(&dasd_devmap_lock); if (devmap->features & DASD_FEATURE_FAILONSLCK) rc = sysfs_emit(buf, "fail\n"); else rc = sysfs_emit(buf, "ignore\n"); spin_unlock(&dasd_devmap_lock); } return rc; } static ssize_t dasd_reservation_policy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct ccw_device *cdev = to_ccwdev(dev); int rc; if (sysfs_streq("ignore", buf)) rc = dasd_set_feature(cdev, DASD_FEATURE_FAILONSLCK, 0); else if (sysfs_streq("fail", buf)) rc = dasd_set_feature(cdev, DASD_FEATURE_FAILONSLCK, 1); else rc = -EINVAL; return rc ? : count; } static DEVICE_ATTR(reservation_policy, 0644, dasd_reservation_policy_show, dasd_reservation_policy_store); static ssize_t dasd_reservation_state_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int rc = 0; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return sysfs_emit(buf, "none\n"); if (test_bit(DASD_FLAG_IS_RESERVED, &device->flags)) rc = sysfs_emit(buf, "reserved\n"); else if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags)) rc = sysfs_emit(buf, "lost\n"); else rc = sysfs_emit(buf, "none\n"); dasd_put_device(device); return rc; } static ssize_t dasd_reservation_state_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; int rc = 0; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if (sysfs_streq("reset", buf)) clear_bit(DASD_FLAG_LOCK_STOLEN, &device->flags); else rc = -EINVAL; dasd_put_device(device); if (rc) return rc; else return count; } static DEVICE_ATTR(last_known_reservation_state, 0644, dasd_reservation_state_show, dasd_reservation_state_store); static ssize_t dasd_pm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; u8 opm, nppm, cablepm, cuirpm, hpfpm, ifccpm; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return sprintf(buf, "0\n"); opm = dasd_path_get_opm(device); nppm = dasd_path_get_nppm(device); cablepm = dasd_path_get_cablepm(device); cuirpm = dasd_path_get_cuirpm(device); hpfpm = dasd_path_get_hpfpm(device); ifccpm = dasd_path_get_ifccpm(device); dasd_put_device(device); return sprintf(buf, "%02x %02x %02x %02x %02x %02x\n", opm, nppm, cablepm, cuirpm, hpfpm, ifccpm); } static DEVICE_ATTR(path_masks, 0444, dasd_pm_show, NULL); /* * threshold value for IFCC/CCC errors */ static ssize_t dasd_path_threshold_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; len = sysfs_emit(buf, "%lu\n", device->path_thrhld); dasd_put_device(device); return len; } static ssize_t dasd_path_threshold_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned long flags; unsigned long val; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if (kstrtoul(buf, 10, &val) != 0 || val > DASD_THRHLD_MAX) { dasd_put_device(device); return -EINVAL; } spin_lock_irqsave(get_ccwdev_lock(to_ccwdev(dev)), flags); device->path_thrhld = val; spin_unlock_irqrestore(get_ccwdev_lock(to_ccwdev(dev)), flags); dasd_put_device(device); return count; } static DEVICE_ATTR(path_threshold, 0644, dasd_path_threshold_show, dasd_path_threshold_store); /* * configure if path is disabled after IFCC/CCC error threshold is * exceeded */ static ssize_t dasd_path_autodisable_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_devmap *devmap; int flag; devmap = dasd_find_busid(dev_name(dev)); if (!IS_ERR(devmap)) flag = (devmap->features & DASD_FEATURE_PATH_AUTODISABLE) != 0; else flag = (DASD_FEATURE_DEFAULT & DASD_FEATURE_PATH_AUTODISABLE) != 0; return sysfs_emit(buf, flag ? "1\n" : "0\n"); } static ssize_t dasd_path_autodisable_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { unsigned int val; int rc; if (kstrtouint(buf, 0, &val) || val > 1) return -EINVAL; rc = dasd_set_feature(to_ccwdev(dev), DASD_FEATURE_PATH_AUTODISABLE, val); return rc ? : count; } static DEVICE_ATTR(path_autodisable, 0644, dasd_path_autodisable_show, dasd_path_autodisable_store); /* * interval for IFCC/CCC checks * meaning time with no IFCC/CCC error before the error counter * gets reset */ static ssize_t dasd_path_interval_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int len; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; len = sysfs_emit(buf, "%lu\n", device->path_interval); dasd_put_device(device); return len; } static ssize_t dasd_path_interval_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; unsigned long flags; unsigned long val; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if ((kstrtoul(buf, 10, &val) != 0) || (val > DASD_INTERVAL_MAX) || val == 0) { dasd_put_device(device); return -EINVAL; } spin_lock_irqsave(get_ccwdev_lock(to_ccwdev(dev)), flags); if (val) device->path_interval = val; spin_unlock_irqrestore(get_ccwdev_lock(to_ccwdev(dev)), flags); dasd_put_device(device); return count; } static DEVICE_ATTR(path_interval, 0644, dasd_path_interval_show, dasd_path_interval_store); static ssize_t dasd_device_fcs_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_device *device; int fc_sec; int rc; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; fc_sec = dasd_path_get_fcs_device(device); if (fc_sec == -EINVAL) rc = sysfs_emit(buf, "Inconsistent\n"); else rc = sysfs_emit(buf, "%s\n", dasd_path_get_fcs_str(fc_sec)); dasd_put_device(device); return rc; } static DEVICE_ATTR(fc_security, 0444, dasd_device_fcs_show, NULL); static ssize_t dasd_path_fcs_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf) { struct dasd_path *path = to_dasd_path(kobj); unsigned int fc_sec = path->fc_security; return sysfs_emit(buf, "%s\n", dasd_path_get_fcs_str(fc_sec)); } static struct kobj_attribute path_fcs_attribute = __ATTR(fc_security, 0444, dasd_path_fcs_show, NULL); /* * print copy relation in the form * primary,secondary[1] primary,secondary[2], ... */ static ssize_t dasd_copy_pair_show(struct device *dev, struct device_attribute *attr, char *buf) { char prim_busid[DASD_BUS_ID_SIZE]; struct dasd_copy_relation *copy; struct dasd_devmap *devmap; int len = 0; int i; devmap = dasd_find_busid(dev_name(dev)); if (IS_ERR(devmap)) return -ENODEV; if (!devmap->copy) return -ENODEV; copy = devmap->copy; /* find primary */ for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && copy->entry[i].primary) { strscpy(prim_busid, copy->entry[i].busid, DASD_BUS_ID_SIZE); break; } } if (i == DASD_CP_ENTRIES) goto out; /* print all secondary */ for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && !copy->entry[i].primary) len += sysfs_emit_at(buf, len, "%s,%s ", prim_busid, copy->entry[i].busid); } len += sysfs_emit_at(buf, len, "\n"); out: return len; } static int dasd_devmap_set_copy_relation(struct dasd_devmap *devmap, struct dasd_copy_relation *copy, char *busid, bool primary) { int i; /* find free entry */ for (i = 0; i < DASD_CP_ENTRIES; i++) { /* current bus_id already included, nothing to do */ if (copy->entry[i].configured && strncmp(copy->entry[i].busid, busid, DASD_BUS_ID_SIZE) == 0) return 0; if (!copy->entry[i].configured) break; } if (i == DASD_CP_ENTRIES) return -EINVAL; copy->entry[i].configured = true; strscpy(copy->entry[i].busid, busid, DASD_BUS_ID_SIZE); if (primary) { copy->active = &copy->entry[i]; copy->entry[i].primary = true; } if (!devmap->copy) devmap->copy = copy; return 0; } static void dasd_devmap_del_copy_relation(struct dasd_copy_relation *copy, char *busid) { int i; spin_lock(&dasd_devmap_lock); /* find entry */ for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && strncmp(copy->entry[i].busid, busid, DASD_BUS_ID_SIZE) == 0) break; } if (i == DASD_CP_ENTRIES || !copy->entry[i].configured) { spin_unlock(&dasd_devmap_lock); return; } copy->entry[i].configured = false; memset(copy->entry[i].busid, 0, DASD_BUS_ID_SIZE); if (copy->active == &copy->entry[i]) { copy->active = NULL; copy->entry[i].primary = false; } spin_unlock(&dasd_devmap_lock); } static int dasd_devmap_clear_copy_relation(struct device *dev) { struct dasd_copy_relation *copy; struct dasd_devmap *devmap; int i, rc = 1; devmap = dasd_devmap_from_cdev(to_ccwdev(dev)); if (IS_ERR(devmap)) return 1; spin_lock(&dasd_devmap_lock); if (!devmap->copy) goto out; copy = devmap->copy; /* first check if all secondary devices are offline*/ for (i = 0; i < DASD_CP_ENTRIES; i++) { if (!copy->entry[i].configured) continue; if (copy->entry[i].device == copy->active->device) continue; if (copy->entry[i].device) goto out; } /* clear all devmap entries */ for (i = 0; i < DASD_CP_ENTRIES; i++) { if (strlen(copy->entry[i].busid) == 0) continue; if (copy->entry[i].device) { dasd_put_device(copy->entry[i].device); copy->entry[i].device->copy = NULL; copy->entry[i].device = NULL; } devmap = dasd_find_busid_locked(copy->entry[i].busid); devmap->copy = NULL; memset(copy->entry[i].busid, 0, DASD_BUS_ID_SIZE); } kfree(copy); rc = 0; out: spin_unlock(&dasd_devmap_lock); return rc; } /* * parse BUSIDs from a copy pair */ static int dasd_devmap_parse_busid(const char *buf, char *prim_busid, char *sec_busid) { char *primary, *secondary, *tmp, *pt; int id0, id1, id2; pt = kstrdup(buf, GFP_KERNEL); tmp = pt; if (!tmp) return -ENOMEM; primary = strsep(&tmp, ","); if (!primary) { kfree(pt); return -EINVAL; } secondary = strsep(&tmp, ","); if (!secondary) { kfree(pt); return -EINVAL; } if (dasd_busid(primary, &id0, &id1, &id2)) { kfree(pt); return -EINVAL; } sprintf(prim_busid, "%01x.%01x.%04x", id0, id1, id2); if (dasd_busid(secondary, &id0, &id1, &id2)) { kfree(pt); return -EINVAL; } sprintf(sec_busid, "%01x.%01x.%04x", id0, id1, id2); kfree(pt); return 0; } static ssize_t dasd_copy_pair_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_devmap *prim_devmap, *sec_devmap; char prim_busid[DASD_BUS_ID_SIZE]; char sec_busid[DASD_BUS_ID_SIZE]; struct dasd_copy_relation *copy; struct dasd_device *device; bool pprc_enabled; int rc; if (strncmp(buf, "clear", strlen("clear")) == 0) { if (dasd_devmap_clear_copy_relation(dev)) return -EINVAL; return count; } rc = dasd_devmap_parse_busid(buf, prim_busid, sec_busid); if (rc) return rc; if (strncmp(dev_name(dev), prim_busid, DASD_BUS_ID_SIZE) != 0 && strncmp(dev_name(dev), sec_busid, DASD_BUS_ID_SIZE) != 0) return -EINVAL; /* allocate primary devmap if needed */ prim_devmap = dasd_find_busid(prim_busid); if (IS_ERR(prim_devmap)) prim_devmap = dasd_add_busid(prim_busid, DASD_FEATURE_DEFAULT); /* allocate secondary devmap if needed */ sec_devmap = dasd_find_busid(sec_busid); if (IS_ERR(sec_devmap)) sec_devmap = dasd_add_busid(sec_busid, DASD_FEATURE_DEFAULT); /* setting copy relation is only allowed for offline secondary */ if (sec_devmap->device) return -EINVAL; if (prim_devmap->copy) { copy = prim_devmap->copy; } else if (sec_devmap->copy) { copy = sec_devmap->copy; } else { copy = kzalloc(sizeof(*copy), GFP_KERNEL); if (!copy) return -ENOMEM; } spin_lock(&dasd_devmap_lock); rc = dasd_devmap_set_copy_relation(prim_devmap, copy, prim_busid, true); if (rc) { spin_unlock(&dasd_devmap_lock); return rc; } rc = dasd_devmap_set_copy_relation(sec_devmap, copy, sec_busid, false); if (rc) { spin_unlock(&dasd_devmap_lock); return rc; } spin_unlock(&dasd_devmap_lock); /* if primary device is already online call device setup directly */ if (prim_devmap->device && !prim_devmap->device->copy) { device = prim_devmap->device; if (device->discipline->pprc_enabled) { pprc_enabled = device->discipline->pprc_enabled(device); rc = dasd_devmap_set_device_copy_relation(device->cdev, pprc_enabled); } else { rc = -EOPNOTSUPP; } } if (rc) { dasd_devmap_del_copy_relation(copy, prim_busid); dasd_devmap_del_copy_relation(copy, sec_busid); count = rc; } return count; } static DEVICE_ATTR(copy_pair, 0644, dasd_copy_pair_show, dasd_copy_pair_store); static ssize_t dasd_copy_role_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dasd_copy_relation *copy; struct dasd_device *device; int len, i; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; if (!device->copy) { len = sysfs_emit(buf, "none\n"); goto out; } copy = device->copy; /* only the active device is primary */ if (copy->active->device == device) { len = sysfs_emit(buf, "primary\n"); goto out; } for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].device == device) { len = sysfs_emit(buf, "secondary\n"); goto out; } } /* not in the list, no COPY role */ len = sysfs_emit(buf, "none\n"); out: dasd_put_device(device); return len; } static DEVICE_ATTR(copy_role, 0444, dasd_copy_role_show, NULL); static ssize_t dasd_device_ping(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dasd_device *device; size_t rc; device = dasd_device_from_cdev(to_ccwdev(dev)); if (IS_ERR(device)) return -ENODEV; /* * do not try during offline processing * early check only * the sleep_on function itself checks for offline * processing again */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) { rc = -EBUSY; goto out; } if (!device->discipline || !device->discipline->device_ping) { rc = -EOPNOTSUPP; goto out; } rc = device->discipline->device_ping(device); if (!rc) rc = count; out: dasd_put_device(device); return rc; } static DEVICE_ATTR(ping, 0200, NULL, dasd_device_ping); #define DASD_DEFINE_ATTR(_name, _func) \ static ssize_t dasd_##_name##_show(struct device *dev, \ struct device_attribute *attr, \ char *buf) \ { \ struct ccw_device *cdev = to_ccwdev(dev); \ struct dasd_device *device = dasd_device_from_cdev(cdev); \ int val = 0; \ \ if (IS_ERR(device)) \ return -ENODEV; \ if (device->discipline && _func) \ val = _func(device); \ dasd_put_device(device); \ \ return sysfs_emit(buf, "%d\n", val); \ } \ static DEVICE_ATTR(_name, 0444, dasd_##_name##_show, NULL); \ DASD_DEFINE_ATTR(ese, device->discipline->is_ese); DASD_DEFINE_ATTR(extent_size, device->discipline->ext_size); DASD_DEFINE_ATTR(pool_id, device->discipline->ext_pool_id); DASD_DEFINE_ATTR(space_configured, device->discipline->space_configured); DASD_DEFINE_ATTR(space_allocated, device->discipline->space_allocated); DASD_DEFINE_ATTR(logical_capacity, device->discipline->logical_capacity); DASD_DEFINE_ATTR(warn_threshold, device->discipline->ext_pool_warn_thrshld); DASD_DEFINE_ATTR(cap_at_warnlevel, device->discipline->ext_pool_cap_at_warnlevel); DASD_DEFINE_ATTR(pool_oos, device->discipline->ext_pool_oos); static struct attribute * dasd_attrs[] = { &dev_attr_readonly.attr, &dev_attr_discipline.attr, &dev_attr_status.attr, &dev_attr_alias.attr, &dev_attr_vendor.attr, &dev_attr_uid.attr, &dev_attr_use_diag.attr, &dev_attr_raw_track_access.attr, &dev_attr_eer_enabled.attr, &dev_attr_erplog.attr, &dev_attr_failfast.attr, &dev_attr_expires.attr, &dev_attr_retries.attr, &dev_attr_timeout.attr, &dev_attr_reservation_policy.attr, &dev_attr_last_known_reservation_state.attr, &dev_attr_safe_offline.attr, &dev_attr_host_access_count.attr, &dev_attr_path_masks.attr, &dev_attr_path_threshold.attr, &dev_attr_path_autodisable.attr, &dev_attr_path_interval.attr, &dev_attr_path_reset.attr, &dev_attr_hpf.attr, &dev_attr_ese.attr, &dev_attr_fc_security.attr, &dev_attr_copy_pair.attr, &dev_attr_copy_role.attr, &dev_attr_ping.attr, &dev_attr_aq_mask.attr, &dev_attr_aq_requeue.attr, &dev_attr_aq_timeouts.attr, NULL, }; static const struct attribute_group dasd_attr_group = { .attrs = dasd_attrs, }; static struct attribute *capacity_attrs[] = { &dev_attr_space_configured.attr, &dev_attr_space_allocated.attr, &dev_attr_logical_capacity.attr, NULL, }; static const struct attribute_group capacity_attr_group = { .name = "capacity", .attrs = capacity_attrs, }; static struct attribute *ext_pool_attrs[] = { &dev_attr_pool_id.attr, &dev_attr_extent_size.attr, &dev_attr_warn_threshold.attr, &dev_attr_cap_at_warnlevel.attr, &dev_attr_pool_oos.attr, NULL, }; static const struct attribute_group ext_pool_attr_group = { .name = "extent_pool", .attrs = ext_pool_attrs, }; const struct attribute_group *dasd_dev_groups[] = { &dasd_attr_group, &capacity_attr_group, &ext_pool_attr_group, NULL, }; EXPORT_SYMBOL_GPL(dasd_dev_groups); /* * Return value of the specified feature. */ int dasd_get_feature(struct ccw_device *cdev, int feature) { struct dasd_devmap *devmap; devmap = dasd_find_busid(dev_name(&cdev->dev)); if (IS_ERR(devmap)) return PTR_ERR(devmap); return ((devmap->features & feature) != 0); } /* * Set / reset given feature. * Flag indicates whether to set (!=0) or the reset (=0) the feature. */ int dasd_set_feature(struct ccw_device *cdev, int feature, int flag) { struct dasd_devmap *devmap; devmap = dasd_devmap_from_cdev(cdev); if (IS_ERR(devmap)) return PTR_ERR(devmap); spin_lock(&dasd_devmap_lock); if (flag) devmap->features |= feature; else devmap->features &= ~feature; if (devmap->device) devmap->device->features = devmap->features; spin_unlock(&dasd_devmap_lock); return 0; } EXPORT_SYMBOL(dasd_set_feature); static struct attribute *paths_info_attrs[] = { &path_fcs_attribute.attr, NULL, }; ATTRIBUTE_GROUPS(paths_info); static struct kobj_type path_attr_type = { .release = dasd_path_release, .default_groups = paths_info_groups, .sysfs_ops = &kobj_sysfs_ops, }; static void dasd_path_init_kobj(struct dasd_device *device, int chp) { device->path[chp].kobj.kset = device->paths_info; kobject_init(&device->path[chp].kobj, &path_attr_type); } void dasd_path_create_kobj(struct dasd_device *device, int chp) { int rc; if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) return; if (!device->paths_info) { dev_warn(&device->cdev->dev, "Unable to create paths objects\n"); return; } if (device->path[chp].in_sysfs) return; if (!device->path[chp].conf_data) return; dasd_path_init_kobj(device, chp); rc = kobject_add(&device->path[chp].kobj, NULL, "%x.%02x", device->path[chp].cssid, device->path[chp].chpid); if (rc) kobject_put(&device->path[chp].kobj); device->path[chp].in_sysfs = true; } EXPORT_SYMBOL(dasd_path_create_kobj); void dasd_path_create_kobjects(struct dasd_device *device) { u8 lpm, opm; opm = dasd_path_get_opm(device); for (lpm = 0x80; lpm; lpm >>= 1) { if (!(lpm & opm)) continue; dasd_path_create_kobj(device, pathmask_to_pos(lpm)); } } EXPORT_SYMBOL(dasd_path_create_kobjects); static void dasd_path_remove_kobj(struct dasd_device *device, int chp) { if (device->path[chp].in_sysfs) { kobject_put(&device->path[chp].kobj); device->path[chp].in_sysfs = false; } } /* * As we keep kobjects for the lifetime of a device, this function must not be * called anywhere but in the context of offlining a device. */ void dasd_path_remove_kobjects(struct dasd_device *device) { int i; for (i = 0; i < 8; i++) dasd_path_remove_kobj(device, i); } EXPORT_SYMBOL(dasd_path_remove_kobjects); int dasd_devmap_init(void) { int i; /* Initialize devmap structures. */ dasd_max_devindex = 0; for (i = 0; i < 256; i++) INIT_LIST_HEAD(&dasd_hashlists[i]); return 0; } void dasd_devmap_exit(void) { dasd_forget_ranges(); }
linux-master
drivers/s390/block/dasd_devmap.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2002 * * /proc interface for the dasd driver. * */ #define KMSG_COMPONENT "dasd" #include <linux/ctype.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/seq_file.h> #include <linux/vmalloc.h> #include <linux/proc_fs.h> #include <asm/debug.h> #include <linux/uaccess.h> /* This is ugly... */ #define PRINTK_HEADER "dasd_proc:" #include "dasd_int.h" static struct proc_dir_entry *dasd_proc_root_entry = NULL; static struct proc_dir_entry *dasd_devices_entry = NULL; static struct proc_dir_entry *dasd_statistics_entry = NULL; static int dasd_devices_show(struct seq_file *m, void *v) { struct dasd_device *device; struct dasd_block *block; char *substr; device = dasd_device_from_devindex((unsigned long) v - 1); if (IS_ERR(device)) return 0; if (device->block) block = device->block; else { dasd_put_device(device); return 0; } /* Print device number. */ seq_printf(m, "%s", dev_name(&device->cdev->dev)); /* Print discipline string. */ if (device->discipline != NULL) seq_printf(m, "(%s)", device->discipline->name); else seq_printf(m, "(none)"); /* Print kdev. */ if (block->gdp) seq_printf(m, " at (%3d:%6d)", MAJOR(disk_devt(block->gdp)), MINOR(disk_devt(block->gdp))); else seq_printf(m, " at (???:??????)"); /* Print device name. */ if (block->gdp) seq_printf(m, " is %-8s", block->gdp->disk_name); else seq_printf(m, " is ????????"); /* Print devices features. */ substr = (device->features & DASD_FEATURE_READONLY) ? "(ro)" : " "; seq_printf(m, "%4s: ", substr); /* Print device status information. */ switch (device->state) { case DASD_STATE_NEW: seq_printf(m, "new"); break; case DASD_STATE_KNOWN: seq_printf(m, "detected"); break; case DASD_STATE_BASIC: seq_printf(m, "basic"); break; case DASD_STATE_UNFMT: seq_printf(m, "unformatted"); break; case DASD_STATE_READY: case DASD_STATE_ONLINE: seq_printf(m, "active "); if (dasd_check_blocksize(block->bp_block)) seq_printf(m, "n/f "); else seq_printf(m, "at blocksize: %u, %lu blocks, %lu MB", block->bp_block, block->blocks, ((block->bp_block >> 9) * block->blocks) >> 11); break; default: seq_printf(m, "no stat"); break; } dasd_put_device(device); if (dasd_probeonly) seq_printf(m, "(probeonly)"); seq_printf(m, "\n"); return 0; } static void *dasd_devices_start(struct seq_file *m, loff_t *pos) { if (*pos >= dasd_max_devindex) return NULL; return (void *)((unsigned long) *pos + 1); } static void *dasd_devices_next(struct seq_file *m, void *v, loff_t *pos) { ++*pos; return dasd_devices_start(m, pos); } static void dasd_devices_stop(struct seq_file *m, void *v) { } static const struct seq_operations dasd_devices_seq_ops = { .start = dasd_devices_start, .next = dasd_devices_next, .stop = dasd_devices_stop, .show = dasd_devices_show, }; #ifdef CONFIG_DASD_PROFILE static int dasd_stats_all_block_on(void) { int i, rc; struct dasd_device *device; rc = 0; for (i = 0; i < dasd_max_devindex; ++i) { device = dasd_device_from_devindex(i); if (IS_ERR(device)) continue; if (device->block) rc = dasd_profile_on(&device->block->profile); dasd_put_device(device); if (rc) return rc; } return 0; } static void dasd_stats_all_block_off(void) { int i; struct dasd_device *device; for (i = 0; i < dasd_max_devindex; ++i) { device = dasd_device_from_devindex(i); if (IS_ERR(device)) continue; if (device->block) dasd_profile_off(&device->block->profile); dasd_put_device(device); } } static void dasd_stats_all_block_reset(void) { int i; struct dasd_device *device; for (i = 0; i < dasd_max_devindex; ++i) { device = dasd_device_from_devindex(i); if (IS_ERR(device)) continue; if (device->block) dasd_profile_reset(&device->block->profile); dasd_put_device(device); } } static void dasd_statistics_array(struct seq_file *m, unsigned int *array, int factor) { int i; for (i = 0; i < 32; i++) { seq_printf(m, "%7d ", array[i] / factor); if (i == 15) seq_putc(m, '\n'); } seq_putc(m, '\n'); } #endif /* CONFIG_DASD_PROFILE */ static int dasd_stats_proc_show(struct seq_file *m, void *v) { #ifdef CONFIG_DASD_PROFILE struct dasd_profile_info *prof; int factor; spin_lock_bh(&dasd_global_profile.lock); prof = dasd_global_profile.data; if (!prof) { spin_unlock_bh(&dasd_global_profile.lock); seq_printf(m, "Statistics are off - they might be " "switched on using 'echo set on > " "/proc/dasd/statistics'\n"); return 0; } /* prevent counter 'overflow' on output */ for (factor = 1; (prof->dasd_io_reqs / factor) > 9999999; factor *= 10); seq_printf(m, "%d dasd I/O requests\n", prof->dasd_io_reqs); seq_printf(m, "with %u sectors(512B each)\n", prof->dasd_io_sects); seq_printf(m, "Scale Factor is %d\n", factor); seq_printf(m, " __<4 ___8 __16 __32 __64 _128 " " _256 _512 __1k __2k __4k __8k " " _16k _32k _64k 128k\n"); seq_printf(m, " _256 _512 __1M __2M __4M __8M " " _16M _32M _64M 128M 256M 512M " " __1G __2G __4G " " _>4G\n"); seq_printf(m, "Histogram of sizes (512B secs)\n"); dasd_statistics_array(m, prof->dasd_io_secs, factor); seq_printf(m, "Histogram of I/O times (microseconds)\n"); dasd_statistics_array(m, prof->dasd_io_times, factor); seq_printf(m, "Histogram of I/O times per sector\n"); dasd_statistics_array(m, prof->dasd_io_timps, factor); seq_printf(m, "Histogram of I/O time till ssch\n"); dasd_statistics_array(m, prof->dasd_io_time1, factor); seq_printf(m, "Histogram of I/O time between ssch and irq\n"); dasd_statistics_array(m, prof->dasd_io_time2, factor); seq_printf(m, "Histogram of I/O time between ssch " "and irq per sector\n"); dasd_statistics_array(m, prof->dasd_io_time2ps, factor); seq_printf(m, "Histogram of I/O time between irq and end\n"); dasd_statistics_array(m, prof->dasd_io_time3, factor); seq_printf(m, "# of req in chanq at enqueuing (1..32) \n"); dasd_statistics_array(m, prof->dasd_io_nr_req, factor); spin_unlock_bh(&dasd_global_profile.lock); #else seq_printf(m, "Statistics are not activated in this kernel\n"); #endif return 0; } static int dasd_stats_proc_open(struct inode *inode, struct file *file) { return single_open(file, dasd_stats_proc_show, NULL); } static ssize_t dasd_stats_proc_write(struct file *file, const char __user *user_buf, size_t user_len, loff_t *pos) { #ifdef CONFIG_DASD_PROFILE char *buffer, *str; int rc; if (user_len > 65536) user_len = 65536; buffer = dasd_get_user_string(user_buf, user_len); if (IS_ERR(buffer)) return PTR_ERR(buffer); /* check for valid verbs */ str = skip_spaces(buffer); if (strncmp(str, "set", 3) == 0 && isspace(str[3])) { /* 'set xxx' was given */ str = skip_spaces(str + 4); if (strcmp(str, "on") == 0) { /* switch on statistics profiling */ rc = dasd_stats_all_block_on(); if (rc) { dasd_stats_all_block_off(); goto out_error; } rc = dasd_profile_on(&dasd_global_profile); if (rc) { dasd_stats_all_block_off(); goto out_error; } dasd_profile_reset(&dasd_global_profile); dasd_global_profile_level = DASD_PROFILE_ON; pr_info("The statistics feature has been switched " "on\n"); } else if (strcmp(str, "off") == 0) { /* switch off statistics profiling */ dasd_global_profile_level = DASD_PROFILE_OFF; dasd_profile_off(&dasd_global_profile); dasd_stats_all_block_off(); pr_info("The statistics feature has been switched " "off\n"); } else goto out_parse_error; } else if (strncmp(str, "reset", 5) == 0) { /* reset the statistics */ dasd_profile_reset(&dasd_global_profile); dasd_stats_all_block_reset(); pr_info("The statistics have been reset\n"); } else goto out_parse_error; vfree(buffer); return user_len; out_parse_error: rc = -EINVAL; pr_warn("%s is not a supported value for /proc/dasd/statistics\n", str); out_error: vfree(buffer); return rc; #else pr_warn("/proc/dasd/statistics: is not activated in this kernel\n"); return user_len; #endif /* CONFIG_DASD_PROFILE */ } static const struct proc_ops dasd_stats_proc_ops = { .proc_open = dasd_stats_proc_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = single_release, .proc_write = dasd_stats_proc_write, }; /* * Create dasd proc-fs entries. * In case creation failed, cleanup and return -ENOENT. */ int dasd_proc_init(void) { dasd_proc_root_entry = proc_mkdir("dasd", NULL); if (!dasd_proc_root_entry) goto out_nodasd; dasd_devices_entry = proc_create_seq("devices", 0444, dasd_proc_root_entry, &dasd_devices_seq_ops); if (!dasd_devices_entry) goto out_nodevices; dasd_statistics_entry = proc_create("statistics", S_IFREG | S_IRUGO | S_IWUSR, dasd_proc_root_entry, &dasd_stats_proc_ops); if (!dasd_statistics_entry) goto out_nostatistics; return 0; out_nostatistics: remove_proc_entry("devices", dasd_proc_root_entry); out_nodevices: remove_proc_entry("dasd", NULL); out_nodasd: return -ENOENT; } void dasd_proc_exit(void) { remove_proc_entry("devices", dasd_proc_root_entry); remove_proc_entry("statistics", dasd_proc_root_entry); remove_proc_entry("dasd", NULL); }
linux-master
drivers/s390/block/dasd_proc.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2009 * EMC Symmetrix ioctl Copyright EMC Corporation, 2008 * Author.........: Nigel Hislop <[email protected]> */ #define KMSG_COMPONENT "dasd-eckd" #include <linux/stddef.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/hdreg.h> /* HDIO_GETGEO */ #include <linux/bio.h> #include <linux/module.h> #include <linux/compat.h> #include <linux/init.h> #include <linux/seq_file.h> #include <linux/uaccess.h> #include <linux/io.h> #include <asm/css_chars.h> #include <asm/debug.h> #include <asm/idals.h> #include <asm/ebcdic.h> #include <asm/cio.h> #include <asm/ccwdev.h> #include <asm/itcw.h> #include <asm/schid.h> #include <asm/chpid.h> #include "dasd_int.h" #include "dasd_eckd.h" #ifdef PRINTK_HEADER #undef PRINTK_HEADER #endif /* PRINTK_HEADER */ #define PRINTK_HEADER "dasd(eckd):" /* * raw track access always map to 64k in memory * so it maps to 16 blocks of 4k per track */ #define DASD_RAW_BLOCK_PER_TRACK 16 #define DASD_RAW_BLOCKSIZE 4096 /* 64k are 128 x 512 byte sectors */ #define DASD_RAW_SECTORS_PER_TRACK 128 MODULE_LICENSE("GPL"); static struct dasd_discipline dasd_eckd_discipline; /* The ccw bus type uses this table to find devices that it sends to * dasd_eckd_probe */ static struct ccw_device_id dasd_eckd_ids[] = { { CCW_DEVICE_DEVTYPE (0x3990, 0, 0x3390, 0), .driver_info = 0x1}, { CCW_DEVICE_DEVTYPE (0x2105, 0, 0x3390, 0), .driver_info = 0x2}, { CCW_DEVICE_DEVTYPE (0x3880, 0, 0x3380, 0), .driver_info = 0x3}, { CCW_DEVICE_DEVTYPE (0x3990, 0, 0x3380, 0), .driver_info = 0x4}, { CCW_DEVICE_DEVTYPE (0x2105, 0, 0x3380, 0), .driver_info = 0x5}, { CCW_DEVICE_DEVTYPE (0x9343, 0, 0x9345, 0), .driver_info = 0x6}, { CCW_DEVICE_DEVTYPE (0x2107, 0, 0x3390, 0), .driver_info = 0x7}, { CCW_DEVICE_DEVTYPE (0x2107, 0, 0x3380, 0), .driver_info = 0x8}, { CCW_DEVICE_DEVTYPE (0x1750, 0, 0x3390, 0), .driver_info = 0x9}, { CCW_DEVICE_DEVTYPE (0x1750, 0, 0x3380, 0), .driver_info = 0xa}, { /* end of list */ }, }; MODULE_DEVICE_TABLE(ccw, dasd_eckd_ids); static struct ccw_driver dasd_eckd_driver; /* see below */ static void *rawpadpage; #define INIT_CQR_OK 0 #define INIT_CQR_UNFORMATTED 1 #define INIT_CQR_ERROR 2 /* emergency request for reserve/release */ static struct { struct dasd_ccw_req cqr; struct ccw1 ccw; char data[32]; } *dasd_reserve_req; static DEFINE_MUTEX(dasd_reserve_mutex); static struct { struct dasd_ccw_req cqr; struct ccw1 ccw[2]; char data[40]; } *dasd_vol_info_req; static DEFINE_MUTEX(dasd_vol_info_mutex); struct ext_pool_exhaust_work_data { struct work_struct worker; struct dasd_device *device; struct dasd_device *base; }; /* definitions for the path verification worker */ struct pe_handler_work_data { struct work_struct worker; struct dasd_device *device; struct dasd_ccw_req cqr; struct ccw1 ccw; __u8 rcd_buffer[DASD_ECKD_RCD_DATA_SIZE]; int isglobal; __u8 tbvpm; __u8 fcsecpm; }; static struct pe_handler_work_data *pe_handler_worker; static DEFINE_MUTEX(dasd_pe_handler_mutex); struct check_attention_work_data { struct work_struct worker; struct dasd_device *device; __u8 lpum; }; static int dasd_eckd_ext_pool_id(struct dasd_device *); static int prepare_itcw(struct itcw *, unsigned int, unsigned int, int, struct dasd_device *, struct dasd_device *, unsigned int, int, unsigned int, unsigned int, unsigned int, unsigned int); static int dasd_eckd_query_pprc_status(struct dasd_device *, struct dasd_pprc_data_sc4 *); /* initial attempt at a probe function. this can be simplified once * the other detection code is gone */ static int dasd_eckd_probe (struct ccw_device *cdev) { int ret; /* set ECKD specific ccw-device options */ ret = ccw_device_set_options(cdev, CCWDEV_ALLOW_FORCE | CCWDEV_DO_PATHGROUP | CCWDEV_DO_MULTIPATH); if (ret) { DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s", "dasd_eckd_probe: could not set " "ccw-device options"); return ret; } ret = dasd_generic_probe(cdev); return ret; } static int dasd_eckd_set_online(struct ccw_device *cdev) { return dasd_generic_set_online(cdev, &dasd_eckd_discipline); } static const int sizes_trk0[] = { 28, 148, 84 }; #define LABEL_SIZE 140 /* head and record addresses of count_area read in analysis ccw */ static const int count_area_head[] = { 0, 0, 0, 0, 1 }; static const int count_area_rec[] = { 1, 2, 3, 4, 1 }; static inline unsigned int ceil_quot(unsigned int d1, unsigned int d2) { return (d1 + (d2 - 1)) / d2; } static unsigned int recs_per_track(struct dasd_eckd_characteristics * rdc, unsigned int kl, unsigned int dl) { int dn, kn; switch (rdc->dev_type) { case 0x3380: if (kl) return 1499 / (15 + 7 + ceil_quot(kl + 12, 32) + ceil_quot(dl + 12, 32)); else return 1499 / (15 + ceil_quot(dl + 12, 32)); case 0x3390: dn = ceil_quot(dl + 6, 232) + 1; if (kl) { kn = ceil_quot(kl + 6, 232) + 1; return 1729 / (10 + 9 + ceil_quot(kl + 6 * kn, 34) + 9 + ceil_quot(dl + 6 * dn, 34)); } else return 1729 / (10 + 9 + ceil_quot(dl + 6 * dn, 34)); case 0x9345: dn = ceil_quot(dl + 6, 232) + 1; if (kl) { kn = ceil_quot(kl + 6, 232) + 1; return 1420 / (18 + 7 + ceil_quot(kl + 6 * kn, 34) + ceil_quot(dl + 6 * dn, 34)); } else return 1420 / (18 + 7 + ceil_quot(dl + 6 * dn, 34)); } return 0; } static void set_ch_t(struct ch_t *geo, __u32 cyl, __u8 head) { geo->cyl = (__u16) cyl; geo->head = cyl >> 16; geo->head <<= 4; geo->head |= head; } /* * calculate failing track from sense data depending if * it is an EAV device or not */ static int dasd_eckd_track_from_irb(struct irb *irb, struct dasd_device *device, sector_t *track) { struct dasd_eckd_private *private = device->private; u8 *sense = NULL; u32 cyl; u8 head; sense = dasd_get_sense(irb); if (!sense) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "ESE error no sense data\n"); return -EINVAL; } if (!(sense[27] & DASD_SENSE_BIT_2)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "ESE error no valid track data\n"); return -EINVAL; } if (sense[27] & DASD_SENSE_BIT_3) { /* enhanced addressing */ cyl = sense[30] << 20; cyl |= (sense[31] & 0xF0) << 12; cyl |= sense[28] << 8; cyl |= sense[29]; } else { cyl = sense[29] << 8; cyl |= sense[30]; } head = sense[31] & 0x0F; *track = cyl * private->rdc_data.trk_per_cyl + head; return 0; } static int set_timestamp(struct ccw1 *ccw, struct DE_eckd_data *data, struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = get_phys_clock(&data->ep_sys_time); /* * Ignore return code if XRC is not supported or * sync clock is switched off */ if ((rc && !private->rdc_data.facilities.XRC_supported) || rc == -EOPNOTSUPP || rc == -EACCES) return 0; /* switch on System Time Stamp - needed for XRC Support */ data->ga_extended |= 0x08; /* switch on 'Time Stamp Valid' */ data->ga_extended |= 0x02; /* switch on 'Extended Parameter' */ if (ccw) { ccw->count = sizeof(struct DE_eckd_data); ccw->flags |= CCW_FLAG_SLI; } return rc; } static int define_extent(struct ccw1 *ccw, struct DE_eckd_data *data, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *device, int blksize) { struct dasd_eckd_private *private = device->private; u16 heads, beghead, endhead; u32 begcyl, endcyl; int rc = 0; if (ccw) { ccw->cmd_code = DASD_ECKD_CCW_DEFINE_EXTENT; ccw->flags = 0; ccw->count = 16; ccw->cda = (__u32)virt_to_phys(data); } memset(data, 0, sizeof(struct DE_eckd_data)); switch (cmd) { case DASD_ECKD_CCW_READ_HOME_ADDRESS: case DASD_ECKD_CCW_READ_RECORD_ZERO: case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->mask.perm = 0x1; data->attributes.operation = private->attrib.operation; break; case DASD_ECKD_CCW_READ_COUNT: data->mask.perm = 0x1; data->attributes.operation = DASD_BYPASS_CACHE; break; case DASD_ECKD_CCW_READ_TRACK: case DASD_ECKD_CCW_READ_TRACK_DATA: data->mask.perm = 0x1; data->attributes.operation = private->attrib.operation; data->blk_size = 0; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->mask.perm = 0x02; data->attributes.operation = private->attrib.operation; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->attributes.operation = DASD_BYPASS_CACHE; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_ERASE: case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->mask.perm = 0x3; data->mask.auth = 0x1; data->attributes.operation = DASD_BYPASS_CACHE; rc = set_timestamp(ccw, data, device); break; case DASD_ECKD_CCW_WRITE_FULL_TRACK: data->mask.perm = 0x03; data->attributes.operation = private->attrib.operation; data->blk_size = 0; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: data->mask.perm = 0x02; data->attributes.operation = private->attrib.operation; data->blk_size = blksize; rc = set_timestamp(ccw, data, device); break; default: dev_err(&device->cdev->dev, "0x%x is not a known command\n", cmd); break; } data->attributes.mode = 0x3; /* ECKD */ if ((private->rdc_data.cu_type == 0x2105 || private->rdc_data.cu_type == 0x2107 || private->rdc_data.cu_type == 0x1750) && !(private->uses_cdl && trk < 2)) data->ga_extended |= 0x40; /* Regular Data Format Mode */ heads = private->rdc_data.trk_per_cyl; begcyl = trk / heads; beghead = trk % heads; endcyl = totrk / heads; endhead = totrk % heads; /* check for sequential prestage - enhance cylinder range */ if (data->attributes.operation == DASD_SEQ_PRESTAGE || data->attributes.operation == DASD_SEQ_ACCESS) { if (endcyl + private->attrib.nr_cyl < private->real_cyl) endcyl += private->attrib.nr_cyl; else endcyl = (private->real_cyl - 1); } set_ch_t(&data->beg_ext, begcyl, beghead); set_ch_t(&data->end_ext, endcyl, endhead); return rc; } static void locate_record_ext(struct ccw1 *ccw, struct LRE_eckd_data *data, unsigned int trk, unsigned int rec_on_trk, int count, int cmd, struct dasd_device *device, unsigned int reclen, unsigned int tlf) { struct dasd_eckd_private *private = device->private; int sector; int dn, d; if (ccw) { ccw->cmd_code = DASD_ECKD_CCW_LOCATE_RECORD_EXT; ccw->flags = 0; if (cmd == DASD_ECKD_CCW_WRITE_FULL_TRACK) ccw->count = 22; else ccw->count = 20; ccw->cda = (__u32)virt_to_phys(data); } memset(data, 0, sizeof(*data)); sector = 0; if (rec_on_trk) { switch (private->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(reclen + 6, 232); d = 9 + ceil_quot(reclen + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(reclen + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } data->sector = sector; /* note: meaning of count depends on the operation * for record based I/O it's the number of records, but for * track based I/O it's the number of tracks */ data->count = count; switch (cmd) { case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->operation.orientation = 0x1; data->operation.operation = 0x03; data->count++; break; case DASD_ECKD_CCW_READ_RECORD_ZERO: data->operation.orientation = 0x3; data->operation.operation = 0x16; data->count++; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x01; break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_WRITE_FULL_TRACK: data->operation.orientation = 0x0; data->operation.operation = 0x3F; data->extended_operation = 0x11; data->length = 0; data->extended_parameter_length = 0x02; if (data->count > 8) { data->extended_parameter[0] = 0xFF; data->extended_parameter[1] = 0xFF; data->extended_parameter[1] <<= (16 - count); } else { data->extended_parameter[0] = 0xFF; data->extended_parameter[0] <<= (8 - count); data->extended_parameter[1] = 0x00; } data->sector = 0xFF; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: data->auxiliary.length_valid = 0x1; data->length = reclen; /* not tlf, as one might think */ data->operation.operation = 0x3F; data->extended_operation = 0x23; break; case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: data->auxiliary.length_valid = 0x1; data->length = reclen; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_READ_COUNT: data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_TRACK: data->operation.orientation = 0x1; data->operation.operation = 0x0C; data->extended_parameter_length = 0; data->sector = 0xFF; break; case DASD_ECKD_CCW_READ_TRACK_DATA: data->auxiliary.length_valid = 0x1; data->length = tlf; data->operation.operation = 0x0C; break; case DASD_ECKD_CCW_ERASE: data->length = reclen; data->auxiliary.length_valid = 0x1; data->operation.operation = 0x0b; break; default: DBF_DEV_EVENT(DBF_ERR, device, "fill LRE unknown opcode 0x%x", cmd); BUG(); } set_ch_t(&data->seek_addr, trk / private->rdc_data.trk_per_cyl, trk % private->rdc_data.trk_per_cyl); data->search_arg.cyl = data->seek_addr.cyl; data->search_arg.head = data->seek_addr.head; data->search_arg.record = rec_on_trk; } static int prefix_LRE(struct ccw1 *ccw, struct PFX_eckd_data *pfxdata, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev, unsigned int format, unsigned int rec_on_trk, int count, unsigned int blksize, unsigned int tlf) { struct dasd_eckd_private *basepriv, *startpriv; struct LRE_eckd_data *lredata; struct DE_eckd_data *dedata; int rc = 0; basepriv = basedev->private; startpriv = startdev->private; dedata = &pfxdata->define_extent; lredata = &pfxdata->locate_record; ccw->cmd_code = DASD_ECKD_CCW_PFX; ccw->flags = 0; if (cmd == DASD_ECKD_CCW_WRITE_FULL_TRACK) { ccw->count = sizeof(*pfxdata) + 2; ccw->cda = (__u32)virt_to_phys(pfxdata); memset(pfxdata, 0, sizeof(*pfxdata) + 2); } else { ccw->count = sizeof(*pfxdata); ccw->cda = (__u32)virt_to_phys(pfxdata); memset(pfxdata, 0, sizeof(*pfxdata)); } /* prefix data */ if (format > 1) { DBF_DEV_EVENT(DBF_ERR, basedev, "PFX LRE unknown format 0x%x", format); BUG(); return -EINVAL; } pfxdata->format = format; pfxdata->base_address = basepriv->conf.ned->unit_addr; pfxdata->base_lss = basepriv->conf.ned->ID; pfxdata->validity.define_extent = 1; /* private uid is kept up to date, conf_data may be outdated */ if (startpriv->uid.type == UA_BASE_PAV_ALIAS) pfxdata->validity.verify_base = 1; if (startpriv->uid.type == UA_HYPER_PAV_ALIAS) { pfxdata->validity.verify_base = 1; pfxdata->validity.hyper_pav = 1; } rc = define_extent(NULL, dedata, trk, totrk, cmd, basedev, blksize); /* * For some commands the System Time Stamp is set in the define extent * data when XRC is supported. The validity of the time stamp must be * reflected in the prefix data as well. */ if (dedata->ga_extended & 0x08 && dedata->ga_extended & 0x02) pfxdata->validity.time_stamp = 1; /* 'Time Stamp Valid' */ if (format == 1) { locate_record_ext(NULL, lredata, trk, rec_on_trk, count, cmd, basedev, blksize, tlf); } return rc; } static int prefix(struct ccw1 *ccw, struct PFX_eckd_data *pfxdata, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev) { return prefix_LRE(ccw, pfxdata, trk, totrk, cmd, basedev, startdev, 0, 0, 0, 0, 0); } static void locate_record(struct ccw1 *ccw, struct LO_eckd_data *data, unsigned int trk, unsigned int rec_on_trk, int no_rec, int cmd, struct dasd_device * device, int reclen) { struct dasd_eckd_private *private = device->private; int sector; int dn, d; DBF_DEV_EVENT(DBF_INFO, device, "Locate: trk %d, rec %d, no_rec %d, cmd %d, reclen %d", trk, rec_on_trk, no_rec, cmd, reclen); ccw->cmd_code = DASD_ECKD_CCW_LOCATE_RECORD; ccw->flags = 0; ccw->count = 16; ccw->cda = (__u32)virt_to_phys(data); memset(data, 0, sizeof(struct LO_eckd_data)); sector = 0; if (rec_on_trk) { switch (private->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(reclen + 6, 232); d = 9 + ceil_quot(reclen + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(reclen + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } data->sector = sector; data->count = no_rec; switch (cmd) { case DASD_ECKD_CCW_WRITE_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ_HOME_ADDRESS: data->operation.orientation = 0x3; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_WRITE_RECORD_ZERO: data->operation.orientation = 0x1; data->operation.operation = 0x03; data->count++; break; case DASD_ECKD_CCW_READ_RECORD_ZERO: data->operation.orientation = 0x3; data->operation.operation = 0x16; data->count++; break; case DASD_ECKD_CCW_WRITE: case DASD_ECKD_CCW_WRITE_MT: case DASD_ECKD_CCW_WRITE_KD: case DASD_ECKD_CCW_WRITE_KD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x01; break; case DASD_ECKD_CCW_WRITE_CKD: case DASD_ECKD_CCW_WRITE_CKD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x03; break; case DASD_ECKD_CCW_READ: case DASD_ECKD_CCW_READ_MT: case DASD_ECKD_CCW_READ_KD: case DASD_ECKD_CCW_READ_KD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x06; break; case DASD_ECKD_CCW_READ_CKD: case DASD_ECKD_CCW_READ_CKD_MT: data->auxiliary.last_bytes_used = 0x1; data->length = reclen; data->operation.operation = 0x16; break; case DASD_ECKD_CCW_READ_COUNT: data->operation.operation = 0x06; break; case DASD_ECKD_CCW_ERASE: data->length = reclen; data->auxiliary.last_bytes_used = 0x1; data->operation.operation = 0x0b; break; default: DBF_DEV_EVENT(DBF_ERR, device, "unknown locate record " "opcode 0x%x", cmd); } set_ch_t(&data->seek_addr, trk / private->rdc_data.trk_per_cyl, trk % private->rdc_data.trk_per_cyl); data->search_arg.cyl = data->seek_addr.cyl; data->search_arg.head = data->seek_addr.head; data->search_arg.record = rec_on_trk; } /* * Returns 1 if the block is one of the special blocks that needs * to get read/written with the KD variant of the command. * That is DASD_ECKD_READ_KD_MT instead of DASD_ECKD_READ_MT and * DASD_ECKD_WRITE_KD_MT instead of DASD_ECKD_WRITE_MT. * Luckily the KD variants differ only by one bit (0x08) from the * normal variant. So don't wonder about code like: * if (dasd_eckd_cdl_special(blk_per_trk, recid)) * ccw->cmd_code |= 0x8; */ static inline int dasd_eckd_cdl_special(int blk_per_trk, int recid) { if (recid < 3) return 1; if (recid < blk_per_trk) return 0; if (recid < 2 * blk_per_trk) return 1; return 0; } /* * Returns the record size for the special blocks of the cdl format. * Only returns something useful if dasd_eckd_cdl_special is true * for the recid. */ static inline int dasd_eckd_cdl_reclen(int recid) { if (recid < 3) return sizes_trk0[recid]; return LABEL_SIZE; } /* create unique id from private structure. */ static void create_uid(struct dasd_conf *conf, struct dasd_uid *uid) { int count; memset(uid, 0, sizeof(struct dasd_uid)); memcpy(uid->vendor, conf->ned->HDA_manufacturer, sizeof(uid->vendor) - 1); EBCASC(uid->vendor, sizeof(uid->vendor) - 1); memcpy(uid->serial, &conf->ned->serial, sizeof(uid->serial) - 1); EBCASC(uid->serial, sizeof(uid->serial) - 1); uid->ssid = conf->gneq->subsystemID; uid->real_unit_addr = conf->ned->unit_addr; if (conf->sneq) { uid->type = conf->sneq->sua_flags; if (uid->type == UA_BASE_PAV_ALIAS) uid->base_unit_addr = conf->sneq->base_unit_addr; } else { uid->type = UA_BASE_DEVICE; } if (conf->vdsneq) { for (count = 0; count < 16; count++) { sprintf(uid->vduit+2*count, "%02x", conf->vdsneq->uit[count]); } } } /* * Generate device unique id that specifies the physical device. */ static int dasd_eckd_generate_uid(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (!private) return -ENODEV; if (!private->conf.ned || !private->conf.gneq) return -ENODEV; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); create_uid(&private->conf, &private->uid); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return 0; } static int dasd_eckd_get_uid(struct dasd_device *device, struct dasd_uid *uid) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (private) { spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); *uid = private->uid; spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return 0; } return -EINVAL; } /* * compare device UID with data of a given dasd_eckd_private structure * return 0 for match */ static int dasd_eckd_compare_path_uid(struct dasd_device *device, struct dasd_conf *path_conf) { struct dasd_uid device_uid; struct dasd_uid path_uid; create_uid(path_conf, &path_uid); dasd_eckd_get_uid(device, &device_uid); return memcmp(&device_uid, &path_uid, sizeof(struct dasd_uid)); } static void dasd_eckd_fill_rcd_cqr(struct dasd_device *device, struct dasd_ccw_req *cqr, __u8 *rcd_buffer, __u8 lpm) { struct ccw1 *ccw; /* * buffer has to start with EBCDIC "V1.0" to show * support for virtual device SNEQ */ rcd_buffer[0] = 0xE5; rcd_buffer[1] = 0xF1; rcd_buffer[2] = 0x4B; rcd_buffer[3] = 0xF0; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RCD; ccw->flags = 0; ccw->cda = (__u32)virt_to_phys(rcd_buffer); ccw->count = DASD_ECKD_RCD_DATA_SIZE; cqr->magic = DASD_ECKD_MAGIC; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->expires = 10*HZ; cqr->lpm = lpm; cqr->retries = 256; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); } /* * Wakeup helper for read_conf * if the cqr is not done and needs some error recovery * the buffer has to be re-initialized with the EBCDIC "V1.0" * to show support for virtual device SNEQ */ static void read_conf_cb(struct dasd_ccw_req *cqr, void *data) { struct ccw1 *ccw; __u8 *rcd_buffer; if (cqr->status != DASD_CQR_DONE) { ccw = cqr->cpaddr; rcd_buffer = phys_to_virt(ccw->cda); memset(rcd_buffer, 0, sizeof(*rcd_buffer)); rcd_buffer[0] = 0xE5; rcd_buffer[1] = 0xF1; rcd_buffer[2] = 0x4B; rcd_buffer[3] = 0xF0; } dasd_wakeup_cb(cqr, data); } static int dasd_eckd_read_conf_immediately(struct dasd_device *device, struct dasd_ccw_req *cqr, __u8 *rcd_buffer, __u8 lpm) { struct ciw *ciw; int rc; /* * sanity check: scan for RCD command in extended SenseID data * some devices do not support RCD */ ciw = ccw_device_get_ciw(device->cdev, CIW_TYPE_RCD); if (!ciw || ciw->cmd != DASD_ECKD_CCW_RCD) return -EOPNOTSUPP; dasd_eckd_fill_rcd_cqr(device, cqr, rcd_buffer, lpm); clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags); cqr->retries = 5; cqr->callback = read_conf_cb; rc = dasd_sleep_on_immediatly(cqr); return rc; } static int dasd_eckd_read_conf_lpm(struct dasd_device *device, void **rcd_buffer, int *rcd_buffer_size, __u8 lpm) { struct ciw *ciw; char *rcd_buf = NULL; int ret; struct dasd_ccw_req *cqr; /* * sanity check: scan for RCD command in extended SenseID data * some devices do not support RCD */ ciw = ccw_device_get_ciw(device->cdev, CIW_TYPE_RCD); if (!ciw || ciw->cmd != DASD_ECKD_CCW_RCD) { ret = -EOPNOTSUPP; goto out_error; } rcd_buf = kzalloc(DASD_ECKD_RCD_DATA_SIZE, GFP_KERNEL | GFP_DMA); if (!rcd_buf) { ret = -ENOMEM; goto out_error; } cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* RCD */, 0, /* use rcd_buf as data ara */ device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate RCD request"); ret = -ENOMEM; goto out_error; } dasd_eckd_fill_rcd_cqr(device, cqr, rcd_buf, lpm); cqr->callback = read_conf_cb; ret = dasd_sleep_on(cqr); /* * on success we update the user input parms */ dasd_sfree_request(cqr, cqr->memdev); if (ret) goto out_error; *rcd_buffer_size = DASD_ECKD_RCD_DATA_SIZE; *rcd_buffer = rcd_buf; return 0; out_error: kfree(rcd_buf); *rcd_buffer = NULL; *rcd_buffer_size = 0; return ret; } static int dasd_eckd_identify_conf_parts(struct dasd_conf *conf) { struct dasd_sneq *sneq; int i, count; conf->ned = NULL; conf->sneq = NULL; conf->vdsneq = NULL; conf->gneq = NULL; count = conf->len / sizeof(struct dasd_sneq); sneq = (struct dasd_sneq *)conf->data; for (i = 0; i < count; ++i) { if (sneq->flags.identifier == 1 && sneq->format == 1) conf->sneq = sneq; else if (sneq->flags.identifier == 1 && sneq->format == 4) conf->vdsneq = (struct vd_sneq *)sneq; else if (sneq->flags.identifier == 2) conf->gneq = (struct dasd_gneq *)sneq; else if (sneq->flags.identifier == 3 && sneq->res1 == 1) conf->ned = (struct dasd_ned *)sneq; sneq++; } if (!conf->ned || !conf->gneq) { conf->ned = NULL; conf->sneq = NULL; conf->vdsneq = NULL; conf->gneq = NULL; return -EINVAL; } return 0; }; static unsigned char dasd_eckd_path_access(void *conf_data, int conf_len) { struct dasd_gneq *gneq; int i, count, found; count = conf_len / sizeof(*gneq); gneq = (struct dasd_gneq *)conf_data; found = 0; for (i = 0; i < count; ++i) { if (gneq->flags.identifier == 2) { found = 1; break; } gneq++; } if (found) return ((char *)gneq)[18] & 0x07; else return 0; } static void dasd_eckd_store_conf_data(struct dasd_device *device, struct dasd_conf_data *conf_data, int chp) { struct dasd_eckd_private *private = device->private; struct channel_path_desc_fmt0 *chp_desc; struct subchannel_id sch_id; void *cdp; /* * path handling and read_conf allocate data * free it before replacing the pointer * also replace the old private->conf_data pointer * with the new one if this points to the same data */ cdp = device->path[chp].conf_data; if (private->conf.data == cdp) { private->conf.data = (void *)conf_data; dasd_eckd_identify_conf_parts(&private->conf); } ccw_device_get_schid(device->cdev, &sch_id); device->path[chp].conf_data = conf_data; device->path[chp].cssid = sch_id.cssid; device->path[chp].ssid = sch_id.ssid; chp_desc = ccw_device_get_chp_desc(device->cdev, chp); if (chp_desc) device->path[chp].chpid = chp_desc->chpid; kfree(chp_desc); kfree(cdp); } static void dasd_eckd_clear_conf_data(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int i; private->conf.data = NULL; private->conf.len = 0; for (i = 0; i < 8; i++) { kfree(device->path[i].conf_data); device->path[i].conf_data = NULL; device->path[i].cssid = 0; device->path[i].ssid = 0; device->path[i].chpid = 0; dasd_path_notoper(device, i); } } static void dasd_eckd_read_fc_security(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; u8 esm_valid; u8 esm[8]; int chp; int rc; rc = chsc_scud(private->uid.ssid, (u64 *)esm, &esm_valid); if (rc) { for (chp = 0; chp < 8; chp++) device->path[chp].fc_security = 0; return; } for (chp = 0; chp < 8; chp++) { if (esm_valid & (0x80 >> chp)) device->path[chp].fc_security = esm[chp]; else device->path[chp].fc_security = 0; } } static void dasd_eckd_get_uid_string(struct dasd_conf *conf, char *print_uid) { struct dasd_uid uid; create_uid(conf, &uid); if (strlen(uid.vduit) > 0) snprintf(print_uid, DASD_UID_STRLEN, "%s.%s.%04x.%02x.%s", uid.vendor, uid.serial, uid.ssid, uid.real_unit_addr, uid.vduit); else snprintf(print_uid, DASD_UID_STRLEN, "%s.%s.%04x.%02x", uid.vendor, uid.serial, uid.ssid, uid.real_unit_addr); } static int dasd_eckd_check_cabling(struct dasd_device *device, void *conf_data, __u8 lpm) { char print_path_uid[DASD_UID_STRLEN], print_device_uid[DASD_UID_STRLEN]; struct dasd_eckd_private *private = device->private; struct dasd_conf path_conf; path_conf.data = conf_data; path_conf.len = DASD_ECKD_RCD_DATA_SIZE; if (dasd_eckd_identify_conf_parts(&path_conf)) return 1; if (dasd_eckd_compare_path_uid(device, &path_conf)) { dasd_eckd_get_uid_string(&path_conf, print_path_uid); dasd_eckd_get_uid_string(&private->conf, print_device_uid); dev_err(&device->cdev->dev, "Not all channel paths lead to the same device, path %02X leads to device %s instead of %s\n", lpm, print_path_uid, print_device_uid); return 1; } return 0; } static int dasd_eckd_read_conf(struct dasd_device *device) { void *conf_data; int conf_len, conf_data_saved; int rc, path_err, pos; __u8 lpm, opm; struct dasd_eckd_private *private; private = device->private; opm = ccw_device_get_path_mask(device->cdev); conf_data_saved = 0; path_err = 0; /* get configuration data per operational path */ for (lpm = 0x80; lpm; lpm>>= 1) { if (!(lpm & opm)) continue; rc = dasd_eckd_read_conf_lpm(device, &conf_data, &conf_len, lpm); if (rc && rc != -EOPNOTSUPP) { /* -EOPNOTSUPP is ok */ DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read configuration data returned " "error %d", rc); return rc; } if (conf_data == NULL) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "No configuration data " "retrieved"); /* no further analysis possible */ dasd_path_add_opm(device, opm); continue; /* no error */ } /* save first valid configuration data */ if (!conf_data_saved) { /* initially clear previously stored conf_data */ dasd_eckd_clear_conf_data(device); private->conf.data = conf_data; private->conf.len = conf_len; if (dasd_eckd_identify_conf_parts(&private->conf)) { private->conf.data = NULL; private->conf.len = 0; kfree(conf_data); continue; } /* * build device UID that other path data * can be compared to it */ dasd_eckd_generate_uid(device); conf_data_saved++; } else if (dasd_eckd_check_cabling(device, conf_data, lpm)) { dasd_path_add_cablepm(device, lpm); path_err = -EINVAL; kfree(conf_data); continue; } pos = pathmask_to_pos(lpm); dasd_eckd_store_conf_data(device, conf_data, pos); switch (dasd_eckd_path_access(conf_data, conf_len)) { case 0x02: dasd_path_add_nppm(device, lpm); break; case 0x03: dasd_path_add_ppm(device, lpm); break; } if (!dasd_path_get_opm(device)) { dasd_path_set_opm(device, lpm); dasd_generic_path_operational(device); } else { dasd_path_add_opm(device, lpm); } } return path_err; } static u32 get_fcx_max_data(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int fcx_in_css, fcx_in_gneq, fcx_in_features; unsigned int mdc; int tpm; if (dasd_nofcx) return 0; /* is transport mode supported? */ fcx_in_css = css_general_characteristics.fcx; fcx_in_gneq = private->conf.gneq->reserved2[7] & 0x04; fcx_in_features = private->features.feature[40] & 0x80; tpm = fcx_in_css && fcx_in_gneq && fcx_in_features; if (!tpm) return 0; mdc = ccw_device_get_mdc(device->cdev, 0); if (mdc == 0) { dev_warn(&device->cdev->dev, "Detecting the maximum supported data size for zHPF requests failed\n"); return 0; } else { return (u32)mdc * FCX_MAX_DATA_FACTOR; } } static int verify_fcx_max_data(struct dasd_device *device, __u8 lpm) { struct dasd_eckd_private *private = device->private; unsigned int mdc; u32 fcx_max_data; if (private->fcx_max_data) { mdc = ccw_device_get_mdc(device->cdev, lpm); if (mdc == 0) { dev_warn(&device->cdev->dev, "Detecting the maximum data size for zHPF " "requests failed (rc=%d) for a new path %x\n", mdc, lpm); return mdc; } fcx_max_data = (u32)mdc * FCX_MAX_DATA_FACTOR; if (fcx_max_data < private->fcx_max_data) { dev_warn(&device->cdev->dev, "The maximum data size for zHPF requests %u " "on a new path %x is below the active maximum " "%u\n", fcx_max_data, lpm, private->fcx_max_data); return -EACCES; } } return 0; } static int rebuild_device_uid(struct dasd_device *device, struct pe_handler_work_data *data) { struct dasd_eckd_private *private = device->private; __u8 lpm, opm = dasd_path_get_opm(device); int rc = -ENODEV; for (lpm = 0x80; lpm; lpm >>= 1) { if (!(lpm & opm)) continue; memset(&data->rcd_buffer, 0, sizeof(data->rcd_buffer)); memset(&data->cqr, 0, sizeof(data->cqr)); data->cqr.cpaddr = &data->ccw; rc = dasd_eckd_read_conf_immediately(device, &data->cqr, data->rcd_buffer, lpm); if (rc) { if (rc == -EOPNOTSUPP) /* -EOPNOTSUPP is ok */ continue; DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read configuration data " "returned error %d", rc); break; } memcpy(private->conf.data, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); if (dasd_eckd_identify_conf_parts(&private->conf)) { rc = -ENODEV; } else /* first valid path is enough */ break; } if (!rc) rc = dasd_eckd_generate_uid(device); return rc; } static void dasd_eckd_path_available_action(struct dasd_device *device, struct pe_handler_work_data *data) { __u8 path_rcd_buf[DASD_ECKD_RCD_DATA_SIZE]; __u8 lpm, opm, npm, ppm, epm, hpfpm, cablepm; struct dasd_conf_data *conf_data; char print_uid[DASD_UID_STRLEN]; struct dasd_conf path_conf; unsigned long flags; int rc, pos; opm = 0; npm = 0; ppm = 0; epm = 0; hpfpm = 0; cablepm = 0; for (lpm = 0x80; lpm; lpm >>= 1) { if (!(lpm & data->tbvpm)) continue; memset(&data->rcd_buffer, 0, sizeof(data->rcd_buffer)); memset(&data->cqr, 0, sizeof(data->cqr)); data->cqr.cpaddr = &data->ccw; rc = dasd_eckd_read_conf_immediately(device, &data->cqr, data->rcd_buffer, lpm); if (!rc) { switch (dasd_eckd_path_access(data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE) ) { case 0x02: npm |= lpm; break; case 0x03: ppm |= lpm; break; } opm |= lpm; } else if (rc == -EOPNOTSUPP) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "path verification: No configuration " "data retrieved"); opm |= lpm; } else if (rc == -EAGAIN) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "path verification: device is stopped," " try again later"); epm |= lpm; } else { dev_warn(&device->cdev->dev, "Reading device feature codes failed " "(rc=%d) for new path %x\n", rc, lpm); continue; } if (verify_fcx_max_data(device, lpm)) { opm &= ~lpm; npm &= ~lpm; ppm &= ~lpm; hpfpm |= lpm; continue; } /* * save conf_data for comparison after * rebuild_device_uid may have changed * the original data */ memcpy(&path_rcd_buf, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); path_conf.data = (void *)&path_rcd_buf; path_conf.len = DASD_ECKD_RCD_DATA_SIZE; if (dasd_eckd_identify_conf_parts(&path_conf)) { path_conf.data = NULL; path_conf.len = 0; continue; } /* * compare path UID with device UID only if at least * one valid path is left * in other case the device UID may have changed and * the first working path UID will be used as device UID */ if (dasd_path_get_opm(device) && dasd_eckd_compare_path_uid(device, &path_conf)) { /* * the comparison was not successful * rebuild the device UID with at least one * known path in case a z/VM hyperswap command * has changed the device * * after this compare again * * if either the rebuild or the recompare fails * the path can not be used */ if (rebuild_device_uid(device, data) || dasd_eckd_compare_path_uid( device, &path_conf)) { dasd_eckd_get_uid_string(&path_conf, print_uid); dev_err(&device->cdev->dev, "The newly added channel path %02X " "will not be used because it leads " "to a different device %s\n", lpm, print_uid); opm &= ~lpm; npm &= ~lpm; ppm &= ~lpm; cablepm |= lpm; continue; } } conf_data = kzalloc(DASD_ECKD_RCD_DATA_SIZE, GFP_KERNEL); if (conf_data) { memcpy(conf_data, data->rcd_buffer, DASD_ECKD_RCD_DATA_SIZE); } else { /* * path is operational but path config data could not * be stored due to low mem condition * add it to the error path mask and schedule a path * verification later that this could be added again */ epm |= lpm; } pos = pathmask_to_pos(lpm); dasd_eckd_store_conf_data(device, conf_data, pos); /* * There is a small chance that a path is lost again between * above path verification and the following modification of * the device opm mask. We could avoid that race here by using * yet another path mask, but we rather deal with this unlikely * situation in dasd_start_IO. */ spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); if (!dasd_path_get_opm(device) && opm) { dasd_path_set_opm(device, opm); dasd_generic_path_operational(device); } else { dasd_path_add_opm(device, opm); } dasd_path_add_nppm(device, npm); dasd_path_add_ppm(device, ppm); if (epm) { dasd_path_add_tbvpm(device, epm); dasd_device_set_timer(device, 50); } dasd_path_add_cablepm(device, cablepm); dasd_path_add_nohpfpm(device, hpfpm); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); dasd_path_create_kobj(device, pos); } } static void do_pe_handler_work(struct work_struct *work) { struct pe_handler_work_data *data; struct dasd_device *device; data = container_of(work, struct pe_handler_work_data, worker); device = data->device; /* delay path verification until device was resumed */ if (test_bit(DASD_FLAG_SUSPENDED, &device->flags)) { schedule_work(work); return; } /* check if path verification already running and delay if so */ if (test_and_set_bit(DASD_FLAG_PATH_VERIFY, &device->flags)) { schedule_work(work); return; } if (data->tbvpm) dasd_eckd_path_available_action(device, data); if (data->fcsecpm) dasd_eckd_read_fc_security(device); clear_bit(DASD_FLAG_PATH_VERIFY, &device->flags); dasd_put_device(device); if (data->isglobal) mutex_unlock(&dasd_pe_handler_mutex); else kfree(data); } static int dasd_eckd_pe_handler(struct dasd_device *device, __u8 tbvpm, __u8 fcsecpm) { struct pe_handler_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC | GFP_DMA); if (!data) { if (mutex_trylock(&dasd_pe_handler_mutex)) { data = pe_handler_worker; data->isglobal = 1; } else { return -ENOMEM; } } INIT_WORK(&data->worker, do_pe_handler_work); dasd_get_device(device); data->device = device; data->tbvpm = tbvpm; data->fcsecpm = fcsecpm; schedule_work(&data->worker); return 0; } static void dasd_eckd_reset_path(struct dasd_device *device, __u8 pm) { struct dasd_eckd_private *private = device->private; unsigned long flags; if (!private->fcx_max_data) private->fcx_max_data = get_fcx_max_data(device); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); dasd_path_set_tbvpm(device, pm ? : dasd_path_get_notoperpm(device)); dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } static int dasd_eckd_read_features(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_features *features; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; memset(&private->features, 0, sizeof(struct dasd_rssd_features)); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_features)), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not " "allocate initialization request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x41; /* Read Feature Codes */ /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)virt_to_phys(prssdp); /* Read Subsystem Data - feature codes */ features = (struct dasd_rssd_features *) (prssdp + 1); memset(features, 0, sizeof(struct dasd_rssd_features)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_features); ccw->cda = (__u32)virt_to_phys(features); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; features = (struct dasd_rssd_features *) (prssdp + 1); memcpy(&private->features, features, sizeof(struct dasd_rssd_features)); } else dev_warn(&device->cdev->dev, "Reading device feature codes" " failed with rc=%d\n", rc); dasd_sfree_request(cqr, cqr->memdev); return rc; } /* Read Volume Information - Volume Storage Query */ static int dasd_eckd_read_vol_info(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_vsq *vsq; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int useglobal; int rc; /* This command cannot be executed on an alias device */ if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2 /* PSF + RSSD */, sizeof(*prssdp) + sizeof(*vsq), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate initialization request"); mutex_lock(&dasd_vol_info_mutex); useglobal = 1; cqr = &dasd_vol_info_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(dasd_vol_info_req, 0, sizeof(*dasd_vol_info_req)); cqr->cpaddr = &dasd_vol_info_req->ccw; cqr->data = &dasd_vol_info_req->data; cqr->magic = DASD_ECKD_MAGIC; } /* Prepare for Read Subsystem Data */ prssdp = cqr->data; prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_VSQ; /* Volume Storage Query */ prssdp->lss = private->conf.ned->ID; prssdp->volume = private->conf.ned->unit_addr; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(*prssdp); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)virt_to_phys(prssdp); /* Read Subsystem Data - Volume Storage Query */ vsq = (struct dasd_rssd_vsq *)(prssdp + 1); memset(vsq, 0, sizeof(*vsq)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*vsq); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)virt_to_phys(vsq); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = device->default_expires * HZ; /* The command might not be supported. Suppress the error output */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { memcpy(&private->vsq, vsq, sizeof(*vsq)); } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading the volume storage information failed with rc=%d", rc); } if (useglobal) mutex_unlock(&dasd_vol_info_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_is_ese(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.vol_info.ese; } static int dasd_eckd_ext_pool_id(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.extent_pool_id; } /* * This value represents the total amount of available space. As more space is * allocated by ESE volumes, this value will decrease. * The data for this value is therefore updated on any call. */ static int dasd_eckd_space_configured(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = dasd_eckd_read_vol_info(device); return rc ? : private->vsq.space_configured; } /* * The value of space allocated by an ESE volume may have changed and is * therefore updated on any call. */ static int dasd_eckd_space_allocated(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc; rc = dasd_eckd_read_vol_info(device); return rc ? : private->vsq.space_allocated; } static int dasd_eckd_logical_capacity(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->vsq.logical_capacity; } static void dasd_eckd_ext_pool_exhaust_work(struct work_struct *work) { struct ext_pool_exhaust_work_data *data; struct dasd_device *device; struct dasd_device *base; data = container_of(work, struct ext_pool_exhaust_work_data, worker); device = data->device; base = data->base; if (!base) base = device; if (dasd_eckd_space_configured(base) != 0) { dasd_generic_space_avail(device); } else { dev_warn(&device->cdev->dev, "No space left in the extent pool\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "out of space"); } dasd_put_device(device); kfree(data); } static int dasd_eckd_ext_pool_exhaust(struct dasd_device *device, struct dasd_ccw_req *cqr) { struct ext_pool_exhaust_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC); if (!data) return -ENOMEM; INIT_WORK(&data->worker, dasd_eckd_ext_pool_exhaust_work); dasd_get_device(device); data->device = device; if (cqr->block) data->base = cqr->block->base; else if (cqr->basedev) data->base = cqr->basedev; else data->base = NULL; schedule_work(&data->worker); return 0; } static void dasd_eckd_cpy_ext_pool_data(struct dasd_device *device, struct dasd_rssd_lcq *lcq) { struct dasd_eckd_private *private = device->private; int pool_id = dasd_eckd_ext_pool_id(device); struct dasd_ext_pool_sum eps; int i; for (i = 0; i < lcq->pool_count; i++) { eps = lcq->ext_pool_sum[i]; if (eps.pool_id == pool_id) { memcpy(&private->eps, &eps, sizeof(struct dasd_ext_pool_sum)); } } } /* Read Extent Pool Information - Logical Configuration Query */ static int dasd_eckd_read_ext_pool_info(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_lcq *lcq; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; /* This command cannot be executed on an alias device */ if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2 /* PSF + RSSD */, sizeof(*prssdp) + sizeof(*lcq), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate initialization request"); return PTR_ERR(cqr); } /* Prepare for Read Subsystem Data */ prssdp = cqr->data; memset(prssdp, 0, sizeof(*prssdp)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_LCQ; /* Logical Configuration Query */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(*prssdp); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)virt_to_phys(prssdp); lcq = (struct dasd_rssd_lcq *)(prssdp + 1); memset(lcq, 0, sizeof(*lcq)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*lcq); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)virt_to_phys(lcq); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = device->default_expires * HZ; /* The command might not be supported. Suppress the error output */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { dasd_eckd_cpy_ext_pool_data(device, lcq); } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading the logical configuration failed with rc=%d", rc); } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Depending on the device type, the extent size is specified either as * cylinders per extent (CKD) or size per extent (FBA) * A 1GB size corresponds to 1113cyl, and 16MB to 21cyl. */ static int dasd_eckd_ext_size(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct dasd_ext_pool_sum eps = private->eps; if (!eps.flags.extent_size_valid) return 0; if (eps.extent_size.size_1G) return 1113; if (eps.extent_size.size_16M) return 21; return 0; } static int dasd_eckd_ext_pool_warn_thrshld(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.warn_thrshld; } static int dasd_eckd_ext_pool_cap_at_warnlevel(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.flags.capacity_at_warnlevel; } /* * Extent Pool out of space */ static int dasd_eckd_ext_pool_oos(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->eps.flags.pool_oos; } /* * Build CP for Perform Subsystem Function - SSC. */ static struct dasd_ccw_req *dasd_eckd_build_psf_ssc(struct dasd_device *device, int enable_pav) { struct dasd_ccw_req *cqr; struct dasd_psf_ssc_data *psf_ssc_data; struct ccw1 *ccw; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ , sizeof(struct dasd_psf_ssc_data), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate PSF-SSC request"); return cqr; } psf_ssc_data = (struct dasd_psf_ssc_data *)cqr->data; psf_ssc_data->order = PSF_ORDER_SSC; psf_ssc_data->suborder = 0xc0; if (enable_pav) { psf_ssc_data->suborder |= 0x08; psf_ssc_data->reserved[0] = 0x88; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->cda = (__u32)virt_to_phys(psf_ssc_data); ccw->count = 66; cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10*HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } /* * Perform Subsystem Function. * It is necessary to trigger CIO for channel revalidation since this * call might change behaviour of DASD devices. */ static int dasd_eckd_psf_ssc(struct dasd_device *device, int enable_pav, unsigned long flags) { struct dasd_ccw_req *cqr; int rc; cqr = dasd_eckd_build_psf_ssc(device, enable_pav); if (IS_ERR(cqr)) return PTR_ERR(cqr); /* * set flags e.g. turn on failfast, to prevent blocking * the calling function should handle failed requests */ cqr->flags |= flags; rc = dasd_sleep_on(cqr); if (!rc) /* trigger CIO to reprobe devices */ css_schedule_reprobe(); else if (cqr->intrc == -EAGAIN) rc = -EAGAIN; dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Valide storage server of current device. */ static int dasd_eckd_validate_server(struct dasd_device *device, unsigned long flags) { struct dasd_eckd_private *private = device->private; int enable_pav, rc; if (private->uid.type == UA_BASE_PAV_ALIAS || private->uid.type == UA_HYPER_PAV_ALIAS) return 0; if (dasd_nopav || MACHINE_IS_VM) enable_pav = 0; else enable_pav = 1; rc = dasd_eckd_psf_ssc(device, enable_pav, flags); /* may be requested feature is not available on server, * therefore just report error and go ahead */ DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "PSF-SSC for SSID %04x " "returned rc=%d", private->uid.ssid, rc); return rc; } /* * worker to do a validate server in case of a lost pathgroup */ static void dasd_eckd_do_validate_server(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, kick_validate); unsigned long flags = 0; set_bit(DASD_CQR_FLAGS_FAILFAST, &flags); if (dasd_eckd_validate_server(device, flags) == -EAGAIN) { /* schedule worker again if failed */ schedule_work(&device->kick_validate); return; } dasd_put_device(device); } static void dasd_eckd_kick_validate_server(struct dasd_device *device) { dasd_get_device(device); /* exit if device not online or in offline processing */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags) || device->state < DASD_STATE_ONLINE) { dasd_put_device(device); return; } /* queue call to do_validate_server to the kernel event daemon. */ if (!schedule_work(&device->kick_validate)) dasd_put_device(device); } /* * return if the device is the copy relation primary if a copy relation is active */ static int dasd_device_is_primary(struct dasd_device *device) { if (!device->copy) return 1; if (device->copy->active->device == device) return 1; return 0; } static int dasd_eckd_alloc_block(struct dasd_device *device) { struct dasd_block *block; struct dasd_uid temp_uid; if (!dasd_device_is_primary(device)) return 0; dasd_eckd_get_uid(device, &temp_uid); if (temp_uid.type == UA_BASE_DEVICE) { block = dasd_alloc_block(); if (IS_ERR(block)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "could not allocate dasd block structure"); return PTR_ERR(block); } device->block = block; block->base = device; } return 0; } static bool dasd_eckd_pprc_enabled(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->rdc_data.facilities.PPRC_enabled; } /* * Check device characteristics. * If the device is accessible using ECKD discipline, the device is enabled. */ static int dasd_eckd_check_characteristics(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; int rc, i; int readonly; unsigned long value; /* setup work queue for validate server*/ INIT_WORK(&device->kick_validate, dasd_eckd_do_validate_server); /* setup work queue for summary unit check */ INIT_WORK(&device->suc_work, dasd_alias_handle_summary_unit_check); if (!ccw_device_is_pathgroup(device->cdev)) { dev_warn(&device->cdev->dev, "A channel path group could not be established\n"); return -EIO; } if (!ccw_device_is_multipath(device->cdev)) { dev_info(&device->cdev->dev, "The DASD is not operating in multipath mode\n"); } if (!private) { private = kzalloc(sizeof(*private), GFP_KERNEL | GFP_DMA); if (!private) { dev_warn(&device->cdev->dev, "Allocating memory for private DASD data " "failed\n"); return -ENOMEM; } device->private = private; } else { memset(private, 0, sizeof(*private)); } /* Invalidate status of initial analysis. */ private->init_cqr_status = -1; /* Set default cache operations. */ private->attrib.operation = DASD_NORMAL_CACHE; private->attrib.nr_cyl = 0; /* Read Configuration Data */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err1; /* set some default values */ device->default_expires = DASD_EXPIRES; device->default_retries = DASD_RETRIES; device->path_thrhld = DASD_ECKD_PATH_THRHLD; device->path_interval = DASD_ECKD_PATH_INTERVAL; device->aq_timeouts = DASD_RETRIES_MAX; if (private->conf.gneq) { value = 1; for (i = 0; i < private->conf.gneq->timeout.value; i++) value = 10 * value; value = value * private->conf.gneq->timeout.number; /* do not accept useless values */ if (value != 0 && value <= DASD_EXPIRES_MAX) device->default_expires = value; } /* Read Device Characteristics */ rc = dasd_generic_read_dev_chars(device, DASD_ECKD_MAGIC, &private->rdc_data, 64); if (rc) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Read device characteristic failed, rc=%d", rc); goto out_err1; } /* setup PPRC for device from devmap */ rc = dasd_devmap_set_device_copy_relation(device->cdev, dasd_eckd_pprc_enabled(device)); if (rc) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "copy relation setup failed, rc=%d", rc); goto out_err1; } /* check if block device is needed and allocate in case */ rc = dasd_eckd_alloc_block(device); if (rc) goto out_err1; /* register lcu with alias handling, enable PAV */ rc = dasd_alias_make_device_known_to_lcu(device); if (rc) goto out_err2; dasd_eckd_validate_server(device, 0); /* device may report different configuration data after LCU setup */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err3; dasd_eckd_read_fc_security(device); dasd_path_create_kobjects(device); /* Read Feature Codes */ dasd_eckd_read_features(device); /* Read Volume Information */ dasd_eckd_read_vol_info(device); /* Read Extent Pool Information */ dasd_eckd_read_ext_pool_info(device); if ((device->features & DASD_FEATURE_USERAW) && !(private->rdc_data.facilities.RT_in_LR)) { dev_err(&device->cdev->dev, "The storage server does not " "support raw-track access\n"); rc = -EINVAL; goto out_err3; } /* find the valid cylinder size */ if (private->rdc_data.no_cyl == LV_COMPAT_CYL && private->rdc_data.long_no_cyl) private->real_cyl = private->rdc_data.long_no_cyl; else private->real_cyl = private->rdc_data.no_cyl; private->fcx_max_data = get_fcx_max_data(device); readonly = dasd_device_is_ro(device); if (readonly) set_bit(DASD_FLAG_DEVICE_RO, &device->flags); dev_info(&device->cdev->dev, "New DASD %04X/%02X (CU %04X/%02X) " "with %d cylinders, %d heads, %d sectors%s\n", private->rdc_data.dev_type, private->rdc_data.dev_model, private->rdc_data.cu_type, private->rdc_data.cu_model.model, private->real_cyl, private->rdc_data.trk_per_cyl, private->rdc_data.sec_per_trk, readonly ? ", read-only device" : ""); return 0; out_err3: dasd_alias_disconnect_device_from_lcu(device); out_err2: dasd_free_block(device->block); device->block = NULL; out_err1: dasd_eckd_clear_conf_data(device); dasd_path_remove_kobjects(device); kfree(device->private); device->private = NULL; return rc; } static void dasd_eckd_uncheck_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; if (!private) return; dasd_alias_disconnect_device_from_lcu(device); private->conf.ned = NULL; private->conf.sneq = NULL; private->conf.vdsneq = NULL; private->conf.gneq = NULL; dasd_eckd_clear_conf_data(device); dasd_path_remove_kobjects(device); } static struct dasd_ccw_req * dasd_eckd_analysis_ccw(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct eckd_count *count_data; struct LO_eckd_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int cplength, datasize; int i; cplength = 8; datasize = sizeof(struct DE_eckd_data) + 2*sizeof(struct LO_eckd_data); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, device, NULL); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* Define extent for the first 2 tracks. */ define_extent(ccw++, cqr->data, 0, 1, DASD_ECKD_CCW_READ_COUNT, device, 0); LO_data = cqr->data + sizeof(struct DE_eckd_data); /* Locate record for the first 4 records on track 0. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, 0, 0, 4, DASD_ECKD_CCW_READ_COUNT, device, 0); count_data = private->count_area; for (i = 0; i < 4; i++) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = 0; ccw->count = 8; ccw->cda = (__u32)virt_to_phys(count_data); ccw++; count_data++; } /* Locate record for the first record on track 1. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, 1, 0, 1, DASD_ECKD_CCW_READ_COUNT, device, 0); /* Read count ccw. */ ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = 0; ccw->count = 8; ccw->cda = (__u32)virt_to_phys(count_data); cqr->block = NULL; cqr->startdev = device; cqr->memdev = device; cqr->retries = 255; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } /* differentiate between 'no record found' and any other error */ static int dasd_eckd_analysis_evaluation(struct dasd_ccw_req *init_cqr) { char *sense; if (init_cqr->status == DASD_CQR_DONE) return INIT_CQR_OK; else if (init_cqr->status == DASD_CQR_NEED_ERP || init_cqr->status == DASD_CQR_FAILED) { sense = dasd_get_sense(&init_cqr->irb); if (sense && (sense[1] & SNS1_NO_REC_FOUND)) return INIT_CQR_UNFORMATTED; else return INIT_CQR_ERROR; } else return INIT_CQR_ERROR; } /* * This is the callback function for the init_analysis cqr. It saves * the status of the initial analysis ccw before it frees it and kicks * the device to continue the startup sequence. This will call * dasd_eckd_do_analysis again (if the devices has not been marked * for deletion in the meantime). */ static void dasd_eckd_analysis_callback(struct dasd_ccw_req *init_cqr, void *data) { struct dasd_device *device = init_cqr->startdev; struct dasd_eckd_private *private = device->private; private->init_cqr_status = dasd_eckd_analysis_evaluation(init_cqr); dasd_sfree_request(init_cqr, device); dasd_kick_device(device); } static int dasd_eckd_start_analysis(struct dasd_block *block) { struct dasd_ccw_req *init_cqr; init_cqr = dasd_eckd_analysis_ccw(block->base); if (IS_ERR(init_cqr)) return PTR_ERR(init_cqr); init_cqr->callback = dasd_eckd_analysis_callback; init_cqr->callback_data = NULL; init_cqr->expires = 5*HZ; /* first try without ERP, so we can later handle unformatted * devices as special case */ clear_bit(DASD_CQR_FLAGS_USE_ERP, &init_cqr->flags); init_cqr->retries = 0; dasd_add_request_head(init_cqr); return -EAGAIN; } static int dasd_eckd_end_analysis(struct dasd_block *block) { struct dasd_device *device = block->base; struct dasd_eckd_private *private = device->private; struct eckd_count *count_area; unsigned int sb, blk_per_trk; int status, i; struct dasd_ccw_req *init_cqr; status = private->init_cqr_status; private->init_cqr_status = -1; if (status == INIT_CQR_ERROR) { /* try again, this time with full ERP */ init_cqr = dasd_eckd_analysis_ccw(device); dasd_sleep_on(init_cqr); status = dasd_eckd_analysis_evaluation(init_cqr); dasd_sfree_request(init_cqr, device); } if (device->features & DASD_FEATURE_USERAW) { block->bp_block = DASD_RAW_BLOCKSIZE; blk_per_trk = DASD_RAW_BLOCK_PER_TRACK; block->s2b_shift = 3; goto raw; } if (status == INIT_CQR_UNFORMATTED) { dev_warn(&device->cdev->dev, "The DASD is not formatted\n"); return -EMEDIUMTYPE; } else if (status == INIT_CQR_ERROR) { dev_err(&device->cdev->dev, "Detecting the DASD disk layout failed because " "of an I/O error\n"); return -EIO; } private->uses_cdl = 1; /* Check Track 0 for Compatible Disk Layout */ count_area = NULL; for (i = 0; i < 3; i++) { if (private->count_area[i].kl != 4 || private->count_area[i].dl != dasd_eckd_cdl_reclen(i) - 4 || private->count_area[i].cyl != 0 || private->count_area[i].head != count_area_head[i] || private->count_area[i].record != count_area_rec[i]) { private->uses_cdl = 0; break; } } if (i == 3) count_area = &private->count_area[3]; if (private->uses_cdl == 0) { for (i = 0; i < 5; i++) { if ((private->count_area[i].kl != 0) || (private->count_area[i].dl != private->count_area[0].dl) || private->count_area[i].cyl != 0 || private->count_area[i].head != count_area_head[i] || private->count_area[i].record != count_area_rec[i]) break; } if (i == 5) count_area = &private->count_area[0]; } else { if (private->count_area[3].record == 1) dev_warn(&device->cdev->dev, "Track 0 has no records following the VTOC\n"); } if (count_area != NULL && count_area->kl == 0) { /* we found notthing violating our disk layout */ if (dasd_check_blocksize(count_area->dl) == 0) block->bp_block = count_area->dl; } if (block->bp_block == 0) { dev_warn(&device->cdev->dev, "The disk layout of the DASD is not supported\n"); return -EMEDIUMTYPE; } block->s2b_shift = 0; /* bits to shift 512 to get a block */ for (sb = 512; sb < block->bp_block; sb = sb << 1) block->s2b_shift++; blk_per_trk = recs_per_track(&private->rdc_data, 0, block->bp_block); raw: block->blocks = ((unsigned long) private->real_cyl * private->rdc_data.trk_per_cyl * blk_per_trk); dev_info(&device->cdev->dev, "DASD with %u KB/block, %lu KB total size, %u KB/track, " "%s\n", (block->bp_block >> 10), (((unsigned long) private->real_cyl * private->rdc_data.trk_per_cyl * blk_per_trk * (block->bp_block >> 9)) >> 1), ((blk_per_trk * block->bp_block) >> 10), private->uses_cdl ? "compatible disk layout" : "linux disk layout"); return 0; } static int dasd_eckd_do_analysis(struct dasd_block *block) { struct dasd_eckd_private *private = block->base->private; if (private->init_cqr_status < 0) return dasd_eckd_start_analysis(block); else return dasd_eckd_end_analysis(block); } static int dasd_eckd_basic_to_ready(struct dasd_device *device) { return dasd_alias_add_device(device); }; static int dasd_eckd_online_to_ready(struct dasd_device *device) { if (cancel_work_sync(&device->reload_device)) dasd_put_device(device); if (cancel_work_sync(&device->kick_validate)) dasd_put_device(device); return 0; }; static int dasd_eckd_basic_to_known(struct dasd_device *device) { return dasd_alias_remove_device(device); }; static int dasd_eckd_fill_geometry(struct dasd_block *block, struct hd_geometry *geo) { struct dasd_eckd_private *private = block->base->private; if (dasd_check_blocksize(block->bp_block) == 0) { geo->sectors = recs_per_track(&private->rdc_data, 0, block->bp_block); } geo->cylinders = private->rdc_data.no_cyl; geo->heads = private->rdc_data.trk_per_cyl; return 0; } /* * Build the TCW request for the format check */ static struct dasd_ccw_req * dasd_eckd_build_check_tcw(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, struct eckd_count *fmt_buffer, int rpt) { struct dasd_eckd_private *start_priv; struct dasd_device *startdev = NULL; struct tidaw *last_tidaw = NULL; struct dasd_ccw_req *cqr; struct itcw *itcw; int itcw_size; int count; int rc; int i; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; count = rpt * (fdata->stop_unit - fdata->start_unit + 1); /* * we're adding 'count' amount of tidaw to the itcw. * calculate the corresponding itcw_size */ itcw_size = itcw_calc_size(0, count, 0); cqr = dasd_fmalloc_request(DASD_ECKD_MAGIC, 0, itcw_size, startdev); if (IS_ERR(cqr)) return cqr; start_priv->count++; itcw = itcw_init(cqr->data, itcw_size, ITCW_OP_READ, 0, count, 0); if (IS_ERR(itcw)) { rc = -EINVAL; goto out_err; } cqr->cpaddr = itcw_get_tcw(itcw); rc = prepare_itcw(itcw, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT_MT, base, startdev, 0, count, sizeof(struct eckd_count), count * sizeof(struct eckd_count), 0, rpt); if (rc) goto out_err; for (i = 0; i < count; i++) { last_tidaw = itcw_add_tidaw(itcw, 0, fmt_buffer++, sizeof(struct eckd_count)); if (IS_ERR(last_tidaw)) { rc = -EINVAL; goto out_err; } } last_tidaw->flags |= TIDAW_FLAGS_LAST; itcw_finalize(itcw); cqr->cpmode = 1; cqr->startdev = startdev; cqr->memdev = startdev; cqr->basedev = base; cqr->retries = startdev->default_retries; cqr->expires = startdev->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags); return cqr; out_err: dasd_sfree_request(cqr, startdev); return ERR_PTR(rc); } /* * Build the CCW request for the format check */ static struct dasd_ccw_req * dasd_eckd_build_check(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, struct eckd_count *fmt_buffer, int rpt) { struct dasd_eckd_private *start_priv; struct dasd_eckd_private *base_priv; struct dasd_device *startdev = NULL; struct dasd_ccw_req *cqr; struct ccw1 *ccw; void *data; int cplength, datasize; int use_prefix; int count; int i; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; base_priv = base->private; count = rpt * (fdata->stop_unit - fdata->start_unit + 1); use_prefix = base_priv->features.feature[8] & 0x01; if (use_prefix) { cplength = 1; datasize = sizeof(struct PFX_eckd_data); } else { cplength = 2; datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data); } cplength += count; cqr = dasd_fmalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev); if (IS_ERR(cqr)) return cqr; start_priv->count++; data = cqr->data; ccw = cqr->cpaddr; if (use_prefix) { prefix_LRE(ccw++, data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT, base, startdev, 1, 0, count, 0, 0); } else { define_extent(ccw++, data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_READ_COUNT, startdev, 0); data += sizeof(struct DE_eckd_data); ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, data, fdata->start_unit, 0, count, DASD_ECKD_CCW_READ_COUNT, base, 0); } for (i = 0; i < count; i++) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_READ_COUNT; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)virt_to_phys(fmt_buffer); ccw++; fmt_buffer++; } cqr->startdev = startdev; cqr->memdev = startdev; cqr->basedev = base; cqr->retries = DASD_RETRIES; cqr->expires = startdev->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } static struct dasd_ccw_req * dasd_eckd_build_format(struct dasd_device *base, struct dasd_device *startdev, struct format_data_t *fdata, int enable_pav) { struct dasd_eckd_private *base_priv; struct dasd_eckd_private *start_priv; struct dasd_ccw_req *fcp; struct eckd_count *ect; struct ch_t address; struct ccw1 *ccw; void *data; int rpt; int cplength, datasize; int i, j; int intensity = 0; int r0_perm; int nr_tracks; int use_prefix; if (enable_pav) startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; start_priv = startdev->private; base_priv = base->private; rpt = recs_per_track(&base_priv->rdc_data, 0, fdata->blksize); nr_tracks = fdata->stop_unit - fdata->start_unit + 1; /* * fdata->intensity is a bit string that tells us what to do: * Bit 0: write record zero * Bit 1: write home address, currently not supported * Bit 2: invalidate tracks * Bit 3: use OS/390 compatible disk layout (cdl) * Bit 4: do not allow storage subsystem to modify record zero * Only some bit combinations do make sense. */ if (fdata->intensity & 0x10) { r0_perm = 0; intensity = fdata->intensity & ~0x10; } else { r0_perm = 1; intensity = fdata->intensity; } use_prefix = base_priv->features.feature[8] & 0x01; switch (intensity) { case 0x00: /* Normal format */ case 0x08: /* Normal format, use cdl. */ cplength = 2 + (rpt*nr_tracks); if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + rpt * nr_tracks * sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + rpt * nr_tracks * sizeof(struct eckd_count); break; case 0x01: /* Write record zero and format track. */ case 0x09: /* Write record zero and format track, use cdl. */ cplength = 2 + rpt * nr_tracks; if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count) + rpt * nr_tracks * sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count) + rpt * nr_tracks * sizeof(struct eckd_count); break; case 0x04: /* Invalidate track. */ case 0x0c: /* Invalidate track, use cdl. */ cplength = 3; if (use_prefix) datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count); else datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + sizeof(struct eckd_count); break; default: dev_warn(&startdev->cdev->dev, "An I/O control call used incorrect flags 0x%x\n", fdata->intensity); return ERR_PTR(-EINVAL); } fcp = dasd_fmalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev); if (IS_ERR(fcp)) return fcp; start_priv->count++; data = fcp->data; ccw = fcp->cpaddr; switch (intensity & ~0x08) { case 0x00: /* Normal format. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, base, startdev); /* grant subsystem permission to format R0 */ if (r0_perm) ((struct PFX_eckd_data *)data) ->define_extent.ga_extended |= 0x04; data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, startdev, 0); /* grant subsystem permission to format R0 */ if (r0_perm) ((struct DE_eckd_data *) data) ->ga_extended |= 0x04; data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, rpt*nr_tracks, DASD_ECKD_CCW_WRITE_CKD, base, fdata->blksize); data += sizeof(struct LO_eckd_data); break; case 0x01: /* Write record zero + format track. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_RECORD_ZERO, base, startdev); data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_RECORD_ZERO, startdev, 0); data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, rpt * nr_tracks + 1, DASD_ECKD_CCW_WRITE_RECORD_ZERO, base, base->block->bp_block); data += sizeof(struct LO_eckd_data); break; case 0x04: /* Invalidate track. */ if (use_prefix) { prefix(ccw++, (struct PFX_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, base, startdev); data += sizeof(struct PFX_eckd_data); } else { define_extent(ccw++, (struct DE_eckd_data *) data, fdata->start_unit, fdata->stop_unit, DASD_ECKD_CCW_WRITE_CKD, startdev, 0); data += sizeof(struct DE_eckd_data); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, (struct LO_eckd_data *) data, fdata->start_unit, 0, 1, DASD_ECKD_CCW_WRITE_CKD, base, 8); data += sizeof(struct LO_eckd_data); break; } for (j = 0; j < nr_tracks; j++) { /* calculate cylinder and head for the current track */ set_ch_t(&address, (fdata->start_unit + j) / base_priv->rdc_data.trk_per_cyl, (fdata->start_unit + j) % base_priv->rdc_data.trk_per_cyl); if (intensity & 0x01) { /* write record zero */ ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = 0; ect->kl = 0; ect->dl = 8; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_WRITE_RECORD_ZERO; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)virt_to_phys(ect); ccw++; } if ((intensity & ~0x08) & 0x04) { /* erase track */ ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = 1; ect->kl = 0; ect->dl = 0; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)virt_to_phys(ect); } else { /* write remaining records */ for (i = 0; i < rpt; i++) { ect = (struct eckd_count *) data; data += sizeof(struct eckd_count); ect->cyl = address.cyl; ect->head = address.head; ect->record = i + 1; ect->kl = 0; ect->dl = fdata->blksize; /* * Check for special tracks 0-1 * when formatting CDL */ if ((intensity & 0x08) && address.cyl == 0 && address.head == 0) { if (i < 3) { ect->kl = 4; ect->dl = sizes_trk0[i] - 4; } } if ((intensity & 0x08) && address.cyl == 0 && address.head == 1) { ect->kl = 44; ect->dl = LABEL_SIZE - 44; } ccw[-1].flags |= CCW_FLAG_CC; if (i != 0 || j == 0) ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD; else ccw->cmd_code = DASD_ECKD_CCW_WRITE_CKD_MT; ccw->flags = CCW_FLAG_SLI; ccw->count = 8; ccw->cda = (__u32)virt_to_phys(ect); ccw++; } } } fcp->startdev = startdev; fcp->memdev = startdev; fcp->basedev = base; fcp->retries = 256; fcp->expires = startdev->default_expires * HZ; fcp->buildclk = get_tod_clock(); fcp->status = DASD_CQR_FILLED; return fcp; } /* * Wrapper function to build a CCW request depending on input data */ static struct dasd_ccw_req * dasd_eckd_format_build_ccw_req(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, int tpm, struct eckd_count *fmt_buffer, int rpt) { struct dasd_ccw_req *ccw_req; if (!fmt_buffer) { ccw_req = dasd_eckd_build_format(base, NULL, fdata, enable_pav); } else { if (tpm) ccw_req = dasd_eckd_build_check_tcw(base, fdata, enable_pav, fmt_buffer, rpt); else ccw_req = dasd_eckd_build_check(base, fdata, enable_pav, fmt_buffer, rpt); } return ccw_req; } /* * Sanity checks on format_data */ static int dasd_eckd_format_sanity_checks(struct dasd_device *base, struct format_data_t *fdata) { struct dasd_eckd_private *private = base->private; if (fdata->start_unit >= (private->real_cyl * private->rdc_data.trk_per_cyl)) { dev_warn(&base->cdev->dev, "Start track number %u used in formatting is too big\n", fdata->start_unit); return -EINVAL; } if (fdata->stop_unit >= (private->real_cyl * private->rdc_data.trk_per_cyl)) { dev_warn(&base->cdev->dev, "Stop track number %u used in formatting is too big\n", fdata->stop_unit); return -EINVAL; } if (fdata->start_unit > fdata->stop_unit) { dev_warn(&base->cdev->dev, "Start track %u used in formatting exceeds end track\n", fdata->start_unit); return -EINVAL; } if (dasd_check_blocksize(fdata->blksize) != 0) { dev_warn(&base->cdev->dev, "The DASD cannot be formatted with block size %u\n", fdata->blksize); return -EINVAL; } return 0; } /* * This function will process format_data originally coming from an IOCTL */ static int dasd_eckd_format_process_data(struct dasd_device *base, struct format_data_t *fdata, int enable_pav, int tpm, struct eckd_count *fmt_buffer, int rpt, struct irb *irb) { struct dasd_eckd_private *private = base->private; struct dasd_ccw_req *cqr, *n; struct list_head format_queue; struct dasd_device *device; char *sense = NULL; int old_start, old_stop, format_step; int step, retry; int rc; rc = dasd_eckd_format_sanity_checks(base, fdata); if (rc) return rc; INIT_LIST_HEAD(&format_queue); old_start = fdata->start_unit; old_stop = fdata->stop_unit; if (!tpm && fmt_buffer != NULL) { /* Command Mode / Format Check */ format_step = 1; } else if (tpm && fmt_buffer != NULL) { /* Transport Mode / Format Check */ format_step = DASD_CQR_MAX_CCW / rpt; } else { /* Normal Formatting */ format_step = DASD_CQR_MAX_CCW / recs_per_track(&private->rdc_data, 0, fdata->blksize); } do { retry = 0; while (fdata->start_unit <= old_stop) { step = fdata->stop_unit - fdata->start_unit + 1; if (step > format_step) { fdata->stop_unit = fdata->start_unit + format_step - 1; } cqr = dasd_eckd_format_build_ccw_req(base, fdata, enable_pav, tpm, fmt_buffer, rpt); if (IS_ERR(cqr)) { rc = PTR_ERR(cqr); if (rc == -ENOMEM) { if (list_empty(&format_queue)) goto out; /* * not enough memory available, start * requests retry after first requests * were finished */ retry = 1; break; } goto out_err; } list_add_tail(&cqr->blocklist, &format_queue); if (fmt_buffer) { step = fdata->stop_unit - fdata->start_unit + 1; fmt_buffer += rpt * step; } fdata->start_unit = fdata->stop_unit + 1; fdata->stop_unit = old_stop; } rc = dasd_sleep_on_queue(&format_queue); out_err: list_for_each_entry_safe(cqr, n, &format_queue, blocklist) { device = cqr->startdev; private = device->private; if (cqr->status == DASD_CQR_FAILED) { /* * Only get sense data if called by format * check */ if (fmt_buffer && irb) { sense = dasd_get_sense(&cqr->irb); memcpy(irb, &cqr->irb, sizeof(*irb)); } rc = -EIO; } list_del_init(&cqr->blocklist); dasd_ffree_request(cqr, device); private->count--; } if (rc && rc != -EIO) goto out; if (rc == -EIO) { /* * In case fewer than the expected records are on the * track, we will most likely get a 'No Record Found' * error (in command mode) or a 'File Protected' error * (in transport mode). Those particular cases shouldn't * pass the -EIO to the IOCTL, therefore reset the rc * and continue. */ if (sense && (sense[1] & SNS1_NO_REC_FOUND || sense[1] & SNS1_FILE_PROTECTED)) retry = 1; else goto out; } } while (retry); out: fdata->start_unit = old_start; fdata->stop_unit = old_stop; return rc; } static int dasd_eckd_format_device(struct dasd_device *base, struct format_data_t *fdata, int enable_pav) { return dasd_eckd_format_process_data(base, fdata, enable_pav, 0, NULL, 0, NULL); } static bool test_and_set_format_track(struct dasd_format_entry *to_format, struct dasd_ccw_req *cqr) { struct dasd_block *block = cqr->block; struct dasd_format_entry *format; unsigned long flags; bool rc = false; spin_lock_irqsave(&block->format_lock, flags); if (cqr->trkcount != atomic_read(&block->trkcount)) { /* * The number of formatted tracks has changed after request * start and we can not tell if the current track was involved. * To avoid data corruption treat it as if the current track is * involved */ rc = true; goto out; } list_for_each_entry(format, &block->format_list, list) { if (format->track == to_format->track) { rc = true; goto out; } } list_add_tail(&to_format->list, &block->format_list); out: spin_unlock_irqrestore(&block->format_lock, flags); return rc; } static void clear_format_track(struct dasd_format_entry *format, struct dasd_block *block) { unsigned long flags; spin_lock_irqsave(&block->format_lock, flags); atomic_inc(&block->trkcount); list_del_init(&format->list); spin_unlock_irqrestore(&block->format_lock, flags); } /* * Callback function to free ESE format requests. */ static void dasd_eckd_ese_format_cb(struct dasd_ccw_req *cqr, void *data) { struct dasd_device *device = cqr->startdev; struct dasd_eckd_private *private = device->private; struct dasd_format_entry *format = data; clear_format_track(format, cqr->basedev->block); private->count--; dasd_ffree_request(cqr, device); } static struct dasd_ccw_req * dasd_eckd_ese_format(struct dasd_device *startdev, struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_eckd_private *private; struct dasd_format_entry *format; struct format_data_t fdata; unsigned int recs_per_trk; struct dasd_ccw_req *fcqr; struct dasd_device *base; struct dasd_block *block; unsigned int blksize; struct request *req; sector_t first_trk; sector_t last_trk; sector_t curr_trk; int rc; req = dasd_get_callback_data(cqr); block = cqr->block; base = block->base; private = base->private; blksize = block->bp_block; recs_per_trk = recs_per_track(&private->rdc_data, 0, blksize); format = &startdev->format_entry; first_trk = blk_rq_pos(req) >> block->s2b_shift; sector_div(first_trk, recs_per_trk); last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; sector_div(last_trk, recs_per_trk); rc = dasd_eckd_track_from_irb(irb, base, &curr_trk); if (rc) return ERR_PTR(rc); if (curr_trk < first_trk || curr_trk > last_trk) { DBF_DEV_EVENT(DBF_WARNING, startdev, "ESE error track %llu not within range %llu - %llu\n", curr_trk, first_trk, last_trk); return ERR_PTR(-EINVAL); } format->track = curr_trk; /* test if track is already in formatting by another thread */ if (test_and_set_format_track(format, cqr)) { /* this is no real error so do not count down retries */ cqr->retries++; return ERR_PTR(-EEXIST); } fdata.start_unit = curr_trk; fdata.stop_unit = curr_trk; fdata.blksize = blksize; fdata.intensity = private->uses_cdl ? DASD_FMT_INT_COMPAT : 0; rc = dasd_eckd_format_sanity_checks(base, &fdata); if (rc) return ERR_PTR(-EINVAL); /* * We're building the request with PAV disabled as we're reusing * the former startdev. */ fcqr = dasd_eckd_build_format(base, startdev, &fdata, 0); if (IS_ERR(fcqr)) return fcqr; fcqr->callback = dasd_eckd_ese_format_cb; fcqr->callback_data = (void *) format; return fcqr; } /* * When data is read from an unformatted area of an ESE volume, this function * returns zeroed data and thereby mimics a read of zero data. * * The first unformatted track is the one that got the NRF error, the address is * encoded in the sense data. * * All tracks before have returned valid data and should not be touched. * All tracks after the unformatted track might be formatted or not. This is * currently not known, remember the processed data and return the remainder of * the request to the blocklayer in __dasd_cleanup_cqr(). */ static int dasd_eckd_ese_read(struct dasd_ccw_req *cqr, struct irb *irb) { struct dasd_eckd_private *private; sector_t first_trk, last_trk; sector_t first_blk, last_blk; unsigned int blksize, off; unsigned int recs_per_trk; struct dasd_device *base; struct req_iterator iter; struct dasd_block *block; unsigned int skip_block; unsigned int blk_count; struct request *req; struct bio_vec bv; sector_t curr_trk; sector_t end_blk; char *dst; int rc; req = (struct request *) cqr->callback_data; base = cqr->block->base; blksize = base->block->bp_block; block = cqr->block; private = base->private; skip_block = 0; blk_count = 0; recs_per_trk = recs_per_track(&private->rdc_data, 0, blksize); first_trk = first_blk = blk_rq_pos(req) >> block->s2b_shift; sector_div(first_trk, recs_per_trk); last_trk = last_blk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; sector_div(last_trk, recs_per_trk); rc = dasd_eckd_track_from_irb(irb, base, &curr_trk); if (rc) return rc; /* sanity check if the current track from sense data is valid */ if (curr_trk < first_trk || curr_trk > last_trk) { DBF_DEV_EVENT(DBF_WARNING, base, "ESE error track %llu not within range %llu - %llu\n", curr_trk, first_trk, last_trk); return -EINVAL; } /* * if not the first track got the NRF error we have to skip over valid * blocks */ if (curr_trk != first_trk) skip_block = curr_trk * recs_per_trk - first_blk; /* we have no information beyond the current track */ end_blk = (curr_trk + 1) * recs_per_trk; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { if (first_blk + blk_count >= end_blk) { cqr->proc_bytes = blk_count * blksize; return 0; } if (dst && !skip_block) memset(dst, 0, blksize); else skip_block--; dst += blksize; blk_count++; } } return 0; } /* * Helper function to count consecutive records of a single track. */ static int dasd_eckd_count_records(struct eckd_count *fmt_buffer, int start, int max) { int head; int i; head = fmt_buffer[start].head; /* * There are 3 conditions where we stop counting: * - if data reoccurs (same head and record may reoccur), which may * happen due to the way DASD_ECKD_CCW_READ_COUNT works * - when the head changes, because we're iterating over several tracks * then (DASD_ECKD_CCW_READ_COUNT_MT) * - when we've reached the end of sensible data in the buffer (the * record will be 0 then) */ for (i = start; i < max; i++) { if (i > start) { if ((fmt_buffer[i].head == head && fmt_buffer[i].record == 1) || fmt_buffer[i].head != head || fmt_buffer[i].record == 0) break; } } return i - start; } /* * Evaluate a given range of tracks. Data like number of records, blocksize, * record ids, and key length are compared with expected data. * * If a mismatch occurs, the corresponding error bit is set, as well as * additional information, depending on the error. */ static void dasd_eckd_format_evaluate_tracks(struct eckd_count *fmt_buffer, struct format_check_t *cdata, int rpt_max, int rpt_exp, int trk_per_cyl, int tpm) { struct ch_t geo; int max_entries; int count = 0; int trkcount; int blksize; int pos = 0; int i, j; int kl; trkcount = cdata->expect.stop_unit - cdata->expect.start_unit + 1; max_entries = trkcount * rpt_max; for (i = cdata->expect.start_unit; i <= cdata->expect.stop_unit; i++) { /* Calculate the correct next starting position in the buffer */ if (tpm) { while (fmt_buffer[pos].record == 0 && fmt_buffer[pos].dl == 0) { if (pos++ > max_entries) break; } } else { if (i != cdata->expect.start_unit) pos += rpt_max - count; } /* Calculate the expected geo values for the current track */ set_ch_t(&geo, i / trk_per_cyl, i % trk_per_cyl); /* Count and check number of records */ count = dasd_eckd_count_records(fmt_buffer, pos, pos + rpt_max); if (count < rpt_exp) { cdata->result = DASD_FMT_ERR_TOO_FEW_RECORDS; break; } if (count > rpt_exp) { cdata->result = DASD_FMT_ERR_TOO_MANY_RECORDS; break; } for (j = 0; j < count; j++, pos++) { blksize = cdata->expect.blksize; kl = 0; /* * Set special values when checking CDL formatted * devices. */ if ((cdata->expect.intensity & 0x08) && geo.cyl == 0 && geo.head == 0) { if (j < 3) { blksize = sizes_trk0[j] - 4; kl = 4; } } if ((cdata->expect.intensity & 0x08) && geo.cyl == 0 && geo.head == 1) { blksize = LABEL_SIZE - 44; kl = 44; } /* Check blocksize */ if (fmt_buffer[pos].dl != blksize) { cdata->result = DASD_FMT_ERR_BLKSIZE; goto out; } /* Check if key length is 0 */ if (fmt_buffer[pos].kl != kl) { cdata->result = DASD_FMT_ERR_KEY_LENGTH; goto out; } /* Check if record_id is correct */ if (fmt_buffer[pos].cyl != geo.cyl || fmt_buffer[pos].head != geo.head || fmt_buffer[pos].record != (j + 1)) { cdata->result = DASD_FMT_ERR_RECORD_ID; goto out; } } } out: /* * In case of no errors, we need to decrease by one * to get the correct positions. */ if (!cdata->result) { i--; pos--; } cdata->unit = i; cdata->num_records = count; cdata->rec = fmt_buffer[pos].record; cdata->blksize = fmt_buffer[pos].dl; cdata->key_length = fmt_buffer[pos].kl; } /* * Check the format of a range of tracks of a DASD. */ static int dasd_eckd_check_device_format(struct dasd_device *base, struct format_check_t *cdata, int enable_pav) { struct dasd_eckd_private *private = base->private; struct eckd_count *fmt_buffer; struct irb irb; int rpt_max, rpt_exp; int fmt_buffer_size; int trk_per_cyl; int trkcount; int tpm = 0; int rc; trk_per_cyl = private->rdc_data.trk_per_cyl; /* Get maximum and expected amount of records per track */ rpt_max = recs_per_track(&private->rdc_data, 0, 512) + 1; rpt_exp = recs_per_track(&private->rdc_data, 0, cdata->expect.blksize); trkcount = cdata->expect.stop_unit - cdata->expect.start_unit + 1; fmt_buffer_size = trkcount * rpt_max * sizeof(struct eckd_count); fmt_buffer = kzalloc(fmt_buffer_size, GFP_KERNEL | GFP_DMA); if (!fmt_buffer) return -ENOMEM; /* * A certain FICON feature subset is needed to operate in transport * mode. Additionally, the support for transport mode is implicitly * checked by comparing the buffer size with fcx_max_data. As long as * the buffer size is smaller we can operate in transport mode and * process multiple tracks. If not, only one track at once is being * processed using command mode. */ if ((private->features.feature[40] & 0x04) && fmt_buffer_size <= private->fcx_max_data) tpm = 1; rc = dasd_eckd_format_process_data(base, &cdata->expect, enable_pav, tpm, fmt_buffer, rpt_max, &irb); if (rc && rc != -EIO) goto out; if (rc == -EIO) { /* * If our first attempt with transport mode enabled comes back * with an incorrect length error, we're going to retry the * check with command mode. */ if (tpm && scsw_cstat(&irb.scsw) == 0x40) { tpm = 0; rc = dasd_eckd_format_process_data(base, &cdata->expect, enable_pav, tpm, fmt_buffer, rpt_max, &irb); if (rc) goto out; } else { goto out; } } dasd_eckd_format_evaluate_tracks(fmt_buffer, cdata, rpt_max, rpt_exp, trk_per_cyl, tpm); out: kfree(fmt_buffer); return rc; } static void dasd_eckd_handle_terminated_request(struct dasd_ccw_req *cqr) { if (cqr->retries < 0) { cqr->status = DASD_CQR_FAILED; return; } cqr->status = DASD_CQR_FILLED; if (cqr->block && (cqr->startdev != cqr->block->base)) { dasd_eckd_reset_ccw_to_base_io(cqr); cqr->startdev = cqr->block->base; cqr->lpm = dasd_path_get_opm(cqr->block->base); } }; static dasd_erp_fn_t dasd_eckd_erp_action(struct dasd_ccw_req * cqr) { struct dasd_device *device = (struct dasd_device *) cqr->startdev; struct ccw_device *cdev = device->cdev; switch (cdev->id.cu_type) { case 0x3990: case 0x2105: case 0x2107: case 0x1750: return dasd_3990_erp_action; case 0x9343: case 0x3880: default: return dasd_default_erp_action; } } static dasd_erp_fn_t dasd_eckd_erp_postaction(struct dasd_ccw_req * cqr) { return dasd_default_erp_postaction; } static void dasd_eckd_check_for_device_change(struct dasd_device *device, struct dasd_ccw_req *cqr, struct irb *irb) { char mask; char *sense = NULL; struct dasd_eckd_private *private = device->private; /* first of all check for state change pending interrupt */ mask = DEV_STAT_ATTENTION | DEV_STAT_DEV_END | DEV_STAT_UNIT_EXCEP; if ((scsw_dstat(&irb->scsw) & mask) == mask) { /* * for alias only, not in offline processing * and only if not suspended */ if (!device->block && private->lcu && device->state == DASD_STATE_ONLINE && !test_bit(DASD_FLAG_OFFLINE, &device->flags) && !test_bit(DASD_FLAG_SUSPENDED, &device->flags)) { /* schedule worker to reload device */ dasd_reload_device(device); } dasd_generic_handle_state_change(device); return; } sense = dasd_get_sense(irb); if (!sense) return; /* summary unit check */ if ((sense[27] & DASD_SENSE_BIT_0) && (sense[7] == 0x0D) && (scsw_dstat(&irb->scsw) & DEV_STAT_UNIT_CHECK)) { if (test_and_set_bit(DASD_FLAG_SUC, &device->flags)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "eckd suc: device already notified"); return; } sense = dasd_get_sense(irb); if (!sense) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "eckd suc: no reason code available"); clear_bit(DASD_FLAG_SUC, &device->flags); return; } private->suc_reason = sense[8]; DBF_DEV_EVENT(DBF_NOTICE, device, "%s %x", "eckd handle summary unit check: reason", private->suc_reason); dasd_get_device(device); if (!schedule_work(&device->suc_work)) dasd_put_device(device); return; } /* service information message SIM */ if (!cqr && !(sense[27] & DASD_SENSE_BIT_0) && ((sense[6] & DASD_SIM_SENSE) == DASD_SIM_SENSE)) { dasd_3990_erp_handle_sim(device, sense); return; } /* loss of device reservation is handled via base devices only * as alias devices may be used with several bases */ if (device->block && (sense[27] & DASD_SENSE_BIT_0) && (sense[7] == 0x3F) && (scsw_dstat(&irb->scsw) & DEV_STAT_UNIT_CHECK) && test_bit(DASD_FLAG_IS_RESERVED, &device->flags)) { if (device->features & DASD_FEATURE_FAILONSLCK) set_bit(DASD_FLAG_LOCK_STOLEN, &device->flags); clear_bit(DASD_FLAG_IS_RESERVED, &device->flags); dev_err(&device->cdev->dev, "The device reservation was lost\n"); } } static int dasd_eckd_ras_sanity_checks(struct dasd_device *device, unsigned int first_trk, unsigned int last_trk) { struct dasd_eckd_private *private = device->private; unsigned int trks_per_vol; int rc = 0; trks_per_vol = private->real_cyl * private->rdc_data.trk_per_cyl; if (first_trk >= trks_per_vol) { dev_warn(&device->cdev->dev, "Start track number %u used in the space release command is too big\n", first_trk); rc = -EINVAL; } else if (last_trk >= trks_per_vol) { dev_warn(&device->cdev->dev, "Stop track number %u used in the space release command is too big\n", last_trk); rc = -EINVAL; } else if (first_trk > last_trk) { dev_warn(&device->cdev->dev, "Start track %u used in the space release command exceeds the end track\n", first_trk); rc = -EINVAL; } return rc; } /* * Helper function to count the amount of involved extents within a given range * with extent alignment in mind. */ static int count_exts(unsigned int from, unsigned int to, int trks_per_ext) { int cur_pos = 0; int count = 0; int tmp; if (from == to) return 1; /* Count first partial extent */ if (from % trks_per_ext != 0) { tmp = from + trks_per_ext - (from % trks_per_ext) - 1; if (tmp > to) tmp = to; cur_pos = tmp - from + 1; count++; } /* Count full extents */ if (to - (from + cur_pos) + 1 >= trks_per_ext) { tmp = to - ((to - trks_per_ext + 1) % trks_per_ext); count += (tmp - (from + cur_pos) + 1) / trks_per_ext; cur_pos = tmp; } /* Count last partial extent */ if (cur_pos < to) count++; return count; } static int dasd_in_copy_relation(struct dasd_device *device) { struct dasd_pprc_data_sc4 *temp; int rc; if (!dasd_eckd_pprc_enabled(device)) return 0; temp = kzalloc(sizeof(*temp), GFP_KERNEL); if (!temp) return -ENOMEM; rc = dasd_eckd_query_pprc_status(device, temp); if (!rc) rc = temp->dev_info[0].state; kfree(temp); return rc; } /* * Release allocated space for a given range or an entire volume. */ static struct dasd_ccw_req * dasd_eckd_dso_ras(struct dasd_device *device, struct dasd_block *block, struct request *req, unsigned int first_trk, unsigned int last_trk, int by_extent) { struct dasd_eckd_private *private = device->private; struct dasd_dso_ras_ext_range *ras_range; struct dasd_rssd_features *features; struct dasd_dso_ras_data *ras_data; u16 heads, beg_head, end_head; int cur_to_trk, cur_from_trk; struct dasd_ccw_req *cqr; u32 beg_cyl, end_cyl; int copy_relation; struct ccw1 *ccw; int trks_per_ext; size_t ras_size; size_t size; int nr_exts; void *rq; int i; if (dasd_eckd_ras_sanity_checks(device, first_trk, last_trk)) return ERR_PTR(-EINVAL); copy_relation = dasd_in_copy_relation(device); if (copy_relation < 0) return ERR_PTR(copy_relation); rq = req ? blk_mq_rq_to_pdu(req) : NULL; features = &private->features; trks_per_ext = dasd_eckd_ext_size(device) * private->rdc_data.trk_per_cyl; nr_exts = 0; if (by_extent) nr_exts = count_exts(first_trk, last_trk, trks_per_ext); ras_size = sizeof(*ras_data); size = ras_size + (nr_exts * sizeof(*ras_range)); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, size, device, rq); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate RAS request"); return cqr; } ras_data = cqr->data; memset(ras_data, 0, size); ras_data->order = DSO_ORDER_RAS; ras_data->flags.vol_type = 0; /* CKD volume */ /* Release specified extents or entire volume */ ras_data->op_flags.by_extent = by_extent; /* * This bit guarantees initialisation of tracks within an extent that is * not fully specified, but is only supported with a certain feature * subset and for devices not in a copy relation. */ if (features->feature[56] & 0x01 && !copy_relation) ras_data->op_flags.guarantee_init = 1; ras_data->lss = private->conf.ned->ID; ras_data->dev_addr = private->conf.ned->unit_addr; ras_data->nr_exts = nr_exts; if (by_extent) { heads = private->rdc_data.trk_per_cyl; cur_from_trk = first_trk; cur_to_trk = first_trk + trks_per_ext - (first_trk % trks_per_ext) - 1; if (cur_to_trk > last_trk) cur_to_trk = last_trk; ras_range = (struct dasd_dso_ras_ext_range *)(cqr->data + ras_size); for (i = 0; i < nr_exts; i++) { beg_cyl = cur_from_trk / heads; beg_head = cur_from_trk % heads; end_cyl = cur_to_trk / heads; end_head = cur_to_trk % heads; set_ch_t(&ras_range->beg_ext, beg_cyl, beg_head); set_ch_t(&ras_range->end_ext, end_cyl, end_head); cur_from_trk = cur_to_trk + 1; cur_to_trk = cur_from_trk + trks_per_ext - 1; if (cur_to_trk > last_trk) cur_to_trk = last_trk; ras_range++; } } ccw = cqr->cpaddr; ccw->cda = (__u32)virt_to_phys(cqr->data); ccw->cmd_code = DASD_ECKD_CCW_DSO; ccw->count = size; cqr->startdev = device; cqr->memdev = device; cqr->block = block; cqr->retries = 256; cqr->expires = device->default_expires * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static int dasd_eckd_release_space_full(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; cqr = dasd_eckd_dso_ras(device, NULL, NULL, 0, 0, 0); if (IS_ERR(cqr)) return PTR_ERR(cqr); rc = dasd_sleep_on_interruptible(cqr); dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_release_space_trks(struct dasd_device *device, unsigned int from, unsigned int to) { struct dasd_eckd_private *private = device->private; struct dasd_block *block = device->block; struct dasd_ccw_req *cqr, *n; struct list_head ras_queue; unsigned int device_exts; int trks_per_ext; int stop, step; int cur_pos; int rc = 0; int retry; INIT_LIST_HEAD(&ras_queue); device_exts = private->real_cyl / dasd_eckd_ext_size(device); trks_per_ext = dasd_eckd_ext_size(device) * private->rdc_data.trk_per_cyl; /* Make sure device limits are not exceeded */ step = trks_per_ext * min(device_exts, DASD_ECKD_RAS_EXTS_MAX); cur_pos = from; do { retry = 0; while (cur_pos < to) { stop = cur_pos + step - ((cur_pos + step) % trks_per_ext) - 1; if (stop > to) stop = to; cqr = dasd_eckd_dso_ras(device, NULL, NULL, cur_pos, stop, 1); if (IS_ERR(cqr)) { rc = PTR_ERR(cqr); if (rc == -ENOMEM) { if (list_empty(&ras_queue)) goto out; retry = 1; break; } goto err_out; } spin_lock_irq(&block->queue_lock); list_add_tail(&cqr->blocklist, &ras_queue); spin_unlock_irq(&block->queue_lock); cur_pos = stop + 1; } rc = dasd_sleep_on_queue_interruptible(&ras_queue); err_out: list_for_each_entry_safe(cqr, n, &ras_queue, blocklist) { device = cqr->startdev; private = device->private; spin_lock_irq(&block->queue_lock); list_del_init(&cqr->blocklist); spin_unlock_irq(&block->queue_lock); dasd_sfree_request(cqr, device); private->count--; } } while (retry); out: return rc; } static int dasd_eckd_release_space(struct dasd_device *device, struct format_data_t *rdata) { if (rdata->intensity & DASD_FMT_INT_ESE_FULL) return dasd_eckd_release_space_full(device); else if (rdata->intensity == 0) return dasd_eckd_release_space_trks(device, rdata->start_unit, rdata->stop_unit); else return -EINVAL; } static struct dasd_ccw_req *dasd_eckd_build_cp_cmd_single( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { struct dasd_eckd_private *private; unsigned long *idaws; struct LO_eckd_data *LO_data; struct dasd_ccw_req *cqr; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst; unsigned int off; int count, cidaw, cplength, datasize; sector_t recid; unsigned char cmd, rcmd; int use_prefix; struct dasd_device *basedev; basedev = block->base; private = basedev->private; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_MT; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_MT; else return ERR_PTR(-EINVAL); /* Check struct bio and count the number of blocks for the request. */ count = 0; cidaw = 0; rq_for_each_segment(bv, req, iter) { if (bv.bv_len & (blksize - 1)) /* Eckd can only do full blocks. */ return ERR_PTR(-EINVAL); count += bv.bv_len >> (block->s2b_shift + 9); if (idal_is_needed (page_address(bv.bv_page), bv.bv_len)) cidaw += bv.bv_len >> (block->s2b_shift + 9); } /* Paranoia. */ if (count != last_rec - first_rec + 1) return ERR_PTR(-EINVAL); /* use the prefix command if available */ use_prefix = private->features.feature[8] & 0x01; if (use_prefix) { /* 1x prefix + number of blocks */ cplength = 2 + count; /* 1x prefix + cidaws*sizeof(long) */ datasize = sizeof(struct PFX_eckd_data) + sizeof(struct LO_eckd_data) + cidaw * sizeof(unsigned long); } else { /* 1x define extent + 1x locate record + number of blocks */ cplength = 2 + count; /* 1x define extent + 1x locate record + cidaws*sizeof(long) */ datasize = sizeof(struct DE_eckd_data) + sizeof(struct LO_eckd_data) + cidaw * sizeof(unsigned long); } /* Find out the number of additional locate record ccws for cdl. */ if (private->uses_cdl && first_rec < 2*blk_per_trk) { if (last_rec >= 2*blk_per_trk) count = 2*blk_per_trk - first_rec; cplength += count; datasize += count*sizeof(struct LO_eckd_data); } /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* First ccw is define extent or prefix. */ if (use_prefix) { if (prefix(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, startdev) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } idaws = (unsigned long *) (cqr->data + sizeof(struct PFX_eckd_data)); } else { if (define_extent(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, 0) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } idaws = (unsigned long *) (cqr->data + sizeof(struct DE_eckd_data)); } /* Build locate_record+read/write/ccws. */ LO_data = (struct LO_eckd_data *) (idaws + cidaw); recid = first_rec; if (private->uses_cdl == 0 || recid > 2*blk_per_trk) { /* Only standard blocks so there is just one locate record. */ ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, first_trk, first_offs + 1, last_rec - recid + 1, cmd, basedev, blksize); } rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); if (dasd_page_cache) { char *copy = kmem_cache_alloc(dasd_page_cache, GFP_DMA | __GFP_NOWARN); if (copy && rq_data_dir(req) == WRITE) memcpy(copy + bv.bv_offset, dst, bv.bv_len); if (copy) dst = copy + bv.bv_offset; } for (off = 0; off < bv.bv_len; off += blksize) { sector_t trkid = recid; unsigned int recoffs = sector_div(trkid, blk_per_trk); rcmd = cmd; count = blksize; /* Locate record for cdl special block ? */ if (private->uses_cdl && recid < 2*blk_per_trk) { if (dasd_eckd_cdl_special(blk_per_trk, recid)){ rcmd |= 0x8; count = dasd_eckd_cdl_reclen(recid); if (count < blksize && rq_data_dir(req) == READ) memset(dst + count, 0xe5, blksize - count); } ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, trkid, recoffs + 1, 1, rcmd, basedev, count); } /* Locate record for standard blocks ? */ if (private->uses_cdl && recid == 2*blk_per_trk) { ccw[-1].flags |= CCW_FLAG_CC; locate_record(ccw++, LO_data++, trkid, recoffs + 1, last_rec - recid + 1, cmd, basedev, count); } /* Read/write ccw. */ ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = rcmd; ccw->count = count; if (idal_is_needed(dst, blksize)) { ccw->cda = (__u32)virt_to_phys(idaws); ccw->flags = CCW_FLAG_IDA; idaws = idal_create_words(idaws, dst, blksize); } else { ccw->cda = (__u32)virt_to_phys(dst); ccw->flags = 0; } ccw++; dst += blksize; recid++; } } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) { set_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); } return cqr; } static struct dasd_ccw_req *dasd_eckd_build_cp_cmd_track( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { unsigned long *idaws; struct dasd_ccw_req *cqr; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst, *idaw_dst; unsigned int cidaw, cplength, datasize; unsigned int tlf; sector_t recid; unsigned char cmd; struct dasd_device *basedev; unsigned int trkcount, count, count_to_trk_end; unsigned int idaw_len, seg_len, part_len, len_to_track_end; unsigned char new_track, end_idaw; sector_t trkid; unsigned int recoffs; basedev = block->base; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_TRACK_DATA; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_TRACK_DATA; else return ERR_PTR(-EINVAL); /* Track based I/O needs IDAWs for each page, and not just for * 64 bit addresses. We need additional idals for pages * that get filled from two tracks, so we use the number * of records as upper limit. */ cidaw = last_rec - first_rec + 1; trkcount = last_trk - first_trk + 1; /* 1x prefix + one read/write ccw per track */ cplength = 1 + trkcount; datasize = sizeof(struct PFX_eckd_data) + cidaw * sizeof(unsigned long); /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; /* transfer length factor: how many bytes to read from the last track */ if (first_trk == last_trk) tlf = last_offs - first_offs + 1; else tlf = last_offs + 1; tlf *= blksize; if (prefix_LRE(ccw++, cqr->data, first_trk, last_trk, cmd, basedev, startdev, 1 /* format */, first_offs + 1, trkcount, blksize, tlf) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ dasd_sfree_request(cqr, startdev); return ERR_PTR(-EAGAIN); } /* * The translation of request into ccw programs must meet the * following conditions: * - all idaws but the first and the last must address full pages * (or 2K blocks on 31-bit) * - the scope of a ccw and it's idal ends with the track boundaries */ idaws = (unsigned long *) (cqr->data + sizeof(struct PFX_eckd_data)); recid = first_rec; new_track = 1; end_idaw = 0; len_to_track_end = 0; idaw_dst = NULL; idaw_len = 0; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; while (seg_len) { if (new_track) { trkid = recid; recoffs = sector_div(trkid, blk_per_trk); count_to_trk_end = blk_per_trk - recoffs; count = min((last_rec - recid + 1), (sector_t)count_to_trk_end); len_to_track_end = count * blksize; ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; ccw->count = len_to_track_end; ccw->cda = (__u32)virt_to_phys(idaws); ccw->flags = CCW_FLAG_IDA; ccw++; recid += count; new_track = 0; /* first idaw for a ccw may start anywhere */ if (!idaw_dst) idaw_dst = dst; } /* If we start a new idaw, we must make sure that it * starts on an IDA_BLOCK_SIZE boundary. * If we continue an idaw, we must make sure that the * current segment begins where the so far accumulated * idaw ends */ if (!idaw_dst) { if ((__u32)virt_to_phys(dst) & (IDA_BLOCK_SIZE - 1)) { dasd_sfree_request(cqr, startdev); return ERR_PTR(-ERANGE); } else idaw_dst = dst; } if ((idaw_dst + idaw_len) != dst) { dasd_sfree_request(cqr, startdev); return ERR_PTR(-ERANGE); } part_len = min(seg_len, len_to_track_end); seg_len -= part_len; dst += part_len; idaw_len += part_len; len_to_track_end -= part_len; /* collected memory area ends on an IDA_BLOCK border, * -> create an idaw * idal_create_words will handle cases where idaw_len * is larger then IDA_BLOCK_SIZE */ if (!((__u32)virt_to_phys(idaw_dst + idaw_len) & (IDA_BLOCK_SIZE - 1))) end_idaw = 1; /* We also need to end the idaw at track end */ if (!len_to_track_end) { new_track = 1; end_idaw = 1; } if (end_idaw) { idaws = idal_create_words(idaws, idaw_dst, idaw_len); idaw_dst = NULL; idaw_len = 0; end_idaw = 0; } } } if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); return cqr; } static int prepare_itcw(struct itcw *itcw, unsigned int trk, unsigned int totrk, int cmd, struct dasd_device *basedev, struct dasd_device *startdev, unsigned int rec_on_trk, int count, unsigned int blksize, unsigned int total_data_size, unsigned int tlf, unsigned int blk_per_trk) { struct PFX_eckd_data pfxdata; struct dasd_eckd_private *basepriv, *startpriv; struct DE_eckd_data *dedata; struct LRE_eckd_data *lredata; struct dcw *dcw; u32 begcyl, endcyl; u16 heads, beghead, endhead; u8 pfx_cmd; int rc = 0; int sector = 0; int dn, d; /* setup prefix data */ basepriv = basedev->private; startpriv = startdev->private; dedata = &pfxdata.define_extent; lredata = &pfxdata.locate_record; memset(&pfxdata, 0, sizeof(pfxdata)); pfxdata.format = 1; /* PFX with LRE */ pfxdata.base_address = basepriv->conf.ned->unit_addr; pfxdata.base_lss = basepriv->conf.ned->ID; pfxdata.validity.define_extent = 1; /* private uid is kept up to date, conf_data may be outdated */ if (startpriv->uid.type == UA_BASE_PAV_ALIAS) pfxdata.validity.verify_base = 1; if (startpriv->uid.type == UA_HYPER_PAV_ALIAS) { pfxdata.validity.verify_base = 1; pfxdata.validity.hyper_pav = 1; } switch (cmd) { case DASD_ECKD_CCW_READ_TRACK_DATA: dedata->mask.perm = 0x1; dedata->attributes.operation = basepriv->attrib.operation; dedata->blk_size = blksize; dedata->ga_extended |= 0x42; lredata->operation.orientation = 0x0; lredata->operation.operation = 0x0C; lredata->auxiliary.check_bytes = 0x01; pfx_cmd = DASD_ECKD_CCW_PFX_READ; break; case DASD_ECKD_CCW_WRITE_TRACK_DATA: dedata->mask.perm = 0x02; dedata->attributes.operation = basepriv->attrib.operation; dedata->blk_size = blksize; rc = set_timestamp(NULL, dedata, basedev); dedata->ga_extended |= 0x42; lredata->operation.orientation = 0x0; lredata->operation.operation = 0x3F; lredata->extended_operation = 0x23; lredata->auxiliary.check_bytes = 0x2; /* * If XRC is supported the System Time Stamp is set. The * validity of the time stamp must be reflected in the prefix * data as well. */ if (dedata->ga_extended & 0x08 && dedata->ga_extended & 0x02) pfxdata.validity.time_stamp = 1; /* 'Time Stamp Valid' */ pfx_cmd = DASD_ECKD_CCW_PFX; break; case DASD_ECKD_CCW_READ_COUNT_MT: dedata->mask.perm = 0x1; dedata->attributes.operation = DASD_BYPASS_CACHE; dedata->ga_extended |= 0x42; dedata->blk_size = blksize; lredata->operation.orientation = 0x2; lredata->operation.operation = 0x16; lredata->auxiliary.check_bytes = 0x01; pfx_cmd = DASD_ECKD_CCW_PFX_READ; break; default: DBF_DEV_EVENT(DBF_ERR, basedev, "prepare itcw, unknown opcode 0x%x", cmd); BUG(); break; } if (rc) return rc; dedata->attributes.mode = 0x3; /* ECKD */ heads = basepriv->rdc_data.trk_per_cyl; begcyl = trk / heads; beghead = trk % heads; endcyl = totrk / heads; endhead = totrk % heads; /* check for sequential prestage - enhance cylinder range */ if (dedata->attributes.operation == DASD_SEQ_PRESTAGE || dedata->attributes.operation == DASD_SEQ_ACCESS) { if (endcyl + basepriv->attrib.nr_cyl < basepriv->real_cyl) endcyl += basepriv->attrib.nr_cyl; else endcyl = (basepriv->real_cyl - 1); } set_ch_t(&dedata->beg_ext, begcyl, beghead); set_ch_t(&dedata->end_ext, endcyl, endhead); dedata->ep_format = 0x20; /* records per track is valid */ dedata->ep_rec_per_track = blk_per_trk; if (rec_on_trk) { switch (basepriv->rdc_data.dev_type) { case 0x3390: dn = ceil_quot(blksize + 6, 232); d = 9 + ceil_quot(blksize + 6 * (dn + 1), 34); sector = (49 + (rec_on_trk - 1) * (10 + d)) / 8; break; case 0x3380: d = 7 + ceil_quot(blksize + 12, 32); sector = (39 + (rec_on_trk - 1) * (8 + d)) / 7; break; } } if (cmd == DASD_ECKD_CCW_READ_COUNT_MT) { lredata->auxiliary.length_valid = 0; lredata->auxiliary.length_scope = 0; lredata->sector = 0xff; } else { lredata->auxiliary.length_valid = 1; lredata->auxiliary.length_scope = 1; lredata->sector = sector; } lredata->auxiliary.imbedded_ccw_valid = 1; lredata->length = tlf; lredata->imbedded_ccw = cmd; lredata->count = count; set_ch_t(&lredata->seek_addr, begcyl, beghead); lredata->search_arg.cyl = lredata->seek_addr.cyl; lredata->search_arg.head = lredata->seek_addr.head; lredata->search_arg.record = rec_on_trk; dcw = itcw_add_dcw(itcw, pfx_cmd, 0, &pfxdata, sizeof(pfxdata), total_data_size); return PTR_ERR_OR_ZERO(dcw); } static struct dasd_ccw_req *dasd_eckd_build_cp_tpm_track( struct dasd_device *startdev, struct dasd_block *block, struct request *req, sector_t first_rec, sector_t last_rec, sector_t first_trk, sector_t last_trk, unsigned int first_offs, unsigned int last_offs, unsigned int blk_per_trk, unsigned int blksize) { struct dasd_ccw_req *cqr; struct req_iterator iter; struct bio_vec bv; char *dst; unsigned int trkcount, ctidaw; unsigned char cmd; struct dasd_device *basedev; unsigned int tlf; struct itcw *itcw; struct tidaw *last_tidaw = NULL; int itcw_op; size_t itcw_size; u8 tidaw_flags; unsigned int seg_len, part_len, len_to_track_end; unsigned char new_track; sector_t recid, trkid; unsigned int offs; unsigned int count, count_to_trk_end; int ret; basedev = block->base; if (rq_data_dir(req) == READ) { cmd = DASD_ECKD_CCW_READ_TRACK_DATA; itcw_op = ITCW_OP_READ; } else if (rq_data_dir(req) == WRITE) { cmd = DASD_ECKD_CCW_WRITE_TRACK_DATA; itcw_op = ITCW_OP_WRITE; } else return ERR_PTR(-EINVAL); /* trackbased I/O needs address all memory via TIDAWs, * not just for 64 bit addresses. This allows us to map * each segment directly to one tidaw. * In the case of write requests, additional tidaws may * be needed when a segment crosses a track boundary. */ trkcount = last_trk - first_trk + 1; ctidaw = 0; rq_for_each_segment(bv, req, iter) { ++ctidaw; } if (rq_data_dir(req) == WRITE) ctidaw += (last_trk - first_trk); /* Allocate the ccw request. */ itcw_size = itcw_calc_size(0, ctidaw, 0); cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 0, itcw_size, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; /* transfer length factor: how many bytes to read from the last track */ if (first_trk == last_trk) tlf = last_offs - first_offs + 1; else tlf = last_offs + 1; tlf *= blksize; itcw = itcw_init(cqr->data, itcw_size, itcw_op, 0, ctidaw, 0); if (IS_ERR(itcw)) { ret = -EINVAL; goto out_error; } cqr->cpaddr = itcw_get_tcw(itcw); if (prepare_itcw(itcw, first_trk, last_trk, cmd, basedev, startdev, first_offs + 1, trkcount, blksize, (last_rec - first_rec + 1) * blksize, tlf, blk_per_trk) == -EAGAIN) { /* Clock not in sync and XRC is enabled. * Try again later. */ ret = -EAGAIN; goto out_error; } len_to_track_end = 0; /* * A tidaw can address 4k of memory, but must not cross page boundaries * We can let the block layer handle this by setting * blk_queue_segment_boundary to page boundaries and * blk_max_segment_size to page size when setting up the request queue. * For write requests, a TIDAW must not cross track boundaries, because * we have to set the CBC flag on the last tidaw for each track. */ if (rq_data_dir(req) == WRITE) { new_track = 1; recid = first_rec; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; while (seg_len) { if (new_track) { trkid = recid; offs = sector_div(trkid, blk_per_trk); count_to_trk_end = blk_per_trk - offs; count = min((last_rec - recid + 1), (sector_t)count_to_trk_end); len_to_track_end = count * blksize; recid += count; new_track = 0; } part_len = min(seg_len, len_to_track_end); seg_len -= part_len; len_to_track_end -= part_len; /* We need to end the tidaw at track end */ if (!len_to_track_end) { new_track = 1; tidaw_flags = TIDAW_FLAGS_INSERT_CBC; } else tidaw_flags = 0; last_tidaw = itcw_add_tidaw(itcw, tidaw_flags, dst, part_len); if (IS_ERR(last_tidaw)) { ret = -EINVAL; goto out_error; } dst += part_len; } } } else { rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); last_tidaw = itcw_add_tidaw(itcw, 0x00, dst, bv.bv_len); if (IS_ERR(last_tidaw)) { ret = -EINVAL; goto out_error; } } } last_tidaw->flags |= TIDAW_FLAGS_LAST; last_tidaw->flags &= ~TIDAW_FLAGS_INSERT_CBC; itcw_finalize(itcw); if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->cpmode = 1; cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; /* default 5 minutes */ cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Set flags to suppress output for expected errors */ if (dasd_eckd_is_ese(basedev)) { set_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags); set_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); } return cqr; out_error: dasd_sfree_request(cqr, startdev); return ERR_PTR(ret); } static struct dasd_ccw_req *dasd_eckd_build_cp(struct dasd_device *startdev, struct dasd_block *block, struct request *req) { int cmdrtd, cmdwtd; int use_prefix; int fcx_multitrack; struct dasd_eckd_private *private; struct dasd_device *basedev; sector_t first_rec, last_rec; sector_t first_trk, last_trk; unsigned int first_offs, last_offs; unsigned int blk_per_trk, blksize; int cdlspecial; unsigned int data_size; struct dasd_ccw_req *cqr; basedev = block->base; private = basedev->private; /* Calculate number of blocks/records per track. */ blksize = block->bp_block; blk_per_trk = recs_per_track(&private->rdc_data, 0, blksize); if (blk_per_trk == 0) return ERR_PTR(-EINVAL); /* Calculate record id of first and last block. */ first_rec = first_trk = blk_rq_pos(req) >> block->s2b_shift; first_offs = sector_div(first_trk, blk_per_trk); last_rec = last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) >> block->s2b_shift; last_offs = sector_div(last_trk, blk_per_trk); cdlspecial = (private->uses_cdl && first_rec < 2*blk_per_trk); fcx_multitrack = private->features.feature[40] & 0x20; data_size = blk_rq_bytes(req); if (data_size % blksize) return ERR_PTR(-EINVAL); /* tpm write request add CBC data on each track boundary */ if (rq_data_dir(req) == WRITE) data_size += (last_trk - first_trk) * 4; /* is read track data and write track data in command mode supported? */ cmdrtd = private->features.feature[9] & 0x20; cmdwtd = private->features.feature[12] & 0x40; use_prefix = private->features.feature[8] & 0x01; cqr = NULL; if (cdlspecial || dasd_page_cache) { /* do nothing, just fall through to the cmd mode single case */ } else if ((data_size <= private->fcx_max_data) && (fcx_multitrack || (first_trk == last_trk))) { cqr = dasd_eckd_build_cp_tpm_track(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); if (IS_ERR(cqr) && (PTR_ERR(cqr) != -EAGAIN) && (PTR_ERR(cqr) != -ENOMEM)) cqr = NULL; } else if (use_prefix && (((rq_data_dir(req) == READ) && cmdrtd) || ((rq_data_dir(req) == WRITE) && cmdwtd))) { cqr = dasd_eckd_build_cp_cmd_track(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); if (IS_ERR(cqr) && (PTR_ERR(cqr) != -EAGAIN) && (PTR_ERR(cqr) != -ENOMEM)) cqr = NULL; } if (!cqr) cqr = dasd_eckd_build_cp_cmd_single(startdev, block, req, first_rec, last_rec, first_trk, last_trk, first_offs, last_offs, blk_per_trk, blksize); return cqr; } static struct dasd_ccw_req *dasd_eckd_build_cp_raw(struct dasd_device *startdev, struct dasd_block *block, struct request *req) { sector_t start_padding_sectors, end_sector_offset, end_padding_sectors; unsigned int seg_len, len_to_track_end; unsigned int cidaw, cplength, datasize; sector_t first_trk, last_trk, sectors; struct dasd_eckd_private *base_priv; struct dasd_device *basedev; struct req_iterator iter; struct dasd_ccw_req *cqr; unsigned int trkcount; unsigned long *idaws; unsigned int size; unsigned char cmd; struct bio_vec bv; struct ccw1 *ccw; int use_prefix; void *data; char *dst; /* * raw track access needs to be mutiple of 64k and on 64k boundary * For read requests we can fix an incorrect alignment by padding * the request with dummy pages. */ start_padding_sectors = blk_rq_pos(req) % DASD_RAW_SECTORS_PER_TRACK; end_sector_offset = (blk_rq_pos(req) + blk_rq_sectors(req)) % DASD_RAW_SECTORS_PER_TRACK; end_padding_sectors = (DASD_RAW_SECTORS_PER_TRACK - end_sector_offset) % DASD_RAW_SECTORS_PER_TRACK; basedev = block->base; if ((start_padding_sectors || end_padding_sectors) && (rq_data_dir(req) == WRITE)) { DBF_DEV_EVENT(DBF_ERR, basedev, "raw write not track aligned (%llu,%llu) req %p", start_padding_sectors, end_padding_sectors, req); return ERR_PTR(-EINVAL); } first_trk = blk_rq_pos(req) / DASD_RAW_SECTORS_PER_TRACK; last_trk = (blk_rq_pos(req) + blk_rq_sectors(req) - 1) / DASD_RAW_SECTORS_PER_TRACK; trkcount = last_trk - first_trk + 1; if (rq_data_dir(req) == READ) cmd = DASD_ECKD_CCW_READ_TRACK; else if (rq_data_dir(req) == WRITE) cmd = DASD_ECKD_CCW_WRITE_FULL_TRACK; else return ERR_PTR(-EINVAL); /* * Raw track based I/O needs IDAWs for each page, * and not just for 64 bit addresses. */ cidaw = trkcount * DASD_RAW_BLOCK_PER_TRACK; /* * struct PFX_eckd_data and struct LRE_eckd_data can have up to 2 bytes * of extended parameter. This is needed for write full track. */ base_priv = basedev->private; use_prefix = base_priv->features.feature[8] & 0x01; if (use_prefix) { cplength = 1 + trkcount; size = sizeof(struct PFX_eckd_data) + 2; } else { cplength = 2 + trkcount; size = sizeof(struct DE_eckd_data) + sizeof(struct LRE_eckd_data) + 2; } size = ALIGN(size, 8); datasize = size + cidaw * sizeof(unsigned long); /* Allocate the ccw request. */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, cplength, datasize, startdev, blk_mq_rq_to_pdu(req)); if (IS_ERR(cqr)) return cqr; ccw = cqr->cpaddr; data = cqr->data; if (use_prefix) { prefix_LRE(ccw++, data, first_trk, last_trk, cmd, basedev, startdev, 1, 0, trkcount, 0, 0); } else { define_extent(ccw++, data, first_trk, last_trk, cmd, basedev, 0); ccw[-1].flags |= CCW_FLAG_CC; data += sizeof(struct DE_eckd_data); locate_record_ext(ccw++, data, first_trk, 0, trkcount, cmd, basedev, 0, 0); } idaws = (unsigned long *)(cqr->data + size); len_to_track_end = 0; if (start_padding_sectors) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; /* maximum 3390 track size */ ccw->count = 57326; /* 64k map to one track */ len_to_track_end = 65536 - start_padding_sectors * 512; ccw->cda = (__u32)virt_to_phys(idaws); ccw->flags |= CCW_FLAG_IDA; ccw->flags |= CCW_FLAG_SLI; ccw++; for (sectors = 0; sectors < start_padding_sectors; sectors += 8) idaws = idal_create_words(idaws, rawpadpage, PAGE_SIZE); } rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); seg_len = bv.bv_len; if (cmd == DASD_ECKD_CCW_READ_TRACK) memset(dst, 0, seg_len); if (!len_to_track_end) { ccw[-1].flags |= CCW_FLAG_CC; ccw->cmd_code = cmd; /* maximum 3390 track size */ ccw->count = 57326; /* 64k map to one track */ len_to_track_end = 65536; ccw->cda = (__u32)virt_to_phys(idaws); ccw->flags |= CCW_FLAG_IDA; ccw->flags |= CCW_FLAG_SLI; ccw++; } len_to_track_end -= seg_len; idaws = idal_create_words(idaws, dst, seg_len); } for (sectors = 0; sectors < end_padding_sectors; sectors += 8) idaws = idal_create_words(idaws, rawpadpage, PAGE_SIZE); if (blk_noretry_request(req) || block->base->features & DASD_FEATURE_FAILFAST) set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->startdev = startdev; cqr->memdev = startdev; cqr->block = block; cqr->expires = startdev->default_expires * HZ; cqr->lpm = dasd_path_get_ppm(startdev); cqr->retries = startdev->default_retries; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } static int dasd_eckd_free_cp(struct dasd_ccw_req *cqr, struct request *req) { struct dasd_eckd_private *private; struct ccw1 *ccw; struct req_iterator iter; struct bio_vec bv; char *dst, *cda; unsigned int blksize, blk_per_trk, off; sector_t recid; int status; if (!dasd_page_cache) goto out; private = cqr->block->base->private; blksize = cqr->block->bp_block; blk_per_trk = recs_per_track(&private->rdc_data, 0, blksize); recid = blk_rq_pos(req) >> cqr->block->s2b_shift; ccw = cqr->cpaddr; /* Skip over define extent & locate record. */ ccw++; if (private->uses_cdl == 0 || recid > 2*blk_per_trk) ccw++; rq_for_each_segment(bv, req, iter) { dst = bvec_virt(&bv); for (off = 0; off < bv.bv_len; off += blksize) { /* Skip locate record. */ if (private->uses_cdl && recid <= 2*blk_per_trk) ccw++; if (dst) { if (ccw->flags & CCW_FLAG_IDA) cda = *((char **)phys_to_virt(ccw->cda)); else cda = phys_to_virt(ccw->cda); if (dst != cda) { if (rq_data_dir(req) == READ) memcpy(dst, cda, bv.bv_len); kmem_cache_free(dasd_page_cache, (void *)((addr_t)cda & PAGE_MASK)); } dst = NULL; } ccw++; recid++; } } out: status = cqr->status == DASD_CQR_DONE; dasd_sfree_request(cqr, cqr->memdev); return status; } /* * Modify ccw/tcw in cqr so it can be started on a base device. * * Note that this is not enough to restart the cqr! * Either reset cqr->startdev as well (summary unit check handling) * or restart via separate cqr (as in ERP handling). */ void dasd_eckd_reset_ccw_to_base_io(struct dasd_ccw_req *cqr) { struct ccw1 *ccw; struct PFX_eckd_data *pfxdata; struct tcw *tcw; struct tccb *tccb; struct dcw *dcw; if (cqr->cpmode == 1) { tcw = cqr->cpaddr; tccb = tcw_get_tccb(tcw); dcw = (struct dcw *)&tccb->tca[0]; pfxdata = (struct PFX_eckd_data *)&dcw->cd[0]; pfxdata->validity.verify_base = 0; pfxdata->validity.hyper_pav = 0; } else { ccw = cqr->cpaddr; pfxdata = cqr->data; if (ccw->cmd_code == DASD_ECKD_CCW_PFX) { pfxdata->validity.verify_base = 0; pfxdata->validity.hyper_pav = 0; } } } #define DASD_ECKD_CHANQ_MAX_SIZE 4 static struct dasd_ccw_req *dasd_eckd_build_alias_cp(struct dasd_device *base, struct dasd_block *block, struct request *req) { struct dasd_eckd_private *private; struct dasd_device *startdev; unsigned long flags; struct dasd_ccw_req *cqr; startdev = dasd_alias_get_start_dev(base); if (!startdev) startdev = base; private = startdev->private; if (private->count >= DASD_ECKD_CHANQ_MAX_SIZE) return ERR_PTR(-EBUSY); spin_lock_irqsave(get_ccwdev_lock(startdev->cdev), flags); private->count++; if ((base->features & DASD_FEATURE_USERAW)) cqr = dasd_eckd_build_cp_raw(startdev, block, req); else cqr = dasd_eckd_build_cp(startdev, block, req); if (IS_ERR(cqr)) private->count--; spin_unlock_irqrestore(get_ccwdev_lock(startdev->cdev), flags); return cqr; } static int dasd_eckd_free_alias_cp(struct dasd_ccw_req *cqr, struct request *req) { struct dasd_eckd_private *private; unsigned long flags; spin_lock_irqsave(get_ccwdev_lock(cqr->memdev->cdev), flags); private = cqr->memdev->private; private->count--; spin_unlock_irqrestore(get_ccwdev_lock(cqr->memdev->cdev), flags); return dasd_eckd_free_cp(cqr, req); } static int dasd_eckd_fill_info(struct dasd_device * device, struct dasd_information2_t * info) { struct dasd_eckd_private *private = device->private; info->label_block = 2; info->FBA_layout = private->uses_cdl ? 0 : 1; info->format = private->uses_cdl ? DASD_FORMAT_CDL : DASD_FORMAT_LDL; info->characteristics_size = sizeof(private->rdc_data); memcpy(info->characteristics, &private->rdc_data, sizeof(private->rdc_data)); info->confdata_size = min_t(unsigned long, private->conf.len, sizeof(info->configuration_data)); memcpy(info->configuration_data, private->conf.data, info->confdata_size); return 0; } /* * SECTION: ioctl functions for eckd devices. */ /* * Release device ioctl. * Buils a channel programm to releases a prior reserved * (see dasd_eckd_reserve) device. */ static int dasd_eckd_release(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RELEASE; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = (__u32)virt_to_phys(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) clear_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Reserve device ioctl. * Options are set to 'synchronous wait for interrupt' and * 'timeout the request'. This leads to a terminate IO if * the interrupt is outstanding for a certain time. */ static int dasd_eckd_reserve(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_RESERVE; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = (__u32)virt_to_phys(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) set_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Steal lock ioctl - unconditional reserve device. * Buils a channel programm to break a device's reservation. * (unconditional reserve) */ static int dasd_eckd_steal_lock(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; if (!capable(CAP_SYS_ADMIN)) return -EACCES; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 32, device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_SLCK; ccw->flags |= CCW_FLAG_SLI; ccw->count = 32; ccw->cda = (__u32)virt_to_phys(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); cqr->retries = 2; /* set retry counter to enable basic ERP */ cqr->expires = 2 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (!rc) set_bit(DASD_FLAG_IS_RESERVED, &device->flags); if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * SNID - Sense Path Group ID * This ioctl may be used in situations where I/O is stalled due to * a reserve, so if the normal dasd_smalloc_request fails, we use the * preallocated dasd_reserve_req. */ static int dasd_eckd_snid(struct dasd_device *device, void __user *argp) { struct dasd_ccw_req *cqr; int rc; struct ccw1 *ccw; int useglobal; struct dasd_snid_ioctl_data usrparm; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (copy_from_user(&usrparm, argp, sizeof(usrparm))) return -EFAULT; useglobal = 0; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, sizeof(struct dasd_snid_data), device, NULL); if (IS_ERR(cqr)) { mutex_lock(&dasd_reserve_mutex); useglobal = 1; cqr = &dasd_reserve_req->cqr; memset(cqr, 0, sizeof(*cqr)); memset(&dasd_reserve_req->ccw, 0, sizeof(dasd_reserve_req->ccw)); cqr->cpaddr = &dasd_reserve_req->ccw; cqr->data = &dasd_reserve_req->data; cqr->magic = DASD_ECKD_MAGIC; } ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_SNID; ccw->flags |= CCW_FLAG_SLI; ccw->count = 12; ccw->cda = (__u32)virt_to_phys(cqr->data); cqr->startdev = device; cqr->memdev = device; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); set_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags); set_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags); cqr->retries = 5; cqr->expires = 10 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; cqr->lpm = usrparm.path_mask; rc = dasd_sleep_on_immediatly(cqr); /* verify that I/O processing didn't modify the path mask */ if (!rc && usrparm.path_mask && (cqr->lpm != usrparm.path_mask)) rc = -EIO; if (!rc) { usrparm.data = *((struct dasd_snid_data *)cqr->data); if (copy_to_user(argp, &usrparm, sizeof(usrparm))) rc = -EFAULT; } if (useglobal) mutex_unlock(&dasd_reserve_mutex); else dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Read performance statistics */ static int dasd_eckd_performance(struct dasd_device *device, void __user *argp) { struct dasd_psf_prssd_data *prssdp; struct dasd_rssd_perf_stats_t *stats; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_perf_stats_t)), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate initialization request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->retries = 0; clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x01; /* Performance Statistics */ prssdp->varies[1] = 0x01; /* Perf Statistics for the Subsystem */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)virt_to_phys(prssdp); /* Read Subsystem Data - Performance Statistics */ stats = (struct dasd_rssd_perf_stats_t *) (prssdp + 1); memset(stats, 0, sizeof(struct dasd_rssd_perf_stats_t)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_perf_stats_t); ccw->cda = (__u32)virt_to_phys(stats); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; stats = (struct dasd_rssd_perf_stats_t *) (prssdp + 1); if (copy_to_user(argp, stats, sizeof(struct dasd_rssd_perf_stats_t))) rc = -EFAULT; } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * Get attributes (cache operations) * Returnes the cache attributes used in Define Extend (DE). */ static int dasd_eckd_get_attrib(struct dasd_device *device, void __user *argp) { struct dasd_eckd_private *private = device->private; struct attrib_data_t attrib = private->attrib; int rc; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; rc = 0; if (copy_to_user(argp, (long *) &attrib, sizeof(struct attrib_data_t))) rc = -EFAULT; return rc; } /* * Set attributes (cache operations) * Stores the attributes for cache operation to be used in Define Extend (DE). */ static int dasd_eckd_set_attrib(struct dasd_device *device, void __user *argp) { struct dasd_eckd_private *private = device->private; struct attrib_data_t attrib; if (!capable(CAP_SYS_ADMIN)) return -EACCES; if (!argp) return -EINVAL; if (copy_from_user(&attrib, argp, sizeof(struct attrib_data_t))) return -EFAULT; private->attrib = attrib; dev_info(&device->cdev->dev, "The DASD cache mode was set to %x (%i cylinder prestage)\n", private->attrib.operation, private->attrib.nr_cyl); return 0; } /* * Issue syscall I/O to EMC Symmetrix array. * CCWs are PSF and RSSD */ static int dasd_symm_io(struct dasd_device *device, void __user *argp) { struct dasd_symmio_parms usrparm; char *psf_data, *rssd_result; struct dasd_ccw_req *cqr; struct ccw1 *ccw; char psf0, psf1; int rc; if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RAWIO)) return -EACCES; psf0 = psf1 = 0; /* Copy parms from caller */ rc = -EFAULT; if (copy_from_user(&usrparm, argp, sizeof(usrparm))) goto out; if (is_compat_task()) { /* Make sure pointers are sane even on 31 bit. */ rc = -EINVAL; if ((usrparm.psf_data >> 32) != 0) goto out; if ((usrparm.rssd_result >> 32) != 0) goto out; usrparm.psf_data &= 0x7fffffffULL; usrparm.rssd_result &= 0x7fffffffULL; } /* at least 2 bytes are accessed and should be allocated */ if (usrparm.psf_data_len < 2) { DBF_DEV_EVENT(DBF_WARNING, device, "Symmetrix ioctl invalid data length %d", usrparm.psf_data_len); rc = -EINVAL; goto out; } /* alloc I/O data area */ psf_data = kzalloc(usrparm.psf_data_len, GFP_KERNEL | GFP_DMA); rssd_result = kzalloc(usrparm.rssd_result_len, GFP_KERNEL | GFP_DMA); if (!psf_data || !rssd_result) { rc = -ENOMEM; goto out_free; } /* get syscall header from user space */ rc = -EFAULT; if (copy_from_user(psf_data, (void __user *)(unsigned long) usrparm.psf_data, usrparm.psf_data_len)) goto out_free; psf0 = psf_data[0]; psf1 = psf_data[1]; /* setup CCWs for PSF + RSSD */ cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 2, 0, device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate initialization request"); rc = PTR_ERR(cqr); goto out_free; } cqr->startdev = device; cqr->memdev = device; cqr->retries = 3; cqr->expires = 10 * HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* Build the ccws */ ccw = cqr->cpaddr; /* PSF ccw */ ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = usrparm.psf_data_len; ccw->flags |= CCW_FLAG_CC; ccw->cda = (__u32)virt_to_phys(psf_data); ccw++; /* RSSD ccw */ ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = usrparm.rssd_result_len; ccw->flags = CCW_FLAG_SLI ; ccw->cda = (__u32)virt_to_phys(rssd_result); rc = dasd_sleep_on(cqr); if (rc) goto out_sfree; rc = -EFAULT; if (copy_to_user((void __user *)(unsigned long) usrparm.rssd_result, rssd_result, usrparm.rssd_result_len)) goto out_sfree; rc = 0; out_sfree: dasd_sfree_request(cqr, cqr->memdev); out_free: kfree(rssd_result); kfree(psf_data); out: DBF_DEV_EVENT(DBF_WARNING, device, "Symmetrix ioctl (0x%02x 0x%02x): rc=%d", (int) psf0, (int) psf1, rc); return rc; } static int dasd_eckd_ioctl(struct dasd_block *block, unsigned int cmd, void __user *argp) { struct dasd_device *device = block->base; switch (cmd) { case BIODASDGATTR: return dasd_eckd_get_attrib(device, argp); case BIODASDSATTR: return dasd_eckd_set_attrib(device, argp); case BIODASDPSRD: return dasd_eckd_performance(device, argp); case BIODASDRLSE: return dasd_eckd_release(device); case BIODASDRSRV: return dasd_eckd_reserve(device); case BIODASDSLCK: return dasd_eckd_steal_lock(device); case BIODASDSNID: return dasd_eckd_snid(device, argp); case BIODASDSYMMIO: return dasd_symm_io(device, argp); default: return -ENOTTY; } } /* * Dump the range of CCWs into 'page' buffer * and return number of printed chars. */ static void dasd_eckd_dump_ccw_range(struct ccw1 *from, struct ccw1 *to, char *page) { int len, count; char *datap; len = 0; while (from <= to) { len += sprintf(page + len, PRINTK_HEADER " CCW %p: %08X %08X DAT:", from, ((int *) from)[0], ((int *) from)[1]); /* get pointer to data (consider IDALs) */ if (from->flags & CCW_FLAG_IDA) datap = (char *)*((addr_t *)phys_to_virt(from->cda)); else datap = phys_to_virt(from->cda); /* dump data (max 128 bytes) */ for (count = 0; count < from->count && count < 128; count++) { if (count % 32 == 0) len += sprintf(page + len, "\n"); if (count % 8 == 0) len += sprintf(page + len, " "); if (count % 4 == 0) len += sprintf(page + len, " "); len += sprintf(page + len, "%02x", datap[count]); } len += sprintf(page + len, "\n"); from++; } if (len > 0) printk(KERN_ERR "%s", page); } static void dasd_eckd_dump_sense_dbf(struct dasd_device *device, struct irb *irb, char *reason) { u64 *sense; u64 *stat; sense = (u64 *) dasd_get_sense(irb); stat = (u64 *) &irb->scsw; if (sense) { DBF_DEV_EVENT(DBF_EMERG, device, "%s: %016llx %08x : " "%016llx %016llx %016llx %016llx", reason, *stat, *((u32 *) (stat + 1)), sense[0], sense[1], sense[2], sense[3]); } else { DBF_DEV_EVENT(DBF_EMERG, device, "%s: %016llx %08x : %s", reason, *stat, *((u32 *) (stat + 1)), "NO VALID SENSE"); } } /* * Print sense data and related channel program. * Parts are printed because printk buffer is only 1024 bytes. */ static void dasd_eckd_dump_sense_ccw(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { char *page; struct ccw1 *first, *last, *fail, *from, *to; int len, sl, sct; page = (char *) get_zeroed_page(GFP_ATOMIC); if (page == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "No memory to dump sense data\n"); return; } /* dump the sense data */ len = sprintf(page, PRINTK_HEADER " I/O status report for device %s:\n", dev_name(&device->cdev->dev)); len += sprintf(page + len, PRINTK_HEADER " in req: %p CC:%02X FC:%02X AC:%02X SC:%02X DS:%02X " "CS:%02X RC:%d\n", req, scsw_cc(&irb->scsw), scsw_fctl(&irb->scsw), scsw_actl(&irb->scsw), scsw_stctl(&irb->scsw), scsw_dstat(&irb->scsw), scsw_cstat(&irb->scsw), req ? req->intrc : 0); len += sprintf(page + len, PRINTK_HEADER " device %s: Failing CCW: %p\n", dev_name(&device->cdev->dev), phys_to_virt(irb->scsw.cmd.cpa)); if (irb->esw.esw0.erw.cons) { for (sl = 0; sl < 4; sl++) { len += sprintf(page + len, PRINTK_HEADER " Sense(hex) %2d-%2d:", (8 * sl), ((8 * sl) + 7)); for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", irb->ecw[8 * sl + sct]); } len += sprintf(page + len, "\n"); } if (irb->ecw[27] & DASD_SENSE_BIT_0) { /* 24 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 24 Byte: %x MSG %x, " "%s MSGb to SYSOP\n", irb->ecw[7] >> 4, irb->ecw[7] & 0x0f, irb->ecw[1] & 0x10 ? "" : "no"); } else { /* 32 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 32 Byte: Format: %x " "Exception class %x\n", irb->ecw[6] & 0x0f, irb->ecw[22] >> 4); } } else { sprintf(page + len, PRINTK_HEADER " SORRY - NO VALID SENSE AVAILABLE\n"); } printk(KERN_ERR "%s", page); if (req) { /* req == NULL for unsolicited interrupts */ /* dump the Channel Program (max 140 Bytes per line) */ /* Count CCW and print first CCWs (maximum 7) */ first = req->cpaddr; for (last = first; last->flags & (CCW_FLAG_CC | CCW_FLAG_DC); last++); to = min(first + 6, last); printk(KERN_ERR PRINTK_HEADER " Related CP in req: %p\n", req); dasd_eckd_dump_ccw_range(first, to, page); /* print failing CCW area (maximum 4) */ /* scsw->cda is either valid or zero */ from = ++to; fail = phys_to_virt(irb->scsw.cmd.cpa); /* failing CCW */ if (from < fail - 2) { from = fail - 2; /* there is a gap - print header */ printk(KERN_ERR PRINTK_HEADER "......\n"); } to = min(fail + 1, last); dasd_eckd_dump_ccw_range(from, to, page + len); /* print last CCWs (maximum 2) */ len = 0; from = max(from, ++to); if (from < last - 1) { from = last - 1; /* there is a gap - print header */ printk(KERN_ERR PRINTK_HEADER "......\n"); } dasd_eckd_dump_ccw_range(from, last, page + len); } free_page((unsigned long) page); } /* * Print sense data from a tcw. */ static void dasd_eckd_dump_sense_tcw(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { char *page; int len, sl, sct, residual; struct tsb *tsb; u8 *sense, *rcq; page = (char *) get_zeroed_page(GFP_ATOMIC); if (page == NULL) { DBF_DEV_EVENT(DBF_WARNING, device, " %s", "No memory to dump sense data"); return; } /* dump the sense data */ len = sprintf(page, PRINTK_HEADER " I/O status report for device %s:\n", dev_name(&device->cdev->dev)); len += sprintf(page + len, PRINTK_HEADER " in req: %p CC:%02X FC:%02X AC:%02X SC:%02X DS:%02X " "CS:%02X fcxs:%02X schxs:%02X RC:%d\n", req, scsw_cc(&irb->scsw), scsw_fctl(&irb->scsw), scsw_actl(&irb->scsw), scsw_stctl(&irb->scsw), scsw_dstat(&irb->scsw), scsw_cstat(&irb->scsw), irb->scsw.tm.fcxs, (irb->scsw.tm.ifob << 7) | irb->scsw.tm.sesq, req ? req->intrc : 0); len += sprintf(page + len, PRINTK_HEADER " device %s: Failing TCW: %p\n", dev_name(&device->cdev->dev), phys_to_virt(irb->scsw.tm.tcw)); tsb = NULL; sense = NULL; if (irb->scsw.tm.tcw && (irb->scsw.tm.fcxs & 0x01)) tsb = tcw_get_tsb(phys_to_virt(irb->scsw.tm.tcw)); if (tsb) { len += sprintf(page + len, PRINTK_HEADER " tsb->length %d\n", tsb->length); len += sprintf(page + len, PRINTK_HEADER " tsb->flags %x\n", tsb->flags); len += sprintf(page + len, PRINTK_HEADER " tsb->dcw_offset %d\n", tsb->dcw_offset); len += sprintf(page + len, PRINTK_HEADER " tsb->count %d\n", tsb->count); residual = tsb->count - 28; len += sprintf(page + len, PRINTK_HEADER " residual %d\n", residual); switch (tsb->flags & 0x07) { case 1: /* tsa_iostat */ len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.dev_time %d\n", tsb->tsa.iostat.dev_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.def_time %d\n", tsb->tsa.iostat.def_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.queue_time %d\n", tsb->tsa.iostat.queue_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.dev_busy_time %d\n", tsb->tsa.iostat.dev_busy_time); len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.iostat.dev_act_time %d\n", tsb->tsa.iostat.dev_act_time); sense = tsb->tsa.iostat.sense; break; case 2: /* ts_ddpc */ len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.ddpc.rc %d\n", tsb->tsa.ddpc.rc); for (sl = 0; sl < 2; sl++) { len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.ddpc.rcq %2d-%2d: ", (8 * sl), ((8 * sl) + 7)); rcq = tsb->tsa.ddpc.rcq; for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", rcq[8 * sl + sct]); } len += sprintf(page + len, "\n"); } sense = tsb->tsa.ddpc.sense; break; case 3: /* tsa_intrg */ len += sprintf(page + len, PRINTK_HEADER " tsb->tsa.intrg.: not supported yet\n"); break; } if (sense) { for (sl = 0; sl < 4; sl++) { len += sprintf(page + len, PRINTK_HEADER " Sense(hex) %2d-%2d:", (8 * sl), ((8 * sl) + 7)); for (sct = 0; sct < 8; sct++) { len += sprintf(page + len, " %02x", sense[8 * sl + sct]); } len += sprintf(page + len, "\n"); } if (sense[27] & DASD_SENSE_BIT_0) { /* 24 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 24 Byte: %x MSG %x, " "%s MSGb to SYSOP\n", sense[7] >> 4, sense[7] & 0x0f, sense[1] & 0x10 ? "" : "no"); } else { /* 32 Byte Sense Data */ sprintf(page + len, PRINTK_HEADER " 32 Byte: Format: %x " "Exception class %x\n", sense[6] & 0x0f, sense[22] >> 4); } } else { sprintf(page + len, PRINTK_HEADER " SORRY - NO VALID SENSE AVAILABLE\n"); } } else { sprintf(page + len, PRINTK_HEADER " SORRY - NO TSB DATA AVAILABLE\n"); } printk(KERN_ERR "%s", page); free_page((unsigned long) page); } static void dasd_eckd_dump_sense(struct dasd_device *device, struct dasd_ccw_req *req, struct irb *irb) { u8 *sense = dasd_get_sense(irb); if (scsw_is_tm(&irb->scsw)) { /* * In some cases the 'File Protected' or 'Incorrect Length' * error might be expected and log messages shouldn't be written * then. Check if the according suppress bit is set. */ if (sense && (sense[1] & SNS1_FILE_PROTECTED) && test_bit(DASD_CQR_SUPPRESS_FP, &req->flags)) return; if (scsw_cstat(&irb->scsw) == 0x40 && test_bit(DASD_CQR_SUPPRESS_IL, &req->flags)) return; dasd_eckd_dump_sense_tcw(device, req, irb); } else { /* * In some cases the 'Command Reject' or 'No Record Found' * error might be expected and log messages shouldn't be * written then. Check if the according suppress bit is set. */ if (sense && sense[0] & SNS0_CMD_REJECT && test_bit(DASD_CQR_SUPPRESS_CR, &req->flags)) return; if (sense && sense[1] & SNS1_NO_REC_FOUND && test_bit(DASD_CQR_SUPPRESS_NRF, &req->flags)) return; dasd_eckd_dump_sense_ccw(device, req, irb); } } static int dasd_eckd_reload_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; char print_uid[DASD_UID_STRLEN]; int rc, old_base; struct dasd_uid uid; unsigned long flags; /* * remove device from alias handling to prevent new requests * from being scheduled on the wrong alias device */ dasd_alias_remove_device(device); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); old_base = private->uid.base_unit_addr; spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); /* Read Configuration Data */ rc = dasd_eckd_read_conf(device); if (rc) goto out_err; dasd_eckd_read_fc_security(device); rc = dasd_eckd_generate_uid(device); if (rc) goto out_err; /* * update unit address configuration and * add device to alias management */ dasd_alias_update_add_device(device); dasd_eckd_get_uid(device, &uid); if (old_base != uid.base_unit_addr) { dasd_eckd_get_uid_string(&private->conf, print_uid); dev_info(&device->cdev->dev, "An Alias device was reassigned to a new base device " "with UID: %s\n", print_uid); } return 0; out_err: return -1; } static int dasd_eckd_read_message_buffer(struct dasd_device *device, struct dasd_rssd_messages *messages, __u8 lpum) { struct dasd_rssd_messages *message_buf; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, (sizeof(struct dasd_psf_prssd_data) + sizeof(struct dasd_rssd_messages)), device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate read message buffer request"); return PTR_ERR(cqr); } cqr->lpm = lpum; retry: cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->expires = 10 * HZ; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); /* dasd_sleep_on_immediatly does not do complex error * recovery so clear erp flag and set retry counter to * do basic erp */ clear_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); cqr->retries = 256; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = 0x03; /* Message Buffer */ /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)virt_to_phys(prssdp); /* Read Subsystem Data - message buffer */ message_buf = (struct dasd_rssd_messages *) (prssdp + 1); memset(message_buf, 0, sizeof(struct dasd_rssd_messages)); ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_rssd_messages); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)virt_to_phys(message_buf); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_immediatly(cqr); if (rc == 0) { prssdp = (struct dasd_psf_prssd_data *) cqr->data; message_buf = (struct dasd_rssd_messages *) (prssdp + 1); memcpy(messages, message_buf, sizeof(struct dasd_rssd_messages)); } else if (cqr->lpm) { /* * on z/VM we might not be able to do I/O on the requested path * but instead we get the required information on any path * so retry with open path mask */ cqr->lpm = 0; goto retry; } else DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading messages failed with rc=%d\n" , rc); dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_query_host_access(struct dasd_device *device, struct dasd_psf_query_host_access *data) { struct dasd_eckd_private *private = device->private; struct dasd_psf_query_host_access *host_access; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; /* not available for HYPER PAV alias devices */ if (!device->block && private->lcu->pav == HYPER_PAV) return -EOPNOTSUPP; /* may not be supported by the storage server */ if (!(private->features.feature[14] & 0x80)) return -EOPNOTSUPP; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, sizeof(struct dasd_psf_prssd_data) + 1, device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate read message buffer request"); return PTR_ERR(cqr); } host_access = kzalloc(sizeof(*host_access), GFP_KERNEL | GFP_DMA); if (!host_access) { dasd_sfree_request(cqr, device); DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate host_access buffer"); return -ENOMEM; } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *) cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_QHA; /* query host access */ /* LSS and Volume that will be queried */ prssdp->lss = private->conf.ned->ID; prssdp->volume = private->conf.ned->unit_addr; /* all other bytes of prssdp must be zero */ ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)virt_to_phys(prssdp); /* Read Subsystem Data - query host access */ ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(struct dasd_psf_query_host_access); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)virt_to_phys(host_access); cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; /* the command might not be supported, suppress error message */ __set_bit(DASD_CQR_SUPPRESS_CR, &cqr->flags); rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { *data = *host_access; } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "Reading host access data failed with rc=%d\n", rc); rc = -EOPNOTSUPP; } dasd_sfree_request(cqr, cqr->memdev); kfree(host_access); return rc; } /* * return number of grouped devices */ static int dasd_eckd_host_access_count(struct dasd_device *device) { struct dasd_psf_query_host_access *access; struct dasd_ckd_path_group_entry *entry; struct dasd_ckd_host_information *info; int count = 0; int rc, i; access = kzalloc(sizeof(*access), GFP_NOIO); if (!access) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate access buffer"); return -ENOMEM; } rc = dasd_eckd_query_host_access(device, access); if (rc) { kfree(access); return rc; } info = (struct dasd_ckd_host_information *) access->host_access_information; for (i = 0; i < info->entry_count; i++) { entry = (struct dasd_ckd_path_group_entry *) (info->entry + i * info->entry_size); if (entry->status_flags & DASD_ECKD_PG_GROUPED) count++; } kfree(access); return count; } /* * write host access information to a sequential file */ static int dasd_hosts_print(struct dasd_device *device, struct seq_file *m) { struct dasd_psf_query_host_access *access; struct dasd_ckd_path_group_entry *entry; struct dasd_ckd_host_information *info; char sysplex[9] = ""; int rc, i; access = kzalloc(sizeof(*access), GFP_NOIO); if (!access) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate access buffer"); return -ENOMEM; } rc = dasd_eckd_query_host_access(device, access); if (rc) { kfree(access); return rc; } info = (struct dasd_ckd_host_information *) access->host_access_information; for (i = 0; i < info->entry_count; i++) { entry = (struct dasd_ckd_path_group_entry *) (info->entry + i * info->entry_size); /* PGID */ seq_printf(m, "pgid %*phN\n", 11, entry->pgid); /* FLAGS */ seq_printf(m, "status_flags %02x\n", entry->status_flags); /* SYSPLEX NAME */ memcpy(&sysplex, &entry->sysplex_name, sizeof(sysplex) - 1); EBCASC(sysplex, sizeof(sysplex)); seq_printf(m, "sysplex_name %8s\n", sysplex); /* SUPPORTED CYLINDER */ seq_printf(m, "supported_cylinder %d\n", entry->cylinder); /* TIMESTAMP */ seq_printf(m, "timestamp %lu\n", (unsigned long) entry->timestamp); } kfree(access); return 0; } static struct dasd_device *copy_relation_find_device(struct dasd_copy_relation *copy, char *busid) { int i; for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && strncmp(copy->entry[i].busid, busid, DASD_BUS_ID_SIZE) == 0) return copy->entry[i].device; } return NULL; } /* * set the new active/primary device */ static void copy_pair_set_active(struct dasd_copy_relation *copy, char *new_busid, char *old_busid) { int i; for (i = 0; i < DASD_CP_ENTRIES; i++) { if (copy->entry[i].configured && strncmp(copy->entry[i].busid, new_busid, DASD_BUS_ID_SIZE) == 0) { copy->active = &copy->entry[i]; copy->entry[i].primary = true; } else if (copy->entry[i].configured && strncmp(copy->entry[i].busid, old_busid, DASD_BUS_ID_SIZE) == 0) { copy->entry[i].primary = false; } } } /* * The function will swap the role of a given copy pair. * During the swap operation the relation of the blockdevice is disconnected * from the old primary and connected to the new. * * IO is paused on the block queue before swap and may be resumed afterwards. */ static int dasd_eckd_copy_pair_swap(struct dasd_device *device, char *prim_busid, char *sec_busid) { struct dasd_device *primary, *secondary; struct dasd_copy_relation *copy; struct dasd_block *block; struct gendisk *gdp; copy = device->copy; if (!copy) return DASD_COPYPAIRSWAP_INVALID; primary = copy->active->device; if (!primary) return DASD_COPYPAIRSWAP_INVALID; /* double check if swap has correct primary */ if (strncmp(dev_name(&primary->cdev->dev), prim_busid, DASD_BUS_ID_SIZE) != 0) return DASD_COPYPAIRSWAP_PRIMARY; secondary = copy_relation_find_device(copy, sec_busid); if (!secondary) return DASD_COPYPAIRSWAP_SECONDARY; /* * usually the device should be quiesced for swap * for paranoia stop device and requeue requests again */ dasd_device_set_stop_bits(primary, DASD_STOPPED_PPRC); dasd_device_set_stop_bits(secondary, DASD_STOPPED_PPRC); dasd_generic_requeue_all_requests(primary); /* swap DASD internal device <> block assignment */ block = primary->block; primary->block = NULL; secondary->block = block; block->base = secondary; /* set new primary device in COPY relation */ copy_pair_set_active(copy, sec_busid, prim_busid); /* swap blocklayer device link */ gdp = block->gdp; dasd_add_link_to_gendisk(gdp, secondary); /* re-enable device */ dasd_device_remove_stop_bits(primary, DASD_STOPPED_PPRC); dasd_device_remove_stop_bits(secondary, DASD_STOPPED_PPRC); dasd_schedule_device_bh(secondary); return DASD_COPYPAIRSWAP_SUCCESS; } /* * Perform Subsystem Function - Peer-to-Peer Remote Copy Extended Query */ static int dasd_eckd_query_pprc_status(struct dasd_device *device, struct dasd_pprc_data_sc4 *data) { struct dasd_pprc_data_sc4 *pprc_data; struct dasd_psf_prssd_data *prssdp; struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ + 1 /* RSSD */, sizeof(*prssdp) + sizeof(*pprc_data) + 1, device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate query PPRC status request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10 * HZ; /* Prepare for Read Subsystem Data */ prssdp = (struct dasd_psf_prssd_data *)cqr->data; memset(prssdp, 0, sizeof(struct dasd_psf_prssd_data)); prssdp->order = PSF_ORDER_PRSSD; prssdp->suborder = PSF_SUBORDER_PPRCEQ; prssdp->varies[0] = PPRCEQ_SCOPE_4; pprc_data = (struct dasd_pprc_data_sc4 *)(prssdp + 1); ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->count = sizeof(struct dasd_psf_prssd_data); ccw->flags |= CCW_FLAG_CC; ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t)prssdp; /* Read Subsystem Data - query host access */ ccw++; ccw->cmd_code = DASD_ECKD_CCW_RSSD; ccw->count = sizeof(*pprc_data); ccw->flags |= CCW_FLAG_SLI; ccw->cda = (__u32)(addr_t)pprc_data; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_interruptible(cqr); if (rc == 0) { *data = *pprc_data; } else { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "PPRC Extended Query failed with rc=%d\n", rc); rc = -EOPNOTSUPP; } dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * ECKD NOP - no operation */ static int dasd_eckd_nop(struct dasd_device *device) { struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1, 1, device, NULL); if (IS_ERR(cqr)) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "%s", "Could not allocate NOP request"); return PTR_ERR(cqr); } cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 1; cqr->expires = 10 * HZ; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_NOP; ccw->flags |= CCW_FLAG_SLI; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; rc = dasd_sleep_on_interruptible(cqr); if (rc != 0) { DBF_EVENT_DEVID(DBF_WARNING, device->cdev, "NOP failed with rc=%d\n", rc); rc = -EOPNOTSUPP; } dasd_sfree_request(cqr, cqr->memdev); return rc; } static int dasd_eckd_device_ping(struct dasd_device *device) { return dasd_eckd_nop(device); } /* * Perform Subsystem Function - CUIR response */ static int dasd_eckd_psf_cuir_response(struct dasd_device *device, int response, __u32 message_id, __u8 lpum) { struct dasd_psf_cuir_response *psf_cuir; int pos = pathmask_to_pos(lpum); struct dasd_ccw_req *cqr; struct ccw1 *ccw; int rc; cqr = dasd_smalloc_request(DASD_ECKD_MAGIC, 1 /* PSF */ , sizeof(struct dasd_psf_cuir_response), device, NULL); if (IS_ERR(cqr)) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate PSF-CUIR request"); return PTR_ERR(cqr); } psf_cuir = (struct dasd_psf_cuir_response *)cqr->data; psf_cuir->order = PSF_ORDER_CUIR_RESPONSE; psf_cuir->cc = response; psf_cuir->chpid = device->path[pos].chpid; psf_cuir->message_id = message_id; psf_cuir->cssid = device->path[pos].cssid; psf_cuir->ssid = device->path[pos].ssid; ccw = cqr->cpaddr; ccw->cmd_code = DASD_ECKD_CCW_PSF; ccw->cda = (__u32)virt_to_phys(psf_cuir); ccw->flags = CCW_FLAG_SLI; ccw->count = sizeof(struct dasd_psf_cuir_response); cqr->startdev = device; cqr->memdev = device; cqr->block = NULL; cqr->retries = 256; cqr->expires = 10*HZ; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; set_bit(DASD_CQR_VERIFY_PATH, &cqr->flags); rc = dasd_sleep_on(cqr); dasd_sfree_request(cqr, cqr->memdev); return rc; } /* * return configuration data that is referenced by record selector * if a record selector is specified or per default return the * conf_data pointer for the path specified by lpum */ static struct dasd_conf_data *dasd_eckd_get_ref_conf(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_conf_data *conf_data; int path, pos; if (cuir->record_selector == 0) goto out; for (path = 0x80, pos = 0; path; path >>= 1, pos++) { conf_data = device->path[pos].conf_data; if (conf_data->gneq.record_selector == cuir->record_selector) return conf_data; } out: return device->path[pathmask_to_pos(lpum)].conf_data; } /* * This function determines the scope of a reconfiguration request by * analysing the path and device selection data provided in the CUIR request. * Returns a path mask containing CUIR affected paths for the give device. * * If the CUIR request does not contain the required information return the * path mask of the path the attention message for the CUIR request was reveived * on. */ static int dasd_eckd_cuir_scope(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_conf_data *ref_conf_data; unsigned long bitmask = 0, mask = 0; struct dasd_conf_data *conf_data; unsigned int pos, path; char *ref_gneq, *gneq; char *ref_ned, *ned; int tbcpm = 0; /* if CUIR request does not specify the scope use the path the attention message was presented on */ if (!cuir->ned_map || !(cuir->neq_map[0] | cuir->neq_map[1] | cuir->neq_map[2])) return lpum; /* get reference conf data */ ref_conf_data = dasd_eckd_get_ref_conf(device, lpum, cuir); /* reference ned is determined by ned_map field */ pos = 8 - ffs(cuir->ned_map); ref_ned = (char *)&ref_conf_data->neds[pos]; ref_gneq = (char *)&ref_conf_data->gneq; /* transfer 24 bit neq_map to mask */ mask = cuir->neq_map[2]; mask |= cuir->neq_map[1] << 8; mask |= cuir->neq_map[0] << 16; for (path = 0; path < 8; path++) { /* initialise data per path */ bitmask = mask; conf_data = device->path[path].conf_data; pos = 8 - ffs(cuir->ned_map); ned = (char *) &conf_data->neds[pos]; /* compare reference ned and per path ned */ if (memcmp(ref_ned, ned, sizeof(*ned)) != 0) continue; gneq = (char *)&conf_data->gneq; /* compare reference gneq and per_path gneq under 24 bit mask where mask bit 0 equals byte 7 of the gneq and mask bit 24 equals byte 31 */ while (bitmask) { pos = ffs(bitmask) - 1; if (memcmp(&ref_gneq[31 - pos], &gneq[31 - pos], 1) != 0) break; clear_bit(pos, &bitmask); } if (bitmask) continue; /* device and path match the reference values add path to CUIR scope */ tbcpm |= 0x80 >> path; } return tbcpm; } static void dasd_eckd_cuir_notify_user(struct dasd_device *device, unsigned long paths, int action) { int pos; while (paths) { /* get position of bit in mask */ pos = 8 - ffs(paths); /* get channel path descriptor from this position */ if (action == CUIR_QUIESCE) pr_warn("Service on the storage server caused path %x.%02x to go offline", device->path[pos].cssid, device->path[pos].chpid); else if (action == CUIR_RESUME) pr_info("Path %x.%02x is back online after service on the storage server", device->path[pos].cssid, device->path[pos].chpid); clear_bit(7 - pos, &paths); } } static int dasd_eckd_cuir_remove_path(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { unsigned long tbcpm; tbcpm = dasd_eckd_cuir_scope(device, lpum, cuir); /* nothing to do if path is not in use */ if (!(dasd_path_get_opm(device) & tbcpm)) return 0; if (!(dasd_path_get_opm(device) & ~tbcpm)) { /* no path would be left if the CUIR action is taken return error */ return -EINVAL; } /* remove device from operational path mask */ dasd_path_remove_opm(device, tbcpm); dasd_path_add_cuirpm(device, tbcpm); return tbcpm; } /* * walk through all devices and build a path mask to quiesce them * return an error if the last path to a device would be removed * * if only part of the devices are quiesced and an error * occurs no onlining necessary, the storage server will * notify the already set offline devices again */ static int dasd_eckd_cuir_quiesce(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long paths = 0; unsigned long flags; int tbcpm; /* active devices */ list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore(get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } /* inactive devices */ list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore(get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore( get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { spin_lock_irqsave(get_ccwdev_lock(dev->cdev), flags); tbcpm = dasd_eckd_cuir_remove_path(dev, lpum, cuir); spin_unlock_irqrestore( get_ccwdev_lock(dev->cdev), flags); if (tbcpm < 0) goto out_err; paths |= tbcpm; } } /* notify user about all paths affected by CUIR action */ dasd_eckd_cuir_notify_user(device, paths, CUIR_QUIESCE); return 0; out_err: return tbcpm; } static int dasd_eckd_cuir_resume(struct dasd_device *device, __u8 lpum, struct dasd_cuir_message *cuir) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long paths = 0; int tbcpm; /* * the path may have been added through a generic path event before * only trigger path verification if the path is not already in use */ list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { tbcpm = dasd_eckd_cuir_scope(dev, lpum, cuir); paths |= tbcpm; if (!(dasd_path_get_opm(dev) & tbcpm)) { dasd_path_add_tbvpm(dev, tbcpm); dasd_schedule_device_bh(dev); } } } /* notify user about all paths affected by CUIR action */ dasd_eckd_cuir_notify_user(device, paths, CUIR_RESUME); return 0; } static void dasd_eckd_handle_cuir(struct dasd_device *device, void *messages, __u8 lpum) { struct dasd_cuir_message *cuir = messages; int response; DBF_DEV_EVENT(DBF_WARNING, device, "CUIR request: %016llx %016llx %016llx %08x", ((u64 *)cuir)[0], ((u64 *)cuir)[1], ((u64 *)cuir)[2], ((u32 *)cuir)[3]); if (cuir->code == CUIR_QUIESCE) { /* quiesce */ if (dasd_eckd_cuir_quiesce(device, lpum, cuir)) response = PSF_CUIR_LAST_PATH; else response = PSF_CUIR_COMPLETED; } else if (cuir->code == CUIR_RESUME) { /* resume */ dasd_eckd_cuir_resume(device, lpum, cuir); response = PSF_CUIR_COMPLETED; } else response = PSF_CUIR_NOT_SUPPORTED; dasd_eckd_psf_cuir_response(device, response, cuir->message_id, lpum); DBF_DEV_EVENT(DBF_WARNING, device, "CUIR response: %d on message ID %08x", response, cuir->message_id); /* to make sure there is no attention left schedule work again */ device->discipline->check_attention(device, lpum); } static void dasd_eckd_oos_resume(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; struct alias_pav_group *pavgroup, *tempgroup; struct dasd_device *dev, *n; unsigned long flags; spin_lock_irqsave(&private->lcu->lock, flags); list_for_each_entry_safe(dev, n, &private->lcu->active_devices, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } list_for_each_entry_safe(dev, n, &private->lcu->inactive_devices, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } /* devices in PAV groups */ list_for_each_entry_safe(pavgroup, tempgroup, &private->lcu->grouplist, group) { list_for_each_entry_safe(dev, n, &pavgroup->baselist, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } list_for_each_entry_safe(dev, n, &pavgroup->aliaslist, alias_list) { if (dev->stopped & DASD_STOPPED_NOSPC) dasd_generic_space_avail(dev); } } spin_unlock_irqrestore(&private->lcu->lock, flags); } static void dasd_eckd_handle_oos(struct dasd_device *device, void *messages, __u8 lpum) { struct dasd_oos_message *oos = messages; switch (oos->code) { case REPO_WARN: case POOL_WARN: dev_warn(&device->cdev->dev, "Extent pool usage has reached a critical value\n"); dasd_eckd_oos_resume(device); break; case REPO_EXHAUST: case POOL_EXHAUST: dev_warn(&device->cdev->dev, "Extent pool is exhausted\n"); break; case REPO_RELIEVE: case POOL_RELIEVE: dev_info(&device->cdev->dev, "Extent pool physical space constraint has been relieved\n"); break; } /* In any case, update related data */ dasd_eckd_read_ext_pool_info(device); /* to make sure there is no attention left schedule work again */ device->discipline->check_attention(device, lpum); } static void dasd_eckd_check_attention_work(struct work_struct *work) { struct check_attention_work_data *data; struct dasd_rssd_messages *messages; struct dasd_device *device; int rc; data = container_of(work, struct check_attention_work_data, worker); device = data->device; messages = kzalloc(sizeof(*messages), GFP_KERNEL); if (!messages) { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Could not allocate attention message buffer"); goto out; } rc = dasd_eckd_read_message_buffer(device, messages, data->lpum); if (rc) goto out; if (messages->length == ATTENTION_LENGTH_CUIR && messages->format == ATTENTION_FORMAT_CUIR) dasd_eckd_handle_cuir(device, messages, data->lpum); if (messages->length == ATTENTION_LENGTH_OOS && messages->format == ATTENTION_FORMAT_OOS) dasd_eckd_handle_oos(device, messages, data->lpum); out: dasd_put_device(device); kfree(messages); kfree(data); } static int dasd_eckd_check_attention(struct dasd_device *device, __u8 lpum) { struct check_attention_work_data *data; data = kzalloc(sizeof(*data), GFP_ATOMIC); if (!data) return -ENOMEM; INIT_WORK(&data->worker, dasd_eckd_check_attention_work); dasd_get_device(device); data->device = device; data->lpum = lpum; schedule_work(&data->worker); return 0; } static int dasd_eckd_disable_hpf_path(struct dasd_device *device, __u8 lpum) { if (~lpum & dasd_path_get_opm(device)) { dasd_path_add_nohpfpm(device, lpum); dasd_path_remove_opm(device, lpum); dev_err(&device->cdev->dev, "Channel path %02X lost HPF functionality and is disabled\n", lpum); return 1; } return 0; } static void dasd_eckd_disable_hpf_device(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; dev_err(&device->cdev->dev, "High Performance FICON disabled\n"); private->fcx_max_data = 0; } static int dasd_eckd_hpf_enabled(struct dasd_device *device) { struct dasd_eckd_private *private = device->private; return private->fcx_max_data ? 1 : 0; } static void dasd_eckd_handle_hpf_error(struct dasd_device *device, struct irb *irb) { struct dasd_eckd_private *private = device->private; if (!private->fcx_max_data) { /* sanity check for no HPF, the error makes no sense */ DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Trying to disable HPF for a non HPF device"); return; } if (irb->scsw.tm.sesq == SCSW_SESQ_DEV_NOFCX) { dasd_eckd_disable_hpf_device(device); } else if (irb->scsw.tm.sesq == SCSW_SESQ_PATH_NOFCX) { if (dasd_eckd_disable_hpf_path(device, irb->esw.esw1.lpum)) return; dasd_eckd_disable_hpf_device(device); dasd_path_set_tbvpm(device, dasd_path_get_hpfpm(device)); } /* * prevent that any new I/O ist started on the device and schedule a * requeue of existing requests */ dasd_device_set_stop_bits(device, DASD_STOPPED_NOT_ACC); dasd_schedule_requeue(device); } /* * Initialize block layer request queue. */ static void dasd_eckd_setup_blk_queue(struct dasd_block *block) { unsigned int logical_block_size = block->bp_block; struct request_queue *q = block->gdp->queue; struct dasd_device *device = block->base; int max; if (device->features & DASD_FEATURE_USERAW) { /* * the max_blocks value for raw_track access is 256 * it is higher than the native ECKD value because we * only need one ccw per track * so the max_hw_sectors are * 2048 x 512B = 1024kB = 16 tracks */ max = DASD_ECKD_MAX_BLOCKS_RAW << block->s2b_shift; } else { max = DASD_ECKD_MAX_BLOCKS << block->s2b_shift; } blk_queue_flag_set(QUEUE_FLAG_NONROT, q); q->limits.max_dev_sectors = max; blk_queue_logical_block_size(q, logical_block_size); blk_queue_max_hw_sectors(q, max); blk_queue_max_segments(q, USHRT_MAX); /* With page sized segments each segment can be translated into one idaw/tidaw */ blk_queue_max_segment_size(q, PAGE_SIZE); blk_queue_segment_boundary(q, PAGE_SIZE - 1); blk_queue_dma_alignment(q, PAGE_SIZE - 1); } static struct ccw_driver dasd_eckd_driver = { .driver = { .name = "dasd-eckd", .owner = THIS_MODULE, .dev_groups = dasd_dev_groups, }, .ids = dasd_eckd_ids, .probe = dasd_eckd_probe, .remove = dasd_generic_remove, .set_offline = dasd_generic_set_offline, .set_online = dasd_eckd_set_online, .notify = dasd_generic_notify, .path_event = dasd_generic_path_event, .shutdown = dasd_generic_shutdown, .uc_handler = dasd_generic_uc_handler, .int_class = IRQIO_DAS, }; static struct dasd_discipline dasd_eckd_discipline = { .owner = THIS_MODULE, .name = "ECKD", .ebcname = "ECKD", .check_device = dasd_eckd_check_characteristics, .uncheck_device = dasd_eckd_uncheck_device, .do_analysis = dasd_eckd_do_analysis, .pe_handler = dasd_eckd_pe_handler, .basic_to_ready = dasd_eckd_basic_to_ready, .online_to_ready = dasd_eckd_online_to_ready, .basic_to_known = dasd_eckd_basic_to_known, .setup_blk_queue = dasd_eckd_setup_blk_queue, .fill_geometry = dasd_eckd_fill_geometry, .start_IO = dasd_start_IO, .term_IO = dasd_term_IO, .handle_terminated_request = dasd_eckd_handle_terminated_request, .format_device = dasd_eckd_format_device, .check_device_format = dasd_eckd_check_device_format, .erp_action = dasd_eckd_erp_action, .erp_postaction = dasd_eckd_erp_postaction, .check_for_device_change = dasd_eckd_check_for_device_change, .build_cp = dasd_eckd_build_alias_cp, .free_cp = dasd_eckd_free_alias_cp, .dump_sense = dasd_eckd_dump_sense, .dump_sense_dbf = dasd_eckd_dump_sense_dbf, .fill_info = dasd_eckd_fill_info, .ioctl = dasd_eckd_ioctl, .reload = dasd_eckd_reload_device, .get_uid = dasd_eckd_get_uid, .kick_validate = dasd_eckd_kick_validate_server, .check_attention = dasd_eckd_check_attention, .host_access_count = dasd_eckd_host_access_count, .hosts_print = dasd_hosts_print, .handle_hpf_error = dasd_eckd_handle_hpf_error, .disable_hpf = dasd_eckd_disable_hpf_device, .hpf_enabled = dasd_eckd_hpf_enabled, .reset_path = dasd_eckd_reset_path, .is_ese = dasd_eckd_is_ese, .space_allocated = dasd_eckd_space_allocated, .space_configured = dasd_eckd_space_configured, .logical_capacity = dasd_eckd_logical_capacity, .release_space = dasd_eckd_release_space, .ext_pool_id = dasd_eckd_ext_pool_id, .ext_size = dasd_eckd_ext_size, .ext_pool_cap_at_warnlevel = dasd_eckd_ext_pool_cap_at_warnlevel, .ext_pool_warn_thrshld = dasd_eckd_ext_pool_warn_thrshld, .ext_pool_oos = dasd_eckd_ext_pool_oos, .ext_pool_exhaust = dasd_eckd_ext_pool_exhaust, .ese_format = dasd_eckd_ese_format, .ese_read = dasd_eckd_ese_read, .pprc_status = dasd_eckd_query_pprc_status, .pprc_enabled = dasd_eckd_pprc_enabled, .copy_pair_swap = dasd_eckd_copy_pair_swap, .device_ping = dasd_eckd_device_ping, }; static int __init dasd_eckd_init(void) { int ret; ASCEBC(dasd_eckd_discipline.ebcname, 4); dasd_reserve_req = kmalloc(sizeof(*dasd_reserve_req), GFP_KERNEL | GFP_DMA); if (!dasd_reserve_req) return -ENOMEM; dasd_vol_info_req = kmalloc(sizeof(*dasd_vol_info_req), GFP_KERNEL | GFP_DMA); if (!dasd_vol_info_req) { kfree(dasd_reserve_req); return -ENOMEM; } pe_handler_worker = kmalloc(sizeof(*pe_handler_worker), GFP_KERNEL | GFP_DMA); if (!pe_handler_worker) { kfree(dasd_reserve_req); kfree(dasd_vol_info_req); return -ENOMEM; } rawpadpage = (void *)__get_free_page(GFP_KERNEL); if (!rawpadpage) { kfree(pe_handler_worker); kfree(dasd_reserve_req); kfree(dasd_vol_info_req); return -ENOMEM; } ret = ccw_driver_register(&dasd_eckd_driver); if (!ret) wait_for_device_probe(); else { kfree(pe_handler_worker); kfree(dasd_reserve_req); kfree(dasd_vol_info_req); free_page((unsigned long)rawpadpage); } return ret; } static void __exit dasd_eckd_cleanup(void) { ccw_driver_unregister(&dasd_eckd_driver); kfree(pe_handler_worker); kfree(dasd_reserve_req); free_page((unsigned long)rawpadpage); } module_init(dasd_eckd_init); module_exit(dasd_eckd_cleanup);
linux-master
drivers/s390/block/dasd_eckd.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2001 * * gendisk related functions for the dasd driver. * */ #define KMSG_COMPONENT "dasd" #include <linux/interrupt.h> #include <linux/major.h> #include <linux/fs.h> #include <linux/blkpg.h> #include <linux/uaccess.h> /* This is ugly... */ #define PRINTK_HEADER "dasd_gendisk:" #include "dasd_int.h" static unsigned int queue_depth = 32; static unsigned int nr_hw_queues = 4; module_param(queue_depth, uint, 0444); MODULE_PARM_DESC(queue_depth, "Default queue depth for new DASD devices"); module_param(nr_hw_queues, uint, 0444); MODULE_PARM_DESC(nr_hw_queues, "Default number of hardware queues for new DASD devices"); /* * Allocate and register gendisk structure for device. */ int dasd_gendisk_alloc(struct dasd_block *block) { struct gendisk *gdp; struct dasd_device *base; int len, rc; /* Make sure the minor for this device exists. */ base = block->base; if (base->devindex >= DASD_PER_MAJOR) return -EBUSY; block->tag_set.ops = &dasd_mq_ops; block->tag_set.cmd_size = sizeof(struct dasd_ccw_req); block->tag_set.nr_hw_queues = nr_hw_queues; block->tag_set.queue_depth = queue_depth; block->tag_set.flags = BLK_MQ_F_SHOULD_MERGE; block->tag_set.numa_node = NUMA_NO_NODE; rc = blk_mq_alloc_tag_set(&block->tag_set); if (rc) return rc; gdp = blk_mq_alloc_disk(&block->tag_set, block); if (IS_ERR(gdp)) { blk_mq_free_tag_set(&block->tag_set); return PTR_ERR(gdp); } /* Initialize gendisk structure. */ gdp->major = DASD_MAJOR; gdp->first_minor = base->devindex << DASD_PARTN_BITS; gdp->minors = 1 << DASD_PARTN_BITS; gdp->fops = &dasd_device_operations; /* * Set device name. * dasda - dasdz : 26 devices * dasdaa - dasdzz : 676 devices, added up = 702 * dasdaaa - dasdzzz : 17576 devices, added up = 18278 * dasdaaaa - dasdzzzz : 456976 devices, added up = 475252 */ len = sprintf(gdp->disk_name, "dasd"); if (base->devindex > 25) { if (base->devindex > 701) { if (base->devindex > 18277) len += sprintf(gdp->disk_name + len, "%c", 'a'+(((base->devindex-18278) /17576)%26)); len += sprintf(gdp->disk_name + len, "%c", 'a'+(((base->devindex-702)/676)%26)); } len += sprintf(gdp->disk_name + len, "%c", 'a'+(((base->devindex-26)/26)%26)); } len += sprintf(gdp->disk_name + len, "%c", 'a'+(base->devindex%26)); if (base->features & DASD_FEATURE_READONLY || test_bit(DASD_FLAG_DEVICE_RO, &base->flags)) set_disk_ro(gdp, 1); dasd_add_link_to_gendisk(gdp, base); block->gdp = gdp; set_capacity(block->gdp, 0); rc = device_add_disk(&base->cdev->dev, block->gdp, NULL); if (rc) { dasd_gendisk_free(block); return rc; } return 0; } /* * Unregister and free gendisk structure for device. */ void dasd_gendisk_free(struct dasd_block *block) { if (block->gdp) { del_gendisk(block->gdp); block->gdp->private_data = NULL; put_disk(block->gdp); block->gdp = NULL; blk_mq_free_tag_set(&block->tag_set); } } /* * Trigger a partition detection. */ int dasd_scan_partitions(struct dasd_block *block) { struct block_device *bdev; int rc; bdev = blkdev_get_by_dev(disk_devt(block->gdp), BLK_OPEN_READ, NULL, NULL); if (IS_ERR(bdev)) { DBF_DEV_EVENT(DBF_ERR, block->base, "scan partitions error, blkdev_get returned %ld", PTR_ERR(bdev)); return -ENODEV; } mutex_lock(&block->gdp->open_mutex); rc = bdev_disk_changed(block->gdp, false); mutex_unlock(&block->gdp->open_mutex); if (rc) DBF_DEV_EVENT(DBF_ERR, block->base, "scan partitions error, rc %d", rc); /* * Since the matching blkdev_put call to the blkdev_get in * this function is not called before dasd_destroy_partitions * the offline open_count limit needs to be increased from * 0 to 1. This is done by setting device->bdev (see * dasd_generic_set_offline). As long as the partition * detection is running no offline should be allowed. That * is why the assignment to device->bdev is done AFTER * the BLKRRPART ioctl. */ block->bdev = bdev; return 0; } /* * Remove all inodes in the system for a device, delete the * partitions and make device unusable by setting its size to zero. */ void dasd_destroy_partitions(struct dasd_block *block) { struct block_device *bdev; /* * Get the bdev pointer from the device structure and clear * device->bdev to lower the offline open_count limit again. */ bdev = block->bdev; block->bdev = NULL; mutex_lock(&bdev->bd_disk->open_mutex); bdev_disk_changed(bdev->bd_disk, true); mutex_unlock(&bdev->bd_disk->open_mutex); /* Matching blkdev_put to the blkdev_get in dasd_scan_partitions. */ blkdev_put(bdev, NULL); } int dasd_gendisk_init(void) { int rc; /* Register to static dasd major 94 */ rc = register_blkdev(DASD_MAJOR, "dasd"); if (rc != 0) { pr_warn("Registering the device driver with major number %d failed\n", DASD_MAJOR); return rc; } return 0; } void dasd_gendisk_exit(void) { unregister_blkdev(DASD_MAJOR, "dasd"); }
linux-master
drivers/s390/block/dasd_genhd.c
// SPDX-License-Identifier: GPL-2.0 /* * dcssblk.c -- the S/390 block driver for dcss memory * * Authors: Carsten Otte, Stefan Weinhuber, Gerald Schaefer */ #define KMSG_COMPONENT "dcssblk" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/ctype.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/completion.h> #include <linux/interrupt.h> #include <linux/pfn_t.h> #include <linux/uio.h> #include <linux/dax.h> #include <linux/io.h> #include <asm/extmem.h> #define DCSSBLK_NAME "dcssblk" #define DCSSBLK_MINORS_PER_DISK 1 #define DCSSBLK_PARM_LEN 400 #define DCSS_BUS_ID_SIZE 20 static int dcssblk_open(struct gendisk *disk, blk_mode_t mode); static void dcssblk_release(struct gendisk *disk); static void dcssblk_submit_bio(struct bio *bio); static long dcssblk_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, enum dax_access_mode mode, void **kaddr, pfn_t *pfn); static char dcssblk_segments[DCSSBLK_PARM_LEN] = "\0"; static int dcssblk_major; static const struct block_device_operations dcssblk_devops = { .owner = THIS_MODULE, .submit_bio = dcssblk_submit_bio, .open = dcssblk_open, .release = dcssblk_release, }; static int dcssblk_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff, size_t nr_pages) { long rc; void *kaddr; rc = dax_direct_access(dax_dev, pgoff, nr_pages, DAX_ACCESS, &kaddr, NULL); if (rc < 0) return dax_mem2blk_err(rc); memset(kaddr, 0, nr_pages << PAGE_SHIFT); dax_flush(dax_dev, kaddr, nr_pages << PAGE_SHIFT); return 0; } static const struct dax_operations dcssblk_dax_ops = { .direct_access = dcssblk_dax_direct_access, .zero_page_range = dcssblk_dax_zero_page_range, }; struct dcssblk_dev_info { struct list_head lh; struct device dev; char segment_name[DCSS_BUS_ID_SIZE]; atomic_t use_count; struct gendisk *gd; unsigned long start; unsigned long end; int segment_type; unsigned char save_pending; unsigned char is_shared; int num_of_segments; struct list_head seg_list; struct dax_device *dax_dev; }; struct segment_info { struct list_head lh; char segment_name[DCSS_BUS_ID_SIZE]; unsigned long start; unsigned long end; int segment_type; }; static ssize_t dcssblk_add_store(struct device * dev, struct device_attribute *attr, const char * buf, size_t count); static ssize_t dcssblk_remove_store(struct device * dev, struct device_attribute *attr, const char * buf, size_t count); static DEVICE_ATTR(add, S_IWUSR, NULL, dcssblk_add_store); static DEVICE_ATTR(remove, S_IWUSR, NULL, dcssblk_remove_store); static struct device *dcssblk_root_dev; static LIST_HEAD(dcssblk_devices); static struct rw_semaphore dcssblk_devices_sem; /* * release function for segment device. */ static void dcssblk_release_segment(struct device *dev) { struct dcssblk_dev_info *dev_info; struct segment_info *entry, *temp; dev_info = container_of(dev, struct dcssblk_dev_info, dev); list_for_each_entry_safe(entry, temp, &dev_info->seg_list, lh) { list_del(&entry->lh); kfree(entry); } kfree(dev_info); module_put(THIS_MODULE); } /* * get a minor number. needs to be called with * down_write(&dcssblk_devices_sem) and the * device needs to be enqueued before the semaphore is * freed. */ static int dcssblk_assign_free_minor(struct dcssblk_dev_info *dev_info) { int minor, found; struct dcssblk_dev_info *entry; if (dev_info == NULL) return -EINVAL; for (minor = 0; minor < (1<<MINORBITS); minor++) { found = 0; // test if minor available list_for_each_entry(entry, &dcssblk_devices, lh) if (minor == entry->gd->first_minor) found++; if (!found) break; // got unused minor } if (found) return -EBUSY; dev_info->gd->first_minor = minor; return 0; } /* * get the struct dcssblk_dev_info from dcssblk_devices * for the given name. * down_read(&dcssblk_devices_sem) must be held. */ static struct dcssblk_dev_info * dcssblk_get_device_by_name(char *name) { struct dcssblk_dev_info *entry; list_for_each_entry(entry, &dcssblk_devices, lh) { if (!strcmp(name, entry->segment_name)) { return entry; } } return NULL; } /* * get the struct segment_info from seg_list * for the given name. * down_read(&dcssblk_devices_sem) must be held. */ static struct segment_info * dcssblk_get_segment_by_name(char *name) { struct dcssblk_dev_info *dev_info; struct segment_info *entry; list_for_each_entry(dev_info, &dcssblk_devices, lh) { list_for_each_entry(entry, &dev_info->seg_list, lh) { if (!strcmp(name, entry->segment_name)) return entry; } } return NULL; } /* * get the highest address of the multi-segment block. */ static unsigned long dcssblk_find_highest_addr(struct dcssblk_dev_info *dev_info) { unsigned long highest_addr; struct segment_info *entry; highest_addr = 0; list_for_each_entry(entry, &dev_info->seg_list, lh) { if (highest_addr < entry->end) highest_addr = entry->end; } return highest_addr; } /* * get the lowest address of the multi-segment block. */ static unsigned long dcssblk_find_lowest_addr(struct dcssblk_dev_info *dev_info) { int set_first; unsigned long lowest_addr; struct segment_info *entry; set_first = 0; lowest_addr = 0; list_for_each_entry(entry, &dev_info->seg_list, lh) { if (set_first == 0) { lowest_addr = entry->start; set_first = 1; } else { if (lowest_addr > entry->start) lowest_addr = entry->start; } } return lowest_addr; } /* * Check continuity of segments. */ static int dcssblk_is_continuous(struct dcssblk_dev_info *dev_info) { int i, j, rc; struct segment_info *sort_list, *entry, temp; if (dev_info->num_of_segments <= 1) return 0; sort_list = kcalloc(dev_info->num_of_segments, sizeof(struct segment_info), GFP_KERNEL); if (sort_list == NULL) return -ENOMEM; i = 0; list_for_each_entry(entry, &dev_info->seg_list, lh) { memcpy(&sort_list[i], entry, sizeof(struct segment_info)); i++; } /* sort segments */ for (i = 0; i < dev_info->num_of_segments; i++) for (j = 0; j < dev_info->num_of_segments; j++) if (sort_list[j].start > sort_list[i].start) { memcpy(&temp, &sort_list[i], sizeof(struct segment_info)); memcpy(&sort_list[i], &sort_list[j], sizeof(struct segment_info)); memcpy(&sort_list[j], &temp, sizeof(struct segment_info)); } /* check continuity */ for (i = 0; i < dev_info->num_of_segments - 1; i++) { if ((sort_list[i].end + 1) != sort_list[i+1].start) { pr_err("Adjacent DCSSs %s and %s are not " "contiguous\n", sort_list[i].segment_name, sort_list[i+1].segment_name); rc = -EINVAL; goto out; } /* EN and EW are allowed in a block device */ if (sort_list[i].segment_type != sort_list[i+1].segment_type) { if (!(sort_list[i].segment_type & SEGMENT_EXCLUSIVE) || (sort_list[i].segment_type == SEG_TYPE_ER) || !(sort_list[i+1].segment_type & SEGMENT_EXCLUSIVE) || (sort_list[i+1].segment_type == SEG_TYPE_ER)) { pr_err("DCSS %s and DCSS %s have " "incompatible types\n", sort_list[i].segment_name, sort_list[i+1].segment_name); rc = -EINVAL; goto out; } } } rc = 0; out: kfree(sort_list); return rc; } /* * Load a segment */ static int dcssblk_load_segment(char *name, struct segment_info **seg_info) { int rc; /* already loaded? */ down_read(&dcssblk_devices_sem); *seg_info = dcssblk_get_segment_by_name(name); up_read(&dcssblk_devices_sem); if (*seg_info != NULL) return -EEXIST; /* get a struct segment_info */ *seg_info = kzalloc(sizeof(struct segment_info), GFP_KERNEL); if (*seg_info == NULL) return -ENOMEM; strcpy((*seg_info)->segment_name, name); /* load the segment */ rc = segment_load(name, SEGMENT_SHARED, &(*seg_info)->start, &(*seg_info)->end); if (rc < 0) { segment_warning(rc, (*seg_info)->segment_name); kfree(*seg_info); } else { INIT_LIST_HEAD(&(*seg_info)->lh); (*seg_info)->segment_type = rc; } return rc; } /* * device attribute for switching shared/nonshared (exclusive) * operation (show + store) */ static ssize_t dcssblk_shared_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dcssblk_dev_info *dev_info; dev_info = container_of(dev, struct dcssblk_dev_info, dev); return sprintf(buf, dev_info->is_shared ? "1\n" : "0\n"); } static ssize_t dcssblk_shared_store(struct device *dev, struct device_attribute *attr, const char *inbuf, size_t count) { struct dcssblk_dev_info *dev_info; struct segment_info *entry, *temp; int rc; if ((count > 1) && (inbuf[1] != '\n') && (inbuf[1] != '\0')) return -EINVAL; down_write(&dcssblk_devices_sem); dev_info = container_of(dev, struct dcssblk_dev_info, dev); if (atomic_read(&dev_info->use_count)) { rc = -EBUSY; goto out; } if (inbuf[0] == '1') { /* reload segments in shared mode */ list_for_each_entry(entry, &dev_info->seg_list, lh) { rc = segment_modify_shared(entry->segment_name, SEGMENT_SHARED); if (rc < 0) { BUG_ON(rc == -EINVAL); if (rc != -EAGAIN) goto removeseg; } } dev_info->is_shared = 1; switch (dev_info->segment_type) { case SEG_TYPE_SR: case SEG_TYPE_ER: case SEG_TYPE_SC: set_disk_ro(dev_info->gd, 1); } } else if (inbuf[0] == '0') { /* reload segments in exclusive mode */ if (dev_info->segment_type == SEG_TYPE_SC) { pr_err("DCSS %s is of type SC and cannot be " "loaded as exclusive-writable\n", dev_info->segment_name); rc = -EINVAL; goto out; } list_for_each_entry(entry, &dev_info->seg_list, lh) { rc = segment_modify_shared(entry->segment_name, SEGMENT_EXCLUSIVE); if (rc < 0) { BUG_ON(rc == -EINVAL); if (rc != -EAGAIN) goto removeseg; } } dev_info->is_shared = 0; set_disk_ro(dev_info->gd, 0); } else { rc = -EINVAL; goto out; } rc = count; goto out; removeseg: pr_err("DCSS device %s is removed after a failed access mode " "change\n", dev_info->segment_name); temp = entry; list_for_each_entry(entry, &dev_info->seg_list, lh) { if (entry != temp) segment_unload(entry->segment_name); } list_del(&dev_info->lh); up_write(&dcssblk_devices_sem); dax_remove_host(dev_info->gd); kill_dax(dev_info->dax_dev); put_dax(dev_info->dax_dev); del_gendisk(dev_info->gd); put_disk(dev_info->gd); if (device_remove_file_self(dev, attr)) { device_unregister(dev); put_device(dev); } return rc; out: up_write(&dcssblk_devices_sem); return rc; } static DEVICE_ATTR(shared, S_IWUSR | S_IRUSR, dcssblk_shared_show, dcssblk_shared_store); /* * device attribute for save operation on current copy * of the segment. If the segment is busy, saving will * become pending until it gets released, which can be * undone by storing a non-true value to this entry. * (show + store) */ static ssize_t dcssblk_save_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dcssblk_dev_info *dev_info; dev_info = container_of(dev, struct dcssblk_dev_info, dev); return sprintf(buf, dev_info->save_pending ? "1\n" : "0\n"); } static ssize_t dcssblk_save_store(struct device *dev, struct device_attribute *attr, const char *inbuf, size_t count) { struct dcssblk_dev_info *dev_info; struct segment_info *entry; if ((count > 1) && (inbuf[1] != '\n') && (inbuf[1] != '\0')) return -EINVAL; dev_info = container_of(dev, struct dcssblk_dev_info, dev); down_write(&dcssblk_devices_sem); if (inbuf[0] == '1') { if (atomic_read(&dev_info->use_count) == 0) { // device is idle => we save immediately pr_info("All DCSSs that map to device %s are " "saved\n", dev_info->segment_name); list_for_each_entry(entry, &dev_info->seg_list, lh) { if (entry->segment_type == SEG_TYPE_EN || entry->segment_type == SEG_TYPE_SN) pr_warn("DCSS %s is of type SN or EN" " and cannot be saved\n", entry->segment_name); else segment_save(entry->segment_name); } } else { // device is busy => we save it when it becomes // idle in dcssblk_release pr_info("Device %s is in use, its DCSSs will be " "saved when it becomes idle\n", dev_info->segment_name); dev_info->save_pending = 1; } } else if (inbuf[0] == '0') { if (dev_info->save_pending) { // device is busy & the user wants to undo his save // request dev_info->save_pending = 0; pr_info("A pending save request for device %s " "has been canceled\n", dev_info->segment_name); } } else { up_write(&dcssblk_devices_sem); return -EINVAL; } up_write(&dcssblk_devices_sem); return count; } static DEVICE_ATTR(save, S_IWUSR | S_IRUSR, dcssblk_save_show, dcssblk_save_store); /* * device attribute for showing all segments in a device */ static ssize_t dcssblk_seglist_show(struct device *dev, struct device_attribute *attr, char *buf) { int i; struct dcssblk_dev_info *dev_info; struct segment_info *entry; down_read(&dcssblk_devices_sem); dev_info = container_of(dev, struct dcssblk_dev_info, dev); i = 0; buf[0] = '\0'; list_for_each_entry(entry, &dev_info->seg_list, lh) { strcpy(&buf[i], entry->segment_name); i += strlen(entry->segment_name); buf[i] = '\n'; i++; } up_read(&dcssblk_devices_sem); return i; } static DEVICE_ATTR(seglist, S_IRUSR, dcssblk_seglist_show, NULL); static struct attribute *dcssblk_dev_attrs[] = { &dev_attr_shared.attr, &dev_attr_save.attr, &dev_attr_seglist.attr, NULL, }; static struct attribute_group dcssblk_dev_attr_group = { .attrs = dcssblk_dev_attrs, }; static const struct attribute_group *dcssblk_dev_attr_groups[] = { &dcssblk_dev_attr_group, NULL, }; /* * device attribute for adding devices */ static ssize_t dcssblk_add_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int rc, i, j, num_of_segments; struct dcssblk_dev_info *dev_info; struct segment_info *seg_info, *temp; char *local_buf; unsigned long seg_byte_size; dev_info = NULL; seg_info = NULL; if (dev != dcssblk_root_dev) { rc = -EINVAL; goto out_nobuf; } if ((count < 1) || (buf[0] == '\0') || (buf[0] == '\n')) { rc = -ENAMETOOLONG; goto out_nobuf; } local_buf = kmalloc(count + 1, GFP_KERNEL); if (local_buf == NULL) { rc = -ENOMEM; goto out_nobuf; } /* * parse input */ num_of_segments = 0; for (i = 0; (i < count && (buf[i] != '\0') && (buf[i] != '\n')); i++) { for (j = i; j < count && (buf[j] != ':') && (buf[j] != '\0') && (buf[j] != '\n'); j++) { local_buf[j-i] = toupper(buf[j]); } local_buf[j-i] = '\0'; if (((j - i) == 0) || ((j - i) > 8)) { rc = -ENAMETOOLONG; goto seg_list_del; } rc = dcssblk_load_segment(local_buf, &seg_info); if (rc < 0) goto seg_list_del; /* * get a struct dcssblk_dev_info */ if (num_of_segments == 0) { dev_info = kzalloc(sizeof(struct dcssblk_dev_info), GFP_KERNEL); if (dev_info == NULL) { rc = -ENOMEM; goto out; } strcpy(dev_info->segment_name, local_buf); dev_info->segment_type = seg_info->segment_type; INIT_LIST_HEAD(&dev_info->seg_list); } list_add_tail(&seg_info->lh, &dev_info->seg_list); num_of_segments++; i = j; if ((buf[j] == '\0') || (buf[j] == '\n')) break; } /* no trailing colon at the end of the input */ if ((i > 0) && (buf[i-1] == ':')) { rc = -ENAMETOOLONG; goto seg_list_del; } strscpy(local_buf, buf, i + 1); dev_info->num_of_segments = num_of_segments; rc = dcssblk_is_continuous(dev_info); if (rc < 0) goto seg_list_del; dev_info->start = dcssblk_find_lowest_addr(dev_info); dev_info->end = dcssblk_find_highest_addr(dev_info); dev_set_name(&dev_info->dev, "%s", dev_info->segment_name); dev_info->dev.release = dcssblk_release_segment; dev_info->dev.groups = dcssblk_dev_attr_groups; INIT_LIST_HEAD(&dev_info->lh); dev_info->gd = blk_alloc_disk(NUMA_NO_NODE); if (dev_info->gd == NULL) { rc = -ENOMEM; goto seg_list_del; } dev_info->gd->major = dcssblk_major; dev_info->gd->minors = DCSSBLK_MINORS_PER_DISK; dev_info->gd->fops = &dcssblk_devops; dev_info->gd->private_data = dev_info; dev_info->gd->flags |= GENHD_FL_NO_PART; blk_queue_logical_block_size(dev_info->gd->queue, 4096); blk_queue_flag_set(QUEUE_FLAG_DAX, dev_info->gd->queue); seg_byte_size = (dev_info->end - dev_info->start + 1); set_capacity(dev_info->gd, seg_byte_size >> 9); // size in sectors pr_info("Loaded %s with total size %lu bytes and capacity %lu " "sectors\n", local_buf, seg_byte_size, seg_byte_size >> 9); dev_info->save_pending = 0; dev_info->is_shared = 1; dev_info->dev.parent = dcssblk_root_dev; /* *get minor, add to list */ down_write(&dcssblk_devices_sem); if (dcssblk_get_segment_by_name(local_buf)) { rc = -EEXIST; goto release_gd; } rc = dcssblk_assign_free_minor(dev_info); if (rc) goto release_gd; sprintf(dev_info->gd->disk_name, "dcssblk%d", dev_info->gd->first_minor); list_add_tail(&dev_info->lh, &dcssblk_devices); if (!try_module_get(THIS_MODULE)) { rc = -ENODEV; goto dev_list_del; } /* * register the device */ rc = device_register(&dev_info->dev); if (rc) goto put_dev; dev_info->dax_dev = alloc_dax(dev_info, &dcssblk_dax_ops); if (IS_ERR(dev_info->dax_dev)) { rc = PTR_ERR(dev_info->dax_dev); dev_info->dax_dev = NULL; goto put_dev; } set_dax_synchronous(dev_info->dax_dev); rc = dax_add_host(dev_info->dax_dev, dev_info->gd); if (rc) goto out_dax; get_device(&dev_info->dev); rc = device_add_disk(&dev_info->dev, dev_info->gd, NULL); if (rc) goto out_dax_host; switch (dev_info->segment_type) { case SEG_TYPE_SR: case SEG_TYPE_ER: case SEG_TYPE_SC: set_disk_ro(dev_info->gd,1); break; default: set_disk_ro(dev_info->gd,0); break; } up_write(&dcssblk_devices_sem); rc = count; goto out; out_dax_host: put_device(&dev_info->dev); dax_remove_host(dev_info->gd); out_dax: kill_dax(dev_info->dax_dev); put_dax(dev_info->dax_dev); put_dev: list_del(&dev_info->lh); put_disk(dev_info->gd); list_for_each_entry(seg_info, &dev_info->seg_list, lh) { segment_unload(seg_info->segment_name); } put_device(&dev_info->dev); up_write(&dcssblk_devices_sem); goto out; dev_list_del: list_del(&dev_info->lh); release_gd: put_disk(dev_info->gd); up_write(&dcssblk_devices_sem); seg_list_del: if (dev_info == NULL) goto out; list_for_each_entry_safe(seg_info, temp, &dev_info->seg_list, lh) { list_del(&seg_info->lh); segment_unload(seg_info->segment_name); kfree(seg_info); } kfree(dev_info); out: kfree(local_buf); out_nobuf: return rc; } /* * device attribute for removing devices */ static ssize_t dcssblk_remove_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dcssblk_dev_info *dev_info; struct segment_info *entry; int rc, i; char *local_buf; if (dev != dcssblk_root_dev) { return -EINVAL; } local_buf = kmalloc(count + 1, GFP_KERNEL); if (local_buf == NULL) { return -ENOMEM; } /* * parse input */ for (i = 0; (i < count && (*(buf+i)!='\0') && (*(buf+i)!='\n')); i++) { local_buf[i] = toupper(buf[i]); } local_buf[i] = '\0'; if ((i == 0) || (i > 8)) { rc = -ENAMETOOLONG; goto out_buf; } down_write(&dcssblk_devices_sem); dev_info = dcssblk_get_device_by_name(local_buf); if (dev_info == NULL) { up_write(&dcssblk_devices_sem); pr_warn("Device %s cannot be removed because it is not a known device\n", local_buf); rc = -ENODEV; goto out_buf; } if (atomic_read(&dev_info->use_count) != 0) { up_write(&dcssblk_devices_sem); pr_warn("Device %s cannot be removed while it is in use\n", local_buf); rc = -EBUSY; goto out_buf; } list_del(&dev_info->lh); /* unload all related segments */ list_for_each_entry(entry, &dev_info->seg_list, lh) segment_unload(entry->segment_name); up_write(&dcssblk_devices_sem); dax_remove_host(dev_info->gd); kill_dax(dev_info->dax_dev); put_dax(dev_info->dax_dev); del_gendisk(dev_info->gd); put_disk(dev_info->gd); device_unregister(&dev_info->dev); put_device(&dev_info->dev); rc = count; out_buf: kfree(local_buf); return rc; } static int dcssblk_open(struct gendisk *disk, blk_mode_t mode) { struct dcssblk_dev_info *dev_info = disk->private_data; int rc; if (NULL == dev_info) { rc = -ENODEV; goto out; } atomic_inc(&dev_info->use_count); rc = 0; out: return rc; } static void dcssblk_release(struct gendisk *disk) { struct dcssblk_dev_info *dev_info = disk->private_data; struct segment_info *entry; if (!dev_info) { WARN_ON(1); return; } down_write(&dcssblk_devices_sem); if (atomic_dec_and_test(&dev_info->use_count) && (dev_info->save_pending)) { pr_info("Device %s has become idle and is being saved " "now\n", dev_info->segment_name); list_for_each_entry(entry, &dev_info->seg_list, lh) { if (entry->segment_type == SEG_TYPE_EN || entry->segment_type == SEG_TYPE_SN) pr_warn("DCSS %s is of type SN or EN and cannot" " be saved\n", entry->segment_name); else segment_save(entry->segment_name); } dev_info->save_pending = 0; } up_write(&dcssblk_devices_sem); } static void dcssblk_submit_bio(struct bio *bio) { struct dcssblk_dev_info *dev_info; struct bio_vec bvec; struct bvec_iter iter; unsigned long index; void *page_addr; unsigned long source_addr; unsigned long bytes_done; bytes_done = 0; dev_info = bio->bi_bdev->bd_disk->private_data; if (dev_info == NULL) goto fail; if (!IS_ALIGNED(bio->bi_iter.bi_sector, 8) || !IS_ALIGNED(bio->bi_iter.bi_size, PAGE_SIZE)) /* Request is not page-aligned. */ goto fail; /* verify data transfer direction */ if (dev_info->is_shared) { switch (dev_info->segment_type) { case SEG_TYPE_SR: case SEG_TYPE_ER: case SEG_TYPE_SC: /* cannot write to these segments */ if (bio_data_dir(bio) == WRITE) { pr_warn("Writing to %s failed because it is a read-only device\n", dev_name(&dev_info->dev)); goto fail; } } } index = (bio->bi_iter.bi_sector >> 3); bio_for_each_segment(bvec, bio, iter) { page_addr = bvec_virt(&bvec); source_addr = dev_info->start + (index<<12) + bytes_done; if (unlikely(!IS_ALIGNED((unsigned long)page_addr, PAGE_SIZE) || !IS_ALIGNED(bvec.bv_len, PAGE_SIZE))) // More paranoia. goto fail; if (bio_data_dir(bio) == READ) memcpy(page_addr, __va(source_addr), bvec.bv_len); else memcpy(__va(source_addr), page_addr, bvec.bv_len); bytes_done += bvec.bv_len; } bio_endio(bio); return; fail: bio_io_error(bio); } static long __dcssblk_direct_access(struct dcssblk_dev_info *dev_info, pgoff_t pgoff, long nr_pages, void **kaddr, pfn_t *pfn) { resource_size_t offset = pgoff * PAGE_SIZE; unsigned long dev_sz; dev_sz = dev_info->end - dev_info->start + 1; if (kaddr) *kaddr = (void *) dev_info->start + offset; if (pfn) *pfn = __pfn_to_pfn_t(PFN_DOWN(dev_info->start + offset), PFN_DEV|PFN_SPECIAL); return (dev_sz - offset) / PAGE_SIZE; } static long dcssblk_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff, long nr_pages, enum dax_access_mode mode, void **kaddr, pfn_t *pfn) { struct dcssblk_dev_info *dev_info = dax_get_private(dax_dev); return __dcssblk_direct_access(dev_info, pgoff, nr_pages, kaddr, pfn); } static void dcssblk_check_params(void) { int rc, i, j, k; char buf[DCSSBLK_PARM_LEN + 1]; struct dcssblk_dev_info *dev_info; for (i = 0; (i < DCSSBLK_PARM_LEN) && (dcssblk_segments[i] != '\0'); i++) { for (j = i; (j < DCSSBLK_PARM_LEN) && (dcssblk_segments[j] != ',') && (dcssblk_segments[j] != '\0') && (dcssblk_segments[j] != '('); j++) { buf[j-i] = dcssblk_segments[j]; } buf[j-i] = '\0'; rc = dcssblk_add_store(dcssblk_root_dev, NULL, buf, j-i); if ((rc >= 0) && (dcssblk_segments[j] == '(')) { for (k = 0; (buf[k] != ':') && (buf[k] != '\0'); k++) buf[k] = toupper(buf[k]); buf[k] = '\0'; if (!strncmp(&dcssblk_segments[j], "(local)", 7)) { down_read(&dcssblk_devices_sem); dev_info = dcssblk_get_device_by_name(buf); up_read(&dcssblk_devices_sem); if (dev_info) dcssblk_shared_store(&dev_info->dev, NULL, "0\n", 2); } } while ((dcssblk_segments[j] != ',') && (dcssblk_segments[j] != '\0')) { j++; } if (dcssblk_segments[j] == '\0') break; i = j; } } /* * The init/exit functions. */ static void __exit dcssblk_exit(void) { root_device_unregister(dcssblk_root_dev); unregister_blkdev(dcssblk_major, DCSSBLK_NAME); } static int __init dcssblk_init(void) { int rc; dcssblk_root_dev = root_device_register("dcssblk"); if (IS_ERR(dcssblk_root_dev)) return PTR_ERR(dcssblk_root_dev); rc = device_create_file(dcssblk_root_dev, &dev_attr_add); if (rc) goto out_root; rc = device_create_file(dcssblk_root_dev, &dev_attr_remove); if (rc) goto out_root; rc = register_blkdev(0, DCSSBLK_NAME); if (rc < 0) goto out_root; dcssblk_major = rc; init_rwsem(&dcssblk_devices_sem); dcssblk_check_params(); return 0; out_root: root_device_unregister(dcssblk_root_dev); return rc; } module_init(dcssblk_init); module_exit(dcssblk_exit); module_param_string(segments, dcssblk_segments, DCSSBLK_PARM_LEN, 0444); MODULE_PARM_DESC(segments, "Name of DCSS segment(s) to be loaded, " "comma-separated list, names in each set separated " "by commas are separated by colons, each set contains " "names of contiguous segments and each name max. 8 chars.\n" "Adding \"(local)\" to the end of each set equals echoing 0 " "to /sys/devices/dcssblk/<device name>/shared after loading " "the contiguous segments - \n" "e.g. segments=\"mydcss1,mydcss2:mydcss3,mydcss4(local)\""); MODULE_LICENSE("GPL");
linux-master
drivers/s390/block/dcssblk.c
// SPDX-License-Identifier: GPL-2.0 /* * Author(s)......: Holger Smolinski <[email protected]> * Horst Hummel <[email protected]> * Carsten Otte <[email protected]> * Martin Schwidefsky <[email protected]> * Bugreports.to..: <[email protected]> * Copyright IBM Corp. 1999, 2009 */ #define KMSG_COMPONENT "dasd" #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt #include <linux/kmod.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/ctype.h> #include <linux/major.h> #include <linux/slab.h> #include <linux/hdreg.h> #include <linux/async.h> #include <linux/mutex.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <linux/vmalloc.h> #include <asm/ccwdev.h> #include <asm/ebcdic.h> #include <asm/idals.h> #include <asm/itcw.h> #include <asm/diag.h> /* This is ugly... */ #define PRINTK_HEADER "dasd:" #include "dasd_int.h" /* * SECTION: Constant definitions to be used within this file */ #define DASD_CHANQ_MAX_SIZE 4 #define DASD_DIAG_MOD "dasd_diag_mod" /* * SECTION: exported variables of dasd.c */ debug_info_t *dasd_debug_area; EXPORT_SYMBOL(dasd_debug_area); static struct dentry *dasd_debugfs_root_entry; struct dasd_discipline *dasd_diag_discipline_pointer; EXPORT_SYMBOL(dasd_diag_discipline_pointer); void dasd_int_handler(struct ccw_device *, unsigned long, struct irb *); MODULE_AUTHOR("Holger Smolinski <[email protected]>"); MODULE_DESCRIPTION("Linux on S/390 DASD device driver," " Copyright IBM Corp. 2000"); MODULE_LICENSE("GPL"); /* * SECTION: prototypes for static functions of dasd.c */ static int dasd_flush_block_queue(struct dasd_block *); static void dasd_device_tasklet(unsigned long); static void dasd_block_tasklet(unsigned long); static void do_kick_device(struct work_struct *); static void do_reload_device(struct work_struct *); static void do_requeue_requests(struct work_struct *); static void dasd_return_cqr_cb(struct dasd_ccw_req *, void *); static void dasd_device_timeout(struct timer_list *); static void dasd_block_timeout(struct timer_list *); static void __dasd_process_erp(struct dasd_device *, struct dasd_ccw_req *); static void dasd_profile_init(struct dasd_profile *, struct dentry *); static void dasd_profile_exit(struct dasd_profile *); static void dasd_hosts_init(struct dentry *, struct dasd_device *); static void dasd_hosts_exit(struct dasd_device *); static int dasd_handle_autoquiesce(struct dasd_device *, struct dasd_ccw_req *, unsigned int); /* * SECTION: Operations on the device structure. */ static wait_queue_head_t dasd_init_waitq; static wait_queue_head_t dasd_flush_wq; static wait_queue_head_t generic_waitq; static wait_queue_head_t shutdown_waitq; /* * Allocate memory for a new device structure. */ struct dasd_device *dasd_alloc_device(void) { struct dasd_device *device; device = kzalloc(sizeof(struct dasd_device), GFP_ATOMIC); if (!device) return ERR_PTR(-ENOMEM); /* Get two pages for normal block device operations. */ device->ccw_mem = (void *) __get_free_pages(GFP_ATOMIC | GFP_DMA, 1); if (!device->ccw_mem) { kfree(device); return ERR_PTR(-ENOMEM); } /* Get one page for error recovery. */ device->erp_mem = (void *) get_zeroed_page(GFP_ATOMIC | GFP_DMA); if (!device->erp_mem) { free_pages((unsigned long) device->ccw_mem, 1); kfree(device); return ERR_PTR(-ENOMEM); } /* Get two pages for ese format. */ device->ese_mem = (void *)__get_free_pages(GFP_ATOMIC | GFP_DMA, 1); if (!device->ese_mem) { free_page((unsigned long) device->erp_mem); free_pages((unsigned long) device->ccw_mem, 1); kfree(device); return ERR_PTR(-ENOMEM); } dasd_init_chunklist(&device->ccw_chunks, device->ccw_mem, PAGE_SIZE*2); dasd_init_chunklist(&device->erp_chunks, device->erp_mem, PAGE_SIZE); dasd_init_chunklist(&device->ese_chunks, device->ese_mem, PAGE_SIZE * 2); spin_lock_init(&device->mem_lock); atomic_set(&device->tasklet_scheduled, 0); tasklet_init(&device->tasklet, dasd_device_tasklet, (unsigned long) device); INIT_LIST_HEAD(&device->ccw_queue); timer_setup(&device->timer, dasd_device_timeout, 0); INIT_WORK(&device->kick_work, do_kick_device); INIT_WORK(&device->reload_device, do_reload_device); INIT_WORK(&device->requeue_requests, do_requeue_requests); device->state = DASD_STATE_NEW; device->target = DASD_STATE_NEW; mutex_init(&device->state_mutex); spin_lock_init(&device->profile.lock); return device; } /* * Free memory of a device structure. */ void dasd_free_device(struct dasd_device *device) { kfree(device->private); free_pages((unsigned long) device->ese_mem, 1); free_page((unsigned long) device->erp_mem); free_pages((unsigned long) device->ccw_mem, 1); kfree(device); } /* * Allocate memory for a new device structure. */ struct dasd_block *dasd_alloc_block(void) { struct dasd_block *block; block = kzalloc(sizeof(*block), GFP_ATOMIC); if (!block) return ERR_PTR(-ENOMEM); /* open_count = 0 means device online but not in use */ atomic_set(&block->open_count, -1); atomic_set(&block->tasklet_scheduled, 0); tasklet_init(&block->tasklet, dasd_block_tasklet, (unsigned long) block); INIT_LIST_HEAD(&block->ccw_queue); spin_lock_init(&block->queue_lock); INIT_LIST_HEAD(&block->format_list); spin_lock_init(&block->format_lock); timer_setup(&block->timer, dasd_block_timeout, 0); spin_lock_init(&block->profile.lock); return block; } EXPORT_SYMBOL_GPL(dasd_alloc_block); /* * Free memory of a device structure. */ void dasd_free_block(struct dasd_block *block) { kfree(block); } EXPORT_SYMBOL_GPL(dasd_free_block); /* * Make a new device known to the system. */ static int dasd_state_new_to_known(struct dasd_device *device) { /* * As long as the device is not in state DASD_STATE_NEW we want to * keep the reference count > 0. */ dasd_get_device(device); device->state = DASD_STATE_KNOWN; return 0; } /* * Let the system forget about a device. */ static int dasd_state_known_to_new(struct dasd_device *device) { /* Disable extended error reporting for this device. */ dasd_eer_disable(device); device->state = DASD_STATE_NEW; /* Give up reference we took in dasd_state_new_to_known. */ dasd_put_device(device); return 0; } static struct dentry *dasd_debugfs_setup(const char *name, struct dentry *base_dentry) { struct dentry *pde; if (!base_dentry) return NULL; pde = debugfs_create_dir(name, base_dentry); if (!pde || IS_ERR(pde)) return NULL; return pde; } /* * Request the irq line for the device. */ static int dasd_state_known_to_basic(struct dasd_device *device) { struct dasd_block *block = device->block; int rc = 0; /* Allocate and register gendisk structure. */ if (block) { rc = dasd_gendisk_alloc(block); if (rc) return rc; block->debugfs_dentry = dasd_debugfs_setup(block->gdp->disk_name, dasd_debugfs_root_entry); dasd_profile_init(&block->profile, block->debugfs_dentry); if (dasd_global_profile_level == DASD_PROFILE_ON) dasd_profile_on(&device->block->profile); } device->debugfs_dentry = dasd_debugfs_setup(dev_name(&device->cdev->dev), dasd_debugfs_root_entry); dasd_profile_init(&device->profile, device->debugfs_dentry); dasd_hosts_init(device->debugfs_dentry, device); /* register 'device' debug area, used for all DBF_DEV_XXX calls */ device->debug_area = debug_register(dev_name(&device->cdev->dev), 4, 1, 8 * sizeof(long)); debug_register_view(device->debug_area, &debug_sprintf_view); debug_set_level(device->debug_area, DBF_WARNING); DBF_DEV_EVENT(DBF_EMERG, device, "%s", "debug area created"); device->state = DASD_STATE_BASIC; return rc; } /* * Release the irq line for the device. Terminate any running i/o. */ static int dasd_state_basic_to_known(struct dasd_device *device) { int rc; if (device->discipline->basic_to_known) { rc = device->discipline->basic_to_known(device); if (rc) return rc; } if (device->block) { dasd_profile_exit(&device->block->profile); debugfs_remove(device->block->debugfs_dentry); dasd_gendisk_free(device->block); dasd_block_clear_timer(device->block); } rc = dasd_flush_device_queue(device); if (rc) return rc; dasd_device_clear_timer(device); dasd_profile_exit(&device->profile); dasd_hosts_exit(device); debugfs_remove(device->debugfs_dentry); DBF_DEV_EVENT(DBF_EMERG, device, "%p debug area deleted", device); if (device->debug_area != NULL) { debug_unregister(device->debug_area); device->debug_area = NULL; } device->state = DASD_STATE_KNOWN; return 0; } /* * Do the initial analysis. The do_analysis function may return * -EAGAIN in which case the device keeps the state DASD_STATE_BASIC * until the discipline decides to continue the startup sequence * by calling the function dasd_change_state. The eckd disciplines * uses this to start a ccw that detects the format. The completion * interrupt for this detection ccw uses the kernel event daemon to * trigger the call to dasd_change_state. All this is done in the * discipline code, see dasd_eckd.c. * After the analysis ccw is done (do_analysis returned 0) the block * device is setup. * In case the analysis returns an error, the device setup is stopped * (a fake disk was already added to allow formatting). */ static int dasd_state_basic_to_ready(struct dasd_device *device) { int rc; struct dasd_block *block; struct gendisk *disk; rc = 0; block = device->block; /* make disk known with correct capacity */ if (block) { if (block->base->discipline->do_analysis != NULL) rc = block->base->discipline->do_analysis(block); if (rc) { if (rc != -EAGAIN) { device->state = DASD_STATE_UNFMT; disk = device->block->gdp; kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE); goto out; } return rc; } if (device->discipline->setup_blk_queue) device->discipline->setup_blk_queue(block); set_capacity(block->gdp, block->blocks << block->s2b_shift); device->state = DASD_STATE_READY; rc = dasd_scan_partitions(block); if (rc) { device->state = DASD_STATE_BASIC; return rc; } } else { device->state = DASD_STATE_READY; } out: if (device->discipline->basic_to_ready) rc = device->discipline->basic_to_ready(device); return rc; } static inline int _wait_for_empty_queues(struct dasd_device *device) { if (device->block) return list_empty(&device->ccw_queue) && list_empty(&device->block->ccw_queue); else return list_empty(&device->ccw_queue); } /* * Remove device from block device layer. Destroy dirty buffers. * Forget format information. Check if the target level is basic * and if it is create fake disk for formatting. */ static int dasd_state_ready_to_basic(struct dasd_device *device) { int rc; device->state = DASD_STATE_BASIC; if (device->block) { struct dasd_block *block = device->block; rc = dasd_flush_block_queue(block); if (rc) { device->state = DASD_STATE_READY; return rc; } dasd_destroy_partitions(block); block->blocks = 0; block->bp_block = 0; block->s2b_shift = 0; } return 0; } /* * Back to basic. */ static int dasd_state_unfmt_to_basic(struct dasd_device *device) { device->state = DASD_STATE_BASIC; return 0; } /* * Make the device online and schedule the bottom half to start * the requeueing of requests from the linux request queue to the * ccw queue. */ static int dasd_state_ready_to_online(struct dasd_device * device) { device->state = DASD_STATE_ONLINE; if (device->block) { dasd_schedule_block_bh(device->block); if ((device->features & DASD_FEATURE_USERAW)) { kobject_uevent(&disk_to_dev(device->block->gdp)->kobj, KOBJ_CHANGE); return 0; } disk_uevent(device->block->bdev->bd_disk, KOBJ_CHANGE); } return 0; } /* * Stop the requeueing of requests again. */ static int dasd_state_online_to_ready(struct dasd_device *device) { int rc; if (device->discipline->online_to_ready) { rc = device->discipline->online_to_ready(device); if (rc) return rc; } device->state = DASD_STATE_READY; if (device->block && !(device->features & DASD_FEATURE_USERAW)) disk_uevent(device->block->bdev->bd_disk, KOBJ_CHANGE); return 0; } /* * Device startup state changes. */ static int dasd_increase_state(struct dasd_device *device) { int rc; rc = 0; if (device->state == DASD_STATE_NEW && device->target >= DASD_STATE_KNOWN) rc = dasd_state_new_to_known(device); if (!rc && device->state == DASD_STATE_KNOWN && device->target >= DASD_STATE_BASIC) rc = dasd_state_known_to_basic(device); if (!rc && device->state == DASD_STATE_BASIC && device->target >= DASD_STATE_READY) rc = dasd_state_basic_to_ready(device); if (!rc && device->state == DASD_STATE_UNFMT && device->target > DASD_STATE_UNFMT) rc = -EPERM; if (!rc && device->state == DASD_STATE_READY && device->target >= DASD_STATE_ONLINE) rc = dasd_state_ready_to_online(device); return rc; } /* * Device shutdown state changes. */ static int dasd_decrease_state(struct dasd_device *device) { int rc; rc = 0; if (device->state == DASD_STATE_ONLINE && device->target <= DASD_STATE_READY) rc = dasd_state_online_to_ready(device); if (!rc && device->state == DASD_STATE_READY && device->target <= DASD_STATE_BASIC) rc = dasd_state_ready_to_basic(device); if (!rc && device->state == DASD_STATE_UNFMT && device->target <= DASD_STATE_BASIC) rc = dasd_state_unfmt_to_basic(device); if (!rc && device->state == DASD_STATE_BASIC && device->target <= DASD_STATE_KNOWN) rc = dasd_state_basic_to_known(device); if (!rc && device->state == DASD_STATE_KNOWN && device->target <= DASD_STATE_NEW) rc = dasd_state_known_to_new(device); return rc; } /* * This is the main startup/shutdown routine. */ static void dasd_change_state(struct dasd_device *device) { int rc; if (device->state == device->target) /* Already where we want to go today... */ return; if (device->state < device->target) rc = dasd_increase_state(device); else rc = dasd_decrease_state(device); if (rc == -EAGAIN) return; if (rc) device->target = device->state; /* let user-space know that the device status changed */ kobject_uevent(&device->cdev->dev.kobj, KOBJ_CHANGE); if (device->state == device->target) wake_up(&dasd_init_waitq); } /* * Kick starter for devices that did not complete the startup/shutdown * procedure or were sleeping because of a pending state. * dasd_kick_device will schedule a call do do_kick_device to the kernel * event daemon. */ static void do_kick_device(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, kick_work); mutex_lock(&device->state_mutex); dasd_change_state(device); mutex_unlock(&device->state_mutex); dasd_schedule_device_bh(device); dasd_put_device(device); } void dasd_kick_device(struct dasd_device *device) { dasd_get_device(device); /* queue call to dasd_kick_device to the kernel event daemon. */ if (!schedule_work(&device->kick_work)) dasd_put_device(device); } EXPORT_SYMBOL(dasd_kick_device); /* * dasd_reload_device will schedule a call do do_reload_device to the kernel * event daemon. */ static void do_reload_device(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, reload_device); device->discipline->reload(device); dasd_put_device(device); } void dasd_reload_device(struct dasd_device *device) { dasd_get_device(device); /* queue call to dasd_reload_device to the kernel event daemon. */ if (!schedule_work(&device->reload_device)) dasd_put_device(device); } EXPORT_SYMBOL(dasd_reload_device); /* * Set the target state for a device and starts the state change. */ void dasd_set_target_state(struct dasd_device *device, int target) { dasd_get_device(device); mutex_lock(&device->state_mutex); /* If we are in probeonly mode stop at DASD_STATE_READY. */ if (dasd_probeonly && target > DASD_STATE_READY) target = DASD_STATE_READY; if (device->target != target) { if (device->state == target) wake_up(&dasd_init_waitq); device->target = target; } if (device->state != device->target) dasd_change_state(device); mutex_unlock(&device->state_mutex); dasd_put_device(device); } /* * Enable devices with device numbers in [from..to]. */ static inline int _wait_for_device(struct dasd_device *device) { return (device->state == device->target); } void dasd_enable_device(struct dasd_device *device) { dasd_set_target_state(device, DASD_STATE_ONLINE); if (device->state <= DASD_STATE_KNOWN) /* No discipline for device found. */ dasd_set_target_state(device, DASD_STATE_NEW); /* Now wait for the devices to come up. */ wait_event(dasd_init_waitq, _wait_for_device(device)); dasd_reload_device(device); if (device->discipline->kick_validate) device->discipline->kick_validate(device); } EXPORT_SYMBOL(dasd_enable_device); /* * SECTION: device operation (interrupt handler, start i/o, term i/o ...) */ unsigned int dasd_global_profile_level = DASD_PROFILE_OFF; #ifdef CONFIG_DASD_PROFILE struct dasd_profile dasd_global_profile = { .lock = __SPIN_LOCK_UNLOCKED(dasd_global_profile.lock), }; static struct dentry *dasd_debugfs_global_entry; /* * Add profiling information for cqr before execution. */ static void dasd_profile_start(struct dasd_block *block, struct dasd_ccw_req *cqr, struct request *req) { struct list_head *l; unsigned int counter; struct dasd_device *device; /* count the length of the chanq for statistics */ counter = 0; if (dasd_global_profile_level || block->profile.data) list_for_each(l, &block->ccw_queue) if (++counter >= 31) break; spin_lock(&dasd_global_profile.lock); if (dasd_global_profile.data) { dasd_global_profile.data->dasd_io_nr_req[counter]++; if (rq_data_dir(req) == READ) dasd_global_profile.data->dasd_read_nr_req[counter]++; } spin_unlock(&dasd_global_profile.lock); spin_lock(&block->profile.lock); if (block->profile.data) { block->profile.data->dasd_io_nr_req[counter]++; if (rq_data_dir(req) == READ) block->profile.data->dasd_read_nr_req[counter]++; } spin_unlock(&block->profile.lock); /* * We count the request for the start device, even though it may run on * some other device due to error recovery. This way we make sure that * we count each request only once. */ device = cqr->startdev; if (device->profile.data) { counter = 1; /* request is not yet queued on the start device */ list_for_each(l, &device->ccw_queue) if (++counter >= 31) break; } spin_lock(&device->profile.lock); if (device->profile.data) { device->profile.data->dasd_io_nr_req[counter]++; if (rq_data_dir(req) == READ) device->profile.data->dasd_read_nr_req[counter]++; } spin_unlock(&device->profile.lock); } /* * Add profiling information for cqr after execution. */ #define dasd_profile_counter(value, index) \ { \ for (index = 0; index < 31 && value >> (2+index); index++) \ ; \ } static void dasd_profile_end_add_data(struct dasd_profile_info *data, int is_alias, int is_tpm, int is_read, long sectors, int sectors_ind, int tottime_ind, int tottimeps_ind, int strtime_ind, int irqtime_ind, int irqtimeps_ind, int endtime_ind) { /* in case of an overflow, reset the whole profile */ if (data->dasd_io_reqs == UINT_MAX) { memset(data, 0, sizeof(*data)); ktime_get_real_ts64(&data->starttod); } data->dasd_io_reqs++; data->dasd_io_sects += sectors; if (is_alias) data->dasd_io_alias++; if (is_tpm) data->dasd_io_tpm++; data->dasd_io_secs[sectors_ind]++; data->dasd_io_times[tottime_ind]++; data->dasd_io_timps[tottimeps_ind]++; data->dasd_io_time1[strtime_ind]++; data->dasd_io_time2[irqtime_ind]++; data->dasd_io_time2ps[irqtimeps_ind]++; data->dasd_io_time3[endtime_ind]++; if (is_read) { data->dasd_read_reqs++; data->dasd_read_sects += sectors; if (is_alias) data->dasd_read_alias++; if (is_tpm) data->dasd_read_tpm++; data->dasd_read_secs[sectors_ind]++; data->dasd_read_times[tottime_ind]++; data->dasd_read_time1[strtime_ind]++; data->dasd_read_time2[irqtime_ind]++; data->dasd_read_time3[endtime_ind]++; } } static void dasd_profile_end(struct dasd_block *block, struct dasd_ccw_req *cqr, struct request *req) { unsigned long strtime, irqtime, endtime, tottime; unsigned long tottimeps, sectors; struct dasd_device *device; int sectors_ind, tottime_ind, tottimeps_ind, strtime_ind; int irqtime_ind, irqtimeps_ind, endtime_ind; struct dasd_profile_info *data; device = cqr->startdev; if (!(dasd_global_profile_level || block->profile.data || device->profile.data)) return; sectors = blk_rq_sectors(req); if (!cqr->buildclk || !cqr->startclk || !cqr->stopclk || !cqr->endclk || !sectors) return; strtime = ((cqr->startclk - cqr->buildclk) >> 12); irqtime = ((cqr->stopclk - cqr->startclk) >> 12); endtime = ((cqr->endclk - cqr->stopclk) >> 12); tottime = ((cqr->endclk - cqr->buildclk) >> 12); tottimeps = tottime / sectors; dasd_profile_counter(sectors, sectors_ind); dasd_profile_counter(tottime, tottime_ind); dasd_profile_counter(tottimeps, tottimeps_ind); dasd_profile_counter(strtime, strtime_ind); dasd_profile_counter(irqtime, irqtime_ind); dasd_profile_counter(irqtime / sectors, irqtimeps_ind); dasd_profile_counter(endtime, endtime_ind); spin_lock(&dasd_global_profile.lock); if (dasd_global_profile.data) { data = dasd_global_profile.data; data->dasd_sum_times += tottime; data->dasd_sum_time_str += strtime; data->dasd_sum_time_irq += irqtime; data->dasd_sum_time_end += endtime; dasd_profile_end_add_data(dasd_global_profile.data, cqr->startdev != block->base, cqr->cpmode == 1, rq_data_dir(req) == READ, sectors, sectors_ind, tottime_ind, tottimeps_ind, strtime_ind, irqtime_ind, irqtimeps_ind, endtime_ind); } spin_unlock(&dasd_global_profile.lock); spin_lock(&block->profile.lock); if (block->profile.data) { data = block->profile.data; data->dasd_sum_times += tottime; data->dasd_sum_time_str += strtime; data->dasd_sum_time_irq += irqtime; data->dasd_sum_time_end += endtime; dasd_profile_end_add_data(block->profile.data, cqr->startdev != block->base, cqr->cpmode == 1, rq_data_dir(req) == READ, sectors, sectors_ind, tottime_ind, tottimeps_ind, strtime_ind, irqtime_ind, irqtimeps_ind, endtime_ind); } spin_unlock(&block->profile.lock); spin_lock(&device->profile.lock); if (device->profile.data) { data = device->profile.data; data->dasd_sum_times += tottime; data->dasd_sum_time_str += strtime; data->dasd_sum_time_irq += irqtime; data->dasd_sum_time_end += endtime; dasd_profile_end_add_data(device->profile.data, cqr->startdev != block->base, cqr->cpmode == 1, rq_data_dir(req) == READ, sectors, sectors_ind, tottime_ind, tottimeps_ind, strtime_ind, irqtime_ind, irqtimeps_ind, endtime_ind); } spin_unlock(&device->profile.lock); } void dasd_profile_reset(struct dasd_profile *profile) { struct dasd_profile_info *data; spin_lock_bh(&profile->lock); data = profile->data; if (!data) { spin_unlock_bh(&profile->lock); return; } memset(data, 0, sizeof(*data)); ktime_get_real_ts64(&data->starttod); spin_unlock_bh(&profile->lock); } int dasd_profile_on(struct dasd_profile *profile) { struct dasd_profile_info *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; spin_lock_bh(&profile->lock); if (profile->data) { spin_unlock_bh(&profile->lock); kfree(data); return 0; } ktime_get_real_ts64(&data->starttod); profile->data = data; spin_unlock_bh(&profile->lock); return 0; } void dasd_profile_off(struct dasd_profile *profile) { spin_lock_bh(&profile->lock); kfree(profile->data); profile->data = NULL; spin_unlock_bh(&profile->lock); } char *dasd_get_user_string(const char __user *user_buf, size_t user_len) { char *buffer; buffer = vmalloc(user_len + 1); if (buffer == NULL) return ERR_PTR(-ENOMEM); if (copy_from_user(buffer, user_buf, user_len) != 0) { vfree(buffer); return ERR_PTR(-EFAULT); } /* got the string, now strip linefeed. */ if (buffer[user_len - 1] == '\n') buffer[user_len - 1] = 0; else buffer[user_len] = 0; return buffer; } static ssize_t dasd_stats_write(struct file *file, const char __user *user_buf, size_t user_len, loff_t *pos) { char *buffer, *str; int rc; struct seq_file *m = (struct seq_file *)file->private_data; struct dasd_profile *prof = m->private; if (user_len > 65536) user_len = 65536; buffer = dasd_get_user_string(user_buf, user_len); if (IS_ERR(buffer)) return PTR_ERR(buffer); str = skip_spaces(buffer); rc = user_len; if (strncmp(str, "reset", 5) == 0) { dasd_profile_reset(prof); } else if (strncmp(str, "on", 2) == 0) { rc = dasd_profile_on(prof); if (rc) goto out; rc = user_len; if (prof == &dasd_global_profile) { dasd_profile_reset(prof); dasd_global_profile_level = DASD_PROFILE_GLOBAL_ONLY; } } else if (strncmp(str, "off", 3) == 0) { if (prof == &dasd_global_profile) dasd_global_profile_level = DASD_PROFILE_OFF; dasd_profile_off(prof); } else rc = -EINVAL; out: vfree(buffer); return rc; } static void dasd_stats_array(struct seq_file *m, unsigned int *array) { int i; for (i = 0; i < 32; i++) seq_printf(m, "%u ", array[i]); seq_putc(m, '\n'); } static void dasd_stats_seq_print(struct seq_file *m, struct dasd_profile_info *data) { seq_printf(m, "start_time %lld.%09ld\n", (s64)data->starttod.tv_sec, data->starttod.tv_nsec); seq_printf(m, "total_requests %u\n", data->dasd_io_reqs); seq_printf(m, "total_sectors %u\n", data->dasd_io_sects); seq_printf(m, "total_pav %u\n", data->dasd_io_alias); seq_printf(m, "total_hpf %u\n", data->dasd_io_tpm); seq_printf(m, "avg_total %lu\n", data->dasd_io_reqs ? data->dasd_sum_times / data->dasd_io_reqs : 0UL); seq_printf(m, "avg_build_to_ssch %lu\n", data->dasd_io_reqs ? data->dasd_sum_time_str / data->dasd_io_reqs : 0UL); seq_printf(m, "avg_ssch_to_irq %lu\n", data->dasd_io_reqs ? data->dasd_sum_time_irq / data->dasd_io_reqs : 0UL); seq_printf(m, "avg_irq_to_end %lu\n", data->dasd_io_reqs ? data->dasd_sum_time_end / data->dasd_io_reqs : 0UL); seq_puts(m, "histogram_sectors "); dasd_stats_array(m, data->dasd_io_secs); seq_puts(m, "histogram_io_times "); dasd_stats_array(m, data->dasd_io_times); seq_puts(m, "histogram_io_times_weighted "); dasd_stats_array(m, data->dasd_io_timps); seq_puts(m, "histogram_time_build_to_ssch "); dasd_stats_array(m, data->dasd_io_time1); seq_puts(m, "histogram_time_ssch_to_irq "); dasd_stats_array(m, data->dasd_io_time2); seq_puts(m, "histogram_time_ssch_to_irq_weighted "); dasd_stats_array(m, data->dasd_io_time2ps); seq_puts(m, "histogram_time_irq_to_end "); dasd_stats_array(m, data->dasd_io_time3); seq_puts(m, "histogram_ccw_queue_length "); dasd_stats_array(m, data->dasd_io_nr_req); seq_printf(m, "total_read_requests %u\n", data->dasd_read_reqs); seq_printf(m, "total_read_sectors %u\n", data->dasd_read_sects); seq_printf(m, "total_read_pav %u\n", data->dasd_read_alias); seq_printf(m, "total_read_hpf %u\n", data->dasd_read_tpm); seq_puts(m, "histogram_read_sectors "); dasd_stats_array(m, data->dasd_read_secs); seq_puts(m, "histogram_read_times "); dasd_stats_array(m, data->dasd_read_times); seq_puts(m, "histogram_read_time_build_to_ssch "); dasd_stats_array(m, data->dasd_read_time1); seq_puts(m, "histogram_read_time_ssch_to_irq "); dasd_stats_array(m, data->dasd_read_time2); seq_puts(m, "histogram_read_time_irq_to_end "); dasd_stats_array(m, data->dasd_read_time3); seq_puts(m, "histogram_read_ccw_queue_length "); dasd_stats_array(m, data->dasd_read_nr_req); } static int dasd_stats_show(struct seq_file *m, void *v) { struct dasd_profile *profile; struct dasd_profile_info *data; profile = m->private; spin_lock_bh(&profile->lock); data = profile->data; if (!data) { spin_unlock_bh(&profile->lock); seq_puts(m, "disabled\n"); return 0; } dasd_stats_seq_print(m, data); spin_unlock_bh(&profile->lock); return 0; } static int dasd_stats_open(struct inode *inode, struct file *file) { struct dasd_profile *profile = inode->i_private; return single_open(file, dasd_stats_show, profile); } static const struct file_operations dasd_stats_raw_fops = { .owner = THIS_MODULE, .open = dasd_stats_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, .write = dasd_stats_write, }; static void dasd_profile_init(struct dasd_profile *profile, struct dentry *base_dentry) { umode_t mode; struct dentry *pde; if (!base_dentry) return; profile->dentry = NULL; profile->data = NULL; mode = (S_IRUSR | S_IWUSR | S_IFREG); pde = debugfs_create_file("statistics", mode, base_dentry, profile, &dasd_stats_raw_fops); if (pde && !IS_ERR(pde)) profile->dentry = pde; return; } static void dasd_profile_exit(struct dasd_profile *profile) { dasd_profile_off(profile); debugfs_remove(profile->dentry); profile->dentry = NULL; } static void dasd_statistics_removeroot(void) { dasd_global_profile_level = DASD_PROFILE_OFF; dasd_profile_exit(&dasd_global_profile); debugfs_remove(dasd_debugfs_global_entry); debugfs_remove(dasd_debugfs_root_entry); } static void dasd_statistics_createroot(void) { struct dentry *pde; dasd_debugfs_root_entry = NULL; pde = debugfs_create_dir("dasd", NULL); if (!pde || IS_ERR(pde)) goto error; dasd_debugfs_root_entry = pde; pde = debugfs_create_dir("global", dasd_debugfs_root_entry); if (!pde || IS_ERR(pde)) goto error; dasd_debugfs_global_entry = pde; dasd_profile_init(&dasd_global_profile, dasd_debugfs_global_entry); return; error: DBF_EVENT(DBF_ERR, "%s", "Creation of the dasd debugfs interface failed"); dasd_statistics_removeroot(); return; } #else #define dasd_profile_start(block, cqr, req) do {} while (0) #define dasd_profile_end(block, cqr, req) do {} while (0) static void dasd_statistics_createroot(void) { return; } static void dasd_statistics_removeroot(void) { return; } int dasd_stats_generic_show(struct seq_file *m, void *v) { seq_puts(m, "Statistics are not activated in this kernel\n"); return 0; } static void dasd_profile_init(struct dasd_profile *profile, struct dentry *base_dentry) { return; } static void dasd_profile_exit(struct dasd_profile *profile) { return; } int dasd_profile_on(struct dasd_profile *profile) { return 0; } #endif /* CONFIG_DASD_PROFILE */ static int dasd_hosts_show(struct seq_file *m, void *v) { struct dasd_device *device; int rc = -EOPNOTSUPP; device = m->private; dasd_get_device(device); if (device->discipline->hosts_print) rc = device->discipline->hosts_print(device, m); dasd_put_device(device); return rc; } DEFINE_SHOW_ATTRIBUTE(dasd_hosts); static void dasd_hosts_exit(struct dasd_device *device) { debugfs_remove(device->hosts_dentry); device->hosts_dentry = NULL; } static void dasd_hosts_init(struct dentry *base_dentry, struct dasd_device *device) { struct dentry *pde; umode_t mode; if (!base_dentry) return; mode = S_IRUSR | S_IFREG; pde = debugfs_create_file("host_access_list", mode, base_dentry, device, &dasd_hosts_fops); if (pde && !IS_ERR(pde)) device->hosts_dentry = pde; } struct dasd_ccw_req *dasd_smalloc_request(int magic, int cplength, int datasize, struct dasd_device *device, struct dasd_ccw_req *cqr) { unsigned long flags; char *data, *chunk; int size = 0; if (cplength > 0) size += cplength * sizeof(struct ccw1); if (datasize > 0) size += datasize; if (!cqr) size += (sizeof(*cqr) + 7L) & -8L; spin_lock_irqsave(&device->mem_lock, flags); data = chunk = dasd_alloc_chunk(&device->ccw_chunks, size); spin_unlock_irqrestore(&device->mem_lock, flags); if (!chunk) return ERR_PTR(-ENOMEM); if (!cqr) { cqr = (void *) data; data += (sizeof(*cqr) + 7L) & -8L; } memset(cqr, 0, sizeof(*cqr)); cqr->mem_chunk = chunk; if (cplength > 0) { cqr->cpaddr = data; data += cplength * sizeof(struct ccw1); memset(cqr->cpaddr, 0, cplength * sizeof(struct ccw1)); } if (datasize > 0) { cqr->data = data; memset(cqr->data, 0, datasize); } cqr->magic = magic; set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); dasd_get_device(device); return cqr; } EXPORT_SYMBOL(dasd_smalloc_request); struct dasd_ccw_req *dasd_fmalloc_request(int magic, int cplength, int datasize, struct dasd_device *device) { struct dasd_ccw_req *cqr; unsigned long flags; int size, cqr_size; char *data; cqr_size = (sizeof(*cqr) + 7L) & -8L; size = cqr_size; if (cplength > 0) size += cplength * sizeof(struct ccw1); if (datasize > 0) size += datasize; spin_lock_irqsave(&device->mem_lock, flags); cqr = dasd_alloc_chunk(&device->ese_chunks, size); spin_unlock_irqrestore(&device->mem_lock, flags); if (!cqr) return ERR_PTR(-ENOMEM); memset(cqr, 0, sizeof(*cqr)); data = (char *)cqr + cqr_size; cqr->cpaddr = NULL; if (cplength > 0) { cqr->cpaddr = data; data += cplength * sizeof(struct ccw1); memset(cqr->cpaddr, 0, cplength * sizeof(struct ccw1)); } cqr->data = NULL; if (datasize > 0) { cqr->data = data; memset(cqr->data, 0, datasize); } cqr->magic = magic; set_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags); dasd_get_device(device); return cqr; } EXPORT_SYMBOL(dasd_fmalloc_request); void dasd_sfree_request(struct dasd_ccw_req *cqr, struct dasd_device *device) { unsigned long flags; spin_lock_irqsave(&device->mem_lock, flags); dasd_free_chunk(&device->ccw_chunks, cqr->mem_chunk); spin_unlock_irqrestore(&device->mem_lock, flags); dasd_put_device(device); } EXPORT_SYMBOL(dasd_sfree_request); void dasd_ffree_request(struct dasd_ccw_req *cqr, struct dasd_device *device) { unsigned long flags; spin_lock_irqsave(&device->mem_lock, flags); dasd_free_chunk(&device->ese_chunks, cqr); spin_unlock_irqrestore(&device->mem_lock, flags); dasd_put_device(device); } EXPORT_SYMBOL(dasd_ffree_request); /* * Check discipline magic in cqr. */ static inline int dasd_check_cqr(struct dasd_ccw_req *cqr) { struct dasd_device *device; if (cqr == NULL) return -EINVAL; device = cqr->startdev; if (strncmp((char *) &cqr->magic, device->discipline->ebcname, 4)) { DBF_DEV_EVENT(DBF_WARNING, device, " dasd_ccw_req 0x%08x magic doesn't match" " discipline 0x%08x", cqr->magic, *(unsigned int *) device->discipline->name); return -EINVAL; } return 0; } /* * Terminate the current i/o and set the request to clear_pending. * Timer keeps device runnig. * ccw_device_clear can fail if the i/o subsystem * is in a bad mood. */ int dasd_term_IO(struct dasd_ccw_req *cqr) { struct dasd_device *device; int retries, rc; char errorstring[ERRORLENGTH]; /* Check the cqr */ rc = dasd_check_cqr(cqr); if (rc) return rc; retries = 0; device = (struct dasd_device *) cqr->startdev; while ((retries < 5) && (cqr->status == DASD_CQR_IN_IO)) { rc = ccw_device_clear(device->cdev, (long) cqr); switch (rc) { case 0: /* termination successful */ cqr->status = DASD_CQR_CLEAR_PENDING; cqr->stopclk = get_tod_clock(); cqr->starttime = 0; DBF_DEV_EVENT(DBF_DEBUG, device, "terminate cqr %p successful", cqr); break; case -ENODEV: DBF_DEV_EVENT(DBF_ERR, device, "%s", "device gone, retry"); break; case -EINVAL: /* * device not valid so no I/O could be running * handle CQR as termination successful */ cqr->status = DASD_CQR_CLEARED; cqr->stopclk = get_tod_clock(); cqr->starttime = 0; /* no retries for invalid devices */ cqr->retries = -1; DBF_DEV_EVENT(DBF_ERR, device, "%s", "EINVAL, handle as terminated"); /* fake rc to success */ rc = 0; break; default: /* internal error 10 - unknown rc*/ snprintf(errorstring, ERRORLENGTH, "10 %d", rc); dev_err(&device->cdev->dev, "An error occurred in the " "DASD device driver, reason=%s\n", errorstring); BUG(); break; } retries++; } dasd_schedule_device_bh(device); return rc; } EXPORT_SYMBOL(dasd_term_IO); /* * Start the i/o. This start_IO can fail if the channel is really busy. * In that case set up a timer to start the request later. */ int dasd_start_IO(struct dasd_ccw_req *cqr) { struct dasd_device *device; int rc; char errorstring[ERRORLENGTH]; /* Check the cqr */ rc = dasd_check_cqr(cqr); if (rc) { cqr->intrc = rc; return rc; } device = (struct dasd_device *) cqr->startdev; if (((cqr->block && test_bit(DASD_FLAG_LOCK_STOLEN, &cqr->block->base->flags)) || test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags)) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { DBF_DEV_EVENT(DBF_DEBUG, device, "start_IO: return request %p " "because of stolen lock", cqr); cqr->status = DASD_CQR_ERROR; cqr->intrc = -EPERM; return -EPERM; } if (cqr->retries < 0) { /* internal error 14 - start_IO run out of retries */ sprintf(errorstring, "14 %p", cqr); dev_err(&device->cdev->dev, "An error occurred in the DASD " "device driver, reason=%s\n", errorstring); cqr->status = DASD_CQR_ERROR; return -EIO; } cqr->startclk = get_tod_clock(); cqr->starttime = jiffies; cqr->retries--; if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { cqr->lpm &= dasd_path_get_opm(device); if (!cqr->lpm) cqr->lpm = dasd_path_get_opm(device); } /* * remember the amount of formatted tracks to prevent double format on * ESE devices */ if (cqr->block) cqr->trkcount = atomic_read(&cqr->block->trkcount); if (cqr->cpmode == 1) { rc = ccw_device_tm_start(device->cdev, cqr->cpaddr, (long) cqr, cqr->lpm); } else { rc = ccw_device_start(device->cdev, cqr->cpaddr, (long) cqr, cqr->lpm, 0); } switch (rc) { case 0: cqr->status = DASD_CQR_IN_IO; break; case -EBUSY: DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: device busy, retry later"); break; case -EACCES: /* -EACCES indicates that the request used only a subset of the * available paths and all these paths are gone. If the lpm of * this request was only a subset of the opm (e.g. the ppm) then * we just do a retry with all available paths. * If we already use the full opm, something is amiss, and we * need a full path verification. */ if (test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { DBF_DEV_EVENT(DBF_WARNING, device, "start_IO: selected paths gone (%x)", cqr->lpm); } else if (cqr->lpm != dasd_path_get_opm(device)) { cqr->lpm = dasd_path_get_opm(device); DBF_DEV_EVENT(DBF_DEBUG, device, "%s", "start_IO: selected paths gone," " retry on all paths"); } else { DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: all paths in opm gone," " do path verification"); dasd_generic_last_path_gone(device); dasd_path_no_path(device); dasd_path_set_tbvpm(device, ccw_device_get_path_mask( device->cdev)); } break; case -ENODEV: DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: -ENODEV device gone, retry"); /* this is equivalent to CC=3 for SSCH report this to EER */ dasd_handle_autoquiesce(device, cqr, DASD_EER_STARTIO); break; case -EIO: DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: -EIO device gone, retry"); break; case -EINVAL: DBF_DEV_EVENT(DBF_WARNING, device, "%s", "start_IO: -EINVAL device currently " "not accessible"); break; default: /* internal error 11 - unknown rc */ snprintf(errorstring, ERRORLENGTH, "11 %d", rc); dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", errorstring); BUG(); break; } cqr->intrc = rc; return rc; } EXPORT_SYMBOL(dasd_start_IO); /* * Timeout function for dasd devices. This is used for different purposes * 1) missing interrupt handler for normal operation * 2) delayed start of request where start_IO failed with -EBUSY * 3) timeout for missing state change interrupts * The head of the ccw queue will have status DASD_CQR_IN_IO for 1), * DASD_CQR_QUEUED for 2) and 3). */ static void dasd_device_timeout(struct timer_list *t) { unsigned long flags; struct dasd_device *device; device = from_timer(device, t, timer); spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); /* re-activate request queue */ dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); dasd_schedule_device_bh(device); } /* * Setup timeout for a device in jiffies. */ void dasd_device_set_timer(struct dasd_device *device, int expires) { if (expires == 0) del_timer(&device->timer); else mod_timer(&device->timer, jiffies + expires); } EXPORT_SYMBOL(dasd_device_set_timer); /* * Clear timeout for a device. */ void dasd_device_clear_timer(struct dasd_device *device) { del_timer(&device->timer); } EXPORT_SYMBOL(dasd_device_clear_timer); static void dasd_handle_killed_request(struct ccw_device *cdev, unsigned long intparm) { struct dasd_ccw_req *cqr; struct dasd_device *device; if (!intparm) return; cqr = (struct dasd_ccw_req *) intparm; if (cqr->status != DASD_CQR_IN_IO) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "invalid status in handle_killed_request: " "%02x", cqr->status); return; } device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s", "unable to get device from cdev"); return; } if (!cqr->startdev || device != cqr->startdev || strncmp(cqr->startdev->discipline->ebcname, (char *) &cqr->magic, 4)) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s", "invalid device in request"); dasd_put_device(device); return; } /* Schedule request to be retried. */ cqr->status = DASD_CQR_QUEUED; dasd_device_clear_timer(device); dasd_schedule_device_bh(device); dasd_put_device(device); } void dasd_generic_handle_state_change(struct dasd_device *device) { /* First of all start sense subsystem status request. */ dasd_eer_snss(device); dasd_device_remove_stop_bits(device, DASD_STOPPED_PENDING); dasd_schedule_device_bh(device); if (device->block) { dasd_schedule_block_bh(device->block); if (device->block->gdp) blk_mq_run_hw_queues(device->block->gdp->queue, true); } } EXPORT_SYMBOL_GPL(dasd_generic_handle_state_change); static int dasd_check_hpf_error(struct irb *irb) { return (scsw_tm_is_valid_schxs(&irb->scsw) && (irb->scsw.tm.sesq == SCSW_SESQ_DEV_NOFCX || irb->scsw.tm.sesq == SCSW_SESQ_PATH_NOFCX)); } static int dasd_ese_needs_format(struct dasd_block *block, struct irb *irb) { struct dasd_device *device = NULL; u8 *sense = NULL; if (!block) return 0; device = block->base; if (!device || !device->discipline->is_ese) return 0; if (!device->discipline->is_ese(device)) return 0; sense = dasd_get_sense(irb); if (!sense) return 0; return !!(sense[1] & SNS1_NO_REC_FOUND) || !!(sense[1] & SNS1_FILE_PROTECTED) || scsw_cstat(&irb->scsw) == SCHN_STAT_INCORR_LEN; } static int dasd_ese_oos_cond(u8 *sense) { return sense[0] & SNS0_EQUIPMENT_CHECK && sense[1] & SNS1_PERM_ERR && sense[1] & SNS1_WRITE_INHIBITED && sense[25] == 0x01; } /* * Interrupt handler for "normal" ssch-io based dasd devices. */ void dasd_int_handler(struct ccw_device *cdev, unsigned long intparm, struct irb *irb) { struct dasd_ccw_req *cqr, *next, *fcqr; struct dasd_device *device; unsigned long now; int nrf_suppressed = 0; int fp_suppressed = 0; struct request *req; u8 *sense = NULL; int expires; cqr = (struct dasd_ccw_req *) intparm; if (IS_ERR(irb)) { switch (PTR_ERR(irb)) { case -EIO: if (cqr && cqr->status == DASD_CQR_CLEAR_PENDING) { device = cqr->startdev; cqr->status = DASD_CQR_CLEARED; dasd_device_clear_timer(device); wake_up(&dasd_flush_wq); dasd_schedule_device_bh(device); return; } break; case -ETIMEDOUT: DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: " "request timed out\n", __func__); break; default: DBF_EVENT_DEVID(DBF_WARNING, cdev, "%s: " "unknown error %ld\n", __func__, PTR_ERR(irb)); } dasd_handle_killed_request(cdev, intparm); return; } now = get_tod_clock(); /* check for conditions that should be handled immediately */ if (!cqr || !(scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) && scsw_cstat(&irb->scsw) == 0)) { if (cqr) memcpy(&cqr->irb, irb, sizeof(*irb)); device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) return; /* ignore unsolicited interrupts for DIAG discipline */ if (device->discipline == dasd_diag_discipline_pointer) { dasd_put_device(device); return; } /* * In some cases 'File Protected' or 'No Record Found' errors * might be expected and debug log messages for the * corresponding interrupts shouldn't be written then. * Check if either of the according suppress bits is set. */ sense = dasd_get_sense(irb); if (sense) { fp_suppressed = (sense[1] & SNS1_FILE_PROTECTED) && test_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags); nrf_suppressed = (sense[1] & SNS1_NO_REC_FOUND) && test_bit(DASD_CQR_SUPPRESS_NRF, &cqr->flags); /* * Extent pool probably out-of-space. * Stop device and check exhaust level. */ if (dasd_ese_oos_cond(sense)) { dasd_generic_space_exhaust(device, cqr); device->discipline->ext_pool_exhaust(device, cqr); dasd_put_device(device); return; } } if (!(fp_suppressed || nrf_suppressed)) device->discipline->dump_sense_dbf(device, irb, "int"); if (device->features & DASD_FEATURE_ERPLOG) device->discipline->dump_sense(device, cqr, irb); device->discipline->check_for_device_change(device, cqr, irb); dasd_put_device(device); } /* check for attention message */ if (scsw_dstat(&irb->scsw) & DEV_STAT_ATTENTION) { device = dasd_device_from_cdev_locked(cdev); if (!IS_ERR(device)) { device->discipline->check_attention(device, irb->esw.esw1.lpum); dasd_put_device(device); } } if (!cqr) return; device = (struct dasd_device *) cqr->startdev; if (!device || strncmp(device->discipline->ebcname, (char *) &cqr->magic, 4)) { DBF_EVENT_DEVID(DBF_DEBUG, cdev, "%s", "invalid device in request"); return; } if (dasd_ese_needs_format(cqr->block, irb)) { req = dasd_get_callback_data(cqr); if (!req) { cqr->status = DASD_CQR_ERROR; return; } if (rq_data_dir(req) == READ) { device->discipline->ese_read(cqr, irb); cqr->status = DASD_CQR_SUCCESS; cqr->stopclk = now; dasd_device_clear_timer(device); dasd_schedule_device_bh(device); return; } fcqr = device->discipline->ese_format(device, cqr, irb); if (IS_ERR(fcqr)) { if (PTR_ERR(fcqr) == -EINVAL) { cqr->status = DASD_CQR_ERROR; return; } /* * If we can't format now, let the request go * one extra round. Maybe we can format later. */ cqr->status = DASD_CQR_QUEUED; dasd_schedule_device_bh(device); return; } else { fcqr->status = DASD_CQR_QUEUED; cqr->status = DASD_CQR_QUEUED; list_add(&fcqr->devlist, &device->ccw_queue); dasd_schedule_device_bh(device); return; } } /* Check for clear pending */ if (cqr->status == DASD_CQR_CLEAR_PENDING && scsw_fctl(&irb->scsw) & SCSW_FCTL_CLEAR_FUNC) { cqr->status = DASD_CQR_CLEARED; dasd_device_clear_timer(device); wake_up(&dasd_flush_wq); dasd_schedule_device_bh(device); return; } /* check status - the request might have been killed by dyn detach */ if (cqr->status != DASD_CQR_IN_IO) { DBF_DEV_EVENT(DBF_DEBUG, device, "invalid status: bus_id %s, " "status %02x", dev_name(&cdev->dev), cqr->status); return; } next = NULL; expires = 0; if (scsw_dstat(&irb->scsw) == (DEV_STAT_CHN_END | DEV_STAT_DEV_END) && scsw_cstat(&irb->scsw) == 0) { /* request was completed successfully */ cqr->status = DASD_CQR_SUCCESS; cqr->stopclk = now; /* Start first request on queue if possible -> fast_io. */ if (cqr->devlist.next != &device->ccw_queue) { next = list_entry(cqr->devlist.next, struct dasd_ccw_req, devlist); } } else { /* error */ /* check for HPF error * call discipline function to requeue all requests * and disable HPF accordingly */ if (cqr->cpmode && dasd_check_hpf_error(irb) && device->discipline->handle_hpf_error) device->discipline->handle_hpf_error(device, irb); /* * If we don't want complex ERP for this request, then just * reset this and retry it in the fastpath */ if (!test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags) && cqr->retries > 0) { if (cqr->lpm == dasd_path_get_opm(device)) DBF_DEV_EVENT(DBF_DEBUG, device, "default ERP in fastpath " "(%i retries left)", cqr->retries); if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) cqr->lpm = dasd_path_get_opm(device); cqr->status = DASD_CQR_QUEUED; next = cqr; } else cqr->status = DASD_CQR_ERROR; } if (next && (next->status == DASD_CQR_QUEUED) && (!device->stopped)) { if (device->discipline->start_IO(next) == 0) expires = next->expires; } if (expires != 0) dasd_device_set_timer(device, expires); else dasd_device_clear_timer(device); dasd_schedule_device_bh(device); } EXPORT_SYMBOL(dasd_int_handler); enum uc_todo dasd_generic_uc_handler(struct ccw_device *cdev, struct irb *irb) { struct dasd_device *device; device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) goto out; if (test_bit(DASD_FLAG_OFFLINE, &device->flags) || device->state != device->target || !device->discipline->check_for_device_change){ dasd_put_device(device); goto out; } if (device->discipline->dump_sense_dbf) device->discipline->dump_sense_dbf(device, irb, "uc"); device->discipline->check_for_device_change(device, NULL, irb); dasd_put_device(device); out: return UC_TODO_RETRY; } EXPORT_SYMBOL_GPL(dasd_generic_uc_handler); /* * If we have an error on a dasd_block layer request then we cancel * and return all further requests from the same dasd_block as well. */ static void __dasd_device_recovery(struct dasd_device *device, struct dasd_ccw_req *ref_cqr) { struct list_head *l, *n; struct dasd_ccw_req *cqr; /* * only requeue request that came from the dasd_block layer */ if (!ref_cqr->block) return; list_for_each_safe(l, n, &device->ccw_queue) { cqr = list_entry(l, struct dasd_ccw_req, devlist); if (cqr->status == DASD_CQR_QUEUED && ref_cqr->block == cqr->block) { cqr->status = DASD_CQR_CLEARED; } } }; /* * Remove those ccw requests from the queue that need to be returned * to the upper layer. */ static void __dasd_device_process_ccw_queue(struct dasd_device *device, struct list_head *final_queue) { struct list_head *l, *n; struct dasd_ccw_req *cqr; /* Process request with final status. */ list_for_each_safe(l, n, &device->ccw_queue) { cqr = list_entry(l, struct dasd_ccw_req, devlist); /* Skip any non-final request. */ if (cqr->status == DASD_CQR_QUEUED || cqr->status == DASD_CQR_IN_IO || cqr->status == DASD_CQR_CLEAR_PENDING) continue; if (cqr->status == DASD_CQR_ERROR) { __dasd_device_recovery(device, cqr); } /* Rechain finished requests to final queue */ list_move_tail(&cqr->devlist, final_queue); } } static void __dasd_process_cqr(struct dasd_device *device, struct dasd_ccw_req *cqr) { char errorstring[ERRORLENGTH]; switch (cqr->status) { case DASD_CQR_SUCCESS: cqr->status = DASD_CQR_DONE; break; case DASD_CQR_ERROR: cqr->status = DASD_CQR_NEED_ERP; break; case DASD_CQR_CLEARED: cqr->status = DASD_CQR_TERMINATED; break; default: /* internal error 12 - wrong cqr status*/ snprintf(errorstring, ERRORLENGTH, "12 %p %x02", cqr, cqr->status); dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", errorstring); BUG(); } if (cqr->callback) cqr->callback(cqr, cqr->callback_data); } /* * the cqrs from the final queue are returned to the upper layer * by setting a dasd_block state and calling the callback function */ static void __dasd_device_process_final_queue(struct dasd_device *device, struct list_head *final_queue) { struct list_head *l, *n; struct dasd_ccw_req *cqr; struct dasd_block *block; list_for_each_safe(l, n, final_queue) { cqr = list_entry(l, struct dasd_ccw_req, devlist); list_del_init(&cqr->devlist); block = cqr->block; if (!block) { __dasd_process_cqr(device, cqr); } else { spin_lock_bh(&block->queue_lock); __dasd_process_cqr(device, cqr); spin_unlock_bh(&block->queue_lock); } } } /* * check if device should be autoquiesced due to too many timeouts */ static void __dasd_device_check_autoquiesce_timeout(struct dasd_device *device, struct dasd_ccw_req *cqr) { if ((device->default_retries - cqr->retries) >= device->aq_timeouts) dasd_handle_autoquiesce(device, cqr, DASD_EER_TIMEOUTS); } /* * Take a look at the first request on the ccw queue and check * if it reached its expire time. If so, terminate the IO. */ static void __dasd_device_check_expire(struct dasd_device *device) { struct dasd_ccw_req *cqr; if (list_empty(&device->ccw_queue)) return; cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist); if ((cqr->status == DASD_CQR_IN_IO && cqr->expires != 0) && (time_after_eq(jiffies, cqr->expires + cqr->starttime))) { if (test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* * IO in safe offline processing should not * run out of retries */ cqr->retries++; } if (device->discipline->term_IO(cqr) != 0) { /* Hmpf, try again in 5 sec */ dev_err(&device->cdev->dev, "cqr %p timed out (%lus) but cannot be " "ended, retrying in 5 s\n", cqr, (cqr->expires/HZ)); cqr->expires += 5*HZ; dasd_device_set_timer(device, 5*HZ); } else { dev_err(&device->cdev->dev, "cqr %p timed out (%lus), %i retries " "remaining\n", cqr, (cqr->expires/HZ), cqr->retries); } __dasd_device_check_autoquiesce_timeout(device, cqr); } } /* * return 1 when device is not eligible for IO */ static int __dasd_device_is_unusable(struct dasd_device *device, struct dasd_ccw_req *cqr) { int mask = ~(DASD_STOPPED_DC_WAIT | DASD_STOPPED_NOSPC); if (test_bit(DASD_FLAG_OFFLINE, &device->flags) && !test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* * dasd is being set offline * but it is no safe offline where we have to allow I/O */ return 1; } if (device->stopped) { if (device->stopped & mask) { /* stopped and CQR will not change that. */ return 1; } if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { /* CQR is not able to change device to * operational. */ return 1; } /* CQR required to get device operational. */ } return 0; } /* * Take a look at the first request on the ccw queue and check * if it needs to be started. */ static void __dasd_device_start_head(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; if (list_empty(&device->ccw_queue)) return; cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist); if (cqr->status != DASD_CQR_QUEUED) return; /* if device is not usable return request to upper layer */ if (__dasd_device_is_unusable(device, cqr)) { cqr->intrc = -EAGAIN; cqr->status = DASD_CQR_CLEARED; dasd_schedule_device_bh(device); return; } rc = device->discipline->start_IO(cqr); if (rc == 0) dasd_device_set_timer(device, cqr->expires); else if (rc == -EACCES) { dasd_schedule_device_bh(device); } else /* Hmpf, try again in 1/2 sec */ dasd_device_set_timer(device, 50); } static void __dasd_device_check_path_events(struct dasd_device *device) { __u8 tbvpm, fcsecpm; int rc; tbvpm = dasd_path_get_tbvpm(device); fcsecpm = dasd_path_get_fcsecpm(device); if (!tbvpm && !fcsecpm) return; if (device->stopped & ~(DASD_STOPPED_DC_WAIT)) return; dasd_path_clear_all_verify(device); dasd_path_clear_all_fcsec(device); rc = device->discipline->pe_handler(device, tbvpm, fcsecpm); if (rc) { dasd_path_add_tbvpm(device, tbvpm); dasd_path_add_fcsecpm(device, fcsecpm); dasd_device_set_timer(device, 50); } }; /* * Go through all request on the dasd_device request queue, * terminate them on the cdev if necessary, and return them to the * submitting layer via callback. * Note: * Make sure that all 'submitting layers' still exist when * this function is called!. In other words, when 'device' is a base * device then all block layer requests must have been removed before * via dasd_flush_block_queue. */ int dasd_flush_device_queue(struct dasd_device *device) { struct dasd_ccw_req *cqr, *n; int rc; struct list_head flush_queue; INIT_LIST_HEAD(&flush_queue); spin_lock_irq(get_ccwdev_lock(device->cdev)); rc = 0; list_for_each_entry_safe(cqr, n, &device->ccw_queue, devlist) { /* Check status and move request to flush_queue */ switch (cqr->status) { case DASD_CQR_IN_IO: rc = device->discipline->term_IO(cqr); if (rc) { /* unable to terminate requeust */ dev_err(&device->cdev->dev, "Flushing the DASD request queue " "failed for request %p\n", cqr); /* stop flush processing */ goto finished; } break; case DASD_CQR_QUEUED: cqr->stopclk = get_tod_clock(); cqr->status = DASD_CQR_CLEARED; break; default: /* no need to modify the others */ break; } list_move_tail(&cqr->devlist, &flush_queue); } finished: spin_unlock_irq(get_ccwdev_lock(device->cdev)); /* * After this point all requests must be in state CLEAR_PENDING, * CLEARED, SUCCESS or ERROR. Now wait for CLEAR_PENDING to become * one of the others. */ list_for_each_entry_safe(cqr, n, &flush_queue, devlist) wait_event(dasd_flush_wq, (cqr->status != DASD_CQR_CLEAR_PENDING)); /* * Now set each request back to TERMINATED, DONE or NEED_ERP * and call the callback function of flushed requests */ __dasd_device_process_final_queue(device, &flush_queue); return rc; } EXPORT_SYMBOL_GPL(dasd_flush_device_queue); /* * Acquire the device lock and process queues for the device. */ static void dasd_device_tasklet(unsigned long data) { struct dasd_device *device = (struct dasd_device *) data; struct list_head final_queue; atomic_set (&device->tasklet_scheduled, 0); INIT_LIST_HEAD(&final_queue); spin_lock_irq(get_ccwdev_lock(device->cdev)); /* Check expire time of first request on the ccw queue. */ __dasd_device_check_expire(device); /* find final requests on ccw queue */ __dasd_device_process_ccw_queue(device, &final_queue); __dasd_device_check_path_events(device); spin_unlock_irq(get_ccwdev_lock(device->cdev)); /* Now call the callback function of requests with final status */ __dasd_device_process_final_queue(device, &final_queue); spin_lock_irq(get_ccwdev_lock(device->cdev)); /* Now check if the head of the ccw queue needs to be started. */ __dasd_device_start_head(device); spin_unlock_irq(get_ccwdev_lock(device->cdev)); if (waitqueue_active(&shutdown_waitq)) wake_up(&shutdown_waitq); dasd_put_device(device); } /* * Schedules a call to dasd_tasklet over the device tasklet. */ void dasd_schedule_device_bh(struct dasd_device *device) { /* Protect against rescheduling. */ if (atomic_cmpxchg (&device->tasklet_scheduled, 0, 1) != 0) return; dasd_get_device(device); tasklet_hi_schedule(&device->tasklet); } EXPORT_SYMBOL(dasd_schedule_device_bh); void dasd_device_set_stop_bits(struct dasd_device *device, int bits) { device->stopped |= bits; } EXPORT_SYMBOL_GPL(dasd_device_set_stop_bits); void dasd_device_remove_stop_bits(struct dasd_device *device, int bits) { device->stopped &= ~bits; if (!device->stopped) wake_up(&generic_waitq); } EXPORT_SYMBOL_GPL(dasd_device_remove_stop_bits); /* * Queue a request to the head of the device ccw_queue. * Start the I/O if possible. */ void dasd_add_request_head(struct dasd_ccw_req *cqr) { struct dasd_device *device; unsigned long flags; device = cqr->startdev; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); cqr->status = DASD_CQR_QUEUED; list_add(&cqr->devlist, &device->ccw_queue); /* let the bh start the request to keep them in order */ dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } EXPORT_SYMBOL(dasd_add_request_head); /* * Queue a request to the tail of the device ccw_queue. * Start the I/O if possible. */ void dasd_add_request_tail(struct dasd_ccw_req *cqr) { struct dasd_device *device; unsigned long flags; device = cqr->startdev; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); cqr->status = DASD_CQR_QUEUED; list_add_tail(&cqr->devlist, &device->ccw_queue); /* let the bh start the request to keep them in order */ dasd_schedule_device_bh(device); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); } EXPORT_SYMBOL(dasd_add_request_tail); /* * Wakeup helper for the 'sleep_on' functions. */ void dasd_wakeup_cb(struct dasd_ccw_req *cqr, void *data) { spin_lock_irq(get_ccwdev_lock(cqr->startdev->cdev)); cqr->callback_data = DASD_SLEEPON_END_TAG; spin_unlock_irq(get_ccwdev_lock(cqr->startdev->cdev)); wake_up(&generic_waitq); } EXPORT_SYMBOL_GPL(dasd_wakeup_cb); static inline int _wait_for_wakeup(struct dasd_ccw_req *cqr) { struct dasd_device *device; int rc; device = cqr->startdev; spin_lock_irq(get_ccwdev_lock(device->cdev)); rc = (cqr->callback_data == DASD_SLEEPON_END_TAG); spin_unlock_irq(get_ccwdev_lock(device->cdev)); return rc; } /* * checks if error recovery is necessary, returns 1 if yes, 0 otherwise. */ static int __dasd_sleep_on_erp(struct dasd_ccw_req *cqr) { struct dasd_device *device; dasd_erp_fn_t erp_fn; if (cqr->status == DASD_CQR_FILLED) return 0; device = cqr->startdev; if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) { if (cqr->status == DASD_CQR_TERMINATED) { device->discipline->handle_terminated_request(cqr); return 1; } if (cqr->status == DASD_CQR_NEED_ERP) { erp_fn = device->discipline->erp_action(cqr); erp_fn(cqr); return 1; } if (cqr->status == DASD_CQR_FAILED) dasd_log_sense(cqr, &cqr->irb); if (cqr->refers) { __dasd_process_erp(device, cqr); return 1; } } return 0; } static int __dasd_sleep_on_loop_condition(struct dasd_ccw_req *cqr) { if (test_bit(DASD_CQR_FLAGS_USE_ERP, &cqr->flags)) { if (cqr->refers) /* erp is not done yet */ return 1; return ((cqr->status != DASD_CQR_DONE) && (cqr->status != DASD_CQR_FAILED)); } else return (cqr->status == DASD_CQR_FILLED); } static int _dasd_sleep_on(struct dasd_ccw_req *maincqr, int interruptible) { struct dasd_device *device; int rc; struct list_head ccw_queue; struct dasd_ccw_req *cqr; INIT_LIST_HEAD(&ccw_queue); maincqr->status = DASD_CQR_FILLED; device = maincqr->startdev; list_add(&maincqr->blocklist, &ccw_queue); for (cqr = maincqr; __dasd_sleep_on_loop_condition(cqr); cqr = list_first_entry(&ccw_queue, struct dasd_ccw_req, blocklist)) { if (__dasd_sleep_on_erp(cqr)) continue; if (cqr->status != DASD_CQR_FILLED) /* could be failed */ continue; if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; continue; } /* Non-temporary stop condition will trigger fail fast */ if (device->stopped & ~DASD_STOPPED_PENDING && test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) && !dasd_eer_enabled(device) && device->aq_mask == 0) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -ENOLINK; continue; } /* * Don't try to start requests if device is in * offline processing, it might wait forever */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -ENODEV; continue; } /* * Don't try to start requests if device is stopped * except path verification requests */ if (!test_bit(DASD_CQR_VERIFY_PATH, &cqr->flags)) { if (interruptible) { rc = wait_event_interruptible( generic_waitq, !(device->stopped)); if (rc == -ERESTARTSYS) { cqr->status = DASD_CQR_FAILED; maincqr->intrc = rc; continue; } } else wait_event(generic_waitq, !(device->stopped)); } if (!cqr->callback) cqr->callback = dasd_wakeup_cb; cqr->callback_data = DASD_SLEEPON_START_TAG; dasd_add_request_tail(cqr); if (interruptible) { rc = wait_event_interruptible( generic_waitq, _wait_for_wakeup(cqr)); if (rc == -ERESTARTSYS) { dasd_cancel_req(cqr); /* wait (non-interruptible) for final status */ wait_event(generic_waitq, _wait_for_wakeup(cqr)); cqr->status = DASD_CQR_FAILED; maincqr->intrc = rc; continue; } } else wait_event(generic_waitq, _wait_for_wakeup(cqr)); } maincqr->endclk = get_tod_clock(); if ((maincqr->status != DASD_CQR_DONE) && (maincqr->intrc != -ERESTARTSYS)) dasd_log_sense(maincqr, &maincqr->irb); if (maincqr->status == DASD_CQR_DONE) rc = 0; else if (maincqr->intrc) rc = maincqr->intrc; else rc = -EIO; return rc; } static inline int _wait_for_wakeup_queue(struct list_head *ccw_queue) { struct dasd_ccw_req *cqr; list_for_each_entry(cqr, ccw_queue, blocklist) { if (cqr->callback_data != DASD_SLEEPON_END_TAG) return 0; } return 1; } static int _dasd_sleep_on_queue(struct list_head *ccw_queue, int interruptible) { struct dasd_device *device; struct dasd_ccw_req *cqr, *n; u8 *sense = NULL; int rc; retry: list_for_each_entry_safe(cqr, n, ccw_queue, blocklist) { device = cqr->startdev; if (cqr->status != DASD_CQR_FILLED) /*could be failed*/ continue; if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; continue; } /*Non-temporary stop condition will trigger fail fast*/ if (device->stopped & ~DASD_STOPPED_PENDING && test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) && !dasd_eer_enabled(device)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EAGAIN; continue; } /*Don't try to start requests if device is stopped*/ if (interruptible) { rc = wait_event_interruptible( generic_waitq, !device->stopped); if (rc == -ERESTARTSYS) { cqr->status = DASD_CQR_FAILED; cqr->intrc = rc; continue; } } else wait_event(generic_waitq, !(device->stopped)); if (!cqr->callback) cqr->callback = dasd_wakeup_cb; cqr->callback_data = DASD_SLEEPON_START_TAG; dasd_add_request_tail(cqr); } wait_event(generic_waitq, _wait_for_wakeup_queue(ccw_queue)); rc = 0; list_for_each_entry_safe(cqr, n, ccw_queue, blocklist) { /* * In some cases the 'File Protected' or 'Incorrect Length' * error might be expected and error recovery would be * unnecessary in these cases. Check if the according suppress * bit is set. */ sense = dasd_get_sense(&cqr->irb); if (sense && sense[1] & SNS1_FILE_PROTECTED && test_bit(DASD_CQR_SUPPRESS_FP, &cqr->flags)) continue; if (scsw_cstat(&cqr->irb.scsw) == 0x40 && test_bit(DASD_CQR_SUPPRESS_IL, &cqr->flags)) continue; /* * for alias devices simplify error recovery and * return to upper layer * do not skip ERP requests */ if (cqr->startdev != cqr->basedev && !cqr->refers && (cqr->status == DASD_CQR_TERMINATED || cqr->status == DASD_CQR_NEED_ERP)) return -EAGAIN; /* normal recovery for basedev IO */ if (__dasd_sleep_on_erp(cqr)) /* handle erp first */ goto retry; } return 0; } /* * Queue a request to the tail of the device ccw_queue and wait for * it's completion. */ int dasd_sleep_on(struct dasd_ccw_req *cqr) { return _dasd_sleep_on(cqr, 0); } EXPORT_SYMBOL(dasd_sleep_on); /* * Start requests from a ccw_queue and wait for their completion. */ int dasd_sleep_on_queue(struct list_head *ccw_queue) { return _dasd_sleep_on_queue(ccw_queue, 0); } EXPORT_SYMBOL(dasd_sleep_on_queue); /* * Start requests from a ccw_queue and wait interruptible for their completion. */ int dasd_sleep_on_queue_interruptible(struct list_head *ccw_queue) { return _dasd_sleep_on_queue(ccw_queue, 1); } EXPORT_SYMBOL(dasd_sleep_on_queue_interruptible); /* * Queue a request to the tail of the device ccw_queue and wait * interruptible for it's completion. */ int dasd_sleep_on_interruptible(struct dasd_ccw_req *cqr) { return _dasd_sleep_on(cqr, 1); } EXPORT_SYMBOL(dasd_sleep_on_interruptible); /* * Whoa nelly now it gets really hairy. For some functions (e.g. steal lock * for eckd devices) the currently running request has to be terminated * and be put back to status queued, before the special request is added * to the head of the queue. Then the special request is waited on normally. */ static inline int _dasd_term_running_cqr(struct dasd_device *device) { struct dasd_ccw_req *cqr; int rc; if (list_empty(&device->ccw_queue)) return 0; cqr = list_entry(device->ccw_queue.next, struct dasd_ccw_req, devlist); rc = device->discipline->term_IO(cqr); if (!rc) /* * CQR terminated because a more important request is pending. * Undo decreasing of retry counter because this is * not an error case. */ cqr->retries++; return rc; } int dasd_sleep_on_immediatly(struct dasd_ccw_req *cqr) { struct dasd_device *device; int rc; device = cqr->startdev; if (test_bit(DASD_FLAG_LOCK_STOLEN, &device->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; return -EIO; } spin_lock_irq(get_ccwdev_lock(device->cdev)); rc = _dasd_term_running_cqr(device); if (rc) { spin_unlock_irq(get_ccwdev_lock(device->cdev)); return rc; } cqr->callback = dasd_wakeup_cb; cqr->callback_data = DASD_SLEEPON_START_TAG; cqr->status = DASD_CQR_QUEUED; /* * add new request as second * first the terminated cqr needs to be finished */ list_add(&cqr->devlist, device->ccw_queue.next); /* let the bh start the request to keep them in order */ dasd_schedule_device_bh(device); spin_unlock_irq(get_ccwdev_lock(device->cdev)); wait_event(generic_waitq, _wait_for_wakeup(cqr)); if (cqr->status == DASD_CQR_DONE) rc = 0; else if (cqr->intrc) rc = cqr->intrc; else rc = -EIO; /* kick tasklets */ dasd_schedule_device_bh(device); if (device->block) dasd_schedule_block_bh(device->block); return rc; } EXPORT_SYMBOL(dasd_sleep_on_immediatly); /* * Cancels a request that was started with dasd_sleep_on_req. * This is useful to timeout requests. The request will be * terminated if it is currently in i/o. * Returns 0 if request termination was successful * negative error code if termination failed * Cancellation of a request is an asynchronous operation! The calling * function has to wait until the request is properly returned via callback. */ static int __dasd_cancel_req(struct dasd_ccw_req *cqr) { struct dasd_device *device = cqr->startdev; int rc = 0; switch (cqr->status) { case DASD_CQR_QUEUED: /* request was not started - just set to cleared */ cqr->status = DASD_CQR_CLEARED; break; case DASD_CQR_IN_IO: /* request in IO - terminate IO and release again */ rc = device->discipline->term_IO(cqr); if (rc) { dev_err(&device->cdev->dev, "Cancelling request %p failed with rc=%d\n", cqr, rc); } else { cqr->stopclk = get_tod_clock(); } break; default: /* already finished or clear pending - do nothing */ break; } dasd_schedule_device_bh(device); return rc; } int dasd_cancel_req(struct dasd_ccw_req *cqr) { struct dasd_device *device = cqr->startdev; unsigned long flags; int rc; spin_lock_irqsave(get_ccwdev_lock(device->cdev), flags); rc = __dasd_cancel_req(cqr); spin_unlock_irqrestore(get_ccwdev_lock(device->cdev), flags); return rc; } /* * SECTION: Operations of the dasd_block layer. */ /* * Timeout function for dasd_block. This is used when the block layer * is waiting for something that may not come reliably, (e.g. a state * change interrupt) */ static void dasd_block_timeout(struct timer_list *t) { unsigned long flags; struct dasd_block *block; block = from_timer(block, t, timer); spin_lock_irqsave(get_ccwdev_lock(block->base->cdev), flags); /* re-activate request queue */ dasd_device_remove_stop_bits(block->base, DASD_STOPPED_PENDING); spin_unlock_irqrestore(get_ccwdev_lock(block->base->cdev), flags); dasd_schedule_block_bh(block); blk_mq_run_hw_queues(block->gdp->queue, true); } /* * Setup timeout for a dasd_block in jiffies. */ void dasd_block_set_timer(struct dasd_block *block, int expires) { if (expires == 0) del_timer(&block->timer); else mod_timer(&block->timer, jiffies + expires); } EXPORT_SYMBOL(dasd_block_set_timer); /* * Clear timeout for a dasd_block. */ void dasd_block_clear_timer(struct dasd_block *block) { del_timer(&block->timer); } EXPORT_SYMBOL(dasd_block_clear_timer); /* * Process finished error recovery ccw. */ static void __dasd_process_erp(struct dasd_device *device, struct dasd_ccw_req *cqr) { dasd_erp_fn_t erp_fn; if (cqr->status == DASD_CQR_DONE) DBF_DEV_EVENT(DBF_NOTICE, device, "%s", "ERP successful"); else dev_err(&device->cdev->dev, "ERP failed for the DASD\n"); erp_fn = device->discipline->erp_postaction(cqr); erp_fn(cqr); } static void __dasd_cleanup_cqr(struct dasd_ccw_req *cqr) { struct request *req; blk_status_t error = BLK_STS_OK; unsigned int proc_bytes; int status; req = (struct request *) cqr->callback_data; dasd_profile_end(cqr->block, cqr, req); proc_bytes = cqr->proc_bytes; status = cqr->block->base->discipline->free_cp(cqr, req); if (status < 0) error = errno_to_blk_status(status); else if (status == 0) { switch (cqr->intrc) { case -EPERM: /* * DASD doesn't implement SCSI/NVMe reservations, but it * implements a locking scheme similar to them. We * return this error when we no longer have the lock. */ error = BLK_STS_RESV_CONFLICT; break; case -ENOLINK: error = BLK_STS_TRANSPORT; break; case -ETIMEDOUT: error = BLK_STS_TIMEOUT; break; default: error = BLK_STS_IOERR; break; } } /* * We need to take care for ETIMEDOUT errors here since the * complete callback does not get called in this case. * Take care of all errors here and avoid additional code to * transfer the error value to the complete callback. */ if (error) { blk_mq_end_request(req, error); blk_mq_run_hw_queues(req->q, true); } else { /* * Partial completed requests can happen with ESE devices. * During read we might have gotten a NRF error and have to * complete a request partially. */ if (proc_bytes) { blk_update_request(req, BLK_STS_OK, proc_bytes); blk_mq_requeue_request(req, true); } else if (likely(!blk_should_fake_timeout(req->q))) { blk_mq_complete_request(req); } } } /* * Process ccw request queue. */ static void __dasd_process_block_ccw_queue(struct dasd_block *block, struct list_head *final_queue) { struct list_head *l, *n; struct dasd_ccw_req *cqr; dasd_erp_fn_t erp_fn; unsigned long flags; struct dasd_device *base = block->base; restart: /* Process request with final status. */ list_for_each_safe(l, n, &block->ccw_queue) { cqr = list_entry(l, struct dasd_ccw_req, blocklist); if (cqr->status != DASD_CQR_DONE && cqr->status != DASD_CQR_FAILED && cqr->status != DASD_CQR_NEED_ERP && cqr->status != DASD_CQR_TERMINATED) continue; if (cqr->status == DASD_CQR_TERMINATED) { base->discipline->handle_terminated_request(cqr); goto restart; } /* Process requests that may be recovered */ if (cqr->status == DASD_CQR_NEED_ERP) { erp_fn = base->discipline->erp_action(cqr); if (IS_ERR(erp_fn(cqr))) continue; goto restart; } /* log sense for fatal error */ if (cqr->status == DASD_CQR_FAILED) { dasd_log_sense(cqr, &cqr->irb); } /* * First call extended error reporting and check for autoquiesce */ spin_lock_irqsave(get_ccwdev_lock(base->cdev), flags); if (cqr->status == DASD_CQR_FAILED && dasd_handle_autoquiesce(base, cqr, DASD_EER_FATALERROR)) { cqr->status = DASD_CQR_FILLED; cqr->retries = 255; spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags); goto restart; } spin_unlock_irqrestore(get_ccwdev_lock(base->cdev), flags); /* Process finished ERP request. */ if (cqr->refers) { __dasd_process_erp(base, cqr); goto restart; } /* Rechain finished requests to final queue */ cqr->endclk = get_tod_clock(); list_move_tail(&cqr->blocklist, final_queue); } } static void dasd_return_cqr_cb(struct dasd_ccw_req *cqr, void *data) { dasd_schedule_block_bh(cqr->block); } static void __dasd_block_start_head(struct dasd_block *block) { struct dasd_ccw_req *cqr; if (list_empty(&block->ccw_queue)) return; /* We allways begin with the first requests on the queue, as some * of previously started requests have to be enqueued on a * dasd_device again for error recovery. */ list_for_each_entry(cqr, &block->ccw_queue, blocklist) { if (cqr->status != DASD_CQR_FILLED) continue; if (test_bit(DASD_FLAG_LOCK_STOLEN, &block->base->flags) && !test_bit(DASD_CQR_ALLOW_SLOCK, &cqr->flags)) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -EPERM; dasd_schedule_block_bh(block); continue; } /* Non-temporary stop condition will trigger fail fast */ if (block->base->stopped & ~DASD_STOPPED_PENDING && test_bit(DASD_CQR_FLAGS_FAILFAST, &cqr->flags) && !dasd_eer_enabled(block->base) && block->base->aq_mask == 0) { cqr->status = DASD_CQR_FAILED; cqr->intrc = -ENOLINK; dasd_schedule_block_bh(block); continue; } /* Don't try to start requests if device is stopped */ if (block->base->stopped) return; /* just a fail safe check, should not happen */ if (!cqr->startdev) cqr->startdev = block->base; /* make sure that the requests we submit find their way back */ cqr->callback = dasd_return_cqr_cb; dasd_add_request_tail(cqr); } } /* * Central dasd_block layer routine. Takes requests from the generic * block layer request queue, creates ccw requests, enqueues them on * a dasd_device and processes ccw requests that have been returned. */ static void dasd_block_tasklet(unsigned long data) { struct dasd_block *block = (struct dasd_block *) data; struct list_head final_queue; struct list_head *l, *n; struct dasd_ccw_req *cqr; struct dasd_queue *dq; atomic_set(&block->tasklet_scheduled, 0); INIT_LIST_HEAD(&final_queue); spin_lock_irq(&block->queue_lock); /* Finish off requests on ccw queue */ __dasd_process_block_ccw_queue(block, &final_queue); spin_unlock_irq(&block->queue_lock); /* Now call the callback function of requests with final status */ list_for_each_safe(l, n, &final_queue) { cqr = list_entry(l, struct dasd_ccw_req, blocklist); dq = cqr->dq; spin_lock_irq(&dq->lock); list_del_init(&cqr->blocklist); __dasd_cleanup_cqr(cqr); spin_unlock_irq(&dq->lock); } spin_lock_irq(&block->queue_lock); /* Now check if the head of the ccw queue needs to be started. */ __dasd_block_start_head(block); spin_unlock_irq(&block->queue_lock); if (waitqueue_active(&shutdown_waitq)) wake_up(&shutdown_waitq); dasd_put_device(block->base); } static void _dasd_wake_block_flush_cb(struct dasd_ccw_req *cqr, void *data) { wake_up(&dasd_flush_wq); } /* * Requeue a request back to the block request queue * only works for block requests */ static void _dasd_requeue_request(struct dasd_ccw_req *cqr) { struct request *req; /* * If the request is an ERP request there is nothing to requeue. * This will be done with the remaining original request. */ if (cqr->refers) return; spin_lock_irq(&cqr->dq->lock); req = (struct request *) cqr->callback_data; blk_mq_requeue_request(req, true); spin_unlock_irq(&cqr->dq->lock); return; } static int _dasd_requests_to_flushqueue(struct dasd_block *block, struct list_head *flush_queue) { struct dasd_ccw_req *cqr, *n; unsigned long flags; int rc, i; spin_lock_irqsave(&block->queue_lock, flags); rc = 0; restart: list_for_each_entry_safe(cqr, n, &block->ccw_queue, blocklist) { /* if this request currently owned by a dasd_device cancel it */ if (cqr->status >= DASD_CQR_QUEUED) rc = dasd_cancel_req(cqr); if (rc < 0) break; /* Rechain request (including erp chain) so it won't be * touched by the dasd_block_tasklet anymore. * Replace the callback so we notice when the request * is returned from the dasd_device layer. */ cqr->callback = _dasd_wake_block_flush_cb; for (i = 0; cqr; cqr = cqr->refers, i++) list_move_tail(&cqr->blocklist, flush_queue); if (i > 1) /* moved more than one request - need to restart */ goto restart; } spin_unlock_irqrestore(&block->queue_lock, flags); return rc; } /* * Go through all request on the dasd_block request queue, cancel them * on the respective dasd_device, and return them to the generic * block layer. */ static int dasd_flush_block_queue(struct dasd_block *block) { struct dasd_ccw_req *cqr, *n; struct list_head flush_queue; unsigned long flags; int rc; INIT_LIST_HEAD(&flush_queue); rc = _dasd_requests_to_flushqueue(block, &flush_queue); /* Now call the callback function of flushed requests */ restart_cb: list_for_each_entry_safe(cqr, n, &flush_queue, blocklist) { wait_event(dasd_flush_wq, (cqr->status < DASD_CQR_QUEUED)); /* Process finished ERP request. */ if (cqr->refers) { spin_lock_bh(&block->queue_lock); __dasd_process_erp(block->base, cqr); spin_unlock_bh(&block->queue_lock); /* restart list_for_xx loop since dasd_process_erp * might remove multiple elements */ goto restart_cb; } /* call the callback function */ spin_lock_irqsave(&cqr->dq->lock, flags); cqr->endclk = get_tod_clock(); list_del_init(&cqr->blocklist); __dasd_cleanup_cqr(cqr); spin_unlock_irqrestore(&cqr->dq->lock, flags); } return rc; } /* * Schedules a call to dasd_tasklet over the device tasklet. */ void dasd_schedule_block_bh(struct dasd_block *block) { /* Protect against rescheduling. */ if (atomic_cmpxchg(&block->tasklet_scheduled, 0, 1) != 0) return; /* life cycle of block is bound to it's base device */ dasd_get_device(block->base); tasklet_hi_schedule(&block->tasklet); } EXPORT_SYMBOL(dasd_schedule_block_bh); /* * SECTION: external block device operations * (request queue handling, open, release, etc.) */ /* * Dasd request queue function. Called from ll_rw_blk.c */ static blk_status_t do_dasd_request(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *qd) { struct dasd_block *block = hctx->queue->queuedata; struct dasd_queue *dq = hctx->driver_data; struct request *req = qd->rq; struct dasd_device *basedev; struct dasd_ccw_req *cqr; blk_status_t rc = BLK_STS_OK; basedev = block->base; spin_lock_irq(&dq->lock); if (basedev->state < DASD_STATE_READY || test_bit(DASD_FLAG_OFFLINE, &basedev->flags)) { DBF_DEV_EVENT(DBF_ERR, basedev, "device not ready for request %p", req); rc = BLK_STS_IOERR; goto out; } /* * if device is stopped do not fetch new requests * except failfast is active which will let requests fail * immediately in __dasd_block_start_head() */ if (basedev->stopped && !(basedev->features & DASD_FEATURE_FAILFAST)) { DBF_DEV_EVENT(DBF_ERR, basedev, "device stopped request %p", req); rc = BLK_STS_RESOURCE; goto out; } if (basedev->features & DASD_FEATURE_READONLY && rq_data_dir(req) == WRITE) { DBF_DEV_EVENT(DBF_ERR, basedev, "Rejecting write request %p", req); rc = BLK_STS_IOERR; goto out; } if (test_bit(DASD_FLAG_ABORTALL, &basedev->flags) && (basedev->features & DASD_FEATURE_FAILFAST || blk_noretry_request(req))) { DBF_DEV_EVENT(DBF_ERR, basedev, "Rejecting failfast request %p", req); rc = BLK_STS_IOERR; goto out; } cqr = basedev->discipline->build_cp(basedev, block, req); if (IS_ERR(cqr)) { if (PTR_ERR(cqr) == -EBUSY || PTR_ERR(cqr) == -ENOMEM || PTR_ERR(cqr) == -EAGAIN) { rc = BLK_STS_RESOURCE; goto out; } DBF_DEV_EVENT(DBF_ERR, basedev, "CCW creation failed (rc=%ld) on request %p", PTR_ERR(cqr), req); rc = BLK_STS_IOERR; goto out; } /* * Note: callback is set to dasd_return_cqr_cb in * __dasd_block_start_head to cover erp requests as well */ cqr->callback_data = req; cqr->status = DASD_CQR_FILLED; cqr->dq = dq; blk_mq_start_request(req); spin_lock(&block->queue_lock); list_add_tail(&cqr->blocklist, &block->ccw_queue); INIT_LIST_HEAD(&cqr->devlist); dasd_profile_start(block, cqr, req); dasd_schedule_block_bh(block); spin_unlock(&block->queue_lock); out: spin_unlock_irq(&dq->lock); return rc; } /* * Block timeout callback, called from the block layer * * Return values: * BLK_EH_RESET_TIMER if the request should be left running * BLK_EH_DONE if the request is handled or terminated * by the driver. */ enum blk_eh_timer_return dasd_times_out(struct request *req) { struct dasd_block *block = req->q->queuedata; struct dasd_device *device; struct dasd_ccw_req *cqr; unsigned long flags; int rc = 0; cqr = blk_mq_rq_to_pdu(req); if (!cqr) return BLK_EH_DONE; spin_lock_irqsave(&cqr->dq->lock, flags); device = cqr->startdev ? cqr->startdev : block->base; if (!device->blk_timeout) { spin_unlock_irqrestore(&cqr->dq->lock, flags); return BLK_EH_RESET_TIMER; } DBF_DEV_EVENT(DBF_WARNING, device, " dasd_times_out cqr %p status %x", cqr, cqr->status); spin_lock(&block->queue_lock); spin_lock(get_ccwdev_lock(device->cdev)); cqr->retries = -1; cqr->intrc = -ETIMEDOUT; if (cqr->status >= DASD_CQR_QUEUED) { rc = __dasd_cancel_req(cqr); } else if (cqr->status == DASD_CQR_FILLED || cqr->status == DASD_CQR_NEED_ERP) { cqr->status = DASD_CQR_TERMINATED; } else if (cqr->status == DASD_CQR_IN_ERP) { struct dasd_ccw_req *searchcqr, *nextcqr, *tmpcqr; list_for_each_entry_safe(searchcqr, nextcqr, &block->ccw_queue, blocklist) { tmpcqr = searchcqr; while (tmpcqr->refers) tmpcqr = tmpcqr->refers; if (tmpcqr != cqr) continue; /* searchcqr is an ERP request for cqr */ searchcqr->retries = -1; searchcqr->intrc = -ETIMEDOUT; if (searchcqr->status >= DASD_CQR_QUEUED) { rc = __dasd_cancel_req(searchcqr); } else if ((searchcqr->status == DASD_CQR_FILLED) || (searchcqr->status == DASD_CQR_NEED_ERP)) { searchcqr->status = DASD_CQR_TERMINATED; rc = 0; } else if (searchcqr->status == DASD_CQR_IN_ERP) { /* * Shouldn't happen; most recent ERP * request is at the front of queue */ continue; } break; } } spin_unlock(get_ccwdev_lock(device->cdev)); dasd_schedule_block_bh(block); spin_unlock(&block->queue_lock); spin_unlock_irqrestore(&cqr->dq->lock, flags); return rc ? BLK_EH_RESET_TIMER : BLK_EH_DONE; } static int dasd_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, unsigned int idx) { struct dasd_queue *dq = kzalloc(sizeof(*dq), GFP_KERNEL); if (!dq) return -ENOMEM; spin_lock_init(&dq->lock); hctx->driver_data = dq; return 0; } static void dasd_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int idx) { kfree(hctx->driver_data); hctx->driver_data = NULL; } static void dasd_request_done(struct request *req) { blk_mq_end_request(req, 0); blk_mq_run_hw_queues(req->q, true); } struct blk_mq_ops dasd_mq_ops = { .queue_rq = do_dasd_request, .complete = dasd_request_done, .timeout = dasd_times_out, .init_hctx = dasd_init_hctx, .exit_hctx = dasd_exit_hctx, }; static int dasd_open(struct gendisk *disk, blk_mode_t mode) { struct dasd_device *base; int rc; base = dasd_device_from_gendisk(disk); if (!base) return -ENODEV; atomic_inc(&base->block->open_count); if (test_bit(DASD_FLAG_OFFLINE, &base->flags)) { rc = -ENODEV; goto unlock; } if (!try_module_get(base->discipline->owner)) { rc = -EINVAL; goto unlock; } if (dasd_probeonly) { dev_info(&base->cdev->dev, "Accessing the DASD failed because it is in " "probeonly mode\n"); rc = -EPERM; goto out; } if (base->state <= DASD_STATE_BASIC) { DBF_DEV_EVENT(DBF_ERR, base, " %s", " Cannot open unrecognized device"); rc = -ENODEV; goto out; } if ((mode & BLK_OPEN_WRITE) && (test_bit(DASD_FLAG_DEVICE_RO, &base->flags) || (base->features & DASD_FEATURE_READONLY))) { rc = -EROFS; goto out; } dasd_put_device(base); return 0; out: module_put(base->discipline->owner); unlock: atomic_dec(&base->block->open_count); dasd_put_device(base); return rc; } static void dasd_release(struct gendisk *disk) { struct dasd_device *base = dasd_device_from_gendisk(disk); if (base) { atomic_dec(&base->block->open_count); module_put(base->discipline->owner); dasd_put_device(base); } } /* * Return disk geometry. */ static int dasd_getgeo(struct block_device *bdev, struct hd_geometry *geo) { struct dasd_device *base; base = dasd_device_from_gendisk(bdev->bd_disk); if (!base) return -ENODEV; if (!base->discipline || !base->discipline->fill_geometry) { dasd_put_device(base); return -EINVAL; } base->discipline->fill_geometry(base->block, geo); geo->start = get_start_sect(bdev) >> base->block->s2b_shift; dasd_put_device(base); return 0; } const struct block_device_operations dasd_device_operations = { .owner = THIS_MODULE, .open = dasd_open, .release = dasd_release, .ioctl = dasd_ioctl, .compat_ioctl = dasd_ioctl, .getgeo = dasd_getgeo, .set_read_only = dasd_set_read_only, }; /******************************************************************************* * end of block device operations */ static void dasd_exit(void) { #ifdef CONFIG_PROC_FS dasd_proc_exit(); #endif dasd_eer_exit(); kmem_cache_destroy(dasd_page_cache); dasd_page_cache = NULL; dasd_gendisk_exit(); dasd_devmap_exit(); if (dasd_debug_area != NULL) { debug_unregister(dasd_debug_area); dasd_debug_area = NULL; } dasd_statistics_removeroot(); } /* * SECTION: common functions for ccw_driver use */ /* * Is the device read-only? * Note that this function does not report the setting of the * readonly device attribute, but how it is configured in z/VM. */ int dasd_device_is_ro(struct dasd_device *device) { struct ccw_dev_id dev_id; struct diag210 diag_data; int rc; if (!MACHINE_IS_VM) return 0; ccw_device_get_id(device->cdev, &dev_id); memset(&diag_data, 0, sizeof(diag_data)); diag_data.vrdcdvno = dev_id.devno; diag_data.vrdclen = sizeof(diag_data); rc = diag210(&diag_data); if (rc == 0 || rc == 2) { return diag_data.vrdcvfla & 0x80; } else { DBF_EVENT(DBF_WARNING, "diag210 failed for dev=%04x with rc=%d", dev_id.devno, rc); return 0; } } EXPORT_SYMBOL_GPL(dasd_device_is_ro); static void dasd_generic_auto_online(void *data, async_cookie_t cookie) { struct ccw_device *cdev = data; int ret; ret = ccw_device_set_online(cdev); if (ret) pr_warn("%s: Setting the DASD online failed with rc=%d\n", dev_name(&cdev->dev), ret); } /* * Initial attempt at a probe function. this can be simplified once * the other detection code is gone. */ int dasd_generic_probe(struct ccw_device *cdev) { cdev->handler = &dasd_int_handler; /* * Automatically online either all dasd devices (dasd_autodetect) * or all devices specified with dasd= parameters during * initial probe. */ if ((dasd_get_feature(cdev, DASD_FEATURE_INITIAL_ONLINE) > 0 ) || (dasd_autodetect && dasd_busid_known(dev_name(&cdev->dev)) != 0)) async_schedule(dasd_generic_auto_online, cdev); return 0; } EXPORT_SYMBOL_GPL(dasd_generic_probe); void dasd_generic_free_discipline(struct dasd_device *device) { /* Forget the discipline information. */ if (device->discipline) { if (device->discipline->uncheck_device) device->discipline->uncheck_device(device); module_put(device->discipline->owner); device->discipline = NULL; } if (device->base_discipline) { module_put(device->base_discipline->owner); device->base_discipline = NULL; } } EXPORT_SYMBOL_GPL(dasd_generic_free_discipline); /* * This will one day be called from a global not_oper handler. * It is also used by driver_unregister during module unload. */ void dasd_generic_remove(struct ccw_device *cdev) { struct dasd_device *device; struct dasd_block *block; device = dasd_device_from_cdev(cdev); if (IS_ERR(device)) return; if (test_and_set_bit(DASD_FLAG_OFFLINE, &device->flags) && !test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* Already doing offline processing */ dasd_put_device(device); return; } /* * This device is removed unconditionally. Set offline * flag to prevent dasd_open from opening it while it is * no quite down yet. */ dasd_set_target_state(device, DASD_STATE_NEW); cdev->handler = NULL; /* dasd_delete_device destroys the device reference. */ block = device->block; dasd_delete_device(device); /* * life cycle of block is bound to device, so delete it after * device was safely removed */ if (block) dasd_free_block(block); } EXPORT_SYMBOL_GPL(dasd_generic_remove); /* * Activate a device. This is called from dasd_{eckd,fba}_probe() when either * the device is detected for the first time and is supposed to be used * or the user has started activation through sysfs. */ int dasd_generic_set_online(struct ccw_device *cdev, struct dasd_discipline *base_discipline) { struct dasd_discipline *discipline; struct dasd_device *device; int rc; /* first online clears initial online feature flag */ dasd_set_feature(cdev, DASD_FEATURE_INITIAL_ONLINE, 0); device = dasd_create_device(cdev); if (IS_ERR(device)) return PTR_ERR(device); discipline = base_discipline; if (device->features & DASD_FEATURE_USEDIAG) { if (!dasd_diag_discipline_pointer) { /* Try to load the required module. */ rc = request_module(DASD_DIAG_MOD); if (rc) { pr_warn("%s Setting the DASD online failed " "because the required module %s " "could not be loaded (rc=%d)\n", dev_name(&cdev->dev), DASD_DIAG_MOD, rc); dasd_delete_device(device); return -ENODEV; } } /* Module init could have failed, so check again here after * request_module(). */ if (!dasd_diag_discipline_pointer) { pr_warn("%s Setting the DASD online failed because of missing DIAG discipline\n", dev_name(&cdev->dev)); dasd_delete_device(device); return -ENODEV; } discipline = dasd_diag_discipline_pointer; } if (!try_module_get(base_discipline->owner)) { dasd_delete_device(device); return -EINVAL; } if (!try_module_get(discipline->owner)) { module_put(base_discipline->owner); dasd_delete_device(device); return -EINVAL; } device->base_discipline = base_discipline; device->discipline = discipline; /* check_device will allocate block device if necessary */ rc = discipline->check_device(device); if (rc) { pr_warn("%s Setting the DASD online with discipline %s failed with rc=%i\n", dev_name(&cdev->dev), discipline->name, rc); module_put(discipline->owner); module_put(base_discipline->owner); dasd_delete_device(device); return rc; } dasd_set_target_state(device, DASD_STATE_ONLINE); if (device->state <= DASD_STATE_KNOWN) { pr_warn("%s Setting the DASD online failed because of a missing discipline\n", dev_name(&cdev->dev)); rc = -ENODEV; dasd_set_target_state(device, DASD_STATE_NEW); if (device->block) dasd_free_block(device->block); dasd_delete_device(device); } else pr_debug("dasd_generic device %s found\n", dev_name(&cdev->dev)); wait_event(dasd_init_waitq, _wait_for_device(device)); dasd_put_device(device); return rc; } EXPORT_SYMBOL_GPL(dasd_generic_set_online); int dasd_generic_set_offline(struct ccw_device *cdev) { struct dasd_device *device; struct dasd_block *block; int max_count, open_count, rc; unsigned long flags; rc = 0; spin_lock_irqsave(get_ccwdev_lock(cdev), flags); device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) { spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); return PTR_ERR(device); } /* * We must make sure that this device is currently not in use. * The open_count is increased for every opener, that includes * the blkdev_get in dasd_scan_partitions. We are only interested * in the other openers. */ if (device->block) { max_count = device->block->bdev ? 0 : -1; open_count = atomic_read(&device->block->open_count); if (open_count > max_count) { if (open_count > 0) pr_warn("%s: The DASD cannot be set offline with open count %i\n", dev_name(&cdev->dev), open_count); else pr_warn("%s: The DASD cannot be set offline while it is in use\n", dev_name(&cdev->dev)); rc = -EBUSY; goto out_err; } } /* * Test if the offline processing is already running and exit if so. * If a safe offline is being processed this could only be a normal * offline that should be able to overtake the safe offline and * cancel any I/O we do not want to wait for any longer */ if (test_bit(DASD_FLAG_OFFLINE, &device->flags)) { if (test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { clear_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags); } else { rc = -EBUSY; goto out_err; } } set_bit(DASD_FLAG_OFFLINE, &device->flags); /* * if safe_offline is called set safe_offline_running flag and * clear safe_offline so that a call to normal offline * can overrun safe_offline processing */ if (test_and_clear_bit(DASD_FLAG_SAFE_OFFLINE, &device->flags) && !test_and_set_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { /* need to unlock here to wait for outstanding I/O */ spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); /* * If we want to set the device safe offline all IO operations * should be finished before continuing the offline process * so sync bdev first and then wait for our queues to become * empty */ if (device->block) bdev_mark_dead(device->block->bdev, false); dasd_schedule_device_bh(device); rc = wait_event_interruptible(shutdown_waitq, _wait_for_empty_queues(device)); if (rc != 0) goto interrupted; /* * check if a normal offline process overtook the offline * processing in this case simply do nothing beside returning * that we got interrupted * otherwise mark safe offline as not running any longer and * continue with normal offline */ spin_lock_irqsave(get_ccwdev_lock(cdev), flags); if (!test_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags)) { rc = -ERESTARTSYS; goto out_err; } clear_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags); } spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); dasd_set_target_state(device, DASD_STATE_NEW); /* dasd_delete_device destroys the device reference. */ block = device->block; dasd_delete_device(device); /* * life cycle of block is bound to device, so delete it after * device was safely removed */ if (block) dasd_free_block(block); return 0; interrupted: /* interrupted by signal */ spin_lock_irqsave(get_ccwdev_lock(cdev), flags); clear_bit(DASD_FLAG_SAFE_OFFLINE_RUNNING, &device->flags); clear_bit(DASD_FLAG_OFFLINE, &device->flags); out_err: dasd_put_device(device); spin_unlock_irqrestore(get_ccwdev_lock(cdev), flags); return rc; } EXPORT_SYMBOL_GPL(dasd_generic_set_offline); int dasd_generic_last_path_gone(struct dasd_device *device) { struct dasd_ccw_req *cqr; dev_warn(&device->cdev->dev, "No operational channel path is left " "for the device\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "last path gone"); /* First call extended error reporting and check for autoquiesce. */ dasd_handle_autoquiesce(device, NULL, DASD_EER_NOPATH); if (device->state < DASD_STATE_BASIC) return 0; /* Device is active. We want to keep it. */ list_for_each_entry(cqr, &device->ccw_queue, devlist) if ((cqr->status == DASD_CQR_IN_IO) || (cqr->status == DASD_CQR_CLEAR_PENDING)) { cqr->status = DASD_CQR_QUEUED; cqr->retries++; } dasd_device_set_stop_bits(device, DASD_STOPPED_DC_WAIT); dasd_device_clear_timer(device); dasd_schedule_device_bh(device); return 1; } EXPORT_SYMBOL_GPL(dasd_generic_last_path_gone); int dasd_generic_path_operational(struct dasd_device *device) { dev_info(&device->cdev->dev, "A channel path to the device has become " "operational\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "path operational"); dasd_device_remove_stop_bits(device, DASD_STOPPED_DC_WAIT); dasd_schedule_device_bh(device); if (device->block) { dasd_schedule_block_bh(device->block); if (device->block->gdp) blk_mq_run_hw_queues(device->block->gdp->queue, true); } if (!device->stopped) wake_up(&generic_waitq); return 1; } EXPORT_SYMBOL_GPL(dasd_generic_path_operational); int dasd_generic_notify(struct ccw_device *cdev, int event) { struct dasd_device *device; int ret; device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) return 0; ret = 0; switch (event) { case CIO_GONE: case CIO_BOXED: case CIO_NO_PATH: dasd_path_no_path(device); ret = dasd_generic_last_path_gone(device); break; case CIO_OPER: ret = 1; if (dasd_path_get_opm(device)) ret = dasd_generic_path_operational(device); break; } dasd_put_device(device); return ret; } EXPORT_SYMBOL_GPL(dasd_generic_notify); void dasd_generic_path_event(struct ccw_device *cdev, int *path_event) { struct dasd_device *device; int chp, oldopm, hpfpm, ifccpm; device = dasd_device_from_cdev_locked(cdev); if (IS_ERR(device)) return; oldopm = dasd_path_get_opm(device); for (chp = 0; chp < 8; chp++) { if (path_event[chp] & PE_PATH_GONE) { dasd_path_notoper(device, chp); } if (path_event[chp] & PE_PATH_AVAILABLE) { dasd_path_available(device, chp); dasd_schedule_device_bh(device); } if (path_event[chp] & PE_PATHGROUP_ESTABLISHED) { if (!dasd_path_is_operational(device, chp) && !dasd_path_need_verify(device, chp)) { /* * we can not establish a pathgroup on an * unavailable path, so trigger a path * verification first */ dasd_path_available(device, chp); dasd_schedule_device_bh(device); } DBF_DEV_EVENT(DBF_WARNING, device, "%s", "Pathgroup re-established\n"); if (device->discipline->kick_validate) device->discipline->kick_validate(device); } if (path_event[chp] & PE_PATH_FCES_EVENT) { dasd_path_fcsec_update(device, chp); dasd_schedule_device_bh(device); } } hpfpm = dasd_path_get_hpfpm(device); ifccpm = dasd_path_get_ifccpm(device); if (!dasd_path_get_opm(device) && hpfpm) { /* * device has no operational paths but at least one path is * disabled due to HPF errors * disable HPF at all and use the path(s) again */ if (device->discipline->disable_hpf) device->discipline->disable_hpf(device); dasd_device_set_stop_bits(device, DASD_STOPPED_NOT_ACC); dasd_path_set_tbvpm(device, hpfpm); dasd_schedule_device_bh(device); dasd_schedule_requeue(device); } else if (!dasd_path_get_opm(device) && ifccpm) { /* * device has no operational paths but at least one path is * disabled due to IFCC errors * trigger path verification on paths with IFCC errors */ dasd_path_set_tbvpm(device, ifccpm); dasd_schedule_device_bh(device); } if (oldopm && !dasd_path_get_opm(device) && !hpfpm && !ifccpm) { dev_warn(&device->cdev->dev, "No verified channel paths remain for the device\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "last verified path gone"); /* First call extended error reporting and check for autoquiesce. */ dasd_handle_autoquiesce(device, NULL, DASD_EER_NOPATH); dasd_device_set_stop_bits(device, DASD_STOPPED_DC_WAIT); } dasd_put_device(device); } EXPORT_SYMBOL_GPL(dasd_generic_path_event); int dasd_generic_verify_path(struct dasd_device *device, __u8 lpm) { if (!dasd_path_get_opm(device) && lpm) { dasd_path_set_opm(device, lpm); dasd_generic_path_operational(device); } else dasd_path_add_opm(device, lpm); return 0; } EXPORT_SYMBOL_GPL(dasd_generic_verify_path); void dasd_generic_space_exhaust(struct dasd_device *device, struct dasd_ccw_req *cqr) { /* First call extended error reporting and check for autoquiesce. */ dasd_handle_autoquiesce(device, NULL, DASD_EER_NOSPC); if (device->state < DASD_STATE_BASIC) return; if (cqr->status == DASD_CQR_IN_IO || cqr->status == DASD_CQR_CLEAR_PENDING) { cqr->status = DASD_CQR_QUEUED; cqr->retries++; } dasd_device_set_stop_bits(device, DASD_STOPPED_NOSPC); dasd_device_clear_timer(device); dasd_schedule_device_bh(device); } EXPORT_SYMBOL_GPL(dasd_generic_space_exhaust); void dasd_generic_space_avail(struct dasd_device *device) { dev_info(&device->cdev->dev, "Extent pool space is available\n"); DBF_DEV_EVENT(DBF_WARNING, device, "%s", "space available"); dasd_device_remove_stop_bits(device, DASD_STOPPED_NOSPC); dasd_schedule_device_bh(device); if (device->block) { dasd_schedule_block_bh(device->block); if (device->block->gdp) blk_mq_run_hw_queues(device->block->gdp->queue, true); } if (!device->stopped) wake_up(&generic_waitq); } EXPORT_SYMBOL_GPL(dasd_generic_space_avail); /* * clear active requests and requeue them to block layer if possible */ int dasd_generic_requeue_all_requests(struct dasd_device *device) { struct dasd_block *block = device->block; struct list_head requeue_queue; struct dasd_ccw_req *cqr, *n; int rc; if (!block) return 0; INIT_LIST_HEAD(&requeue_queue); rc = _dasd_requests_to_flushqueue(block, &requeue_queue); /* Now call the callback function of flushed requests */ restart_cb: list_for_each_entry_safe(cqr, n, &requeue_queue, blocklist) { wait_event(dasd_flush_wq, (cqr->status < DASD_CQR_QUEUED)); /* Process finished ERP request. */ if (cqr->refers) { spin_lock_bh(&block->queue_lock); __dasd_process_erp(block->base, cqr); spin_unlock_bh(&block->queue_lock); /* restart list_for_xx loop since dasd_process_erp * might remove multiple elements */ goto restart_cb; } _dasd_requeue_request(cqr); list_del_init(&cqr->blocklist); cqr->block->base->discipline->free_cp( cqr, (struct request *) cqr->callback_data); } dasd_schedule_device_bh(device); return rc; } EXPORT_SYMBOL_GPL(dasd_generic_requeue_all_requests); static void do_requeue_requests(struct work_struct *work) { struct dasd_device *device = container_of(work, struct dasd_device, requeue_requests); dasd_generic_requeue_all_requests(device); dasd_device_remove_stop_bits(device, DASD_STOPPED_NOT_ACC); if (device->block) dasd_schedule_block_bh(device->block); dasd_put_device(device); } void dasd_schedule_requeue(struct dasd_device *device) { dasd_get_device(device); /* queue call to dasd_reload_device to the kernel event daemon. */ if (!schedule_work(&device->requeue_requests)) dasd_put_device(device); } EXPORT_SYMBOL(dasd_schedule_requeue); static int dasd_handle_autoquiesce(struct dasd_device *device, struct dasd_ccw_req *cqr, unsigned int reason) { /* in any case write eer message with reason */ if (dasd_eer_enabled(device)) dasd_eer_write(device, cqr, reason); if (!test_bit(reason, &device->aq_mask)) return 0; /* notify eer about autoquiesce */ if (dasd_eer_enabled(device)) dasd_eer_write(device, NULL, DASD_EER_AUTOQUIESCE); pr_info("%s: The DASD has been put in the quiesce state\n", dev_name(&device->cdev->dev)); dasd_device_set_stop_bits(device, DASD_STOPPED_QUIESCE); if (device->features & DASD_FEATURE_REQUEUEQUIESCE) dasd_schedule_requeue(device); return 1; } static struct dasd_ccw_req *dasd_generic_build_rdc(struct dasd_device *device, int rdc_buffer_size, int magic) { struct dasd_ccw_req *cqr; struct ccw1 *ccw; cqr = dasd_smalloc_request(magic, 1 /* RDC */, rdc_buffer_size, device, NULL); if (IS_ERR(cqr)) { /* internal error 13 - Allocating the RDC request failed*/ dev_err(&device->cdev->dev, "An error occurred in the DASD device driver, " "reason=%s\n", "13"); return cqr; } ccw = cqr->cpaddr; ccw->cmd_code = CCW_CMD_RDC; ccw->cda = (__u32)virt_to_phys(cqr->data); ccw->flags = 0; ccw->count = rdc_buffer_size; cqr->startdev = device; cqr->memdev = device; cqr->expires = 10*HZ; cqr->retries = 256; cqr->buildclk = get_tod_clock(); cqr->status = DASD_CQR_FILLED; return cqr; } int dasd_generic_read_dev_chars(struct dasd_device *device, int magic, void *rdc_buffer, int rdc_buffer_size) { int ret; struct dasd_ccw_req *cqr; cqr = dasd_generic_build_rdc(device, rdc_buffer_size, magic); if (IS_ERR(cqr)) return PTR_ERR(cqr); ret = dasd_sleep_on(cqr); if (ret == 0) memcpy(rdc_buffer, cqr->data, rdc_buffer_size); dasd_sfree_request(cqr, cqr->memdev); return ret; } EXPORT_SYMBOL_GPL(dasd_generic_read_dev_chars); /* * In command mode and transport mode we need to look for sense * data in different places. The sense data itself is allways * an array of 32 bytes, so we can unify the sense data access * for both modes. */ char *dasd_get_sense(struct irb *irb) { struct tsb *tsb = NULL; char *sense = NULL; if (scsw_is_tm(&irb->scsw) && (irb->scsw.tm.fcxs == 0x01)) { if (irb->scsw.tm.tcw) tsb = tcw_get_tsb(phys_to_virt(irb->scsw.tm.tcw)); if (tsb && tsb->length == 64 && tsb->flags) switch (tsb->flags & 0x07) { case 1: /* tsa_iostat */ sense = tsb->tsa.iostat.sense; break; case 2: /* tsa_ddpc */ sense = tsb->tsa.ddpc.sense; break; default: /* currently we don't use interrogate data */ break; } } else if (irb->esw.esw0.erw.cons) { sense = irb->ecw; } return sense; } EXPORT_SYMBOL_GPL(dasd_get_sense); void dasd_generic_shutdown(struct ccw_device *cdev) { struct dasd_device *device; device = dasd_device_from_cdev(cdev); if (IS_ERR(device)) return; if (device->block) dasd_schedule_block_bh(device->block); dasd_schedule_device_bh(device); wait_event(shutdown_waitq, _wait_for_empty_queues(device)); } EXPORT_SYMBOL_GPL(dasd_generic_shutdown); static int __init dasd_init(void) { int rc; init_waitqueue_head(&dasd_init_waitq); init_waitqueue_head(&dasd_flush_wq); init_waitqueue_head(&generic_waitq); init_waitqueue_head(&shutdown_waitq); /* register 'common' DASD debug area, used for all DBF_XXX calls */ dasd_debug_area = debug_register("dasd", 1, 1, 8 * sizeof(long)); if (dasd_debug_area == NULL) { rc = -ENOMEM; goto failed; } debug_register_view(dasd_debug_area, &debug_sprintf_view); debug_set_level(dasd_debug_area, DBF_WARNING); DBF_EVENT(DBF_EMERG, "%s", "debug area created"); dasd_diag_discipline_pointer = NULL; dasd_statistics_createroot(); rc = dasd_devmap_init(); if (rc) goto failed; rc = dasd_gendisk_init(); if (rc) goto failed; rc = dasd_parse(); if (rc) goto failed; rc = dasd_eer_init(); if (rc) goto failed; #ifdef CONFIG_PROC_FS rc = dasd_proc_init(); if (rc) goto failed; #endif return 0; failed: pr_info("The DASD device driver could not be initialized\n"); dasd_exit(); return rc; } module_init(dasd_init); module_exit(dasd_exit);
linux-master
drivers/s390/block/dasd.c
/* * TURBOchannel bus services. * * Copyright (c) Harald Koerfgen, 1998 * Copyright (c) 2001, 2003, 2005, 2006, 2018 Maciej W. Rozycki * Copyright (c) 2005 James Simmons * * This file is subject to the terms and conditions of the GNU * General Public License. See the file "COPYING" in the main * directory of this archive for more details. */ #include <linux/compiler.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/tc.h> #include <linux/types.h> #include <asm/io.h> static struct tc_bus tc_bus = { .name = "TURBOchannel", }; /* * Probing for TURBOchannel modules. */ static void __init tc_bus_add_devices(struct tc_bus *tbus) { resource_size_t slotsize = tbus->info.slot_size << 20; resource_size_t extslotsize = tbus->ext_slot_size; resource_size_t slotaddr; resource_size_t extslotaddr; resource_size_t devsize; void __iomem *module; struct tc_dev *tdev; int i, slot, err; u8 pattern[4]; long offset; for (slot = 0; slot < tbus->num_tcslots; slot++) { slotaddr = tbus->slot_base + slot * slotsize; extslotaddr = tbus->ext_slot_base + slot * extslotsize; module = ioremap(slotaddr, slotsize); BUG_ON(!module); offset = TC_OLDCARD; err = 0; err |= tc_preadb(pattern + 0, module + offset + TC_PATTERN0); err |= tc_preadb(pattern + 1, module + offset + TC_PATTERN1); err |= tc_preadb(pattern + 2, module + offset + TC_PATTERN2); err |= tc_preadb(pattern + 3, module + offset + TC_PATTERN3); if (err) goto out_err; if (pattern[0] != 0x55 || pattern[1] != 0x00 || pattern[2] != 0xaa || pattern[3] != 0xff) { offset = TC_NEWCARD; err = 0; err |= tc_preadb(pattern + 0, module + offset + TC_PATTERN0); err |= tc_preadb(pattern + 1, module + offset + TC_PATTERN1); err |= tc_preadb(pattern + 2, module + offset + TC_PATTERN2); err |= tc_preadb(pattern + 3, module + offset + TC_PATTERN3); if (err) goto out_err; } if (pattern[0] != 0x55 || pattern[1] != 0x00 || pattern[2] != 0xaa || pattern[3] != 0xff) goto out_err; /* Found a board, allocate it an entry in the list */ tdev = kzalloc(sizeof(*tdev), GFP_KERNEL); if (!tdev) { pr_err("tc%x: unable to allocate tc_dev\n", slot); goto out_err; } dev_set_name(&tdev->dev, "tc%x", slot); tdev->bus = tbus; tdev->dev.parent = &tbus->dev; tdev->dev.bus = &tc_bus_type; tdev->slot = slot; /* TURBOchannel has 34-bit DMA addressing (16GiB space). */ tdev->dma_mask = DMA_BIT_MASK(34); tdev->dev.dma_mask = &tdev->dma_mask; tdev->dev.coherent_dma_mask = DMA_BIT_MASK(34); for (i = 0; i < 8; i++) { tdev->firmware[i] = readb(module + offset + TC_FIRM_VER + 4 * i); tdev->vendor[i] = readb(module + offset + TC_VENDOR + 4 * i); tdev->name[i] = readb(module + offset + TC_MODULE + 4 * i); } tdev->firmware[8] = 0; tdev->vendor[8] = 0; tdev->name[8] = 0; pr_info("%s: %s %s %s\n", dev_name(&tdev->dev), tdev->vendor, tdev->name, tdev->firmware); devsize = readb(module + offset + TC_SLOT_SIZE); devsize <<= 22; if (devsize <= slotsize) { tdev->resource.start = slotaddr; tdev->resource.end = slotaddr + devsize - 1; } else if (devsize <= extslotsize) { tdev->resource.start = extslotaddr; tdev->resource.end = extslotaddr + devsize - 1; } else { pr_err("%s: Cannot provide slot space " "(%ldMiB required, up to %ldMiB supported)\n", dev_name(&tdev->dev), (long)(devsize >> 20), (long)(max(slotsize, extslotsize) >> 20)); kfree(tdev); goto out_err; } tdev->resource.name = tdev->name; tdev->resource.flags = IORESOURCE_MEM; tc_device_get_irq(tdev); if (device_register(&tdev->dev)) { put_device(&tdev->dev); goto out_err; } list_add_tail(&tdev->node, &tbus->devices); out_err: iounmap(module); } } /* * The main entry. */ static int __init tc_init(void) { /* Initialize the TURBOchannel bus */ if (tc_bus_get_info(&tc_bus)) goto out_err; INIT_LIST_HEAD(&tc_bus.devices); dev_set_name(&tc_bus.dev, "tc"); if (device_register(&tc_bus.dev)) goto out_err_device; if (tc_bus.info.slot_size) { unsigned int tc_clock = tc_get_speed(&tc_bus) / 100000; pr_info("tc: TURBOchannel rev. %d at %d.%d MHz " "(with%s parity)\n", tc_bus.info.revision, tc_clock / 10, tc_clock % 10, tc_bus.info.parity ? "" : "out"); tc_bus.resource[0].start = tc_bus.slot_base; tc_bus.resource[0].end = tc_bus.slot_base + (tc_bus.info.slot_size << 20) * tc_bus.num_tcslots - 1; tc_bus.resource[0].name = tc_bus.name; tc_bus.resource[0].flags = IORESOURCE_MEM; if (request_resource(&iomem_resource, &tc_bus.resource[0]) < 0) { pr_err("tc: Cannot reserve resource\n"); goto out_err_device; } if (tc_bus.ext_slot_size) { tc_bus.resource[1].start = tc_bus.ext_slot_base; tc_bus.resource[1].end = tc_bus.ext_slot_base + tc_bus.ext_slot_size * tc_bus.num_tcslots - 1; tc_bus.resource[1].name = tc_bus.name; tc_bus.resource[1].flags = IORESOURCE_MEM; if (request_resource(&iomem_resource, &tc_bus.resource[1]) < 0) { pr_err("tc: Cannot reserve resource\n"); goto out_err_resource; } } tc_bus_add_devices(&tc_bus); } return 0; out_err_resource: release_resource(&tc_bus.resource[0]); out_err_device: put_device(&tc_bus.dev); out_err: return 0; } subsys_initcall(tc_init);
linux-master
drivers/tc/tc.c
/* * TURBOchannel driver services. * * Copyright (c) 2005 James Simmons * Copyright (c) 2006 Maciej W. Rozycki * * Loosely based on drivers/dio/dio-driver.c and * drivers/pci/pci-driver.c. * * This file is subject to the terms and conditions of the GNU * General Public License. See the file "COPYING" in the main * directory of this archive for more details. */ #include <linux/init.h> #include <linux/module.h> #include <linux/tc.h> /** * tc_register_driver - register a new TC driver * @drv: the driver structure to register * * Adds the driver structure to the list of registered drivers * Returns a negative value on error, otherwise 0. * If no error occurred, the driver remains registered even if * no device was claimed during registration. */ int tc_register_driver(struct tc_driver *tdrv) { return driver_register(&tdrv->driver); } EXPORT_SYMBOL(tc_register_driver); /** * tc_unregister_driver - unregister a TC driver * @drv: the driver structure to unregister * * Deletes the driver structure from the list of registered TC drivers, * gives it a chance to clean up by calling its remove() function for * each device it was responsible for, and marks those devices as * driverless. */ void tc_unregister_driver(struct tc_driver *tdrv) { driver_unregister(&tdrv->driver); } EXPORT_SYMBOL(tc_unregister_driver); /** * tc_match_device - tell if a TC device structure has a matching * TC device ID structure * @tdrv: the TC driver to earch for matching TC device ID strings * @tdev: the TC device structure to match against * * Used by a driver to check whether a TC device present in the * system is in its list of supported devices. Returns the matching * tc_device_id structure or %NULL if there is no match. */ static const struct tc_device_id *tc_match_device(struct tc_driver *tdrv, struct tc_dev *tdev) { const struct tc_device_id *id = tdrv->id_table; if (id) { while (id->name[0] || id->vendor[0]) { if (strcmp(tdev->name, id->name) == 0 && strcmp(tdev->vendor, id->vendor) == 0) return id; id++; } } return NULL; } /** * tc_bus_match - Tell if a device structure has a matching * TC device ID structure * @dev: the device structure to match against * @drv: the device driver to search for matching TC device ID strings * * Used by a driver to check whether a TC device present in the * system is in its list of supported devices. Returns 1 if there * is a match or 0 otherwise. */ static int tc_bus_match(struct device *dev, struct device_driver *drv) { struct tc_dev *tdev = to_tc_dev(dev); struct tc_driver *tdrv = to_tc_driver(drv); const struct tc_device_id *id; id = tc_match_device(tdrv, tdev); if (id) return 1; return 0; } struct bus_type tc_bus_type = { .name = "tc", .match = tc_bus_match, }; EXPORT_SYMBOL(tc_bus_type); static int __init tc_driver_init(void) { return bus_register(&tc_bus_type); } postcore_initcall(tc_driver_init);
linux-master
drivers/tc/tc-driver.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2011-2017, The Linux Foundation */ #include <linux/slab.h> #include <linux/pm_runtime.h> #include "slimbus.h" /** * slim_msg_response() - Deliver Message response received from a device to the * framework. * * @ctrl: Controller handle * @reply: Reply received from the device * @len: Length of the reply * @tid: Transaction ID received with which framework can associate reply. * * Called by controller to inform framework about the response received. * This helps in making the API asynchronous, and controller-driver doesn't need * to manage 1 more table other than the one managed by framework mapping TID * with buffers */ void slim_msg_response(struct slim_controller *ctrl, u8 *reply, u8 tid, u8 len) { struct slim_msg_txn *txn; struct slim_val_inf *msg; unsigned long flags; spin_lock_irqsave(&ctrl->txn_lock, flags); txn = idr_find(&ctrl->tid_idr, tid); spin_unlock_irqrestore(&ctrl->txn_lock, flags); if (txn == NULL) return; msg = txn->msg; if (msg == NULL || msg->rbuf == NULL) { dev_err(ctrl->dev, "Got response to invalid TID:%d, len:%d\n", tid, len); return; } slim_free_txn_tid(ctrl, txn); memcpy(msg->rbuf, reply, len); if (txn->comp) complete(txn->comp); /* Remove runtime-pm vote now that response was received for TID txn */ pm_runtime_mark_last_busy(ctrl->dev); pm_runtime_put_autosuspend(ctrl->dev); } EXPORT_SYMBOL_GPL(slim_msg_response); /** * slim_alloc_txn_tid() - Allocate a tid to txn * * @ctrl: Controller handle * @txn: transaction to be allocated with tid. * * Return: zero on success with valid txn->tid and error code on failures. */ int slim_alloc_txn_tid(struct slim_controller *ctrl, struct slim_msg_txn *txn) { unsigned long flags; int ret = 0; spin_lock_irqsave(&ctrl->txn_lock, flags); ret = idr_alloc_cyclic(&ctrl->tid_idr, txn, 1, SLIM_MAX_TIDS, GFP_ATOMIC); if (ret < 0) { spin_unlock_irqrestore(&ctrl->txn_lock, flags); return ret; } txn->tid = ret; spin_unlock_irqrestore(&ctrl->txn_lock, flags); return 0; } EXPORT_SYMBOL_GPL(slim_alloc_txn_tid); /** * slim_free_txn_tid() - Free tid of txn * * @ctrl: Controller handle * @txn: transaction whose tid should be freed */ void slim_free_txn_tid(struct slim_controller *ctrl, struct slim_msg_txn *txn) { unsigned long flags; spin_lock_irqsave(&ctrl->txn_lock, flags); idr_remove(&ctrl->tid_idr, txn->tid); spin_unlock_irqrestore(&ctrl->txn_lock, flags); } EXPORT_SYMBOL_GPL(slim_free_txn_tid); /** * slim_do_transfer() - Process a SLIMbus-messaging transaction * * @ctrl: Controller handle * @txn: Transaction to be sent over SLIMbus * * Called by controller to transmit messaging transactions not dealing with * Interface/Value elements. (e.g. transmitting a message to assign logical * address to a slave device * * Return: -ETIMEDOUT: If transmission of this message timed out * (e.g. due to bus lines not being clocked or driven by controller) */ int slim_do_transfer(struct slim_controller *ctrl, struct slim_msg_txn *txn) { DECLARE_COMPLETION_ONSTACK(done); bool need_tid = false, clk_pause_msg = false; int ret, timeout; /* * do not vote for runtime-PM if the transactions are part of clock * pause sequence */ if (ctrl->sched.clk_state == SLIM_CLK_ENTERING_PAUSE && (txn->mt == SLIM_MSG_MT_CORE && txn->mc >= SLIM_MSG_MC_BEGIN_RECONFIGURATION && txn->mc <= SLIM_MSG_MC_RECONFIGURE_NOW)) clk_pause_msg = true; if (!clk_pause_msg) { ret = pm_runtime_get_sync(ctrl->dev); if (ctrl->sched.clk_state != SLIM_CLK_ACTIVE) { dev_err(ctrl->dev, "ctrl wrong state:%d, ret:%d\n", ctrl->sched.clk_state, ret); goto slim_xfer_err; } } /* Initialize tid to invalid value */ txn->tid = 0; need_tid = slim_tid_txn(txn->mt, txn->mc); if (need_tid) { ret = slim_alloc_txn_tid(ctrl, txn); if (ret) return ret; if (!txn->msg->comp) txn->comp = &done; else txn->comp = txn->comp; } ret = ctrl->xfer_msg(ctrl, txn); if (!ret && need_tid && !txn->msg->comp) { unsigned long ms = txn->rl + HZ; timeout = wait_for_completion_timeout(txn->comp, msecs_to_jiffies(ms)); if (!timeout) { ret = -ETIMEDOUT; slim_free_txn_tid(ctrl, txn); } } if (ret) dev_err(ctrl->dev, "Tx:MT:0x%x, MC:0x%x, LA:0x%x failed:%d\n", txn->mt, txn->mc, txn->la, ret); slim_xfer_err: if (!clk_pause_msg && (txn->tid == 0 || ret == -ETIMEDOUT)) { /* * remove runtime-pm vote if this was TX only, or * if there was error during this transaction */ pm_runtime_mark_last_busy(ctrl->dev); pm_runtime_put_autosuspend(ctrl->dev); } return ret; } EXPORT_SYMBOL_GPL(slim_do_transfer); static int slim_val_inf_sanity(struct slim_controller *ctrl, struct slim_val_inf *msg, u8 mc) { if (!msg || msg->num_bytes > 16 || (msg->start_offset + msg->num_bytes) > 0xC00) goto reterr; switch (mc) { case SLIM_MSG_MC_REQUEST_VALUE: case SLIM_MSG_MC_REQUEST_INFORMATION: if (msg->rbuf != NULL) return 0; break; case SLIM_MSG_MC_CHANGE_VALUE: case SLIM_MSG_MC_CLEAR_INFORMATION: if (msg->wbuf != NULL) return 0; break; case SLIM_MSG_MC_REQUEST_CHANGE_VALUE: case SLIM_MSG_MC_REQUEST_CLEAR_INFORMATION: if (msg->rbuf != NULL && msg->wbuf != NULL) return 0; break; } reterr: if (msg) dev_err(ctrl->dev, "Sanity check failed:msg:offset:0x%x, mc:%d\n", msg->start_offset, mc); return -EINVAL; } static u16 slim_slicesize(int code) { static const u8 sizetocode[16] = { 0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7 }; code = clamp(code, 1, (int)ARRAY_SIZE(sizetocode)); return sizetocode[code - 1]; } /** * slim_xfer_msg() - Transfer a value info message on slim device * * @sbdev: slim device to which this msg has to be transfered * @msg: value info message pointer * @mc: message code of the message * * Called by drivers which want to transfer a vlaue or info elements. * * Return: -ETIMEDOUT: If transmission of this message timed out */ int slim_xfer_msg(struct slim_device *sbdev, struct slim_val_inf *msg, u8 mc) { DEFINE_SLIM_LDEST_TXN(txn_stack, mc, 6, sbdev->laddr, msg); struct slim_msg_txn *txn = &txn_stack; struct slim_controller *ctrl = sbdev->ctrl; int ret; u16 sl; if (!ctrl) return -EINVAL; ret = slim_val_inf_sanity(ctrl, msg, mc); if (ret) return ret; sl = slim_slicesize(msg->num_bytes); dev_dbg(ctrl->dev, "SB xfer msg:os:%x, len:%d, MC:%x, sl:%x\n", msg->start_offset, msg->num_bytes, mc, sl); txn->ec = ((sl | (1 << 3)) | ((msg->start_offset & 0xFFF) << 4)); switch (mc) { case SLIM_MSG_MC_REQUEST_CHANGE_VALUE: case SLIM_MSG_MC_CHANGE_VALUE: case SLIM_MSG_MC_REQUEST_CLEAR_INFORMATION: case SLIM_MSG_MC_CLEAR_INFORMATION: txn->rl += msg->num_bytes; break; default: break; } if (slim_tid_txn(txn->mt, txn->mc)) txn->rl++; return slim_do_transfer(ctrl, txn); } EXPORT_SYMBOL_GPL(slim_xfer_msg); static void slim_fill_msg(struct slim_val_inf *msg, u32 addr, size_t count, u8 *rbuf, u8 *wbuf) { msg->start_offset = addr; msg->num_bytes = count; msg->rbuf = rbuf; msg->wbuf = wbuf; msg->comp = NULL; } /** * slim_read() - Read SLIMbus value element * * @sdev: client handle. * @addr: address of value element to read. * @count: number of bytes to read. Maximum bytes allowed are 16. * @val: will return what the value element value was * * Return: -EINVAL for Invalid parameters, -ETIMEDOUT If transmission of * this message timed out (e.g. due to bus lines not being clocked * or driven by controller) */ int slim_read(struct slim_device *sdev, u32 addr, size_t count, u8 *val) { struct slim_val_inf msg; slim_fill_msg(&msg, addr, count, val, NULL); return slim_xfer_msg(sdev, &msg, SLIM_MSG_MC_REQUEST_VALUE); } EXPORT_SYMBOL_GPL(slim_read); /** * slim_readb() - Read byte from SLIMbus value element * * @sdev: client handle. * @addr: address in the value element to read. * * Return: byte value of value element. */ int slim_readb(struct slim_device *sdev, u32 addr) { int ret; u8 buf; ret = slim_read(sdev, addr, 1, &buf); if (ret < 0) return ret; else return buf; } EXPORT_SYMBOL_GPL(slim_readb); /** * slim_write() - Write SLIMbus value element * * @sdev: client handle. * @addr: address in the value element to write. * @count: number of bytes to write. Maximum bytes allowed are 16. * @val: value to write to value element * * Return: -EINVAL for Invalid parameters, -ETIMEDOUT If transmission of * this message timed out (e.g. due to bus lines not being clocked * or driven by controller) */ int slim_write(struct slim_device *sdev, u32 addr, size_t count, u8 *val) { struct slim_val_inf msg; slim_fill_msg(&msg, addr, count, NULL, val); return slim_xfer_msg(sdev, &msg, SLIM_MSG_MC_CHANGE_VALUE); } EXPORT_SYMBOL_GPL(slim_write); /** * slim_writeb() - Write byte to SLIMbus value element * * @sdev: client handle. * @addr: address of value element to write. * @value: value to write to value element * * Return: -EINVAL for Invalid parameters, -ETIMEDOUT If transmission of * this message timed out (e.g. due to bus lines not being clocked * or driven by controller) * */ int slim_writeb(struct slim_device *sdev, u32 addr, u8 value) { return slim_write(sdev, addr, 1, &value); } EXPORT_SYMBOL_GPL(slim_writeb);
linux-master
drivers/slimbus/messaging.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2011-2017, The Linux Foundation */ #include <linux/errno.h> #include "slimbus.h" /** * slim_ctrl_clk_pause() - Called by slimbus controller to enter/exit * 'clock pause' * @ctrl: controller requesting bus to be paused or woken up * @wakeup: Wakeup this controller from clock pause. * @restart: Restart time value per spec used for clock pause. This value * isn't used when controller is to be woken up. * * Slimbus specification needs this sequence to turn-off clocks for the bus. * The sequence involves sending 3 broadcast messages (reconfiguration * sequence) to inform all devices on the bus. * To exit clock-pause, controller typically wakes up active framer device. * This API executes clock pause reconfiguration sequence if wakeup is false. * If wakeup is true, controller's wakeup is called. * For entering clock-pause, -EBUSY is returned if a message txn in pending. */ int slim_ctrl_clk_pause(struct slim_controller *ctrl, bool wakeup, u8 restart) { int i, ret = 0; unsigned long flags; struct slim_sched *sched = &ctrl->sched; struct slim_val_inf msg = {0, 0, NULL, NULL}; DEFINE_SLIM_BCAST_TXN(txn, SLIM_MSG_MC_BEGIN_RECONFIGURATION, 3, SLIM_LA_MANAGER, &msg); if (wakeup == false && restart > SLIM_CLK_UNSPECIFIED) return -EINVAL; mutex_lock(&sched->m_reconf); if (wakeup) { if (sched->clk_state == SLIM_CLK_ACTIVE) { mutex_unlock(&sched->m_reconf); return 0; } /* * Fine-tune calculation based on clock gear, * message-bandwidth after bandwidth management */ ret = wait_for_completion_timeout(&sched->pause_comp, msecs_to_jiffies(100)); if (!ret) { mutex_unlock(&sched->m_reconf); pr_err("Previous clock pause did not finish"); return -ETIMEDOUT; } ret = 0; /* * Slimbus framework will call controller wakeup * Controller should make sure that it sets active framer * out of clock pause */ if (sched->clk_state == SLIM_CLK_PAUSED && ctrl->wakeup) ret = ctrl->wakeup(ctrl); if (!ret) sched->clk_state = SLIM_CLK_ACTIVE; mutex_unlock(&sched->m_reconf); return ret; } /* already paused */ if (ctrl->sched.clk_state == SLIM_CLK_PAUSED) { mutex_unlock(&sched->m_reconf); return 0; } spin_lock_irqsave(&ctrl->txn_lock, flags); for (i = 0; i < SLIM_MAX_TIDS; i++) { /* Pending response for a message */ if (idr_find(&ctrl->tid_idr, i)) { spin_unlock_irqrestore(&ctrl->txn_lock, flags); mutex_unlock(&sched->m_reconf); return -EBUSY; } } spin_unlock_irqrestore(&ctrl->txn_lock, flags); sched->clk_state = SLIM_CLK_ENTERING_PAUSE; /* clock pause sequence */ ret = slim_do_transfer(ctrl, &txn); if (ret) goto clk_pause_ret; txn.mc = SLIM_MSG_MC_NEXT_PAUSE_CLOCK; txn.rl = 4; msg.num_bytes = 1; msg.wbuf = &restart; ret = slim_do_transfer(ctrl, &txn); if (ret) goto clk_pause_ret; txn.mc = SLIM_MSG_MC_RECONFIGURE_NOW; txn.rl = 3; msg.num_bytes = 1; msg.wbuf = NULL; ret = slim_do_transfer(ctrl, &txn); clk_pause_ret: if (ret) { sched->clk_state = SLIM_CLK_ACTIVE; } else { sched->clk_state = SLIM_CLK_PAUSED; complete(&sched->pause_comp); } mutex_unlock(&sched->m_reconf); return ret; } EXPORT_SYMBOL_GPL(slim_ctrl_clk_pause);
linux-master
drivers/slimbus/sched.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2011-2017, The Linux Foundation */ #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/idr.h> #include <linux/of.h> #include <linux/of_device.h> #include <linux/pm_runtime.h> #include <linux/slimbus.h> #include "slimbus.h" static DEFINE_IDA(ctrl_ida); static const struct slim_device_id *slim_match(const struct slim_device_id *id, const struct slim_device *sbdev) { while (id->manf_id != 0 || id->prod_code != 0) { if (id->manf_id == sbdev->e_addr.manf_id && id->prod_code == sbdev->e_addr.prod_code && id->dev_index == sbdev->e_addr.dev_index && id->instance == sbdev->e_addr.instance) return id; id++; } return NULL; } static int slim_device_match(struct device *dev, struct device_driver *drv) { struct slim_device *sbdev = to_slim_device(dev); struct slim_driver *sbdrv = to_slim_driver(drv); /* Attempt an OF style match first */ if (of_driver_match_device(dev, drv)) return 1; return !!slim_match(sbdrv->id_table, sbdev); } static void slim_device_update_status(struct slim_device *sbdev, enum slim_device_status status) { struct slim_driver *sbdrv; if (sbdev->status == status) return; sbdev->status = status; if (!sbdev->dev.driver) return; sbdrv = to_slim_driver(sbdev->dev.driver); if (sbdrv->device_status) sbdrv->device_status(sbdev, sbdev->status); } static int slim_device_probe(struct device *dev) { struct slim_device *sbdev = to_slim_device(dev); struct slim_driver *sbdrv = to_slim_driver(dev->driver); int ret; ret = sbdrv->probe(sbdev); if (ret) return ret; /* try getting the logical address after probe */ ret = slim_get_logical_addr(sbdev); if (!ret) { slim_device_update_status(sbdev, SLIM_DEVICE_STATUS_UP); } else { dev_err(&sbdev->dev, "Failed to get logical address\n"); ret = -EPROBE_DEFER; } return ret; } static void slim_device_remove(struct device *dev) { struct slim_device *sbdev = to_slim_device(dev); struct slim_driver *sbdrv; if (dev->driver) { sbdrv = to_slim_driver(dev->driver); if (sbdrv->remove) sbdrv->remove(sbdev); } } static int slim_device_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct slim_device *sbdev = to_slim_device(dev); return add_uevent_var(env, "MODALIAS=slim:%s", dev_name(&sbdev->dev)); } struct bus_type slimbus_bus = { .name = "slimbus", .match = slim_device_match, .probe = slim_device_probe, .remove = slim_device_remove, .uevent = slim_device_uevent, }; EXPORT_SYMBOL_GPL(slimbus_bus); /* * __slim_driver_register() - Client driver registration with SLIMbus * * @drv:Client driver to be associated with client-device. * @owner: owning module/driver * * This API will register the client driver with the SLIMbus * It is called from the driver's module-init function. */ int __slim_driver_register(struct slim_driver *drv, struct module *owner) { /* ID table and probe are mandatory */ if (!(drv->driver.of_match_table || drv->id_table) || !drv->probe) return -EINVAL; drv->driver.bus = &slimbus_bus; drv->driver.owner = owner; return driver_register(&drv->driver); } EXPORT_SYMBOL_GPL(__slim_driver_register); /* * slim_driver_unregister() - Undo effect of slim_driver_register * * @drv: Client driver to be unregistered */ void slim_driver_unregister(struct slim_driver *drv) { driver_unregister(&drv->driver); } EXPORT_SYMBOL_GPL(slim_driver_unregister); static void slim_dev_release(struct device *dev) { struct slim_device *sbdev = to_slim_device(dev); kfree(sbdev); } static int slim_add_device(struct slim_controller *ctrl, struct slim_device *sbdev, struct device_node *node) { sbdev->dev.bus = &slimbus_bus; sbdev->dev.parent = ctrl->dev; sbdev->dev.release = slim_dev_release; sbdev->dev.driver = NULL; sbdev->ctrl = ctrl; INIT_LIST_HEAD(&sbdev->stream_list); spin_lock_init(&sbdev->stream_list_lock); sbdev->dev.of_node = of_node_get(node); sbdev->dev.fwnode = of_fwnode_handle(node); dev_set_name(&sbdev->dev, "%x:%x:%x:%x", sbdev->e_addr.manf_id, sbdev->e_addr.prod_code, sbdev->e_addr.dev_index, sbdev->e_addr.instance); return device_register(&sbdev->dev); } static struct slim_device *slim_alloc_device(struct slim_controller *ctrl, struct slim_eaddr *eaddr, struct device_node *node) { struct slim_device *sbdev; int ret; sbdev = kzalloc(sizeof(*sbdev), GFP_KERNEL); if (!sbdev) return NULL; sbdev->e_addr = *eaddr; ret = slim_add_device(ctrl, sbdev, node); if (ret) { put_device(&sbdev->dev); return NULL; } return sbdev; } static void of_register_slim_devices(struct slim_controller *ctrl) { struct device *dev = ctrl->dev; struct device_node *node; if (!ctrl->dev->of_node) return; for_each_child_of_node(ctrl->dev->of_node, node) { struct slim_device *sbdev; struct slim_eaddr e_addr; const char *compat = NULL; int reg[2], ret; int manf_id, prod_code; compat = of_get_property(node, "compatible", NULL); if (!compat) continue; ret = sscanf(compat, "slim%x,%x", &manf_id, &prod_code); if (ret != 2) { dev_err(dev, "Manf ID & Product code not found %s\n", compat); continue; } ret = of_property_read_u32_array(node, "reg", reg, 2); if (ret) { dev_err(dev, "Device and Instance id not found:%d\n", ret); continue; } e_addr.dev_index = reg[0]; e_addr.instance = reg[1]; e_addr.manf_id = manf_id; e_addr.prod_code = prod_code; sbdev = slim_alloc_device(ctrl, &e_addr, node); if (!sbdev) continue; } } /* * slim_register_controller() - Controller bring-up and registration. * * @ctrl: Controller to be registered. * * A controller is registered with the framework using this API. * If devices on a controller were registered before controller, * this will make sure that they get probed when controller is up */ int slim_register_controller(struct slim_controller *ctrl) { int id; id = ida_alloc(&ctrl_ida, GFP_KERNEL); if (id < 0) return id; ctrl->id = id; if (!ctrl->min_cg) ctrl->min_cg = SLIM_MIN_CLK_GEAR; if (!ctrl->max_cg) ctrl->max_cg = SLIM_MAX_CLK_GEAR; ida_init(&ctrl->laddr_ida); idr_init(&ctrl->tid_idr); mutex_init(&ctrl->lock); mutex_init(&ctrl->sched.m_reconf); init_completion(&ctrl->sched.pause_comp); spin_lock_init(&ctrl->txn_lock); dev_dbg(ctrl->dev, "Bus [%s] registered:dev:%p\n", ctrl->name, ctrl->dev); of_register_slim_devices(ctrl); return 0; } EXPORT_SYMBOL_GPL(slim_register_controller); /* slim_remove_device: Remove the effect of slim_add_device() */ static void slim_remove_device(struct slim_device *sbdev) { of_node_put(sbdev->dev.of_node); device_unregister(&sbdev->dev); } static int slim_ctrl_remove_device(struct device *dev, void *null) { slim_remove_device(to_slim_device(dev)); return 0; } /** * slim_unregister_controller() - Controller tear-down. * * @ctrl: Controller to tear-down. */ int slim_unregister_controller(struct slim_controller *ctrl) { /* Remove all clients */ device_for_each_child(ctrl->dev, NULL, slim_ctrl_remove_device); ida_free(&ctrl_ida, ctrl->id); return 0; } EXPORT_SYMBOL_GPL(slim_unregister_controller); /** * slim_report_absent() - Controller calls this function when a device * reports absent, OR when the device cannot be communicated with * * @sbdev: Device that cannot be reached, or sent report absent */ void slim_report_absent(struct slim_device *sbdev) { struct slim_controller *ctrl = sbdev->ctrl; if (!ctrl) return; /* invalidate logical addresses */ mutex_lock(&ctrl->lock); sbdev->is_laddr_valid = false; mutex_unlock(&ctrl->lock); if (!ctrl->get_laddr) ida_free(&ctrl->laddr_ida, sbdev->laddr); slim_device_update_status(sbdev, SLIM_DEVICE_STATUS_DOWN); } EXPORT_SYMBOL_GPL(slim_report_absent); static bool slim_eaddr_equal(struct slim_eaddr *a, struct slim_eaddr *b) { return (a->manf_id == b->manf_id && a->prod_code == b->prod_code && a->dev_index == b->dev_index && a->instance == b->instance); } static int slim_match_dev(struct device *dev, void *data) { struct slim_eaddr *e_addr = data; struct slim_device *sbdev = to_slim_device(dev); return slim_eaddr_equal(&sbdev->e_addr, e_addr); } static struct slim_device *find_slim_device(struct slim_controller *ctrl, struct slim_eaddr *eaddr) { struct slim_device *sbdev; struct device *dev; dev = device_find_child(ctrl->dev, eaddr, slim_match_dev); if (dev) { sbdev = to_slim_device(dev); return sbdev; } return NULL; } /** * slim_get_device() - get handle to a device. * * @ctrl: Controller on which this device will be added/queried * @e_addr: Enumeration address of the device to be queried * * Return: pointer to a device if it has already reported. Creates a new * device and returns pointer to it if the device has not yet enumerated. */ struct slim_device *slim_get_device(struct slim_controller *ctrl, struct slim_eaddr *e_addr) { struct slim_device *sbdev; sbdev = find_slim_device(ctrl, e_addr); if (!sbdev) { sbdev = slim_alloc_device(ctrl, e_addr, NULL); if (!sbdev) return ERR_PTR(-ENOMEM); } return sbdev; } EXPORT_SYMBOL_GPL(slim_get_device); static int of_slim_match_dev(struct device *dev, void *data) { struct device_node *np = data; struct slim_device *sbdev = to_slim_device(dev); return (sbdev->dev.of_node == np); } static struct slim_device *of_find_slim_device(struct slim_controller *ctrl, struct device_node *np) { struct slim_device *sbdev; struct device *dev; dev = device_find_child(ctrl->dev, np, of_slim_match_dev); if (dev) { sbdev = to_slim_device(dev); return sbdev; } return NULL; } /** * of_slim_get_device() - get handle to a device using dt node. * * @ctrl: Controller on which this device will be added/queried * @np: node pointer to device * * Return: pointer to a device if it has already reported. Creates a new * device and returns pointer to it if the device has not yet enumerated. */ struct slim_device *of_slim_get_device(struct slim_controller *ctrl, struct device_node *np) { return of_find_slim_device(ctrl, np); } EXPORT_SYMBOL_GPL(of_slim_get_device); static int slim_device_alloc_laddr(struct slim_device *sbdev, bool report_present) { struct slim_controller *ctrl = sbdev->ctrl; u8 laddr; int ret; mutex_lock(&ctrl->lock); if (ctrl->get_laddr) { ret = ctrl->get_laddr(ctrl, &sbdev->e_addr, &laddr); if (ret < 0) goto err; } else if (report_present) { ret = ida_simple_get(&ctrl->laddr_ida, 0, SLIM_LA_MANAGER - 1, GFP_KERNEL); if (ret < 0) goto err; laddr = ret; } else { ret = -EINVAL; goto err; } if (ctrl->set_laddr) { ret = ctrl->set_laddr(ctrl, &sbdev->e_addr, laddr); if (ret) { ret = -EINVAL; goto err; } } sbdev->laddr = laddr; sbdev->is_laddr_valid = true; mutex_unlock(&ctrl->lock); slim_device_update_status(sbdev, SLIM_DEVICE_STATUS_UP); dev_dbg(ctrl->dev, "setting slimbus l-addr:%x, ea:%x,%x,%x,%x\n", laddr, sbdev->e_addr.manf_id, sbdev->e_addr.prod_code, sbdev->e_addr.dev_index, sbdev->e_addr.instance); return 0; err: mutex_unlock(&ctrl->lock); return ret; } /** * slim_device_report_present() - Report enumerated device. * * @ctrl: Controller with which device is enumerated. * @e_addr: Enumeration address of the device. * @laddr: Return logical address (if valid flag is false) * * Called by controller in response to REPORT_PRESENT. Framework will assign * a logical address to this enumeration address. * Function returns -EXFULL to indicate that all logical addresses are already * taken. */ int slim_device_report_present(struct slim_controller *ctrl, struct slim_eaddr *e_addr, u8 *laddr) { struct slim_device *sbdev; int ret; ret = pm_runtime_get_sync(ctrl->dev); if (ctrl->sched.clk_state != SLIM_CLK_ACTIVE) { dev_err(ctrl->dev, "slim ctrl not active,state:%d, ret:%d\n", ctrl->sched.clk_state, ret); goto slimbus_not_active; } sbdev = slim_get_device(ctrl, e_addr); if (IS_ERR(sbdev)) return -ENODEV; if (sbdev->is_laddr_valid) { *laddr = sbdev->laddr; return 0; } ret = slim_device_alloc_laddr(sbdev, true); slimbus_not_active: pm_runtime_mark_last_busy(ctrl->dev); pm_runtime_put_autosuspend(ctrl->dev); return ret; } EXPORT_SYMBOL_GPL(slim_device_report_present); /** * slim_get_logical_addr() - get/allocate logical address of a SLIMbus device. * * @sbdev: client handle requesting the address. * * Return: zero if a logical address is valid or a new logical address * has been assigned. error code in case of error. */ int slim_get_logical_addr(struct slim_device *sbdev) { if (!sbdev->is_laddr_valid) return slim_device_alloc_laddr(sbdev, false); return 0; } EXPORT_SYMBOL_GPL(slim_get_logical_addr); static void __exit slimbus_exit(void) { bus_unregister(&slimbus_bus); } module_exit(slimbus_exit); static int __init slimbus_init(void) { return bus_register(&slimbus_bus); } postcore_initcall(slimbus_init); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("SLIMbus core");
linux-master
drivers/slimbus/core.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2011-2017, The Linux Foundation. All rights reserved. // Copyright (c) 2018, Linaro Limited #include <linux/irq.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/slimbus.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <linux/mutex.h> #include <linux/notifier.h> #include <linux/remoteproc/qcom_rproc.h> #include <linux/of.h> #include <linux/io.h> #include <linux/soc/qcom/qmi.h> #include <linux/soc/qcom/pdr.h> #include <net/sock.h> #include "slimbus.h" /* NGD (Non-ported Generic Device) registers */ #define NGD_CFG 0x0 #define NGD_CFG_ENABLE BIT(0) #define NGD_CFG_RX_MSGQ_EN BIT(1) #define NGD_CFG_TX_MSGQ_EN BIT(2) #define NGD_STATUS 0x4 #define NGD_LADDR BIT(1) #define NGD_RX_MSGQ_CFG 0x8 #define NGD_INT_EN 0x10 #define NGD_INT_RECFG_DONE BIT(24) #define NGD_INT_TX_NACKED_2 BIT(25) #define NGD_INT_MSG_BUF_CONTE BIT(26) #define NGD_INT_MSG_TX_INVAL BIT(27) #define NGD_INT_IE_VE_CHG BIT(28) #define NGD_INT_DEV_ERR BIT(29) #define NGD_INT_RX_MSG_RCVD BIT(30) #define NGD_INT_TX_MSG_SENT BIT(31) #define NGD_INT_STAT 0x14 #define NGD_INT_CLR 0x18 #define DEF_NGD_INT_MASK (NGD_INT_TX_NACKED_2 | NGD_INT_MSG_BUF_CONTE | \ NGD_INT_MSG_TX_INVAL | NGD_INT_IE_VE_CHG | \ NGD_INT_DEV_ERR | NGD_INT_TX_MSG_SENT | \ NGD_INT_RX_MSG_RCVD) /* Slimbus QMI service */ #define SLIMBUS_QMI_SVC_ID 0x0301 #define SLIMBUS_QMI_SVC_V1 1 #define SLIMBUS_QMI_INS_ID 0 #define SLIMBUS_QMI_SELECT_INSTANCE_REQ_V01 0x0020 #define SLIMBUS_QMI_SELECT_INSTANCE_RESP_V01 0x0020 #define SLIMBUS_QMI_POWER_REQ_V01 0x0021 #define SLIMBUS_QMI_POWER_RESP_V01 0x0021 #define SLIMBUS_QMI_CHECK_FRAMER_STATUS_REQ 0x0022 #define SLIMBUS_QMI_CHECK_FRAMER_STATUS_RESP 0x0022 #define SLIMBUS_QMI_POWER_REQ_MAX_MSG_LEN 14 #define SLIMBUS_QMI_POWER_RESP_MAX_MSG_LEN 7 #define SLIMBUS_QMI_SELECT_INSTANCE_REQ_MAX_MSG_LEN 14 #define SLIMBUS_QMI_SELECT_INSTANCE_RESP_MAX_MSG_LEN 7 #define SLIMBUS_QMI_CHECK_FRAMER_STAT_RESP_MAX_MSG_LEN 7 /* QMI response timeout of 500ms */ #define SLIMBUS_QMI_RESP_TOUT 1000 /* User defined commands */ #define SLIM_USR_MC_GENERIC_ACK 0x25 #define SLIM_USR_MC_MASTER_CAPABILITY 0x0 #define SLIM_USR_MC_REPORT_SATELLITE 0x1 #define SLIM_USR_MC_ADDR_QUERY 0xD #define SLIM_USR_MC_ADDR_REPLY 0xE #define SLIM_USR_MC_DEFINE_CHAN 0x20 #define SLIM_USR_MC_DEF_ACT_CHAN 0x21 #define SLIM_USR_MC_CHAN_CTRL 0x23 #define SLIM_USR_MC_RECONFIG_NOW 0x24 #define SLIM_USR_MC_REQ_BW 0x28 #define SLIM_USR_MC_CONNECT_SRC 0x2C #define SLIM_USR_MC_CONNECT_SINK 0x2D #define SLIM_USR_MC_DISCONNECT_PORT 0x2E #define SLIM_USR_MC_REPEAT_CHANGE_VALUE 0x0 #define QCOM_SLIM_NGD_AUTOSUSPEND MSEC_PER_SEC #define SLIM_RX_MSGQ_TIMEOUT_VAL 0x10000 #define SLIM_LA_MGR 0xFF #define SLIM_ROOT_FREQ 24576000 #define LADDR_RETRY 5 /* Per spec.max 40 bytes per received message */ #define SLIM_MSGQ_BUF_LEN 40 #define QCOM_SLIM_NGD_DESC_NUM 32 #define SLIM_MSG_ASM_FIRST_WORD(l, mt, mc, dt, ad) \ ((l) | ((mt) << 5) | ((mc) << 8) | ((dt) << 15) | ((ad) << 16)) #define INIT_MX_RETRIES 10 #define DEF_RETRY_MS 10 #define SAT_MAGIC_LSB 0xD9 #define SAT_MAGIC_MSB 0xC5 #define SAT_MSG_VER 0x1 #define SAT_MSG_PROT 0x1 #define to_ngd(d) container_of(d, struct qcom_slim_ngd, dev) struct ngd_reg_offset_data { u32 offset, size; }; static const struct ngd_reg_offset_data ngd_v1_5_offset_info = { .offset = 0x1000, .size = 0x1000, }; enum qcom_slim_ngd_state { QCOM_SLIM_NGD_CTRL_AWAKE, QCOM_SLIM_NGD_CTRL_IDLE, QCOM_SLIM_NGD_CTRL_ASLEEP, QCOM_SLIM_NGD_CTRL_DOWN, }; struct qcom_slim_ngd_qmi { struct qmi_handle qmi; struct sockaddr_qrtr svc_info; struct qmi_handle svc_event_hdl; struct qmi_response_type_v01 resp; struct qmi_handle *handle; struct completion qmi_comp; }; struct qcom_slim_ngd_ctrl; struct qcom_slim_ngd; struct qcom_slim_ngd_dma_desc { struct dma_async_tx_descriptor *desc; struct qcom_slim_ngd_ctrl *ctrl; struct completion *comp; dma_cookie_t cookie; dma_addr_t phys; void *base; }; struct qcom_slim_ngd { struct platform_device *pdev; void __iomem *base; int id; }; struct qcom_slim_ngd_ctrl { struct slim_framer framer; struct slim_controller ctrl; struct qcom_slim_ngd_qmi qmi; struct qcom_slim_ngd *ngd; struct device *dev; void __iomem *base; struct dma_chan *dma_rx_channel; struct dma_chan *dma_tx_channel; struct qcom_slim_ngd_dma_desc rx_desc[QCOM_SLIM_NGD_DESC_NUM]; struct qcom_slim_ngd_dma_desc txdesc[QCOM_SLIM_NGD_DESC_NUM]; struct completion reconf; struct work_struct m_work; struct work_struct ngd_up_work; struct workqueue_struct *mwq; struct completion qmi_up; spinlock_t tx_buf_lock; struct mutex tx_lock; struct mutex ssr_lock; struct notifier_block nb; void *notifier; struct pdr_handle *pdr; enum qcom_slim_ngd_state state; dma_addr_t rx_phys_base; dma_addr_t tx_phys_base; void *rx_base; void *tx_base; int tx_tail; int tx_head; u32 ver; }; enum slimbus_mode_enum_type_v01 { /* To force a 32 bit signed enum. Do not change or use*/ SLIMBUS_MODE_ENUM_TYPE_MIN_ENUM_VAL_V01 = INT_MIN, SLIMBUS_MODE_SATELLITE_V01 = 1, SLIMBUS_MODE_MASTER_V01 = 2, SLIMBUS_MODE_ENUM_TYPE_MAX_ENUM_VAL_V01 = INT_MAX, }; enum slimbus_pm_enum_type_v01 { /* To force a 32 bit signed enum. Do not change or use*/ SLIMBUS_PM_ENUM_TYPE_MIN_ENUM_VAL_V01 = INT_MIN, SLIMBUS_PM_INACTIVE_V01 = 1, SLIMBUS_PM_ACTIVE_V01 = 2, SLIMBUS_PM_ENUM_TYPE_MAX_ENUM_VAL_V01 = INT_MAX, }; enum slimbus_resp_enum_type_v01 { SLIMBUS_RESP_ENUM_TYPE_MIN_VAL_V01 = INT_MIN, SLIMBUS_RESP_SYNCHRONOUS_V01 = 1, SLIMBUS_RESP_ENUM_TYPE_MAX_VAL_V01 = INT_MAX, }; struct slimbus_select_inst_req_msg_v01 { uint32_t instance; uint8_t mode_valid; enum slimbus_mode_enum_type_v01 mode; }; struct slimbus_select_inst_resp_msg_v01 { struct qmi_response_type_v01 resp; }; struct slimbus_power_req_msg_v01 { enum slimbus_pm_enum_type_v01 pm_req; uint8_t resp_type_valid; enum slimbus_resp_enum_type_v01 resp_type; }; struct slimbus_power_resp_msg_v01 { struct qmi_response_type_v01 resp; }; static struct qmi_elem_info slimbus_select_inst_req_msg_v01_ei[] = { { .data_type = QMI_UNSIGNED_4_BYTE, .elem_len = 1, .elem_size = sizeof(uint32_t), .array_type = NO_ARRAY, .tlv_type = 0x01, .offset = offsetof(struct slimbus_select_inst_req_msg_v01, instance), .ei_array = NULL, }, { .data_type = QMI_OPT_FLAG, .elem_len = 1, .elem_size = sizeof(uint8_t), .array_type = NO_ARRAY, .tlv_type = 0x10, .offset = offsetof(struct slimbus_select_inst_req_msg_v01, mode_valid), .ei_array = NULL, }, { .data_type = QMI_UNSIGNED_4_BYTE, .elem_len = 1, .elem_size = sizeof(enum slimbus_mode_enum_type_v01), .array_type = NO_ARRAY, .tlv_type = 0x10, .offset = offsetof(struct slimbus_select_inst_req_msg_v01, mode), .ei_array = NULL, }, { .data_type = QMI_EOTI, .elem_len = 0, .elem_size = 0, .array_type = NO_ARRAY, .tlv_type = 0x00, .offset = 0, .ei_array = NULL, }, }; static struct qmi_elem_info slimbus_select_inst_resp_msg_v01_ei[] = { { .data_type = QMI_STRUCT, .elem_len = 1, .elem_size = sizeof(struct qmi_response_type_v01), .array_type = NO_ARRAY, .tlv_type = 0x02, .offset = offsetof(struct slimbus_select_inst_resp_msg_v01, resp), .ei_array = qmi_response_type_v01_ei, }, { .data_type = QMI_EOTI, .elem_len = 0, .elem_size = 0, .array_type = NO_ARRAY, .tlv_type = 0x00, .offset = 0, .ei_array = NULL, }, }; static struct qmi_elem_info slimbus_power_req_msg_v01_ei[] = { { .data_type = QMI_UNSIGNED_4_BYTE, .elem_len = 1, .elem_size = sizeof(enum slimbus_pm_enum_type_v01), .array_type = NO_ARRAY, .tlv_type = 0x01, .offset = offsetof(struct slimbus_power_req_msg_v01, pm_req), .ei_array = NULL, }, { .data_type = QMI_OPT_FLAG, .elem_len = 1, .elem_size = sizeof(uint8_t), .array_type = NO_ARRAY, .tlv_type = 0x10, .offset = offsetof(struct slimbus_power_req_msg_v01, resp_type_valid), }, { .data_type = QMI_SIGNED_4_BYTE_ENUM, .elem_len = 1, .elem_size = sizeof(enum slimbus_resp_enum_type_v01), .array_type = NO_ARRAY, .tlv_type = 0x10, .offset = offsetof(struct slimbus_power_req_msg_v01, resp_type), }, { .data_type = QMI_EOTI, .elem_len = 0, .elem_size = 0, .array_type = NO_ARRAY, .tlv_type = 0x00, .offset = 0, .ei_array = NULL, }, }; static struct qmi_elem_info slimbus_power_resp_msg_v01_ei[] = { { .data_type = QMI_STRUCT, .elem_len = 1, .elem_size = sizeof(struct qmi_response_type_v01), .array_type = NO_ARRAY, .tlv_type = 0x02, .offset = offsetof(struct slimbus_power_resp_msg_v01, resp), .ei_array = qmi_response_type_v01_ei, }, { .data_type = QMI_EOTI, .elem_len = 0, .elem_size = 0, .array_type = NO_ARRAY, .tlv_type = 0x00, .offset = 0, .ei_array = NULL, }, }; static int qcom_slim_qmi_send_select_inst_req(struct qcom_slim_ngd_ctrl *ctrl, struct slimbus_select_inst_req_msg_v01 *req) { struct slimbus_select_inst_resp_msg_v01 resp = { { 0, 0 } }; struct qmi_txn txn; int rc; rc = qmi_txn_init(ctrl->qmi.handle, &txn, slimbus_select_inst_resp_msg_v01_ei, &resp); if (rc < 0) { dev_err(ctrl->dev, "QMI TXN init fail: %d\n", rc); return rc; } rc = qmi_send_request(ctrl->qmi.handle, NULL, &txn, SLIMBUS_QMI_SELECT_INSTANCE_REQ_V01, SLIMBUS_QMI_SELECT_INSTANCE_REQ_MAX_MSG_LEN, slimbus_select_inst_req_msg_v01_ei, req); if (rc < 0) { dev_err(ctrl->dev, "QMI send req fail %d\n", rc); qmi_txn_cancel(&txn); return rc; } rc = qmi_txn_wait(&txn, SLIMBUS_QMI_RESP_TOUT); if (rc < 0) { dev_err(ctrl->dev, "QMI TXN wait fail: %d\n", rc); return rc; } /* Check the response */ if (resp.resp.result != QMI_RESULT_SUCCESS_V01) { dev_err(ctrl->dev, "QMI request failed 0x%x\n", resp.resp.result); return -EREMOTEIO; } return 0; } static void qcom_slim_qmi_power_resp_cb(struct qmi_handle *handle, struct sockaddr_qrtr *sq, struct qmi_txn *txn, const void *data) { struct slimbus_power_resp_msg_v01 *resp; resp = (struct slimbus_power_resp_msg_v01 *)data; if (resp->resp.result != QMI_RESULT_SUCCESS_V01) pr_err("QMI power request failed 0x%x\n", resp->resp.result); complete(&txn->completion); } static int qcom_slim_qmi_send_power_request(struct qcom_slim_ngd_ctrl *ctrl, struct slimbus_power_req_msg_v01 *req) { struct slimbus_power_resp_msg_v01 resp = { { 0, 0 } }; struct qmi_txn txn; int rc; rc = qmi_txn_init(ctrl->qmi.handle, &txn, slimbus_power_resp_msg_v01_ei, &resp); rc = qmi_send_request(ctrl->qmi.handle, NULL, &txn, SLIMBUS_QMI_POWER_REQ_V01, SLIMBUS_QMI_POWER_REQ_MAX_MSG_LEN, slimbus_power_req_msg_v01_ei, req); if (rc < 0) { dev_err(ctrl->dev, "QMI send req fail %d\n", rc); qmi_txn_cancel(&txn); return rc; } rc = qmi_txn_wait(&txn, SLIMBUS_QMI_RESP_TOUT); if (rc < 0) { dev_err(ctrl->dev, "QMI TXN wait fail: %d\n", rc); return rc; } /* Check the response */ if (resp.resp.result != QMI_RESULT_SUCCESS_V01) { dev_err(ctrl->dev, "QMI request failed 0x%x\n", resp.resp.result); return -EREMOTEIO; } return 0; } static const struct qmi_msg_handler qcom_slim_qmi_msg_handlers[] = { { .type = QMI_RESPONSE, .msg_id = SLIMBUS_QMI_POWER_RESP_V01, .ei = slimbus_power_resp_msg_v01_ei, .decoded_size = sizeof(struct slimbus_power_resp_msg_v01), .fn = qcom_slim_qmi_power_resp_cb, }, {} }; static int qcom_slim_qmi_init(struct qcom_slim_ngd_ctrl *ctrl, bool apps_is_master) { struct slimbus_select_inst_req_msg_v01 req; struct qmi_handle *handle; int rc; handle = devm_kzalloc(ctrl->dev, sizeof(*handle), GFP_KERNEL); if (!handle) return -ENOMEM; rc = qmi_handle_init(handle, SLIMBUS_QMI_POWER_REQ_MAX_MSG_LEN, NULL, qcom_slim_qmi_msg_handlers); if (rc < 0) { dev_err(ctrl->dev, "QMI client init failed: %d\n", rc); goto qmi_handle_init_failed; } rc = kernel_connect(handle->sock, (struct sockaddr *)&ctrl->qmi.svc_info, sizeof(ctrl->qmi.svc_info), 0); if (rc < 0) { dev_err(ctrl->dev, "Remote Service connect failed: %d\n", rc); goto qmi_connect_to_service_failed; } /* Instance is 0 based */ req.instance = (ctrl->ngd->id >> 1); req.mode_valid = 1; /* Mode indicates the role of the ADSP */ if (apps_is_master) req.mode = SLIMBUS_MODE_SATELLITE_V01; else req.mode = SLIMBUS_MODE_MASTER_V01; ctrl->qmi.handle = handle; rc = qcom_slim_qmi_send_select_inst_req(ctrl, &req); if (rc) { dev_err(ctrl->dev, "failed to select h/w instance\n"); goto qmi_select_instance_failed; } return 0; qmi_select_instance_failed: ctrl->qmi.handle = NULL; qmi_connect_to_service_failed: qmi_handle_release(handle); qmi_handle_init_failed: devm_kfree(ctrl->dev, handle); return rc; } static void qcom_slim_qmi_exit(struct qcom_slim_ngd_ctrl *ctrl) { if (!ctrl->qmi.handle) return; qmi_handle_release(ctrl->qmi.handle); devm_kfree(ctrl->dev, ctrl->qmi.handle); ctrl->qmi.handle = NULL; } static int qcom_slim_qmi_power_request(struct qcom_slim_ngd_ctrl *ctrl, bool active) { struct slimbus_power_req_msg_v01 req; if (active) req.pm_req = SLIMBUS_PM_ACTIVE_V01; else req.pm_req = SLIMBUS_PM_INACTIVE_V01; req.resp_type_valid = 0; return qcom_slim_qmi_send_power_request(ctrl, &req); } static u32 *qcom_slim_ngd_tx_msg_get(struct qcom_slim_ngd_ctrl *ctrl, int len, struct completion *comp) { struct qcom_slim_ngd_dma_desc *desc; unsigned long flags; spin_lock_irqsave(&ctrl->tx_buf_lock, flags); if ((ctrl->tx_tail + 1) % QCOM_SLIM_NGD_DESC_NUM == ctrl->tx_head) { spin_unlock_irqrestore(&ctrl->tx_buf_lock, flags); return NULL; } desc = &ctrl->txdesc[ctrl->tx_tail]; desc->base = ctrl->tx_base + ctrl->tx_tail * SLIM_MSGQ_BUF_LEN; desc->comp = comp; ctrl->tx_tail = (ctrl->tx_tail + 1) % QCOM_SLIM_NGD_DESC_NUM; spin_unlock_irqrestore(&ctrl->tx_buf_lock, flags); return desc->base; } static void qcom_slim_ngd_tx_msg_dma_cb(void *args) { struct qcom_slim_ngd_dma_desc *desc = args; struct qcom_slim_ngd_ctrl *ctrl = desc->ctrl; unsigned long flags; spin_lock_irqsave(&ctrl->tx_buf_lock, flags); if (desc->comp) { complete(desc->comp); desc->comp = NULL; } ctrl->tx_head = (ctrl->tx_head + 1) % QCOM_SLIM_NGD_DESC_NUM; spin_unlock_irqrestore(&ctrl->tx_buf_lock, flags); } static int qcom_slim_ngd_tx_msg_post(struct qcom_slim_ngd_ctrl *ctrl, void *buf, int len) { struct qcom_slim_ngd_dma_desc *desc; unsigned long flags; int index, offset; spin_lock_irqsave(&ctrl->tx_buf_lock, flags); offset = buf - ctrl->tx_base; index = offset/SLIM_MSGQ_BUF_LEN; desc = &ctrl->txdesc[index]; desc->phys = ctrl->tx_phys_base + offset; desc->base = ctrl->tx_base + offset; desc->ctrl = ctrl; len = (len + 3) & 0xfc; desc->desc = dmaengine_prep_slave_single(ctrl->dma_tx_channel, desc->phys, len, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); if (!desc->desc) { dev_err(ctrl->dev, "unable to prepare channel\n"); spin_unlock_irqrestore(&ctrl->tx_buf_lock, flags); return -EINVAL; } desc->desc->callback = qcom_slim_ngd_tx_msg_dma_cb; desc->desc->callback_param = desc; desc->desc->cookie = dmaengine_submit(desc->desc); dma_async_issue_pending(ctrl->dma_tx_channel); spin_unlock_irqrestore(&ctrl->tx_buf_lock, flags); return 0; } static void qcom_slim_ngd_rx(struct qcom_slim_ngd_ctrl *ctrl, u8 *buf) { u8 mc, mt, len; mt = SLIM_HEADER_GET_MT(buf[0]); len = SLIM_HEADER_GET_RL(buf[0]); mc = SLIM_HEADER_GET_MC(buf[1]); if (mc == SLIM_USR_MC_MASTER_CAPABILITY && mt == SLIM_MSG_MT_SRC_REFERRED_USER) queue_work(ctrl->mwq, &ctrl->m_work); if (mc == SLIM_MSG_MC_REPLY_INFORMATION || mc == SLIM_MSG_MC_REPLY_VALUE || (mc == SLIM_USR_MC_ADDR_REPLY && mt == SLIM_MSG_MT_SRC_REFERRED_USER) || (mc == SLIM_USR_MC_GENERIC_ACK && mt == SLIM_MSG_MT_SRC_REFERRED_USER)) { slim_msg_response(&ctrl->ctrl, &buf[4], buf[3], len - 4); pm_runtime_mark_last_busy(ctrl->ctrl.dev); } } static void qcom_slim_ngd_rx_msgq_cb(void *args) { struct qcom_slim_ngd_dma_desc *desc = args; struct qcom_slim_ngd_ctrl *ctrl = desc->ctrl; qcom_slim_ngd_rx(ctrl, (u8 *)desc->base); /* Add descriptor back to the queue */ desc->desc = dmaengine_prep_slave_single(ctrl->dma_rx_channel, desc->phys, SLIM_MSGQ_BUF_LEN, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!desc->desc) { dev_err(ctrl->dev, "Unable to prepare rx channel\n"); return; } desc->desc->callback = qcom_slim_ngd_rx_msgq_cb; desc->desc->callback_param = desc; desc->desc->cookie = dmaengine_submit(desc->desc); dma_async_issue_pending(ctrl->dma_rx_channel); } static int qcom_slim_ngd_post_rx_msgq(struct qcom_slim_ngd_ctrl *ctrl) { struct qcom_slim_ngd_dma_desc *desc; int i; for (i = 0; i < QCOM_SLIM_NGD_DESC_NUM; i++) { desc = &ctrl->rx_desc[i]; desc->phys = ctrl->rx_phys_base + i * SLIM_MSGQ_BUF_LEN; desc->ctrl = ctrl; desc->base = ctrl->rx_base + i * SLIM_MSGQ_BUF_LEN; desc->desc = dmaengine_prep_slave_single(ctrl->dma_rx_channel, desc->phys, SLIM_MSGQ_BUF_LEN, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); if (!desc->desc) { dev_err(ctrl->dev, "Unable to prepare rx channel\n"); return -EINVAL; } desc->desc->callback = qcom_slim_ngd_rx_msgq_cb; desc->desc->callback_param = desc; desc->desc->cookie = dmaengine_submit(desc->desc); } dma_async_issue_pending(ctrl->dma_rx_channel); return 0; } static int qcom_slim_ngd_init_rx_msgq(struct qcom_slim_ngd_ctrl *ctrl) { struct device *dev = ctrl->dev; int ret, size; ctrl->dma_rx_channel = dma_request_chan(dev, "rx"); if (IS_ERR(ctrl->dma_rx_channel)) { dev_err(dev, "Failed to request RX dma channel"); ret = PTR_ERR(ctrl->dma_rx_channel); ctrl->dma_rx_channel = NULL; return ret; } size = QCOM_SLIM_NGD_DESC_NUM * SLIM_MSGQ_BUF_LEN; ctrl->rx_base = dma_alloc_coherent(dev, size, &ctrl->rx_phys_base, GFP_KERNEL); if (!ctrl->rx_base) { ret = -ENOMEM; goto rel_rx; } ret = qcom_slim_ngd_post_rx_msgq(ctrl); if (ret) { dev_err(dev, "post_rx_msgq() failed 0x%x\n", ret); goto rx_post_err; } return 0; rx_post_err: dma_free_coherent(dev, size, ctrl->rx_base, ctrl->rx_phys_base); rel_rx: dma_release_channel(ctrl->dma_rx_channel); return ret; } static int qcom_slim_ngd_init_tx_msgq(struct qcom_slim_ngd_ctrl *ctrl) { struct device *dev = ctrl->dev; unsigned long flags; int ret = 0; int size; ctrl->dma_tx_channel = dma_request_chan(dev, "tx"); if (IS_ERR(ctrl->dma_tx_channel)) { dev_err(dev, "Failed to request TX dma channel"); ret = PTR_ERR(ctrl->dma_tx_channel); ctrl->dma_tx_channel = NULL; return ret; } size = ((QCOM_SLIM_NGD_DESC_NUM + 1) * SLIM_MSGQ_BUF_LEN); ctrl->tx_base = dma_alloc_coherent(dev, size, &ctrl->tx_phys_base, GFP_KERNEL); if (!ctrl->tx_base) { ret = -EINVAL; goto rel_tx; } spin_lock_irqsave(&ctrl->tx_buf_lock, flags); ctrl->tx_tail = 0; ctrl->tx_head = 0; spin_unlock_irqrestore(&ctrl->tx_buf_lock, flags); return 0; rel_tx: dma_release_channel(ctrl->dma_tx_channel); return ret; } static int qcom_slim_ngd_init_dma(struct qcom_slim_ngd_ctrl *ctrl) { int ret = 0; ret = qcom_slim_ngd_init_rx_msgq(ctrl); if (ret) { dev_err(ctrl->dev, "rx dma init failed\n"); return ret; } ret = qcom_slim_ngd_init_tx_msgq(ctrl); if (ret) dev_err(ctrl->dev, "tx dma init failed\n"); return ret; } static irqreturn_t qcom_slim_ngd_interrupt(int irq, void *d) { struct qcom_slim_ngd_ctrl *ctrl = d; void __iomem *base = ctrl->ngd->base; u32 stat; if (pm_runtime_suspended(ctrl->ctrl.dev)) { dev_warn_once(ctrl->dev, "Interrupt received while suspended\n"); return IRQ_NONE; } stat = readl(base + NGD_INT_STAT); if ((stat & NGD_INT_MSG_BUF_CONTE) || (stat & NGD_INT_MSG_TX_INVAL) || (stat & NGD_INT_DEV_ERR) || (stat & NGD_INT_TX_NACKED_2)) { dev_err(ctrl->dev, "Error Interrupt received 0x%x\n", stat); } writel(stat, base + NGD_INT_CLR); return IRQ_HANDLED; } static int qcom_slim_ngd_xfer_msg(struct slim_controller *sctrl, struct slim_msg_txn *txn) { struct qcom_slim_ngd_ctrl *ctrl = dev_get_drvdata(sctrl->dev); DECLARE_COMPLETION_ONSTACK(tx_sent); DECLARE_COMPLETION_ONSTACK(done); int ret, timeout, i; u8 wbuf[SLIM_MSGQ_BUF_LEN]; u8 rbuf[SLIM_MSGQ_BUF_LEN]; u32 *pbuf; u8 *puc; u8 la = txn->la; bool usr_msg = false; if (txn->mt == SLIM_MSG_MT_CORE && (txn->mc >= SLIM_MSG_MC_BEGIN_RECONFIGURATION && txn->mc <= SLIM_MSG_MC_RECONFIGURE_NOW)) return 0; if (txn->dt == SLIM_MSG_DEST_ENUMADDR) return -EPROTONOSUPPORT; if (txn->msg->num_bytes > SLIM_MSGQ_BUF_LEN || txn->rl > SLIM_MSGQ_BUF_LEN) { dev_err(ctrl->dev, "msg exceeds HW limit\n"); return -EINVAL; } pbuf = qcom_slim_ngd_tx_msg_get(ctrl, txn->rl, &tx_sent); if (!pbuf) { dev_err(ctrl->dev, "Message buffer unavailable\n"); return -ENOMEM; } if (txn->mt == SLIM_MSG_MT_CORE && (txn->mc == SLIM_MSG_MC_CONNECT_SOURCE || txn->mc == SLIM_MSG_MC_CONNECT_SINK || txn->mc == SLIM_MSG_MC_DISCONNECT_PORT)) { txn->mt = SLIM_MSG_MT_DEST_REFERRED_USER; switch (txn->mc) { case SLIM_MSG_MC_CONNECT_SOURCE: txn->mc = SLIM_USR_MC_CONNECT_SRC; break; case SLIM_MSG_MC_CONNECT_SINK: txn->mc = SLIM_USR_MC_CONNECT_SINK; break; case SLIM_MSG_MC_DISCONNECT_PORT: txn->mc = SLIM_USR_MC_DISCONNECT_PORT; break; default: return -EINVAL; } usr_msg = true; i = 0; wbuf[i++] = txn->la; la = SLIM_LA_MGR; wbuf[i++] = txn->msg->wbuf[0]; if (txn->mc != SLIM_USR_MC_DISCONNECT_PORT) wbuf[i++] = txn->msg->wbuf[1]; txn->comp = &done; ret = slim_alloc_txn_tid(sctrl, txn); if (ret) { dev_err(ctrl->dev, "Unable to allocate TID\n"); return ret; } wbuf[i++] = txn->tid; txn->msg->num_bytes = i; txn->msg->wbuf = wbuf; txn->msg->rbuf = rbuf; txn->rl = txn->msg->num_bytes + 4; } /* HW expects length field to be excluded */ txn->rl--; puc = (u8 *)pbuf; *pbuf = 0; if (txn->dt == SLIM_MSG_DEST_LOGICALADDR) { *pbuf = SLIM_MSG_ASM_FIRST_WORD(txn->rl, txn->mt, txn->mc, 0, la); puc += 3; } else { *pbuf = SLIM_MSG_ASM_FIRST_WORD(txn->rl, txn->mt, txn->mc, 1, la); puc += 2; } if (slim_tid_txn(txn->mt, txn->mc)) *(puc++) = txn->tid; if (slim_ec_txn(txn->mt, txn->mc)) { *(puc++) = (txn->ec & 0xFF); *(puc++) = (txn->ec >> 8) & 0xFF; } if (txn->msg && txn->msg->wbuf) memcpy(puc, txn->msg->wbuf, txn->msg->num_bytes); mutex_lock(&ctrl->tx_lock); ret = qcom_slim_ngd_tx_msg_post(ctrl, pbuf, txn->rl); if (ret) { mutex_unlock(&ctrl->tx_lock); return ret; } timeout = wait_for_completion_timeout(&tx_sent, HZ); if (!timeout) { dev_err(sctrl->dev, "TX timed out:MC:0x%x,mt:0x%x", txn->mc, txn->mt); mutex_unlock(&ctrl->tx_lock); return -ETIMEDOUT; } if (usr_msg) { timeout = wait_for_completion_timeout(&done, HZ); if (!timeout) { dev_err(sctrl->dev, "TX timed out:MC:0x%x,mt:0x%x", txn->mc, txn->mt); mutex_unlock(&ctrl->tx_lock); return -ETIMEDOUT; } } mutex_unlock(&ctrl->tx_lock); return 0; } static int qcom_slim_ngd_xfer_msg_sync(struct slim_controller *ctrl, struct slim_msg_txn *txn) { DECLARE_COMPLETION_ONSTACK(done); int ret, timeout; ret = pm_runtime_get_sync(ctrl->dev); if (ret < 0) goto pm_put; txn->comp = &done; ret = qcom_slim_ngd_xfer_msg(ctrl, txn); if (ret) goto pm_put; timeout = wait_for_completion_timeout(&done, HZ); if (!timeout) { dev_err(ctrl->dev, "TX timed out:MC:0x%x,mt:0x%x", txn->mc, txn->mt); ret = -ETIMEDOUT; goto pm_put; } return 0; pm_put: pm_runtime_put(ctrl->dev); return ret; } static int qcom_slim_calc_coef(struct slim_stream_runtime *rt, int *exp) { struct slim_controller *ctrl = rt->dev->ctrl; int coef; if (rt->ratem * ctrl->a_framer->superfreq < rt->rate) rt->ratem++; coef = rt->ratem; *exp = 0; /* * CRM = Cx(2^E) is the formula we are using. * Here C is the coffecient and E is the exponent. * CRM is the Channel Rate Multiplier. * Coefficeint should be either 1 or 3 and exponenet * should be an integer between 0 to 9, inclusive. */ while (1) { while ((coef & 0x1) != 0x1) { coef >>= 1; *exp = *exp + 1; } if (coef <= 3) break; coef++; } /* * we rely on the coef value (1 or 3) to set a bit * in the slimbus message packet. This bit is * BIT(5) which is the segment rate coefficient. */ if (coef == 1) { if (*exp > 9) return -EIO; coef = 0; } else { if (*exp > 8) return -EIO; coef = 1; } return coef; } static int qcom_slim_ngd_enable_stream(struct slim_stream_runtime *rt) { struct slim_device *sdev = rt->dev; struct slim_controller *ctrl = sdev->ctrl; struct slim_val_inf msg = {0}; u8 wbuf[SLIM_MSGQ_BUF_LEN]; u8 rbuf[SLIM_MSGQ_BUF_LEN]; struct slim_msg_txn txn = {0,}; int i, ret; txn.mt = SLIM_MSG_MT_DEST_REFERRED_USER; txn.dt = SLIM_MSG_DEST_LOGICALADDR; txn.la = SLIM_LA_MGR; txn.ec = 0; txn.msg = &msg; txn.msg->num_bytes = 0; txn.msg->wbuf = wbuf; txn.msg->rbuf = rbuf; for (i = 0; i < rt->num_ports; i++) { struct slim_port *port = &rt->ports[i]; if (txn.msg->num_bytes == 0) { int exp = 0, coef = 0; wbuf[txn.msg->num_bytes++] = sdev->laddr; wbuf[txn.msg->num_bytes] = rt->bps >> 2 | (port->ch.aux_fmt << 6); /* calculate coef dynamically */ coef = qcom_slim_calc_coef(rt, &exp); if (coef < 0) { dev_err(&sdev->dev, "%s: error calculating coef %d\n", __func__, coef); return -EIO; } if (coef) wbuf[txn.msg->num_bytes] |= BIT(5); txn.msg->num_bytes++; wbuf[txn.msg->num_bytes++] = exp << 4 | rt->prot; if (rt->prot == SLIM_PROTO_ISO) wbuf[txn.msg->num_bytes++] = port->ch.prrate | SLIM_CHANNEL_CONTENT_FL; else wbuf[txn.msg->num_bytes++] = port->ch.prrate; ret = slim_alloc_txn_tid(ctrl, &txn); if (ret) { dev_err(&sdev->dev, "Fail to allocate TID\n"); return -ENXIO; } wbuf[txn.msg->num_bytes++] = txn.tid; } wbuf[txn.msg->num_bytes++] = port->ch.id; } txn.mc = SLIM_USR_MC_DEF_ACT_CHAN; txn.rl = txn.msg->num_bytes + 4; ret = qcom_slim_ngd_xfer_msg_sync(ctrl, &txn); if (ret) { slim_free_txn_tid(ctrl, &txn); dev_err(&sdev->dev, "TX timed out:MC:0x%x,mt:0x%x", txn.mc, txn.mt); return ret; } txn.mc = SLIM_USR_MC_RECONFIG_NOW; txn.msg->num_bytes = 2; wbuf[1] = sdev->laddr; txn.rl = txn.msg->num_bytes + 4; ret = slim_alloc_txn_tid(ctrl, &txn); if (ret) { dev_err(ctrl->dev, "Fail to allocate TID\n"); return ret; } wbuf[0] = txn.tid; ret = qcom_slim_ngd_xfer_msg_sync(ctrl, &txn); if (ret) { slim_free_txn_tid(ctrl, &txn); dev_err(&sdev->dev, "TX timed out:MC:0x%x,mt:0x%x", txn.mc, txn.mt); } return ret; } static int qcom_slim_ngd_get_laddr(struct slim_controller *ctrl, struct slim_eaddr *ea, u8 *laddr) { struct slim_val_inf msg = {0}; u8 failed_ea[6] = {0, 0, 0, 0, 0, 0}; struct slim_msg_txn txn; u8 wbuf[10] = {0}; u8 rbuf[10] = {0}; int ret; txn.mt = SLIM_MSG_MT_DEST_REFERRED_USER; txn.dt = SLIM_MSG_DEST_LOGICALADDR; txn.la = SLIM_LA_MGR; txn.ec = 0; txn.mc = SLIM_USR_MC_ADDR_QUERY; txn.rl = 11; txn.msg = &msg; txn.msg->num_bytes = 7; txn.msg->wbuf = wbuf; txn.msg->rbuf = rbuf; ret = slim_alloc_txn_tid(ctrl, &txn); if (ret < 0) return ret; wbuf[0] = (u8)txn.tid; memcpy(&wbuf[1], ea, sizeof(*ea)); ret = qcom_slim_ngd_xfer_msg_sync(ctrl, &txn); if (ret) { slim_free_txn_tid(ctrl, &txn); return ret; } if (!memcmp(rbuf, failed_ea, 6)) return -ENXIO; *laddr = rbuf[6]; return ret; } static int qcom_slim_ngd_exit_dma(struct qcom_slim_ngd_ctrl *ctrl) { if (ctrl->dma_rx_channel) { dmaengine_terminate_sync(ctrl->dma_rx_channel); dma_release_channel(ctrl->dma_rx_channel); } if (ctrl->dma_tx_channel) { dmaengine_terminate_sync(ctrl->dma_tx_channel); dma_release_channel(ctrl->dma_tx_channel); } ctrl->dma_tx_channel = ctrl->dma_rx_channel = NULL; return 0; } static void qcom_slim_ngd_setup(struct qcom_slim_ngd_ctrl *ctrl) { u32 cfg = readl_relaxed(ctrl->ngd->base); if (ctrl->state == QCOM_SLIM_NGD_CTRL_DOWN || ctrl->state == QCOM_SLIM_NGD_CTRL_ASLEEP) qcom_slim_ngd_init_dma(ctrl); /* By default enable message queues */ cfg |= NGD_CFG_RX_MSGQ_EN; cfg |= NGD_CFG_TX_MSGQ_EN; /* Enable NGD if it's not already enabled*/ if (!(cfg & NGD_CFG_ENABLE)) cfg |= NGD_CFG_ENABLE; writel_relaxed(cfg, ctrl->ngd->base); } static int qcom_slim_ngd_power_up(struct qcom_slim_ngd_ctrl *ctrl) { enum qcom_slim_ngd_state cur_state = ctrl->state; struct qcom_slim_ngd *ngd = ctrl->ngd; u32 laddr, rx_msgq; int timeout, ret = 0; if (ctrl->state == QCOM_SLIM_NGD_CTRL_DOWN) { timeout = wait_for_completion_timeout(&ctrl->qmi.qmi_comp, HZ); if (!timeout) return -EREMOTEIO; } if (ctrl->state == QCOM_SLIM_NGD_CTRL_ASLEEP || ctrl->state == QCOM_SLIM_NGD_CTRL_DOWN) { ret = qcom_slim_qmi_power_request(ctrl, true); if (ret) { dev_err(ctrl->dev, "SLIM QMI power request failed:%d\n", ret); return ret; } } ctrl->ver = readl_relaxed(ctrl->base); /* Version info in 16 MSbits */ ctrl->ver >>= 16; laddr = readl_relaxed(ngd->base + NGD_STATUS); if (laddr & NGD_LADDR) { /* * external MDM restart case where ADSP itself was active framer * For example, modem restarted when playback was active */ if (cur_state == QCOM_SLIM_NGD_CTRL_AWAKE) { dev_info(ctrl->dev, "Subsys restart: ADSP active framer\n"); return 0; } qcom_slim_ngd_setup(ctrl); return 0; } /* * Reinitialize only when registers are not retained or when enumeration * is lost for ngd. */ reinit_completion(&ctrl->reconf); writel_relaxed(DEF_NGD_INT_MASK, ngd->base + NGD_INT_EN); rx_msgq = readl_relaxed(ngd->base + NGD_RX_MSGQ_CFG); writel_relaxed(rx_msgq|SLIM_RX_MSGQ_TIMEOUT_VAL, ngd->base + NGD_RX_MSGQ_CFG); qcom_slim_ngd_setup(ctrl); timeout = wait_for_completion_timeout(&ctrl->reconf, HZ); if (!timeout) { dev_err(ctrl->dev, "capability exchange timed-out\n"); return -ETIMEDOUT; } return 0; } static void qcom_slim_ngd_notify_slaves(struct qcom_slim_ngd_ctrl *ctrl) { struct slim_device *sbdev; struct device_node *node; for_each_child_of_node(ctrl->ngd->pdev->dev.of_node, node) { sbdev = of_slim_get_device(&ctrl->ctrl, node); if (!sbdev) continue; if (slim_get_logical_addr(sbdev)) dev_err(ctrl->dev, "Failed to get logical address\n"); } } static void qcom_slim_ngd_master_worker(struct work_struct *work) { struct qcom_slim_ngd_ctrl *ctrl; struct slim_msg_txn txn; struct slim_val_inf msg = {0}; int retries = 0; u8 wbuf[8]; int ret = 0; ctrl = container_of(work, struct qcom_slim_ngd_ctrl, m_work); txn.dt = SLIM_MSG_DEST_LOGICALADDR; txn.ec = 0; txn.mc = SLIM_USR_MC_REPORT_SATELLITE; txn.mt = SLIM_MSG_MT_SRC_REFERRED_USER; txn.la = SLIM_LA_MGR; wbuf[0] = SAT_MAGIC_LSB; wbuf[1] = SAT_MAGIC_MSB; wbuf[2] = SAT_MSG_VER; wbuf[3] = SAT_MSG_PROT; txn.msg = &msg; txn.msg->wbuf = wbuf; txn.msg->num_bytes = 4; txn.rl = 8; dev_info(ctrl->dev, "SLIM SAT: Rcvd master capability\n"); capability_retry: ret = qcom_slim_ngd_xfer_msg(&ctrl->ctrl, &txn); if (!ret) { if (ctrl->state >= QCOM_SLIM_NGD_CTRL_ASLEEP) complete(&ctrl->reconf); else dev_err(ctrl->dev, "unexpected state:%d\n", ctrl->state); if (ctrl->state == QCOM_SLIM_NGD_CTRL_DOWN) qcom_slim_ngd_notify_slaves(ctrl); } else if (ret == -EIO) { dev_err(ctrl->dev, "capability message NACKed, retrying\n"); if (retries < INIT_MX_RETRIES) { msleep(DEF_RETRY_MS); retries++; goto capability_retry; } } else { dev_err(ctrl->dev, "SLIM: capability TX failed:%d\n", ret); } } static int qcom_slim_ngd_update_device_status(struct device *dev, void *null) { slim_report_absent(to_slim_device(dev)); return 0; } static int qcom_slim_ngd_runtime_resume(struct device *dev) { struct qcom_slim_ngd_ctrl *ctrl = dev_get_drvdata(dev); int ret = 0; if (!ctrl->qmi.handle) return 0; if (ctrl->state >= QCOM_SLIM_NGD_CTRL_ASLEEP) ret = qcom_slim_ngd_power_up(ctrl); if (ret) { /* Did SSR cause this power up failure */ if (ctrl->state != QCOM_SLIM_NGD_CTRL_DOWN) ctrl->state = QCOM_SLIM_NGD_CTRL_ASLEEP; else dev_err(ctrl->dev, "HW wakeup attempt during SSR\n"); } else { ctrl->state = QCOM_SLIM_NGD_CTRL_AWAKE; } return 0; } static int qcom_slim_ngd_enable(struct qcom_slim_ngd_ctrl *ctrl, bool enable) { if (enable) { int ret = qcom_slim_qmi_init(ctrl, false); if (ret) { dev_err(ctrl->dev, "qmi init fail, ret:%d, state:%d\n", ret, ctrl->state); return ret; } /* controller state should be in sync with framework state */ complete(&ctrl->qmi.qmi_comp); if (!pm_runtime_enabled(ctrl->ctrl.dev) || !pm_runtime_suspended(ctrl->ctrl.dev)) qcom_slim_ngd_runtime_resume(ctrl->ctrl.dev); else pm_runtime_resume(ctrl->ctrl.dev); pm_runtime_mark_last_busy(ctrl->ctrl.dev); pm_runtime_put(ctrl->ctrl.dev); ret = slim_register_controller(&ctrl->ctrl); if (ret) { dev_err(ctrl->dev, "error adding slim controller\n"); return ret; } dev_info(ctrl->dev, "SLIM controller Registered\n"); } else { qcom_slim_qmi_exit(ctrl); slim_unregister_controller(&ctrl->ctrl); } return 0; } static int qcom_slim_ngd_qmi_new_server(struct qmi_handle *hdl, struct qmi_service *service) { struct qcom_slim_ngd_qmi *qmi = container_of(hdl, struct qcom_slim_ngd_qmi, svc_event_hdl); struct qcom_slim_ngd_ctrl *ctrl = container_of(qmi, struct qcom_slim_ngd_ctrl, qmi); qmi->svc_info.sq_family = AF_QIPCRTR; qmi->svc_info.sq_node = service->node; qmi->svc_info.sq_port = service->port; complete(&ctrl->qmi_up); return 0; } static void qcom_slim_ngd_qmi_del_server(struct qmi_handle *hdl, struct qmi_service *service) { struct qcom_slim_ngd_qmi *qmi = container_of(hdl, struct qcom_slim_ngd_qmi, svc_event_hdl); struct qcom_slim_ngd_ctrl *ctrl = container_of(qmi, struct qcom_slim_ngd_ctrl, qmi); reinit_completion(&ctrl->qmi_up); qmi->svc_info.sq_node = 0; qmi->svc_info.sq_port = 0; } static const struct qmi_ops qcom_slim_ngd_qmi_svc_event_ops = { .new_server = qcom_slim_ngd_qmi_new_server, .del_server = qcom_slim_ngd_qmi_del_server, }; static int qcom_slim_ngd_qmi_svc_event_init(struct qcom_slim_ngd_ctrl *ctrl) { struct qcom_slim_ngd_qmi *qmi = &ctrl->qmi; int ret; ret = qmi_handle_init(&qmi->svc_event_hdl, 0, &qcom_slim_ngd_qmi_svc_event_ops, NULL); if (ret < 0) { dev_err(ctrl->dev, "qmi_handle_init failed: %d\n", ret); return ret; } ret = qmi_add_lookup(&qmi->svc_event_hdl, SLIMBUS_QMI_SVC_ID, SLIMBUS_QMI_SVC_V1, SLIMBUS_QMI_INS_ID); if (ret < 0) { dev_err(ctrl->dev, "qmi_add_lookup failed: %d\n", ret); qmi_handle_release(&qmi->svc_event_hdl); } return ret; } static void qcom_slim_ngd_qmi_svc_event_deinit(struct qcom_slim_ngd_qmi *qmi) { qmi_handle_release(&qmi->svc_event_hdl); } static struct platform_driver qcom_slim_ngd_driver; #define QCOM_SLIM_NGD_DRV_NAME "qcom,slim-ngd" static const struct of_device_id qcom_slim_ngd_dt_match[] = { { .compatible = "qcom,slim-ngd-v1.5.0", .data = &ngd_v1_5_offset_info, },{ .compatible = "qcom,slim-ngd-v2.1.0", .data = &ngd_v1_5_offset_info, }, {} }; MODULE_DEVICE_TABLE(of, qcom_slim_ngd_dt_match); static void qcom_slim_ngd_down(struct qcom_slim_ngd_ctrl *ctrl) { mutex_lock(&ctrl->ssr_lock); device_for_each_child(ctrl->ctrl.dev, NULL, qcom_slim_ngd_update_device_status); qcom_slim_ngd_enable(ctrl, false); mutex_unlock(&ctrl->ssr_lock); } static void qcom_slim_ngd_up_worker(struct work_struct *work) { struct qcom_slim_ngd_ctrl *ctrl; ctrl = container_of(work, struct qcom_slim_ngd_ctrl, ngd_up_work); /* Make sure qmi service is up before continuing */ wait_for_completion_interruptible(&ctrl->qmi_up); mutex_lock(&ctrl->ssr_lock); qcom_slim_ngd_enable(ctrl, true); mutex_unlock(&ctrl->ssr_lock); } static int qcom_slim_ngd_ssr_pdr_notify(struct qcom_slim_ngd_ctrl *ctrl, unsigned long action) { switch (action) { case QCOM_SSR_BEFORE_SHUTDOWN: case SERVREG_SERVICE_STATE_DOWN: /* Make sure the last dma xfer is finished */ mutex_lock(&ctrl->tx_lock); if (ctrl->state != QCOM_SLIM_NGD_CTRL_DOWN) { pm_runtime_get_noresume(ctrl->ctrl.dev); ctrl->state = QCOM_SLIM_NGD_CTRL_DOWN; qcom_slim_ngd_down(ctrl); qcom_slim_ngd_exit_dma(ctrl); } mutex_unlock(&ctrl->tx_lock); break; case QCOM_SSR_AFTER_POWERUP: case SERVREG_SERVICE_STATE_UP: schedule_work(&ctrl->ngd_up_work); break; default: break; } return NOTIFY_OK; } static int qcom_slim_ngd_ssr_notify(struct notifier_block *nb, unsigned long action, void *data) { struct qcom_slim_ngd_ctrl *ctrl = container_of(nb, struct qcom_slim_ngd_ctrl, nb); return qcom_slim_ngd_ssr_pdr_notify(ctrl, action); } static void slim_pd_status(int state, char *svc_path, void *priv) { struct qcom_slim_ngd_ctrl *ctrl = (struct qcom_slim_ngd_ctrl *)priv; qcom_slim_ngd_ssr_pdr_notify(ctrl, state); } static int of_qcom_slim_ngd_register(struct device *parent, struct qcom_slim_ngd_ctrl *ctrl) { const struct ngd_reg_offset_data *data; struct qcom_slim_ngd *ngd; const struct of_device_id *match; struct device_node *node; u32 id; int ret; match = of_match_node(qcom_slim_ngd_dt_match, parent->of_node); data = match->data; for_each_available_child_of_node(parent->of_node, node) { if (of_property_read_u32(node, "reg", &id)) continue; ngd = kzalloc(sizeof(*ngd), GFP_KERNEL); if (!ngd) { of_node_put(node); return -ENOMEM; } ngd->pdev = platform_device_alloc(QCOM_SLIM_NGD_DRV_NAME, id); if (!ngd->pdev) { kfree(ngd); of_node_put(node); return -ENOMEM; } ngd->id = id; ngd->pdev->dev.parent = parent; ret = driver_set_override(&ngd->pdev->dev, &ngd->pdev->driver_override, QCOM_SLIM_NGD_DRV_NAME, strlen(QCOM_SLIM_NGD_DRV_NAME)); if (ret) { platform_device_put(ngd->pdev); kfree(ngd); of_node_put(node); return ret; } ngd->pdev->dev.of_node = node; ctrl->ngd = ngd; ret = platform_device_add(ngd->pdev); if (ret) { platform_device_put(ngd->pdev); kfree(ngd); of_node_put(node); return ret; } ngd->base = ctrl->base + ngd->id * data->offset + (ngd->id - 1) * data->size; return 0; } return -ENODEV; } static int qcom_slim_ngd_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct qcom_slim_ngd_ctrl *ctrl = dev_get_drvdata(dev->parent); int ret; ctrl->ctrl.dev = dev; platform_set_drvdata(pdev, ctrl); pm_runtime_use_autosuspend(dev); pm_runtime_set_autosuspend_delay(dev, QCOM_SLIM_NGD_AUTOSUSPEND); pm_runtime_set_suspended(dev); pm_runtime_enable(dev); pm_runtime_get_noresume(dev); ret = qcom_slim_ngd_qmi_svc_event_init(ctrl); if (ret) { dev_err(&pdev->dev, "QMI service registration failed:%d", ret); return ret; } INIT_WORK(&ctrl->m_work, qcom_slim_ngd_master_worker); INIT_WORK(&ctrl->ngd_up_work, qcom_slim_ngd_up_worker); ctrl->mwq = create_singlethread_workqueue("ngd_master"); if (!ctrl->mwq) { dev_err(&pdev->dev, "Failed to start master worker\n"); ret = -ENOMEM; goto wq_err; } return 0; wq_err: qcom_slim_ngd_qmi_svc_event_deinit(&ctrl->qmi); if (ctrl->mwq) destroy_workqueue(ctrl->mwq); return ret; } static int qcom_slim_ngd_ctrl_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct qcom_slim_ngd_ctrl *ctrl; int ret; struct pdr_service *pds; ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; dev_set_drvdata(dev, ctrl); ctrl->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(ctrl->base)) return PTR_ERR(ctrl->base); ret = platform_get_irq(pdev, 0); if (ret < 0) return ret; ret = devm_request_irq(dev, ret, qcom_slim_ngd_interrupt, IRQF_TRIGGER_HIGH, "slim-ngd", ctrl); if (ret) return dev_err_probe(&pdev->dev, ret, "request IRQ failed\n"); ctrl->nb.notifier_call = qcom_slim_ngd_ssr_notify; ctrl->notifier = qcom_register_ssr_notifier("lpass", &ctrl->nb); if (IS_ERR(ctrl->notifier)) return PTR_ERR(ctrl->notifier); ctrl->dev = dev; ctrl->framer.rootfreq = SLIM_ROOT_FREQ >> 3; ctrl->framer.superfreq = ctrl->framer.rootfreq / SLIM_CL_PER_SUPERFRAME_DIV8; ctrl->ctrl.a_framer = &ctrl->framer; ctrl->ctrl.clkgear = SLIM_MAX_CLK_GEAR; ctrl->ctrl.get_laddr = qcom_slim_ngd_get_laddr; ctrl->ctrl.enable_stream = qcom_slim_ngd_enable_stream; ctrl->ctrl.xfer_msg = qcom_slim_ngd_xfer_msg; ctrl->ctrl.wakeup = NULL; ctrl->state = QCOM_SLIM_NGD_CTRL_DOWN; mutex_init(&ctrl->tx_lock); mutex_init(&ctrl->ssr_lock); spin_lock_init(&ctrl->tx_buf_lock); init_completion(&ctrl->reconf); init_completion(&ctrl->qmi.qmi_comp); init_completion(&ctrl->qmi_up); ctrl->pdr = pdr_handle_alloc(slim_pd_status, ctrl); if (IS_ERR(ctrl->pdr)) { ret = dev_err_probe(dev, PTR_ERR(ctrl->pdr), "Failed to init PDR handle\n"); goto err_pdr_alloc; } pds = pdr_add_lookup(ctrl->pdr, "avs/audio", "msm/adsp/audio_pd"); if (IS_ERR(pds) && PTR_ERR(pds) != -EALREADY) { ret = dev_err_probe(dev, PTR_ERR(pds), "pdr add lookup failed\n"); goto err_pdr_lookup; } platform_driver_register(&qcom_slim_ngd_driver); return of_qcom_slim_ngd_register(dev, ctrl); err_pdr_alloc: qcom_unregister_ssr_notifier(ctrl->notifier, &ctrl->nb); err_pdr_lookup: pdr_handle_release(ctrl->pdr); return ret; } static int qcom_slim_ngd_ctrl_remove(struct platform_device *pdev) { platform_driver_unregister(&qcom_slim_ngd_driver); return 0; } static int qcom_slim_ngd_remove(struct platform_device *pdev) { struct qcom_slim_ngd_ctrl *ctrl = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); pdr_handle_release(ctrl->pdr); qcom_unregister_ssr_notifier(ctrl->notifier, &ctrl->nb); qcom_slim_ngd_enable(ctrl, false); qcom_slim_ngd_exit_dma(ctrl); qcom_slim_ngd_qmi_svc_event_deinit(&ctrl->qmi); if (ctrl->mwq) destroy_workqueue(ctrl->mwq); kfree(ctrl->ngd); ctrl->ngd = NULL; return 0; } static int __maybe_unused qcom_slim_ngd_runtime_idle(struct device *dev) { struct qcom_slim_ngd_ctrl *ctrl = dev_get_drvdata(dev); if (ctrl->state == QCOM_SLIM_NGD_CTRL_AWAKE) ctrl->state = QCOM_SLIM_NGD_CTRL_IDLE; pm_request_autosuspend(dev); return -EAGAIN; } static int __maybe_unused qcom_slim_ngd_runtime_suspend(struct device *dev) { struct qcom_slim_ngd_ctrl *ctrl = dev_get_drvdata(dev); int ret = 0; qcom_slim_ngd_exit_dma(ctrl); if (!ctrl->qmi.handle) return 0; ret = qcom_slim_qmi_power_request(ctrl, false); if (ret && ret != -EBUSY) dev_info(ctrl->dev, "slim resource not idle:%d\n", ret); if (!ret || ret == -ETIMEDOUT) ctrl->state = QCOM_SLIM_NGD_CTRL_ASLEEP; return ret; } static const struct dev_pm_ops qcom_slim_ngd_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS( qcom_slim_ngd_runtime_suspend, qcom_slim_ngd_runtime_resume, qcom_slim_ngd_runtime_idle ) }; static struct platform_driver qcom_slim_ngd_ctrl_driver = { .probe = qcom_slim_ngd_ctrl_probe, .remove = qcom_slim_ngd_ctrl_remove, .driver = { .name = "qcom,slim-ngd-ctrl", .of_match_table = qcom_slim_ngd_dt_match, }, }; static struct platform_driver qcom_slim_ngd_driver = { .probe = qcom_slim_ngd_probe, .remove = qcom_slim_ngd_remove, .driver = { .name = QCOM_SLIM_NGD_DRV_NAME, .pm = &qcom_slim_ngd_dev_pm_ops, }, }; module_platform_driver(qcom_slim_ngd_ctrl_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm SLIMBus NGD controller");
linux-master
drivers/slimbus/qcom-ngd-ctrl.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2011-2017, The Linux Foundation */ #include <linux/irq.h> #include <linux/kernel.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include "slimbus.h" /* Manager registers */ #define MGR_CFG 0x200 #define MGR_STATUS 0x204 #define MGR_INT_EN 0x210 #define MGR_INT_STAT 0x214 #define MGR_INT_CLR 0x218 #define MGR_TX_MSG 0x230 #define MGR_RX_MSG 0x270 #define MGR_IE_STAT 0x2F0 #define MGR_VE_STAT 0x300 #define MGR_CFG_ENABLE 1 /* Framer registers */ #define FRM_CFG 0x400 #define FRM_STAT 0x404 #define FRM_INT_EN 0x410 #define FRM_INT_STAT 0x414 #define FRM_INT_CLR 0x418 #define FRM_WAKEUP 0x41C #define FRM_CLKCTL_DONE 0x420 #define FRM_IE_STAT 0x430 #define FRM_VE_STAT 0x440 /* Interface registers */ #define INTF_CFG 0x600 #define INTF_STAT 0x604 #define INTF_INT_EN 0x610 #define INTF_INT_STAT 0x614 #define INTF_INT_CLR 0x618 #define INTF_IE_STAT 0x630 #define INTF_VE_STAT 0x640 /* Interrupt status bits */ #define MGR_INT_TX_NACKED_2 BIT(25) #define MGR_INT_MSG_BUF_CONTE BIT(26) #define MGR_INT_RX_MSG_RCVD BIT(30) #define MGR_INT_TX_MSG_SENT BIT(31) /* Framer config register settings */ #define FRM_ACTIVE 1 #define CLK_GEAR 7 #define ROOT_FREQ 11 #define REF_CLK_GEAR 15 #define INTR_WAKE 19 #define SLIM_MSG_ASM_FIRST_WORD(l, mt, mc, dt, ad) \ ((l) | ((mt) << 5) | ((mc) << 8) | ((dt) << 15) | ((ad) << 16)) #define SLIM_ROOT_FREQ 24576000 #define QCOM_SLIM_AUTOSUSPEND 1000 /* MAX message size over control channel */ #define SLIM_MSGQ_BUF_LEN 40 #define QCOM_TX_MSGS 2 #define QCOM_RX_MSGS 8 #define QCOM_BUF_ALLOC_RETRIES 10 #define CFG_PORT(r, v) ((v) ? CFG_PORT_V2(r) : CFG_PORT_V1(r)) /* V2 Component registers */ #define CFG_PORT_V2(r) ((r ## _V2)) #define COMP_CFG_V2 4 #define COMP_TRUST_CFG_V2 0x3000 /* V1 Component registers */ #define CFG_PORT_V1(r) ((r ## _V1)) #define COMP_CFG_V1 0 #define COMP_TRUST_CFG_V1 0x14 /* Resource group info for manager, and non-ported generic device-components */ #define EE_MGR_RSC_GRP (1 << 10) #define EE_NGD_2 (2 << 6) #define EE_NGD_1 0 struct slim_ctrl_buf { void *base; spinlock_t lock; int head; int tail; int sl_sz; int n; }; struct qcom_slim_ctrl { struct slim_controller ctrl; struct slim_framer framer; struct device *dev; void __iomem *base; void __iomem *slew_reg; struct slim_ctrl_buf rx; struct slim_ctrl_buf tx; struct completion **wr_comp; int irq; struct workqueue_struct *rxwq; struct work_struct wd; struct clk *rclk; struct clk *hclk; }; static void qcom_slim_queue_tx(struct qcom_slim_ctrl *ctrl, void *buf, u8 len, u32 tx_reg) { int count = (len + 3) >> 2; __iowrite32_copy(ctrl->base + tx_reg, buf, count); /* Ensure Oder of subsequent writes */ mb(); } static void *slim_alloc_rxbuf(struct qcom_slim_ctrl *ctrl) { unsigned long flags; int idx; spin_lock_irqsave(&ctrl->rx.lock, flags); if ((ctrl->rx.tail + 1) % ctrl->rx.n == ctrl->rx.head) { spin_unlock_irqrestore(&ctrl->rx.lock, flags); dev_err(ctrl->dev, "RX QUEUE full!"); return NULL; } idx = ctrl->rx.tail; ctrl->rx.tail = (ctrl->rx.tail + 1) % ctrl->rx.n; spin_unlock_irqrestore(&ctrl->rx.lock, flags); return ctrl->rx.base + (idx * ctrl->rx.sl_sz); } static void slim_ack_txn(struct qcom_slim_ctrl *ctrl, int err) { struct completion *comp; unsigned long flags; int idx; spin_lock_irqsave(&ctrl->tx.lock, flags); idx = ctrl->tx.head; ctrl->tx.head = (ctrl->tx.head + 1) % ctrl->tx.n; spin_unlock_irqrestore(&ctrl->tx.lock, flags); comp = ctrl->wr_comp[idx]; ctrl->wr_comp[idx] = NULL; complete(comp); } static irqreturn_t qcom_slim_handle_tx_irq(struct qcom_slim_ctrl *ctrl, u32 stat) { int err = 0; if (stat & MGR_INT_TX_MSG_SENT) writel_relaxed(MGR_INT_TX_MSG_SENT, ctrl->base + MGR_INT_CLR); if (stat & MGR_INT_TX_NACKED_2) { u32 mgr_stat = readl_relaxed(ctrl->base + MGR_STATUS); u32 mgr_ie_stat = readl_relaxed(ctrl->base + MGR_IE_STAT); u32 frm_stat = readl_relaxed(ctrl->base + FRM_STAT); u32 frm_cfg = readl_relaxed(ctrl->base + FRM_CFG); u32 frm_intr_stat = readl_relaxed(ctrl->base + FRM_INT_STAT); u32 frm_ie_stat = readl_relaxed(ctrl->base + FRM_IE_STAT); u32 intf_stat = readl_relaxed(ctrl->base + INTF_STAT); u32 intf_intr_stat = readl_relaxed(ctrl->base + INTF_INT_STAT); u32 intf_ie_stat = readl_relaxed(ctrl->base + INTF_IE_STAT); writel_relaxed(MGR_INT_TX_NACKED_2, ctrl->base + MGR_INT_CLR); dev_err(ctrl->dev, "TX Nack MGR:int:0x%x, stat:0x%x\n", stat, mgr_stat); dev_err(ctrl->dev, "TX Nack MGR:ie:0x%x\n", mgr_ie_stat); dev_err(ctrl->dev, "TX Nack FRM:int:0x%x, stat:0x%x\n", frm_intr_stat, frm_stat); dev_err(ctrl->dev, "TX Nack FRM:cfg:0x%x, ie:0x%x\n", frm_cfg, frm_ie_stat); dev_err(ctrl->dev, "TX Nack INTF:intr:0x%x, stat:0x%x\n", intf_intr_stat, intf_stat); dev_err(ctrl->dev, "TX Nack INTF:ie:0x%x\n", intf_ie_stat); err = -ENOTCONN; } slim_ack_txn(ctrl, err); return IRQ_HANDLED; } static irqreturn_t qcom_slim_handle_rx_irq(struct qcom_slim_ctrl *ctrl, u32 stat) { u32 *rx_buf, pkt[10]; bool q_rx = false; u8 mc, mt, len; pkt[0] = readl_relaxed(ctrl->base + MGR_RX_MSG); mt = SLIM_HEADER_GET_MT(pkt[0]); len = SLIM_HEADER_GET_RL(pkt[0]); mc = SLIM_HEADER_GET_MC(pkt[0]>>8); /* * this message cannot be handled by ISR, so * let work-queue handle it */ if (mt == SLIM_MSG_MT_CORE && mc == SLIM_MSG_MC_REPORT_PRESENT) { rx_buf = (u32 *)slim_alloc_rxbuf(ctrl); if (!rx_buf) { dev_err(ctrl->dev, "dropping RX:0x%x due to RX full\n", pkt[0]); goto rx_ret_irq; } rx_buf[0] = pkt[0]; } else { rx_buf = pkt; } __ioread32_copy(rx_buf + 1, ctrl->base + MGR_RX_MSG + 4, DIV_ROUND_UP(len, 4)); switch (mc) { case SLIM_MSG_MC_REPORT_PRESENT: q_rx = true; break; case SLIM_MSG_MC_REPLY_INFORMATION: case SLIM_MSG_MC_REPLY_VALUE: slim_msg_response(&ctrl->ctrl, (u8 *)(rx_buf + 1), (u8)(*rx_buf >> 24), (len - 4)); break; default: dev_err(ctrl->dev, "unsupported MC,%x MT:%x\n", mc, mt); break; } rx_ret_irq: writel(MGR_INT_RX_MSG_RCVD, ctrl->base + MGR_INT_CLR); if (q_rx) queue_work(ctrl->rxwq, &ctrl->wd); return IRQ_HANDLED; } static irqreturn_t qcom_slim_interrupt(int irq, void *d) { struct qcom_slim_ctrl *ctrl = d; u32 stat = readl_relaxed(ctrl->base + MGR_INT_STAT); int ret = IRQ_NONE; if (stat & MGR_INT_TX_MSG_SENT || stat & MGR_INT_TX_NACKED_2) ret = qcom_slim_handle_tx_irq(ctrl, stat); if (stat & MGR_INT_RX_MSG_RCVD) ret = qcom_slim_handle_rx_irq(ctrl, stat); return ret; } static int qcom_clk_pause_wakeup(struct slim_controller *sctrl) { struct qcom_slim_ctrl *ctrl = dev_get_drvdata(sctrl->dev); clk_prepare_enable(ctrl->hclk); clk_prepare_enable(ctrl->rclk); enable_irq(ctrl->irq); writel_relaxed(1, ctrl->base + FRM_WAKEUP); /* Make sure framer wakeup write goes through before ISR fires */ mb(); /* * HW Workaround: Currently, slave is reporting lost-sync messages * after SLIMbus comes out of clock pause. * Transaction with slave fail before slave reports that message * Give some time for that report to come * SLIMbus wakes up in clock gear 10 at 24.576MHz. With each superframe * being 250 usecs, we wait for 5-10 superframes here to ensure * we get the message */ usleep_range(1250, 2500); return 0; } static void *slim_alloc_txbuf(struct qcom_slim_ctrl *ctrl, struct slim_msg_txn *txn, struct completion *done) { unsigned long flags; int idx; spin_lock_irqsave(&ctrl->tx.lock, flags); if (((ctrl->tx.head + 1) % ctrl->tx.n) == ctrl->tx.tail) { spin_unlock_irqrestore(&ctrl->tx.lock, flags); dev_err(ctrl->dev, "controller TX buf unavailable"); return NULL; } idx = ctrl->tx.tail; ctrl->wr_comp[idx] = done; ctrl->tx.tail = (ctrl->tx.tail + 1) % ctrl->tx.n; spin_unlock_irqrestore(&ctrl->tx.lock, flags); return ctrl->tx.base + (idx * ctrl->tx.sl_sz); } static int qcom_xfer_msg(struct slim_controller *sctrl, struct slim_msg_txn *txn) { struct qcom_slim_ctrl *ctrl = dev_get_drvdata(sctrl->dev); DECLARE_COMPLETION_ONSTACK(done); void *pbuf = slim_alloc_txbuf(ctrl, txn, &done); unsigned long ms = txn->rl + HZ; u8 *puc; int ret = 0, timeout, retries = QCOM_BUF_ALLOC_RETRIES; u8 la = txn->la; u32 *head; /* HW expects length field to be excluded */ txn->rl--; /* spin till buffer is made available */ if (!pbuf) { while (retries--) { usleep_range(10000, 15000); pbuf = slim_alloc_txbuf(ctrl, txn, &done); if (pbuf) break; } } if (retries < 0 && !pbuf) return -ENOMEM; puc = (u8 *)pbuf; head = (u32 *)pbuf; if (txn->dt == SLIM_MSG_DEST_LOGICALADDR) { *head = SLIM_MSG_ASM_FIRST_WORD(txn->rl, txn->mt, txn->mc, 0, la); puc += 3; } else { *head = SLIM_MSG_ASM_FIRST_WORD(txn->rl, txn->mt, txn->mc, 1, la); puc += 2; } if (slim_tid_txn(txn->mt, txn->mc)) *(puc++) = txn->tid; if (slim_ec_txn(txn->mt, txn->mc)) { *(puc++) = (txn->ec & 0xFF); *(puc++) = (txn->ec >> 8) & 0xFF; } if (txn->msg && txn->msg->wbuf) memcpy(puc, txn->msg->wbuf, txn->msg->num_bytes); qcom_slim_queue_tx(ctrl, head, txn->rl, MGR_TX_MSG); timeout = wait_for_completion_timeout(&done, msecs_to_jiffies(ms)); if (!timeout) { dev_err(ctrl->dev, "TX timed out:MC:0x%x,mt:0x%x", txn->mc, txn->mt); ret = -ETIMEDOUT; } return ret; } static int qcom_set_laddr(struct slim_controller *sctrl, struct slim_eaddr *ead, u8 laddr) { struct qcom_slim_ctrl *ctrl = dev_get_drvdata(sctrl->dev); struct { __be16 manf_id; __be16 prod_code; u8 dev_index; u8 instance; u8 laddr; } __packed p; struct slim_val_inf msg = {0}; DEFINE_SLIM_EDEST_TXN(txn, SLIM_MSG_MC_ASSIGN_LOGICAL_ADDRESS, 10, laddr, &msg); int ret; p.manf_id = cpu_to_be16(ead->manf_id); p.prod_code = cpu_to_be16(ead->prod_code); p.dev_index = ead->dev_index; p.instance = ead->instance; p.laddr = laddr; msg.wbuf = (void *)&p; msg.num_bytes = 7; ret = slim_do_transfer(&ctrl->ctrl, &txn); if (ret) dev_err(ctrl->dev, "set LA:0x%x failed:ret:%d\n", laddr, ret); return ret; } static int slim_get_current_rxbuf(struct qcom_slim_ctrl *ctrl, void *buf) { unsigned long flags; spin_lock_irqsave(&ctrl->rx.lock, flags); if (ctrl->rx.tail == ctrl->rx.head) { spin_unlock_irqrestore(&ctrl->rx.lock, flags); return -ENODATA; } memcpy(buf, ctrl->rx.base + (ctrl->rx.head * ctrl->rx.sl_sz), ctrl->rx.sl_sz); ctrl->rx.head = (ctrl->rx.head + 1) % ctrl->rx.n; spin_unlock_irqrestore(&ctrl->rx.lock, flags); return 0; } static void qcom_slim_rxwq(struct work_struct *work) { u8 buf[SLIM_MSGQ_BUF_LEN]; u8 mc, mt; int ret; struct qcom_slim_ctrl *ctrl = container_of(work, struct qcom_slim_ctrl, wd); while ((slim_get_current_rxbuf(ctrl, buf)) != -ENODATA) { mt = SLIM_HEADER_GET_MT(buf[0]); mc = SLIM_HEADER_GET_MC(buf[1]); if (mt == SLIM_MSG_MT_CORE && mc == SLIM_MSG_MC_REPORT_PRESENT) { struct slim_eaddr ea; u8 laddr; ea.manf_id = be16_to_cpup((__be16 *)&buf[2]); ea.prod_code = be16_to_cpup((__be16 *)&buf[4]); ea.dev_index = buf[6]; ea.instance = buf[7]; ret = slim_device_report_present(&ctrl->ctrl, &ea, &laddr); if (ret < 0) dev_err(ctrl->dev, "assign laddr failed:%d\n", ret); } else { dev_err(ctrl->dev, "unexpected message:mc:%x, mt:%x\n", mc, mt); } } } static void qcom_slim_prg_slew(struct platform_device *pdev, struct qcom_slim_ctrl *ctrl) { if (!ctrl->slew_reg) { /* SLEW RATE register for this SLIMbus */ ctrl->slew_reg = devm_platform_ioremap_resource_byname(pdev, "slew"); if (IS_ERR(ctrl->slew_reg)) return; } writel_relaxed(1, ctrl->slew_reg); /* Make sure SLIMbus-slew rate enabling goes through */ wmb(); } static int qcom_slim_probe(struct platform_device *pdev) { struct qcom_slim_ctrl *ctrl; struct slim_controller *sctrl; int ret, ver; ctrl = devm_kzalloc(&pdev->dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; ctrl->hclk = devm_clk_get(&pdev->dev, "iface"); if (IS_ERR(ctrl->hclk)) return PTR_ERR(ctrl->hclk); ctrl->rclk = devm_clk_get(&pdev->dev, "core"); if (IS_ERR(ctrl->rclk)) return PTR_ERR(ctrl->rclk); ret = clk_set_rate(ctrl->rclk, SLIM_ROOT_FREQ); if (ret) { dev_err(&pdev->dev, "ref-clock set-rate failed:%d\n", ret); return ret; } ctrl->irq = platform_get_irq(pdev, 0); if (ctrl->irq < 0) return ctrl->irq; sctrl = &ctrl->ctrl; sctrl->dev = &pdev->dev; ctrl->dev = &pdev->dev; platform_set_drvdata(pdev, ctrl); dev_set_drvdata(ctrl->dev, ctrl); ctrl->base = devm_platform_ioremap_resource_byname(pdev, "ctrl"); if (IS_ERR(ctrl->base)) return PTR_ERR(ctrl->base); sctrl->set_laddr = qcom_set_laddr; sctrl->xfer_msg = qcom_xfer_msg; sctrl->wakeup = qcom_clk_pause_wakeup; ctrl->tx.n = QCOM_TX_MSGS; ctrl->tx.sl_sz = SLIM_MSGQ_BUF_LEN; ctrl->rx.n = QCOM_RX_MSGS; ctrl->rx.sl_sz = SLIM_MSGQ_BUF_LEN; ctrl->wr_comp = kcalloc(QCOM_TX_MSGS, sizeof(struct completion *), GFP_KERNEL); if (!ctrl->wr_comp) return -ENOMEM; spin_lock_init(&ctrl->rx.lock); spin_lock_init(&ctrl->tx.lock); INIT_WORK(&ctrl->wd, qcom_slim_rxwq); ctrl->rxwq = create_singlethread_workqueue("qcom_slim_rx"); if (!ctrl->rxwq) { dev_err(ctrl->dev, "Failed to start Rx WQ\n"); return -ENOMEM; } ctrl->framer.rootfreq = SLIM_ROOT_FREQ / 8; ctrl->framer.superfreq = ctrl->framer.rootfreq / SLIM_CL_PER_SUPERFRAME_DIV8; sctrl->a_framer = &ctrl->framer; sctrl->clkgear = SLIM_MAX_CLK_GEAR; qcom_slim_prg_slew(pdev, ctrl); ret = devm_request_irq(&pdev->dev, ctrl->irq, qcom_slim_interrupt, IRQF_TRIGGER_HIGH, "qcom_slim_irq", ctrl); if (ret) { dev_err(&pdev->dev, "request IRQ failed\n"); goto err_request_irq_failed; } ret = clk_prepare_enable(ctrl->hclk); if (ret) goto err_hclk_enable_failed; ret = clk_prepare_enable(ctrl->rclk); if (ret) goto err_rclk_enable_failed; ctrl->tx.base = devm_kcalloc(&pdev->dev, ctrl->tx.n, ctrl->tx.sl_sz, GFP_KERNEL); if (!ctrl->tx.base) { ret = -ENOMEM; goto err; } ctrl->rx.base = devm_kcalloc(&pdev->dev,ctrl->rx.n, ctrl->rx.sl_sz, GFP_KERNEL); if (!ctrl->rx.base) { ret = -ENOMEM; goto err; } /* Register with framework before enabling frame, clock */ ret = slim_register_controller(&ctrl->ctrl); if (ret) { dev_err(ctrl->dev, "error adding controller\n"); goto err; } ver = readl_relaxed(ctrl->base); /* Version info in 16 MSbits */ ver >>= 16; /* Component register initialization */ writel(1, ctrl->base + CFG_PORT(COMP_CFG, ver)); writel((EE_MGR_RSC_GRP | EE_NGD_2 | EE_NGD_1), ctrl->base + CFG_PORT(COMP_TRUST_CFG, ver)); writel((MGR_INT_TX_NACKED_2 | MGR_INT_MSG_BUF_CONTE | MGR_INT_RX_MSG_RCVD | MGR_INT_TX_MSG_SENT), ctrl->base + MGR_INT_EN); writel(1, ctrl->base + MGR_CFG); /* Framer register initialization */ writel((1 << INTR_WAKE) | (0xA << REF_CLK_GEAR) | (0xA << CLK_GEAR) | (1 << ROOT_FREQ) | (1 << FRM_ACTIVE) | 1, ctrl->base + FRM_CFG); writel(MGR_CFG_ENABLE, ctrl->base + MGR_CFG); writel(1, ctrl->base + INTF_CFG); writel(1, ctrl->base + CFG_PORT(COMP_CFG, ver)); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, QCOM_SLIM_AUTOSUSPEND); pm_runtime_set_active(&pdev->dev); pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_enable(&pdev->dev); dev_dbg(ctrl->dev, "QCOM SB controller is up:ver:0x%x!\n", ver); return 0; err: clk_disable_unprepare(ctrl->rclk); err_rclk_enable_failed: clk_disable_unprepare(ctrl->hclk); err_hclk_enable_failed: err_request_irq_failed: destroy_workqueue(ctrl->rxwq); return ret; } static int qcom_slim_remove(struct platform_device *pdev) { struct qcom_slim_ctrl *ctrl = platform_get_drvdata(pdev); pm_runtime_disable(&pdev->dev); slim_unregister_controller(&ctrl->ctrl); clk_disable_unprepare(ctrl->rclk); clk_disable_unprepare(ctrl->hclk); destroy_workqueue(ctrl->rxwq); return 0; } /* * If PM_RUNTIME is not defined, these 2 functions become helper * functions to be called from system suspend/resume. */ #ifdef CONFIG_PM static int qcom_slim_runtime_suspend(struct device *device) { struct qcom_slim_ctrl *ctrl = dev_get_drvdata(device); int ret; dev_dbg(device, "pm_runtime: suspending...\n"); ret = slim_ctrl_clk_pause(&ctrl->ctrl, false, SLIM_CLK_UNSPECIFIED); if (ret) { dev_err(device, "clk pause not entered:%d", ret); } else { disable_irq(ctrl->irq); clk_disable_unprepare(ctrl->hclk); clk_disable_unprepare(ctrl->rclk); } return ret; } static int qcom_slim_runtime_resume(struct device *device) { struct qcom_slim_ctrl *ctrl = dev_get_drvdata(device); int ret = 0; dev_dbg(device, "pm_runtime: resuming...\n"); ret = slim_ctrl_clk_pause(&ctrl->ctrl, true, 0); if (ret) dev_err(device, "clk pause not exited:%d", ret); return ret; } #endif #ifdef CONFIG_PM_SLEEP static int qcom_slim_suspend(struct device *dev) { int ret = 0; if (!pm_runtime_enabled(dev) || (!pm_runtime_suspended(dev))) { dev_dbg(dev, "system suspend"); ret = qcom_slim_runtime_suspend(dev); } return ret; } static int qcom_slim_resume(struct device *dev) { if (!pm_runtime_enabled(dev) || !pm_runtime_suspended(dev)) { int ret; dev_dbg(dev, "system resume"); ret = qcom_slim_runtime_resume(dev); if (!ret) { pm_runtime_mark_last_busy(dev); pm_request_autosuspend(dev); } return ret; } return 0; } #endif /* CONFIG_PM_SLEEP */ static const struct dev_pm_ops qcom_slim_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(qcom_slim_suspend, qcom_slim_resume) SET_RUNTIME_PM_OPS( qcom_slim_runtime_suspend, qcom_slim_runtime_resume, NULL ) }; static const struct of_device_id qcom_slim_dt_match[] = { { .compatible = "qcom,slim", }, {} }; static struct platform_driver qcom_slim_driver = { .probe = qcom_slim_probe, .remove = qcom_slim_remove, .driver = { .name = "qcom_slim_ctrl", .of_match_table = qcom_slim_dt_match, .pm = &qcom_slim_dev_pm_ops, }, }; module_platform_driver(qcom_slim_driver); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("Qualcomm SLIMbus Controller");
linux-master
drivers/slimbus/qcom-ctrl.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2018, Linaro Limited #include <linux/kernel.h> #include <linux/errno.h> #include <linux/slab.h> #include <linux/list.h> #include <linux/slimbus.h> #include <uapi/sound/asound.h> #include "slimbus.h" /** * struct segdist_code - Segment Distributions code from * Table 20 of SLIMbus Specs Version 2.0 * * @ratem: Channel Rate Multipler(Segments per Superframe) * @seg_interval: Number of slots between the first Slot of Segment * and the first slot of the next consecutive Segment. * @segdist_code: Segment Distribution Code SD[11:0] * @seg_offset_mask: Segment offset mask in SD[11:0] * @segdist_codes: List of all possible Segmet Distribution codes. */ static const struct segdist_code { int ratem; int seg_interval; int segdist_code; u32 seg_offset_mask; } segdist_codes[] = { {1, 1536, 0x200, 0xdff}, {2, 768, 0x100, 0xcff}, {4, 384, 0x080, 0xc7f}, {8, 192, 0x040, 0xc3f}, {16, 96, 0x020, 0xc1f}, {32, 48, 0x010, 0xc0f}, {64, 24, 0x008, 0xc07}, {128, 12, 0x004, 0xc03}, {256, 6, 0x002, 0xc01}, {512, 3, 0x001, 0xc00}, {3, 512, 0xe00, 0x1ff}, {6, 256, 0xd00, 0x0ff}, {12, 128, 0xc80, 0x07f}, {24, 64, 0xc40, 0x03f}, {48, 32, 0xc20, 0x01f}, {96, 16, 0xc10, 0x00f}, {192, 8, 0xc08, 0x007}, {364, 4, 0xc04, 0x003}, {768, 2, 0xc02, 0x001}, }; /* * Presence Rate table for all Natural Frequencies * The Presence rate of a constant bitrate stream is mean flow rate of the * stream expressed in occupied Segments of that Data Channel per second. * Table 66 from SLIMbus 2.0 Specs * * Index of the table corresponds to Presence rate code for the respective rate * in the table. */ static const int slim_presence_rate_table[] = { 0, /* Not Indicated */ 12000, 24000, 48000, 96000, 192000, 384000, 768000, 0, /* Reserved */ 11025, 22050, 44100, 88200, 176400, 352800, 705600, 4000, 8000, 16000, 32000, 64000, 128000, 256000, 512000, }; /** * slim_stream_allocate() - Allocate a new SLIMbus Stream * @dev:Slim device to be associated with * @name: name of the stream * * This is very first call for SLIMbus streaming, this API will allocate * a new SLIMbus stream and return a valid stream runtime pointer for client * to use it in subsequent stream apis. state of stream is set to ALLOCATED * * Return: valid pointer on success and error code on failure. * From ASoC DPCM framework, this state is linked to startup() operation. */ struct slim_stream_runtime *slim_stream_allocate(struct slim_device *dev, const char *name) { struct slim_stream_runtime *rt; rt = kzalloc(sizeof(*rt), GFP_KERNEL); if (!rt) return ERR_PTR(-ENOMEM); rt->name = kasprintf(GFP_KERNEL, "slim-%s", name); if (!rt->name) { kfree(rt); return ERR_PTR(-ENOMEM); } rt->dev = dev; spin_lock(&dev->stream_list_lock); list_add_tail(&rt->node, &dev->stream_list); spin_unlock(&dev->stream_list_lock); return rt; } EXPORT_SYMBOL_GPL(slim_stream_allocate); static int slim_connect_port_channel(struct slim_stream_runtime *stream, struct slim_port *port) { struct slim_device *sdev = stream->dev; u8 wbuf[2]; struct slim_val_inf msg = {0, 2, NULL, wbuf, NULL}; u8 mc = SLIM_MSG_MC_CONNECT_SOURCE; DEFINE_SLIM_LDEST_TXN(txn, mc, 6, stream->dev->laddr, &msg); if (port->direction == SLIM_PORT_SINK) txn.mc = SLIM_MSG_MC_CONNECT_SINK; wbuf[0] = port->id; wbuf[1] = port->ch.id; port->ch.state = SLIM_CH_STATE_ASSOCIATED; port->state = SLIM_PORT_UNCONFIGURED; return slim_do_transfer(sdev->ctrl, &txn); } static int slim_disconnect_port(struct slim_stream_runtime *stream, struct slim_port *port) { struct slim_device *sdev = stream->dev; u8 wbuf[1]; struct slim_val_inf msg = {0, 1, NULL, wbuf, NULL}; u8 mc = SLIM_MSG_MC_DISCONNECT_PORT; DEFINE_SLIM_LDEST_TXN(txn, mc, 5, stream->dev->laddr, &msg); wbuf[0] = port->id; port->ch.state = SLIM_CH_STATE_DISCONNECTED; port->state = SLIM_PORT_DISCONNECTED; return slim_do_transfer(sdev->ctrl, &txn); } static int slim_deactivate_remove_channel(struct slim_stream_runtime *stream, struct slim_port *port) { struct slim_device *sdev = stream->dev; u8 wbuf[1]; struct slim_val_inf msg = {0, 1, NULL, wbuf, NULL}; u8 mc = SLIM_MSG_MC_NEXT_DEACTIVATE_CHANNEL; DEFINE_SLIM_LDEST_TXN(txn, mc, 5, stream->dev->laddr, &msg); int ret; wbuf[0] = port->ch.id; ret = slim_do_transfer(sdev->ctrl, &txn); if (ret) return ret; txn.mc = SLIM_MSG_MC_NEXT_REMOVE_CHANNEL; port->ch.state = SLIM_CH_STATE_REMOVED; return slim_do_transfer(sdev->ctrl, &txn); } static int slim_get_prate_code(int rate) { int i; for (i = 0; i < ARRAY_SIZE(slim_presence_rate_table); i++) { if (rate == slim_presence_rate_table[i]) return i; } return -EINVAL; } /** * slim_stream_prepare() - Prepare a SLIMbus Stream * * @rt: instance of slim stream runtime to configure * @cfg: new configuration for the stream * * This API will configure SLIMbus stream with config parameters from cfg. * return zero on success and error code on failure. From ASoC DPCM framework, * this state is linked to hw_params() operation. */ int slim_stream_prepare(struct slim_stream_runtime *rt, struct slim_stream_config *cfg) { struct slim_controller *ctrl = rt->dev->ctrl; struct slim_port *port; int num_ports, i, port_id, prrate; if (rt->ports) { dev_err(&rt->dev->dev, "Stream already Prepared\n"); return -EINVAL; } num_ports = hweight32(cfg->port_mask); rt->ports = kcalloc(num_ports, sizeof(*port), GFP_KERNEL); if (!rt->ports) return -ENOMEM; rt->num_ports = num_ports; rt->rate = cfg->rate; rt->bps = cfg->bps; rt->direction = cfg->direction; prrate = slim_get_prate_code(cfg->rate); if (prrate < 0) { dev_err(&rt->dev->dev, "Cannot get presence rate for rate %d Hz\n", cfg->rate); return prrate; } if (cfg->rate % ctrl->a_framer->superfreq) { /* * data rate not exactly multiple of super frame, * use PUSH/PULL protocol */ if (cfg->direction == SNDRV_PCM_STREAM_PLAYBACK) rt->prot = SLIM_PROTO_PUSH; else rt->prot = SLIM_PROTO_PULL; } else { rt->prot = SLIM_PROTO_ISO; } rt->ratem = cfg->rate/ctrl->a_framer->superfreq; i = 0; for_each_set_bit(port_id, &cfg->port_mask, SLIM_DEVICE_MAX_PORTS) { port = &rt->ports[i]; port->state = SLIM_PORT_DISCONNECTED; port->id = port_id; port->ch.prrate = prrate; port->ch.id = cfg->chs[i]; port->ch.data_fmt = SLIM_CH_DATA_FMT_NOT_DEFINED; port->ch.aux_fmt = SLIM_CH_AUX_FMT_NOT_APPLICABLE; port->ch.state = SLIM_CH_STATE_ALLOCATED; if (cfg->direction == SNDRV_PCM_STREAM_PLAYBACK) port->direction = SLIM_PORT_SINK; else port->direction = SLIM_PORT_SOURCE; slim_connect_port_channel(rt, port); i++; } return 0; } EXPORT_SYMBOL_GPL(slim_stream_prepare); static int slim_define_channel_content(struct slim_stream_runtime *stream, struct slim_port *port) { struct slim_device *sdev = stream->dev; u8 wbuf[4]; struct slim_val_inf msg = {0, 4, NULL, wbuf, NULL}; u8 mc = SLIM_MSG_MC_NEXT_DEFINE_CONTENT; DEFINE_SLIM_LDEST_TXN(txn, mc, 8, stream->dev->laddr, &msg); wbuf[0] = port->ch.id; wbuf[1] = port->ch.prrate; /* Frequency Locked for ISO Protocol */ if (stream->prot != SLIM_PROTO_ISO) wbuf[1] |= SLIM_CHANNEL_CONTENT_FL; wbuf[2] = port->ch.data_fmt | (port->ch.aux_fmt << 4); wbuf[3] = stream->bps/SLIM_SLOT_LEN_BITS; port->ch.state = SLIM_CH_STATE_CONTENT_DEFINED; return slim_do_transfer(sdev->ctrl, &txn); } static int slim_get_segdist_code(int ratem) { int i; for (i = 0; i < ARRAY_SIZE(segdist_codes); i++) { if (segdist_codes[i].ratem == ratem) return segdist_codes[i].segdist_code; } return -EINVAL; } static int slim_define_channel(struct slim_stream_runtime *stream, struct slim_port *port) { struct slim_device *sdev = stream->dev; u8 wbuf[4]; struct slim_val_inf msg = {0, 4, NULL, wbuf, NULL}; u8 mc = SLIM_MSG_MC_NEXT_DEFINE_CHANNEL; DEFINE_SLIM_LDEST_TXN(txn, mc, 8, stream->dev->laddr, &msg); port->ch.seg_dist = slim_get_segdist_code(stream->ratem); wbuf[0] = port->ch.id; wbuf[1] = port->ch.seg_dist & 0xFF; wbuf[2] = (stream->prot << 4) | ((port->ch.seg_dist & 0xF00) >> 8); if (stream->prot == SLIM_PROTO_ISO) wbuf[3] = stream->bps/SLIM_SLOT_LEN_BITS; else wbuf[3] = stream->bps/SLIM_SLOT_LEN_BITS + 1; port->ch.state = SLIM_CH_STATE_DEFINED; return slim_do_transfer(sdev->ctrl, &txn); } static int slim_activate_channel(struct slim_stream_runtime *stream, struct slim_port *port) { struct slim_device *sdev = stream->dev; u8 wbuf[1]; struct slim_val_inf msg = {0, 1, NULL, wbuf, NULL}; u8 mc = SLIM_MSG_MC_NEXT_ACTIVATE_CHANNEL; DEFINE_SLIM_LDEST_TXN(txn, mc, 5, stream->dev->laddr, &msg); txn.msg->num_bytes = 1; txn.msg->wbuf = wbuf; wbuf[0] = port->ch.id; port->ch.state = SLIM_CH_STATE_ACTIVE; return slim_do_transfer(sdev->ctrl, &txn); } /** * slim_stream_enable() - Enable a prepared SLIMbus Stream * * @stream: instance of slim stream runtime to enable * * This API will enable all the ports and channels associated with * SLIMbus stream * * Return: zero on success and error code on failure. From ASoC DPCM framework, * this state is linked to trigger() start operation. */ int slim_stream_enable(struct slim_stream_runtime *stream) { DEFINE_SLIM_BCAST_TXN(txn, SLIM_MSG_MC_BEGIN_RECONFIGURATION, 3, SLIM_LA_MANAGER, NULL); struct slim_controller *ctrl = stream->dev->ctrl; int ret, i; if (ctrl->enable_stream) { ret = ctrl->enable_stream(stream); if (ret) return ret; for (i = 0; i < stream->num_ports; i++) stream->ports[i].ch.state = SLIM_CH_STATE_ACTIVE; return ret; } ret = slim_do_transfer(ctrl, &txn); if (ret) return ret; /* define channels first before activating them */ for (i = 0; i < stream->num_ports; i++) { struct slim_port *port = &stream->ports[i]; slim_define_channel(stream, port); slim_define_channel_content(stream, port); } for (i = 0; i < stream->num_ports; i++) { struct slim_port *port = &stream->ports[i]; slim_activate_channel(stream, port); port->state = SLIM_PORT_CONFIGURED; } txn.mc = SLIM_MSG_MC_RECONFIGURE_NOW; return slim_do_transfer(ctrl, &txn); } EXPORT_SYMBOL_GPL(slim_stream_enable); /** * slim_stream_disable() - Disable a SLIMbus Stream * * @stream: instance of slim stream runtime to disable * * This API will disable all the ports and channels associated with * SLIMbus stream * * Return: zero on success and error code on failure. From ASoC DPCM framework, * this state is linked to trigger() pause operation. */ int slim_stream_disable(struct slim_stream_runtime *stream) { DEFINE_SLIM_BCAST_TXN(txn, SLIM_MSG_MC_BEGIN_RECONFIGURATION, 3, SLIM_LA_MANAGER, NULL); struct slim_controller *ctrl = stream->dev->ctrl; int ret, i; if (!stream->ports || !stream->num_ports) return -EINVAL; if (ctrl->disable_stream) ctrl->disable_stream(stream); ret = slim_do_transfer(ctrl, &txn); if (ret) return ret; for (i = 0; i < stream->num_ports; i++) slim_deactivate_remove_channel(stream, &stream->ports[i]); txn.mc = SLIM_MSG_MC_RECONFIGURE_NOW; return slim_do_transfer(ctrl, &txn); } EXPORT_SYMBOL_GPL(slim_stream_disable); /** * slim_stream_unprepare() - Un-prepare a SLIMbus Stream * * @stream: instance of slim stream runtime to unprepare * * This API will un allocate all the ports and channels associated with * SLIMbus stream * * Return: zero on success and error code on failure. From ASoC DPCM framework, * this state is linked to trigger() stop operation. */ int slim_stream_unprepare(struct slim_stream_runtime *stream) { int i; if (!stream->ports || !stream->num_ports) return -EINVAL; for (i = 0; i < stream->num_ports; i++) slim_disconnect_port(stream, &stream->ports[i]); kfree(stream->ports); stream->ports = NULL; stream->num_ports = 0; return 0; } EXPORT_SYMBOL_GPL(slim_stream_unprepare); /** * slim_stream_free() - Free a SLIMbus Stream * * @stream: instance of slim stream runtime to free * * This API will un allocate all the memory associated with * slim stream runtime, user is not allowed to make an dereference * to stream after this call. * * Return: zero on success and error code on failure. From ASoC DPCM framework, * this state is linked to shutdown() operation. */ int slim_stream_free(struct slim_stream_runtime *stream) { struct slim_device *sdev = stream->dev; spin_lock(&sdev->stream_list_lock); list_del(&stream->node); spin_unlock(&sdev->stream_list_lock); kfree(stream->name); kfree(stream); return 0; } EXPORT_SYMBOL_GPL(slim_stream_free);
linux-master
drivers/slimbus/stream.c
// SPDX-License-Identifier: GPL-2.0-only #include <linux/types.h> #include <linux/ioport.h> #include <linux/slab.h> #include <linux/export.h> #include <linux/io.h> #include <linux/mcb.h> #include "mcb-internal.h" struct mcb_parse_priv { phys_addr_t mapbase; void __iomem *base; }; #define for_each_chameleon_cell(dtype, p) \ for ((dtype) = get_next_dtype((p)); \ (dtype) != CHAMELEON_DTYPE_END; \ (dtype) = get_next_dtype((p))) static inline uint32_t get_next_dtype(void __iomem *p) { uint32_t dtype; dtype = readl(p); return dtype >> 28; } static int chameleon_parse_bdd(struct mcb_bus *bus, struct chameleon_bar *cb, void __iomem *base) { return 0; } static int chameleon_parse_gdd(struct mcb_bus *bus, struct chameleon_bar *cb, void __iomem *base, int bar_count) { struct chameleon_gdd __iomem *gdd = (struct chameleon_gdd __iomem *) base; struct mcb_device *mdev; u32 dev_mapbase; u32 offset; u32 size; int ret; __le32 reg1; __le32 reg2; mdev = mcb_alloc_dev(bus); if (!mdev) return -ENOMEM; reg1 = readl(&gdd->reg1); reg2 = readl(&gdd->reg2); offset = readl(&gdd->offset); size = readl(&gdd->size); mdev->id = GDD_DEV(reg1); mdev->rev = GDD_REV(reg1); mdev->var = GDD_VAR(reg1); mdev->bar = GDD_BAR(reg2); mdev->group = GDD_GRP(reg2); mdev->inst = GDD_INS(reg2); /* * If the BAR is missing, dev_mapbase is zero, or if the * device is IO mapped we just print a warning and go on with the * next device, instead of completely stop the gdd parser */ if (mdev->bar > bar_count - 1) { pr_info("No BAR for 16z%03d\n", mdev->id); ret = 0; goto err; } dev_mapbase = cb[mdev->bar].addr; if (!dev_mapbase) { pr_info("BAR not assigned for 16z%03d\n", mdev->id); ret = 0; goto err; } if (dev_mapbase & 0x01) { pr_info("IO mapped Device (16z%03d) not yet supported\n", mdev->id); ret = 0; goto err; } pr_debug("Found a 16z%03d\n", mdev->id); mdev->irq.start = GDD_IRQ(reg1); mdev->irq.end = GDD_IRQ(reg1); mdev->irq.flags = IORESOURCE_IRQ; mdev->mem.start = dev_mapbase + offset; mdev->mem.end = mdev->mem.start + size - 1; mdev->mem.flags = IORESOURCE_MEM; mdev->is_added = false; ret = mcb_device_register(bus, mdev); if (ret < 0) goto err; return 0; err: put_device(&mdev->dev); return ret; } static void chameleon_parse_bar(void __iomem *base, struct chameleon_bar *cb, int bar_count) { char __iomem *p = base; int i; /* skip reg1 */ p += sizeof(__le32); for (i = 0; i < bar_count; i++) { cb[i].addr = readl(p); cb[i].size = readl(p + 4); p += sizeof(struct chameleon_bar); } } static int chameleon_get_bar(void __iomem **base, phys_addr_t mapbase, struct chameleon_bar **cb) { struct chameleon_bar *c; int bar_count; __le32 reg; u32 dtype; /* * For those devices which are not connected * to the PCI Bus (e.g. LPC) there is a bar * descriptor located directly after the * chameleon header. This header is comparable * to a PCI header. */ dtype = get_next_dtype(*base); if (dtype == CHAMELEON_DTYPE_BAR) { reg = readl(*base); bar_count = BAR_CNT(reg); if (bar_count <= 0 || bar_count > CHAMELEON_BAR_MAX) return -ENODEV; c = kcalloc(bar_count, sizeof(struct chameleon_bar), GFP_KERNEL); if (!c) return -ENOMEM; chameleon_parse_bar(*base, c, bar_count); *base += BAR_DESC_SIZE(bar_count); } else { c = kzalloc(sizeof(struct chameleon_bar), GFP_KERNEL); if (!c) return -ENOMEM; bar_count = 1; c->addr = mapbase; } *cb = c; return bar_count; } int chameleon_parse_cells(struct mcb_bus *bus, phys_addr_t mapbase, void __iomem *base) { struct chameleon_fpga_header *header; struct chameleon_bar *cb; void __iomem *p = base; int num_cells = 0; uint32_t dtype; int bar_count; int ret; u32 hsize; u32 table_size; hsize = sizeof(struct chameleon_fpga_header); header = kzalloc(hsize, GFP_KERNEL); if (!header) return -ENOMEM; /* Extract header information */ memcpy_fromio(header, p, hsize); /* We only support chameleon v2 at the moment */ header->magic = le16_to_cpu(header->magic); if (header->magic != CHAMELEONV2_MAGIC) { pr_err("Unsupported chameleon version 0x%x\n", header->magic); ret = -ENODEV; goto free_header; } p += hsize; bus->revision = header->revision; bus->model = header->model; bus->minor = header->minor; snprintf(bus->name, CHAMELEON_FILENAME_LEN + 1, "%s", header->filename); bar_count = chameleon_get_bar(&p, mapbase, &cb); if (bar_count < 0) { ret = bar_count; goto free_header; } for_each_chameleon_cell(dtype, p) { switch (dtype) { case CHAMELEON_DTYPE_GENERAL: ret = chameleon_parse_gdd(bus, cb, p, bar_count); if (ret < 0) goto free_bar; p += sizeof(struct chameleon_gdd); break; case CHAMELEON_DTYPE_BRIDGE: chameleon_parse_bdd(bus, cb, p); p += sizeof(struct chameleon_bdd); break; case CHAMELEON_DTYPE_END: break; default: pr_err("Invalid chameleon descriptor type 0x%x\n", dtype); ret = -EINVAL; goto free_bar; } num_cells++; } if (num_cells == 0) { ret = -EINVAL; goto free_bar; } table_size = p - base; pr_debug("%d cell(s) found. Chameleon table size: 0x%04x bytes\n", num_cells, table_size); kfree(cb); kfree(header); return table_size; free_bar: kfree(cb); free_header: kfree(header); return ret; } EXPORT_SYMBOL_NS_GPL(chameleon_parse_cells, MCB);
linux-master
drivers/mcb/mcb-parse.c
// SPDX-License-Identifier: GPL-2.0-only /* * MEN Chameleon Bus. * * Copyright (C) 2014 MEN Mikroelektronik GmbH (www.men.de) * Author: Johannes Thumshirn <[email protected]> */ #include <linux/module.h> #include <linux/pci.h> #include <linux/mcb.h> #include "mcb-internal.h" struct priv { struct mcb_bus *bus; phys_addr_t mapbase; void __iomem *base; }; static int mcb_pci_get_irq(struct mcb_device *mdev) { struct mcb_bus *mbus = mdev->bus; struct device *dev = mbus->carrier; struct pci_dev *pdev = to_pci_dev(dev); return pdev->irq; } static int mcb_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id) { struct resource *res; struct priv *priv; int ret, table_size; unsigned long flags; priv = devm_kzalloc(&pdev->dev, sizeof(struct priv), GFP_KERNEL); if (!priv) return -ENOMEM; ret = pci_enable_device(pdev); if (ret) { dev_err(&pdev->dev, "Failed to enable PCI device\n"); return -ENODEV; } pci_set_master(pdev); priv->mapbase = pci_resource_start(pdev, 0); if (!priv->mapbase) { dev_err(&pdev->dev, "No PCI resource\n"); ret = -ENODEV; goto out_disable; } res = devm_request_mem_region(&pdev->dev, priv->mapbase, CHAM_HEADER_SIZE, KBUILD_MODNAME); if (!res) { dev_err(&pdev->dev, "Failed to request PCI memory\n"); ret = -EBUSY; goto out_disable; } priv->base = devm_ioremap(&pdev->dev, priv->mapbase, CHAM_HEADER_SIZE); if (!priv->base) { dev_err(&pdev->dev, "Cannot ioremap\n"); ret = -ENOMEM; goto out_disable; } flags = pci_resource_flags(pdev, 0); if (flags & IORESOURCE_IO) { ret = -ENOTSUPP; dev_err(&pdev->dev, "IO mapped PCI devices are not supported\n"); goto out_disable; } pci_set_drvdata(pdev, priv); priv->bus = mcb_alloc_bus(&pdev->dev); if (IS_ERR(priv->bus)) { ret = PTR_ERR(priv->bus); goto out_disable; } priv->bus->get_irq = mcb_pci_get_irq; ret = chameleon_parse_cells(priv->bus, priv->mapbase, priv->base); if (ret < 0) goto out_mcb_bus; table_size = ret; if (table_size < CHAM_HEADER_SIZE) { /* Release the previous resources */ devm_iounmap(&pdev->dev, priv->base); devm_release_mem_region(&pdev->dev, priv->mapbase, CHAM_HEADER_SIZE); /* Then, allocate it again with the actual chameleon table size */ res = devm_request_mem_region(&pdev->dev, priv->mapbase, table_size, KBUILD_MODNAME); if (!res) { dev_err(&pdev->dev, "Failed to request PCI memory\n"); ret = -EBUSY; goto out_mcb_bus; } priv->base = devm_ioremap(&pdev->dev, priv->mapbase, table_size); if (!priv->base) { dev_err(&pdev->dev, "Cannot ioremap\n"); ret = -ENOMEM; goto out_mcb_bus; } } mcb_bus_add_devices(priv->bus); return 0; out_mcb_bus: mcb_release_bus(priv->bus); out_disable: pci_disable_device(pdev); return ret; } static void mcb_pci_remove(struct pci_dev *pdev) { struct priv *priv = pci_get_drvdata(pdev); mcb_release_bus(priv->bus); pci_disable_device(pdev); } static const struct pci_device_id mcb_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_MEN, PCI_DEVICE_ID_MEN_CHAMELEON) }, { PCI_DEVICE(PCI_VENDOR_ID_ALTERA, PCI_DEVICE_ID_MEN_CHAMELEON) }, { 0 }, }; MODULE_DEVICE_TABLE(pci, mcb_pci_tbl); static struct pci_driver mcb_pci_driver = { .name = "mcb-pci", .id_table = mcb_pci_tbl, .probe = mcb_pci_probe, .remove = mcb_pci_remove, }; module_pci_driver(mcb_pci_driver); MODULE_AUTHOR("Johannes Thumshirn <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MCB over PCI support"); MODULE_IMPORT_NS(MCB);
linux-master
drivers/mcb/mcb-pci.c
// SPDX-License-Identifier: GPL-2.0-only /* * MEN Chameleon Bus. * * Copyright (C) 2014 MEN Mikroelektronik GmbH (www.men.de) * Author: Andreas Werner <[email protected]> */ #include <linux/platform_device.h> #include <linux/module.h> #include <linux/dmi.h> #include <linux/mcb.h> #include <linux/io.h> #include "mcb-internal.h" struct priv { struct mcb_bus *bus; struct resource *mem; void __iomem *base; }; static int mcb_lpc_probe(struct platform_device *pdev) { struct resource *res; struct priv *priv; int ret = 0, table_size; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!priv->mem) { dev_err(&pdev->dev, "No Memory resource\n"); return -ENODEV; } res = devm_request_mem_region(&pdev->dev, priv->mem->start, resource_size(priv->mem), KBUILD_MODNAME); if (!res) { dev_err(&pdev->dev, "Failed to request IO memory\n"); return -EBUSY; } priv->base = devm_ioremap(&pdev->dev, priv->mem->start, resource_size(priv->mem)); if (!priv->base) { dev_err(&pdev->dev, "Cannot ioremap\n"); return -ENOMEM; } platform_set_drvdata(pdev, priv); priv->bus = mcb_alloc_bus(&pdev->dev); if (IS_ERR(priv->bus)) return PTR_ERR(priv->bus); ret = chameleon_parse_cells(priv->bus, priv->mem->start, priv->base); if (ret < 0) { goto out_mcb_bus; } table_size = ret; if (table_size < CHAM_HEADER_SIZE) { /* Release the previous resources */ devm_iounmap(&pdev->dev, priv->base); devm_release_mem_region(&pdev->dev, priv->mem->start, resource_size(priv->mem)); /* Then, allocate it again with the actual chameleon table size */ res = devm_request_mem_region(&pdev->dev, priv->mem->start, table_size, KBUILD_MODNAME); if (!res) { dev_err(&pdev->dev, "Failed to request PCI memory\n"); ret = -EBUSY; goto out_mcb_bus; } priv->base = devm_ioremap(&pdev->dev, priv->mem->start, table_size); if (!priv->base) { dev_err(&pdev->dev, "Cannot ioremap\n"); ret = -ENOMEM; goto out_mcb_bus; } platform_set_drvdata(pdev, priv); } mcb_bus_add_devices(priv->bus); return 0; out_mcb_bus: mcb_release_bus(priv->bus); return ret; } static int mcb_lpc_remove(struct platform_device *pdev) { struct priv *priv = platform_get_drvdata(pdev); mcb_release_bus(priv->bus); return 0; } static struct platform_device *mcb_lpc_pdev; static int mcb_lpc_create_platform_device(const struct dmi_system_id *id) { struct resource *res = id->driver_data; int ret; mcb_lpc_pdev = platform_device_alloc("mcb-lpc", -1); if (!mcb_lpc_pdev) return -ENOMEM; ret = platform_device_add_resources(mcb_lpc_pdev, res, 1); if (ret) goto out_put; ret = platform_device_add(mcb_lpc_pdev); if (ret) goto out_put; return 0; out_put: platform_device_put(mcb_lpc_pdev); return ret; } static struct resource sc24_fpga_resource = DEFINE_RES_MEM(0xe000e000, CHAM_HEADER_SIZE); static struct resource sc31_fpga_resource = DEFINE_RES_MEM(0xf000e000, CHAM_HEADER_SIZE); static struct platform_driver mcb_lpc_driver = { .driver = { .name = "mcb-lpc", }, .probe = mcb_lpc_probe, .remove = mcb_lpc_remove, }; static const struct dmi_system_id mcb_lpc_dmi_table[] = { { .ident = "SC24", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "MEN"), DMI_MATCH(DMI_PRODUCT_VERSION, "14SC24"), }, .driver_data = (void *)&sc24_fpga_resource, .callback = mcb_lpc_create_platform_device, }, { .ident = "SC31", .matches = { DMI_MATCH(DMI_SYS_VENDOR, "MEN"), DMI_MATCH(DMI_PRODUCT_VERSION, "14SC31"), }, .driver_data = (void *)&sc31_fpga_resource, .callback = mcb_lpc_create_platform_device, }, {} }; MODULE_DEVICE_TABLE(dmi, mcb_lpc_dmi_table); static int __init mcb_lpc_init(void) { if (!dmi_check_system(mcb_lpc_dmi_table)) return -ENODEV; return platform_driver_register(&mcb_lpc_driver); } static void __exit mcb_lpc_exit(void) { platform_device_unregister(mcb_lpc_pdev); platform_driver_unregister(&mcb_lpc_driver); } module_init(mcb_lpc_init); module_exit(mcb_lpc_exit); MODULE_AUTHOR("Andreas Werner <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("MCB over LPC support"); MODULE_IMPORT_NS(MCB);
linux-master
drivers/mcb/mcb-lpc.c
// SPDX-License-Identifier: GPL-2.0-only /* * MEN Chameleon Bus. * * Copyright (C) 2013 MEN Mikroelektronik GmbH (www.men.de) * Author: Johannes Thumshirn <[email protected]> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/types.h> #include <linux/idr.h> #include <linux/mcb.h> static DEFINE_IDA(mcb_ida); static const struct mcb_device_id *mcb_match_id(const struct mcb_device_id *ids, struct mcb_device *dev) { if (ids) { while (ids->device) { if (ids->device == dev->id) return ids; ids++; } } return NULL; } static int mcb_match(struct device *dev, struct device_driver *drv) { struct mcb_driver *mdrv = to_mcb_driver(drv); struct mcb_device *mdev = to_mcb_device(dev); const struct mcb_device_id *found_id; found_id = mcb_match_id(mdrv->id_table, mdev); if (found_id) return 1; return 0; } static int mcb_uevent(const struct device *dev, struct kobj_uevent_env *env) { const struct mcb_device *mdev = to_mcb_device(dev); int ret; ret = add_uevent_var(env, "MODALIAS=mcb:16z%03d", mdev->id); if (ret) return -ENOMEM; return 0; } static int mcb_probe(struct device *dev) { struct mcb_driver *mdrv = to_mcb_driver(dev->driver); struct mcb_device *mdev = to_mcb_device(dev); const struct mcb_device_id *found_id; struct module *carrier_mod; int ret; found_id = mcb_match_id(mdrv->id_table, mdev); if (!found_id) return -ENODEV; carrier_mod = mdev->dev.parent->driver->owner; if (!try_module_get(carrier_mod)) return -EINVAL; get_device(dev); ret = mdrv->probe(mdev, found_id); if (ret) { module_put(carrier_mod); put_device(dev); } return ret; } static void mcb_remove(struct device *dev) { struct mcb_driver *mdrv = to_mcb_driver(dev->driver); struct mcb_device *mdev = to_mcb_device(dev); struct module *carrier_mod; mdrv->remove(mdev); carrier_mod = mdev->dev.parent->driver->owner; module_put(carrier_mod); put_device(&mdev->dev); } static void mcb_shutdown(struct device *dev) { struct mcb_driver *mdrv = to_mcb_driver(dev->driver); struct mcb_device *mdev = to_mcb_device(dev); if (mdrv && mdrv->shutdown) mdrv->shutdown(mdev); } static ssize_t revision_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mcb_bus *bus = to_mcb_bus(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", bus->revision); } static DEVICE_ATTR_RO(revision); static ssize_t model_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mcb_bus *bus = to_mcb_bus(dev); return scnprintf(buf, PAGE_SIZE, "%c\n", bus->model); } static DEVICE_ATTR_RO(model); static ssize_t minor_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mcb_bus *bus = to_mcb_bus(dev); return scnprintf(buf, PAGE_SIZE, "%d\n", bus->minor); } static DEVICE_ATTR_RO(minor); static ssize_t name_show(struct device *dev, struct device_attribute *attr, char *buf) { struct mcb_bus *bus = to_mcb_bus(dev); return scnprintf(buf, PAGE_SIZE, "%s\n", bus->name); } static DEVICE_ATTR_RO(name); static struct attribute *mcb_bus_attrs[] = { &dev_attr_revision.attr, &dev_attr_model.attr, &dev_attr_minor.attr, &dev_attr_name.attr, NULL, }; static const struct attribute_group mcb_carrier_group = { .attrs = mcb_bus_attrs, }; static const struct attribute_group *mcb_carrier_groups[] = { &mcb_carrier_group, NULL, }; static struct bus_type mcb_bus_type = { .name = "mcb", .match = mcb_match, .uevent = mcb_uevent, .probe = mcb_probe, .remove = mcb_remove, .shutdown = mcb_shutdown, }; static struct device_type mcb_carrier_device_type = { .name = "mcb-carrier", .groups = mcb_carrier_groups, }; /** * __mcb_register_driver() - Register a @mcb_driver at the system * @drv: The @mcb_driver * @owner: The @mcb_driver's module * @mod_name: The name of the @mcb_driver's module * * Register a @mcb_driver at the system. Perform some sanity checks, if * the .probe and .remove methods are provided by the driver. */ int __mcb_register_driver(struct mcb_driver *drv, struct module *owner, const char *mod_name) { if (!drv->probe || !drv->remove) return -EINVAL; drv->driver.owner = owner; drv->driver.bus = &mcb_bus_type; drv->driver.mod_name = mod_name; return driver_register(&drv->driver); } EXPORT_SYMBOL_NS_GPL(__mcb_register_driver, MCB); /** * mcb_unregister_driver() - Unregister a @mcb_driver from the system * @drv: The @mcb_driver * * Unregister a @mcb_driver from the system. */ void mcb_unregister_driver(struct mcb_driver *drv) { driver_unregister(&drv->driver); } EXPORT_SYMBOL_NS_GPL(mcb_unregister_driver, MCB); static void mcb_release_dev(struct device *dev) { struct mcb_device *mdev = to_mcb_device(dev); mcb_bus_put(mdev->bus); kfree(mdev); } /** * mcb_device_register() - Register a mcb_device * @bus: The @mcb_bus of the device * @dev: The @mcb_device * * Register a specific @mcb_device at a @mcb_bus and the system itself. */ int mcb_device_register(struct mcb_bus *bus, struct mcb_device *dev) { int ret; int device_id; device_initialize(&dev->dev); mcb_bus_get(bus); dev->dev.bus = &mcb_bus_type; dev->dev.parent = bus->dev.parent; dev->dev.release = mcb_release_dev; dev->dma_dev = bus->carrier; device_id = dev->id; dev_set_name(&dev->dev, "mcb%d-16z%03d-%d:%d:%d", bus->bus_nr, device_id, dev->inst, dev->group, dev->var); ret = device_add(&dev->dev); if (ret < 0) { pr_err("Failed registering device 16z%03d on bus mcb%d (%d)\n", device_id, bus->bus_nr, ret); goto out; } return 0; out: return ret; } EXPORT_SYMBOL_NS_GPL(mcb_device_register, MCB); static void mcb_free_bus(struct device *dev) { struct mcb_bus *bus = to_mcb_bus(dev); put_device(bus->carrier); ida_free(&mcb_ida, bus->bus_nr); kfree(bus); } /** * mcb_alloc_bus() - Allocate a new @mcb_bus * * Allocate a new @mcb_bus. */ struct mcb_bus *mcb_alloc_bus(struct device *carrier) { struct mcb_bus *bus; int bus_nr; int rc; bus = kzalloc(sizeof(struct mcb_bus), GFP_KERNEL); if (!bus) return ERR_PTR(-ENOMEM); bus_nr = ida_alloc(&mcb_ida, GFP_KERNEL); if (bus_nr < 0) { kfree(bus); return ERR_PTR(bus_nr); } bus->bus_nr = bus_nr; bus->carrier = get_device(carrier); device_initialize(&bus->dev); bus->dev.parent = carrier; bus->dev.bus = &mcb_bus_type; bus->dev.type = &mcb_carrier_device_type; bus->dev.release = &mcb_free_bus; dev_set_name(&bus->dev, "mcb:%d", bus_nr); rc = device_add(&bus->dev); if (rc) goto err_put; return bus; err_put: put_device(&bus->dev); return ERR_PTR(rc); } EXPORT_SYMBOL_NS_GPL(mcb_alloc_bus, MCB); static int __mcb_devices_unregister(struct device *dev, void *data) { device_unregister(dev); return 0; } static void mcb_devices_unregister(struct mcb_bus *bus) { bus_for_each_dev(&mcb_bus_type, NULL, NULL, __mcb_devices_unregister); } /** * mcb_release_bus() - Free a @mcb_bus * @bus: The @mcb_bus to release * * Release an allocated @mcb_bus from the system. */ void mcb_release_bus(struct mcb_bus *bus) { mcb_devices_unregister(bus); } EXPORT_SYMBOL_NS_GPL(mcb_release_bus, MCB); /** * mcb_bus_put() - Increment refcnt * @bus: The @mcb_bus * * Get a @mcb_bus' ref */ struct mcb_bus *mcb_bus_get(struct mcb_bus *bus) { if (bus) get_device(&bus->dev); return bus; } EXPORT_SYMBOL_NS_GPL(mcb_bus_get, MCB); /** * mcb_bus_put() - Decrement refcnt * @bus: The @mcb_bus * * Release a @mcb_bus' ref */ void mcb_bus_put(struct mcb_bus *bus) { if (bus) put_device(&bus->dev); } EXPORT_SYMBOL_NS_GPL(mcb_bus_put, MCB); /** * mcb_alloc_dev() - Allocate a device * @bus: The @mcb_bus the device is part of * * Allocate a @mcb_device and add bus. */ struct mcb_device *mcb_alloc_dev(struct mcb_bus *bus) { struct mcb_device *dev; dev = kzalloc(sizeof(struct mcb_device), GFP_KERNEL); if (!dev) return NULL; dev->bus = bus; return dev; } EXPORT_SYMBOL_NS_GPL(mcb_alloc_dev, MCB); /** * mcb_free_dev() - Free @mcb_device * @dev: The device to free * * Free a @mcb_device */ void mcb_free_dev(struct mcb_device *dev) { kfree(dev); } EXPORT_SYMBOL_NS_GPL(mcb_free_dev, MCB); static int __mcb_bus_add_devices(struct device *dev, void *data) { struct mcb_device *mdev = to_mcb_device(dev); int retval; if (mdev->is_added) return 0; retval = device_attach(dev); if (retval < 0) dev_err(dev, "Error adding device (%d)\n", retval); mdev->is_added = true; return 0; } /** * mcb_bus_add_devices() - Add devices in the bus' internal device list * @bus: The @mcb_bus we add the devices * * Add devices in the bus' internal device list to the system. */ void mcb_bus_add_devices(const struct mcb_bus *bus) { bus_for_each_dev(&mcb_bus_type, NULL, NULL, __mcb_bus_add_devices); } EXPORT_SYMBOL_NS_GPL(mcb_bus_add_devices, MCB); /** * mcb_get_resource() - get a resource for a mcb device * @dev: the mcb device * @type: the type of resource */ struct resource *mcb_get_resource(struct mcb_device *dev, unsigned int type) { if (type == IORESOURCE_MEM) return &dev->mem; else if (type == IORESOURCE_IRQ) return &dev->irq; else return NULL; } EXPORT_SYMBOL_NS_GPL(mcb_get_resource, MCB); /** * mcb_request_mem() - Request memory * @dev: The @mcb_device the memory is for * @name: The name for the memory reference. * * Request memory for a @mcb_device. If @name is NULL the driver name will * be used. */ struct resource *mcb_request_mem(struct mcb_device *dev, const char *name) { struct resource *mem; u32 size; if (!name) name = dev->dev.driver->name; size = resource_size(&dev->mem); mem = request_mem_region(dev->mem.start, size, name); if (!mem) return ERR_PTR(-EBUSY); return mem; } EXPORT_SYMBOL_NS_GPL(mcb_request_mem, MCB); /** * mcb_release_mem() - Release memory requested by device * @dev: The @mcb_device that requested the memory * * Release memory that was prior requested via @mcb_request_mem(). */ void mcb_release_mem(struct resource *mem) { u32 size; size = resource_size(mem); release_mem_region(mem->start, size); } EXPORT_SYMBOL_NS_GPL(mcb_release_mem, MCB); static int __mcb_get_irq(struct mcb_device *dev) { struct resource *irq; irq = mcb_get_resource(dev, IORESOURCE_IRQ); return irq->start; } /** * mcb_get_irq() - Get device's IRQ number * @dev: The @mcb_device the IRQ is for * * Get the IRQ number of a given @mcb_device. */ int mcb_get_irq(struct mcb_device *dev) { struct mcb_bus *bus = dev->bus; if (bus->get_irq) return bus->get_irq(dev); return __mcb_get_irq(dev); } EXPORT_SYMBOL_NS_GPL(mcb_get_irq, MCB); static int mcb_init(void) { return bus_register(&mcb_bus_type); } static void mcb_exit(void) { ida_destroy(&mcb_ida); bus_unregister(&mcb_bus_type); } /* mcb must be initialized after PCI but before the chameleon drivers. * That means we must use some initcall between subsys_initcall and * device_initcall. */ fs_initcall(mcb_init); module_exit(mcb_exit); MODULE_DESCRIPTION("MEN Chameleon Bus Driver"); MODULE_AUTHOR("Johannes Thumshirn <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/mcb/mcb-core.c
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (c) 2023, Linaro Ltd. */ #include <linux/clk.h> #include <linux/device.h> #include <linux/interconnect-clk.h> #include <linux/interconnect-provider.h> struct icc_clk_node { struct clk *clk; bool enabled; }; struct icc_clk_provider { struct icc_provider provider; int num_clocks; struct icc_clk_node clocks[] __counted_by(num_clocks); }; #define to_icc_clk_provider(_provider) \ container_of(_provider, struct icc_clk_provider, provider) static int icc_clk_set(struct icc_node *src, struct icc_node *dst) { struct icc_clk_node *qn = src->data; int ret; if (!qn || !qn->clk) return 0; if (!src->peak_bw) { if (qn->enabled) clk_disable_unprepare(qn->clk); qn->enabled = false; return 0; } if (!qn->enabled) { ret = clk_prepare_enable(qn->clk); if (ret) return ret; qn->enabled = true; } return clk_set_rate(qn->clk, icc_units_to_bps(src->peak_bw)); } static int icc_clk_get_bw(struct icc_node *node, u32 *avg, u32 *peak) { struct icc_clk_node *qn = node->data; if (!qn || !qn->clk) *peak = INT_MAX; else *peak = Bps_to_icc(clk_get_rate(qn->clk)); return 0; } /** * icc_clk_register() - register a new clk-based interconnect provider * @dev: device supporting this provider * @first_id: an ID of the first provider's node * @num_clocks: number of instances of struct icc_clk_data * @data: data for the provider * * Registers and returns a clk-based interconnect provider. It is a simple * wrapper around COMMON_CLK framework, allowing other devices to vote on the * clock rate. * * Return: 0 on success, or an error code otherwise */ struct icc_provider *icc_clk_register(struct device *dev, unsigned int first_id, unsigned int num_clocks, const struct icc_clk_data *data) { struct icc_clk_provider *qp; struct icc_provider *provider; struct icc_onecell_data *onecell; struct icc_node *node; int ret, i, j; onecell = devm_kzalloc(dev, struct_size(onecell, nodes, 2 * num_clocks), GFP_KERNEL); if (!onecell) return ERR_PTR(-ENOMEM); qp = devm_kzalloc(dev, struct_size(qp, clocks, num_clocks), GFP_KERNEL); if (!qp) return ERR_PTR(-ENOMEM); qp->num_clocks = num_clocks; provider = &qp->provider; provider->dev = dev; provider->get_bw = icc_clk_get_bw; provider->set = icc_clk_set; provider->aggregate = icc_std_aggregate; provider->xlate = of_icc_xlate_onecell; INIT_LIST_HEAD(&provider->nodes); provider->data = onecell; icc_provider_init(provider); for (i = 0, j = 0; i < num_clocks; i++) { qp->clocks[i].clk = data[i].clk; node = icc_node_create(first_id + j); if (IS_ERR(node)) { ret = PTR_ERR(node); goto err; } node->name = devm_kasprintf(dev, GFP_KERNEL, "%s_master", data[i].name); node->data = &qp->clocks[i]; icc_node_add(node, provider); /* link to the next node, slave */ icc_link_create(node, first_id + j + 1); onecell->nodes[j++] = node; node = icc_node_create(first_id + j); if (IS_ERR(node)) { ret = PTR_ERR(node); goto err; } node->name = devm_kasprintf(dev, GFP_KERNEL, "%s_slave", data[i].name); /* no data for slave node */ icc_node_add(node, provider); onecell->nodes[j++] = node; } onecell->num_nodes = j; ret = icc_provider_register(provider); if (ret) goto err; return provider; err: icc_nodes_remove(provider); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(icc_clk_register); /** * icc_clk_unregister() - unregister a previously registered clk interconnect provider * @provider: provider returned by icc_clk_register() */ void icc_clk_unregister(struct icc_provider *provider) { struct icc_clk_provider *qp = container_of(provider, struct icc_clk_provider, provider); int i; icc_provider_deregister(&qp->provider); icc_nodes_remove(&qp->provider); for (i = 0; i < qp->num_clocks; i++) { struct icc_clk_node *qn = &qp->clocks[i]; if (qn->enabled) clk_disable_unprepare(qn->clk); } } EXPORT_SYMBOL_GPL(icc_clk_unregister); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Interconnect wrapper for clocks"); MODULE_AUTHOR("Dmitry Baryshkov <[email protected]>");
linux-master
drivers/interconnect/icc-clk.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved. */ #include <linux/debugfs.h> #include <linux/interconnect.h> #include <linux/platform_device.h> #include "internal.h" /* * This can be dangerous, therefore don't provide any real compile time * configuration option for this feature. * People who want to use this will need to modify the source code directly. */ #undef INTERCONNECT_ALLOW_WRITE_DEBUGFS #if defined(INTERCONNECT_ALLOW_WRITE_DEBUGFS) && defined(CONFIG_DEBUG_FS) static LIST_HEAD(debugfs_paths); static DEFINE_MUTEX(debugfs_lock); static struct platform_device *pdev; static struct icc_path *cur_path; static char *src_node; static char *dst_node; static u32 avg_bw; static u32 peak_bw; static u32 tag; struct debugfs_path { const char *src; const char *dst; struct icc_path *path; struct list_head list; }; static struct icc_path *get_path(const char *src, const char *dst) { struct debugfs_path *path; list_for_each_entry(path, &debugfs_paths, list) { if (!strcmp(path->src, src) && !strcmp(path->dst, dst)) return path->path; } return NULL; } static int icc_get_set(void *data, u64 val) { struct debugfs_path *debugfs_path; char *src, *dst; int ret = 0; mutex_lock(&debugfs_lock); rcu_read_lock(); src = rcu_dereference(src_node); dst = rcu_dereference(dst_node); /* * If we've already looked up a path, then use the existing one instead * of calling icc_get() again. This allows for updating previous BW * votes when "get" is written to multiple times for multiple paths. */ cur_path = get_path(src, dst); if (cur_path) { rcu_read_unlock(); goto out; } src = kstrdup(src, GFP_ATOMIC); dst = kstrdup(dst, GFP_ATOMIC); rcu_read_unlock(); if (!src || !dst) { ret = -ENOMEM; goto err_free; } cur_path = icc_get(&pdev->dev, src, dst); if (IS_ERR(cur_path)) { ret = PTR_ERR(cur_path); goto err_free; } debugfs_path = kzalloc(sizeof(*debugfs_path), GFP_KERNEL); if (!debugfs_path) { ret = -ENOMEM; goto err_put; } debugfs_path->path = cur_path; debugfs_path->src = src; debugfs_path->dst = dst; list_add_tail(&debugfs_path->list, &debugfs_paths); goto out; err_put: icc_put(cur_path); err_free: kfree(src); kfree(dst); out: mutex_unlock(&debugfs_lock); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(icc_get_fops, NULL, icc_get_set, "%llu\n"); static int icc_commit_set(void *data, u64 val) { int ret; mutex_lock(&debugfs_lock); if (IS_ERR_OR_NULL(cur_path)) { ret = PTR_ERR(cur_path); goto out; } icc_set_tag(cur_path, tag); ret = icc_set_bw(cur_path, avg_bw, peak_bw); out: mutex_unlock(&debugfs_lock); return ret; } DEFINE_DEBUGFS_ATTRIBUTE(icc_commit_fops, NULL, icc_commit_set, "%llu\n"); int icc_debugfs_client_init(struct dentry *icc_dir) { struct dentry *client_dir; int ret; pdev = platform_device_alloc("icc-debugfs-client", PLATFORM_DEVID_NONE); ret = platform_device_add(pdev); if (ret) { pr_err("%s: failed to add platform device: %d\n", __func__, ret); platform_device_put(pdev); return ret; } client_dir = debugfs_create_dir("test_client", icc_dir); debugfs_create_str("src_node", 0600, client_dir, &src_node); debugfs_create_str("dst_node", 0600, client_dir, &dst_node); debugfs_create_file("get", 0200, client_dir, NULL, &icc_get_fops); debugfs_create_u32("avg_bw", 0600, client_dir, &avg_bw); debugfs_create_u32("peak_bw", 0600, client_dir, &peak_bw); debugfs_create_u32("tag", 0600, client_dir, &tag); debugfs_create_file("commit", 0200, client_dir, NULL, &icc_commit_fops); return 0; } #else int icc_debugfs_client_init(struct dentry *icc_dir) { return 0; } #endif
linux-master
drivers/interconnect/debugfs-client.c
// SPDX-License-Identifier: GPL-2.0 /* * Interconnect framework core driver * * Copyright (c) 2017-2019, Linaro Ltd. * Author: Georgi Djakov <[email protected]> */ #include <linux/debugfs.h> #include <linux/device.h> #include <linux/idr.h> #include <linux/init.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/list.h> #include <linux/mutex.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/overflow.h> #include "internal.h" #define CREATE_TRACE_POINTS #include "trace.h" static DEFINE_IDR(icc_idr); static LIST_HEAD(icc_providers); static int providers_count; static bool synced_state; static DEFINE_MUTEX(icc_lock); static DEFINE_MUTEX(icc_bw_lock); static struct dentry *icc_debugfs_dir; static void icc_summary_show_one(struct seq_file *s, struct icc_node *n) { if (!n) return; seq_printf(s, "%-42s %12u %12u\n", n->name, n->avg_bw, n->peak_bw); } static int icc_summary_show(struct seq_file *s, void *data) { struct icc_provider *provider; seq_puts(s, " node tag avg peak\n"); seq_puts(s, "--------------------------------------------------------------------\n"); mutex_lock(&icc_lock); list_for_each_entry(provider, &icc_providers, provider_list) { struct icc_node *n; list_for_each_entry(n, &provider->nodes, node_list) { struct icc_req *r; icc_summary_show_one(s, n); hlist_for_each_entry(r, &n->req_list, req_node) { u32 avg_bw = 0, peak_bw = 0; if (!r->dev) continue; if (r->enabled) { avg_bw = r->avg_bw; peak_bw = r->peak_bw; } seq_printf(s, " %-27s %12u %12u %12u\n", dev_name(r->dev), r->tag, avg_bw, peak_bw); } } } mutex_unlock(&icc_lock); return 0; } DEFINE_SHOW_ATTRIBUTE(icc_summary); static void icc_graph_show_link(struct seq_file *s, int level, struct icc_node *n, struct icc_node *m) { seq_printf(s, "%s\"%d:%s\" -> \"%d:%s\"\n", level == 2 ? "\t\t" : "\t", n->id, n->name, m->id, m->name); } static void icc_graph_show_node(struct seq_file *s, struct icc_node *n) { seq_printf(s, "\t\t\"%d:%s\" [label=\"%d:%s", n->id, n->name, n->id, n->name); seq_printf(s, "\n\t\t\t|avg_bw=%ukBps", n->avg_bw); seq_printf(s, "\n\t\t\t|peak_bw=%ukBps", n->peak_bw); seq_puts(s, "\"]\n"); } static int icc_graph_show(struct seq_file *s, void *data) { struct icc_provider *provider; struct icc_node *n; int cluster_index = 0; int i; seq_puts(s, "digraph {\n\trankdir = LR\n\tnode [shape = record]\n"); mutex_lock(&icc_lock); /* draw providers as cluster subgraphs */ cluster_index = 0; list_for_each_entry(provider, &icc_providers, provider_list) { seq_printf(s, "\tsubgraph cluster_%d {\n", ++cluster_index); if (provider->dev) seq_printf(s, "\t\tlabel = \"%s\"\n", dev_name(provider->dev)); /* draw nodes */ list_for_each_entry(n, &provider->nodes, node_list) icc_graph_show_node(s, n); /* draw internal links */ list_for_each_entry(n, &provider->nodes, node_list) for (i = 0; i < n->num_links; ++i) if (n->provider == n->links[i]->provider) icc_graph_show_link(s, 2, n, n->links[i]); seq_puts(s, "\t}\n"); } /* draw external links */ list_for_each_entry(provider, &icc_providers, provider_list) list_for_each_entry(n, &provider->nodes, node_list) for (i = 0; i < n->num_links; ++i) if (n->provider != n->links[i]->provider) icc_graph_show_link(s, 1, n, n->links[i]); mutex_unlock(&icc_lock); seq_puts(s, "}"); return 0; } DEFINE_SHOW_ATTRIBUTE(icc_graph); static struct icc_node *node_find(const int id) { return idr_find(&icc_idr, id); } static struct icc_node *node_find_by_name(const char *name) { struct icc_provider *provider; struct icc_node *n; list_for_each_entry(provider, &icc_providers, provider_list) { list_for_each_entry(n, &provider->nodes, node_list) { if (!strcmp(n->name, name)) return n; } } return NULL; } static struct icc_path *path_init(struct device *dev, struct icc_node *dst, ssize_t num_nodes) { struct icc_node *node = dst; struct icc_path *path; int i; path = kzalloc(struct_size(path, reqs, num_nodes), GFP_KERNEL); if (!path) return ERR_PTR(-ENOMEM); path->num_nodes = num_nodes; for (i = num_nodes - 1; i >= 0; i--) { node->provider->users++; hlist_add_head(&path->reqs[i].req_node, &node->req_list); path->reqs[i].node = node; path->reqs[i].dev = dev; path->reqs[i].enabled = true; /* reference to previous node was saved during path traversal */ node = node->reverse; } return path; } static struct icc_path *path_find(struct device *dev, struct icc_node *src, struct icc_node *dst) { struct icc_path *path = ERR_PTR(-EPROBE_DEFER); struct icc_node *n, *node = NULL; struct list_head traverse_list; struct list_head edge_list; struct list_head visited_list; size_t i, depth = 1; bool found = false; INIT_LIST_HEAD(&traverse_list); INIT_LIST_HEAD(&edge_list); INIT_LIST_HEAD(&visited_list); list_add(&src->search_list, &traverse_list); src->reverse = NULL; do { list_for_each_entry_safe(node, n, &traverse_list, search_list) { if (node == dst) { found = true; list_splice_init(&edge_list, &visited_list); list_splice_init(&traverse_list, &visited_list); break; } for (i = 0; i < node->num_links; i++) { struct icc_node *tmp = node->links[i]; if (!tmp) { path = ERR_PTR(-ENOENT); goto out; } if (tmp->is_traversed) continue; tmp->is_traversed = true; tmp->reverse = node; list_add_tail(&tmp->search_list, &edge_list); } } if (found) break; list_splice_init(&traverse_list, &visited_list); list_splice_init(&edge_list, &traverse_list); /* count the hops including the source */ depth++; } while (!list_empty(&traverse_list)); out: /* reset the traversed state */ list_for_each_entry_reverse(n, &visited_list, search_list) n->is_traversed = false; if (found) path = path_init(dev, dst, depth); return path; } /* * We want the path to honor all bandwidth requests, so the average and peak * bandwidth requirements from each consumer are aggregated at each node. * The aggregation is platform specific, so each platform can customize it by * implementing its own aggregate() function. */ static int aggregate_requests(struct icc_node *node) { struct icc_provider *p = node->provider; struct icc_req *r; u32 avg_bw, peak_bw; node->avg_bw = 0; node->peak_bw = 0; if (p->pre_aggregate) p->pre_aggregate(node); hlist_for_each_entry(r, &node->req_list, req_node) { if (r->enabled) { avg_bw = r->avg_bw; peak_bw = r->peak_bw; } else { avg_bw = 0; peak_bw = 0; } p->aggregate(node, r->tag, avg_bw, peak_bw, &node->avg_bw, &node->peak_bw); /* during boot use the initial bandwidth as a floor value */ if (!synced_state) { node->avg_bw = max(node->avg_bw, node->init_avg); node->peak_bw = max(node->peak_bw, node->init_peak); } } return 0; } static int apply_constraints(struct icc_path *path) { struct icc_node *next, *prev = NULL; struct icc_provider *p; int ret = -EINVAL; int i; for (i = 0; i < path->num_nodes; i++) { next = path->reqs[i].node; p = next->provider; /* both endpoints should be valid master-slave pairs */ if (!prev || (p != prev->provider && !p->inter_set)) { prev = next; continue; } /* set the constraints */ ret = p->set(prev, next); if (ret) goto out; prev = next; } out: return ret; } int icc_std_aggregate(struct icc_node *node, u32 tag, u32 avg_bw, u32 peak_bw, u32 *agg_avg, u32 *agg_peak) { *agg_avg += avg_bw; *agg_peak = max(*agg_peak, peak_bw); return 0; } EXPORT_SYMBOL_GPL(icc_std_aggregate); /* of_icc_xlate_onecell() - Translate function using a single index. * @spec: OF phandle args to map into an interconnect node. * @data: private data (pointer to struct icc_onecell_data) * * This is a generic translate function that can be used to model simple * interconnect providers that have one device tree node and provide * multiple interconnect nodes. A single cell is used as an index into * an array of icc nodes specified in the icc_onecell_data struct when * registering the provider. */ struct icc_node *of_icc_xlate_onecell(struct of_phandle_args *spec, void *data) { struct icc_onecell_data *icc_data = data; unsigned int idx = spec->args[0]; if (idx >= icc_data->num_nodes) { pr_err("%s: invalid index %u\n", __func__, idx); return ERR_PTR(-EINVAL); } return icc_data->nodes[idx]; } EXPORT_SYMBOL_GPL(of_icc_xlate_onecell); /** * of_icc_get_from_provider() - Look-up interconnect node * @spec: OF phandle args to use for look-up * * Looks for interconnect provider under the node specified by @spec and if * found, uses xlate function of the provider to map phandle args to node. * * Returns a valid pointer to struct icc_node_data on success or ERR_PTR() * on failure. */ struct icc_node_data *of_icc_get_from_provider(struct of_phandle_args *spec) { struct icc_node *node = ERR_PTR(-EPROBE_DEFER); struct icc_node_data *data = NULL; struct icc_provider *provider; if (!spec) return ERR_PTR(-EINVAL); mutex_lock(&icc_lock); list_for_each_entry(provider, &icc_providers, provider_list) { if (provider->dev->of_node == spec->np) { if (provider->xlate_extended) { data = provider->xlate_extended(spec, provider->data); if (!IS_ERR(data)) { node = data->node; break; } } else { node = provider->xlate(spec, provider->data); if (!IS_ERR(node)) break; } } } mutex_unlock(&icc_lock); if (IS_ERR(node)) return ERR_CAST(node); if (!data) { data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return ERR_PTR(-ENOMEM); data->node = node; } return data; } EXPORT_SYMBOL_GPL(of_icc_get_from_provider); static void devm_icc_release(struct device *dev, void *res) { icc_put(*(struct icc_path **)res); } struct icc_path *devm_of_icc_get(struct device *dev, const char *name) { struct icc_path **ptr, *path; ptr = devres_alloc(devm_icc_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); path = of_icc_get(dev, name); if (!IS_ERR(path)) { *ptr = path; devres_add(dev, ptr); } else { devres_free(ptr); } return path; } EXPORT_SYMBOL_GPL(devm_of_icc_get); /** * of_icc_get_by_index() - get a path handle from a DT node based on index * @dev: device pointer for the consumer device * @idx: interconnect path index * * This function will search for a path between two endpoints and return an * icc_path handle on success. Use icc_put() to release constraints when they * are not needed anymore. * If the interconnect API is disabled, NULL is returned and the consumer * drivers will still build. Drivers are free to handle this specifically, * but they don't have to. * * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned * when the API is disabled or the "interconnects" DT property is missing. */ struct icc_path *of_icc_get_by_index(struct device *dev, int idx) { struct icc_path *path; struct icc_node_data *src_data, *dst_data; struct device_node *np; struct of_phandle_args src_args, dst_args; int ret; if (!dev || !dev->of_node) return ERR_PTR(-ENODEV); np = dev->of_node; /* * When the consumer DT node do not have "interconnects" property * return a NULL path to skip setting constraints. */ if (!of_property_present(np, "interconnects")) return NULL; /* * We use a combination of phandle and specifier for endpoint. For now * lets support only global ids and extend this in the future if needed * without breaking DT compatibility. */ ret = of_parse_phandle_with_args(np, "interconnects", "#interconnect-cells", idx * 2, &src_args); if (ret) return ERR_PTR(ret); of_node_put(src_args.np); ret = of_parse_phandle_with_args(np, "interconnects", "#interconnect-cells", idx * 2 + 1, &dst_args); if (ret) return ERR_PTR(ret); of_node_put(dst_args.np); src_data = of_icc_get_from_provider(&src_args); if (IS_ERR(src_data)) { dev_err_probe(dev, PTR_ERR(src_data), "error finding src node\n"); return ERR_CAST(src_data); } dst_data = of_icc_get_from_provider(&dst_args); if (IS_ERR(dst_data)) { dev_err_probe(dev, PTR_ERR(dst_data), "error finding dst node\n"); kfree(src_data); return ERR_CAST(dst_data); } mutex_lock(&icc_lock); path = path_find(dev, src_data->node, dst_data->node); mutex_unlock(&icc_lock); if (IS_ERR(path)) { dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); goto free_icc_data; } if (src_data->tag && src_data->tag == dst_data->tag) icc_set_tag(path, src_data->tag); path->name = kasprintf(GFP_KERNEL, "%s-%s", src_data->node->name, dst_data->node->name); if (!path->name) { kfree(path); path = ERR_PTR(-ENOMEM); } free_icc_data: kfree(src_data); kfree(dst_data); return path; } EXPORT_SYMBOL_GPL(of_icc_get_by_index); /** * of_icc_get() - get a path handle from a DT node based on name * @dev: device pointer for the consumer device * @name: interconnect path name * * This function will search for a path between two endpoints and return an * icc_path handle on success. Use icc_put() to release constraints when they * are not needed anymore. * If the interconnect API is disabled, NULL is returned and the consumer * drivers will still build. Drivers are free to handle this specifically, * but they don't have to. * * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned * when the API is disabled or the "interconnects" DT property is missing. */ struct icc_path *of_icc_get(struct device *dev, const char *name) { struct device_node *np; int idx = 0; if (!dev || !dev->of_node) return ERR_PTR(-ENODEV); np = dev->of_node; /* * When the consumer DT node do not have "interconnects" property * return a NULL path to skip setting constraints. */ if (!of_property_present(np, "interconnects")) return NULL; /* * We use a combination of phandle and specifier for endpoint. For now * lets support only global ids and extend this in the future if needed * without breaking DT compatibility. */ if (name) { idx = of_property_match_string(np, "interconnect-names", name); if (idx < 0) return ERR_PTR(idx); } return of_icc_get_by_index(dev, idx); } EXPORT_SYMBOL_GPL(of_icc_get); /** * icc_get() - get a path handle between two endpoints * @dev: device pointer for the consumer device * @src: source node name * @dst: destination node name * * This function will search for a path between two endpoints and return an * icc_path handle on success. Use icc_put() to release constraints when they * are not needed anymore. * * Return: icc_path pointer on success or ERR_PTR() on error. NULL is returned * when the API is disabled. */ struct icc_path *icc_get(struct device *dev, const char *src, const char *dst) { struct icc_node *src_node, *dst_node; struct icc_path *path = ERR_PTR(-EPROBE_DEFER); mutex_lock(&icc_lock); src_node = node_find_by_name(src); if (!src_node) { dev_err(dev, "%s: invalid src=%s\n", __func__, src); goto out; } dst_node = node_find_by_name(dst); if (!dst_node) { dev_err(dev, "%s: invalid dst=%s\n", __func__, dst); goto out; } path = path_find(dev, src_node, dst_node); if (IS_ERR(path)) { dev_err(dev, "%s: invalid path=%ld\n", __func__, PTR_ERR(path)); goto out; } path->name = kasprintf(GFP_KERNEL, "%s-%s", src_node->name, dst_node->name); if (!path->name) { kfree(path); path = ERR_PTR(-ENOMEM); } out: mutex_unlock(&icc_lock); return path; } /** * icc_set_tag() - set an optional tag on a path * @path: the path we want to tag * @tag: the tag value * * This function allows consumers to append a tag to the requests associated * with a path, so that a different aggregation could be done based on this tag. */ void icc_set_tag(struct icc_path *path, u32 tag) { int i; if (!path) return; mutex_lock(&icc_lock); for (i = 0; i < path->num_nodes; i++) path->reqs[i].tag = tag; mutex_unlock(&icc_lock); } EXPORT_SYMBOL_GPL(icc_set_tag); /** * icc_get_name() - Get name of the icc path * @path: interconnect path * * This function is used by an interconnect consumer to get the name of the icc * path. * * Returns a valid pointer on success, or NULL otherwise. */ const char *icc_get_name(struct icc_path *path) { if (!path) return NULL; return path->name; } EXPORT_SYMBOL_GPL(icc_get_name); /** * icc_set_bw() - set bandwidth constraints on an interconnect path * @path: interconnect path * @avg_bw: average bandwidth in kilobytes per second * @peak_bw: peak bandwidth in kilobytes per second * * This function is used by an interconnect consumer to express its own needs * in terms of bandwidth for a previously requested path between two endpoints. * The requests are aggregated and each node is updated accordingly. The entire * path is locked by a mutex to ensure that the set() is completed. * The @path can be NULL when the "interconnects" DT properties is missing, * which will mean that no constraints will be set. * * Returns 0 on success, or an appropriate error code otherwise. */ int icc_set_bw(struct icc_path *path, u32 avg_bw, u32 peak_bw) { struct icc_node *node; u32 old_avg, old_peak; size_t i; int ret; if (!path) return 0; if (WARN_ON(IS_ERR(path) || !path->num_nodes)) return -EINVAL; mutex_lock(&icc_bw_lock); old_avg = path->reqs[0].avg_bw; old_peak = path->reqs[0].peak_bw; for (i = 0; i < path->num_nodes; i++) { node = path->reqs[i].node; /* update the consumer request for this path */ path->reqs[i].avg_bw = avg_bw; path->reqs[i].peak_bw = peak_bw; /* aggregate requests for this node */ aggregate_requests(node); trace_icc_set_bw(path, node, i, avg_bw, peak_bw); } ret = apply_constraints(path); if (ret) { pr_debug("interconnect: error applying constraints (%d)\n", ret); for (i = 0; i < path->num_nodes; i++) { node = path->reqs[i].node; path->reqs[i].avg_bw = old_avg; path->reqs[i].peak_bw = old_peak; aggregate_requests(node); } apply_constraints(path); } mutex_unlock(&icc_bw_lock); trace_icc_set_bw_end(path, ret); return ret; } EXPORT_SYMBOL_GPL(icc_set_bw); static int __icc_enable(struct icc_path *path, bool enable) { int i; if (!path) return 0; if (WARN_ON(IS_ERR(path) || !path->num_nodes)) return -EINVAL; mutex_lock(&icc_lock); for (i = 0; i < path->num_nodes; i++) path->reqs[i].enabled = enable; mutex_unlock(&icc_lock); return icc_set_bw(path, path->reqs[0].avg_bw, path->reqs[0].peak_bw); } int icc_enable(struct icc_path *path) { return __icc_enable(path, true); } EXPORT_SYMBOL_GPL(icc_enable); int icc_disable(struct icc_path *path) { return __icc_enable(path, false); } EXPORT_SYMBOL_GPL(icc_disable); /** * icc_put() - release the reference to the icc_path * @path: interconnect path * * Use this function to release the constraints on a path when the path is * no longer needed. The constraints will be re-aggregated. */ void icc_put(struct icc_path *path) { struct icc_node *node; size_t i; int ret; if (!path || WARN_ON(IS_ERR(path))) return; ret = icc_set_bw(path, 0, 0); if (ret) pr_err("%s: error (%d)\n", __func__, ret); mutex_lock(&icc_lock); for (i = 0; i < path->num_nodes; i++) { node = path->reqs[i].node; hlist_del(&path->reqs[i].req_node); if (!WARN_ON(!node->provider->users)) node->provider->users--; } mutex_unlock(&icc_lock); kfree_const(path->name); kfree(path); } EXPORT_SYMBOL_GPL(icc_put); static struct icc_node *icc_node_create_nolock(int id) { struct icc_node *node; /* check if node already exists */ node = node_find(id); if (node) return node; node = kzalloc(sizeof(*node), GFP_KERNEL); if (!node) return ERR_PTR(-ENOMEM); id = idr_alloc(&icc_idr, node, id, id + 1, GFP_KERNEL); if (id < 0) { WARN(1, "%s: couldn't get idr\n", __func__); kfree(node); return ERR_PTR(id); } node->id = id; return node; } /** * icc_node_create() - create a node * @id: node id * * Return: icc_node pointer on success, or ERR_PTR() on error */ struct icc_node *icc_node_create(int id) { struct icc_node *node; mutex_lock(&icc_lock); node = icc_node_create_nolock(id); mutex_unlock(&icc_lock); return node; } EXPORT_SYMBOL_GPL(icc_node_create); /** * icc_node_destroy() - destroy a node * @id: node id */ void icc_node_destroy(int id) { struct icc_node *node; mutex_lock(&icc_lock); node = node_find(id); if (node) { idr_remove(&icc_idr, node->id); WARN_ON(!hlist_empty(&node->req_list)); } mutex_unlock(&icc_lock); if (!node) return; kfree(node->links); kfree(node); } EXPORT_SYMBOL_GPL(icc_node_destroy); /** * icc_link_create() - create a link between two nodes * @node: source node id * @dst_id: destination node id * * Create a link between two nodes. The nodes might belong to different * interconnect providers and the @dst_id node might not exist (if the * provider driver has not probed yet). So just create the @dst_id node * and when the actual provider driver is probed, the rest of the node * data is filled. * * Return: 0 on success, or an error code otherwise */ int icc_link_create(struct icc_node *node, const int dst_id) { struct icc_node *dst; struct icc_node **new; int ret = 0; if (!node->provider) return -EINVAL; mutex_lock(&icc_lock); dst = node_find(dst_id); if (!dst) { dst = icc_node_create_nolock(dst_id); if (IS_ERR(dst)) { ret = PTR_ERR(dst); goto out; } } new = krealloc(node->links, (node->num_links + 1) * sizeof(*node->links), GFP_KERNEL); if (!new) { ret = -ENOMEM; goto out; } node->links = new; node->links[node->num_links++] = dst; out: mutex_unlock(&icc_lock); return ret; } EXPORT_SYMBOL_GPL(icc_link_create); /** * icc_node_add() - add interconnect node to interconnect provider * @node: pointer to the interconnect node * @provider: pointer to the interconnect provider */ void icc_node_add(struct icc_node *node, struct icc_provider *provider) { if (WARN_ON(node->provider)) return; mutex_lock(&icc_lock); mutex_lock(&icc_bw_lock); node->provider = provider; list_add_tail(&node->node_list, &provider->nodes); /* get the initial bandwidth values and sync them with hardware */ if (provider->get_bw) { provider->get_bw(node, &node->init_avg, &node->init_peak); } else { node->init_avg = INT_MAX; node->init_peak = INT_MAX; } node->avg_bw = node->init_avg; node->peak_bw = node->init_peak; if (node->avg_bw || node->peak_bw) { if (provider->pre_aggregate) provider->pre_aggregate(node); if (provider->aggregate) provider->aggregate(node, 0, node->init_avg, node->init_peak, &node->avg_bw, &node->peak_bw); if (provider->set) provider->set(node, node); } node->avg_bw = 0; node->peak_bw = 0; mutex_unlock(&icc_bw_lock); mutex_unlock(&icc_lock); } EXPORT_SYMBOL_GPL(icc_node_add); /** * icc_node_del() - delete interconnect node from interconnect provider * @node: pointer to the interconnect node */ void icc_node_del(struct icc_node *node) { mutex_lock(&icc_lock); list_del(&node->node_list); mutex_unlock(&icc_lock); } EXPORT_SYMBOL_GPL(icc_node_del); /** * icc_nodes_remove() - remove all previously added nodes from provider * @provider: the interconnect provider we are removing nodes from * * Return: 0 on success, or an error code otherwise */ int icc_nodes_remove(struct icc_provider *provider) { struct icc_node *n, *tmp; if (WARN_ON(IS_ERR_OR_NULL(provider))) return -EINVAL; list_for_each_entry_safe_reverse(n, tmp, &provider->nodes, node_list) { icc_node_del(n); icc_node_destroy(n->id); } return 0; } EXPORT_SYMBOL_GPL(icc_nodes_remove); /** * icc_provider_init() - initialize a new interconnect provider * @provider: the interconnect provider to initialize * * Must be called before adding nodes to the provider. */ void icc_provider_init(struct icc_provider *provider) { WARN_ON(!provider->set); INIT_LIST_HEAD(&provider->nodes); } EXPORT_SYMBOL_GPL(icc_provider_init); /** * icc_provider_register() - register a new interconnect provider * @provider: the interconnect provider to register * * Return: 0 on success, or an error code otherwise */ int icc_provider_register(struct icc_provider *provider) { if (WARN_ON(!provider->xlate && !provider->xlate_extended)) return -EINVAL; mutex_lock(&icc_lock); list_add_tail(&provider->provider_list, &icc_providers); mutex_unlock(&icc_lock); dev_dbg(provider->dev, "interconnect provider registered\n"); return 0; } EXPORT_SYMBOL_GPL(icc_provider_register); /** * icc_provider_deregister() - deregister an interconnect provider * @provider: the interconnect provider to deregister */ void icc_provider_deregister(struct icc_provider *provider) { mutex_lock(&icc_lock); WARN_ON(provider->users); list_del(&provider->provider_list); mutex_unlock(&icc_lock); } EXPORT_SYMBOL_GPL(icc_provider_deregister); static const struct of_device_id __maybe_unused ignore_list[] = { { .compatible = "qcom,sc7180-ipa-virt" }, { .compatible = "qcom,sc8180x-ipa-virt" }, { .compatible = "qcom,sdx55-ipa-virt" }, { .compatible = "qcom,sm8150-ipa-virt" }, { .compatible = "qcom,sm8250-ipa-virt" }, {} }; static int of_count_icc_providers(struct device_node *np) { struct device_node *child; int count = 0; for_each_available_child_of_node(np, child) { if (of_property_read_bool(child, "#interconnect-cells") && likely(!of_match_node(ignore_list, child))) count++; count += of_count_icc_providers(child); } return count; } void icc_sync_state(struct device *dev) { struct icc_provider *p; struct icc_node *n; static int count; count++; if (count < providers_count) return; mutex_lock(&icc_lock); mutex_lock(&icc_bw_lock); synced_state = true; list_for_each_entry(p, &icc_providers, provider_list) { dev_dbg(p->dev, "interconnect provider is in synced state\n"); list_for_each_entry(n, &p->nodes, node_list) { if (n->init_avg || n->init_peak) { n->init_avg = 0; n->init_peak = 0; aggregate_requests(n); p->set(n, n); } } } mutex_unlock(&icc_bw_lock); mutex_unlock(&icc_lock); } EXPORT_SYMBOL_GPL(icc_sync_state); static int __init icc_init(void) { struct device_node *root; /* Teach lockdep about lock ordering wrt. shrinker: */ fs_reclaim_acquire(GFP_KERNEL); might_lock(&icc_bw_lock); fs_reclaim_release(GFP_KERNEL); root = of_find_node_by_path("/"); providers_count = of_count_icc_providers(root); of_node_put(root); icc_debugfs_dir = debugfs_create_dir("interconnect", NULL); debugfs_create_file("interconnect_summary", 0444, icc_debugfs_dir, NULL, &icc_summary_fops); debugfs_create_file("interconnect_graph", 0444, icc_debugfs_dir, NULL, &icc_graph_fops); icc_debugfs_client_init(icc_debugfs_dir); return 0; } device_initcall(icc_init);
linux-master
drivers/interconnect/core.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/interconnect-provider.h> #include <linux/device.h> #include <linux/export.h> /** * of_icc_bulk_get() - get interconnect paths * @dev: the device requesting the path * @num_paths: the number of icc_bulk_data * @paths: the table with the paths we want to get * * Returns 0 on success or negative errno otherwise. */ int __must_check of_icc_bulk_get(struct device *dev, int num_paths, struct icc_bulk_data *paths) { int ret, i; for (i = 0; i < num_paths; i++) { paths[i].path = of_icc_get(dev, paths[i].name); if (IS_ERR(paths[i].path)) { ret = PTR_ERR(paths[i].path); if (ret != -EPROBE_DEFER) dev_err(dev, "of_icc_get() failed on path %s (%d)\n", paths[i].name, ret); paths[i].path = NULL; goto err; } } return 0; err: icc_bulk_put(i, paths); return ret; } EXPORT_SYMBOL_GPL(of_icc_bulk_get); /** * icc_bulk_put() - put a list of interconnect paths * @num_paths: the number of icc_bulk_data * @paths: the icc_bulk_data table with the paths being put */ void icc_bulk_put(int num_paths, struct icc_bulk_data *paths) { while (--num_paths >= 0) { icc_put(paths[num_paths].path); paths[num_paths].path = NULL; } } EXPORT_SYMBOL_GPL(icc_bulk_put); /** * icc_bulk_set_bw() - set bandwidth to a set of paths * @num_paths: the number of icc_bulk_data * @paths: the icc_bulk_data table containing the paths and bandwidth * * Returns 0 on success or negative errno otherwise. */ int icc_bulk_set_bw(int num_paths, const struct icc_bulk_data *paths) { int ret = 0; int i; for (i = 0; i < num_paths; i++) { ret = icc_set_bw(paths[i].path, paths[i].avg_bw, paths[i].peak_bw); if (ret) { pr_err("icc_set_bw() failed on path %s (%d)\n", paths[i].name, ret); return ret; } } return ret; } EXPORT_SYMBOL_GPL(icc_bulk_set_bw); /** * icc_bulk_enable() - enable a previously disabled set of paths * @num_paths: the number of icc_bulk_data * @paths: the icc_bulk_data table containing the paths and bandwidth * * Returns 0 on success or negative errno otherwise. */ int icc_bulk_enable(int num_paths, const struct icc_bulk_data *paths) { int ret, i; for (i = 0; i < num_paths; i++) { ret = icc_enable(paths[i].path); if (ret) { pr_err("icc_enable() failed on path %s (%d)\n", paths[i].name, ret); goto err; } } return 0; err: icc_bulk_disable(i, paths); return ret; } EXPORT_SYMBOL_GPL(icc_bulk_enable); /** * icc_bulk_disable() - disable a set of interconnect paths * @num_paths: the number of icc_bulk_data * @paths: the icc_bulk_data table containing the paths and bandwidth */ void icc_bulk_disable(int num_paths, const struct icc_bulk_data *paths) { while (--num_paths >= 0) icc_disable(paths[num_paths].path); } EXPORT_SYMBOL_GPL(icc_bulk_disable); struct icc_bulk_devres { struct icc_bulk_data *paths; int num_paths; }; static void devm_icc_bulk_release(struct device *dev, void *res) { struct icc_bulk_devres *devres = res; icc_bulk_put(devres->num_paths, devres->paths); } /** * devm_of_icc_bulk_get() - resource managed of_icc_bulk_get * @dev: the device requesting the path * @num_paths: the number of icc_bulk_data * @paths: the table with the paths we want to get * * Returns 0 on success or negative errno otherwise. */ int devm_of_icc_bulk_get(struct device *dev, int num_paths, struct icc_bulk_data *paths) { struct icc_bulk_devres *devres; int ret; devres = devres_alloc(devm_icc_bulk_release, sizeof(*devres), GFP_KERNEL); if (!devres) return -ENOMEM; ret = of_icc_bulk_get(dev, num_paths, paths); if (!ret) { devres->paths = paths; devres->num_paths = num_paths; devres_add(dev, devres); } else { devres_free(devres); } return ret; } EXPORT_SYMBOL_GPL(devm_of_icc_bulk_get);
linux-master
drivers/interconnect/bulk.c
// SPDX-License-Identifier: GPL-2.0 /* * Interconnect framework driver for i.MX8MP SoC * * Copyright 2022 NXP * Peng Fan <[email protected]> */ #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/fsl,imx8mp.h> #include "imx.h" static const struct imx_icc_node_adj_desc imx8mp_noc_adj = { .bw_mul = 1, .bw_div = 16, .main_noc = true, }; static struct imx_icc_noc_setting noc_setting_nodes[] = { [IMX8MP_ICM_MLMIX] = { .reg = 0x180, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_DSP] = { .reg = 0x200, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_SDMA2PER] = { .reg = 0x280, .mode = IMX_NOC_MODE_FIXED, .prio_level = 4, }, [IMX8MP_ICM_SDMA2BURST] = { .reg = 0x300, .mode = IMX_NOC_MODE_FIXED, .prio_level = 4, }, [IMX8MP_ICM_SDMA3PER] = { .reg = 0x380, .mode = IMX_NOC_MODE_FIXED, .prio_level = 4, }, [IMX8MP_ICM_SDMA3BURST] = { .reg = 0x400, .mode = IMX_NOC_MODE_FIXED, .prio_level = 4, }, [IMX8MP_ICM_EDMA] = { .reg = 0x480, .mode = IMX_NOC_MODE_FIXED, .prio_level = 4, }, [IMX8MP_ICM_GPU3D] = { .reg = 0x500, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_GPU2D] = { .reg = 0x580, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_HRV] = { .reg = 0x600, .mode = IMX_NOC_MODE_FIXED, .prio_level = 2, .ext_control = 1, }, [IMX8MP_ICM_LCDIF_HDMI] = { .reg = 0x680, .mode = IMX_NOC_MODE_FIXED, .prio_level = 2, .ext_control = 1, }, [IMX8MP_ICM_HDCP] = { .reg = 0x700, .mode = IMX_NOC_MODE_FIXED, .prio_level = 5, }, [IMX8MP_ICM_NOC_PCIE] = { .reg = 0x780, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_USB1] = { .reg = 0x800, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_USB2] = { .reg = 0x880, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_PCIE] = { .reg = 0x900, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_LCDIF_RD] = { .reg = 0x980, .mode = IMX_NOC_MODE_FIXED, .prio_level = 2, .ext_control = 1, }, [IMX8MP_ICM_LCDIF_WR] = { .reg = 0xa00, .mode = IMX_NOC_MODE_FIXED, .prio_level = 2, .ext_control = 1, }, [IMX8MP_ICM_ISI0] = { .reg = 0xa80, .mode = IMX_NOC_MODE_FIXED, .prio_level = 2, .ext_control = 1, }, [IMX8MP_ICM_ISI1] = { .reg = 0xb00, .mode = IMX_NOC_MODE_FIXED, .prio_level = 2, .ext_control = 1, }, [IMX8MP_ICM_ISI2] = { .reg = 0xb80, .mode = IMX_NOC_MODE_FIXED, .prio_level = 2, .ext_control = 1, }, [IMX8MP_ICM_ISP0] = { .reg = 0xc00, .mode = IMX_NOC_MODE_FIXED, .prio_level = 7, }, [IMX8MP_ICM_ISP1] = { .reg = 0xc80, .mode = IMX_NOC_MODE_FIXED, .prio_level = 7, }, [IMX8MP_ICM_DWE] = { .reg = 0xd00, .mode = IMX_NOC_MODE_FIXED, .prio_level = 7, }, [IMX8MP_ICM_VPU_G1] = { .reg = 0xd80, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_VPU_G2] = { .reg = 0xe00, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICM_VPU_H1] = { .reg = 0xe80, .mode = IMX_NOC_MODE_FIXED, .prio_level = 3, }, [IMX8MP_ICN_MEDIA] = { .mode = IMX_NOC_MODE_UNCONFIGURED, }, [IMX8MP_ICN_VIDEO] = { .mode = IMX_NOC_MODE_UNCONFIGURED, }, [IMX8MP_ICN_AUDIO] = { .mode = IMX_NOC_MODE_UNCONFIGURED, }, [IMX8MP_ICN_HDMI] = { .mode = IMX_NOC_MODE_UNCONFIGURED, }, [IMX8MP_ICN_GPU] = { .mode = IMX_NOC_MODE_UNCONFIGURED, }, [IMX8MP_ICN_HSIO] = { .mode = IMX_NOC_MODE_UNCONFIGURED, }, }; /* Describe bus masters, slaves and connections between them */ static struct imx_icc_node_desc nodes[] = { DEFINE_BUS_INTERCONNECT("NOC", IMX8MP_ICN_NOC, &imx8mp_noc_adj, IMX8MP_ICS_DRAM, IMX8MP_ICN_MAIN), DEFINE_BUS_SLAVE("OCRAM", IMX8MP_ICS_OCRAM, NULL), DEFINE_BUS_SLAVE("DRAM", IMX8MP_ICS_DRAM, NULL), DEFINE_BUS_MASTER("A53", IMX8MP_ICM_A53, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("SUPERMIX", IMX8MP_ICM_SUPERMIX, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("GIC", IMX8MP_ICM_GIC, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("MLMIX", IMX8MP_ICM_MLMIX, IMX8MP_ICN_NOC), DEFINE_BUS_INTERCONNECT("NOC_AUDIO", IMX8MP_ICN_AUDIO, NULL, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("DSP", IMX8MP_ICM_DSP, IMX8MP_ICN_AUDIO), DEFINE_BUS_MASTER("SDMA2PER", IMX8MP_ICM_SDMA2PER, IMX8MP_ICN_AUDIO), DEFINE_BUS_MASTER("SDMA2BURST", IMX8MP_ICM_SDMA2BURST, IMX8MP_ICN_AUDIO), DEFINE_BUS_MASTER("SDMA3PER", IMX8MP_ICM_SDMA3PER, IMX8MP_ICN_AUDIO), DEFINE_BUS_MASTER("SDMA3BURST", IMX8MP_ICM_SDMA3BURST, IMX8MP_ICN_AUDIO), DEFINE_BUS_MASTER("EDMA", IMX8MP_ICM_EDMA, IMX8MP_ICN_AUDIO), DEFINE_BUS_INTERCONNECT("NOC_GPU", IMX8MP_ICN_GPU, NULL, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("GPU 2D", IMX8MP_ICM_GPU2D, IMX8MP_ICN_GPU), DEFINE_BUS_MASTER("GPU 3D", IMX8MP_ICM_GPU3D, IMX8MP_ICN_GPU), DEFINE_BUS_INTERCONNECT("NOC_HDMI", IMX8MP_ICN_HDMI, NULL, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("HRV", IMX8MP_ICM_HRV, IMX8MP_ICN_HDMI), DEFINE_BUS_MASTER("LCDIF_HDMI", IMX8MP_ICM_LCDIF_HDMI, IMX8MP_ICN_HDMI), DEFINE_BUS_MASTER("HDCP", IMX8MP_ICM_HDCP, IMX8MP_ICN_HDMI), DEFINE_BUS_INTERCONNECT("NOC_HSIO", IMX8MP_ICN_HSIO, NULL, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("NOC_PCIE", IMX8MP_ICM_NOC_PCIE, IMX8MP_ICN_HSIO), DEFINE_BUS_MASTER("USB1", IMX8MP_ICM_USB1, IMX8MP_ICN_HSIO), DEFINE_BUS_MASTER("USB2", IMX8MP_ICM_USB2, IMX8MP_ICN_HSIO), DEFINE_BUS_MASTER("PCIE", IMX8MP_ICM_PCIE, IMX8MP_ICN_HSIO), DEFINE_BUS_INTERCONNECT("NOC_MEDIA", IMX8MP_ICN_MEDIA, NULL, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("LCDIF_RD", IMX8MP_ICM_LCDIF_RD, IMX8MP_ICN_MEDIA), DEFINE_BUS_MASTER("LCDIF_WR", IMX8MP_ICM_LCDIF_WR, IMX8MP_ICN_MEDIA), DEFINE_BUS_MASTER("ISI0", IMX8MP_ICM_ISI0, IMX8MP_ICN_MEDIA), DEFINE_BUS_MASTER("ISI1", IMX8MP_ICM_ISI1, IMX8MP_ICN_MEDIA), DEFINE_BUS_MASTER("ISI2", IMX8MP_ICM_ISI2, IMX8MP_ICN_MEDIA), DEFINE_BUS_MASTER("ISP0", IMX8MP_ICM_ISP0, IMX8MP_ICN_MEDIA), DEFINE_BUS_MASTER("ISP1", IMX8MP_ICM_ISP1, IMX8MP_ICN_MEDIA), DEFINE_BUS_MASTER("DWE", IMX8MP_ICM_DWE, IMX8MP_ICN_MEDIA), DEFINE_BUS_INTERCONNECT("NOC_VIDEO", IMX8MP_ICN_VIDEO, NULL, IMX8MP_ICN_NOC), DEFINE_BUS_MASTER("VPU G1", IMX8MP_ICM_VPU_G1, IMX8MP_ICN_VIDEO), DEFINE_BUS_MASTER("VPU G2", IMX8MP_ICM_VPU_G2, IMX8MP_ICN_VIDEO), DEFINE_BUS_MASTER("VPU H1", IMX8MP_ICM_VPU_H1, IMX8MP_ICN_VIDEO), DEFINE_BUS_INTERCONNECT("PL301_MAIN", IMX8MP_ICN_MAIN, NULL, IMX8MP_ICN_NOC, IMX8MP_ICS_OCRAM), }; static int imx8mp_icc_probe(struct platform_device *pdev) { return imx_icc_register(pdev, nodes, ARRAY_SIZE(nodes), noc_setting_nodes); } static int imx8mp_icc_remove(struct platform_device *pdev) { imx_icc_unregister(pdev); return 0; } static struct platform_driver imx8mp_icc_driver = { .probe = imx8mp_icc_probe, .remove = imx8mp_icc_remove, .driver = { .name = "imx8mp-interconnect", }, }; module_platform_driver(imx8mp_icc_driver); MODULE_AUTHOR("Peng Fan <[email protected]>"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:imx8mp-interconnect");
linux-master
drivers/interconnect/imx/imx8mp.c
// SPDX-License-Identifier: GPL-2.0 /* * Interconnect framework driver for i.MX8MN SoC * * Copyright (c) 2019-2020, NXP */ #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/imx8mn.h> #include "imx.h" static const struct imx_icc_node_adj_desc imx8mn_dram_adj = { .bw_mul = 1, .bw_div = 4, .phandle_name = "fsl,ddrc", }; static const struct imx_icc_node_adj_desc imx8mn_noc_adj = { .bw_mul = 1, .bw_div = 4, .main_noc = true, }; /* * Describe bus masters, slaves and connections between them * * This is a simplified subset of the bus diagram, there are several other * PL301 nics which are skipped/merged into PL301_MAIN */ static struct imx_icc_node_desc nodes[] = { DEFINE_BUS_INTERCONNECT("NOC", IMX8MN_ICN_NOC, &imx8mn_noc_adj, IMX8MN_ICS_DRAM, IMX8MN_ICN_MAIN), DEFINE_BUS_SLAVE("DRAM", IMX8MN_ICS_DRAM, &imx8mn_dram_adj), DEFINE_BUS_SLAVE("OCRAM", IMX8MN_ICS_OCRAM, NULL), DEFINE_BUS_MASTER("A53", IMX8MN_ICM_A53, IMX8MN_ICN_NOC), /* GPUMIX */ DEFINE_BUS_MASTER("GPU", IMX8MN_ICM_GPU, IMX8MN_ICN_GPU), DEFINE_BUS_INTERCONNECT("PL301_GPU", IMX8MN_ICN_GPU, NULL, IMX8MN_ICN_NOC), /* DISPLAYMIX */ DEFINE_BUS_MASTER("CSI1", IMX8MN_ICM_CSI1, IMX8MN_ICN_MIPI), DEFINE_BUS_MASTER("CSI2", IMX8MN_ICM_CSI2, IMX8MN_ICN_MIPI), DEFINE_BUS_MASTER("ISI", IMX8MN_ICM_ISI, IMX8MN_ICN_MIPI), DEFINE_BUS_MASTER("LCDIF", IMX8MN_ICM_LCDIF, IMX8MN_ICN_MIPI), DEFINE_BUS_INTERCONNECT("PL301_MIPI", IMX8MN_ICN_MIPI, NULL, IMX8MN_ICN_NOC), /* USB goes straight to NOC */ DEFINE_BUS_MASTER("USB", IMX8MN_ICM_USB, IMX8MN_ICN_NOC), /* Audio */ DEFINE_BUS_MASTER("SDMA2", IMX8MN_ICM_SDMA2, IMX8MN_ICN_AUDIO), DEFINE_BUS_MASTER("SDMA3", IMX8MN_ICM_SDMA3, IMX8MN_ICN_AUDIO), DEFINE_BUS_INTERCONNECT("PL301_AUDIO", IMX8MN_ICN_AUDIO, NULL, IMX8MN_ICN_MAIN), /* Ethernet */ DEFINE_BUS_MASTER("ENET", IMX8MN_ICM_ENET, IMX8MN_ICN_ENET), DEFINE_BUS_INTERCONNECT("PL301_ENET", IMX8MN_ICN_ENET, NULL, IMX8MN_ICN_MAIN), /* Other */ DEFINE_BUS_MASTER("SDMA1", IMX8MN_ICM_SDMA1, IMX8MN_ICN_MAIN), DEFINE_BUS_MASTER("NAND", IMX8MN_ICM_NAND, IMX8MN_ICN_MAIN), DEFINE_BUS_MASTER("USDHC1", IMX8MN_ICM_USDHC1, IMX8MN_ICN_MAIN), DEFINE_BUS_MASTER("USDHC2", IMX8MN_ICM_USDHC2, IMX8MN_ICN_MAIN), DEFINE_BUS_MASTER("USDHC3", IMX8MN_ICM_USDHC3, IMX8MN_ICN_MAIN), DEFINE_BUS_INTERCONNECT("PL301_MAIN", IMX8MN_ICN_MAIN, NULL, IMX8MN_ICN_NOC, IMX8MN_ICS_OCRAM), }; static int imx8mn_icc_probe(struct platform_device *pdev) { return imx_icc_register(pdev, nodes, ARRAY_SIZE(nodes), NULL); } static int imx8mn_icc_remove(struct platform_device *pdev) { imx_icc_unregister(pdev); return 0; } static struct platform_driver imx8mn_icc_driver = { .probe = imx8mn_icc_probe, .remove = imx8mn_icc_remove, .driver = { .name = "imx8mn-interconnect", }, }; module_platform_driver(imx8mn_icc_driver); MODULE_ALIAS("platform:imx8mn-interconnect"); MODULE_AUTHOR("Leonard Crestez <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/imx/imx8mn.c
// SPDX-License-Identifier: GPL-2.0 /* * Interconnect framework driver for i.MX SoC * * Copyright (c) 2019, BayLibre * Copyright (c) 2019-2020, NXP * Author: Alexandre Bailon <[email protected]> * Author: Leonard Crestez <[email protected]> */ #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_qos.h> #include "imx.h" /* private icc_node data */ struct imx_icc_node { const struct imx_icc_node_desc *desc; const struct imx_icc_noc_setting *setting; struct device *qos_dev; struct dev_pm_qos_request qos_req; struct imx_icc_provider *imx_provider; }; static int imx_icc_get_bw(struct icc_node *node, u32 *avg, u32 *peak) { *avg = 0; *peak = 0; return 0; } static int imx_icc_node_set(struct icc_node *node) { struct device *dev = node->provider->dev; struct imx_icc_node *node_data = node->data; void __iomem *base; u32 prio; u64 freq; if (node_data->setting && node->peak_bw) { base = node_data->setting->reg + node_data->imx_provider->noc_base; if (node_data->setting->mode == IMX_NOC_MODE_FIXED) { prio = node_data->setting->prio_level; prio = PRIORITY_COMP_MARK | (prio << 8) | prio; writel(prio, base + IMX_NOC_PRIO_REG); writel(node_data->setting->mode, base + IMX_NOC_MODE_REG); writel(node_data->setting->ext_control, base + IMX_NOC_EXT_CTL_REG); dev_dbg(dev, "%s: mode: 0x%x, prio: 0x%x, ext_control: 0x%x\n", node_data->desc->name, node_data->setting->mode, prio, node_data->setting->ext_control); } else if (node_data->setting->mode == IMX_NOC_MODE_UNCONFIGURED) { dev_dbg(dev, "%s: mode not unconfigured\n", node_data->desc->name); } else { dev_info(dev, "%s: mode: %d not supported\n", node_data->desc->name, node_data->setting->mode); return -EOPNOTSUPP; } } if (!node_data->qos_dev) return 0; freq = (node->avg_bw + node->peak_bw) * node_data->desc->adj->bw_mul; do_div(freq, node_data->desc->adj->bw_div); dev_dbg(dev, "node %s device %s avg_bw %ukBps peak_bw %ukBps min_freq %llukHz\n", node->name, dev_name(node_data->qos_dev), node->avg_bw, node->peak_bw, freq); if (freq > S32_MAX) { dev_err(dev, "%s can't request more than S32_MAX freq\n", node->name); return -ERANGE; } dev_pm_qos_update_request(&node_data->qos_req, freq); return 0; } static int imx_icc_set(struct icc_node *src, struct icc_node *dst) { int ret; ret = imx_icc_node_set(src); if (ret) return ret; return imx_icc_node_set(dst); } /* imx_icc_node_destroy() - Destroy an imx icc_node, including private data */ static void imx_icc_node_destroy(struct icc_node *node) { struct imx_icc_node *node_data = node->data; int ret; if (dev_pm_qos_request_active(&node_data->qos_req)) { ret = dev_pm_qos_remove_request(&node_data->qos_req); if (ret) dev_warn(node->provider->dev, "failed to remove qos request for %s\n", dev_name(node_data->qos_dev)); } put_device(node_data->qos_dev); icc_node_del(node); icc_node_destroy(node->id); } static int imx_icc_node_init_qos(struct icc_provider *provider, struct icc_node *node) { struct imx_icc_node *node_data = node->data; const struct imx_icc_node_adj_desc *adj = node_data->desc->adj; struct device *dev = provider->dev; struct device_node *dn = NULL; struct platform_device *pdev; if (adj->main_noc) { node_data->qos_dev = dev; dev_dbg(dev, "icc node %s[%d] is main noc itself\n", node->name, node->id); } else { dn = of_parse_phandle(dev->of_node, adj->phandle_name, 0); if (!dn) { dev_warn(dev, "Failed to parse %s\n", adj->phandle_name); return -ENODEV; } /* Allow scaling to be disabled on a per-node basis */ if (!of_device_is_available(dn)) { dev_warn(dev, "Missing property %s, skip scaling %s\n", adj->phandle_name, node->name); of_node_put(dn); return 0; } pdev = of_find_device_by_node(dn); of_node_put(dn); if (!pdev) { dev_warn(dev, "node %s[%d] missing device for %pOF\n", node->name, node->id, dn); return -EPROBE_DEFER; } node_data->qos_dev = &pdev->dev; dev_dbg(dev, "node %s[%d] has device node %pOF\n", node->name, node->id, dn); } return dev_pm_qos_add_request(node_data->qos_dev, &node_data->qos_req, DEV_PM_QOS_MIN_FREQUENCY, 0); } static struct icc_node *imx_icc_node_add(struct imx_icc_provider *imx_provider, const struct imx_icc_node_desc *node_desc, const struct imx_icc_noc_setting *setting) { struct icc_provider *provider = &imx_provider->provider; struct device *dev = provider->dev; struct imx_icc_node *node_data; struct icc_node *node; int ret; node = icc_node_create(node_desc->id); if (IS_ERR(node)) { dev_err(dev, "failed to create node %d\n", node_desc->id); return node; } if (node->data) { dev_err(dev, "already created node %s id=%d\n", node_desc->name, node_desc->id); return ERR_PTR(-EEXIST); } node_data = devm_kzalloc(dev, sizeof(*node_data), GFP_KERNEL); if (!node_data) { icc_node_destroy(node->id); return ERR_PTR(-ENOMEM); } node->name = node_desc->name; node->data = node_data; node_data->desc = node_desc; node_data->setting = setting; node_data->imx_provider = imx_provider; icc_node_add(node, provider); if (node_desc->adj) { ret = imx_icc_node_init_qos(provider, node); if (ret < 0) { imx_icc_node_destroy(node); return ERR_PTR(ret); } } return node; } static void imx_icc_unregister_nodes(struct icc_provider *provider) { struct icc_node *node, *tmp; list_for_each_entry_safe(node, tmp, &provider->nodes, node_list) imx_icc_node_destroy(node); } static int imx_icc_register_nodes(struct imx_icc_provider *imx_provider, const struct imx_icc_node_desc *descs, int count, const struct imx_icc_noc_setting *settings) { struct icc_provider *provider = &imx_provider->provider; struct icc_onecell_data *provider_data = provider->data; int ret; int i; for (i = 0; i < count; i++) { struct icc_node *node; const struct imx_icc_node_desc *node_desc = &descs[i]; size_t j; node = imx_icc_node_add(imx_provider, node_desc, settings ? &settings[node_desc->id] : NULL); if (IS_ERR(node)) { ret = dev_err_probe(provider->dev, PTR_ERR(node), "failed to add %s\n", node_desc->name); goto err; } provider_data->nodes[node->id] = node; for (j = 0; j < node_desc->num_links; j++) { ret = icc_link_create(node, node_desc->links[j]); if (ret) { dev_err(provider->dev, "failed to link node %d to %d: %d\n", node->id, node_desc->links[j], ret); goto err; } } } return 0; err: imx_icc_unregister_nodes(provider); return ret; } static int get_max_node_id(struct imx_icc_node_desc *nodes, int nodes_count) { int i, ret = 0; for (i = 0; i < nodes_count; ++i) if (nodes[i].id > ret) ret = nodes[i].id; return ret; } int imx_icc_register(struct platform_device *pdev, struct imx_icc_node_desc *nodes, int nodes_count, struct imx_icc_noc_setting *settings) { struct device *dev = &pdev->dev; struct icc_onecell_data *data; struct imx_icc_provider *imx_provider; struct icc_provider *provider; int num_nodes; int ret; /* icc_onecell_data is indexed by node_id, unlike nodes param */ num_nodes = get_max_node_id(nodes, nodes_count) + 1; data = devm_kzalloc(dev, struct_size(data, nodes, num_nodes), GFP_KERNEL); if (!data) return -ENOMEM; data->num_nodes = num_nodes; imx_provider = devm_kzalloc(dev, sizeof(*imx_provider), GFP_KERNEL); if (!imx_provider) return -ENOMEM; provider = &imx_provider->provider; provider->set = imx_icc_set; provider->get_bw = imx_icc_get_bw; provider->aggregate = icc_std_aggregate; provider->xlate = of_icc_xlate_onecell; provider->data = data; provider->dev = dev->parent; icc_provider_init(provider); platform_set_drvdata(pdev, imx_provider); if (settings) { imx_provider->noc_base = devm_of_iomap(dev, provider->dev->of_node, 0, NULL); if (IS_ERR(imx_provider->noc_base)) { ret = PTR_ERR(imx_provider->noc_base); dev_err(dev, "Error mapping NoC: %d\n", ret); return ret; } } ret = imx_icc_register_nodes(imx_provider, nodes, nodes_count, settings); if (ret) return ret; ret = icc_provider_register(provider); if (ret) goto err_unregister_nodes; return 0; err_unregister_nodes: imx_icc_unregister_nodes(&imx_provider->provider); return ret; } EXPORT_SYMBOL_GPL(imx_icc_register); void imx_icc_unregister(struct platform_device *pdev) { struct imx_icc_provider *imx_provider = platform_get_drvdata(pdev); icc_provider_deregister(&imx_provider->provider); imx_icc_unregister_nodes(&imx_provider->provider); } EXPORT_SYMBOL_GPL(imx_icc_unregister); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/imx/imx.c
// SPDX-License-Identifier: GPL-2.0 /* * Interconnect framework driver for i.MX8MM SoC * * Copyright (c) 2019, BayLibre * Copyright (c) 2019-2020, NXP * Author: Alexandre Bailon <[email protected]> * Author: Leonard Crestez <[email protected]> */ #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/imx8mm.h> #include "imx.h" static const struct imx_icc_node_adj_desc imx8mm_dram_adj = { .bw_mul = 1, .bw_div = 16, .phandle_name = "fsl,ddrc", }; static const struct imx_icc_node_adj_desc imx8mm_noc_adj = { .bw_mul = 1, .bw_div = 16, .main_noc = true, }; /* * Describe bus masters, slaves and connections between them * * This is a simplified subset of the bus diagram, there are several other * PL301 nics which are skipped/merged into PL301_MAIN */ static struct imx_icc_node_desc nodes[] = { DEFINE_BUS_INTERCONNECT("NOC", IMX8MM_ICN_NOC, &imx8mm_noc_adj, IMX8MM_ICS_DRAM, IMX8MM_ICN_MAIN), DEFINE_BUS_SLAVE("DRAM", IMX8MM_ICS_DRAM, &imx8mm_dram_adj), DEFINE_BUS_SLAVE("OCRAM", IMX8MM_ICS_OCRAM, NULL), DEFINE_BUS_MASTER("A53", IMX8MM_ICM_A53, IMX8MM_ICN_NOC), /* VPUMIX */ DEFINE_BUS_MASTER("VPU H1", IMX8MM_ICM_VPU_H1, IMX8MM_ICN_VIDEO), DEFINE_BUS_MASTER("VPU G1", IMX8MM_ICM_VPU_G1, IMX8MM_ICN_VIDEO), DEFINE_BUS_MASTER("VPU G2", IMX8MM_ICM_VPU_G2, IMX8MM_ICN_VIDEO), DEFINE_BUS_INTERCONNECT("PL301_VIDEO", IMX8MM_ICN_VIDEO, NULL, IMX8MM_ICN_NOC), /* GPUMIX */ DEFINE_BUS_MASTER("GPU 2D", IMX8MM_ICM_GPU2D, IMX8MM_ICN_GPU), DEFINE_BUS_MASTER("GPU 3D", IMX8MM_ICM_GPU3D, IMX8MM_ICN_GPU), DEFINE_BUS_INTERCONNECT("PL301_GPU", IMX8MM_ICN_GPU, NULL, IMX8MM_ICN_NOC), /* DISPLAYMIX */ DEFINE_BUS_MASTER("CSI", IMX8MM_ICM_CSI, IMX8MM_ICN_MIPI), DEFINE_BUS_MASTER("LCDIF", IMX8MM_ICM_LCDIF, IMX8MM_ICN_MIPI), DEFINE_BUS_INTERCONNECT("PL301_MIPI", IMX8MM_ICN_MIPI, NULL, IMX8MM_ICN_NOC), /* HSIO */ DEFINE_BUS_MASTER("USB1", IMX8MM_ICM_USB1, IMX8MM_ICN_HSIO), DEFINE_BUS_MASTER("USB2", IMX8MM_ICM_USB2, IMX8MM_ICN_HSIO), DEFINE_BUS_MASTER("PCIE", IMX8MM_ICM_PCIE, IMX8MM_ICN_HSIO), DEFINE_BUS_INTERCONNECT("PL301_HSIO", IMX8MM_ICN_HSIO, NULL, IMX8MM_ICN_NOC), /* Audio */ DEFINE_BUS_MASTER("SDMA2", IMX8MM_ICM_SDMA2, IMX8MM_ICN_AUDIO), DEFINE_BUS_MASTER("SDMA3", IMX8MM_ICM_SDMA3, IMX8MM_ICN_AUDIO), DEFINE_BUS_INTERCONNECT("PL301_AUDIO", IMX8MM_ICN_AUDIO, NULL, IMX8MM_ICN_MAIN), /* Ethernet */ DEFINE_BUS_MASTER("ENET", IMX8MM_ICM_ENET, IMX8MM_ICN_ENET), DEFINE_BUS_INTERCONNECT("PL301_ENET", IMX8MM_ICN_ENET, NULL, IMX8MM_ICN_MAIN), /* Other */ DEFINE_BUS_MASTER("SDMA1", IMX8MM_ICM_SDMA1, IMX8MM_ICN_MAIN), DEFINE_BUS_MASTER("NAND", IMX8MM_ICM_NAND, IMX8MM_ICN_MAIN), DEFINE_BUS_MASTER("USDHC1", IMX8MM_ICM_USDHC1, IMX8MM_ICN_MAIN), DEFINE_BUS_MASTER("USDHC2", IMX8MM_ICM_USDHC2, IMX8MM_ICN_MAIN), DEFINE_BUS_MASTER("USDHC3", IMX8MM_ICM_USDHC3, IMX8MM_ICN_MAIN), DEFINE_BUS_INTERCONNECT("PL301_MAIN", IMX8MM_ICN_MAIN, NULL, IMX8MM_ICN_NOC, IMX8MM_ICS_OCRAM), }; static int imx8mm_icc_probe(struct platform_device *pdev) { return imx_icc_register(pdev, nodes, ARRAY_SIZE(nodes), NULL); } static int imx8mm_icc_remove(struct platform_device *pdev) { imx_icc_unregister(pdev); return 0; } static struct platform_driver imx8mm_icc_driver = { .probe = imx8mm_icc_probe, .remove = imx8mm_icc_remove, .driver = { .name = "imx8mm-interconnect", }, }; module_platform_driver(imx8mm_icc_driver); MODULE_AUTHOR("Alexandre Bailon <[email protected]>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx8mm-interconnect");
linux-master
drivers/interconnect/imx/imx8mm.c
// SPDX-License-Identifier: GPL-2.0 /* * Interconnect framework driver for i.MX8MQ SoC * * Copyright (c) 2019-2020, NXP */ #include <linux/module.h> #include <linux/platform_device.h> #include <linux/interconnect-provider.h> #include <dt-bindings/interconnect/imx8mq.h> #include "imx.h" static const struct imx_icc_node_adj_desc imx8mq_dram_adj = { .bw_mul = 1, .bw_div = 4, .phandle_name = "fsl,ddrc", }; static const struct imx_icc_node_adj_desc imx8mq_noc_adj = { .bw_mul = 1, .bw_div = 4, .main_noc = true, }; /* * Describe bus masters, slaves and connections between them * * This is a simplified subset of the bus diagram, there are several other * PL301 nics which are skipped/merged into PL301_MAIN */ static struct imx_icc_node_desc nodes[] = { DEFINE_BUS_INTERCONNECT("NOC", IMX8MQ_ICN_NOC, &imx8mq_noc_adj, IMX8MQ_ICS_DRAM, IMX8MQ_ICN_MAIN), DEFINE_BUS_SLAVE("DRAM", IMX8MQ_ICS_DRAM, &imx8mq_dram_adj), DEFINE_BUS_SLAVE("OCRAM", IMX8MQ_ICS_OCRAM, NULL), DEFINE_BUS_MASTER("A53", IMX8MQ_ICM_A53, IMX8MQ_ICN_NOC), /* VPUMIX */ DEFINE_BUS_MASTER("VPU", IMX8MQ_ICM_VPU, IMX8MQ_ICN_VIDEO), DEFINE_BUS_INTERCONNECT("PL301_VIDEO", IMX8MQ_ICN_VIDEO, NULL, IMX8MQ_ICN_NOC), /* GPUMIX */ DEFINE_BUS_MASTER("GPU", IMX8MQ_ICM_GPU, IMX8MQ_ICN_GPU), DEFINE_BUS_INTERCONNECT("PL301_GPU", IMX8MQ_ICN_GPU, NULL, IMX8MQ_ICN_NOC), /* DISPMIX (only for DCSS) */ DEFINE_BUS_MASTER("DC", IMX8MQ_ICM_DCSS, IMX8MQ_ICN_DCSS), DEFINE_BUS_INTERCONNECT("PL301_DC", IMX8MQ_ICN_DCSS, NULL, IMX8MQ_ICN_NOC), /* USBMIX */ DEFINE_BUS_MASTER("USB1", IMX8MQ_ICM_USB1, IMX8MQ_ICN_USB), DEFINE_BUS_MASTER("USB2", IMX8MQ_ICM_USB2, IMX8MQ_ICN_USB), DEFINE_BUS_INTERCONNECT("PL301_USB", IMX8MQ_ICN_USB, NULL, IMX8MQ_ICN_NOC), /* PL301_DISPLAY (IPs other than DCSS, inside SUPERMIX) */ DEFINE_BUS_MASTER("CSI1", IMX8MQ_ICM_CSI1, IMX8MQ_ICN_DISPLAY), DEFINE_BUS_MASTER("CSI2", IMX8MQ_ICM_CSI2, IMX8MQ_ICN_DISPLAY), DEFINE_BUS_MASTER("LCDIF", IMX8MQ_ICM_LCDIF, IMX8MQ_ICN_DISPLAY), DEFINE_BUS_INTERCONNECT("PL301_DISPLAY", IMX8MQ_ICN_DISPLAY, NULL, IMX8MQ_ICN_MAIN), /* AUDIO */ DEFINE_BUS_MASTER("SDMA2", IMX8MQ_ICM_SDMA2, IMX8MQ_ICN_AUDIO), DEFINE_BUS_INTERCONNECT("PL301_AUDIO", IMX8MQ_ICN_AUDIO, NULL, IMX8MQ_ICN_DISPLAY), /* ENET */ DEFINE_BUS_MASTER("ENET", IMX8MQ_ICM_ENET, IMX8MQ_ICN_ENET), DEFINE_BUS_INTERCONNECT("PL301_ENET", IMX8MQ_ICN_ENET, NULL, IMX8MQ_ICN_MAIN), /* OTHER */ DEFINE_BUS_MASTER("SDMA1", IMX8MQ_ICM_SDMA1, IMX8MQ_ICN_MAIN), DEFINE_BUS_MASTER("NAND", IMX8MQ_ICM_NAND, IMX8MQ_ICN_MAIN), DEFINE_BUS_MASTER("USDHC1", IMX8MQ_ICM_USDHC1, IMX8MQ_ICN_MAIN), DEFINE_BUS_MASTER("USDHC2", IMX8MQ_ICM_USDHC2, IMX8MQ_ICN_MAIN), DEFINE_BUS_MASTER("PCIE1", IMX8MQ_ICM_PCIE1, IMX8MQ_ICN_MAIN), DEFINE_BUS_MASTER("PCIE2", IMX8MQ_ICM_PCIE2, IMX8MQ_ICN_MAIN), DEFINE_BUS_INTERCONNECT("PL301_MAIN", IMX8MQ_ICN_MAIN, NULL, IMX8MQ_ICN_NOC, IMX8MQ_ICS_OCRAM), }; static int imx8mq_icc_probe(struct platform_device *pdev) { return imx_icc_register(pdev, nodes, ARRAY_SIZE(nodes), NULL); } static int imx8mq_icc_remove(struct platform_device *pdev) { imx_icc_unregister(pdev); return 0; } static struct platform_driver imx8mq_icc_driver = { .probe = imx8mq_icc_probe, .remove = imx8mq_icc_remove, .driver = { .name = "imx8mq-interconnect", .sync_state = icc_sync_state, }, }; module_platform_driver(imx8mq_icc_driver); MODULE_ALIAS("platform:imx8mq-interconnect"); MODULE_AUTHOR("Leonard Crestez <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/imx/imx8mq.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2022 Luca Weiss <[email protected]> */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sm6350.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sm6350.h" static struct qcom_icc_node qhm_a1noc_cfg = { .name = "qhm_a1noc_cfg", .id = SM6350_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node qhm_qup_0 = { .name = "qhm_qup_0", .id = SM6350_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_emmc = { .name = "xm_emmc", .id = SM6350_MASTER_EMMC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SM6350_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_a2noc_cfg = { .name = "qhm_a2noc_cfg", .id = SM6350_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SM6350_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_qup_1 = { .name = "qhm_qup_1", .id = SM6350_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SM6350_MASTER_CRYPTO_CORE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SM6350_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SM6350_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SM6350_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SM6350_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_camnoc_hf0_uncomp = { .name = "qxm_camnoc_hf0_uncomp", .id = SM6350_MASTER_CAMNOC_HF0_UNCOMP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_icp_uncomp = { .name = "qxm_camnoc_icp_uncomp", .id = SM6350_MASTER_CAMNOC_ICP_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_sf_uncomp = { .name = "qxm_camnoc_sf_uncomp", .id = SM6350_MASTER_CAMNOC_SF_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = SM6350_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = SM6350_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qnm_npu = { .name = "qnm_npu", .id = SM6350_MASTER_NPU, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_CDSP_GEM_NOC }, }; static struct qcom_icc_node qxm_npu_dsp = { .name = "qxm_npu_dsp", .id = SM6350_MASTER_NPU_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_SLAVE_CDSP_GEM_NOC }, }; static struct qcom_icc_node qnm_snoc = { .name = "qnm_snoc", .id = SM6350_SNOC_CNOC_MAS, .channels = 1, .buswidth = 8, .num_links = 42, .links = { SM6350_SLAVE_CAMERA_CFG, SM6350_SLAVE_SDCC_2, SM6350_SLAVE_CNOC_MNOC_CFG, SM6350_SLAVE_UFS_MEM_CFG, SM6350_SLAVE_QM_CFG, SM6350_SLAVE_SNOC_CFG, SM6350_SLAVE_QM_MPU_CFG, SM6350_SLAVE_GLM, SM6350_SLAVE_PDM, SM6350_SLAVE_CAMERA_NRT_THROTTLE_CFG, SM6350_SLAVE_A2NOC_CFG, SM6350_SLAVE_QDSS_CFG, SM6350_SLAVE_VSENSE_CTRL_CFG, SM6350_SLAVE_CAMERA_RT_THROTTLE_CFG, SM6350_SLAVE_DISPLAY_CFG, SM6350_SLAVE_TCSR, SM6350_SLAVE_DCC_CFG, SM6350_SLAVE_CNOC_DDRSS, SM6350_SLAVE_DISPLAY_THROTTLE_CFG, SM6350_SLAVE_NPU_CFG, SM6350_SLAVE_AHB2PHY, SM6350_SLAVE_GRAPHICS_3D_CFG, SM6350_SLAVE_BOOT_ROM, SM6350_SLAVE_VENUS_CFG, SM6350_SLAVE_IPA_CFG, SM6350_SLAVE_SECURITY, SM6350_SLAVE_IMEM_CFG, SM6350_SLAVE_CNOC_MSS, SM6350_SLAVE_SERVICE_CNOC, SM6350_SLAVE_USB3, SM6350_SLAVE_VENUS_THROTTLE_CFG, SM6350_SLAVE_RBCPR_CX_CFG, SM6350_SLAVE_A1NOC_CFG, SM6350_SLAVE_AOSS, SM6350_SLAVE_PRNG, SM6350_SLAVE_EMMC_CFG, SM6350_SLAVE_CRYPTO_0_CFG, SM6350_SLAVE_PIMEM_CFG, SM6350_SLAVE_RBCPR_MX_CFG, SM6350_SLAVE_QUP_0, SM6350_SLAVE_QUP_1, SM6350_SLAVE_CLK_CTL }, }; static struct qcom_icc_node xm_qdss_dap = { .name = "xm_qdss_dap", .id = SM6350_MASTER_QDSS_DAP, .channels = 1, .buswidth = 8, .num_links = 42, .links = { SM6350_SLAVE_CAMERA_CFG, SM6350_SLAVE_SDCC_2, SM6350_SLAVE_CNOC_MNOC_CFG, SM6350_SLAVE_UFS_MEM_CFG, SM6350_SLAVE_QM_CFG, SM6350_SLAVE_SNOC_CFG, SM6350_SLAVE_QM_MPU_CFG, SM6350_SLAVE_GLM, SM6350_SLAVE_PDM, SM6350_SLAVE_CAMERA_NRT_THROTTLE_CFG, SM6350_SLAVE_A2NOC_CFG, SM6350_SLAVE_QDSS_CFG, SM6350_SLAVE_VSENSE_CTRL_CFG, SM6350_SLAVE_CAMERA_RT_THROTTLE_CFG, SM6350_SLAVE_DISPLAY_CFG, SM6350_SLAVE_TCSR, SM6350_SLAVE_DCC_CFG, SM6350_SLAVE_CNOC_DDRSS, SM6350_SLAVE_DISPLAY_THROTTLE_CFG, SM6350_SLAVE_NPU_CFG, SM6350_SLAVE_AHB2PHY, SM6350_SLAVE_GRAPHICS_3D_CFG, SM6350_SLAVE_BOOT_ROM, SM6350_SLAVE_VENUS_CFG, SM6350_SLAVE_IPA_CFG, SM6350_SLAVE_SECURITY, SM6350_SLAVE_IMEM_CFG, SM6350_SLAVE_CNOC_MSS, SM6350_SLAVE_SERVICE_CNOC, SM6350_SLAVE_USB3, SM6350_SLAVE_VENUS_THROTTLE_CFG, SM6350_SLAVE_RBCPR_CX_CFG, SM6350_SLAVE_A1NOC_CFG, SM6350_SLAVE_AOSS, SM6350_SLAVE_PRNG, SM6350_SLAVE_EMMC_CFG, SM6350_SLAVE_CRYPTO_0_CFG, SM6350_SLAVE_PIMEM_CFG, SM6350_SLAVE_RBCPR_MX_CFG, SM6350_SLAVE_QUP_0, SM6350_SLAVE_QUP_1, SM6350_SLAVE_CLK_CTL }, }; static struct qcom_icc_node qhm_cnoc_dc_noc = { .name = "qhm_cnoc_dc_noc", .id = SM6350_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SM6350_SLAVE_LLCC_CFG, SM6350_SLAVE_GEM_NOC_CFG }, }; static struct qcom_icc_node acm_apps = { .name = "acm_apps", .id = SM6350_MASTER_AMPSS_M0, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SM6350_SLAVE_LLCC, SM6350_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node acm_sys_tcu = { .name = "acm_sys_tcu", .id = SM6350_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM6350_SLAVE_LLCC, SM6350_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qhm_gemnoc_cfg = { .name = "qhm_gemnoc_cfg", .id = SM6350_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 3, .links = { SM6350_SLAVE_MCDMA_MS_MPU_CFG, SM6350_SLAVE_SERVICE_GEM_NOC, SM6350_SLAVE_MSS_PROC_MS_MPU_CFG }, }; static struct qcom_icc_node qnm_cmpnoc = { .name = "qnm_cmpnoc", .id = SM6350_MASTER_COMPUTE_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SM6350_SLAVE_LLCC, SM6350_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SM6350_MASTER_MNOC_HF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SM6350_SLAVE_LLCC, SM6350_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SM6350_MASTER_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SM6350_SLAVE_LLCC, SM6350_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SM6350_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SM6350_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM6350_SLAVE_LLCC }, }; static struct qcom_icc_node qxm_gpu = { .name = "qxm_gpu", .id = SM6350_MASTER_GRAPHICS_3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM6350_SLAVE_LLCC, SM6350_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SM6350_MASTER_LLCC, .channels = 2, .buswidth = 4, .num_links = 1, .links = { SM6350_SLAVE_EBI_CH0 }, }; static struct qcom_icc_node qhm_mnoc_cfg = { .name = "qhm_mnoc_cfg", .id = SM6350_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qnm_video0 = { .name = "qnm_video0", .id = SM6350_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cvp = { .name = "qnm_video_cvp", .id = SM6350_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_hf = { .name = "qxm_camnoc_hf", .id = SM6350_MASTER_CAMNOC_HF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_icp = { .name = "qxm_camnoc_icp", .id = SM6350_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_sf = { .name = "qxm_camnoc_sf", .id = SM6350_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SM6350_MASTER_MDP_PORT0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node amm_npu_sys = { .name = "amm_npu_sys", .id = SM6350_MASTER_NPU_SYS, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM6350_SLAVE_NPU_COMPUTE_NOC }, }; static struct qcom_icc_node qhm_npu_cfg = { .name = "qhm_npu_cfg", .id = SM6350_MASTER_NPU_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 8, .links = { SM6350_SLAVE_SERVICE_NPU_NOC, SM6350_SLAVE_ISENSE_CFG, SM6350_SLAVE_NPU_LLM_CFG, SM6350_SLAVE_NPU_INT_DMA_BWMON_CFG, SM6350_SLAVE_NPU_CP, SM6350_SLAVE_NPU_TCM, SM6350_SLAVE_NPU_CAL_DP0, SM6350_SLAVE_NPU_DPM }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SM6350_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SM6350_A1NOC_SNOC_MAS, .channels = 1, .buswidth = 16, .num_links = 6, .links = { SM6350_SLAVE_SNOC_GEM_NOC_SF, SM6350_SLAVE_PIMEM, SM6350_SLAVE_OCIMEM, SM6350_SLAVE_APPSS, SM6350_SNOC_CNOC_SLV, SM6350_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SM6350_A2NOC_SNOC_MAS, .channels = 1, .buswidth = 16, .num_links = 7, .links = { SM6350_SLAVE_SNOC_GEM_NOC_SF, SM6350_SLAVE_PIMEM, SM6350_SLAVE_OCIMEM, SM6350_SLAVE_APPSS, SM6350_SNOC_CNOC_SLV, SM6350_SLAVE_TCU, SM6350_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_gemnoc = { .name = "qnm_gemnoc", .id = SM6350_MASTER_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 6, .links = { SM6350_SLAVE_PIMEM, SM6350_SLAVE_OCIMEM, SM6350_SLAVE_APPSS, SM6350_SNOC_CNOC_SLV, SM6350_SLAVE_TCU, SM6350_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SM6350_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM6350_SLAVE_SNOC_GEM_NOC_GC, SM6350_SLAVE_OCIMEM }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SM6350_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SM6350_A1NOC_SNOC_SLV, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM6350_A1NOC_SNOC_MAS }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SM6350_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SM6350_A2NOC_SNOC_SLV, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM6350_A2NOC_SNOC_MAS }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SM6350_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_camnoc_uncomp = { .name = "qns_camnoc_uncomp", .id = SM6350_SLAVE_CAMNOC_UNCOMP, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = SM6350_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = SM6350_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_cdsp_gemnoc = { .name = "qns_cdsp_gemnoc", .id = SM6350_SLAVE_CDSP_GEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node qhs_a1_noc_cfg = { .name = "qhs_a1_noc_cfg", .id = SM6350_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qhs_a2_noc_cfg = { .name = "qhs_a2_noc_cfg", .id = SM6350_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SM6350_SLAVE_AHB2PHY, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy2 = { .name = "qhs_ahb2phy2", .id = SM6350_SLAVE_AHB2PHY_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SM6350_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_boot_rom = { .name = "qhs_boot_rom", .id = SM6350_SLAVE_BOOT_ROM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SM6350_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_nrt_thrott_cfg = { .name = "qhs_camera_nrt_thrott_cfg", .id = SM6350_SLAVE_CAMERA_NRT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_rt_throttle_cfg = { .name = "qhs_camera_rt_throttle_cfg", .id = SM6350_SLAVE_CAMERA_RT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SM6350_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SM6350_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SM6350_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SM6350_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SM6350_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SM6350_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SM6350_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display_throttle_cfg = { .name = "qhs_display_throttle_cfg", .id = SM6350_SLAVE_DISPLAY_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emmc_cfg = { .name = "qhs_emmc_cfg", .id = SM6350_SLAVE_EMMC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_glm = { .name = "qhs_glm", .id = SM6350_SLAVE_GLM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SM6350_SLAVE_GRAPHICS_3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SM6350_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SM6350_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mnoc_cfg = { .name = "qhs_mnoc_cfg", .id = SM6350_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SM6350_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_npu_cfg = { .name = "qhs_npu_cfg", .id = SM6350_SLAVE_NPU_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_MASTER_NPU_NOC_CFG }, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SM6350_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SM6350_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SM6350_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SM6350_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qm_cfg = { .name = "qhs_qm_cfg", .id = SM6350_SLAVE_QM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qm_mpu_cfg = { .name = "qhs_qm_mpu_cfg", .id = SM6350_SLAVE_QM_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SM6350_SLAVE_QUP_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SM6350_SLAVE_QUP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SM6350_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_security = { .name = "qhs_security", .id = SM6350_SLAVE_SECURITY, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SM6350_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SM6350_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SM6350_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SM6350_SLAVE_USB3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SM6350_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_throttle_cfg = { .name = "qhs_venus_throttle_cfg", .id = SM6350_SLAVE_VENUS_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SM6350_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SM6350_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gemnoc = { .name = "qhs_gemnoc", .id = SM6350_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM6350_MASTER_GEM_NOC_CFG }, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SM6350_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mcdma_ms_mpu_cfg = { .name = "qhs_mcdma_ms_mpu_cfg", .id = SM6350_SLAVE_MCDMA_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mdsp_ms_mpu_cfg = { .name = "qhs_mdsp_ms_mpu_cfg", .id = SM6350_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gem_noc_snoc = { .name = "qns_gem_noc_snoc", .id = SM6350_SLAVE_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_MASTER_GEM_NOC_SNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SM6350_SLAVE_LLCC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM6350_MASTER_LLCC }, }; static struct qcom_icc_node srvc_gemnoc = { .name = "srvc_gemnoc", .id = SM6350_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SM6350_SLAVE_EBI_CH0, .channels = 2, .buswidth = 4, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SM6350_SLAVE_MNOC_HF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SM6350_SLAVE_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM6350_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SM6350_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cal_dp0 = { .name = "qhs_cal_dp0", .id = SM6350_SLAVE_NPU_CAL_DP0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cp = { .name = "qhs_cp", .id = SM6350_SLAVE_NPU_CP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dma_bwmon = { .name = "qhs_dma_bwmon", .id = SM6350_SLAVE_NPU_INT_DMA_BWMON_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dpm = { .name = "qhs_dpm", .id = SM6350_SLAVE_NPU_DPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_isense = { .name = "qhs_isense", .id = SM6350_SLAVE_ISENSE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_llm = { .name = "qhs_llm", .id = SM6350_SLAVE_NPU_LLM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcm = { .name = "qhs_tcm", .id = SM6350_SLAVE_NPU_TCM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_npu_sys = { .name = "qns_npu_sys", .id = SM6350_SLAVE_NPU_COMPUTE_NOC, .channels = 2, .buswidth = 32, }; static struct qcom_icc_node srvc_noc = { .name = "srvc_noc", .id = SM6350_SLAVE_SERVICE_NPU_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SM6350_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qns_cnoc = { .name = "qns_cnoc", .id = SM6350_SNOC_CNOC_SLV, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_SNOC_CNOC_MAS }, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SM6350_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM6350_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SM6350_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM6350_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SM6350_SLAVE_OCIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SM6350_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SM6350_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SM6350_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SM6350_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 41, .nodes = { &qnm_snoc, &xm_qdss_dap, &qhs_a1_noc_cfg, &qhs_a2_noc_cfg, &qhs_ahb2phy0, &qhs_aoss, &qhs_boot_rom, &qhs_camera_cfg, &qhs_camera_nrt_thrott_cfg, &qhs_camera_rt_throttle_cfg, &qhs_clk_ctl, &qhs_cpr_cx, &qhs_cpr_mx, &qhs_crypto0_cfg, &qhs_dcc_cfg, &qhs_ddrss_cfg, &qhs_display_cfg, &qhs_display_throttle_cfg, &qhs_glm, &qhs_gpuss_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_mnoc_cfg, &qhs_mss_cfg, &qhs_npu_cfg, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qm_cfg, &qhs_qm_mpu_cfg, &qhs_qup0, &qhs_qup1, &qhs_security, &qhs_snoc_cfg, &qhs_tcsr, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_venus_cfg, &qhs_venus_throttle_cfg, &qhs_vsense_ctrl_cfg, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_cn1 = { .name = "CN1", .keepalive = false, .num_nodes = 6, .nodes = { &xm_emmc, &xm_sdc2, &qhs_ahb2phy2, &qhs_emmc_cfg, &qhs_pdm, &qhs_sdc2 }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_cdsp_gemnoc }, }; static struct qcom_icc_bcm bcm_co2 = { .name = "CO2", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_npu }, }; static struct qcom_icc_bcm bcm_co3 = { .name = "CO3", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_npu_dsp }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .keepalive = true, .num_nodes = 5, .nodes = { &qxm_camnoc_hf0_uncomp, &qxm_camnoc_icp_uncomp, &qxm_camnoc_sf_uncomp, &qxm_camnoc_hf, &qxm_mdp0 }, }; static struct qcom_icc_bcm bcm_mm2 = { .name = "MM2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_mm3 = { .name = "MM3", .keepalive = false, .num_nodes = 4, .nodes = { &qhm_mnoc_cfg, &qnm_video0, &qnm_video_cvp, &qxm_camnoc_sf }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = false, .num_nodes = 4, .nodes = { &qup0_core_master, &qup1_core_master, &qup0_core_slave, &qup1_core_slave }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .keepalive = false, .num_nodes = 1, .nodes = { &acm_sys_tcu }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_cmpnoc }, }; static struct qcom_icc_bcm bcm_sh4 = { .name = "SH4", .keepalive = false, .num_nodes = 1, .nodes = { &acm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn6 = { .name = "SN6", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn10 = { .name = "SN10", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_gemnoc }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_cn1, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_A1NOC_CFG] = &qhm_a1noc_cfg, [MASTER_QUP_0] = &qhm_qup_0, [MASTER_EMMC] = &xm_emmc, [MASTER_UFS_MEM] = &xm_ufs_mem, [A1NOC_SNOC_SLV] = &qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sm6350_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, &bcm_cn1, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_A2NOC_CFG] = &qhm_a2noc_cfg, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_1] = &qhm_qup_1, [MASTER_CRYPTO_CORE_0] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_USB3] = &xm_usb3_0, [A2NOC_SNOC_SLV] = &qns_a2noc_snoc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sm6350_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const clk_virt_bcms[] = { &bcm_acv, &bcm_mc0, &bcm_mm1, &bcm_qup0, }; static struct qcom_icc_node * const clk_virt_nodes[] = { [MASTER_CAMNOC_HF0_UNCOMP] = &qxm_camnoc_hf0_uncomp, [MASTER_CAMNOC_ICP_UNCOMP] = &qxm_camnoc_icp_uncomp, [MASTER_CAMNOC_SF_UNCOMP] = &qxm_camnoc_sf_uncomp, [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [MASTER_LLCC] = &llcc_mc, [SLAVE_CAMNOC_UNCOMP] = &qns_camnoc_uncomp, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, [SLAVE_EBI_CH0] = &ebi, }; static const struct qcom_icc_desc sm6350_clk_virt = { .nodes = clk_virt_nodes, .num_nodes = ARRAY_SIZE(clk_virt_nodes), .bcms = clk_virt_bcms, .num_bcms = ARRAY_SIZE(clk_virt_bcms), }; static struct qcom_icc_bcm * const compute_noc_bcms[] = { &bcm_co0, &bcm_co2, &bcm_co3, }; static struct qcom_icc_node * const compute_noc_nodes[] = { [MASTER_NPU] = &qnm_npu, [MASTER_NPU_PROC] = &qxm_npu_dsp, [SLAVE_CDSP_GEM_NOC] = &qns_cdsp_gemnoc, }; static const struct qcom_icc_desc sm6350_compute_noc = { .nodes = compute_noc_nodes, .num_nodes = ARRAY_SIZE(compute_noc_nodes), .bcms = compute_noc_bcms, .num_bcms = ARRAY_SIZE(compute_noc_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, &bcm_cn1, }; static struct qcom_icc_node * const config_noc_nodes[] = { [SNOC_CNOC_MAS] = &qnm_snoc, [MASTER_QDSS_DAP] = &xm_qdss_dap, [SLAVE_A1NOC_CFG] = &qhs_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qhs_a2_noc_cfg, [SLAVE_AHB2PHY] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_2] = &qhs_ahb2phy2, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_BOOT_ROM] = &qhs_boot_rom, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CAMERA_NRT_THROTTLE_CFG] = &qhs_camera_nrt_thrott_cfg, [SLAVE_CAMERA_RT_THROTTLE_CFG] = &qhs_camera_rt_throttle_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_DISPLAY_THROTTLE_CFG] = &qhs_display_throttle_cfg, [SLAVE_EMMC_CFG] = &qhs_emmc_cfg, [SLAVE_GLM] = &qhs_glm, [SLAVE_GRAPHICS_3D_CFG] = &qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_CNOC_MNOC_CFG] = &qhs_mnoc_cfg, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_NPU_CFG] = &qhs_npu_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QM_CFG] = &qhs_qm_cfg, [SLAVE_QM_MPU_CFG] = &qhs_qm_mpu_cfg, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SECURITY] = &qhs_security, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3] = &qhs_usb3_0, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VENUS_THROTTLE_CFG] = &qhs_venus_throttle_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, }; static const struct qcom_icc_desc sm6350_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qhm_cnoc_dc_noc, [SLAVE_GEM_NOC_CFG] = &qhs_gemnoc, [SLAVE_LLCC_CFG] = &qhs_llcc, }; static const struct qcom_icc_desc sm6350_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, &bcm_sh3, &bcm_sh4, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_AMPSS_M0] = &acm_apps, [MASTER_SYS_TCU] = &acm_sys_tcu, [MASTER_GEM_NOC_CFG] = &qhm_gemnoc_cfg, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [MASTER_GRAPHICS_3D] = &qxm_gpu, [SLAVE_MCDMA_MS_MPU_CFG] = &qhs_mcdma_ms_mpu_cfg, [SLAVE_MSS_PROC_MS_MPU_CFG] = &qhs_mdsp_ms_mpu_cfg, [SLAVE_GEM_NOC_SNOC] = &qns_gem_noc_snoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_SERVICE_GEM_NOC] = &srvc_gemnoc, }; static const struct qcom_icc_desc sm6350_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm2, &bcm_mm3, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &qhm_mnoc_cfg, [MASTER_VIDEO_P0] = &qnm_video0, [MASTER_VIDEO_PROC] = &qnm_video_cvp, [MASTER_CAMNOC_HF] = &qxm_camnoc_hf, [MASTER_CAMNOC_ICP] = &qxm_camnoc_icp, [MASTER_CAMNOC_SF] = &qxm_camnoc_sf, [MASTER_MDP_PORT0] = &qxm_mdp0, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, }; static const struct qcom_icc_desc sm6350_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const npu_noc_bcms[] = { }; static struct qcom_icc_node * const npu_noc_nodes[] = { [MASTER_NPU_SYS] = &amm_npu_sys, [MASTER_NPU_NOC_CFG] = &qhm_npu_cfg, [SLAVE_NPU_CAL_DP0] = &qhs_cal_dp0, [SLAVE_NPU_CP] = &qhs_cp, [SLAVE_NPU_INT_DMA_BWMON_CFG] = &qhs_dma_bwmon, [SLAVE_NPU_DPM] = &qhs_dpm, [SLAVE_ISENSE_CFG] = &qhs_isense, [SLAVE_NPU_LLM_CFG] = &qhs_llm, [SLAVE_NPU_TCM] = &qhs_tcm, [SLAVE_NPU_COMPUTE_NOC] = &qns_npu_sys, [SLAVE_SERVICE_NPU_NOC] = &srvc_noc, }; static const struct qcom_icc_desc sm6350_npu_noc = { .nodes = npu_noc_nodes, .num_nodes = ARRAY_SIZE(npu_noc_nodes), .bcms = npu_noc_bcms, .num_bcms = ARRAY_SIZE(npu_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn10, &bcm_sn2, &bcm_sn3, &bcm_sn4, &bcm_sn5, &bcm_sn6, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [A1NOC_SNOC_MAS] = &qnm_aggre1_noc, [A2NOC_SNOC_MAS] = &qnm_aggre2_noc, [MASTER_GEM_NOC_SNOC] = &qnm_gemnoc, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_APPSS] = &qhs_apss, [SNOC_CNOC_SLV] = &qns_cnoc, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_OCIMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sm6350_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sm6350-aggre1-noc", .data = &sm6350_aggre1_noc}, { .compatible = "qcom,sm6350-aggre2-noc", .data = &sm6350_aggre2_noc}, { .compatible = "qcom,sm6350-clk-virt", .data = &sm6350_clk_virt}, { .compatible = "qcom,sm6350-compute-noc", .data = &sm6350_compute_noc}, { .compatible = "qcom,sm6350-config-noc", .data = &sm6350_config_noc}, { .compatible = "qcom,sm6350-dc-noc", .data = &sm6350_dc_noc}, { .compatible = "qcom,sm6350-gem-noc", .data = &sm6350_gem_noc}, { .compatible = "qcom,sm6350-mmss-noc", .data = &sm6350_mmss_noc}, { .compatible = "qcom,sm6350-npu-noc", .data = &sm6350_npu_noc}, { .compatible = "qcom,sm6350-system-noc", .data = &sm6350_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sm6350", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm SM6350 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sm6350.c
// SPDX-License-Identifier: GPL-2.0-only /* * Qualcomm MSM8996 Network-on-Chip (NoC) QoS driver * * Copyright (c) 2021 Yassine Oudjana <[email protected]> */ #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <dt-bindings/interconnect/qcom,msm8996.h> #include "icc-rpm.h" #include "msm8996.h" static const char * const mm_intf_clocks[] = { "iface" }; static const char * const a0noc_intf_clocks[] = { "aggre0_snoc_axi", "aggre0_cnoc_ahb", "aggre0_noc_mpu_cfg" }; static const char * const a2noc_intf_clocks[] = { "aggre2_ufs_axi", "ufs_axi" }; static const u16 mas_a0noc_common_links[] = { MSM8996_SLAVE_A0NOC_SNOC }; static struct qcom_icc_node mas_pcie_0 = { .name = "mas_pcie_0", .id = MSM8996_MASTER_PCIE_0, .buswidth = 8, .mas_rpm_id = 65, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_a0noc_common_links), .links = mas_a0noc_common_links }; static struct qcom_icc_node mas_pcie_1 = { .name = "mas_pcie_1", .id = MSM8996_MASTER_PCIE_1, .buswidth = 8, .mas_rpm_id = 66, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_a0noc_common_links), .links = mas_a0noc_common_links }; static struct qcom_icc_node mas_pcie_2 = { .name = "mas_pcie_2", .id = MSM8996_MASTER_PCIE_2, .buswidth = 8, .mas_rpm_id = 119, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_a0noc_common_links), .links = mas_a0noc_common_links }; static const u16 mas_a1noc_common_links[] = { MSM8996_SLAVE_A1NOC_SNOC }; static struct qcom_icc_node mas_cnoc_a1noc = { .name = "mas_cnoc_a1noc", .id = MSM8996_MASTER_CNOC_A1NOC, .buswidth = 8, .mas_rpm_id = 116, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_a1noc_common_links), .links = mas_a1noc_common_links }; static struct qcom_icc_node mas_crypto_c0 = { .name = "mas_crypto_c0", .id = MSM8996_MASTER_CRYPTO_CORE0, .buswidth = 8, .mas_rpm_id = 23, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_a1noc_common_links), .links = mas_a1noc_common_links }; static struct qcom_icc_node mas_pnoc_a1noc = { .name = "mas_pnoc_a1noc", .id = MSM8996_MASTER_PNOC_A1NOC, .buswidth = 8, .mas_rpm_id = 117, .slv_rpm_id = -1, .qos.ap_owned = false, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_a1noc_common_links), .links = mas_a1noc_common_links }; static const u16 mas_a2noc_common_links[] = { MSM8996_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_usb3 = { .name = "mas_usb3", .id = MSM8996_MASTER_USB3, .buswidth = 8, .mas_rpm_id = 32, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 3, .num_links = ARRAY_SIZE(mas_a2noc_common_links), .links = mas_a2noc_common_links }; static struct qcom_icc_node mas_ipa = { .name = "mas_ipa", .id = MSM8996_MASTER_IPA, .buswidth = 8, .mas_rpm_id = 59, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = -1, .num_links = ARRAY_SIZE(mas_a2noc_common_links), .links = mas_a2noc_common_links }; static struct qcom_icc_node mas_ufs = { .name = "mas_ufs", .id = MSM8996_MASTER_UFS, .buswidth = 8, .mas_rpm_id = 68, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_a2noc_common_links), .links = mas_a2noc_common_links }; static const u16 mas_apps_proc_links[] = { MSM8996_SLAVE_BIMC_SNOC_1, MSM8996_SLAVE_EBI_CH0, MSM8996_SLAVE_BIMC_SNOC_0 }; static struct qcom_icc_node mas_apps_proc = { .name = "mas_apps_proc", .id = MSM8996_MASTER_AMPSS_M0, .buswidth = 8, .mas_rpm_id = 0, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_apps_proc_links), .links = mas_apps_proc_links }; static const u16 mas_oxili_common_links[] = { MSM8996_SLAVE_BIMC_SNOC_1, MSM8996_SLAVE_HMSS_L3, MSM8996_SLAVE_EBI_CH0, MSM8996_SLAVE_BIMC_SNOC_0 }; static struct qcom_icc_node mas_oxili = { .name = "mas_oxili", .id = MSM8996_MASTER_GRAPHICS_3D, .buswidth = 8, .mas_rpm_id = 6, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_oxili_common_links), .links = mas_oxili_common_links }; static struct qcom_icc_node mas_mnoc_bimc = { .name = "mas_mnoc_bimc", .id = MSM8996_MASTER_MNOC_BIMC, .buswidth = 8, .mas_rpm_id = 2, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_oxili_common_links), .links = mas_oxili_common_links }; static const u16 mas_snoc_bimc_links[] = { MSM8996_SLAVE_HMSS_L3, MSM8996_SLAVE_EBI_CH0 }; static struct qcom_icc_node mas_snoc_bimc = { .name = "mas_snoc_bimc", .id = MSM8996_MASTER_SNOC_BIMC, .buswidth = 8, .mas_rpm_id = 3, .slv_rpm_id = -1, .qos.ap_owned = false, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = -1, .num_links = ARRAY_SIZE(mas_snoc_bimc_links), .links = mas_snoc_bimc_links }; static const u16 mas_snoc_cnoc_links[] = { MSM8996_SLAVE_CLK_CTL, MSM8996_SLAVE_RBCPR_CX, MSM8996_SLAVE_A2NOC_SMMU_CFG, MSM8996_SLAVE_A0NOC_MPU_CFG, MSM8996_SLAVE_MESSAGE_RAM, MSM8996_SLAVE_CNOC_MNOC_MMSS_CFG, MSM8996_SLAVE_PCIE_0_CFG, MSM8996_SLAVE_TLMM, MSM8996_SLAVE_MPM, MSM8996_SLAVE_A0NOC_SMMU_CFG, MSM8996_SLAVE_EBI1_PHY_CFG, MSM8996_SLAVE_BIMC_CFG, MSM8996_SLAVE_PIMEM_CFG, MSM8996_SLAVE_RBCPR_MX, MSM8996_SLAVE_PRNG, MSM8996_SLAVE_PCIE20_AHB2PHY, MSM8996_SLAVE_A2NOC_MPU_CFG, MSM8996_SLAVE_QDSS_CFG, MSM8996_SLAVE_A2NOC_CFG, MSM8996_SLAVE_A0NOC_CFG, MSM8996_SLAVE_UFS_CFG, MSM8996_SLAVE_CRYPTO_0_CFG, MSM8996_SLAVE_PCIE_1_CFG, MSM8996_SLAVE_SNOC_CFG, MSM8996_SLAVE_SNOC_MPU_CFG, MSM8996_SLAVE_A1NOC_MPU_CFG, MSM8996_SLAVE_A1NOC_SMMU_CFG, MSM8996_SLAVE_PCIE_2_CFG, MSM8996_SLAVE_CNOC_MNOC_CFG, MSM8996_SLAVE_QDSS_RBCPR_APU_CFG, MSM8996_SLAVE_PMIC_ARB, MSM8996_SLAVE_IMEM_CFG, MSM8996_SLAVE_A1NOC_CFG, MSM8996_SLAVE_SSC_CFG, MSM8996_SLAVE_TCSR, MSM8996_SLAVE_LPASS_SMMU_CFG, MSM8996_SLAVE_DCC_CFG }; static struct qcom_icc_node mas_snoc_cnoc = { .name = "mas_snoc_cnoc", .id = MSM8996_MASTER_SNOC_CNOC, .buswidth = 8, .mas_rpm_id = 52, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_cnoc_links), .links = mas_snoc_cnoc_links }; static const u16 mas_qdss_dap_links[] = { MSM8996_SLAVE_QDSS_RBCPR_APU_CFG, MSM8996_SLAVE_RBCPR_CX, MSM8996_SLAVE_A2NOC_SMMU_CFG, MSM8996_SLAVE_A0NOC_MPU_CFG, MSM8996_SLAVE_MESSAGE_RAM, MSM8996_SLAVE_PCIE_0_CFG, MSM8996_SLAVE_TLMM, MSM8996_SLAVE_MPM, MSM8996_SLAVE_A0NOC_SMMU_CFG, MSM8996_SLAVE_EBI1_PHY_CFG, MSM8996_SLAVE_BIMC_CFG, MSM8996_SLAVE_PIMEM_CFG, MSM8996_SLAVE_RBCPR_MX, MSM8996_SLAVE_CLK_CTL, MSM8996_SLAVE_PRNG, MSM8996_SLAVE_PCIE20_AHB2PHY, MSM8996_SLAVE_A2NOC_MPU_CFG, MSM8996_SLAVE_QDSS_CFG, MSM8996_SLAVE_A2NOC_CFG, MSM8996_SLAVE_A0NOC_CFG, MSM8996_SLAVE_UFS_CFG, MSM8996_SLAVE_CRYPTO_0_CFG, MSM8996_SLAVE_CNOC_A1NOC, MSM8996_SLAVE_PCIE_1_CFG, MSM8996_SLAVE_SNOC_CFG, MSM8996_SLAVE_SNOC_MPU_CFG, MSM8996_SLAVE_A1NOC_MPU_CFG, MSM8996_SLAVE_A1NOC_SMMU_CFG, MSM8996_SLAVE_PCIE_2_CFG, MSM8996_SLAVE_CNOC_MNOC_CFG, MSM8996_SLAVE_CNOC_MNOC_MMSS_CFG, MSM8996_SLAVE_PMIC_ARB, MSM8996_SLAVE_IMEM_CFG, MSM8996_SLAVE_A1NOC_CFG, MSM8996_SLAVE_SSC_CFG, MSM8996_SLAVE_TCSR, MSM8996_SLAVE_LPASS_SMMU_CFG, MSM8996_SLAVE_DCC_CFG }; static struct qcom_icc_node mas_qdss_dap = { .name = "mas_qdss_dap", .id = MSM8996_MASTER_QDSS_DAP, .buswidth = 8, .mas_rpm_id = 49, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_qdss_dap_links), .links = mas_qdss_dap_links }; static const u16 mas_cnoc_mnoc_mmss_cfg_links[] = { MSM8996_SLAVE_MMAGIC_CFG, MSM8996_SLAVE_DSA_MPU_CFG, MSM8996_SLAVE_MMSS_CLK_CFG, MSM8996_SLAVE_CAMERA_THROTTLE_CFG, MSM8996_SLAVE_VENUS_CFG, MSM8996_SLAVE_SMMU_VFE_CFG, MSM8996_SLAVE_MISC_CFG, MSM8996_SLAVE_SMMU_CPP_CFG, MSM8996_SLAVE_GRAPHICS_3D_CFG, MSM8996_SLAVE_DISPLAY_THROTTLE_CFG, MSM8996_SLAVE_VENUS_THROTTLE_CFG, MSM8996_SLAVE_CAMERA_CFG, MSM8996_SLAVE_DISPLAY_CFG, MSM8996_SLAVE_CPR_CFG, MSM8996_SLAVE_SMMU_ROTATOR_CFG, MSM8996_SLAVE_DSA_CFG, MSM8996_SLAVE_SMMU_VENUS_CFG, MSM8996_SLAVE_VMEM_CFG, MSM8996_SLAVE_SMMU_JPEG_CFG, MSM8996_SLAVE_SMMU_MDP_CFG, MSM8996_SLAVE_MNOC_MPU_CFG }; static struct qcom_icc_node mas_cnoc_mnoc_mmss_cfg = { .name = "mas_cnoc_mnoc_mmss_cfg", .id = MSM8996_MASTER_CNOC_MNOC_MMSS_CFG, .buswidth = 8, .mas_rpm_id = 4, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_cnoc_mnoc_mmss_cfg_links), .links = mas_cnoc_mnoc_mmss_cfg_links }; static const u16 mas_cnoc_mnoc_cfg_links[] = { MSM8996_SLAVE_SERVICE_MNOC }; static struct qcom_icc_node mas_cnoc_mnoc_cfg = { .name = "mas_cnoc_mnoc_cfg", .id = MSM8996_MASTER_CNOC_MNOC_CFG, .buswidth = 8, .mas_rpm_id = 5, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_cnoc_mnoc_cfg_links), .links = mas_cnoc_mnoc_cfg_links }; static const u16 mas_mnoc_bimc_common_links[] = { MSM8996_SLAVE_MNOC_BIMC }; static struct qcom_icc_node mas_cpp = { .name = "mas_cpp", .id = MSM8996_MASTER_CPP, .buswidth = 32, .mas_rpm_id = 115, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 5, .num_links = ARRAY_SIZE(mas_mnoc_bimc_common_links), .links = mas_mnoc_bimc_common_links }; static struct qcom_icc_node mas_jpeg = { .name = "mas_jpeg", .id = MSM8996_MASTER_JPEG, .buswidth = 32, .mas_rpm_id = 7, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 7, .num_links = ARRAY_SIZE(mas_mnoc_bimc_common_links), .links = mas_mnoc_bimc_common_links }; static struct qcom_icc_node mas_mdp_p0 = { .name = "mas_mdp_p0", .id = MSM8996_MASTER_MDP_PORT0, .buswidth = 32, .mas_rpm_id = 8, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_mnoc_bimc_common_links), .links = mas_mnoc_bimc_common_links }; static struct qcom_icc_node mas_mdp_p1 = { .name = "mas_mdp_p1", .id = MSM8996_MASTER_MDP_PORT1, .buswidth = 32, .mas_rpm_id = 61, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_mnoc_bimc_common_links), .links = mas_mnoc_bimc_common_links }; static struct qcom_icc_node mas_rotator = { .name = "mas_rotator", .id = MSM8996_MASTER_ROTATOR, .buswidth = 32, .mas_rpm_id = 120, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_mnoc_bimc_common_links), .links = mas_mnoc_bimc_common_links }; static struct qcom_icc_node mas_venus = { .name = "mas_venus", .id = MSM8996_MASTER_VIDEO_P0, .buswidth = 32, .mas_rpm_id = 9, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 3, .num_links = ARRAY_SIZE(mas_mnoc_bimc_common_links), .links = mas_mnoc_bimc_common_links }; static struct qcom_icc_node mas_vfe = { .name = "mas_vfe", .id = MSM8996_MASTER_VFE, .buswidth = 32, .mas_rpm_id = 11, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 6, .num_links = ARRAY_SIZE(mas_mnoc_bimc_common_links), .links = mas_mnoc_bimc_common_links }; static const u16 mas_vmem_common_links[] = { MSM8996_SLAVE_VMEM }; static struct qcom_icc_node mas_snoc_vmem = { .name = "mas_snoc_vmem", .id = MSM8996_MASTER_SNOC_VMEM, .buswidth = 32, .mas_rpm_id = 114, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_vmem_common_links), .links = mas_vmem_common_links }; static struct qcom_icc_node mas_venus_vmem = { .name = "mas_venus_vmem", .id = MSM8996_MASTER_VIDEO_P0_OCMEM, .buswidth = 32, .mas_rpm_id = 121, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_vmem_common_links), .links = mas_vmem_common_links }; static const u16 mas_snoc_pnoc_links[] = { MSM8996_SLAVE_BLSP_1, MSM8996_SLAVE_BLSP_2, MSM8996_SLAVE_SDCC_1, MSM8996_SLAVE_SDCC_2, MSM8996_SLAVE_SDCC_4, MSM8996_SLAVE_TSIF, MSM8996_SLAVE_PDM, MSM8996_SLAVE_AHB2PHY }; static struct qcom_icc_node mas_snoc_pnoc = { .name = "mas_snoc_pnoc", .id = MSM8996_MASTER_SNOC_PNOC, .buswidth = 8, .mas_rpm_id = 44, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_pnoc_links), .links = mas_snoc_pnoc_links }; static const u16 mas_pnoc_a1noc_common_links[] = { MSM8996_SLAVE_PNOC_A1NOC }; static struct qcom_icc_node mas_sdcc_1 = { .name = "mas_sdcc_1", .id = MSM8996_MASTER_SDCC_1, .buswidth = 8, .mas_rpm_id = 33, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pnoc_a1noc_common_links), .links = mas_pnoc_a1noc_common_links }; static struct qcom_icc_node mas_sdcc_2 = { .name = "mas_sdcc_2", .id = MSM8996_MASTER_SDCC_2, .buswidth = 8, .mas_rpm_id = 35, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pnoc_a1noc_common_links), .links = mas_pnoc_a1noc_common_links }; static struct qcom_icc_node mas_sdcc_4 = { .name = "mas_sdcc_4", .id = MSM8996_MASTER_SDCC_4, .buswidth = 8, .mas_rpm_id = 36, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pnoc_a1noc_common_links), .links = mas_pnoc_a1noc_common_links }; static struct qcom_icc_node mas_usb_hs = { .name = "mas_usb_hs", .id = MSM8996_MASTER_USB_HS, .buswidth = 8, .mas_rpm_id = 42, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pnoc_a1noc_common_links), .links = mas_pnoc_a1noc_common_links }; static struct qcom_icc_node mas_blsp_1 = { .name = "mas_blsp_1", .id = MSM8996_MASTER_BLSP_1, .buswidth = 4, .mas_rpm_id = 41, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pnoc_a1noc_common_links), .links = mas_pnoc_a1noc_common_links }; static struct qcom_icc_node mas_blsp_2 = { .name = "mas_blsp_2", .id = MSM8996_MASTER_BLSP_2, .buswidth = 4, .mas_rpm_id = 39, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pnoc_a1noc_common_links), .links = mas_pnoc_a1noc_common_links }; static struct qcom_icc_node mas_tsif = { .name = "mas_tsif", .id = MSM8996_MASTER_TSIF, .buswidth = 4, .mas_rpm_id = 37, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pnoc_a1noc_common_links), .links = mas_pnoc_a1noc_common_links }; static const u16 mas_hmss_links[] = { MSM8996_SLAVE_PIMEM, MSM8996_SLAVE_OCIMEM, MSM8996_SLAVE_SNOC_BIMC }; static struct qcom_icc_node mas_hmss = { .name = "mas_hmss", .id = MSM8996_MASTER_HMSS, .buswidth = 8, .mas_rpm_id = 118, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 4, .num_links = ARRAY_SIZE(mas_hmss_links), .links = mas_hmss_links }; static const u16 mas_qdss_common_links[] = { MSM8996_SLAVE_PIMEM, MSM8996_SLAVE_USB3, MSM8996_SLAVE_OCIMEM, MSM8996_SLAVE_SNOC_BIMC, MSM8996_SLAVE_SNOC_PNOC }; static struct qcom_icc_node mas_qdss_bam = { .name = "mas_qdss_bam", .id = MSM8996_MASTER_QDSS_BAM, .buswidth = 16, .mas_rpm_id = 19, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_qdss_common_links), .links = mas_qdss_common_links }; static const u16 mas_snoc_cfg_links[] = { MSM8996_SLAVE_SERVICE_SNOC }; static struct qcom_icc_node mas_snoc_cfg = { .name = "mas_snoc_cfg", .id = MSM8996_MASTER_SNOC_CFG, .buswidth = 16, .mas_rpm_id = 20, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_snoc_cfg_links), .links = mas_snoc_cfg_links }; static const u16 mas_bimc_snoc_0_links[] = { MSM8996_SLAVE_SNOC_VMEM, MSM8996_SLAVE_USB3, MSM8996_SLAVE_PIMEM, MSM8996_SLAVE_LPASS, MSM8996_SLAVE_APPSS, MSM8996_SLAVE_SNOC_CNOC, MSM8996_SLAVE_SNOC_PNOC, MSM8996_SLAVE_OCIMEM, MSM8996_SLAVE_QDSS_STM }; static struct qcom_icc_node mas_bimc_snoc_0 = { .name = "mas_bimc_snoc_0", .id = MSM8996_MASTER_BIMC_SNOC_0, .buswidth = 16, .mas_rpm_id = 21, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_bimc_snoc_0_links), .links = mas_bimc_snoc_0_links }; static const u16 mas_bimc_snoc_1_links[] = { MSM8996_SLAVE_PCIE_2, MSM8996_SLAVE_PCIE_1, MSM8996_SLAVE_PCIE_0 }; static struct qcom_icc_node mas_bimc_snoc_1 = { .name = "mas_bimc_snoc_1", .id = MSM8996_MASTER_BIMC_SNOC_1, .buswidth = 16, .mas_rpm_id = 109, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_bimc_snoc_1_links), .links = mas_bimc_snoc_1_links }; static const u16 mas_a0noc_snoc_links[] = { MSM8996_SLAVE_SNOC_PNOC, MSM8996_SLAVE_OCIMEM, MSM8996_SLAVE_APPSS, MSM8996_SLAVE_SNOC_BIMC, MSM8996_SLAVE_PIMEM }; static struct qcom_icc_node mas_a0noc_snoc = { .name = "mas_a0noc_snoc", .id = MSM8996_MASTER_A0NOC_SNOC, .buswidth = 16, .mas_rpm_id = 110, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_a0noc_snoc_links), .links = mas_a0noc_snoc_links }; static const u16 mas_a1noc_snoc_links[] = { MSM8996_SLAVE_SNOC_VMEM, MSM8996_SLAVE_USB3, MSM8996_SLAVE_PCIE_0, MSM8996_SLAVE_PIMEM, MSM8996_SLAVE_PCIE_2, MSM8996_SLAVE_LPASS, MSM8996_SLAVE_PCIE_1, MSM8996_SLAVE_APPSS, MSM8996_SLAVE_SNOC_BIMC, MSM8996_SLAVE_SNOC_CNOC, MSM8996_SLAVE_SNOC_PNOC, MSM8996_SLAVE_OCIMEM, MSM8996_SLAVE_QDSS_STM }; static struct qcom_icc_node mas_a1noc_snoc = { .name = "mas_a1noc_snoc", .id = MSM8996_MASTER_A1NOC_SNOC, .buswidth = 16, .mas_rpm_id = 111, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_a1noc_snoc_links), .links = mas_a1noc_snoc_links }; static const u16 mas_a2noc_snoc_links[] = { MSM8996_SLAVE_SNOC_VMEM, MSM8996_SLAVE_USB3, MSM8996_SLAVE_PCIE_1, MSM8996_SLAVE_PIMEM, MSM8996_SLAVE_PCIE_2, MSM8996_SLAVE_QDSS_STM, MSM8996_SLAVE_LPASS, MSM8996_SLAVE_SNOC_BIMC, MSM8996_SLAVE_SNOC_CNOC, MSM8996_SLAVE_SNOC_PNOC, MSM8996_SLAVE_OCIMEM, MSM8996_SLAVE_PCIE_0 }; static struct qcom_icc_node mas_a2noc_snoc = { .name = "mas_a2noc_snoc", .id = MSM8996_MASTER_A2NOC_SNOC, .buswidth = 16, .mas_rpm_id = 112, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_a2noc_snoc_links), .links = mas_a2noc_snoc_links }; static struct qcom_icc_node mas_qdss_etr = { .name = "mas_qdss_etr", .id = MSM8996_MASTER_QDSS_ETR, .buswidth = 16, .mas_rpm_id = 31, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 3, .num_links = ARRAY_SIZE(mas_qdss_common_links), .links = mas_qdss_common_links }; static const u16 slv_a0noc_snoc_links[] = { MSM8996_MASTER_A0NOC_SNOC }; static struct qcom_icc_node slv_a0noc_snoc = { .name = "slv_a0noc_snoc", .id = MSM8996_SLAVE_A0NOC_SNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 141, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_a0noc_snoc_links), .links = slv_a0noc_snoc_links }; static const u16 slv_a1noc_snoc_links[] = { MSM8996_MASTER_A1NOC_SNOC }; static struct qcom_icc_node slv_a1noc_snoc = { .name = "slv_a1noc_snoc", .id = MSM8996_SLAVE_A1NOC_SNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 142, .num_links = ARRAY_SIZE(slv_a1noc_snoc_links), .links = slv_a1noc_snoc_links }; static const u16 slv_a2noc_snoc_links[] = { MSM8996_MASTER_A2NOC_SNOC }; static struct qcom_icc_node slv_a2noc_snoc = { .name = "slv_a2noc_snoc", .id = MSM8996_SLAVE_A2NOC_SNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 143, .num_links = ARRAY_SIZE(slv_a2noc_snoc_links), .links = slv_a2noc_snoc_links }; static struct qcom_icc_node slv_ebi = { .name = "slv_ebi", .id = MSM8996_SLAVE_EBI_CH0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 0 }; static struct qcom_icc_node slv_hmss_l3 = { .name = "slv_hmss_l3", .id = MSM8996_SLAVE_HMSS_L3, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 160 }; static const u16 slv_bimc_snoc_0_links[] = { MSM8996_MASTER_BIMC_SNOC_0 }; static struct qcom_icc_node slv_bimc_snoc_0 = { .name = "slv_bimc_snoc_0", .id = MSM8996_SLAVE_BIMC_SNOC_0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 2, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_bimc_snoc_0_links), .links = slv_bimc_snoc_0_links }; static const u16 slv_bimc_snoc_1_links[] = { MSM8996_MASTER_BIMC_SNOC_1 }; static struct qcom_icc_node slv_bimc_snoc_1 = { .name = "slv_bimc_snoc_1", .id = MSM8996_SLAVE_BIMC_SNOC_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 138, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_bimc_snoc_1_links), .links = slv_bimc_snoc_1_links }; static const u16 slv_cnoc_a1noc_links[] = { MSM8996_MASTER_CNOC_A1NOC }; static struct qcom_icc_node slv_cnoc_a1noc = { .name = "slv_cnoc_a1noc", .id = MSM8996_SLAVE_CNOC_A1NOC, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 75, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_cnoc_a1noc_links), .links = slv_cnoc_a1noc_links }; static struct qcom_icc_node slv_clk_ctl = { .name = "slv_clk_ctl", .id = MSM8996_SLAVE_CLK_CTL, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 47 }; static struct qcom_icc_node slv_tcsr = { .name = "slv_tcsr", .id = MSM8996_SLAVE_TCSR, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 50 }; static struct qcom_icc_node slv_tlmm = { .name = "slv_tlmm", .id = MSM8996_SLAVE_TLMM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 51 }; static struct qcom_icc_node slv_crypto0_cfg = { .name = "slv_crypto0_cfg", .id = MSM8996_SLAVE_CRYPTO_0_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 52, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_mpm = { .name = "slv_mpm", .id = MSM8996_SLAVE_MPM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 62, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pimem_cfg = { .name = "slv_pimem_cfg", .id = MSM8996_SLAVE_PIMEM_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 167, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_imem_cfg = { .name = "slv_imem_cfg", .id = MSM8996_SLAVE_IMEM_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 54, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_message_ram = { .name = "slv_message_ram", .id = MSM8996_SLAVE_MESSAGE_RAM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 55 }; static struct qcom_icc_node slv_bimc_cfg = { .name = "slv_bimc_cfg", .id = MSM8996_SLAVE_BIMC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 56, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pmic_arb = { .name = "slv_pmic_arb", .id = MSM8996_SLAVE_PMIC_ARB, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 59 }; static struct qcom_icc_node slv_prng = { .name = "slv_prng", .id = MSM8996_SLAVE_PRNG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 127, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_dcc_cfg = { .name = "slv_dcc_cfg", .id = MSM8996_SLAVE_DCC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 155, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_rbcpr_mx = { .name = "slv_rbcpr_mx", .id = MSM8996_SLAVE_RBCPR_MX, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 170, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_qdss_cfg = { .name = "slv_qdss_cfg", .id = MSM8996_SLAVE_QDSS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 63, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_rbcpr_cx = { .name = "slv_rbcpr_cx", .id = MSM8996_SLAVE_RBCPR_CX, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 169, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_cpu_apu_cfg = { .name = "slv_cpu_apu_cfg", .id = MSM8996_SLAVE_QDSS_RBCPR_APU_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 168, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static const u16 slv_cnoc_mnoc_cfg_links[] = { MSM8996_MASTER_CNOC_MNOC_CFG }; static struct qcom_icc_node slv_cnoc_mnoc_cfg = { .name = "slv_cnoc_mnoc_cfg", .id = MSM8996_SLAVE_CNOC_MNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 66, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_cnoc_mnoc_cfg_links), .links = slv_cnoc_mnoc_cfg_links }; static struct qcom_icc_node slv_snoc_cfg = { .name = "slv_snoc_cfg", .id = MSM8996_SLAVE_SNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 70, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_snoc_mpu_cfg = { .name = "slv_snoc_mpu_cfg", .id = MSM8996_SLAVE_SNOC_MPU_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 67, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_ebi1_phy_cfg = { .name = "slv_ebi1_phy_cfg", .id = MSM8996_SLAVE_EBI1_PHY_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 73, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a0noc_cfg = { .name = "slv_a0noc_cfg", .id = MSM8996_SLAVE_A0NOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 144, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pcie_1_cfg = { .name = "slv_pcie_1_cfg", .id = MSM8996_SLAVE_PCIE_1_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 89, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pcie_2_cfg = { .name = "slv_pcie_2_cfg", .id = MSM8996_SLAVE_PCIE_2_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 165, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pcie_0_cfg = { .name = "slv_pcie_0_cfg", .id = MSM8996_SLAVE_PCIE_0_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 88, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pcie20_ahb2phy = { .name = "slv_pcie20_ahb2phy", .id = MSM8996_SLAVE_PCIE20_AHB2PHY, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 163, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a0noc_mpu_cfg = { .name = "slv_a0noc_mpu_cfg", .id = MSM8996_SLAVE_A0NOC_MPU_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 145, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_ufs_cfg = { .name = "slv_ufs_cfg", .id = MSM8996_SLAVE_UFS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 92, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a1noc_cfg = { .name = "slv_a1noc_cfg", .id = MSM8996_SLAVE_A1NOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 147, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a1noc_mpu_cfg = { .name = "slv_a1noc_mpu_cfg", .id = MSM8996_SLAVE_A1NOC_MPU_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 148, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a2noc_cfg = { .name = "slv_a2noc_cfg", .id = MSM8996_SLAVE_A2NOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 150, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a2noc_mpu_cfg = { .name = "slv_a2noc_mpu_cfg", .id = MSM8996_SLAVE_A2NOC_MPU_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 151, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_ssc_cfg = { .name = "slv_ssc_cfg", .id = MSM8996_SLAVE_SSC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 177, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a0noc_smmu_cfg = { .name = "slv_a0noc_smmu_cfg", .id = MSM8996_SLAVE_A0NOC_SMMU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 146, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a1noc_smmu_cfg = { .name = "slv_a1noc_smmu_cfg", .id = MSM8996_SLAVE_A1NOC_SMMU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 149, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_a2noc_smmu_cfg = { .name = "slv_a2noc_smmu_cfg", .id = MSM8996_SLAVE_A2NOC_SMMU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 152, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_lpass_smmu_cfg = { .name = "slv_lpass_smmu_cfg", .id = MSM8996_SLAVE_LPASS_SMMU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 161, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static const u16 slv_cnoc_mnoc_mmss_cfg_links[] = { MSM8996_MASTER_CNOC_MNOC_MMSS_CFG }; static struct qcom_icc_node slv_cnoc_mnoc_mmss_cfg = { .name = "slv_cnoc_mnoc_mmss_cfg", .id = MSM8996_SLAVE_CNOC_MNOC_MMSS_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 58, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_cnoc_mnoc_mmss_cfg_links), .links = slv_cnoc_mnoc_mmss_cfg_links }; static struct qcom_icc_node slv_mmagic_cfg = { .name = "slv_mmagic_cfg", .id = MSM8996_SLAVE_MMAGIC_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 162, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_cpr_cfg = { .name = "slv_cpr_cfg", .id = MSM8996_SLAVE_CPR_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 6, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_misc_cfg = { .name = "slv_misc_cfg", .id = MSM8996_SLAVE_MISC_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_venus_throttle_cfg = { .name = "slv_venus_throttle_cfg", .id = MSM8996_SLAVE_VENUS_THROTTLE_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 178, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_venus_cfg = { .name = "slv_venus_cfg", .id = MSM8996_SLAVE_VENUS_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 10, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_vmem_cfg = { .name = "slv_vmem_cfg", .id = MSM8996_SLAVE_VMEM_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 180, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_dsa_cfg = { .name = "slv_dsa_cfg", .id = MSM8996_SLAVE_DSA_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 157, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_mnoc_clocks_cfg = { .name = "slv_mnoc_clocks_cfg", .id = MSM8996_SLAVE_MMSS_CLK_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 12, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_dsa_mpu_cfg = { .name = "slv_dsa_mpu_cfg", .id = MSM8996_SLAVE_DSA_MPU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 158, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_mnoc_mpu_cfg = { .name = "slv_mnoc_mpu_cfg", .id = MSM8996_SLAVE_MNOC_MPU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 14, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_display_cfg = { .name = "slv_display_cfg", .id = MSM8996_SLAVE_DISPLAY_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_display_throttle_cfg = { .name = "slv_display_throttle_cfg", .id = MSM8996_SLAVE_DISPLAY_THROTTLE_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 156, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_camera_cfg = { .name = "slv_camera_cfg", .id = MSM8996_SLAVE_CAMERA_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 3, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_camera_throttle_cfg = { .name = "slv_camera_throttle_cfg", .id = MSM8996_SLAVE_CAMERA_THROTTLE_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 154, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_oxili_cfg = { .name = "slv_oxili_cfg", .id = MSM8996_SLAVE_GRAPHICS_3D_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 11, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_smmu_mdp_cfg = { .name = "slv_smmu_mdp_cfg", .id = MSM8996_SLAVE_SMMU_MDP_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 173, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_smmu_rot_cfg = { .name = "slv_smmu_rot_cfg", .id = MSM8996_SLAVE_SMMU_ROTATOR_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 174, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_smmu_venus_cfg = { .name = "slv_smmu_venus_cfg", .id = MSM8996_SLAVE_SMMU_VENUS_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 175, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_smmu_cpp_cfg = { .name = "slv_smmu_cpp_cfg", .id = MSM8996_SLAVE_SMMU_CPP_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 171, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_smmu_jpeg_cfg = { .name = "slv_smmu_jpeg_cfg", .id = MSM8996_SLAVE_SMMU_JPEG_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 172, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_smmu_vfe_cfg = { .name = "slv_smmu_vfe_cfg", .id = MSM8996_SLAVE_SMMU_VFE_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 176, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static const u16 slv_mnoc_bimc_links[] = { MSM8996_MASTER_MNOC_BIMC }; static struct qcom_icc_node slv_mnoc_bimc = { .name = "slv_mnoc_bimc", .id = MSM8996_SLAVE_MNOC_BIMC, .buswidth = 32, .mas_rpm_id = -1, .slv_rpm_id = 16, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_mnoc_bimc_links), .links = slv_mnoc_bimc_links }; static struct qcom_icc_node slv_vmem = { .name = "slv_vmem", .id = MSM8996_SLAVE_VMEM, .buswidth = 32, .mas_rpm_id = -1, .slv_rpm_id = 179, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_srvc_mnoc = { .name = "slv_srvc_mnoc", .id = MSM8996_SLAVE_SERVICE_MNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 17, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static const u16 slv_pnoc_a1noc_links[] = { MSM8996_MASTER_PNOC_A1NOC }; static struct qcom_icc_node slv_pnoc_a1noc = { .name = "slv_pnoc_a1noc", .id = MSM8996_SLAVE_PNOC_A1NOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 139, .num_links = ARRAY_SIZE(slv_pnoc_a1noc_links), .links = slv_pnoc_a1noc_links }; static struct qcom_icc_node slv_usb_hs = { .name = "slv_usb_hs", .id = MSM8996_SLAVE_USB_HS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 40 }; static struct qcom_icc_node slv_sdcc_2 = { .name = "slv_sdcc_2", .id = MSM8996_SLAVE_SDCC_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 33 }; static struct qcom_icc_node slv_sdcc_4 = { .name = "slv_sdcc_4", .id = MSM8996_SLAVE_SDCC_4, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 34 }; static struct qcom_icc_node slv_tsif = { .name = "slv_tsif", .id = MSM8996_SLAVE_TSIF, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 35 }; static struct qcom_icc_node slv_blsp_2 = { .name = "slv_blsp_2", .id = MSM8996_SLAVE_BLSP_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 37 }; static struct qcom_icc_node slv_sdcc_1 = { .name = "slv_sdcc_1", .id = MSM8996_SLAVE_SDCC_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 31 }; static struct qcom_icc_node slv_blsp_1 = { .name = "slv_blsp_1", .id = MSM8996_SLAVE_BLSP_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 39 }; static struct qcom_icc_node slv_pdm = { .name = "slv_pdm", .id = MSM8996_SLAVE_PDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 41 }; static struct qcom_icc_node slv_ahb2phy = { .name = "slv_ahb2phy", .id = MSM8996_SLAVE_AHB2PHY, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 153, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_hmss = { .name = "slv_hmss", .id = MSM8996_SLAVE_APPSS, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 20, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_lpass = { .name = "slv_lpass", .id = MSM8996_SLAVE_LPASS, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 21, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_usb3 = { .name = "slv_usb3", .id = MSM8996_SLAVE_USB3, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 22, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static const u16 slv_snoc_bimc_links[] = { MSM8996_MASTER_SNOC_BIMC }; static struct qcom_icc_node slv_snoc_bimc = { .name = "slv_snoc_bimc", .id = MSM8996_SLAVE_SNOC_BIMC, .buswidth = 32, .mas_rpm_id = -1, .slv_rpm_id = 24, .num_links = ARRAY_SIZE(slv_snoc_bimc_links), .links = slv_snoc_bimc_links }; static const u16 slv_snoc_cnoc_links[] = { MSM8996_MASTER_SNOC_CNOC }; static struct qcom_icc_node slv_snoc_cnoc = { .name = "slv_snoc_cnoc", .id = MSM8996_SLAVE_SNOC_CNOC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 25, .num_links = ARRAY_SIZE(slv_snoc_cnoc_links), .links = slv_snoc_cnoc_links }; static struct qcom_icc_node slv_imem = { .name = "slv_imem", .id = MSM8996_SLAVE_OCIMEM, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 26 }; static struct qcom_icc_node slv_pimem = { .name = "slv_pimem", .id = MSM8996_SLAVE_PIMEM, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 166 }; static const u16 slv_snoc_vmem_links[] = { MSM8996_MASTER_SNOC_VMEM }; static struct qcom_icc_node slv_snoc_vmem = { .name = "slv_snoc_vmem", .id = MSM8996_SLAVE_SNOC_VMEM, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 140, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_snoc_vmem_links), .links = slv_snoc_vmem_links }; static const u16 slv_snoc_pnoc_links[] = { MSM8996_MASTER_SNOC_PNOC }; static struct qcom_icc_node slv_snoc_pnoc = { .name = "slv_snoc_pnoc", .id = MSM8996_SLAVE_SNOC_PNOC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 28, .num_links = ARRAY_SIZE(slv_snoc_pnoc_links), .links = slv_snoc_pnoc_links }; static struct qcom_icc_node slv_qdss_stm = { .name = "slv_qdss_stm", .id = MSM8996_SLAVE_QDSS_STM, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 30 }; static struct qcom_icc_node slv_pcie_0 = { .name = "slv_pcie_0", .id = MSM8996_SLAVE_PCIE_0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 84, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pcie_1 = { .name = "slv_pcie_1", .id = MSM8996_SLAVE_PCIE_1, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 85, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_pcie_2 = { .name = "slv_pcie_2", .id = MSM8996_SLAVE_PCIE_2, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 164, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node slv_srvc_snoc = { .name = "slv_srvc_snoc", .id = MSM8996_SLAVE_SERVICE_SNOC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 29, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID }; static struct qcom_icc_node * const a0noc_nodes[] = { [MASTER_PCIE_0] = &mas_pcie_0, [MASTER_PCIE_1] = &mas_pcie_1, [MASTER_PCIE_2] = &mas_pcie_2 }; static const struct regmap_config msm8996_a0noc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x6000, .fast_io = true }; static const struct qcom_icc_desc msm8996_a0noc = { .type = QCOM_ICC_NOC, .nodes = a0noc_nodes, .num_nodes = ARRAY_SIZE(a0noc_nodes), .intf_clocks = a0noc_intf_clocks, .num_intf_clocks = ARRAY_SIZE(a0noc_intf_clocks), .regmap_cfg = &msm8996_a0noc_regmap_config }; static struct qcom_icc_node * const a1noc_nodes[] = { [MASTER_CNOC_A1NOC] = &mas_cnoc_a1noc, [MASTER_CRYPTO_CORE0] = &mas_crypto_c0, [MASTER_PNOC_A1NOC] = &mas_pnoc_a1noc }; static const struct regmap_config msm8996_a1noc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x5000, .fast_io = true }; static const struct qcom_icc_desc msm8996_a1noc = { .type = QCOM_ICC_NOC, .nodes = a1noc_nodes, .num_nodes = ARRAY_SIZE(a1noc_nodes), .bus_clk_desc = &aggre1_branch_clk, .regmap_cfg = &msm8996_a1noc_regmap_config }; static struct qcom_icc_node * const a2noc_nodes[] = { [MASTER_USB3] = &mas_usb3, [MASTER_IPA] = &mas_ipa, [MASTER_UFS] = &mas_ufs }; static const struct regmap_config msm8996_a2noc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x7000, .fast_io = true }; static const struct qcom_icc_desc msm8996_a2noc = { .type = QCOM_ICC_NOC, .nodes = a2noc_nodes, .num_nodes = ARRAY_SIZE(a2noc_nodes), .bus_clk_desc = &aggre2_branch_clk, .intf_clocks = a2noc_intf_clocks, .num_intf_clocks = ARRAY_SIZE(a2noc_intf_clocks), .regmap_cfg = &msm8996_a2noc_regmap_config }; static struct qcom_icc_node * const bimc_nodes[] = { [MASTER_AMPSS_M0] = &mas_apps_proc, [MASTER_GRAPHICS_3D] = &mas_oxili, [MASTER_MNOC_BIMC] = &mas_mnoc_bimc, [MASTER_SNOC_BIMC] = &mas_snoc_bimc, [SLAVE_EBI_CH0] = &slv_ebi, [SLAVE_HMSS_L3] = &slv_hmss_l3, [SLAVE_BIMC_SNOC_0] = &slv_bimc_snoc_0, [SLAVE_BIMC_SNOC_1] = &slv_bimc_snoc_1 }; static const struct regmap_config msm8996_bimc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x5a000, .fast_io = true }; static const struct qcom_icc_desc msm8996_bimc = { .type = QCOM_ICC_BIMC, .nodes = bimc_nodes, .num_nodes = ARRAY_SIZE(bimc_nodes), .bus_clk_desc = &bimc_clk, .regmap_cfg = &msm8996_bimc_regmap_config }; static struct qcom_icc_node * const cnoc_nodes[] = { [MASTER_SNOC_CNOC] = &mas_snoc_cnoc, [MASTER_QDSS_DAP] = &mas_qdss_dap, [SLAVE_CNOC_A1NOC] = &slv_cnoc_a1noc, [SLAVE_CLK_CTL] = &slv_clk_ctl, [SLAVE_TCSR] = &slv_tcsr, [SLAVE_TLMM] = &slv_tlmm, [SLAVE_CRYPTO_0_CFG] = &slv_crypto0_cfg, [SLAVE_MPM] = &slv_mpm, [SLAVE_PIMEM_CFG] = &slv_pimem_cfg, [SLAVE_IMEM_CFG] = &slv_imem_cfg, [SLAVE_MESSAGE_RAM] = &slv_message_ram, [SLAVE_BIMC_CFG] = &slv_bimc_cfg, [SLAVE_PMIC_ARB] = &slv_pmic_arb, [SLAVE_PRNG] = &slv_prng, [SLAVE_DCC_CFG] = &slv_dcc_cfg, [SLAVE_RBCPR_MX] = &slv_rbcpr_mx, [SLAVE_QDSS_CFG] = &slv_qdss_cfg, [SLAVE_RBCPR_CX] = &slv_rbcpr_cx, [SLAVE_QDSS_RBCPR_APU] = &slv_cpu_apu_cfg, [SLAVE_CNOC_MNOC_CFG] = &slv_cnoc_mnoc_cfg, [SLAVE_SNOC_CFG] = &slv_snoc_cfg, [SLAVE_SNOC_MPU_CFG] = &slv_snoc_mpu_cfg, [SLAVE_EBI1_PHY_CFG] = &slv_ebi1_phy_cfg, [SLAVE_A0NOC_CFG] = &slv_a0noc_cfg, [SLAVE_PCIE_1_CFG] = &slv_pcie_1_cfg, [SLAVE_PCIE_2_CFG] = &slv_pcie_2_cfg, [SLAVE_PCIE_0_CFG] = &slv_pcie_0_cfg, [SLAVE_PCIE20_AHB2PHY] = &slv_pcie20_ahb2phy, [SLAVE_A0NOC_MPU_CFG] = &slv_a0noc_mpu_cfg, [SLAVE_UFS_CFG] = &slv_ufs_cfg, [SLAVE_A1NOC_CFG] = &slv_a1noc_cfg, [SLAVE_A1NOC_MPU_CFG] = &slv_a1noc_mpu_cfg, [SLAVE_A2NOC_CFG] = &slv_a2noc_cfg, [SLAVE_A2NOC_MPU_CFG] = &slv_a2noc_mpu_cfg, [SLAVE_SSC_CFG] = &slv_ssc_cfg, [SLAVE_A0NOC_SMMU_CFG] = &slv_a0noc_smmu_cfg, [SLAVE_A1NOC_SMMU_CFG] = &slv_a1noc_smmu_cfg, [SLAVE_A2NOC_SMMU_CFG] = &slv_a2noc_smmu_cfg, [SLAVE_LPASS_SMMU_CFG] = &slv_lpass_smmu_cfg, [SLAVE_CNOC_MNOC_MMSS_CFG] = &slv_cnoc_mnoc_mmss_cfg }; static const struct regmap_config msm8996_cnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x1000, .fast_io = true }; static const struct qcom_icc_desc msm8996_cnoc = { .type = QCOM_ICC_NOC, .nodes = cnoc_nodes, .num_nodes = ARRAY_SIZE(cnoc_nodes), .bus_clk_desc = &bus_2_clk, .regmap_cfg = &msm8996_cnoc_regmap_config }; static struct qcom_icc_node * const mnoc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &mas_cnoc_mnoc_cfg, [MASTER_CPP] = &mas_cpp, [MASTER_JPEG] = &mas_jpeg, [MASTER_MDP_PORT0] = &mas_mdp_p0, [MASTER_MDP_PORT1] = &mas_mdp_p1, [MASTER_ROTATOR] = &mas_rotator, [MASTER_VIDEO_P0] = &mas_venus, [MASTER_VFE] = &mas_vfe, [MASTER_SNOC_VMEM] = &mas_snoc_vmem, [MASTER_VIDEO_P0_OCMEM] = &mas_venus_vmem, [MASTER_CNOC_MNOC_MMSS_CFG] = &mas_cnoc_mnoc_mmss_cfg, [SLAVE_MNOC_BIMC] = &slv_mnoc_bimc, [SLAVE_VMEM] = &slv_vmem, [SLAVE_SERVICE_MNOC] = &slv_srvc_mnoc, [SLAVE_MMAGIC_CFG] = &slv_mmagic_cfg, [SLAVE_CPR_CFG] = &slv_cpr_cfg, [SLAVE_MISC_CFG] = &slv_misc_cfg, [SLAVE_VENUS_THROTTLE_CFG] = &slv_venus_throttle_cfg, [SLAVE_VENUS_CFG] = &slv_venus_cfg, [SLAVE_VMEM_CFG] = &slv_vmem_cfg, [SLAVE_DSA_CFG] = &slv_dsa_cfg, [SLAVE_MMSS_CLK_CFG] = &slv_mnoc_clocks_cfg, [SLAVE_DSA_MPU_CFG] = &slv_dsa_mpu_cfg, [SLAVE_MNOC_MPU_CFG] = &slv_mnoc_mpu_cfg, [SLAVE_DISPLAY_CFG] = &slv_display_cfg, [SLAVE_DISPLAY_THROTTLE_CFG] = &slv_display_throttle_cfg, [SLAVE_CAMERA_CFG] = &slv_camera_cfg, [SLAVE_CAMERA_THROTTLE_CFG] = &slv_camera_throttle_cfg, [SLAVE_GRAPHICS_3D_CFG] = &slv_oxili_cfg, [SLAVE_SMMU_MDP_CFG] = &slv_smmu_mdp_cfg, [SLAVE_SMMU_ROT_CFG] = &slv_smmu_rot_cfg, [SLAVE_SMMU_VENUS_CFG] = &slv_smmu_venus_cfg, [SLAVE_SMMU_CPP_CFG] = &slv_smmu_cpp_cfg, [SLAVE_SMMU_JPEG_CFG] = &slv_smmu_jpeg_cfg, [SLAVE_SMMU_VFE_CFG] = &slv_smmu_vfe_cfg }; static const struct regmap_config msm8996_mnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x1c000, .fast_io = true }; static const struct qcom_icc_desc msm8996_mnoc = { .type = QCOM_ICC_NOC, .nodes = mnoc_nodes, .num_nodes = ARRAY_SIZE(mnoc_nodes), .bus_clk_desc = &mmaxi_0_clk, .intf_clocks = mm_intf_clocks, .num_intf_clocks = ARRAY_SIZE(mm_intf_clocks), .regmap_cfg = &msm8996_mnoc_regmap_config }; static struct qcom_icc_node * const pnoc_nodes[] = { [MASTER_SNOC_PNOC] = &mas_snoc_pnoc, [MASTER_SDCC_1] = &mas_sdcc_1, [MASTER_SDCC_2] = &mas_sdcc_2, [MASTER_SDCC_4] = &mas_sdcc_4, [MASTER_USB_HS] = &mas_usb_hs, [MASTER_BLSP_1] = &mas_blsp_1, [MASTER_BLSP_2] = &mas_blsp_2, [MASTER_TSIF] = &mas_tsif, [SLAVE_PNOC_A1NOC] = &slv_pnoc_a1noc, [SLAVE_USB_HS] = &slv_usb_hs, [SLAVE_SDCC_2] = &slv_sdcc_2, [SLAVE_SDCC_4] = &slv_sdcc_4, [SLAVE_TSIF] = &slv_tsif, [SLAVE_BLSP_2] = &slv_blsp_2, [SLAVE_SDCC_1] = &slv_sdcc_1, [SLAVE_BLSP_1] = &slv_blsp_1, [SLAVE_PDM] = &slv_pdm, [SLAVE_AHB2PHY] = &slv_ahb2phy }; static const struct regmap_config msm8996_pnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x3000, .fast_io = true }; static const struct qcom_icc_desc msm8996_pnoc = { .type = QCOM_ICC_NOC, .nodes = pnoc_nodes, .num_nodes = ARRAY_SIZE(pnoc_nodes), .bus_clk_desc = &bus_0_clk, .regmap_cfg = &msm8996_pnoc_regmap_config }; static struct qcom_icc_node * const snoc_nodes[] = { [MASTER_HMSS] = &mas_hmss, [MASTER_QDSS_BAM] = &mas_qdss_bam, [MASTER_SNOC_CFG] = &mas_snoc_cfg, [MASTER_BIMC_SNOC_0] = &mas_bimc_snoc_0, [MASTER_BIMC_SNOC_1] = &mas_bimc_snoc_1, [MASTER_A0NOC_SNOC] = &mas_a0noc_snoc, [MASTER_A1NOC_SNOC] = &mas_a1noc_snoc, [MASTER_A2NOC_SNOC] = &mas_a2noc_snoc, [MASTER_QDSS_ETR] = &mas_qdss_etr, [SLAVE_A0NOC_SNOC] = &slv_a0noc_snoc, [SLAVE_A1NOC_SNOC] = &slv_a1noc_snoc, [SLAVE_A2NOC_SNOC] = &slv_a2noc_snoc, [SLAVE_HMSS] = &slv_hmss, [SLAVE_LPASS] = &slv_lpass, [SLAVE_USB3] = &slv_usb3, [SLAVE_SNOC_BIMC] = &slv_snoc_bimc, [SLAVE_SNOC_CNOC] = &slv_snoc_cnoc, [SLAVE_IMEM] = &slv_imem, [SLAVE_PIMEM] = &slv_pimem, [SLAVE_SNOC_VMEM] = &slv_snoc_vmem, [SLAVE_SNOC_PNOC] = &slv_snoc_pnoc, [SLAVE_QDSS_STM] = &slv_qdss_stm, [SLAVE_PCIE_0] = &slv_pcie_0, [SLAVE_PCIE_1] = &slv_pcie_1, [SLAVE_PCIE_2] = &slv_pcie_2, [SLAVE_SERVICE_SNOC] = &slv_srvc_snoc }; static const struct regmap_config msm8996_snoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x20000, .fast_io = true }; static const struct qcom_icc_desc msm8996_snoc = { .type = QCOM_ICC_NOC, .nodes = snoc_nodes, .num_nodes = ARRAY_SIZE(snoc_nodes), .bus_clk_desc = &bus_1_clk, .regmap_cfg = &msm8996_snoc_regmap_config }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,msm8996-a0noc", .data = &msm8996_a0noc}, { .compatible = "qcom,msm8996-a1noc", .data = &msm8996_a1noc}, { .compatible = "qcom,msm8996-a2noc", .data = &msm8996_a2noc}, { .compatible = "qcom,msm8996-bimc", .data = &msm8996_bimc}, { .compatible = "qcom,msm8996-cnoc", .data = &msm8996_cnoc}, { .compatible = "qcom,msm8996-mnoc", .data = &msm8996_mnoc}, { .compatible = "qcom,msm8996-pnoc", .data = &msm8996_pnoc}, { .compatible = "qcom,msm8996-snoc", .data = &msm8996_snoc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qnoc_probe, .remove = qnoc_remove, .driver = { .name = "qnoc-msm8996", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, } }; static int __init qnoc_driver_init(void) { return platform_driver_register(&qnoc_driver); } core_initcall(qnoc_driver_init); static void __exit qnoc_driver_exit(void) { platform_driver_unregister(&qnoc_driver); } module_exit(qnoc_driver_exit); MODULE_AUTHOR("Yassine Oudjana <[email protected]>"); MODULE_DESCRIPTION("Qualcomm MSM8996 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/msm8996.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved. */ #include <asm/div64.h> #include <linux/interconnect-provider.h> #include <linux/list_sort.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <soc/qcom/rpmh.h> #include <soc/qcom/tcs.h> #include "bcm-voter.h" #include "icc-rpmh.h" static LIST_HEAD(bcm_voters); static DEFINE_MUTEX(bcm_voter_lock); /** * struct bcm_voter - Bus Clock Manager voter * @dev: reference to the device that communicates with the BCM * @np: reference to the device node to match bcm voters * @lock: mutex to protect commit and wake/sleep lists in the voter * @commit_list: list containing bcms to be committed to hardware * @ws_list: list containing bcms that have different wake/sleep votes * @voter_node: list of bcm voters * @tcs_wait: mask for which buckets require TCS completion */ struct bcm_voter { struct device *dev; struct device_node *np; struct mutex lock; struct list_head commit_list; struct list_head ws_list; struct list_head voter_node; u32 tcs_wait; }; static int cmp_vcd(void *priv, const struct list_head *a, const struct list_head *b) { const struct qcom_icc_bcm *bcm_a = list_entry(a, struct qcom_icc_bcm, list); const struct qcom_icc_bcm *bcm_b = list_entry(b, struct qcom_icc_bcm, list); return bcm_a->aux_data.vcd - bcm_b->aux_data.vcd; } static u64 bcm_div(u64 num, u32 base) { /* Ensure that small votes aren't lost. */ if (num && num < base) return 1; do_div(num, base); return num; } /* BCMs with enable_mask use one-hot-encoding for on/off signaling */ static void bcm_aggregate_mask(struct qcom_icc_bcm *bcm) { struct qcom_icc_node *node; int bucket, i; for (bucket = 0; bucket < QCOM_ICC_NUM_BUCKETS; bucket++) { bcm->vote_x[bucket] = 0; bcm->vote_y[bucket] = 0; for (i = 0; i < bcm->num_nodes; i++) { node = bcm->nodes[i]; /* If any vote in this bucket exists, keep the BCM enabled */ if (node->sum_avg[bucket] || node->max_peak[bucket]) { bcm->vote_x[bucket] = 0; bcm->vote_y[bucket] = bcm->enable_mask; break; } } } if (bcm->keepalive) { bcm->vote_x[QCOM_ICC_BUCKET_AMC] = bcm->enable_mask; bcm->vote_x[QCOM_ICC_BUCKET_WAKE] = bcm->enable_mask; bcm->vote_y[QCOM_ICC_BUCKET_AMC] = bcm->enable_mask; bcm->vote_y[QCOM_ICC_BUCKET_WAKE] = bcm->enable_mask; } } static void bcm_aggregate(struct qcom_icc_bcm *bcm) { struct qcom_icc_node *node; size_t i, bucket; u64 agg_avg[QCOM_ICC_NUM_BUCKETS] = {0}; u64 agg_peak[QCOM_ICC_NUM_BUCKETS] = {0}; u64 temp; for (bucket = 0; bucket < QCOM_ICC_NUM_BUCKETS; bucket++) { for (i = 0; i < bcm->num_nodes; i++) { node = bcm->nodes[i]; temp = bcm_div(node->sum_avg[bucket] * bcm->aux_data.width, node->buswidth * node->channels); agg_avg[bucket] = max(agg_avg[bucket], temp); temp = bcm_div(node->max_peak[bucket] * bcm->aux_data.width, node->buswidth); agg_peak[bucket] = max(agg_peak[bucket], temp); } temp = agg_avg[bucket] * bcm->vote_scale; bcm->vote_x[bucket] = bcm_div(temp, bcm->aux_data.unit); temp = agg_peak[bucket] * bcm->vote_scale; bcm->vote_y[bucket] = bcm_div(temp, bcm->aux_data.unit); } if (bcm->keepalive && bcm->vote_x[QCOM_ICC_BUCKET_AMC] == 0 && bcm->vote_y[QCOM_ICC_BUCKET_AMC] == 0) { bcm->vote_x[QCOM_ICC_BUCKET_AMC] = 1; bcm->vote_x[QCOM_ICC_BUCKET_WAKE] = 1; bcm->vote_y[QCOM_ICC_BUCKET_AMC] = 1; bcm->vote_y[QCOM_ICC_BUCKET_WAKE] = 1; } } static inline void tcs_cmd_gen(struct tcs_cmd *cmd, u64 vote_x, u64 vote_y, u32 addr, bool commit, bool wait) { bool valid = true; if (!cmd) return; memset(cmd, 0, sizeof(*cmd)); if (vote_x == 0 && vote_y == 0) valid = false; if (vote_x > BCM_TCS_CMD_VOTE_MASK) vote_x = BCM_TCS_CMD_VOTE_MASK; if (vote_y > BCM_TCS_CMD_VOTE_MASK) vote_y = BCM_TCS_CMD_VOTE_MASK; cmd->addr = addr; cmd->data = BCM_TCS_CMD(commit, valid, vote_x, vote_y); /* * Set the wait for completion flag on command that need to be completed * before the next command. */ cmd->wait = wait; } static void tcs_list_gen(struct bcm_voter *voter, int bucket, struct tcs_cmd tcs_list[MAX_VCD], int n[MAX_VCD + 1]) { struct list_head *bcm_list = &voter->commit_list; struct qcom_icc_bcm *bcm; bool commit, wait; size_t idx = 0, batch = 0, cur_vcd_size = 0; memset(n, 0, sizeof(int) * (MAX_VCD + 1)); list_for_each_entry(bcm, bcm_list, list) { commit = false; cur_vcd_size++; if ((list_is_last(&bcm->list, bcm_list)) || bcm->aux_data.vcd != list_next_entry(bcm, list)->aux_data.vcd) { commit = true; cur_vcd_size = 0; } wait = commit && (voter->tcs_wait & BIT(bucket)); tcs_cmd_gen(&tcs_list[idx], bcm->vote_x[bucket], bcm->vote_y[bucket], bcm->addr, commit, wait); idx++; n[batch]++; /* * Batch the BCMs in such a way that we do not split them in * multiple payloads when they are under the same VCD. This is * to ensure that every BCM is committed since we only set the * commit bit on the last BCM request of every VCD. */ if (n[batch] >= MAX_RPMH_PAYLOAD) { if (!commit) { n[batch] -= cur_vcd_size; n[batch + 1] = cur_vcd_size; } batch++; } } } /** * of_bcm_voter_get - gets a bcm voter handle from DT node * @dev: device pointer for the consumer device * @name: name for the bcm voter device * * This function will match a device_node pointer for the phandle * specified in the device DT and return a bcm_voter handle on success. * * Returns bcm_voter pointer or ERR_PTR() on error. EPROBE_DEFER is returned * when matching bcm voter is yet to be found. */ struct bcm_voter *of_bcm_voter_get(struct device *dev, const char *name) { struct bcm_voter *voter = ERR_PTR(-EPROBE_DEFER); struct bcm_voter *temp; struct device_node *np, *node; int idx = 0; if (!dev || !dev->of_node) return ERR_PTR(-ENODEV); np = dev->of_node; if (name) { idx = of_property_match_string(np, "qcom,bcm-voter-names", name); if (idx < 0) return ERR_PTR(idx); } node = of_parse_phandle(np, "qcom,bcm-voters", idx); mutex_lock(&bcm_voter_lock); list_for_each_entry(temp, &bcm_voters, voter_node) { if (temp->np == node) { voter = temp; break; } } mutex_unlock(&bcm_voter_lock); of_node_put(node); return voter; } EXPORT_SYMBOL_GPL(of_bcm_voter_get); /** * qcom_icc_bcm_voter_add - queues up the bcm nodes that require updates * @voter: voter that the bcms are being added to * @bcm: bcm to add to the commit and wake sleep list */ void qcom_icc_bcm_voter_add(struct bcm_voter *voter, struct qcom_icc_bcm *bcm) { if (!voter) return; mutex_lock(&voter->lock); if (list_empty(&bcm->list)) list_add_tail(&bcm->list, &voter->commit_list); if (list_empty(&bcm->ws_list)) list_add_tail(&bcm->ws_list, &voter->ws_list); mutex_unlock(&voter->lock); } EXPORT_SYMBOL_GPL(qcom_icc_bcm_voter_add); /** * qcom_icc_bcm_voter_commit - generates and commits tcs cmds based on bcms * @voter: voter that needs flushing * * This function generates a set of AMC commands and flushes to the BCM device * associated with the voter. It conditionally generate WAKE and SLEEP commands * based on deltas between WAKE/SLEEP requirements. The ws_list persists * through multiple commit requests and bcm nodes are removed only when the * requirements for WAKE matches SLEEP. * * Returns 0 on success, or an appropriate error code otherwise. */ int qcom_icc_bcm_voter_commit(struct bcm_voter *voter) { struct qcom_icc_bcm *bcm; struct qcom_icc_bcm *bcm_tmp; int commit_idx[MAX_VCD + 1]; struct tcs_cmd cmds[MAX_BCMS]; int ret = 0; if (!voter) return 0; mutex_lock(&voter->lock); list_for_each_entry(bcm, &voter->commit_list, list) { if (bcm->enable_mask) bcm_aggregate_mask(bcm); else bcm_aggregate(bcm); } /* * Pre sort the BCMs based on VCD for ease of generating a command list * that groups the BCMs with the same VCD together. VCDs are numbered * with lowest being the most expensive time wise, ensuring that * those commands are being sent the earliest in the queue. This needs * to be sorted every commit since we can't guarantee the order in which * the BCMs are added to the list. */ list_sort(NULL, &voter->commit_list, cmp_vcd); /* * Construct the command list based on a pre ordered list of BCMs * based on VCD. */ tcs_list_gen(voter, QCOM_ICC_BUCKET_AMC, cmds, commit_idx); if (!commit_idx[0]) goto out; rpmh_invalidate(voter->dev); ret = rpmh_write_batch(voter->dev, RPMH_ACTIVE_ONLY_STATE, cmds, commit_idx); if (ret) { pr_err("Error sending AMC RPMH requests (%d)\n", ret); goto out; } list_for_each_entry_safe(bcm, bcm_tmp, &voter->commit_list, list) list_del_init(&bcm->list); list_for_each_entry_safe(bcm, bcm_tmp, &voter->ws_list, ws_list) { /* * Only generate WAKE and SLEEP commands if a resource's * requirements change as the execution environment transitions * between different power states. */ if (bcm->vote_x[QCOM_ICC_BUCKET_WAKE] != bcm->vote_x[QCOM_ICC_BUCKET_SLEEP] || bcm->vote_y[QCOM_ICC_BUCKET_WAKE] != bcm->vote_y[QCOM_ICC_BUCKET_SLEEP]) list_add_tail(&bcm->list, &voter->commit_list); else list_del_init(&bcm->ws_list); } if (list_empty(&voter->commit_list)) goto out; list_sort(NULL, &voter->commit_list, cmp_vcd); tcs_list_gen(voter, QCOM_ICC_BUCKET_WAKE, cmds, commit_idx); ret = rpmh_write_batch(voter->dev, RPMH_WAKE_ONLY_STATE, cmds, commit_idx); if (ret) { pr_err("Error sending WAKE RPMH requests (%d)\n", ret); goto out; } tcs_list_gen(voter, QCOM_ICC_BUCKET_SLEEP, cmds, commit_idx); ret = rpmh_write_batch(voter->dev, RPMH_SLEEP_STATE, cmds, commit_idx); if (ret) { pr_err("Error sending SLEEP RPMH requests (%d)\n", ret); goto out; } out: list_for_each_entry_safe(bcm, bcm_tmp, &voter->commit_list, list) list_del_init(&bcm->list); mutex_unlock(&voter->lock); return ret; } EXPORT_SYMBOL_GPL(qcom_icc_bcm_voter_commit); static int qcom_icc_bcm_voter_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct bcm_voter *voter; voter = devm_kzalloc(&pdev->dev, sizeof(*voter), GFP_KERNEL); if (!voter) return -ENOMEM; voter->dev = &pdev->dev; voter->np = np; if (of_property_read_u32(np, "qcom,tcs-wait", &voter->tcs_wait)) voter->tcs_wait = QCOM_ICC_TAG_ACTIVE_ONLY; mutex_init(&voter->lock); INIT_LIST_HEAD(&voter->commit_list); INIT_LIST_HEAD(&voter->ws_list); mutex_lock(&bcm_voter_lock); list_add_tail(&voter->voter_node, &bcm_voters); mutex_unlock(&bcm_voter_lock); return 0; } static const struct of_device_id bcm_voter_of_match[] = { { .compatible = "qcom,bcm-voter" }, { } }; MODULE_DEVICE_TABLE(of, bcm_voter_of_match); static struct platform_driver qcom_icc_bcm_voter_driver = { .probe = qcom_icc_bcm_voter_probe, .driver = { .name = "bcm_voter", .of_match_table = bcm_voter_of_match, }, }; module_platform_driver(qcom_icc_bcm_voter_driver); MODULE_AUTHOR("David Dai <[email protected]>"); MODULE_DESCRIPTION("Qualcomm BCM Voter interconnect driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/bcm-voter.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2021, The Linux Foundation. All rights reserved. * */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sc7280.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sc7280.h" static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SC7280_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = SC7280_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SC7280_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qnm_a1noc_cfg = { .name = "qnm_a1noc_cfg", .id = SC7280_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node xm_sdc1 = { .name = "xm_sdc1", .id = SC7280_MASTER_SDCC_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SC7280_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SC7280_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SC7280_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb2 = { .name = "xm_usb2", .id = SC7280_MASTER_USB2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SC7280_MASTER_USB3_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SC7280_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_a2noc_cfg = { .name = "qnm_a2noc_cfg", .id = SC7280_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qnm_cnoc_datapath = { .name = "qnm_cnoc_datapath", .id = SC7280_MASTER_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SC7280_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SC7280_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SC7280_MASTER_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SC7280_MASTER_PCIE_1, .channels = 1, .buswidth = 8, .links = { SC7280_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SC7280_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = SC7280_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = SC7280_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qnm_cnoc3_cnoc2 = { .name = "qnm_cnoc3_cnoc2", .id = SC7280_MASTER_CNOC3_CNOC2, .channels = 1, .buswidth = 8, .num_links = 44, .links = { SC7280_SLAVE_AHB2PHY_SOUTH, SC7280_SLAVE_AHB2PHY_NORTH, SC7280_SLAVE_CAMERA_CFG, SC7280_SLAVE_CLK_CTL, SC7280_SLAVE_CDSP_CFG, SC7280_SLAVE_RBCPR_CX_CFG, SC7280_SLAVE_RBCPR_MX_CFG, SC7280_SLAVE_CRYPTO_0_CFG, SC7280_SLAVE_CX_RDPM, SC7280_SLAVE_DCC_CFG, SC7280_SLAVE_DISPLAY_CFG, SC7280_SLAVE_GFX3D_CFG, SC7280_SLAVE_HWKM, SC7280_SLAVE_IMEM_CFG, SC7280_SLAVE_IPA_CFG, SC7280_SLAVE_IPC_ROUTER_CFG, SC7280_SLAVE_LPASS, SC7280_SLAVE_CNOC_MSS, SC7280_SLAVE_MX_RDPM, SC7280_SLAVE_PCIE_0_CFG, SC7280_SLAVE_PCIE_1_CFG, SC7280_SLAVE_PDM, SC7280_SLAVE_PIMEM_CFG, SC7280_SLAVE_PKA_WRAPPER_CFG, SC7280_SLAVE_PMU_WRAPPER_CFG, SC7280_SLAVE_QDSS_CFG, SC7280_SLAVE_QSPI_0, SC7280_SLAVE_QUP_0, SC7280_SLAVE_QUP_1, SC7280_SLAVE_SDCC_1, SC7280_SLAVE_SDCC_2, SC7280_SLAVE_SDCC_4, SC7280_SLAVE_SECURITY, SC7280_SLAVE_TCSR, SC7280_SLAVE_TLMM, SC7280_SLAVE_UFS_MEM_CFG, SC7280_SLAVE_USB2, SC7280_SLAVE_USB3_0, SC7280_SLAVE_VENUS_CFG, SC7280_SLAVE_VSENSE_CTRL_CFG, SC7280_SLAVE_A1NOC_CFG, SC7280_SLAVE_A2NOC_CFG, SC7280_SLAVE_CNOC_MNOC_CFG, SC7280_SLAVE_SNOC_CFG }, }; static struct qcom_icc_node xm_qdss_dap = { .name = "xm_qdss_dap", .id = SC7280_MASTER_QDSS_DAP, .channels = 1, .buswidth = 8, .num_links = 45, .links = { SC7280_SLAVE_AHB2PHY_SOUTH, SC7280_SLAVE_AHB2PHY_NORTH, SC7280_SLAVE_CAMERA_CFG, SC7280_SLAVE_CLK_CTL, SC7280_SLAVE_CDSP_CFG, SC7280_SLAVE_RBCPR_CX_CFG, SC7280_SLAVE_RBCPR_MX_CFG, SC7280_SLAVE_CRYPTO_0_CFG, SC7280_SLAVE_CX_RDPM, SC7280_SLAVE_DCC_CFG, SC7280_SLAVE_DISPLAY_CFG, SC7280_SLAVE_GFX3D_CFG, SC7280_SLAVE_HWKM, SC7280_SLAVE_IMEM_CFG, SC7280_SLAVE_IPA_CFG, SC7280_SLAVE_IPC_ROUTER_CFG, SC7280_SLAVE_LPASS, SC7280_SLAVE_CNOC_MSS, SC7280_SLAVE_MX_RDPM, SC7280_SLAVE_PCIE_0_CFG, SC7280_SLAVE_PCIE_1_CFG, SC7280_SLAVE_PDM, SC7280_SLAVE_PIMEM_CFG, SC7280_SLAVE_PKA_WRAPPER_CFG, SC7280_SLAVE_PMU_WRAPPER_CFG, SC7280_SLAVE_QDSS_CFG, SC7280_SLAVE_QSPI_0, SC7280_SLAVE_QUP_0, SC7280_SLAVE_QUP_1, SC7280_SLAVE_SDCC_1, SC7280_SLAVE_SDCC_2, SC7280_SLAVE_SDCC_4, SC7280_SLAVE_SECURITY, SC7280_SLAVE_TCSR, SC7280_SLAVE_TLMM, SC7280_SLAVE_UFS_MEM_CFG, SC7280_SLAVE_USB2, SC7280_SLAVE_USB3_0, SC7280_SLAVE_VENUS_CFG, SC7280_SLAVE_VSENSE_CTRL_CFG, SC7280_SLAVE_A1NOC_CFG, SC7280_SLAVE_A2NOC_CFG, SC7280_SLAVE_CNOC2_CNOC3, SC7280_SLAVE_CNOC_MNOC_CFG, SC7280_SLAVE_SNOC_CFG }, }; static struct qcom_icc_node qnm_cnoc2_cnoc3 = { .name = "qnm_cnoc2_cnoc3", .id = SC7280_MASTER_CNOC2_CNOC3, .channels = 1, .buswidth = 8, .num_links = 9, .links = { SC7280_SLAVE_AOSS, SC7280_SLAVE_APPSS, SC7280_SLAVE_CNOC_A2NOC, SC7280_SLAVE_DDRSS_CFG, SC7280_SLAVE_BOOT_IMEM, SC7280_SLAVE_IMEM, SC7280_SLAVE_PIMEM, SC7280_SLAVE_QDSS_STM, SC7280_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_cnoc = { .name = "qnm_gemnoc_cnoc", .id = SC7280_MASTER_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 9, .links = { SC7280_SLAVE_AOSS, SC7280_SLAVE_APPSS, SC7280_SLAVE_CNOC3_CNOC2, SC7280_SLAVE_DDRSS_CFG, SC7280_SLAVE_BOOT_IMEM, SC7280_SLAVE_IMEM, SC7280_SLAVE_PIMEM, SC7280_SLAVE_QDSS_STM, SC7280_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = SC7280_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC7280_SLAVE_PCIE_0, SC7280_SLAVE_PCIE_1 }, }; static struct qcom_icc_node qnm_cnoc_dc_noc = { .name = "qnm_cnoc_dc_noc", .id = SC7280_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SC7280_SLAVE_LLCC_CFG, SC7280_SLAVE_GEM_NOC_CFG }, }; static struct qcom_icc_node alm_gpu_tcu = { .name = "alm_gpu_tcu", .id = SC7280_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = SC7280_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = SC7280_MASTER_APPSS_PROC, .channels = 1, .buswidth = 32, .num_links = 3, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC, SC7280_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_cmpnoc = { .name = "qnm_cmpnoc", .id = SC7280_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_gemnoc_cfg = { .name = "qnm_gemnoc_cfg", .id = SC7280_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 5, .links = { SC7280_SLAVE_MSS_PROC_MS_MPU_CFG, SC7280_SLAVE_MCDMA_MS_MPU_CFG, SC7280_SLAVE_SERVICE_GEM_NOC_1, SC7280_SLAVE_SERVICE_GEM_NOC_2, SC7280_SLAVE_SERVICE_GEM_NOC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SC7280_MASTER_GFX3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SC7280_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SC7280_MASTER_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SC7280_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SC7280_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SC7280_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SC7280_SLAVE_GEM_NOC_CNOC, SC7280_SLAVE_LLCC, SC7280_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhm_config_noc = { .name = "qhm_config_noc", .id = SC7280_MASTER_CNOC_LPASS_AG_NOC, .channels = 1, .buswidth = 4, .num_links = 6, .links = { SC7280_SLAVE_LPASS_CORE_CFG, SC7280_SLAVE_LPASS_LPI_CFG, SC7280_SLAVE_LPASS_MPU_CFG, SC7280_SLAVE_LPASS_TOP_CFG, SC7280_SLAVE_SERVICES_LPASS_AML_NOC, SC7280_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SC7280_MASTER_LLCC, .channels = 2, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_EBI1 }, }; static struct qcom_icc_node qnm_mnoc_cfg = { .name = "qnm_mnoc_cfg", .id = SC7280_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qnm_video0 = { .name = "qnm_video0", .id = SC7280_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7280_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cpu = { .name = "qnm_video_cpu", .id = SC7280_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_hf = { .name = "qxm_camnoc_hf", .id = SC7280_MASTER_CAMNOC_HF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7280_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_icp = { .name = "qxm_camnoc_icp", .id = SC7280_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_sf = { .name = "qxm_camnoc_sf", .id = SC7280_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7280_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SC7280_MASTER_MDP0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7280_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qhm_nsp_noc_config = { .name = "qhm_nsp_noc_config", .id = SC7280_MASTER_CDSP_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_SERVICE_NSP_NOC }, }; static struct qcom_icc_node qxm_nsp = { .name = "qxm_nsp", .id = SC7280_MASTER_CDSP_PROC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7280_SLAVE_CDSP_MEM_NOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SC7280_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7280_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SC7280_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7280_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_snoc_cfg = { .name = "qnm_snoc_cfg", .id = SC7280_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SC7280_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SC7280_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SC7280_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7280_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SC7280_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SC7280_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7280_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node qns_pcie_mem_noc = { .name = "qns_pcie_mem_noc", .id = SC7280_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7280_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SC7280_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = SC7280_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = SC7280_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SC7280_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy1 = { .name = "qhs_ahb2phy1", .id = SC7280_SLAVE_AHB2PHY_NORTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SC7280_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SC7280_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_compute_cfg = { .name = "qhs_compute_cfg", .id = SC7280_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_CDSP_NOC_CFG }, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SC7280_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SC7280_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SC7280_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cx_rdpm = { .name = "qhs_cx_rdpm", .id = SC7280_SLAVE_CX_RDPM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SC7280_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SC7280_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SC7280_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qhs_hwkm = { .name = "qhs_hwkm", .id = SC7280_SLAVE_HWKM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SC7280_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SC7280_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = SC7280_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_cfg = { .name = "qhs_lpass_cfg", .id = SC7280_SLAVE_LPASS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_CNOC_LPASS_AG_NOC }, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SC7280_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_mx_rdpm = { .name = "qhs_mx_rdpm", .id = SC7280_SLAVE_MX_RDPM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SC7280_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SC7280_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SC7280_SLAVE_PDM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SC7280_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pka_wrapper_cfg = { .name = "qhs_pka_wrapper_cfg", .id = SC7280_SLAVE_PKA_WRAPPER_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pmu_wrapper_cfg = { .name = "qhs_pmu_wrapper_cfg", .id = SC7280_SLAVE_PMU_WRAPPER_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SC7280_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SC7280_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SC7280_SLAVE_QUP_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SC7280_SLAVE_QUP_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc1 = { .name = "qhs_sdc1", .id = SC7280_SLAVE_SDCC_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SC7280_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SC7280_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_security = { .name = "qhs_security", .id = SC7280_SLAVE_SECURITY, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SC7280_SLAVE_TCSR, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SC7280_SLAVE_TLMM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SC7280_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_usb2 = { .name = "qhs_usb2", .id = SC7280_SLAVE_USB2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SC7280_SLAVE_USB3_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SC7280_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SC7280_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_a1_noc_cfg = { .name = "qns_a1_noc_cfg", .id = SC7280_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qns_a2_noc_cfg = { .name = "qns_a2_noc_cfg", .id = SC7280_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qns_cnoc2_cnoc3 = { .name = "qns_cnoc2_cnoc3", .id = SC7280_SLAVE_CNOC2_CNOC3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_MASTER_CNOC2_CNOC3 }, }; static struct qcom_icc_node qns_mnoc_cfg = { .name = "qns_mnoc_cfg", .id = SC7280_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qns_snoc_cfg = { .name = "qns_snoc_cfg", .id = SC7280_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SC7280_SLAVE_AOSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SC7280_SLAVE_APPSS, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qns_cnoc3_cnoc2 = { .name = "qns_cnoc3_cnoc2", .id = SC7280_SLAVE_CNOC3_CNOC2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_MASTER_CNOC3_CNOC2 }, }; static struct qcom_icc_node qns_cnoc_a2noc = { .name = "qns_cnoc_a2noc", .id = SC7280_SLAVE_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_MASTER_CNOC_A2NOC }, }; static struct qcom_icc_node qns_ddrss_cfg = { .name = "qns_ddrss_cfg", .id = SC7280_SLAVE_DDRSS_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qxs_boot_imem = { .name = "qxs_boot_imem", .id = SC7280_SLAVE_BOOT_IMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SC7280_SLAVE_IMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SC7280_SLAVE_PIMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SC7280_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SC7280_SLAVE_PCIE_1, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SC7280_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SC7280_SLAVE_TCU, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SC7280_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_gemnoc = { .name = "qns_gemnoc", .id = SC7280_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7280_MASTER_GEM_NOC_CFG }, }; static struct qcom_icc_node qhs_mdsp_ms_mpu_cfg = { .name = "qhs_mdsp_ms_mpu_cfg", .id = SC7280_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_modem_ms_mpu_cfg = { .name = "qhs_modem_ms_mpu_cfg", .id = SC7280_SLAVE_MCDMA_MS_MPU_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_gem_noc_cnoc = { .name = "qns_gem_noc_cnoc", .id = SC7280_SLAVE_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7280_MASTER_GEM_NOC_CNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SC7280_SLAVE_LLCC, .channels = 2, .buswidth = 16, .num_links = 1, .links = { SC7280_MASTER_LLCC }, }; static struct qcom_icc_node qns_pcie = { .name = "qns_pcie", .id = SC7280_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node srvc_even_gemnoc = { .name = "srvc_even_gemnoc", .id = SC7280_SLAVE_SERVICE_GEM_NOC_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node srvc_odd_gemnoc = { .name = "srvc_odd_gemnoc", .id = SC7280_SLAVE_SERVICE_GEM_NOC_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node srvc_sys_gemnoc = { .name = "srvc_sys_gemnoc", .id = SC7280_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_core = { .name = "qhs_lpass_core", .id = SC7280_SLAVE_LPASS_CORE_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_lpi = { .name = "qhs_lpass_lpi", .id = SC7280_SLAVE_LPASS_LPI_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_mpu = { .name = "qhs_lpass_mpu", .id = SC7280_SLAVE_LPASS_MPU_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_top = { .name = "qhs_lpass_top", .id = SC7280_SLAVE_LPASS_TOP_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node srvc_niu_aml_noc = { .name = "srvc_niu_aml_noc", .id = SC7280_SLAVE_SERVICES_LPASS_AML_NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node srvc_niu_lpass_agnoc = { .name = "srvc_niu_lpass_agnoc", .id = SC7280_SLAVE_SERVICE_LPASS_AG_NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SC7280_SLAVE_EBI1, .channels = 2, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SC7280_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7280_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SC7280_SLAVE_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7280_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SC7280_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_nsp_gemnoc = { .name = "qns_nsp_gemnoc", .id = SC7280_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7280_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node service_nsp_noc = { .name = "service_nsp_noc", .id = SC7280_SLAVE_SERVICE_NSP_NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SC7280_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7280_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SC7280_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7280_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SC7280_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 2, .nodes = { &qnm_gemnoc_cnoc, &qnm_gemnoc_pcie }, }; static struct qcom_icc_bcm bcm_cn1 = { .name = "CN1", .num_nodes = 47, .nodes = { &qnm_cnoc3_cnoc2, &xm_qdss_dap, &qhs_ahb2phy0, &qhs_ahb2phy1, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute_cfg, &qhs_cpr_cx, &qhs_cpr_mx, &qhs_crypto0_cfg, &qhs_cx_rdpm, &qhs_dcc_cfg, &qhs_display_cfg, &qhs_gpuss_cfg, &qhs_hwkm, &qhs_imem_cfg, &qhs_ipa, &qhs_ipc_router, &qhs_mss_cfg, &qhs_mx_rdpm, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_pimem_cfg, &qhs_pka_wrapper_cfg, &qhs_pmu_wrapper_cfg, &qhs_qdss_cfg, &qhs_qup0, &qhs_qup1, &qhs_security, &qhs_tcsr, &qhs_tlmm, &qhs_ufs_mem_cfg, &qhs_usb2, &qhs_usb3_0, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qns_a1_noc_cfg, &qns_a2_noc_cfg, &qns_cnoc2_cnoc3, &qns_mnoc_cfg, &qns_snoc_cfg, &qnm_cnoc2_cnoc3, &qhs_aoss, &qhs_apss, &qns_cnoc3_cnoc2, &qns_cnoc_a2noc, &qns_ddrss_cfg }, }; static struct qcom_icc_bcm bcm_cn2 = { .name = "CN2", .num_nodes = 6, .nodes = { &qhs_lpass_cfg, &qhs_pdm, &qhs_qspi, &qhs_sdc1, &qhs_sdc2, &qhs_sdc4 }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .num_nodes = 1, .nodes = { &qns_nsp_gemnoc }, }; static struct qcom_icc_bcm bcm_co3 = { .name = "CO3", .num_nodes = 1, .nodes = { &qxm_nsp }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .num_nodes = 2, .nodes = { &qxm_camnoc_hf, &qxm_mdp0 }, }; static struct qcom_icc_bcm bcm_mm4 = { .name = "MM4", .num_nodes = 1, .nodes = { &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_mm5 = { .name = "MM5", .num_nodes = 3, .nodes = { &qnm_video0, &qxm_camnoc_icp, &qxm_camnoc_sf }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .vote_scale = 1, .num_nodes = 1, .nodes = { &qup0_core_slave }, }; static struct qcom_icc_bcm bcm_qup1 = { .name = "QUP1", .vote_scale = 1, .num_nodes = 1, .nodes = { &qup1_core_slave }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .num_nodes = 2, .nodes = { &alm_gpu_tcu, &alm_sys_tcu }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .num_nodes = 1, .nodes = { &qnm_cmpnoc }, }; static struct qcom_icc_bcm bcm_sh4 = { .name = "SH4", .num_nodes = 1, .nodes = { &chm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .num_nodes = 1, .nodes = { &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .num_nodes = 1, .nodes = { &xm_pcie3_0 }, }; static struct qcom_icc_bcm bcm_sn6 = { .name = "SN6", .num_nodes = 1, .nodes = { &xm_pcie3_1 }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn14 = { .name = "SN14", .num_nodes = 1, .nodes = { &qns_pcie_mem_noc }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_sn5, &bcm_sn6, &bcm_sn14, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_QSPI_0] = &qhm_qspi, [MASTER_QUP_0] = &qhm_qup0, [MASTER_QUP_1] = &qhm_qup1, [MASTER_A1NOC_CFG] = &qnm_a1noc_cfg, [MASTER_PCIE_0] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [MASTER_SDCC_1] = &xm_sdc1, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB2] = &xm_usb2, [MASTER_USB3_0] = &xm_usb3_0, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_mem_noc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sc7280_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_A2NOC_CFG] = &qnm_a2noc_cfg, [MASTER_CNOC_A2NOC] = &qnm_cnoc_datapath, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_QDSS_ETR] = &xm_qdss_etr, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sc7280_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const clk_virt_bcms[] = { &bcm_qup0, &bcm_qup1, }; static struct qcom_icc_node * const clk_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, }; static const struct qcom_icc_desc sc7280_clk_virt = { .nodes = clk_virt_nodes, .num_nodes = ARRAY_SIZE(clk_virt_nodes), .bcms = clk_virt_bcms, .num_bcms = ARRAY_SIZE(clk_virt_bcms), }; static struct qcom_icc_bcm * const cnoc2_bcms[] = { &bcm_cn1, &bcm_cn2, }; static struct qcom_icc_node * const cnoc2_nodes[] = { [MASTER_CNOC3_CNOC2] = &qnm_cnoc3_cnoc2, [MASTER_QDSS_DAP] = &xm_qdss_dap, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_NORTH] = &qhs_ahb2phy1, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute_cfg, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CX_RDPM] = &qhs_cx_rdpm, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_HWKM] = &qhs_hwkm, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_LPASS] = &qhs_lpass_cfg, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_MX_RDPM] = &qhs_mx_rdpm, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PKA_WRAPPER_CFG] = &qhs_pka_wrapper_cfg, [SLAVE_PMU_WRAPPER_CFG] = &qhs_pmu_wrapper_cfg, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_SDCC_1] = &qhs_sdc1, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SECURITY] = &qhs_security, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB2] = &qhs_usb2, [SLAVE_USB3_0] = &qhs_usb3_0, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_A1NOC_CFG] = &qns_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qns_a2_noc_cfg, [SLAVE_CNOC2_CNOC3] = &qns_cnoc2_cnoc3, [SLAVE_CNOC_MNOC_CFG] = &qns_mnoc_cfg, [SLAVE_SNOC_CFG] = &qns_snoc_cfg, }; static const struct qcom_icc_desc sc7280_cnoc2 = { .nodes = cnoc2_nodes, .num_nodes = ARRAY_SIZE(cnoc2_nodes), .bcms = cnoc2_bcms, .num_bcms = ARRAY_SIZE(cnoc2_bcms), }; static struct qcom_icc_bcm * const cnoc3_bcms[] = { &bcm_cn0, &bcm_cn1, &bcm_sn3, &bcm_sn4, }; static struct qcom_icc_node * const cnoc3_nodes[] = { [MASTER_CNOC2_CNOC3] = &qnm_cnoc2_cnoc3, [MASTER_GEM_NOC_CNOC] = &qnm_gemnoc_cnoc, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_APPSS] = &qhs_apss, [SLAVE_CNOC3_CNOC2] = &qns_cnoc3_cnoc2, [SLAVE_CNOC_A2NOC] = &qns_cnoc_a2noc, [SLAVE_DDRSS_CFG] = &qns_ddrss_cfg, [SLAVE_BOOT_IMEM] = &qxs_boot_imem, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sc7280_cnoc3 = { .nodes = cnoc3_nodes, .num_nodes = ARRAY_SIZE(cnoc3_nodes), .bcms = cnoc3_bcms, .num_bcms = ARRAY_SIZE(cnoc3_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qnm_cnoc_dc_noc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_GEM_NOC_CFG] = &qns_gemnoc, }; static const struct qcom_icc_desc sc7280_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, &bcm_sh3, &bcm_sh4, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_GPU_TCU] = &alm_gpu_tcu, [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_APPSS_PROC] = &chm_apps, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc, [MASTER_GEM_NOC_CFG] = &qnm_gemnoc_cfg, [MASTER_GFX3D] = &qnm_gpu, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [SLAVE_MSS_PROC_MS_MPU_CFG] = &qhs_mdsp_ms_mpu_cfg, [SLAVE_MCDMA_MS_MPU_CFG] = &qhs_modem_ms_mpu_cfg, [SLAVE_GEM_NOC_CNOC] = &qns_gem_noc_cnoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_pcie, [SLAVE_SERVICE_GEM_NOC_1] = &srvc_even_gemnoc, [SLAVE_SERVICE_GEM_NOC_2] = &srvc_odd_gemnoc, [SLAVE_SERVICE_GEM_NOC] = &srvc_sys_gemnoc, }; static const struct qcom_icc_desc sc7280_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const lpass_ag_noc_bcms[] = { }; static struct qcom_icc_node * const lpass_ag_noc_nodes[] = { [MASTER_CNOC_LPASS_AG_NOC] = &qhm_config_noc, [SLAVE_LPASS_CORE_CFG] = &qhs_lpass_core, [SLAVE_LPASS_LPI_CFG] = &qhs_lpass_lpi, [SLAVE_LPASS_MPU_CFG] = &qhs_lpass_mpu, [SLAVE_LPASS_TOP_CFG] = &qhs_lpass_top, [SLAVE_SERVICES_LPASS_AML_NOC] = &srvc_niu_aml_noc, [SLAVE_SERVICE_LPASS_AG_NOC] = &srvc_niu_lpass_agnoc, }; static const struct qcom_icc_desc sc7280_lpass_ag_noc = { .nodes = lpass_ag_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_ag_noc_nodes), .bcms = lpass_ag_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_ag_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, }; static const struct qcom_icc_desc sc7280_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm4, &bcm_mm5, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &qnm_mnoc_cfg, [MASTER_VIDEO_P0] = &qnm_video0, [MASTER_VIDEO_PROC] = &qnm_video_cpu, [MASTER_CAMNOC_HF] = &qxm_camnoc_hf, [MASTER_CAMNOC_ICP] = &qxm_camnoc_icp, [MASTER_CAMNOC_SF] = &qxm_camnoc_sf, [MASTER_MDP0] = &qxm_mdp0, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, }; static const struct qcom_icc_desc sc7280_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const nsp_noc_bcms[] = { &bcm_co0, &bcm_co3, }; static struct qcom_icc_node * const nsp_noc_nodes[] = { [MASTER_CDSP_NOC_CFG] = &qhm_nsp_noc_config, [MASTER_CDSP_PROC] = &qxm_nsp, [SLAVE_CDSP_MEM_NOC] = &qns_nsp_gemnoc, [SLAVE_SERVICE_NSP_NOC] = &service_nsp_noc, }; static const struct qcom_icc_desc sc7280_nsp_noc = { .nodes = nsp_noc_nodes, .num_nodes = ARRAY_SIZE(nsp_noc_nodes), .bcms = nsp_noc_bcms, .num_bcms = ARRAY_SIZE(nsp_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn2, &bcm_sn7, &bcm_sn8, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_SNOC_CFG] = &qnm_snoc_cfg, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_SERVICE_SNOC] = &srvc_snoc, }; static const struct qcom_icc_desc sc7280_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sc7280-aggre1-noc", .data = &sc7280_aggre1_noc}, { .compatible = "qcom,sc7280-aggre2-noc", .data = &sc7280_aggre2_noc}, { .compatible = "qcom,sc7280-clk-virt", .data = &sc7280_clk_virt}, { .compatible = "qcom,sc7280-cnoc2", .data = &sc7280_cnoc2}, { .compatible = "qcom,sc7280-cnoc3", .data = &sc7280_cnoc3}, { .compatible = "qcom,sc7280-dc-noc", .data = &sc7280_dc_noc}, { .compatible = "qcom,sc7280-gem-noc", .data = &sc7280_gem_noc}, { .compatible = "qcom,sc7280-lpass-ag-noc", .data = &sc7280_lpass_ag_noc}, { .compatible = "qcom,sc7280-mc-virt", .data = &sc7280_mc_virt}, { .compatible = "qcom,sc7280-mmss-noc", .data = &sc7280_mmss_noc}, { .compatible = "qcom,sc7280-nsp-noc", .data = &sc7280_nsp_noc}, { .compatible = "qcom,sc7280-system-noc", .data = &sc7280_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sc7280", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("SC7280 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sc7280.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021-2022, Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2023, Linaro Limited */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sa8775p-rpmh.h> #include "bcm-voter.h" #include "icc-rpmh.h" #define SA8775P_MASTER_GPU_TCU 0 #define SA8775P_MASTER_PCIE_TCU 1 #define SA8775P_MASTER_SYS_TCU 2 #define SA8775P_MASTER_APPSS_PROC 3 #define SA8775P_MASTER_LLCC 4 #define SA8775P_MASTER_CNOC_LPASS_AG_NOC 5 #define SA8775P_MASTER_GIC_AHB 6 #define SA8775P_MASTER_CDSP_NOC_CFG 7 #define SA8775P_MASTER_CDSPB_NOC_CFG 8 #define SA8775P_MASTER_QDSS_BAM 9 #define SA8775P_MASTER_QUP_0 10 #define SA8775P_MASTER_QUP_1 11 #define SA8775P_MASTER_QUP_2 12 #define SA8775P_MASTER_A1NOC_SNOC 13 #define SA8775P_MASTER_A2NOC_SNOC 14 #define SA8775P_MASTER_CAMNOC_HF 15 #define SA8775P_MASTER_CAMNOC_ICP 16 #define SA8775P_MASTER_CAMNOC_SF 17 #define SA8775P_MASTER_COMPUTE_NOC 18 #define SA8775P_MASTER_COMPUTE_NOC_1 19 #define SA8775P_MASTER_CNOC_A2NOC 20 #define SA8775P_MASTER_CNOC_DC_NOC 21 #define SA8775P_MASTER_GEM_NOC_CFG 22 #define SA8775P_MASTER_GEM_NOC_CNOC 23 #define SA8775P_MASTER_GEM_NOC_PCIE_SNOC 24 #define SA8775P_MASTER_GPDSP_SAIL 25 #define SA8775P_MASTER_GFX3D 26 #define SA8775P_MASTER_LPASS_ANOC 27 #define SA8775P_MASTER_MDP0 28 #define SA8775P_MASTER_MDP1 29 #define SA8775P_MASTER_MDP_CORE1_0 30 #define SA8775P_MASTER_MDP_CORE1_1 31 #define SA8775P_MASTER_MNOC_HF_MEM_NOC 32 #define SA8775P_MASTER_CNOC_MNOC_HF_CFG 33 #define SA8775P_MASTER_MNOC_SF_MEM_NOC 34 #define SA8775P_MASTER_CNOC_MNOC_SF_CFG 35 #define SA8775P_MASTER_ANOC_PCIE_GEM_NOC 36 #define SA8775P_MASTER_SNOC_CFG 37 #define SA8775P_MASTER_SNOC_GC_MEM_NOC 38 #define SA8775P_MASTER_SNOC_SF_MEM_NOC 39 #define SA8775P_MASTER_VIDEO_P0 40 #define SA8775P_MASTER_VIDEO_P1 41 #define SA8775P_MASTER_VIDEO_PROC 42 #define SA8775P_MASTER_VIDEO_V_PROC 43 #define SA8775P_MASTER_QUP_CORE_0 44 #define SA8775P_MASTER_QUP_CORE_1 45 #define SA8775P_MASTER_QUP_CORE_2 46 #define SA8775P_MASTER_QUP_CORE_3 47 #define SA8775P_MASTER_CRYPTO_CORE0 48 #define SA8775P_MASTER_CRYPTO_CORE1 49 #define SA8775P_MASTER_DSP0 50 #define SA8775P_MASTER_DSP1 51 #define SA8775P_MASTER_IPA 52 #define SA8775P_MASTER_LPASS_PROC 53 #define SA8775P_MASTER_CDSP_PROC 54 #define SA8775P_MASTER_CDSP_PROC_B 55 #define SA8775P_MASTER_PIMEM 56 #define SA8775P_MASTER_QUP_3 57 #define SA8775P_MASTER_EMAC 58 #define SA8775P_MASTER_EMAC_1 59 #define SA8775P_MASTER_GIC 60 #define SA8775P_MASTER_PCIE_0 61 #define SA8775P_MASTER_PCIE_1 62 #define SA8775P_MASTER_QDSS_ETR_0 63 #define SA8775P_MASTER_QDSS_ETR_1 64 #define SA8775P_MASTER_SDC 65 #define SA8775P_MASTER_UFS_CARD 66 #define SA8775P_MASTER_UFS_MEM 67 #define SA8775P_MASTER_USB2 68 #define SA8775P_MASTER_USB3_0 69 #define SA8775P_MASTER_USB3_1 70 #define SA8775P_SLAVE_EBI1 512 #define SA8775P_SLAVE_AHB2PHY_0 513 #define SA8775P_SLAVE_AHB2PHY_1 514 #define SA8775P_SLAVE_AHB2PHY_2 515 #define SA8775P_SLAVE_AHB2PHY_3 516 #define SA8775P_SLAVE_ANOC_THROTTLE_CFG 517 #define SA8775P_SLAVE_AOSS 518 #define SA8775P_SLAVE_APPSS 519 #define SA8775P_SLAVE_BOOT_ROM 520 #define SA8775P_SLAVE_CAMERA_CFG 521 #define SA8775P_SLAVE_CAMERA_NRT_THROTTLE_CFG 522 #define SA8775P_SLAVE_CAMERA_RT_THROTTLE_CFG 523 #define SA8775P_SLAVE_CLK_CTL 524 #define SA8775P_SLAVE_CDSP_CFG 525 #define SA8775P_SLAVE_CDSP1_CFG 526 #define SA8775P_SLAVE_RBCPR_CX_CFG 527 #define SA8775P_SLAVE_RBCPR_MMCX_CFG 528 #define SA8775P_SLAVE_RBCPR_MX_CFG 529 #define SA8775P_SLAVE_CPR_NSPCX 530 #define SA8775P_SLAVE_CRYPTO_0_CFG 531 #define SA8775P_SLAVE_CX_RDPM 532 #define SA8775P_SLAVE_DISPLAY_CFG 533 #define SA8775P_SLAVE_DISPLAY_RT_THROTTLE_CFG 534 #define SA8775P_SLAVE_DISPLAY1_CFG 535 #define SA8775P_SLAVE_DISPLAY1_RT_THROTTLE_CFG 536 #define SA8775P_SLAVE_EMAC_CFG 537 #define SA8775P_SLAVE_EMAC1_CFG 538 #define SA8775P_SLAVE_GP_DSP0_CFG 539 #define SA8775P_SLAVE_GP_DSP1_CFG 540 #define SA8775P_SLAVE_GPDSP0_THROTTLE_CFG 541 #define SA8775P_SLAVE_GPDSP1_THROTTLE_CFG 542 #define SA8775P_SLAVE_GPU_TCU_THROTTLE_CFG 543 #define SA8775P_SLAVE_GFX3D_CFG 544 #define SA8775P_SLAVE_HWKM 545 #define SA8775P_SLAVE_IMEM_CFG 546 #define SA8775P_SLAVE_IPA_CFG 547 #define SA8775P_SLAVE_IPC_ROUTER_CFG 548 #define SA8775P_SLAVE_LLCC_CFG 549 #define SA8775P_SLAVE_LPASS 550 #define SA8775P_SLAVE_LPASS_CORE_CFG 551 #define SA8775P_SLAVE_LPASS_LPI_CFG 552 #define SA8775P_SLAVE_LPASS_MPU_CFG 553 #define SA8775P_SLAVE_LPASS_THROTTLE_CFG 554 #define SA8775P_SLAVE_LPASS_TOP_CFG 555 #define SA8775P_SLAVE_MX_RDPM 556 #define SA8775P_SLAVE_MXC_RDPM 557 #define SA8775P_SLAVE_PCIE_0_CFG 558 #define SA8775P_SLAVE_PCIE_1_CFG 559 #define SA8775P_SLAVE_PCIE_RSC_CFG 560 #define SA8775P_SLAVE_PCIE_TCU_THROTTLE_CFG 561 #define SA8775P_SLAVE_PCIE_THROTTLE_CFG 562 #define SA8775P_SLAVE_PDM 563 #define SA8775P_SLAVE_PIMEM_CFG 564 #define SA8775P_SLAVE_PKA_WRAPPER_CFG 565 #define SA8775P_SLAVE_QDSS_CFG 566 #define SA8775P_SLAVE_QM_CFG 567 #define SA8775P_SLAVE_QM_MPU_CFG 568 #define SA8775P_SLAVE_QUP_0 569 #define SA8775P_SLAVE_QUP_1 570 #define SA8775P_SLAVE_QUP_2 571 #define SA8775P_SLAVE_QUP_3 572 #define SA8775P_SLAVE_SAIL_THROTTLE_CFG 573 #define SA8775P_SLAVE_SDC1 574 #define SA8775P_SLAVE_SECURITY 575 #define SA8775P_SLAVE_SNOC_THROTTLE_CFG 576 #define SA8775P_SLAVE_TCSR 577 #define SA8775P_SLAVE_TLMM 578 #define SA8775P_SLAVE_TSC_CFG 579 #define SA8775P_SLAVE_UFS_CARD_CFG 580 #define SA8775P_SLAVE_UFS_MEM_CFG 581 #define SA8775P_SLAVE_USB2 582 #define SA8775P_SLAVE_USB3_0 583 #define SA8775P_SLAVE_USB3_1 584 #define SA8775P_SLAVE_VENUS_CFG 585 #define SA8775P_SLAVE_VENUS_CVP_THROTTLE_CFG 586 #define SA8775P_SLAVE_VENUS_V_CPU_THROTTLE_CFG 587 #define SA8775P_SLAVE_VENUS_VCODEC_THROTTLE_CFG 588 #define SA8775P_SLAVE_A1NOC_SNOC 589 #define SA8775P_SLAVE_A2NOC_SNOC 590 #define SA8775P_SLAVE_DDRSS_CFG 591 #define SA8775P_SLAVE_GEM_NOC_CNOC 592 #define SA8775P_SLAVE_GEM_NOC_CFG 593 #define SA8775P_SLAVE_SNOC_GEM_NOC_GC 594 #define SA8775P_SLAVE_SNOC_GEM_NOC_SF 595 #define SA8775P_SLAVE_GP_DSP_SAIL_NOC 596 #define SA8775P_SLAVE_GPDSP_NOC_CFG 597 #define SA8775P_SLAVE_HCP_A 598 #define SA8775P_SLAVE_LLCC 599 #define SA8775P_SLAVE_MNOC_HF_MEM_NOC 600 #define SA8775P_SLAVE_MNOC_SF_MEM_NOC 601 #define SA8775P_SLAVE_CNOC_MNOC_HF_CFG 602 #define SA8775P_SLAVE_CNOC_MNOC_SF_CFG 603 #define SA8775P_SLAVE_CDSP_MEM_NOC 604 #define SA8775P_SLAVE_CDSPB_MEM_NOC 605 #define SA8775P_SLAVE_HCP_B 606 #define SA8775P_SLAVE_GEM_NOC_PCIE_CNOC 607 #define SA8775P_SLAVE_PCIE_ANOC_CFG 608 #define SA8775P_SLAVE_ANOC_PCIE_GEM_NOC 609 #define SA8775P_SLAVE_SNOC_CFG 610 #define SA8775P_SLAVE_LPASS_SNOC 611 #define SA8775P_SLAVE_QUP_CORE_0 612 #define SA8775P_SLAVE_QUP_CORE_1 613 #define SA8775P_SLAVE_QUP_CORE_2 614 #define SA8775P_SLAVE_QUP_CORE_3 615 #define SA8775P_SLAVE_BOOT_IMEM 616 #define SA8775P_SLAVE_IMEM 617 #define SA8775P_SLAVE_PIMEM 618 #define SA8775P_SLAVE_SERVICE_NSP_NOC 619 #define SA8775P_SLAVE_SERVICE_NSPB_NOC 620 #define SA8775P_SLAVE_SERVICE_GEM_NOC_1 621 #define SA8775P_SLAVE_SERVICE_MNOC_HF 622 #define SA8775P_SLAVE_SERVICE_MNOC_SF 623 #define SA8775P_SLAVE_SERVICES_LPASS_AML_NOC 624 #define SA8775P_SLAVE_SERVICE_LPASS_AG_NOC 625 #define SA8775P_SLAVE_SERVICE_GEM_NOC_2 626 #define SA8775P_SLAVE_SERVICE_SNOC 627 #define SA8775P_SLAVE_SERVICE_GEM_NOC 628 #define SA8775P_SLAVE_SERVICE_GEM_NOC2 629 #define SA8775P_SLAVE_PCIE_0 630 #define SA8775P_SLAVE_PCIE_1 631 #define SA8775P_SLAVE_QDSS_STM 632 #define SA8775P_SLAVE_TCU 633 static struct qcom_icc_node qxm_qup3 = { .name = "qxm_qup3", .id = SA8775P_MASTER_QUP_3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_emac_0 = { .name = "xm_emac_0", .id = SA8775P_MASTER_EMAC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_emac_1 = { .name = "xm_emac_1", .id = SA8775P_MASTER_EMAC_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc1 = { .name = "xm_sdc1", .id = SA8775P_MASTER_SDC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SA8775P_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb2_2 = { .name = "xm_usb2_2", .id = SA8775P_MASTER_USB2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SA8775P_MASTER_USB3_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_1 = { .name = "xm_usb3_1", .id = SA8775P_MASTER_USB3_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SA8775P_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = SA8775P_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SA8775P_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SA8775P_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_cnoc_datapath = { .name = "qnm_cnoc_datapath", .id = SA8775P_MASTER_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_crypto_0 = { .name = "qxm_crypto_0", .id = SA8775P_MASTER_CRYPTO_CORE0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_crypto_1 = { .name = "qxm_crypto_1", .id = SA8775P_MASTER_CRYPTO_CORE1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SA8775P_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr_0 = { .name = "xm_qdss_etr_0", .id = SA8775P_MASTER_QDSS_ETR_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr_1 = { .name = "xm_qdss_etr_1", .id = SA8775P_MASTER_QDSS_ETR_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_card = { .name = "xm_ufs_card", .id = SA8775P_MASTER_UFS_CARD, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = SA8775P_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = SA8775P_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qup2_core_master = { .name = "qup2_core_master", .id = SA8775P_MASTER_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_QUP_CORE_2 }, }; static struct qcom_icc_node qup3_core_master = { .name = "qup3_core_master", .id = SA8775P_MASTER_QUP_CORE_3, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_QUP_CORE_3 }, }; static struct qcom_icc_node qnm_gemnoc_cnoc = { .name = "qnm_gemnoc_cnoc", .id = SA8775P_MASTER_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 82, .links = { SA8775P_SLAVE_AHB2PHY_0, SA8775P_SLAVE_AHB2PHY_1, SA8775P_SLAVE_AHB2PHY_2, SA8775P_SLAVE_AHB2PHY_3, SA8775P_SLAVE_ANOC_THROTTLE_CFG, SA8775P_SLAVE_AOSS, SA8775P_SLAVE_APPSS, SA8775P_SLAVE_BOOT_ROM, SA8775P_SLAVE_CAMERA_CFG, SA8775P_SLAVE_CAMERA_NRT_THROTTLE_CFG, SA8775P_SLAVE_CAMERA_RT_THROTTLE_CFG, SA8775P_SLAVE_CLK_CTL, SA8775P_SLAVE_CDSP_CFG, SA8775P_SLAVE_CDSP1_CFG, SA8775P_SLAVE_RBCPR_CX_CFG, SA8775P_SLAVE_RBCPR_MMCX_CFG, SA8775P_SLAVE_RBCPR_MX_CFG, SA8775P_SLAVE_CPR_NSPCX, SA8775P_SLAVE_CRYPTO_0_CFG, SA8775P_SLAVE_CX_RDPM, SA8775P_SLAVE_DISPLAY_CFG, SA8775P_SLAVE_DISPLAY_RT_THROTTLE_CFG, SA8775P_SLAVE_DISPLAY1_CFG, SA8775P_SLAVE_DISPLAY1_RT_THROTTLE_CFG, SA8775P_SLAVE_EMAC_CFG, SA8775P_SLAVE_EMAC1_CFG, SA8775P_SLAVE_GP_DSP0_CFG, SA8775P_SLAVE_GP_DSP1_CFG, SA8775P_SLAVE_GPDSP0_THROTTLE_CFG, SA8775P_SLAVE_GPDSP1_THROTTLE_CFG, SA8775P_SLAVE_GPU_TCU_THROTTLE_CFG, SA8775P_SLAVE_GFX3D_CFG, SA8775P_SLAVE_HWKM, SA8775P_SLAVE_IMEM_CFG, SA8775P_SLAVE_IPA_CFG, SA8775P_SLAVE_IPC_ROUTER_CFG, SA8775P_SLAVE_LPASS, SA8775P_SLAVE_LPASS_THROTTLE_CFG, SA8775P_SLAVE_MX_RDPM, SA8775P_SLAVE_MXC_RDPM, SA8775P_SLAVE_PCIE_0_CFG, SA8775P_SLAVE_PCIE_1_CFG, SA8775P_SLAVE_PCIE_RSC_CFG, SA8775P_SLAVE_PCIE_TCU_THROTTLE_CFG, SA8775P_SLAVE_PCIE_THROTTLE_CFG, SA8775P_SLAVE_PDM, SA8775P_SLAVE_PIMEM_CFG, SA8775P_SLAVE_PKA_WRAPPER_CFG, SA8775P_SLAVE_QDSS_CFG, SA8775P_SLAVE_QM_CFG, SA8775P_SLAVE_QM_MPU_CFG, SA8775P_SLAVE_QUP_0, SA8775P_SLAVE_QUP_1, SA8775P_SLAVE_QUP_2, SA8775P_SLAVE_QUP_3, SA8775P_SLAVE_SAIL_THROTTLE_CFG, SA8775P_SLAVE_SDC1, SA8775P_SLAVE_SECURITY, SA8775P_SLAVE_SNOC_THROTTLE_CFG, SA8775P_SLAVE_TCSR, SA8775P_SLAVE_TLMM, SA8775P_SLAVE_TSC_CFG, SA8775P_SLAVE_UFS_CARD_CFG, SA8775P_SLAVE_UFS_MEM_CFG, SA8775P_SLAVE_USB2, SA8775P_SLAVE_USB3_0, SA8775P_SLAVE_USB3_1, SA8775P_SLAVE_VENUS_CFG, SA8775P_SLAVE_VENUS_CVP_THROTTLE_CFG, SA8775P_SLAVE_VENUS_V_CPU_THROTTLE_CFG, SA8775P_SLAVE_VENUS_VCODEC_THROTTLE_CFG, SA8775P_SLAVE_DDRSS_CFG, SA8775P_SLAVE_GPDSP_NOC_CFG, SA8775P_SLAVE_CNOC_MNOC_HF_CFG, SA8775P_SLAVE_CNOC_MNOC_SF_CFG, SA8775P_SLAVE_PCIE_ANOC_CFG, SA8775P_SLAVE_SNOC_CFG, SA8775P_SLAVE_BOOT_IMEM, SA8775P_SLAVE_IMEM, SA8775P_SLAVE_PIMEM, SA8775P_SLAVE_QDSS_STM, SA8775P_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = SA8775P_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SA8775P_SLAVE_PCIE_0, SA8775P_SLAVE_PCIE_1 }, }; static struct qcom_icc_node qnm_cnoc_dc_noc = { .name = "qnm_cnoc_dc_noc", .id = SA8775P_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SA8775P_SLAVE_LLCC_CFG, SA8775P_SLAVE_GEM_NOC_CFG }, }; static struct qcom_icc_node alm_gpu_tcu = { .name = "alm_gpu_tcu", .id = SA8775P_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node alm_pcie_tcu = { .name = "alm_pcie_tcu", .id = SA8775P_MASTER_PCIE_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = SA8775P_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = SA8775P_MASTER_APPSS_PROC, .channels = 4, .buswidth = 32, .num_links = 3, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC, SA8775P_SLAVE_GEM_NOC_PCIE_CNOC }, }; static struct qcom_icc_node qnm_cmpnoc0 = { .name = "qnm_cmpnoc0", .id = SA8775P_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_cmpnoc1 = { .name = "qnm_cmpnoc1", .id = SA8775P_MASTER_COMPUTE_NOC_1, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_gemnoc_cfg = { .name = "qnm_gemnoc_cfg", .id = SA8775P_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 4, .links = { SA8775P_SLAVE_SERVICE_GEM_NOC_1, SA8775P_SLAVE_SERVICE_GEM_NOC_2, SA8775P_SLAVE_SERVICE_GEM_NOC, SA8775P_SLAVE_SERVICE_GEM_NOC2 }, }; static struct qcom_icc_node qnm_gpdsp_sail = { .name = "qnm_gpdsp_sail", .id = SA8775P_MASTER_GPDSP_SAIL, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SA8775P_MASTER_GFX3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SA8775P_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SA8775P_SLAVE_LLCC, SA8775P_SLAVE_GEM_NOC_PCIE_CNOC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SA8775P_MASTER_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC, SA8775P_SLAVE_GEM_NOC_PCIE_CNOC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SA8775P_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SA8775P_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SA8775P_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SA8775P_SLAVE_GEM_NOC_CNOC, SA8775P_SLAVE_LLCC, SA8775P_SLAVE_GEM_NOC_PCIE_CNOC }, }; static struct qcom_icc_node qxm_dsp0 = { .name = "qxm_dsp0", .id = SA8775P_MASTER_DSP0, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_SLAVE_GP_DSP_SAIL_NOC }, }; static struct qcom_icc_node qxm_dsp1 = { .name = "qxm_dsp1", .id = SA8775P_MASTER_DSP1, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_SLAVE_GP_DSP_SAIL_NOC }, }; static struct qcom_icc_node qhm_config_noc = { .name = "qhm_config_noc", .id = SA8775P_MASTER_CNOC_LPASS_AG_NOC, .channels = 1, .buswidth = 4, .num_links = 6, .links = { SA8775P_SLAVE_LPASS_CORE_CFG, SA8775P_SLAVE_LPASS_LPI_CFG, SA8775P_SLAVE_LPASS_MPU_CFG, SA8775P_SLAVE_LPASS_TOP_CFG, SA8775P_SLAVE_SERVICES_LPASS_AML_NOC, SA8775P_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node qxm_lpass_dsp = { .name = "qxm_lpass_dsp", .id = SA8775P_MASTER_LPASS_PROC, .channels = 1, .buswidth = 8, .num_links = 4, .links = { SA8775P_SLAVE_LPASS_TOP_CFG, SA8775P_SLAVE_LPASS_SNOC, SA8775P_SLAVE_SERVICES_LPASS_AML_NOC, SA8775P_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SA8775P_MASTER_LLCC, .channels = 8, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_EBI1 }, }; static struct qcom_icc_node qnm_camnoc_hf = { .name = "qnm_camnoc_hf", .id = SA8775P_MASTER_CAMNOC_HF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_icp = { .name = "qnm_camnoc_icp", .id = SA8775P_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_sf = { .name = "qnm_camnoc_sf", .id = SA8775P_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp0_0 = { .name = "qnm_mdp0_0", .id = SA8775P_MASTER_MDP0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp0_1 = { .name = "qnm_mdp0_1", .id = SA8775P_MASTER_MDP1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp1_0 = { .name = "qnm_mdp1_0", .id = SA8775P_MASTER_MDP_CORE1_0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp1_1 = { .name = "qnm_mdp1_1", .id = SA8775P_MASTER_MDP_CORE1_1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mnoc_hf_cfg = { .name = "qnm_mnoc_hf_cfg", .id = SA8775P_MASTER_CNOC_MNOC_HF_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_SERVICE_MNOC_HF }, }; static struct qcom_icc_node qnm_mnoc_sf_cfg = { .name = "qnm_mnoc_sf_cfg", .id = SA8775P_MASTER_CNOC_MNOC_SF_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_SERVICE_MNOC_SF }, }; static struct qcom_icc_node qnm_video0 = { .name = "qnm_video0", .id = SA8775P_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video1 = { .name = "qnm_video1", .id = SA8775P_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cvp = { .name = "qnm_video_cvp", .id = SA8775P_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_v_cpu = { .name = "qnm_video_v_cpu", .id = SA8775P_MASTER_VIDEO_V_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qhm_nsp_noc_config = { .name = "qhm_nsp_noc_config", .id = SA8775P_MASTER_CDSP_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_SERVICE_NSP_NOC }, }; static struct qcom_icc_node qxm_nsp = { .name = "qxm_nsp", .id = SA8775P_MASTER_CDSP_PROC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SA8775P_SLAVE_HCP_A, SLAVE_CDSP_MEM_NOC }, }; static struct qcom_icc_node qhm_nspb_noc_config = { .name = "qhm_nspb_noc_config", .id = SA8775P_MASTER_CDSPB_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_SERVICE_NSPB_NOC }, }; static struct qcom_icc_node qxm_nspb = { .name = "qxm_nspb", .id = SA8775P_MASTER_CDSP_PROC_B, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SA8775P_SLAVE_HCP_B, SLAVE_CDSPB_MEM_NOC }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SA8775P_MASTER_PCIE_0, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SA8775P_MASTER_PCIE_1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node qhm_gic = { .name = "qhm_gic", .id = SA8775P_MASTER_GIC_AHB, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SA8775P_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SA8775P_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_lpass_noc = { .name = "qnm_lpass_noc", .id = SA8775P_MASTER_LPASS_ANOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_snoc_cfg = { .name = "qnm_snoc_cfg", .id = SA8775P_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SA8775P_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SA8775P_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SA8775P_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SA8775P_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = SA8775P_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = SA8775P_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup2_core_slave = { .name = "qup2_core_slave", .id = SA8775P_SLAVE_QUP_CORE_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup3_core_slave = { .name = "qup3_core_slave", .id = SA8775P_SLAVE_QUP_CORE_3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SA8775P_SLAVE_AHB2PHY_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy1 = { .name = "qhs_ahb2phy1", .id = SA8775P_SLAVE_AHB2PHY_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy2 = { .name = "qhs_ahb2phy2", .id = SA8775P_SLAVE_AHB2PHY_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy3 = { .name = "qhs_ahb2phy3", .id = SA8775P_SLAVE_AHB2PHY_3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_anoc_throttle_cfg = { .name = "qhs_anoc_throttle_cfg", .id = SA8775P_SLAVE_ANOC_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SA8775P_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SA8775P_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_boot_rom = { .name = "qhs_boot_rom", .id = SA8775P_SLAVE_BOOT_ROM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SA8775P_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_nrt_throttle_cfg = { .name = "qhs_camera_nrt_throttle_cfg", .id = SA8775P_SLAVE_CAMERA_NRT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_rt_throttle_cfg = { .name = "qhs_camera_rt_throttle_cfg", .id = SA8775P_SLAVE_CAMERA_RT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SA8775P_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_compute0_cfg = { .name = "qhs_compute0_cfg", .id = SA8775P_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_CDSP_NOC_CFG }, }; static struct qcom_icc_node qhs_compute1_cfg = { .name = "qhs_compute1_cfg", .id = SA8775P_SLAVE_CDSP1_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_CDSPB_NOC_CFG }, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SA8775P_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mmcx = { .name = "qhs_cpr_mmcx", .id = SA8775P_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SA8775P_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_nspcx = { .name = "qhs_cpr_nspcx", .id = SA8775P_SLAVE_CPR_NSPCX, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SA8775P_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cx_rdpm = { .name = "qhs_cx_rdpm", .id = SA8775P_SLAVE_CX_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display0_cfg = { .name = "qhs_display0_cfg", .id = SA8775P_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display0_rt_throttle_cfg = { .name = "qhs_display0_rt_throttle_cfg", .id = SA8775P_SLAVE_DISPLAY_RT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display1_cfg = { .name = "qhs_display1_cfg", .id = SA8775P_SLAVE_DISPLAY1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display1_rt_throttle_cfg = { .name = "qhs_display1_rt_throttle_cfg", .id = SA8775P_SLAVE_DISPLAY1_RT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emac0_cfg = { .name = "qhs_emac0_cfg", .id = SA8775P_SLAVE_EMAC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emac1_cfg = { .name = "qhs_emac1_cfg", .id = SA8775P_SLAVE_EMAC1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gp_dsp0_cfg = { .name = "qhs_gp_dsp0_cfg", .id = SA8775P_SLAVE_GP_DSP0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gp_dsp1_cfg = { .name = "qhs_gp_dsp1_cfg", .id = SA8775P_SLAVE_GP_DSP1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpdsp0_throttle_cfg = { .name = "qhs_gpdsp0_throttle_cfg", .id = SA8775P_SLAVE_GPDSP0_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpdsp1_throttle_cfg = { .name = "qhs_gpdsp1_throttle_cfg", .id = SA8775P_SLAVE_GPDSP1_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpu_tcu_throttle_cfg = { .name = "qhs_gpu_tcu_throttle_cfg", .id = SA8775P_SLAVE_GPU_TCU_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SA8775P_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_hwkm = { .name = "qhs_hwkm", .id = SA8775P_SLAVE_HWKM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SA8775P_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SA8775P_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = SA8775P_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_cfg = { .name = "qhs_lpass_cfg", .id = SA8775P_SLAVE_LPASS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_CNOC_LPASS_AG_NOC }, }; static struct qcom_icc_node qhs_lpass_throttle_cfg = { .name = "qhs_lpass_throttle_cfg", .id = SA8775P_SLAVE_LPASS_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mx_rdpm = { .name = "qhs_mx_rdpm", .id = SA8775P_SLAVE_MX_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mxc_rdpm = { .name = "qhs_mxc_rdpm", .id = SA8775P_SLAVE_MXC_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SA8775P_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SA8775P_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_rsc_cfg = { .name = "qhs_pcie_rsc_cfg", .id = SA8775P_SLAVE_PCIE_RSC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_tcu_throttle_cfg = { .name = "qhs_pcie_tcu_throttle_cfg", .id = SA8775P_SLAVE_PCIE_TCU_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_throttle_cfg = { .name = "qhs_pcie_throttle_cfg", .id = SA8775P_SLAVE_PCIE_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SA8775P_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SA8775P_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pke_wrapper_cfg = { .name = "qhs_pke_wrapper_cfg", .id = SA8775P_SLAVE_PKA_WRAPPER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SA8775P_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qm_cfg = { .name = "qhs_qm_cfg", .id = SA8775P_SLAVE_QM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qm_mpu_cfg = { .name = "qhs_qm_mpu_cfg", .id = SA8775P_SLAVE_QM_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SA8775P_SLAVE_QUP_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SA8775P_SLAVE_QUP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup2 = { .name = "qhs_qup2", .id = SA8775P_SLAVE_QUP_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup3 = { .name = "qhs_qup3", .id = SA8775P_SLAVE_QUP_3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sail_throttle_cfg = { .name = "qhs_sail_throttle_cfg", .id = SA8775P_SLAVE_SAIL_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc1 = { .name = "qhs_sdc1", .id = SA8775P_SLAVE_SDC1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_security = { .name = "qhs_security", .id = SA8775P_SLAVE_SECURITY, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_throttle_cfg = { .name = "qhs_snoc_throttle_cfg", .id = SA8775P_SLAVE_SNOC_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SA8775P_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SA8775P_SLAVE_TLMM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tsc_cfg = { .name = "qhs_tsc_cfg", .id = SA8775P_SLAVE_TSC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_card_cfg = { .name = "qhs_ufs_card_cfg", .id = SA8775P_SLAVE_UFS_CARD_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SA8775P_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb2_0 = { .name = "qhs_usb2_0", .id = SA8775P_SLAVE_USB2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SA8775P_SLAVE_USB3_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_1 = { .name = "qhs_usb3_1", .id = SA8775P_SLAVE_USB3_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SA8775P_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cvp_throttle_cfg = { .name = "qhs_venus_cvp_throttle_cfg", .id = SA8775P_SLAVE_VENUS_CVP_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_v_cpu_throttle_cfg = { .name = "qhs_venus_v_cpu_throttle_cfg", .id = SA8775P_SLAVE_VENUS_V_CPU_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_vcodec_throttle_cfg = { .name = "qhs_venus_vcodec_throttle_cfg", .id = SA8775P_SLAVE_VENUS_VCODEC_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_ddrss_cfg = { .name = "qns_ddrss_cfg", .id = SA8775P_SLAVE_DDRSS_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qns_gpdsp_noc_cfg = { .name = "qns_gpdsp_noc_cfg", .id = SA8775P_SLAVE_GPDSP_NOC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_mnoc_hf_cfg = { .name = "qns_mnoc_hf_cfg", .id = SA8775P_SLAVE_CNOC_MNOC_HF_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_CNOC_MNOC_HF_CFG }, }; static struct qcom_icc_node qns_mnoc_sf_cfg = { .name = "qns_mnoc_sf_cfg", .id = SA8775P_SLAVE_CNOC_MNOC_SF_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_CNOC_MNOC_SF_CFG }, }; static struct qcom_icc_node qns_pcie_anoc_cfg = { .name = "qns_pcie_anoc_cfg", .id = SA8775P_SLAVE_PCIE_ANOC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_snoc_cfg = { .name = "qns_snoc_cfg", .id = SA8775P_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qxs_boot_imem = { .name = "qxs_boot_imem", .id = SA8775P_SLAVE_BOOT_IMEM, .channels = 1, .buswidth = 16, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SA8775P_SLAVE_IMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SA8775P_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SA8775P_SLAVE_PCIE_0, .channels = 1, .buswidth = 16, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SA8775P_SLAVE_PCIE_1, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SA8775P_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SA8775P_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SA8775P_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gemnoc = { .name = "qns_gemnoc", .id = SA8775P_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SA8775P_MASTER_GEM_NOC_CFG }, }; static struct qcom_icc_node qns_gem_noc_cnoc = { .name = "qns_gem_noc_cnoc", .id = SA8775P_SLAVE_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_MASTER_GEM_NOC_CNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SA8775P_SLAVE_LLCC, .channels = 6, .buswidth = 16, .num_links = 1, .links = { SA8775P_MASTER_LLCC }, }; static struct qcom_icc_node qns_pcie = { .name = "qns_pcie", .id = SA8775P_SLAVE_GEM_NOC_PCIE_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node srvc_even_gemnoc = { .name = "srvc_even_gemnoc", .id = SA8775P_SLAVE_SERVICE_GEM_NOC_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_odd_gemnoc = { .name = "srvc_odd_gemnoc", .id = SA8775P_SLAVE_SERVICE_GEM_NOC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_sys_gemnoc = { .name = "srvc_sys_gemnoc", .id = SA8775P_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_sys_gemnoc_2 = { .name = "srvc_sys_gemnoc_2", .id = SA8775P_SLAVE_SERVICE_GEM_NOC2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gp_dsp_sail_noc = { .name = "qns_gp_dsp_sail_noc", .id = SA8775P_SLAVE_GP_DSP_SAIL_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_MASTER_GPDSP_SAIL }, }; static struct qcom_icc_node qhs_lpass_core = { .name = "qhs_lpass_core", .id = SA8775P_SLAVE_LPASS_CORE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_lpi = { .name = "qhs_lpass_lpi", .id = SA8775P_SLAVE_LPASS_LPI_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_mpu = { .name = "qhs_lpass_mpu", .id = SA8775P_SLAVE_LPASS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_top = { .name = "qhs_lpass_top", .id = SA8775P_SLAVE_LPASS_TOP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_sysnoc = { .name = "qns_sysnoc", .id = SA8775P_SLAVE_LPASS_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_MASTER_LPASS_ANOC }, }; static struct qcom_icc_node srvc_niu_aml_noc = { .name = "srvc_niu_aml_noc", .id = SA8775P_SLAVE_SERVICES_LPASS_AML_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_niu_lpass_agnoc = { .name = "srvc_niu_lpass_agnoc", .id = SA8775P_SLAVE_SERVICE_LPASS_AG_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SA8775P_SLAVE_EBI1, .channels = 8, .buswidth = 4, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SA8775P_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SA8775P_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SA8775P_SLAVE_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SA8775P_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc_hf = { .name = "srvc_mnoc_hf", .id = SA8775P_SLAVE_SERVICE_MNOC_HF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_mnoc_sf = { .name = "srvc_mnoc_sf", .id = SA8775P_SLAVE_SERVICE_MNOC_SF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_hcp = { .name = "qns_hcp", .id = SA8775P_SLAVE_HCP_A, .channels = 2, .buswidth = 32, }; static struct qcom_icc_node qns_nsp_gemnoc = { .name = "qns_nsp_gemnoc", .id = SA8775P_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SA8775P_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node service_nsp_noc = { .name = "service_nsp_noc", .id = SA8775P_SLAVE_SERVICE_NSP_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_nspb_gemnoc = { .name = "qns_nspb_gemnoc", .id = SA8775P_SLAVE_CDSPB_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SA8775P_MASTER_COMPUTE_NOC_1 }, }; static struct qcom_icc_node qns_nspb_hcp = { .name = "qns_nspb_hcp", .id = SA8775P_SLAVE_HCP_B, .channels = 2, .buswidth = 32, }; static struct qcom_icc_node service_nspb_noc = { .name = "service_nspb_noc", .id = SA8775P_SLAVE_SERVICE_NSPB_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_pcie_mem_noc = { .name = "qns_pcie_mem_noc", .id = SA8775P_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SA8775P_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SA8775P_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SA8775P_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SA8775P_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SA8775P_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SA8775P_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .enable_mask = 0x8, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .num_nodes = 2, .nodes = { &qxm_crypto_0, &qxm_crypto_1 }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 2, .nodes = { &qnm_gemnoc_cnoc, &qnm_gemnoc_pcie }, }; static struct qcom_icc_bcm bcm_cn1 = { .name = "CN1", .num_nodes = 76, .nodes = { &qhs_ahb2phy0, &qhs_ahb2phy1, &qhs_ahb2phy2, &qhs_ahb2phy3, &qhs_anoc_throttle_cfg, &qhs_aoss, &qhs_apss, &qhs_boot_rom, &qhs_camera_cfg, &qhs_camera_nrt_throttle_cfg, &qhs_camera_rt_throttle_cfg, &qhs_clk_ctl, &qhs_compute0_cfg, &qhs_compute1_cfg, &qhs_cpr_cx, &qhs_cpr_mmcx, &qhs_cpr_mx, &qhs_cpr_nspcx, &qhs_crypto0_cfg, &qhs_cx_rdpm, &qhs_display0_cfg, &qhs_display0_rt_throttle_cfg, &qhs_display1_cfg, &qhs_display1_rt_throttle_cfg, &qhs_emac0_cfg, &qhs_emac1_cfg, &qhs_gp_dsp0_cfg, &qhs_gp_dsp1_cfg, &qhs_gpdsp0_throttle_cfg, &qhs_gpdsp1_throttle_cfg, &qhs_gpu_tcu_throttle_cfg, &qhs_gpuss_cfg, &qhs_hwkm, &qhs_imem_cfg, &qhs_ipa, &qhs_ipc_router, &qhs_lpass_cfg, &qhs_lpass_throttle_cfg, &qhs_mx_rdpm, &qhs_mxc_rdpm, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_pcie_rsc_cfg, &qhs_pcie_tcu_throttle_cfg, &qhs_pcie_throttle_cfg, &qhs_pdm, &qhs_pimem_cfg, &qhs_pke_wrapper_cfg, &qhs_qdss_cfg, &qhs_qm_cfg, &qhs_qm_mpu_cfg, &qhs_sail_throttle_cfg, &qhs_sdc1, &qhs_security, &qhs_snoc_throttle_cfg, &qhs_tcsr, &qhs_tlmm, &qhs_tsc_cfg, &qhs_ufs_card_cfg, &qhs_ufs_mem_cfg, &qhs_usb2_0, &qhs_usb3_0, &qhs_usb3_1, &qhs_venus_cfg, &qhs_venus_cvp_throttle_cfg, &qhs_venus_v_cpu_throttle_cfg, &qhs_venus_vcodec_throttle_cfg, &qns_ddrss_cfg, &qns_gpdsp_noc_cfg, &qns_mnoc_hf_cfg, &qns_mnoc_sf_cfg, &qns_pcie_anoc_cfg, &qns_snoc_cfg, &qxs_boot_imem, &qxs_imem, &xs_sys_tcu_cfg }, }; static struct qcom_icc_bcm bcm_cn2 = { .name = "CN2", .num_nodes = 4, .nodes = { &qhs_qup0, &qhs_qup1, &qhs_qup2, &qhs_qup3 }, }; static struct qcom_icc_bcm bcm_cn3 = { .name = "CN3", .num_nodes = 2, .nodes = { &xs_pcie_0, &xs_pcie_1 }, }; static struct qcom_icc_bcm bcm_gna0 = { .name = "GNA0", .num_nodes = 1, .nodes = { &qxm_dsp0 }, }; static struct qcom_icc_bcm bcm_gnb0 = { .name = "GNB0", .num_nodes = 1, .nodes = { &qxm_dsp1 }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 5, .nodes = { &qnm_camnoc_hf, &qnm_mdp0_0, &qnm_mdp0_1, &qnm_mdp1_0, &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .num_nodes = 7, .nodes = { &qnm_camnoc_icp, &qnm_camnoc_sf, &qnm_video0, &qnm_video1, &qnm_video_cvp, &qnm_video_v_cpu, &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_nsa0 = { .name = "NSA0", .num_nodes = 2, .nodes = { &qns_hcp, &qns_nsp_gemnoc }, }; static struct qcom_icc_bcm bcm_nsa1 = { .name = "NSA1", .num_nodes = 1, .nodes = { &qxm_nsp }, }; static struct qcom_icc_bcm bcm_nsb0 = { .name = "NSB0", .num_nodes = 2, .nodes = { &qns_nspb_gemnoc, &qns_nspb_hcp }, }; static struct qcom_icc_bcm bcm_nsb1 = { .name = "NSB1", .num_nodes = 1, .nodes = { &qxm_nspb }, }; static struct qcom_icc_bcm bcm_pci0 = { .name = "PCI0", .num_nodes = 1, .nodes = { &qns_pcie_mem_noc }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .vote_scale = 1, .num_nodes = 1, .nodes = { &qup0_core_slave }, }; static struct qcom_icc_bcm bcm_qup1 = { .name = "QUP1", .vote_scale = 1, .num_nodes = 1, .nodes = { &qup1_core_slave }, }; static struct qcom_icc_bcm bcm_qup2 = { .name = "QUP2", .vote_scale = 1, .num_nodes = 2, .nodes = { &qup2_core_slave, &qup3_core_slave }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .num_nodes = 1, .nodes = { &chm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .num_nodes = 1, .nodes = { &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .num_nodes = 2, .nodes = { &qns_a1noc_snoc, &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .num_nodes = 2, .nodes = { &qns_a2noc_snoc, &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .num_nodes = 2, .nodes = { &qns_sysnoc, &qnm_lpass_noc }, }; static struct qcom_icc_bcm bcm_sn10 = { .name = "SN10", .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm *aggre1_noc_bcms[] = { &bcm_sn3, }; static struct qcom_icc_node *aggre1_noc_nodes[] = { [MASTER_QUP_3] = &qxm_qup3, [MASTER_EMAC] = &xm_emac_0, [MASTER_EMAC_1] = &xm_emac_1, [MASTER_SDC] = &xm_sdc1, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB2] = &xm_usb2_2, [MASTER_USB3_0] = &xm_usb3_0, [MASTER_USB3_1] = &xm_usb3_1, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, }; static const struct qcom_icc_desc sa8775p_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm *aggre2_noc_bcms[] = { &bcm_ce0, &bcm_sn4, }; static struct qcom_icc_node *aggre2_noc_nodes[] = { [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_0] = &qhm_qup0, [MASTER_QUP_1] = &qhm_qup1, [MASTER_QUP_2] = &qhm_qup2, [MASTER_CNOC_A2NOC] = &qnm_cnoc_datapath, [MASTER_CRYPTO_CORE0] = &qxm_crypto_0, [MASTER_CRYPTO_CORE1] = &qxm_crypto_1, [MASTER_IPA] = &qxm_ipa, [MASTER_QDSS_ETR_0] = &xm_qdss_etr_0, [MASTER_QDSS_ETR_1] = &xm_qdss_etr_1, [MASTER_UFS_CARD] = &xm_ufs_card, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, }; static const struct qcom_icc_desc sa8775p_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm *clk_virt_bcms[] = { &bcm_qup0, &bcm_qup1, &bcm_qup2, }; static struct qcom_icc_node *clk_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [MASTER_QUP_CORE_2] = &qup2_core_master, [MASTER_QUP_CORE_3] = &qup3_core_master, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, [SLAVE_QUP_CORE_2] = &qup2_core_slave, [SLAVE_QUP_CORE_3] = &qup3_core_slave, }; static const struct qcom_icc_desc sa8775p_clk_virt = { .nodes = clk_virt_nodes, .num_nodes = ARRAY_SIZE(clk_virt_nodes), .bcms = clk_virt_bcms, .num_bcms = ARRAY_SIZE(clk_virt_bcms), }; static struct qcom_icc_bcm *config_noc_bcms[] = { &bcm_cn0, &bcm_cn1, &bcm_cn2, &bcm_cn3, &bcm_sn2, &bcm_sn10, }; static struct qcom_icc_node *config_noc_nodes[] = { [MASTER_GEM_NOC_CNOC] = &qnm_gemnoc_cnoc, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [SLAVE_AHB2PHY_0] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_1] = &qhs_ahb2phy1, [SLAVE_AHB2PHY_2] = &qhs_ahb2phy2, [SLAVE_AHB2PHY_3] = &qhs_ahb2phy3, [SLAVE_ANOC_THROTTLE_CFG] = &qhs_anoc_throttle_cfg, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_APPSS] = &qhs_apss, [SLAVE_BOOT_ROM] = &qhs_boot_rom, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CAMERA_NRT_THROTTLE_CFG] = &qhs_camera_nrt_throttle_cfg, [SLAVE_CAMERA_RT_THROTTLE_CFG] = &qhs_camera_rt_throttle_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute0_cfg, [SLAVE_CDSP1_CFG] = &qhs_compute1_cfg, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &qhs_cpr_mmcx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CPR_NSPCX] = &qhs_cpr_nspcx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CX_RDPM] = &qhs_cx_rdpm, [SLAVE_DISPLAY_CFG] = &qhs_display0_cfg, [SLAVE_DISPLAY_RT_THROTTLE_CFG] = &qhs_display0_rt_throttle_cfg, [SLAVE_DISPLAY1_CFG] = &qhs_display1_cfg, [SLAVE_DISPLAY1_RT_THROTTLE_CFG] = &qhs_display1_rt_throttle_cfg, [SLAVE_EMAC_CFG] = &qhs_emac0_cfg, [SLAVE_EMAC1_CFG] = &qhs_emac1_cfg, [SLAVE_GP_DSP0_CFG] = &qhs_gp_dsp0_cfg, [SLAVE_GP_DSP1_CFG] = &qhs_gp_dsp1_cfg, [SLAVE_GPDSP0_THROTTLE_CFG] = &qhs_gpdsp0_throttle_cfg, [SLAVE_GPDSP1_THROTTLE_CFG] = &qhs_gpdsp1_throttle_cfg, [SLAVE_GPU_TCU_THROTTLE_CFG] = &qhs_gpu_tcu_throttle_cfg, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_HWKM] = &qhs_hwkm, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_LPASS] = &qhs_lpass_cfg, [SLAVE_LPASS_THROTTLE_CFG] = &qhs_lpass_throttle_cfg, [SLAVE_MX_RDPM] = &qhs_mx_rdpm, [SLAVE_MXC_RDPM] = &qhs_mxc_rdpm, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_PCIE_RSC_CFG] = &qhs_pcie_rsc_cfg, [SLAVE_PCIE_TCU_THROTTLE_CFG] = &qhs_pcie_tcu_throttle_cfg, [SLAVE_PCIE_THROTTLE_CFG] = &qhs_pcie_throttle_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PKA_WRAPPER_CFG] = &qhs_pke_wrapper_cfg, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QM_CFG] = &qhs_qm_cfg, [SLAVE_QM_MPU_CFG] = &qhs_qm_mpu_cfg, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_QUP_2] = &qhs_qup2, [SLAVE_QUP_3] = &qhs_qup3, [SLAVE_SAIL_THROTTLE_CFG] = &qhs_sail_throttle_cfg, [SLAVE_SDC1] = &qhs_sdc1, [SLAVE_SECURITY] = &qhs_security, [SLAVE_SNOC_THROTTLE_CFG] = &qhs_snoc_throttle_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_TSC_CFG] = &qhs_tsc_cfg, [SLAVE_UFS_CARD_CFG] = &qhs_ufs_card_cfg, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB2] = &qhs_usb2_0, [SLAVE_USB3_0] = &qhs_usb3_0, [SLAVE_USB3_1] = &qhs_usb3_1, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VENUS_CVP_THROTTLE_CFG] = &qhs_venus_cvp_throttle_cfg, [SLAVE_VENUS_V_CPU_THROTTLE_CFG] = &qhs_venus_v_cpu_throttle_cfg, [SLAVE_VENUS_VCODEC_THROTTLE_CFG] = &qhs_venus_vcodec_throttle_cfg, [SLAVE_DDRSS_CFG] = &qns_ddrss_cfg, [SLAVE_GPDSP_NOC_CFG] = &qns_gpdsp_noc_cfg, [SLAVE_CNOC_MNOC_HF_CFG] = &qns_mnoc_hf_cfg, [SLAVE_CNOC_MNOC_SF_CFG] = &qns_mnoc_sf_cfg, [SLAVE_PCIE_ANOC_CFG] = &qns_pcie_anoc_cfg, [SLAVE_SNOC_CFG] = &qns_snoc_cfg, [SLAVE_BOOT_IMEM] = &qxs_boot_imem, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sa8775p_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm *dc_noc_bcms[] = { }; static struct qcom_icc_node *dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qnm_cnoc_dc_noc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_GEM_NOC_CFG] = &qns_gemnoc, }; static const struct qcom_icc_desc sa8775p_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm *gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, }; static struct qcom_icc_node *gem_noc_nodes[] = { [MASTER_GPU_TCU] = &alm_gpu_tcu, [MASTER_PCIE_TCU] = &alm_pcie_tcu, [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_APPSS_PROC] = &chm_apps, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc0, [MASTER_COMPUTE_NOC_1] = &qnm_cmpnoc1, [MASTER_GEM_NOC_CFG] = &qnm_gemnoc_cfg, [MASTER_GPDSP_SAIL] = &qnm_gpdsp_sail, [MASTER_GFX3D] = &qnm_gpu, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [SLAVE_GEM_NOC_CNOC] = &qns_gem_noc_cnoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_GEM_NOC_PCIE_CNOC] = &qns_pcie, [SLAVE_SERVICE_GEM_NOC_1] = &srvc_even_gemnoc, [SLAVE_SERVICE_GEM_NOC_2] = &srvc_odd_gemnoc, [SLAVE_SERVICE_GEM_NOC] = &srvc_sys_gemnoc, [SLAVE_SERVICE_GEM_NOC2] = &srvc_sys_gemnoc_2, }; static const struct qcom_icc_desc sa8775p_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm *gpdsp_anoc_bcms[] = { &bcm_gna0, &bcm_gnb0, }; static struct qcom_icc_node *gpdsp_anoc_nodes[] = { [MASTER_DSP0] = &qxm_dsp0, [MASTER_DSP1] = &qxm_dsp1, [SLAVE_GP_DSP_SAIL_NOC] = &qns_gp_dsp_sail_noc, }; static const struct qcom_icc_desc sa8775p_gpdsp_anoc = { .nodes = gpdsp_anoc_nodes, .num_nodes = ARRAY_SIZE(gpdsp_anoc_nodes), .bcms = gpdsp_anoc_bcms, .num_bcms = ARRAY_SIZE(gpdsp_anoc_bcms), }; static struct qcom_icc_bcm *lpass_ag_noc_bcms[] = { &bcm_sn9, }; static struct qcom_icc_node *lpass_ag_noc_nodes[] = { [MASTER_CNOC_LPASS_AG_NOC] = &qhm_config_noc, [MASTER_LPASS_PROC] = &qxm_lpass_dsp, [SLAVE_LPASS_CORE_CFG] = &qhs_lpass_core, [SLAVE_LPASS_LPI_CFG] = &qhs_lpass_lpi, [SLAVE_LPASS_MPU_CFG] = &qhs_lpass_mpu, [SLAVE_LPASS_TOP_CFG] = &qhs_lpass_top, [SLAVE_LPASS_SNOC] = &qns_sysnoc, [SLAVE_SERVICES_LPASS_AML_NOC] = &srvc_niu_aml_noc, [SLAVE_SERVICE_LPASS_AG_NOC] = &srvc_niu_lpass_agnoc, }; static const struct qcom_icc_desc sa8775p_lpass_ag_noc = { .nodes = lpass_ag_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_ag_noc_nodes), .bcms = lpass_ag_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_ag_noc_bcms), }; static struct qcom_icc_bcm *mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, }; static struct qcom_icc_node *mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, }; static const struct qcom_icc_desc sa8775p_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm *mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, }; static struct qcom_icc_node *mmss_noc_nodes[] = { [MASTER_CAMNOC_HF] = &qnm_camnoc_hf, [MASTER_CAMNOC_ICP] = &qnm_camnoc_icp, [MASTER_CAMNOC_SF] = &qnm_camnoc_sf, [MASTER_MDP0] = &qnm_mdp0_0, [MASTER_MDP1] = &qnm_mdp0_1, [MASTER_MDP_CORE1_0] = &qnm_mdp1_0, [MASTER_MDP_CORE1_1] = &qnm_mdp1_1, [MASTER_CNOC_MNOC_HF_CFG] = &qnm_mnoc_hf_cfg, [MASTER_CNOC_MNOC_SF_CFG] = &qnm_mnoc_sf_cfg, [MASTER_VIDEO_P0] = &qnm_video0, [MASTER_VIDEO_P1] = &qnm_video1, [MASTER_VIDEO_PROC] = &qnm_video_cvp, [MASTER_VIDEO_V_PROC] = &qnm_video_v_cpu, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC_HF] = &srvc_mnoc_hf, [SLAVE_SERVICE_MNOC_SF] = &srvc_mnoc_sf, }; static const struct qcom_icc_desc sa8775p_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm *nspa_noc_bcms[] = { &bcm_nsa0, &bcm_nsa1, }; static struct qcom_icc_node *nspa_noc_nodes[] = { [MASTER_CDSP_NOC_CFG] = &qhm_nsp_noc_config, [MASTER_CDSP_PROC] = &qxm_nsp, [SLAVE_HCP_A] = &qns_hcp, [SLAVE_CDSP_MEM_NOC] = &qns_nsp_gemnoc, [SLAVE_SERVICE_NSP_NOC] = &service_nsp_noc, }; static const struct qcom_icc_desc sa8775p_nspa_noc = { .nodes = nspa_noc_nodes, .num_nodes = ARRAY_SIZE(nspa_noc_nodes), .bcms = nspa_noc_bcms, .num_bcms = ARRAY_SIZE(nspa_noc_bcms), }; static struct qcom_icc_bcm *nspb_noc_bcms[] = { &bcm_nsb0, &bcm_nsb1, }; static struct qcom_icc_node *nspb_noc_nodes[] = { [MASTER_CDSPB_NOC_CFG] = &qhm_nspb_noc_config, [MASTER_CDSP_PROC_B] = &qxm_nspb, [SLAVE_CDSPB_MEM_NOC] = &qns_nspb_gemnoc, [SLAVE_HCP_B] = &qns_nspb_hcp, [SLAVE_SERVICE_NSPB_NOC] = &service_nspb_noc, }; static const struct qcom_icc_desc sa8775p_nspb_noc = { .nodes = nspb_noc_nodes, .num_nodes = ARRAY_SIZE(nspb_noc_nodes), .bcms = nspb_noc_bcms, .num_bcms = ARRAY_SIZE(nspb_noc_bcms), }; static struct qcom_icc_bcm *pcie_anoc_bcms[] = { &bcm_pci0, }; static struct qcom_icc_node *pcie_anoc_nodes[] = { [MASTER_PCIE_0] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_mem_noc, }; static const struct qcom_icc_desc sa8775p_pcie_anoc = { .nodes = pcie_anoc_nodes, .num_nodes = ARRAY_SIZE(pcie_anoc_nodes), .bcms = pcie_anoc_bcms, .num_bcms = ARRAY_SIZE(pcie_anoc_bcms), }; static struct qcom_icc_bcm *system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn3, &bcm_sn4, &bcm_sn9, }; static struct qcom_icc_node *system_noc_nodes[] = { [MASTER_GIC_AHB] = &qhm_gic, [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_LPASS_ANOC] = &qnm_lpass_noc, [MASTER_SNOC_CFG] = &qnm_snoc_cfg, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_SERVICE_SNOC] = &srvc_snoc, }; static const struct qcom_icc_desc sa8775p_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sa8775p-aggre1-noc", .data = &sa8775p_aggre1_noc, }, { .compatible = "qcom,sa8775p-aggre2-noc", .data = &sa8775p_aggre2_noc, }, { .compatible = "qcom,sa8775p-clk-virt", .data = &sa8775p_clk_virt, }, { .compatible = "qcom,sa8775p-config-noc", .data = &sa8775p_config_noc, }, { .compatible = "qcom,sa8775p-dc-noc", .data = &sa8775p_dc_noc, }, { .compatible = "qcom,sa8775p-gem-noc", .data = &sa8775p_gem_noc, }, { .compatible = "qcom,sa8775p-gpdsp-anoc", .data = &sa8775p_gpdsp_anoc, }, { .compatible = "qcom,sa8775p-lpass-ag-noc", .data = &sa8775p_lpass_ag_noc, }, { .compatible = "qcom,sa8775p-mc-virt", .data = &sa8775p_mc_virt, }, { .compatible = "qcom,sa8775p-mmss-noc", .data = &sa8775p_mmss_noc, }, { .compatible = "qcom,sa8775p-nspa-noc", .data = &sa8775p_nspa_noc, }, { .compatible = "qcom,sa8775p-nspb-noc", .data = &sa8775p_nspb_noc, }, { .compatible = "qcom,sa8775p-pcie-anoc", .data = &sa8775p_pcie_anoc, }, { .compatible = "qcom,sa8775p-system-noc", .data = &sa8775p_system_noc, }, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sa8775p", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; static int __init qnoc_driver_init(void) { return platform_driver_register(&qnoc_driver); } core_initcall(qnoc_driver_init); static void __exit qnoc_driver_exit(void) { platform_driver_unregister(&qnoc_driver); } module_exit(qnoc_driver_exit); MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SA8775P NoC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/interconnect/qcom/sa8775p.c
// SPDX-License-Identifier: GPL-2.0 /* * Qualcomm QCM2290 Network-on-Chip (NoC) QoS driver * * Copyright (c) 2021, Linaro Ltd. * */ #include <dt-bindings/interconnect/qcom,qcm2290.h> #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include "icc-rpm.h" enum { QCM2290_MASTER_APPSS_PROC = 1, QCM2290_MASTER_SNOC_BIMC_RT, QCM2290_MASTER_SNOC_BIMC_NRT, QCM2290_MASTER_SNOC_BIMC, QCM2290_MASTER_TCU_0, QCM2290_MASTER_GFX3D, QCM2290_MASTER_SNOC_CNOC, QCM2290_MASTER_QDSS_DAP, QCM2290_MASTER_CRYPTO_CORE0, QCM2290_MASTER_SNOC_CFG, QCM2290_MASTER_TIC, QCM2290_MASTER_ANOC_SNOC, QCM2290_MASTER_BIMC_SNOC, QCM2290_MASTER_PIMEM, QCM2290_MASTER_QDSS_BAM, QCM2290_MASTER_QUP_0, QCM2290_MASTER_IPA, QCM2290_MASTER_QDSS_ETR, QCM2290_MASTER_SDCC_1, QCM2290_MASTER_SDCC_2, QCM2290_MASTER_QPIC, QCM2290_MASTER_USB3_0, QCM2290_MASTER_QUP_CORE_0, QCM2290_MASTER_CAMNOC_SF, QCM2290_MASTER_VIDEO_P0, QCM2290_MASTER_VIDEO_PROC, QCM2290_MASTER_CAMNOC_HF, QCM2290_MASTER_MDP0, QCM2290_SLAVE_EBI1, QCM2290_SLAVE_BIMC_SNOC, QCM2290_SLAVE_BIMC_CFG, QCM2290_SLAVE_CAMERA_NRT_THROTTLE_CFG, QCM2290_SLAVE_CAMERA_RT_THROTTLE_CFG, QCM2290_SLAVE_CAMERA_CFG, QCM2290_SLAVE_CLK_CTL, QCM2290_SLAVE_CRYPTO_0_CFG, QCM2290_SLAVE_DISPLAY_CFG, QCM2290_SLAVE_DISPLAY_THROTTLE_CFG, QCM2290_SLAVE_GPU_CFG, QCM2290_SLAVE_HWKM, QCM2290_SLAVE_IMEM_CFG, QCM2290_SLAVE_IPA_CFG, QCM2290_SLAVE_LPASS, QCM2290_SLAVE_MESSAGE_RAM, QCM2290_SLAVE_PDM, QCM2290_SLAVE_PIMEM_CFG, QCM2290_SLAVE_PKA_WRAPPER, QCM2290_SLAVE_PMIC_ARB, QCM2290_SLAVE_PRNG, QCM2290_SLAVE_QDSS_CFG, QCM2290_SLAVE_QM_CFG, QCM2290_SLAVE_QM_MPU_CFG, QCM2290_SLAVE_QPIC, QCM2290_SLAVE_QUP_0, QCM2290_SLAVE_SDCC_1, QCM2290_SLAVE_SDCC_2, QCM2290_SLAVE_SNOC_CFG, QCM2290_SLAVE_TCSR, QCM2290_SLAVE_USB3, QCM2290_SLAVE_VENUS_CFG, QCM2290_SLAVE_VENUS_THROTTLE_CFG, QCM2290_SLAVE_VSENSE_CTRL_CFG, QCM2290_SLAVE_SERVICE_CNOC, QCM2290_SLAVE_APPSS, QCM2290_SLAVE_SNOC_CNOC, QCM2290_SLAVE_IMEM, QCM2290_SLAVE_PIMEM, QCM2290_SLAVE_SNOC_BIMC, QCM2290_SLAVE_SERVICE_SNOC, QCM2290_SLAVE_QDSS_STM, QCM2290_SLAVE_TCU, QCM2290_SLAVE_ANOC_SNOC, QCM2290_SLAVE_QUP_CORE_0, QCM2290_SLAVE_SNOC_BIMC_NRT, QCM2290_SLAVE_SNOC_BIMC_RT, }; /* Master nodes */ static const u16 mas_appss_proc_links[] = { QCM2290_SLAVE_EBI1, QCM2290_SLAVE_BIMC_SNOC, }; static struct qcom_icc_node mas_appss_proc = { .id = QCM2290_MASTER_APPSS_PROC, .name = "mas_apps_proc", .buswidth = 16, .qos.ap_owned = true, .qos.qos_port = 0, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.prio_level = 0, .qos.areq_prio = 0, .mas_rpm_id = 0, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_appss_proc_links), .links = mas_appss_proc_links, }; static const u16 mas_snoc_bimc_rt_links[] = { QCM2290_SLAVE_EBI1, }; static struct qcom_icc_node mas_snoc_bimc_rt = { .id = QCM2290_MASTER_SNOC_BIMC_RT, .name = "mas_snoc_bimc_rt", .buswidth = 16, .qos.ap_owned = true, .qos.qos_port = 2, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .mas_rpm_id = 163, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_bimc_rt_links), .links = mas_snoc_bimc_rt_links, }; static const u16 mas_snoc_bimc_nrt_links[] = { QCM2290_SLAVE_EBI1, }; static struct qcom_icc_node mas_snoc_bimc_nrt = { .id = QCM2290_MASTER_SNOC_BIMC_NRT, .name = "mas_snoc_bimc_nrt", .buswidth = 16, .qos.ap_owned = true, .qos.qos_port = 3, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .mas_rpm_id = 164, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_bimc_nrt_links), .links = mas_snoc_bimc_nrt_links, }; static const u16 mas_snoc_bimc_links[] = { QCM2290_SLAVE_EBI1, }; static struct qcom_icc_node mas_snoc_bimc = { .id = QCM2290_MASTER_SNOC_BIMC, .name = "mas_snoc_bimc", .buswidth = 16, .qos.ap_owned = true, .qos.qos_port = 2, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .mas_rpm_id = 164, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_bimc_links), .links = mas_snoc_bimc_links, }; static const u16 mas_tcu_0_links[] = { QCM2290_SLAVE_EBI1, QCM2290_SLAVE_BIMC_SNOC, }; static struct qcom_icc_node mas_tcu_0 = { .id = QCM2290_MASTER_TCU_0, .name = "mas_tcu_0", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 4, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.prio_level = 6, .qos.areq_prio = 6, .mas_rpm_id = 102, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_tcu_0_links), .links = mas_tcu_0_links, }; static const u16 mas_snoc_cnoc_links[] = { QCM2290_SLAVE_CAMERA_RT_THROTTLE_CFG, QCM2290_SLAVE_SDCC_2, QCM2290_SLAVE_SDCC_1, QCM2290_SLAVE_QM_CFG, QCM2290_SLAVE_BIMC_CFG, QCM2290_SLAVE_USB3, QCM2290_SLAVE_QM_MPU_CFG, QCM2290_SLAVE_CAMERA_NRT_THROTTLE_CFG, QCM2290_SLAVE_QDSS_CFG, QCM2290_SLAVE_PDM, QCM2290_SLAVE_IPA_CFG, QCM2290_SLAVE_DISPLAY_THROTTLE_CFG, QCM2290_SLAVE_TCSR, QCM2290_SLAVE_MESSAGE_RAM, QCM2290_SLAVE_PMIC_ARB, QCM2290_SLAVE_LPASS, QCM2290_SLAVE_DISPLAY_CFG, QCM2290_SLAVE_VENUS_CFG, QCM2290_SLAVE_GPU_CFG, QCM2290_SLAVE_IMEM_CFG, QCM2290_SLAVE_SNOC_CFG, QCM2290_SLAVE_SERVICE_CNOC, QCM2290_SLAVE_VENUS_THROTTLE_CFG, QCM2290_SLAVE_PKA_WRAPPER, QCM2290_SLAVE_HWKM, QCM2290_SLAVE_PRNG, QCM2290_SLAVE_VSENSE_CTRL_CFG, QCM2290_SLAVE_CRYPTO_0_CFG, QCM2290_SLAVE_PIMEM_CFG, QCM2290_SLAVE_QUP_0, QCM2290_SLAVE_CAMERA_CFG, QCM2290_SLAVE_CLK_CTL, QCM2290_SLAVE_QPIC, }; static struct qcom_icc_node mas_snoc_cnoc = { .id = QCM2290_MASTER_SNOC_CNOC, .name = "mas_snoc_cnoc", .buswidth = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = 52, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_cnoc_links), .links = mas_snoc_cnoc_links, }; static const u16 mas_qdss_dap_links[] = { QCM2290_SLAVE_CAMERA_RT_THROTTLE_CFG, QCM2290_SLAVE_SDCC_2, QCM2290_SLAVE_SDCC_1, QCM2290_SLAVE_QM_CFG, QCM2290_SLAVE_BIMC_CFG, QCM2290_SLAVE_USB3, QCM2290_SLAVE_QM_MPU_CFG, QCM2290_SLAVE_CAMERA_NRT_THROTTLE_CFG, QCM2290_SLAVE_QDSS_CFG, QCM2290_SLAVE_PDM, QCM2290_SLAVE_IPA_CFG, QCM2290_SLAVE_DISPLAY_THROTTLE_CFG, QCM2290_SLAVE_TCSR, QCM2290_SLAVE_MESSAGE_RAM, QCM2290_SLAVE_PMIC_ARB, QCM2290_SLAVE_LPASS, QCM2290_SLAVE_DISPLAY_CFG, QCM2290_SLAVE_VENUS_CFG, QCM2290_SLAVE_GPU_CFG, QCM2290_SLAVE_IMEM_CFG, QCM2290_SLAVE_SNOC_CFG, QCM2290_SLAVE_SERVICE_CNOC, QCM2290_SLAVE_VENUS_THROTTLE_CFG, QCM2290_SLAVE_PKA_WRAPPER, QCM2290_SLAVE_HWKM, QCM2290_SLAVE_PRNG, QCM2290_SLAVE_VSENSE_CTRL_CFG, QCM2290_SLAVE_CRYPTO_0_CFG, QCM2290_SLAVE_PIMEM_CFG, QCM2290_SLAVE_QUP_0, QCM2290_SLAVE_CAMERA_CFG, QCM2290_SLAVE_CLK_CTL, QCM2290_SLAVE_QPIC, }; static struct qcom_icc_node mas_qdss_dap = { .id = QCM2290_MASTER_QDSS_DAP, .name = "mas_qdss_dap", .buswidth = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = 49, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qdss_dap_links), .links = mas_qdss_dap_links, }; static const u16 mas_crypto_core0_links[] = { QCM2290_SLAVE_ANOC_SNOC }; static struct qcom_icc_node mas_crypto_core0 = { .id = QCM2290_MASTER_CRYPTO_CORE0, .name = "mas_crypto_core0", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 22, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 23, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_crypto_core0_links), .links = mas_crypto_core0_links, }; static const u16 mas_qup_core_0_links[] = { QCM2290_SLAVE_QUP_CORE_0, }; static struct qcom_icc_node mas_qup_core_0 = { .id = QCM2290_MASTER_QUP_CORE_0, .name = "mas_qup_core_0", .buswidth = 4, .mas_rpm_id = 170, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qup_core_0_links), .links = mas_qup_core_0_links, }; static const u16 mas_camnoc_sf_links[] = { QCM2290_SLAVE_SNOC_BIMC_NRT, }; static struct qcom_icc_node mas_camnoc_sf = { .id = QCM2290_MASTER_CAMNOC_SF, .name = "mas_camnoc_sf", .buswidth = 32, .qos.ap_owned = true, .qos.qos_port = 4, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 3, .mas_rpm_id = 172, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_camnoc_sf_links), .links = mas_camnoc_sf_links, }; static const u16 mas_camnoc_hf_links[] = { QCM2290_SLAVE_SNOC_BIMC_RT, }; static struct qcom_icc_node mas_camnoc_hf = { .id = QCM2290_MASTER_CAMNOC_HF, .name = "mas_camnoc_hf", .buswidth = 32, .qos.ap_owned = true, .qos.qos_port = 10, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 3, .qos.urg_fwd_en = true, .mas_rpm_id = 173, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_camnoc_hf_links), .links = mas_camnoc_hf_links, }; static const u16 mas_mdp0_links[] = { QCM2290_SLAVE_SNOC_BIMC_RT, }; static struct qcom_icc_node mas_mdp0 = { .id = QCM2290_MASTER_MDP0, .name = "mas_mdp0", .buswidth = 16, .qos.ap_owned = true, .qos.qos_port = 5, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 3, .qos.urg_fwd_en = true, .mas_rpm_id = 8, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_mdp0_links), .links = mas_mdp0_links, }; static const u16 mas_video_p0_links[] = { QCM2290_SLAVE_SNOC_BIMC_NRT, }; static struct qcom_icc_node mas_video_p0 = { .id = QCM2290_MASTER_VIDEO_P0, .name = "mas_video_p0", .buswidth = 16, .qos.ap_owned = true, .qos.qos_port = 9, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 3, .qos.urg_fwd_en = true, .mas_rpm_id = 9, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_video_p0_links), .links = mas_video_p0_links, }; static const u16 mas_video_proc_links[] = { QCM2290_SLAVE_SNOC_BIMC_NRT, }; static struct qcom_icc_node mas_video_proc = { .id = QCM2290_MASTER_VIDEO_PROC, .name = "mas_video_proc", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 13, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 4, .mas_rpm_id = 168, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_video_proc_links), .links = mas_video_proc_links, }; static const u16 mas_snoc_cfg_links[] = { QCM2290_SLAVE_SERVICE_SNOC, }; static struct qcom_icc_node mas_snoc_cfg = { .id = QCM2290_MASTER_SNOC_CFG, .name = "mas_snoc_cfg", .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = 20, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_cfg_links), .links = mas_snoc_cfg_links, }; static const u16 mas_tic_links[] = { QCM2290_SLAVE_PIMEM, QCM2290_SLAVE_IMEM, QCM2290_SLAVE_APPSS, QCM2290_SLAVE_SNOC_BIMC, QCM2290_SLAVE_SNOC_CNOC, QCM2290_SLAVE_TCU, QCM2290_SLAVE_QDSS_STM, }; static struct qcom_icc_node mas_tic = { .id = QCM2290_MASTER_TIC, .name = "mas_tic", .buswidth = 4, .qos.ap_owned = true, .qos.qos_port = 8, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 51, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_tic_links), .links = mas_tic_links, }; static const u16 mas_anoc_snoc_links[] = { QCM2290_SLAVE_PIMEM, QCM2290_SLAVE_IMEM, QCM2290_SLAVE_APPSS, QCM2290_SLAVE_SNOC_BIMC, QCM2290_SLAVE_SNOC_CNOC, QCM2290_SLAVE_TCU, QCM2290_SLAVE_QDSS_STM, }; static struct qcom_icc_node mas_anoc_snoc = { .id = QCM2290_MASTER_ANOC_SNOC, .name = "mas_anoc_snoc", .buswidth = 16, .mas_rpm_id = 110, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_anoc_snoc_links), .links = mas_anoc_snoc_links, }; static const u16 mas_bimc_snoc_links[] = { QCM2290_SLAVE_PIMEM, QCM2290_SLAVE_IMEM, QCM2290_SLAVE_APPSS, QCM2290_SLAVE_SNOC_CNOC, QCM2290_SLAVE_TCU, QCM2290_SLAVE_QDSS_STM, }; static struct qcom_icc_node mas_bimc_snoc = { .id = QCM2290_MASTER_BIMC_SNOC, .name = "mas_bimc_snoc", .buswidth = 8, .mas_rpm_id = 21, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_bimc_snoc_links), .links = mas_bimc_snoc_links, }; static const u16 mas_pimem_links[] = { QCM2290_SLAVE_IMEM, QCM2290_SLAVE_SNOC_BIMC, }; static struct qcom_icc_node mas_pimem = { .id = QCM2290_MASTER_PIMEM, .name = "mas_pimem", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 20, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 113, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pimem_links), .links = mas_pimem_links, }; static const u16 mas_qdss_bam_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_qdss_bam = { .id = QCM2290_MASTER_QDSS_BAM, .name = "mas_qdss_bam", .buswidth = 4, .qos.ap_owned = true, .qos.qos_port = 2, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 19, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qdss_bam_links), .links = mas_qdss_bam_links, }; static const u16 mas_qup_0_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_qup_0 = { .id = QCM2290_MASTER_QUP_0, .name = "mas_qup_0", .buswidth = 4, .qos.ap_owned = true, .qos.qos_port = 0, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 166, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qup_0_links), .links = mas_qup_0_links, }; static const u16 mas_ipa_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_ipa = { .id = QCM2290_MASTER_IPA, .name = "mas_ipa", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 3, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 59, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_ipa_links), .links = mas_ipa_links, }; static const u16 mas_qdss_etr_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_qdss_etr = { .id = QCM2290_MASTER_QDSS_ETR, .name = "mas_qdss_etr", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 12, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 31, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qdss_etr_links), .links = mas_qdss_etr_links, }; static const u16 mas_sdcc_1_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_sdcc_1 = { .id = QCM2290_MASTER_SDCC_1, .name = "mas_sdcc_1", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 17, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 33, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_sdcc_1_links), .links = mas_sdcc_1_links, }; static const u16 mas_sdcc_2_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_sdcc_2 = { .id = QCM2290_MASTER_SDCC_2, .name = "mas_sdcc_2", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 23, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 35, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_sdcc_2_links), .links = mas_sdcc_2_links, }; static const u16 mas_qpic_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_qpic = { .id = QCM2290_MASTER_QPIC, .name = "mas_qpic", .buswidth = 4, .qos.ap_owned = true, .qos.qos_port = 1, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 58, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qpic_links), .links = mas_qpic_links, }; static const u16 mas_usb3_0_links[] = { QCM2290_SLAVE_ANOC_SNOC, }; static struct qcom_icc_node mas_usb3_0 = { .id = QCM2290_MASTER_USB3_0, .name = "mas_usb3_0", .buswidth = 8, .qos.ap_owned = true, .qos.qos_port = 24, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .mas_rpm_id = 32, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_usb3_0_links), .links = mas_usb3_0_links, }; static const u16 mas_gfx3d_links[] = { QCM2290_SLAVE_EBI1, }; static struct qcom_icc_node mas_gfx3d = { .id = QCM2290_MASTER_GFX3D, .name = "mas_gfx3d", .buswidth = 32, .qos.ap_owned = true, .qos.qos_port = 1, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.prio_level = 0, .qos.areq_prio = 0, .mas_rpm_id = 6, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_gfx3d_links), .links = mas_gfx3d_links, }; /* Slave nodes */ static struct qcom_icc_node slv_ebi1 = { .name = "slv_ebi1", .id = QCM2290_SLAVE_EBI1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 0, }; static const u16 slv_bimc_snoc_links[] = { QCM2290_MASTER_BIMC_SNOC, }; static struct qcom_icc_node slv_bimc_snoc = { .name = "slv_bimc_snoc", .id = QCM2290_SLAVE_BIMC_SNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 2, .num_links = ARRAY_SIZE(slv_bimc_snoc_links), .links = slv_bimc_snoc_links, }; static struct qcom_icc_node slv_bimc_cfg = { .name = "slv_bimc_cfg", .id = QCM2290_SLAVE_BIMC_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 56, }; static struct qcom_icc_node slv_camera_nrt_throttle_cfg = { .name = "slv_camera_nrt_throttle_cfg", .id = QCM2290_SLAVE_CAMERA_NRT_THROTTLE_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 271, }; static struct qcom_icc_node slv_camera_rt_throttle_cfg = { .name = "slv_camera_rt_throttle_cfg", .id = QCM2290_SLAVE_CAMERA_RT_THROTTLE_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 279, }; static struct qcom_icc_node slv_camera_cfg = { .name = "slv_camera_cfg", .id = QCM2290_SLAVE_CAMERA_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 3, }; static struct qcom_icc_node slv_clk_ctl = { .name = "slv_clk_ctl", .id = QCM2290_SLAVE_CLK_CTL, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 47, }; static struct qcom_icc_node slv_crypto_0_cfg = { .name = "slv_crypto_0_cfg", .id = QCM2290_SLAVE_CRYPTO_0_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 52, }; static struct qcom_icc_node slv_display_cfg = { .name = "slv_display_cfg", .id = QCM2290_SLAVE_DISPLAY_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 4, }; static struct qcom_icc_node slv_display_throttle_cfg = { .name = "slv_display_throttle_cfg", .id = QCM2290_SLAVE_DISPLAY_THROTTLE_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 156, }; static struct qcom_icc_node slv_gpu_cfg = { .name = "slv_gpu_cfg", .id = QCM2290_SLAVE_GPU_CFG, .buswidth = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 275, }; static struct qcom_icc_node slv_hwkm = { .name = "slv_hwkm", .id = QCM2290_SLAVE_HWKM, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 280, }; static struct qcom_icc_node slv_imem_cfg = { .name = "slv_imem_cfg", .id = QCM2290_SLAVE_IMEM_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 54, }; static struct qcom_icc_node slv_ipa_cfg = { .name = "slv_ipa_cfg", .id = QCM2290_SLAVE_IPA_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 183, }; static struct qcom_icc_node slv_lpass = { .name = "slv_lpass", .id = QCM2290_SLAVE_LPASS, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 21, }; static struct qcom_icc_node slv_message_ram = { .name = "slv_message_ram", .id = QCM2290_SLAVE_MESSAGE_RAM, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 55, }; static struct qcom_icc_node slv_pdm = { .name = "slv_pdm", .id = QCM2290_SLAVE_PDM, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 41, }; static struct qcom_icc_node slv_pimem_cfg = { .name = "slv_pimem_cfg", .id = QCM2290_SLAVE_PIMEM_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 167, }; static struct qcom_icc_node slv_pka_wrapper = { .name = "slv_pka_wrapper", .id = QCM2290_SLAVE_PKA_WRAPPER, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 281, }; static struct qcom_icc_node slv_pmic_arb = { .name = "slv_pmic_arb", .id = QCM2290_SLAVE_PMIC_ARB, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 59, }; static struct qcom_icc_node slv_prng = { .name = "slv_prng", .id = QCM2290_SLAVE_PRNG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 44, }; static struct qcom_icc_node slv_qdss_cfg = { .name = "slv_qdss_cfg", .id = QCM2290_SLAVE_QDSS_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 63, }; static struct qcom_icc_node slv_qm_cfg = { .name = "slv_qm_cfg", .id = QCM2290_SLAVE_QM_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 212, }; static struct qcom_icc_node slv_qm_mpu_cfg = { .name = "slv_qm_mpu_cfg", .id = QCM2290_SLAVE_QM_MPU_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 231, }; static struct qcom_icc_node slv_qpic = { .name = "slv_qpic", .id = QCM2290_SLAVE_QPIC, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 80, }; static struct qcom_icc_node slv_qup_0 = { .name = "slv_qup_0", .id = QCM2290_SLAVE_QUP_0, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 261, }; static struct qcom_icc_node slv_sdcc_1 = { .name = "slv_sdcc_1", .id = QCM2290_SLAVE_SDCC_1, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 31, }; static struct qcom_icc_node slv_sdcc_2 = { .name = "slv_sdcc_2", .id = QCM2290_SLAVE_SDCC_2, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 33, }; static const u16 slv_snoc_cfg_links[] = { QCM2290_MASTER_SNOC_CFG, }; static struct qcom_icc_node slv_snoc_cfg = { .name = "slv_snoc_cfg", .id = QCM2290_SLAVE_SNOC_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 70, .num_links = ARRAY_SIZE(slv_snoc_cfg_links), .links = slv_snoc_cfg_links, }; static struct qcom_icc_node slv_tcsr = { .name = "slv_tcsr", .id = QCM2290_SLAVE_TCSR, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 50, }; static struct qcom_icc_node slv_usb3 = { .name = "slv_usb3", .id = QCM2290_SLAVE_USB3, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 22, }; static struct qcom_icc_node slv_venus_cfg = { .name = "slv_venus_cfg", .id = QCM2290_SLAVE_VENUS_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 10, }; static struct qcom_icc_node slv_venus_throttle_cfg = { .name = "slv_venus_throttle_cfg", .id = QCM2290_SLAVE_VENUS_THROTTLE_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 178, }; static struct qcom_icc_node slv_vsense_ctrl_cfg = { .name = "slv_vsense_ctrl_cfg", .id = QCM2290_SLAVE_VSENSE_CTRL_CFG, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 263, }; static struct qcom_icc_node slv_service_cnoc = { .name = "slv_service_cnoc", .id = QCM2290_SLAVE_SERVICE_CNOC, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 76, }; static struct qcom_icc_node slv_qup_core_0 = { .name = "slv_qup_core_0", .id = QCM2290_SLAVE_QUP_CORE_0, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 264, }; static const u16 slv_snoc_bimc_nrt_links[] = { QCM2290_MASTER_SNOC_BIMC_NRT, }; static struct qcom_icc_node slv_snoc_bimc_nrt = { .name = "slv_snoc_bimc_nrt", .id = QCM2290_SLAVE_SNOC_BIMC_NRT, .buswidth = 16, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 259, .num_links = ARRAY_SIZE(slv_snoc_bimc_nrt_links), .links = slv_snoc_bimc_nrt_links, }; static const u16 slv_snoc_bimc_rt_links[] = { QCM2290_MASTER_SNOC_BIMC_RT, }; static struct qcom_icc_node slv_snoc_bimc_rt = { .name = "slv_snoc_bimc_rt", .id = QCM2290_SLAVE_SNOC_BIMC_RT, .buswidth = 16, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 260, .num_links = ARRAY_SIZE(slv_snoc_bimc_rt_links), .links = slv_snoc_bimc_rt_links, }; static struct qcom_icc_node slv_appss = { .name = "slv_appss", .id = QCM2290_SLAVE_APPSS, .buswidth = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 20, }; static const u16 slv_snoc_cnoc_links[] = { QCM2290_MASTER_SNOC_CNOC, }; static struct qcom_icc_node slv_snoc_cnoc = { .name = "slv_snoc_cnoc", .id = QCM2290_SLAVE_SNOC_CNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 25, .num_links = ARRAY_SIZE(slv_snoc_cnoc_links), .links = slv_snoc_cnoc_links, }; static struct qcom_icc_node slv_imem = { .name = "slv_imem", .id = QCM2290_SLAVE_IMEM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 26, }; static struct qcom_icc_node slv_pimem = { .name = "slv_pimem", .id = QCM2290_SLAVE_PIMEM, .buswidth = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 166, }; static const u16 slv_snoc_bimc_links[] = { QCM2290_MASTER_SNOC_BIMC, }; static struct qcom_icc_node slv_snoc_bimc = { .name = "slv_snoc_bimc", .id = QCM2290_SLAVE_SNOC_BIMC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 24, .num_links = ARRAY_SIZE(slv_snoc_bimc_links), .links = slv_snoc_bimc_links, }; static struct qcom_icc_node slv_service_snoc = { .name = "slv_service_snoc", .id = QCM2290_SLAVE_SERVICE_SNOC, .buswidth = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 29, }; static struct qcom_icc_node slv_qdss_stm = { .name = "slv_qdss_stm", .id = QCM2290_SLAVE_QDSS_STM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 30, }; static struct qcom_icc_node slv_tcu = { .name = "slv_tcu", .id = QCM2290_SLAVE_TCU, .buswidth = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .mas_rpm_id = -1, .slv_rpm_id = 133, }; static const u16 slv_anoc_snoc_links[] = { QCM2290_MASTER_ANOC_SNOC, }; static struct qcom_icc_node slv_anoc_snoc = { .name = "slv_anoc_snoc", .id = QCM2290_SLAVE_ANOC_SNOC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 141, .num_links = ARRAY_SIZE(slv_anoc_snoc_links), .links = slv_anoc_snoc_links, }; /* NoC descriptors */ static struct qcom_icc_node * const qcm2290_bimc_nodes[] = { [MASTER_APPSS_PROC] = &mas_appss_proc, [MASTER_SNOC_BIMC_RT] = &mas_snoc_bimc_rt, [MASTER_SNOC_BIMC_NRT] = &mas_snoc_bimc_nrt, [MASTER_SNOC_BIMC] = &mas_snoc_bimc, [MASTER_TCU_0] = &mas_tcu_0, [MASTER_GFX3D] = &mas_gfx3d, [SLAVE_EBI1] = &slv_ebi1, [SLAVE_BIMC_SNOC] = &slv_bimc_snoc, }; static const struct regmap_config qcm2290_bimc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x80000, .fast_io = true, }; static const struct qcom_icc_desc qcm2290_bimc = { .type = QCOM_ICC_BIMC, .nodes = qcm2290_bimc_nodes, .num_nodes = ARRAY_SIZE(qcm2290_bimc_nodes), .bus_clk_desc = &bimc_clk, .regmap_cfg = &qcm2290_bimc_regmap_config, .keep_alive = true, /* M_REG_BASE() in vendor msm_bus_bimc_adhoc driver */ .qos_offset = 0x8000, }; static struct qcom_icc_node * const qcm2290_cnoc_nodes[] = { [MASTER_SNOC_CNOC] = &mas_snoc_cnoc, [MASTER_QDSS_DAP] = &mas_qdss_dap, [SLAVE_BIMC_CFG] = &slv_bimc_cfg, [SLAVE_CAMERA_NRT_THROTTLE_CFG] = &slv_camera_nrt_throttle_cfg, [SLAVE_CAMERA_RT_THROTTLE_CFG] = &slv_camera_rt_throttle_cfg, [SLAVE_CAMERA_CFG] = &slv_camera_cfg, [SLAVE_CLK_CTL] = &slv_clk_ctl, [SLAVE_CRYPTO_0_CFG] = &slv_crypto_0_cfg, [SLAVE_DISPLAY_CFG] = &slv_display_cfg, [SLAVE_DISPLAY_THROTTLE_CFG] = &slv_display_throttle_cfg, [SLAVE_GPU_CFG] = &slv_gpu_cfg, [SLAVE_HWKM] = &slv_hwkm, [SLAVE_IMEM_CFG] = &slv_imem_cfg, [SLAVE_IPA_CFG] = &slv_ipa_cfg, [SLAVE_LPASS] = &slv_lpass, [SLAVE_MESSAGE_RAM] = &slv_message_ram, [SLAVE_PDM] = &slv_pdm, [SLAVE_PIMEM_CFG] = &slv_pimem_cfg, [SLAVE_PKA_WRAPPER] = &slv_pka_wrapper, [SLAVE_PMIC_ARB] = &slv_pmic_arb, [SLAVE_PRNG] = &slv_prng, [SLAVE_QDSS_CFG] = &slv_qdss_cfg, [SLAVE_QM_CFG] = &slv_qm_cfg, [SLAVE_QM_MPU_CFG] = &slv_qm_mpu_cfg, [SLAVE_QPIC] = &slv_qpic, [SLAVE_QUP_0] = &slv_qup_0, [SLAVE_SDCC_1] = &slv_sdcc_1, [SLAVE_SDCC_2] = &slv_sdcc_2, [SLAVE_SNOC_CFG] = &slv_snoc_cfg, [SLAVE_TCSR] = &slv_tcsr, [SLAVE_USB3] = &slv_usb3, [SLAVE_VENUS_CFG] = &slv_venus_cfg, [SLAVE_VENUS_THROTTLE_CFG] = &slv_venus_throttle_cfg, [SLAVE_VSENSE_CTRL_CFG] = &slv_vsense_ctrl_cfg, [SLAVE_SERVICE_CNOC] = &slv_service_cnoc, }; static const struct regmap_config qcm2290_cnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x8200, .fast_io = true, }; static const struct qcom_icc_desc qcm2290_cnoc = { .type = QCOM_ICC_NOC, .nodes = qcm2290_cnoc_nodes, .num_nodes = ARRAY_SIZE(qcm2290_cnoc_nodes), .bus_clk_desc = &bus_1_clk, .regmap_cfg = &qcm2290_cnoc_regmap_config, .keep_alive = true, }; static struct qcom_icc_node * const qcm2290_snoc_nodes[] = { [MASTER_CRYPTO_CORE0] = &mas_crypto_core0, [MASTER_SNOC_CFG] = &mas_snoc_cfg, [MASTER_TIC] = &mas_tic, [MASTER_ANOC_SNOC] = &mas_anoc_snoc, [MASTER_BIMC_SNOC] = &mas_bimc_snoc, [MASTER_PIMEM] = &mas_pimem, [MASTER_QDSS_BAM] = &mas_qdss_bam, [MASTER_QUP_0] = &mas_qup_0, [MASTER_IPA] = &mas_ipa, [MASTER_QDSS_ETR] = &mas_qdss_etr, [MASTER_SDCC_1] = &mas_sdcc_1, [MASTER_SDCC_2] = &mas_sdcc_2, [MASTER_QPIC] = &mas_qpic, [MASTER_USB3_0] = &mas_usb3_0, [SLAVE_APPSS] = &slv_appss, [SLAVE_SNOC_CNOC] = &slv_snoc_cnoc, [SLAVE_IMEM] = &slv_imem, [SLAVE_PIMEM] = &slv_pimem, [SLAVE_SNOC_BIMC] = &slv_snoc_bimc, [SLAVE_SERVICE_SNOC] = &slv_service_snoc, [SLAVE_QDSS_STM] = &slv_qdss_stm, [SLAVE_TCU] = &slv_tcu, [SLAVE_ANOC_SNOC] = &slv_anoc_snoc, }; static const struct regmap_config qcm2290_snoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x60200, .fast_io = true, }; static const struct qcom_icc_desc qcm2290_snoc = { .type = QCOM_ICC_QNOC, .nodes = qcm2290_snoc_nodes, .num_nodes = ARRAY_SIZE(qcm2290_snoc_nodes), .bus_clk_desc = &bus_2_clk, .regmap_cfg = &qcm2290_snoc_regmap_config, .keep_alive = true, /* Vendor DT node fab-sys_noc property 'qcom,base-offset' */ .qos_offset = 0x15000, }; static struct qcom_icc_node * const qcm2290_qup_virt_nodes[] = { [MASTER_QUP_CORE_0] = &mas_qup_core_0, [SLAVE_QUP_CORE_0] = &slv_qup_core_0 }; static const struct qcom_icc_desc qcm2290_qup_virt = { .type = QCOM_ICC_QNOC, .nodes = qcm2290_qup_virt_nodes, .num_nodes = ARRAY_SIZE(qcm2290_qup_virt_nodes), .bus_clk_desc = &qup_clk, .keep_alive = true, }; static struct qcom_icc_node * const qcm2290_mmnrt_virt_nodes[] = { [MASTER_CAMNOC_SF] = &mas_camnoc_sf, [MASTER_VIDEO_P0] = &mas_video_p0, [MASTER_VIDEO_PROC] = &mas_video_proc, [SLAVE_SNOC_BIMC_NRT] = &slv_snoc_bimc_nrt, }; static const struct qcom_icc_desc qcm2290_mmnrt_virt = { .type = QCOM_ICC_QNOC, .nodes = qcm2290_mmnrt_virt_nodes, .num_nodes = ARRAY_SIZE(qcm2290_mmnrt_virt_nodes), .bus_clk_desc = &mmaxi_0_clk, .regmap_cfg = &qcm2290_snoc_regmap_config, .keep_alive = true, .qos_offset = 0x15000, }; static struct qcom_icc_node * const qcm2290_mmrt_virt_nodes[] = { [MASTER_CAMNOC_HF] = &mas_camnoc_hf, [MASTER_MDP0] = &mas_mdp0, [SLAVE_SNOC_BIMC_RT] = &slv_snoc_bimc_rt, }; static const struct qcom_icc_desc qcm2290_mmrt_virt = { .type = QCOM_ICC_QNOC, .nodes = qcm2290_mmrt_virt_nodes, .num_nodes = ARRAY_SIZE(qcm2290_mmrt_virt_nodes), .bus_clk_desc = &mmaxi_1_clk, .regmap_cfg = &qcm2290_snoc_regmap_config, .keep_alive = true, .qos_offset = 0x15000, }; static const struct of_device_id qcm2290_noc_of_match[] = { { .compatible = "qcom,qcm2290-bimc", .data = &qcm2290_bimc }, { .compatible = "qcom,qcm2290-cnoc", .data = &qcm2290_cnoc }, { .compatible = "qcom,qcm2290-snoc", .data = &qcm2290_snoc }, { .compatible = "qcom,qcm2290-qup-virt", .data = &qcm2290_qup_virt }, { .compatible = "qcom,qcm2290-mmrt-virt", .data = &qcm2290_mmrt_virt }, { .compatible = "qcom,qcm2290-mmnrt-virt", .data = &qcm2290_mmnrt_virt }, { }, }; MODULE_DEVICE_TABLE(of, qcm2290_noc_of_match); static struct platform_driver qcm2290_noc_driver = { .probe = qnoc_probe, .remove = qnoc_remove, .driver = { .name = "qnoc-qcm2290", .of_match_table = qcm2290_noc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qcm2290_noc_driver); MODULE_DESCRIPTION("Qualcomm QCM2290 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/qcm2290.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. * */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sc7180.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sc7180.h" static struct qcom_icc_node qhm_a1noc_cfg = { .name = "qhm_a1noc_cfg", .id = SC7180_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SC7180_MASTER_QSPI, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup_0 = { .name = "qhm_qup_0", .id = SC7180_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SC7180_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_emmc = { .name = "xm_emmc", .id = SC7180_MASTER_EMMC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SC7180_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_a2noc_cfg = { .name = "qhm_a2noc_cfg", .id = SC7180_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SC7180_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup_1 = { .name = "qhm_qup_1", .id = SC7180_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SC7180_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SC7180_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SC7180_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_usb3 = { .name = "qhm_usb3", .id = SC7180_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_camnoc_hf0_uncomp = { .name = "qxm_camnoc_hf0_uncomp", .id = SC7180_MASTER_CAMNOC_HF0_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_hf1_uncomp = { .name = "qxm_camnoc_hf1_uncomp", .id = SC7180_MASTER_CAMNOC_HF1_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_sf_uncomp = { .name = "qxm_camnoc_sf_uncomp", .id = SC7180_MASTER_CAMNOC_SF_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qnm_npu = { .name = "qnm_npu", .id = SC7180_MASTER_NPU, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_CDSP_GEM_NOC }, }; static struct qcom_icc_node qxm_npu_dsp = { .name = "qxm_npu_dsp", .id = SC7180_MASTER_NPU_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_CDSP_GEM_NOC }, }; static struct qcom_icc_node qnm_snoc = { .name = "qnm_snoc", .id = SC7180_MASTER_SNOC_CNOC, .channels = 1, .buswidth = 8, .num_links = 51, .links = { SC7180_SLAVE_A1NOC_CFG, SC7180_SLAVE_A2NOC_CFG, SC7180_SLAVE_AHB2PHY_SOUTH, SC7180_SLAVE_AHB2PHY_CENTER, SC7180_SLAVE_AOP, SC7180_SLAVE_AOSS, SC7180_SLAVE_BOOT_ROM, SC7180_SLAVE_CAMERA_CFG, SC7180_SLAVE_CAMERA_NRT_THROTTLE_CFG, SC7180_SLAVE_CAMERA_RT_THROTTLE_CFG, SC7180_SLAVE_CLK_CTL, SC7180_SLAVE_RBCPR_CX_CFG, SC7180_SLAVE_RBCPR_MX_CFG, SC7180_SLAVE_CRYPTO_0_CFG, SC7180_SLAVE_DCC_CFG, SC7180_SLAVE_CNOC_DDRSS, SC7180_SLAVE_DISPLAY_CFG, SC7180_SLAVE_DISPLAY_RT_THROTTLE_CFG, SC7180_SLAVE_DISPLAY_THROTTLE_CFG, SC7180_SLAVE_EMMC_CFG, SC7180_SLAVE_GLM, SC7180_SLAVE_GFX3D_CFG, SC7180_SLAVE_IMEM_CFG, SC7180_SLAVE_IPA_CFG, SC7180_SLAVE_CNOC_MNOC_CFG, SC7180_SLAVE_CNOC_MSS, SC7180_SLAVE_NPU_CFG, SC7180_SLAVE_NPU_DMA_BWMON_CFG, SC7180_SLAVE_NPU_PROC_BWMON_CFG, SC7180_SLAVE_PDM, SC7180_SLAVE_PIMEM_CFG, SC7180_SLAVE_PRNG, SC7180_SLAVE_QDSS_CFG, SC7180_SLAVE_QM_CFG, SC7180_SLAVE_QM_MPU_CFG, SC7180_SLAVE_QSPI_0, SC7180_SLAVE_QUP_0, SC7180_SLAVE_QUP_1, SC7180_SLAVE_SDCC_2, SC7180_SLAVE_SECURITY, SC7180_SLAVE_SNOC_CFG, SC7180_SLAVE_TCSR, SC7180_SLAVE_TLMM_WEST, SC7180_SLAVE_TLMM_NORTH, SC7180_SLAVE_TLMM_SOUTH, SC7180_SLAVE_UFS_MEM_CFG, SC7180_SLAVE_USB3, SC7180_SLAVE_VENUS_CFG, SC7180_SLAVE_VENUS_THROTTLE_CFG, SC7180_SLAVE_VSENSE_CTRL_CFG, SC7180_SLAVE_SERVICE_CNOC }, }; static struct qcom_icc_node xm_qdss_dap = { .name = "xm_qdss_dap", .id = SC7180_MASTER_QDSS_DAP, .channels = 1, .buswidth = 8, .num_links = 51, .links = { SC7180_SLAVE_A1NOC_CFG, SC7180_SLAVE_A2NOC_CFG, SC7180_SLAVE_AHB2PHY_SOUTH, SC7180_SLAVE_AHB2PHY_CENTER, SC7180_SLAVE_AOP, SC7180_SLAVE_AOSS, SC7180_SLAVE_BOOT_ROM, SC7180_SLAVE_CAMERA_CFG, SC7180_SLAVE_CAMERA_NRT_THROTTLE_CFG, SC7180_SLAVE_CAMERA_RT_THROTTLE_CFG, SC7180_SLAVE_CLK_CTL, SC7180_SLAVE_RBCPR_CX_CFG, SC7180_SLAVE_RBCPR_MX_CFG, SC7180_SLAVE_CRYPTO_0_CFG, SC7180_SLAVE_DCC_CFG, SC7180_SLAVE_CNOC_DDRSS, SC7180_SLAVE_DISPLAY_CFG, SC7180_SLAVE_DISPLAY_RT_THROTTLE_CFG, SC7180_SLAVE_DISPLAY_THROTTLE_CFG, SC7180_SLAVE_EMMC_CFG, SC7180_SLAVE_GLM, SC7180_SLAVE_GFX3D_CFG, SC7180_SLAVE_IMEM_CFG, SC7180_SLAVE_IPA_CFG, SC7180_SLAVE_CNOC_MNOC_CFG, SC7180_SLAVE_CNOC_MSS, SC7180_SLAVE_NPU_CFG, SC7180_SLAVE_NPU_DMA_BWMON_CFG, SC7180_SLAVE_NPU_PROC_BWMON_CFG, SC7180_SLAVE_PDM, SC7180_SLAVE_PIMEM_CFG, SC7180_SLAVE_PRNG, SC7180_SLAVE_QDSS_CFG, SC7180_SLAVE_QM_CFG, SC7180_SLAVE_QM_MPU_CFG, SC7180_SLAVE_QSPI_0, SC7180_SLAVE_QUP_0, SC7180_SLAVE_QUP_1, SC7180_SLAVE_SDCC_2, SC7180_SLAVE_SECURITY, SC7180_SLAVE_SNOC_CFG, SC7180_SLAVE_TCSR, SC7180_SLAVE_TLMM_WEST, SC7180_SLAVE_TLMM_NORTH, SC7180_SLAVE_TLMM_SOUTH, SC7180_SLAVE_UFS_MEM_CFG, SC7180_SLAVE_USB3, SC7180_SLAVE_VENUS_CFG, SC7180_SLAVE_VENUS_THROTTLE_CFG, SC7180_SLAVE_VSENSE_CTRL_CFG, SC7180_SLAVE_SERVICE_CNOC }, }; static struct qcom_icc_node qhm_cnoc_dc_noc = { .name = "qhm_cnoc_dc_noc", .id = SC7180_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SC7180_SLAVE_GEM_NOC_CFG, SC7180_SLAVE_LLCC_CFG }, }; static struct qcom_icc_node acm_apps0 = { .name = "acm_apps0", .id = SC7180_MASTER_APPSS_PROC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SC7180_SLAVE_GEM_NOC_SNOC, SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node acm_sys_tcu = { .name = "acm_sys_tcu", .id = SC7180_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC7180_SLAVE_GEM_NOC_SNOC, SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node qhm_gemnoc_cfg = { .name = "qhm_gemnoc_cfg", .id = SC7180_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SC7180_SLAVE_MSS_PROC_MS_MPU_CFG, SC7180_SLAVE_SERVICE_GEM_NOC }, }; static struct qcom_icc_node qnm_cmpnoc = { .name = "qnm_cmpnoc", .id = SC7180_MASTER_COMPUTE_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SC7180_SLAVE_GEM_NOC_SNOC, SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SC7180_MASTER_MNOC_HF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SC7180_MASTER_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SC7180_SLAVE_GEM_NOC_SNOC, SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SC7180_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SC7180_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node qxm_gpu = { .name = "qxm_gpu", .id = SC7180_MASTER_GFX3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC7180_SLAVE_GEM_NOC_SNOC, SC7180_SLAVE_LLCC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SC7180_MASTER_LLCC, .channels = 2, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_EBI1 }, }; static struct qcom_icc_node qhm_mnoc_cfg = { .name = "qhm_mnoc_cfg", .id = SC7180_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qxm_camnoc_hf0 = { .name = "qxm_camnoc_hf0", .id = SC7180_MASTER_CAMNOC_HF0, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_hf1 = { .name = "qxm_camnoc_hf1", .id = SC7180_MASTER_CAMNOC_HF1, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_sf = { .name = "qxm_camnoc_sf", .id = SC7180_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SC7180_MASTER_MDP0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_rot = { .name = "qxm_rot", .id = SC7180_MASTER_ROTATOR, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7180_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus0 = { .name = "qxm_venus0", .id = SC7180_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus_arm9 = { .name = "qxm_venus_arm9", .id = SC7180_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node amm_npu_sys = { .name = "amm_npu_sys", .id = SC7180_MASTER_NPU_SYS, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC7180_SLAVE_NPU_COMPUTE_NOC }, }; static struct qcom_icc_node qhm_npu_cfg = { .name = "qhm_npu_cfg", .id = SC7180_MASTER_NPU_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 8, .links = { SC7180_SLAVE_NPU_CAL_DP0, SC7180_SLAVE_NPU_CP, SC7180_SLAVE_NPU_INT_DMA_BWMON_CFG, SC7180_SLAVE_NPU_DPM, SC7180_SLAVE_ISENSE_CFG, SC7180_SLAVE_NPU_LLM_CFG, SC7180_SLAVE_NPU_TCM, SC7180_SLAVE_SERVICE_NPU_NOC }, }; static struct qcom_icc_node qup_core_master_1 = { .name = "qup_core_master_1", .id = SC7180_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup_core_master_2 = { .name = "qup_core_master_2", .id = SC7180_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SC7180_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SC7180_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 6, .links = { SC7180_SLAVE_APPSS, SC7180_SLAVE_SNOC_CNOC, SC7180_SLAVE_SNOC_GEM_NOC_SF, SC7180_SLAVE_IMEM, SC7180_SLAVE_PIMEM, SC7180_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SC7180_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 7, .links = { SC7180_SLAVE_APPSS, SC7180_SLAVE_SNOC_CNOC, SC7180_SLAVE_SNOC_GEM_NOC_SF, SC7180_SLAVE_IMEM, SC7180_SLAVE_PIMEM, SC7180_SLAVE_QDSS_STM, SC7180_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc = { .name = "qnm_gemnoc", .id = SC7180_MASTER_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 6, .links = { SC7180_SLAVE_APPSS, SC7180_SLAVE_SNOC_CNOC, SC7180_SLAVE_IMEM, SC7180_SLAVE_PIMEM, SC7180_SLAVE_QDSS_STM, SC7180_SLAVE_TCU }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SC7180_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC7180_SLAVE_SNOC_GEM_NOC_GC, SC7180_SLAVE_IMEM }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SC7180_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7180_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SC7180_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SC7180_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7180_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SC7180_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_camnoc_uncomp = { .name = "qns_camnoc_uncomp", .id = SC7180_SLAVE_CAMNOC_UNCOMP, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qns_cdsp_gemnoc = { .name = "qns_cdsp_gemnoc", .id = SC7180_SLAVE_CDSP_GEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node qhs_a1_noc_cfg = { .name = "qhs_a1_noc_cfg", .id = SC7180_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qhs_a2_noc_cfg = { .name = "qhs_a2_noc_cfg", .id = SC7180_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SC7180_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy2 = { .name = "qhs_ahb2phy2", .id = SC7180_SLAVE_AHB2PHY_CENTER, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aop = { .name = "qhs_aop", .id = SC7180_SLAVE_AOP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SC7180_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_boot_rom = { .name = "qhs_boot_rom", .id = SC7180_SLAVE_BOOT_ROM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SC7180_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_nrt_throttle_cfg = { .name = "qhs_camera_nrt_throttle_cfg", .id = SC7180_SLAVE_CAMERA_NRT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_rt_throttle_cfg = { .name = "qhs_camera_rt_throttle_cfg", .id = SC7180_SLAVE_CAMERA_RT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SC7180_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SC7180_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SC7180_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SC7180_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SC7180_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SC7180_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SC7180_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display_rt_throttle_cfg = { .name = "qhs_display_rt_throttle_cfg", .id = SC7180_SLAVE_DISPLAY_RT_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display_throttle_cfg = { .name = "qhs_display_throttle_cfg", .id = SC7180_SLAVE_DISPLAY_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emmc_cfg = { .name = "qhs_emmc_cfg", .id = SC7180_SLAVE_EMMC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_glm = { .name = "qhs_glm", .id = SC7180_SLAVE_GLM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SC7180_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SC7180_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SC7180_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mnoc_cfg = { .name = "qhs_mnoc_cfg", .id = SC7180_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SC7180_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_npu_cfg = { .name = "qhs_npu_cfg", .id = SC7180_SLAVE_NPU_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_MASTER_NPU_NOC_CFG }, }; static struct qcom_icc_node qhs_npu_dma_throttle_cfg = { .name = "qhs_npu_dma_throttle_cfg", .id = SC7180_SLAVE_NPU_DMA_BWMON_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_npu_dsp_throttle_cfg = { .name = "qhs_npu_dsp_throttle_cfg", .id = SC7180_SLAVE_NPU_PROC_BWMON_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SC7180_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SC7180_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SC7180_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SC7180_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qm_cfg = { .name = "qhs_qm_cfg", .id = SC7180_SLAVE_QM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qm_mpu_cfg = { .name = "qhs_qm_mpu_cfg", .id = SC7180_SLAVE_QM_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SC7180_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SC7180_SLAVE_QUP_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SC7180_SLAVE_QUP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SC7180_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_security = { .name = "qhs_security", .id = SC7180_SLAVE_SECURITY, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SC7180_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SC7180_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_1 = { .name = "qhs_tlmm_1", .id = SC7180_SLAVE_TLMM_WEST, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_2 = { .name = "qhs_tlmm_2", .id = SC7180_SLAVE_TLMM_NORTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_3 = { .name = "qhs_tlmm_3", .id = SC7180_SLAVE_TLMM_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SC7180_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3 = { .name = "qhs_usb3", .id = SC7180_SLAVE_USB3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SC7180_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_throttle_cfg = { .name = "qhs_venus_throttle_cfg", .id = SC7180_SLAVE_VENUS_THROTTLE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SC7180_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SC7180_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gemnoc = { .name = "qhs_gemnoc", .id = SC7180_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC7180_MASTER_GEM_NOC_CFG }, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SC7180_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mdsp_ms_mpu_cfg = { .name = "qhs_mdsp_ms_mpu_cfg", .id = SC7180_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gem_noc_snoc = { .name = "qns_gem_noc_snoc", .id = SC7180_SLAVE_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_MASTER_GEM_NOC_SNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SC7180_SLAVE_LLCC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7180_MASTER_LLCC }, }; static struct qcom_icc_node srvc_gemnoc = { .name = "srvc_gemnoc", .id = SC7180_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SC7180_SLAVE_EBI1, .channels = 2, .buswidth = 4, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SC7180_SLAVE_MNOC_HF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SC7180_SLAVE_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC7180_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SC7180_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cal_dp0 = { .name = "qhs_cal_dp0", .id = SC7180_SLAVE_NPU_CAL_DP0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cp = { .name = "qhs_cp", .id = SC7180_SLAVE_NPU_CP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dma_bwmon = { .name = "qhs_dma_bwmon", .id = SC7180_SLAVE_NPU_INT_DMA_BWMON_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dpm = { .name = "qhs_dpm", .id = SC7180_SLAVE_NPU_DPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_isense = { .name = "qhs_isense", .id = SC7180_SLAVE_ISENSE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_llm = { .name = "qhs_llm", .id = SC7180_SLAVE_NPU_LLM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcm = { .name = "qhs_tcm", .id = SC7180_SLAVE_NPU_TCM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_npu_sys = { .name = "qns_npu_sys", .id = SC7180_SLAVE_NPU_COMPUTE_NOC, .channels = 2, .buswidth = 32, }; static struct qcom_icc_node srvc_noc = { .name = "srvc_noc", .id = SC7180_SLAVE_SERVICE_NPU_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup_core_slave_1 = { .name = "qup_core_slave_1", .id = SC7180_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup_core_slave_2 = { .name = "qup_core_slave_2", .id = SC7180_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SC7180_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qns_cnoc = { .name = "qns_cnoc", .id = SC7180_SLAVE_SNOC_CNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_MASTER_SNOC_CNOC }, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SC7180_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC7180_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SC7180_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC7180_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SC7180_SLAVE_IMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SC7180_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SC7180_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SC7180_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SC7180_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 48, .nodes = { &qnm_snoc, &xm_qdss_dap, &qhs_a1_noc_cfg, &qhs_a2_noc_cfg, &qhs_ahb2phy0, &qhs_aop, &qhs_aoss, &qhs_boot_rom, &qhs_camera_cfg, &qhs_camera_nrt_throttle_cfg, &qhs_camera_rt_throttle_cfg, &qhs_clk_ctl, &qhs_cpr_cx, &qhs_cpr_mx, &qhs_crypto0_cfg, &qhs_dcc_cfg, &qhs_ddrss_cfg, &qhs_display_cfg, &qhs_display_rt_throttle_cfg, &qhs_display_throttle_cfg, &qhs_glm, &qhs_gpuss_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_mnoc_cfg, &qhs_mss_cfg, &qhs_npu_cfg, &qhs_npu_dma_throttle_cfg, &qhs_npu_dsp_throttle_cfg, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qm_cfg, &qhs_qm_mpu_cfg, &qhs_qup0, &qhs_qup1, &qhs_security, &qhs_snoc_cfg, &qhs_tcsr, &qhs_tlmm_1, &qhs_tlmm_2, &qhs_tlmm_3, &qhs_ufs_mem_cfg, &qhs_usb3, &qhs_venus_cfg, &qhs_venus_throttle_cfg, &qhs_vsense_ctrl_cfg, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .keepalive = false, .num_nodes = 8, .nodes = { &qxm_camnoc_hf0_uncomp, &qxm_camnoc_hf1_uncomp, &qxm_camnoc_sf_uncomp, &qhm_mnoc_cfg, &qxm_mdp0, &qxm_rot, &qxm_venus0, &qxm_venus_arm9 }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .keepalive = false, .num_nodes = 1, .nodes = { &acm_sys_tcu }, }; static struct qcom_icc_bcm bcm_mm2 = { .name = "MM2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = false, .num_nodes = 2, .nodes = { &qup_core_master_1, &qup_core_master_2 }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_cmpnoc }, }; static struct qcom_icc_bcm bcm_sh4 = { .name = "SH4", .keepalive = false, .num_nodes = 1, .nodes = { &acm_apps0 }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_cdsp_gemnoc }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_cn1 = { .name = "CN1", .keepalive = false, .num_nodes = 8, .nodes = { &qhm_qspi, &xm_sdc2, &xm_emmc, &qhs_ahb2phy2, &qhs_emmc_cfg, &qhs_pdm, &qhs_qspi, &qhs_sdc2 }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 2, .nodes = { &qxm_pimem, &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_co2 = { .name = "CO2", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_npu }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_co3 = { .name = "CO3", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_npu_dsp }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn12 = { .name = "SN12", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_gemnoc }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_cn1, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_A1NOC_CFG] = &qhm_a1noc_cfg, [MASTER_QSPI] = &qhm_qspi, [MASTER_QUP_0] = &qhm_qup_0, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_EMMC] = &xm_emmc, [MASTER_UFS_MEM] = &xm_ufs_mem, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sc7180_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_A2NOC_CFG] = &qhm_a2noc_cfg, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_1] = &qhm_qup_1, [MASTER_USB3] = &qhm_usb3, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_QDSS_ETR] = &xm_qdss_etr, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sc7180_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const camnoc_virt_bcms[] = { &bcm_mm1, }; static struct qcom_icc_node * const camnoc_virt_nodes[] = { [MASTER_CAMNOC_HF0_UNCOMP] = &qxm_camnoc_hf0_uncomp, [MASTER_CAMNOC_HF1_UNCOMP] = &qxm_camnoc_hf1_uncomp, [MASTER_CAMNOC_SF_UNCOMP] = &qxm_camnoc_sf_uncomp, [SLAVE_CAMNOC_UNCOMP] = &qns_camnoc_uncomp, }; static const struct qcom_icc_desc sc7180_camnoc_virt = { .nodes = camnoc_virt_nodes, .num_nodes = ARRAY_SIZE(camnoc_virt_nodes), .bcms = camnoc_virt_bcms, .num_bcms = ARRAY_SIZE(camnoc_virt_bcms), }; static struct qcom_icc_bcm * const compute_noc_bcms[] = { &bcm_co0, &bcm_co2, &bcm_co3, }; static struct qcom_icc_node * const compute_noc_nodes[] = { [MASTER_NPU] = &qnm_npu, [MASTER_NPU_PROC] = &qxm_npu_dsp, [SLAVE_CDSP_GEM_NOC] = &qns_cdsp_gemnoc, }; static const struct qcom_icc_desc sc7180_compute_noc = { .nodes = compute_noc_nodes, .num_nodes = ARRAY_SIZE(compute_noc_nodes), .bcms = compute_noc_bcms, .num_bcms = ARRAY_SIZE(compute_noc_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, &bcm_cn1, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_SNOC_CNOC] = &qnm_snoc, [MASTER_QDSS_DAP] = &xm_qdss_dap, [SLAVE_A1NOC_CFG] = &qhs_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qhs_a2_noc_cfg, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_CENTER] = &qhs_ahb2phy2, [SLAVE_AOP] = &qhs_aop, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_BOOT_ROM] = &qhs_boot_rom, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CAMERA_NRT_THROTTLE_CFG] = &qhs_camera_nrt_throttle_cfg, [SLAVE_CAMERA_RT_THROTTLE_CFG] = &qhs_camera_rt_throttle_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_DISPLAY_RT_THROTTLE_CFG] = &qhs_display_rt_throttle_cfg, [SLAVE_DISPLAY_THROTTLE_CFG] = &qhs_display_throttle_cfg, [SLAVE_EMMC_CFG] = &qhs_emmc_cfg, [SLAVE_GLM] = &qhs_glm, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_CNOC_MNOC_CFG] = &qhs_mnoc_cfg, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_NPU_CFG] = &qhs_npu_cfg, [SLAVE_NPU_DMA_BWMON_CFG] = &qhs_npu_dma_throttle_cfg, [SLAVE_NPU_PROC_BWMON_CFG] = &qhs_npu_dsp_throttle_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QM_CFG] = &qhs_qm_cfg, [SLAVE_QM_MPU_CFG] = &qhs_qm_mpu_cfg, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SECURITY] = &qhs_security, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM_WEST] = &qhs_tlmm_1, [SLAVE_TLMM_NORTH] = &qhs_tlmm_2, [SLAVE_TLMM_SOUTH] = &qhs_tlmm_3, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3] = &qhs_usb3, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VENUS_THROTTLE_CFG] = &qhs_venus_throttle_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, }; static const struct qcom_icc_desc sc7180_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qhm_cnoc_dc_noc, [SLAVE_GEM_NOC_CFG] = &qhs_gemnoc, [SLAVE_LLCC_CFG] = &qhs_llcc, }; static const struct qcom_icc_desc sc7180_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, &bcm_sh3, &bcm_sh4, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_APPSS_PROC] = &acm_apps0, [MASTER_SYS_TCU] = &acm_sys_tcu, [MASTER_GEM_NOC_CFG] = &qhm_gemnoc_cfg, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [MASTER_GFX3D] = &qxm_gpu, [SLAVE_MSS_PROC_MS_MPU_CFG] = &qhs_mdsp_ms_mpu_cfg, [SLAVE_GEM_NOC_SNOC] = &qns_gem_noc_snoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_SERVICE_GEM_NOC] = &srvc_gemnoc, }; static const struct qcom_icc_desc sc7180_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, }; static const struct qcom_icc_desc sc7180_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm2, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &qhm_mnoc_cfg, [MASTER_CAMNOC_HF0] = &qxm_camnoc_hf0, [MASTER_CAMNOC_HF1] = &qxm_camnoc_hf1, [MASTER_CAMNOC_SF] = &qxm_camnoc_sf, [MASTER_MDP0] = &qxm_mdp0, [MASTER_ROTATOR] = &qxm_rot, [MASTER_VIDEO_P0] = &qxm_venus0, [MASTER_VIDEO_PROC] = &qxm_venus_arm9, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, }; static const struct qcom_icc_desc sc7180_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_node * const npu_noc_nodes[] = { [MASTER_NPU_SYS] = &amm_npu_sys, [MASTER_NPU_NOC_CFG] = &qhm_npu_cfg, [SLAVE_NPU_CAL_DP0] = &qhs_cal_dp0, [SLAVE_NPU_CP] = &qhs_cp, [SLAVE_NPU_INT_DMA_BWMON_CFG] = &qhs_dma_bwmon, [SLAVE_NPU_DPM] = &qhs_dpm, [SLAVE_ISENSE_CFG] = &qhs_isense, [SLAVE_NPU_LLM_CFG] = &qhs_llm, [SLAVE_NPU_TCM] = &qhs_tcm, [SLAVE_NPU_COMPUTE_NOC] = &qns_npu_sys, [SLAVE_SERVICE_NPU_NOC] = &srvc_noc, }; static const struct qcom_icc_desc sc7180_npu_noc = { .nodes = npu_noc_nodes, .num_nodes = ARRAY_SIZE(npu_noc_nodes), }; static struct qcom_icc_bcm * const qup_virt_bcms[] = { &bcm_qup0, }; static struct qcom_icc_node * const qup_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup_core_master_1, [MASTER_QUP_CORE_1] = &qup_core_master_2, [SLAVE_QUP_CORE_0] = &qup_core_slave_1, [SLAVE_QUP_CORE_1] = &qup_core_slave_2, }; static const struct qcom_icc_desc sc7180_qup_virt = { .nodes = qup_virt_nodes, .num_nodes = ARRAY_SIZE(qup_virt_nodes), .bcms = qup_virt_bcms, .num_bcms = ARRAY_SIZE(qup_virt_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn2, &bcm_sn3, &bcm_sn4, &bcm_sn7, &bcm_sn9, &bcm_sn12, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_GEM_NOC_SNOC] = &qnm_gemnoc, [MASTER_PIMEM] = &qxm_pimem, [SLAVE_APPSS] = &qhs_apss, [SLAVE_SNOC_CNOC] = &qns_cnoc, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sc7180_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sc7180-aggre1-noc", .data = &sc7180_aggre1_noc}, { .compatible = "qcom,sc7180-aggre2-noc", .data = &sc7180_aggre2_noc}, { .compatible = "qcom,sc7180-camnoc-virt", .data = &sc7180_camnoc_virt}, { .compatible = "qcom,sc7180-compute-noc", .data = &sc7180_compute_noc}, { .compatible = "qcom,sc7180-config-noc", .data = &sc7180_config_noc}, { .compatible = "qcom,sc7180-dc-noc", .data = &sc7180_dc_noc}, { .compatible = "qcom,sc7180-gem-noc", .data = &sc7180_gem_noc}, { .compatible = "qcom,sc7180-mc-virt", .data = &sc7180_mc_virt}, { .compatible = "qcom,sc7180-mmss-noc", .data = &sc7180_mmss_noc}, { .compatible = "qcom,sc7180-npu-noc", .data = &sc7180_npu_noc}, { .compatible = "qcom,sc7180-qup-virt", .data = &sc7180_qup_virt}, { .compatible = "qcom,sc7180-system-noc", .data = &sc7180_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sc7180", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm SC7180 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sc7180.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2022, The Linux Foundation. All rights reserved. */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sdm670-rpmh.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sdm670.h" static struct qcom_icc_node qhm_a1noc_cfg = { .name = "qhm_a1noc_cfg", .id = SDM670_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SDM670_MASTER_BLSP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_tsif = { .name = "qhm_tsif", .id = SDM670_MASTER_TSIF, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_emmc = { .name = "xm_emmc", .id = SDM670_MASTER_EMMC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SDM670_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SDM670_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SDM670_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_a2noc_cfg = { .name = "qhm_a2noc_cfg", .id = SDM670_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SDM670_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SDM670_MASTER_BLSP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_cnoc = { .name = "qnm_cnoc", .id = SDM670_MASTER_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SDM670_MASTER_CRYPTO_CORE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SDM670_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SDM670_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SDM670_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_camnoc_hf0_uncomp = { .name = "qxm_camnoc_hf0_uncomp", .id = SDM670_MASTER_CAMNOC_HF0_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_hf1_uncomp = { .name = "qxm_camnoc_hf1_uncomp", .id = SDM670_MASTER_CAMNOC_HF1_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_sf_uncomp = { .name = "qxm_camnoc_sf_uncomp", .id = SDM670_MASTER_CAMNOC_SF_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qhm_spdm = { .name = "qhm_spdm", .id = SDM670_MASTER_SPDM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_CNOC_A2NOC }, }; static struct qcom_icc_node qnm_snoc = { .name = "qnm_snoc", .id = SDM670_MASTER_SNOC_CNOC, .channels = 1, .buswidth = 8, .num_links = 38, .links = { SDM670_SLAVE_TLMM_SOUTH, SDM670_SLAVE_CAMERA_CFG, SDM670_SLAVE_SDCC_4, SDM670_SLAVE_SDCC_2, SDM670_SLAVE_CNOC_MNOC_CFG, SDM670_SLAVE_UFS_MEM_CFG, SDM670_SLAVE_GLM, SDM670_SLAVE_PDM, SDM670_SLAVE_A2NOC_CFG, SDM670_SLAVE_QDSS_CFG, SDM670_SLAVE_DISPLAY_CFG, SDM670_SLAVE_TCSR, SDM670_SLAVE_DCC_CFG, SDM670_SLAVE_CNOC_DDRSS, SDM670_SLAVE_SNOC_CFG, SDM670_SLAVE_SOUTH_PHY_CFG, SDM670_SLAVE_GRAPHICS_3D_CFG, SDM670_SLAVE_VENUS_CFG, SDM670_SLAVE_TSIF, SDM670_SLAVE_CDSP_CFG, SDM670_SLAVE_AOP, SDM670_SLAVE_BLSP_2, SDM670_SLAVE_SERVICE_CNOC, SDM670_SLAVE_USB3, SDM670_SLAVE_IPA_CFG, SDM670_SLAVE_RBCPR_CX_CFG, SDM670_SLAVE_A1NOC_CFG, SDM670_SLAVE_AOSS, SDM670_SLAVE_PRNG, SDM670_SLAVE_VSENSE_CTRL_CFG, SDM670_SLAVE_EMMC_CFG, SDM670_SLAVE_BLSP_1, SDM670_SLAVE_SPDM_WRAPPER, SDM670_SLAVE_CRYPTO_0_CFG, SDM670_SLAVE_PIMEM_CFG, SDM670_SLAVE_TLMM_NORTH, SDM670_SLAVE_CLK_CTL, SDM670_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node qhm_cnoc = { .name = "qhm_cnoc", .id = SDM670_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SDM670_SLAVE_MEM_NOC_CFG, SDM670_SLAVE_LLCC_CFG }, }; static struct qcom_icc_node acm_l3 = { .name = "acm_l3", .id = SDM670_MASTER_AMPSS_M0, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SDM670_SLAVE_SERVICE_GNOC, SDM670_SLAVE_GNOC_SNOC, SDM670_SLAVE_GNOC_MEM_NOC }, }; static struct qcom_icc_node pm_gnoc_cfg = { .name = "pm_gnoc_cfg", .id = SDM670_MASTER_GNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_SERVICE_GNOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SDM670_MASTER_LLCC, .channels = 2, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_EBI_CH0 }, }; static struct qcom_icc_node acm_tcu = { .name = "acm_tcu", .id = SDM670_MASTER_TCU_0, .channels = 1, .buswidth = 8, .num_links = 3, .links = { SDM670_SLAVE_MEM_NOC_GNOC, SDM670_SLAVE_LLCC, SDM670_SLAVE_MEM_NOC_SNOC }, }; static struct qcom_icc_node qhm_memnoc_cfg = { .name = "qhm_memnoc_cfg", .id = SDM670_MASTER_MEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SDM670_SLAVE_SERVICE_MEM_NOC, SDM670_SLAVE_MSS_PROC_MS_MPU_CFG }, }; static struct qcom_icc_node qnm_apps = { .name = "qnm_apps", .id = SDM670_MASTER_GNOC_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SDM670_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SDM670_MASTER_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 3, .links = { SDM670_SLAVE_MEM_NOC_GNOC, SDM670_SLAVE_LLCC, SDM670_SLAVE_MEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SDM670_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SDM670_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SDM670_SLAVE_MEM_NOC_GNOC, SDM670_SLAVE_LLCC }, }; static struct qcom_icc_node qxm_gpu = { .name = "qxm_gpu", .id = SDM670_MASTER_GRAPHICS_3D, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SDM670_SLAVE_MEM_NOC_GNOC, SDM670_SLAVE_LLCC, SDM670_SLAVE_MEM_NOC_SNOC }, }; static struct qcom_icc_node qhm_mnoc_cfg = { .name = "qhm_mnoc_cfg", .id = SDM670_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qxm_camnoc_hf0 = { .name = "qxm_camnoc_hf0", .id = SDM670_MASTER_CAMNOC_HF0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_hf1 = { .name = "qxm_camnoc_hf1", .id = SDM670_MASTER_CAMNOC_HF1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_sf = { .name = "qxm_camnoc_sf", .id = SDM670_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SDM670_MASTER_MDP_PORT0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp1 = { .name = "qxm_mdp1", .id = SDM670_MASTER_MDP_PORT1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_rot = { .name = "qxm_rot", .id = SDM670_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus0 = { .name = "qxm_venus0", .id = SDM670_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus1 = { .name = "qxm_venus1", .id = SDM670_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus_arm9 = { .name = "qxm_venus_arm9", .id = SDM670_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SDM670_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SDM670_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 6, .links = { SDM670_SLAVE_PIMEM, SDM670_SLAVE_SNOC_MEM_NOC_SF, SDM670_SLAVE_OCIMEM, SDM670_SLAVE_APPSS, SDM670_SLAVE_SNOC_CNOC, SDM670_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SDM670_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 7, .links = { SDM670_SLAVE_PIMEM, SDM670_SLAVE_SNOC_MEM_NOC_SF, SDM670_SLAVE_OCIMEM, SDM670_SLAVE_APPSS, SDM670_SLAVE_SNOC_CNOC, SDM670_SLAVE_TCU, SDM670_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_gladiator_sodv = { .name = "qnm_gladiator_sodv", .id = SDM670_MASTER_GNOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 6, .links = { SDM670_SLAVE_PIMEM, SDM670_SLAVE_OCIMEM, SDM670_SLAVE_APPSS, SDM670_SLAVE_SNOC_CNOC, SDM670_SLAVE_TCU, SDM670_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_memnoc = { .name = "qnm_memnoc", .id = SDM670_MASTER_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 5, .links = { SDM670_SLAVE_OCIMEM, SDM670_SLAVE_APPSS, SDM670_SLAVE_PIMEM, SDM670_SLAVE_SNOC_CNOC, SDM670_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SDM670_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SDM670_SLAVE_OCIMEM, SDM670_SLAVE_SNOC_MEM_NOC_GC }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SDM670_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SDM670_SLAVE_OCIMEM, SDM670_SLAVE_SNOC_MEM_NOC_GC }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SDM670_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM670_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SDM670_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SDM670_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM670_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SDM670_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_camnoc_uncomp = { .name = "qns_camnoc_uncomp", .id = SDM670_SLAVE_CAMNOC_UNCOMP, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qhs_a1_noc_cfg = { .name = "qhs_a1_noc_cfg", .id = SDM670_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qhs_a2_noc_cfg = { .name = "qhs_a2_noc_cfg", .id = SDM670_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qhs_aop = { .name = "qhs_aop", .id = SDM670_SLAVE_AOP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SDM670_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SDM670_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SDM670_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_compute_dsp_cfg = { .name = "qhs_compute_dsp_cfg", .id = SDM670_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SDM670_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SDM670_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SDM670_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SDM670_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SDM670_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emmc_cfg = { .name = "qhs_emmc_cfg", .id = SDM670_SLAVE_EMMC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_glm = { .name = "qhs_glm", .id = SDM670_SLAVE_GLM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SDM670_SLAVE_GRAPHICS_3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SDM670_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SDM670_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mnoc_cfg = { .name = "qhs_mnoc_cfg", .id = SDM670_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SDM670_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_phy_refgen_south = { .name = "qhs_phy_refgen_south", .id = SDM670_SLAVE_SOUTH_PHY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SDM670_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SDM670_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SDM670_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qupv3_north = { .name = "qhs_qupv3_north", .id = SDM670_SLAVE_BLSP_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qupv3_south = { .name = "qhs_qupv3_south", .id = SDM670_SLAVE_BLSP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SDM670_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SDM670_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SDM670_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_spdm = { .name = "qhs_spdm", .id = SDM670_SLAVE_SPDM_WRAPPER, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SDM670_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_north = { .name = "qhs_tlmm_north", .id = SDM670_SLAVE_TLMM_NORTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_south = { .name = "qhs_tlmm_south", .id = SDM670_SLAVE_TLMM_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tsif = { .name = "qhs_tsif", .id = SDM670_SLAVE_TSIF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SDM670_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SDM670_SLAVE_USB3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SDM670_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SDM670_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_cnoc_a2noc = { .name = "qns_cnoc_a2noc", .id = SDM670_SLAVE_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_MASTER_CNOC_A2NOC }, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SDM670_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SDM670_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_memnoc = { .name = "qhs_memnoc", .id = SDM670_SLAVE_MEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM670_MASTER_MEM_NOC_CFG }, }; static struct qcom_icc_node qns_gladiator_sodv = { .name = "qns_gladiator_sodv", .id = SDM670_SLAVE_GNOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_MASTER_GNOC_SNOC }, }; static struct qcom_icc_node qns_gnoc_memnoc = { .name = "qns_gnoc_memnoc", .id = SDM670_SLAVE_GNOC_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SDM670_MASTER_GNOC_MEM_NOC }, }; static struct qcom_icc_node srvc_gnoc = { .name = "srvc_gnoc", .id = SDM670_SLAVE_SERVICE_GNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SDM670_SLAVE_EBI_CH0, .channels = 2, .buswidth = 4, }; static struct qcom_icc_node qhs_mdsp_ms_mpu_cfg = { .name = "qhs_mdsp_ms_mpu_cfg", .id = SDM670_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_apps_io = { .name = "qns_apps_io", .id = SDM670_SLAVE_MEM_NOC_GNOC, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SDM670_SLAVE_LLCC, .channels = 2, .buswidth = 16, .num_links = 1, .links = { SDM670_MASTER_LLCC }, }; static struct qcom_icc_node qns_memnoc_snoc = { .name = "qns_memnoc_snoc", .id = SDM670_SLAVE_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_MASTER_MEM_NOC_SNOC }, }; static struct qcom_icc_node srvc_memnoc = { .name = "srvc_memnoc", .id = SDM670_SLAVE_SERVICE_MEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns2_mem_noc = { .name = "qns2_mem_noc", .id = SDM670_SLAVE_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM670_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SDM670_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SDM670_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SDM670_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SDM670_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qns_cnoc = { .name = "qns_cnoc", .id = SDM670_SLAVE_SNOC_CNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_MASTER_SNOC_CNOC }, }; static struct qcom_icc_node qns_memnoc_gc = { .name = "qns_memnoc_gc", .id = SDM670_SLAVE_SNOC_MEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM670_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_memnoc_sf = { .name = "qns_memnoc_sf", .id = SDM670_SLAVE_SNOC_MEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM670_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SDM670_SLAVE_OCIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SDM670_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SDM670_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SDM670_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SDM670_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_sh1 = { .name = "SH1", .keepalive = false, .num_nodes = 1, .nodes = { &qns_apps_io }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .keepalive = true, .num_nodes = 7, .nodes = { &qxm_camnoc_hf0_uncomp, &qxm_camnoc_hf1_uncomp, &qxm_camnoc_sf_uncomp, &qxm_camnoc_hf0, &qxm_camnoc_hf1, &qxm_mdp0, &qxm_mdp1 }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_memnoc_snoc }, }; static struct qcom_icc_bcm bcm_mm2 = { .name = "MM2", .keepalive = false, .num_nodes = 1, .nodes = { &qns2_mem_noc }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &acm_tcu }, }; static struct qcom_icc_bcm bcm_mm3 = { .name = "MM3", .keepalive = false, .num_nodes = 5, .nodes = { &qxm_camnoc_sf, &qxm_rot, &qxm_venus0, &qxm_venus1, &qxm_venus_arm9 }, }; static struct qcom_icc_bcm bcm_sh5 = { .name = "SH5", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_memnoc_sf }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 41, .nodes = { &qhm_spdm, &qnm_snoc, &qhs_a1_noc_cfg, &qhs_a2_noc_cfg, &qhs_aop, &qhs_aoss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute_dsp_cfg, &qhs_cpr_cx, &qhs_crypto0_cfg, &qhs_dcc_cfg, &qhs_ddrss_cfg, &qhs_display_cfg, &qhs_emmc_cfg, &qhs_glm, &qhs_gpuss_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_mnoc_cfg, &qhs_pdm, &qhs_phy_refgen_south, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qupv3_north, &qhs_qupv3_south, &qhs_sdc2, &qhs_sdc4, &qhs_snoc_cfg, &qhs_spdm, &qhs_tcsr, &qhs_tlmm_north, &qhs_tlmm_south, &qhs_tsif, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qns_cnoc_a2noc, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_qup1, &qhm_qup2 }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_memnoc_gc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &qns_cnoc }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 2, .nodes = { &qxm_pimem, &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .keepalive = false, .num_nodes = 2, .nodes = { &qnm_aggre1_noc, &srvc_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn10 = { .name = "SN10", .keepalive = false, .num_nodes = 2, .nodes = { &qnm_aggre2_noc, &srvc_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn11 = { .name = "SN11", .keepalive = false, .num_nodes = 2, .nodes = { &qnm_gladiator_sodv, &xm_gic }, }; static struct qcom_icc_bcm bcm_sn13 = { .name = "SN13", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_memnoc }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_qup0, &bcm_sn8, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_A1NOC_CFG] = &qhm_a1noc_cfg, [MASTER_BLSP_1] = &qhm_qup1, [MASTER_TSIF] = &qhm_tsif, [MASTER_EMMC] = &xm_emmc, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_MEM] = &xm_ufs_mem, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sdm670_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, &bcm_qup0, &bcm_sn10, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_A2NOC_CFG] = &qhm_a2noc_cfg, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_BLSP_2] = &qhm_qup2, [MASTER_CNOC_A2NOC] = &qnm_cnoc, [MASTER_CRYPTO_CORE_0] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_USB3] = &xm_usb3_0, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sdm670_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_SPDM] = &qhm_spdm, [MASTER_SNOC_CNOC] = &qnm_snoc, [SLAVE_A1NOC_CFG] = &qhs_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qhs_a2_noc_cfg, [SLAVE_AOP] = &qhs_aop, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute_dsp_cfg, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_EMMC_CFG] = &qhs_emmc_cfg, [SLAVE_GLM] = &qhs_glm, [SLAVE_GRAPHICS_3D_CFG] = &qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_CNOC_MNOC_CFG] = &qhs_mnoc_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_SOUTH_PHY_CFG] = &qhs_phy_refgen_south, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_BLSP_2] = &qhs_qupv3_north, [SLAVE_BLSP_1] = &qhs_qupv3_south, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_SPDM_WRAPPER] = &qhs_spdm, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM_NORTH] = &qhs_tlmm_north, [SLAVE_TLMM_SOUTH] = &qhs_tlmm_south, [SLAVE_TSIF] = &qhs_tsif, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3] = &qhs_usb3_0, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_CNOC_A2NOC] = &qns_cnoc_a2noc, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, }; static const struct qcom_icc_desc sdm670_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qhm_cnoc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_MEM_NOC_CFG] = &qhs_memnoc, }; static const struct qcom_icc_desc sdm670_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gladiator_noc_bcms[] = { }; static struct qcom_icc_node * const gladiator_noc_nodes[] = { [MASTER_AMPSS_M0] = &acm_l3, [MASTER_GNOC_CFG] = &pm_gnoc_cfg, [SLAVE_GNOC_SNOC] = &qns_gladiator_sodv, [SLAVE_GNOC_MEM_NOC] = &qns_gnoc_memnoc, [SLAVE_SERVICE_GNOC] = &srvc_gnoc, }; static const struct qcom_icc_desc sdm670_gladiator_noc = { .nodes = gladiator_noc_nodes, .num_nodes = ARRAY_SIZE(gladiator_noc_nodes), .bcms = gladiator_noc_bcms, .num_bcms = ARRAY_SIZE(gladiator_noc_bcms), }; static struct qcom_icc_bcm * const mem_noc_bcms[] = { &bcm_acv, &bcm_mc0, &bcm_sh0, &bcm_sh1, &bcm_sh2, &bcm_sh3, &bcm_sh5, }; static struct qcom_icc_node * const mem_noc_nodes[] = { [MASTER_TCU_0] = &acm_tcu, [MASTER_MEM_NOC_CFG] = &qhm_memnoc_cfg, [MASTER_GNOC_MEM_NOC] = &qnm_apps, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [MASTER_GRAPHICS_3D] = &qxm_gpu, [SLAVE_MSS_PROC_MS_MPU_CFG] = &qhs_mdsp_ms_mpu_cfg, [SLAVE_MEM_NOC_GNOC] = &qns_apps_io, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_SNOC] = &qns_memnoc_snoc, [SLAVE_SERVICE_MEM_NOC] = &srvc_memnoc, [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI_CH0] = &ebi, }; static const struct qcom_icc_desc sdm670_mem_noc = { .nodes = mem_noc_nodes, .num_nodes = ARRAY_SIZE(mem_noc_nodes), .bcms = mem_noc_bcms, .num_bcms = ARRAY_SIZE(mem_noc_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm2, &bcm_mm3, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &qhm_mnoc_cfg, [MASTER_CAMNOC_HF0] = &qxm_camnoc_hf0, [MASTER_CAMNOC_HF1] = &qxm_camnoc_hf1, [MASTER_CAMNOC_SF] = &qxm_camnoc_sf, [MASTER_MDP_PORT0] = &qxm_mdp0, [MASTER_MDP_PORT1] = &qxm_mdp1, [MASTER_ROTATOR] = &qxm_rot, [MASTER_VIDEO_P0] = &qxm_venus0, [MASTER_VIDEO_P1] = &qxm_venus1, [MASTER_VIDEO_PROC] = &qxm_venus_arm9, [SLAVE_MNOC_SF_MEM_NOC] = &qns2_mem_noc, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, }; static const struct qcom_icc_desc sdm670_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_mm1, &bcm_sn0, &bcm_sn1, &bcm_sn10, &bcm_sn11, &bcm_sn13, &bcm_sn2, &bcm_sn3, &bcm_sn4, &bcm_sn5, &bcm_sn8, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_GNOC_SNOC] = &qnm_gladiator_sodv, [MASTER_MEM_NOC_SNOC] = &qnm_memnoc, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_APPSS] = &qhs_apss, [SLAVE_SNOC_CNOC] = &qns_cnoc, [SLAVE_SNOC_MEM_NOC_GC] = &qns_memnoc_gc, [SLAVE_SNOC_MEM_NOC_SF] = &qns_memnoc_sf, [SLAVE_OCIMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, [MASTER_CAMNOC_HF0_UNCOMP] = &qxm_camnoc_hf0_uncomp, [MASTER_CAMNOC_HF1_UNCOMP] = &qxm_camnoc_hf1_uncomp, [MASTER_CAMNOC_SF_UNCOMP] = &qxm_camnoc_sf_uncomp, [SLAVE_CAMNOC_UNCOMP] = &qns_camnoc_uncomp, }; static const struct qcom_icc_desc sdm670_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sdm670-aggre1-noc", .data = &sdm670_aggre1_noc}, { .compatible = "qcom,sdm670-aggre2-noc", .data = &sdm670_aggre2_noc}, { .compatible = "qcom,sdm670-config-noc", .data = &sdm670_config_noc}, { .compatible = "qcom,sdm670-dc-noc", .data = &sdm670_dc_noc}, { .compatible = "qcom,sdm670-gladiator-noc", .data = &sdm670_gladiator_noc}, { .compatible = "qcom,sdm670-mem-noc", .data = &sdm670_mem_noc}, { .compatible = "qcom,sdm670-mmss-noc", .data = &sdm670_mmss_noc}, { .compatible = "qcom,sdm670-system-noc", .data = &sdm670_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sdm670", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm SDM670 NoC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/interconnect/qcom/sdm670.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. */ #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/slab.h> #include "bcm-voter.h" #include "icc-common.h" #include "icc-rpmh.h" /** * qcom_icc_pre_aggregate - cleans up stale values from prior icc_set * @node: icc node to operate on */ void qcom_icc_pre_aggregate(struct icc_node *node) { size_t i; struct qcom_icc_node *qn; struct qcom_icc_provider *qp; qn = node->data; qp = to_qcom_provider(node->provider); for (i = 0; i < QCOM_ICC_NUM_BUCKETS; i++) { qn->sum_avg[i] = 0; qn->max_peak[i] = 0; } for (i = 0; i < qn->num_bcms; i++) qcom_icc_bcm_voter_add(qp->voter, qn->bcms[i]); } EXPORT_SYMBOL_GPL(qcom_icc_pre_aggregate); /** * qcom_icc_aggregate - aggregate bw for buckets indicated by tag * @node: node to aggregate * @tag: tag to indicate which buckets to aggregate * @avg_bw: new bw to sum aggregate * @peak_bw: new bw to max aggregate * @agg_avg: existing aggregate avg bw val * @agg_peak: existing aggregate peak bw val */ int qcom_icc_aggregate(struct icc_node *node, u32 tag, u32 avg_bw, u32 peak_bw, u32 *agg_avg, u32 *agg_peak) { size_t i; struct qcom_icc_node *qn; qn = node->data; if (!tag) tag = QCOM_ICC_TAG_ALWAYS; for (i = 0; i < QCOM_ICC_NUM_BUCKETS; i++) { if (tag & BIT(i)) { qn->sum_avg[i] += avg_bw; qn->max_peak[i] = max_t(u32, qn->max_peak[i], peak_bw); } if (node->init_avg || node->init_peak) { qn->sum_avg[i] = max_t(u64, qn->sum_avg[i], node->init_avg); qn->max_peak[i] = max_t(u64, qn->max_peak[i], node->init_peak); } } *agg_avg += avg_bw; *agg_peak = max_t(u32, *agg_peak, peak_bw); return 0; } EXPORT_SYMBOL_GPL(qcom_icc_aggregate); /** * qcom_icc_set - set the constraints based on path * @src: source node for the path to set constraints on * @dst: destination node for the path to set constraints on * * Return: 0 on success, or an error code otherwise */ int qcom_icc_set(struct icc_node *src, struct icc_node *dst) { struct qcom_icc_provider *qp; struct icc_node *node; if (!src) node = dst; else node = src; qp = to_qcom_provider(node->provider); qcom_icc_bcm_voter_commit(qp->voter); return 0; } EXPORT_SYMBOL_GPL(qcom_icc_set); /** * qcom_icc_bcm_init - populates bcm aux data and connect qnodes * @bcm: bcm to be initialized * @dev: associated provider device * * Return: 0 on success, or an error code otherwise */ int qcom_icc_bcm_init(struct qcom_icc_bcm *bcm, struct device *dev) { struct qcom_icc_node *qn; const struct bcm_db *data; size_t data_count; int i; /* BCM is already initialised*/ if (bcm->addr) return 0; bcm->addr = cmd_db_read_addr(bcm->name); if (!bcm->addr) { dev_err(dev, "%s could not find RPMh address\n", bcm->name); return -EINVAL; } data = cmd_db_read_aux_data(bcm->name, &data_count); if (IS_ERR(data)) { dev_err(dev, "%s command db read error (%ld)\n", bcm->name, PTR_ERR(data)); return PTR_ERR(data); } if (!data_count) { dev_err(dev, "%s command db missing or partial aux data\n", bcm->name); return -EINVAL; } bcm->aux_data.unit = le32_to_cpu(data->unit); bcm->aux_data.width = le16_to_cpu(data->width); bcm->aux_data.vcd = data->vcd; bcm->aux_data.reserved = data->reserved; INIT_LIST_HEAD(&bcm->list); INIT_LIST_HEAD(&bcm->ws_list); if (!bcm->vote_scale) bcm->vote_scale = 1000; /* Link Qnodes to their respective BCMs */ for (i = 0; i < bcm->num_nodes; i++) { qn = bcm->nodes[i]; qn->bcms[qn->num_bcms] = bcm; qn->num_bcms++; } return 0; } EXPORT_SYMBOL_GPL(qcom_icc_bcm_init); int qcom_icc_rpmh_probe(struct platform_device *pdev) { const struct qcom_icc_desc *desc; struct device *dev = &pdev->dev; struct icc_onecell_data *data; struct icc_provider *provider; struct qcom_icc_node * const *qnodes, *qn; struct qcom_icc_provider *qp; struct icc_node *node; size_t num_nodes, i, j; int ret; desc = of_device_get_match_data(dev); if (!desc) return -EINVAL; qnodes = desc->nodes; num_nodes = desc->num_nodes; qp = devm_kzalloc(dev, sizeof(*qp), GFP_KERNEL); if (!qp) return -ENOMEM; data = devm_kzalloc(dev, struct_size(data, nodes, num_nodes), GFP_KERNEL); if (!data) return -ENOMEM; data->num_nodes = num_nodes; provider = &qp->provider; provider->dev = dev; provider->set = qcom_icc_set; provider->pre_aggregate = qcom_icc_pre_aggregate; provider->aggregate = qcom_icc_aggregate; provider->xlate_extended = qcom_icc_xlate_extended; provider->data = data; icc_provider_init(provider); qp->dev = dev; qp->bcms = desc->bcms; qp->num_bcms = desc->num_bcms; qp->voter = of_bcm_voter_get(qp->dev, NULL); if (IS_ERR(qp->voter)) return PTR_ERR(qp->voter); for (i = 0; i < qp->num_bcms; i++) qcom_icc_bcm_init(qp->bcms[i], dev); for (i = 0; i < num_nodes; i++) { qn = qnodes[i]; if (!qn) continue; node = icc_node_create(qn->id); if (IS_ERR(node)) { ret = PTR_ERR(node); goto err_remove_nodes; } node->name = qn->name; node->data = qn; icc_node_add(node, provider); for (j = 0; j < qn->num_links; j++) icc_link_create(node, qn->links[j]); data->nodes[i] = node; } ret = icc_provider_register(provider); if (ret) goto err_remove_nodes; platform_set_drvdata(pdev, qp); /* Populate child NoC devices if any */ if (of_get_child_count(dev->of_node) > 0) { ret = of_platform_populate(dev->of_node, NULL, NULL, dev); if (ret) goto err_deregister_provider; } return 0; err_deregister_provider: icc_provider_deregister(provider); err_remove_nodes: icc_nodes_remove(provider); return ret; } EXPORT_SYMBOL_GPL(qcom_icc_rpmh_probe); int qcom_icc_rpmh_remove(struct platform_device *pdev) { struct qcom_icc_provider *qp = platform_get_drvdata(pdev); icc_provider_deregister(&qp->provider); icc_nodes_remove(&qp->provider); return 0; } EXPORT_SYMBOL_GPL(qcom_icc_rpmh_remove); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/icc-rpmh.c
// SPDX-License-Identifier: GPL-2.0 /* * Qualcomm SDM630/SDM636/SDM660 Network-on-Chip (NoC) QoS driver * Copyright (C) 2020, AngeloGioacchino Del Regno <[email protected]> */ #include <dt-bindings/interconnect/qcom,sdm660.h> #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include "icc-rpm.h" enum { SDM660_MASTER_IPA = 1, SDM660_MASTER_CNOC_A2NOC, SDM660_MASTER_SDCC_1, SDM660_MASTER_SDCC_2, SDM660_MASTER_BLSP_1, SDM660_MASTER_BLSP_2, SDM660_MASTER_UFS, SDM660_MASTER_USB_HS, SDM660_MASTER_USB3, SDM660_MASTER_CRYPTO_C0, SDM660_MASTER_GNOC_BIMC, SDM660_MASTER_OXILI, SDM660_MASTER_MNOC_BIMC, SDM660_MASTER_SNOC_BIMC, SDM660_MASTER_PIMEM, SDM660_MASTER_SNOC_CNOC, SDM660_MASTER_QDSS_DAP, SDM660_MASTER_APPS_PROC, SDM660_MASTER_CNOC_MNOC_MMSS_CFG, SDM660_MASTER_CNOC_MNOC_CFG, SDM660_MASTER_CPP, SDM660_MASTER_JPEG, SDM660_MASTER_MDP_P0, SDM660_MASTER_MDP_P1, SDM660_MASTER_VENUS, SDM660_MASTER_VFE, SDM660_MASTER_QDSS_ETR, SDM660_MASTER_QDSS_BAM, SDM660_MASTER_SNOC_CFG, SDM660_MASTER_BIMC_SNOC, SDM660_MASTER_A2NOC_SNOC, SDM660_MASTER_GNOC_SNOC, SDM660_SLAVE_A2NOC_SNOC, SDM660_SLAVE_EBI, SDM660_SLAVE_HMSS_L3, SDM660_SLAVE_BIMC_SNOC, SDM660_SLAVE_CNOC_A2NOC, SDM660_SLAVE_MPM, SDM660_SLAVE_PMIC_ARB, SDM660_SLAVE_TLMM_NORTH, SDM660_SLAVE_TCSR, SDM660_SLAVE_PIMEM_CFG, SDM660_SLAVE_IMEM_CFG, SDM660_SLAVE_MESSAGE_RAM, SDM660_SLAVE_GLM, SDM660_SLAVE_BIMC_CFG, SDM660_SLAVE_PRNG, SDM660_SLAVE_SPDM, SDM660_SLAVE_QDSS_CFG, SDM660_SLAVE_CNOC_MNOC_CFG, SDM660_SLAVE_SNOC_CFG, SDM660_SLAVE_QM_CFG, SDM660_SLAVE_CLK_CTL, SDM660_SLAVE_MSS_CFG, SDM660_SLAVE_TLMM_SOUTH, SDM660_SLAVE_UFS_CFG, SDM660_SLAVE_A2NOC_CFG, SDM660_SLAVE_A2NOC_SMMU_CFG, SDM660_SLAVE_GPUSS_CFG, SDM660_SLAVE_AHB2PHY, SDM660_SLAVE_BLSP_1, SDM660_SLAVE_SDCC_1, SDM660_SLAVE_SDCC_2, SDM660_SLAVE_TLMM_CENTER, SDM660_SLAVE_BLSP_2, SDM660_SLAVE_PDM, SDM660_SLAVE_CNOC_MNOC_MMSS_CFG, SDM660_SLAVE_USB_HS, SDM660_SLAVE_USB3_0, SDM660_SLAVE_SRVC_CNOC, SDM660_SLAVE_GNOC_BIMC, SDM660_SLAVE_GNOC_SNOC, SDM660_SLAVE_CAMERA_CFG, SDM660_SLAVE_CAMERA_THROTTLE_CFG, SDM660_SLAVE_MISC_CFG, SDM660_SLAVE_VENUS_THROTTLE_CFG, SDM660_SLAVE_VENUS_CFG, SDM660_SLAVE_MMSS_CLK_XPU_CFG, SDM660_SLAVE_MMSS_CLK_CFG, SDM660_SLAVE_MNOC_MPU_CFG, SDM660_SLAVE_DISPLAY_CFG, SDM660_SLAVE_CSI_PHY_CFG, SDM660_SLAVE_DISPLAY_THROTTLE_CFG, SDM660_SLAVE_SMMU_CFG, SDM660_SLAVE_MNOC_BIMC, SDM660_SLAVE_SRVC_MNOC, SDM660_SLAVE_HMSS, SDM660_SLAVE_LPASS, SDM660_SLAVE_WLAN, SDM660_SLAVE_CDSP, SDM660_SLAVE_IPA, SDM660_SLAVE_SNOC_BIMC, SDM660_SLAVE_SNOC_CNOC, SDM660_SLAVE_IMEM, SDM660_SLAVE_PIMEM, SDM660_SLAVE_QDSS_STM, SDM660_SLAVE_SRVC_SNOC, SDM660_A2NOC, SDM660_BIMC, SDM660_CNOC, SDM660_GNOC, SDM660_MNOC, SDM660_SNOC, }; static const char * const mm_intf_clocks[] = { "iface", }; static const char * const a2noc_intf_clocks[] = { "ipa", "ufs_axi", "aggre2_ufs_axi", "aggre2_usb3_axi", "cfg_noc_usb2_axi", }; static const u16 mas_ipa_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_ipa = { .name = "mas_ipa", .id = SDM660_MASTER_IPA, .buswidth = 8, .mas_rpm_id = 59, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 3, .num_links = ARRAY_SIZE(mas_ipa_links), .links = mas_ipa_links, }; static const u16 mas_cnoc_a2noc_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_cnoc_a2noc = { .name = "mas_cnoc_a2noc", .id = SDM660_MASTER_CNOC_A2NOC, .buswidth = 8, .mas_rpm_id = 146, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_cnoc_a2noc_links), .links = mas_cnoc_a2noc_links, }; static const u16 mas_sdcc_1_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_sdcc_1 = { .name = "mas_sdcc_1", .id = SDM660_MASTER_SDCC_1, .buswidth = 8, .mas_rpm_id = 33, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_sdcc_1_links), .links = mas_sdcc_1_links, }; static const u16 mas_sdcc_2_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_sdcc_2 = { .name = "mas_sdcc_2", .id = SDM660_MASTER_SDCC_2, .buswidth = 8, .mas_rpm_id = 35, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_sdcc_2_links), .links = mas_sdcc_2_links, }; static const u16 mas_blsp_1_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_blsp_1 = { .name = "mas_blsp_1", .id = SDM660_MASTER_BLSP_1, .buswidth = 4, .mas_rpm_id = 41, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_blsp_1_links), .links = mas_blsp_1_links, }; static const u16 mas_blsp_2_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_blsp_2 = { .name = "mas_blsp_2", .id = SDM660_MASTER_BLSP_2, .buswidth = 4, .mas_rpm_id = 39, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_blsp_2_links), .links = mas_blsp_2_links, }; static const u16 mas_ufs_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_ufs = { .name = "mas_ufs", .id = SDM660_MASTER_UFS, .buswidth = 8, .mas_rpm_id = 68, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 4, .num_links = ARRAY_SIZE(mas_ufs_links), .links = mas_ufs_links, }; static const u16 mas_usb_hs_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_usb_hs = { .name = "mas_usb_hs", .id = SDM660_MASTER_USB_HS, .buswidth = 8, .mas_rpm_id = 42, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_usb_hs_links), .links = mas_usb_hs_links, }; static const u16 mas_usb3_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_usb3 = { .name = "mas_usb3", .id = SDM660_MASTER_USB3, .buswidth = 8, .mas_rpm_id = 32, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_usb3_links), .links = mas_usb3_links, }; static const u16 mas_crypto_links[] = { SDM660_SLAVE_A2NOC_SNOC }; static struct qcom_icc_node mas_crypto = { .name = "mas_crypto", .id = SDM660_MASTER_CRYPTO_C0, .buswidth = 8, .mas_rpm_id = 23, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 11, .num_links = ARRAY_SIZE(mas_crypto_links), .links = mas_crypto_links, }; static const u16 mas_gnoc_bimc_links[] = { SDM660_SLAVE_EBI }; static struct qcom_icc_node mas_gnoc_bimc = { .name = "mas_gnoc_bimc", .id = SDM660_MASTER_GNOC_BIMC, .buswidth = 4, .mas_rpm_id = 144, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_gnoc_bimc_links), .links = mas_gnoc_bimc_links, }; static const u16 mas_oxili_links[] = { SDM660_SLAVE_HMSS_L3, SDM660_SLAVE_EBI, SDM660_SLAVE_BIMC_SNOC }; static struct qcom_icc_node mas_oxili = { .name = "mas_oxili", .id = SDM660_MASTER_OXILI, .buswidth = 4, .mas_rpm_id = 6, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_oxili_links), .links = mas_oxili_links, }; static const u16 mas_mnoc_bimc_links[] = { SDM660_SLAVE_HMSS_L3, SDM660_SLAVE_EBI, SDM660_SLAVE_BIMC_SNOC }; static struct qcom_icc_node mas_mnoc_bimc = { .name = "mas_mnoc_bimc", .id = SDM660_MASTER_MNOC_BIMC, .buswidth = 4, .mas_rpm_id = 2, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_mnoc_bimc_links), .links = mas_mnoc_bimc_links, }; static const u16 mas_snoc_bimc_links[] = { SDM660_SLAVE_HMSS_L3, SDM660_SLAVE_EBI }; static struct qcom_icc_node mas_snoc_bimc = { .name = "mas_snoc_bimc", .id = SDM660_MASTER_SNOC_BIMC, .buswidth = 4, .mas_rpm_id = 3, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_bimc_links), .links = mas_snoc_bimc_links, }; static const u16 mas_pimem_links[] = { SDM660_SLAVE_HMSS_L3, SDM660_SLAVE_EBI }; static struct qcom_icc_node mas_pimem = { .name = "mas_pimem", .id = SDM660_MASTER_PIMEM, .buswidth = 4, .mas_rpm_id = 113, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 4, .num_links = ARRAY_SIZE(mas_pimem_links), .links = mas_pimem_links, }; static const u16 mas_snoc_cnoc_links[] = { SDM660_SLAVE_CLK_CTL, SDM660_SLAVE_QDSS_CFG, SDM660_SLAVE_QM_CFG, SDM660_SLAVE_SRVC_CNOC, SDM660_SLAVE_UFS_CFG, SDM660_SLAVE_TCSR, SDM660_SLAVE_A2NOC_SMMU_CFG, SDM660_SLAVE_SNOC_CFG, SDM660_SLAVE_TLMM_SOUTH, SDM660_SLAVE_MPM, SDM660_SLAVE_CNOC_MNOC_MMSS_CFG, SDM660_SLAVE_SDCC_2, SDM660_SLAVE_SDCC_1, SDM660_SLAVE_SPDM, SDM660_SLAVE_PMIC_ARB, SDM660_SLAVE_PRNG, SDM660_SLAVE_MSS_CFG, SDM660_SLAVE_GPUSS_CFG, SDM660_SLAVE_IMEM_CFG, SDM660_SLAVE_USB3_0, SDM660_SLAVE_A2NOC_CFG, SDM660_SLAVE_TLMM_NORTH, SDM660_SLAVE_USB_HS, SDM660_SLAVE_PDM, SDM660_SLAVE_TLMM_CENTER, SDM660_SLAVE_AHB2PHY, SDM660_SLAVE_BLSP_2, SDM660_SLAVE_BLSP_1, SDM660_SLAVE_PIMEM_CFG, SDM660_SLAVE_GLM, SDM660_SLAVE_MESSAGE_RAM, SDM660_SLAVE_BIMC_CFG, SDM660_SLAVE_CNOC_MNOC_CFG }; static struct qcom_icc_node mas_snoc_cnoc = { .name = "mas_snoc_cnoc", .id = SDM660_MASTER_SNOC_CNOC, .buswidth = 8, .mas_rpm_id = 52, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_snoc_cnoc_links), .links = mas_snoc_cnoc_links, }; static const u16 mas_qdss_dap_links[] = { SDM660_SLAVE_CLK_CTL, SDM660_SLAVE_QDSS_CFG, SDM660_SLAVE_QM_CFG, SDM660_SLAVE_SRVC_CNOC, SDM660_SLAVE_UFS_CFG, SDM660_SLAVE_TCSR, SDM660_SLAVE_A2NOC_SMMU_CFG, SDM660_SLAVE_SNOC_CFG, SDM660_SLAVE_TLMM_SOUTH, SDM660_SLAVE_MPM, SDM660_SLAVE_CNOC_MNOC_MMSS_CFG, SDM660_SLAVE_SDCC_2, SDM660_SLAVE_SDCC_1, SDM660_SLAVE_SPDM, SDM660_SLAVE_PMIC_ARB, SDM660_SLAVE_PRNG, SDM660_SLAVE_MSS_CFG, SDM660_SLAVE_GPUSS_CFG, SDM660_SLAVE_IMEM_CFG, SDM660_SLAVE_USB3_0, SDM660_SLAVE_A2NOC_CFG, SDM660_SLAVE_TLMM_NORTH, SDM660_SLAVE_USB_HS, SDM660_SLAVE_PDM, SDM660_SLAVE_TLMM_CENTER, SDM660_SLAVE_AHB2PHY, SDM660_SLAVE_BLSP_2, SDM660_SLAVE_BLSP_1, SDM660_SLAVE_PIMEM_CFG, SDM660_SLAVE_GLM, SDM660_SLAVE_MESSAGE_RAM, SDM660_SLAVE_CNOC_A2NOC, SDM660_SLAVE_BIMC_CFG, SDM660_SLAVE_CNOC_MNOC_CFG }; static struct qcom_icc_node mas_qdss_dap = { .name = "mas_qdss_dap", .id = SDM660_MASTER_QDSS_DAP, .buswidth = 8, .mas_rpm_id = 49, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_qdss_dap_links), .links = mas_qdss_dap_links, }; static const u16 mas_apss_proc_links[] = { SDM660_SLAVE_GNOC_SNOC, SDM660_SLAVE_GNOC_BIMC }; static struct qcom_icc_node mas_apss_proc = { .name = "mas_apss_proc", .id = SDM660_MASTER_APPS_PROC, .buswidth = 16, .mas_rpm_id = 0, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_apss_proc_links), .links = mas_apss_proc_links, }; static const u16 mas_cnoc_mnoc_mmss_cfg_links[] = { SDM660_SLAVE_VENUS_THROTTLE_CFG, SDM660_SLAVE_VENUS_CFG, SDM660_SLAVE_CAMERA_THROTTLE_CFG, SDM660_SLAVE_SMMU_CFG, SDM660_SLAVE_CAMERA_CFG, SDM660_SLAVE_CSI_PHY_CFG, SDM660_SLAVE_DISPLAY_THROTTLE_CFG, SDM660_SLAVE_DISPLAY_CFG, SDM660_SLAVE_MMSS_CLK_CFG, SDM660_SLAVE_MNOC_MPU_CFG, SDM660_SLAVE_MISC_CFG, SDM660_SLAVE_MMSS_CLK_XPU_CFG }; static struct qcom_icc_node mas_cnoc_mnoc_mmss_cfg = { .name = "mas_cnoc_mnoc_mmss_cfg", .id = SDM660_MASTER_CNOC_MNOC_MMSS_CFG, .buswidth = 8, .mas_rpm_id = 4, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_cnoc_mnoc_mmss_cfg_links), .links = mas_cnoc_mnoc_mmss_cfg_links, }; static const u16 mas_cnoc_mnoc_cfg_links[] = { SDM660_SLAVE_SRVC_MNOC }; static struct qcom_icc_node mas_cnoc_mnoc_cfg = { .name = "mas_cnoc_mnoc_cfg", .id = SDM660_MASTER_CNOC_MNOC_CFG, .buswidth = 4, .mas_rpm_id = 5, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mas_cnoc_mnoc_cfg_links), .links = mas_cnoc_mnoc_cfg_links, }; static const u16 mas_cpp_links[] = { SDM660_SLAVE_MNOC_BIMC }; static struct qcom_icc_node mas_cpp = { .name = "mas_cpp", .id = SDM660_MASTER_CPP, .buswidth = 16, .mas_rpm_id = 115, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 4, .num_links = ARRAY_SIZE(mas_cpp_links), .links = mas_cpp_links, }; static const u16 mas_jpeg_links[] = { SDM660_SLAVE_MNOC_BIMC }; static struct qcom_icc_node mas_jpeg = { .name = "mas_jpeg", .id = SDM660_MASTER_JPEG, .buswidth = 16, .mas_rpm_id = 7, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 6, .num_links = ARRAY_SIZE(mas_jpeg_links), .links = mas_jpeg_links, }; static const u16 mas_mdp_p0_links[] = { SDM660_SLAVE_MNOC_BIMC }; static struct qcom_icc_node mas_mdp_p0 = { .name = "mas_mdp_p0", .id = SDM660_MASTER_MDP_P0, .buswidth = 16, .mas_rpm_id = 8, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_mdp_p0_links), .links = mas_mdp_p0_links, }; static const u16 mas_mdp_p1_links[] = { SDM660_SLAVE_MNOC_BIMC }; static struct qcom_icc_node mas_mdp_p1 = { .name = "mas_mdp_p1", .id = SDM660_MASTER_MDP_P1, .buswidth = 16, .mas_rpm_id = 61, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_mdp_p1_links), .links = mas_mdp_p1_links, }; static const u16 mas_venus_links[] = { SDM660_SLAVE_MNOC_BIMC }; static struct qcom_icc_node mas_venus = { .name = "mas_venus", .id = SDM660_MASTER_VENUS, .buswidth = 16, .mas_rpm_id = 9, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_venus_links), .links = mas_venus_links, }; static const u16 mas_vfe_links[] = { SDM660_SLAVE_MNOC_BIMC }; static struct qcom_icc_node mas_vfe = { .name = "mas_vfe", .id = SDM660_MASTER_VFE, .buswidth = 16, .mas_rpm_id = 11, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 5, .num_links = ARRAY_SIZE(mas_vfe_links), .links = mas_vfe_links, }; static const u16 mas_qdss_etr_links[] = { SDM660_SLAVE_PIMEM, SDM660_SLAVE_IMEM, SDM660_SLAVE_SNOC_CNOC, SDM660_SLAVE_SNOC_BIMC }; static struct qcom_icc_node mas_qdss_etr = { .name = "mas_qdss_etr", .id = SDM660_MASTER_QDSS_ETR, .buswidth = 8, .mas_rpm_id = 31, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 1, .num_links = ARRAY_SIZE(mas_qdss_etr_links), .links = mas_qdss_etr_links, }; static const u16 mas_qdss_bam_links[] = { SDM660_SLAVE_PIMEM, SDM660_SLAVE_IMEM, SDM660_SLAVE_SNOC_CNOC, SDM660_SLAVE_SNOC_BIMC }; static struct qcom_icc_node mas_qdss_bam = { .name = "mas_qdss_bam", .id = SDM660_MASTER_QDSS_BAM, .buswidth = 4, .mas_rpm_id = 19, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_qdss_bam_links), .links = mas_qdss_bam_links, }; static const u16 mas_snoc_cfg_links[] = { SDM660_SLAVE_SRVC_SNOC }; static struct qcom_icc_node mas_snoc_cfg = { .name = "mas_snoc_cfg", .id = SDM660_MASTER_SNOC_CFG, .buswidth = 4, .mas_rpm_id = 20, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_cfg_links), .links = mas_snoc_cfg_links, }; static const u16 mas_bimc_snoc_links[] = { SDM660_SLAVE_PIMEM, SDM660_SLAVE_IPA, SDM660_SLAVE_QDSS_STM, SDM660_SLAVE_LPASS, SDM660_SLAVE_HMSS, SDM660_SLAVE_CDSP, SDM660_SLAVE_SNOC_CNOC, SDM660_SLAVE_WLAN, SDM660_SLAVE_IMEM }; static struct qcom_icc_node mas_bimc_snoc = { .name = "mas_bimc_snoc", .id = SDM660_MASTER_BIMC_SNOC, .buswidth = 8, .mas_rpm_id = 21, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_bimc_snoc_links), .links = mas_bimc_snoc_links, }; static const u16 mas_gnoc_snoc_links[] = { SDM660_SLAVE_PIMEM, SDM660_SLAVE_IPA, SDM660_SLAVE_QDSS_STM, SDM660_SLAVE_LPASS, SDM660_SLAVE_HMSS, SDM660_SLAVE_CDSP, SDM660_SLAVE_SNOC_CNOC, SDM660_SLAVE_WLAN, SDM660_SLAVE_IMEM }; static struct qcom_icc_node mas_gnoc_snoc = { .name = "mas_gnoc_snoc", .id = SDM660_MASTER_GNOC_SNOC, .buswidth = 8, .mas_rpm_id = 150, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_gnoc_snoc_links), .links = mas_gnoc_snoc_links, }; static const u16 mas_a2noc_snoc_links[] = { SDM660_SLAVE_PIMEM, SDM660_SLAVE_IPA, SDM660_SLAVE_QDSS_STM, SDM660_SLAVE_LPASS, SDM660_SLAVE_HMSS, SDM660_SLAVE_SNOC_BIMC, SDM660_SLAVE_CDSP, SDM660_SLAVE_SNOC_CNOC, SDM660_SLAVE_WLAN, SDM660_SLAVE_IMEM }; static struct qcom_icc_node mas_a2noc_snoc = { .name = "mas_a2noc_snoc", .id = SDM660_MASTER_A2NOC_SNOC, .buswidth = 16, .mas_rpm_id = 112, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_a2noc_snoc_links), .links = mas_a2noc_snoc_links, }; static const u16 slv_a2noc_snoc_links[] = { SDM660_MASTER_A2NOC_SNOC }; static struct qcom_icc_node slv_a2noc_snoc = { .name = "slv_a2noc_snoc", .id = SDM660_SLAVE_A2NOC_SNOC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 143, .num_links = ARRAY_SIZE(slv_a2noc_snoc_links), .links = slv_a2noc_snoc_links, }; static struct qcom_icc_node slv_ebi = { .name = "slv_ebi", .id = SDM660_SLAVE_EBI, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 0, }; static struct qcom_icc_node slv_hmss_l3 = { .name = "slv_hmss_l3", .id = SDM660_SLAVE_HMSS_L3, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 160, }; static const u16 slv_bimc_snoc_links[] = { SDM660_MASTER_BIMC_SNOC }; static struct qcom_icc_node slv_bimc_snoc = { .name = "slv_bimc_snoc", .id = SDM660_SLAVE_BIMC_SNOC, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 2, .num_links = ARRAY_SIZE(slv_bimc_snoc_links), .links = slv_bimc_snoc_links, }; static const u16 slv_cnoc_a2noc_links[] = { SDM660_MASTER_CNOC_A2NOC }; static struct qcom_icc_node slv_cnoc_a2noc = { .name = "slv_cnoc_a2noc", .id = SDM660_SLAVE_CNOC_A2NOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 208, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_cnoc_a2noc_links), .links = slv_cnoc_a2noc_links, }; static struct qcom_icc_node slv_mpm = { .name = "slv_mpm", .id = SDM660_SLAVE_MPM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 62, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_pmic_arb = { .name = "slv_pmic_arb", .id = SDM660_SLAVE_PMIC_ARB, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 59, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_tlmm_north = { .name = "slv_tlmm_north", .id = SDM660_SLAVE_TLMM_NORTH, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 214, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_tcsr = { .name = "slv_tcsr", .id = SDM660_SLAVE_TCSR, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 50, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_pimem_cfg = { .name = "slv_pimem_cfg", .id = SDM660_SLAVE_PIMEM_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 167, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_imem_cfg = { .name = "slv_imem_cfg", .id = SDM660_SLAVE_IMEM_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 54, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_message_ram = { .name = "slv_message_ram", .id = SDM660_SLAVE_MESSAGE_RAM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 55, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_glm = { .name = "slv_glm", .id = SDM660_SLAVE_GLM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 209, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_bimc_cfg = { .name = "slv_bimc_cfg", .id = SDM660_SLAVE_BIMC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 56, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_prng = { .name = "slv_prng", .id = SDM660_SLAVE_PRNG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 44, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_spdm = { .name = "slv_spdm", .id = SDM660_SLAVE_SPDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 60, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_qdss_cfg = { .name = "slv_qdss_cfg", .id = SDM660_SLAVE_QDSS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 63, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static const u16 slv_cnoc_mnoc_cfg_links[] = { SDM660_MASTER_CNOC_MNOC_CFG }; static struct qcom_icc_node slv_cnoc_mnoc_cfg = { .name = "slv_cnoc_mnoc_cfg", .id = SDM660_SLAVE_CNOC_MNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 66, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_cnoc_mnoc_cfg_links), .links = slv_cnoc_mnoc_cfg_links, }; static struct qcom_icc_node slv_snoc_cfg = { .name = "slv_snoc_cfg", .id = SDM660_SLAVE_SNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 70, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_qm_cfg = { .name = "slv_qm_cfg", .id = SDM660_SLAVE_QM_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 212, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_clk_ctl = { .name = "slv_clk_ctl", .id = SDM660_SLAVE_CLK_CTL, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 47, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_mss_cfg = { .name = "slv_mss_cfg", .id = SDM660_SLAVE_MSS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 48, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_tlmm_south = { .name = "slv_tlmm_south", .id = SDM660_SLAVE_TLMM_SOUTH, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 217, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_ufs_cfg = { .name = "slv_ufs_cfg", .id = SDM660_SLAVE_UFS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 92, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_a2noc_cfg = { .name = "slv_a2noc_cfg", .id = SDM660_SLAVE_A2NOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 150, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_a2noc_smmu_cfg = { .name = "slv_a2noc_smmu_cfg", .id = SDM660_SLAVE_A2NOC_SMMU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 152, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_gpuss_cfg = { .name = "slv_gpuss_cfg", .id = SDM660_SLAVE_GPUSS_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 11, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_ahb2phy = { .name = "slv_ahb2phy", .id = SDM660_SLAVE_AHB2PHY, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 163, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_blsp_1 = { .name = "slv_blsp_1", .id = SDM660_SLAVE_BLSP_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 39, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_sdcc_1 = { .name = "slv_sdcc_1", .id = SDM660_SLAVE_SDCC_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 31, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_sdcc_2 = { .name = "slv_sdcc_2", .id = SDM660_SLAVE_SDCC_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 33, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_tlmm_center = { .name = "slv_tlmm_center", .id = SDM660_SLAVE_TLMM_CENTER, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 218, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_blsp_2 = { .name = "slv_blsp_2", .id = SDM660_SLAVE_BLSP_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 37, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_pdm = { .name = "slv_pdm", .id = SDM660_SLAVE_PDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 41, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static const u16 slv_cnoc_mnoc_mmss_cfg_links[] = { SDM660_MASTER_CNOC_MNOC_MMSS_CFG }; static struct qcom_icc_node slv_cnoc_mnoc_mmss_cfg = { .name = "slv_cnoc_mnoc_mmss_cfg", .id = SDM660_SLAVE_CNOC_MNOC_MMSS_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 58, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_cnoc_mnoc_mmss_cfg_links), .links = slv_cnoc_mnoc_mmss_cfg_links, }; static struct qcom_icc_node slv_usb_hs = { .name = "slv_usb_hs", .id = SDM660_SLAVE_USB_HS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 40, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_usb3_0 = { .name = "slv_usb3_0", .id = SDM660_SLAVE_USB3_0, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 22, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_srvc_cnoc = { .name = "slv_srvc_cnoc", .id = SDM660_SLAVE_SRVC_CNOC, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 76, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static const u16 slv_gnoc_bimc_links[] = { SDM660_MASTER_GNOC_BIMC }; static struct qcom_icc_node slv_gnoc_bimc = { .name = "slv_gnoc_bimc", .id = SDM660_SLAVE_GNOC_BIMC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 210, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_gnoc_bimc_links), .links = slv_gnoc_bimc_links, }; static const u16 slv_gnoc_snoc_links[] = { SDM660_MASTER_GNOC_SNOC }; static struct qcom_icc_node slv_gnoc_snoc = { .name = "slv_gnoc_snoc", .id = SDM660_SLAVE_GNOC_SNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 211, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_gnoc_snoc_links), .links = slv_gnoc_snoc_links, }; static struct qcom_icc_node slv_camera_cfg = { .name = "slv_camera_cfg", .id = SDM660_SLAVE_CAMERA_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 3, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_camera_throttle_cfg = { .name = "slv_camera_throttle_cfg", .id = SDM660_SLAVE_CAMERA_THROTTLE_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 154, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_misc_cfg = { .name = "slv_misc_cfg", .id = SDM660_SLAVE_MISC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 8, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_venus_throttle_cfg = { .name = "slv_venus_throttle_cfg", .id = SDM660_SLAVE_VENUS_THROTTLE_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 178, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_venus_cfg = { .name = "slv_venus_cfg", .id = SDM660_SLAVE_VENUS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 10, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_mmss_clk_xpu_cfg = { .name = "slv_mmss_clk_xpu_cfg", .id = SDM660_SLAVE_MMSS_CLK_XPU_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 13, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_mmss_clk_cfg = { .name = "slv_mmss_clk_cfg", .id = SDM660_SLAVE_MMSS_CLK_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 12, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_mnoc_mpu_cfg = { .name = "slv_mnoc_mpu_cfg", .id = SDM660_SLAVE_MNOC_MPU_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 14, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_display_cfg = { .name = "slv_display_cfg", .id = SDM660_SLAVE_DISPLAY_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 4, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_csi_phy_cfg = { .name = "slv_csi_phy_cfg", .id = SDM660_SLAVE_CSI_PHY_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 224, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_display_throttle_cfg = { .name = "slv_display_throttle_cfg", .id = SDM660_SLAVE_DISPLAY_THROTTLE_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 156, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_smmu_cfg = { .name = "slv_smmu_cfg", .id = SDM660_SLAVE_SMMU_CFG, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 205, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static const u16 slv_mnoc_bimc_links[] = { SDM660_MASTER_MNOC_BIMC }; static struct qcom_icc_node slv_mnoc_bimc = { .name = "slv_mnoc_bimc", .id = SDM660_SLAVE_MNOC_BIMC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 16, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(slv_mnoc_bimc_links), .links = slv_mnoc_bimc_links, }; static struct qcom_icc_node slv_srvc_mnoc = { .name = "slv_srvc_mnoc", .id = SDM660_SLAVE_SRVC_MNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 17, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_hmss = { .name = "slv_hmss", .id = SDM660_SLAVE_HMSS, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 20, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_lpass = { .name = "slv_lpass", .id = SDM660_SLAVE_LPASS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 21, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_wlan = { .name = "slv_wlan", .id = SDM660_SLAVE_WLAN, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 206, }; static struct qcom_icc_node slv_cdsp = { .name = "slv_cdsp", .id = SDM660_SLAVE_CDSP, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 221, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static struct qcom_icc_node slv_ipa = { .name = "slv_ipa", .id = SDM660_SLAVE_IPA, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 183, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, }; static const u16 slv_snoc_bimc_links[] = { SDM660_MASTER_SNOC_BIMC }; static struct qcom_icc_node slv_snoc_bimc = { .name = "slv_snoc_bimc", .id = SDM660_SLAVE_SNOC_BIMC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 24, .num_links = ARRAY_SIZE(slv_snoc_bimc_links), .links = slv_snoc_bimc_links, }; static const u16 slv_snoc_cnoc_links[] = { SDM660_MASTER_SNOC_CNOC }; static struct qcom_icc_node slv_snoc_cnoc = { .name = "slv_snoc_cnoc", .id = SDM660_SLAVE_SNOC_CNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 25, .num_links = ARRAY_SIZE(slv_snoc_cnoc_links), .links = slv_snoc_cnoc_links, }; static struct qcom_icc_node slv_imem = { .name = "slv_imem", .id = SDM660_SLAVE_IMEM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 26, }; static struct qcom_icc_node slv_pimem = { .name = "slv_pimem", .id = SDM660_SLAVE_PIMEM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 166, }; static struct qcom_icc_node slv_qdss_stm = { .name = "slv_qdss_stm", .id = SDM660_SLAVE_QDSS_STM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 30, }; static struct qcom_icc_node slv_srvc_snoc = { .name = "slv_srvc_snoc", .id = SDM660_SLAVE_SRVC_SNOC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 29, }; static struct qcom_icc_node * const sdm660_a2noc_nodes[] = { [MASTER_IPA] = &mas_ipa, [MASTER_CNOC_A2NOC] = &mas_cnoc_a2noc, [MASTER_SDCC_1] = &mas_sdcc_1, [MASTER_SDCC_2] = &mas_sdcc_2, [MASTER_BLSP_1] = &mas_blsp_1, [MASTER_BLSP_2] = &mas_blsp_2, [MASTER_UFS] = &mas_ufs, [MASTER_USB_HS] = &mas_usb_hs, [MASTER_USB3] = &mas_usb3, [MASTER_CRYPTO_C0] = &mas_crypto, [SLAVE_A2NOC_SNOC] = &slv_a2noc_snoc, }; static const struct regmap_config sdm660_a2noc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x20000, .fast_io = true, }; static const struct qcom_icc_desc sdm660_a2noc = { .type = QCOM_ICC_NOC, .nodes = sdm660_a2noc_nodes, .num_nodes = ARRAY_SIZE(sdm660_a2noc_nodes), .bus_clk_desc = &aggre2_clk, .intf_clocks = a2noc_intf_clocks, .num_intf_clocks = ARRAY_SIZE(a2noc_intf_clocks), .regmap_cfg = &sdm660_a2noc_regmap_config, }; static struct qcom_icc_node * const sdm660_bimc_nodes[] = { [MASTER_GNOC_BIMC] = &mas_gnoc_bimc, [MASTER_OXILI] = &mas_oxili, [MASTER_MNOC_BIMC] = &mas_mnoc_bimc, [MASTER_SNOC_BIMC] = &mas_snoc_bimc, [MASTER_PIMEM] = &mas_pimem, [SLAVE_EBI] = &slv_ebi, [SLAVE_HMSS_L3] = &slv_hmss_l3, [SLAVE_BIMC_SNOC] = &slv_bimc_snoc, }; static const struct regmap_config sdm660_bimc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x80000, .fast_io = true, }; static const struct qcom_icc_desc sdm660_bimc = { .type = QCOM_ICC_BIMC, .nodes = sdm660_bimc_nodes, .num_nodes = ARRAY_SIZE(sdm660_bimc_nodes), .bus_clk_desc = &bimc_clk, .regmap_cfg = &sdm660_bimc_regmap_config, }; static struct qcom_icc_node * const sdm660_cnoc_nodes[] = { [MASTER_SNOC_CNOC] = &mas_snoc_cnoc, [MASTER_QDSS_DAP] = &mas_qdss_dap, [SLAVE_CNOC_A2NOC] = &slv_cnoc_a2noc, [SLAVE_MPM] = &slv_mpm, [SLAVE_PMIC_ARB] = &slv_pmic_arb, [SLAVE_TLMM_NORTH] = &slv_tlmm_north, [SLAVE_TCSR] = &slv_tcsr, [SLAVE_PIMEM_CFG] = &slv_pimem_cfg, [SLAVE_IMEM_CFG] = &slv_imem_cfg, [SLAVE_MESSAGE_RAM] = &slv_message_ram, [SLAVE_GLM] = &slv_glm, [SLAVE_BIMC_CFG] = &slv_bimc_cfg, [SLAVE_PRNG] = &slv_prng, [SLAVE_SPDM] = &slv_spdm, [SLAVE_QDSS_CFG] = &slv_qdss_cfg, [SLAVE_CNOC_MNOC_CFG] = &slv_cnoc_mnoc_cfg, [SLAVE_SNOC_CFG] = &slv_snoc_cfg, [SLAVE_QM_CFG] = &slv_qm_cfg, [SLAVE_CLK_CTL] = &slv_clk_ctl, [SLAVE_MSS_CFG] = &slv_mss_cfg, [SLAVE_TLMM_SOUTH] = &slv_tlmm_south, [SLAVE_UFS_CFG] = &slv_ufs_cfg, [SLAVE_A2NOC_CFG] = &slv_a2noc_cfg, [SLAVE_A2NOC_SMMU_CFG] = &slv_a2noc_smmu_cfg, [SLAVE_GPUSS_CFG] = &slv_gpuss_cfg, [SLAVE_AHB2PHY] = &slv_ahb2phy, [SLAVE_BLSP_1] = &slv_blsp_1, [SLAVE_SDCC_1] = &slv_sdcc_1, [SLAVE_SDCC_2] = &slv_sdcc_2, [SLAVE_TLMM_CENTER] = &slv_tlmm_center, [SLAVE_BLSP_2] = &slv_blsp_2, [SLAVE_PDM] = &slv_pdm, [SLAVE_CNOC_MNOC_MMSS_CFG] = &slv_cnoc_mnoc_mmss_cfg, [SLAVE_USB_HS] = &slv_usb_hs, [SLAVE_USB3_0] = &slv_usb3_0, [SLAVE_SRVC_CNOC] = &slv_srvc_cnoc, }; static const struct regmap_config sdm660_cnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x10000, .fast_io = true, }; static const struct qcom_icc_desc sdm660_cnoc = { .type = QCOM_ICC_NOC, .nodes = sdm660_cnoc_nodes, .num_nodes = ARRAY_SIZE(sdm660_cnoc_nodes), .bus_clk_desc = &bus_2_clk, .regmap_cfg = &sdm660_cnoc_regmap_config, }; static struct qcom_icc_node * const sdm660_gnoc_nodes[] = { [MASTER_APSS_PROC] = &mas_apss_proc, [SLAVE_GNOC_BIMC] = &slv_gnoc_bimc, [SLAVE_GNOC_SNOC] = &slv_gnoc_snoc, }; static const struct regmap_config sdm660_gnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0xe000, .fast_io = true, }; static const struct qcom_icc_desc sdm660_gnoc = { .type = QCOM_ICC_NOC, .nodes = sdm660_gnoc_nodes, .num_nodes = ARRAY_SIZE(sdm660_gnoc_nodes), .regmap_cfg = &sdm660_gnoc_regmap_config, }; static struct qcom_icc_node * const sdm660_mnoc_nodes[] = { [MASTER_CPP] = &mas_cpp, [MASTER_JPEG] = &mas_jpeg, [MASTER_MDP_P0] = &mas_mdp_p0, [MASTER_MDP_P1] = &mas_mdp_p1, [MASTER_VENUS] = &mas_venus, [MASTER_VFE] = &mas_vfe, [MASTER_CNOC_MNOC_MMSS_CFG] = &mas_cnoc_mnoc_mmss_cfg, [MASTER_CNOC_MNOC_CFG] = &mas_cnoc_mnoc_cfg, [SLAVE_CAMERA_CFG] = &slv_camera_cfg, [SLAVE_CAMERA_THROTTLE_CFG] = &slv_camera_throttle_cfg, [SLAVE_MISC_CFG] = &slv_misc_cfg, [SLAVE_VENUS_THROTTLE_CFG] = &slv_venus_throttle_cfg, [SLAVE_VENUS_CFG] = &slv_venus_cfg, [SLAVE_MMSS_CLK_XPU_CFG] = &slv_mmss_clk_xpu_cfg, [SLAVE_MMSS_CLK_CFG] = &slv_mmss_clk_cfg, [SLAVE_MNOC_MPU_CFG] = &slv_mnoc_mpu_cfg, [SLAVE_DISPLAY_CFG] = &slv_display_cfg, [SLAVE_CSI_PHY_CFG] = &slv_csi_phy_cfg, [SLAVE_DISPLAY_THROTTLE_CFG] = &slv_display_throttle_cfg, [SLAVE_SMMU_CFG] = &slv_smmu_cfg, [SLAVE_SRVC_MNOC] = &slv_srvc_mnoc, [SLAVE_MNOC_BIMC] = &slv_mnoc_bimc, }; static const struct regmap_config sdm660_mnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x10000, .fast_io = true, }; static const struct qcom_icc_desc sdm660_mnoc = { .type = QCOM_ICC_NOC, .nodes = sdm660_mnoc_nodes, .num_nodes = ARRAY_SIZE(sdm660_mnoc_nodes), .bus_clk_desc = &mmaxi_0_clk, .intf_clocks = mm_intf_clocks, .num_intf_clocks = ARRAY_SIZE(mm_intf_clocks), .regmap_cfg = &sdm660_mnoc_regmap_config, }; static struct qcom_icc_node * const sdm660_snoc_nodes[] = { [MASTER_QDSS_ETR] = &mas_qdss_etr, [MASTER_QDSS_BAM] = &mas_qdss_bam, [MASTER_SNOC_CFG] = &mas_snoc_cfg, [MASTER_BIMC_SNOC] = &mas_bimc_snoc, [MASTER_A2NOC_SNOC] = &mas_a2noc_snoc, [MASTER_GNOC_SNOC] = &mas_gnoc_snoc, [SLAVE_HMSS] = &slv_hmss, [SLAVE_LPASS] = &slv_lpass, [SLAVE_WLAN] = &slv_wlan, [SLAVE_CDSP] = &slv_cdsp, [SLAVE_IPA] = &slv_ipa, [SLAVE_SNOC_BIMC] = &slv_snoc_bimc, [SLAVE_SNOC_CNOC] = &slv_snoc_cnoc, [SLAVE_IMEM] = &slv_imem, [SLAVE_PIMEM] = &slv_pimem, [SLAVE_QDSS_STM] = &slv_qdss_stm, [SLAVE_SRVC_SNOC] = &slv_srvc_snoc, }; static const struct regmap_config sdm660_snoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x20000, .fast_io = true, }; static const struct qcom_icc_desc sdm660_snoc = { .type = QCOM_ICC_NOC, .nodes = sdm660_snoc_nodes, .num_nodes = ARRAY_SIZE(sdm660_snoc_nodes), .bus_clk_desc = &bus_1_clk, .regmap_cfg = &sdm660_snoc_regmap_config, }; static const struct of_device_id sdm660_noc_of_match[] = { { .compatible = "qcom,sdm660-a2noc", .data = &sdm660_a2noc }, { .compatible = "qcom,sdm660-bimc", .data = &sdm660_bimc }, { .compatible = "qcom,sdm660-cnoc", .data = &sdm660_cnoc }, { .compatible = "qcom,sdm660-gnoc", .data = &sdm660_gnoc }, { .compatible = "qcom,sdm660-mnoc", .data = &sdm660_mnoc }, { .compatible = "qcom,sdm660-snoc", .data = &sdm660_snoc }, { }, }; MODULE_DEVICE_TABLE(of, sdm660_noc_of_match); static struct platform_driver sdm660_noc_driver = { .probe = qnoc_probe, .remove = qnoc_remove, .driver = { .name = "qnoc-sdm660", .of_match_table = sdm660_noc_of_match, }, }; module_platform_driver(sdm660_noc_driver); MODULE_DESCRIPTION("Qualcomm sdm660 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sdm660.c
// SPDX-License-Identifier: GPL-2.0 /* * RPM over SMD communication wrapper for interconnects * * Copyright (C) 2019 Linaro Ltd * Author: Georgi Djakov <[email protected]> */ #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/soc/qcom/smd-rpm.h> #include "icc-rpm.h" #define RPM_KEY_BW 0x00007762 #define QCOM_RPM_SMD_KEY_RATE 0x007a484b static struct qcom_smd_rpm *icc_smd_rpm; struct icc_rpm_smd_req { __le32 key; __le32 nbytes; __le32 value; }; bool qcom_icc_rpm_smd_available(void) { return !!icc_smd_rpm; } EXPORT_SYMBOL_GPL(qcom_icc_rpm_smd_available); int qcom_icc_rpm_smd_send(int ctx, int rsc_type, int id, u32 val) { struct icc_rpm_smd_req req = { .key = cpu_to_le32(RPM_KEY_BW), .nbytes = cpu_to_le32(sizeof(u32)), .value = cpu_to_le32(val), }; return qcom_rpm_smd_write(icc_smd_rpm, ctx, rsc_type, id, &req, sizeof(req)); } EXPORT_SYMBOL_GPL(qcom_icc_rpm_smd_send); int qcom_icc_rpm_set_bus_rate(const struct rpm_clk_resource *clk, int ctx, u32 rate) { struct clk_smd_rpm_req req = { .key = cpu_to_le32(QCOM_RPM_SMD_KEY_RATE), .nbytes = cpu_to_le32(sizeof(u32)), }; /* Branch clocks are only on/off */ if (clk->branch) rate = !!rate; req.value = cpu_to_le32(rate); return qcom_rpm_smd_write(icc_smd_rpm, ctx, clk->resource_type, clk->clock_id, &req, sizeof(req)); } EXPORT_SYMBOL_GPL(qcom_icc_rpm_set_bus_rate); static int qcom_icc_rpm_smd_remove(struct platform_device *pdev) { icc_smd_rpm = NULL; return 0; } static int qcom_icc_rpm_smd_probe(struct platform_device *pdev) { icc_smd_rpm = dev_get_drvdata(pdev->dev.parent); if (!icc_smd_rpm) { dev_err(&pdev->dev, "unable to retrieve handle to RPM\n"); return -ENODEV; } return 0; } static struct platform_driver qcom_interconnect_rpm_smd_driver = { .driver = { .name = "icc_smd_rpm", }, .probe = qcom_icc_rpm_smd_probe, .remove = qcom_icc_rpm_smd_remove, }; module_platform_driver(qcom_interconnect_rpm_smd_driver); MODULE_AUTHOR("Georgi Djakov <[email protected]>"); MODULE_DESCRIPTION("Qualcomm SMD RPM interconnect proxy driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:icc_smd_rpm");
linux-master
drivers/interconnect/qcom/smd-rpm.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. * Copyright (c) 2021, Linaro Ltd. */ #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sc8180x.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sc8180x.h" static struct qcom_icc_node mas_qhm_a1noc_cfg = { .name = "mas_qhm_a1noc_cfg", .id = SC8180X_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_SERVICE_A1NOC } }; static struct qcom_icc_node mas_xm_ufs_card = { .name = "mas_xm_ufs_card", .id = SC8180X_MASTER_UFS_CARD, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A1NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_ufs_g4 = { .name = "mas_xm_ufs_g4", .id = SC8180X_MASTER_UFS_GEN4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A1NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_ufs_mem = { .name = "mas_xm_ufs_mem", .id = SC8180X_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A1NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_usb3_0 = { .name = "mas_xm_usb3_0", .id = SC8180X_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A1NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_usb3_1 = { .name = "mas_xm_usb3_1", .id = SC8180X_MASTER_USB3_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A1NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_usb3_2 = { .name = "mas_xm_usb3_2", .id = SC8180X_MASTER_USB3_2, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8180X_A1NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qhm_a2noc_cfg = { .name = "mas_qhm_a2noc_cfg", .id = SC8180X_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_SERVICE_A2NOC } }; static struct qcom_icc_node mas_qhm_qdss_bam = { .name = "mas_qhm_qdss_bam", .id = SC8180X_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qhm_qspi = { .name = "mas_qhm_qspi", .id = SC8180X_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qhm_qspi1 = { .name = "mas_qhm_qspi1", .id = SC8180X_MASTER_QSPI_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qhm_qup0 = { .name = "mas_qhm_qup0", .id = SC8180X_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qhm_qup1 = { .name = "mas_qhm_qup1", .id = SC8180X_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qhm_qup2 = { .name = "mas_qhm_qup2", .id = SC8180X_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qhm_sensorss_ahb = { .name = "mas_qhm_sensorss_ahb", .id = SC8180X_MASTER_SENSORS_AHB, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qxm_crypto = { .name = "mas_qxm_crypto", .id = SC8180X_MASTER_CRYPTO_CORE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qxm_ipa = { .name = "mas_qxm_ipa", .id = SC8180X_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_emac = { .name = "mas_xm_emac", .id = SC8180X_MASTER_EMAC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_pcie3_0 = { .name = "mas_xm_pcie3_0", .id = SC8180X_MASTER_PCIE, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_SLAVE_ANOC_PCIE_GEM_NOC } }; static struct qcom_icc_node mas_xm_pcie3_1 = { .name = "mas_xm_pcie3_1", .id = SC8180X_MASTER_PCIE_1, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8180X_SLAVE_ANOC_PCIE_GEM_NOC } }; static struct qcom_icc_node mas_xm_pcie3_2 = { .name = "mas_xm_pcie3_2", .id = SC8180X_MASTER_PCIE_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_SLAVE_ANOC_PCIE_GEM_NOC } }; static struct qcom_icc_node mas_xm_pcie3_3 = { .name = "mas_xm_pcie3_3", .id = SC8180X_MASTER_PCIE_3, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8180X_SLAVE_ANOC_PCIE_GEM_NOC } }; static struct qcom_icc_node mas_xm_qdss_etr = { .name = "mas_xm_qdss_etr", .id = SC8180X_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_sdc2 = { .name = "mas_xm_sdc2", .id = SC8180X_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_xm_sdc4 = { .name = "mas_xm_sdc4", .id = SC8180X_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_SLV } }; static struct qcom_icc_node mas_qxm_camnoc_hf0_uncomp = { .name = "mas_qxm_camnoc_hf0_uncomp", .id = SC8180X_MASTER_CAMNOC_HF0_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_CAMNOC_UNCOMP } }; static struct qcom_icc_node mas_qxm_camnoc_hf1_uncomp = { .name = "mas_qxm_camnoc_hf1_uncomp", .id = SC8180X_MASTER_CAMNOC_HF1_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_CAMNOC_UNCOMP } }; static struct qcom_icc_node mas_qxm_camnoc_sf_uncomp = { .name = "mas_qxm_camnoc_sf_uncomp", .id = SC8180X_MASTER_CAMNOC_SF_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_CAMNOC_UNCOMP } }; static struct qcom_icc_node mas_qnm_npu = { .name = "mas_qnm_npu", .id = SC8180X_MASTER_NPU, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_CDSP_MEM_NOC } }; static struct qcom_icc_node mas_qnm_snoc = { .name = "mas_qnm_snoc", .id = SC8180X_SNOC_CNOC_MAS, .channels = 1, .buswidth = 8, .num_links = 56, .links = { SC8180X_SLAVE_TLMM_SOUTH, SC8180X_SLAVE_CDSP_CFG, SC8180X_SLAVE_SPSS_CFG, SC8180X_SLAVE_CAMERA_CFG, SC8180X_SLAVE_SDCC_4, SC8180X_SLAVE_AHB2PHY_CENTER, SC8180X_SLAVE_SDCC_2, SC8180X_SLAVE_PCIE_2_CFG, SC8180X_SLAVE_CNOC_MNOC_CFG, SC8180X_SLAVE_EMAC_CFG, SC8180X_SLAVE_QSPI_0, SC8180X_SLAVE_QSPI_1, SC8180X_SLAVE_TLMM_EAST, SC8180X_SLAVE_SNOC_CFG, SC8180X_SLAVE_AHB2PHY_EAST, SC8180X_SLAVE_GLM, SC8180X_SLAVE_PDM, SC8180X_SLAVE_PCIE_1_CFG, SC8180X_SLAVE_A2NOC_CFG, SC8180X_SLAVE_QDSS_CFG, SC8180X_SLAVE_DISPLAY_CFG, SC8180X_SLAVE_TCSR, SC8180X_SLAVE_UFS_MEM_0_CFG, SC8180X_SLAVE_CNOC_DDRSS, SC8180X_SLAVE_PCIE_0_CFG, SC8180X_SLAVE_QUP_1, SC8180X_SLAVE_QUP_2, SC8180X_SLAVE_NPU_CFG, SC8180X_SLAVE_CRYPTO_0_CFG, SC8180X_SLAVE_GRAPHICS_3D_CFG, SC8180X_SLAVE_VENUS_CFG, SC8180X_SLAVE_TSIF, SC8180X_SLAVE_IPA_CFG, SC8180X_SLAVE_CLK_CTL, SC8180X_SLAVE_SECURITY, SC8180X_SLAVE_AOP, SC8180X_SLAVE_AHB2PHY_WEST, SC8180X_SLAVE_AHB2PHY_SOUTH, SC8180X_SLAVE_SERVICE_CNOC, SC8180X_SLAVE_UFS_CARD_CFG, SC8180X_SLAVE_USB3_1, SC8180X_SLAVE_USB3_2, SC8180X_SLAVE_PCIE_3_CFG, SC8180X_SLAVE_RBCPR_CX_CFG, SC8180X_SLAVE_TLMM_WEST, SC8180X_SLAVE_A1NOC_CFG, SC8180X_SLAVE_AOSS, SC8180X_SLAVE_PRNG, SC8180X_SLAVE_VSENSE_CTRL_CFG, SC8180X_SLAVE_QUP_0, SC8180X_SLAVE_USB3, SC8180X_SLAVE_RBCPR_MMCX_CFG, SC8180X_SLAVE_PIMEM_CFG, SC8180X_SLAVE_UFS_MEM_1_CFG, SC8180X_SLAVE_RBCPR_MX_CFG, SC8180X_SLAVE_IMEM_CFG } }; static struct qcom_icc_node mas_qhm_cnoc_dc_noc = { .name = "mas_qhm_cnoc_dc_noc", .id = SC8180X_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SC8180X_SLAVE_LLCC_CFG, SC8180X_SLAVE_GEM_NOC_CFG } }; static struct qcom_icc_node mas_acm_apps = { .name = "mas_acm_apps", .id = SC8180X_MASTER_AMPSS_M0, .channels = 4, .buswidth = 64, .num_links = 3, .links = { SC8180X_SLAVE_ECC, SC8180X_SLAVE_LLCC, SC8180X_SLAVE_GEM_NOC_SNOC } }; static struct qcom_icc_node mas_acm_gpu_tcu = { .name = "mas_acm_gpu_tcu", .id = SC8180X_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC8180X_SLAVE_LLCC, SC8180X_SLAVE_GEM_NOC_SNOC } }; static struct qcom_icc_node mas_acm_sys_tcu = { .name = "mas_acm_sys_tcu", .id = SC8180X_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC8180X_SLAVE_LLCC, SC8180X_SLAVE_GEM_NOC_SNOC } }; static struct qcom_icc_node mas_qhm_gemnoc_cfg = { .name = "mas_qhm_gemnoc_cfg", .id = SC8180X_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 3, .links = { SC8180X_SLAVE_SERVICE_GEM_NOC_1, SC8180X_SLAVE_SERVICE_GEM_NOC, SC8180X_SLAVE_MSS_PROC_MS_MPU_CFG } }; static struct qcom_icc_node mas_qnm_cmpnoc = { .name = "mas_qnm_cmpnoc", .id = SC8180X_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SC8180X_SLAVE_ECC, SC8180X_SLAVE_LLCC, SC8180X_SLAVE_GEM_NOC_SNOC } }; static struct qcom_icc_node mas_qnm_gpu = { .name = "mas_qnm_gpu", .id = SC8180X_MASTER_GRAPHICS_3D, .channels = 4, .buswidth = 32, .num_links = 2, .links = { SC8180X_SLAVE_LLCC, SC8180X_SLAVE_GEM_NOC_SNOC } }; static struct qcom_icc_node mas_qnm_mnoc_hf = { .name = "mas_qnm_mnoc_hf", .id = SC8180X_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_LLCC } }; static struct qcom_icc_node mas_qnm_mnoc_sf = { .name = "mas_qnm_mnoc_sf", .id = SC8180X_MASTER_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SC8180X_SLAVE_LLCC, SC8180X_SLAVE_GEM_NOC_SNOC } }; static struct qcom_icc_node mas_qnm_pcie = { .name = "mas_qnm_pcie", .id = SC8180X_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SC8180X_SLAVE_LLCC, SC8180X_SLAVE_GEM_NOC_SNOC } }; static struct qcom_icc_node mas_qnm_snoc_gc = { .name = "mas_qnm_snoc_gc", .id = SC8180X_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_SLAVE_LLCC } }; static struct qcom_icc_node mas_qnm_snoc_sf = { .name = "mas_qnm_snoc_sf", .id = SC8180X_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_LLCC } }; static struct qcom_icc_node mas_qxm_ecc = { .name = "mas_qxm_ecc", .id = SC8180X_MASTER_ECC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_LLCC } }; static struct qcom_icc_node mas_llcc_mc = { .name = "mas_llcc_mc", .id = SC8180X_MASTER_LLCC, .channels = 8, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_EBI_CH0 } }; static struct qcom_icc_node mas_qhm_mnoc_cfg = { .name = "mas_qhm_mnoc_cfg", .id = SC8180X_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_SERVICE_MNOC } }; static struct qcom_icc_node mas_qxm_camnoc_hf0 = { .name = "mas_qxm_camnoc_hf0", .id = SC8180X_MASTER_CAMNOC_HF0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_HF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_camnoc_hf1 = { .name = "mas_qxm_camnoc_hf1", .id = SC8180X_MASTER_CAMNOC_HF1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_HF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_camnoc_sf = { .name = "mas_qxm_camnoc_sf", .id = SC8180X_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_SF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_mdp0 = { .name = "mas_qxm_mdp0", .id = SC8180X_MASTER_MDP_PORT0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_HF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_mdp1 = { .name = "mas_qxm_mdp1", .id = SC8180X_MASTER_MDP_PORT1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_HF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_rot = { .name = "mas_qxm_rot", .id = SC8180X_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_SF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_venus0 = { .name = "mas_qxm_venus0", .id = SC8180X_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_SF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_venus1 = { .name = "mas_qxm_venus1", .id = SC8180X_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_SF_MEM_NOC } }; static struct qcom_icc_node mas_qxm_venus_arm9 = { .name = "mas_qxm_venus_arm9", .id = SC8180X_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_SLAVE_MNOC_SF_MEM_NOC } }; static struct qcom_icc_node mas_qhm_snoc_cfg = { .name = "mas_qhm_snoc_cfg", .id = SC8180X_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_SERVICE_SNOC } }; static struct qcom_icc_node mas_qnm_aggre1_noc = { .name = "mas_qnm_aggre1_noc", .id = SC8180X_A1NOC_SNOC_MAS, .channels = 1, .buswidth = 32, .num_links = 6, .links = { SC8180X_SLAVE_SNOC_GEM_NOC_SF, SC8180X_SLAVE_PIMEM, SC8180X_SLAVE_OCIMEM, SC8180X_SLAVE_APPSS, SC8180X_SNOC_CNOC_SLV, SC8180X_SLAVE_QDSS_STM } }; static struct qcom_icc_node mas_qnm_aggre2_noc = { .name = "mas_qnm_aggre2_noc", .id = SC8180X_A2NOC_SNOC_MAS, .channels = 1, .buswidth = 16, .num_links = 11, .links = { SC8180X_SLAVE_SNOC_GEM_NOC_SF, SC8180X_SLAVE_PIMEM, SC8180X_SLAVE_PCIE_3, SC8180X_SLAVE_OCIMEM, SC8180X_SLAVE_APPSS, SC8180X_SLAVE_PCIE_2, SC8180X_SNOC_CNOC_SLV, SC8180X_SLAVE_PCIE_0, SC8180X_SLAVE_PCIE_1, SC8180X_SLAVE_TCU, SC8180X_SLAVE_QDSS_STM } }; static struct qcom_icc_node mas_qnm_gemnoc = { .name = "mas_qnm_gemnoc", .id = SC8180X_MASTER_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 6, .links = { SC8180X_SLAVE_PIMEM, SC8180X_SLAVE_OCIMEM, SC8180X_SLAVE_APPSS, SC8180X_SNOC_CNOC_SLV, SC8180X_SLAVE_TCU, SC8180X_SLAVE_QDSS_STM } }; static struct qcom_icc_node mas_qxm_pimem = { .name = "mas_qxm_pimem", .id = SC8180X_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC8180X_SLAVE_SNOC_GEM_NOC_GC, SC8180X_SLAVE_OCIMEM } }; static struct qcom_icc_node mas_xm_gic = { .name = "mas_xm_gic", .id = SC8180X_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC8180X_SLAVE_SNOC_GEM_NOC_GC, SC8180X_SLAVE_OCIMEM } }; static struct qcom_icc_node mas_qup_core_0 = { .name = "mas_qup_core_0", .id = SC8180X_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_QUP_CORE_0 } }; static struct qcom_icc_node mas_qup_core_1 = { .name = "mas_qup_core_1", .id = SC8180X_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_QUP_CORE_1 } }; static struct qcom_icc_node mas_qup_core_2 = { .name = "mas_qup_core_2", .id = SC8180X_MASTER_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_SLAVE_QUP_CORE_2 } }; static struct qcom_icc_node slv_qns_a1noc_snoc = { .name = "slv_qns_a1noc_snoc", .id = SC8180X_A1NOC_SNOC_SLV, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_A1NOC_SNOC_MAS } }; static struct qcom_icc_node slv_srvc_aggre1_noc = { .name = "slv_srvc_aggre1_noc", .id = SC8180X_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qns_a2noc_snoc = { .name = "slv_qns_a2noc_snoc", .id = SC8180X_A2NOC_SNOC_SLV, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8180X_A2NOC_SNOC_MAS } }; static struct qcom_icc_node slv_qns_pcie_mem_noc = { .name = "slv_qns_pcie_mem_noc", .id = SC8180X_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_MASTER_GEM_NOC_PCIE_SNOC } }; static struct qcom_icc_node slv_srvc_aggre2_noc = { .name = "slv_srvc_aggre2_noc", .id = SC8180X_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qns_camnoc_uncomp = { .name = "slv_qns_camnoc_uncomp", .id = SC8180X_SLAVE_CAMNOC_UNCOMP, .channels = 1, .buswidth = 32 }; static struct qcom_icc_node slv_qns_cdsp_mem_noc = { .name = "slv_qns_cdsp_mem_noc", .id = SC8180X_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8180X_MASTER_COMPUTE_NOC } }; static struct qcom_icc_node slv_qhs_a1_noc_cfg = { .name = "slv_qhs_a1_noc_cfg", .id = SC8180X_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_MASTER_A1NOC_CFG } }; static struct qcom_icc_node slv_qhs_a2_noc_cfg = { .name = "slv_qhs_a2_noc_cfg", .id = SC8180X_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_MASTER_A2NOC_CFG } }; static struct qcom_icc_node slv_qhs_ahb2phy_refgen_center = { .name = "slv_qhs_ahb2phy_refgen_center", .id = SC8180X_SLAVE_AHB2PHY_CENTER, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ahb2phy_refgen_east = { .name = "slv_qhs_ahb2phy_refgen_east", .id = SC8180X_SLAVE_AHB2PHY_EAST, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ahb2phy_refgen_west = { .name = "slv_qhs_ahb2phy_refgen_west", .id = SC8180X_SLAVE_AHB2PHY_WEST, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ahb2phy_south = { .name = "slv_qhs_ahb2phy_south", .id = SC8180X_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_aop = { .name = "slv_qhs_aop", .id = SC8180X_SLAVE_AOP, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_aoss = { .name = "slv_qhs_aoss", .id = SC8180X_SLAVE_AOSS, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_camera_cfg = { .name = "slv_qhs_camera_cfg", .id = SC8180X_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_clk_ctl = { .name = "slv_qhs_clk_ctl", .id = SC8180X_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_compute_dsp = { .name = "slv_qhs_compute_dsp", .id = SC8180X_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_cpr_cx = { .name = "slv_qhs_cpr_cx", .id = SC8180X_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_cpr_mmcx = { .name = "slv_qhs_cpr_mmcx", .id = SC8180X_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_cpr_mx = { .name = "slv_qhs_cpr_mx", .id = SC8180X_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_crypto0_cfg = { .name = "slv_qhs_crypto0_cfg", .id = SC8180X_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ddrss_cfg = { .name = "slv_qhs_ddrss_cfg", .id = SC8180X_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_MASTER_CNOC_DC_NOC } }; static struct qcom_icc_node slv_qhs_display_cfg = { .name = "slv_qhs_display_cfg", .id = SC8180X_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_emac_cfg = { .name = "slv_qhs_emac_cfg", .id = SC8180X_SLAVE_EMAC_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_glm = { .name = "slv_qhs_glm", .id = SC8180X_SLAVE_GLM, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_gpuss_cfg = { .name = "slv_qhs_gpuss_cfg", .id = SC8180X_SLAVE_GRAPHICS_3D_CFG, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_qhs_imem_cfg = { .name = "slv_qhs_imem_cfg", .id = SC8180X_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ipa = { .name = "slv_qhs_ipa", .id = SC8180X_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_mnoc_cfg = { .name = "slv_qhs_mnoc_cfg", .id = SC8180X_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_MASTER_CNOC_MNOC_CFG } }; static struct qcom_icc_node slv_qhs_npu_cfg = { .name = "slv_qhs_npu_cfg", .id = SC8180X_SLAVE_NPU_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_pcie0_cfg = { .name = "slv_qhs_pcie0_cfg", .id = SC8180X_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_pcie1_cfg = { .name = "slv_qhs_pcie1_cfg", .id = SC8180X_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_pcie2_cfg = { .name = "slv_qhs_pcie2_cfg", .id = SC8180X_SLAVE_PCIE_2_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_pcie3_cfg = { .name = "slv_qhs_pcie3_cfg", .id = SC8180X_SLAVE_PCIE_3_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_pdm = { .name = "slv_qhs_pdm", .id = SC8180X_SLAVE_PDM, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_pimem_cfg = { .name = "slv_qhs_pimem_cfg", .id = SC8180X_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_prng = { .name = "slv_qhs_prng", .id = SC8180X_SLAVE_PRNG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_qdss_cfg = { .name = "slv_qhs_qdss_cfg", .id = SC8180X_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_qspi_0 = { .name = "slv_qhs_qspi_0", .id = SC8180X_SLAVE_QSPI_0, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_qspi_1 = { .name = "slv_qhs_qspi_1", .id = SC8180X_SLAVE_QSPI_1, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_qupv3_east0 = { .name = "slv_qhs_qupv3_east0", .id = SC8180X_SLAVE_QUP_1, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_qupv3_east1 = { .name = "slv_qhs_qupv3_east1", .id = SC8180X_SLAVE_QUP_2, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_qupv3_west = { .name = "slv_qhs_qupv3_west", .id = SC8180X_SLAVE_QUP_0, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_sdc2 = { .name = "slv_qhs_sdc2", .id = SC8180X_SLAVE_SDCC_2, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_sdc4 = { .name = "slv_qhs_sdc4", .id = SC8180X_SLAVE_SDCC_4, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_security = { .name = "slv_qhs_security", .id = SC8180X_SLAVE_SECURITY, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_snoc_cfg = { .name = "slv_qhs_snoc_cfg", .id = SC8180X_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_MASTER_SNOC_CFG } }; static struct qcom_icc_node slv_qhs_spss_cfg = { .name = "slv_qhs_spss_cfg", .id = SC8180X_SLAVE_SPSS_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_tcsr = { .name = "slv_qhs_tcsr", .id = SC8180X_SLAVE_TCSR, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_tlmm_east = { .name = "slv_qhs_tlmm_east", .id = SC8180X_SLAVE_TLMM_EAST, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_tlmm_south = { .name = "slv_qhs_tlmm_south", .id = SC8180X_SLAVE_TLMM_SOUTH, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_tlmm_west = { .name = "slv_qhs_tlmm_west", .id = SC8180X_SLAVE_TLMM_WEST, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_tsif = { .name = "slv_qhs_tsif", .id = SC8180X_SLAVE_TSIF, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ufs_card_cfg = { .name = "slv_qhs_ufs_card_cfg", .id = SC8180X_SLAVE_UFS_CARD_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ufs_mem0_cfg = { .name = "slv_qhs_ufs_mem0_cfg", .id = SC8180X_SLAVE_UFS_MEM_0_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_ufs_mem1_cfg = { .name = "slv_qhs_ufs_mem1_cfg", .id = SC8180X_SLAVE_UFS_MEM_1_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_usb3_0 = { .name = "slv_qhs_usb3_0", .id = SC8180X_SLAVE_USB3, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_usb3_1 = { .name = "slv_qhs_usb3_1", .id = SC8180X_SLAVE_USB3_1, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_usb3_2 = { .name = "slv_qhs_usb3_2", .id = SC8180X_SLAVE_USB3_2, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_venus_cfg = { .name = "slv_qhs_venus_cfg", .id = SC8180X_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_vsense_ctrl_cfg = { .name = "slv_qhs_vsense_ctrl_cfg", .id = SC8180X_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_srvc_cnoc = { .name = "slv_srvc_cnoc", .id = SC8180X_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_gemnoc = { .name = "slv_qhs_gemnoc", .id = SC8180X_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8180X_MASTER_GEM_NOC_CFG } }; static struct qcom_icc_node slv_qhs_llcc = { .name = "slv_qhs_llcc", .id = SC8180X_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_mdsp_ms_mpu_cfg = { .name = "slv_qhs_mdsp_ms_mpu_cfg", .id = SC8180X_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qns_ecc = { .name = "slv_qns_ecc", .id = SC8180X_SLAVE_ECC, .channels = 1, .buswidth = 32 }; static struct qcom_icc_node slv_qns_gem_noc_snoc = { .name = "slv_qns_gem_noc_snoc", .id = SC8180X_SLAVE_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_MASTER_GEM_NOC_SNOC } }; static struct qcom_icc_node slv_qns_llcc = { .name = "slv_qns_llcc", .id = SC8180X_SLAVE_LLCC, .channels = 8, .buswidth = 16, .num_links = 1, .links = { SC8180X_MASTER_LLCC } }; static struct qcom_icc_node slv_srvc_gemnoc = { .name = "slv_srvc_gemnoc", .id = SC8180X_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_srvc_gemnoc1 = { .name = "slv_srvc_gemnoc1", .id = SC8180X_SLAVE_SERVICE_GEM_NOC_1, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_ebi = { .name = "slv_ebi", .id = SC8180X_SLAVE_EBI_CH0, .channels = 8, .buswidth = 4 }; static struct qcom_icc_node slv_qns2_mem_noc = { .name = "slv_qns2_mem_noc", .id = SC8180X_SLAVE_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_MASTER_MNOC_SF_MEM_NOC } }; static struct qcom_icc_node slv_qns_mem_noc_hf = { .name = "slv_qns_mem_noc_hf", .id = SC8180X_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8180X_MASTER_MNOC_HF_MEM_NOC } }; static struct qcom_icc_node slv_srvc_mnoc = { .name = "slv_srvc_mnoc", .id = SC8180X_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qhs_apss = { .name = "slv_qhs_apss", .id = SC8180X_SLAVE_APPSS, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_qns_cnoc = { .name = "slv_qns_cnoc", .id = SC8180X_SNOC_CNOC_SLV, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_SNOC_CNOC_MAS } }; static struct qcom_icc_node slv_qns_gemnoc_gc = { .name = "slv_qns_gemnoc_gc", .id = SC8180X_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8180X_MASTER_SNOC_GC_MEM_NOC } }; static struct qcom_icc_node slv_qns_gemnoc_sf = { .name = "slv_qns_gemnoc_sf", .id = SC8180X_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8180X_MASTER_SNOC_SF_MEM_NOC } }; static struct qcom_icc_node slv_qxs_imem = { .name = "slv_qxs_imem", .id = SC8180X_SLAVE_OCIMEM, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_qxs_pimem = { .name = "slv_qxs_pimem", .id = SC8180X_SLAVE_PIMEM, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_srvc_snoc = { .name = "slv_srvc_snoc", .id = SC8180X_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_xs_pcie_0 = { .name = "slv_xs_pcie_0", .id = SC8180X_SLAVE_PCIE_0, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_xs_pcie_1 = { .name = "slv_xs_pcie_1", .id = SC8180X_SLAVE_PCIE_1, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_xs_pcie_2 = { .name = "slv_xs_pcie_2", .id = SC8180X_SLAVE_PCIE_2, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_xs_pcie_3 = { .name = "slv_xs_pcie_3", .id = SC8180X_SLAVE_PCIE_3, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_xs_qdss_stm = { .name = "slv_xs_qdss_stm", .id = SC8180X_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_xs_sys_tcu_cfg = { .name = "slv_xs_sys_tcu_cfg", .id = SC8180X_SLAVE_TCU, .channels = 1, .buswidth = 8 }; static struct qcom_icc_node slv_qup_core_0 = { .name = "slv_qup_core_0", .id = SC8180X_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qup_core_1 = { .name = "slv_qup_core_1", .id = SC8180X_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4 }; static struct qcom_icc_node slv_qup_core_2 = { .name = "slv_qup_core_2", .id = SC8180X_SLAVE_QUP_CORE_2, .channels = 1, .buswidth = 4 }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .num_nodes = 1, .nodes = { &slv_ebi } }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &slv_ebi } }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &slv_qns_llcc } }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .num_nodes = 1, .nodes = { &slv_qns_mem_noc_hf } }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .num_nodes = 1, .nodes = { &slv_qns_cdsp_mem_noc } }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .num_nodes = 1, .nodes = { &mas_qxm_crypto } }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 57, .nodes = { &mas_qnm_snoc, &slv_qhs_a1_noc_cfg, &slv_qhs_a2_noc_cfg, &slv_qhs_ahb2phy_refgen_center, &slv_qhs_ahb2phy_refgen_east, &slv_qhs_ahb2phy_refgen_west, &slv_qhs_ahb2phy_south, &slv_qhs_aop, &slv_qhs_aoss, &slv_qhs_camera_cfg, &slv_qhs_clk_ctl, &slv_qhs_compute_dsp, &slv_qhs_cpr_cx, &slv_qhs_cpr_mmcx, &slv_qhs_cpr_mx, &slv_qhs_crypto0_cfg, &slv_qhs_ddrss_cfg, &slv_qhs_display_cfg, &slv_qhs_emac_cfg, &slv_qhs_glm, &slv_qhs_gpuss_cfg, &slv_qhs_imem_cfg, &slv_qhs_ipa, &slv_qhs_mnoc_cfg, &slv_qhs_npu_cfg, &slv_qhs_pcie0_cfg, &slv_qhs_pcie1_cfg, &slv_qhs_pcie2_cfg, &slv_qhs_pcie3_cfg, &slv_qhs_pdm, &slv_qhs_pimem_cfg, &slv_qhs_prng, &slv_qhs_qdss_cfg, &slv_qhs_qspi_0, &slv_qhs_qspi_1, &slv_qhs_qupv3_east0, &slv_qhs_qupv3_east1, &slv_qhs_qupv3_west, &slv_qhs_sdc2, &slv_qhs_sdc4, &slv_qhs_security, &slv_qhs_snoc_cfg, &slv_qhs_spss_cfg, &slv_qhs_tcsr, &slv_qhs_tlmm_east, &slv_qhs_tlmm_south, &slv_qhs_tlmm_west, &slv_qhs_tsif, &slv_qhs_ufs_card_cfg, &slv_qhs_ufs_mem0_cfg, &slv_qhs_ufs_mem1_cfg, &slv_qhs_usb3_0, &slv_qhs_usb3_1, &slv_qhs_usb3_2, &slv_qhs_venus_cfg, &slv_qhs_vsense_ctrl_cfg, &slv_srvc_cnoc } }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .num_nodes = 7, .nodes = { &mas_qxm_camnoc_hf0_uncomp, &mas_qxm_camnoc_hf1_uncomp, &mas_qxm_camnoc_sf_uncomp, &mas_qxm_camnoc_hf0, &mas_qxm_camnoc_hf1, &mas_qxm_mdp0, &mas_qxm_mdp1 } }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .num_nodes = 3, .nodes = { &mas_qup_core_0, &mas_qup_core_1, &mas_qup_core_2 } }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .num_nodes = 1, .nodes = { &slv_qns_gem_noc_snoc } }; static struct qcom_icc_bcm bcm_mm2 = { .name = "MM2", .num_nodes = 6, .nodes = { &mas_qxm_camnoc_sf, &mas_qxm_rot, &mas_qxm_venus0, &mas_qxm_venus1, &mas_qxm_venus_arm9, &slv_qns2_mem_noc } }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = true, .num_nodes = 1, .nodes = { &mas_acm_apps } }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .nodes = { &slv_qns_gemnoc_sf } }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .nodes = { &slv_qxs_imem } }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = true, .nodes = { &slv_qns_gemnoc_gc } }; static struct qcom_icc_bcm bcm_co2 = { .name = "CO2", .nodes = { &mas_qnm_npu } }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = true, .nodes = { &slv_srvc_aggre1_noc, &slv_qns_cnoc } }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .nodes = { &slv_qxs_pimem } }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .num_nodes = 4, .nodes = { &slv_xs_pcie_0, &slv_xs_pcie_1, &slv_xs_pcie_2, &slv_xs_pcie_3 } }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .num_nodes = 1, .nodes = { &mas_qnm_aggre1_noc } }; static struct qcom_icc_bcm bcm_sn11 = { .name = "SN11", .num_nodes = 1, .nodes = { &mas_qnm_aggre2_noc } }; static struct qcom_icc_bcm bcm_sn14 = { .name = "SN14", .num_nodes = 1, .nodes = { &slv_qns_pcie_mem_noc } }; static struct qcom_icc_bcm bcm_sn15 = { .name = "SN15", .keepalive = true, .num_nodes = 1, .nodes = { &mas_qnm_gemnoc } }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_sn3, &bcm_ce0, }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_sn14, &bcm_ce0, }; static struct qcom_icc_bcm * const camnoc_virt_bcms[] = { &bcm_mm1, }; static struct qcom_icc_bcm * const compute_noc_bcms[] = { &bcm_co0, &bcm_co2, }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, &bcm_sh3, }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_mc0, &bcm_acv, }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm2, }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn2, &bcm_sn3, &bcm_sn4, &bcm_sn8, &bcm_sn9, &bcm_sn11, &bcm_sn15, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_A1NOC_CFG] = &mas_qhm_a1noc_cfg, [MASTER_UFS_CARD] = &mas_xm_ufs_card, [MASTER_UFS_GEN4] = &mas_xm_ufs_g4, [MASTER_UFS_MEM] = &mas_xm_ufs_mem, [MASTER_USB3] = &mas_xm_usb3_0, [MASTER_USB3_1] = &mas_xm_usb3_1, [MASTER_USB3_2] = &mas_xm_usb3_2, [A1NOC_SNOC_SLV] = &slv_qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &slv_srvc_aggre1_noc, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_A2NOC_CFG] = &mas_qhm_a2noc_cfg, [MASTER_QDSS_BAM] = &mas_qhm_qdss_bam, [MASTER_QSPI_0] = &mas_qhm_qspi, [MASTER_QSPI_1] = &mas_qhm_qspi1, [MASTER_QUP_0] = &mas_qhm_qup0, [MASTER_QUP_1] = &mas_qhm_qup1, [MASTER_QUP_2] = &mas_qhm_qup2, [MASTER_SENSORS_AHB] = &mas_qhm_sensorss_ahb, [MASTER_CRYPTO_CORE_0] = &mas_qxm_crypto, [MASTER_IPA] = &mas_qxm_ipa, [MASTER_EMAC] = &mas_xm_emac, [MASTER_PCIE] = &mas_xm_pcie3_0, [MASTER_PCIE_1] = &mas_xm_pcie3_1, [MASTER_PCIE_2] = &mas_xm_pcie3_2, [MASTER_PCIE_3] = &mas_xm_pcie3_3, [MASTER_QDSS_ETR] = &mas_xm_qdss_etr, [MASTER_SDCC_2] = &mas_xm_sdc2, [MASTER_SDCC_4] = &mas_xm_sdc4, [A2NOC_SNOC_SLV] = &slv_qns_a2noc_snoc, [SLAVE_ANOC_PCIE_GEM_NOC] = &slv_qns_pcie_mem_noc, [SLAVE_SERVICE_A2NOC] = &slv_srvc_aggre2_noc, }; static struct qcom_icc_node * const camnoc_virt_nodes[] = { [MASTER_CAMNOC_HF0_UNCOMP] = &mas_qxm_camnoc_hf0_uncomp, [MASTER_CAMNOC_HF1_UNCOMP] = &mas_qxm_camnoc_hf1_uncomp, [MASTER_CAMNOC_SF_UNCOMP] = &mas_qxm_camnoc_sf_uncomp, [SLAVE_CAMNOC_UNCOMP] = &slv_qns_camnoc_uncomp, }; static struct qcom_icc_node * const compute_noc_nodes[] = { [MASTER_NPU] = &mas_qnm_npu, [SLAVE_CDSP_MEM_NOC] = &slv_qns_cdsp_mem_noc, }; static struct qcom_icc_node * const config_noc_nodes[] = { [SNOC_CNOC_MAS] = &mas_qnm_snoc, [SLAVE_A1NOC_CFG] = &slv_qhs_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &slv_qhs_a2_noc_cfg, [SLAVE_AHB2PHY_CENTER] = &slv_qhs_ahb2phy_refgen_center, [SLAVE_AHB2PHY_EAST] = &slv_qhs_ahb2phy_refgen_east, [SLAVE_AHB2PHY_WEST] = &slv_qhs_ahb2phy_refgen_west, [SLAVE_AHB2PHY_SOUTH] = &slv_qhs_ahb2phy_south, [SLAVE_AOP] = &slv_qhs_aop, [SLAVE_AOSS] = &slv_qhs_aoss, [SLAVE_CAMERA_CFG] = &slv_qhs_camera_cfg, [SLAVE_CLK_CTL] = &slv_qhs_clk_ctl, [SLAVE_CDSP_CFG] = &slv_qhs_compute_dsp, [SLAVE_RBCPR_CX_CFG] = &slv_qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &slv_qhs_cpr_mmcx, [SLAVE_RBCPR_MX_CFG] = &slv_qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &slv_qhs_crypto0_cfg, [SLAVE_CNOC_DDRSS] = &slv_qhs_ddrss_cfg, [SLAVE_DISPLAY_CFG] = &slv_qhs_display_cfg, [SLAVE_EMAC_CFG] = &slv_qhs_emac_cfg, [SLAVE_GLM] = &slv_qhs_glm, [SLAVE_GRAPHICS_3D_CFG] = &slv_qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &slv_qhs_imem_cfg, [SLAVE_IPA_CFG] = &slv_qhs_ipa, [SLAVE_CNOC_MNOC_CFG] = &slv_qhs_mnoc_cfg, [SLAVE_NPU_CFG] = &slv_qhs_npu_cfg, [SLAVE_PCIE_0_CFG] = &slv_qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &slv_qhs_pcie1_cfg, [SLAVE_PCIE_2_CFG] = &slv_qhs_pcie2_cfg, [SLAVE_PCIE_3_CFG] = &slv_qhs_pcie3_cfg, [SLAVE_PDM] = &slv_qhs_pdm, [SLAVE_PIMEM_CFG] = &slv_qhs_pimem_cfg, [SLAVE_PRNG] = &slv_qhs_prng, [SLAVE_QDSS_CFG] = &slv_qhs_qdss_cfg, [SLAVE_QSPI_0] = &slv_qhs_qspi_0, [SLAVE_QSPI_1] = &slv_qhs_qspi_1, [SLAVE_QUP_1] = &slv_qhs_qupv3_east0, [SLAVE_QUP_2] = &slv_qhs_qupv3_east1, [SLAVE_QUP_0] = &slv_qhs_qupv3_west, [SLAVE_SDCC_2] = &slv_qhs_sdc2, [SLAVE_SDCC_4] = &slv_qhs_sdc4, [SLAVE_SECURITY] = &slv_qhs_security, [SLAVE_SNOC_CFG] = &slv_qhs_snoc_cfg, [SLAVE_SPSS_CFG] = &slv_qhs_spss_cfg, [SLAVE_TCSR] = &slv_qhs_tcsr, [SLAVE_TLMM_EAST] = &slv_qhs_tlmm_east, [SLAVE_TLMM_SOUTH] = &slv_qhs_tlmm_south, [SLAVE_TLMM_WEST] = &slv_qhs_tlmm_west, [SLAVE_TSIF] = &slv_qhs_tsif, [SLAVE_UFS_CARD_CFG] = &slv_qhs_ufs_card_cfg, [SLAVE_UFS_MEM_0_CFG] = &slv_qhs_ufs_mem0_cfg, [SLAVE_UFS_MEM_1_CFG] = &slv_qhs_ufs_mem1_cfg, [SLAVE_USB3] = &slv_qhs_usb3_0, [SLAVE_USB3_1] = &slv_qhs_usb3_1, [SLAVE_USB3_2] = &slv_qhs_usb3_2, [SLAVE_VENUS_CFG] = &slv_qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &slv_qhs_vsense_ctrl_cfg, [SLAVE_SERVICE_CNOC] = &slv_srvc_cnoc, }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &mas_qhm_cnoc_dc_noc, [SLAVE_GEM_NOC_CFG] = &slv_qhs_gemnoc, [SLAVE_LLCC_CFG] = &slv_qhs_llcc, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_AMPSS_M0] = &mas_acm_apps, [MASTER_GPU_TCU] = &mas_acm_gpu_tcu, [MASTER_SYS_TCU] = &mas_acm_sys_tcu, [MASTER_GEM_NOC_CFG] = &mas_qhm_gemnoc_cfg, [MASTER_COMPUTE_NOC] = &mas_qnm_cmpnoc, [MASTER_GRAPHICS_3D] = &mas_qnm_gpu, [MASTER_MNOC_HF_MEM_NOC] = &mas_qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &mas_qnm_mnoc_sf, [MASTER_GEM_NOC_PCIE_SNOC] = &mas_qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &mas_qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &mas_qnm_snoc_sf, [MASTER_ECC] = &mas_qxm_ecc, [SLAVE_MSS_PROC_MS_MPU_CFG] = &slv_qhs_mdsp_ms_mpu_cfg, [SLAVE_ECC] = &slv_qns_ecc, [SLAVE_GEM_NOC_SNOC] = &slv_qns_gem_noc_snoc, [SLAVE_LLCC] = &slv_qns_llcc, [SLAVE_SERVICE_GEM_NOC] = &slv_srvc_gemnoc, [SLAVE_SERVICE_GEM_NOC_1] = &slv_srvc_gemnoc1, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &mas_llcc_mc, [SLAVE_EBI_CH0] = &slv_ebi, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &mas_qhm_mnoc_cfg, [MASTER_CAMNOC_HF0] = &mas_qxm_camnoc_hf0, [MASTER_CAMNOC_HF1] = &mas_qxm_camnoc_hf1, [MASTER_CAMNOC_SF] = &mas_qxm_camnoc_sf, [MASTER_MDP_PORT0] = &mas_qxm_mdp0, [MASTER_MDP_PORT1] = &mas_qxm_mdp1, [MASTER_ROTATOR] = &mas_qxm_rot, [MASTER_VIDEO_P0] = &mas_qxm_venus0, [MASTER_VIDEO_P1] = &mas_qxm_venus1, [MASTER_VIDEO_PROC] = &mas_qxm_venus_arm9, [SLAVE_MNOC_SF_MEM_NOC] = &slv_qns2_mem_noc, [SLAVE_MNOC_HF_MEM_NOC] = &slv_qns_mem_noc_hf, [SLAVE_SERVICE_MNOC] = &slv_srvc_mnoc, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_SNOC_CFG] = &mas_qhm_snoc_cfg, [A1NOC_SNOC_MAS] = &mas_qnm_aggre1_noc, [A2NOC_SNOC_MAS] = &mas_qnm_aggre2_noc, [MASTER_GEM_NOC_SNOC] = &mas_qnm_gemnoc, [MASTER_PIMEM] = &mas_qxm_pimem, [MASTER_GIC] = &mas_xm_gic, [SLAVE_APPSS] = &slv_qhs_apss, [SNOC_CNOC_SLV] = &slv_qns_cnoc, [SLAVE_SNOC_GEM_NOC_GC] = &slv_qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &slv_qns_gemnoc_sf, [SLAVE_OCIMEM] = &slv_qxs_imem, [SLAVE_PIMEM] = &slv_qxs_pimem, [SLAVE_SERVICE_SNOC] = &slv_srvc_snoc, [SLAVE_QDSS_STM] = &slv_xs_qdss_stm, [SLAVE_TCU] = &slv_xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sc8180x_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static const struct qcom_icc_desc sc8180x_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static const struct qcom_icc_desc sc8180x_camnoc_virt = { .nodes = camnoc_virt_nodes, .num_nodes = ARRAY_SIZE(camnoc_virt_nodes), .bcms = camnoc_virt_bcms, .num_bcms = ARRAY_SIZE(camnoc_virt_bcms), }; static const struct qcom_icc_desc sc8180x_compute_noc = { .nodes = compute_noc_nodes, .num_nodes = ARRAY_SIZE(compute_noc_nodes), .bcms = compute_noc_bcms, .num_bcms = ARRAY_SIZE(compute_noc_bcms), }; static const struct qcom_icc_desc sc8180x_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static const struct qcom_icc_desc sc8180x_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), }; static const struct qcom_icc_desc sc8180x_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static const struct qcom_icc_desc sc8180x_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static const struct qcom_icc_desc sc8180x_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static const struct qcom_icc_desc sc8180x_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static struct qcom_icc_bcm * const qup_virt_bcms[] = { &bcm_qup0, }; static struct qcom_icc_node * const qup_virt_nodes[] = { [MASTER_QUP_CORE_0] = &mas_qup_core_0, [MASTER_QUP_CORE_1] = &mas_qup_core_1, [MASTER_QUP_CORE_2] = &mas_qup_core_2, [SLAVE_QUP_CORE_0] = &slv_qup_core_0, [SLAVE_QUP_CORE_1] = &slv_qup_core_1, [SLAVE_QUP_CORE_2] = &slv_qup_core_2, }; static const struct qcom_icc_desc sc8180x_qup_virt = { .nodes = qup_virt_nodes, .num_nodes = ARRAY_SIZE(qup_virt_nodes), .bcms = qup_virt_bcms, .num_bcms = ARRAY_SIZE(qup_virt_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sc8180x-aggre1-noc", .data = &sc8180x_aggre1_noc }, { .compatible = "qcom,sc8180x-aggre2-noc", .data = &sc8180x_aggre2_noc }, { .compatible = "qcom,sc8180x-camnoc-virt", .data = &sc8180x_camnoc_virt }, { .compatible = "qcom,sc8180x-compute-noc", .data = &sc8180x_compute_noc, }, { .compatible = "qcom,sc8180x-config-noc", .data = &sc8180x_config_noc }, { .compatible = "qcom,sc8180x-dc-noc", .data = &sc8180x_dc_noc }, { .compatible = "qcom,sc8180x-gem-noc", .data = &sc8180x_gem_noc }, { .compatible = "qcom,sc8180x-mc-virt", .data = &sc8180x_mc_virt }, { .compatible = "qcom,sc8180x-mmss-noc", .data = &sc8180x_mmss_noc }, { .compatible = "qcom,sc8180x-qup-virt", .data = &sc8180x_qup_virt }, { .compatible = "qcom,sc8180x-system-noc", .data = &sc8180x_system_noc }, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sc8180x", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm sc8180x NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sc8180x.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, The Linux Foundation. All rights reserved. * Copyright (c) 2022, Linaro Ltd */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sc8280xp.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sc8280xp.h" static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SC8280XP_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SC8280XP_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SC8280XP_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qnm_a1noc_cfg = { .name = "qnm_a1noc_cfg", .id = SC8280XP_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .links = { SC8280XP_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SC8280XP_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_emac_1 = { .name = "xm_emac_1", .id = SC8280XP_MASTER_EMAC_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SC8280XP_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SC8280XP_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SC8280XP_MASTER_USB3_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_USB_NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_1 = { .name = "xm_usb3_1", .id = SC8280XP_MASTER_USB3_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_USB_NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_mp = { .name = "xm_usb3_mp", .id = SC8280XP_MASTER_USB3_MP, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_USB_NOC_SNOC }, }; static struct qcom_icc_node xm_usb4_host0 = { .name = "xm_usb4_host0", .id = SC8280XP_MASTER_USB4_0, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_USB_NOC_SNOC }, }; static struct qcom_icc_node xm_usb4_host1 = { .name = "xm_usb4_host1", .id = SC8280XP_MASTER_USB4_1, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_USB_NOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SC8280XP_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = SC8280XP_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_a2noc_cfg = { .name = "qnm_a2noc_cfg", .id = SC8280XP_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SC8280XP_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_sensorss_q6 = { .name = "qxm_sensorss_q6", .id = SC8280XP_MASTER_SENSORS_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_sp = { .name = "qxm_sp", .id = SC8280XP_MASTER_SP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_emac_0 = { .name = "xm_emac_0", .id = SC8280XP_MASTER_EMAC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SC8280XP_MASTER_PCIE_0, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SC8280XP_MASTER_PCIE_1, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_2a = { .name = "xm_pcie3_2a", .id = SC8280XP_MASTER_PCIE_2A, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_2b = { .name = "xm_pcie3_2b", .id = SC8280XP_MASTER_PCIE_2B, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_3a = { .name = "xm_pcie3_3a", .id = SC8280XP_MASTER_PCIE_3A, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_3b = { .name = "xm_pcie3_3b", .id = SC8280XP_MASTER_PCIE_3B, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_4 = { .name = "xm_pcie3_4", .id = SC8280XP_MASTER_PCIE_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SC8280XP_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SC8280XP_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_card = { .name = "xm_ufs_card", .id = SC8280XP_MASTER_UFS_CARD, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = SC8280XP_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = SC8280XP_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qup2_core_master = { .name = "qup2_core_master", .id = SC8280XP_MASTER_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_QUP_CORE_2 }, }; static struct qcom_icc_node qnm_gemnoc_cnoc = { .name = "qnm_gemnoc_cnoc", .id = SC8280XP_MASTER_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 76, .links = { SC8280XP_SLAVE_AHB2PHY_0, SC8280XP_SLAVE_AHB2PHY_1, SC8280XP_SLAVE_AHB2PHY_2, SC8280XP_SLAVE_AOSS, SC8280XP_SLAVE_APPSS, SC8280XP_SLAVE_CAMERA_CFG, SC8280XP_SLAVE_CLK_CTL, SC8280XP_SLAVE_CDSP_CFG, SC8280XP_SLAVE_CDSP1_CFG, SC8280XP_SLAVE_RBCPR_CX_CFG, SC8280XP_SLAVE_RBCPR_MMCX_CFG, SC8280XP_SLAVE_RBCPR_MX_CFG, SC8280XP_SLAVE_CPR_NSPCX, SC8280XP_SLAVE_CRYPTO_0_CFG, SC8280XP_SLAVE_CX_RDPM, SC8280XP_SLAVE_DCC_CFG, SC8280XP_SLAVE_DISPLAY_CFG, SC8280XP_SLAVE_DISPLAY1_CFG, SC8280XP_SLAVE_EMAC_CFG, SC8280XP_SLAVE_EMAC1_CFG, SC8280XP_SLAVE_GFX3D_CFG, SC8280XP_SLAVE_HWKM, SC8280XP_SLAVE_IMEM_CFG, SC8280XP_SLAVE_IPA_CFG, SC8280XP_SLAVE_IPC_ROUTER_CFG, SC8280XP_SLAVE_LPASS, SC8280XP_SLAVE_MX_RDPM, SC8280XP_SLAVE_MXC_RDPM, SC8280XP_SLAVE_PCIE_0_CFG, SC8280XP_SLAVE_PCIE_1_CFG, SC8280XP_SLAVE_PCIE_2A_CFG, SC8280XP_SLAVE_PCIE_2B_CFG, SC8280XP_SLAVE_PCIE_3A_CFG, SC8280XP_SLAVE_PCIE_3B_CFG, SC8280XP_SLAVE_PCIE_4_CFG, SC8280XP_SLAVE_PCIE_RSC_CFG, SC8280XP_SLAVE_PDM, SC8280XP_SLAVE_PIMEM_CFG, SC8280XP_SLAVE_PKA_WRAPPER_CFG, SC8280XP_SLAVE_PMU_WRAPPER_CFG, SC8280XP_SLAVE_QDSS_CFG, SC8280XP_SLAVE_QSPI_0, SC8280XP_SLAVE_QUP_0, SC8280XP_SLAVE_QUP_1, SC8280XP_SLAVE_QUP_2, SC8280XP_SLAVE_SDCC_2, SC8280XP_SLAVE_SDCC_4, SC8280XP_SLAVE_SECURITY, SC8280XP_SLAVE_SMMUV3_CFG, SC8280XP_SLAVE_SMSS_CFG, SC8280XP_SLAVE_SPSS_CFG, SC8280XP_SLAVE_TCSR, SC8280XP_SLAVE_TLMM, SC8280XP_SLAVE_UFS_CARD_CFG, SC8280XP_SLAVE_UFS_MEM_CFG, SC8280XP_SLAVE_USB3_0, SC8280XP_SLAVE_USB3_1, SC8280XP_SLAVE_USB3_MP, SC8280XP_SLAVE_USB4_0, SC8280XP_SLAVE_USB4_1, SC8280XP_SLAVE_VENUS_CFG, SC8280XP_SLAVE_VSENSE_CTRL_CFG, SC8280XP_SLAVE_VSENSE_CTRL_R_CFG, SC8280XP_SLAVE_A1NOC_CFG, SC8280XP_SLAVE_A2NOC_CFG, SC8280XP_SLAVE_ANOC_PCIE_BRIDGE_CFG, SC8280XP_SLAVE_DDRSS_CFG, SC8280XP_SLAVE_CNOC_MNOC_CFG, SC8280XP_SLAVE_SNOC_CFG, SC8280XP_SLAVE_SNOC_SF_BRIDGE_CFG, SC8280XP_SLAVE_IMEM, SC8280XP_SLAVE_PIMEM, SC8280XP_SLAVE_SERVICE_CNOC, SC8280XP_SLAVE_QDSS_STM, SC8280XP_SLAVE_SMSS, SC8280XP_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = SC8280XP_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 16, .num_links = 7, .links = { SC8280XP_SLAVE_PCIE_0, SC8280XP_SLAVE_PCIE_1, SC8280XP_SLAVE_PCIE_2A, SC8280XP_SLAVE_PCIE_2B, SC8280XP_SLAVE_PCIE_3A, SC8280XP_SLAVE_PCIE_3B, SC8280XP_SLAVE_PCIE_4 }, }; static struct qcom_icc_node qnm_cnoc_dc_noc = { .name = "qnm_cnoc_dc_noc", .id = SC8280XP_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SC8280XP_SLAVE_LLCC_CFG, SC8280XP_SLAVE_GEM_NOC_CFG }, }; static struct qcom_icc_node alm_gpu_tcu = { .name = "alm_gpu_tcu", .id = SC8280XP_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node alm_pcie_tcu = { .name = "alm_pcie_tcu", .id = SC8280XP_MASTER_PCIE_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = SC8280XP_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = SC8280XP_MASTER_APPSS_PROC, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC, SC8280XP_SLAVE_GEM_NOC_PCIE_CNOC }, }; static struct qcom_icc_node qnm_cmpnoc0 = { .name = "qnm_cmpnoc0", .id = SC8280XP_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_cmpnoc1 = { .name = "qnm_cmpnoc1", .id = SC8280XP_MASTER_COMPUTE_NOC_1, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_gemnoc_cfg = { .name = "qnm_gemnoc_cfg", .id = SC8280XP_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 3, .links = { SC8280XP_SLAVE_SERVICE_GEM_NOC_1, SC8280XP_SLAVE_SERVICE_GEM_NOC_2, SC8280XP_SLAVE_SERVICE_GEM_NOC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SC8280XP_MASTER_GFX3D, .channels = 4, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SC8280XP_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_LLCC, SC8280XP_SLAVE_GEM_NOC_PCIE_CNOC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SC8280XP_MASTER_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SC8280XP_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SC8280XP_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SC8280XP_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SC8280XP_SLAVE_GEM_NOC_CNOC, SC8280XP_SLAVE_LLCC, SC8280XP_SLAVE_GEM_NOC_PCIE_CNOC }, }; static struct qcom_icc_node qhm_config_noc = { .name = "qhm_config_noc", .id = SC8280XP_MASTER_CNOC_LPASS_AG_NOC, .channels = 1, .buswidth = 4, .num_links = 6, .links = { SC8280XP_SLAVE_LPASS_CORE_CFG, SC8280XP_SLAVE_LPASS_LPI_CFG, SC8280XP_SLAVE_LPASS_MPU_CFG, SC8280XP_SLAVE_LPASS_TOP_CFG, SC8280XP_SLAVE_SERVICES_LPASS_AML_NOC, SC8280XP_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node qxm_lpass_dsp = { .name = "qxm_lpass_dsp", .id = SC8280XP_MASTER_LPASS_PROC, .channels = 1, .buswidth = 8, .num_links = 4, .links = { SC8280XP_SLAVE_LPASS_TOP_CFG, SC8280XP_SLAVE_LPASS_SNOC, SC8280XP_SLAVE_SERVICES_LPASS_AML_NOC, SC8280XP_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SC8280XP_MASTER_LLCC, .channels = 8, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_EBI1 }, }; static struct qcom_icc_node qnm_camnoc_hf = { .name = "qnm_camnoc_hf", .id = SC8280XP_MASTER_CAMNOC_HF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp0_0 = { .name = "qnm_mdp0_0", .id = SC8280XP_MASTER_MDP0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp0_1 = { .name = "qnm_mdp0_1", .id = SC8280XP_MASTER_MDP1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp1_0 = { .name = "qnm_mdp1_0", .id = SC8280XP_MASTER_MDP_CORE1_0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp1_1 = { .name = "qnm_mdp1_1", .id = SC8280XP_MASTER_MDP_CORE1_1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mnoc_cfg = { .name = "qnm_mnoc_cfg", .id = SC8280XP_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qnm_rot_0 = { .name = "qnm_rot_0", .id = SC8280XP_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_rot_1 = { .name = "qnm_rot_1", .id = SC8280XP_MASTER_ROTATOR_1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video0 = { .name = "qnm_video0", .id = SC8280XP_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video1 = { .name = "qnm_video1", .id = SC8280XP_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cvp = { .name = "qnm_video_cvp", .id = SC8280XP_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_icp = { .name = "qxm_camnoc_icp", .id = SC8280XP_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_sf = { .name = "qxm_camnoc_sf", .id = SC8280XP_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qhm_nsp_noc_config = { .name = "qhm_nsp_noc_config", .id = SC8280XP_MASTER_CDSP_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_SERVICE_NSP_NOC }, }; static struct qcom_icc_node qxm_nsp = { .name = "qxm_nsp", .id = SC8280XP_MASTER_CDSP_PROC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_CDSP_MEM_NOC, SC8280XP_SLAVE_NSP_XFR }, }; static struct qcom_icc_node qhm_nspb_noc_config = { .name = "qhm_nspb_noc_config", .id = SC8280XP_MASTER_CDSPB_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_SERVICE_NSPB_NOC }, }; static struct qcom_icc_node qxm_nspb = { .name = "qxm_nspb", .id = SC8280XP_MASTER_CDSP_PROC_B, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SC8280XP_SLAVE_CDSPB_MEM_NOC, SC8280XP_SLAVE_NSPB_XFR }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SC8280XP_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SC8280XP_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre_usb_noc = { .name = "qnm_aggre_usb_noc", .id = SC8280XP_MASTER_USB_NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_lpass_noc = { .name = "qnm_lpass_noc", .id = SC8280XP_MASTER_LPASS_ANOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_snoc_cfg = { .name = "qnm_snoc_cfg", .id = SC8280XP_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SC8280XP_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SC8280XP_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SC8280XP_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node qns_aggre_usb_snoc = { .name = "qns_aggre_usb_snoc", .id = SC8280XP_SLAVE_USB_NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_USB_NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SC8280XP_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SC8280XP_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node qns_pcie_gem_noc = { .name = "qns_pcie_gem_noc", .id = SC8280XP_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SC8280XP_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SC8280XP_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = SC8280XP_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = SC8280XP_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup2_core_slave = { .name = "qup2_core_slave", .id = SC8280XP_SLAVE_QUP_CORE_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SC8280XP_SLAVE_AHB2PHY_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy1 = { .name = "qhs_ahb2phy1", .id = SC8280XP_SLAVE_AHB2PHY_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy2 = { .name = "qhs_ahb2phy2", .id = SC8280XP_SLAVE_AHB2PHY_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SC8280XP_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SC8280XP_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SC8280XP_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SC8280XP_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_compute0_cfg = { .name = "qhs_compute0_cfg", .id = SC8280XP_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_CDSP_NOC_CFG }, }; static struct qcom_icc_node qhs_compute1_cfg = { .name = "qhs_compute1_cfg", .id = SC8280XP_SLAVE_CDSP1_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_CDSPB_NOC_CFG }, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SC8280XP_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mmcx = { .name = "qhs_cpr_mmcx", .id = SC8280XP_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SC8280XP_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_nspcx = { .name = "qhs_cpr_nspcx", .id = SC8280XP_SLAVE_CPR_NSPCX, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SC8280XP_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cx_rdpm = { .name = "qhs_cx_rdpm", .id = SC8280XP_SLAVE_CX_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SC8280XP_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display0_cfg = { .name = "qhs_display0_cfg", .id = SC8280XP_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display1_cfg = { .name = "qhs_display1_cfg", .id = SC8280XP_SLAVE_DISPLAY1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emac0_cfg = { .name = "qhs_emac0_cfg", .id = SC8280XP_SLAVE_EMAC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emac1_cfg = { .name = "qhs_emac1_cfg", .id = SC8280XP_SLAVE_EMAC1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SC8280XP_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_hwkm = { .name = "qhs_hwkm", .id = SC8280XP_SLAVE_HWKM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SC8280XP_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SC8280XP_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = SC8280XP_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_cfg = { .name = "qhs_lpass_cfg", .id = SC8280XP_SLAVE_LPASS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_CNOC_LPASS_AG_NOC }, }; static struct qcom_icc_node qhs_mx_rdpm = { .name = "qhs_mx_rdpm", .id = SC8280XP_SLAVE_MX_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mxc_rdpm = { .name = "qhs_mxc_rdpm", .id = SC8280XP_SLAVE_MXC_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SC8280XP_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SC8280XP_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie2a_cfg = { .name = "qhs_pcie2a_cfg", .id = SC8280XP_SLAVE_PCIE_2A_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie2b_cfg = { .name = "qhs_pcie2b_cfg", .id = SC8280XP_SLAVE_PCIE_2B_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie3a_cfg = { .name = "qhs_pcie3a_cfg", .id = SC8280XP_SLAVE_PCIE_3A_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie3b_cfg = { .name = "qhs_pcie3b_cfg", .id = SC8280XP_SLAVE_PCIE_3B_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie4_cfg = { .name = "qhs_pcie4_cfg", .id = SC8280XP_SLAVE_PCIE_4_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_rsc_cfg = { .name = "qhs_pcie_rsc_cfg", .id = SC8280XP_SLAVE_PCIE_RSC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SC8280XP_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SC8280XP_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pka_wrapper_cfg = { .name = "qhs_pka_wrapper_cfg", .id = SC8280XP_SLAVE_PKA_WRAPPER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pmu_wrapper_cfg = { .name = "qhs_pmu_wrapper_cfg", .id = SC8280XP_SLAVE_PMU_WRAPPER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SC8280XP_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SC8280XP_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SC8280XP_SLAVE_QUP_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SC8280XP_SLAVE_QUP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup2 = { .name = "qhs_qup2", .id = SC8280XP_SLAVE_QUP_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SC8280XP_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SC8280XP_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_security = { .name = "qhs_security", .id = SC8280XP_SLAVE_SECURITY, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_smmuv3_cfg = { .name = "qhs_smmuv3_cfg", .id = SC8280XP_SLAVE_SMMUV3_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_smss_cfg = { .name = "qhs_smss_cfg", .id = SC8280XP_SLAVE_SMSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_spss_cfg = { .name = "qhs_spss_cfg", .id = SC8280XP_SLAVE_SPSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SC8280XP_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SC8280XP_SLAVE_TLMM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_card_cfg = { .name = "qhs_ufs_card_cfg", .id = SC8280XP_SLAVE_UFS_CARD_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SC8280XP_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SC8280XP_SLAVE_USB3_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_1 = { .name = "qhs_usb3_1", .id = SC8280XP_SLAVE_USB3_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_mp = { .name = "qhs_usb3_mp", .id = SC8280XP_SLAVE_USB3_MP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb4_host_0 = { .name = "qhs_usb4_host_0", .id = SC8280XP_SLAVE_USB4_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb4_host_1 = { .name = "qhs_usb4_host_1", .id = SC8280XP_SLAVE_USB4_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SC8280XP_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SC8280XP_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_r_cfg = { .name = "qhs_vsense_ctrl_r_cfg", .id = SC8280XP_SLAVE_VSENSE_CTRL_R_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a1_noc_cfg = { .name = "qns_a1_noc_cfg", .id = SC8280XP_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qns_a2_noc_cfg = { .name = "qns_a2_noc_cfg", .id = SC8280XP_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qns_anoc_pcie_bridge_cfg = { .name = "qns_anoc_pcie_bridge_cfg", .id = SC8280XP_SLAVE_ANOC_PCIE_BRIDGE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_ddrss_cfg = { .name = "qns_ddrss_cfg", .id = SC8280XP_SLAVE_DDRSS_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qns_mnoc_cfg = { .name = "qns_mnoc_cfg", .id = SC8280XP_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qns_snoc_cfg = { .name = "qns_snoc_cfg", .id = SC8280XP_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qns_snoc_sf_bridge_cfg = { .name = "qns_snoc_sf_bridge_cfg", .id = SC8280XP_SLAVE_SNOC_SF_BRIDGE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SC8280XP_SLAVE_IMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SC8280XP_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SC8280XP_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SC8280XP_SLAVE_PCIE_0, .channels = 1, .buswidth = 16, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SC8280XP_SLAVE_PCIE_1, .channels = 1, .buswidth = 16, }; static struct qcom_icc_node xs_pcie_2a = { .name = "xs_pcie_2a", .id = SC8280XP_SLAVE_PCIE_2A, .channels = 1, .buswidth = 16, }; static struct qcom_icc_node xs_pcie_2b = { .name = "xs_pcie_2b", .id = SC8280XP_SLAVE_PCIE_2B, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_pcie_3a = { .name = "xs_pcie_3a", .id = SC8280XP_SLAVE_PCIE_3A, .channels = 1, .buswidth = 16, }; static struct qcom_icc_node xs_pcie_3b = { .name = "xs_pcie_3b", .id = SC8280XP_SLAVE_PCIE_3B, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_pcie_4 = { .name = "xs_pcie_4", .id = SC8280XP_SLAVE_PCIE_4, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SC8280XP_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_smss = { .name = "xs_smss", .id = SC8280XP_SLAVE_SMSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SC8280XP_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SC8280XP_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gemnoc = { .name = "qns_gemnoc", .id = SC8280XP_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SC8280XP_MASTER_GEM_NOC_CFG }, }; static struct qcom_icc_node qns_gem_noc_cnoc = { .name = "qns_gem_noc_cnoc", .id = SC8280XP_SLAVE_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_GEM_NOC_CNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SC8280XP_SLAVE_LLCC, .channels = 8, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_LLCC }, }; static struct qcom_icc_node qns_pcie = { .name = "qns_pcie", .id = SC8280XP_SLAVE_GEM_NOC_PCIE_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node srvc_even_gemnoc = { .name = "srvc_even_gemnoc", .id = SC8280XP_SLAVE_SERVICE_GEM_NOC_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_odd_gemnoc = { .name = "srvc_odd_gemnoc", .id = SC8280XP_SLAVE_SERVICE_GEM_NOC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_sys_gemnoc = { .name = "srvc_sys_gemnoc", .id = SC8280XP_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_core = { .name = "qhs_lpass_core", .id = SC8280XP_SLAVE_LPASS_CORE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_lpi = { .name = "qhs_lpass_lpi", .id = SC8280XP_SLAVE_LPASS_LPI_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_mpu = { .name = "qhs_lpass_mpu", .id = SC8280XP_SLAVE_LPASS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_top = { .name = "qhs_lpass_top", .id = SC8280XP_SLAVE_LPASS_TOP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_sysnoc = { .name = "qns_sysnoc", .id = SC8280XP_SLAVE_LPASS_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_LPASS_ANOC }, }; static struct qcom_icc_node srvc_niu_aml_noc = { .name = "srvc_niu_aml_noc", .id = SC8280XP_SLAVE_SERVICES_LPASS_AML_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_niu_lpass_agnoc = { .name = "srvc_niu_lpass_agnoc", .id = SC8280XP_SLAVE_SERVICE_LPASS_AG_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SC8280XP_SLAVE_EBI1, .channels = 8, .buswidth = 4, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SC8280XP_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8280XP_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SC8280XP_SLAVE_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8280XP_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SC8280XP_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_nsp_gemnoc = { .name = "qns_nsp_gemnoc", .id = SC8280XP_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8280XP_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node qxs_nsp_xfr = { .name = "qxs_nsp_xfr", .id = SC8280XP_SLAVE_NSP_XFR, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node service_nsp_noc = { .name = "service_nsp_noc", .id = SC8280XP_SLAVE_SERVICE_NSP_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_nspb_gemnoc = { .name = "qns_nspb_gemnoc", .id = SC8280XP_SLAVE_CDSPB_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SC8280XP_MASTER_COMPUTE_NOC_1 }, }; static struct qcom_icc_node qxs_nspb_xfr = { .name = "qxs_nspb_xfr", .id = SC8280XP_SLAVE_NSPB_XFR, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node service_nspb_noc = { .name = "service_nspb_noc", .id = SC8280XP_SLAVE_SERVICE_NSPB_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SC8280XP_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SC8280XP_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SC8280XP_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SC8280XP_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SC8280XP_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 9, .nodes = { &qnm_gemnoc_cnoc, &qnm_gemnoc_pcie, &xs_pcie_0, &xs_pcie_1, &xs_pcie_2a, &xs_pcie_2b, &xs_pcie_3a, &xs_pcie_3b, &xs_pcie_4 }, }; static struct qcom_icc_bcm bcm_cn1 = { .name = "CN1", .num_nodes = 67, .nodes = { &qhs_ahb2phy0, &qhs_ahb2phy1, &qhs_ahb2phy2, &qhs_aoss, &qhs_apss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute0_cfg, &qhs_compute1_cfg, &qhs_cpr_cx, &qhs_cpr_mmcx, &qhs_cpr_mx, &qhs_cpr_nspcx, &qhs_crypto0_cfg, &qhs_cx_rdpm, &qhs_dcc_cfg, &qhs_display0_cfg, &qhs_display1_cfg, &qhs_emac0_cfg, &qhs_emac1_cfg, &qhs_gpuss_cfg, &qhs_hwkm, &qhs_imem_cfg, &qhs_ipa, &qhs_ipc_router, &qhs_lpass_cfg, &qhs_mx_rdpm, &qhs_mxc_rdpm, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_pcie2a_cfg, &qhs_pcie2b_cfg, &qhs_pcie3a_cfg, &qhs_pcie3b_cfg, &qhs_pcie4_cfg, &qhs_pcie_rsc_cfg, &qhs_pdm, &qhs_pimem_cfg, &qhs_pka_wrapper_cfg, &qhs_pmu_wrapper_cfg, &qhs_qdss_cfg, &qhs_sdc2, &qhs_sdc4, &qhs_security, &qhs_smmuv3_cfg, &qhs_smss_cfg, &qhs_spss_cfg, &qhs_tcsr, &qhs_tlmm, &qhs_ufs_card_cfg, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_usb3_1, &qhs_usb3_mp, &qhs_usb4_host_0, &qhs_usb4_host_1, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qhs_vsense_ctrl_r_cfg, &qns_a1_noc_cfg, &qns_a2_noc_cfg, &qns_anoc_pcie_bridge_cfg, &qns_ddrss_cfg, &qns_mnoc_cfg, &qns_snoc_cfg, &qns_snoc_sf_bridge_cfg, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_cn2 = { .name = "CN2", .num_nodes = 4, .nodes = { &qhs_qspi, &qhs_qup0, &qhs_qup1, &qhs_qup2 }, }; static struct qcom_icc_bcm bcm_cn3 = { .name = "CN3", .num_nodes = 3, .nodes = { &qxs_imem, &xs_smss, &xs_sys_tcu_cfg }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 5, .nodes = { &qnm_camnoc_hf, &qnm_mdp0_0, &qnm_mdp0_1, &qnm_mdp1_0, &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .num_nodes = 8, .nodes = { &qnm_rot_0, &qnm_rot_1, &qnm_video0, &qnm_video1, &qnm_video_cvp, &qxm_camnoc_icp, &qxm_camnoc_sf, &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_nsa0 = { .name = "NSA0", .num_nodes = 2, .nodes = { &qns_nsp_gemnoc, &qxs_nsp_xfr }, }; static struct qcom_icc_bcm bcm_nsa1 = { .name = "NSA1", .num_nodes = 1, .nodes = { &qxm_nsp }, }; static struct qcom_icc_bcm bcm_nsb0 = { .name = "NSB0", .num_nodes = 2, .nodes = { &qns_nspb_gemnoc, &qxs_nspb_xfr }, }; static struct qcom_icc_bcm bcm_nsb1 = { .name = "NSB1", .num_nodes = 1, .nodes = { &qxm_nspb }, }; static struct qcom_icc_bcm bcm_pci0 = { .name = "PCI0", .num_nodes = 1, .nodes = { &qns_pcie_gem_noc }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .vote_scale = 1, .num_nodes = 1, .nodes = { &qup0_core_slave }, }; static struct qcom_icc_bcm bcm_qup1 = { .name = "QUP1", .vote_scale = 1, .num_nodes = 1, .nodes = { &qup1_core_slave }, }; static struct qcom_icc_bcm bcm_qup2 = { .name = "QUP2", .vote_scale = 1, .num_nodes = 1, .nodes = { &qup2_core_slave }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .num_nodes = 1, .nodes = { &chm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .num_nodes = 1, .nodes = { &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .num_nodes = 2, .nodes = { &qns_a1noc_snoc, &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .num_nodes = 2, .nodes = { &qns_a2noc_snoc, &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .num_nodes = 2, .nodes = { &qns_aggre_usb_snoc, &qnm_aggre_usb_noc }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .num_nodes = 2, .nodes = { &qns_sysnoc, &qnm_lpass_noc }, }; static struct qcom_icc_bcm bcm_sn10 = { .name = "SN10", .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_sn3, &bcm_sn5, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_QSPI_0] = &qhm_qspi, [MASTER_QUP_1] = &qhm_qup1, [MASTER_QUP_2] = &qhm_qup2, [MASTER_A1NOC_CFG] = &qnm_a1noc_cfg, [MASTER_IPA] = &qxm_ipa, [MASTER_EMAC_1] = &xm_emac_1, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB3_0] = &xm_usb3_0, [MASTER_USB3_1] = &xm_usb3_1, [MASTER_USB3_MP] = &xm_usb3_mp, [MASTER_USB4_0] = &xm_usb4_host0, [MASTER_USB4_1] = &xm_usb4_host1, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_USB_NOC_SNOC] = &qns_aggre_usb_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sc8280xp_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, &bcm_pci0, &bcm_sn4, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_0] = &qhm_qup0, [MASTER_A2NOC_CFG] = &qnm_a2noc_cfg, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_SENSORS_PROC] = &qxm_sensorss_q6, [MASTER_SP] = &qxm_sp, [MASTER_EMAC] = &xm_emac_0, [MASTER_PCIE_0] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [MASTER_PCIE_2A] = &xm_pcie3_2a, [MASTER_PCIE_2B] = &xm_pcie3_2b, [MASTER_PCIE_3A] = &xm_pcie3_3a, [MASTER_PCIE_3B] = &xm_pcie3_3b, [MASTER_PCIE_4] = &xm_pcie3_4, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_UFS_CARD] = &xm_ufs_card, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_gem_noc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sc8280xp_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const clk_virt_bcms[] = { &bcm_qup0, &bcm_qup1, &bcm_qup2, }; static struct qcom_icc_node * const clk_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [MASTER_QUP_CORE_2] = &qup2_core_master, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, [SLAVE_QUP_CORE_2] = &qup2_core_slave, }; static const struct qcom_icc_desc sc8280xp_clk_virt = { .nodes = clk_virt_nodes, .num_nodes = ARRAY_SIZE(clk_virt_nodes), .bcms = clk_virt_bcms, .num_bcms = ARRAY_SIZE(clk_virt_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, &bcm_cn1, &bcm_cn2, &bcm_cn3, &bcm_sn2, &bcm_sn10, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_GEM_NOC_CNOC] = &qnm_gemnoc_cnoc, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [SLAVE_AHB2PHY_0] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_1] = &qhs_ahb2phy1, [SLAVE_AHB2PHY_2] = &qhs_ahb2phy2, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_APPSS] = &qhs_apss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute0_cfg, [SLAVE_CDSP1_CFG] = &qhs_compute1_cfg, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &qhs_cpr_mmcx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CPR_NSPCX] = &qhs_cpr_nspcx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CX_RDPM] = &qhs_cx_rdpm, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display0_cfg, [SLAVE_DISPLAY1_CFG] = &qhs_display1_cfg, [SLAVE_EMAC_CFG] = &qhs_emac0_cfg, [SLAVE_EMAC1_CFG] = &qhs_emac1_cfg, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_HWKM] = &qhs_hwkm, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_LPASS] = &qhs_lpass_cfg, [SLAVE_MX_RDPM] = &qhs_mx_rdpm, [SLAVE_MXC_RDPM] = &qhs_mxc_rdpm, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_PCIE_2A_CFG] = &qhs_pcie2a_cfg, [SLAVE_PCIE_2B_CFG] = &qhs_pcie2b_cfg, [SLAVE_PCIE_3A_CFG] = &qhs_pcie3a_cfg, [SLAVE_PCIE_3B_CFG] = &qhs_pcie3b_cfg, [SLAVE_PCIE_4_CFG] = &qhs_pcie4_cfg, [SLAVE_PCIE_RSC_CFG] = &qhs_pcie_rsc_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PKA_WRAPPER_CFG] = &qhs_pka_wrapper_cfg, [SLAVE_PMU_WRAPPER_CFG] = &qhs_pmu_wrapper_cfg, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_QUP_2] = &qhs_qup2, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SECURITY] = &qhs_security, [SLAVE_SMMUV3_CFG] = &qhs_smmuv3_cfg, [SLAVE_SMSS_CFG] = &qhs_smss_cfg, [SLAVE_SPSS_CFG] = &qhs_spss_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_UFS_CARD_CFG] = &qhs_ufs_card_cfg, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3_0] = &qhs_usb3_0, [SLAVE_USB3_1] = &qhs_usb3_1, [SLAVE_USB3_MP] = &qhs_usb3_mp, [SLAVE_USB4_0] = &qhs_usb4_host_0, [SLAVE_USB4_1] = &qhs_usb4_host_1, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_VSENSE_CTRL_R_CFG] = &qhs_vsense_ctrl_r_cfg, [SLAVE_A1NOC_CFG] = &qns_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qns_a2_noc_cfg, [SLAVE_ANOC_PCIE_BRIDGE_CFG] = &qns_anoc_pcie_bridge_cfg, [SLAVE_DDRSS_CFG] = &qns_ddrss_cfg, [SLAVE_CNOC_MNOC_CFG] = &qns_mnoc_cfg, [SLAVE_SNOC_CFG] = &qns_snoc_cfg, [SLAVE_SNOC_SF_BRIDGE_CFG] = &qns_snoc_sf_bridge_cfg, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, [SLAVE_PCIE_2A] = &xs_pcie_2a, [SLAVE_PCIE_2B] = &xs_pcie_2b, [SLAVE_PCIE_3A] = &xs_pcie_3a, [SLAVE_PCIE_3B] = &xs_pcie_3b, [SLAVE_PCIE_4] = &xs_pcie_4, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_SMSS] = &xs_smss, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sc8280xp_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qnm_cnoc_dc_noc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_GEM_NOC_CFG] = &qns_gemnoc, }; static const struct qcom_icc_desc sc8280xp_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_GPU_TCU] = &alm_gpu_tcu, [MASTER_PCIE_TCU] = &alm_pcie_tcu, [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_APPSS_PROC] = &chm_apps, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc0, [MASTER_COMPUTE_NOC_1] = &qnm_cmpnoc1, [MASTER_GEM_NOC_CFG] = &qnm_gemnoc_cfg, [MASTER_GFX3D] = &qnm_gpu, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [SLAVE_GEM_NOC_CNOC] = &qns_gem_noc_cnoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_GEM_NOC_PCIE_CNOC] = &qns_pcie, [SLAVE_SERVICE_GEM_NOC_1] = &srvc_even_gemnoc, [SLAVE_SERVICE_GEM_NOC_2] = &srvc_odd_gemnoc, [SLAVE_SERVICE_GEM_NOC] = &srvc_sys_gemnoc, }; static const struct qcom_icc_desc sc8280xp_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const lpass_ag_noc_bcms[] = { &bcm_sn9, }; static struct qcom_icc_node * const lpass_ag_noc_nodes[] = { [MASTER_CNOC_LPASS_AG_NOC] = &qhm_config_noc, [MASTER_LPASS_PROC] = &qxm_lpass_dsp, [SLAVE_LPASS_CORE_CFG] = &qhs_lpass_core, [SLAVE_LPASS_LPI_CFG] = &qhs_lpass_lpi, [SLAVE_LPASS_MPU_CFG] = &qhs_lpass_mpu, [SLAVE_LPASS_TOP_CFG] = &qhs_lpass_top, [SLAVE_LPASS_SNOC] = &qns_sysnoc, [SLAVE_SERVICES_LPASS_AML_NOC] = &srvc_niu_aml_noc, [SLAVE_SERVICE_LPASS_AG_NOC] = &srvc_niu_lpass_agnoc, }; static const struct qcom_icc_desc sc8280xp_lpass_ag_noc = { .nodes = lpass_ag_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_ag_noc_nodes), .bcms = lpass_ag_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_ag_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, }; static const struct qcom_icc_desc sc8280xp_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CAMNOC_HF] = &qnm_camnoc_hf, [MASTER_MDP0] = &qnm_mdp0_0, [MASTER_MDP1] = &qnm_mdp0_1, [MASTER_MDP_CORE1_0] = &qnm_mdp1_0, [MASTER_MDP_CORE1_1] = &qnm_mdp1_1, [MASTER_CNOC_MNOC_CFG] = &qnm_mnoc_cfg, [MASTER_ROTATOR] = &qnm_rot_0, [MASTER_ROTATOR_1] = &qnm_rot_1, [MASTER_VIDEO_P0] = &qnm_video0, [MASTER_VIDEO_P1] = &qnm_video1, [MASTER_VIDEO_PROC] = &qnm_video_cvp, [MASTER_CAMNOC_ICP] = &qxm_camnoc_icp, [MASTER_CAMNOC_SF] = &qxm_camnoc_sf, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, }; static const struct qcom_icc_desc sc8280xp_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const nspa_noc_bcms[] = { &bcm_nsa0, &bcm_nsa1, }; static struct qcom_icc_node * const nspa_noc_nodes[] = { [MASTER_CDSP_NOC_CFG] = &qhm_nsp_noc_config, [MASTER_CDSP_PROC] = &qxm_nsp, [SLAVE_CDSP_MEM_NOC] = &qns_nsp_gemnoc, [SLAVE_NSP_XFR] = &qxs_nsp_xfr, [SLAVE_SERVICE_NSP_NOC] = &service_nsp_noc, }; static const struct qcom_icc_desc sc8280xp_nspa_noc = { .nodes = nspa_noc_nodes, .num_nodes = ARRAY_SIZE(nspa_noc_nodes), .bcms = nspa_noc_bcms, .num_bcms = ARRAY_SIZE(nspa_noc_bcms), }; static struct qcom_icc_bcm * const nspb_noc_bcms[] = { &bcm_nsb0, &bcm_nsb1, }; static struct qcom_icc_node * const nspb_noc_nodes[] = { [MASTER_CDSPB_NOC_CFG] = &qhm_nspb_noc_config, [MASTER_CDSP_PROC_B] = &qxm_nspb, [SLAVE_CDSPB_MEM_NOC] = &qns_nspb_gemnoc, [SLAVE_NSPB_XFR] = &qxs_nspb_xfr, [SLAVE_SERVICE_NSPB_NOC] = &service_nspb_noc, }; static const struct qcom_icc_desc sc8280xp_nspb_noc = { .nodes = nspb_noc_nodes, .num_nodes = ARRAY_SIZE(nspb_noc_nodes), .bcms = nspb_noc_bcms, .num_bcms = ARRAY_SIZE(nspb_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_main_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn3, &bcm_sn4, &bcm_sn5, &bcm_sn9, }; static struct qcom_icc_node * const system_noc_main_nodes[] = { [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_USB_NOC_SNOC] = &qnm_aggre_usb_noc, [MASTER_LPASS_ANOC] = &qnm_lpass_noc, [MASTER_SNOC_CFG] = &qnm_snoc_cfg, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_SERVICE_SNOC] = &srvc_snoc, }; static const struct qcom_icc_desc sc8280xp_system_noc_main = { .nodes = system_noc_main_nodes, .num_nodes = ARRAY_SIZE(system_noc_main_nodes), .bcms = system_noc_main_bcms, .num_bcms = ARRAY_SIZE(system_noc_main_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sc8280xp-aggre1-noc", .data = &sc8280xp_aggre1_noc, }, { .compatible = "qcom,sc8280xp-aggre2-noc", .data = &sc8280xp_aggre2_noc, }, { .compatible = "qcom,sc8280xp-clk-virt", .data = &sc8280xp_clk_virt, }, { .compatible = "qcom,sc8280xp-config-noc", .data = &sc8280xp_config_noc, }, { .compatible = "qcom,sc8280xp-dc-noc", .data = &sc8280xp_dc_noc, }, { .compatible = "qcom,sc8280xp-gem-noc", .data = &sc8280xp_gem_noc, }, { .compatible = "qcom,sc8280xp-lpass-ag-noc", .data = &sc8280xp_lpass_ag_noc, }, { .compatible = "qcom,sc8280xp-mc-virt", .data = &sc8280xp_mc_virt, }, { .compatible = "qcom,sc8280xp-mmss-noc", .data = &sc8280xp_mmss_noc, }, { .compatible = "qcom,sc8280xp-nspa-noc", .data = &sc8280xp_nspa_noc, }, { .compatible = "qcom,sc8280xp-nspb-noc", .data = &sc8280xp_nspb_noc, }, { .compatible = "qcom,sc8280xp-system-noc", .data = &sc8280xp_system_noc_main, }, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sc8280xp", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; static int __init qnoc_driver_init(void) { return platform_driver_register(&qnoc_driver); } core_initcall(qnoc_driver_init); static void __exit qnoc_driver_exit(void) { platform_driver_unregister(&qnoc_driver); } module_exit(qnoc_driver_exit); MODULE_DESCRIPTION("Qualcomm SC8280XP NoC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/interconnect/qcom/sc8280xp.c
// SPDX-License-Identifier: GPL-2.0 /* * Qualcomm SDX55 interconnect driver * Author: Manivannan Sadhasivam <[email protected]> * * Copyright (c) 2021, Linaro Ltd. * */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sdx55.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sdx55.h" static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SDX55_MASTER_LLCC, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SDX55_SLAVE_EBI_CH0 }, }; static struct qcom_icc_node acm_tcu = { .name = "acm_tcu", .id = SDX55_MASTER_TCU_0, .channels = 1, .buswidth = 8, .num_links = 3, .links = { SDX55_SLAVE_LLCC, SDX55_SLAVE_MEM_NOC_SNOC, SDX55_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SDX55_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_SLAVE_LLCC }, }; static struct qcom_icc_node xm_apps_rdwr = { .name = "xm_apps_rdwr", .id = SDX55_MASTER_AMPSS_M0, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SDX55_SLAVE_LLCC, SDX55_SLAVE_MEM_NOC_SNOC, SDX55_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhm_audio = { .name = "qhm_audio", .id = SDX55_MASTER_AUDIO, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX55_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node qhm_blsp1 = { .name = "qhm_blsp1", .id = SDX55_MASTER_BLSP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX55_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SDX55_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 28, .links = { SDX55_SLAVE_SNOC_CFG, SDX55_SLAVE_EMAC_CFG, SDX55_SLAVE_USB3, SDX55_SLAVE_TLMM, SDX55_SLAVE_SPMI_FETCHER, SDX55_SLAVE_QDSS_CFG, SDX55_SLAVE_PDM, SDX55_SLAVE_SNOC_MEM_NOC_GC, SDX55_SLAVE_TCSR, SDX55_SLAVE_CNOC_DDRSS, SDX55_SLAVE_SPMI_VGI_COEX, SDX55_SLAVE_QPIC, SDX55_SLAVE_OCIMEM, SDX55_SLAVE_IPA_CFG, SDX55_SLAVE_USB3_PHY_CFG, SDX55_SLAVE_AOP, SDX55_SLAVE_BLSP_1, SDX55_SLAVE_SDCC_1, SDX55_SLAVE_CNOC_MSS, SDX55_SLAVE_PCIE_PARF, SDX55_SLAVE_ECC_CFG, SDX55_SLAVE_AUDIO, SDX55_SLAVE_AOSS, SDX55_SLAVE_PRNG, SDX55_SLAVE_CRYPTO_0_CFG, SDX55_SLAVE_TCU, SDX55_SLAVE_CLK_CTL, SDX55_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node qhm_qpic = { .name = "qhm_qpic", .id = SDX55_MASTER_QPIC, .channels = 1, .buswidth = 4, .num_links = 5, .links = { SDX55_SLAVE_AOSS, SDX55_SLAVE_IPA_CFG, SDX55_SLAVE_ANOC_SNOC, SDX55_SLAVE_AOP, SDX55_SLAVE_AUDIO }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SDX55_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX55_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qhm_spmi_fetcher1 = { .name = "qhm_spmi_fetcher1", .id = SDX55_MASTER_SPMI_FETCHER, .channels = 1, .buswidth = 4, .num_links = 3, .links = { SDX55_SLAVE_AOSS, SDX55_SLAVE_ANOC_SNOC, SDX55_SLAVE_AOP }, }; static struct qcom_icc_node qnm_aggre_noc = { .name = "qnm_aggre_noc", .id = SDX55_MASTER_ANOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 30, .links = { SDX55_SLAVE_PCIE_0, SDX55_SLAVE_SNOC_CFG, SDX55_SLAVE_SDCC_1, SDX55_SLAVE_TLMM, SDX55_SLAVE_SPMI_FETCHER, SDX55_SLAVE_QDSS_CFG, SDX55_SLAVE_PDM, SDX55_SLAVE_SNOC_MEM_NOC_GC, SDX55_SLAVE_TCSR, SDX55_SLAVE_CNOC_DDRSS, SDX55_SLAVE_SPMI_VGI_COEX, SDX55_SLAVE_QDSS_STM, SDX55_SLAVE_QPIC, SDX55_SLAVE_OCIMEM, SDX55_SLAVE_IPA_CFG, SDX55_SLAVE_USB3_PHY_CFG, SDX55_SLAVE_AOP, SDX55_SLAVE_BLSP_1, SDX55_SLAVE_USB3, SDX55_SLAVE_CNOC_MSS, SDX55_SLAVE_PCIE_PARF, SDX55_SLAVE_ECC_CFG, SDX55_SLAVE_APPSS, SDX55_SLAVE_AUDIO, SDX55_SLAVE_AOSS, SDX55_SLAVE_PRNG, SDX55_SLAVE_CRYPTO_0_CFG, SDX55_SLAVE_TCU, SDX55_SLAVE_CLK_CTL, SDX55_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node qnm_ipa = { .name = "qnm_ipa", .id = SDX55_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 27, .links = { SDX55_SLAVE_SNOC_CFG, SDX55_SLAVE_EMAC_CFG, SDX55_SLAVE_USB3, SDX55_SLAVE_AOSS, SDX55_SLAVE_SPMI_FETCHER, SDX55_SLAVE_QDSS_CFG, SDX55_SLAVE_PDM, SDX55_SLAVE_SNOC_MEM_NOC_GC, SDX55_SLAVE_TCSR, SDX55_SLAVE_CNOC_DDRSS, SDX55_SLAVE_QDSS_STM, SDX55_SLAVE_QPIC, SDX55_SLAVE_OCIMEM, SDX55_SLAVE_IPA_CFG, SDX55_SLAVE_USB3_PHY_CFG, SDX55_SLAVE_AOP, SDX55_SLAVE_BLSP_1, SDX55_SLAVE_SDCC_1, SDX55_SLAVE_CNOC_MSS, SDX55_SLAVE_PCIE_PARF, SDX55_SLAVE_ECC_CFG, SDX55_SLAVE_AUDIO, SDX55_SLAVE_TLMM, SDX55_SLAVE_PRNG, SDX55_SLAVE_CRYPTO_0_CFG, SDX55_SLAVE_CLK_CTL, SDX55_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node qnm_memnoc = { .name = "qnm_memnoc", .id = SDX55_MASTER_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 29, .links = { SDX55_SLAVE_SNOC_CFG, SDX55_SLAVE_EMAC_CFG, SDX55_SLAVE_USB3, SDX55_SLAVE_TLMM, SDX55_SLAVE_SPMI_FETCHER, SDX55_SLAVE_QDSS_CFG, SDX55_SLAVE_PDM, SDX55_SLAVE_TCSR, SDX55_SLAVE_CNOC_DDRSS, SDX55_SLAVE_SPMI_VGI_COEX, SDX55_SLAVE_QDSS_STM, SDX55_SLAVE_QPIC, SDX55_SLAVE_OCIMEM, SDX55_SLAVE_IPA_CFG, SDX55_SLAVE_USB3_PHY_CFG, SDX55_SLAVE_AOP, SDX55_SLAVE_BLSP_1, SDX55_SLAVE_SDCC_1, SDX55_SLAVE_CNOC_MSS, SDX55_SLAVE_PCIE_PARF, SDX55_SLAVE_ECC_CFG, SDX55_SLAVE_APPSS, SDX55_SLAVE_AUDIO, SDX55_SLAVE_AOSS, SDX55_SLAVE_PRNG, SDX55_SLAVE_CRYPTO_0_CFG, SDX55_SLAVE_TCU, SDX55_SLAVE_CLK_CTL, SDX55_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node qnm_memnoc_pcie = { .name = "qnm_memnoc_pcie", .id = SDX55_MASTER_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_SLAVE_PCIE_0 }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SDX55_MASTER_CRYPTO_CORE_0, .channels = 1, .buswidth = 8, .num_links = 3, .links = { SDX55_SLAVE_AOSS, SDX55_SLAVE_ANOC_SNOC, SDX55_SLAVE_AOP }, }; static struct qcom_icc_node xm_emac = { .name = "xm_emac", .id = SDX55_MASTER_EMAC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node xm_ipa2pcie_slv = { .name = "xm_ipa2pcie_slv", .id = SDX55_MASTER_IPA_PCIE, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_SLAVE_PCIE_0 }, }; static struct qcom_icc_node xm_pcie = { .name = "xm_pcie", .id = SDX55_MASTER_PCIE, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SDX55_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 28, .links = { SDX55_SLAVE_SNOC_CFG, SDX55_SLAVE_EMAC_CFG, SDX55_SLAVE_USB3, SDX55_SLAVE_AOSS, SDX55_SLAVE_SPMI_FETCHER, SDX55_SLAVE_QDSS_CFG, SDX55_SLAVE_PDM, SDX55_SLAVE_SNOC_MEM_NOC_GC, SDX55_SLAVE_TCSR, SDX55_SLAVE_CNOC_DDRSS, SDX55_SLAVE_SPMI_VGI_COEX, SDX55_SLAVE_QPIC, SDX55_SLAVE_OCIMEM, SDX55_SLAVE_IPA_CFG, SDX55_SLAVE_USB3_PHY_CFG, SDX55_SLAVE_AOP, SDX55_SLAVE_BLSP_1, SDX55_SLAVE_SDCC_1, SDX55_SLAVE_CNOC_MSS, SDX55_SLAVE_PCIE_PARF, SDX55_SLAVE_ECC_CFG, SDX55_SLAVE_AUDIO, SDX55_SLAVE_AOSS, SDX55_SLAVE_PRNG, SDX55_SLAVE_CRYPTO_0_CFG, SDX55_SLAVE_TCU, SDX55_SLAVE_CLK_CTL, SDX55_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node xm_sdc1 = { .name = "xm_sdc1", .id = SDX55_MASTER_SDCC_1, .channels = 1, .buswidth = 8, .num_links = 5, .links = { SDX55_SLAVE_AOSS, SDX55_SLAVE_IPA_CFG, SDX55_SLAVE_ANOC_SNOC, SDX55_SLAVE_AOP, SDX55_SLAVE_AUDIO }, }; static struct qcom_icc_node xm_usb3 = { .name = "xm_usb3", .id = SDX55_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SDX55_SLAVE_EBI_CH0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SDX55_SLAVE_LLCC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDX55_SLAVE_EBI_CH0 }, }; static struct qcom_icc_node qns_memnoc_snoc = { .name = "qns_memnoc_snoc", .id = SDX55_SLAVE_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_MASTER_MEM_NOC_SNOC }, }; static struct qcom_icc_node qns_sys_pcie = { .name = "qns_sys_pcie", .id = SDX55_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_MASTER_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhs_aop = { .name = "qhs_aop", .id = SDX55_SLAVE_AOP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SDX55_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SDX55_SLAVE_APPSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_audio = { .name = "qhs_audio", .id = SDX55_SLAVE_AUDIO, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_blsp1 = { .name = "qhs_blsp1", .id = SDX55_SLAVE_BLSP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SDX55_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SDX55_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SDX55_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ecc_cfg = { .name = "qhs_ecc_cfg", .id = SDX55_SLAVE_ECC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emac_cfg = { .name = "qhs_emac_cfg", .id = SDX55_SLAVE_EMAC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SDX55_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SDX55_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SDX55_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_parf = { .name = "qhs_pcie_parf", .id = SDX55_SLAVE_PCIE_PARF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SDX55_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SDX55_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SDX55_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qpic = { .name = "qhs_qpic", .id = SDX55_SLAVE_QPIC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc1 = { .name = "qhs_sdc1", .id = SDX55_SLAVE_SDCC_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SDX55_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX55_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_spmi_fetcher = { .name = "qhs_spmi_fetcher", .id = SDX55_SLAVE_SPMI_FETCHER, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_spmi_vgi_coex = { .name = "qhs_spmi_vgi_coex", .id = SDX55_SLAVE_SPMI_VGI_COEX, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SDX55_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SDX55_SLAVE_TLMM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3 = { .name = "qhs_usb3", .id = SDX55_SLAVE_USB3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_phy = { .name = "qhs_usb3_phy", .id = SDX55_SLAVE_USB3_PHY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_aggre_noc = { .name = "qns_aggre_noc", .id = SDX55_SLAVE_ANOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_MASTER_ANOC_SNOC }, }; static struct qcom_icc_node qns_snoc_memnoc = { .name = "qns_snoc_memnoc", .id = SDX55_SLAVE_SNOC_MEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX55_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SDX55_SLAVE_OCIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SDX55_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_pcie = { .name = "xs_pcie", .id = SDX55_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SDX55_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SDX55_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_pn0 = { .name = "PN0", .keepalive = false, .num_nodes = 1, .nodes = { &qhm_snoc_cfg }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &xm_apps_rdwr }, }; static struct qcom_icc_bcm bcm_sh4 = { .name = "SH4", .keepalive = false, .num_nodes = 2, .nodes = { &qns_memnoc_snoc, &qns_sys_pcie }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_snoc_memnoc }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_pn1 = { .name = "PN1", .keepalive = false, .num_nodes = 1, .nodes = { &xm_sdc1 }, }; static struct qcom_icc_bcm bcm_pn2 = { .name = "PN2", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_audio, &qhm_spmi_fetcher1 }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_pn3 = { .name = "PN3", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_blsp1, &qhm_qpic }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 1, .nodes = { &xs_sys_tcu_cfg }, }; static struct qcom_icc_bcm bcm_pn5 = { .name = "PN5", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_sn6 = { .name = "SN6", .keepalive = false, .num_nodes = 1, .nodes = { &xs_pcie }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .keepalive = false, .num_nodes = 5, .nodes = { &qnm_aggre_noc, &xm_emac, &xm_emac, &xm_usb3, &qns_aggre_noc }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_qdss_bam, &xm_qdss_etr }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_memnoc }, }; static struct qcom_icc_bcm bcm_sn10 = { .name = "SN10", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_memnoc_pcie }, }; static struct qcom_icc_bcm bcm_sn11 = { .name = "SN11", .keepalive = false, .num_nodes = 2, .nodes = { &qnm_ipa, &xm_ipa2pcie_slv }, }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI_CH0] = &ebi, }; static const struct qcom_icc_desc sdx55_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mem_noc_bcms[] = { &bcm_sh0, &bcm_sh3, &bcm_sh4, }; static struct qcom_icc_node * const mem_noc_nodes[] = { [MASTER_TCU_0] = &acm_tcu, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_AMPSS_M0] = &xm_apps_rdwr, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_SNOC] = &qns_memnoc_snoc, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_sys_pcie, }; static const struct qcom_icc_desc sdx55_mem_noc = { .nodes = mem_noc_nodes, .num_nodes = ARRAY_SIZE(mem_noc_nodes), .bcms = mem_noc_bcms, .num_bcms = ARRAY_SIZE(mem_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_ce0, &bcm_pn0, &bcm_pn1, &bcm_pn2, &bcm_pn3, &bcm_pn5, &bcm_sn0, &bcm_sn1, &bcm_sn3, &bcm_sn4, &bcm_sn6, &bcm_sn7, &bcm_sn8, &bcm_sn9, &bcm_sn10, &bcm_sn11, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_AUDIO] = &qhm_audio, [MASTER_BLSP_1] = &qhm_blsp1, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QPIC] = &qhm_qpic, [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [MASTER_SPMI_FETCHER] = &qhm_spmi_fetcher1, [MASTER_ANOC_SNOC] = &qnm_aggre_noc, [MASTER_IPA] = &qnm_ipa, [MASTER_MEM_NOC_SNOC] = &qnm_memnoc, [MASTER_MEM_NOC_PCIE_SNOC] = &qnm_memnoc_pcie, [MASTER_CRYPTO_CORE_0] = &qxm_crypto, [MASTER_EMAC] = &xm_emac, [MASTER_IPA_PCIE] = &xm_ipa2pcie_slv, [MASTER_PCIE] = &xm_pcie, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_SDCC_1] = &xm_sdc1, [MASTER_USB3] = &xm_usb3, [SLAVE_AOP] = &qhs_aop, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_APPSS] = &qhs_apss, [SLAVE_AUDIO] = &qhs_audio, [SLAVE_BLSP_1] = &qhs_blsp1, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_ECC_CFG] = &qhs_ecc_cfg, [SLAVE_EMAC_CFG] = &qhs_emac_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_PCIE_PARF] = &qhs_pcie_parf, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QPIC] = &qhs_qpic, [SLAVE_SDCC_1] = &qhs_sdc1, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_SPMI_FETCHER] = &qhs_spmi_fetcher, [SLAVE_SPMI_VGI_COEX] = &qhs_spmi_vgi_coex, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_USB3] = &qhs_usb3, [SLAVE_USB3_PHY_CFG] = &qhs_usb3_phy, [SLAVE_ANOC_SNOC] = &qns_aggre_noc, [SLAVE_SNOC_MEM_NOC_GC] = &qns_snoc_memnoc, [SLAVE_OCIMEM] = &qxs_imem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_PCIE_0] = &xs_pcie, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sdx55_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sdx55-mc-virt", .data = &sdx55_mc_virt}, { .compatible = "qcom,sdx55-mem-noc", .data = &sdx55_mem_noc}, { .compatible = "qcom,sdx55-system-noc", .data = &sdx55_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sdx55", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm SDX55 NoC driver"); MODULE_AUTHOR("Manivannan Sadhasivam <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sdx55.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2018-2020, The Linux Foundation. All rights reserved. */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sdm845.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sdm845.h" static struct qcom_icc_node qhm_a1noc_cfg = { .name = "qhm_a1noc_cfg", .id = SDM845_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SDM845_MASTER_BLSP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_tsif = { .name = "qhm_tsif", .id = SDM845_MASTER_TSIF, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SDM845_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SDM845_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_card = { .name = "xm_ufs_card", .id = SDM845_MASTER_UFS_CARD, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SDM845_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_pcie_0 = { .name = "xm_pcie_0", .id = SDM845_MASTER_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_ANOC_PCIE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_a2noc_cfg = { .name = "qhm_a2noc_cfg", .id = SDM845_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SDM845_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SDM845_MASTER_BLSP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_cnoc = { .name = "qnm_cnoc", .id = SDM845_MASTER_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SDM845_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SDM845_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SDM845_MASTER_PCIE_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_ANOC_PCIE_SNOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SDM845_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SDM845_MASTER_USB3_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_1 = { .name = "xm_usb3_1", .id = SDM845_MASTER_USB3_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_camnoc_hf0_uncomp = { .name = "qxm_camnoc_hf0_uncomp", .id = SDM845_MASTER_CAMNOC_HF0_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_hf1_uncomp = { .name = "qxm_camnoc_hf1_uncomp", .id = SDM845_MASTER_CAMNOC_HF1_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_sf_uncomp = { .name = "qxm_camnoc_sf_uncomp", .id = SDM845_MASTER_CAMNOC_SF_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qhm_spdm = { .name = "qhm_spdm", .id = SDM845_MASTER_SPDM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_CNOC_A2NOC }, }; static struct qcom_icc_node qhm_tic = { .name = "qhm_tic", .id = SDM845_MASTER_TIC, .channels = 1, .buswidth = 4, .num_links = 43, .links = { SDM845_SLAVE_A1NOC_CFG, SDM845_SLAVE_A2NOC_CFG, SDM845_SLAVE_AOP, SDM845_SLAVE_AOSS, SDM845_SLAVE_CAMERA_CFG, SDM845_SLAVE_CLK_CTL, SDM845_SLAVE_CDSP_CFG, SDM845_SLAVE_RBCPR_CX_CFG, SDM845_SLAVE_CRYPTO_0_CFG, SDM845_SLAVE_DCC_CFG, SDM845_SLAVE_CNOC_DDRSS, SDM845_SLAVE_DISPLAY_CFG, SDM845_SLAVE_GLM, SDM845_SLAVE_GFX3D_CFG, SDM845_SLAVE_IMEM_CFG, SDM845_SLAVE_IPA_CFG, SDM845_SLAVE_CNOC_MNOC_CFG, SDM845_SLAVE_PCIE_0_CFG, SDM845_SLAVE_PCIE_1_CFG, SDM845_SLAVE_PDM, SDM845_SLAVE_SOUTH_PHY_CFG, SDM845_SLAVE_PIMEM_CFG, SDM845_SLAVE_PRNG, SDM845_SLAVE_QDSS_CFG, SDM845_SLAVE_BLSP_2, SDM845_SLAVE_BLSP_1, SDM845_SLAVE_SDCC_2, SDM845_SLAVE_SDCC_4, SDM845_SLAVE_SNOC_CFG, SDM845_SLAVE_SPDM_WRAPPER, SDM845_SLAVE_SPSS_CFG, SDM845_SLAVE_TCSR, SDM845_SLAVE_TLMM_NORTH, SDM845_SLAVE_TLMM_SOUTH, SDM845_SLAVE_TSIF, SDM845_SLAVE_UFS_CARD_CFG, SDM845_SLAVE_UFS_MEM_CFG, SDM845_SLAVE_USB3_0, SDM845_SLAVE_USB3_1, SDM845_SLAVE_VENUS_CFG, SDM845_SLAVE_VSENSE_CTRL_CFG, SDM845_SLAVE_CNOC_A2NOC, SDM845_SLAVE_SERVICE_CNOC }, }; static struct qcom_icc_node qnm_snoc = { .name = "qnm_snoc", .id = SDM845_MASTER_SNOC_CNOC, .channels = 1, .buswidth = 8, .num_links = 42, .links = { SDM845_SLAVE_A1NOC_CFG, SDM845_SLAVE_A2NOC_CFG, SDM845_SLAVE_AOP, SDM845_SLAVE_AOSS, SDM845_SLAVE_CAMERA_CFG, SDM845_SLAVE_CLK_CTL, SDM845_SLAVE_CDSP_CFG, SDM845_SLAVE_RBCPR_CX_CFG, SDM845_SLAVE_CRYPTO_0_CFG, SDM845_SLAVE_DCC_CFG, SDM845_SLAVE_CNOC_DDRSS, SDM845_SLAVE_DISPLAY_CFG, SDM845_SLAVE_GLM, SDM845_SLAVE_GFX3D_CFG, SDM845_SLAVE_IMEM_CFG, SDM845_SLAVE_IPA_CFG, SDM845_SLAVE_CNOC_MNOC_CFG, SDM845_SLAVE_PCIE_0_CFG, SDM845_SLAVE_PCIE_1_CFG, SDM845_SLAVE_PDM, SDM845_SLAVE_SOUTH_PHY_CFG, SDM845_SLAVE_PIMEM_CFG, SDM845_SLAVE_PRNG, SDM845_SLAVE_QDSS_CFG, SDM845_SLAVE_BLSP_2, SDM845_SLAVE_BLSP_1, SDM845_SLAVE_SDCC_2, SDM845_SLAVE_SDCC_4, SDM845_SLAVE_SNOC_CFG, SDM845_SLAVE_SPDM_WRAPPER, SDM845_SLAVE_SPSS_CFG, SDM845_SLAVE_TCSR, SDM845_SLAVE_TLMM_NORTH, SDM845_SLAVE_TLMM_SOUTH, SDM845_SLAVE_TSIF, SDM845_SLAVE_UFS_CARD_CFG, SDM845_SLAVE_UFS_MEM_CFG, SDM845_SLAVE_USB3_0, SDM845_SLAVE_USB3_1, SDM845_SLAVE_VENUS_CFG, SDM845_SLAVE_VSENSE_CTRL_CFG, SDM845_SLAVE_SERVICE_CNOC }, }; static struct qcom_icc_node xm_qdss_dap = { .name = "xm_qdss_dap", .id = SDM845_MASTER_QDSS_DAP, .channels = 1, .buswidth = 8, .num_links = 43, .links = { SDM845_SLAVE_A1NOC_CFG, SDM845_SLAVE_A2NOC_CFG, SDM845_SLAVE_AOP, SDM845_SLAVE_AOSS, SDM845_SLAVE_CAMERA_CFG, SDM845_SLAVE_CLK_CTL, SDM845_SLAVE_CDSP_CFG, SDM845_SLAVE_RBCPR_CX_CFG, SDM845_SLAVE_CRYPTO_0_CFG, SDM845_SLAVE_DCC_CFG, SDM845_SLAVE_CNOC_DDRSS, SDM845_SLAVE_DISPLAY_CFG, SDM845_SLAVE_GLM, SDM845_SLAVE_GFX3D_CFG, SDM845_SLAVE_IMEM_CFG, SDM845_SLAVE_IPA_CFG, SDM845_SLAVE_CNOC_MNOC_CFG, SDM845_SLAVE_PCIE_0_CFG, SDM845_SLAVE_PCIE_1_CFG, SDM845_SLAVE_PDM, SDM845_SLAVE_SOUTH_PHY_CFG, SDM845_SLAVE_PIMEM_CFG, SDM845_SLAVE_PRNG, SDM845_SLAVE_QDSS_CFG, SDM845_SLAVE_BLSP_2, SDM845_SLAVE_BLSP_1, SDM845_SLAVE_SDCC_2, SDM845_SLAVE_SDCC_4, SDM845_SLAVE_SNOC_CFG, SDM845_SLAVE_SPDM_WRAPPER, SDM845_SLAVE_SPSS_CFG, SDM845_SLAVE_TCSR, SDM845_SLAVE_TLMM_NORTH, SDM845_SLAVE_TLMM_SOUTH, SDM845_SLAVE_TSIF, SDM845_SLAVE_UFS_CARD_CFG, SDM845_SLAVE_UFS_MEM_CFG, SDM845_SLAVE_USB3_0, SDM845_SLAVE_USB3_1, SDM845_SLAVE_VENUS_CFG, SDM845_SLAVE_VSENSE_CTRL_CFG, SDM845_SLAVE_CNOC_A2NOC, SDM845_SLAVE_SERVICE_CNOC }, }; static struct qcom_icc_node qhm_cnoc = { .name = "qhm_cnoc", .id = SDM845_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SDM845_SLAVE_LLCC_CFG, SDM845_SLAVE_MEM_NOC_CFG }, }; static struct qcom_icc_node acm_l3 = { .name = "acm_l3", .id = SDM845_MASTER_APPSS_PROC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SDM845_SLAVE_GNOC_SNOC, SDM845_SLAVE_GNOC_MEM_NOC, SDM845_SLAVE_SERVICE_GNOC }, }; static struct qcom_icc_node pm_gnoc_cfg = { .name = "pm_gnoc_cfg", .id = SDM845_MASTER_GNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_SERVICE_GNOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SDM845_MASTER_LLCC, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_EBI1 }, }; static struct qcom_icc_node acm_tcu = { .name = "acm_tcu", .id = SDM845_MASTER_TCU_0, .channels = 1, .buswidth = 8, .num_links = 3, .links = { SDM845_SLAVE_MEM_NOC_GNOC, SDM845_SLAVE_LLCC, SDM845_SLAVE_MEM_NOC_SNOC }, }; static struct qcom_icc_node qhm_memnoc_cfg = { .name = "qhm_memnoc_cfg", .id = SDM845_MASTER_MEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SDM845_SLAVE_MSS_PROC_MS_MPU_CFG, SDM845_SLAVE_SERVICE_MEM_NOC }, }; static struct qcom_icc_node qnm_apps = { .name = "qnm_apps", .id = SDM845_MASTER_GNOC_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SDM845_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SDM845_SLAVE_MEM_NOC_GNOC, SDM845_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SDM845_MASTER_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 3, .links = { SDM845_SLAVE_MEM_NOC_GNOC, SDM845_SLAVE_LLCC, SDM845_SLAVE_MEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SDM845_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SDM845_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SDM845_SLAVE_MEM_NOC_GNOC, SDM845_SLAVE_LLCC }, }; static struct qcom_icc_node qxm_gpu = { .name = "qxm_gpu", .id = SDM845_MASTER_GFX3D, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SDM845_SLAVE_MEM_NOC_GNOC, SDM845_SLAVE_LLCC, SDM845_SLAVE_MEM_NOC_SNOC }, }; static struct qcom_icc_node qhm_mnoc_cfg = { .name = "qhm_mnoc_cfg", .id = SDM845_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qxm_camnoc_hf0 = { .name = "qxm_camnoc_hf0", .id = SDM845_MASTER_CAMNOC_HF0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_hf1 = { .name = "qxm_camnoc_hf1", .id = SDM845_MASTER_CAMNOC_HF1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_sf = { .name = "qxm_camnoc_sf", .id = SDM845_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SDM845_MASTER_MDP0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp1 = { .name = "qxm_mdp1", .id = SDM845_MASTER_MDP1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_rot = { .name = "qxm_rot", .id = SDM845_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus0 = { .name = "qxm_venus0", .id = SDM845_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus1 = { .name = "qxm_venus1", .id = SDM845_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus_arm9 = { .name = "qxm_venus_arm9", .id = SDM845_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SDM845_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SDM845_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 6, .links = { SDM845_SLAVE_APPSS, SDM845_SLAVE_SNOC_CNOC, SDM845_SLAVE_SNOC_MEM_NOC_SF, SDM845_SLAVE_IMEM, SDM845_SLAVE_PIMEM, SDM845_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SDM845_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 9, .links = { SDM845_SLAVE_APPSS, SDM845_SLAVE_SNOC_CNOC, SDM845_SLAVE_SNOC_MEM_NOC_SF, SDM845_SLAVE_IMEM, SDM845_SLAVE_PCIE_0, SDM845_SLAVE_PCIE_1, SDM845_SLAVE_PIMEM, SDM845_SLAVE_QDSS_STM, SDM845_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gladiator_sodv = { .name = "qnm_gladiator_sodv", .id = SDM845_MASTER_GNOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 8, .links = { SDM845_SLAVE_APPSS, SDM845_SLAVE_SNOC_CNOC, SDM845_SLAVE_IMEM, SDM845_SLAVE_PCIE_0, SDM845_SLAVE_PCIE_1, SDM845_SLAVE_PIMEM, SDM845_SLAVE_QDSS_STM, SDM845_SLAVE_TCU }, }; static struct qcom_icc_node qnm_memnoc = { .name = "qnm_memnoc", .id = SDM845_MASTER_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 5, .links = { SDM845_SLAVE_APPSS, SDM845_SLAVE_SNOC_CNOC, SDM845_SLAVE_IMEM, SDM845_SLAVE_PIMEM, SDM845_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_pcie_anoc = { .name = "qnm_pcie_anoc", .id = SDM845_MASTER_ANOC_PCIE_SNOC, .channels = 1, .buswidth = 16, .num_links = 5, .links = { SDM845_SLAVE_APPSS, SDM845_SLAVE_SNOC_CNOC, SDM845_SLAVE_SNOC_MEM_NOC_SF, SDM845_SLAVE_IMEM, SDM845_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SDM845_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SDM845_SLAVE_SNOC_MEM_NOC_GC, SDM845_SLAVE_IMEM }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SDM845_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SDM845_SLAVE_SNOC_MEM_NOC_GC, SDM845_SLAVE_IMEM }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SDM845_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM845_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SDM845_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, .num_links = 1, .links = { 0 }, }; static struct qcom_icc_node qns_pcie_a1noc_snoc = { .name = "qns_pcie_a1noc_snoc", .id = SDM845_SLAVE_ANOC_PCIE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM845_MASTER_ANOC_PCIE_SNOC }, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SDM845_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM845_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node qns_pcie_snoc = { .name = "qns_pcie_snoc", .id = SDM845_SLAVE_ANOC_PCIE_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM845_MASTER_ANOC_PCIE_SNOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SDM845_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_camnoc_uncomp = { .name = "qns_camnoc_uncomp", .id = SDM845_SLAVE_CAMNOC_UNCOMP, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qhs_a1_noc_cfg = { .name = "qhs_a1_noc_cfg", .id = SDM845_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qhs_a2_noc_cfg = { .name = "qhs_a2_noc_cfg", .id = SDM845_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qhs_aop = { .name = "qhs_aop", .id = SDM845_SLAVE_AOP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SDM845_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SDM845_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SDM845_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_compute_dsp_cfg = { .name = "qhs_compute_dsp_cfg", .id = SDM845_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SDM845_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SDM845_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SDM845_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SDM845_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SDM845_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_glm = { .name = "qhs_glm", .id = SDM845_SLAVE_GLM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SDM845_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SDM845_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SDM845_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mnoc_cfg = { .name = "qhs_mnoc_cfg", .id = SDM845_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SDM845_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_gen3_cfg = { .name = "qhs_pcie_gen3_cfg", .id = SDM845_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SDM845_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_phy_refgen_south = { .name = "qhs_phy_refgen_south", .id = SDM845_SLAVE_SOUTH_PHY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SDM845_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SDM845_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SDM845_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qupv3_north = { .name = "qhs_qupv3_north", .id = SDM845_SLAVE_BLSP_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qupv3_south = { .name = "qhs_qupv3_south", .id = SDM845_SLAVE_BLSP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SDM845_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SDM845_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SDM845_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_spdm = { .name = "qhs_spdm", .id = SDM845_SLAVE_SPDM_WRAPPER, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_spss_cfg = { .name = "qhs_spss_cfg", .id = SDM845_SLAVE_SPSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SDM845_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_north = { .name = "qhs_tlmm_north", .id = SDM845_SLAVE_TLMM_NORTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_south = { .name = "qhs_tlmm_south", .id = SDM845_SLAVE_TLMM_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tsif = { .name = "qhs_tsif", .id = SDM845_SLAVE_TSIF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_card_cfg = { .name = "qhs_ufs_card_cfg", .id = SDM845_SLAVE_UFS_CARD_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SDM845_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SDM845_SLAVE_USB3_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_1 = { .name = "qhs_usb3_1", .id = SDM845_SLAVE_USB3_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SDM845_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SDM845_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_cnoc_a2noc = { .name = "qns_cnoc_a2noc", .id = SDM845_SLAVE_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_MASTER_CNOC_A2NOC }, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SDM845_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SDM845_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_memnoc = { .name = "qhs_memnoc", .id = SDM845_SLAVE_MEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDM845_MASTER_MEM_NOC_CFG }, }; static struct qcom_icc_node qns_gladiator_sodv = { .name = "qns_gladiator_sodv", .id = SDM845_SLAVE_GNOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_MASTER_GNOC_SNOC }, }; static struct qcom_icc_node qns_gnoc_memnoc = { .name = "qns_gnoc_memnoc", .id = SDM845_SLAVE_GNOC_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SDM845_MASTER_GNOC_MEM_NOC }, }; static struct qcom_icc_node srvc_gnoc = { .name = "srvc_gnoc", .id = SDM845_SLAVE_SERVICE_GNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SDM845_SLAVE_EBI1, .channels = 4, .buswidth = 4, }; static struct qcom_icc_node qhs_mdsp_ms_mpu_cfg = { .name = "qhs_mdsp_ms_mpu_cfg", .id = SDM845_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_apps_io = { .name = "qns_apps_io", .id = SDM845_SLAVE_MEM_NOC_GNOC, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SDM845_SLAVE_LLCC, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SDM845_MASTER_LLCC }, }; static struct qcom_icc_node qns_memnoc_snoc = { .name = "qns_memnoc_snoc", .id = SDM845_SLAVE_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_MASTER_MEM_NOC_SNOC }, }; static struct qcom_icc_node srvc_memnoc = { .name = "srvc_memnoc", .id = SDM845_SLAVE_SERVICE_MEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns2_mem_noc = { .name = "qns2_mem_noc", .id = SDM845_SLAVE_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SDM845_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SDM845_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SDM845_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SDM845_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SDM845_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qns_cnoc = { .name = "qns_cnoc", .id = SDM845_SLAVE_SNOC_CNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_MASTER_SNOC_CNOC }, }; static struct qcom_icc_node qns_memnoc_gc = { .name = "qns_memnoc_gc", .id = SDM845_SLAVE_SNOC_MEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDM845_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_memnoc_sf = { .name = "qns_memnoc_sf", .id = SDM845_SLAVE_SNOC_MEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDM845_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SDM845_SLAVE_IMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pcie = { .name = "qxs_pcie", .id = SDM845_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pcie_gen3 = { .name = "qxs_pcie_gen3", .id = SDM845_SLAVE_PCIE_1, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SDM845_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SDM845_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SDM845_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SDM845_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_sh1 = { .name = "SH1", .keepalive = false, .num_nodes = 1, .nodes = { &qns_apps_io }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .keepalive = true, .num_nodes = 7, .nodes = { &qxm_camnoc_hf0_uncomp, &qxm_camnoc_hf1_uncomp, &qxm_camnoc_sf_uncomp, &qxm_camnoc_hf0, &qxm_camnoc_hf1, &qxm_mdp0, &qxm_mdp1 }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_memnoc_snoc }, }; static struct qcom_icc_bcm bcm_mm2 = { .name = "MM2", .keepalive = false, .num_nodes = 1, .nodes = { &qns2_mem_noc }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &acm_tcu }, }; static struct qcom_icc_bcm bcm_mm3 = { .name = "MM3", .keepalive = false, .num_nodes = 5, .nodes = { &qxm_camnoc_sf, &qxm_rot, &qxm_venus0, &qxm_venus1, &qxm_venus_arm9 }, }; static struct qcom_icc_bcm bcm_sh5 = { .name = "SH5", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_memnoc_sf }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = false, .num_nodes = 47, .nodes = { &qhm_spdm, &qhm_tic, &qnm_snoc, &xm_qdss_dap, &qhs_a1_noc_cfg, &qhs_a2_noc_cfg, &qhs_aop, &qhs_aoss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute_dsp_cfg, &qhs_cpr_cx, &qhs_crypto0_cfg, &qhs_dcc_cfg, &qhs_ddrss_cfg, &qhs_display_cfg, &qhs_glm, &qhs_gpuss_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_mnoc_cfg, &qhs_pcie0_cfg, &qhs_pcie_gen3_cfg, &qhs_pdm, &qhs_phy_refgen_south, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qupv3_north, &qhs_qupv3_south, &qhs_sdc2, &qhs_sdc4, &qhs_snoc_cfg, &qhs_spdm, &qhs_spss_cfg, &qhs_tcsr, &qhs_tlmm_north, &qhs_tlmm_south, &qhs_tsif, &qhs_ufs_card_cfg, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_usb3_1, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qns_cnoc_a2noc, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_qup1, &qhm_qup2 }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_memnoc_gc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &qns_cnoc }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_pimem }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn6 = { .name = "SN6", .keepalive = false, .num_nodes = 3, .nodes = { &qhs_apss, &srvc_snoc, &xs_sys_tcu_cfg }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_pcie }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_pcie_gen3 }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .keepalive = false, .num_nodes = 2, .nodes = { &srvc_aggre1_noc, &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn11 = { .name = "SN11", .keepalive = false, .num_nodes = 2, .nodes = { &srvc_aggre2_noc, &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn12 = { .name = "SN12", .keepalive = false, .num_nodes = 2, .nodes = { &qnm_gladiator_sodv, &xm_gic }, }; static struct qcom_icc_bcm bcm_sn14 = { .name = "SN14", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_pcie_anoc }, }; static struct qcom_icc_bcm bcm_sn15 = { .name = "SN15", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_memnoc }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_sn9, &bcm_qup0, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_A1NOC_CFG] = &qhm_a1noc_cfg, [MASTER_TSIF] = &qhm_tsif, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_CARD] = &xm_ufs_card, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_PCIE_0] = &xm_pcie_0, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, [SLAVE_ANOC_PCIE_A1NOC_SNOC] = &qns_pcie_a1noc_snoc, [MASTER_QUP_1] = &qhm_qup1, }; static const struct qcom_icc_desc sdm845_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, &bcm_sn11, &bcm_qup0, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_A2NOC_CFG] = &qhm_a2noc_cfg, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_CNOC_A2NOC] = &qnm_cnoc, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_PCIE_1] = &xm_pcie3_1, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_USB3_0] = &xm_usb3_0, [MASTER_USB3_1] = &xm_usb3_1, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, [SLAVE_ANOC_PCIE_SNOC] = &qns_pcie_snoc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, [MASTER_QUP_2] = &qhm_qup2, }; static const struct qcom_icc_desc sdm845_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_SPDM] = &qhm_spdm, [MASTER_TIC] = &qhm_tic, [MASTER_SNOC_CNOC] = &qnm_snoc, [MASTER_QDSS_DAP] = &xm_qdss_dap, [SLAVE_A1NOC_CFG] = &qhs_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qhs_a2_noc_cfg, [SLAVE_AOP] = &qhs_aop, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute_dsp_cfg, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_GLM] = &qhs_glm, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_CNOC_MNOC_CFG] = &qhs_mnoc_cfg, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie_gen3_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_SOUTH_PHY_CFG] = &qhs_phy_refgen_south, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_BLSP_2] = &qhs_qupv3_north, [SLAVE_BLSP_1] = &qhs_qupv3_south, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_SPDM_WRAPPER] = &qhs_spdm, [SLAVE_SPSS_CFG] = &qhs_spss_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM_NORTH] = &qhs_tlmm_north, [SLAVE_TLMM_SOUTH] = &qhs_tlmm_south, [SLAVE_TSIF] = &qhs_tsif, [SLAVE_UFS_CARD_CFG] = &qhs_ufs_card_cfg, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3_0] = &qhs_usb3_0, [SLAVE_USB3_1] = &qhs_usb3_1, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_CNOC_A2NOC] = &qns_cnoc_a2noc, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, }; static const struct qcom_icc_desc sdm845_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qhm_cnoc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_MEM_NOC_CFG] = &qhs_memnoc, }; static const struct qcom_icc_desc sdm845_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gladiator_noc_bcms[] = { }; static struct qcom_icc_node * const gladiator_noc_nodes[] = { [MASTER_APPSS_PROC] = &acm_l3, [MASTER_GNOC_CFG] = &pm_gnoc_cfg, [SLAVE_GNOC_SNOC] = &qns_gladiator_sodv, [SLAVE_GNOC_MEM_NOC] = &qns_gnoc_memnoc, [SLAVE_SERVICE_GNOC] = &srvc_gnoc, }; static const struct qcom_icc_desc sdm845_gladiator_noc = { .nodes = gladiator_noc_nodes, .num_nodes = ARRAY_SIZE(gladiator_noc_nodes), .bcms = gladiator_noc_bcms, .num_bcms = ARRAY_SIZE(gladiator_noc_bcms), }; static struct qcom_icc_bcm * const mem_noc_bcms[] = { &bcm_mc0, &bcm_acv, &bcm_sh0, &bcm_sh1, &bcm_sh2, &bcm_sh3, &bcm_sh5, }; static struct qcom_icc_node * const mem_noc_nodes[] = { [MASTER_TCU_0] = &acm_tcu, [MASTER_MEM_NOC_CFG] = &qhm_memnoc_cfg, [MASTER_GNOC_MEM_NOC] = &qnm_apps, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [MASTER_GFX3D] = &qxm_gpu, [SLAVE_MSS_PROC_MS_MPU_CFG] = &qhs_mdsp_ms_mpu_cfg, [SLAVE_MEM_NOC_GNOC] = &qns_apps_io, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_SNOC] = &qns_memnoc_snoc, [SLAVE_SERVICE_MEM_NOC] = &srvc_memnoc, [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, }; static const struct qcom_icc_desc sdm845_mem_noc = { .nodes = mem_noc_nodes, .num_nodes = ARRAY_SIZE(mem_noc_nodes), .bcms = mem_noc_bcms, .num_bcms = ARRAY_SIZE(mem_noc_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm2, &bcm_mm3, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &qhm_mnoc_cfg, [MASTER_CAMNOC_HF0] = &qxm_camnoc_hf0, [MASTER_CAMNOC_HF1] = &qxm_camnoc_hf1, [MASTER_CAMNOC_SF] = &qxm_camnoc_sf, [MASTER_MDP0] = &qxm_mdp0, [MASTER_MDP1] = &qxm_mdp1, [MASTER_ROTATOR] = &qxm_rot, [MASTER_VIDEO_P0] = &qxm_venus0, [MASTER_VIDEO_P1] = &qxm_venus1, [MASTER_VIDEO_PROC] = &qxm_venus_arm9, [SLAVE_MNOC_SF_MEM_NOC] = &qns2_mem_noc, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, [MASTER_CAMNOC_HF0_UNCOMP] = &qxm_camnoc_hf0_uncomp, [MASTER_CAMNOC_HF1_UNCOMP] = &qxm_camnoc_hf1_uncomp, [MASTER_CAMNOC_SF_UNCOMP] = &qxm_camnoc_sf_uncomp, [SLAVE_CAMNOC_UNCOMP] = &qns_camnoc_uncomp, }; static const struct qcom_icc_desc sdm845_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn2, &bcm_sn3, &bcm_sn4, &bcm_sn5, &bcm_sn6, &bcm_sn7, &bcm_sn8, &bcm_sn9, &bcm_sn11, &bcm_sn12, &bcm_sn14, &bcm_sn15, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_GNOC_SNOC] = &qnm_gladiator_sodv, [MASTER_MEM_NOC_SNOC] = &qnm_memnoc, [MASTER_ANOC_PCIE_SNOC] = &qnm_pcie_anoc, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_APPSS] = &qhs_apss, [SLAVE_SNOC_CNOC] = &qns_cnoc, [SLAVE_SNOC_MEM_NOC_GC] = &qns_memnoc_gc, [SLAVE_SNOC_MEM_NOC_SF] = &qns_memnoc_sf, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PCIE_0] = &qxs_pcie, [SLAVE_PCIE_1] = &qxs_pcie_gen3, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sdm845_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sdm845-aggre1-noc", .data = &sdm845_aggre1_noc}, { .compatible = "qcom,sdm845-aggre2-noc", .data = &sdm845_aggre2_noc}, { .compatible = "qcom,sdm845-config-noc", .data = &sdm845_config_noc}, { .compatible = "qcom,sdm845-dc-noc", .data = &sdm845_dc_noc}, { .compatible = "qcom,sdm845-gladiator-noc", .data = &sdm845_gladiator_noc}, { .compatible = "qcom,sdm845-mem-noc", .data = &sdm845_mem_noc}, { .compatible = "qcom,sdm845-mmss-noc", .data = &sdm845_mmss_noc}, { .compatible = "qcom,sdm845-system-noc", .data = &sdm845_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sdm845", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_AUTHOR("David Dai <[email protected]>"); MODULE_DESCRIPTION("Qualcomm sdm845 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sdm845.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved. */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sdx65.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sdx65.h" static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SDX65_MASTER_LLCC, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX65_SLAVE_EBI1 }, }; static struct qcom_icc_node acm_tcu = { .name = "acm_tcu", .id = SDX65_MASTER_TCU_0, .channels = 1, .buswidth = 8, .num_links = 3, .links = { SDX65_SLAVE_LLCC, SDX65_SLAVE_MEM_NOC_SNOC, SDX65_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SDX65_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDX65_SLAVE_LLCC }, }; static struct qcom_icc_node xm_apps_rdwr = { .name = "xm_apps_rdwr", .id = SDX65_MASTER_APPSS_PROC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SDX65_SLAVE_LLCC, SDX65_SLAVE_MEM_NOC_SNOC, SDX65_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhm_audio = { .name = "qhm_audio", .id = SDX65_MASTER_AUDIO, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node qhm_blsp1 = { .name = "qhm_blsp1", .id = SDX65_MASTER_BLSP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SDX65_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 26, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_AUDIO, SDX65_SLAVE_BLSP_1, SDX65_SLAVE_CLK_CTL, SDX65_SLAVE_CRYPTO_0_CFG, SDX65_SLAVE_CNOC_DDRSS, SDX65_SLAVE_ECC_CFG, SDX65_SLAVE_IMEM_CFG, SDX65_SLAVE_IPA_CFG, SDX65_SLAVE_CNOC_MSS, SDX65_SLAVE_PCIE_PARF, SDX65_SLAVE_PDM, SDX65_SLAVE_PRNG, SDX65_SLAVE_QDSS_CFG, SDX65_SLAVE_QPIC, SDX65_SLAVE_SDCC_1, SDX65_SLAVE_SNOC_CFG, SDX65_SLAVE_SPMI_FETCHER, SDX65_SLAVE_SPMI_VGI_COEX, SDX65_SLAVE_TCSR, SDX65_SLAVE_TLMM, SDX65_SLAVE_USB3, SDX65_SLAVE_USB3_PHY_CFG, SDX65_SLAVE_SNOC_MEM_NOC_GC, SDX65_SLAVE_IMEM, SDX65_SLAVE_TCU }, }; static struct qcom_icc_node qhm_qpic = { .name = "qhm_qpic", .id = SDX65_MASTER_QPIC, .channels = 1, .buswidth = 4, .num_links = 4, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_AUDIO, SDX65_SLAVE_IPA_CFG, SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SDX65_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX65_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qhm_spmi_fetcher1 = { .name = "qhm_spmi_fetcher1", .id = SDX65_MASTER_SPMI_FETCHER, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node qnm_aggre_noc = { .name = "qnm_aggre_noc", .id = SDX65_MASTER_ANOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 29, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_APPSS, SDX65_SLAVE_AUDIO, SDX65_SLAVE_BLSP_1, SDX65_SLAVE_CLK_CTL, SDX65_SLAVE_CRYPTO_0_CFG, SDX65_SLAVE_CNOC_DDRSS, SDX65_SLAVE_ECC_CFG, SDX65_SLAVE_IMEM_CFG, SDX65_SLAVE_IPA_CFG, SDX65_SLAVE_CNOC_MSS, SDX65_SLAVE_PCIE_PARF, SDX65_SLAVE_PDM, SDX65_SLAVE_PRNG, SDX65_SLAVE_QDSS_CFG, SDX65_SLAVE_QPIC, SDX65_SLAVE_SDCC_1, SDX65_SLAVE_SNOC_CFG, SDX65_SLAVE_SPMI_FETCHER, SDX65_SLAVE_SPMI_VGI_COEX, SDX65_SLAVE_TCSR, SDX65_SLAVE_TLMM, SDX65_SLAVE_USB3, SDX65_SLAVE_USB3_PHY_CFG, SDX65_SLAVE_SNOC_MEM_NOC_GC, SDX65_SLAVE_IMEM, SDX65_SLAVE_PCIE_0, SDX65_SLAVE_QDSS_STM, SDX65_SLAVE_TCU }, }; static struct qcom_icc_node qnm_ipa = { .name = "qnm_ipa", .id = SDX65_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 26, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_AUDIO, SDX65_SLAVE_BLSP_1, SDX65_SLAVE_CLK_CTL, SDX65_SLAVE_CRYPTO_0_CFG, SDX65_SLAVE_CNOC_DDRSS, SDX65_SLAVE_ECC_CFG, SDX65_SLAVE_IMEM_CFG, SDX65_SLAVE_IPA_CFG, SDX65_SLAVE_CNOC_MSS, SDX65_SLAVE_PCIE_PARF, SDX65_SLAVE_PDM, SDX65_SLAVE_PRNG, SDX65_SLAVE_QDSS_CFG, SDX65_SLAVE_QPIC, SDX65_SLAVE_SDCC_1, SDX65_SLAVE_SNOC_CFG, SDX65_SLAVE_SPMI_FETCHER, SDX65_SLAVE_TCSR, SDX65_SLAVE_TLMM, SDX65_SLAVE_USB3, SDX65_SLAVE_USB3_PHY_CFG, SDX65_SLAVE_SNOC_MEM_NOC_GC, SDX65_SLAVE_IMEM, SDX65_SLAVE_PCIE_0, SDX65_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_memnoc = { .name = "qnm_memnoc", .id = SDX65_MASTER_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 27, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_APPSS, SDX65_SLAVE_AUDIO, SDX65_SLAVE_BLSP_1, SDX65_SLAVE_CLK_CTL, SDX65_SLAVE_CRYPTO_0_CFG, SDX65_SLAVE_CNOC_DDRSS, SDX65_SLAVE_ECC_CFG, SDX65_SLAVE_IMEM_CFG, SDX65_SLAVE_IPA_CFG, SDX65_SLAVE_CNOC_MSS, SDX65_SLAVE_PCIE_PARF, SDX65_SLAVE_PDM, SDX65_SLAVE_PRNG, SDX65_SLAVE_QDSS_CFG, SDX65_SLAVE_QPIC, SDX65_SLAVE_SDCC_1, SDX65_SLAVE_SNOC_CFG, SDX65_SLAVE_SPMI_FETCHER, SDX65_SLAVE_SPMI_VGI_COEX, SDX65_SLAVE_TCSR, SDX65_SLAVE_TLMM, SDX65_SLAVE_USB3, SDX65_SLAVE_USB3_PHY_CFG, SDX65_SLAVE_IMEM, SDX65_SLAVE_QDSS_STM, SDX65_SLAVE_TCU }, }; static struct qcom_icc_node qnm_memnoc_pcie = { .name = "qnm_memnoc_pcie", .id = SDX65_MASTER_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX65_SLAVE_PCIE_0 }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SDX65_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node xm_ipa2pcie_slv = { .name = "xm_ipa2pcie_slv", .id = SDX65_MASTER_IPA_PCIE, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX65_SLAVE_PCIE_0 }, }; static struct qcom_icc_node xm_pcie = { .name = "xm_pcie", .id = SDX65_MASTER_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SDX65_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 26, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_AUDIO, SDX65_SLAVE_BLSP_1, SDX65_SLAVE_CLK_CTL, SDX65_SLAVE_CRYPTO_0_CFG, SDX65_SLAVE_CNOC_DDRSS, SDX65_SLAVE_ECC_CFG, SDX65_SLAVE_IMEM_CFG, SDX65_SLAVE_IPA_CFG, SDX65_SLAVE_CNOC_MSS, SDX65_SLAVE_PCIE_PARF, SDX65_SLAVE_PDM, SDX65_SLAVE_PRNG, SDX65_SLAVE_QDSS_CFG, SDX65_SLAVE_QPIC, SDX65_SLAVE_SDCC_1, SDX65_SLAVE_SNOC_CFG, SDX65_SLAVE_SPMI_FETCHER, SDX65_SLAVE_SPMI_VGI_COEX, SDX65_SLAVE_TCSR, SDX65_SLAVE_TLMM, SDX65_SLAVE_USB3, SDX65_SLAVE_USB3_PHY_CFG, SDX65_SLAVE_SNOC_MEM_NOC_GC, SDX65_SLAVE_IMEM, SDX65_SLAVE_TCU }, }; static struct qcom_icc_node xm_sdc1 = { .name = "xm_sdc1", .id = SDX65_MASTER_SDCC_1, .channels = 1, .buswidth = 8, .num_links = 4, .links = { SDX65_SLAVE_AOSS, SDX65_SLAVE_AUDIO, SDX65_SLAVE_IPA_CFG, SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node xm_usb3 = { .name = "xm_usb3", .id = SDX65_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX65_SLAVE_ANOC_SNOC }, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SDX65_SLAVE_EBI1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SDX65_SLAVE_LLCC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDX65_MASTER_LLCC }, }; static struct qcom_icc_node qns_memnoc_snoc = { .name = "qns_memnoc_snoc", .id = SDX65_SLAVE_MEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX65_MASTER_MEM_NOC_SNOC }, }; static struct qcom_icc_node qns_sys_pcie = { .name = "qns_sys_pcie", .id = SDX65_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX65_MASTER_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SDX65_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SDX65_SLAVE_APPSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_audio = { .name = "qhs_audio", .id = SDX65_SLAVE_AUDIO, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_blsp1 = { .name = "qhs_blsp1", .id = SDX65_SLAVE_BLSP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SDX65_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SDX65_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SDX65_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ecc_cfg = { .name = "qhs_ecc_cfg", .id = SDX65_SLAVE_ECC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SDX65_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SDX65_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SDX65_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_parf = { .name = "qhs_pcie_parf", .id = SDX65_SLAVE_PCIE_PARF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SDX65_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SDX65_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SDX65_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qpic = { .name = "qhs_qpic", .id = SDX65_SLAVE_QPIC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc1 = { .name = "qhs_sdc1", .id = SDX65_SLAVE_SDCC_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SDX65_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SDX65_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_spmi_fetcher = { .name = "qhs_spmi_fetcher", .id = SDX65_SLAVE_SPMI_FETCHER, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_spmi_vgi_coex = { .name = "qhs_spmi_vgi_coex", .id = SDX65_SLAVE_SPMI_VGI_COEX, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SDX65_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SDX65_SLAVE_TLMM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3 = { .name = "qhs_usb3", .id = SDX65_SLAVE_USB3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_phy = { .name = "qhs_usb3_phy", .id = SDX65_SLAVE_USB3_PHY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_aggre_noc = { .name = "qns_aggre_noc", .id = SDX65_SLAVE_ANOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SDX65_MASTER_ANOC_SNOC }, }; static struct qcom_icc_node qns_snoc_memnoc = { .name = "qns_snoc_memnoc", .id = SDX65_SLAVE_SNOC_MEM_NOC_GC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SDX65_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SDX65_SLAVE_IMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SDX65_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_pcie = { .name = "xs_pcie", .id = SDX65_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SDX65_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SDX65_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_pn0 = { .name = "PN0", .keepalive = true, .num_nodes = 26, .nodes = { &qhm_snoc_cfg, &qhs_aoss, &qhs_apss, &qhs_audio, &qhs_blsp1, &qhs_clk_ctl, &qhs_crypto0_cfg, &qhs_ddrss_cfg, &qhs_ecc_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_mss_cfg, &qhs_pcie_parf, &qhs_pdm, &qhs_prng, &qhs_qdss_cfg, &qhs_qpic, &qhs_sdc1, &qhs_snoc_cfg, &qhs_spmi_fetcher, &qhs_spmi_vgi_coex, &qhs_tcsr, &qhs_tlmm, &qhs_usb3, &qhs_usb3_phy, &srvc_snoc }, }; static struct qcom_icc_bcm bcm_pn1 = { .name = "PN1", .keepalive = false, .num_nodes = 1, .nodes = { &xm_sdc1 }, }; static struct qcom_icc_bcm bcm_pn2 = { .name = "PN2", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_audio, &qhm_spmi_fetcher1 }, }; static struct qcom_icc_bcm bcm_pn3 = { .name = "PN3", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_blsp1, &qhm_qpic }, }; static struct qcom_icc_bcm bcm_pn4 = { .name = "PN4", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh1 = { .name = "SH1", .keepalive = false, .num_nodes = 1, .nodes = { &qns_memnoc_snoc }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &xm_apps_rdwr }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_snoc_memnoc }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &xs_sys_tcu_cfg }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .keepalive = false, .num_nodes = 1, .nodes = { &xs_pcie }, }; static struct qcom_icc_bcm bcm_sn6 = { .name = "SN6", .keepalive = false, .num_nodes = 2, .nodes = { &qhm_qdss_bam, &xm_qdss_etr }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .keepalive = false, .num_nodes = 4, .nodes = { &qnm_aggre_noc, &xm_pcie, &xm_usb3, &qns_aggre_noc }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_memnoc }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_memnoc_pcie }, }; static struct qcom_icc_bcm bcm_sn10 = { .name = "SN10", .keepalive = false, .num_nodes = 2, .nodes = { &qnm_ipa, &xm_ipa2pcie_slv }, }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, }; static const struct qcom_icc_desc sdx65_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mem_noc_bcms[] = { &bcm_sh0, &bcm_sh1, &bcm_sh3, }; static struct qcom_icc_node * const mem_noc_nodes[] = { [MASTER_TCU_0] = &acm_tcu, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_APPSS_PROC] = &xm_apps_rdwr, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_SNOC] = &qns_memnoc_snoc, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_sys_pcie, }; static const struct qcom_icc_desc sdx65_mem_noc = { .nodes = mem_noc_nodes, .num_nodes = ARRAY_SIZE(mem_noc_nodes), .bcms = mem_noc_bcms, .num_bcms = ARRAY_SIZE(mem_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_ce0, &bcm_pn0, &bcm_pn1, &bcm_pn2, &bcm_pn3, &bcm_pn4, &bcm_sn0, &bcm_sn1, &bcm_sn2, &bcm_sn3, &bcm_sn5, &bcm_sn6, &bcm_sn7, &bcm_sn8, &bcm_sn9, &bcm_sn10, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_AUDIO] = &qhm_audio, [MASTER_BLSP_1] = &qhm_blsp1, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QPIC] = &qhm_qpic, [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [MASTER_SPMI_FETCHER] = &qhm_spmi_fetcher1, [MASTER_ANOC_SNOC] = &qnm_aggre_noc, [MASTER_IPA] = &qnm_ipa, [MASTER_MEM_NOC_SNOC] = &qnm_memnoc, [MASTER_MEM_NOC_PCIE_SNOC] = &qnm_memnoc_pcie, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_IPA_PCIE] = &xm_ipa2pcie_slv, [MASTER_PCIE_0] = &xm_pcie, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_SDCC_1] = &xm_sdc1, [MASTER_USB3] = &xm_usb3, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_APPSS] = &qhs_apss, [SLAVE_AUDIO] = &qhs_audio, [SLAVE_BLSP_1] = &qhs_blsp1, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_ECC_CFG] = &qhs_ecc_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_PCIE_PARF] = &qhs_pcie_parf, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QPIC] = &qhs_qpic, [SLAVE_SDCC_1] = &qhs_sdc1, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_SPMI_FETCHER] = &qhs_spmi_fetcher, [SLAVE_SPMI_VGI_COEX] = &qhs_spmi_vgi_coex, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_USB3] = &qhs_usb3, [SLAVE_USB3_PHY_CFG] = &qhs_usb3_phy, [SLAVE_ANOC_SNOC] = &qns_aggre_noc, [SLAVE_SNOC_MEM_NOC_GC] = &qns_snoc_memnoc, [SLAVE_IMEM] = &qxs_imem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_PCIE_0] = &xs_pcie, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sdx65_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sdx65-mc-virt", .data = &sdx65_mc_virt}, { .compatible = "qcom,sdx65-mem-noc", .data = &sdx65_mem_noc}, { .compatible = "qcom,sdx65-system-noc", .data = &sdx65_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sdx65", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm SDX65 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sdx65.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved. * */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,qdu1000-rpmh.h> #include "bcm-voter.h" #include "icc-common.h" #include "icc-rpmh.h" #include "qdu1000.h" static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = QDU1000_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = QDU1000_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = QDU1000_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { QDU1000_SLAVE_GEM_NOC_CNOC, QDU1000_SLAVE_LLCC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = QDU1000_MASTER_APPSS_PROC, .channels = 1, .buswidth = 16, .num_links = 4, .links = { QDU1000_SLAVE_GEM_NOC_CNOC, QDU1000_SLAVE_LLCC, QDU1000_SLAVE_GEMNOC_MODEM_CNOC, QDU1000_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_ecpri_dma = { .name = "qnm_ecpri_dma", .id = QDU1000_MASTER_GEMNOC_ECPRI_DMA, .channels = 2, .buswidth = 32, .num_links = 2, .links = { QDU1000_SLAVE_GEM_NOC_CNOC, QDU1000_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_fec_2_gemnoc = { .name = "qnm_fec_2_gemnoc", .id = QDU1000_MASTER_FEC_2_GEMNOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { QDU1000_SLAVE_GEM_NOC_CNOC, QDU1000_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = QDU1000_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 64, .num_links = 3, .links = { QDU1000_SLAVE_GEM_NOC_CNOC, QDU1000_SLAVE_LLCC, QDU1000_SLAVE_GEMNOC_MODEM_CNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = QDU1000_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = QDU1000_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 4, .links = { QDU1000_SLAVE_GEM_NOC_CNOC, QDU1000_SLAVE_LLCC, QDU1000_SLAVE_GEMNOC_MODEM_CNOC, QDU1000_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qxm_mdsp = { .name = "qxm_mdsp", .id = QDU1000_MASTER_MSS_PROC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { QDU1000_SLAVE_GEM_NOC_CNOC, QDU1000_SLAVE_LLCC, QDU1000_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = QDU1000_MASTER_LLCC, .channels = 8, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_EBI1 }, }; static struct qcom_icc_node qhm_gic = { .name = "qhm_gic", .id = QDU1000_MASTER_GIC_AHB, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = QDU1000_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qhm_qpic = { .name = "qhm_qpic", .id = QDU1000_MASTER_QPIC, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = QDU1000_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = QDU1000_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = QDU1000_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_system_noc_cfg = { .name = "qhm_system_noc_cfg", .id = QDU1000_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qnm_aggre_noc = { .name = "qnm_aggre_noc", .id = QDU1000_MASTER_ANOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre_noc_gsi = { .name = "qnm_aggre_noc_gsi", .id = QDU1000_MASTER_ANOC_GSI, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qnm_gemnoc_cnoc = { .name = "qnm_gemnoc_cnoc", .id = QDU1000_MASTER_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 36, .links = { QDU1000_SLAVE_AHB2PHY_SOUTH, QDU1000_SLAVE_AHB2PHY_NORTH, QDU1000_SLAVE_AHB2PHY_EAST, QDU1000_SLAVE_AOSS, QDU1000_SLAVE_CLK_CTL, QDU1000_SLAVE_RBCPR_CX_CFG, QDU1000_SLAVE_RBCPR_MX_CFG, QDU1000_SLAVE_CRYPTO_0_CFG, QDU1000_SLAVE_ECPRI_CFG, QDU1000_SLAVE_IMEM_CFG, QDU1000_SLAVE_IPC_ROUTER_CFG, QDU1000_SLAVE_CNOC_MSS, QDU1000_SLAVE_PCIE_CFG, QDU1000_SLAVE_PDM, QDU1000_SLAVE_PIMEM_CFG, QDU1000_SLAVE_PRNG, QDU1000_SLAVE_QDSS_CFG, QDU1000_SLAVE_QPIC, QDU1000_SLAVE_QSPI_0, QDU1000_SLAVE_QUP_0, QDU1000_SLAVE_QUP_1, QDU1000_SLAVE_SDCC_2, QDU1000_SLAVE_SMBUS_CFG, QDU1000_SLAVE_SNOC_CFG, QDU1000_SLAVE_TCSR, QDU1000_SLAVE_TLMM, QDU1000_SLAVE_TME_CFG, QDU1000_SLAVE_TSC_CFG, QDU1000_SLAVE_USB3_0, QDU1000_SLAVE_VSENSE_CTRL_CFG, QDU1000_SLAVE_DDRSS_CFG, QDU1000_SLAVE_IMEM, QDU1000_SLAVE_PIMEM, QDU1000_SLAVE_ETHERNET_SS, QDU1000_SLAVE_QDSS_STM, QDU1000_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_modem_slave = { .name = "qnm_gemnoc_modem_slave", .id = QDU1000_MASTER_GEMNOC_MODEM_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { QDU1000_SLAVE_MODEM_OFFLINE }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = QDU1000_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { QDU1000_SLAVE_PCIE_0 }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = QDU1000_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qxm_ecpri_gsi = { .name = "qxm_ecpri_gsi", .id = QDU1000_MASTER_ECPRI_GSI, .channels = 1, .buswidth = 8, .num_links = 2, .links = { QDU1000_SLAVE_ANOC_SNOC_GSI, QDU1000_SLAVE_PCIE_0 }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = QDU1000_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_ecpri_dma = { .name = "xm_ecpri_dma", .id = QDU1000_MASTER_SNOC_ECPRI_DMA, .channels = 2, .buswidth = 32, .num_links = 2, .links = { QDU1000_SLAVE_ECPRI_GEMNOC, QDU1000_SLAVE_PCIE_0 }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = QDU1000_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_pcie = { .name = "xm_pcie", .id = QDU1000_MASTER_PCIE, .channels = 1, .buswidth = 64, .num_links = 1, .links = { QDU1000_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_qdss_etr0 = { .name = "xm_qdss_etr0", .id = QDU1000_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node xm_qdss_etr1 = { .name = "xm_qdss_etr1", .id = QDU1000_MASTER_QDSS_ETR_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node xm_sdc = { .name = "xm_sdc", .id = QDU1000_MASTER_SDCC_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3 = { .name = "xm_usb3", .id = QDU1000_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = QDU1000_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = QDU1000_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_gem_noc_cnoc = { .name = "qns_gem_noc_cnoc", .id = QDU1000_SLAVE_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { QDU1000_MASTER_GEM_NOC_CNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = QDU1000_SLAVE_LLCC, .channels = 8, .buswidth = 16, .num_links = 1, .links = { QDU1000_MASTER_LLCC }, }; static struct qcom_icc_node qns_modem_slave = { .name = "qns_modem_slave", .id = QDU1000_SLAVE_GEMNOC_MODEM_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { QDU1000_MASTER_GEMNOC_MODEM_CNOC }, }; static struct qcom_icc_node qns_pcie = { .name = "qns_pcie", .id = QDU1000_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { QDU1000_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = QDU1000_SLAVE_EBI1, .channels = 8, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy0_south = { .name = "qhs_ahb2phy0_south", .id = QDU1000_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy1_north = { .name = "qhs_ahb2phy1_north", .id = QDU1000_SLAVE_AHB2PHY_NORTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy2_east = { .name = "qhs_ahb2phy2_east", .id = QDU1000_SLAVE_AHB2PHY_EAST, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = QDU1000_SLAVE_AOSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = QDU1000_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = QDU1000_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = QDU1000_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_crypto_cfg = { .name = "qhs_crypto_cfg", .id = QDU1000_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ecpri_cfg = { .name = "qhs_ecpri_cfg", .id = QDU1000_SLAVE_ECPRI_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = QDU1000_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = QDU1000_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = QDU1000_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pcie_cfg = { .name = "qhs_pcie_cfg", .id = QDU1000_SLAVE_PCIE_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = QDU1000_SLAVE_PDM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = QDU1000_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = QDU1000_SLAVE_PRNG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = QDU1000_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qpic = { .name = "qhs_qpic", .id = QDU1000_SLAVE_QPIC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = QDU1000_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = QDU1000_SLAVE_QUP_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = QDU1000_SLAVE_QUP_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = QDU1000_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_smbus_cfg = { .name = "qhs_smbus_cfg", .id = QDU1000_SLAVE_SMBUS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_system_noc_cfg = { .name = "qhs_system_noc_cfg", .id = QDU1000_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { QDU1000_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = QDU1000_SLAVE_TCSR, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = QDU1000_SLAVE_TLMM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tme_cfg = { .name = "qhs_tme_cfg", .id = QDU1000_SLAVE_TME_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tsc_cfg = { .name = "qhs_tsc_cfg", .id = QDU1000_SLAVE_TSC_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_usb3 = { .name = "qhs_usb3", .id = QDU1000_SLAVE_USB3_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = QDU1000_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = QDU1000_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_MASTER_ANOC_SNOC }, }; static struct qcom_icc_node qns_anoc_snoc_gsi = { .name = "qns_anoc_snoc_gsi", .id = QDU1000_SLAVE_ANOC_SNOC_GSI, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_MASTER_ANOC_GSI }, }; static struct qcom_icc_node qns_ddrss_cfg = { .name = "qns_ddrss_cfg", .id = QDU1000_SLAVE_DDRSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_ecpri_gemnoc = { .name = "qns_ecpri_gemnoc", .id = QDU1000_SLAVE_ECPRI_GEMNOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { QDU1000_MASTER_GEMNOC_ECPRI_DMA }, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = QDU1000_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { QDU1000_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = QDU1000_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { QDU1000_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qns_modem = { .name = "qns_modem", .id = QDU1000_SLAVE_MODEM_OFFLINE, .channels = 1, .buswidth = 32, .num_links = 0, }; static struct qcom_icc_node qns_pcie_gemnoc = { .name = "qns_pcie_gemnoc", .id = QDU1000_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 64, .num_links = 1, .links = { QDU1000_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = QDU1000_SLAVE_IMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = QDU1000_SLAVE_PIMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node srvc_system_noc = { .name = "srvc_system_noc", .id = QDU1000_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node xs_ethernet_ss = { .name = "xs_ethernet_ss", .id = QDU1000_SLAVE_ETHERNET_SS, .channels = 1, .buswidth = 32, .num_links = 0, }; static struct qcom_icc_node xs_pcie = { .name = "xs_pcie", .id = QDU1000_SLAVE_PCIE_0, .channels = 1, .buswidth = 64, .num_links = 0, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = QDU1000_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = QDU1000_SLAVE_TCU, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .num_nodes = 44, .nodes = { &qhm_qpic, &qhm_qspi, &qnm_gemnoc_cnoc, &qnm_gemnoc_modem_slave, &qnm_gemnoc_pcie, &xm_sdc, &xm_usb3, &qhs_ahb2phy0_south, &qhs_ahb2phy1_north, &qhs_ahb2phy2_east, &qhs_aoss, &qhs_clk_ctl, &qhs_cpr_cx, &qhs_cpr_mx, &qhs_crypto_cfg, &qhs_ecpri_cfg, &qhs_imem_cfg, &qhs_ipc_router, &qhs_mss_cfg, &qhs_pcie_cfg, &qhs_pdm, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qpic, &qhs_qspi, &qhs_qup0, &qhs_qup1, &qhs_sdc2, &qhs_smbus_cfg, &qhs_system_noc_cfg, &qhs_tcsr, &qhs_tlmm, &qhs_tme_cfg, &qhs_tsc_cfg, &qhs_usb3, &qhs_vsense_ctrl_cfg, &qns_ddrss_cfg, &qns_modem, &qxs_imem, &qxs_pimem, &xs_ethernet_ss, &xs_qdss_stm, &xs_sys_tcu_cfg }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .num_nodes = 2, .nodes = { &qup0_core_slave, &qup1_core_slave }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh1 = { .name = "SH1", .num_nodes = 11, .nodes = { &alm_sys_tcu, &chm_apps, &qnm_ecpri_dma, &qnm_fec_2_gemnoc, &qnm_pcie, &qnm_snoc_gc, &qnm_snoc_sf, &qxm_mdsp, &qns_gem_noc_cnoc, &qns_modem_slave, &qns_pcie }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .num_nodes = 6, .nodes = { &qhm_gic, &qxm_pimem, &xm_gic, &xm_qdss_etr0, &xm_qdss_etr1, &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .num_nodes = 5, .nodes = { &qnm_aggre_noc, &qxm_ecpri_gsi, &xm_ecpri_dma, &qns_anoc_snoc_gsi, &qns_ecpri_gemnoc }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .num_nodes = 2, .nodes = { &qns_pcie_gemnoc, &xs_pcie }, }; static struct qcom_icc_bcm * const clk_virt_bcms[] = { &bcm_qup0, }; static struct qcom_icc_node * const clk_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, }; static const struct qcom_icc_desc qdu1000_clk_virt = { .nodes = clk_virt_nodes, .num_nodes = ARRAY_SIZE(clk_virt_nodes), .bcms = clk_virt_bcms, .num_bcms = ARRAY_SIZE(clk_virt_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh1, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_APPSS_PROC] = &chm_apps, [MASTER_GEMNOC_ECPRI_DMA] = &qnm_ecpri_dma, [MASTER_FEC_2_GEMNOC] = &qnm_fec_2_gemnoc, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [MASTER_MSS_PROC] = &qxm_mdsp, [SLAVE_GEM_NOC_CNOC] = &qns_gem_noc_cnoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_GEMNOC_MODEM_CNOC] = &qns_modem_slave, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_pcie, }; static const struct qcom_icc_desc qdu1000_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, }; static const struct qcom_icc_desc qdu1000_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_ce0, &bcm_cn0, &bcm_sn0, &bcm_sn1, &bcm_sn2, &bcm_sn7, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_GIC_AHB] = &qhm_gic, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QPIC] = &qhm_qpic, [MASTER_QSPI_0] = &qhm_qspi, [MASTER_QUP_0] = &qhm_qup0, [MASTER_QUP_1] = &qhm_qup1, [MASTER_SNOC_CFG] = &qhm_system_noc_cfg, [MASTER_ANOC_SNOC] = &qnm_aggre_noc, [MASTER_ANOC_GSI] = &qnm_aggre_noc_gsi, [MASTER_GEM_NOC_CNOC] = &qnm_gemnoc_cnoc, [MASTER_GEMNOC_MODEM_CNOC] = &qnm_gemnoc_modem_slave, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_ECPRI_GSI] = &qxm_ecpri_gsi, [MASTER_PIMEM] = &qxm_pimem, [MASTER_SNOC_ECPRI_DMA] = &xm_ecpri_dma, [MASTER_GIC] = &xm_gic, [MASTER_PCIE] = &xm_pcie, [MASTER_QDSS_ETR] = &xm_qdss_etr0, [MASTER_QDSS_ETR_1] = &xm_qdss_etr1, [MASTER_SDCC_1] = &xm_sdc, [MASTER_USB3] = &xm_usb3, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy0_south, [SLAVE_AHB2PHY_NORTH] = &qhs_ahb2phy1_north, [SLAVE_AHB2PHY_EAST] = &qhs_ahb2phy2_east, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto_cfg, [SLAVE_ECPRI_CFG] = &qhs_ecpri_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_PCIE_CFG] = &qhs_pcie_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QPIC] = &qhs_qpic, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SMBUS_CFG] = &qhs_smbus_cfg, [SLAVE_SNOC_CFG] = &qhs_system_noc_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_TME_CFG] = &qhs_tme_cfg, [SLAVE_TSC_CFG] = &qhs_tsc_cfg, [SLAVE_USB3_0] = &qhs_usb3, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_ANOC_SNOC_GSI] = &qns_anoc_snoc_gsi, [SLAVE_DDRSS_CFG] = &qns_ddrss_cfg, [SLAVE_ECPRI_GEMNOC] = &qns_ecpri_gemnoc, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_MODEM_OFFLINE] = &qns_modem, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_gemnoc, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_SNOC] = &srvc_system_noc, [SLAVE_ETHERNET_SS] = &xs_ethernet_ss, [SLAVE_PCIE_0] = &xs_pcie, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc qdu1000_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static int qnoc_probe(struct platform_device *pdev) { int ret; ret = qcom_icc_rpmh_probe(pdev); if (ret) dev_err(&pdev->dev, "failed to register ICC provider\n"); return ret; } static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,qdu1000-clk-virt", .data = &qdu1000_clk_virt }, { .compatible = "qcom,qdu1000-gem-noc", .data = &qdu1000_gem_noc }, { .compatible = "qcom,qdu1000-mc-virt", .data = &qdu1000_mc_virt }, { .compatible = "qcom,qdu1000-system-noc", .data = &qdu1000_system_noc }, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qnoc_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-qdu1000", .of_match_table = qnoc_of_match, }, }; static int __init qnoc_driver_init(void) { return platform_driver_register(&qnoc_driver); } core_initcall(qnoc_driver_init); static void __exit qnoc_driver_exit(void) { platform_driver_unregister(&qnoc_driver); } module_exit(qnoc_driver_exit); MODULE_DESCRIPTION("QDU1000 NoC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/interconnect/qcom/qdu1000.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Linaro Ltd */ #include <dt-bindings/interconnect/qcom,qcs404.h> #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include "icc-rpm.h" enum { QCS404_MASTER_AMPSS_M0 = 1, QCS404_MASTER_GRAPHICS_3D, QCS404_MASTER_MDP_PORT0, QCS404_SNOC_BIMC_1_MAS, QCS404_MASTER_TCU_0, QCS404_MASTER_SPDM, QCS404_MASTER_BLSP_1, QCS404_MASTER_BLSP_2, QCS404_MASTER_XM_USB_HS1, QCS404_MASTER_CRYPTO_CORE0, QCS404_MASTER_SDCC_1, QCS404_MASTER_SDCC_2, QCS404_SNOC_PNOC_MAS, QCS404_MASTER_QPIC, QCS404_MASTER_QDSS_BAM, QCS404_BIMC_SNOC_MAS, QCS404_PNOC_SNOC_MAS, QCS404_MASTER_QDSS_ETR, QCS404_MASTER_EMAC, QCS404_MASTER_PCIE, QCS404_MASTER_USB3, QCS404_PNOC_INT_0, QCS404_PNOC_INT_2, QCS404_PNOC_INT_3, QCS404_PNOC_SLV_0, QCS404_PNOC_SLV_1, QCS404_PNOC_SLV_2, QCS404_PNOC_SLV_3, QCS404_PNOC_SLV_4, QCS404_PNOC_SLV_6, QCS404_PNOC_SLV_7, QCS404_PNOC_SLV_8, QCS404_PNOC_SLV_9, QCS404_PNOC_SLV_10, QCS404_PNOC_SLV_11, QCS404_SNOC_QDSS_INT, QCS404_SNOC_INT_0, QCS404_SNOC_INT_1, QCS404_SNOC_INT_2, QCS404_SLAVE_EBI_CH0, QCS404_BIMC_SNOC_SLV, QCS404_SLAVE_SPDM_WRAPPER, QCS404_SLAVE_PDM, QCS404_SLAVE_PRNG, QCS404_SLAVE_TCSR, QCS404_SLAVE_SNOC_CFG, QCS404_SLAVE_MESSAGE_RAM, QCS404_SLAVE_DISPLAY_CFG, QCS404_SLAVE_GRAPHICS_3D_CFG, QCS404_SLAVE_BLSP_1, QCS404_SLAVE_TLMM_NORTH, QCS404_SLAVE_PCIE_1, QCS404_SLAVE_EMAC_CFG, QCS404_SLAVE_BLSP_2, QCS404_SLAVE_TLMM_EAST, QCS404_SLAVE_TCU, QCS404_SLAVE_PMIC_ARB, QCS404_SLAVE_SDCC_1, QCS404_SLAVE_SDCC_2, QCS404_SLAVE_TLMM_SOUTH, QCS404_SLAVE_USB_HS, QCS404_SLAVE_USB3, QCS404_SLAVE_CRYPTO_0_CFG, QCS404_PNOC_SNOC_SLV, QCS404_SLAVE_APPSS, QCS404_SLAVE_WCSS, QCS404_SNOC_BIMC_1_SLV, QCS404_SLAVE_OCIMEM, QCS404_SNOC_PNOC_SLV, QCS404_SLAVE_QDSS_STM, QCS404_SLAVE_CATS_128, QCS404_SLAVE_OCMEM_64, QCS404_SLAVE_LPASS, }; static const u16 mas_apps_proc_links[] = { QCS404_SLAVE_EBI_CH0, QCS404_BIMC_SNOC_SLV }; static struct qcom_icc_node mas_apps_proc = { .name = "mas_apps_proc", .id = QCS404_MASTER_AMPSS_M0, .buswidth = 8, .mas_rpm_id = 0, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_apps_proc_links), .links = mas_apps_proc_links, }; static const u16 mas_oxili_links[] = { QCS404_SLAVE_EBI_CH0, QCS404_BIMC_SNOC_SLV }; static struct qcom_icc_node mas_oxili = { .name = "mas_oxili", .id = QCS404_MASTER_GRAPHICS_3D, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_oxili_links), .links = mas_oxili_links, }; static const u16 mas_mdp_links[] = { QCS404_SLAVE_EBI_CH0, QCS404_BIMC_SNOC_SLV }; static struct qcom_icc_node mas_mdp = { .name = "mas_mdp", .id = QCS404_MASTER_MDP_PORT0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_mdp_links), .links = mas_mdp_links, }; static const u16 mas_snoc_bimc_1_links[] = { QCS404_SLAVE_EBI_CH0 }; static struct qcom_icc_node mas_snoc_bimc_1 = { .name = "mas_snoc_bimc_1", .id = QCS404_SNOC_BIMC_1_MAS, .buswidth = 8, .mas_rpm_id = 76, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_bimc_1_links), .links = mas_snoc_bimc_1_links, }; static const u16 mas_tcu_0_links[] = { QCS404_SLAVE_EBI_CH0, QCS404_BIMC_SNOC_SLV }; static struct qcom_icc_node mas_tcu_0 = { .name = "mas_tcu_0", .id = QCS404_MASTER_TCU_0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_tcu_0_links), .links = mas_tcu_0_links, }; static const u16 mas_spdm_links[] = { QCS404_PNOC_INT_3 }; static struct qcom_icc_node mas_spdm = { .name = "mas_spdm", .id = QCS404_MASTER_SPDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_spdm_links), .links = mas_spdm_links, }; static const u16 mas_blsp_1_links[] = { QCS404_PNOC_INT_3 }; static struct qcom_icc_node mas_blsp_1 = { .name = "mas_blsp_1", .id = QCS404_MASTER_BLSP_1, .buswidth = 4, .mas_rpm_id = 41, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_blsp_1_links), .links = mas_blsp_1_links, }; static const u16 mas_blsp_2_links[] = { QCS404_PNOC_INT_3 }; static struct qcom_icc_node mas_blsp_2 = { .name = "mas_blsp_2", .id = QCS404_MASTER_BLSP_2, .buswidth = 4, .mas_rpm_id = 39, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_blsp_2_links), .links = mas_blsp_2_links, }; static const u16 mas_xi_usb_hs1_links[] = { QCS404_PNOC_INT_0 }; static struct qcom_icc_node mas_xi_usb_hs1 = { .name = "mas_xi_usb_hs1", .id = QCS404_MASTER_XM_USB_HS1, .buswidth = 8, .mas_rpm_id = 138, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_xi_usb_hs1_links), .links = mas_xi_usb_hs1_links, }; static const u16 mas_crypto_links[] = { QCS404_PNOC_SNOC_SLV, QCS404_PNOC_INT_2 }; static struct qcom_icc_node mas_crypto = { .name = "mas_crypto", .id = QCS404_MASTER_CRYPTO_CORE0, .buswidth = 8, .mas_rpm_id = 23, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_crypto_links), .links = mas_crypto_links, }; static const u16 mas_sdcc_1_links[] = { QCS404_PNOC_INT_0 }; static struct qcom_icc_node mas_sdcc_1 = { .name = "mas_sdcc_1", .id = QCS404_MASTER_SDCC_1, .buswidth = 8, .mas_rpm_id = 33, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_sdcc_1_links), .links = mas_sdcc_1_links, }; static const u16 mas_sdcc_2_links[] = { QCS404_PNOC_INT_0 }; static struct qcom_icc_node mas_sdcc_2 = { .name = "mas_sdcc_2", .id = QCS404_MASTER_SDCC_2, .buswidth = 8, .mas_rpm_id = 35, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_sdcc_2_links), .links = mas_sdcc_2_links, }; static const u16 mas_snoc_pcnoc_links[] = { QCS404_PNOC_INT_2 }; static struct qcom_icc_node mas_snoc_pcnoc = { .name = "mas_snoc_pcnoc", .id = QCS404_SNOC_PNOC_MAS, .buswidth = 8, .mas_rpm_id = 77, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_pcnoc_links), .links = mas_snoc_pcnoc_links, }; static const u16 mas_qpic_links[] = { QCS404_PNOC_INT_0 }; static struct qcom_icc_node mas_qpic = { .name = "mas_qpic", .id = QCS404_MASTER_QPIC, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qpic_links), .links = mas_qpic_links, }; static const u16 mas_qdss_bam_links[] = { QCS404_SNOC_QDSS_INT }; static struct qcom_icc_node mas_qdss_bam = { .name = "mas_qdss_bam", .id = QCS404_MASTER_QDSS_BAM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qdss_bam_links), .links = mas_qdss_bam_links, }; static const u16 mas_bimc_snoc_links[] = { QCS404_SLAVE_OCMEM_64, QCS404_SLAVE_CATS_128, QCS404_SNOC_INT_0, QCS404_SNOC_INT_1 }; static struct qcom_icc_node mas_bimc_snoc = { .name = "mas_bimc_snoc", .id = QCS404_BIMC_SNOC_MAS, .buswidth = 8, .mas_rpm_id = 21, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_bimc_snoc_links), .links = mas_bimc_snoc_links, }; static const u16 mas_pcnoc_snoc_links[] = { QCS404_SNOC_BIMC_1_SLV, QCS404_SNOC_INT_2, QCS404_SNOC_INT_0 }; static struct qcom_icc_node mas_pcnoc_snoc = { .name = "mas_pcnoc_snoc", .id = QCS404_PNOC_SNOC_MAS, .buswidth = 8, .mas_rpm_id = 29, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcnoc_snoc_links), .links = mas_pcnoc_snoc_links, }; static const u16 mas_qdss_etr_links[] = { QCS404_SNOC_QDSS_INT }; static struct qcom_icc_node mas_qdss_etr = { .name = "mas_qdss_etr", .id = QCS404_MASTER_QDSS_ETR, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_qdss_etr_links), .links = mas_qdss_etr_links, }; static const u16 mas_emac_links[] = { QCS404_SNOC_BIMC_1_SLV, QCS404_SNOC_INT_1 }; static struct qcom_icc_node mas_emac = { .name = "mas_emac", .id = QCS404_MASTER_EMAC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_emac_links), .links = mas_emac_links, }; static const u16 mas_pcie_links[] = { QCS404_SNOC_BIMC_1_SLV, QCS404_SNOC_INT_1 }; static struct qcom_icc_node mas_pcie = { .name = "mas_pcie", .id = QCS404_MASTER_PCIE, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcie_links), .links = mas_pcie_links, }; static const u16 mas_usb3_links[] = { QCS404_SNOC_BIMC_1_SLV, QCS404_SNOC_INT_1 }; static struct qcom_icc_node mas_usb3 = { .name = "mas_usb3", .id = QCS404_MASTER_USB3, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_usb3_links), .links = mas_usb3_links, }; static const u16 pcnoc_int_0_links[] = { QCS404_PNOC_SNOC_SLV, QCS404_PNOC_INT_2 }; static struct qcom_icc_node pcnoc_int_0 = { .name = "pcnoc_int_0", .id = QCS404_PNOC_INT_0, .buswidth = 8, .mas_rpm_id = 85, .slv_rpm_id = 114, .num_links = ARRAY_SIZE(pcnoc_int_0_links), .links = pcnoc_int_0_links, }; static const u16 pcnoc_int_2_links[] = { QCS404_PNOC_SLV_10, QCS404_SLAVE_TCU, QCS404_PNOC_SLV_11, QCS404_PNOC_SLV_2, QCS404_PNOC_SLV_3, QCS404_PNOC_SLV_0, QCS404_PNOC_SLV_1, QCS404_PNOC_SLV_6, QCS404_PNOC_SLV_7, QCS404_PNOC_SLV_4, QCS404_PNOC_SLV_8, QCS404_PNOC_SLV_9 }; static struct qcom_icc_node pcnoc_int_2 = { .name = "pcnoc_int_2", .id = QCS404_PNOC_INT_2, .buswidth = 8, .mas_rpm_id = 124, .slv_rpm_id = 184, .num_links = ARRAY_SIZE(pcnoc_int_2_links), .links = pcnoc_int_2_links, }; static const u16 pcnoc_int_3_links[] = { QCS404_PNOC_SNOC_SLV }; static struct qcom_icc_node pcnoc_int_3 = { .name = "pcnoc_int_3", .id = QCS404_PNOC_INT_3, .buswidth = 8, .mas_rpm_id = 125, .slv_rpm_id = 185, .num_links = ARRAY_SIZE(pcnoc_int_3_links), .links = pcnoc_int_3_links, }; static const u16 pcnoc_s_0_links[] = { QCS404_SLAVE_PRNG, QCS404_SLAVE_SPDM_WRAPPER, QCS404_SLAVE_PDM }; static struct qcom_icc_node pcnoc_s_0 = { .name = "pcnoc_s_0", .id = QCS404_PNOC_SLV_0, .buswidth = 4, .mas_rpm_id = 89, .slv_rpm_id = 118, .num_links = ARRAY_SIZE(pcnoc_s_0_links), .links = pcnoc_s_0_links, }; static const u16 pcnoc_s_1_links[] = { QCS404_SLAVE_TCSR }; static struct qcom_icc_node pcnoc_s_1 = { .name = "pcnoc_s_1", .id = QCS404_PNOC_SLV_1, .buswidth = 4, .mas_rpm_id = 90, .slv_rpm_id = 119, .num_links = ARRAY_SIZE(pcnoc_s_1_links), .links = pcnoc_s_1_links, }; static const u16 pcnoc_s_2_links[] = { QCS404_SLAVE_GRAPHICS_3D_CFG }; static struct qcom_icc_node pcnoc_s_2 = { .name = "pcnoc_s_2", .id = QCS404_PNOC_SLV_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_2_links), .links = pcnoc_s_2_links, }; static const u16 pcnoc_s_3_links[] = { QCS404_SLAVE_MESSAGE_RAM }; static struct qcom_icc_node pcnoc_s_3 = { .name = "pcnoc_s_3", .id = QCS404_PNOC_SLV_3, .buswidth = 4, .mas_rpm_id = 92, .slv_rpm_id = 121, .num_links = ARRAY_SIZE(pcnoc_s_3_links), .links = pcnoc_s_3_links, }; static const u16 pcnoc_s_4_links[] = { QCS404_SLAVE_SNOC_CFG }; static struct qcom_icc_node pcnoc_s_4 = { .name = "pcnoc_s_4", .id = QCS404_PNOC_SLV_4, .buswidth = 4, .mas_rpm_id = 93, .slv_rpm_id = 122, .num_links = ARRAY_SIZE(pcnoc_s_4_links), .links = pcnoc_s_4_links, }; static const u16 pcnoc_s_6_links[] = { QCS404_SLAVE_BLSP_1, QCS404_SLAVE_TLMM_NORTH, QCS404_SLAVE_EMAC_CFG }; static struct qcom_icc_node pcnoc_s_6 = { .name = "pcnoc_s_6", .id = QCS404_PNOC_SLV_6, .buswidth = 4, .mas_rpm_id = 94, .slv_rpm_id = 123, .num_links = ARRAY_SIZE(pcnoc_s_6_links), .links = pcnoc_s_6_links, }; static const u16 pcnoc_s_7_links[] = { QCS404_SLAVE_TLMM_SOUTH, QCS404_SLAVE_DISPLAY_CFG, QCS404_SLAVE_SDCC_1, QCS404_SLAVE_PCIE_1, QCS404_SLAVE_SDCC_2 }; static struct qcom_icc_node pcnoc_s_7 = { .name = "pcnoc_s_7", .id = QCS404_PNOC_SLV_7, .buswidth = 4, .mas_rpm_id = 95, .slv_rpm_id = 124, .num_links = ARRAY_SIZE(pcnoc_s_7_links), .links = pcnoc_s_7_links, }; static const u16 pcnoc_s_8_links[] = { QCS404_SLAVE_CRYPTO_0_CFG }; static struct qcom_icc_node pcnoc_s_8 = { .name = "pcnoc_s_8", .id = QCS404_PNOC_SLV_8, .buswidth = 4, .mas_rpm_id = 96, .slv_rpm_id = 125, .num_links = ARRAY_SIZE(pcnoc_s_8_links), .links = pcnoc_s_8_links, }; static const u16 pcnoc_s_9_links[] = { QCS404_SLAVE_BLSP_2, QCS404_SLAVE_TLMM_EAST, QCS404_SLAVE_PMIC_ARB }; static struct qcom_icc_node pcnoc_s_9 = { .name = "pcnoc_s_9", .id = QCS404_PNOC_SLV_9, .buswidth = 4, .mas_rpm_id = 97, .slv_rpm_id = 126, .num_links = ARRAY_SIZE(pcnoc_s_9_links), .links = pcnoc_s_9_links, }; static const u16 pcnoc_s_10_links[] = { QCS404_SLAVE_USB_HS }; static struct qcom_icc_node pcnoc_s_10 = { .name = "pcnoc_s_10", .id = QCS404_PNOC_SLV_10, .buswidth = 4, .mas_rpm_id = 157, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_10_links), .links = pcnoc_s_10_links, }; static const u16 pcnoc_s_11_links[] = { QCS404_SLAVE_USB3 }; static struct qcom_icc_node pcnoc_s_11 = { .name = "pcnoc_s_11", .id = QCS404_PNOC_SLV_11, .buswidth = 4, .mas_rpm_id = 158, .slv_rpm_id = 246, .num_links = ARRAY_SIZE(pcnoc_s_11_links), .links = pcnoc_s_11_links, }; static const u16 qdss_int_links[] = { QCS404_SNOC_BIMC_1_SLV, QCS404_SNOC_INT_1 }; static struct qcom_icc_node qdss_int = { .name = "qdss_int", .id = QCS404_SNOC_QDSS_INT, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(qdss_int_links), .links = qdss_int_links, }; static const u16 snoc_int_0_links[] = { QCS404_SLAVE_LPASS, QCS404_SLAVE_APPSS, QCS404_SLAVE_WCSS }; static struct qcom_icc_node snoc_int_0 = { .name = "snoc_int_0", .id = QCS404_SNOC_INT_0, .buswidth = 8, .mas_rpm_id = 99, .slv_rpm_id = 130, .num_links = ARRAY_SIZE(snoc_int_0_links), .links = snoc_int_0_links, }; static const u16 snoc_int_1_links[] = { QCS404_SNOC_PNOC_SLV, QCS404_SNOC_INT_2 }; static struct qcom_icc_node snoc_int_1 = { .name = "snoc_int_1", .id = QCS404_SNOC_INT_1, .buswidth = 8, .mas_rpm_id = 100, .slv_rpm_id = 131, .num_links = ARRAY_SIZE(snoc_int_1_links), .links = snoc_int_1_links, }; static const u16 snoc_int_2_links[] = { QCS404_SLAVE_QDSS_STM, QCS404_SLAVE_OCIMEM }; static struct qcom_icc_node snoc_int_2 = { .name = "snoc_int_2", .id = QCS404_SNOC_INT_2, .buswidth = 8, .mas_rpm_id = 134, .slv_rpm_id = 197, .num_links = ARRAY_SIZE(snoc_int_2_links), .links = snoc_int_2_links, }; static struct qcom_icc_node slv_ebi = { .name = "slv_ebi", .id = QCS404_SLAVE_EBI_CH0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 0, }; static const u16 slv_bimc_snoc_links[] = { QCS404_BIMC_SNOC_MAS }; static struct qcom_icc_node slv_bimc_snoc = { .name = "slv_bimc_snoc", .id = QCS404_BIMC_SNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 2, .num_links = ARRAY_SIZE(slv_bimc_snoc_links), .links = slv_bimc_snoc_links, }; static struct qcom_icc_node slv_spdm = { .name = "slv_spdm", .id = QCS404_SLAVE_SPDM_WRAPPER, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pdm = { .name = "slv_pdm", .id = QCS404_SLAVE_PDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 41, }; static struct qcom_icc_node slv_prng = { .name = "slv_prng", .id = QCS404_SLAVE_PRNG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 44, }; static struct qcom_icc_node slv_tcsr = { .name = "slv_tcsr", .id = QCS404_SLAVE_TCSR, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 50, }; static struct qcom_icc_node slv_snoc_cfg = { .name = "slv_snoc_cfg", .id = QCS404_SLAVE_SNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 70, }; static struct qcom_icc_node slv_message_ram = { .name = "slv_message_ram", .id = QCS404_SLAVE_MESSAGE_RAM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 55, }; static struct qcom_icc_node slv_disp_ss_cfg = { .name = "slv_disp_ss_cfg", .id = QCS404_SLAVE_DISPLAY_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_gpu_cfg = { .name = "slv_gpu_cfg", .id = QCS404_SLAVE_GRAPHICS_3D_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_blsp_1 = { .name = "slv_blsp_1", .id = QCS404_SLAVE_BLSP_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 39, }; static struct qcom_icc_node slv_tlmm_north = { .name = "slv_tlmm_north", .id = QCS404_SLAVE_TLMM_NORTH, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 214, }; static struct qcom_icc_node slv_pcie = { .name = "slv_pcie", .id = QCS404_SLAVE_PCIE_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_ethernet = { .name = "slv_ethernet", .id = QCS404_SLAVE_EMAC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_blsp_2 = { .name = "slv_blsp_2", .id = QCS404_SLAVE_BLSP_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 37, }; static struct qcom_icc_node slv_tlmm_east = { .name = "slv_tlmm_east", .id = QCS404_SLAVE_TLMM_EAST, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 213, }; static struct qcom_icc_node slv_tcu = { .name = "slv_tcu", .id = QCS404_SLAVE_TCU, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pmic_arb = { .name = "slv_pmic_arb", .id = QCS404_SLAVE_PMIC_ARB, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 59, }; static struct qcom_icc_node slv_sdcc_1 = { .name = "slv_sdcc_1", .id = QCS404_SLAVE_SDCC_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 31, }; static struct qcom_icc_node slv_sdcc_2 = { .name = "slv_sdcc_2", .id = QCS404_SLAVE_SDCC_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 33, }; static struct qcom_icc_node slv_tlmm_south = { .name = "slv_tlmm_south", .id = QCS404_SLAVE_TLMM_SOUTH, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_usb_hs = { .name = "slv_usb_hs", .id = QCS404_SLAVE_USB_HS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 40, }; static struct qcom_icc_node slv_usb3 = { .name = "slv_usb3", .id = QCS404_SLAVE_USB3, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 22, }; static struct qcom_icc_node slv_crypto_0_cfg = { .name = "slv_crypto_0_cfg", .id = QCS404_SLAVE_CRYPTO_0_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 52, }; static const u16 slv_pcnoc_snoc_links[] = { QCS404_PNOC_SNOC_MAS }; static struct qcom_icc_node slv_pcnoc_snoc = { .name = "slv_pcnoc_snoc", .id = QCS404_PNOC_SNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 45, .num_links = ARRAY_SIZE(slv_pcnoc_snoc_links), .links = slv_pcnoc_snoc_links, }; static struct qcom_icc_node slv_kpss_ahb = { .name = "slv_kpss_ahb", .id = QCS404_SLAVE_APPSS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_wcss = { .name = "slv_wcss", .id = QCS404_SLAVE_WCSS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 23, }; static const u16 slv_snoc_bimc_1_links[] = { QCS404_SNOC_BIMC_1_MAS }; static struct qcom_icc_node slv_snoc_bimc_1 = { .name = "slv_snoc_bimc_1", .id = QCS404_SNOC_BIMC_1_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 104, .num_links = ARRAY_SIZE(slv_snoc_bimc_1_links), .links = slv_snoc_bimc_1_links, }; static struct qcom_icc_node slv_imem = { .name = "slv_imem", .id = QCS404_SLAVE_OCIMEM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 26, }; static const u16 slv_snoc_pcnoc_links[] = { QCS404_SNOC_PNOC_MAS }; static struct qcom_icc_node slv_snoc_pcnoc = { .name = "slv_snoc_pcnoc", .id = QCS404_SNOC_PNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 28, .num_links = ARRAY_SIZE(slv_snoc_pcnoc_links), .links = slv_snoc_pcnoc_links, }; static struct qcom_icc_node slv_qdss_stm = { .name = "slv_qdss_stm", .id = QCS404_SLAVE_QDSS_STM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 30, }; static struct qcom_icc_node slv_cats_0 = { .name = "slv_cats_0", .id = QCS404_SLAVE_CATS_128, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_cats_1 = { .name = "slv_cats_1", .id = QCS404_SLAVE_OCMEM_64, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_lpass = { .name = "slv_lpass", .id = QCS404_SLAVE_LPASS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node * const qcs404_bimc_nodes[] = { [MASTER_AMPSS_M0] = &mas_apps_proc, [MASTER_OXILI] = &mas_oxili, [MASTER_MDP_PORT0] = &mas_mdp, [MASTER_SNOC_BIMC_1] = &mas_snoc_bimc_1, [MASTER_TCU_0] = &mas_tcu_0, [SLAVE_EBI_CH0] = &slv_ebi, [SLAVE_BIMC_SNOC] = &slv_bimc_snoc, }; static const struct qcom_icc_desc qcs404_bimc = { .bus_clk_desc = &bimc_clk, .nodes = qcs404_bimc_nodes, .num_nodes = ARRAY_SIZE(qcs404_bimc_nodes), }; static struct qcom_icc_node * const qcs404_pcnoc_nodes[] = { [MASTER_SPDM] = &mas_spdm, [MASTER_BLSP_1] = &mas_blsp_1, [MASTER_BLSP_2] = &mas_blsp_2, [MASTER_XI_USB_HS1] = &mas_xi_usb_hs1, [MASTER_CRYPT0] = &mas_crypto, [MASTER_SDCC_1] = &mas_sdcc_1, [MASTER_SDCC_2] = &mas_sdcc_2, [MASTER_SNOC_PCNOC] = &mas_snoc_pcnoc, [MASTER_QPIC] = &mas_qpic, [PCNOC_INT_0] = &pcnoc_int_0, [PCNOC_INT_2] = &pcnoc_int_2, [PCNOC_INT_3] = &pcnoc_int_3, [PCNOC_S_0] = &pcnoc_s_0, [PCNOC_S_1] = &pcnoc_s_1, [PCNOC_S_2] = &pcnoc_s_2, [PCNOC_S_3] = &pcnoc_s_3, [PCNOC_S_4] = &pcnoc_s_4, [PCNOC_S_6] = &pcnoc_s_6, [PCNOC_S_7] = &pcnoc_s_7, [PCNOC_S_8] = &pcnoc_s_8, [PCNOC_S_9] = &pcnoc_s_9, [PCNOC_S_10] = &pcnoc_s_10, [PCNOC_S_11] = &pcnoc_s_11, [SLAVE_SPDM] = &slv_spdm, [SLAVE_PDM] = &slv_pdm, [SLAVE_PRNG] = &slv_prng, [SLAVE_TCSR] = &slv_tcsr, [SLAVE_SNOC_CFG] = &slv_snoc_cfg, [SLAVE_MESSAGE_RAM] = &slv_message_ram, [SLAVE_DISP_SS_CFG] = &slv_disp_ss_cfg, [SLAVE_GPU_CFG] = &slv_gpu_cfg, [SLAVE_BLSP_1] = &slv_blsp_1, [SLAVE_BLSP_2] = &slv_blsp_2, [SLAVE_TLMM_NORTH] = &slv_tlmm_north, [SLAVE_PCIE] = &slv_pcie, [SLAVE_ETHERNET] = &slv_ethernet, [SLAVE_TLMM_EAST] = &slv_tlmm_east, [SLAVE_TCU] = &slv_tcu, [SLAVE_PMIC_ARB] = &slv_pmic_arb, [SLAVE_SDCC_1] = &slv_sdcc_1, [SLAVE_SDCC_2] = &slv_sdcc_2, [SLAVE_TLMM_SOUTH] = &slv_tlmm_south, [SLAVE_USB_HS] = &slv_usb_hs, [SLAVE_USB3] = &slv_usb3, [SLAVE_CRYPTO_0_CFG] = &slv_crypto_0_cfg, [SLAVE_PCNOC_SNOC] = &slv_pcnoc_snoc, }; static const struct qcom_icc_desc qcs404_pcnoc = { .bus_clk_desc = &bus_0_clk, .nodes = qcs404_pcnoc_nodes, .num_nodes = ARRAY_SIZE(qcs404_pcnoc_nodes), }; static struct qcom_icc_node * const qcs404_snoc_nodes[] = { [MASTER_QDSS_BAM] = &mas_qdss_bam, [MASTER_BIMC_SNOC] = &mas_bimc_snoc, [MASTER_PCNOC_SNOC] = &mas_pcnoc_snoc, [MASTER_QDSS_ETR] = &mas_qdss_etr, [MASTER_EMAC] = &mas_emac, [MASTER_PCIE] = &mas_pcie, [MASTER_USB3] = &mas_usb3, [QDSS_INT] = &qdss_int, [SNOC_INT_0] = &snoc_int_0, [SNOC_INT_1] = &snoc_int_1, [SNOC_INT_2] = &snoc_int_2, [SLAVE_KPSS_AHB] = &slv_kpss_ahb, [SLAVE_WCSS] = &slv_wcss, [SLAVE_SNOC_BIMC_1] = &slv_snoc_bimc_1, [SLAVE_IMEM] = &slv_imem, [SLAVE_SNOC_PCNOC] = &slv_snoc_pcnoc, [SLAVE_QDSS_STM] = &slv_qdss_stm, [SLAVE_CATS_0] = &slv_cats_0, [SLAVE_CATS_1] = &slv_cats_1, [SLAVE_LPASS] = &slv_lpass, }; static const struct qcom_icc_desc qcs404_snoc = { .bus_clk_desc = &bus_1_clk, .nodes = qcs404_snoc_nodes, .num_nodes = ARRAY_SIZE(qcs404_snoc_nodes), }; static const struct of_device_id qcs404_noc_of_match[] = { { .compatible = "qcom,qcs404-bimc", .data = &qcs404_bimc }, { .compatible = "qcom,qcs404-pcnoc", .data = &qcs404_pcnoc }, { .compatible = "qcom,qcs404-snoc", .data = &qcs404_snoc }, { }, }; MODULE_DEVICE_TABLE(of, qcs404_noc_of_match); static struct platform_driver qcs404_noc_driver = { .probe = qnoc_probe, .remove = qnoc_remove, .driver = { .name = "qnoc-qcs404", .of_match_table = qcs404_noc_of_match, }, }; module_platform_driver(qcs404_noc_driver); MODULE_DESCRIPTION("Qualcomm QCS404 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/qcs404.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 Linaro Ltd */ #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include "icc-common.h" #include "icc-rpm.h" /* QNOC QoS */ #define QNOC_QOS_MCTL_LOWn_ADDR(n) (0x8 + (n * 0x1000)) #define QNOC_QOS_MCTL_DFLT_PRIO_MASK 0x70 #define QNOC_QOS_MCTL_DFLT_PRIO_SHIFT 4 #define QNOC_QOS_MCTL_URGFWD_EN_MASK 0x8 #define QNOC_QOS_MCTL_URGFWD_EN_SHIFT 3 /* BIMC QoS */ #define M_BKE_REG_BASE(n) (0x300 + (0x4000 * n)) #define M_BKE_EN_ADDR(n) (M_BKE_REG_BASE(n)) #define M_BKE_HEALTH_CFG_ADDR(i, n) (M_BKE_REG_BASE(n) + 0x40 + (0x4 * i)) #define M_BKE_HEALTH_CFG_LIMITCMDS_MASK 0x80000000 #define M_BKE_HEALTH_CFG_AREQPRIO_MASK 0x300 #define M_BKE_HEALTH_CFG_PRIOLVL_MASK 0x3 #define M_BKE_HEALTH_CFG_AREQPRIO_SHIFT 0x8 #define M_BKE_HEALTH_CFG_LIMITCMDS_SHIFT 0x1f #define M_BKE_EN_EN_BMASK 0x1 /* NoC QoS */ #define NOC_QOS_PRIORITYn_ADDR(n) (0x8 + (n * 0x1000)) #define NOC_QOS_PRIORITY_P1_MASK 0xc #define NOC_QOS_PRIORITY_P0_MASK 0x3 #define NOC_QOS_PRIORITY_P1_SHIFT 0x2 #define NOC_QOS_MODEn_ADDR(n) (0xc + (n * 0x1000)) #define NOC_QOS_MODEn_MASK 0x3 #define NOC_QOS_MODE_FIXED_VAL 0x0 #define NOC_QOS_MODE_BYPASS_VAL 0x2 #define ICC_BUS_CLK_MIN_RATE 19200ULL /* kHz */ static int qcom_icc_set_qnoc_qos(struct icc_node *src) { struct icc_provider *provider = src->provider; struct qcom_icc_provider *qp = to_qcom_provider(provider); struct qcom_icc_node *qn = src->data; struct qcom_icc_qos *qos = &qn->qos; int rc; rc = regmap_update_bits(qp->regmap, qp->qos_offset + QNOC_QOS_MCTL_LOWn_ADDR(qos->qos_port), QNOC_QOS_MCTL_DFLT_PRIO_MASK, qos->areq_prio << QNOC_QOS_MCTL_DFLT_PRIO_SHIFT); if (rc) return rc; return regmap_update_bits(qp->regmap, qp->qos_offset + QNOC_QOS_MCTL_LOWn_ADDR(qos->qos_port), QNOC_QOS_MCTL_URGFWD_EN_MASK, !!qos->urg_fwd_en << QNOC_QOS_MCTL_URGFWD_EN_SHIFT); } static int qcom_icc_bimc_set_qos_health(struct qcom_icc_provider *qp, struct qcom_icc_qos *qos, int regnum) { u32 val; u32 mask; val = qos->prio_level; mask = M_BKE_HEALTH_CFG_PRIOLVL_MASK; val |= qos->areq_prio << M_BKE_HEALTH_CFG_AREQPRIO_SHIFT; mask |= M_BKE_HEALTH_CFG_AREQPRIO_MASK; /* LIMITCMDS is not present on M_BKE_HEALTH_3 */ if (regnum != 3) { val |= qos->limit_commands << M_BKE_HEALTH_CFG_LIMITCMDS_SHIFT; mask |= M_BKE_HEALTH_CFG_LIMITCMDS_MASK; } return regmap_update_bits(qp->regmap, qp->qos_offset + M_BKE_HEALTH_CFG_ADDR(regnum, qos->qos_port), mask, val); } static int qcom_icc_set_bimc_qos(struct icc_node *src) { struct qcom_icc_provider *qp; struct qcom_icc_node *qn; struct icc_provider *provider; u32 mode = NOC_QOS_MODE_BYPASS; u32 val = 0; int i, rc = 0; qn = src->data; provider = src->provider; qp = to_qcom_provider(provider); if (qn->qos.qos_mode != NOC_QOS_MODE_INVALID) mode = qn->qos.qos_mode; /* QoS Priority: The QoS Health parameters are getting considered * only if we are NOT in Bypass Mode. */ if (mode != NOC_QOS_MODE_BYPASS) { for (i = 3; i >= 0; i--) { rc = qcom_icc_bimc_set_qos_health(qp, &qn->qos, i); if (rc) return rc; } /* Set BKE_EN to 1 when Fixed, Regulator or Limiter Mode */ val = 1; } return regmap_update_bits(qp->regmap, qp->qos_offset + M_BKE_EN_ADDR(qn->qos.qos_port), M_BKE_EN_EN_BMASK, val); } static int qcom_icc_noc_set_qos_priority(struct qcom_icc_provider *qp, struct qcom_icc_qos *qos) { u32 val; int rc; /* Must be updated one at a time, P1 first, P0 last */ val = qos->areq_prio << NOC_QOS_PRIORITY_P1_SHIFT; rc = regmap_update_bits(qp->regmap, qp->qos_offset + NOC_QOS_PRIORITYn_ADDR(qos->qos_port), NOC_QOS_PRIORITY_P1_MASK, val); if (rc) return rc; return regmap_update_bits(qp->regmap, qp->qos_offset + NOC_QOS_PRIORITYn_ADDR(qos->qos_port), NOC_QOS_PRIORITY_P0_MASK, qos->prio_level); } static int qcom_icc_set_noc_qos(struct icc_node *src) { struct qcom_icc_provider *qp; struct qcom_icc_node *qn; struct icc_provider *provider; u32 mode = NOC_QOS_MODE_BYPASS_VAL; int rc = 0; qn = src->data; provider = src->provider; qp = to_qcom_provider(provider); if (qn->qos.qos_port < 0) { dev_dbg(src->provider->dev, "NoC QoS: Skipping %s: vote aggregated on parent.\n", qn->name); return 0; } if (qn->qos.qos_mode == NOC_QOS_MODE_FIXED) { dev_dbg(src->provider->dev, "NoC QoS: %s: Set Fixed mode\n", qn->name); mode = NOC_QOS_MODE_FIXED_VAL; rc = qcom_icc_noc_set_qos_priority(qp, &qn->qos); if (rc) return rc; } else if (qn->qos.qos_mode == NOC_QOS_MODE_BYPASS) { dev_dbg(src->provider->dev, "NoC QoS: %s: Set Bypass mode\n", qn->name); mode = NOC_QOS_MODE_BYPASS_VAL; } else { /* How did we get here? */ } return regmap_update_bits(qp->regmap, qp->qos_offset + NOC_QOS_MODEn_ADDR(qn->qos.qos_port), NOC_QOS_MODEn_MASK, mode); } static int qcom_icc_qos_set(struct icc_node *node) { struct qcom_icc_provider *qp = to_qcom_provider(node->provider); struct qcom_icc_node *qn = node->data; dev_dbg(node->provider->dev, "Setting QoS for %s\n", qn->name); switch (qp->type) { case QCOM_ICC_BIMC: return qcom_icc_set_bimc_qos(node); case QCOM_ICC_QNOC: return qcom_icc_set_qnoc_qos(node); default: return qcom_icc_set_noc_qos(node); } } static int qcom_icc_rpm_set(struct qcom_icc_node *qn, u64 *bw) { int ret, rpm_ctx = 0; u64 bw_bps; if (qn->qos.ap_owned) return 0; for (rpm_ctx = 0; rpm_ctx < QCOM_SMD_RPM_STATE_NUM; rpm_ctx++) { bw_bps = icc_units_to_bps(bw[rpm_ctx]); if (qn->mas_rpm_id != -1) { ret = qcom_icc_rpm_smd_send(rpm_ctx, RPM_BUS_MASTER_REQ, qn->mas_rpm_id, bw_bps); if (ret) { pr_err("qcom_icc_rpm_smd_send mas %d error %d\n", qn->mas_rpm_id, ret); return ret; } } if (qn->slv_rpm_id != -1) { ret = qcom_icc_rpm_smd_send(rpm_ctx, RPM_BUS_SLAVE_REQ, qn->slv_rpm_id, bw_bps); if (ret) { pr_err("qcom_icc_rpm_smd_send slv %d error %d\n", qn->slv_rpm_id, ret); return ret; } } } return 0; } /** * qcom_icc_pre_bw_aggregate - cleans up values before re-aggregate requests * @node: icc node to operate on */ static void qcom_icc_pre_bw_aggregate(struct icc_node *node) { struct qcom_icc_node *qn; size_t i; qn = node->data; for (i = 0; i < QCOM_SMD_RPM_STATE_NUM; i++) { qn->sum_avg[i] = 0; qn->max_peak[i] = 0; } } /** * qcom_icc_bw_aggregate - aggregate bw for buckets indicated by tag * @node: node to aggregate * @tag: tag to indicate which buckets to aggregate * @avg_bw: new bw to sum aggregate * @peak_bw: new bw to max aggregate * @agg_avg: existing aggregate avg bw val * @agg_peak: existing aggregate peak bw val */ static int qcom_icc_bw_aggregate(struct icc_node *node, u32 tag, u32 avg_bw, u32 peak_bw, u32 *agg_avg, u32 *agg_peak) { size_t i; struct qcom_icc_node *qn; qn = node->data; if (!tag) tag = RPM_ALWAYS_TAG; for (i = 0; i < QCOM_SMD_RPM_STATE_NUM; i++) { if (tag & BIT(i)) { qn->sum_avg[i] += avg_bw; qn->max_peak[i] = max_t(u32, qn->max_peak[i], peak_bw); } } *agg_avg += avg_bw; *agg_peak = max_t(u32, *agg_peak, peak_bw); return 0; } /** * qcom_icc_bus_aggregate - calculate bus clock rates by traversing all nodes * @provider: generic interconnect provider * @agg_clk_rate: array containing the aggregated clock rates in kHz */ static void qcom_icc_bus_aggregate(struct icc_provider *provider, u64 *agg_clk_rate) { u64 agg_avg_rate, agg_rate; struct qcom_icc_node *qn; struct icc_node *node; int i; /* * Iterate nodes on the provider, aggregate bandwidth requests for * every bucket and convert them into bus clock rates. */ list_for_each_entry(node, &provider->nodes, node_list) { qn = node->data; for (i = 0; i < QCOM_SMD_RPM_STATE_NUM; i++) { if (qn->channels) agg_avg_rate = div_u64(qn->sum_avg[i], qn->channels); else agg_avg_rate = qn->sum_avg[i]; agg_rate = max_t(u64, agg_avg_rate, qn->max_peak[i]); do_div(agg_rate, qn->buswidth); agg_clk_rate[i] = max_t(u64, agg_clk_rate[i], agg_rate); } } } static int qcom_icc_set(struct icc_node *src, struct icc_node *dst) { struct qcom_icc_node *src_qn = NULL, *dst_qn = NULL; u64 agg_clk_rate[QCOM_SMD_RPM_STATE_NUM] = { 0 }; struct icc_provider *provider; struct qcom_icc_provider *qp; u64 active_rate, sleep_rate; int ret; src_qn = src->data; if (dst) dst_qn = dst->data; provider = src->provider; qp = to_qcom_provider(provider); qcom_icc_bus_aggregate(provider, agg_clk_rate); active_rate = agg_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE]; sleep_rate = agg_clk_rate[QCOM_SMD_RPM_SLEEP_STATE]; ret = qcom_icc_rpm_set(src_qn, src_qn->sum_avg); if (ret) return ret; if (dst_qn) { ret = qcom_icc_rpm_set(dst_qn, dst_qn->sum_avg); if (ret) return ret; } /* Some providers don't have a bus clock to scale */ if (!qp->bus_clk_desc && !qp->bus_clk) return 0; /* * Downstream checks whether the requested rate is zero, but it makes little sense * to vote for a value that's below the lower threshold, so let's not do so. */ if (qp->keep_alive) active_rate = max(ICC_BUS_CLK_MIN_RATE, active_rate); /* Some providers have a non-RPM-owned bus clock - convert kHz->Hz for the CCF */ if (qp->bus_clk) { active_rate = max_t(u64, active_rate, sleep_rate); /* ARM32 caps clk_set_rate arg to u32.. Nothing we can do about that! */ active_rate = min_t(u64, 1000ULL * active_rate, ULONG_MAX); return clk_set_rate(qp->bus_clk, active_rate); } /* RPM only accepts <=INT_MAX rates */ active_rate = min_t(u64, active_rate, INT_MAX); sleep_rate = min_t(u64, sleep_rate, INT_MAX); if (active_rate != qp->bus_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE]) { ret = qcom_icc_rpm_set_bus_rate(qp->bus_clk_desc, QCOM_SMD_RPM_ACTIVE_STATE, active_rate); if (ret) return ret; /* Cache the rate after we've successfully commited it to RPM */ qp->bus_clk_rate[QCOM_SMD_RPM_ACTIVE_STATE] = active_rate; } if (sleep_rate != qp->bus_clk_rate[QCOM_SMD_RPM_SLEEP_STATE]) { ret = qcom_icc_rpm_set_bus_rate(qp->bus_clk_desc, QCOM_SMD_RPM_SLEEP_STATE, sleep_rate); if (ret) return ret; /* Cache the rate after we've successfully commited it to RPM */ qp->bus_clk_rate[QCOM_SMD_RPM_SLEEP_STATE] = sleep_rate; } return 0; } int qnoc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; const struct qcom_icc_desc *desc; struct icc_onecell_data *data; struct icc_provider *provider; struct qcom_icc_node * const *qnodes; struct qcom_icc_provider *qp; struct icc_node *node; size_t num_nodes, i; const char * const *cds = NULL; int cd_num; int ret; /* wait for the RPM proxy */ if (!qcom_icc_rpm_smd_available()) return -EPROBE_DEFER; desc = of_device_get_match_data(dev); if (!desc) return -EINVAL; qnodes = desc->nodes; num_nodes = desc->num_nodes; if (desc->num_intf_clocks) { cds = desc->intf_clocks; cd_num = desc->num_intf_clocks; } else { /* 0 intf clocks is perfectly fine */ cd_num = 0; } qp = devm_kzalloc(dev, sizeof(*qp), GFP_KERNEL); if (!qp) return -ENOMEM; qp->intf_clks = devm_kcalloc(dev, cd_num, sizeof(*qp->intf_clks), GFP_KERNEL); if (!qp->intf_clks) return -ENOMEM; if (desc->bus_clk_desc) { qp->bus_clk_desc = devm_kzalloc(dev, sizeof(*qp->bus_clk_desc), GFP_KERNEL); if (!qp->bus_clk_desc) return -ENOMEM; qp->bus_clk_desc = desc->bus_clk_desc; } else { /* Some older SoCs may have a single non-RPM-owned bus clock. */ qp->bus_clk = devm_clk_get_optional(dev, "bus"); if (IS_ERR(qp->bus_clk)) return PTR_ERR(qp->bus_clk); } data = devm_kzalloc(dev, struct_size(data, nodes, num_nodes), GFP_KERNEL); if (!data) return -ENOMEM; qp->num_intf_clks = cd_num; for (i = 0; i < cd_num; i++) qp->intf_clks[i].id = cds[i]; qp->keep_alive = desc->keep_alive; qp->type = desc->type; qp->qos_offset = desc->qos_offset; if (desc->regmap_cfg) { struct resource *res; void __iomem *mmio; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { /* Try parent's regmap */ qp->regmap = dev_get_regmap(dev->parent, NULL); if (qp->regmap) goto regmap_done; return -ENODEV; } mmio = devm_ioremap_resource(dev, res); if (IS_ERR(mmio)) return PTR_ERR(mmio); qp->regmap = devm_regmap_init_mmio(dev, mmio, desc->regmap_cfg); if (IS_ERR(qp->regmap)) { dev_err(dev, "Cannot regmap interconnect bus resource\n"); return PTR_ERR(qp->regmap); } } regmap_done: ret = clk_prepare_enable(qp->bus_clk); if (ret) return ret; ret = devm_clk_bulk_get(dev, qp->num_intf_clks, qp->intf_clks); if (ret) return ret; provider = &qp->provider; provider->dev = dev; provider->set = qcom_icc_set; provider->pre_aggregate = qcom_icc_pre_bw_aggregate; provider->aggregate = qcom_icc_bw_aggregate; provider->xlate_extended = qcom_icc_xlate_extended; provider->data = data; icc_provider_init(provider); /* If this fails, bus accesses will crash the platform! */ ret = clk_bulk_prepare_enable(qp->num_intf_clks, qp->intf_clks); if (ret) return ret; for (i = 0; i < num_nodes; i++) { size_t j; node = icc_node_create(qnodes[i]->id); if (IS_ERR(node)) { ret = PTR_ERR(node); goto err_remove_nodes; } node->name = qnodes[i]->name; node->data = qnodes[i]; icc_node_add(node, provider); for (j = 0; j < qnodes[i]->num_links; j++) icc_link_create(node, qnodes[i]->links[j]); /* Set QoS registers (we only need to do it once, generally) */ if (qnodes[i]->qos.ap_owned && qnodes[i]->qos.qos_mode != NOC_QOS_MODE_INVALID) { ret = qcom_icc_qos_set(node); if (ret) return ret; } data->nodes[i] = node; } data->num_nodes = num_nodes; clk_bulk_disable_unprepare(qp->num_intf_clks, qp->intf_clks); ret = icc_provider_register(provider); if (ret) goto err_remove_nodes; platform_set_drvdata(pdev, qp); /* Populate child NoC devices if any */ if (of_get_child_count(dev->of_node) > 0) { ret = of_platform_populate(dev->of_node, NULL, NULL, dev); if (ret) goto err_deregister_provider; } return 0; err_deregister_provider: icc_provider_deregister(provider); err_remove_nodes: icc_nodes_remove(provider); clk_disable_unprepare(qp->bus_clk); return ret; } EXPORT_SYMBOL(qnoc_probe); int qnoc_remove(struct platform_device *pdev) { struct qcom_icc_provider *qp = platform_get_drvdata(pdev); icc_provider_deregister(&qp->provider); icc_nodes_remove(&qp->provider); clk_disable_unprepare(qp->bus_clk); return 0; } EXPORT_SYMBOL(qnoc_remove);
linux-master
drivers/interconnect/qcom/icc-rpm.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018-2020 Linaro Ltd * Author: Georgi Djakov <[email protected]> */ #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <dt-bindings/interconnect/qcom,msm8916.h> #include "icc-rpm.h" enum { MSM8916_BIMC_SNOC_MAS = 1, MSM8916_BIMC_SNOC_SLV, MSM8916_MASTER_AMPSS_M0, MSM8916_MASTER_LPASS, MSM8916_MASTER_BLSP_1, MSM8916_MASTER_DEHR, MSM8916_MASTER_GRAPHICS_3D, MSM8916_MASTER_JPEG, MSM8916_MASTER_MDP_PORT0, MSM8916_MASTER_CRYPTO_CORE0, MSM8916_MASTER_SDCC_1, MSM8916_MASTER_SDCC_2, MSM8916_MASTER_QDSS_BAM, MSM8916_MASTER_QDSS_ETR, MSM8916_MASTER_SNOC_CFG, MSM8916_MASTER_SPDM, MSM8916_MASTER_TCU0, MSM8916_MASTER_TCU1, MSM8916_MASTER_USB_HS, MSM8916_MASTER_VFE, MSM8916_MASTER_VIDEO_P0, MSM8916_SNOC_MM_INT_0, MSM8916_SNOC_MM_INT_1, MSM8916_SNOC_MM_INT_2, MSM8916_SNOC_MM_INT_BIMC, MSM8916_PNOC_INT_0, MSM8916_PNOC_INT_1, MSM8916_PNOC_MAS_0, MSM8916_PNOC_MAS_1, MSM8916_PNOC_SLV_0, MSM8916_PNOC_SLV_1, MSM8916_PNOC_SLV_2, MSM8916_PNOC_SLV_3, MSM8916_PNOC_SLV_4, MSM8916_PNOC_SLV_8, MSM8916_PNOC_SLV_9, MSM8916_PNOC_SNOC_MAS, MSM8916_PNOC_SNOC_SLV, MSM8916_SNOC_QDSS_INT, MSM8916_SLAVE_AMPSS_L2, MSM8916_SLAVE_APSS, MSM8916_SLAVE_LPASS, MSM8916_SLAVE_BIMC_CFG, MSM8916_SLAVE_BLSP_1, MSM8916_SLAVE_BOOT_ROM, MSM8916_SLAVE_CAMERA_CFG, MSM8916_SLAVE_CATS_128, MSM8916_SLAVE_OCMEM_64, MSM8916_SLAVE_CLK_CTL, MSM8916_SLAVE_CRYPTO_0_CFG, MSM8916_SLAVE_DEHR_CFG, MSM8916_SLAVE_DISPLAY_CFG, MSM8916_SLAVE_EBI_CH0, MSM8916_SLAVE_GRAPHICS_3D_CFG, MSM8916_SLAVE_IMEM_CFG, MSM8916_SLAVE_IMEM, MSM8916_SLAVE_MPM, MSM8916_SLAVE_MSG_RAM, MSM8916_SLAVE_MSS, MSM8916_SLAVE_PDM, MSM8916_SLAVE_PMIC_ARB, MSM8916_SLAVE_PNOC_CFG, MSM8916_SLAVE_PRNG, MSM8916_SLAVE_QDSS_CFG, MSM8916_SLAVE_QDSS_STM, MSM8916_SLAVE_RBCPR_CFG, MSM8916_SLAVE_SDCC_1, MSM8916_SLAVE_SDCC_2, MSM8916_SLAVE_SECURITY, MSM8916_SLAVE_SNOC_CFG, MSM8916_SLAVE_SPDM, MSM8916_SLAVE_SRVC_SNOC, MSM8916_SLAVE_TCSR, MSM8916_SLAVE_TLMM, MSM8916_SLAVE_USB_HS, MSM8916_SLAVE_VENUS_CFG, MSM8916_SNOC_BIMC_0_MAS, MSM8916_SNOC_BIMC_0_SLV, MSM8916_SNOC_BIMC_1_MAS, MSM8916_SNOC_BIMC_1_SLV, MSM8916_SNOC_INT_0, MSM8916_SNOC_INT_1, MSM8916_SNOC_INT_BIMC, MSM8916_SNOC_PNOC_MAS, MSM8916_SNOC_PNOC_SLV, }; static const u16 bimc_snoc_mas_links[] = { MSM8916_BIMC_SNOC_SLV }; static struct qcom_icc_node bimc_snoc_mas = { .name = "bimc_snoc_mas", .id = MSM8916_BIMC_SNOC_MAS, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(bimc_snoc_mas_links), .links = bimc_snoc_mas_links, }; static const u16 bimc_snoc_slv_links[] = { MSM8916_SNOC_INT_0, MSM8916_SNOC_INT_1 }; static struct qcom_icc_node bimc_snoc_slv = { .name = "bimc_snoc_slv", .id = MSM8916_BIMC_SNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(bimc_snoc_slv_links), .links = bimc_snoc_slv_links, }; static const u16 mas_apss_links[] = { MSM8916_SLAVE_EBI_CH0, MSM8916_BIMC_SNOC_MAS, MSM8916_SLAVE_AMPSS_L2 }; static struct qcom_icc_node mas_apss = { .name = "mas_apss", .id = MSM8916_MASTER_AMPSS_M0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_apss_links), .links = mas_apss_links, }; static const u16 mas_audio_links[] = { MSM8916_PNOC_MAS_0 }; static struct qcom_icc_node mas_audio = { .name = "mas_audio", .id = MSM8916_MASTER_LPASS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_audio_links), .links = mas_audio_links, }; static const u16 mas_blsp_1_links[] = { MSM8916_PNOC_MAS_1 }; static struct qcom_icc_node mas_blsp_1 = { .name = "mas_blsp_1", .id = MSM8916_MASTER_BLSP_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_blsp_1_links), .links = mas_blsp_1_links, }; static const u16 mas_dehr_links[] = { MSM8916_PNOC_MAS_0 }; static struct qcom_icc_node mas_dehr = { .name = "mas_dehr", .id = MSM8916_MASTER_DEHR, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_dehr_links), .links = mas_dehr_links, }; static const u16 mas_gfx_links[] = { MSM8916_SLAVE_EBI_CH0, MSM8916_BIMC_SNOC_MAS, MSM8916_SLAVE_AMPSS_L2 }; static struct qcom_icc_node mas_gfx = { .name = "mas_gfx", .id = MSM8916_MASTER_GRAPHICS_3D, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_gfx_links), .links = mas_gfx_links, }; static const u16 mas_jpeg_links[] = { MSM8916_SNOC_MM_INT_0, MSM8916_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_jpeg = { .name = "mas_jpeg", .id = MSM8916_MASTER_JPEG, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 6, .num_links = ARRAY_SIZE(mas_jpeg_links), .links = mas_jpeg_links, }; static const u16 mas_mdp_links[] = { MSM8916_SNOC_MM_INT_0, MSM8916_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_mdp = { .name = "mas_mdp", .id = MSM8916_MASTER_MDP_PORT0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 7, .num_links = ARRAY_SIZE(mas_mdp_links), .links = mas_mdp_links, }; static const u16 mas_pcnoc_crypto_0_links[] = { MSM8916_PNOC_INT_1 }; static struct qcom_icc_node mas_pcnoc_crypto_0 = { .name = "mas_pcnoc_crypto_0", .id = MSM8916_MASTER_CRYPTO_CORE0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcnoc_crypto_0_links), .links = mas_pcnoc_crypto_0_links, }; static const u16 mas_pcnoc_sdcc_1_links[] = { MSM8916_PNOC_INT_1 }; static struct qcom_icc_node mas_pcnoc_sdcc_1 = { .name = "mas_pcnoc_sdcc_1", .id = MSM8916_MASTER_SDCC_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcnoc_sdcc_1_links), .links = mas_pcnoc_sdcc_1_links, }; static const u16 mas_pcnoc_sdcc_2_links[] = { MSM8916_PNOC_INT_1 }; static struct qcom_icc_node mas_pcnoc_sdcc_2 = { .name = "mas_pcnoc_sdcc_2", .id = MSM8916_MASTER_SDCC_2, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcnoc_sdcc_2_links), .links = mas_pcnoc_sdcc_2_links, }; static const u16 mas_qdss_bam_links[] = { MSM8916_SNOC_QDSS_INT }; static struct qcom_icc_node mas_qdss_bam = { .name = "mas_qdss_bam", .id = MSM8916_MASTER_QDSS_BAM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 11, .num_links = ARRAY_SIZE(mas_qdss_bam_links), .links = mas_qdss_bam_links, }; static const u16 mas_qdss_etr_links[] = { MSM8916_SNOC_QDSS_INT }; static struct qcom_icc_node mas_qdss_etr = { .name = "mas_qdss_etr", .id = MSM8916_MASTER_QDSS_ETR, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 10, .num_links = ARRAY_SIZE(mas_qdss_etr_links), .links = mas_qdss_etr_links, }; static const u16 mas_snoc_cfg_links[] = { MSM8916_SNOC_QDSS_INT }; static struct qcom_icc_node mas_snoc_cfg = { .name = "mas_snoc_cfg", .id = MSM8916_MASTER_SNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_cfg_links), .links = mas_snoc_cfg_links, }; static const u16 mas_spdm_links[] = { MSM8916_PNOC_MAS_0 }; static struct qcom_icc_node mas_spdm = { .name = "mas_spdm", .id = MSM8916_MASTER_SPDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_spdm_links), .links = mas_spdm_links, }; static const u16 mas_tcu0_links[] = { MSM8916_SLAVE_EBI_CH0, MSM8916_BIMC_SNOC_MAS, MSM8916_SLAVE_AMPSS_L2 }; static struct qcom_icc_node mas_tcu0 = { .name = "mas_tcu0", .id = MSM8916_MASTER_TCU0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .qos.prio_level = 2, .qos.qos_port = 5, .num_links = ARRAY_SIZE(mas_tcu0_links), .links = mas_tcu0_links, }; static const u16 mas_tcu1_links[] = { MSM8916_SLAVE_EBI_CH0, MSM8916_BIMC_SNOC_MAS, MSM8916_SLAVE_AMPSS_L2 }; static struct qcom_icc_node mas_tcu1 = { .name = "mas_tcu1", .id = MSM8916_MASTER_TCU1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .qos.prio_level = 2, .qos.qos_port = 6, .num_links = ARRAY_SIZE(mas_tcu1_links), .links = mas_tcu1_links, }; static const u16 mas_usb_hs_links[] = { MSM8916_PNOC_MAS_1 }; static struct qcom_icc_node mas_usb_hs = { .name = "mas_usb_hs", .id = MSM8916_MASTER_USB_HS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_usb_hs_links), .links = mas_usb_hs_links, }; static const u16 mas_vfe_links[] = { MSM8916_SNOC_MM_INT_1, MSM8916_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_vfe = { .name = "mas_vfe", .id = MSM8916_MASTER_VFE, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 9, .num_links = ARRAY_SIZE(mas_vfe_links), .links = mas_vfe_links, }; static const u16 mas_video_links[] = { MSM8916_SNOC_MM_INT_0, MSM8916_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_video = { .name = "mas_video", .id = MSM8916_MASTER_VIDEO_P0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 8, .num_links = ARRAY_SIZE(mas_video_links), .links = mas_video_links, }; static const u16 mm_int_0_links[] = { MSM8916_SNOC_MM_INT_BIMC }; static struct qcom_icc_node mm_int_0 = { .name = "mm_int_0", .id = MSM8916_SNOC_MM_INT_0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mm_int_0_links), .links = mm_int_0_links, }; static const u16 mm_int_1_links[] = { MSM8916_SNOC_MM_INT_BIMC }; static struct qcom_icc_node mm_int_1 = { .name = "mm_int_1", .id = MSM8916_SNOC_MM_INT_1, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mm_int_1_links), .links = mm_int_1_links, }; static const u16 mm_int_2_links[] = { MSM8916_SNOC_INT_0 }; static struct qcom_icc_node mm_int_2 = { .name = "mm_int_2", .id = MSM8916_SNOC_MM_INT_2, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mm_int_2_links), .links = mm_int_2_links, }; static const u16 mm_int_bimc_links[] = { MSM8916_SNOC_BIMC_1_MAS }; static struct qcom_icc_node mm_int_bimc = { .name = "mm_int_bimc", .id = MSM8916_SNOC_MM_INT_BIMC, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mm_int_bimc_links), .links = mm_int_bimc_links, }; static const u16 pcnoc_int_0_links[] = { MSM8916_PNOC_SNOC_MAS, MSM8916_PNOC_SLV_0, MSM8916_PNOC_SLV_1, MSM8916_PNOC_SLV_2, MSM8916_PNOC_SLV_3, MSM8916_PNOC_SLV_4, MSM8916_PNOC_SLV_8, MSM8916_PNOC_SLV_9 }; static struct qcom_icc_node pcnoc_int_0 = { .name = "pcnoc_int_0", .id = MSM8916_PNOC_INT_0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_int_0_links), .links = pcnoc_int_0_links, }; static const u16 pcnoc_int_1_links[] = { MSM8916_PNOC_SNOC_MAS }; static struct qcom_icc_node pcnoc_int_1 = { .name = "pcnoc_int_1", .id = MSM8916_PNOC_INT_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_int_1_links), .links = pcnoc_int_1_links, }; static const u16 pcnoc_m_0_links[] = { MSM8916_PNOC_INT_0 }; static struct qcom_icc_node pcnoc_m_0 = { .name = "pcnoc_m_0", .id = MSM8916_PNOC_MAS_0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_m_0_links), .links = pcnoc_m_0_links, }; static const u16 pcnoc_m_1_links[] = { MSM8916_PNOC_SNOC_MAS }; static struct qcom_icc_node pcnoc_m_1 = { .name = "pcnoc_m_1", .id = MSM8916_PNOC_MAS_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_m_1_links), .links = pcnoc_m_1_links, }; static const u16 pcnoc_s_0_links[] = { MSM8916_SLAVE_CLK_CTL, MSM8916_SLAVE_TLMM, MSM8916_SLAVE_TCSR, MSM8916_SLAVE_SECURITY, MSM8916_SLAVE_MSS }; static struct qcom_icc_node pcnoc_s_0 = { .name = "pcnoc_s_0", .id = MSM8916_PNOC_SLV_0, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_0_links), .links = pcnoc_s_0_links, }; static const u16 pcnoc_s_1_links[] = { MSM8916_SLAVE_IMEM_CFG, MSM8916_SLAVE_CRYPTO_0_CFG, MSM8916_SLAVE_MSG_RAM, MSM8916_SLAVE_PDM, MSM8916_SLAVE_PRNG }; static struct qcom_icc_node pcnoc_s_1 = { .name = "pcnoc_s_1", .id = MSM8916_PNOC_SLV_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_1_links), .links = pcnoc_s_1_links, }; static const u16 pcnoc_s_2_links[] = { MSM8916_SLAVE_SPDM, MSM8916_SLAVE_BOOT_ROM, MSM8916_SLAVE_BIMC_CFG, MSM8916_SLAVE_PNOC_CFG, MSM8916_SLAVE_PMIC_ARB }; static struct qcom_icc_node pcnoc_s_2 = { .name = "pcnoc_s_2", .id = MSM8916_PNOC_SLV_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_2_links), .links = pcnoc_s_2_links, }; static const u16 pcnoc_s_3_links[] = { MSM8916_SLAVE_MPM, MSM8916_SLAVE_SNOC_CFG, MSM8916_SLAVE_RBCPR_CFG, MSM8916_SLAVE_QDSS_CFG, MSM8916_SLAVE_DEHR_CFG }; static struct qcom_icc_node pcnoc_s_3 = { .name = "pcnoc_s_3", .id = MSM8916_PNOC_SLV_3, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_3_links), .links = pcnoc_s_3_links, }; static const u16 pcnoc_s_4_links[] = { MSM8916_SLAVE_VENUS_CFG, MSM8916_SLAVE_CAMERA_CFG, MSM8916_SLAVE_DISPLAY_CFG }; static struct qcom_icc_node pcnoc_s_4 = { .name = "pcnoc_s_4", .id = MSM8916_PNOC_SLV_4, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_4_links), .links = pcnoc_s_4_links, }; static const u16 pcnoc_s_8_links[] = { MSM8916_SLAVE_USB_HS, MSM8916_SLAVE_SDCC_1, MSM8916_SLAVE_BLSP_1 }; static struct qcom_icc_node pcnoc_s_8 = { .name = "pcnoc_s_8", .id = MSM8916_PNOC_SLV_8, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_8_links), .links = pcnoc_s_8_links, }; static const u16 pcnoc_s_9_links[] = { MSM8916_SLAVE_SDCC_2, MSM8916_SLAVE_LPASS, MSM8916_SLAVE_GRAPHICS_3D_CFG }; static struct qcom_icc_node pcnoc_s_9 = { .name = "pcnoc_s_9", .id = MSM8916_PNOC_SLV_9, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_9_links), .links = pcnoc_s_9_links, }; static const u16 pcnoc_snoc_mas_links[] = { MSM8916_PNOC_SNOC_SLV }; static struct qcom_icc_node pcnoc_snoc_mas = { .name = "pcnoc_snoc_mas", .id = MSM8916_PNOC_SNOC_MAS, .buswidth = 8, .mas_rpm_id = 29, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_snoc_mas_links), .links = pcnoc_snoc_mas_links, }; static const u16 pcnoc_snoc_slv_links[] = { MSM8916_SNOC_INT_0, MSM8916_SNOC_INT_BIMC, MSM8916_SNOC_INT_1 }; static struct qcom_icc_node pcnoc_snoc_slv = { .name = "pcnoc_snoc_slv", .id = MSM8916_PNOC_SNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 45, .num_links = ARRAY_SIZE(pcnoc_snoc_slv_links), .links = pcnoc_snoc_slv_links, }; static const u16 qdss_int_links[] = { MSM8916_SNOC_INT_0, MSM8916_SNOC_INT_BIMC }; static struct qcom_icc_node qdss_int = { .name = "qdss_int", .id = MSM8916_SNOC_QDSS_INT, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(qdss_int_links), .links = qdss_int_links, }; static struct qcom_icc_node slv_apps_l2 = { .name = "slv_apps_l2", .id = MSM8916_SLAVE_AMPSS_L2, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_apss = { .name = "slv_apss", .id = MSM8916_SLAVE_APSS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_audio = { .name = "slv_audio", .id = MSM8916_SLAVE_LPASS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_bimc_cfg = { .name = "slv_bimc_cfg", .id = MSM8916_SLAVE_BIMC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_blsp_1 = { .name = "slv_blsp_1", .id = MSM8916_SLAVE_BLSP_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_boot_rom = { .name = "slv_boot_rom", .id = MSM8916_SLAVE_BOOT_ROM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_camera_cfg = { .name = "slv_camera_cfg", .id = MSM8916_SLAVE_CAMERA_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_cats_0 = { .name = "slv_cats_0", .id = MSM8916_SLAVE_CATS_128, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_cats_1 = { .name = "slv_cats_1", .id = MSM8916_SLAVE_OCMEM_64, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_clk_ctl = { .name = "slv_clk_ctl", .id = MSM8916_SLAVE_CLK_CTL, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_crypto_0_cfg = { .name = "slv_crypto_0_cfg", .id = MSM8916_SLAVE_CRYPTO_0_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_dehr_cfg = { .name = "slv_dehr_cfg", .id = MSM8916_SLAVE_DEHR_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_display_cfg = { .name = "slv_display_cfg", .id = MSM8916_SLAVE_DISPLAY_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_ebi_ch0 = { .name = "slv_ebi_ch0", .id = MSM8916_SLAVE_EBI_CH0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 0, }; static struct qcom_icc_node slv_gfx_cfg = { .name = "slv_gfx_cfg", .id = MSM8916_SLAVE_GRAPHICS_3D_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_imem_cfg = { .name = "slv_imem_cfg", .id = MSM8916_SLAVE_IMEM_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_imem = { .name = "slv_imem", .id = MSM8916_SLAVE_IMEM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 26, }; static struct qcom_icc_node slv_mpm = { .name = "slv_mpm", .id = MSM8916_SLAVE_MPM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_msg_ram = { .name = "slv_msg_ram", .id = MSM8916_SLAVE_MSG_RAM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_mss = { .name = "slv_mss", .id = MSM8916_SLAVE_MSS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pdm = { .name = "slv_pdm", .id = MSM8916_SLAVE_PDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pmic_arb = { .name = "slv_pmic_arb", .id = MSM8916_SLAVE_PMIC_ARB, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pcnoc_cfg = { .name = "slv_pcnoc_cfg", .id = MSM8916_SLAVE_PNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_prng = { .name = "slv_prng", .id = MSM8916_SLAVE_PRNG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_qdss_cfg = { .name = "slv_qdss_cfg", .id = MSM8916_SLAVE_QDSS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_qdss_stm = { .name = "slv_qdss_stm", .id = MSM8916_SLAVE_QDSS_STM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 30, }; static struct qcom_icc_node slv_rbcpr_cfg = { .name = "slv_rbcpr_cfg", .id = MSM8916_SLAVE_RBCPR_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_sdcc_1 = { .name = "slv_sdcc_1", .id = MSM8916_SLAVE_SDCC_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_sdcc_2 = { .name = "slv_sdcc_2", .id = MSM8916_SLAVE_SDCC_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_security = { .name = "slv_security", .id = MSM8916_SLAVE_SECURITY, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_snoc_cfg = { .name = "slv_snoc_cfg", .id = MSM8916_SLAVE_SNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_spdm = { .name = "slv_spdm", .id = MSM8916_SLAVE_SPDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_srvc_snoc = { .name = "slv_srvc_snoc", .id = MSM8916_SLAVE_SRVC_SNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_tcsr = { .name = "slv_tcsr", .id = MSM8916_SLAVE_TCSR, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_tlmm = { .name = "slv_tlmm", .id = MSM8916_SLAVE_TLMM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_usb_hs = { .name = "slv_usb_hs", .id = MSM8916_SLAVE_USB_HS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_venus_cfg = { .name = "slv_venus_cfg", .id = MSM8916_SLAVE_VENUS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static const u16 snoc_bimc_0_mas_links[] = { MSM8916_SNOC_BIMC_0_SLV }; static struct qcom_icc_node snoc_bimc_0_mas = { .name = "snoc_bimc_0_mas", .id = MSM8916_SNOC_BIMC_0_MAS, .buswidth = 8, .mas_rpm_id = 3, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_bimc_0_mas_links), .links = snoc_bimc_0_mas_links, }; static const u16 snoc_bimc_0_slv_links[] = { MSM8916_SLAVE_EBI_CH0 }; static struct qcom_icc_node snoc_bimc_0_slv = { .name = "snoc_bimc_0_slv", .id = MSM8916_SNOC_BIMC_0_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 24, .num_links = ARRAY_SIZE(snoc_bimc_0_slv_links), .links = snoc_bimc_0_slv_links, }; static const u16 snoc_bimc_1_mas_links[] = { MSM8916_SNOC_BIMC_1_SLV }; static struct qcom_icc_node snoc_bimc_1_mas = { .name = "snoc_bimc_1_mas", .id = MSM8916_SNOC_BIMC_1_MAS, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(snoc_bimc_1_mas_links), .links = snoc_bimc_1_mas_links, }; static const u16 snoc_bimc_1_slv_links[] = { MSM8916_SLAVE_EBI_CH0 }; static struct qcom_icc_node snoc_bimc_1_slv = { .name = "snoc_bimc_1_slv", .id = MSM8916_SNOC_BIMC_1_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(snoc_bimc_1_slv_links), .links = snoc_bimc_1_slv_links, }; static const u16 snoc_int_0_links[] = { MSM8916_SLAVE_QDSS_STM, MSM8916_SLAVE_IMEM, MSM8916_SNOC_PNOC_MAS }; static struct qcom_icc_node snoc_int_0 = { .name = "snoc_int_0", .id = MSM8916_SNOC_INT_0, .buswidth = 8, .mas_rpm_id = 99, .slv_rpm_id = 130, .num_links = ARRAY_SIZE(snoc_int_0_links), .links = snoc_int_0_links, }; static const u16 snoc_int_1_links[] = { MSM8916_SLAVE_APSS, MSM8916_SLAVE_CATS_128, MSM8916_SLAVE_OCMEM_64 }; static struct qcom_icc_node snoc_int_1 = { .name = "snoc_int_1", .id = MSM8916_SNOC_INT_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_int_1_links), .links = snoc_int_1_links, }; static const u16 snoc_int_bimc_links[] = { MSM8916_SNOC_BIMC_0_MAS }; static struct qcom_icc_node snoc_int_bimc = { .name = "snoc_int_bimc", .id = MSM8916_SNOC_INT_BIMC, .buswidth = 8, .mas_rpm_id = 101, .slv_rpm_id = 132, .num_links = ARRAY_SIZE(snoc_int_bimc_links), .links = snoc_int_bimc_links, }; static const u16 snoc_pcnoc_mas_links[] = { MSM8916_SNOC_PNOC_SLV }; static struct qcom_icc_node snoc_pcnoc_mas = { .name = "snoc_pcnoc_mas", .id = MSM8916_SNOC_PNOC_MAS, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_pcnoc_mas_links), .links = snoc_pcnoc_mas_links, }; static const u16 snoc_pcnoc_slv_links[] = { MSM8916_PNOC_INT_0 }; static struct qcom_icc_node snoc_pcnoc_slv = { .name = "snoc_pcnoc_slv", .id = MSM8916_SNOC_PNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_pcnoc_slv_links), .links = snoc_pcnoc_slv_links, }; static struct qcom_icc_node * const msm8916_snoc_nodes[] = { [BIMC_SNOC_SLV] = &bimc_snoc_slv, [MASTER_JPEG] = &mas_jpeg, [MASTER_MDP_PORT0] = &mas_mdp, [MASTER_QDSS_BAM] = &mas_qdss_bam, [MASTER_QDSS_ETR] = &mas_qdss_etr, [MASTER_SNOC_CFG] = &mas_snoc_cfg, [MASTER_VFE] = &mas_vfe, [MASTER_VIDEO_P0] = &mas_video, [SNOC_MM_INT_0] = &mm_int_0, [SNOC_MM_INT_1] = &mm_int_1, [SNOC_MM_INT_2] = &mm_int_2, [SNOC_MM_INT_BIMC] = &mm_int_bimc, [PCNOC_SNOC_SLV] = &pcnoc_snoc_slv, [SLAVE_APSS] = &slv_apss, [SLAVE_CATS_128] = &slv_cats_0, [SLAVE_OCMEM_64] = &slv_cats_1, [SLAVE_IMEM] = &slv_imem, [SLAVE_QDSS_STM] = &slv_qdss_stm, [SLAVE_SRVC_SNOC] = &slv_srvc_snoc, [SNOC_BIMC_0_MAS] = &snoc_bimc_0_mas, [SNOC_BIMC_1_MAS] = &snoc_bimc_1_mas, [SNOC_INT_0] = &snoc_int_0, [SNOC_INT_1] = &snoc_int_1, [SNOC_INT_BIMC] = &snoc_int_bimc, [SNOC_PCNOC_MAS] = &snoc_pcnoc_mas, [SNOC_QDSS_INT] = &qdss_int, }; static const struct regmap_config msm8916_snoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x14000, .fast_io = true, }; static const struct qcom_icc_desc msm8916_snoc = { .type = QCOM_ICC_NOC, .nodes = msm8916_snoc_nodes, .num_nodes = ARRAY_SIZE(msm8916_snoc_nodes), .bus_clk_desc = &bus_1_clk, .regmap_cfg = &msm8916_snoc_regmap_config, .qos_offset = 0x7000, }; static struct qcom_icc_node * const msm8916_bimc_nodes[] = { [BIMC_SNOC_MAS] = &bimc_snoc_mas, [MASTER_AMPSS_M0] = &mas_apss, [MASTER_GRAPHICS_3D] = &mas_gfx, [MASTER_TCU0] = &mas_tcu0, [MASTER_TCU1] = &mas_tcu1, [SLAVE_AMPSS_L2] = &slv_apps_l2, [SLAVE_EBI_CH0] = &slv_ebi_ch0, [SNOC_BIMC_0_SLV] = &snoc_bimc_0_slv, [SNOC_BIMC_1_SLV] = &snoc_bimc_1_slv, }; static const struct regmap_config msm8916_bimc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x62000, .fast_io = true, }; static const struct qcom_icc_desc msm8916_bimc = { .type = QCOM_ICC_BIMC, .nodes = msm8916_bimc_nodes, .num_nodes = ARRAY_SIZE(msm8916_bimc_nodes), .bus_clk_desc = &bimc_clk, .regmap_cfg = &msm8916_bimc_regmap_config, .qos_offset = 0x8000, }; static struct qcom_icc_node * const msm8916_pcnoc_nodes[] = { [MASTER_BLSP_1] = &mas_blsp_1, [MASTER_DEHR] = &mas_dehr, [MASTER_LPASS] = &mas_audio, [MASTER_CRYPTO_CORE0] = &mas_pcnoc_crypto_0, [MASTER_SDCC_1] = &mas_pcnoc_sdcc_1, [MASTER_SDCC_2] = &mas_pcnoc_sdcc_2, [MASTER_SPDM] = &mas_spdm, [MASTER_USB_HS] = &mas_usb_hs, [PCNOC_INT_0] = &pcnoc_int_0, [PCNOC_INT_1] = &pcnoc_int_1, [PCNOC_MAS_0] = &pcnoc_m_0, [PCNOC_MAS_1] = &pcnoc_m_1, [PCNOC_SLV_0] = &pcnoc_s_0, [PCNOC_SLV_1] = &pcnoc_s_1, [PCNOC_SLV_2] = &pcnoc_s_2, [PCNOC_SLV_3] = &pcnoc_s_3, [PCNOC_SLV_4] = &pcnoc_s_4, [PCNOC_SLV_8] = &pcnoc_s_8, [PCNOC_SLV_9] = &pcnoc_s_9, [PCNOC_SNOC_MAS] = &pcnoc_snoc_mas, [SLAVE_BIMC_CFG] = &slv_bimc_cfg, [SLAVE_BLSP_1] = &slv_blsp_1, [SLAVE_BOOT_ROM] = &slv_boot_rom, [SLAVE_CAMERA_CFG] = &slv_camera_cfg, [SLAVE_CLK_CTL] = &slv_clk_ctl, [SLAVE_CRYPTO_0_CFG] = &slv_crypto_0_cfg, [SLAVE_DEHR_CFG] = &slv_dehr_cfg, [SLAVE_DISPLAY_CFG] = &slv_display_cfg, [SLAVE_GRAPHICS_3D_CFG] = &slv_gfx_cfg, [SLAVE_IMEM_CFG] = &slv_imem_cfg, [SLAVE_LPASS] = &slv_audio, [SLAVE_MPM] = &slv_mpm, [SLAVE_MSG_RAM] = &slv_msg_ram, [SLAVE_MSS] = &slv_mss, [SLAVE_PDM] = &slv_pdm, [SLAVE_PMIC_ARB] = &slv_pmic_arb, [SLAVE_PCNOC_CFG] = &slv_pcnoc_cfg, [SLAVE_PRNG] = &slv_prng, [SLAVE_QDSS_CFG] = &slv_qdss_cfg, [SLAVE_RBCPR_CFG] = &slv_rbcpr_cfg, [SLAVE_SDCC_1] = &slv_sdcc_1, [SLAVE_SDCC_2] = &slv_sdcc_2, [SLAVE_SECURITY] = &slv_security, [SLAVE_SNOC_CFG] = &slv_snoc_cfg, [SLAVE_SPDM] = &slv_spdm, [SLAVE_TCSR] = &slv_tcsr, [SLAVE_TLMM] = &slv_tlmm, [SLAVE_USB_HS] = &slv_usb_hs, [SLAVE_VENUS_CFG] = &slv_venus_cfg, [SNOC_PCNOC_SLV] = &snoc_pcnoc_slv, }; static const struct regmap_config msm8916_pcnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x11000, .fast_io = true, }; static const struct qcom_icc_desc msm8916_pcnoc = { .type = QCOM_ICC_NOC, .nodes = msm8916_pcnoc_nodes, .num_nodes = ARRAY_SIZE(msm8916_pcnoc_nodes), .bus_clk_desc = &bus_0_clk, .regmap_cfg = &msm8916_pcnoc_regmap_config, .qos_offset = 0x7000, }; static const struct of_device_id msm8916_noc_of_match[] = { { .compatible = "qcom,msm8916-bimc", .data = &msm8916_bimc }, { .compatible = "qcom,msm8916-pcnoc", .data = &msm8916_pcnoc }, { .compatible = "qcom,msm8916-snoc", .data = &msm8916_snoc }, { } }; MODULE_DEVICE_TABLE(of, msm8916_noc_of_match); static struct platform_driver msm8916_noc_driver = { .probe = qnoc_probe, .remove = qnoc_remove, .driver = { .name = "qnoc-msm8916", .of_match_table = msm8916_noc_of_match, }, }; module_platform_driver(msm8916_noc_driver); MODULE_AUTHOR("Georgi Djakov <[email protected]>"); MODULE_DESCRIPTION("Qualcomm MSM8916 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/msm8916.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 Linaro Ltd * Author: Jun Nie <[email protected]> * With reference of msm8916 interconnect driver of Georgi Djakov. */ #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <dt-bindings/interconnect/qcom,msm8939.h> #include "icc-rpm.h" enum { MSM8939_BIMC_SNOC_MAS = 1, MSM8939_BIMC_SNOC_SLV, MSM8939_MASTER_AMPSS_M0, MSM8939_MASTER_LPASS, MSM8939_MASTER_BLSP_1, MSM8939_MASTER_DEHR, MSM8939_MASTER_GRAPHICS_3D, MSM8939_MASTER_JPEG, MSM8939_MASTER_MDP_PORT0, MSM8939_MASTER_MDP_PORT1, MSM8939_MASTER_CPP, MSM8939_MASTER_CRYPTO_CORE0, MSM8939_MASTER_SDCC_1, MSM8939_MASTER_SDCC_2, MSM8939_MASTER_QDSS_BAM, MSM8939_MASTER_QDSS_ETR, MSM8939_MASTER_SNOC_CFG, MSM8939_MASTER_SPDM, MSM8939_MASTER_TCU0, MSM8939_MASTER_USB_HS1, MSM8939_MASTER_USB_HS2, MSM8939_MASTER_VFE, MSM8939_MASTER_VIDEO_P0, MSM8939_SNOC_MM_INT_0, MSM8939_SNOC_MM_INT_1, MSM8939_SNOC_MM_INT_2, MSM8939_PNOC_INT_0, MSM8939_PNOC_INT_1, MSM8939_PNOC_MAS_0, MSM8939_PNOC_MAS_1, MSM8939_PNOC_SLV_0, MSM8939_PNOC_SLV_1, MSM8939_PNOC_SLV_2, MSM8939_PNOC_SLV_3, MSM8939_PNOC_SLV_4, MSM8939_PNOC_SLV_8, MSM8939_PNOC_SLV_9, MSM8939_PNOC_SNOC_MAS, MSM8939_PNOC_SNOC_SLV, MSM8939_SNOC_QDSS_INT, MSM8939_SLAVE_AMPSS_L2, MSM8939_SLAVE_APSS, MSM8939_SLAVE_LPASS, MSM8939_SLAVE_BIMC_CFG, MSM8939_SLAVE_BLSP_1, MSM8939_SLAVE_BOOT_ROM, MSM8939_SLAVE_CAMERA_CFG, MSM8939_SLAVE_CATS_128, MSM8939_SLAVE_OCMEM_64, MSM8939_SLAVE_CLK_CTL, MSM8939_SLAVE_CRYPTO_0_CFG, MSM8939_SLAVE_DEHR_CFG, MSM8939_SLAVE_DISPLAY_CFG, MSM8939_SLAVE_EBI_CH0, MSM8939_SLAVE_GRAPHICS_3D_CFG, MSM8939_SLAVE_IMEM_CFG, MSM8939_SLAVE_IMEM, MSM8939_SLAVE_MPM, MSM8939_SLAVE_MSG_RAM, MSM8939_SLAVE_MSS, MSM8939_SLAVE_PDM, MSM8939_SLAVE_PMIC_ARB, MSM8939_SLAVE_PNOC_CFG, MSM8939_SLAVE_PRNG, MSM8939_SLAVE_QDSS_CFG, MSM8939_SLAVE_QDSS_STM, MSM8939_SLAVE_RBCPR_CFG, MSM8939_SLAVE_SDCC_1, MSM8939_SLAVE_SDCC_2, MSM8939_SLAVE_SECURITY, MSM8939_SLAVE_SNOC_CFG, MSM8939_SLAVE_SPDM, MSM8939_SLAVE_SRVC_SNOC, MSM8939_SLAVE_TCSR, MSM8939_SLAVE_TLMM, MSM8939_SLAVE_USB_HS1, MSM8939_SLAVE_USB_HS2, MSM8939_SLAVE_VENUS_CFG, MSM8939_SNOC_BIMC_0_MAS, MSM8939_SNOC_BIMC_0_SLV, MSM8939_SNOC_BIMC_1_MAS, MSM8939_SNOC_BIMC_1_SLV, MSM8939_SNOC_BIMC_2_MAS, MSM8939_SNOC_BIMC_2_SLV, MSM8939_SNOC_INT_0, MSM8939_SNOC_INT_1, MSM8939_SNOC_INT_BIMC, MSM8939_SNOC_PNOC_MAS, MSM8939_SNOC_PNOC_SLV, }; static const u16 bimc_snoc_mas_links[] = { MSM8939_BIMC_SNOC_SLV }; static struct qcom_icc_node bimc_snoc_mas = { .name = "bimc_snoc_mas", .id = MSM8939_BIMC_SNOC_MAS, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(bimc_snoc_mas_links), .links = bimc_snoc_mas_links, }; static const u16 bimc_snoc_slv_links[] = { MSM8939_SNOC_INT_0, MSM8939_SNOC_INT_1 }; static struct qcom_icc_node bimc_snoc_slv = { .name = "bimc_snoc_slv", .id = MSM8939_BIMC_SNOC_SLV, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 2, .num_links = ARRAY_SIZE(bimc_snoc_slv_links), .links = bimc_snoc_slv_links, }; static const u16 mas_apss_links[] = { MSM8939_SLAVE_EBI_CH0, MSM8939_BIMC_SNOC_MAS, MSM8939_SLAVE_AMPSS_L2 }; static struct qcom_icc_node mas_apss = { .name = "mas_apss", .id = MSM8939_MASTER_AMPSS_M0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 0, .num_links = ARRAY_SIZE(mas_apss_links), .links = mas_apss_links, }; static const u16 mas_audio_links[] = { MSM8939_PNOC_MAS_0 }; static struct qcom_icc_node mas_audio = { .name = "mas_audio", .id = MSM8939_MASTER_LPASS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_audio_links), .links = mas_audio_links, }; static const u16 mas_blsp_1_links[] = { MSM8939_PNOC_MAS_1 }; static struct qcom_icc_node mas_blsp_1 = { .name = "mas_blsp_1", .id = MSM8939_MASTER_BLSP_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_blsp_1_links), .links = mas_blsp_1_links, }; static const u16 mas_dehr_links[] = { MSM8939_PNOC_MAS_0 }; static struct qcom_icc_node mas_dehr = { .name = "mas_dehr", .id = MSM8939_MASTER_DEHR, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_dehr_links), .links = mas_dehr_links, }; static const u16 mas_gfx_links[] = { MSM8939_SLAVE_EBI_CH0, MSM8939_BIMC_SNOC_MAS, MSM8939_SLAVE_AMPSS_L2 }; static struct qcom_icc_node mas_gfx = { .name = "mas_gfx", .id = MSM8939_MASTER_GRAPHICS_3D, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 2, .num_links = ARRAY_SIZE(mas_gfx_links), .links = mas_gfx_links, }; static const u16 mas_jpeg_links[] = { MSM8939_SNOC_MM_INT_0, MSM8939_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_jpeg = { .name = "mas_jpeg", .id = MSM8939_MASTER_JPEG, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 6, .num_links = ARRAY_SIZE(mas_jpeg_links), .links = mas_jpeg_links, }; static const u16 mas_mdp0_links[] = { MSM8939_SNOC_MM_INT_1, MSM8939_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_mdp0 = { .name = "mas_mdp0", .id = MSM8939_MASTER_MDP_PORT0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 7, .num_links = ARRAY_SIZE(mas_mdp0_links), .links = mas_mdp0_links, }; static const u16 mas_mdp1_links[] = { MSM8939_SNOC_MM_INT_0, MSM8939_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_mdp1 = { .name = "mas_mdp1", .id = MSM8939_MASTER_MDP_PORT1, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 13, .num_links = ARRAY_SIZE(mas_mdp1_links), .links = mas_mdp1_links, }; static const u16 mas_cpp_links[] = { MSM8939_SNOC_MM_INT_0, MSM8939_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_cpp = { .name = "mas_cpp", .id = MSM8939_MASTER_CPP, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 12, .num_links = ARRAY_SIZE(mas_cpp_links), .links = mas_cpp_links, }; static const u16 mas_pcnoc_crypto_0_links[] = { MSM8939_PNOC_INT_1 }; static struct qcom_icc_node mas_pcnoc_crypto_0 = { .name = "mas_pcnoc_crypto_0", .id = MSM8939_MASTER_CRYPTO_CORE0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcnoc_crypto_0_links), .links = mas_pcnoc_crypto_0_links, }; static const u16 mas_pcnoc_sdcc_1_links[] = { MSM8939_PNOC_INT_1 }; static struct qcom_icc_node mas_pcnoc_sdcc_1 = { .name = "mas_pcnoc_sdcc_1", .id = MSM8939_MASTER_SDCC_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcnoc_sdcc_1_links), .links = mas_pcnoc_sdcc_1_links, }; static const u16 mas_pcnoc_sdcc_2_links[] = { MSM8939_PNOC_INT_1 }; static struct qcom_icc_node mas_pcnoc_sdcc_2 = { .name = "mas_pcnoc_sdcc_2", .id = MSM8939_MASTER_SDCC_2, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_pcnoc_sdcc_2_links), .links = mas_pcnoc_sdcc_2_links, }; static const u16 mas_qdss_bam_links[] = { MSM8939_SNOC_QDSS_INT }; static struct qcom_icc_node mas_qdss_bam = { .name = "mas_qdss_bam", .id = MSM8939_MASTER_QDSS_BAM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 11, .num_links = ARRAY_SIZE(mas_qdss_bam_links), .links = mas_qdss_bam_links, }; static const u16 mas_qdss_etr_links[] = { MSM8939_SNOC_QDSS_INT }; static struct qcom_icc_node mas_qdss_etr = { .name = "mas_qdss_etr", .id = MSM8939_MASTER_QDSS_ETR, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 1, .qos.prio_level = 1, .qos.qos_port = 10, .num_links = ARRAY_SIZE(mas_qdss_etr_links), .links = mas_qdss_etr_links, }; static const u16 mas_snoc_cfg_links[] = { MSM8939_SLAVE_SRVC_SNOC }; static struct qcom_icc_node mas_snoc_cfg = { .name = "mas_snoc_cfg", .id = MSM8939_MASTER_SNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_snoc_cfg_links), .links = mas_snoc_cfg_links, }; static const u16 mas_spdm_links[] = { MSM8939_PNOC_MAS_0 }; static struct qcom_icc_node mas_spdm = { .name = "mas_spdm", .id = MSM8939_MASTER_SPDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_spdm_links), .links = mas_spdm_links, }; static const u16 mas_tcu0_links[] = { MSM8939_SLAVE_EBI_CH0, MSM8939_BIMC_SNOC_MAS, MSM8939_SLAVE_AMPSS_L2 }; static struct qcom_icc_node mas_tcu0 = { .name = "mas_tcu0", .id = MSM8939_MASTER_TCU0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_FIXED, .qos.areq_prio = 2, .qos.prio_level = 2, .qos.qos_port = 6, .num_links = ARRAY_SIZE(mas_tcu0_links), .links = mas_tcu0_links, }; static const u16 mas_usb_hs1_links[] = { MSM8939_PNOC_MAS_1 }; static struct qcom_icc_node mas_usb_hs1 = { .name = "mas_usb_hs1", .id = MSM8939_MASTER_USB_HS1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_usb_hs1_links), .links = mas_usb_hs1_links, }; static const u16 mas_usb_hs2_links[] = { MSM8939_PNOC_MAS_1 }; static struct qcom_icc_node mas_usb_hs2 = { .name = "mas_usb_hs2", .id = MSM8939_MASTER_USB_HS2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(mas_usb_hs2_links), .links = mas_usb_hs2_links, }; static const u16 mas_vfe_links[] = { MSM8939_SNOC_MM_INT_1, MSM8939_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_vfe = { .name = "mas_vfe", .id = MSM8939_MASTER_VFE, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 9, .num_links = ARRAY_SIZE(mas_vfe_links), .links = mas_vfe_links, }; static const u16 mas_video_links[] = { MSM8939_SNOC_MM_INT_0, MSM8939_SNOC_MM_INT_2 }; static struct qcom_icc_node mas_video = { .name = "mas_video", .id = MSM8939_MASTER_VIDEO_P0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_BYPASS, .qos.areq_prio = 0, .qos.prio_level = 0, .qos.qos_port = 8, .num_links = ARRAY_SIZE(mas_video_links), .links = mas_video_links, }; static const u16 mm_int_0_links[] = { MSM8939_SNOC_BIMC_2_MAS }; static struct qcom_icc_node mm_int_0 = { .name = "mm_int_0", .id = MSM8939_SNOC_MM_INT_0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mm_int_0_links), .links = mm_int_0_links, }; static const u16 mm_int_1_links[] = { MSM8939_SNOC_BIMC_1_MAS }; static struct qcom_icc_node mm_int_1 = { .name = "mm_int_1", .id = MSM8939_SNOC_MM_INT_1, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mm_int_1_links), .links = mm_int_1_links, }; static const u16 mm_int_2_links[] = { MSM8939_SNOC_INT_0 }; static struct qcom_icc_node mm_int_2 = { .name = "mm_int_2", .id = MSM8939_SNOC_MM_INT_2, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(mm_int_2_links), .links = mm_int_2_links, }; static const u16 pcnoc_int_0_links[] = { MSM8939_PNOC_SNOC_MAS, MSM8939_PNOC_SLV_0, MSM8939_PNOC_SLV_1, MSM8939_PNOC_SLV_2, MSM8939_PNOC_SLV_3, MSM8939_PNOC_SLV_4, MSM8939_PNOC_SLV_8, MSM8939_PNOC_SLV_9 }; static struct qcom_icc_node pcnoc_int_0 = { .name = "pcnoc_int_0", .id = MSM8939_PNOC_INT_0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_int_0_links), .links = pcnoc_int_0_links, }; static const u16 pcnoc_int_1_links[] = { MSM8939_PNOC_SNOC_MAS }; static struct qcom_icc_node pcnoc_int_1 = { .name = "pcnoc_int_1", .id = MSM8939_PNOC_INT_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_int_1_links), .links = pcnoc_int_1_links, }; static const u16 pcnoc_m_0_links[] = { MSM8939_PNOC_INT_0 }; static struct qcom_icc_node pcnoc_m_0 = { .name = "pcnoc_m_0", .id = MSM8939_PNOC_MAS_0, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_m_0_links), .links = pcnoc_m_0_links, }; static const u16 pcnoc_m_1_links[] = { MSM8939_PNOC_SNOC_MAS }; static struct qcom_icc_node pcnoc_m_1 = { .name = "pcnoc_m_1", .id = MSM8939_PNOC_MAS_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_m_1_links), .links = pcnoc_m_1_links, }; static const u16 pcnoc_s_0_links[] = { MSM8939_SLAVE_CLK_CTL, MSM8939_SLAVE_TLMM, MSM8939_SLAVE_TCSR, MSM8939_SLAVE_SECURITY, MSM8939_SLAVE_MSS }; static struct qcom_icc_node pcnoc_s_0 = { .name = "pcnoc_s_0", .id = MSM8939_PNOC_SLV_0, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_0_links), .links = pcnoc_s_0_links, }; static const u16 pcnoc_s_1_links[] = { MSM8939_SLAVE_IMEM_CFG, MSM8939_SLAVE_CRYPTO_0_CFG, MSM8939_SLAVE_MSG_RAM, MSM8939_SLAVE_PDM, MSM8939_SLAVE_PRNG }; static struct qcom_icc_node pcnoc_s_1 = { .name = "pcnoc_s_1", .id = MSM8939_PNOC_SLV_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_1_links), .links = pcnoc_s_1_links, }; static const u16 pcnoc_s_2_links[] = { MSM8939_SLAVE_SPDM, MSM8939_SLAVE_BOOT_ROM, MSM8939_SLAVE_BIMC_CFG, MSM8939_SLAVE_PNOC_CFG, MSM8939_SLAVE_PMIC_ARB }; static struct qcom_icc_node pcnoc_s_2 = { .name = "pcnoc_s_2", .id = MSM8939_PNOC_SLV_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_2_links), .links = pcnoc_s_2_links, }; static const u16 pcnoc_s_3_links[] = { MSM8939_SLAVE_MPM, MSM8939_SLAVE_SNOC_CFG, MSM8939_SLAVE_RBCPR_CFG, MSM8939_SLAVE_QDSS_CFG, MSM8939_SLAVE_DEHR_CFG }; static struct qcom_icc_node pcnoc_s_3 = { .name = "pcnoc_s_3", .id = MSM8939_PNOC_SLV_3, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_3_links), .links = pcnoc_s_3_links, }; static const u16 pcnoc_s_4_links[] = { MSM8939_SLAVE_VENUS_CFG, MSM8939_SLAVE_CAMERA_CFG, MSM8939_SLAVE_DISPLAY_CFG }; static struct qcom_icc_node pcnoc_s_4 = { .name = "pcnoc_s_4", .id = MSM8939_PNOC_SLV_4, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_4_links), .links = pcnoc_s_4_links, }; static const u16 pcnoc_s_8_links[] = { MSM8939_SLAVE_USB_HS1, MSM8939_SLAVE_SDCC_1, MSM8939_SLAVE_BLSP_1 }; static struct qcom_icc_node pcnoc_s_8 = { .name = "pcnoc_s_8", .id = MSM8939_PNOC_SLV_8, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_8_links), .links = pcnoc_s_8_links, }; static const u16 pcnoc_s_9_links[] = { MSM8939_SLAVE_SDCC_2, MSM8939_SLAVE_LPASS, MSM8939_SLAVE_USB_HS2 }; static struct qcom_icc_node pcnoc_s_9 = { .name = "pcnoc_s_9", .id = MSM8939_PNOC_SLV_9, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_s_9_links), .links = pcnoc_s_9_links, }; static const u16 pcnoc_snoc_mas_links[] = { MSM8939_PNOC_SNOC_SLV }; static struct qcom_icc_node pcnoc_snoc_mas = { .name = "pcnoc_snoc_mas", .id = MSM8939_PNOC_SNOC_MAS, .buswidth = 8, .mas_rpm_id = 29, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(pcnoc_snoc_mas_links), .links = pcnoc_snoc_mas_links, }; static const u16 pcnoc_snoc_slv_links[] = { MSM8939_SNOC_INT_0, MSM8939_SNOC_INT_BIMC, MSM8939_SNOC_INT_1 }; static struct qcom_icc_node pcnoc_snoc_slv = { .name = "pcnoc_snoc_slv", .id = MSM8939_PNOC_SNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 45, .num_links = ARRAY_SIZE(pcnoc_snoc_slv_links), .links = pcnoc_snoc_slv_links, }; static const u16 qdss_int_links[] = { MSM8939_SNOC_INT_0, MSM8939_SNOC_INT_BIMC }; static struct qcom_icc_node qdss_int = { .name = "qdss_int", .id = MSM8939_SNOC_QDSS_INT, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(qdss_int_links), .links = qdss_int_links, }; static struct qcom_icc_node slv_apps_l2 = { .name = "slv_apps_l2", .id = MSM8939_SLAVE_AMPSS_L2, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_apss = { .name = "slv_apss", .id = MSM8939_SLAVE_APSS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_audio = { .name = "slv_audio", .id = MSM8939_SLAVE_LPASS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_bimc_cfg = { .name = "slv_bimc_cfg", .id = MSM8939_SLAVE_BIMC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_blsp_1 = { .name = "slv_blsp_1", .id = MSM8939_SLAVE_BLSP_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_boot_rom = { .name = "slv_boot_rom", .id = MSM8939_SLAVE_BOOT_ROM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_camera_cfg = { .name = "slv_camera_cfg", .id = MSM8939_SLAVE_CAMERA_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_cats_0 = { .name = "slv_cats_0", .id = MSM8939_SLAVE_CATS_128, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_cats_1 = { .name = "slv_cats_1", .id = MSM8939_SLAVE_OCMEM_64, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_clk_ctl = { .name = "slv_clk_ctl", .id = MSM8939_SLAVE_CLK_CTL, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_crypto_0_cfg = { .name = "slv_crypto_0_cfg", .id = MSM8939_SLAVE_CRYPTO_0_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_dehr_cfg = { .name = "slv_dehr_cfg", .id = MSM8939_SLAVE_DEHR_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_display_cfg = { .name = "slv_display_cfg", .id = MSM8939_SLAVE_DISPLAY_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_ebi_ch0 = { .name = "slv_ebi_ch0", .id = MSM8939_SLAVE_EBI_CH0, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 0, }; static struct qcom_icc_node slv_gfx_cfg = { .name = "slv_gfx_cfg", .id = MSM8939_SLAVE_GRAPHICS_3D_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_imem_cfg = { .name = "slv_imem_cfg", .id = MSM8939_SLAVE_IMEM_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_imem = { .name = "slv_imem", .id = MSM8939_SLAVE_IMEM, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = 26, }; static struct qcom_icc_node slv_mpm = { .name = "slv_mpm", .id = MSM8939_SLAVE_MPM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_msg_ram = { .name = "slv_msg_ram", .id = MSM8939_SLAVE_MSG_RAM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_mss = { .name = "slv_mss", .id = MSM8939_SLAVE_MSS, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pdm = { .name = "slv_pdm", .id = MSM8939_SLAVE_PDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pmic_arb = { .name = "slv_pmic_arb", .id = MSM8939_SLAVE_PMIC_ARB, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_pcnoc_cfg = { .name = "slv_pcnoc_cfg", .id = MSM8939_SLAVE_PNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_prng = { .name = "slv_prng", .id = MSM8939_SLAVE_PRNG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_qdss_cfg = { .name = "slv_qdss_cfg", .id = MSM8939_SLAVE_QDSS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_qdss_stm = { .name = "slv_qdss_stm", .id = MSM8939_SLAVE_QDSS_STM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = 30, }; static struct qcom_icc_node slv_rbcpr_cfg = { .name = "slv_rbcpr_cfg", .id = MSM8939_SLAVE_RBCPR_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_sdcc_1 = { .name = "slv_sdcc_1", .id = MSM8939_SLAVE_SDCC_1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_sdcc_2 = { .name = "slv_sdcc_2", .id = MSM8939_SLAVE_SDCC_2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_security = { .name = "slv_security", .id = MSM8939_SLAVE_SECURITY, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_snoc_cfg = { .name = "slv_snoc_cfg", .id = MSM8939_SLAVE_SNOC_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_spdm = { .name = "slv_spdm", .id = MSM8939_SLAVE_SPDM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_srvc_snoc = { .name = "slv_srvc_snoc", .id = MSM8939_SLAVE_SRVC_SNOC, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_tcsr = { .name = "slv_tcsr", .id = MSM8939_SLAVE_TCSR, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_tlmm = { .name = "slv_tlmm", .id = MSM8939_SLAVE_TLMM, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_usb_hs1 = { .name = "slv_usb_hs1", .id = MSM8939_SLAVE_USB_HS1, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_usb_hs2 = { .name = "slv_usb_hs2", .id = MSM8939_SLAVE_USB_HS2, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static struct qcom_icc_node slv_venus_cfg = { .name = "slv_venus_cfg", .id = MSM8939_SLAVE_VENUS_CFG, .buswidth = 4, .mas_rpm_id = -1, .slv_rpm_id = -1, }; static const u16 snoc_bimc_0_mas_links[] = { MSM8939_SNOC_BIMC_0_SLV }; static struct qcom_icc_node snoc_bimc_0_mas = { .name = "snoc_bimc_0_mas", .id = MSM8939_SNOC_BIMC_0_MAS, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(snoc_bimc_0_mas_links), .links = snoc_bimc_0_mas_links, }; static const u16 snoc_bimc_0_slv_links[] = { MSM8939_SLAVE_EBI_CH0 }; static struct qcom_icc_node snoc_bimc_0_slv = { .name = "snoc_bimc_0_slv", .id = MSM8939_SNOC_BIMC_0_SLV, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(snoc_bimc_0_slv_links), .links = snoc_bimc_0_slv_links, }; static const u16 snoc_bimc_1_mas_links[] = { MSM8939_SNOC_BIMC_1_SLV }; static struct qcom_icc_node snoc_bimc_1_mas = { .name = "snoc_bimc_1_mas", .id = MSM8939_SNOC_BIMC_1_MAS, .buswidth = 16, .mas_rpm_id = 76, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_bimc_1_mas_links), .links = snoc_bimc_1_mas_links, }; static const u16 snoc_bimc_1_slv_links[] = { MSM8939_SLAVE_EBI_CH0 }; static struct qcom_icc_node snoc_bimc_1_slv = { .name = "snoc_bimc_1_slv", .id = MSM8939_SNOC_BIMC_1_SLV, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = 104, .num_links = ARRAY_SIZE(snoc_bimc_1_slv_links), .links = snoc_bimc_1_slv_links, }; static const u16 snoc_bimc_2_mas_links[] = { MSM8939_SNOC_BIMC_2_SLV }; static struct qcom_icc_node snoc_bimc_2_mas = { .name = "snoc_bimc_2_mas", .id = MSM8939_SNOC_BIMC_2_MAS, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(snoc_bimc_2_mas_links), .links = snoc_bimc_2_mas_links, }; static const u16 snoc_bimc_2_slv_links[] = { MSM8939_SLAVE_EBI_CH0 }; static struct qcom_icc_node snoc_bimc_2_slv = { .name = "snoc_bimc_2_slv", .id = MSM8939_SNOC_BIMC_2_SLV, .buswidth = 16, .mas_rpm_id = -1, .slv_rpm_id = -1, .qos.ap_owned = true, .qos.qos_mode = NOC_QOS_MODE_INVALID, .num_links = ARRAY_SIZE(snoc_bimc_2_slv_links), .links = snoc_bimc_2_slv_links, }; static const u16 snoc_int_0_links[] = { MSM8939_SLAVE_QDSS_STM, MSM8939_SLAVE_IMEM, MSM8939_SNOC_PNOC_MAS }; static struct qcom_icc_node snoc_int_0 = { .name = "snoc_int_0", .id = MSM8939_SNOC_INT_0, .buswidth = 8, .mas_rpm_id = 99, .slv_rpm_id = 130, .num_links = ARRAY_SIZE(snoc_int_0_links), .links = snoc_int_0_links, }; static const u16 snoc_int_1_links[] = { MSM8939_SLAVE_APSS, MSM8939_SLAVE_CATS_128, MSM8939_SLAVE_OCMEM_64 }; static struct qcom_icc_node snoc_int_1 = { .name = "snoc_int_1", .id = MSM8939_SNOC_INT_1, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_int_1_links), .links = snoc_int_1_links, }; static const u16 snoc_int_bimc_links[] = { MSM8939_SNOC_BIMC_1_MAS }; static struct qcom_icc_node snoc_int_bimc = { .name = "snoc_int_bimc", .id = MSM8939_SNOC_INT_BIMC, .buswidth = 8, .mas_rpm_id = 101, .slv_rpm_id = 132, .num_links = ARRAY_SIZE(snoc_int_bimc_links), .links = snoc_int_bimc_links, }; static const u16 snoc_pcnoc_mas_links[] = { MSM8939_SNOC_PNOC_SLV }; static struct qcom_icc_node snoc_pcnoc_mas = { .name = "snoc_pcnoc_mas", .id = MSM8939_SNOC_PNOC_MAS, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_pcnoc_mas_links), .links = snoc_pcnoc_mas_links, }; static const u16 snoc_pcnoc_slv_links[] = { MSM8939_PNOC_INT_0 }; static struct qcom_icc_node snoc_pcnoc_slv = { .name = "snoc_pcnoc_slv", .id = MSM8939_SNOC_PNOC_SLV, .buswidth = 8, .mas_rpm_id = -1, .slv_rpm_id = -1, .num_links = ARRAY_SIZE(snoc_pcnoc_slv_links), .links = snoc_pcnoc_slv_links, }; static struct qcom_icc_node * const msm8939_snoc_nodes[] = { [BIMC_SNOC_SLV] = &bimc_snoc_slv, [MASTER_QDSS_BAM] = &mas_qdss_bam, [MASTER_QDSS_ETR] = &mas_qdss_etr, [MASTER_SNOC_CFG] = &mas_snoc_cfg, [PCNOC_SNOC_SLV] = &pcnoc_snoc_slv, [SLAVE_APSS] = &slv_apss, [SLAVE_CATS_128] = &slv_cats_0, [SLAVE_OCMEM_64] = &slv_cats_1, [SLAVE_IMEM] = &slv_imem, [SLAVE_QDSS_STM] = &slv_qdss_stm, [SLAVE_SRVC_SNOC] = &slv_srvc_snoc, [SNOC_BIMC_0_MAS] = &snoc_bimc_0_mas, [SNOC_BIMC_1_MAS] = &snoc_bimc_1_mas, [SNOC_BIMC_2_MAS] = &snoc_bimc_2_mas, [SNOC_INT_0] = &snoc_int_0, [SNOC_INT_1] = &snoc_int_1, [SNOC_INT_BIMC] = &snoc_int_bimc, [SNOC_PCNOC_MAS] = &snoc_pcnoc_mas, [SNOC_QDSS_INT] = &qdss_int, }; static const struct regmap_config msm8939_snoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x14080, .fast_io = true, }; static const struct qcom_icc_desc msm8939_snoc = { .type = QCOM_ICC_NOC, .nodes = msm8939_snoc_nodes, .num_nodes = ARRAY_SIZE(msm8939_snoc_nodes), .bus_clk_desc = &bus_1_clk, .regmap_cfg = &msm8939_snoc_regmap_config, .qos_offset = 0x7000, }; static struct qcom_icc_node * const msm8939_snoc_mm_nodes[] = { [MASTER_VIDEO_P0] = &mas_video, [MASTER_JPEG] = &mas_jpeg, [MASTER_VFE] = &mas_vfe, [MASTER_MDP_PORT0] = &mas_mdp0, [MASTER_MDP_PORT1] = &mas_mdp1, [MASTER_CPP] = &mas_cpp, [SNOC_MM_INT_0] = &mm_int_0, [SNOC_MM_INT_1] = &mm_int_1, [SNOC_MM_INT_2] = &mm_int_2, }; static const struct qcom_icc_desc msm8939_snoc_mm = { .type = QCOM_ICC_NOC, .nodes = msm8939_snoc_mm_nodes, .num_nodes = ARRAY_SIZE(msm8939_snoc_mm_nodes), .bus_clk_desc = &bus_2_clk, .regmap_cfg = &msm8939_snoc_regmap_config, .qos_offset = 0x7000, }; static struct qcom_icc_node * const msm8939_bimc_nodes[] = { [BIMC_SNOC_MAS] = &bimc_snoc_mas, [MASTER_AMPSS_M0] = &mas_apss, [MASTER_GRAPHICS_3D] = &mas_gfx, [MASTER_TCU0] = &mas_tcu0, [SLAVE_AMPSS_L2] = &slv_apps_l2, [SLAVE_EBI_CH0] = &slv_ebi_ch0, [SNOC_BIMC_0_SLV] = &snoc_bimc_0_slv, [SNOC_BIMC_1_SLV] = &snoc_bimc_1_slv, [SNOC_BIMC_2_SLV] = &snoc_bimc_2_slv, }; static const struct regmap_config msm8939_bimc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x62000, .fast_io = true, }; static const struct qcom_icc_desc msm8939_bimc = { .type = QCOM_ICC_BIMC, .nodes = msm8939_bimc_nodes, .num_nodes = ARRAY_SIZE(msm8939_bimc_nodes), .bus_clk_desc = &bimc_clk, .regmap_cfg = &msm8939_bimc_regmap_config, .qos_offset = 0x8000, }; static struct qcom_icc_node * const msm8939_pcnoc_nodes[] = { [MASTER_BLSP_1] = &mas_blsp_1, [MASTER_DEHR] = &mas_dehr, [MASTER_LPASS] = &mas_audio, [MASTER_CRYPTO_CORE0] = &mas_pcnoc_crypto_0, [MASTER_SDCC_1] = &mas_pcnoc_sdcc_1, [MASTER_SDCC_2] = &mas_pcnoc_sdcc_2, [MASTER_SPDM] = &mas_spdm, [MASTER_USB_HS1] = &mas_usb_hs1, [MASTER_USB_HS2] = &mas_usb_hs2, [PCNOC_INT_0] = &pcnoc_int_0, [PCNOC_INT_1] = &pcnoc_int_1, [PCNOC_MAS_0] = &pcnoc_m_0, [PCNOC_MAS_1] = &pcnoc_m_1, [PCNOC_SLV_0] = &pcnoc_s_0, [PCNOC_SLV_1] = &pcnoc_s_1, [PCNOC_SLV_2] = &pcnoc_s_2, [PCNOC_SLV_3] = &pcnoc_s_3, [PCNOC_SLV_4] = &pcnoc_s_4, [PCNOC_SLV_8] = &pcnoc_s_8, [PCNOC_SLV_9] = &pcnoc_s_9, [PCNOC_SNOC_MAS] = &pcnoc_snoc_mas, [SLAVE_BIMC_CFG] = &slv_bimc_cfg, [SLAVE_BLSP_1] = &slv_blsp_1, [SLAVE_BOOT_ROM] = &slv_boot_rom, [SLAVE_CAMERA_CFG] = &slv_camera_cfg, [SLAVE_CLK_CTL] = &slv_clk_ctl, [SLAVE_CRYPTO_0_CFG] = &slv_crypto_0_cfg, [SLAVE_DEHR_CFG] = &slv_dehr_cfg, [SLAVE_DISPLAY_CFG] = &slv_display_cfg, [SLAVE_GRAPHICS_3D_CFG] = &slv_gfx_cfg, [SLAVE_IMEM_CFG] = &slv_imem_cfg, [SLAVE_LPASS] = &slv_audio, [SLAVE_MPM] = &slv_mpm, [SLAVE_MSG_RAM] = &slv_msg_ram, [SLAVE_MSS] = &slv_mss, [SLAVE_PDM] = &slv_pdm, [SLAVE_PMIC_ARB] = &slv_pmic_arb, [SLAVE_PCNOC_CFG] = &slv_pcnoc_cfg, [SLAVE_PRNG] = &slv_prng, [SLAVE_QDSS_CFG] = &slv_qdss_cfg, [SLAVE_RBCPR_CFG] = &slv_rbcpr_cfg, [SLAVE_SDCC_1] = &slv_sdcc_1, [SLAVE_SDCC_2] = &slv_sdcc_2, [SLAVE_SECURITY] = &slv_security, [SLAVE_SNOC_CFG] = &slv_snoc_cfg, [SLAVE_SPDM] = &slv_spdm, [SLAVE_TCSR] = &slv_tcsr, [SLAVE_TLMM] = &slv_tlmm, [SLAVE_USB_HS1] = &slv_usb_hs1, [SLAVE_USB_HS2] = &slv_usb_hs2, [SLAVE_VENUS_CFG] = &slv_venus_cfg, [SNOC_PCNOC_SLV] = &snoc_pcnoc_slv, }; static const struct regmap_config msm8939_pcnoc_regmap_config = { .reg_bits = 32, .reg_stride = 4, .val_bits = 32, .max_register = 0x11000, .fast_io = true, }; static const struct qcom_icc_desc msm8939_pcnoc = { .type = QCOM_ICC_NOC, .nodes = msm8939_pcnoc_nodes, .num_nodes = ARRAY_SIZE(msm8939_pcnoc_nodes), .bus_clk_desc = &bus_0_clk, .regmap_cfg = &msm8939_pcnoc_regmap_config, .qos_offset = 0x7000, }; static const struct of_device_id msm8939_noc_of_match[] = { { .compatible = "qcom,msm8939-bimc", .data = &msm8939_bimc }, { .compatible = "qcom,msm8939-pcnoc", .data = &msm8939_pcnoc }, { .compatible = "qcom,msm8939-snoc", .data = &msm8939_snoc }, { .compatible = "qcom,msm8939-snoc-mm", .data = &msm8939_snoc_mm }, { } }; MODULE_DEVICE_TABLE(of, msm8939_noc_of_match); static struct platform_driver msm8939_noc_driver = { .probe = qnoc_probe, .remove = qnoc_remove, .driver = { .name = "qnoc-msm8939", .of_match_table = msm8939_noc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(msm8939_noc_driver); MODULE_AUTHOR("Jun Nie <[email protected]>"); MODULE_DESCRIPTION("Qualcomm MSM8939 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/msm8939.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved. * Copyright (c) 2021, Linaro Limited */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/property.h> #include <dt-bindings/interconnect/qcom,sm8450.h> #include "bcm-voter.h" #include "icc-common.h" #include "icc-rpmh.h" #include "sm8450.h" static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SM8450_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SM8450_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qnm_a1noc_cfg = { .name = "qnm_a1noc_cfg", .id = SM8450_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SM8450_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SM8450_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SM8450_MASTER_USB3_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SM8450_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = SM8450_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SM8450_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_a2noc_cfg = { .name = "qnm_a2noc_cfg", .id = SM8450_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SM8450_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SM8450_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_sensorss_q6 = { .name = "qxm_sensorss_q6", .id = SM8450_MASTER_SENSORS_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_sp = { .name = "qxm_sp", .id = SM8450_MASTER_SP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr_0 = { .name = "xm_qdss_etr_0", .id = SM8450_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr_1 = { .name = "xm_qdss_etr_1", .id = SM8450_MASTER_QDSS_ETR_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SM8450_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = SM8450_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = SM8450_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qup2_core_master = { .name = "qup2_core_master", .id = SM8450_MASTER_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_QUP_CORE_2 }, }; static struct qcom_icc_node qnm_gemnoc_cnoc = { .name = "qnm_gemnoc_cnoc", .id = SM8450_MASTER_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 51, .links = { SM8450_SLAVE_AHB2PHY_SOUTH, SM8450_SLAVE_AHB2PHY_NORTH, SM8450_SLAVE_AOSS, SM8450_SLAVE_CAMERA_CFG, SM8450_SLAVE_CLK_CTL, SM8450_SLAVE_CDSP_CFG, SM8450_SLAVE_RBCPR_CX_CFG, SM8450_SLAVE_RBCPR_MMCX_CFG, SM8450_SLAVE_RBCPR_MXA_CFG, SM8450_SLAVE_RBCPR_MXC_CFG, SM8450_SLAVE_CRYPTO_0_CFG, SM8450_SLAVE_CX_RDPM, SM8450_SLAVE_DISPLAY_CFG, SM8450_SLAVE_GFX3D_CFG, SM8450_SLAVE_IMEM_CFG, SM8450_SLAVE_IPA_CFG, SM8450_SLAVE_IPC_ROUTER_CFG, SM8450_SLAVE_LPASS, SM8450_SLAVE_CNOC_MSS, SM8450_SLAVE_MX_RDPM, SM8450_SLAVE_PCIE_0_CFG, SM8450_SLAVE_PCIE_1_CFG, SM8450_SLAVE_PDM, SM8450_SLAVE_PIMEM_CFG, SM8450_SLAVE_PRNG, SM8450_SLAVE_QDSS_CFG, SM8450_SLAVE_QSPI_0, SM8450_SLAVE_QUP_0, SM8450_SLAVE_QUP_1, SM8450_SLAVE_QUP_2, SM8450_SLAVE_SDCC_2, SM8450_SLAVE_SDCC_4, SM8450_SLAVE_SPSS_CFG, SM8450_SLAVE_TCSR, SM8450_SLAVE_TLMM, SM8450_SLAVE_TME_CFG, SM8450_SLAVE_UFS_MEM_CFG, SM8450_SLAVE_USB3_0, SM8450_SLAVE_VENUS_CFG, SM8450_SLAVE_VSENSE_CTRL_CFG, SM8450_SLAVE_A1NOC_CFG, SM8450_SLAVE_A2NOC_CFG, SM8450_SLAVE_DDRSS_CFG, SM8450_SLAVE_CNOC_MNOC_CFG, SM8450_SLAVE_PCIE_ANOC_CFG, SM8450_SLAVE_SNOC_CFG, SM8450_SLAVE_IMEM, SM8450_SLAVE_PIMEM, SM8450_SLAVE_SERVICE_CNOC, SM8450_SLAVE_QDSS_STM, SM8450_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = SM8450_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8450_SLAVE_PCIE_0, SM8450_SLAVE_PCIE_1 }, }; static struct qcom_icc_node alm_gpu_tcu = { .name = "alm_gpu_tcu", .id = SM8450_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = SM8450_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = SM8450_MASTER_APPSS_PROC, .channels = 3, .buswidth = 32, .num_links = 3, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC, SM8450_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SM8450_MASTER_GFX3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mdsp = { .name = "qnm_mdsp", .id = SM8450_MASTER_MSS_PROC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC, SM8450_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SM8450_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SM8450_MASTER_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_nsp_gemnoc = { .name = "qnm_nsp_gemnoc", .id = SM8450_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SM8450_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SM8450_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SM8450_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SM8450_SLAVE_GEM_NOC_CNOC, SM8450_SLAVE_LLCC, SM8450_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhm_config_noc = { .name = "qhm_config_noc", .id = SM8450_MASTER_CNOC_LPASS_AG_NOC, .channels = 1, .buswidth = 4, .num_links = 6, .links = { SM8450_SLAVE_LPASS_CORE_CFG, SM8450_SLAVE_LPASS_LPI_CFG, SM8450_SLAVE_LPASS_MPU_CFG, SM8450_SLAVE_LPASS_TOP_CFG, SM8450_SLAVE_SERVICES_LPASS_AML_NOC, SM8450_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node qxm_lpass_dsp = { .name = "qxm_lpass_dsp", .id = SM8450_MASTER_LPASS_PROC, .channels = 1, .buswidth = 8, .num_links = 4, .links = { SM8450_SLAVE_LPASS_TOP_CFG, SM8450_SLAVE_LPASS_SNOC, SM8450_SLAVE_SERVICES_LPASS_AML_NOC, SM8450_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SM8450_MASTER_LLCC, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_EBI1 }, }; static struct qcom_icc_node qnm_camnoc_hf = { .name = "qnm_camnoc_hf", .id = SM8450_MASTER_CAMNOC_HF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_icp = { .name = "qnm_camnoc_icp", .id = SM8450_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_sf = { .name = "qnm_camnoc_sf", .id = SM8450_MASTER_CAMNOC_SF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp = { .name = "qnm_mdp", .id = SM8450_MASTER_MDP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_mnoc_cfg = { .name = "qnm_mnoc_cfg", .id = SM8450_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qnm_rot = { .name = "qnm_rot", .id = SM8450_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_vapss_hcp = { .name = "qnm_vapss_hcp", .id = SM8450_MASTER_CDSP_HCP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video = { .name = "qnm_video", .id = SM8450_MASTER_VIDEO, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cv_cpu = { .name = "qnm_video_cv_cpu", .id = SM8450_MASTER_VIDEO_CV_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cvp = { .name = "qnm_video_cvp", .id = SM8450_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_v_cpu = { .name = "qnm_video_v_cpu", .id = SM8450_MASTER_VIDEO_V_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qhm_nsp_noc_config = { .name = "qhm_nsp_noc_config", .id = SM8450_MASTER_CDSP_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_SERVICE_NSP_NOC }, }; static struct qcom_icc_node qxm_nsp = { .name = "qxm_nsp", .id = SM8450_MASTER_CDSP_PROC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_CDSP_MEM_NOC }, }; static struct qcom_icc_node qnm_pcie_anoc_cfg = { .name = "qnm_pcie_anoc_cfg", .id = SM8450_MASTER_PCIE_ANOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_SERVICE_PCIE_ANOC }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SM8450_MASTER_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SM8450_MASTER_PCIE_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node qhm_gic = { .name = "qhm_gic", .id = SM8450_MASTER_GIC_AHB, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SM8450_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SM8450_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_lpass_noc = { .name = "qnm_lpass_noc", .id = SM8450_MASTER_LPASS_ANOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_snoc_cfg = { .name = "qnm_snoc_cfg", .id = SM8450_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SM8450_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SM8450_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qnm_mnoc_hf_disp = { .name = "qnm_mnoc_hf_disp", .id = SM8450_MASTER_MNOC_HF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_LLCC_DISP }, }; static struct qcom_icc_node qnm_mnoc_sf_disp = { .name = "qnm_mnoc_sf_disp", .id = SM8450_MASTER_MNOC_SF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_LLCC_DISP }, }; static struct qcom_icc_node qnm_pcie_disp = { .name = "qnm_pcie_disp", .id = SM8450_MASTER_ANOC_PCIE_GEM_NOC_DISP, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_SLAVE_LLCC_DISP }, }; static struct qcom_icc_node llcc_mc_disp = { .name = "llcc_mc_disp", .id = SM8450_MASTER_LLCC_DISP, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8450_SLAVE_EBI1_DISP }, }; static struct qcom_icc_node qnm_mdp_disp = { .name = "qnm_mdp_disp", .id = SM8450_MASTER_MDP_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_HF_MEM_NOC_DISP }, }; static struct qcom_icc_node qnm_rot_disp = { .name = "qnm_rot_disp", .id = SM8450_MASTER_ROTATOR_DISP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8450_SLAVE_MNOC_SF_MEM_NOC_DISP }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SM8450_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SM8450_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SM8450_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SM8450_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = SM8450_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = SM8450_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup2_core_slave = { .name = "qup2_core_slave", .id = SM8450_SLAVE_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SM8450_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy1 = { .name = "qhs_ahb2phy1", .id = SM8450_SLAVE_AHB2PHY_NORTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SM8450_SLAVE_AOSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SM8450_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SM8450_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_compute_cfg = { .name = "qhs_compute_cfg", .id = SM8450_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { MASTER_CDSP_NOC_CFG }, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SM8450_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mmcx = { .name = "qhs_cpr_mmcx", .id = SM8450_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mxa = { .name = "qhs_cpr_mxa", .id = SM8450_SLAVE_RBCPR_MXA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mxc = { .name = "qhs_cpr_mxc", .id = SM8450_SLAVE_RBCPR_MXC_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SM8450_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cx_rdpm = { .name = "qhs_cx_rdpm", .id = SM8450_SLAVE_CX_RDPM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SM8450_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SM8450_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SM8450_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SM8450_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = SM8450_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_cfg = { .name = "qhs_lpass_cfg", .id = SM8450_SLAVE_LPASS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { MASTER_CNOC_LPASS_AG_NOC }, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SM8450_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_mx_rdpm = { .name = "qhs_mx_rdpm", .id = SM8450_SLAVE_MX_RDPM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SM8450_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SM8450_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SM8450_SLAVE_PDM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SM8450_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SM8450_SLAVE_PRNG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SM8450_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SM8450_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SM8450_SLAVE_QUP_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SM8450_SLAVE_QUP_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup2 = { .name = "qhs_qup2", .id = SM8450_SLAVE_QUP_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SM8450_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SM8450_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_spss_cfg = { .name = "qhs_spss_cfg", .id = SM8450_SLAVE_SPSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SM8450_SLAVE_TCSR, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SM8450_SLAVE_TLMM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tme_cfg = { .name = "qhs_tme_cfg", .id = SM8450_SLAVE_TME_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SM8450_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SM8450_SLAVE_USB3_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SM8450_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SM8450_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_a1_noc_cfg = { .name = "qns_a1_noc_cfg", .id = SM8450_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qns_a2_noc_cfg = { .name = "qns_a2_noc_cfg", .id = SM8450_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qns_ddrss_cfg = { .name = "qns_ddrss_cfg", .id = SM8450_SLAVE_DDRSS_CFG, .channels = 1, .buswidth = 4, .num_links = 1, //FIXME where is link }; static struct qcom_icc_node qns_mnoc_cfg = { .name = "qns_mnoc_cfg", .id = SM8450_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qns_pcie_anoc_cfg = { .name = "qns_pcie_anoc_cfg", .id = SM8450_SLAVE_PCIE_ANOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_MASTER_PCIE_ANOC_CFG }, }; static struct qcom_icc_node qns_snoc_cfg = { .name = "qns_snoc_cfg", .id = SM8450_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8450_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SM8450_SLAVE_IMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SM8450_SLAVE_PIMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SM8450_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SM8450_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SM8450_SLAVE_PCIE_1, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SM8450_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SM8450_SLAVE_TCU, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qns_gem_noc_cnoc = { .name = "qns_gem_noc_cnoc", .id = SM8450_SLAVE_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_GEM_NOC_CNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SM8450_SLAVE_LLCC, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_LLCC }, }; static struct qcom_icc_node qns_pcie = { .name = "qns_pcie", .id = SM8450_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhs_lpass_core = { .name = "qhs_lpass_core", .id = SM8450_SLAVE_LPASS_CORE_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_lpi = { .name = "qhs_lpass_lpi", .id = SM8450_SLAVE_LPASS_LPI_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_mpu = { .name = "qhs_lpass_mpu", .id = SM8450_SLAVE_LPASS_MPU_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_lpass_top = { .name = "qhs_lpass_top", .id = SM8450_SLAVE_LPASS_TOP_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_sysnoc = { .name = "qns_sysnoc", .id = SM8450_SLAVE_LPASS_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_LPASS_ANOC }, }; static struct qcom_icc_node srvc_niu_aml_noc = { .name = "srvc_niu_aml_noc", .id = SM8450_SLAVE_SERVICES_LPASS_AML_NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node srvc_niu_lpass_agnoc = { .name = "srvc_niu_lpass_agnoc", .id = SM8450_SLAVE_SERVICE_LPASS_AG_NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SM8450_SLAVE_EBI1, .channels = 4, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SM8450_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SM8450_SLAVE_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SM8450_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_nsp_gemnoc = { .name = "qns_nsp_gemnoc", .id = SM8450_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node service_nsp_noc = { .name = "service_nsp_noc", .id = SM8450_SLAVE_SERVICE_NSP_NOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_pcie_mem_noc = { .name = "qns_pcie_mem_noc", .id = SM8450_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node srvc_pcie_aggre_noc = { .name = "srvc_pcie_aggre_noc", .id = SM8450_SLAVE_SERVICE_PCIE_ANOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SM8450_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8450_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SM8450_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SM8450_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_llcc_disp = { .name = "qns_llcc_disp", .id = SM8450_SLAVE_LLCC_DISP, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8450_MASTER_LLCC_DISP }, }; static struct qcom_icc_node ebi_disp = { .name = "ebi_disp", .id = SM8450_SLAVE_EBI1_DISP, .channels = 4, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf_disp = { .name = "qns_mem_noc_hf_disp", .id = SM8450_SLAVE_MNOC_HF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_MASTER_MNOC_HF_MEM_NOC_DISP }, }; static struct qcom_icc_node qns_mem_noc_sf_disp = { .name = "qns_mem_noc_sf_disp", .id = SM8450_SLAVE_MNOC_SF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8450_MASTER_MNOC_SF_MEM_NOC_DISP }, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .enable_mask = 0x8, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .enable_mask = 0x1, .keepalive = true, .num_nodes = 55, .nodes = { &qnm_gemnoc_cnoc, &qnm_gemnoc_pcie, &qhs_ahb2phy0, &qhs_ahb2phy1, &qhs_aoss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute_cfg, &qhs_cpr_cx, &qhs_cpr_mmcx, &qhs_cpr_mxa, &qhs_cpr_mxc, &qhs_crypto0_cfg, &qhs_cx_rdpm, &qhs_display_cfg, &qhs_gpuss_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_ipc_router, &qhs_lpass_cfg, &qhs_mss_cfg, &qhs_mx_rdpm, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_pdm, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qspi, &qhs_qup0, &qhs_qup1, &qhs_qup2, &qhs_sdc2, &qhs_sdc4, &qhs_spss_cfg, &qhs_tcsr, &qhs_tlmm, &qhs_tme_cfg, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qns_a1_noc_cfg, &qns_a2_noc_cfg, &qns_ddrss_cfg, &qns_mnoc_cfg, &qns_pcie_anoc_cfg, &qns_snoc_cfg, &qxs_imem, &qxs_pimem, &srvc_cnoc, &xs_pcie_0, &xs_pcie_1, &xs_qdss_stm, &xs_sys_tcu_cfg }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .enable_mask = 0x1, .num_nodes = 2, .nodes = { &qxm_nsp, &qns_nsp_gemnoc }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .enable_mask = 0x1, .num_nodes = 12, .nodes = { &qnm_camnoc_hf, &qnm_camnoc_icp, &qnm_camnoc_sf, &qnm_mdp, &qnm_mnoc_cfg, &qnm_rot, &qnm_vapss_hcp, &qnm_video, &qnm_video_cv_cpu, &qnm_video_cvp, &qnm_video_v_cpu, &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = true, .vote_scale = 1, .num_nodes = 1, .nodes = { &qup0_core_slave }, }; static struct qcom_icc_bcm bcm_qup1 = { .name = "QUP1", .keepalive = true, .vote_scale = 1, .num_nodes = 1, .nodes = { &qup1_core_slave }, }; static struct qcom_icc_bcm bcm_qup2 = { .name = "QUP2", .keepalive = true, .vote_scale = 1, .num_nodes = 1, .nodes = { &qup2_core_slave }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh1 = { .name = "SH1", .enable_mask = 0x1, .num_nodes = 7, .nodes = { &alm_gpu_tcu, &alm_sys_tcu, &qnm_nsp_gemnoc, &qnm_pcie, &qnm_snoc_gc, &qns_gem_noc_cnoc, &qns_pcie }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .enable_mask = 0x1, .num_nodes = 4, .nodes = { &qhm_gic, &qxm_pimem, &xm_gic, &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .num_nodes = 1, .nodes = { &qnm_lpass_noc }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .num_nodes = 1, .nodes = { &qns_pcie_mem_noc }, }; static struct qcom_icc_bcm bcm_acv_disp = { .name = "ACV", .enable_mask = 0x1, .num_nodes = 1, .nodes = { &ebi_disp }, }; static struct qcom_icc_bcm bcm_mc0_disp = { .name = "MC0", .num_nodes = 1, .nodes = { &ebi_disp }, }; static struct qcom_icc_bcm bcm_mm0_disp = { .name = "MM0", .num_nodes = 1, .nodes = { &qns_mem_noc_hf_disp }, }; static struct qcom_icc_bcm bcm_mm1_disp = { .name = "MM1", .enable_mask = 0x1, .num_nodes = 3, .nodes = { &qnm_mdp_disp, &qnm_rot_disp, &qns_mem_noc_sf_disp }, }; static struct qcom_icc_bcm bcm_sh0_disp = { .name = "SH0", .num_nodes = 1, .nodes = { &qns_llcc_disp }, }; static struct qcom_icc_bcm bcm_sh1_disp = { .name = "SH1", .enable_mask = 0x1, .num_nodes = 1, .nodes = { &qnm_pcie_disp }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_QSPI_0] = &qhm_qspi, [MASTER_QUP_1] = &qhm_qup1, [MASTER_A1NOC_CFG] = &qnm_a1noc_cfg, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB3_0] = &xm_usb3_0, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sm8450_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_0] = &qhm_qup0, [MASTER_QUP_2] = &qhm_qup2, [MASTER_A2NOC_CFG] = &qnm_a2noc_cfg, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_SENSORS_PROC] = &qxm_sensorss_q6, [MASTER_SP] = &qxm_sp, [MASTER_QDSS_ETR] = &xm_qdss_etr_0, [MASTER_QDSS_ETR_1] = &xm_qdss_etr_1, [MASTER_SDCC_2] = &xm_sdc2, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sm8450_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const clk_virt_bcms[] = { &bcm_qup0, &bcm_qup1, &bcm_qup2, }; static struct qcom_icc_node * const clk_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [MASTER_QUP_CORE_2] = &qup2_core_master, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, [SLAVE_QUP_CORE_2] = &qup2_core_slave, }; static const struct qcom_icc_desc sm8450_clk_virt = { .nodes = clk_virt_nodes, .num_nodes = ARRAY_SIZE(clk_virt_nodes), .bcms = clk_virt_bcms, .num_bcms = ARRAY_SIZE(clk_virt_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_GEM_NOC_CNOC] = &qnm_gemnoc_cnoc, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_NORTH] = &qhs_ahb2phy1, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute_cfg, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &qhs_cpr_mmcx, [SLAVE_RBCPR_MXA_CFG] = &qhs_cpr_mxa, [SLAVE_RBCPR_MXC_CFG] = &qhs_cpr_mxc, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CX_RDPM] = &qhs_cx_rdpm, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_LPASS] = &qhs_lpass_cfg, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_MX_RDPM] = &qhs_mx_rdpm, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_QUP_2] = &qhs_qup2, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SPSS_CFG] = &qhs_spss_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_TME_CFG] = &qhs_tme_cfg, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3_0] = &qhs_usb3_0, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_A1NOC_CFG] = &qns_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qns_a2_noc_cfg, [SLAVE_DDRSS_CFG] = &qns_ddrss_cfg, [SLAVE_CNOC_MNOC_CFG] = &qns_mnoc_cfg, [SLAVE_PCIE_ANOC_CFG] = &qns_pcie_anoc_cfg, [SLAVE_SNOC_CFG] = &qns_snoc_cfg, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sm8450_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh1, &bcm_sh0_disp, &bcm_sh1_disp, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_GPU_TCU] = &alm_gpu_tcu, [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_APPSS_PROC] = &chm_apps, [MASTER_GFX3D] = &qnm_gpu, [MASTER_MSS_PROC] = &qnm_mdsp, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_COMPUTE_NOC] = &qnm_nsp_gemnoc, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [SLAVE_GEM_NOC_CNOC] = &qns_gem_noc_cnoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_pcie, [MASTER_MNOC_HF_MEM_NOC_DISP] = &qnm_mnoc_hf_disp, [MASTER_MNOC_SF_MEM_NOC_DISP] = &qnm_mnoc_sf_disp, [MASTER_ANOC_PCIE_GEM_NOC_DISP] = &qnm_pcie_disp, [SLAVE_LLCC_DISP] = &qns_llcc_disp, }; static const struct qcom_icc_desc sm8450_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const lpass_ag_noc_bcms[] = { }; static struct qcom_icc_node * const lpass_ag_noc_nodes[] = { [MASTER_CNOC_LPASS_AG_NOC] = &qhm_config_noc, [MASTER_LPASS_PROC] = &qxm_lpass_dsp, [SLAVE_LPASS_CORE_CFG] = &qhs_lpass_core, [SLAVE_LPASS_LPI_CFG] = &qhs_lpass_lpi, [SLAVE_LPASS_MPU_CFG] = &qhs_lpass_mpu, [SLAVE_LPASS_TOP_CFG] = &qhs_lpass_top, [SLAVE_LPASS_SNOC] = &qns_sysnoc, [SLAVE_SERVICES_LPASS_AML_NOC] = &srvc_niu_aml_noc, [SLAVE_SERVICE_LPASS_AG_NOC] = &srvc_niu_lpass_agnoc, }; static const struct qcom_icc_desc sm8450_lpass_ag_noc = { .nodes = lpass_ag_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_ag_noc_nodes), .bcms = lpass_ag_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_ag_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, &bcm_acv_disp, &bcm_mc0_disp, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, [MASTER_LLCC_DISP] = &llcc_mc_disp, [SLAVE_EBI1_DISP] = &ebi_disp, }; static const struct qcom_icc_desc sm8450_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm0_disp, &bcm_mm1_disp, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CAMNOC_HF] = &qnm_camnoc_hf, [MASTER_CAMNOC_ICP] = &qnm_camnoc_icp, [MASTER_CAMNOC_SF] = &qnm_camnoc_sf, [MASTER_MDP] = &qnm_mdp, [MASTER_CNOC_MNOC_CFG] = &qnm_mnoc_cfg, [MASTER_ROTATOR] = &qnm_rot, [MASTER_CDSP_HCP] = &qnm_vapss_hcp, [MASTER_VIDEO] = &qnm_video, [MASTER_VIDEO_CV_PROC] = &qnm_video_cv_cpu, [MASTER_VIDEO_PROC] = &qnm_video_cvp, [MASTER_VIDEO_V_PROC] = &qnm_video_v_cpu, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, [MASTER_MDP_DISP] = &qnm_mdp_disp, [MASTER_ROTATOR_DISP] = &qnm_rot_disp, [SLAVE_MNOC_HF_MEM_NOC_DISP] = &qns_mem_noc_hf_disp, [SLAVE_MNOC_SF_MEM_NOC_DISP] = &qns_mem_noc_sf_disp, }; static const struct qcom_icc_desc sm8450_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const nsp_noc_bcms[] = { &bcm_co0, }; static struct qcom_icc_node * const nsp_noc_nodes[] = { [MASTER_CDSP_NOC_CFG] = &qhm_nsp_noc_config, [MASTER_CDSP_PROC] = &qxm_nsp, [SLAVE_CDSP_MEM_NOC] = &qns_nsp_gemnoc, [SLAVE_SERVICE_NSP_NOC] = &service_nsp_noc, }; static const struct qcom_icc_desc sm8450_nsp_noc = { .nodes = nsp_noc_nodes, .num_nodes = ARRAY_SIZE(nsp_noc_nodes), .bcms = nsp_noc_bcms, .num_bcms = ARRAY_SIZE(nsp_noc_bcms), }; static struct qcom_icc_bcm * const pcie_anoc_bcms[] = { &bcm_sn7, }; static struct qcom_icc_node * const pcie_anoc_nodes[] = { [MASTER_PCIE_ANOC_CFG] = &qnm_pcie_anoc_cfg, [MASTER_PCIE_0] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_mem_noc, [SLAVE_SERVICE_PCIE_ANOC] = &srvc_pcie_aggre_noc, }; static const struct qcom_icc_desc sm8450_pcie_anoc = { .nodes = pcie_anoc_nodes, .num_nodes = ARRAY_SIZE(pcie_anoc_nodes), .bcms = pcie_anoc_bcms, .num_bcms = ARRAY_SIZE(pcie_anoc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn2, &bcm_sn3, &bcm_sn4, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_GIC_AHB] = &qhm_gic, [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_LPASS_ANOC] = &qnm_lpass_noc, [MASTER_SNOC_CFG] = &qnm_snoc_cfg, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_SERVICE_SNOC] = &srvc_snoc, }; static const struct qcom_icc_desc sm8450_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sm8450-aggre1-noc", .data = &sm8450_aggre1_noc}, { .compatible = "qcom,sm8450-aggre2-noc", .data = &sm8450_aggre2_noc}, { .compatible = "qcom,sm8450-clk-virt", .data = &sm8450_clk_virt}, { .compatible = "qcom,sm8450-config-noc", .data = &sm8450_config_noc}, { .compatible = "qcom,sm8450-gem-noc", .data = &sm8450_gem_noc}, { .compatible = "qcom,sm8450-lpass-ag-noc", .data = &sm8450_lpass_ag_noc}, { .compatible = "qcom,sm8450-mc-virt", .data = &sm8450_mc_virt}, { .compatible = "qcom,sm8450-mmss-noc", .data = &sm8450_mmss_noc}, { .compatible = "qcom,sm8450-nsp-noc", .data = &sm8450_nsp_noc}, { .compatible = "qcom,sm8450-pcie-anoc", .data = &sm8450_pcie_anoc}, { .compatible = "qcom,sm8450-system-noc", .data = &sm8450_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sm8450", .of_match_table = qnoc_of_match, .sync_state = icc_sync_state, }, }; static int __init qnoc_driver_init(void) { return platform_driver_register(&qnoc_driver); } core_initcall(qnoc_driver_init); static void __exit qnoc_driver_exit(void) { platform_driver_unregister(&qnoc_driver); } module_exit(qnoc_driver_exit); MODULE_DESCRIPTION("sm8450 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sm8450.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2021, The Linux Foundation. All rights reserved. * Copyright (c) 2022, Qualcomm Innovation Center, Inc. All rights reserved. * Copyright (c) 2022, Linaro Limited * */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <linux/property.h> #include <dt-bindings/interconnect/qcom,sm8550-rpmh.h> #include "bcm-voter.h" #include "icc-common.h" #include "icc-rpmh.h" #include "sm8550.h" static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SM8550_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SM8550_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SM8550_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SM8550_MASTER_UFS_MEM, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SM8550_MASTER_USB3_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SM8550_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SM8550_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SM8550_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SM8550_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_sp = { .name = "qxm_sp", .id = SM8550_MASTER_SP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr_0 = { .name = "xm_qdss_etr_0", .id = SM8550_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_qdss_etr_1 = { .name = "xm_qdss_etr_1", .id = SM8550_MASTER_QDSS_ETR_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SM8550_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = SM8550_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = SM8550_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qup2_core_master = { .name = "qup2_core_master", .id = SM8550_MASTER_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_QUP_CORE_2 }, }; static struct qcom_icc_node qsm_cfg = { .name = "qsm_cfg", .id = SM8550_MASTER_CNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 44, .links = { SM8550_SLAVE_AHB2PHY_SOUTH, SM8550_SLAVE_AHB2PHY_NORTH, SM8550_SLAVE_APPSS, SM8550_SLAVE_CAMERA_CFG, SM8550_SLAVE_CLK_CTL, SM8550_SLAVE_RBCPR_CX_CFG, SM8550_SLAVE_RBCPR_MMCX_CFG, SM8550_SLAVE_RBCPR_MXA_CFG, SM8550_SLAVE_RBCPR_MXC_CFG, SM8550_SLAVE_CPR_NSPCX, SM8550_SLAVE_CRYPTO_0_CFG, SM8550_SLAVE_CX_RDPM, SM8550_SLAVE_DISPLAY_CFG, SM8550_SLAVE_GFX3D_CFG, SM8550_SLAVE_I2C, SM8550_SLAVE_IMEM_CFG, SM8550_SLAVE_IPA_CFG, SM8550_SLAVE_IPC_ROUTER_CFG, SM8550_SLAVE_CNOC_MSS, SM8550_SLAVE_MX_RDPM, SM8550_SLAVE_PCIE_0_CFG, SM8550_SLAVE_PCIE_1_CFG, SM8550_SLAVE_PDM, SM8550_SLAVE_PIMEM_CFG, SM8550_SLAVE_PRNG, SM8550_SLAVE_QDSS_CFG, SM8550_SLAVE_QSPI_0, SM8550_SLAVE_QUP_1, SM8550_SLAVE_QUP_2, SM8550_SLAVE_SDCC_2, SM8550_SLAVE_SDCC_4, SM8550_SLAVE_SPSS_CFG, SM8550_SLAVE_TCSR, SM8550_SLAVE_TLMM, SM8550_SLAVE_UFS_MEM_CFG, SM8550_SLAVE_USB3_0, SM8550_SLAVE_VENUS_CFG, SM8550_SLAVE_VSENSE_CTRL_CFG, SM8550_SLAVE_LPASS_QTB_CFG, SM8550_SLAVE_CNOC_MNOC_CFG, SM8550_SLAVE_NSP_QTB_CFG, SM8550_SLAVE_PCIE_ANOC_CFG, SM8550_SLAVE_QDSS_STM, SM8550_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_cnoc = { .name = "qnm_gemnoc_cnoc", .id = SM8550_MASTER_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 6, .links = { SM8550_SLAVE_AOSS, SM8550_SLAVE_TME_CFG, SM8550_SLAVE_CNOC_CFG, SM8550_SLAVE_DDRSS_CFG, SM8550_SLAVE_BOOT_IMEM, SM8550_SLAVE_IMEM }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = SM8550_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8550_SLAVE_PCIE_0, SM8550_SLAVE_PCIE_1 }, }; static struct qcom_icc_node alm_gpu_tcu = { .name = "alm_gpu_tcu", .id = SM8550_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = SM8550_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = SM8550_MASTER_APPSS_PROC, .channels = 3, .buswidth = 32, .num_links = 3, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC, SM8550_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SM8550_MASTER_GFX3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_lpass_gemnoc = { .name = "qnm_lpass_gemnoc", .id = SM8550_MASTER_LPASS_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC, SM8550_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_mdsp = { .name = "qnm_mdsp", .id = SM8550_MASTER_MSS_PROC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC, SM8550_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SM8550_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SM8550_MASTER_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_nsp_gemnoc = { .name = "qnm_nsp_gemnoc", .id = SM8550_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SM8550_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SM8550_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SM8550_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SM8550_SLAVE_GEM_NOC_CNOC, SM8550_SLAVE_LLCC, SM8550_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_lpiaon_noc = { .name = "qnm_lpiaon_noc", .id = SM8550_MASTER_LPIAON_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_LPASS_GEM_NOC }, }; static struct qcom_icc_node qnm_lpass_lpinoc = { .name = "qnm_lpass_lpinoc", .id = SM8550_MASTER_LPASS_LPINOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_LPIAON_NOC_LPASS_AG_NOC }, }; static struct qcom_icc_node qxm_lpinoc_dsp_axim = { .name = "qxm_lpinoc_dsp_axim", .id = SM8550_MASTER_LPASS_PROC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_LPICX_NOC_LPIAON_NOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SM8550_MASTER_LLCC, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_EBI1 }, }; static struct qcom_icc_node qnm_camnoc_hf = { .name = "qnm_camnoc_hf", .id = SM8550_MASTER_CAMNOC_HF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_icp = { .name = "qnm_camnoc_icp", .id = SM8550_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_sf = { .name = "qnm_camnoc_sf", .id = SM8550_MASTER_CAMNOC_SF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_mdp = { .name = "qnm_mdp", .id = SM8550_MASTER_MDP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_vapss_hcp = { .name = "qnm_vapss_hcp", .id = SM8550_MASTER_CDSP_HCP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video = { .name = "qnm_video", .id = SM8550_MASTER_VIDEO, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cv_cpu = { .name = "qnm_video_cv_cpu", .id = SM8550_MASTER_VIDEO_CV_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cvp = { .name = "qnm_video_cvp", .id = SM8550_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_v_cpu = { .name = "qnm_video_v_cpu", .id = SM8550_MASTER_VIDEO_V_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qsm_mnoc_cfg = { .name = "qsm_mnoc_cfg", .id = SM8550_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qxm_nsp = { .name = "qxm_nsp", .id = SM8550_MASTER_CDSP_PROC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_CDSP_MEM_NOC }, }; static struct qcom_icc_node qsm_pcie_anoc_cfg = { .name = "qsm_pcie_anoc_cfg", .id = SM8550_MASTER_PCIE_ANOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_SERVICE_PCIE_ANOC }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SM8550_MASTER_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SM8550_MASTER_PCIE_1, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node qhm_gic = { .name = "qhm_gic", .id = SM8550_MASTER_GIC_AHB, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SM8550_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SM8550_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SM8550_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qnm_mnoc_hf_disp = { .name = "qnm_mnoc_hf_disp", .id = SM8550_MASTER_MNOC_HF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_LLCC_DISP }, }; static struct qcom_icc_node qnm_pcie_disp = { .name = "qnm_pcie_disp", .id = SM8550_MASTER_ANOC_PCIE_GEM_NOC_DISP, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_LLCC_DISP }, }; static struct qcom_icc_node llcc_mc_disp = { .name = "llcc_mc_disp", .id = SM8550_MASTER_LLCC_DISP, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_EBI1_DISP }, }; static struct qcom_icc_node qnm_mdp_disp = { .name = "qnm_mdp_disp", .id = SM8550_MASTER_MDP_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_HF_MEM_NOC_DISP }, }; static struct qcom_icc_node qnm_mnoc_hf_cam_ife_0 = { .name = "qnm_mnoc_hf_cam_ife_0", .id = SM8550_MASTER_MNOC_HF_MEM_NOC_CAM_IFE_0, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_0 }, }; static struct qcom_icc_node qnm_mnoc_sf_cam_ife_0 = { .name = "qnm_mnoc_sf_cam_ife_0", .id = SM8550_MASTER_MNOC_SF_MEM_NOC_CAM_IFE_0, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_0 }, }; static struct qcom_icc_node qnm_pcie_cam_ife_0 = { .name = "qnm_pcie_cam_ife_0", .id = SM8550_MASTER_ANOC_PCIE_GEM_NOC_CAM_IFE_0, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_0 }, }; static struct qcom_icc_node llcc_mc_cam_ife_0 = { .name = "llcc_mc_cam_ife_0", .id = SM8550_MASTER_LLCC_CAM_IFE_0, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_EBI1_CAM_IFE_0 }, }; static struct qcom_icc_node qnm_camnoc_hf_cam_ife_0 = { .name = "qnm_camnoc_hf_cam_ife_0", .id = SM8550_MASTER_CAMNOC_HF_CAM_IFE_0, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_0 }, }; static struct qcom_icc_node qnm_camnoc_icp_cam_ife_0 = { .name = "qnm_camnoc_icp_cam_ife_0", .id = SM8550_MASTER_CAMNOC_ICP_CAM_IFE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_0 }, }; static struct qcom_icc_node qnm_camnoc_sf_cam_ife_0 = { .name = "qnm_camnoc_sf_cam_ife_0", .id = SM8550_MASTER_CAMNOC_SF_CAM_IFE_0, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_0 }, }; static struct qcom_icc_node qnm_mnoc_hf_cam_ife_1 = { .name = "qnm_mnoc_hf_cam_ife_1", .id = SM8550_MASTER_MNOC_HF_MEM_NOC_CAM_IFE_1, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_1 }, }; static struct qcom_icc_node qnm_mnoc_sf_cam_ife_1 = { .name = "qnm_mnoc_sf_cam_ife_1", .id = SM8550_MASTER_MNOC_SF_MEM_NOC_CAM_IFE_1, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_1 }, }; static struct qcom_icc_node qnm_pcie_cam_ife_1 = { .name = "qnm_pcie_cam_ife_1", .id = SM8550_MASTER_ANOC_PCIE_GEM_NOC_CAM_IFE_1, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_1 }, }; static struct qcom_icc_node llcc_mc_cam_ife_1 = { .name = "llcc_mc_cam_ife_1", .id = SM8550_MASTER_LLCC_CAM_IFE_1, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_EBI1_CAM_IFE_1 }, }; static struct qcom_icc_node qnm_camnoc_hf_cam_ife_1 = { .name = "qnm_camnoc_hf_cam_ife_1", .id = SM8550_MASTER_CAMNOC_HF_CAM_IFE_1, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_1 }, }; static struct qcom_icc_node qnm_camnoc_icp_cam_ife_1 = { .name = "qnm_camnoc_icp_cam_ife_1", .id = SM8550_MASTER_CAMNOC_ICP_CAM_IFE_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_1 }, }; static struct qcom_icc_node qnm_camnoc_sf_cam_ife_1 = { .name = "qnm_camnoc_sf_cam_ife_1", .id = SM8550_MASTER_CAMNOC_SF_CAM_IFE_1, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_1 }, }; static struct qcom_icc_node qnm_mnoc_hf_cam_ife_2 = { .name = "qnm_mnoc_hf_cam_ife_2", .id = SM8550_MASTER_MNOC_HF_MEM_NOC_CAM_IFE_2, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_2 }, }; static struct qcom_icc_node qnm_mnoc_sf_cam_ife_2 = { .name = "qnm_mnoc_sf_cam_ife_2", .id = SM8550_MASTER_MNOC_SF_MEM_NOC_CAM_IFE_2, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_2 }, }; static struct qcom_icc_node qnm_pcie_cam_ife_2 = { .name = "qnm_pcie_cam_ife_2", .id = SM8550_MASTER_ANOC_PCIE_GEM_NOC_CAM_IFE_2, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_SLAVE_LLCC_CAM_IFE_2 }, }; static struct qcom_icc_node llcc_mc_cam_ife_2 = { .name = "llcc_mc_cam_ife_2", .id = SM8550_MASTER_LLCC_CAM_IFE_2, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8550_SLAVE_EBI1_CAM_IFE_2 }, }; static struct qcom_icc_node qnm_camnoc_hf_cam_ife_2 = { .name = "qnm_camnoc_hf_cam_ife_2", .id = SM8550_MASTER_CAMNOC_HF_CAM_IFE_2, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_2 }, }; static struct qcom_icc_node qnm_camnoc_icp_cam_ife_2 = { .name = "qnm_camnoc_icp_cam_ife_2", .id = SM8550_MASTER_CAMNOC_ICP_CAM_IFE_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_2 }, }; static struct qcom_icc_node qnm_camnoc_sf_cam_ife_2 = { .name = "qnm_camnoc_sf_cam_ife_2", .id = SM8550_MASTER_CAMNOC_SF_CAM_IFE_2, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_2 }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SM8550_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SM8550_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = SM8550_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = SM8550_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qup2_core_slave = { .name = "qup2_core_slave", .id = SM8550_SLAVE_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SM8550_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ahb2phy1 = { .name = "qhs_ahb2phy1", .id = SM8550_SLAVE_AHB2PHY_NORTH, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SM8550_SLAVE_APPSS, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SM8550_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SM8550_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SM8550_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mmcx = { .name = "qhs_cpr_mmcx", .id = SM8550_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mxa = { .name = "qhs_cpr_mxa", .id = SM8550_SLAVE_RBCPR_MXA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_mxc = { .name = "qhs_cpr_mxc", .id = SM8550_SLAVE_RBCPR_MXC_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cpr_nspcx = { .name = "qhs_cpr_nspcx", .id = SM8550_SLAVE_CPR_NSPCX, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SM8550_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_cx_rdpm = { .name = "qhs_cx_rdpm", .id = SM8550_SLAVE_CX_RDPM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SM8550_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SM8550_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qhs_i2c = { .name = "qhs_i2c", .id = SM8550_SLAVE_I2C, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SM8550_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SM8550_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = SM8550_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SM8550_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_mx_rdpm = { .name = "qhs_mx_rdpm", .id = SM8550_SLAVE_MX_RDPM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SM8550_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SM8550_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SM8550_SLAVE_PDM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SM8550_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SM8550_SLAVE_PRNG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SM8550_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SM8550_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SM8550_SLAVE_QUP_1, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_qup2 = { .name = "qhs_qup2", .id = SM8550_SLAVE_QUP_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SM8550_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SM8550_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_spss_cfg = { .name = "qhs_spss_cfg", .id = SM8550_SLAVE_SPSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SM8550_SLAVE_TCSR, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SM8550_SLAVE_TLMM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SM8550_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SM8550_SLAVE_USB3_0, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SM8550_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SM8550_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qss_lpass_qtb_cfg = { .name = "qss_lpass_qtb_cfg", .id = SM8550_SLAVE_LPASS_QTB_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qss_mnoc_cfg = { .name = "qss_mnoc_cfg", .id = SM8550_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qss_nsp_qtb_cfg = { .name = "qss_nsp_qtb_cfg", .id = SM8550_SLAVE_NSP_QTB_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qss_pcie_anoc_cfg = { .name = "qss_pcie_anoc_cfg", .id = SM8550_SLAVE_PCIE_ANOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_MASTER_PCIE_ANOC_CFG }, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SM8550_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SM8550_SLAVE_TCU, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SM8550_SLAVE_AOSS, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qhs_tme_cfg = { .name = "qhs_tme_cfg", .id = SM8550_SLAVE_TME_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qss_cfg = { .name = "qss_cfg", .id = SM8550_SLAVE_CNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8550_MASTER_CNOC_CFG }, }; static struct qcom_icc_node qss_ddrss_cfg = { .name = "qss_ddrss_cfg", .id = SM8550_SLAVE_DDRSS_CFG, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qxs_boot_imem = { .name = "qxs_boot_imem", .id = SM8550_SLAVE_BOOT_IMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SM8550_SLAVE_IMEM, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SM8550_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 0, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SM8550_SLAVE_PCIE_1, .channels = 1, .buswidth = 16, .num_links = 0, }; static struct qcom_icc_node qns_gem_noc_cnoc = { .name = "qns_gem_noc_cnoc", .id = SM8550_SLAVE_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_GEM_NOC_CNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SM8550_SLAVE_LLCC, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LLCC }, }; static struct qcom_icc_node qns_pcie = { .name = "qns_pcie", .id = SM8550_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qns_lpass_ag_noc_gemnoc = { .name = "qns_lpass_ag_noc_gemnoc", .id = SM8550_SLAVE_LPASS_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LPASS_GEM_NOC }, }; static struct qcom_icc_node qns_lpass_aggnoc = { .name = "qns_lpass_aggnoc", .id = SM8550_SLAVE_LPIAON_NOC_LPASS_AG_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LPIAON_NOC }, }; static struct qcom_icc_node qns_lpi_aon_noc = { .name = "qns_lpi_aon_noc", .id = SM8550_SLAVE_LPICX_NOC_LPIAON_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LPASS_LPINOC }, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SM8550_SLAVE_EBI1, .channels = 4, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SM8550_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SM8550_SLAVE_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SM8550_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_nsp_gemnoc = { .name = "qns_nsp_gemnoc", .id = SM8550_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node qns_pcie_mem_noc = { .name = "qns_pcie_mem_noc", .id = SM8550_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node srvc_pcie_aggre_noc = { .name = "srvc_pcie_aggre_noc", .id = SM8550_SLAVE_SERVICE_PCIE_ANOC, .channels = 1, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SM8550_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8550_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SM8550_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qns_llcc_disp = { .name = "qns_llcc_disp", .id = SM8550_SLAVE_LLCC_DISP, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LLCC_DISP }, }; static struct qcom_icc_node ebi_disp = { .name = "ebi_disp", .id = SM8550_SLAVE_EBI1_DISP, .channels = 4, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf_disp = { .name = "qns_mem_noc_hf_disp", .id = SM8550_SLAVE_MNOC_HF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_HF_MEM_NOC_DISP }, }; static struct qcom_icc_node qns_llcc_cam_ife_0 = { .name = "qns_llcc_cam_ife_0", .id = SM8550_SLAVE_LLCC_CAM_IFE_0, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LLCC_CAM_IFE_0 }, }; static struct qcom_icc_node ebi_cam_ife_0 = { .name = "ebi_cam_ife_0", .id = SM8550_SLAVE_EBI1_CAM_IFE_0, .channels = 4, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf_cam_ife_0 = { .name = "qns_mem_noc_hf_cam_ife_0", .id = SM8550_SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_0, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_HF_MEM_NOC_CAM_IFE_0 }, }; static struct qcom_icc_node qns_mem_noc_sf_cam_ife_0 = { .name = "qns_mem_noc_sf_cam_ife_0", .id = SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_0, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_SF_MEM_NOC_CAM_IFE_0 }, }; static struct qcom_icc_node qns_llcc_cam_ife_1 = { .name = "qns_llcc_cam_ife_1", .id = SM8550_SLAVE_LLCC_CAM_IFE_1, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LLCC_CAM_IFE_1 }, }; static struct qcom_icc_node ebi_cam_ife_1 = { .name = "ebi_cam_ife_1", .id = SM8550_SLAVE_EBI1_CAM_IFE_1, .channels = 4, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf_cam_ife_1 = { .name = "qns_mem_noc_hf_cam_ife_1", .id = SM8550_SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_1, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_HF_MEM_NOC_CAM_IFE_1 }, }; static struct qcom_icc_node qns_mem_noc_sf_cam_ife_1 = { .name = "qns_mem_noc_sf_cam_ife_1", .id = SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_1, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_SF_MEM_NOC_CAM_IFE_1 }, }; static struct qcom_icc_node qns_llcc_cam_ife_2 = { .name = "qns_llcc_cam_ife_2", .id = SM8550_SLAVE_LLCC_CAM_IFE_2, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8550_MASTER_LLCC_CAM_IFE_2 }, }; static struct qcom_icc_node ebi_cam_ife_2 = { .name = "ebi_cam_ife_2", .id = SM8550_SLAVE_EBI1_CAM_IFE_2, .channels = 4, .buswidth = 4, .num_links = 0, }; static struct qcom_icc_node qns_mem_noc_hf_cam_ife_2 = { .name = "qns_mem_noc_hf_cam_ife_2", .id = SM8550_SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_2, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_HF_MEM_NOC_CAM_IFE_2 }, }; static struct qcom_icc_node qns_mem_noc_sf_cam_ife_2 = { .name = "qns_mem_noc_sf_cam_ife_2", .id = SM8550_SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_2, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8550_MASTER_MNOC_SF_MEM_NOC_CAM_IFE_2 }, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .enable_mask = 0x8, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .enable_mask = 0x1, .keepalive = true, .num_nodes = 54, .nodes = { &qsm_cfg, &qhs_ahb2phy0, &qhs_ahb2phy1, &qhs_apss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_cpr_cx, &qhs_cpr_mmcx, &qhs_cpr_mxa, &qhs_cpr_mxc, &qhs_cpr_nspcx, &qhs_crypto0_cfg, &qhs_cx_rdpm, &qhs_gpuss_cfg, &qhs_i2c, &qhs_imem_cfg, &qhs_ipa, &qhs_ipc_router, &qhs_mss_cfg, &qhs_mx_rdpm, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_pdm, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qspi, &qhs_qup1, &qhs_qup2, &qhs_sdc2, &qhs_sdc4, &qhs_spss_cfg, &qhs_tcsr, &qhs_tlmm, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qss_lpass_qtb_cfg, &qss_mnoc_cfg, &qss_nsp_qtb_cfg, &qss_pcie_anoc_cfg, &xs_qdss_stm, &xs_sys_tcu_cfg, &qnm_gemnoc_cnoc, &qnm_gemnoc_pcie, &qhs_aoss, &qhs_tme_cfg, &qss_cfg, &qss_ddrss_cfg, &qxs_boot_imem, &qxs_imem, &xs_pcie_0, &xs_pcie_1 }, }; static struct qcom_icc_bcm bcm_cn1 = { .name = "CN1", .num_nodes = 1, .nodes = { &qhs_display_cfg }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .enable_mask = 0x1, .num_nodes = 2, .nodes = { &qxm_nsp, &qns_nsp_gemnoc }, }; static struct qcom_icc_bcm bcm_lp0 = { .name = "LP0", .num_nodes = 2, .nodes = { &qnm_lpass_lpinoc, &qns_lpass_aggnoc }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .enable_mask = 0x1, .num_nodes = 8, .nodes = { &qnm_camnoc_hf, &qnm_camnoc_icp, &qnm_camnoc_sf, &qnm_vapss_hcp, &qnm_video_cv_cpu, &qnm_video_cvp, &qnm_video_v_cpu, &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = true, .vote_scale = 1, .num_nodes = 1, .nodes = { &qup0_core_slave }, }; static struct qcom_icc_bcm bcm_qup1 = { .name = "QUP1", .keepalive = true, .vote_scale = 1, .num_nodes = 1, .nodes = { &qup1_core_slave }, }; static struct qcom_icc_bcm bcm_qup2 = { .name = "QUP2", .keepalive = true, .vote_scale = 1, .num_nodes = 1, .nodes = { &qup2_core_slave }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh1 = { .name = "SH1", .enable_mask = 0x1, .num_nodes = 13, .nodes = { &alm_gpu_tcu, &alm_sys_tcu, &chm_apps, &qnm_gpu, &qnm_mdsp, &qnm_mnoc_hf, &qnm_mnoc_sf, &qnm_nsp_gemnoc, &qnm_pcie, &qnm_snoc_gc, &qnm_snoc_sf, &qns_gem_noc_cnoc, &qns_pcie }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .enable_mask = 0x1, .num_nodes = 3, .nodes = { &qhm_gic, &xm_gic, &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .num_nodes = 1, .nodes = { &qns_pcie_mem_noc }, }; static struct qcom_icc_bcm bcm_acv_disp = { .name = "ACV", .enable_mask = 0x1, .num_nodes = 1, .nodes = { &ebi_disp }, }; static struct qcom_icc_bcm bcm_mc0_disp = { .name = "MC0", .num_nodes = 1, .nodes = { &ebi_disp }, }; static struct qcom_icc_bcm bcm_mm0_disp = { .name = "MM0", .num_nodes = 1, .nodes = { &qns_mem_noc_hf_disp }, }; static struct qcom_icc_bcm bcm_sh0_disp = { .name = "SH0", .num_nodes = 1, .nodes = { &qns_llcc_disp }, }; static struct qcom_icc_bcm bcm_sh1_disp = { .name = "SH1", .enable_mask = 0x1, .num_nodes = 2, .nodes = { &qnm_mnoc_hf_disp, &qnm_pcie_disp }, }; static struct qcom_icc_bcm bcm_acv_cam_ife_0 = { .name = "ACV", .enable_mask = 0x0, .num_nodes = 1, .nodes = { &ebi_cam_ife_0 }, }; static struct qcom_icc_bcm bcm_mc0_cam_ife_0 = { .name = "MC0", .num_nodes = 1, .nodes = { &ebi_cam_ife_0 }, }; static struct qcom_icc_bcm bcm_mm0_cam_ife_0 = { .name = "MM0", .num_nodes = 1, .nodes = { &qns_mem_noc_hf_cam_ife_0 }, }; static struct qcom_icc_bcm bcm_mm1_cam_ife_0 = { .name = "MM1", .enable_mask = 0x1, .num_nodes = 4, .nodes = { &qnm_camnoc_hf_cam_ife_0, &qnm_camnoc_icp_cam_ife_0, &qnm_camnoc_sf_cam_ife_0, &qns_mem_noc_sf_cam_ife_0 }, }; static struct qcom_icc_bcm bcm_sh0_cam_ife_0 = { .name = "SH0", .num_nodes = 1, .nodes = { &qns_llcc_cam_ife_0 }, }; static struct qcom_icc_bcm bcm_sh1_cam_ife_0 = { .name = "SH1", .enable_mask = 0x1, .num_nodes = 3, .nodes = { &qnm_mnoc_hf_cam_ife_0, &qnm_mnoc_sf_cam_ife_0, &qnm_pcie_cam_ife_0 }, }; static struct qcom_icc_bcm bcm_acv_cam_ife_1 = { .name = "ACV", .enable_mask = 0x0, .num_nodes = 1, .nodes = { &ebi_cam_ife_1 }, }; static struct qcom_icc_bcm bcm_mc0_cam_ife_1 = { .name = "MC0", .num_nodes = 1, .nodes = { &ebi_cam_ife_1 }, }; static struct qcom_icc_bcm bcm_mm0_cam_ife_1 = { .name = "MM0", .num_nodes = 1, .nodes = { &qns_mem_noc_hf_cam_ife_1 }, }; static struct qcom_icc_bcm bcm_mm1_cam_ife_1 = { .name = "MM1", .enable_mask = 0x1, .num_nodes = 4, .nodes = { &qnm_camnoc_hf_cam_ife_1, &qnm_camnoc_icp_cam_ife_1, &qnm_camnoc_sf_cam_ife_1, &qns_mem_noc_sf_cam_ife_1 }, }; static struct qcom_icc_bcm bcm_sh0_cam_ife_1 = { .name = "SH0", .num_nodes = 1, .nodes = { &qns_llcc_cam_ife_1 }, }; static struct qcom_icc_bcm bcm_sh1_cam_ife_1 = { .name = "SH1", .enable_mask = 0x1, .num_nodes = 3, .nodes = { &qnm_mnoc_hf_cam_ife_1, &qnm_mnoc_sf_cam_ife_1, &qnm_pcie_cam_ife_1 }, }; static struct qcom_icc_bcm bcm_acv_cam_ife_2 = { .name = "ACV", .enable_mask = 0x0, .num_nodes = 1, .nodes = { &ebi_cam_ife_2 }, }; static struct qcom_icc_bcm bcm_mc0_cam_ife_2 = { .name = "MC0", .num_nodes = 1, .nodes = { &ebi_cam_ife_2 }, }; static struct qcom_icc_bcm bcm_mm0_cam_ife_2 = { .name = "MM0", .num_nodes = 1, .nodes = { &qns_mem_noc_hf_cam_ife_2 }, }; static struct qcom_icc_bcm bcm_mm1_cam_ife_2 = { .name = "MM1", .enable_mask = 0x1, .num_nodes = 4, .nodes = { &qnm_camnoc_hf_cam_ife_2, &qnm_camnoc_icp_cam_ife_2, &qnm_camnoc_sf_cam_ife_2, &qns_mem_noc_sf_cam_ife_2 }, }; static struct qcom_icc_bcm bcm_sh0_cam_ife_2 = { .name = "SH0", .num_nodes = 1, .nodes = { &qns_llcc_cam_ife_2 }, }; static struct qcom_icc_bcm bcm_sh1_cam_ife_2 = { .name = "SH1", .enable_mask = 0x1, .num_nodes = 3, .nodes = { &qnm_mnoc_hf_cam_ife_2, &qnm_mnoc_sf_cam_ife_2, &qnm_pcie_cam_ife_2 }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_QSPI_0] = &qhm_qspi, [MASTER_QUP_1] = &qhm_qup1, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB3_0] = &xm_usb3_0, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, }; static const struct qcom_icc_desc sm8550_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_2] = &qhm_qup2, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_SP] = &qxm_sp, [MASTER_QDSS_ETR] = &xm_qdss_etr_0, [MASTER_QDSS_ETR_1] = &xm_qdss_etr_1, [MASTER_SDCC_2] = &xm_sdc2, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, }; static const struct qcom_icc_desc sm8550_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const clk_virt_bcms[] = { &bcm_qup0, &bcm_qup1, &bcm_qup2, }; static struct qcom_icc_node * const clk_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [MASTER_QUP_CORE_2] = &qup2_core_master, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, [SLAVE_QUP_CORE_2] = &qup2_core_slave, }; static const struct qcom_icc_desc sm8550_clk_virt = { .nodes = clk_virt_nodes, .num_nodes = ARRAY_SIZE(clk_virt_nodes), .bcms = clk_virt_bcms, .num_bcms = ARRAY_SIZE(clk_virt_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, &bcm_cn1, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_CNOC_CFG] = &qsm_cfg, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_NORTH] = &qhs_ahb2phy1, [SLAVE_APPSS] = &qhs_apss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &qhs_cpr_mmcx, [SLAVE_RBCPR_MXA_CFG] = &qhs_cpr_mxa, [SLAVE_RBCPR_MXC_CFG] = &qhs_cpr_mxc, [SLAVE_CPR_NSPCX] = &qhs_cpr_nspcx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CX_RDPM] = &qhs_cx_rdpm, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_I2C] = &qhs_i2c, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_MX_RDPM] = &qhs_mx_rdpm, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_QUP_2] = &qhs_qup2, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SPSS_CFG] = &qhs_spss_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3_0] = &qhs_usb3_0, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_LPASS_QTB_CFG] = &qss_lpass_qtb_cfg, [SLAVE_CNOC_MNOC_CFG] = &qss_mnoc_cfg, [SLAVE_NSP_QTB_CFG] = &qss_nsp_qtb_cfg, [SLAVE_PCIE_ANOC_CFG] = &qss_pcie_anoc_cfg, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sm8550_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const cnoc_main_bcms[] = { &bcm_cn0, }; static struct qcom_icc_node * const cnoc_main_nodes[] = { [MASTER_GEM_NOC_CNOC] = &qnm_gemnoc_cnoc, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_TME_CFG] = &qhs_tme_cfg, [SLAVE_CNOC_CFG] = &qss_cfg, [SLAVE_DDRSS_CFG] = &qss_ddrss_cfg, [SLAVE_BOOT_IMEM] = &qxs_boot_imem, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, }; static const struct qcom_icc_desc sm8550_cnoc_main = { .nodes = cnoc_main_nodes, .num_nodes = ARRAY_SIZE(cnoc_main_nodes), .bcms = cnoc_main_bcms, .num_bcms = ARRAY_SIZE(cnoc_main_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh1, &bcm_sh0_disp, &bcm_sh1_disp, &bcm_sh0_cam_ife_0, &bcm_sh1_cam_ife_0, &bcm_sh0_cam_ife_1, &bcm_sh1_cam_ife_1, &bcm_sh0_cam_ife_2, &bcm_sh1_cam_ife_2, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_GPU_TCU] = &alm_gpu_tcu, [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_APPSS_PROC] = &chm_apps, [MASTER_GFX3D] = &qnm_gpu, [MASTER_LPASS_GEM_NOC] = &qnm_lpass_gemnoc, [MASTER_MSS_PROC] = &qnm_mdsp, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_COMPUTE_NOC] = &qnm_nsp_gemnoc, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [SLAVE_GEM_NOC_CNOC] = &qns_gem_noc_cnoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_pcie, [MASTER_MNOC_HF_MEM_NOC_DISP] = &qnm_mnoc_hf_disp, [MASTER_ANOC_PCIE_GEM_NOC_DISP] = &qnm_pcie_disp, [SLAVE_LLCC_DISP] = &qns_llcc_disp, [MASTER_MNOC_HF_MEM_NOC_CAM_IFE_0] = &qnm_mnoc_hf_cam_ife_0, [MASTER_MNOC_SF_MEM_NOC_CAM_IFE_0] = &qnm_mnoc_sf_cam_ife_0, [MASTER_ANOC_PCIE_GEM_NOC_CAM_IFE_0] = &qnm_pcie_cam_ife_0, [SLAVE_LLCC_CAM_IFE_0] = &qns_llcc_cam_ife_0, [MASTER_MNOC_HF_MEM_NOC_CAM_IFE_1] = &qnm_mnoc_hf_cam_ife_1, [MASTER_MNOC_SF_MEM_NOC_CAM_IFE_1] = &qnm_mnoc_sf_cam_ife_1, [MASTER_ANOC_PCIE_GEM_NOC_CAM_IFE_1] = &qnm_pcie_cam_ife_1, [SLAVE_LLCC_CAM_IFE_1] = &qns_llcc_cam_ife_1, [MASTER_MNOC_HF_MEM_NOC_CAM_IFE_2] = &qnm_mnoc_hf_cam_ife_2, [MASTER_MNOC_SF_MEM_NOC_CAM_IFE_2] = &qnm_mnoc_sf_cam_ife_2, [MASTER_ANOC_PCIE_GEM_NOC_CAM_IFE_2] = &qnm_pcie_cam_ife_2, [SLAVE_LLCC_CAM_IFE_2] = &qns_llcc_cam_ife_2, }; static const struct qcom_icc_desc sm8550_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const lpass_ag_noc_bcms[] = { }; static struct qcom_icc_node * const lpass_ag_noc_nodes[] = { [MASTER_LPIAON_NOC] = &qnm_lpiaon_noc, [SLAVE_LPASS_GEM_NOC] = &qns_lpass_ag_noc_gemnoc, }; static const struct qcom_icc_desc sm8550_lpass_ag_noc = { .nodes = lpass_ag_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_ag_noc_nodes), .bcms = lpass_ag_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_ag_noc_bcms), }; static struct qcom_icc_bcm * const lpass_lpiaon_noc_bcms[] = { &bcm_lp0, }; static struct qcom_icc_node * const lpass_lpiaon_noc_nodes[] = { [MASTER_LPASS_LPINOC] = &qnm_lpass_lpinoc, [SLAVE_LPIAON_NOC_LPASS_AG_NOC] = &qns_lpass_aggnoc, }; static const struct qcom_icc_desc sm8550_lpass_lpiaon_noc = { .nodes = lpass_lpiaon_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_lpiaon_noc_nodes), .bcms = lpass_lpiaon_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_lpiaon_noc_bcms), }; static struct qcom_icc_bcm * const lpass_lpicx_noc_bcms[] = { }; static struct qcom_icc_node * const lpass_lpicx_noc_nodes[] = { [MASTER_LPASS_PROC] = &qxm_lpinoc_dsp_axim, [SLAVE_LPICX_NOC_LPIAON_NOC] = &qns_lpi_aon_noc, }; static const struct qcom_icc_desc sm8550_lpass_lpicx_noc = { .nodes = lpass_lpicx_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_lpicx_noc_nodes), .bcms = lpass_lpicx_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_lpicx_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, &bcm_acv_disp, &bcm_mc0_disp, &bcm_acv_cam_ife_0, &bcm_mc0_cam_ife_0, &bcm_acv_cam_ife_1, &bcm_mc0_cam_ife_1, &bcm_acv_cam_ife_2, &bcm_mc0_cam_ife_2, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, [MASTER_LLCC_DISP] = &llcc_mc_disp, [SLAVE_EBI1_DISP] = &ebi_disp, [MASTER_LLCC_CAM_IFE_0] = &llcc_mc_cam_ife_0, [SLAVE_EBI1_CAM_IFE_0] = &ebi_cam_ife_0, [MASTER_LLCC_CAM_IFE_1] = &llcc_mc_cam_ife_1, [SLAVE_EBI1_CAM_IFE_1] = &ebi_cam_ife_1, [MASTER_LLCC_CAM_IFE_2] = &llcc_mc_cam_ife_2, [SLAVE_EBI1_CAM_IFE_2] = &ebi_cam_ife_2, }; static const struct qcom_icc_desc sm8550_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm0_disp, &bcm_mm0_cam_ife_0, &bcm_mm1_cam_ife_0, &bcm_mm0_cam_ife_1, &bcm_mm1_cam_ife_1, &bcm_mm0_cam_ife_2, &bcm_mm1_cam_ife_2, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CAMNOC_HF] = &qnm_camnoc_hf, [MASTER_CAMNOC_ICP] = &qnm_camnoc_icp, [MASTER_CAMNOC_SF] = &qnm_camnoc_sf, [MASTER_MDP] = &qnm_mdp, [MASTER_CDSP_HCP] = &qnm_vapss_hcp, [MASTER_VIDEO] = &qnm_video, [MASTER_VIDEO_CV_PROC] = &qnm_video_cv_cpu, [MASTER_VIDEO_PROC] = &qnm_video_cvp, [MASTER_VIDEO_V_PROC] = &qnm_video_v_cpu, [MASTER_CNOC_MNOC_CFG] = &qsm_mnoc_cfg, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, [MASTER_MDP_DISP] = &qnm_mdp_disp, [SLAVE_MNOC_HF_MEM_NOC_DISP] = &qns_mem_noc_hf_disp, [MASTER_CAMNOC_HF_CAM_IFE_0] = &qnm_camnoc_hf_cam_ife_0, [MASTER_CAMNOC_ICP_CAM_IFE_0] = &qnm_camnoc_icp_cam_ife_0, [MASTER_CAMNOC_SF_CAM_IFE_0] = &qnm_camnoc_sf_cam_ife_0, [SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_0] = &qns_mem_noc_hf_cam_ife_0, [SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_0] = &qns_mem_noc_sf_cam_ife_0, [MASTER_CAMNOC_HF_CAM_IFE_1] = &qnm_camnoc_hf_cam_ife_1, [MASTER_CAMNOC_ICP_CAM_IFE_1] = &qnm_camnoc_icp_cam_ife_1, [MASTER_CAMNOC_SF_CAM_IFE_1] = &qnm_camnoc_sf_cam_ife_1, [SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_1] = &qns_mem_noc_hf_cam_ife_1, [SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_1] = &qns_mem_noc_sf_cam_ife_1, [MASTER_CAMNOC_HF_CAM_IFE_2] = &qnm_camnoc_hf_cam_ife_2, [MASTER_CAMNOC_ICP_CAM_IFE_2] = &qnm_camnoc_icp_cam_ife_2, [MASTER_CAMNOC_SF_CAM_IFE_2] = &qnm_camnoc_sf_cam_ife_2, [SLAVE_MNOC_HF_MEM_NOC_CAM_IFE_2] = &qns_mem_noc_hf_cam_ife_2, [SLAVE_MNOC_SF_MEM_NOC_CAM_IFE_2] = &qns_mem_noc_sf_cam_ife_2, }; static const struct qcom_icc_desc sm8550_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const nsp_noc_bcms[] = { &bcm_co0, }; static struct qcom_icc_node * const nsp_noc_nodes[] = { [MASTER_CDSP_PROC] = &qxm_nsp, [SLAVE_CDSP_MEM_NOC] = &qns_nsp_gemnoc, }; static const struct qcom_icc_desc sm8550_nsp_noc = { .nodes = nsp_noc_nodes, .num_nodes = ARRAY_SIZE(nsp_noc_nodes), .bcms = nsp_noc_bcms, .num_bcms = ARRAY_SIZE(nsp_noc_bcms), }; static struct qcom_icc_bcm * const pcie_anoc_bcms[] = { &bcm_sn7, }; static struct qcom_icc_node * const pcie_anoc_nodes[] = { [MASTER_PCIE_ANOC_CFG] = &qsm_pcie_anoc_cfg, [MASTER_PCIE_0] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_mem_noc, [SLAVE_SERVICE_PCIE_ANOC] = &srvc_pcie_aggre_noc, }; static const struct qcom_icc_desc sm8550_pcie_anoc = { .nodes = pcie_anoc_nodes, .num_nodes = ARRAY_SIZE(pcie_anoc_nodes), .bcms = pcie_anoc_bcms, .num_bcms = ARRAY_SIZE(pcie_anoc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn2, &bcm_sn3, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_GIC_AHB] = &qhm_gic, [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_GIC] = &xm_gic, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, }; static const struct qcom_icc_desc sm8550_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sm8550-aggre1-noc", .data = &sm8550_aggre1_noc}, { .compatible = "qcom,sm8550-aggre2-noc", .data = &sm8550_aggre2_noc}, { .compatible = "qcom,sm8550-clk-virt", .data = &sm8550_clk_virt}, { .compatible = "qcom,sm8550-config-noc", .data = &sm8550_config_noc}, { .compatible = "qcom,sm8550-cnoc-main", .data = &sm8550_cnoc_main}, { .compatible = "qcom,sm8550-gem-noc", .data = &sm8550_gem_noc}, { .compatible = "qcom,sm8550-lpass-ag-noc", .data = &sm8550_lpass_ag_noc}, { .compatible = "qcom,sm8550-lpass-lpiaon-noc", .data = &sm8550_lpass_lpiaon_noc}, { .compatible = "qcom,sm8550-lpass-lpicx-noc", .data = &sm8550_lpass_lpicx_noc}, { .compatible = "qcom,sm8550-mc-virt", .data = &sm8550_mc_virt}, { .compatible = "qcom,sm8550-mmss-noc", .data = &sm8550_mmss_noc}, { .compatible = "qcom,sm8550-nsp-noc", .data = &sm8550_nsp_noc}, { .compatible = "qcom,sm8550-pcie-anoc", .data = &sm8550_pcie_anoc}, { .compatible = "qcom,sm8550-system-noc", .data = &sm8550_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sm8550", .of_match_table = qnoc_of_match, }, }; static int __init qnoc_driver_init(void) { return platform_driver_register(&qnoc_driver); } core_initcall(qnoc_driver_init); static void __exit qnoc_driver_exit(void) { platform_driver_unregister(&qnoc_driver); } module_exit(qnoc_driver_exit); MODULE_DESCRIPTION("sm8550 NoC driver"); MODULE_LICENSE("GPL");
linux-master
drivers/interconnect/qcom/sm8550.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. * */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sm8150.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sm8150.h" static struct qcom_icc_node qhm_a1noc_cfg = { .name = "qhm_a1noc_cfg", .id = SM8150_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = SM8150_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_emac = { .name = "xm_emac", .id = SM8150_MASTER_EMAC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SM8150_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SM8150_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_usb3_1 = { .name = "xm_usb3_1", .id = SM8150_MASTER_USB3_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_a2noc_cfg = { .name = "qhm_a2noc_cfg", .id = SM8150_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SM8150_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SM8150_MASTER_QSPI, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SM8150_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SM8150_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_sensorss_ahb = { .name = "qhm_sensorss_ahb", .id = SM8150_MASTER_SENSORS_AHB, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_tsif = { .name = "qhm_tsif", .id = SM8150_MASTER_TSIF, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qnm_cnoc = { .name = "qnm_cnoc", .id = SM8150_MASTER_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SM8150_MASTER_CRYPTO_CORE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SM8150_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SM8150_MASTER_PCIE, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SM8150_MASTER_PCIE_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SM8150_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SM8150_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SM8150_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_camnoc_hf0_uncomp = { .name = "qxm_camnoc_hf0_uncomp", .id = SM8150_MASTER_CAMNOC_HF0_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_hf1_uncomp = { .name = "qxm_camnoc_hf1_uncomp", .id = SM8150_MASTER_CAMNOC_HF1_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qxm_camnoc_sf_uncomp = { .name = "qxm_camnoc_sf_uncomp", .id = SM8150_MASTER_CAMNOC_SF_UNCOMP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_CAMNOC_UNCOMP }, }; static struct qcom_icc_node qnm_npu = { .name = "qnm_npu", .id = SM8150_MASTER_NPU, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_CDSP_MEM_NOC }, }; static struct qcom_icc_node qhm_spdm = { .name = "qhm_spdm", .id = SM8150_MASTER_SPDM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_SLAVE_CNOC_A2NOC }, }; static struct qcom_icc_node qnm_snoc = { .name = "qnm_snoc", .id = SM8150_SNOC_CNOC_MAS, .channels = 1, .buswidth = 8, .num_links = 50, .links = { SM8150_SLAVE_TLMM_SOUTH, SM8150_SLAVE_CDSP_CFG, SM8150_SLAVE_SPSS_CFG, SM8150_SLAVE_CAMERA_CFG, SM8150_SLAVE_SDCC_4, SM8150_SLAVE_SDCC_2, SM8150_SLAVE_CNOC_MNOC_CFG, SM8150_SLAVE_EMAC_CFG, SM8150_SLAVE_UFS_MEM_CFG, SM8150_SLAVE_TLMM_EAST, SM8150_SLAVE_SSC_CFG, SM8150_SLAVE_SNOC_CFG, SM8150_SLAVE_NORTH_PHY_CFG, SM8150_SLAVE_QUP_0, SM8150_SLAVE_GLM, SM8150_SLAVE_PCIE_1_CFG, SM8150_SLAVE_A2NOC_CFG, SM8150_SLAVE_QDSS_CFG, SM8150_SLAVE_DISPLAY_CFG, SM8150_SLAVE_TCSR, SM8150_SLAVE_CNOC_DDRSS, SM8150_SLAVE_RBCPR_MMCX_CFG, SM8150_SLAVE_NPU_CFG, SM8150_SLAVE_PCIE_0_CFG, SM8150_SLAVE_GRAPHICS_3D_CFG, SM8150_SLAVE_VENUS_CFG, SM8150_SLAVE_TSIF, SM8150_SLAVE_IPA_CFG, SM8150_SLAVE_CLK_CTL, SM8150_SLAVE_AOP, SM8150_SLAVE_QUP_1, SM8150_SLAVE_AHB2PHY_SOUTH, SM8150_SLAVE_USB3_1, SM8150_SLAVE_SERVICE_CNOC, SM8150_SLAVE_UFS_CARD_CFG, SM8150_SLAVE_QUP_2, SM8150_SLAVE_RBCPR_CX_CFG, SM8150_SLAVE_TLMM_WEST, SM8150_SLAVE_A1NOC_CFG, SM8150_SLAVE_AOSS, SM8150_SLAVE_PRNG, SM8150_SLAVE_VSENSE_CTRL_CFG, SM8150_SLAVE_QSPI, SM8150_SLAVE_USB3, SM8150_SLAVE_SPDM_WRAPPER, SM8150_SLAVE_CRYPTO_0_CFG, SM8150_SLAVE_PIMEM_CFG, SM8150_SLAVE_TLMM_NORTH, SM8150_SLAVE_RBCPR_MX_CFG, SM8150_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node xm_qdss_dap = { .name = "xm_qdss_dap", .id = SM8150_MASTER_QDSS_DAP, .channels = 1, .buswidth = 8, .num_links = 51, .links = { SM8150_SLAVE_TLMM_SOUTH, SM8150_SLAVE_CDSP_CFG, SM8150_SLAVE_SPSS_CFG, SM8150_SLAVE_CAMERA_CFG, SM8150_SLAVE_SDCC_4, SM8150_SLAVE_SDCC_2, SM8150_SLAVE_CNOC_MNOC_CFG, SM8150_SLAVE_EMAC_CFG, SM8150_SLAVE_UFS_MEM_CFG, SM8150_SLAVE_TLMM_EAST, SM8150_SLAVE_SSC_CFG, SM8150_SLAVE_SNOC_CFG, SM8150_SLAVE_NORTH_PHY_CFG, SM8150_SLAVE_QUP_0, SM8150_SLAVE_GLM, SM8150_SLAVE_PCIE_1_CFG, SM8150_SLAVE_A2NOC_CFG, SM8150_SLAVE_QDSS_CFG, SM8150_SLAVE_DISPLAY_CFG, SM8150_SLAVE_TCSR, SM8150_SLAVE_CNOC_DDRSS, SM8150_SLAVE_CNOC_A2NOC, SM8150_SLAVE_RBCPR_MMCX_CFG, SM8150_SLAVE_NPU_CFG, SM8150_SLAVE_PCIE_0_CFG, SM8150_SLAVE_GRAPHICS_3D_CFG, SM8150_SLAVE_VENUS_CFG, SM8150_SLAVE_TSIF, SM8150_SLAVE_IPA_CFG, SM8150_SLAVE_CLK_CTL, SM8150_SLAVE_AOP, SM8150_SLAVE_QUP_1, SM8150_SLAVE_AHB2PHY_SOUTH, SM8150_SLAVE_USB3_1, SM8150_SLAVE_SERVICE_CNOC, SM8150_SLAVE_UFS_CARD_CFG, SM8150_SLAVE_QUP_2, SM8150_SLAVE_RBCPR_CX_CFG, SM8150_SLAVE_TLMM_WEST, SM8150_SLAVE_A1NOC_CFG, SM8150_SLAVE_AOSS, SM8150_SLAVE_PRNG, SM8150_SLAVE_VSENSE_CTRL_CFG, SM8150_SLAVE_QSPI, SM8150_SLAVE_USB3, SM8150_SLAVE_SPDM_WRAPPER, SM8150_SLAVE_CRYPTO_0_CFG, SM8150_SLAVE_PIMEM_CFG, SM8150_SLAVE_TLMM_NORTH, SM8150_SLAVE_RBCPR_MX_CFG, SM8150_SLAVE_IMEM_CFG }, }; static struct qcom_icc_node qhm_cnoc_dc_noc = { .name = "qhm_cnoc_dc_noc", .id = SM8150_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SM8150_SLAVE_GEM_NOC_CFG, SM8150_SLAVE_LLCC_CFG }, }; static struct qcom_icc_node acm_apps = { .name = "acm_apps", .id = SM8150_MASTER_AMPSS_M0, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SM8150_SLAVE_ECC, SM8150_SLAVE_LLCC, SM8150_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node acm_gpu_tcu = { .name = "acm_gpu_tcu", .id = SM8150_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8150_SLAVE_LLCC, SM8150_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node acm_sys_tcu = { .name = "acm_sys_tcu", .id = SM8150_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8150_SLAVE_LLCC, SM8150_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qhm_gemnoc_cfg = { .name = "qhm_gemnoc_cfg", .id = SM8150_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SM8150_SLAVE_SERVICE_GEM_NOC, SM8150_SLAVE_MSS_PROC_MS_MPU_CFG }, }; static struct qcom_icc_node qnm_cmpnoc = { .name = "qnm_cmpnoc", .id = SM8150_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SM8150_SLAVE_ECC, SM8150_SLAVE_LLCC, SM8150_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SM8150_MASTER_GRAPHICS_3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8150_SLAVE_LLCC, SM8150_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SM8150_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SM8150_MASTER_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 2, .links = { SM8150_SLAVE_LLCC, SM8150_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SM8150_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SM8150_SLAVE_LLCC, SM8150_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SM8150_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SM8150_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8150_SLAVE_LLCC }, }; static struct qcom_icc_node qxm_ecc = { .name = "qxm_ecc", .id = SM8150_MASTER_ECC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_LLCC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SM8150_MASTER_LLCC, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8150_SLAVE_EBI_CH0 }, }; static struct qcom_icc_node qhm_mnoc_cfg = { .name = "qhm_mnoc_cfg", .id = SM8150_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qxm_camnoc_hf0 = { .name = "qxm_camnoc_hf0", .id = SM8150_MASTER_CAMNOC_HF0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_hf1 = { .name = "qxm_camnoc_hf1", .id = SM8150_MASTER_CAMNOC_HF1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_camnoc_sf = { .name = "qxm_camnoc_sf", .id = SM8150_MASTER_CAMNOC_SF, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SM8150_MASTER_MDP_PORT0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp1 = { .name = "qxm_mdp1", .id = SM8150_MASTER_MDP_PORT1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_rot = { .name = "qxm_rot", .id = SM8150_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus0 = { .name = "qxm_venus0", .id = SM8150_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus1 = { .name = "qxm_venus1", .id = SM8150_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_venus_arm9 = { .name = "qxm_venus_arm9", .id = SM8150_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SM8150_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SM8150_A1NOC_SNOC_MAS, .channels = 1, .buswidth = 16, .num_links = 6, .links = { SM8150_SLAVE_SNOC_GEM_NOC_SF, SM8150_SLAVE_PIMEM, SM8150_SLAVE_OCIMEM, SM8150_SLAVE_APPSS, SM8150_SNOC_CNOC_SLV, SM8150_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SM8150_A2NOC_SNOC_MAS, .channels = 1, .buswidth = 16, .num_links = 9, .links = { SM8150_SLAVE_SNOC_GEM_NOC_SF, SM8150_SLAVE_PIMEM, SM8150_SLAVE_OCIMEM, SM8150_SLAVE_APPSS, SM8150_SNOC_CNOC_SLV, SM8150_SLAVE_PCIE_0, SM8150_SLAVE_PCIE_1, SM8150_SLAVE_TCU, SM8150_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_gemnoc = { .name = "qnm_gemnoc", .id = SM8150_MASTER_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 6, .links = { SM8150_SLAVE_PIMEM, SM8150_SLAVE_OCIMEM, SM8150_SLAVE_APPSS, SM8150_SNOC_CNOC_SLV, SM8150_SLAVE_TCU, SM8150_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SM8150_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8150_SLAVE_SNOC_GEM_NOC_GC, SM8150_SLAVE_OCIMEM }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SM8150_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8150_SLAVE_SNOC_GEM_NOC_GC, SM8150_SLAVE_OCIMEM }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SM8150_A1NOC_SNOC_SLV, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8150_A1NOC_SNOC_MAS }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SM8150_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SM8150_A2NOC_SNOC_SLV, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8150_A2NOC_SNOC_MAS }, }; static struct qcom_icc_node qns_pcie_mem_noc = { .name = "qns_pcie_mem_noc", .id = SM8150_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8150_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SM8150_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_camnoc_uncomp = { .name = "qns_camnoc_uncomp", .id = SM8150_SLAVE_CAMNOC_UNCOMP, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qns_cdsp_mem_noc = { .name = "qns_cdsp_mem_noc", .id = SM8150_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8150_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node qhs_a1_noc_cfg = { .name = "qhs_a1_noc_cfg", .id = SM8150_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qhs_a2_noc_cfg = { .name = "qhs_a2_noc_cfg", .id = SM8150_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qhs_ahb2phy_south = { .name = "qhs_ahb2phy_south", .id = SM8150_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aop = { .name = "qhs_aop", .id = SM8150_SLAVE_AOP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SM8150_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SM8150_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SM8150_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_compute_dsp = { .name = "qhs_compute_dsp", .id = SM8150_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SM8150_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mmcx = { .name = "qhs_cpr_mmcx", .id = SM8150_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SM8150_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SM8150_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SM8150_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SM8150_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_emac_cfg = { .name = "qhs_emac_cfg", .id = SM8150_SLAVE_EMAC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_glm = { .name = "qhs_glm", .id = SM8150_SLAVE_GLM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SM8150_SLAVE_GRAPHICS_3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SM8150_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SM8150_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mnoc_cfg = { .name = "qhs_mnoc_cfg", .id = SM8150_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qhs_npu_cfg = { .name = "qhs_npu_cfg", .id = SM8150_SLAVE_NPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SM8150_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SM8150_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_phy_refgen_north = { .name = "qhs_phy_refgen_north", .id = SM8150_SLAVE_NORTH_PHY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SM8150_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SM8150_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SM8150_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SM8150_SLAVE_QSPI, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qupv3_east = { .name = "qhs_qupv3_east", .id = SM8150_SLAVE_QUP_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qupv3_north = { .name = "qhs_qupv3_north", .id = SM8150_SLAVE_QUP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qupv3_south = { .name = "qhs_qupv3_south", .id = SM8150_SLAVE_QUP_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SM8150_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SM8150_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SM8150_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_spdm = { .name = "qhs_spdm", .id = SM8150_SLAVE_SPDM_WRAPPER, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_spss_cfg = { .name = "qhs_spss_cfg", .id = SM8150_SLAVE_SPSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ssc_cfg = { .name = "qhs_ssc_cfg", .id = SM8150_SLAVE_SSC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SM8150_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_east = { .name = "qhs_tlmm_east", .id = SM8150_SLAVE_TLMM_EAST, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_north = { .name = "qhs_tlmm_north", .id = SM8150_SLAVE_TLMM_NORTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_south = { .name = "qhs_tlmm_south", .id = SM8150_SLAVE_TLMM_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm_west = { .name = "qhs_tlmm_west", .id = SM8150_SLAVE_TLMM_WEST, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tsif = { .name = "qhs_tsif", .id = SM8150_SLAVE_TSIF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_card_cfg = { .name = "qhs_ufs_card_cfg", .id = SM8150_SLAVE_UFS_CARD_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SM8150_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SM8150_SLAVE_USB3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_1 = { .name = "qhs_usb3_1", .id = SM8150_SLAVE_USB3_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SM8150_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SM8150_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_cnoc_a2noc = { .name = "qns_cnoc_a2noc", .id = SM8150_SLAVE_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_MASTER_CNOC_A2NOC }, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SM8150_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SM8150_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_memnoc = { .name = "qhs_memnoc", .id = SM8150_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8150_MASTER_GEM_NOC_CFG }, }; static struct qcom_icc_node qhs_mdsp_ms_mpu_cfg = { .name = "qhs_mdsp_ms_mpu_cfg", .id = SM8150_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_ecc = { .name = "qns_ecc", .id = SM8150_SLAVE_ECC, .channels = 1, .buswidth = 32, }; static struct qcom_icc_node qns_gem_noc_snoc = { .name = "qns_gem_noc_snoc", .id = SM8150_SLAVE_GEM_NOC_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_MASTER_GEM_NOC_SNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SM8150_SLAVE_LLCC, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8150_MASTER_LLCC }, }; static struct qcom_icc_node srvc_gemnoc = { .name = "srvc_gemnoc", .id = SM8150_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SM8150_SLAVE_EBI_CH0, .channels = 4, .buswidth = 4, }; static struct qcom_icc_node qns2_mem_noc = { .name = "qns2_mem_noc", .id = SM8150_SLAVE_MNOC_SF_MEM_NOC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8150_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SM8150_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8150_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SM8150_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SM8150_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qns_cnoc = { .name = "qns_cnoc", .id = SM8150_SNOC_CNOC_SLV, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_SNOC_CNOC_MAS }, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SM8150_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8150_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SM8150_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8150_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SM8150_SLAVE_OCIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SM8150_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SM8150_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SM8150_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SM8150_SLAVE_PCIE_1, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SM8150_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SM8150_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .keepalive = false, .num_nodes = 7, .nodes = { &qxm_camnoc_hf0_uncomp, &qxm_camnoc_hf1_uncomp, &qxm_camnoc_sf_uncomp, &qxm_camnoc_hf0, &qxm_camnoc_hf1, &qxm_mdp0, &qxm_mdp1 }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_gem_noc_snoc }, }; static struct qcom_icc_bcm bcm_mm2 = { .name = "MM2", .keepalive = false, .num_nodes = 2, .nodes = { &qxm_camnoc_sf, &qns2_mem_noc }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 2, .nodes = { &acm_gpu_tcu, &acm_sys_tcu }, }; static struct qcom_icc_bcm bcm_mm3 = { .name = "MM3", .keepalive = false, .num_nodes = 4, .nodes = { &qxm_rot, &qxm_venus0, &qxm_venus1, &qxm_venus_arm9 }, }; static struct qcom_icc_bcm bcm_sh4 = { .name = "SH4", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_cmpnoc }, }; static struct qcom_icc_bcm bcm_sh5 = { .name = "SH5", .keepalive = false, .num_nodes = 1, .nodes = { &acm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_cdsp_mem_noc }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_co1 = { .name = "CO1", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_npu }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 53, .nodes = { &qhm_spdm, &qnm_snoc, &qhs_a1_noc_cfg, &qhs_a2_noc_cfg, &qhs_ahb2phy_south, &qhs_aop, &qhs_aoss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute_dsp, &qhs_cpr_cx, &qhs_cpr_mmcx, &qhs_cpr_mx, &qhs_crypto0_cfg, &qhs_ddrss_cfg, &qhs_display_cfg, &qhs_emac_cfg, &qhs_glm, &qhs_gpuss_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_mnoc_cfg, &qhs_npu_cfg, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_phy_refgen_north, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qspi, &qhs_qupv3_east, &qhs_qupv3_north, &qhs_qupv3_south, &qhs_sdc2, &qhs_sdc4, &qhs_snoc_cfg, &qhs_spdm, &qhs_spss_cfg, &qhs_ssc_cfg, &qhs_tcsr, &qhs_tlmm_east, &qhs_tlmm_north, &qhs_tlmm_south, &qhs_tlmm_west, &qhs_tsif, &qhs_ufs_card_cfg, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_usb3_1, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qns_cnoc_a2noc, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = false, .num_nodes = 3, .nodes = { &qhm_qup0, &qhm_qup1, &qhm_qup2 }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 3, .nodes = { &srvc_aggre1_noc, &srvc_aggre2_noc, &qns_cnoc }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .keepalive = false, .num_nodes = 2, .nodes = { &xs_pcie_0, &xs_pcie_1 }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn11 = { .name = "SN11", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn12 = { .name = "SN12", .keepalive = false, .num_nodes = 2, .nodes = { &qxm_pimem, &xm_gic }, }; static struct qcom_icc_bcm bcm_sn14 = { .name = "SN14", .keepalive = false, .num_nodes = 1, .nodes = { &qns_pcie_mem_noc }, }; static struct qcom_icc_bcm bcm_sn15 = { .name = "SN15", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_gemnoc }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_qup0, &bcm_sn3, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_A1NOC_CFG] = &qhm_a1noc_cfg, [MASTER_QUP_0] = &qhm_qup0, [MASTER_EMAC] = &xm_emac, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB3] = &xm_usb3_0, [MASTER_USB3_1] = &xm_usb3_1, [A1NOC_SNOC_SLV] = &qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sm8150_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, &bcm_qup0, &bcm_sn14, &bcm_sn3, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_A2NOC_CFG] = &qhm_a2noc_cfg, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QSPI] = &qhm_qspi, [MASTER_QUP_1] = &qhm_qup1, [MASTER_QUP_2] = &qhm_qup2, [MASTER_SENSORS_AHB] = &qhm_sensorss_ahb, [MASTER_TSIF] = &qhm_tsif, [MASTER_CNOC_A2NOC] = &qnm_cnoc, [MASTER_CRYPTO_CORE_0] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_PCIE] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_SDCC_4] = &xm_sdc4, [A2NOC_SNOC_SLV] = &qns_a2noc_snoc, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_mem_noc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sm8150_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const camnoc_virt_bcms[] = { &bcm_mm1, }; static struct qcom_icc_node * const camnoc_virt_nodes[] = { [MASTER_CAMNOC_HF0_UNCOMP] = &qxm_camnoc_hf0_uncomp, [MASTER_CAMNOC_HF1_UNCOMP] = &qxm_camnoc_hf1_uncomp, [MASTER_CAMNOC_SF_UNCOMP] = &qxm_camnoc_sf_uncomp, [SLAVE_CAMNOC_UNCOMP] = &qns_camnoc_uncomp, }; static const struct qcom_icc_desc sm8150_camnoc_virt = { .nodes = camnoc_virt_nodes, .num_nodes = ARRAY_SIZE(camnoc_virt_nodes), .bcms = camnoc_virt_bcms, .num_bcms = ARRAY_SIZE(camnoc_virt_bcms), }; static struct qcom_icc_bcm * const compute_noc_bcms[] = { &bcm_co0, &bcm_co1, }; static struct qcom_icc_node * const compute_noc_nodes[] = { [MASTER_NPU] = &qnm_npu, [SLAVE_CDSP_MEM_NOC] = &qns_cdsp_mem_noc, }; static const struct qcom_icc_desc sm8150_compute_noc = { .nodes = compute_noc_nodes, .num_nodes = ARRAY_SIZE(compute_noc_nodes), .bcms = compute_noc_bcms, .num_bcms = ARRAY_SIZE(compute_noc_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_SPDM] = &qhm_spdm, [SNOC_CNOC_MAS] = &qnm_snoc, [MASTER_QDSS_DAP] = &xm_qdss_dap, [SLAVE_A1NOC_CFG] = &qhs_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qhs_a2_noc_cfg, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy_south, [SLAVE_AOP] = &qhs_aop, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute_dsp, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &qhs_cpr_mmcx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_EMAC_CFG] = &qhs_emac_cfg, [SLAVE_GLM] = &qhs_glm, [SLAVE_GRAPHICS_3D_CFG] = &qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_CNOC_MNOC_CFG] = &qhs_mnoc_cfg, [SLAVE_NPU_CFG] = &qhs_npu_cfg, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_NORTH_PHY_CFG] = &qhs_phy_refgen_north, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QSPI] = &qhs_qspi, [SLAVE_QUP_2] = &qhs_qupv3_east, [SLAVE_QUP_1] = &qhs_qupv3_north, [SLAVE_QUP_0] = &qhs_qupv3_south, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_SPDM_WRAPPER] = &qhs_spdm, [SLAVE_SPSS_CFG] = &qhs_spss_cfg, [SLAVE_SSC_CFG] = &qhs_ssc_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM_EAST] = &qhs_tlmm_east, [SLAVE_TLMM_NORTH] = &qhs_tlmm_north, [SLAVE_TLMM_SOUTH] = &qhs_tlmm_south, [SLAVE_TLMM_WEST] = &qhs_tlmm_west, [SLAVE_TSIF] = &qhs_tsif, [SLAVE_UFS_CARD_CFG] = &qhs_ufs_card_cfg, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3] = &qhs_usb3_0, [SLAVE_USB3_1] = &qhs_usb3_1, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_CNOC_A2NOC] = &qns_cnoc_a2noc, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, }; static const struct qcom_icc_desc sm8150_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qhm_cnoc_dc_noc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_GEM_NOC_CFG] = &qhs_memnoc, }; static const struct qcom_icc_desc sm8150_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, &bcm_sh3, &bcm_sh4, &bcm_sh5, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_AMPSS_M0] = &acm_apps, [MASTER_GPU_TCU] = &acm_gpu_tcu, [MASTER_SYS_TCU] = &acm_sys_tcu, [MASTER_GEM_NOC_CFG] = &qhm_gemnoc_cfg, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc, [MASTER_GRAPHICS_3D] = &qnm_gpu, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [MASTER_ECC] = &qxm_ecc, [SLAVE_MSS_PROC_MS_MPU_CFG] = &qhs_mdsp_ms_mpu_cfg, [SLAVE_ECC] = &qns_ecc, [SLAVE_GEM_NOC_SNOC] = &qns_gem_noc_snoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_SERVICE_GEM_NOC] = &srvc_gemnoc, }; static const struct qcom_icc_desc sm8150_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI_CH0] = &ebi, }; static const struct qcom_icc_desc sm8150_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm2, &bcm_mm3, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &qhm_mnoc_cfg, [MASTER_CAMNOC_HF0] = &qxm_camnoc_hf0, [MASTER_CAMNOC_HF1] = &qxm_camnoc_hf1, [MASTER_CAMNOC_SF] = &qxm_camnoc_sf, [MASTER_MDP_PORT0] = &qxm_mdp0, [MASTER_MDP_PORT1] = &qxm_mdp1, [MASTER_ROTATOR] = &qxm_rot, [MASTER_VIDEO_P0] = &qxm_venus0, [MASTER_VIDEO_P1] = &qxm_venus1, [MASTER_VIDEO_PROC] = &qxm_venus_arm9, [SLAVE_MNOC_SF_MEM_NOC] = &qns2_mem_noc, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, }; static const struct qcom_icc_desc sm8150_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn11, &bcm_sn12, &bcm_sn15, &bcm_sn2, &bcm_sn3, &bcm_sn4, &bcm_sn5, &bcm_sn8, &bcm_sn9, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [A1NOC_SNOC_MAS] = &qnm_aggre1_noc, [A2NOC_SNOC_MAS] = &qnm_aggre2_noc, [MASTER_GEM_NOC_SNOC] = &qnm_gemnoc, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_APPSS] = &qhs_apss, [SNOC_CNOC_SLV] = &qns_cnoc, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_OCIMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sm8150_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sm8150-aggre1-noc", .data = &sm8150_aggre1_noc}, { .compatible = "qcom,sm8150-aggre2-noc", .data = &sm8150_aggre2_noc}, { .compatible = "qcom,sm8150-camnoc-virt", .data = &sm8150_camnoc_virt}, { .compatible = "qcom,sm8150-compute-noc", .data = &sm8150_compute_noc}, { .compatible = "qcom,sm8150-config-noc", .data = &sm8150_config_noc}, { .compatible = "qcom,sm8150-dc-noc", .data = &sm8150_dc_noc}, { .compatible = "qcom,sm8150-gem-noc", .data = &sm8150_gem_noc}, { .compatible = "qcom,sm8150-mc-virt", .data = &sm8150_mc_virt}, { .compatible = "qcom,sm8150-mmss-noc", .data = &sm8150_mmss_noc}, { .compatible = "qcom,sm8150-system-noc", .data = &sm8150_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sm8150", .of_match_table = qnoc_of_match, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm SM8150 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sm8150.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2019 Brian Masney <[email protected]> * * Based on MSM bus code from downstream MSM kernel sources. * Copyright (c) 2012-2013 The Linux Foundation. All rights reserved. * * Based on qcs404.c * Copyright (C) 2019 Linaro Ltd * * Here's a rough representation that shows the various buses that form the * Network On Chip (NOC) for the msm8974: * * Multimedia Subsystem (MMSS) * |----------+-----------------------------------+-----------| * | | * | | * Config | Bus Interface | Memory Controller * |------------+-+-----------| |------------+-+-----------| * | | * | | * | System | * |--------------+-+---------------------------------+-+-------------| * | | * | | * Peripheral | On Chip | Memory (OCMEM) * |------------+-------------| |------------+-------------| */ #include <dt-bindings/interconnect/qcom,msm8974.h> #include <linux/clk.h> #include <linux/device.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include "icc-rpm.h" enum { MSM8974_BIMC_MAS_AMPSS_M0 = 1, MSM8974_BIMC_MAS_AMPSS_M1, MSM8974_BIMC_MAS_MSS_PROC, MSM8974_BIMC_TO_MNOC, MSM8974_BIMC_TO_SNOC, MSM8974_BIMC_SLV_EBI_CH0, MSM8974_BIMC_SLV_AMPSS_L2, MSM8974_CNOC_MAS_RPM_INST, MSM8974_CNOC_MAS_RPM_DATA, MSM8974_CNOC_MAS_RPM_SYS, MSM8974_CNOC_MAS_DEHR, MSM8974_CNOC_MAS_QDSS_DAP, MSM8974_CNOC_MAS_SPDM, MSM8974_CNOC_MAS_TIC, MSM8974_CNOC_SLV_CLK_CTL, MSM8974_CNOC_SLV_CNOC_MSS, MSM8974_CNOC_SLV_SECURITY, MSM8974_CNOC_SLV_TCSR, MSM8974_CNOC_SLV_TLMM, MSM8974_CNOC_SLV_CRYPTO_0_CFG, MSM8974_CNOC_SLV_CRYPTO_1_CFG, MSM8974_CNOC_SLV_IMEM_CFG, MSM8974_CNOC_SLV_MESSAGE_RAM, MSM8974_CNOC_SLV_BIMC_CFG, MSM8974_CNOC_SLV_BOOT_ROM, MSM8974_CNOC_SLV_PMIC_ARB, MSM8974_CNOC_SLV_SPDM_WRAPPER, MSM8974_CNOC_SLV_DEHR_CFG, MSM8974_CNOC_SLV_MPM, MSM8974_CNOC_SLV_QDSS_CFG, MSM8974_CNOC_SLV_RBCPR_CFG, MSM8974_CNOC_SLV_RBCPR_QDSS_APU_CFG, MSM8974_CNOC_TO_SNOC, MSM8974_CNOC_SLV_CNOC_ONOC_CFG, MSM8974_CNOC_SLV_CNOC_MNOC_MMSS_CFG, MSM8974_CNOC_SLV_CNOC_MNOC_CFG, MSM8974_CNOC_SLV_PNOC_CFG, MSM8974_CNOC_SLV_SNOC_MPU_CFG, MSM8974_CNOC_SLV_SNOC_CFG, MSM8974_CNOC_SLV_EBI1_DLL_CFG, MSM8974_CNOC_SLV_PHY_APU_CFG, MSM8974_CNOC_SLV_EBI1_PHY_CFG, MSM8974_CNOC_SLV_RPM, MSM8974_CNOC_SLV_SERVICE_CNOC, MSM8974_MNOC_MAS_GRAPHICS_3D, MSM8974_MNOC_MAS_JPEG, MSM8974_MNOC_MAS_MDP_PORT0, MSM8974_MNOC_MAS_VIDEO_P0, MSM8974_MNOC_MAS_VIDEO_P1, MSM8974_MNOC_MAS_VFE, MSM8974_MNOC_TO_CNOC, MSM8974_MNOC_TO_BIMC, MSM8974_MNOC_SLV_CAMERA_CFG, MSM8974_MNOC_SLV_DISPLAY_CFG, MSM8974_MNOC_SLV_OCMEM_CFG, MSM8974_MNOC_SLV_CPR_CFG, MSM8974_MNOC_SLV_CPR_XPU_CFG, MSM8974_MNOC_SLV_MISC_CFG, MSM8974_MNOC_SLV_MISC_XPU_CFG, MSM8974_MNOC_SLV_VENUS_CFG, MSM8974_MNOC_SLV_GRAPHICS_3D_CFG, MSM8974_MNOC_SLV_MMSS_CLK_CFG, MSM8974_MNOC_SLV_MMSS_CLK_XPU_CFG, MSM8974_MNOC_SLV_MNOC_MPU_CFG, MSM8974_MNOC_SLV_ONOC_MPU_CFG, MSM8974_MNOC_SLV_SERVICE_MNOC, MSM8974_OCMEM_NOC_TO_OCMEM_VNOC, MSM8974_OCMEM_MAS_JPEG_OCMEM, MSM8974_OCMEM_MAS_MDP_OCMEM, MSM8974_OCMEM_MAS_VIDEO_P0_OCMEM, MSM8974_OCMEM_MAS_VIDEO_P1_OCMEM, MSM8974_OCMEM_MAS_VFE_OCMEM, MSM8974_OCMEM_MAS_CNOC_ONOC_CFG, MSM8974_OCMEM_SLV_SERVICE_ONOC, MSM8974_OCMEM_VNOC_TO_SNOC, MSM8974_OCMEM_VNOC_TO_OCMEM_NOC, MSM8974_OCMEM_VNOC_MAS_GFX3D, MSM8974_OCMEM_SLV_OCMEM, MSM8974_PNOC_MAS_PNOC_CFG, MSM8974_PNOC_MAS_SDCC_1, MSM8974_PNOC_MAS_SDCC_3, MSM8974_PNOC_MAS_SDCC_4, MSM8974_PNOC_MAS_SDCC_2, MSM8974_PNOC_MAS_TSIF, MSM8974_PNOC_MAS_BAM_DMA, MSM8974_PNOC_MAS_BLSP_2, MSM8974_PNOC_MAS_USB_HSIC, MSM8974_PNOC_MAS_BLSP_1, MSM8974_PNOC_MAS_USB_HS, MSM8974_PNOC_TO_SNOC, MSM8974_PNOC_SLV_SDCC_1, MSM8974_PNOC_SLV_SDCC_3, MSM8974_PNOC_SLV_SDCC_2, MSM8974_PNOC_SLV_SDCC_4, MSM8974_PNOC_SLV_TSIF, MSM8974_PNOC_SLV_BAM_DMA, MSM8974_PNOC_SLV_BLSP_2, MSM8974_PNOC_SLV_USB_HSIC, MSM8974_PNOC_SLV_BLSP_1, MSM8974_PNOC_SLV_USB_HS, MSM8974_PNOC_SLV_PDM, MSM8974_PNOC_SLV_PERIPH_APU_CFG, MSM8974_PNOC_SLV_PNOC_MPU_CFG, MSM8974_PNOC_SLV_PRNG, MSM8974_PNOC_SLV_SERVICE_PNOC, MSM8974_SNOC_MAS_LPASS_AHB, MSM8974_SNOC_MAS_QDSS_BAM, MSM8974_SNOC_MAS_SNOC_CFG, MSM8974_SNOC_TO_BIMC, MSM8974_SNOC_TO_CNOC, MSM8974_SNOC_TO_PNOC, MSM8974_SNOC_TO_OCMEM_VNOC, MSM8974_SNOC_MAS_CRYPTO_CORE0, MSM8974_SNOC_MAS_CRYPTO_CORE1, MSM8974_SNOC_MAS_LPASS_PROC, MSM8974_SNOC_MAS_MSS, MSM8974_SNOC_MAS_MSS_NAV, MSM8974_SNOC_MAS_OCMEM_DMA, MSM8974_SNOC_MAS_WCSS, MSM8974_SNOC_MAS_QDSS_ETR, MSM8974_SNOC_MAS_USB3, MSM8974_SNOC_SLV_AMPSS, MSM8974_SNOC_SLV_LPASS, MSM8974_SNOC_SLV_USB3, MSM8974_SNOC_SLV_WCSS, MSM8974_SNOC_SLV_OCIMEM, MSM8974_SNOC_SLV_SNOC_OCMEM, MSM8974_SNOC_SLV_SERVICE_SNOC, MSM8974_SNOC_SLV_QDSS_STM, }; #define RPM_BUS_MASTER_REQ 0x73616d62 #define RPM_BUS_SLAVE_REQ 0x766c7362 #define to_msm8974_icc_provider(_provider) \ container_of(_provider, struct msm8974_icc_provider, provider) static const struct clk_bulk_data msm8974_icc_bus_clocks[] = { { .id = "bus" }, { .id = "bus_a" }, }; /** * struct msm8974_icc_provider - Qualcomm specific interconnect provider * @provider: generic interconnect provider * @bus_clks: the clk_bulk_data table of bus clocks * @num_clks: the total number of clk_bulk_data entries */ struct msm8974_icc_provider { struct icc_provider provider; struct clk_bulk_data *bus_clks; int num_clks; }; #define MSM8974_ICC_MAX_LINKS 3 /** * struct msm8974_icc_node - Qualcomm specific interconnect nodes * @name: the node name used in debugfs * @id: a unique node identifier * @links: an array of nodes where we can go next while traversing * @num_links: the total number of @links * @buswidth: width of the interconnect between a node and the bus (bytes) * @mas_rpm_id: RPM ID for devices that are bus masters * @slv_rpm_id: RPM ID for devices that are bus slaves * @rate: current bus clock rate in Hz */ struct msm8974_icc_node { unsigned char *name; u16 id; u16 links[MSM8974_ICC_MAX_LINKS]; u16 num_links; u16 buswidth; int mas_rpm_id; int slv_rpm_id; u64 rate; }; struct msm8974_icc_desc { struct msm8974_icc_node * const *nodes; size_t num_nodes; }; #define DEFINE_QNODE(_name, _id, _buswidth, _mas_rpm_id, _slv_rpm_id, \ ...) \ static struct msm8974_icc_node _name = { \ .name = #_name, \ .id = _id, \ .buswidth = _buswidth, \ .mas_rpm_id = _mas_rpm_id, \ .slv_rpm_id = _slv_rpm_id, \ .num_links = ARRAY_SIZE(((int[]){ __VA_ARGS__ })), \ .links = { __VA_ARGS__ }, \ } DEFINE_QNODE(mas_ampss_m0, MSM8974_BIMC_MAS_AMPSS_M0, 8, 0, -1); DEFINE_QNODE(mas_ampss_m1, MSM8974_BIMC_MAS_AMPSS_M1, 8, 0, -1); DEFINE_QNODE(mas_mss_proc, MSM8974_BIMC_MAS_MSS_PROC, 8, 1, -1); DEFINE_QNODE(bimc_to_mnoc, MSM8974_BIMC_TO_MNOC, 8, 2, -1, MSM8974_BIMC_SLV_EBI_CH0); DEFINE_QNODE(bimc_to_snoc, MSM8974_BIMC_TO_SNOC, 8, 3, 2, MSM8974_SNOC_TO_BIMC, MSM8974_BIMC_SLV_EBI_CH0, MSM8974_BIMC_MAS_AMPSS_M0); DEFINE_QNODE(slv_ebi_ch0, MSM8974_BIMC_SLV_EBI_CH0, 8, -1, 0); DEFINE_QNODE(slv_ampss_l2, MSM8974_BIMC_SLV_AMPSS_L2, 8, -1, 1); static struct msm8974_icc_node * const msm8974_bimc_nodes[] = { [BIMC_MAS_AMPSS_M0] = &mas_ampss_m0, [BIMC_MAS_AMPSS_M1] = &mas_ampss_m1, [BIMC_MAS_MSS_PROC] = &mas_mss_proc, [BIMC_TO_MNOC] = &bimc_to_mnoc, [BIMC_TO_SNOC] = &bimc_to_snoc, [BIMC_SLV_EBI_CH0] = &slv_ebi_ch0, [BIMC_SLV_AMPSS_L2] = &slv_ampss_l2, }; static const struct msm8974_icc_desc msm8974_bimc = { .nodes = msm8974_bimc_nodes, .num_nodes = ARRAY_SIZE(msm8974_bimc_nodes), }; DEFINE_QNODE(mas_rpm_inst, MSM8974_CNOC_MAS_RPM_INST, 8, 45, -1); DEFINE_QNODE(mas_rpm_data, MSM8974_CNOC_MAS_RPM_DATA, 8, 46, -1); DEFINE_QNODE(mas_rpm_sys, MSM8974_CNOC_MAS_RPM_SYS, 8, 47, -1); DEFINE_QNODE(mas_dehr, MSM8974_CNOC_MAS_DEHR, 8, 48, -1); DEFINE_QNODE(mas_qdss_dap, MSM8974_CNOC_MAS_QDSS_DAP, 8, 49, -1); DEFINE_QNODE(mas_spdm, MSM8974_CNOC_MAS_SPDM, 8, 50, -1); DEFINE_QNODE(mas_tic, MSM8974_CNOC_MAS_TIC, 8, 51, -1); DEFINE_QNODE(slv_clk_ctl, MSM8974_CNOC_SLV_CLK_CTL, 8, -1, 47); DEFINE_QNODE(slv_cnoc_mss, MSM8974_CNOC_SLV_CNOC_MSS, 8, -1, 48); DEFINE_QNODE(slv_security, MSM8974_CNOC_SLV_SECURITY, 8, -1, 49); DEFINE_QNODE(slv_tcsr, MSM8974_CNOC_SLV_TCSR, 8, -1, 50); DEFINE_QNODE(slv_tlmm, MSM8974_CNOC_SLV_TLMM, 8, -1, 51); DEFINE_QNODE(slv_crypto_0_cfg, MSM8974_CNOC_SLV_CRYPTO_0_CFG, 8, -1, 52); DEFINE_QNODE(slv_crypto_1_cfg, MSM8974_CNOC_SLV_CRYPTO_1_CFG, 8, -1, 53); DEFINE_QNODE(slv_imem_cfg, MSM8974_CNOC_SLV_IMEM_CFG, 8, -1, 54); DEFINE_QNODE(slv_message_ram, MSM8974_CNOC_SLV_MESSAGE_RAM, 8, -1, 55); DEFINE_QNODE(slv_bimc_cfg, MSM8974_CNOC_SLV_BIMC_CFG, 8, -1, 56); DEFINE_QNODE(slv_boot_rom, MSM8974_CNOC_SLV_BOOT_ROM, 8, -1, 57); DEFINE_QNODE(slv_pmic_arb, MSM8974_CNOC_SLV_PMIC_ARB, 8, -1, 59); DEFINE_QNODE(slv_spdm_wrapper, MSM8974_CNOC_SLV_SPDM_WRAPPER, 8, -1, 60); DEFINE_QNODE(slv_dehr_cfg, MSM8974_CNOC_SLV_DEHR_CFG, 8, -1, 61); DEFINE_QNODE(slv_mpm, MSM8974_CNOC_SLV_MPM, 8, -1, 62); DEFINE_QNODE(slv_qdss_cfg, MSM8974_CNOC_SLV_QDSS_CFG, 8, -1, 63); DEFINE_QNODE(slv_rbcpr_cfg, MSM8974_CNOC_SLV_RBCPR_CFG, 8, -1, 64); DEFINE_QNODE(slv_rbcpr_qdss_apu_cfg, MSM8974_CNOC_SLV_RBCPR_QDSS_APU_CFG, 8, -1, 65); DEFINE_QNODE(cnoc_to_snoc, MSM8974_CNOC_TO_SNOC, 8, 52, 75); DEFINE_QNODE(slv_cnoc_onoc_cfg, MSM8974_CNOC_SLV_CNOC_ONOC_CFG, 8, -1, 68); DEFINE_QNODE(slv_cnoc_mnoc_mmss_cfg, MSM8974_CNOC_SLV_CNOC_MNOC_MMSS_CFG, 8, -1, 58); DEFINE_QNODE(slv_cnoc_mnoc_cfg, MSM8974_CNOC_SLV_CNOC_MNOC_CFG, 8, -1, 66); DEFINE_QNODE(slv_pnoc_cfg, MSM8974_CNOC_SLV_PNOC_CFG, 8, -1, 69); DEFINE_QNODE(slv_snoc_mpu_cfg, MSM8974_CNOC_SLV_SNOC_MPU_CFG, 8, -1, 67); DEFINE_QNODE(slv_snoc_cfg, MSM8974_CNOC_SLV_SNOC_CFG, 8, -1, 70); DEFINE_QNODE(slv_ebi1_dll_cfg, MSM8974_CNOC_SLV_EBI1_DLL_CFG, 8, -1, 71); DEFINE_QNODE(slv_phy_apu_cfg, MSM8974_CNOC_SLV_PHY_APU_CFG, 8, -1, 72); DEFINE_QNODE(slv_ebi1_phy_cfg, MSM8974_CNOC_SLV_EBI1_PHY_CFG, 8, -1, 73); DEFINE_QNODE(slv_rpm, MSM8974_CNOC_SLV_RPM, 8, -1, 74); DEFINE_QNODE(slv_service_cnoc, MSM8974_CNOC_SLV_SERVICE_CNOC, 8, -1, 76); static struct msm8974_icc_node * const msm8974_cnoc_nodes[] = { [CNOC_MAS_RPM_INST] = &mas_rpm_inst, [CNOC_MAS_RPM_DATA] = &mas_rpm_data, [CNOC_MAS_RPM_SYS] = &mas_rpm_sys, [CNOC_MAS_DEHR] = &mas_dehr, [CNOC_MAS_QDSS_DAP] = &mas_qdss_dap, [CNOC_MAS_SPDM] = &mas_spdm, [CNOC_MAS_TIC] = &mas_tic, [CNOC_SLV_CLK_CTL] = &slv_clk_ctl, [CNOC_SLV_CNOC_MSS] = &slv_cnoc_mss, [CNOC_SLV_SECURITY] = &slv_security, [CNOC_SLV_TCSR] = &slv_tcsr, [CNOC_SLV_TLMM] = &slv_tlmm, [CNOC_SLV_CRYPTO_0_CFG] = &slv_crypto_0_cfg, [CNOC_SLV_CRYPTO_1_CFG] = &slv_crypto_1_cfg, [CNOC_SLV_IMEM_CFG] = &slv_imem_cfg, [CNOC_SLV_MESSAGE_RAM] = &slv_message_ram, [CNOC_SLV_BIMC_CFG] = &slv_bimc_cfg, [CNOC_SLV_BOOT_ROM] = &slv_boot_rom, [CNOC_SLV_PMIC_ARB] = &slv_pmic_arb, [CNOC_SLV_SPDM_WRAPPER] = &slv_spdm_wrapper, [CNOC_SLV_DEHR_CFG] = &slv_dehr_cfg, [CNOC_SLV_MPM] = &slv_mpm, [CNOC_SLV_QDSS_CFG] = &slv_qdss_cfg, [CNOC_SLV_RBCPR_CFG] = &slv_rbcpr_cfg, [CNOC_SLV_RBCPR_QDSS_APU_CFG] = &slv_rbcpr_qdss_apu_cfg, [CNOC_TO_SNOC] = &cnoc_to_snoc, [CNOC_SLV_CNOC_ONOC_CFG] = &slv_cnoc_onoc_cfg, [CNOC_SLV_CNOC_MNOC_MMSS_CFG] = &slv_cnoc_mnoc_mmss_cfg, [CNOC_SLV_CNOC_MNOC_CFG] = &slv_cnoc_mnoc_cfg, [CNOC_SLV_PNOC_CFG] = &slv_pnoc_cfg, [CNOC_SLV_SNOC_MPU_CFG] = &slv_snoc_mpu_cfg, [CNOC_SLV_SNOC_CFG] = &slv_snoc_cfg, [CNOC_SLV_EBI1_DLL_CFG] = &slv_ebi1_dll_cfg, [CNOC_SLV_PHY_APU_CFG] = &slv_phy_apu_cfg, [CNOC_SLV_EBI1_PHY_CFG] = &slv_ebi1_phy_cfg, [CNOC_SLV_RPM] = &slv_rpm, [CNOC_SLV_SERVICE_CNOC] = &slv_service_cnoc, }; static const struct msm8974_icc_desc msm8974_cnoc = { .nodes = msm8974_cnoc_nodes, .num_nodes = ARRAY_SIZE(msm8974_cnoc_nodes), }; DEFINE_QNODE(mas_graphics_3d, MSM8974_MNOC_MAS_GRAPHICS_3D, 16, 6, -1, MSM8974_MNOC_TO_BIMC); DEFINE_QNODE(mas_jpeg, MSM8974_MNOC_MAS_JPEG, 16, 7, -1, MSM8974_MNOC_TO_BIMC); DEFINE_QNODE(mas_mdp_port0, MSM8974_MNOC_MAS_MDP_PORT0, 16, 8, -1, MSM8974_MNOC_TO_BIMC); DEFINE_QNODE(mas_video_p0, MSM8974_MNOC_MAS_VIDEO_P0, 16, 9, -1); DEFINE_QNODE(mas_video_p1, MSM8974_MNOC_MAS_VIDEO_P1, 16, 10, -1); DEFINE_QNODE(mas_vfe, MSM8974_MNOC_MAS_VFE, 16, 11, -1, MSM8974_MNOC_TO_BIMC); DEFINE_QNODE(mnoc_to_cnoc, MSM8974_MNOC_TO_CNOC, 16, 4, -1); DEFINE_QNODE(mnoc_to_bimc, MSM8974_MNOC_TO_BIMC, 16, -1, 16, MSM8974_BIMC_TO_MNOC); DEFINE_QNODE(slv_camera_cfg, MSM8974_MNOC_SLV_CAMERA_CFG, 16, -1, 3); DEFINE_QNODE(slv_display_cfg, MSM8974_MNOC_SLV_DISPLAY_CFG, 16, -1, 4); DEFINE_QNODE(slv_ocmem_cfg, MSM8974_MNOC_SLV_OCMEM_CFG, 16, -1, 5); DEFINE_QNODE(slv_cpr_cfg, MSM8974_MNOC_SLV_CPR_CFG, 16, -1, 6); DEFINE_QNODE(slv_cpr_xpu_cfg, MSM8974_MNOC_SLV_CPR_XPU_CFG, 16, -1, 7); DEFINE_QNODE(slv_misc_cfg, MSM8974_MNOC_SLV_MISC_CFG, 16, -1, 8); DEFINE_QNODE(slv_misc_xpu_cfg, MSM8974_MNOC_SLV_MISC_XPU_CFG, 16, -1, 9); DEFINE_QNODE(slv_venus_cfg, MSM8974_MNOC_SLV_VENUS_CFG, 16, -1, 10); DEFINE_QNODE(slv_graphics_3d_cfg, MSM8974_MNOC_SLV_GRAPHICS_3D_CFG, 16, -1, 11); DEFINE_QNODE(slv_mmss_clk_cfg, MSM8974_MNOC_SLV_MMSS_CLK_CFG, 16, -1, 12); DEFINE_QNODE(slv_mmss_clk_xpu_cfg, MSM8974_MNOC_SLV_MMSS_CLK_XPU_CFG, 16, -1, 13); DEFINE_QNODE(slv_mnoc_mpu_cfg, MSM8974_MNOC_SLV_MNOC_MPU_CFG, 16, -1, 14); DEFINE_QNODE(slv_onoc_mpu_cfg, MSM8974_MNOC_SLV_ONOC_MPU_CFG, 16, -1, 15); DEFINE_QNODE(slv_service_mnoc, MSM8974_MNOC_SLV_SERVICE_MNOC, 16, -1, 17); static struct msm8974_icc_node * const msm8974_mnoc_nodes[] = { [MNOC_MAS_GRAPHICS_3D] = &mas_graphics_3d, [MNOC_MAS_JPEG] = &mas_jpeg, [MNOC_MAS_MDP_PORT0] = &mas_mdp_port0, [MNOC_MAS_VIDEO_P0] = &mas_video_p0, [MNOC_MAS_VIDEO_P1] = &mas_video_p1, [MNOC_MAS_VFE] = &mas_vfe, [MNOC_TO_CNOC] = &mnoc_to_cnoc, [MNOC_TO_BIMC] = &mnoc_to_bimc, [MNOC_SLV_CAMERA_CFG] = &slv_camera_cfg, [MNOC_SLV_DISPLAY_CFG] = &slv_display_cfg, [MNOC_SLV_OCMEM_CFG] = &slv_ocmem_cfg, [MNOC_SLV_CPR_CFG] = &slv_cpr_cfg, [MNOC_SLV_CPR_XPU_CFG] = &slv_cpr_xpu_cfg, [MNOC_SLV_MISC_CFG] = &slv_misc_cfg, [MNOC_SLV_MISC_XPU_CFG] = &slv_misc_xpu_cfg, [MNOC_SLV_VENUS_CFG] = &slv_venus_cfg, [MNOC_SLV_GRAPHICS_3D_CFG] = &slv_graphics_3d_cfg, [MNOC_SLV_MMSS_CLK_CFG] = &slv_mmss_clk_cfg, [MNOC_SLV_MMSS_CLK_XPU_CFG] = &slv_mmss_clk_xpu_cfg, [MNOC_SLV_MNOC_MPU_CFG] = &slv_mnoc_mpu_cfg, [MNOC_SLV_ONOC_MPU_CFG] = &slv_onoc_mpu_cfg, [MNOC_SLV_SERVICE_MNOC] = &slv_service_mnoc, }; static const struct msm8974_icc_desc msm8974_mnoc = { .nodes = msm8974_mnoc_nodes, .num_nodes = ARRAY_SIZE(msm8974_mnoc_nodes), }; DEFINE_QNODE(ocmem_noc_to_ocmem_vnoc, MSM8974_OCMEM_NOC_TO_OCMEM_VNOC, 16, 54, 78, MSM8974_OCMEM_SLV_OCMEM); DEFINE_QNODE(mas_jpeg_ocmem, MSM8974_OCMEM_MAS_JPEG_OCMEM, 16, 13, -1); DEFINE_QNODE(mas_mdp_ocmem, MSM8974_OCMEM_MAS_MDP_OCMEM, 16, 14, -1); DEFINE_QNODE(mas_video_p0_ocmem, MSM8974_OCMEM_MAS_VIDEO_P0_OCMEM, 16, 15, -1); DEFINE_QNODE(mas_video_p1_ocmem, MSM8974_OCMEM_MAS_VIDEO_P1_OCMEM, 16, 16, -1); DEFINE_QNODE(mas_vfe_ocmem, MSM8974_OCMEM_MAS_VFE_OCMEM, 16, 17, -1); DEFINE_QNODE(mas_cnoc_onoc_cfg, MSM8974_OCMEM_MAS_CNOC_ONOC_CFG, 16, 12, -1); DEFINE_QNODE(slv_service_onoc, MSM8974_OCMEM_SLV_SERVICE_ONOC, 16, -1, 19); DEFINE_QNODE(slv_ocmem, MSM8974_OCMEM_SLV_OCMEM, 16, -1, 18); /* Virtual NoC is needed for connection to OCMEM */ DEFINE_QNODE(ocmem_vnoc_to_onoc, MSM8974_OCMEM_VNOC_TO_OCMEM_NOC, 16, 56, 79, MSM8974_OCMEM_NOC_TO_OCMEM_VNOC); DEFINE_QNODE(ocmem_vnoc_to_snoc, MSM8974_OCMEM_VNOC_TO_SNOC, 8, 57, 80); DEFINE_QNODE(mas_v_ocmem_gfx3d, MSM8974_OCMEM_VNOC_MAS_GFX3D, 8, 55, -1, MSM8974_OCMEM_VNOC_TO_OCMEM_NOC); static struct msm8974_icc_node * const msm8974_onoc_nodes[] = { [OCMEM_NOC_TO_OCMEM_VNOC] = &ocmem_noc_to_ocmem_vnoc, [OCMEM_MAS_JPEG_OCMEM] = &mas_jpeg_ocmem, [OCMEM_MAS_MDP_OCMEM] = &mas_mdp_ocmem, [OCMEM_MAS_VIDEO_P0_OCMEM] = &mas_video_p0_ocmem, [OCMEM_MAS_VIDEO_P1_OCMEM] = &mas_video_p1_ocmem, [OCMEM_MAS_VFE_OCMEM] = &mas_vfe_ocmem, [OCMEM_MAS_CNOC_ONOC_CFG] = &mas_cnoc_onoc_cfg, [OCMEM_SLV_SERVICE_ONOC] = &slv_service_onoc, [OCMEM_VNOC_TO_SNOC] = &ocmem_vnoc_to_snoc, [OCMEM_VNOC_TO_OCMEM_NOC] = &ocmem_vnoc_to_onoc, [OCMEM_VNOC_MAS_GFX3D] = &mas_v_ocmem_gfx3d, [OCMEM_SLV_OCMEM] = &slv_ocmem, }; static const struct msm8974_icc_desc msm8974_onoc = { .nodes = msm8974_onoc_nodes, .num_nodes = ARRAY_SIZE(msm8974_onoc_nodes), }; DEFINE_QNODE(mas_pnoc_cfg, MSM8974_PNOC_MAS_PNOC_CFG, 8, 43, -1); DEFINE_QNODE(mas_sdcc_1, MSM8974_PNOC_MAS_SDCC_1, 8, 33, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_sdcc_3, MSM8974_PNOC_MAS_SDCC_3, 8, 34, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_sdcc_4, MSM8974_PNOC_MAS_SDCC_4, 8, 36, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_sdcc_2, MSM8974_PNOC_MAS_SDCC_2, 8, 35, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_tsif, MSM8974_PNOC_MAS_TSIF, 8, 37, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_bam_dma, MSM8974_PNOC_MAS_BAM_DMA, 8, 38, -1); DEFINE_QNODE(mas_blsp_2, MSM8974_PNOC_MAS_BLSP_2, 8, 39, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_usb_hsic, MSM8974_PNOC_MAS_USB_HSIC, 8, 40, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_blsp_1, MSM8974_PNOC_MAS_BLSP_1, 8, 41, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(mas_usb_hs, MSM8974_PNOC_MAS_USB_HS, 8, 42, -1, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(pnoc_to_snoc, MSM8974_PNOC_TO_SNOC, 8, 44, 45, MSM8974_SNOC_TO_PNOC, MSM8974_PNOC_SLV_PRNG); DEFINE_QNODE(slv_sdcc_1, MSM8974_PNOC_SLV_SDCC_1, 8, -1, 31); DEFINE_QNODE(slv_sdcc_3, MSM8974_PNOC_SLV_SDCC_3, 8, -1, 32); DEFINE_QNODE(slv_sdcc_2, MSM8974_PNOC_SLV_SDCC_2, 8, -1, 33); DEFINE_QNODE(slv_sdcc_4, MSM8974_PNOC_SLV_SDCC_4, 8, -1, 34); DEFINE_QNODE(slv_tsif, MSM8974_PNOC_SLV_TSIF, 8, -1, 35); DEFINE_QNODE(slv_bam_dma, MSM8974_PNOC_SLV_BAM_DMA, 8, -1, 36); DEFINE_QNODE(slv_blsp_2, MSM8974_PNOC_SLV_BLSP_2, 8, -1, 37); DEFINE_QNODE(slv_usb_hsic, MSM8974_PNOC_SLV_USB_HSIC, 8, -1, 38); DEFINE_QNODE(slv_blsp_1, MSM8974_PNOC_SLV_BLSP_1, 8, -1, 39); DEFINE_QNODE(slv_usb_hs, MSM8974_PNOC_SLV_USB_HS, 8, -1, 40); DEFINE_QNODE(slv_pdm, MSM8974_PNOC_SLV_PDM, 8, -1, 41); DEFINE_QNODE(slv_periph_apu_cfg, MSM8974_PNOC_SLV_PERIPH_APU_CFG, 8, -1, 42); DEFINE_QNODE(slv_pnoc_mpu_cfg, MSM8974_PNOC_SLV_PNOC_MPU_CFG, 8, -1, 43); DEFINE_QNODE(slv_prng, MSM8974_PNOC_SLV_PRNG, 8, -1, 44, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(slv_service_pnoc, MSM8974_PNOC_SLV_SERVICE_PNOC, 8, -1, 46); static struct msm8974_icc_node * const msm8974_pnoc_nodes[] = { [PNOC_MAS_PNOC_CFG] = &mas_pnoc_cfg, [PNOC_MAS_SDCC_1] = &mas_sdcc_1, [PNOC_MAS_SDCC_3] = &mas_sdcc_3, [PNOC_MAS_SDCC_4] = &mas_sdcc_4, [PNOC_MAS_SDCC_2] = &mas_sdcc_2, [PNOC_MAS_TSIF] = &mas_tsif, [PNOC_MAS_BAM_DMA] = &mas_bam_dma, [PNOC_MAS_BLSP_2] = &mas_blsp_2, [PNOC_MAS_USB_HSIC] = &mas_usb_hsic, [PNOC_MAS_BLSP_1] = &mas_blsp_1, [PNOC_MAS_USB_HS] = &mas_usb_hs, [PNOC_TO_SNOC] = &pnoc_to_snoc, [PNOC_SLV_SDCC_1] = &slv_sdcc_1, [PNOC_SLV_SDCC_3] = &slv_sdcc_3, [PNOC_SLV_SDCC_2] = &slv_sdcc_2, [PNOC_SLV_SDCC_4] = &slv_sdcc_4, [PNOC_SLV_TSIF] = &slv_tsif, [PNOC_SLV_BAM_DMA] = &slv_bam_dma, [PNOC_SLV_BLSP_2] = &slv_blsp_2, [PNOC_SLV_USB_HSIC] = &slv_usb_hsic, [PNOC_SLV_BLSP_1] = &slv_blsp_1, [PNOC_SLV_USB_HS] = &slv_usb_hs, [PNOC_SLV_PDM] = &slv_pdm, [PNOC_SLV_PERIPH_APU_CFG] = &slv_periph_apu_cfg, [PNOC_SLV_PNOC_MPU_CFG] = &slv_pnoc_mpu_cfg, [PNOC_SLV_PRNG] = &slv_prng, [PNOC_SLV_SERVICE_PNOC] = &slv_service_pnoc, }; static const struct msm8974_icc_desc msm8974_pnoc = { .nodes = msm8974_pnoc_nodes, .num_nodes = ARRAY_SIZE(msm8974_pnoc_nodes), }; DEFINE_QNODE(mas_lpass_ahb, MSM8974_SNOC_MAS_LPASS_AHB, 8, 18, -1); DEFINE_QNODE(mas_qdss_bam, MSM8974_SNOC_MAS_QDSS_BAM, 8, 19, -1); DEFINE_QNODE(mas_snoc_cfg, MSM8974_SNOC_MAS_SNOC_CFG, 8, 20, -1); DEFINE_QNODE(snoc_to_bimc, MSM8974_SNOC_TO_BIMC, 8, 21, 24, MSM8974_BIMC_TO_SNOC); DEFINE_QNODE(snoc_to_cnoc, MSM8974_SNOC_TO_CNOC, 8, 22, 25); DEFINE_QNODE(snoc_to_pnoc, MSM8974_SNOC_TO_PNOC, 8, 29, 28, MSM8974_PNOC_TO_SNOC); DEFINE_QNODE(snoc_to_ocmem_vnoc, MSM8974_SNOC_TO_OCMEM_VNOC, 8, 53, 77, MSM8974_OCMEM_VNOC_TO_OCMEM_NOC); DEFINE_QNODE(mas_crypto_core0, MSM8974_SNOC_MAS_CRYPTO_CORE0, 8, 23, -1, MSM8974_SNOC_TO_BIMC); DEFINE_QNODE(mas_crypto_core1, MSM8974_SNOC_MAS_CRYPTO_CORE1, 8, 24, -1); DEFINE_QNODE(mas_lpass_proc, MSM8974_SNOC_MAS_LPASS_PROC, 8, 25, -1, MSM8974_SNOC_TO_OCMEM_VNOC); DEFINE_QNODE(mas_mss, MSM8974_SNOC_MAS_MSS, 8, 26, -1); DEFINE_QNODE(mas_mss_nav, MSM8974_SNOC_MAS_MSS_NAV, 8, 27, -1); DEFINE_QNODE(mas_ocmem_dma, MSM8974_SNOC_MAS_OCMEM_DMA, 8, 28, -1); DEFINE_QNODE(mas_wcss, MSM8974_SNOC_MAS_WCSS, 8, 30, -1); DEFINE_QNODE(mas_qdss_etr, MSM8974_SNOC_MAS_QDSS_ETR, 8, 31, -1); DEFINE_QNODE(mas_usb3, MSM8974_SNOC_MAS_USB3, 8, 32, -1, MSM8974_SNOC_TO_BIMC); DEFINE_QNODE(slv_ampss, MSM8974_SNOC_SLV_AMPSS, 8, -1, 20); DEFINE_QNODE(slv_lpass, MSM8974_SNOC_SLV_LPASS, 8, -1, 21); DEFINE_QNODE(slv_usb3, MSM8974_SNOC_SLV_USB3, 8, -1, 22); DEFINE_QNODE(slv_wcss, MSM8974_SNOC_SLV_WCSS, 8, -1, 23); DEFINE_QNODE(slv_ocimem, MSM8974_SNOC_SLV_OCIMEM, 8, -1, 26); DEFINE_QNODE(slv_snoc_ocmem, MSM8974_SNOC_SLV_SNOC_OCMEM, 8, -1, 27); DEFINE_QNODE(slv_service_snoc, MSM8974_SNOC_SLV_SERVICE_SNOC, 8, -1, 29); DEFINE_QNODE(slv_qdss_stm, MSM8974_SNOC_SLV_QDSS_STM, 8, -1, 30); static struct msm8974_icc_node * const msm8974_snoc_nodes[] = { [SNOC_MAS_LPASS_AHB] = &mas_lpass_ahb, [SNOC_MAS_QDSS_BAM] = &mas_qdss_bam, [SNOC_MAS_SNOC_CFG] = &mas_snoc_cfg, [SNOC_TO_BIMC] = &snoc_to_bimc, [SNOC_TO_CNOC] = &snoc_to_cnoc, [SNOC_TO_PNOC] = &snoc_to_pnoc, [SNOC_TO_OCMEM_VNOC] = &snoc_to_ocmem_vnoc, [SNOC_MAS_CRYPTO_CORE0] = &mas_crypto_core0, [SNOC_MAS_CRYPTO_CORE1] = &mas_crypto_core1, [SNOC_MAS_LPASS_PROC] = &mas_lpass_proc, [SNOC_MAS_MSS] = &mas_mss, [SNOC_MAS_MSS_NAV] = &mas_mss_nav, [SNOC_MAS_OCMEM_DMA] = &mas_ocmem_dma, [SNOC_MAS_WCSS] = &mas_wcss, [SNOC_MAS_QDSS_ETR] = &mas_qdss_etr, [SNOC_MAS_USB3] = &mas_usb3, [SNOC_SLV_AMPSS] = &slv_ampss, [SNOC_SLV_LPASS] = &slv_lpass, [SNOC_SLV_USB3] = &slv_usb3, [SNOC_SLV_WCSS] = &slv_wcss, [SNOC_SLV_OCIMEM] = &slv_ocimem, [SNOC_SLV_SNOC_OCMEM] = &slv_snoc_ocmem, [SNOC_SLV_SERVICE_SNOC] = &slv_service_snoc, [SNOC_SLV_QDSS_STM] = &slv_qdss_stm, }; static const struct msm8974_icc_desc msm8974_snoc = { .nodes = msm8974_snoc_nodes, .num_nodes = ARRAY_SIZE(msm8974_snoc_nodes), }; static void msm8974_icc_rpm_smd_send(struct device *dev, int rsc_type, char *name, int id, u64 val) { int ret; if (id == -1) return; /* * Setting the bandwidth requests for some nodes fails and this same * behavior occurs on the downstream MSM 3.4 kernel sources based on * errors like this in that kernel: * * msm_rpm_get_error_from_ack(): RPM NACK Unsupported resource * AXI: msm_bus_rpm_req(): RPM: Ack failed * AXI: msm_bus_rpm_commit_arb(): RPM: Req fail: mas:32, bw:240000000 * * Since there's no publicly available documentation for this hardware, * and the bandwidth for some nodes in the path can be set properly, * let's not return an error. */ ret = qcom_icc_rpm_smd_send(QCOM_SMD_RPM_ACTIVE_STATE, rsc_type, id, val); if (ret) dev_dbg(dev, "Cannot set bandwidth for node %s (%d): %d\n", name, id, ret); } static int msm8974_icc_set(struct icc_node *src, struct icc_node *dst) { struct msm8974_icc_node *src_qn, *dst_qn; struct msm8974_icc_provider *qp; u64 sum_bw, max_peak_bw, rate; u32 agg_avg = 0, agg_peak = 0; struct icc_provider *provider; struct icc_node *n; int ret, i; src_qn = src->data; dst_qn = dst->data; provider = src->provider; qp = to_msm8974_icc_provider(provider); list_for_each_entry(n, &provider->nodes, node_list) provider->aggregate(n, 0, n->avg_bw, n->peak_bw, &agg_avg, &agg_peak); sum_bw = icc_units_to_bps(agg_avg); max_peak_bw = icc_units_to_bps(agg_peak); /* Set bandwidth on source node */ msm8974_icc_rpm_smd_send(provider->dev, RPM_BUS_MASTER_REQ, src_qn->name, src_qn->mas_rpm_id, sum_bw); msm8974_icc_rpm_smd_send(provider->dev, RPM_BUS_SLAVE_REQ, src_qn->name, src_qn->slv_rpm_id, sum_bw); /* Set bandwidth on destination node */ msm8974_icc_rpm_smd_send(provider->dev, RPM_BUS_MASTER_REQ, dst_qn->name, dst_qn->mas_rpm_id, sum_bw); msm8974_icc_rpm_smd_send(provider->dev, RPM_BUS_SLAVE_REQ, dst_qn->name, dst_qn->slv_rpm_id, sum_bw); rate = max(sum_bw, max_peak_bw); do_div(rate, src_qn->buswidth); rate = min_t(u32, rate, INT_MAX); if (src_qn->rate == rate) return 0; for (i = 0; i < qp->num_clks; i++) { ret = clk_set_rate(qp->bus_clks[i].clk, rate); if (ret) { dev_err(provider->dev, "%s clk_set_rate error: %d\n", qp->bus_clks[i].id, ret); ret = 0; } } src_qn->rate = rate; return 0; } static int msm8974_get_bw(struct icc_node *node, u32 *avg, u32 *peak) { *avg = 0; *peak = 0; return 0; } static int msm8974_icc_probe(struct platform_device *pdev) { const struct msm8974_icc_desc *desc; struct msm8974_icc_node * const *qnodes; struct msm8974_icc_provider *qp; struct device *dev = &pdev->dev; struct icc_onecell_data *data; struct icc_provider *provider; struct icc_node *node; size_t num_nodes, i; int ret; /* wait for the RPM proxy */ if (!qcom_icc_rpm_smd_available()) return -EPROBE_DEFER; desc = of_device_get_match_data(dev); if (!desc) return -EINVAL; qnodes = desc->nodes; num_nodes = desc->num_nodes; qp = devm_kzalloc(dev, sizeof(*qp), GFP_KERNEL); if (!qp) return -ENOMEM; data = devm_kzalloc(dev, struct_size(data, nodes, num_nodes), GFP_KERNEL); if (!data) return -ENOMEM; data->num_nodes = num_nodes; qp->bus_clks = devm_kmemdup(dev, msm8974_icc_bus_clocks, sizeof(msm8974_icc_bus_clocks), GFP_KERNEL); if (!qp->bus_clks) return -ENOMEM; qp->num_clks = ARRAY_SIZE(msm8974_icc_bus_clocks); ret = devm_clk_bulk_get(dev, qp->num_clks, qp->bus_clks); if (ret) return ret; ret = clk_bulk_prepare_enable(qp->num_clks, qp->bus_clks); if (ret) return ret; provider = &qp->provider; provider->dev = dev; provider->set = msm8974_icc_set; provider->aggregate = icc_std_aggregate; provider->xlate = of_icc_xlate_onecell; provider->data = data; provider->get_bw = msm8974_get_bw; icc_provider_init(provider); for (i = 0; i < num_nodes; i++) { size_t j; node = icc_node_create(qnodes[i]->id); if (IS_ERR(node)) { ret = PTR_ERR(node); goto err_remove_nodes; } node->name = qnodes[i]->name; node->data = qnodes[i]; icc_node_add(node, provider); dev_dbg(dev, "registered node %s\n", node->name); /* populate links */ for (j = 0; j < qnodes[i]->num_links; j++) icc_link_create(node, qnodes[i]->links[j]); data->nodes[i] = node; } ret = icc_provider_register(provider); if (ret) goto err_remove_nodes; platform_set_drvdata(pdev, qp); return 0; err_remove_nodes: icc_nodes_remove(provider); clk_bulk_disable_unprepare(qp->num_clks, qp->bus_clks); return ret; } static int msm8974_icc_remove(struct platform_device *pdev) { struct msm8974_icc_provider *qp = platform_get_drvdata(pdev); icc_provider_deregister(&qp->provider); icc_nodes_remove(&qp->provider); clk_bulk_disable_unprepare(qp->num_clks, qp->bus_clks); return 0; } static const struct of_device_id msm8974_noc_of_match[] = { { .compatible = "qcom,msm8974-bimc", .data = &msm8974_bimc}, { .compatible = "qcom,msm8974-cnoc", .data = &msm8974_cnoc}, { .compatible = "qcom,msm8974-mmssnoc", .data = &msm8974_mnoc}, { .compatible = "qcom,msm8974-ocmemnoc", .data = &msm8974_onoc}, { .compatible = "qcom,msm8974-pnoc", .data = &msm8974_pnoc}, { .compatible = "qcom,msm8974-snoc", .data = &msm8974_snoc}, { }, }; MODULE_DEVICE_TABLE(of, msm8974_noc_of_match); static struct platform_driver msm8974_noc_driver = { .probe = msm8974_icc_probe, .remove = msm8974_icc_remove, .driver = { .name = "qnoc-msm8974", .of_match_table = msm8974_noc_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(msm8974_noc_driver); MODULE_DESCRIPTION("Qualcomm MSM8974 NoC driver"); MODULE_AUTHOR("Brian Masney <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/msm8974.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2022 Linaro Ltd. */ #include <linux/of.h> #include <linux/slab.h> #include <linux/module.h> #include "icc-common.h" struct icc_node_data *qcom_icc_xlate_extended(struct of_phandle_args *spec, void *data) { struct icc_node_data *ndata; struct icc_node *node; node = of_icc_xlate_onecell(spec, data); if (IS_ERR(node)) return ERR_CAST(node); ndata = kzalloc(sizeof(*ndata), GFP_KERNEL); if (!ndata) return ERR_PTR(-ENOMEM); ndata->node = node; if (spec->args_count == 2) ndata->tag = spec->args[1]; if (spec->args_count > 2) pr_warn("%pOF: Too many arguments, path tag is not parsed\n", spec->np); return ndata; } EXPORT_SYMBOL_GPL(qcom_icc_xlate_extended); MODULE_LICENSE("GPL");
linux-master
drivers/interconnect/qcom/icc-common.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020, The Linux Foundation. All rights reserved. * */ #include <linux/device.h> #include <linux/interconnect.h> #include <linux/interconnect-provider.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sm8250.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sm8250.h" static struct qcom_icc_node qhm_a1noc_cfg = { .name = "qhm_a1noc_cfg", .id = SM8250_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SM8250_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SM8250_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SM8250_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_tsif = { .name = "qhm_tsif", .id = SM8250_MASTER_TSIF, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_pcie3_modem = { .name = "xm_pcie3_modem", .id = SM8250_MASTER_PCIE_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SLAVE_ANOC_PCIE_GEM_NOC_1 }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SM8250_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SM8250_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SM8250_MASTER_USB3, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_usb3_1 = { .name = "xm_usb3_1", .id = SM8250_MASTER_USB3_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A1NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_a2noc_cfg = { .name = "qhm_a2noc_cfg", .id = SM8250_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SM8250_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = SM8250_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qnm_cnoc = { .name = "qnm_cnoc", .id = SM8250_MASTER_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SM8250_MASTER_CRYPTO_CORE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SM8250_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SM8250_MASTER_PCIE, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SM8250_MASTER_PCIE_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SM8250_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SM8250_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node xm_ufs_card = { .name = "xm_ufs_card", .id = SM8250_MASTER_UFS_CARD, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_A2NOC_SNOC_SLV }, }; static struct qcom_icc_node qnm_npu = { .name = "qnm_npu", .id = SM8250_MASTER_NPU, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_CDSP_MEM_NOC }, }; static struct qcom_icc_node qnm_snoc = { .name = "qnm_snoc", .id = SM8250_SNOC_CNOC_MAS, .channels = 1, .buswidth = 8, .num_links = 49, .links = { SM8250_SLAVE_CDSP_CFG, SM8250_SLAVE_CAMERA_CFG, SM8250_SLAVE_TLMM_SOUTH, SM8250_SLAVE_TLMM_NORTH, SM8250_SLAVE_SDCC_4, SM8250_SLAVE_TLMM_WEST, SM8250_SLAVE_SDCC_2, SM8250_SLAVE_CNOC_MNOC_CFG, SM8250_SLAVE_UFS_MEM_CFG, SM8250_SLAVE_SNOC_CFG, SM8250_SLAVE_PDM, SM8250_SLAVE_CX_RDPM, SM8250_SLAVE_PCIE_1_CFG, SM8250_SLAVE_A2NOC_CFG, SM8250_SLAVE_QDSS_CFG, SM8250_SLAVE_DISPLAY_CFG, SM8250_SLAVE_PCIE_2_CFG, SM8250_SLAVE_TCSR, SM8250_SLAVE_DCC_CFG, SM8250_SLAVE_CNOC_DDRSS, SM8250_SLAVE_IPC_ROUTER_CFG, SM8250_SLAVE_PCIE_0_CFG, SM8250_SLAVE_RBCPR_MMCX_CFG, SM8250_SLAVE_NPU_CFG, SM8250_SLAVE_AHB2PHY_SOUTH, SM8250_SLAVE_AHB2PHY_NORTH, SM8250_SLAVE_GRAPHICS_3D_CFG, SM8250_SLAVE_VENUS_CFG, SM8250_SLAVE_TSIF, SM8250_SLAVE_IPA_CFG, SM8250_SLAVE_IMEM_CFG, SM8250_SLAVE_USB3, SM8250_SLAVE_SERVICE_CNOC, SM8250_SLAVE_UFS_CARD_CFG, SM8250_SLAVE_USB3_1, SM8250_SLAVE_LPASS, SM8250_SLAVE_RBCPR_CX_CFG, SM8250_SLAVE_A1NOC_CFG, SM8250_SLAVE_AOSS, SM8250_SLAVE_PRNG, SM8250_SLAVE_VSENSE_CTRL_CFG, SM8250_SLAVE_QSPI_0, SM8250_SLAVE_CRYPTO_0_CFG, SM8250_SLAVE_PIMEM_CFG, SM8250_SLAVE_RBCPR_MX_CFG, SM8250_SLAVE_QUP_0, SM8250_SLAVE_QUP_1, SM8250_SLAVE_QUP_2, SM8250_SLAVE_CLK_CTL }, }; static struct qcom_icc_node xm_qdss_dap = { .name = "xm_qdss_dap", .id = SM8250_MASTER_QDSS_DAP, .channels = 1, .buswidth = 8, .num_links = 50, .links = { SM8250_SLAVE_CDSP_CFG, SM8250_SLAVE_CAMERA_CFG, SM8250_SLAVE_TLMM_SOUTH, SM8250_SLAVE_TLMM_NORTH, SM8250_SLAVE_SDCC_4, SM8250_SLAVE_TLMM_WEST, SM8250_SLAVE_SDCC_2, SM8250_SLAVE_CNOC_MNOC_CFG, SM8250_SLAVE_UFS_MEM_CFG, SM8250_SLAVE_SNOC_CFG, SM8250_SLAVE_PDM, SM8250_SLAVE_CX_RDPM, SM8250_SLAVE_PCIE_1_CFG, SM8250_SLAVE_A2NOC_CFG, SM8250_SLAVE_QDSS_CFG, SM8250_SLAVE_DISPLAY_CFG, SM8250_SLAVE_PCIE_2_CFG, SM8250_SLAVE_TCSR, SM8250_SLAVE_DCC_CFG, SM8250_SLAVE_CNOC_DDRSS, SM8250_SLAVE_IPC_ROUTER_CFG, SM8250_SLAVE_CNOC_A2NOC, SM8250_SLAVE_PCIE_0_CFG, SM8250_SLAVE_RBCPR_MMCX_CFG, SM8250_SLAVE_NPU_CFG, SM8250_SLAVE_AHB2PHY_SOUTH, SM8250_SLAVE_AHB2PHY_NORTH, SM8250_SLAVE_GRAPHICS_3D_CFG, SM8250_SLAVE_VENUS_CFG, SM8250_SLAVE_TSIF, SM8250_SLAVE_IPA_CFG, SM8250_SLAVE_IMEM_CFG, SM8250_SLAVE_USB3, SM8250_SLAVE_SERVICE_CNOC, SM8250_SLAVE_UFS_CARD_CFG, SM8250_SLAVE_USB3_1, SM8250_SLAVE_LPASS, SM8250_SLAVE_RBCPR_CX_CFG, SM8250_SLAVE_A1NOC_CFG, SM8250_SLAVE_AOSS, SM8250_SLAVE_PRNG, SM8250_SLAVE_VSENSE_CTRL_CFG, SM8250_SLAVE_QSPI_0, SM8250_SLAVE_CRYPTO_0_CFG, SM8250_SLAVE_PIMEM_CFG, SM8250_SLAVE_RBCPR_MX_CFG, SM8250_SLAVE_QUP_0, SM8250_SLAVE_QUP_1, SM8250_SLAVE_QUP_2, SM8250_SLAVE_CLK_CTL }, }; static struct qcom_icc_node qhm_cnoc_dc_noc = { .name = "qhm_cnoc_dc_noc", .id = SM8250_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SM8250_SLAVE_GEM_NOC_CFG, SM8250_SLAVE_LLCC_CFG }, }; static struct qcom_icc_node alm_gpu_tcu = { .name = "alm_gpu_tcu", .id = SM8250_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = SM8250_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = SM8250_MASTER_AMPSS_M0, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC, SM8250_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhm_gemnoc_cfg = { .name = "qhm_gemnoc_cfg", .id = SM8250_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 3, .links = { SM8250_SLAVE_SERVICE_GEM_NOC_2, SM8250_SLAVE_SERVICE_GEM_NOC_1, SM8250_SLAVE_SERVICE_GEM_NOC }, }; static struct qcom_icc_node qnm_cmpnoc = { .name = "qnm_cmpnoc", .id = SM8250_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SM8250_MASTER_GRAPHICS_3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SM8250_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SM8250_MASTER_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SM8250_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SM8250_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SM8250_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SM8250_SLAVE_LLCC, SM8250_SLAVE_GEM_NOC_SNOC, SM8250_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SM8250_MASTER_LLCC, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_EBI_CH0 }, }; static struct qcom_icc_node qhm_mnoc_cfg = { .name = "qhm_mnoc_cfg", .id = SM8250_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qnm_camnoc_hf = { .name = "qnm_camnoc_hf", .id = SM8250_MASTER_CAMNOC_HF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_icp = { .name = "qnm_camnoc_icp", .id = SM8250_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_sf = { .name = "qnm_camnoc_sf", .id = SM8250_MASTER_CAMNOC_SF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video0 = { .name = "qnm_video0", .id = SM8250_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video1 = { .name = "qnm_video1", .id = SM8250_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cvp = { .name = "qnm_video_cvp", .id = SM8250_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SM8250_MASTER_MDP_PORT0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp1 = { .name = "qxm_mdp1", .id = SM8250_MASTER_MDP_PORT1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_rot = { .name = "qxm_rot", .id = SM8250_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node amm_npu_sys = { .name = "amm_npu_sys", .id = SM8250_MASTER_NPU_SYS, .channels = 4, .buswidth = 32, .num_links = 1, .links = { SM8250_SLAVE_NPU_COMPUTE_NOC }, }; static struct qcom_icc_node amm_npu_sys_cdp_w = { .name = "amm_npu_sys_cdp_w", .id = SM8250_MASTER_NPU_CDP, .channels = 2, .buswidth = 16, .num_links = 1, .links = { SM8250_SLAVE_NPU_COMPUTE_NOC }, }; static struct qcom_icc_node qhm_cfg = { .name = "qhm_cfg", .id = SM8250_MASTER_NPU_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 9, .links = { SM8250_SLAVE_SERVICE_NPU_NOC, SM8250_SLAVE_ISENSE_CFG, SM8250_SLAVE_NPU_LLM_CFG, SM8250_SLAVE_NPU_INT_DMA_BWMON_CFG, SM8250_SLAVE_NPU_CP, SM8250_SLAVE_NPU_TCM, SM8250_SLAVE_NPU_CAL_DP0, SM8250_SLAVE_NPU_CAL_DP1, SM8250_SLAVE_NPU_DPM }, }; static struct qcom_icc_node qhm_snoc_cfg = { .name = "qhm_snoc_cfg", .id = SM8250_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SM8250_A1NOC_SNOC_MAS, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SM8250_A2NOC_SNOC_MAS, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_gemnoc = { .name = "qnm_gemnoc", .id = SM8250_MASTER_GEM_NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 6, .links = { SM8250_SLAVE_PIMEM, SM8250_SLAVE_OCIMEM, SM8250_SLAVE_APPSS, SM8250_SNOC_CNOC_SLV, SM8250_SLAVE_TCU, SM8250_SLAVE_QDSS_STM }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = SM8250_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 3, .links = { SM8250_SLAVE_PCIE_2, SM8250_SLAVE_PCIE_0, SM8250_SLAVE_PCIE_1 }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SM8250_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SM8250_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SM8250_A1NOC_SNOC_SLV, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_A1NOC_SNOC_MAS }, }; static struct qcom_icc_node qns_pcie_modem_mem_noc = { .name = "qns_pcie_modem_mem_noc", .id = SM8250_SLAVE_ANOC_PCIE_GEM_NOC_1, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SM8250_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SM8250_A2NOC_SNOC_SLV, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_A2NOC_SNOC_MAS }, }; static struct qcom_icc_node qns_pcie_mem_noc = { .name = "qns_pcie_mem_noc", .id = SM8250_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SM8250_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_cdsp_mem_noc = { .name = "qns_cdsp_mem_noc", .id = SM8250_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8250_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node qhs_a1_noc_cfg = { .name = "qhs_a1_noc_cfg", .id = SM8250_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_MASTER_A1NOC_CFG }, }; static struct qcom_icc_node qhs_a2_noc_cfg = { .name = "qhs_a2_noc_cfg", .id = SM8250_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_MASTER_A2NOC_CFG }, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SM8250_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy1 = { .name = "qhs_ahb2phy1", .id = SM8250_SLAVE_AHB2PHY_NORTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SM8250_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SM8250_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SM8250_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_compute_dsp = { .name = "qhs_compute_dsp", .id = SM8250_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SM8250_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mmcx = { .name = "qhs_cpr_mmcx", .id = SM8250_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SM8250_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SM8250_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cx_rdpm = { .name = "qhs_cx_rdpm", .id = SM8250_SLAVE_CX_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SM8250_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ddrss_cfg = { .name = "qhs_ddrss_cfg", .id = SM8250_SLAVE_CNOC_DDRSS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_MASTER_CNOC_DC_NOC }, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SM8250_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SM8250_SLAVE_GRAPHICS_3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SM8250_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SM8250_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = SM8250_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_cfg = { .name = "qhs_lpass_cfg", .id = SM8250_SLAVE_LPASS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mnoc_cfg = { .name = "qhs_mnoc_cfg", .id = SM8250_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_MASTER_CNOC_MNOC_CFG }, }; static struct qcom_icc_node qhs_npu_cfg = { .name = "qhs_npu_cfg", .id = SM8250_SLAVE_NPU_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_MASTER_NPU_NOC_CFG }, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SM8250_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SM8250_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie_modem_cfg = { .name = "qhs_pcie_modem_cfg", .id = SM8250_SLAVE_PCIE_2_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SM8250_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SM8250_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_prng = { .name = "qhs_prng", .id = SM8250_SLAVE_PRNG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SM8250_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SM8250_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SM8250_SLAVE_QUP_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SM8250_SLAVE_QUP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup2 = { .name = "qhs_qup2", .id = SM8250_SLAVE_QUP_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SM8250_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SM8250_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_snoc_cfg = { .name = "qhs_snoc_cfg", .id = SM8250_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_MASTER_SNOC_CFG }, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SM8250_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm0 = { .name = "qhs_tlmm0", .id = SM8250_SLAVE_TLMM_NORTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm1 = { .name = "qhs_tlmm1", .id = SM8250_SLAVE_TLMM_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm2 = { .name = "qhs_tlmm2", .id = SM8250_SLAVE_TLMM_WEST, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tsif = { .name = "qhs_tsif", .id = SM8250_SLAVE_TSIF, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_card_cfg = { .name = "qhs_ufs_card_cfg", .id = SM8250_SLAVE_UFS_CARD_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SM8250_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SM8250_SLAVE_USB3, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_1 = { .name = "qhs_usb3_1", .id = SM8250_SLAVE_USB3_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SM8250_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SM8250_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_cnoc_a2noc = { .name = "qns_cnoc_a2noc", .id = SM8250_SLAVE_CNOC_A2NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_MASTER_CNOC_A2NOC }, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SM8250_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SM8250_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_memnoc = { .name = "qhs_memnoc", .id = SM8250_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_MASTER_GEM_NOC_CFG }, }; static struct qcom_icc_node qns_gem_noc_snoc = { .name = "qns_gem_noc_snoc", .id = SM8250_SLAVE_GEM_NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_MASTER_GEM_NOC_SNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SM8250_SLAVE_LLCC, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8250_MASTER_LLCC }, }; static struct qcom_icc_node qns_sys_pcie = { .name = "qns_sys_pcie", .id = SM8250_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_MASTER_GEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node srvc_even_gemnoc = { .name = "srvc_even_gemnoc", .id = SM8250_SLAVE_SERVICE_GEM_NOC_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_odd_gemnoc = { .name = "srvc_odd_gemnoc", .id = SM8250_SLAVE_SERVICE_GEM_NOC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_sys_gemnoc = { .name = "srvc_sys_gemnoc", .id = SM8250_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SM8250_SLAVE_EBI_CH0, .channels = 4, .buswidth = 4, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SM8250_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8250_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SM8250_SLAVE_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8250_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SM8250_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cal_dp0 = { .name = "qhs_cal_dp0", .id = SM8250_SLAVE_NPU_CAL_DP0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cal_dp1 = { .name = "qhs_cal_dp1", .id = SM8250_SLAVE_NPU_CAL_DP1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cp = { .name = "qhs_cp", .id = SM8250_SLAVE_NPU_CP, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dma_bwmon = { .name = "qhs_dma_bwmon", .id = SM8250_SLAVE_NPU_INT_DMA_BWMON_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dpm = { .name = "qhs_dpm", .id = SM8250_SLAVE_NPU_DPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_isense = { .name = "qhs_isense", .id = SM8250_SLAVE_ISENSE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_llm = { .name = "qhs_llm", .id = SM8250_SLAVE_NPU_LLM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcm = { .name = "qhs_tcm", .id = SM8250_SLAVE_NPU_TCM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_npu_sys = { .name = "qns_npu_sys", .id = SM8250_SLAVE_NPU_COMPUTE_NOC, .channels = 2, .buswidth = 32, }; static struct qcom_icc_node srvc_noc = { .name = "srvc_noc", .id = SM8250_SLAVE_SERVICE_NPU_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SM8250_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qns_cnoc = { .name = "qns_cnoc", .id = SM8250_SNOC_CNOC_SLV, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_SNOC_CNOC_MAS }, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SM8250_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8250_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SM8250_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8250_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SM8250_SLAVE_OCIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SM8250_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SM8250_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SM8250_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SM8250_SLAVE_PCIE_1, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_pcie_modem = { .name = "xs_pcie_modem", .id = SM8250_SLAVE_PCIE_2, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SM8250_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SM8250_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qup0_core_master = { .name = "qup0_core_master", .id = SM8250_MASTER_QUP_CORE_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_QUP_CORE_0 }, }; static struct qcom_icc_node qup1_core_master = { .name = "qup1_core_master", .id = SM8250_MASTER_QUP_CORE_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_QUP_CORE_1 }, }; static struct qcom_icc_node qup2_core_master = { .name = "qup2_core_master", .id = SM8250_MASTER_QUP_CORE_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8250_SLAVE_QUP_CORE_2 }, }; static struct qcom_icc_node qup0_core_slave = { .name = "qup0_core_slave", .id = SM8250_SLAVE_QUP_CORE_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup1_core_slave = { .name = "qup1_core_slave", .id = SM8250_SLAVE_QUP_CORE_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qup2_core_slave = { .name = "qup2_core_slave", .id = SM8250_SLAVE_QUP_CORE_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .keepalive = false, .num_nodes = 3, .nodes = { &qnm_camnoc_hf, &qxm_mdp0, &qxm_mdp1 }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .keepalive = false, .num_nodes = 2, .nodes = { &alm_gpu_tcu, &alm_sys_tcu }, }; static struct qcom_icc_bcm bcm_mm2 = { .name = "MM2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_qup0 = { .name = "QUP0", .keepalive = false, .num_nodes = 3, .nodes = { &qup0_core_master, &qup1_core_master, &qup2_core_master }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_cmpnoc }, }; static struct qcom_icc_bcm bcm_mm3 = { .name = "MM3", .keepalive = false, .num_nodes = 5, .nodes = { &qnm_camnoc_icp, &qnm_camnoc_sf, &qnm_video0, &qnm_video1, &qnm_video_cvp }, }; static struct qcom_icc_bcm bcm_sh4 = { .name = "SH4", .keepalive = false, .num_nodes = 1, .nodes = { &chm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_cdsp_mem_noc }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 52, .nodes = { &qnm_snoc, &xm_qdss_dap, &qhs_a1_noc_cfg, &qhs_a2_noc_cfg, &qhs_ahb2phy0, &qhs_ahb2phy1, &qhs_aoss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute_dsp, &qhs_cpr_cx, &qhs_cpr_mmcx, &qhs_cpr_mx, &qhs_crypto0_cfg, &qhs_cx_rdpm, &qhs_dcc_cfg, &qhs_ddrss_cfg, &qhs_display_cfg, &qhs_gpuss_cfg, &qhs_imem_cfg, &qhs_ipa, &qhs_ipc_router, &qhs_lpass_cfg, &qhs_mnoc_cfg, &qhs_npu_cfg, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_pcie_modem_cfg, &qhs_pdm, &qhs_pimem_cfg, &qhs_prng, &qhs_qdss_cfg, &qhs_qspi, &qhs_qup0, &qhs_qup1, &qhs_qup2, &qhs_sdc2, &qhs_sdc4, &qhs_snoc_cfg, &qhs_tcsr, &qhs_tlmm0, &qhs_tlmm1, &qhs_tlmm2, &qhs_tsif, &qhs_ufs_card_cfg, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_usb3_1, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qns_cnoc_a2noc, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_sn1 = { .name = "SN1", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_imem }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_co2 = { .name = "CO2", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_npu }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .keepalive = false, .num_nodes = 1, .nodes = { &xs_pcie_modem }, }; static struct qcom_icc_bcm bcm_sn6 = { .name = "SN6", .keepalive = false, .num_nodes = 2, .nodes = { &xs_pcie_0, &xs_pcie_1 }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn9 = { .name = "SN9", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_gemnoc_pcie }, }; static struct qcom_icc_bcm bcm_sn11 = { .name = "SN11", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_gemnoc }, }; static struct qcom_icc_bcm bcm_sn12 = { .name = "SN12", .keepalive = false, .num_nodes = 2, .nodes = { &qns_pcie_modem_mem_noc, &qns_pcie_mem_noc }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { &bcm_sn12, }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_A1NOC_CFG] = &qhm_a1noc_cfg, [MASTER_QSPI_0] = &qhm_qspi, [MASTER_QUP_1] = &qhm_qup1, [MASTER_QUP_2] = &qhm_qup2, [MASTER_TSIF] = &qhm_tsif, [MASTER_PCIE_2] = &xm_pcie3_modem, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB3] = &xm_usb3_0, [MASTER_USB3_1] = &xm_usb3_1, [A1NOC_SNOC_SLV] = &qns_a1noc_snoc, [SLAVE_ANOC_PCIE_GEM_NOC_1] = &qns_pcie_modem_mem_noc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sm8250_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, &bcm_sn12, }; static struct qcom_icc_bcm * const qup_virt_bcms[] = { &bcm_qup0, }; static struct qcom_icc_node *qup_virt_nodes[] = { [MASTER_QUP_CORE_0] = &qup0_core_master, [MASTER_QUP_CORE_1] = &qup1_core_master, [MASTER_QUP_CORE_2] = &qup2_core_master, [SLAVE_QUP_CORE_0] = &qup0_core_slave, [SLAVE_QUP_CORE_1] = &qup1_core_slave, [SLAVE_QUP_CORE_2] = &qup2_core_slave, }; static const struct qcom_icc_desc sm8250_qup_virt = { .nodes = qup_virt_nodes, .num_nodes = ARRAY_SIZE(qup_virt_nodes), .bcms = qup_virt_bcms, .num_bcms = ARRAY_SIZE(qup_virt_bcms), }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_A2NOC_CFG] = &qhm_a2noc_cfg, [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_0] = &qhm_qup0, [MASTER_CNOC_A2NOC] = &qnm_cnoc, [MASTER_CRYPTO_CORE_0] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_PCIE] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_UFS_CARD] = &xm_ufs_card, [A2NOC_SNOC_SLV] = &qns_a2noc_snoc, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_mem_noc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sm8250_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const compute_noc_bcms[] = { &bcm_co0, &bcm_co2, }; static struct qcom_icc_node * const compute_noc_nodes[] = { [MASTER_NPU] = &qnm_npu, [SLAVE_CDSP_MEM_NOC] = &qns_cdsp_mem_noc, }; static const struct qcom_icc_desc sm8250_compute_noc = { .nodes = compute_noc_nodes, .num_nodes = ARRAY_SIZE(compute_noc_nodes), .bcms = compute_noc_bcms, .num_bcms = ARRAY_SIZE(compute_noc_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, }; static struct qcom_icc_node * const config_noc_nodes[] = { [SNOC_CNOC_MAS] = &qnm_snoc, [MASTER_QDSS_DAP] = &xm_qdss_dap, [SLAVE_A1NOC_CFG] = &qhs_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qhs_a2_noc_cfg, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_NORTH] = &qhs_ahb2phy1, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute_dsp, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &qhs_cpr_mmcx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CX_RDPM] = &qhs_cx_rdpm, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_CNOC_DDRSS] = &qhs_ddrss_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_GRAPHICS_3D_CFG] = &qhs_gpuss_cfg, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_LPASS] = &qhs_lpass_cfg, [SLAVE_CNOC_MNOC_CFG] = &qhs_mnoc_cfg, [SLAVE_NPU_CFG] = &qhs_npu_cfg, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_PCIE_2_CFG] = &qhs_pcie_modem_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PRNG] = &qhs_prng, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_QUP_2] = &qhs_qup2, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SNOC_CFG] = &qhs_snoc_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM_NORTH] = &qhs_tlmm0, [SLAVE_TLMM_SOUTH] = &qhs_tlmm1, [SLAVE_TLMM_WEST] = &qhs_tlmm2, [SLAVE_TSIF] = &qhs_tsif, [SLAVE_UFS_CARD_CFG] = &qhs_ufs_card_cfg, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3] = &qhs_usb3_0, [SLAVE_USB3_1] = &qhs_usb3_1, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_CNOC_A2NOC] = &qns_cnoc_a2noc, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, }; static const struct qcom_icc_desc sm8250_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qhm_cnoc_dc_noc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_GEM_NOC_CFG] = &qhs_memnoc, }; static const struct qcom_icc_desc sm8250_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, &bcm_sh3, &bcm_sh4, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_GPU_TCU] = &alm_gpu_tcu, [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_AMPSS_M0] = &chm_apps, [MASTER_GEM_NOC_CFG] = &qhm_gemnoc_cfg, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc, [MASTER_GRAPHICS_3D] = &qnm_gpu, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [SLAVE_GEM_NOC_SNOC] = &qns_gem_noc_snoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_sys_pcie, [SLAVE_SERVICE_GEM_NOC_1] = &srvc_even_gemnoc, [SLAVE_SERVICE_GEM_NOC_2] = &srvc_odd_gemnoc, [SLAVE_SERVICE_GEM_NOC] = &srvc_sys_gemnoc, }; static const struct qcom_icc_desc sm8250_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI_CH0] = &ebi, }; static const struct qcom_icc_desc sm8250_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm2, &bcm_mm3, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CNOC_MNOC_CFG] = &qhm_mnoc_cfg, [MASTER_CAMNOC_HF] = &qnm_camnoc_hf, [MASTER_CAMNOC_ICP] = &qnm_camnoc_icp, [MASTER_CAMNOC_SF] = &qnm_camnoc_sf, [MASTER_VIDEO_P0] = &qnm_video0, [MASTER_VIDEO_P1] = &qnm_video1, [MASTER_VIDEO_PROC] = &qnm_video_cvp, [MASTER_MDP_PORT0] = &qxm_mdp0, [MASTER_MDP_PORT1] = &qxm_mdp1, [MASTER_ROTATOR] = &qxm_rot, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, }; static const struct qcom_icc_desc sm8250_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const npu_noc_bcms[] = { }; static struct qcom_icc_node * const npu_noc_nodes[] = { [MASTER_NPU_SYS] = &amm_npu_sys, [MASTER_NPU_CDP] = &amm_npu_sys_cdp_w, [MASTER_NPU_NOC_CFG] = &qhm_cfg, [SLAVE_NPU_CAL_DP0] = &qhs_cal_dp0, [SLAVE_NPU_CAL_DP1] = &qhs_cal_dp1, [SLAVE_NPU_CP] = &qhs_cp, [SLAVE_NPU_INT_DMA_BWMON_CFG] = &qhs_dma_bwmon, [SLAVE_NPU_DPM] = &qhs_dpm, [SLAVE_ISENSE_CFG] = &qhs_isense, [SLAVE_NPU_LLM_CFG] = &qhs_llm, [SLAVE_NPU_TCM] = &qhs_tcm, [SLAVE_NPU_COMPUTE_NOC] = &qns_npu_sys, [SLAVE_SERVICE_NPU_NOC] = &srvc_noc, }; static const struct qcom_icc_desc sm8250_npu_noc = { .nodes = npu_noc_nodes, .num_nodes = ARRAY_SIZE(npu_noc_nodes), .bcms = npu_noc_bcms, .num_bcms = ARRAY_SIZE(npu_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn1, &bcm_sn11, &bcm_sn2, &bcm_sn3, &bcm_sn4, &bcm_sn5, &bcm_sn6, &bcm_sn7, &bcm_sn8, &bcm_sn9, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_SNOC_CFG] = &qhm_snoc_cfg, [A1NOC_SNOC_MAS] = &qnm_aggre1_noc, [A2NOC_SNOC_MAS] = &qnm_aggre2_noc, [MASTER_GEM_NOC_SNOC] = &qnm_gemnoc, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_APPSS] = &qhs_apss, [SNOC_CNOC_SLV] = &qns_cnoc, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_OCIMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_SNOC] = &srvc_snoc, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, [SLAVE_PCIE_2] = &xs_pcie_modem, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sm8250_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sm8250-aggre1-noc", .data = &sm8250_aggre1_noc}, { .compatible = "qcom,sm8250-aggre2-noc", .data = &sm8250_aggre2_noc}, { .compatible = "qcom,sm8250-compute-noc", .data = &sm8250_compute_noc}, { .compatible = "qcom,sm8250-config-noc", .data = &sm8250_config_noc}, { .compatible = "qcom,sm8250-dc-noc", .data = &sm8250_dc_noc}, { .compatible = "qcom,sm8250-gem-noc", .data = &sm8250_gem_noc}, { .compatible = "qcom,sm8250-mc-virt", .data = &sm8250_mc_virt}, { .compatible = "qcom,sm8250-mmss-noc", .data = &sm8250_mmss_noc}, { .compatible = "qcom,sm8250-npu-noc", .data = &sm8250_npu_noc}, { .compatible = "qcom,sm8250-qup-virt", .data = &sm8250_qup_virt }, { .compatible = "qcom,sm8250-system-noc", .data = &sm8250_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sm8250", .of_match_table = qnoc_of_match, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("Qualcomm SM8250 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sm8250.c
/* SPDX-License-Identifier: GPL-2.0 */ /* * Copyright (C) 2023 Linaro Ltd */ #include <linux/soc/qcom/smd-rpm.h> #include "icc-rpm.h" const struct rpm_clk_resource aggre1_clk = { .resource_type = QCOM_SMD_RPM_AGGR_CLK, .clock_id = 1, }; EXPORT_SYMBOL_GPL(aggre1_clk); const struct rpm_clk_resource aggre2_clk = { .resource_type = QCOM_SMD_RPM_AGGR_CLK, .clock_id = 2, }; EXPORT_SYMBOL_GPL(aggre2_clk); const struct rpm_clk_resource bimc_clk = { .resource_type = QCOM_SMD_RPM_MEM_CLK, .clock_id = 0, }; EXPORT_SYMBOL_GPL(bimc_clk); const struct rpm_clk_resource bus_0_clk = { .resource_type = QCOM_SMD_RPM_BUS_CLK, .clock_id = 0, }; EXPORT_SYMBOL_GPL(bus_0_clk); const struct rpm_clk_resource bus_1_clk = { .resource_type = QCOM_SMD_RPM_BUS_CLK, .clock_id = 1, }; EXPORT_SYMBOL_GPL(bus_1_clk); const struct rpm_clk_resource bus_2_clk = { .resource_type = QCOM_SMD_RPM_BUS_CLK, .clock_id = 2, }; EXPORT_SYMBOL_GPL(bus_2_clk); const struct rpm_clk_resource mmaxi_0_clk = { .resource_type = QCOM_SMD_RPM_MMAXI_CLK, .clock_id = 0, }; EXPORT_SYMBOL_GPL(mmaxi_0_clk); const struct rpm_clk_resource mmaxi_1_clk = { .resource_type = QCOM_SMD_RPM_MMAXI_CLK, .clock_id = 1, }; EXPORT_SYMBOL_GPL(mmaxi_1_clk); const struct rpm_clk_resource qup_clk = { .resource_type = QCOM_SMD_RPM_QUP_CLK, .clock_id = 0, }; EXPORT_SYMBOL_GPL(qup_clk); /* Branch clocks */ const struct rpm_clk_resource aggre1_branch_clk = { .resource_type = QCOM_SMD_RPM_AGGR_CLK, .clock_id = 1, .branch = true, }; EXPORT_SYMBOL_GPL(aggre1_branch_clk); const struct rpm_clk_resource aggre2_branch_clk = { .resource_type = QCOM_SMD_RPM_AGGR_CLK, .clock_id = 2, .branch = true, }; EXPORT_SYMBOL_GPL(aggre2_branch_clk);
linux-master
drivers/interconnect/qcom/icc-rpm-clocks.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2019-2020, The Linux Foundation. All rights reserved. * Copyright (c) 2021, Linaro Limited * */ #include <linux/interconnect-provider.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,sm8350.h> #include "bcm-voter.h" #include "icc-rpmh.h" #include "sm8350.h" static struct qcom_icc_node qhm_qspi = { .name = "qhm_qspi", .id = SM8350_MASTER_QSPI_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup0 = { .name = "qhm_qup0", .id = SM8350_MASTER_QUP_0, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qhm_qup1 = { .name = "qhm_qup1", .id = SM8350_MASTER_QUP_1, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qup2 = { .name = "qhm_qup2", .id = SM8350_MASTER_QUP_2, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_a1noc_cfg = { .name = "qnm_a1noc_cfg", .id = SM8350_MASTER_A1NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_SERVICE_A1NOC }, }; static struct qcom_icc_node xm_sdc4 = { .name = "xm_sdc4", .id = SM8350_MASTER_SDCC_4, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_mem = { .name = "xm_ufs_mem", .id = SM8350_MASTER_UFS_MEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_0 = { .name = "xm_usb3_0", .id = SM8350_MASTER_USB3_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node xm_usb3_1 = { .name = "xm_usb3_1", .id = SM8350_MASTER_USB3_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A1NOC_SNOC }, }; static struct qcom_icc_node qhm_qdss_bam = { .name = "qhm_qdss_bam", .id = SM8350_MASTER_QDSS_BAM, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_a2noc_cfg = { .name = "qnm_a2noc_cfg", .id = SM8350_MASTER_A2NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_SERVICE_A2NOC }, }; static struct qcom_icc_node qxm_crypto = { .name = "qxm_crypto", .id = SM8350_MASTER_CRYPTO, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qxm_ipa = { .name = "qxm_ipa", .id = SM8350_MASTER_IPA, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_pcie3_0 = { .name = "xm_pcie3_0", .id = SM8350_MASTER_PCIE_0, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_pcie3_1 = { .name = "xm_pcie3_1", .id = SM8350_MASTER_PCIE_1, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node xm_qdss_etr = { .name = "xm_qdss_etr", .id = SM8350_MASTER_QDSS_ETR, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_sdc2 = { .name = "xm_sdc2", .id = SM8350_MASTER_SDCC_2, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node xm_ufs_card = { .name = "xm_ufs_card", .id = SM8350_MASTER_UFS_CARD, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_A2NOC_SNOC }, }; static struct qcom_icc_node qnm_gemnoc_cnoc = { .name = "qnm_gemnoc_cnoc", .id = SM8350_MASTER_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 56, .links = { SM8350_SLAVE_AHB2PHY_SOUTH, SM8350_SLAVE_AHB2PHY_NORTH, SM8350_SLAVE_AOSS, SM8350_SLAVE_APPSS, SM8350_SLAVE_CAMERA_CFG, SM8350_SLAVE_CLK_CTL, SM8350_SLAVE_CDSP_CFG, SM8350_SLAVE_RBCPR_CX_CFG, SM8350_SLAVE_RBCPR_MMCX_CFG, SM8350_SLAVE_RBCPR_MX_CFG, SM8350_SLAVE_CRYPTO_0_CFG, SM8350_SLAVE_CX_RDPM, SM8350_SLAVE_DCC_CFG, SM8350_SLAVE_DISPLAY_CFG, SM8350_SLAVE_GFX3D_CFG, SM8350_SLAVE_HWKM, SM8350_SLAVE_IMEM_CFG, SM8350_SLAVE_IPA_CFG, SM8350_SLAVE_IPC_ROUTER_CFG, SM8350_SLAVE_LPASS, SM8350_SLAVE_CNOC_MSS, SM8350_SLAVE_MX_RDPM, SM8350_SLAVE_PCIE_0_CFG, SM8350_SLAVE_PCIE_1_CFG, SM8350_SLAVE_PDM, SM8350_SLAVE_PIMEM_CFG, SM8350_SLAVE_PKA_WRAPPER_CFG, SM8350_SLAVE_PMU_WRAPPER_CFG, SM8350_SLAVE_QDSS_CFG, SM8350_SLAVE_QSPI_0, SM8350_SLAVE_QUP_0, SM8350_SLAVE_QUP_1, SM8350_SLAVE_QUP_2, SM8350_SLAVE_SDCC_2, SM8350_SLAVE_SDCC_4, SM8350_SLAVE_SECURITY, SM8350_SLAVE_SPSS_CFG, SM8350_SLAVE_TCSR, SM8350_SLAVE_TLMM, SM8350_SLAVE_UFS_CARD_CFG, SM8350_SLAVE_UFS_MEM_CFG, SM8350_SLAVE_USB3_0, SM8350_SLAVE_USB3_1, SM8350_SLAVE_VENUS_CFG, SM8350_SLAVE_VSENSE_CTRL_CFG, SM8350_SLAVE_A1NOC_CFG, SM8350_SLAVE_A2NOC_CFG, SM8350_SLAVE_DDRSS_CFG, SM8350_SLAVE_CNOC_MNOC_CFG, SM8350_SLAVE_SNOC_CFG, SM8350_SLAVE_BOOT_IMEM, SM8350_SLAVE_IMEM, SM8350_SLAVE_PIMEM, SM8350_SLAVE_SERVICE_CNOC, SM8350_SLAVE_QDSS_STM, SM8350_SLAVE_TCU }, }; static struct qcom_icc_node qnm_gemnoc_pcie = { .name = "qnm_gemnoc_pcie", .id = SM8350_MASTER_GEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8350_SLAVE_PCIE_0, SM8350_SLAVE_PCIE_1 }, }; static struct qcom_icc_node xm_qdss_dap = { .name = "xm_qdss_dap", .id = SM8350_MASTER_QDSS_DAP, .channels = 1, .buswidth = 8, .num_links = 56, .links = { SM8350_SLAVE_AHB2PHY_SOUTH, SM8350_SLAVE_AHB2PHY_NORTH, SM8350_SLAVE_AOSS, SM8350_SLAVE_APPSS, SM8350_SLAVE_CAMERA_CFG, SM8350_SLAVE_CLK_CTL, SM8350_SLAVE_CDSP_CFG, SM8350_SLAVE_RBCPR_CX_CFG, SM8350_SLAVE_RBCPR_MMCX_CFG, SM8350_SLAVE_RBCPR_MX_CFG, SM8350_SLAVE_CRYPTO_0_CFG, SM8350_SLAVE_CX_RDPM, SM8350_SLAVE_DCC_CFG, SM8350_SLAVE_DISPLAY_CFG, SM8350_SLAVE_GFX3D_CFG, SM8350_SLAVE_HWKM, SM8350_SLAVE_IMEM_CFG, SM8350_SLAVE_IPA_CFG, SM8350_SLAVE_IPC_ROUTER_CFG, SM8350_SLAVE_LPASS, SM8350_SLAVE_CNOC_MSS, SM8350_SLAVE_MX_RDPM, SM8350_SLAVE_PCIE_0_CFG, SM8350_SLAVE_PCIE_1_CFG, SM8350_SLAVE_PDM, SM8350_SLAVE_PIMEM_CFG, SM8350_SLAVE_PKA_WRAPPER_CFG, SM8350_SLAVE_PMU_WRAPPER_CFG, SM8350_SLAVE_QDSS_CFG, SM8350_SLAVE_QSPI_0, SM8350_SLAVE_QUP_0, SM8350_SLAVE_QUP_1, SM8350_SLAVE_QUP_2, SM8350_SLAVE_SDCC_2, SM8350_SLAVE_SDCC_4, SM8350_SLAVE_SECURITY, SM8350_SLAVE_SPSS_CFG, SM8350_SLAVE_TCSR, SM8350_SLAVE_TLMM, SM8350_SLAVE_UFS_CARD_CFG, SM8350_SLAVE_UFS_MEM_CFG, SM8350_SLAVE_USB3_0, SM8350_SLAVE_USB3_1, SM8350_SLAVE_VENUS_CFG, SM8350_SLAVE_VSENSE_CTRL_CFG, SM8350_SLAVE_A1NOC_CFG, SM8350_SLAVE_A2NOC_CFG, SM8350_SLAVE_DDRSS_CFG, SM8350_SLAVE_CNOC_MNOC_CFG, SM8350_SLAVE_SNOC_CFG, SM8350_SLAVE_BOOT_IMEM, SM8350_SLAVE_IMEM, SM8350_SLAVE_PIMEM, SM8350_SLAVE_SERVICE_CNOC, SM8350_SLAVE_QDSS_STM, SM8350_SLAVE_TCU }, }; static struct qcom_icc_node qnm_cnoc_dc_noc = { .name = "qnm_cnoc_dc_noc", .id = SM8350_MASTER_CNOC_DC_NOC, .channels = 1, .buswidth = 4, .num_links = 2, .links = { SM8350_SLAVE_LLCC_CFG, SM8350_SLAVE_GEM_NOC_CFG }, }; static struct qcom_icc_node alm_gpu_tcu = { .name = "alm_gpu_tcu", .id = SM8350_MASTER_GPU_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node alm_sys_tcu = { .name = "alm_sys_tcu", .id = SM8350_MASTER_SYS_TCU, .channels = 1, .buswidth = 8, .num_links = 2, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node chm_apps = { .name = "chm_apps", .id = SM8350_MASTER_APPSS_PROC, .channels = 2, .buswidth = 32, .num_links = 3, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC, SM8350_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qnm_cmpnoc = { .name = "qnm_cmpnoc", .id = SM8350_MASTER_COMPUTE_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_gemnoc_cfg = { .name = "qnm_gemnoc_cfg", .id = SM8350_MASTER_GEM_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 5, .links = { SM8350_SLAVE_MSS_PROC_MS_MPU_CFG, SM8350_SLAVE_MCDMA_MS_MPU_CFG, SM8350_SLAVE_SERVICE_GEM_NOC_1, SM8350_SLAVE_SERVICE_GEM_NOC_2, SM8350_SLAVE_SERVICE_GEM_NOC }, }; static struct qcom_icc_node qnm_gpu = { .name = "qnm_gpu", .id = SM8350_MASTER_GFX3D, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_hf = { .name = "qnm_mnoc_hf", .id = SM8350_MASTER_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_mnoc_sf = { .name = "qnm_mnoc_sf", .id = SM8350_MASTER_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 2, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_pcie = { .name = "qnm_pcie", .id = SM8350_MASTER_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 2, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_gc = { .name = "qnm_snoc_gc", .id = SM8350_MASTER_SNOC_GC_MEM_NOC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_LLCC }, }; static struct qcom_icc_node qnm_snoc_sf = { .name = "qnm_snoc_sf", .id = SM8350_MASTER_SNOC_SF_MEM_NOC, .channels = 1, .buswidth = 16, .num_links = 3, .links = { SM8350_SLAVE_GEM_NOC_CNOC, SM8350_SLAVE_LLCC, SM8350_SLAVE_MEM_NOC_PCIE_SNOC }, }; static struct qcom_icc_node qhm_config_noc = { .name = "qhm_config_noc", .id = SM8350_MASTER_CNOC_LPASS_AG_NOC, .channels = 1, .buswidth = 4, .num_links = 6, .links = { SM8350_SLAVE_LPASS_CORE_CFG, SM8350_SLAVE_LPASS_LPI_CFG, SM8350_SLAVE_LPASS_MPU_CFG, SM8350_SLAVE_LPASS_TOP_CFG, SM8350_SLAVE_SERVICES_LPASS_AML_NOC, SM8350_SLAVE_SERVICE_LPASS_AG_NOC }, }; static struct qcom_icc_node llcc_mc = { .name = "llcc_mc", .id = SM8350_MASTER_LLCC, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_EBI1 }, }; static struct qcom_icc_node qnm_camnoc_hf = { .name = "qnm_camnoc_hf", .id = SM8350_MASTER_CAMNOC_HF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_icp = { .name = "qnm_camnoc_icp", .id = SM8350_MASTER_CAMNOC_ICP, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_camnoc_sf = { .name = "qnm_camnoc_sf", .id = SM8350_MASTER_CAMNOC_SF, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_mnoc_cfg = { .name = "qnm_mnoc_cfg", .id = SM8350_MASTER_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_SERVICE_MNOC }, }; static struct qcom_icc_node qnm_video0 = { .name = "qnm_video0", .id = SM8350_MASTER_VIDEO_P0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video1 = { .name = "qnm_video1", .id = SM8350_MASTER_VIDEO_P1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qnm_video_cvp = { .name = "qnm_video_cvp", .id = SM8350_MASTER_VIDEO_PROC, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp0 = { .name = "qxm_mdp0", .id = SM8350_MASTER_MDP0, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_mdp1 = { .name = "qxm_mdp1", .id = SM8350_MASTER_MDP1, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qxm_rot = { .name = "qxm_rot", .id = SM8350_MASTER_ROTATOR, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node qhm_nsp_noc_config = { .name = "qhm_nsp_noc_config", .id = SM8350_MASTER_CDSP_NOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_SERVICE_NSP_NOC }, }; static struct qcom_icc_node qxm_nsp = { .name = "qxm_nsp", .id = SM8350_MASTER_CDSP_PROC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_CDSP_MEM_NOC }, }; static struct qcom_icc_node qnm_aggre1_noc = { .name = "qnm_aggre1_noc", .id = SM8350_MASTER_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8350_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_aggre2_noc = { .name = "qnm_aggre2_noc", .id = SM8350_MASTER_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8350_SLAVE_SNOC_GEM_NOC_SF }, }; static struct qcom_icc_node qnm_snoc_cfg = { .name = "qnm_snoc_cfg", .id = SM8350_MASTER_SNOC_CFG, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_SERVICE_SNOC }, }; static struct qcom_icc_node qxm_pimem = { .name = "qxm_pimem", .id = SM8350_MASTER_PIMEM, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node xm_gic = { .name = "xm_gic", .id = SM8350_MASTER_GIC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_SLAVE_SNOC_GEM_NOC_GC }, }; static struct qcom_icc_node qnm_mnoc_hf_disp = { .name = "qnm_mnoc_hf_disp", .id = SM8350_MASTER_MNOC_HF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_LLCC_DISP }, }; static struct qcom_icc_node qnm_mnoc_sf_disp = { .name = "qnm_mnoc_sf_disp", .id = SM8350_MASTER_MNOC_SF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_LLCC_DISP }, }; static struct qcom_icc_node llcc_mc_disp = { .name = "llcc_mc_disp", .id = SM8350_MASTER_LLCC_DISP, .channels = 4, .buswidth = 4, .num_links = 1, .links = { SM8350_SLAVE_EBI1_DISP }, }; static struct qcom_icc_node qxm_mdp0_disp = { .name = "qxm_mdp0_disp", .id = SM8350_MASTER_MDP0_DISP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_HF_MEM_NOC_DISP }, }; static struct qcom_icc_node qxm_mdp1_disp = { .name = "qxm_mdp1_disp", .id = SM8350_MASTER_MDP1_DISP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_HF_MEM_NOC_DISP }, }; static struct qcom_icc_node qxm_rot_disp = { .name = "qxm_rot_disp", .id = SM8350_MASTER_ROTATOR_DISP, .channels = 1, .buswidth = 32, .num_links = 1, .links = { SM8350_SLAVE_MNOC_SF_MEM_NOC_DISP }, }; static struct qcom_icc_node qns_a1noc_snoc = { .name = "qns_a1noc_snoc", .id = SM8350_SLAVE_A1NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8350_MASTER_A1NOC_SNOC }, }; static struct qcom_icc_node srvc_aggre1_noc = { .name = "srvc_aggre1_noc", .id = SM8350_SLAVE_SERVICE_A1NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2noc_snoc = { .name = "qns_a2noc_snoc", .id = SM8350_SLAVE_A2NOC_SNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8350_MASTER_A2NOC_SNOC }, }; static struct qcom_icc_node qns_pcie_mem_noc = { .name = "qns_pcie_mem_noc", .id = SM8350_SLAVE_ANOC_PCIE_GEM_NOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8350_MASTER_ANOC_PCIE_GEM_NOC }, }; static struct qcom_icc_node srvc_aggre2_noc = { .name = "srvc_aggre2_noc", .id = SM8350_SLAVE_SERVICE_A2NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy0 = { .name = "qhs_ahb2phy0", .id = SM8350_SLAVE_AHB2PHY_SOUTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ahb2phy1 = { .name = "qhs_ahb2phy1", .id = SM8350_SLAVE_AHB2PHY_NORTH, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_aoss = { .name = "qhs_aoss", .id = SM8350_SLAVE_AOSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_apss = { .name = "qhs_apss", .id = SM8350_SLAVE_APPSS, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_camera_cfg = { .name = "qhs_camera_cfg", .id = SM8350_SLAVE_CAMERA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_clk_ctl = { .name = "qhs_clk_ctl", .id = SM8350_SLAVE_CLK_CTL, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_compute_cfg = { .name = "qhs_compute_cfg", .id = SM8350_SLAVE_CDSP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_cx = { .name = "qhs_cpr_cx", .id = SM8350_SLAVE_RBCPR_CX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mmcx = { .name = "qhs_cpr_mmcx", .id = SM8350_SLAVE_RBCPR_MMCX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cpr_mx = { .name = "qhs_cpr_mx", .id = SM8350_SLAVE_RBCPR_MX_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_crypto0_cfg = { .name = "qhs_crypto0_cfg", .id = SM8350_SLAVE_CRYPTO_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_cx_rdpm = { .name = "qhs_cx_rdpm", .id = SM8350_SLAVE_CX_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_dcc_cfg = { .name = "qhs_dcc_cfg", .id = SM8350_SLAVE_DCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_display_cfg = { .name = "qhs_display_cfg", .id = SM8350_SLAVE_DISPLAY_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_gpuss_cfg = { .name = "qhs_gpuss_cfg", .id = SM8350_SLAVE_GFX3D_CFG, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_hwkm = { .name = "qhs_hwkm", .id = SM8350_SLAVE_HWKM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_imem_cfg = { .name = "qhs_imem_cfg", .id = SM8350_SLAVE_IMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipa = { .name = "qhs_ipa", .id = SM8350_SLAVE_IPA_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ipc_router = { .name = "qhs_ipc_router", .id = SM8350_SLAVE_IPC_ROUTER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_cfg = { .name = "qhs_lpass_cfg", .id = SM8350_SLAVE_LPASS, .channels = 1, .buswidth = 4, .num_links = 1, .links = { SM8350_MASTER_CNOC_LPASS_AG_NOC }, }; static struct qcom_icc_node qhs_mss_cfg = { .name = "qhs_mss_cfg", .id = SM8350_SLAVE_CNOC_MSS, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mx_rdpm = { .name = "qhs_mx_rdpm", .id = SM8350_SLAVE_MX_RDPM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie0_cfg = { .name = "qhs_pcie0_cfg", .id = SM8350_SLAVE_PCIE_0_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pcie1_cfg = { .name = "qhs_pcie1_cfg", .id = SM8350_SLAVE_PCIE_1_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pdm = { .name = "qhs_pdm", .id = SM8350_SLAVE_PDM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pimem_cfg = { .name = "qhs_pimem_cfg", .id = SM8350_SLAVE_PIMEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pka_wrapper_cfg = { .name = "qhs_pka_wrapper_cfg", .id = SM8350_SLAVE_PKA_WRAPPER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_pmu_wrapper_cfg = { .name = "qhs_pmu_wrapper_cfg", .id = SM8350_SLAVE_PMU_WRAPPER_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qdss_cfg = { .name = "qhs_qdss_cfg", .id = SM8350_SLAVE_QDSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qspi = { .name = "qhs_qspi", .id = SM8350_SLAVE_QSPI_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup0 = { .name = "qhs_qup0", .id = SM8350_SLAVE_QUP_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup1 = { .name = "qhs_qup1", .id = SM8350_SLAVE_QUP_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_qup2 = { .name = "qhs_qup2", .id = SM8350_SLAVE_QUP_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc2 = { .name = "qhs_sdc2", .id = SM8350_SLAVE_SDCC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_sdc4 = { .name = "qhs_sdc4", .id = SM8350_SLAVE_SDCC_4, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_security = { .name = "qhs_security", .id = SM8350_SLAVE_SECURITY, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_spss_cfg = { .name = "qhs_spss_cfg", .id = SM8350_SLAVE_SPSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tcsr = { .name = "qhs_tcsr", .id = SM8350_SLAVE_TCSR, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_tlmm = { .name = "qhs_tlmm", .id = SM8350_SLAVE_TLMM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_card_cfg = { .name = "qhs_ufs_card_cfg", .id = SM8350_SLAVE_UFS_CARD_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_ufs_mem_cfg = { .name = "qhs_ufs_mem_cfg", .id = SM8350_SLAVE_UFS_MEM_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_0 = { .name = "qhs_usb3_0", .id = SM8350_SLAVE_USB3_0, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_usb3_1 = { .name = "qhs_usb3_1", .id = SM8350_SLAVE_USB3_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_venus_cfg = { .name = "qhs_venus_cfg", .id = SM8350_SLAVE_VENUS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_vsense_ctrl_cfg = { .name = "qhs_vsense_ctrl_cfg", .id = SM8350_SLAVE_VSENSE_CTRL_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a1_noc_cfg = { .name = "qns_a1_noc_cfg", .id = SM8350_SLAVE_A1NOC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_a2_noc_cfg = { .name = "qns_a2_noc_cfg", .id = SM8350_SLAVE_A2NOC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_ddrss_cfg = { .name = "qns_ddrss_cfg", .id = SM8350_SLAVE_DDRSS_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_mnoc_cfg = { .name = "qns_mnoc_cfg", .id = SM8350_SLAVE_CNOC_MNOC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_snoc_cfg = { .name = "qns_snoc_cfg", .id = SM8350_SLAVE_SNOC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qxs_boot_imem = { .name = "qxs_boot_imem", .id = SM8350_SLAVE_BOOT_IMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_imem = { .name = "qxs_imem", .id = SM8350_SLAVE_IMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qxs_pimem = { .name = "qxs_pimem", .id = SM8350_SLAVE_PIMEM, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_cnoc = { .name = "srvc_cnoc", .id = SM8350_SLAVE_SERVICE_CNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_pcie_0 = { .name = "xs_pcie_0", .id = SM8350_SLAVE_PCIE_0, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_pcie_1 = { .name = "xs_pcie_1", .id = SM8350_SLAVE_PCIE_1, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node xs_qdss_stm = { .name = "xs_qdss_stm", .id = SM8350_SLAVE_QDSS_STM, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node xs_sys_tcu_cfg = { .name = "xs_sys_tcu_cfg", .id = SM8350_SLAVE_TCU, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node qhs_llcc = { .name = "qhs_llcc", .id = SM8350_SLAVE_LLCC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gemnoc = { .name = "qns_gemnoc", .id = SM8350_SLAVE_GEM_NOC_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_mdsp_ms_mpu_cfg = { .name = "qhs_mdsp_ms_mpu_cfg", .id = SM8350_SLAVE_MSS_PROC_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_modem_ms_mpu_cfg = { .name = "qhs_modem_ms_mpu_cfg", .id = SM8350_SLAVE_MCDMA_MS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gem_noc_cnoc = { .name = "qns_gem_noc_cnoc", .id = SM8350_SLAVE_GEM_NOC_CNOC, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8350_MASTER_GEM_NOC_CNOC }, }; static struct qcom_icc_node qns_llcc = { .name = "qns_llcc", .id = SM8350_SLAVE_LLCC, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8350_MASTER_LLCC }, }; static struct qcom_icc_node qns_pcie = { .name = "qns_pcie", .id = SM8350_SLAVE_MEM_NOC_PCIE_SNOC, .channels = 1, .buswidth = 8, }; static struct qcom_icc_node srvc_even_gemnoc = { .name = "srvc_even_gemnoc", .id = SM8350_SLAVE_SERVICE_GEM_NOC_1, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_odd_gemnoc = { .name = "srvc_odd_gemnoc", .id = SM8350_SLAVE_SERVICE_GEM_NOC_2, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_sys_gemnoc = { .name = "srvc_sys_gemnoc", .id = SM8350_SLAVE_SERVICE_GEM_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_core = { .name = "qhs_lpass_core", .id = SM8350_SLAVE_LPASS_CORE_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_lpi = { .name = "qhs_lpass_lpi", .id = SM8350_SLAVE_LPASS_LPI_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_mpu = { .name = "qhs_lpass_mpu", .id = SM8350_SLAVE_LPASS_MPU_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qhs_lpass_top = { .name = "qhs_lpass_top", .id = SM8350_SLAVE_LPASS_TOP_CFG, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_niu_aml_noc = { .name = "srvc_niu_aml_noc", .id = SM8350_SLAVE_SERVICES_LPASS_AML_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node srvc_niu_lpass_agnoc = { .name = "srvc_niu_lpass_agnoc", .id = SM8350_SLAVE_SERVICE_LPASS_AG_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node ebi = { .name = "ebi", .id = SM8350_SLAVE_EBI1, .channels = 4, .buswidth = 4, }; static struct qcom_icc_node qns_mem_noc_hf = { .name = "qns_mem_noc_hf", .id = SM8350_SLAVE_MNOC_HF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_MASTER_MNOC_HF_MEM_NOC }, }; static struct qcom_icc_node qns_mem_noc_sf = { .name = "qns_mem_noc_sf", .id = SM8350_SLAVE_MNOC_SF_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_MASTER_MNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_mnoc = { .name = "srvc_mnoc", .id = SM8350_SLAVE_SERVICE_MNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_nsp_gemnoc = { .name = "qns_nsp_gemnoc", .id = SM8350_SLAVE_CDSP_MEM_NOC, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_MASTER_COMPUTE_NOC }, }; static struct qcom_icc_node service_nsp_noc = { .name = "service_nsp_noc", .id = SM8350_SLAVE_SERVICE_NSP_NOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_gemnoc_gc = { .name = "qns_gemnoc_gc", .id = SM8350_SLAVE_SNOC_GEM_NOC_GC, .channels = 1, .buswidth = 8, .num_links = 1, .links = { SM8350_MASTER_SNOC_GC_MEM_NOC }, }; static struct qcom_icc_node qns_gemnoc_sf = { .name = "qns_gemnoc_sf", .id = SM8350_SLAVE_SNOC_GEM_NOC_SF, .channels = 1, .buswidth = 16, .num_links = 1, .links = { SM8350_MASTER_SNOC_SF_MEM_NOC }, }; static struct qcom_icc_node srvc_snoc = { .name = "srvc_snoc", .id = SM8350_SLAVE_SERVICE_SNOC, .channels = 1, .buswidth = 4, }; static struct qcom_icc_node qns_llcc_disp = { .name = "qns_llcc_disp", .id = SM8350_SLAVE_LLCC_DISP, .channels = 4, .buswidth = 16, .num_links = 1, .links = { SM8350_MASTER_LLCC_DISP }, }; static struct qcom_icc_node ebi_disp = { .name = "ebi_disp", .id = SM8350_SLAVE_EBI1_DISP, .channels = 4, .buswidth = 4, }; static struct qcom_icc_node qns_mem_noc_hf_disp = { .name = "qns_mem_noc_hf_disp", .id = SM8350_SLAVE_MNOC_HF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_MASTER_MNOC_HF_MEM_NOC_DISP }, }; static struct qcom_icc_node qns_mem_noc_sf_disp = { .name = "qns_mem_noc_sf_disp", .id = SM8350_SLAVE_MNOC_SF_MEM_NOC_DISP, .channels = 2, .buswidth = 32, .num_links = 1, .links = { SM8350_MASTER_MNOC_SF_MEM_NOC_DISP }, }; static struct qcom_icc_bcm bcm_acv = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_ce0 = { .name = "CE0", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_crypto }, }; static struct qcom_icc_bcm bcm_cn0 = { .name = "CN0", .keepalive = true, .num_nodes = 2, .nodes = { &qnm_gemnoc_cnoc, &qnm_gemnoc_pcie }, }; static struct qcom_icc_bcm bcm_cn1 = { .name = "CN1", .keepalive = false, .num_nodes = 47, .nodes = { &xm_qdss_dap, &qhs_ahb2phy0, &qhs_ahb2phy1, &qhs_aoss, &qhs_apss, &qhs_camera_cfg, &qhs_clk_ctl, &qhs_compute_cfg, &qhs_cpr_cx, &qhs_cpr_mmcx, &qhs_cpr_mx, &qhs_crypto0_cfg, &qhs_cx_rdpm, &qhs_dcc_cfg, &qhs_display_cfg, &qhs_gpuss_cfg, &qhs_hwkm, &qhs_imem_cfg, &qhs_ipa, &qhs_ipc_router, &qhs_mss_cfg, &qhs_mx_rdpm, &qhs_pcie0_cfg, &qhs_pcie1_cfg, &qhs_pimem_cfg, &qhs_pka_wrapper_cfg, &qhs_pmu_wrapper_cfg, &qhs_qdss_cfg, &qhs_qup0, &qhs_qup1, &qhs_qup2, &qhs_security, &qhs_spss_cfg, &qhs_tcsr, &qhs_tlmm, &qhs_ufs_card_cfg, &qhs_ufs_mem_cfg, &qhs_usb3_0, &qhs_usb3_1, &qhs_venus_cfg, &qhs_vsense_ctrl_cfg, &qns_a1_noc_cfg, &qns_a2_noc_cfg, &qns_ddrss_cfg, &qns_mnoc_cfg, &qns_snoc_cfg, &srvc_cnoc }, }; static struct qcom_icc_bcm bcm_cn2 = { .name = "CN2", .keepalive = false, .num_nodes = 5, .nodes = { &qhs_lpass_cfg, &qhs_pdm, &qhs_qspi, &qhs_sdc2, &qhs_sdc4 }, }; static struct qcom_icc_bcm bcm_co0 = { .name = "CO0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_nsp_gemnoc }, }; static struct qcom_icc_bcm bcm_co3 = { .name = "CO3", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_nsp }, }; static struct qcom_icc_bcm bcm_mc0 = { .name = "MC0", .keepalive = true, .num_nodes = 1, .nodes = { &ebi }, }; static struct qcom_icc_bcm bcm_mm0 = { .name = "MM0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_mem_noc_hf }, }; static struct qcom_icc_bcm bcm_mm1 = { .name = "MM1", .keepalive = false, .num_nodes = 3, .nodes = { &qnm_camnoc_hf, &qxm_mdp0, &qxm_mdp1 }, }; static struct qcom_icc_bcm bcm_mm4 = { .name = "MM4", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_sf }, }; static struct qcom_icc_bcm bcm_mm5 = { .name = "MM5", .keepalive = false, .num_nodes = 6, .nodes = { &qnm_camnoc_icp, &qnm_camnoc_sf, &qnm_video0, &qnm_video1, &qnm_video_cvp, &qxm_rot }, }; static struct qcom_icc_bcm bcm_sh0 = { .name = "SH0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_llcc }, }; static struct qcom_icc_bcm bcm_sh2 = { .name = "SH2", .keepalive = false, .num_nodes = 2, .nodes = { &alm_gpu_tcu, &alm_sys_tcu }, }; static struct qcom_icc_bcm bcm_sh3 = { .name = "SH3", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_cmpnoc }, }; static struct qcom_icc_bcm bcm_sh4 = { .name = "SH4", .keepalive = false, .num_nodes = 1, .nodes = { &chm_apps }, }; static struct qcom_icc_bcm bcm_sn0 = { .name = "SN0", .keepalive = true, .num_nodes = 1, .nodes = { &qns_gemnoc_sf }, }; static struct qcom_icc_bcm bcm_sn2 = { .name = "SN2", .keepalive = false, .num_nodes = 1, .nodes = { &qns_gemnoc_gc }, }; static struct qcom_icc_bcm bcm_sn3 = { .name = "SN3", .keepalive = false, .num_nodes = 1, .nodes = { &qxs_pimem }, }; static struct qcom_icc_bcm bcm_sn4 = { .name = "SN4", .keepalive = false, .num_nodes = 1, .nodes = { &xs_qdss_stm }, }; static struct qcom_icc_bcm bcm_sn5 = { .name = "SN5", .keepalive = false, .num_nodes = 1, .nodes = { &xm_pcie3_0 }, }; static struct qcom_icc_bcm bcm_sn6 = { .name = "SN6", .keepalive = false, .num_nodes = 1, .nodes = { &xm_pcie3_1 }, }; static struct qcom_icc_bcm bcm_sn7 = { .name = "SN7", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre1_noc }, }; static struct qcom_icc_bcm bcm_sn8 = { .name = "SN8", .keepalive = false, .num_nodes = 1, .nodes = { &qnm_aggre2_noc }, }; static struct qcom_icc_bcm bcm_sn14 = { .name = "SN14", .keepalive = false, .num_nodes = 1, .nodes = { &qns_pcie_mem_noc }, }; static struct qcom_icc_bcm bcm_acv_disp = { .name = "ACV", .keepalive = false, .num_nodes = 1, .nodes = { &ebi_disp }, }; static struct qcom_icc_bcm bcm_mc0_disp = { .name = "MC0", .keepalive = false, .num_nodes = 1, .nodes = { &ebi_disp }, }; static struct qcom_icc_bcm bcm_mm0_disp = { .name = "MM0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_hf_disp }, }; static struct qcom_icc_bcm bcm_mm1_disp = { .name = "MM1", .keepalive = false, .num_nodes = 2, .nodes = { &qxm_mdp0_disp, &qxm_mdp1_disp }, }; static struct qcom_icc_bcm bcm_mm4_disp = { .name = "MM4", .keepalive = false, .num_nodes = 1, .nodes = { &qns_mem_noc_sf_disp }, }; static struct qcom_icc_bcm bcm_mm5_disp = { .name = "MM5", .keepalive = false, .num_nodes = 1, .nodes = { &qxm_rot_disp }, }; static struct qcom_icc_bcm bcm_sh0_disp = { .name = "SH0", .keepalive = false, .num_nodes = 1, .nodes = { &qns_llcc_disp }, }; static struct qcom_icc_bcm * const aggre1_noc_bcms[] = { }; static struct qcom_icc_node * const aggre1_noc_nodes[] = { [MASTER_QSPI_0] = &qhm_qspi, [MASTER_QUP_1] = &qhm_qup1, [MASTER_A1NOC_CFG] = &qnm_a1noc_cfg, [MASTER_SDCC_4] = &xm_sdc4, [MASTER_UFS_MEM] = &xm_ufs_mem, [MASTER_USB3_0] = &xm_usb3_0, [MASTER_USB3_1] = &xm_usb3_1, [SLAVE_A1NOC_SNOC] = &qns_a1noc_snoc, [SLAVE_SERVICE_A1NOC] = &srvc_aggre1_noc, }; static const struct qcom_icc_desc sm8350_aggre1_noc = { .nodes = aggre1_noc_nodes, .num_nodes = ARRAY_SIZE(aggre1_noc_nodes), .bcms = aggre1_noc_bcms, .num_bcms = ARRAY_SIZE(aggre1_noc_bcms), }; static struct qcom_icc_bcm * const aggre2_noc_bcms[] = { &bcm_ce0, &bcm_sn5, &bcm_sn6, &bcm_sn14, }; static struct qcom_icc_node * const aggre2_noc_nodes[] = { [MASTER_QDSS_BAM] = &qhm_qdss_bam, [MASTER_QUP_0] = &qhm_qup0, [MASTER_QUP_2] = &qhm_qup2, [MASTER_A2NOC_CFG] = &qnm_a2noc_cfg, [MASTER_CRYPTO] = &qxm_crypto, [MASTER_IPA] = &qxm_ipa, [MASTER_PCIE_0] = &xm_pcie3_0, [MASTER_PCIE_1] = &xm_pcie3_1, [MASTER_QDSS_ETR] = &xm_qdss_etr, [MASTER_SDCC_2] = &xm_sdc2, [MASTER_UFS_CARD] = &xm_ufs_card, [SLAVE_A2NOC_SNOC] = &qns_a2noc_snoc, [SLAVE_ANOC_PCIE_GEM_NOC] = &qns_pcie_mem_noc, [SLAVE_SERVICE_A2NOC] = &srvc_aggre2_noc, }; static const struct qcom_icc_desc sm8350_aggre2_noc = { .nodes = aggre2_noc_nodes, .num_nodes = ARRAY_SIZE(aggre2_noc_nodes), .bcms = aggre2_noc_bcms, .num_bcms = ARRAY_SIZE(aggre2_noc_bcms), }; static struct qcom_icc_bcm * const config_noc_bcms[] = { &bcm_cn0, &bcm_cn1, &bcm_cn2, &bcm_sn3, &bcm_sn4, }; static struct qcom_icc_node * const config_noc_nodes[] = { [MASTER_GEM_NOC_CNOC] = &qnm_gemnoc_cnoc, [MASTER_GEM_NOC_PCIE_SNOC] = &qnm_gemnoc_pcie, [MASTER_QDSS_DAP] = &xm_qdss_dap, [SLAVE_AHB2PHY_SOUTH] = &qhs_ahb2phy0, [SLAVE_AHB2PHY_NORTH] = &qhs_ahb2phy1, [SLAVE_AOSS] = &qhs_aoss, [SLAVE_APPSS] = &qhs_apss, [SLAVE_CAMERA_CFG] = &qhs_camera_cfg, [SLAVE_CLK_CTL] = &qhs_clk_ctl, [SLAVE_CDSP_CFG] = &qhs_compute_cfg, [SLAVE_RBCPR_CX_CFG] = &qhs_cpr_cx, [SLAVE_RBCPR_MMCX_CFG] = &qhs_cpr_mmcx, [SLAVE_RBCPR_MX_CFG] = &qhs_cpr_mx, [SLAVE_CRYPTO_0_CFG] = &qhs_crypto0_cfg, [SLAVE_CX_RDPM] = &qhs_cx_rdpm, [SLAVE_DCC_CFG] = &qhs_dcc_cfg, [SLAVE_DISPLAY_CFG] = &qhs_display_cfg, [SLAVE_GFX3D_CFG] = &qhs_gpuss_cfg, [SLAVE_HWKM] = &qhs_hwkm, [SLAVE_IMEM_CFG] = &qhs_imem_cfg, [SLAVE_IPA_CFG] = &qhs_ipa, [SLAVE_IPC_ROUTER_CFG] = &qhs_ipc_router, [SLAVE_LPASS] = &qhs_lpass_cfg, [SLAVE_CNOC_MSS] = &qhs_mss_cfg, [SLAVE_MX_RDPM] = &qhs_mx_rdpm, [SLAVE_PCIE_0_CFG] = &qhs_pcie0_cfg, [SLAVE_PCIE_1_CFG] = &qhs_pcie1_cfg, [SLAVE_PDM] = &qhs_pdm, [SLAVE_PIMEM_CFG] = &qhs_pimem_cfg, [SLAVE_PKA_WRAPPER_CFG] = &qhs_pka_wrapper_cfg, [SLAVE_PMU_WRAPPER_CFG] = &qhs_pmu_wrapper_cfg, [SLAVE_QDSS_CFG] = &qhs_qdss_cfg, [SLAVE_QSPI_0] = &qhs_qspi, [SLAVE_QUP_0] = &qhs_qup0, [SLAVE_QUP_1] = &qhs_qup1, [SLAVE_QUP_2] = &qhs_qup2, [SLAVE_SDCC_2] = &qhs_sdc2, [SLAVE_SDCC_4] = &qhs_sdc4, [SLAVE_SECURITY] = &qhs_security, [SLAVE_SPSS_CFG] = &qhs_spss_cfg, [SLAVE_TCSR] = &qhs_tcsr, [SLAVE_TLMM] = &qhs_tlmm, [SLAVE_UFS_CARD_CFG] = &qhs_ufs_card_cfg, [SLAVE_UFS_MEM_CFG] = &qhs_ufs_mem_cfg, [SLAVE_USB3_0] = &qhs_usb3_0, [SLAVE_USB3_1] = &qhs_usb3_1, [SLAVE_VENUS_CFG] = &qhs_venus_cfg, [SLAVE_VSENSE_CTRL_CFG] = &qhs_vsense_ctrl_cfg, [SLAVE_A1NOC_CFG] = &qns_a1_noc_cfg, [SLAVE_A2NOC_CFG] = &qns_a2_noc_cfg, [SLAVE_DDRSS_CFG] = &qns_ddrss_cfg, [SLAVE_CNOC_MNOC_CFG] = &qns_mnoc_cfg, [SLAVE_SNOC_CFG] = &qns_snoc_cfg, [SLAVE_BOOT_IMEM] = &qxs_boot_imem, [SLAVE_IMEM] = &qxs_imem, [SLAVE_PIMEM] = &qxs_pimem, [SLAVE_SERVICE_CNOC] = &srvc_cnoc, [SLAVE_PCIE_0] = &xs_pcie_0, [SLAVE_PCIE_1] = &xs_pcie_1, [SLAVE_QDSS_STM] = &xs_qdss_stm, [SLAVE_TCU] = &xs_sys_tcu_cfg, }; static const struct qcom_icc_desc sm8350_config_noc = { .nodes = config_noc_nodes, .num_nodes = ARRAY_SIZE(config_noc_nodes), .bcms = config_noc_bcms, .num_bcms = ARRAY_SIZE(config_noc_bcms), }; static struct qcom_icc_bcm * const dc_noc_bcms[] = { }; static struct qcom_icc_node * const dc_noc_nodes[] = { [MASTER_CNOC_DC_NOC] = &qnm_cnoc_dc_noc, [SLAVE_LLCC_CFG] = &qhs_llcc, [SLAVE_GEM_NOC_CFG] = &qns_gemnoc, }; static const struct qcom_icc_desc sm8350_dc_noc = { .nodes = dc_noc_nodes, .num_nodes = ARRAY_SIZE(dc_noc_nodes), .bcms = dc_noc_bcms, .num_bcms = ARRAY_SIZE(dc_noc_bcms), }; static struct qcom_icc_bcm * const gem_noc_bcms[] = { &bcm_sh0, &bcm_sh2, &bcm_sh3, &bcm_sh4, &bcm_sh0_disp, }; static struct qcom_icc_node * const gem_noc_nodes[] = { [MASTER_GPU_TCU] = &alm_gpu_tcu, [MASTER_SYS_TCU] = &alm_sys_tcu, [MASTER_APPSS_PROC] = &chm_apps, [MASTER_COMPUTE_NOC] = &qnm_cmpnoc, [MASTER_GEM_NOC_CFG] = &qnm_gemnoc_cfg, [MASTER_GFX3D] = &qnm_gpu, [MASTER_MNOC_HF_MEM_NOC] = &qnm_mnoc_hf, [MASTER_MNOC_SF_MEM_NOC] = &qnm_mnoc_sf, [MASTER_ANOC_PCIE_GEM_NOC] = &qnm_pcie, [MASTER_SNOC_GC_MEM_NOC] = &qnm_snoc_gc, [MASTER_SNOC_SF_MEM_NOC] = &qnm_snoc_sf, [SLAVE_MSS_PROC_MS_MPU_CFG] = &qhs_mdsp_ms_mpu_cfg, [SLAVE_MCDMA_MS_MPU_CFG] = &qhs_modem_ms_mpu_cfg, [SLAVE_GEM_NOC_CNOC] = &qns_gem_noc_cnoc, [SLAVE_LLCC] = &qns_llcc, [SLAVE_MEM_NOC_PCIE_SNOC] = &qns_pcie, [SLAVE_SERVICE_GEM_NOC_1] = &srvc_even_gemnoc, [SLAVE_SERVICE_GEM_NOC_2] = &srvc_odd_gemnoc, [SLAVE_SERVICE_GEM_NOC] = &srvc_sys_gemnoc, [MASTER_MNOC_HF_MEM_NOC_DISP] = &qnm_mnoc_hf_disp, [MASTER_MNOC_SF_MEM_NOC_DISP] = &qnm_mnoc_sf_disp, [SLAVE_LLCC_DISP] = &qns_llcc_disp, }; static const struct qcom_icc_desc sm8350_gem_noc = { .nodes = gem_noc_nodes, .num_nodes = ARRAY_SIZE(gem_noc_nodes), .bcms = gem_noc_bcms, .num_bcms = ARRAY_SIZE(gem_noc_bcms), }; static struct qcom_icc_bcm * const lpass_ag_noc_bcms[] = { }; static struct qcom_icc_node * const lpass_ag_noc_nodes[] = { [MASTER_CNOC_LPASS_AG_NOC] = &qhm_config_noc, [SLAVE_LPASS_CORE_CFG] = &qhs_lpass_core, [SLAVE_LPASS_LPI_CFG] = &qhs_lpass_lpi, [SLAVE_LPASS_MPU_CFG] = &qhs_lpass_mpu, [SLAVE_LPASS_TOP_CFG] = &qhs_lpass_top, [SLAVE_SERVICES_LPASS_AML_NOC] = &srvc_niu_aml_noc, [SLAVE_SERVICE_LPASS_AG_NOC] = &srvc_niu_lpass_agnoc, }; static const struct qcom_icc_desc sm8350_lpass_ag_noc = { .nodes = lpass_ag_noc_nodes, .num_nodes = ARRAY_SIZE(lpass_ag_noc_nodes), .bcms = lpass_ag_noc_bcms, .num_bcms = ARRAY_SIZE(lpass_ag_noc_bcms), }; static struct qcom_icc_bcm * const mc_virt_bcms[] = { &bcm_acv, &bcm_mc0, &bcm_acv_disp, &bcm_mc0_disp, }; static struct qcom_icc_node * const mc_virt_nodes[] = { [MASTER_LLCC] = &llcc_mc, [SLAVE_EBI1] = &ebi, [MASTER_LLCC_DISP] = &llcc_mc_disp, [SLAVE_EBI1_DISP] = &ebi_disp, }; static const struct qcom_icc_desc sm8350_mc_virt = { .nodes = mc_virt_nodes, .num_nodes = ARRAY_SIZE(mc_virt_nodes), .bcms = mc_virt_bcms, .num_bcms = ARRAY_SIZE(mc_virt_bcms), }; static struct qcom_icc_bcm * const mmss_noc_bcms[] = { &bcm_mm0, &bcm_mm1, &bcm_mm4, &bcm_mm5, &bcm_mm0_disp, &bcm_mm1_disp, &bcm_mm4_disp, &bcm_mm5_disp, }; static struct qcom_icc_node * const mmss_noc_nodes[] = { [MASTER_CAMNOC_HF] = &qnm_camnoc_hf, [MASTER_CAMNOC_ICP] = &qnm_camnoc_icp, [MASTER_CAMNOC_SF] = &qnm_camnoc_sf, [MASTER_CNOC_MNOC_CFG] = &qnm_mnoc_cfg, [MASTER_VIDEO_P0] = &qnm_video0, [MASTER_VIDEO_P1] = &qnm_video1, [MASTER_VIDEO_PROC] = &qnm_video_cvp, [MASTER_MDP0] = &qxm_mdp0, [MASTER_MDP1] = &qxm_mdp1, [MASTER_ROTATOR] = &qxm_rot, [SLAVE_MNOC_HF_MEM_NOC] = &qns_mem_noc_hf, [SLAVE_MNOC_SF_MEM_NOC] = &qns_mem_noc_sf, [SLAVE_SERVICE_MNOC] = &srvc_mnoc, [MASTER_MDP0_DISP] = &qxm_mdp0_disp, [MASTER_MDP1_DISP] = &qxm_mdp1_disp, [MASTER_ROTATOR_DISP] = &qxm_rot_disp, [SLAVE_MNOC_HF_MEM_NOC_DISP] = &qns_mem_noc_hf_disp, [SLAVE_MNOC_SF_MEM_NOC_DISP] = &qns_mem_noc_sf_disp, }; static const struct qcom_icc_desc sm8350_mmss_noc = { .nodes = mmss_noc_nodes, .num_nodes = ARRAY_SIZE(mmss_noc_nodes), .bcms = mmss_noc_bcms, .num_bcms = ARRAY_SIZE(mmss_noc_bcms), }; static struct qcom_icc_bcm * const nsp_noc_bcms[] = { &bcm_co0, &bcm_co3, }; static struct qcom_icc_node * const nsp_noc_nodes[] = { [MASTER_CDSP_NOC_CFG] = &qhm_nsp_noc_config, [MASTER_CDSP_PROC] = &qxm_nsp, [SLAVE_CDSP_MEM_NOC] = &qns_nsp_gemnoc, [SLAVE_SERVICE_NSP_NOC] = &service_nsp_noc, }; static const struct qcom_icc_desc sm8350_compute_noc = { .nodes = nsp_noc_nodes, .num_nodes = ARRAY_SIZE(nsp_noc_nodes), .bcms = nsp_noc_bcms, .num_bcms = ARRAY_SIZE(nsp_noc_bcms), }; static struct qcom_icc_bcm * const system_noc_bcms[] = { &bcm_sn0, &bcm_sn2, &bcm_sn7, &bcm_sn8, }; static struct qcom_icc_node * const system_noc_nodes[] = { [MASTER_A1NOC_SNOC] = &qnm_aggre1_noc, [MASTER_A2NOC_SNOC] = &qnm_aggre2_noc, [MASTER_SNOC_CFG] = &qnm_snoc_cfg, [MASTER_PIMEM] = &qxm_pimem, [MASTER_GIC] = &xm_gic, [SLAVE_SNOC_GEM_NOC_GC] = &qns_gemnoc_gc, [SLAVE_SNOC_GEM_NOC_SF] = &qns_gemnoc_sf, [SLAVE_SERVICE_SNOC] = &srvc_snoc, }; static const struct qcom_icc_desc sm8350_system_noc = { .nodes = system_noc_nodes, .num_nodes = ARRAY_SIZE(system_noc_nodes), .bcms = system_noc_bcms, .num_bcms = ARRAY_SIZE(system_noc_bcms), }; static const struct of_device_id qnoc_of_match[] = { { .compatible = "qcom,sm8350-aggre1-noc", .data = &sm8350_aggre1_noc}, { .compatible = "qcom,sm8350-aggre2-noc", .data = &sm8350_aggre2_noc}, { .compatible = "qcom,sm8350-config-noc", .data = &sm8350_config_noc}, { .compatible = "qcom,sm8350-dc-noc", .data = &sm8350_dc_noc}, { .compatible = "qcom,sm8350-gem-noc", .data = &sm8350_gem_noc}, { .compatible = "qcom,sm8350-lpass-ag-noc", .data = &sm8350_lpass_ag_noc}, { .compatible = "qcom,sm8350-mc-virt", .data = &sm8350_mc_virt}, { .compatible = "qcom,sm8350-mmss-noc", .data = &sm8350_mmss_noc}, { .compatible = "qcom,sm8350-compute-noc", .data = &sm8350_compute_noc}, { .compatible = "qcom,sm8350-system-noc", .data = &sm8350_system_noc}, { } }; MODULE_DEVICE_TABLE(of, qnoc_of_match); static struct platform_driver qnoc_driver = { .probe = qcom_icc_rpmh_probe, .remove = qcom_icc_rpmh_remove, .driver = { .name = "qnoc-sm8350", .of_match_table = qnoc_of_match, }, }; module_platform_driver(qnoc_driver); MODULE_DESCRIPTION("SM8350 NoC driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/sm8350.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2020-2021, The Linux Foundation. All rights reserved. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <dt-bindings/interconnect/qcom,osm-l3.h> #define LUT_MAX_ENTRIES 40U #define LUT_SRC GENMASK(31, 30) #define LUT_L_VAL GENMASK(7, 0) #define CLK_HW_DIV 2 /* OSM Register offsets */ #define REG_ENABLE 0x0 #define OSM_LUT_ROW_SIZE 32 #define OSM_REG_FREQ_LUT 0x110 #define OSM_REG_PERF_STATE 0x920 /* EPSS Register offsets */ #define EPSS_LUT_ROW_SIZE 4 #define EPSS_REG_L3_VOTE 0x90 #define EPSS_REG_FREQ_LUT 0x100 #define EPSS_REG_PERF_STATE 0x320 #define OSM_L3_MAX_LINKS 1 #define to_osm_l3_provider(_provider) \ container_of(_provider, struct qcom_osm_l3_icc_provider, provider) struct qcom_osm_l3_icc_provider { void __iomem *base; unsigned int max_state; unsigned int reg_perf_state; unsigned long lut_tables[LUT_MAX_ENTRIES]; struct icc_provider provider; }; /** * struct qcom_osm_l3_node - Qualcomm specific interconnect nodes * @name: the node name used in debugfs * @links: an array of nodes where we can go next while traversing * @id: a unique node identifier * @num_links: the total number of @links * @buswidth: width of the interconnect between a node and the bus */ struct qcom_osm_l3_node { const char *name; u16 links[OSM_L3_MAX_LINKS]; u16 id; u16 num_links; u16 buswidth; }; struct qcom_osm_l3_desc { const struct qcom_osm_l3_node * const *nodes; size_t num_nodes; unsigned int lut_row_size; unsigned int reg_freq_lut; unsigned int reg_perf_state; }; enum { OSM_L3_MASTER_NODE = 10000, OSM_L3_SLAVE_NODE, }; #define DEFINE_QNODE(_name, _id, _buswidth, ...) \ static const struct qcom_osm_l3_node _name = { \ .name = #_name, \ .id = _id, \ .buswidth = _buswidth, \ .num_links = ARRAY_SIZE(((int[]){ __VA_ARGS__ })), \ .links = { __VA_ARGS__ }, \ } DEFINE_QNODE(osm_l3_master, OSM_L3_MASTER_NODE, 16, OSM_L3_SLAVE_NODE); DEFINE_QNODE(osm_l3_slave, OSM_L3_SLAVE_NODE, 16); static const struct qcom_osm_l3_node * const osm_l3_nodes[] = { [MASTER_OSM_L3_APPS] = &osm_l3_master, [SLAVE_OSM_L3] = &osm_l3_slave, }; DEFINE_QNODE(epss_l3_master, OSM_L3_MASTER_NODE, 32, OSM_L3_SLAVE_NODE); DEFINE_QNODE(epss_l3_slave, OSM_L3_SLAVE_NODE, 32); static const struct qcom_osm_l3_node * const epss_l3_nodes[] = { [MASTER_EPSS_L3_APPS] = &epss_l3_master, [SLAVE_EPSS_L3_SHARED] = &epss_l3_slave, }; static const struct qcom_osm_l3_desc osm_l3 = { .nodes = osm_l3_nodes, .num_nodes = ARRAY_SIZE(osm_l3_nodes), .lut_row_size = OSM_LUT_ROW_SIZE, .reg_freq_lut = OSM_REG_FREQ_LUT, .reg_perf_state = OSM_REG_PERF_STATE, }; static const struct qcom_osm_l3_desc epss_l3_perf_state = { .nodes = epss_l3_nodes, .num_nodes = ARRAY_SIZE(epss_l3_nodes), .lut_row_size = EPSS_LUT_ROW_SIZE, .reg_freq_lut = EPSS_REG_FREQ_LUT, .reg_perf_state = EPSS_REG_PERF_STATE, }; static const struct qcom_osm_l3_desc epss_l3_l3_vote = { .nodes = epss_l3_nodes, .num_nodes = ARRAY_SIZE(epss_l3_nodes), .lut_row_size = EPSS_LUT_ROW_SIZE, .reg_freq_lut = EPSS_REG_FREQ_LUT, .reg_perf_state = EPSS_REG_L3_VOTE, }; static int qcom_osm_l3_set(struct icc_node *src, struct icc_node *dst) { struct qcom_osm_l3_icc_provider *qp; struct icc_provider *provider; const struct qcom_osm_l3_node *qn; unsigned int index; u64 rate; qn = src->data; provider = src->provider; qp = to_osm_l3_provider(provider); rate = icc_units_to_bps(dst->peak_bw); do_div(rate, qn->buswidth); for (index = 0; index < qp->max_state - 1; index++) { if (qp->lut_tables[index] >= rate) break; } writel_relaxed(index, qp->base + qp->reg_perf_state); return 0; } static int qcom_osm_l3_remove(struct platform_device *pdev) { struct qcom_osm_l3_icc_provider *qp = platform_get_drvdata(pdev); icc_provider_deregister(&qp->provider); icc_nodes_remove(&qp->provider); return 0; } static int qcom_osm_l3_probe(struct platform_device *pdev) { u32 info, src, lval, i, prev_freq = 0, freq; static unsigned long hw_rate, xo_rate; struct qcom_osm_l3_icc_provider *qp; const struct qcom_osm_l3_desc *desc; struct icc_onecell_data *data; struct icc_provider *provider; const struct qcom_osm_l3_node * const *qnodes; struct icc_node *node; size_t num_nodes; struct clk *clk; int ret; clk = clk_get(&pdev->dev, "xo"); if (IS_ERR(clk)) return PTR_ERR(clk); xo_rate = clk_get_rate(clk); clk_put(clk); clk = clk_get(&pdev->dev, "alternate"); if (IS_ERR(clk)) return PTR_ERR(clk); hw_rate = clk_get_rate(clk) / CLK_HW_DIV; clk_put(clk); qp = devm_kzalloc(&pdev->dev, sizeof(*qp), GFP_KERNEL); if (!qp) return -ENOMEM; qp->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(qp->base)) return PTR_ERR(qp->base); /* HW should be in enabled state to proceed */ if (!(readl_relaxed(qp->base + REG_ENABLE) & 0x1)) { dev_err(&pdev->dev, "error hardware not enabled\n"); return -ENODEV; } desc = device_get_match_data(&pdev->dev); if (!desc) return -EINVAL; qp->reg_perf_state = desc->reg_perf_state; for (i = 0; i < LUT_MAX_ENTRIES; i++) { info = readl_relaxed(qp->base + desc->reg_freq_lut + i * desc->lut_row_size); src = FIELD_GET(LUT_SRC, info); lval = FIELD_GET(LUT_L_VAL, info); if (src) freq = xo_rate * lval; else freq = hw_rate; /* Two of the same frequencies signify end of table */ if (i > 0 && prev_freq == freq) break; dev_dbg(&pdev->dev, "index=%d freq=%d\n", i, freq); qp->lut_tables[i] = freq; prev_freq = freq; } qp->max_state = i; qnodes = desc->nodes; num_nodes = desc->num_nodes; data = devm_kzalloc(&pdev->dev, struct_size(data, nodes, num_nodes), GFP_KERNEL); if (!data) return -ENOMEM; data->num_nodes = num_nodes; provider = &qp->provider; provider->dev = &pdev->dev; provider->set = qcom_osm_l3_set; provider->aggregate = icc_std_aggregate; provider->xlate = of_icc_xlate_onecell; provider->data = data; icc_provider_init(provider); for (i = 0; i < num_nodes; i++) { size_t j; node = icc_node_create(qnodes[i]->id); if (IS_ERR(node)) { ret = PTR_ERR(node); goto err; } node->name = qnodes[i]->name; /* Cast away const and add it back in qcom_osm_l3_set() */ node->data = (void *)qnodes[i]; icc_node_add(node, provider); for (j = 0; j < qnodes[i]->num_links; j++) icc_link_create(node, qnodes[i]->links[j]); data->nodes[i] = node; } ret = icc_provider_register(provider); if (ret) goto err; platform_set_drvdata(pdev, qp); return 0; err: icc_nodes_remove(provider); return ret; } static const struct of_device_id osm_l3_of_match[] = { { .compatible = "qcom,epss-l3", .data = &epss_l3_l3_vote }, { .compatible = "qcom,osm-l3", .data = &osm_l3 }, { .compatible = "qcom,sc7180-osm-l3", .data = &osm_l3 }, { .compatible = "qcom,sc7280-epss-l3", .data = &epss_l3_perf_state }, { .compatible = "qcom,sdm845-osm-l3", .data = &osm_l3 }, { .compatible = "qcom,sm8150-osm-l3", .data = &osm_l3 }, { .compatible = "qcom,sc8180x-osm-l3", .data = &osm_l3 }, { .compatible = "qcom,sm8250-epss-l3", .data = &epss_l3_perf_state }, { } }; MODULE_DEVICE_TABLE(of, osm_l3_of_match); static struct platform_driver osm_l3_driver = { .probe = qcom_osm_l3_probe, .remove = qcom_osm_l3_remove, .driver = { .name = "osm-l3", .of_match_table = osm_l3_of_match, .sync_state = icc_sync_state, }, }; module_platform_driver(osm_l3_driver); MODULE_DESCRIPTION("Qualcomm OSM L3 interconnect driver"); MODULE_LICENSE("GPL v2");
linux-master
drivers/interconnect/qcom/osm-l3.c