python_code
stringlengths
0
1.8M
repo_name
stringclasses
7 values
file_path
stringlengths
5
99
// SPDX-License-Identifier: GPL-2.0-only /* * The R_INTC in Allwinner A31 and newer SoCs manages several types of * interrupts, as shown below: * * NMI IRQ DIRECT IRQs MUXED IRQs * bit 0 bits 1-15^ bits 19-31 * * +---------+ +---------+ +---------+ +---------+ * | NMI Pad | | IRQ d | | IRQ m | | IRQ m+7 | * +---------+ +---------+ +---------+ +---------+ * | | | | | | | * | | | | |......| | * +------V------+ +------------+ | | | +--V------V--+ | * | Invert/ | | Write 1 to | | | | | AND with | | * | Edge Detect | | PENDING[0] | | | | | MUX[m/8] | | * +-------------+ +------------+ | | | +------------+ | * | | | | | | | * +--V-------V--+ +--V--+ | +--V--+ | +--V--+ * | Set Reset| | GIC | | | GIC | | | GIC | * | Latch | | SPI | | | SPI |... | ...| SPI | * +-------------+ | N+d | | | m | | | m+7 | * | | +-----+ | +-----+ | +-----+ * | | | | * +-------V-+ +-V----------+ +---------V--+ +--------V--------+ * | GIC SPI | | AND with | | AND with | | AND with | * | N (=32) | | ENABLE[0] | | ENABLE[d] | | ENABLE[19+m/8] | * +---------+ +------------+ +------------+ +-----------------+ * | | | * +------V-----+ +------V-----+ +--------V--------+ * | Read | | Read | | Read | * | PENDING[0] | | PENDING[d] | | PENDING[19+m/8] | * +------------+ +------------+ +-----------------+ * * ^ bits 16-18 are direct IRQs for peripherals with banked interrupts, such as * the MSGBOX. These IRQs do not map to any GIC SPI. * * The H6 variant adds two more (banked) direct IRQs and implements the full * set of 128 mux bits. This requires a second set of top-level registers. */ #include <linux/bitmap.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqchip.h> #include <linux/irqdomain.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/syscore_ops.h> #include <dt-bindings/interrupt-controller/arm-gic.h> #define SUN6I_NMI_CTRL (0x0c) #define SUN6I_IRQ_PENDING(n) (0x10 + 4 * (n)) #define SUN6I_IRQ_ENABLE(n) (0x40 + 4 * (n)) #define SUN6I_MUX_ENABLE(n) (0xc0 + 4 * (n)) #define SUN6I_NMI_SRC_TYPE_LEVEL_LOW 0 #define SUN6I_NMI_SRC_TYPE_EDGE_FALLING 1 #define SUN6I_NMI_SRC_TYPE_LEVEL_HIGH 2 #define SUN6I_NMI_SRC_TYPE_EDGE_RISING 3 #define SUN6I_NMI_BIT BIT(0) #define SUN6I_NMI_NEEDS_ACK ((void *)1) #define SUN6I_NR_TOP_LEVEL_IRQS 64 #define SUN6I_NR_DIRECT_IRQS 16 #define SUN6I_NR_MUX_BITS 128 struct sun6i_r_intc_variant { u32 first_mux_irq; u32 nr_mux_irqs; u32 mux_valid[BITS_TO_U32(SUN6I_NR_MUX_BITS)]; }; static void __iomem *base; static irq_hw_number_t nmi_hwirq; static DECLARE_BITMAP(wake_irq_enabled, SUN6I_NR_TOP_LEVEL_IRQS); static DECLARE_BITMAP(wake_mux_enabled, SUN6I_NR_MUX_BITS); static DECLARE_BITMAP(wake_mux_valid, SUN6I_NR_MUX_BITS); static void sun6i_r_intc_ack_nmi(void) { writel_relaxed(SUN6I_NMI_BIT, base + SUN6I_IRQ_PENDING(0)); } static void sun6i_r_intc_nmi_ack(struct irq_data *data) { if (irqd_get_trigger_type(data) & IRQ_TYPE_EDGE_BOTH) sun6i_r_intc_ack_nmi(); else data->chip_data = SUN6I_NMI_NEEDS_ACK; } static void sun6i_r_intc_nmi_eoi(struct irq_data *data) { /* For oneshot IRQs, delay the ack until the IRQ is unmasked. */ if (data->chip_data == SUN6I_NMI_NEEDS_ACK && !irqd_irq_masked(data)) { data->chip_data = NULL; sun6i_r_intc_ack_nmi(); } irq_chip_eoi_parent(data); } static void sun6i_r_intc_nmi_unmask(struct irq_data *data) { if (data->chip_data == SUN6I_NMI_NEEDS_ACK) { data->chip_data = NULL; sun6i_r_intc_ack_nmi(); } irq_chip_unmask_parent(data); } static int sun6i_r_intc_nmi_set_type(struct irq_data *data, unsigned int type) { u32 nmi_src_type; switch (type) { case IRQ_TYPE_EDGE_RISING: nmi_src_type = SUN6I_NMI_SRC_TYPE_EDGE_RISING; break; case IRQ_TYPE_EDGE_FALLING: nmi_src_type = SUN6I_NMI_SRC_TYPE_EDGE_FALLING; break; case IRQ_TYPE_LEVEL_HIGH: nmi_src_type = SUN6I_NMI_SRC_TYPE_LEVEL_HIGH; break; case IRQ_TYPE_LEVEL_LOW: nmi_src_type = SUN6I_NMI_SRC_TYPE_LEVEL_LOW; break; default: return -EINVAL; } writel_relaxed(nmi_src_type, base + SUN6I_NMI_CTRL); /* * The "External NMI" GIC input connects to a latch inside R_INTC, not * directly to the pin. So the GIC trigger type does not depend on the * NMI pin trigger type. */ return irq_chip_set_type_parent(data, IRQ_TYPE_LEVEL_HIGH); } static int sun6i_r_intc_nmi_set_irqchip_state(struct irq_data *data, enum irqchip_irq_state which, bool state) { if (which == IRQCHIP_STATE_PENDING && !state) sun6i_r_intc_ack_nmi(); return irq_chip_set_parent_state(data, which, state); } static int sun6i_r_intc_irq_set_wake(struct irq_data *data, unsigned int on) { unsigned long offset_from_nmi = data->hwirq - nmi_hwirq; if (offset_from_nmi < SUN6I_NR_DIRECT_IRQS) assign_bit(offset_from_nmi, wake_irq_enabled, on); else if (test_bit(data->hwirq, wake_mux_valid)) assign_bit(data->hwirq, wake_mux_enabled, on); else /* Not wakeup capable. */ return -EPERM; return 0; } static struct irq_chip sun6i_r_intc_nmi_chip = { .name = "sun6i-r-intc", .irq_ack = sun6i_r_intc_nmi_ack, .irq_mask = irq_chip_mask_parent, .irq_unmask = sun6i_r_intc_nmi_unmask, .irq_eoi = sun6i_r_intc_nmi_eoi, .irq_set_affinity = irq_chip_set_affinity_parent, .irq_set_type = sun6i_r_intc_nmi_set_type, .irq_set_irqchip_state = sun6i_r_intc_nmi_set_irqchip_state, .irq_set_wake = sun6i_r_intc_irq_set_wake, .flags = IRQCHIP_SET_TYPE_MASKED, }; static struct irq_chip sun6i_r_intc_wakeup_chip = { .name = "sun6i-r-intc", .irq_mask = irq_chip_mask_parent, .irq_unmask = irq_chip_unmask_parent, .irq_eoi = irq_chip_eoi_parent, .irq_set_affinity = irq_chip_set_affinity_parent, .irq_set_type = irq_chip_set_type_parent, .irq_set_wake = sun6i_r_intc_irq_set_wake, .flags = IRQCHIP_SET_TYPE_MASKED, }; static int sun6i_r_intc_domain_translate(struct irq_domain *domain, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { /* Accept the old two-cell binding for the NMI only. */ if (fwspec->param_count == 2 && fwspec->param[0] == 0) { *hwirq = nmi_hwirq; *type = fwspec->param[1] & IRQ_TYPE_SENSE_MASK; return 0; } /* Otherwise this binding should match the GIC SPI binding. */ if (fwspec->param_count < 3) return -EINVAL; if (fwspec->param[0] != GIC_SPI) return -EINVAL; *hwirq = fwspec->param[1]; *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK; return 0; } static int sun6i_r_intc_domain_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct irq_fwspec *fwspec = arg; struct irq_fwspec gic_fwspec; unsigned long hwirq; unsigned int type; int i, ret; ret = sun6i_r_intc_domain_translate(domain, fwspec, &hwirq, &type); if (ret) return ret; if (hwirq + nr_irqs > SUN6I_NR_MUX_BITS) return -EINVAL; /* Construct a GIC-compatible fwspec from this fwspec. */ gic_fwspec = (struct irq_fwspec) { .fwnode = domain->parent->fwnode, .param_count = 3, .param = { GIC_SPI, hwirq, type }, }; ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, &gic_fwspec); if (ret) return ret; for (i = 0; i < nr_irqs; ++i, ++hwirq, ++virq) { if (hwirq == nmi_hwirq) { irq_domain_set_hwirq_and_chip(domain, virq, hwirq, &sun6i_r_intc_nmi_chip, NULL); irq_set_handler(virq, handle_fasteoi_ack_irq); } else { irq_domain_set_hwirq_and_chip(domain, virq, hwirq, &sun6i_r_intc_wakeup_chip, NULL); } } return 0; } static const struct irq_domain_ops sun6i_r_intc_domain_ops = { .translate = sun6i_r_intc_domain_translate, .alloc = sun6i_r_intc_domain_alloc, .free = irq_domain_free_irqs_common, }; static int sun6i_r_intc_suspend(void) { u32 buf[BITS_TO_U32(max(SUN6I_NR_TOP_LEVEL_IRQS, SUN6I_NR_MUX_BITS))]; int i; /* Wake IRQs are enabled during system sleep and shutdown. */ bitmap_to_arr32(buf, wake_irq_enabled, SUN6I_NR_TOP_LEVEL_IRQS); for (i = 0; i < BITS_TO_U32(SUN6I_NR_TOP_LEVEL_IRQS); ++i) writel_relaxed(buf[i], base + SUN6I_IRQ_ENABLE(i)); bitmap_to_arr32(buf, wake_mux_enabled, SUN6I_NR_MUX_BITS); for (i = 0; i < BITS_TO_U32(SUN6I_NR_MUX_BITS); ++i) writel_relaxed(buf[i], base + SUN6I_MUX_ENABLE(i)); return 0; } static void sun6i_r_intc_resume(void) { int i; /* Only the NMI is relevant during normal operation. */ writel_relaxed(SUN6I_NMI_BIT, base + SUN6I_IRQ_ENABLE(0)); for (i = 1; i < BITS_TO_U32(SUN6I_NR_TOP_LEVEL_IRQS); ++i) writel_relaxed(0, base + SUN6I_IRQ_ENABLE(i)); } static void sun6i_r_intc_shutdown(void) { sun6i_r_intc_suspend(); } static struct syscore_ops sun6i_r_intc_syscore_ops = { .suspend = sun6i_r_intc_suspend, .resume = sun6i_r_intc_resume, .shutdown = sun6i_r_intc_shutdown, }; static int __init sun6i_r_intc_init(struct device_node *node, struct device_node *parent, const struct sun6i_r_intc_variant *v) { struct irq_domain *domain, *parent_domain; struct of_phandle_args nmi_parent; int ret; /* Extract the NMI hwirq number from the OF node. */ ret = of_irq_parse_one(node, 0, &nmi_parent); if (ret) return ret; if (nmi_parent.args_count < 3 || nmi_parent.args[0] != GIC_SPI || nmi_parent.args[2] != IRQ_TYPE_LEVEL_HIGH) return -EINVAL; nmi_hwirq = nmi_parent.args[1]; bitmap_set(wake_irq_enabled, v->first_mux_irq, v->nr_mux_irqs); bitmap_from_arr32(wake_mux_valid, v->mux_valid, SUN6I_NR_MUX_BITS); parent_domain = irq_find_host(parent); if (!parent_domain) { pr_err("%pOF: Failed to obtain parent domain\n", node); return -ENXIO; } base = of_io_request_and_map(node, 0, NULL); if (IS_ERR(base)) { pr_err("%pOF: Failed to map MMIO region\n", node); return PTR_ERR(base); } domain = irq_domain_add_hierarchy(parent_domain, 0, 0, node, &sun6i_r_intc_domain_ops, NULL); if (!domain) { pr_err("%pOF: Failed to allocate domain\n", node); iounmap(base); return -ENOMEM; } register_syscore_ops(&sun6i_r_intc_syscore_ops); sun6i_r_intc_ack_nmi(); sun6i_r_intc_resume(); return 0; } static const struct sun6i_r_intc_variant sun6i_a31_r_intc_variant __initconst = { .first_mux_irq = 19, .nr_mux_irqs = 13, .mux_valid = { 0xffffffff, 0xfff80000, 0xffffffff, 0x0000000f }, }; static int __init sun6i_a31_r_intc_init(struct device_node *node, struct device_node *parent) { return sun6i_r_intc_init(node, parent, &sun6i_a31_r_intc_variant); } IRQCHIP_DECLARE(sun6i_a31_r_intc, "allwinner,sun6i-a31-r-intc", sun6i_a31_r_intc_init); static const struct sun6i_r_intc_variant sun50i_h6_r_intc_variant __initconst = { .first_mux_irq = 21, .nr_mux_irqs = 16, .mux_valid = { 0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff }, }; static int __init sun50i_h6_r_intc_init(struct device_node *node, struct device_node *parent) { return sun6i_r_intc_init(node, parent, &sun50i_h6_r_intc_variant); } IRQCHIP_DECLARE(sun50i_h6_r_intc, "allwinner,sun50i-h6-r-intc", sun50i_h6_r_intc_init);
linux-master
drivers/irqchip/irq-sun6i-r.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. */ #include <linux/bitfield.h> #include <linux/irq.h> #include <linux/irqchip.h> #include <linux/irqchip/chained_irq.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> /* FIC Registers */ #define AL_FIC_CAUSE 0x00 #define AL_FIC_SET_CAUSE 0x08 #define AL_FIC_MASK 0x10 #define AL_FIC_CONTROL 0x28 #define CONTROL_TRIGGER_RISING BIT(3) #define CONTROL_MASK_MSI_X BIT(5) #define NR_FIC_IRQS 32 MODULE_AUTHOR("Talel Shenhar"); MODULE_DESCRIPTION("Amazon's Annapurna Labs Interrupt Controller Driver"); enum al_fic_state { AL_FIC_UNCONFIGURED = 0, AL_FIC_CONFIGURED_LEVEL, AL_FIC_CONFIGURED_RISING_EDGE, }; struct al_fic { void __iomem *base; struct irq_domain *domain; const char *name; unsigned int parent_irq; enum al_fic_state state; }; static void al_fic_set_trigger(struct al_fic *fic, struct irq_chip_generic *gc, enum al_fic_state new_state) { irq_flow_handler_t handler; u32 control = readl_relaxed(fic->base + AL_FIC_CONTROL); if (new_state == AL_FIC_CONFIGURED_LEVEL) { handler = handle_level_irq; control &= ~CONTROL_TRIGGER_RISING; } else { handler = handle_edge_irq; control |= CONTROL_TRIGGER_RISING; } gc->chip_types->handler = handler; fic->state = new_state; writel_relaxed(control, fic->base + AL_FIC_CONTROL); } static int al_fic_irq_set_type(struct irq_data *data, unsigned int flow_type) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(data); struct al_fic *fic = gc->private; enum al_fic_state new_state; int ret = 0; irq_gc_lock(gc); if (((flow_type & IRQ_TYPE_SENSE_MASK) != IRQ_TYPE_LEVEL_HIGH) && ((flow_type & IRQ_TYPE_SENSE_MASK) != IRQ_TYPE_EDGE_RISING)) { pr_debug("fic doesn't support flow type %d\n", flow_type); ret = -EINVAL; goto err; } new_state = (flow_type & IRQ_TYPE_LEVEL_HIGH) ? AL_FIC_CONFIGURED_LEVEL : AL_FIC_CONFIGURED_RISING_EDGE; /* * A given FIC instance can be either all level or all edge triggered. * This is generally fixed depending on what pieces of HW it's wired up * to. * * We configure it based on the sensitivity of the first source * being setup, and reject any subsequent attempt at configuring it in a * different way. */ if (fic->state == AL_FIC_UNCONFIGURED) { al_fic_set_trigger(fic, gc, new_state); } else if (fic->state != new_state) { pr_debug("fic %s state already configured to %d\n", fic->name, fic->state); ret = -EINVAL; goto err; } err: irq_gc_unlock(gc); return ret; } static void al_fic_irq_handler(struct irq_desc *desc) { struct al_fic *fic = irq_desc_get_handler_data(desc); struct irq_domain *domain = fic->domain; struct irq_chip *irqchip = irq_desc_get_chip(desc); struct irq_chip_generic *gc = irq_get_domain_generic_chip(domain, 0); unsigned long pending; u32 hwirq; chained_irq_enter(irqchip, desc); pending = readl_relaxed(fic->base + AL_FIC_CAUSE); pending &= ~gc->mask_cache; for_each_set_bit(hwirq, &pending, NR_FIC_IRQS) generic_handle_domain_irq(domain, hwirq); chained_irq_exit(irqchip, desc); } static int al_fic_irq_retrigger(struct irq_data *data) { struct irq_chip_generic *gc = irq_data_get_irq_chip_data(data); struct al_fic *fic = gc->private; writel_relaxed(BIT(data->hwirq), fic->base + AL_FIC_SET_CAUSE); return 1; } static int al_fic_register(struct device_node *node, struct al_fic *fic) { struct irq_chip_generic *gc; int ret; fic->domain = irq_domain_add_linear(node, NR_FIC_IRQS, &irq_generic_chip_ops, fic); if (!fic->domain) { pr_err("fail to add irq domain\n"); return -ENOMEM; } ret = irq_alloc_domain_generic_chips(fic->domain, NR_FIC_IRQS, 1, fic->name, handle_level_irq, 0, 0, IRQ_GC_INIT_MASK_CACHE); if (ret) { pr_err("fail to allocate generic chip (%d)\n", ret); goto err_domain_remove; } gc = irq_get_domain_generic_chip(fic->domain, 0); gc->reg_base = fic->base; gc->chip_types->regs.mask = AL_FIC_MASK; gc->chip_types->regs.ack = AL_FIC_CAUSE; gc->chip_types->chip.irq_mask = irq_gc_mask_set_bit; gc->chip_types->chip.irq_unmask = irq_gc_mask_clr_bit; gc->chip_types->chip.irq_ack = irq_gc_ack_clr_bit; gc->chip_types->chip.irq_set_type = al_fic_irq_set_type; gc->chip_types->chip.irq_retrigger = al_fic_irq_retrigger; gc->chip_types->chip.flags = IRQCHIP_SKIP_SET_WAKE; gc->private = fic; irq_set_chained_handler_and_data(fic->parent_irq, al_fic_irq_handler, fic); return 0; err_domain_remove: irq_domain_remove(fic->domain); return ret; } /* * al_fic_wire_init() - initialize and configure fic in wire mode * @of_node: optional pointer to interrupt controller's device tree node. * @base: mmio to fic register * @name: name of the fic * @parent_irq: interrupt of parent * * This API will configure the fic hardware to to work in wire mode. * In wire mode, fic hardware is generating a wire ("wired") interrupt. * Interrupt can be generated based on positive edge or level - configuration is * to be determined based on connected hardware to this fic. */ static struct al_fic *al_fic_wire_init(struct device_node *node, void __iomem *base, const char *name, unsigned int parent_irq) { struct al_fic *fic; int ret; u32 control = CONTROL_MASK_MSI_X; fic = kzalloc(sizeof(*fic), GFP_KERNEL); if (!fic) return ERR_PTR(-ENOMEM); fic->base = base; fic->parent_irq = parent_irq; fic->name = name; /* mask out all interrupts */ writel_relaxed(0xFFFFFFFF, fic->base + AL_FIC_MASK); /* clear any pending interrupt */ writel_relaxed(0, fic->base + AL_FIC_CAUSE); writel_relaxed(control, fic->base + AL_FIC_CONTROL); ret = al_fic_register(node, fic); if (ret) { pr_err("fail to register irqchip\n"); goto err_free; } pr_debug("%s initialized successfully in Legacy mode (parent-irq=%u)\n", fic->name, parent_irq); return fic; err_free: kfree(fic); return ERR_PTR(ret); } static int __init al_fic_init_dt(struct device_node *node, struct device_node *parent) { int ret; void __iomem *base; unsigned int parent_irq; struct al_fic *fic; if (!parent) { pr_err("%s: unsupported - device require a parent\n", node->name); return -EINVAL; } base = of_iomap(node, 0); if (!base) { pr_err("%s: fail to map memory\n", node->name); return -ENOMEM; } parent_irq = irq_of_parse_and_map(node, 0); if (!parent_irq) { pr_err("%s: fail to map irq\n", node->name); ret = -EINVAL; goto err_unmap; } fic = al_fic_wire_init(node, base, node->name, parent_irq); if (IS_ERR(fic)) { pr_err("%s: fail to initialize irqchip (%lu)\n", node->name, PTR_ERR(fic)); ret = PTR_ERR(fic); goto err_irq_dispose; } return 0; err_irq_dispose: irq_dispose_mapping(parent_irq); err_unmap: iounmap(base); return ret; } IRQCHIP_DECLARE(al_fic, "amazon,al-fic", al_fic_init_dt);
linux-master
drivers/irqchip/irq-al-fic.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2010 Broadcom * Copyright 2012 Simon Arlott, Chris Boot, Stephen Warren * * Quirk 1: Shortcut interrupts don't set the bank 1/2 register pending bits * * If an interrupt fires on bank 1 that isn't in the shortcuts list, bit 8 * on bank 0 is set to signify that an interrupt in bank 1 has fired, and * to look in the bank 1 status register for more information. * * If an interrupt fires on bank 1 that _is_ in the shortcuts list, its * shortcut bit in bank 0 is set as well as its interrupt bit in the bank 1 * status register, but bank 0 bit 8 is _not_ set. * * Quirk 2: You can't mask the register 1/2 pending interrupts * * In a proper cascaded interrupt controller, the interrupt lines with * cascaded interrupt controllers on them are just normal interrupt lines. * You can mask the interrupts and get on with things. With this controller * you can't do that. * * Quirk 3: The shortcut interrupts can't be (un)masked in bank 0 * * Those interrupts that have shortcuts can only be masked/unmasked in * their respective banks' enable/disable registers. Doing so in the bank 0 * enable/disable registers has no effect. * * The FIQ control register: * Bits 0-6: IRQ (index in order of interrupts from banks 1, 2, then 0) * Bit 7: Enable FIQ generation * Bits 8+: Unused * * An interrupt must be disabled before configuring it for FIQ generation * otherwise both handlers will fire at the same time! */ #include <linux/io.h> #include <linux/slab.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/irqchip.h> #include <linux/irqdomain.h> #include <asm/exception.h> /* Put the bank and irq (32 bits) into the hwirq */ #define MAKE_HWIRQ(b, n) ((b << 5) | (n)) #define HWIRQ_BANK(i) (i >> 5) #define HWIRQ_BIT(i) BIT(i & 0x1f) #define NR_IRQS_BANK0 8 #define BANK0_HWIRQ_MASK 0xff /* Shortcuts can't be disabled so any unknown new ones need to be masked */ #define SHORTCUT1_MASK 0x00007c00 #define SHORTCUT2_MASK 0x001f8000 #define SHORTCUT_SHIFT 10 #define BANK1_HWIRQ BIT(8) #define BANK2_HWIRQ BIT(9) #define BANK0_VALID_MASK (BANK0_HWIRQ_MASK | BANK1_HWIRQ | BANK2_HWIRQ \ | SHORTCUT1_MASK | SHORTCUT2_MASK) #define REG_FIQ_CONTROL 0x0c #define FIQ_CONTROL_ENABLE BIT(7) #define NR_BANKS 3 #define IRQS_PER_BANK 32 static const int reg_pending[] __initconst = { 0x00, 0x04, 0x08 }; static const int reg_enable[] __initconst = { 0x18, 0x10, 0x14 }; static const int reg_disable[] __initconst = { 0x24, 0x1c, 0x20 }; static const int bank_irqs[] __initconst = { 8, 32, 32 }; static const int shortcuts[] = { 7, 9, 10, 18, 19, /* Bank 1 */ 21, 22, 23, 24, 25, 30 /* Bank 2 */ }; struct armctrl_ic { void __iomem *base; void __iomem *pending[NR_BANKS]; void __iomem *enable[NR_BANKS]; void __iomem *disable[NR_BANKS]; struct irq_domain *domain; }; static struct armctrl_ic intc __read_mostly; static void __exception_irq_entry bcm2835_handle_irq( struct pt_regs *regs); static void bcm2836_chained_handle_irq(struct irq_desc *desc); static void armctrl_mask_irq(struct irq_data *d) { writel_relaxed(HWIRQ_BIT(d->hwirq), intc.disable[HWIRQ_BANK(d->hwirq)]); } static void armctrl_unmask_irq(struct irq_data *d) { writel_relaxed(HWIRQ_BIT(d->hwirq), intc.enable[HWIRQ_BANK(d->hwirq)]); } static struct irq_chip armctrl_chip = { .name = "ARMCTRL-level", .irq_mask = armctrl_mask_irq, .irq_unmask = armctrl_unmask_irq }; static int armctrl_xlate(struct irq_domain *d, struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, unsigned long *out_hwirq, unsigned int *out_type) { if (WARN_ON(intsize != 2)) return -EINVAL; if (WARN_ON(intspec[0] >= NR_BANKS)) return -EINVAL; if (WARN_ON(intspec[1] >= IRQS_PER_BANK)) return -EINVAL; if (WARN_ON(intspec[0] == 0 && intspec[1] >= NR_IRQS_BANK0)) return -EINVAL; *out_hwirq = MAKE_HWIRQ(intspec[0], intspec[1]); *out_type = IRQ_TYPE_NONE; return 0; } static const struct irq_domain_ops armctrl_ops = { .xlate = armctrl_xlate }; static int __init armctrl_of_init(struct device_node *node, struct device_node *parent, bool is_2836) { void __iomem *base; int irq, b, i; u32 reg; base = of_iomap(node, 0); if (!base) panic("%pOF: unable to map IC registers\n", node); intc.domain = irq_domain_add_linear(node, MAKE_HWIRQ(NR_BANKS, 0), &armctrl_ops, NULL); if (!intc.domain) panic("%pOF: unable to create IRQ domain\n", node); for (b = 0; b < NR_BANKS; b++) { intc.pending[b] = base + reg_pending[b]; intc.enable[b] = base + reg_enable[b]; intc.disable[b] = base + reg_disable[b]; for (i = 0; i < bank_irqs[b]; i++) { irq = irq_create_mapping(intc.domain, MAKE_HWIRQ(b, i)); BUG_ON(irq <= 0); irq_set_chip_and_handler(irq, &armctrl_chip, handle_level_irq); irq_set_probe(irq); } reg = readl_relaxed(intc.enable[b]); if (reg) { writel_relaxed(reg, intc.disable[b]); pr_err(FW_BUG "Bootloader left irq enabled: " "bank %d irq %*pbl\n", b, IRQS_PER_BANK, &reg); } } reg = readl_relaxed(base + REG_FIQ_CONTROL); if (reg & FIQ_CONTROL_ENABLE) { writel_relaxed(0, base + REG_FIQ_CONTROL); pr_err(FW_BUG "Bootloader left fiq enabled\n"); } if (is_2836) { int parent_irq = irq_of_parse_and_map(node, 0); if (!parent_irq) { panic("%pOF: unable to get parent interrupt.\n", node); } irq_set_chained_handler(parent_irq, bcm2836_chained_handle_irq); } else { set_handle_irq(bcm2835_handle_irq); } return 0; } static int __init bcm2835_armctrl_of_init(struct device_node *node, struct device_node *parent) { return armctrl_of_init(node, parent, false); } static int __init bcm2836_armctrl_of_init(struct device_node *node, struct device_node *parent) { return armctrl_of_init(node, parent, true); } /* * Handle each interrupt across the entire interrupt controller. This reads the * status register before handling each interrupt, which is necessary given that * handle_IRQ may briefly re-enable interrupts for soft IRQ handling. */ static u32 armctrl_translate_bank(int bank) { u32 stat = readl_relaxed(intc.pending[bank]); return MAKE_HWIRQ(bank, ffs(stat) - 1); } static u32 armctrl_translate_shortcut(int bank, u32 stat) { return MAKE_HWIRQ(bank, shortcuts[ffs(stat >> SHORTCUT_SHIFT) - 1]); } static u32 get_next_armctrl_hwirq(void) { u32 stat = readl_relaxed(intc.pending[0]) & BANK0_VALID_MASK; if (stat == 0) return ~0; else if (stat & BANK0_HWIRQ_MASK) return MAKE_HWIRQ(0, ffs(stat & BANK0_HWIRQ_MASK) - 1); else if (stat & SHORTCUT1_MASK) return armctrl_translate_shortcut(1, stat & SHORTCUT1_MASK); else if (stat & SHORTCUT2_MASK) return armctrl_translate_shortcut(2, stat & SHORTCUT2_MASK); else if (stat & BANK1_HWIRQ) return armctrl_translate_bank(1); else if (stat & BANK2_HWIRQ) return armctrl_translate_bank(2); else BUG(); } static void __exception_irq_entry bcm2835_handle_irq( struct pt_regs *regs) { u32 hwirq; while ((hwirq = get_next_armctrl_hwirq()) != ~0) generic_handle_domain_irq(intc.domain, hwirq); } static void bcm2836_chained_handle_irq(struct irq_desc *desc) { u32 hwirq; while ((hwirq = get_next_armctrl_hwirq()) != ~0) generic_handle_domain_irq(intc.domain, hwirq); } IRQCHIP_DECLARE(bcm2835_armctrl_ic, "brcm,bcm2835-armctrl-ic", bcm2835_armctrl_of_init); IRQCHIP_DECLARE(bcm2836_armctrl_ic, "brcm,bcm2836-armctrl-ic", bcm2836_armctrl_of_init);
linux-master
drivers/irqchip/irq-bcm2835.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas RZ/A1 IRQC Driver * * Copyright (C) 2019 Glider bvba */ #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irqdomain.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <dt-bindings/interrupt-controller/arm-gic.h> #define IRQC_NUM_IRQ 8 #define ICR0 0 /* Interrupt Control Register 0 */ #define ICR0_NMIL BIT(15) /* NMI Input Level (0=low, 1=high) */ #define ICR0_NMIE BIT(8) /* Edge Select (0=falling, 1=rising) */ #define ICR0_NMIF BIT(1) /* NMI Interrupt Request */ #define ICR1 2 /* Interrupt Control Register 1 */ #define ICR1_IRQS(n, sense) ((sense) << ((n) * 2)) /* IRQ Sense Select */ #define ICR1_IRQS_LEVEL_LOW 0 #define ICR1_IRQS_EDGE_FALLING 1 #define ICR1_IRQS_EDGE_RISING 2 #define ICR1_IRQS_EDGE_BOTH 3 #define ICR1_IRQS_MASK(n) ICR1_IRQS((n), 3) #define IRQRR 4 /* IRQ Interrupt Request Register */ struct rza1_irqc_priv { struct device *dev; void __iomem *base; struct irq_chip chip; struct irq_domain *irq_domain; struct of_phandle_args map[IRQC_NUM_IRQ]; }; static struct rza1_irqc_priv *irq_data_to_priv(struct irq_data *data) { return data->domain->host_data; } static void rza1_irqc_eoi(struct irq_data *d) { struct rza1_irqc_priv *priv = irq_data_to_priv(d); u16 bit = BIT(irqd_to_hwirq(d)); u16 tmp; tmp = readw_relaxed(priv->base + IRQRR); if (tmp & bit) writew_relaxed(GENMASK(IRQC_NUM_IRQ - 1, 0) & ~bit, priv->base + IRQRR); irq_chip_eoi_parent(d); } static int rza1_irqc_set_type(struct irq_data *d, unsigned int type) { struct rza1_irqc_priv *priv = irq_data_to_priv(d); unsigned int hw_irq = irqd_to_hwirq(d); u16 sense, tmp; switch (type & IRQ_TYPE_SENSE_MASK) { case IRQ_TYPE_LEVEL_LOW: sense = ICR1_IRQS_LEVEL_LOW; break; case IRQ_TYPE_EDGE_FALLING: sense = ICR1_IRQS_EDGE_FALLING; break; case IRQ_TYPE_EDGE_RISING: sense = ICR1_IRQS_EDGE_RISING; break; case IRQ_TYPE_EDGE_BOTH: sense = ICR1_IRQS_EDGE_BOTH; break; default: return -EINVAL; } tmp = readw_relaxed(priv->base + ICR1); tmp &= ~ICR1_IRQS_MASK(hw_irq); tmp |= ICR1_IRQS(hw_irq, sense); writew_relaxed(tmp, priv->base + ICR1); return 0; } static int rza1_irqc_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct rza1_irqc_priv *priv = domain->host_data; struct irq_fwspec *fwspec = arg; unsigned int hwirq = fwspec->param[0]; struct irq_fwspec spec; unsigned int i; int ret; ret = irq_domain_set_hwirq_and_chip(domain, virq, hwirq, &priv->chip, priv); if (ret) return ret; spec.fwnode = &priv->dev->of_node->fwnode; spec.param_count = priv->map[hwirq].args_count; for (i = 0; i < spec.param_count; i++) spec.param[i] = priv->map[hwirq].args[i]; return irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, &spec); } static int rza1_irqc_translate(struct irq_domain *domain, struct irq_fwspec *fwspec, unsigned long *hwirq, unsigned int *type) { if (fwspec->param_count != 2 || fwspec->param[0] >= IRQC_NUM_IRQ) return -EINVAL; *hwirq = fwspec->param[0]; *type = fwspec->param[1]; return 0; } static const struct irq_domain_ops rza1_irqc_domain_ops = { .alloc = rza1_irqc_alloc, .translate = rza1_irqc_translate, }; static int rza1_irqc_parse_map(struct rza1_irqc_priv *priv, struct device_node *gic_node) { unsigned int imaplen, i, j, ret; struct device *dev = priv->dev; struct device_node *ipar; const __be32 *imap; u32 intsize; imap = of_get_property(dev->of_node, "interrupt-map", &imaplen); if (!imap) return -EINVAL; for (i = 0; i < IRQC_NUM_IRQ; i++) { if (imaplen < 3) return -EINVAL; /* Check interrupt number, ignore sense */ if (be32_to_cpup(imap) != i) return -EINVAL; ipar = of_find_node_by_phandle(be32_to_cpup(imap + 2)); if (ipar != gic_node) { of_node_put(ipar); return -EINVAL; } imap += 3; imaplen -= 3; ret = of_property_read_u32(ipar, "#interrupt-cells", &intsize); of_node_put(ipar); if (ret) return ret; if (imaplen < intsize) return -EINVAL; priv->map[i].args_count = intsize; for (j = 0; j < intsize; j++) priv->map[i].args[j] = be32_to_cpup(imap++); imaplen -= intsize; } return 0; } static int rza1_irqc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct irq_domain *parent = NULL; struct device_node *gic_node; struct rza1_irqc_priv *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; platform_set_drvdata(pdev, priv); priv->dev = dev; priv->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); gic_node = of_irq_find_parent(np); if (gic_node) parent = irq_find_host(gic_node); if (!parent) { dev_err(dev, "cannot find parent domain\n"); ret = -ENODEV; goto out_put_node; } ret = rza1_irqc_parse_map(priv, gic_node); if (ret) { dev_err(dev, "cannot parse %s: %d\n", "interrupt-map", ret); goto out_put_node; } priv->chip.name = "rza1-irqc"; priv->chip.irq_mask = irq_chip_mask_parent; priv->chip.irq_unmask = irq_chip_unmask_parent; priv->chip.irq_eoi = rza1_irqc_eoi; priv->chip.irq_retrigger = irq_chip_retrigger_hierarchy; priv->chip.irq_set_type = rza1_irqc_set_type; priv->chip.flags = IRQCHIP_MASK_ON_SUSPEND | IRQCHIP_SKIP_SET_WAKE; priv->irq_domain = irq_domain_add_hierarchy(parent, 0, IRQC_NUM_IRQ, np, &rza1_irqc_domain_ops, priv); if (!priv->irq_domain) { dev_err(dev, "cannot initialize irq domain\n"); ret = -ENOMEM; } out_put_node: of_node_put(gic_node); return ret; } static int rza1_irqc_remove(struct platform_device *pdev) { struct rza1_irqc_priv *priv = platform_get_drvdata(pdev); irq_domain_remove(priv->irq_domain); return 0; } static const struct of_device_id rza1_irqc_dt_ids[] = { { .compatible = "renesas,rza1-irqc" }, {}, }; MODULE_DEVICE_TABLE(of, rza1_irqc_dt_ids); static struct platform_driver rza1_irqc_device_driver = { .probe = rza1_irqc_probe, .remove = rza1_irqc_remove, .driver = { .name = "renesas_rza1_irqc", .of_match_table = rza1_irqc_dt_ids, } }; static int __init rza1_irqc_init(void) { return platform_driver_register(&rza1_irqc_device_driver); } postcore_initcall(rza1_irqc_init); static void __exit rza1_irqc_exit(void) { platform_driver_unregister(&rza1_irqc_device_driver); } module_exit(rza1_irqc_exit); MODULE_AUTHOR("Geert Uytterhoeven <[email protected]>"); MODULE_DESCRIPTION("Renesas RZ/A1 IRQC Driver");
linux-master
drivers/irqchip/irq-renesas-rza1.c
// SPDX-License-Identifier: GPL-2.0-only /* * Atheros AR71xx/AR724x/AR913x MISC interrupt controller * * Copyright (C) 2015 Alban Bedel <[email protected]> * Copyright (C) 2010-2011 Jaiganesh Narayanan <[email protected]> * Copyright (C) 2008-2011 Gabor Juhos <[email protected]> * Copyright (C) 2008 Imre Kaloz <[email protected]> * * Parts of this file are based on Atheros' 2.6.15/2.6.31 BSP */ #include <linux/irqchip.h> #include <linux/irqchip/chained_irq.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define AR71XX_RESET_REG_MISC_INT_STATUS 0 #define AR71XX_RESET_REG_MISC_INT_ENABLE 4 #define ATH79_MISC_IRQ_COUNT 32 #define ATH79_MISC_PERF_IRQ 5 static int ath79_perfcount_irq; int get_c0_perfcount_int(void) { return ath79_perfcount_irq; } EXPORT_SYMBOL_GPL(get_c0_perfcount_int); static void ath79_misc_irq_handler(struct irq_desc *desc) { struct irq_domain *domain = irq_desc_get_handler_data(desc); struct irq_chip *chip = irq_desc_get_chip(desc); void __iomem *base = domain->host_data; u32 pending; chained_irq_enter(chip, desc); pending = __raw_readl(base + AR71XX_RESET_REG_MISC_INT_STATUS) & __raw_readl(base + AR71XX_RESET_REG_MISC_INT_ENABLE); if (!pending) { spurious_interrupt(); chained_irq_exit(chip, desc); return; } while (pending) { int bit = __ffs(pending); generic_handle_domain_irq(domain, bit); pending &= ~BIT(bit); } chained_irq_exit(chip, desc); } static void ar71xx_misc_irq_unmask(struct irq_data *d) { void __iomem *base = irq_data_get_irq_chip_data(d); unsigned int irq = d->hwirq; u32 t; t = __raw_readl(base + AR71XX_RESET_REG_MISC_INT_ENABLE); __raw_writel(t | BIT(irq), base + AR71XX_RESET_REG_MISC_INT_ENABLE); /* flush write */ __raw_readl(base + AR71XX_RESET_REG_MISC_INT_ENABLE); } static void ar71xx_misc_irq_mask(struct irq_data *d) { void __iomem *base = irq_data_get_irq_chip_data(d); unsigned int irq = d->hwirq; u32 t; t = __raw_readl(base + AR71XX_RESET_REG_MISC_INT_ENABLE); __raw_writel(t & ~BIT(irq), base + AR71XX_RESET_REG_MISC_INT_ENABLE); /* flush write */ __raw_readl(base + AR71XX_RESET_REG_MISC_INT_ENABLE); } static void ar724x_misc_irq_ack(struct irq_data *d) { void __iomem *base = irq_data_get_irq_chip_data(d); unsigned int irq = d->hwirq; u32 t; t = __raw_readl(base + AR71XX_RESET_REG_MISC_INT_STATUS); __raw_writel(t & ~BIT(irq), base + AR71XX_RESET_REG_MISC_INT_STATUS); /* flush write */ __raw_readl(base + AR71XX_RESET_REG_MISC_INT_STATUS); } static struct irq_chip ath79_misc_irq_chip = { .name = "MISC", .irq_unmask = ar71xx_misc_irq_unmask, .irq_mask = ar71xx_misc_irq_mask, }; static int misc_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hw) { irq_set_chip_and_handler(irq, &ath79_misc_irq_chip, handle_level_irq); irq_set_chip_data(irq, d->host_data); return 0; } static const struct irq_domain_ops misc_irq_domain_ops = { .xlate = irq_domain_xlate_onecell, .map = misc_map, }; static void __init ath79_misc_intc_domain_init( struct irq_domain *domain, int irq) { void __iomem *base = domain->host_data; ath79_perfcount_irq = irq_create_mapping(domain, ATH79_MISC_PERF_IRQ); /* Disable and clear all interrupts */ __raw_writel(0, base + AR71XX_RESET_REG_MISC_INT_ENABLE); __raw_writel(0, base + AR71XX_RESET_REG_MISC_INT_STATUS); irq_set_chained_handler_and_data(irq, ath79_misc_irq_handler, domain); } static int __init ath79_misc_intc_of_init( struct device_node *node, struct device_node *parent) { struct irq_domain *domain; void __iomem *base; int irq; irq = irq_of_parse_and_map(node, 0); if (!irq) { pr_err("Failed to get MISC IRQ\n"); return -EINVAL; } base = of_iomap(node, 0); if (!base) { pr_err("Failed to get MISC IRQ registers\n"); return -ENOMEM; } domain = irq_domain_add_linear(node, ATH79_MISC_IRQ_COUNT, &misc_irq_domain_ops, base); if (!domain) { pr_err("Failed to add MISC irqdomain\n"); return -EINVAL; } ath79_misc_intc_domain_init(domain, irq); return 0; } static int __init ar7100_misc_intc_of_init( struct device_node *node, struct device_node *parent) { ath79_misc_irq_chip.irq_mask_ack = ar71xx_misc_irq_mask; return ath79_misc_intc_of_init(node, parent); } IRQCHIP_DECLARE(ar7100_misc_intc, "qca,ar7100-misc-intc", ar7100_misc_intc_of_init); static int __init ar7240_misc_intc_of_init( struct device_node *node, struct device_node *parent) { ath79_misc_irq_chip.irq_ack = ar724x_misc_irq_ack; return ath79_misc_intc_of_init(node, parent); } IRQCHIP_DECLARE(ar7240_misc_intc, "qca,ar7240-misc-intc", ar7240_misc_intc_of_init); void __init ath79_misc_irq_init(void __iomem *regs, int irq, int irq_base, bool is_ar71xx) { struct irq_domain *domain; if (is_ar71xx) ath79_misc_irq_chip.irq_mask_ack = ar71xx_misc_irq_mask; else ath79_misc_irq_chip.irq_ack = ar724x_misc_irq_ack; domain = irq_domain_add_legacy(NULL, ATH79_MISC_IRQ_COUNT, irq_base, 0, &misc_irq_domain_ops, regs); if (!domain) panic("Failed to create MISC irqdomain"); ath79_misc_intc_domain_init(domain, irq); }
linux-master
drivers/irqchip/irq-ath79-misc.c
// SPDX-License-Identifier: GPL-2.0-only /* linux/arch/arm/mach-exynos4/mct.c * * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * Exynos4 MCT(Multi-Core Timer) support */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/delay.h> #include <linux/percpu.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/clocksource.h> #include <linux/sched_clock.h> #define EXYNOS4_MCTREG(x) (x) #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100) #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104) #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110) #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200) #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204) #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208) #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240) #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244) #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248) #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C) #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300) #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * (x))) #define EXYNOS4_MCT_L_MASK (0xffffff00) #define MCT_L_TCNTB_OFFSET (0x00) #define MCT_L_ICNTB_OFFSET (0x08) #define MCT_L_TCON_OFFSET (0x20) #define MCT_L_INT_CSTAT_OFFSET (0x30) #define MCT_L_INT_ENB_OFFSET (0x34) #define MCT_L_WSTAT_OFFSET (0x40) #define MCT_G_TCON_START (1 << 8) #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1) #define MCT_G_TCON_COMP0_ENABLE (1 << 0) #define MCT_L_TCON_INTERVAL_MODE (1 << 2) #define MCT_L_TCON_INT_START (1 << 1) #define MCT_L_TCON_TIMER_START (1 << 0) #define TICK_BASE_CNT 1 #ifdef CONFIG_ARM /* Use values higher than ARM arch timer. See 6282edb72bed. */ #define MCT_CLKSOURCE_RATING 450 #define MCT_CLKEVENTS_RATING 500 #else #define MCT_CLKSOURCE_RATING 350 #define MCT_CLKEVENTS_RATING 350 #endif /* There are four Global timers starting with 0 offset */ #define MCT_G0_IRQ 0 /* Local timers count starts after global timer count */ #define MCT_L0_IRQ 4 /* Max number of IRQ as per DT binding document */ #define MCT_NR_IRQS 20 /* Max number of local timers */ #define MCT_NR_LOCAL (MCT_NR_IRQS - MCT_L0_IRQ) enum { MCT_INT_SPI, MCT_INT_PPI }; static void __iomem *reg_base; static unsigned long clk_rate; static unsigned int mct_int_type; static int mct_irqs[MCT_NR_IRQS]; struct mct_clock_event_device { struct clock_event_device evt; unsigned long base; /** * The length of the name must be adjusted if number of * local timer interrupts grow over two digits */ char name[11]; }; static void exynos4_mct_write(unsigned int value, unsigned long offset) { unsigned long stat_addr; u32 mask; u32 i; writel_relaxed(value, reg_base + offset); if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) { stat_addr = (offset & EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET; switch (offset & ~EXYNOS4_MCT_L_MASK) { case MCT_L_TCON_OFFSET: mask = 1 << 3; /* L_TCON write status */ break; case MCT_L_ICNTB_OFFSET: mask = 1 << 1; /* L_ICNTB write status */ break; case MCT_L_TCNTB_OFFSET: mask = 1 << 0; /* L_TCNTB write status */ break; default: return; } } else { switch (offset) { case EXYNOS4_MCT_G_TCON: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 16; /* G_TCON write status */ break; case EXYNOS4_MCT_G_COMP0_L: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 0; /* G_COMP0_L write status */ break; case EXYNOS4_MCT_G_COMP0_U: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 1; /* G_COMP0_U write status */ break; case EXYNOS4_MCT_G_COMP0_ADD_INCR: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 2; /* G_COMP0_ADD_INCR w status */ break; case EXYNOS4_MCT_G_CNT_L: stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; mask = 1 << 0; /* G_CNT_L write status */ break; case EXYNOS4_MCT_G_CNT_U: stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; mask = 1 << 1; /* G_CNT_U write status */ break; default: return; } } /* Wait maximum 1 ms until written values are applied */ for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) if (readl_relaxed(reg_base + stat_addr) & mask) { writel_relaxed(mask, reg_base + stat_addr); return; } panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset); } /* Clocksource handling */ static void exynos4_mct_frc_start(void) { u32 reg; reg = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); reg |= MCT_G_TCON_START; exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); } /** * exynos4_read_count_64 - Read all 64-bits of the global counter * * This will read all 64-bits of the global counter taking care to make sure * that the upper and lower half match. Note that reading the MCT can be quite * slow (hundreds of nanoseconds) so you should use the 32-bit (lower half * only) version when possible. * * Returns the number of cycles in the global counter. */ static u64 exynos4_read_count_64(void) { unsigned int lo, hi; u32 hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); do { hi = hi2; lo = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); hi2 = readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_U); } while (hi != hi2); return ((u64)hi << 32) | lo; } /** * exynos4_read_count_32 - Read the lower 32-bits of the global counter * * This will read just the lower 32-bits of the global counter. This is marked * as notrace so it can be used by the scheduler clock. * * Returns the number of cycles in the global counter (lower 32 bits). */ static u32 notrace exynos4_read_count_32(void) { return readl_relaxed(reg_base + EXYNOS4_MCT_G_CNT_L); } static u64 exynos4_frc_read(struct clocksource *cs) { return exynos4_read_count_32(); } static void exynos4_frc_resume(struct clocksource *cs) { exynos4_mct_frc_start(); } static struct clocksource mct_frc = { .name = "mct-frc", .rating = MCT_CLKSOURCE_RATING, .read = exynos4_frc_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .resume = exynos4_frc_resume, }; static u64 notrace exynos4_read_sched_clock(void) { return exynos4_read_count_32(); } #if defined(CONFIG_ARM) static struct delay_timer exynos4_delay_timer; static cycles_t exynos4_read_current_timer(void) { BUILD_BUG_ON_MSG(sizeof(cycles_t) != sizeof(u32), "cycles_t needs to move to 32-bit for ARM64 usage"); return exynos4_read_count_32(); } #endif static int __init exynos4_clocksource_init(bool frc_shared) { /* * When the frc is shared, the main processer should have already * turned it on and we shouldn't be writing to TCON. */ if (frc_shared) mct_frc.resume = NULL; else exynos4_mct_frc_start(); #if defined(CONFIG_ARM) exynos4_delay_timer.read_current_timer = &exynos4_read_current_timer; exynos4_delay_timer.freq = clk_rate; register_current_timer_delay(&exynos4_delay_timer); #endif if (clocksource_register_hz(&mct_frc, clk_rate)) panic("%s: can't register clocksource\n", mct_frc.name); sched_clock_register(exynos4_read_sched_clock, 32, clk_rate); return 0; } static void exynos4_mct_comp0_stop(void) { unsigned int tcon; tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); } static void exynos4_mct_comp0_start(bool periodic, unsigned long cycles) { unsigned int tcon; u64 comp_cycle; tcon = readl_relaxed(reg_base + EXYNOS4_MCT_G_TCON); if (periodic) { tcon |= MCT_G_TCON_COMP0_AUTO_INC; exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); } comp_cycle = exynos4_read_count_64() + cycles; exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); tcon |= MCT_G_TCON_COMP0_ENABLE; exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); } static int exynos4_comp_set_next_event(unsigned long cycles, struct clock_event_device *evt) { exynos4_mct_comp0_start(false, cycles); return 0; } static int mct_set_state_shutdown(struct clock_event_device *evt) { exynos4_mct_comp0_stop(); return 0; } static int mct_set_state_periodic(struct clock_event_device *evt) { unsigned long cycles_per_jiffy; cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) >> evt->shift); exynos4_mct_comp0_stop(); exynos4_mct_comp0_start(true, cycles_per_jiffy); return 0; } static struct clock_event_device mct_comp_device = { .name = "mct-comp", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 250, .set_next_event = exynos4_comp_set_next_event, .set_state_periodic = mct_set_state_periodic, .set_state_shutdown = mct_set_state_shutdown, .set_state_oneshot = mct_set_state_shutdown, .set_state_oneshot_stopped = mct_set_state_shutdown, .tick_resume = mct_set_state_shutdown, }; static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); evt->event_handler(evt); return IRQ_HANDLED; } static int exynos4_clockevent_init(void) { mct_comp_device.cpumask = cpumask_of(0); clockevents_config_and_register(&mct_comp_device, clk_rate, 0xf, 0xffffffff); if (request_irq(mct_irqs[MCT_G0_IRQ], exynos4_mct_comp_isr, IRQF_TIMER | IRQF_IRQPOLL, "mct_comp_irq", &mct_comp_device)) pr_err("%s: request_irq() failed\n", "mct_comp_irq"); return 0; } static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick); /* Clock event handling */ static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) { unsigned long tmp; unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; unsigned long offset = mevt->base + MCT_L_TCON_OFFSET; tmp = readl_relaxed(reg_base + offset); if (tmp & mask) { tmp &= ~mask; exynos4_mct_write(tmp, offset); } } static void exynos4_mct_tick_start(unsigned long cycles, struct mct_clock_event_device *mevt) { unsigned long tmp; exynos4_mct_tick_stop(mevt); tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */ /* update interrupt count buffer */ exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); /* enable MCT tick interrupt */ exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); tmp = readl_relaxed(reg_base + mevt->base + MCT_L_TCON_OFFSET); tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | MCT_L_TCON_INTERVAL_MODE; exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); } static void exynos4_mct_tick_clear(struct mct_clock_event_device *mevt) { /* Clear the MCT tick interrupt */ if (readl_relaxed(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); } static int exynos4_tick_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct mct_clock_event_device *mevt; mevt = container_of(evt, struct mct_clock_event_device, evt); exynos4_mct_tick_start(cycles, mevt); return 0; } static int set_state_shutdown(struct clock_event_device *evt) { struct mct_clock_event_device *mevt; mevt = container_of(evt, struct mct_clock_event_device, evt); exynos4_mct_tick_stop(mevt); exynos4_mct_tick_clear(mevt); return 0; } static int set_state_periodic(struct clock_event_device *evt) { struct mct_clock_event_device *mevt; unsigned long cycles_per_jiffy; mevt = container_of(evt, struct mct_clock_event_device, evt); cycles_per_jiffy = (((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) >> evt->shift); exynos4_mct_tick_stop(mevt); exynos4_mct_tick_start(cycles_per_jiffy, mevt); return 0; } static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) { struct mct_clock_event_device *mevt = dev_id; struct clock_event_device *evt = &mevt->evt; /* * This is for supporting oneshot mode. * Mct would generate interrupt periodically * without explicit stopping. */ if (!clockevent_state_periodic(&mevt->evt)) exynos4_mct_tick_stop(mevt); exynos4_mct_tick_clear(mevt); evt->event_handler(evt); return IRQ_HANDLED; } static int exynos4_mct_starting_cpu(unsigned int cpu) { struct mct_clock_event_device *mevt = per_cpu_ptr(&percpu_mct_tick, cpu); struct clock_event_device *evt = &mevt->evt; snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu); evt->name = mevt->name; evt->cpumask = cpumask_of(cpu); evt->set_next_event = exynos4_tick_set_next_event; evt->set_state_periodic = set_state_periodic; evt->set_state_shutdown = set_state_shutdown; evt->set_state_oneshot = set_state_shutdown; evt->set_state_oneshot_stopped = set_state_shutdown; evt->tick_resume = set_state_shutdown; evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERCPU; evt->rating = MCT_CLKEVENTS_RATING; exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET); if (mct_int_type == MCT_INT_SPI) { if (evt->irq == -1) return -EIO; irq_force_affinity(evt->irq, cpumask_of(cpu)); enable_irq(evt->irq); } else { enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0); } clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1), 0xf, 0x7fffffff); return 0; } static int exynos4_mct_dying_cpu(unsigned int cpu) { struct mct_clock_event_device *mevt = per_cpu_ptr(&percpu_mct_tick, cpu); struct clock_event_device *evt = &mevt->evt; evt->set_state_shutdown(evt); if (mct_int_type == MCT_INT_SPI) { if (evt->irq != -1) disable_irq_nosync(evt->irq); exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); } else { disable_percpu_irq(mct_irqs[MCT_L0_IRQ]); } return 0; } static int __init exynos4_timer_resources(struct device_node *np) { struct clk *mct_clk, *tick_clk; reg_base = of_iomap(np, 0); if (!reg_base) panic("%s: unable to ioremap mct address space\n", __func__); tick_clk = of_clk_get_by_name(np, "fin_pll"); if (IS_ERR(tick_clk)) panic("%s: unable to determine tick clock rate\n", __func__); clk_rate = clk_get_rate(tick_clk); mct_clk = of_clk_get_by_name(np, "mct"); if (IS_ERR(mct_clk)) panic("%s: unable to retrieve mct clock instance\n", __func__); clk_prepare_enable(mct_clk); return 0; } /** * exynos4_timer_interrupts - initialize MCT interrupts * @np: device node for MCT * @int_type: interrupt type, MCT_INT_PPI or MCT_INT_SPI * @local_idx: array mapping CPU numbers to local timer indices * @nr_local: size of @local_idx array */ static int __init exynos4_timer_interrupts(struct device_node *np, unsigned int int_type, const u32 *local_idx, size_t nr_local) { int nr_irqs, i, err, cpu; mct_int_type = int_type; /* This driver uses only one global timer interrupt */ mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ); /* * Find out the number of local irqs specified. The local * timer irqs are specified after the four global timer * irqs are specified. */ nr_irqs = of_irq_count(np); if (nr_irqs > ARRAY_SIZE(mct_irqs)) { pr_err("exynos-mct: too many (%d) interrupts configured in DT\n", nr_irqs); nr_irqs = ARRAY_SIZE(mct_irqs); } for (i = MCT_L0_IRQ; i < nr_irqs; i++) mct_irqs[i] = irq_of_parse_and_map(np, i); if (mct_int_type == MCT_INT_PPI) { err = request_percpu_irq(mct_irqs[MCT_L0_IRQ], exynos4_mct_tick_isr, "MCT", &percpu_mct_tick); WARN(err, "MCT: can't request IRQ %d (%d)\n", mct_irqs[MCT_L0_IRQ], err); } else { for_each_possible_cpu(cpu) { int mct_irq; unsigned int irq_idx; struct mct_clock_event_device *pcpu_mevt = per_cpu_ptr(&percpu_mct_tick, cpu); if (cpu >= nr_local) { err = -EINVAL; goto out_irq; } irq_idx = MCT_L0_IRQ + local_idx[cpu]; pcpu_mevt->evt.irq = -1; if (irq_idx >= ARRAY_SIZE(mct_irqs)) break; mct_irq = mct_irqs[irq_idx]; irq_set_status_flags(mct_irq, IRQ_NOAUTOEN); if (request_irq(mct_irq, exynos4_mct_tick_isr, IRQF_TIMER | IRQF_NOBALANCING, pcpu_mevt->name, pcpu_mevt)) { pr_err("exynos-mct: cannot register IRQ (cpu%d)\n", cpu); continue; } pcpu_mevt->evt.irq = mct_irq; } } for_each_possible_cpu(cpu) { struct mct_clock_event_device *mevt = per_cpu_ptr(&percpu_mct_tick, cpu); if (cpu >= nr_local) { err = -EINVAL; goto out_irq; } mevt->base = EXYNOS4_MCT_L_BASE(local_idx[cpu]); } /* Install hotplug callbacks which configure the timer on this CPU */ err = cpuhp_setup_state(CPUHP_AP_EXYNOS4_MCT_TIMER_STARTING, "clockevents/exynos4/mct_timer:starting", exynos4_mct_starting_cpu, exynos4_mct_dying_cpu); if (err) goto out_irq; return 0; out_irq: if (mct_int_type == MCT_INT_PPI) { free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick); } else { for_each_possible_cpu(cpu) { struct mct_clock_event_device *pcpu_mevt = per_cpu_ptr(&percpu_mct_tick, cpu); if (pcpu_mevt->evt.irq != -1) { free_irq(pcpu_mevt->evt.irq, pcpu_mevt); pcpu_mevt->evt.irq = -1; } } } return err; } static int __init mct_init_dt(struct device_node *np, unsigned int int_type) { bool frc_shared = of_property_read_bool(np, "samsung,frc-shared"); u32 local_idx[MCT_NR_LOCAL] = {0}; int nr_local; int ret; nr_local = of_property_count_u32_elems(np, "samsung,local-timers"); if (nr_local == 0) return -EINVAL; if (nr_local > 0) { if (nr_local > ARRAY_SIZE(local_idx)) return -EINVAL; ret = of_property_read_u32_array(np, "samsung,local-timers", local_idx, nr_local); if (ret) return ret; } else { int i; nr_local = ARRAY_SIZE(local_idx); for (i = 0; i < nr_local; i++) local_idx[i] = i; } ret = exynos4_timer_resources(np); if (ret) return ret; ret = exynos4_timer_interrupts(np, int_type, local_idx, nr_local); if (ret) return ret; ret = exynos4_clocksource_init(frc_shared); if (ret) return ret; /* * When the FRC is shared with a main processor, this secondary * processor cannot use the global comparator. */ if (frc_shared) return 0; return exynos4_clockevent_init(); } static int __init mct_init_spi(struct device_node *np) { return mct_init_dt(np, MCT_INT_SPI); } static int __init mct_init_ppi(struct device_node *np) { return mct_init_dt(np, MCT_INT_PPI); } TIMER_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi); TIMER_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);
linux-master
drivers/clocksource/exynos_mct.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/goldfish.h> #include <clocksource/timer-goldfish.h> struct goldfish_timer { struct clocksource cs; struct clock_event_device ced; struct resource res; void __iomem *base; }; static struct goldfish_timer *ced_to_gf(struct clock_event_device *ced) { return container_of(ced, struct goldfish_timer, ced); } static struct goldfish_timer *cs_to_gf(struct clocksource *cs) { return container_of(cs, struct goldfish_timer, cs); } static u64 goldfish_timer_read(struct clocksource *cs) { struct goldfish_timer *timerdrv = cs_to_gf(cs); void __iomem *base = timerdrv->base; u32 time_low, time_high; u64 ticks; /* * time_low: get low bits of current time and update time_high * time_high: get high bits of time at last time_low read */ time_low = gf_ioread32(base + TIMER_TIME_LOW); time_high = gf_ioread32(base + TIMER_TIME_HIGH); ticks = ((u64)time_high << 32) | time_low; return ticks; } static int goldfish_timer_set_oneshot(struct clock_event_device *evt) { struct goldfish_timer *timerdrv = ced_to_gf(evt); void __iomem *base = timerdrv->base; gf_iowrite32(0, base + TIMER_ALARM_HIGH); gf_iowrite32(0, base + TIMER_ALARM_LOW); gf_iowrite32(1, base + TIMER_IRQ_ENABLED); return 0; } static int goldfish_timer_shutdown(struct clock_event_device *evt) { struct goldfish_timer *timerdrv = ced_to_gf(evt); void __iomem *base = timerdrv->base; gf_iowrite32(0, base + TIMER_IRQ_ENABLED); return 0; } static int goldfish_timer_next_event(unsigned long delta, struct clock_event_device *evt) { struct goldfish_timer *timerdrv = ced_to_gf(evt); void __iomem *base = timerdrv->base; u64 now; now = goldfish_timer_read(&timerdrv->cs); now += delta; gf_iowrite32(upper_32_bits(now), base + TIMER_ALARM_HIGH); gf_iowrite32(lower_32_bits(now), base + TIMER_ALARM_LOW); return 0; } static irqreturn_t goldfish_timer_irq(int irq, void *dev_id) { struct goldfish_timer *timerdrv = dev_id; struct clock_event_device *evt = &timerdrv->ced; void __iomem *base = timerdrv->base; gf_iowrite32(1, base + TIMER_CLEAR_INTERRUPT); evt->event_handler(evt); return IRQ_HANDLED; } int __init goldfish_timer_init(int irq, void __iomem *base) { struct goldfish_timer *timerdrv; int ret; timerdrv = kzalloc(sizeof(*timerdrv), GFP_KERNEL); if (!timerdrv) return -ENOMEM; timerdrv->base = base; timerdrv->ced = (struct clock_event_device){ .name = "goldfish_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = goldfish_timer_shutdown, .set_state_oneshot = goldfish_timer_set_oneshot, .set_next_event = goldfish_timer_next_event, }; timerdrv->res = (struct resource){ .name = "goldfish_timer", .start = (unsigned long)base, .end = (unsigned long)base + 0xfff, }; ret = request_resource(&iomem_resource, &timerdrv->res); if (ret) { pr_err("Cannot allocate '%s' resource\n", timerdrv->res.name); return ret; } timerdrv->cs = (struct clocksource){ .name = "goldfish_timer", .rating = 400, .read = goldfish_timer_read, .mask = CLOCKSOURCE_MASK(64), .flags = 0, .max_idle_ns = LONG_MAX, }; clocksource_register_hz(&timerdrv->cs, NSEC_PER_SEC); ret = request_irq(irq, goldfish_timer_irq, IRQF_TIMER, "goldfish_timer", timerdrv); if (ret) { pr_err("Couldn't register goldfish-timer interrupt\n"); return ret; } clockevents_config_and_register(&timerdrv->ced, NSEC_PER_SEC, 1, 0xffffffff); return 0; }
linux-master
drivers/clocksource/timer-goldfish.c
// SPDX-License-Identifier: GPL-2.0 /* * Conexant Digicolor timer driver * * Author: Baruch Siach <[email protected]> * * Copyright (C) 2014 Paradox Innovation Ltd. * * Based on: * Allwinner SoCs hstimer driver * * Copyright (C) 2013 Maxime Ripard * * Maxime Ripard <[email protected]> */ /* * Conexant Digicolor SoCs have 8 configurable timers, named from "Timer A" to * "Timer H". Timer A is the only one with watchdog support, so it is dedicated * to the watchdog driver. This driver uses Timer B for sched_clock(), and * Timer C for clockevents. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqreturn.h> #include <linux/sched/clock.h> #include <linux/sched_clock.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> enum { TIMER_A, TIMER_B, TIMER_C, TIMER_D, TIMER_E, TIMER_F, TIMER_G, TIMER_H, }; #define CONTROL(t) ((t)*8) #define COUNT(t) ((t)*8 + 4) #define CONTROL_DISABLE 0 #define CONTROL_ENABLE BIT(0) #define CONTROL_MODE(m) ((m) << 4) #define CONTROL_MODE_ONESHOT CONTROL_MODE(1) #define CONTROL_MODE_PERIODIC CONTROL_MODE(2) struct digicolor_timer { struct clock_event_device ce; void __iomem *base; u32 ticks_per_jiffy; int timer_id; /* one of TIMER_* */ }; static struct digicolor_timer *dc_timer(struct clock_event_device *ce) { return container_of(ce, struct digicolor_timer, ce); } static inline void dc_timer_disable(struct clock_event_device *ce) { struct digicolor_timer *dt = dc_timer(ce); writeb(CONTROL_DISABLE, dt->base + CONTROL(dt->timer_id)); } static inline void dc_timer_enable(struct clock_event_device *ce, u32 mode) { struct digicolor_timer *dt = dc_timer(ce); writeb(CONTROL_ENABLE | mode, dt->base + CONTROL(dt->timer_id)); } static inline void dc_timer_set_count(struct clock_event_device *ce, unsigned long count) { struct digicolor_timer *dt = dc_timer(ce); writel(count, dt->base + COUNT(dt->timer_id)); } static int digicolor_clkevt_shutdown(struct clock_event_device *ce) { dc_timer_disable(ce); return 0; } static int digicolor_clkevt_set_oneshot(struct clock_event_device *ce) { dc_timer_disable(ce); dc_timer_enable(ce, CONTROL_MODE_ONESHOT); return 0; } static int digicolor_clkevt_set_periodic(struct clock_event_device *ce) { struct digicolor_timer *dt = dc_timer(ce); dc_timer_disable(ce); dc_timer_set_count(ce, dt->ticks_per_jiffy); dc_timer_enable(ce, CONTROL_MODE_PERIODIC); return 0; } static int digicolor_clkevt_next_event(unsigned long evt, struct clock_event_device *ce) { dc_timer_disable(ce); dc_timer_set_count(ce, evt); dc_timer_enable(ce, CONTROL_MODE_ONESHOT); return 0; } static struct digicolor_timer dc_timer_dev = { .ce = { .name = "digicolor_tick", .rating = 340, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = digicolor_clkevt_shutdown, .set_state_periodic = digicolor_clkevt_set_periodic, .set_state_oneshot = digicolor_clkevt_set_oneshot, .tick_resume = digicolor_clkevt_shutdown, .set_next_event = digicolor_clkevt_next_event, }, .timer_id = TIMER_C, }; static irqreturn_t digicolor_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static u64 notrace digicolor_timer_sched_read(void) { return ~readl(dc_timer_dev.base + COUNT(TIMER_B)); } static int __init digicolor_timer_init(struct device_node *node) { unsigned long rate; struct clk *clk; int ret, irq; /* * timer registers are shared with the watchdog timer; * don't map exclusively */ dc_timer_dev.base = of_iomap(node, 0); if (!dc_timer_dev.base) { pr_err("Can't map registers\n"); return -ENXIO; } irq = irq_of_parse_and_map(node, dc_timer_dev.timer_id); if (irq <= 0) { pr_err("Can't parse IRQ\n"); return -EINVAL; } clk = of_clk_get(node, 0); if (IS_ERR(clk)) { pr_err("Can't get timer clock\n"); return PTR_ERR(clk); } clk_prepare_enable(clk); rate = clk_get_rate(clk); dc_timer_dev.ticks_per_jiffy = DIV_ROUND_UP(rate, HZ); writeb(CONTROL_DISABLE, dc_timer_dev.base + CONTROL(TIMER_B)); writel(UINT_MAX, dc_timer_dev.base + COUNT(TIMER_B)); writeb(CONTROL_ENABLE, dc_timer_dev.base + CONTROL(TIMER_B)); sched_clock_register(digicolor_timer_sched_read, 32, rate); clocksource_mmio_init(dc_timer_dev.base + COUNT(TIMER_B), node->name, rate, 340, 32, clocksource_mmio_readl_down); ret = request_irq(irq, digicolor_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "digicolor_timerC", &dc_timer_dev.ce); if (ret) { pr_warn("request of timer irq %d failed (%d)\n", irq, ret); return ret; } dc_timer_dev.ce.cpumask = cpu_possible_mask; dc_timer_dev.ce.irq = irq; clockevents_config_and_register(&dc_timer_dev.ce, rate, 0, 0xffffffff); return 0; } TIMER_OF_DECLARE(conexant_digicolor, "cnxt,cx92755-timer", digicolor_timer_init);
linux-master
drivers/clocksource/timer-digicolor.c
// SPDX-License-Identifier: GPL-2.0 /* * Ingenic SoCs TCU IRQ driver * Copyright (C) 2019 Paul Cercueil <[email protected]> * Copyright (C) 2020 周琰杰 (Zhou Yanjie) <[email protected]> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/cpuhotplug.h> #include <linux/interrupt.h> #include <linux/mfd/ingenic-tcu.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/overflow.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/sched_clock.h> #include <dt-bindings/clock/ingenic,tcu.h> static DEFINE_PER_CPU(call_single_data_t, ingenic_cevt_csd); struct ingenic_soc_info { unsigned int num_channels; }; struct ingenic_tcu_timer { unsigned int cpu; unsigned int channel; struct clock_event_device cevt; struct clk *clk; char name[8]; }; struct ingenic_tcu { struct regmap *map; struct device_node *np; struct clk *cs_clk; unsigned int cs_channel; struct clocksource cs; unsigned long pwm_channels_mask; struct ingenic_tcu_timer timers[]; }; static struct ingenic_tcu *ingenic_tcu; static u64 notrace ingenic_tcu_timer_read(void) { struct ingenic_tcu *tcu = ingenic_tcu; unsigned int count; regmap_read(tcu->map, TCU_REG_TCNTc(tcu->cs_channel), &count); return count; } static u64 notrace ingenic_tcu_timer_cs_read(struct clocksource *cs) { return ingenic_tcu_timer_read(); } static inline struct ingenic_tcu * to_ingenic_tcu(struct ingenic_tcu_timer *timer) { return container_of(timer, struct ingenic_tcu, timers[timer->cpu]); } static inline struct ingenic_tcu_timer * to_ingenic_tcu_timer(struct clock_event_device *evt) { return container_of(evt, struct ingenic_tcu_timer, cevt); } static int ingenic_tcu_cevt_set_state_shutdown(struct clock_event_device *evt) { struct ingenic_tcu_timer *timer = to_ingenic_tcu_timer(evt); struct ingenic_tcu *tcu = to_ingenic_tcu(timer); regmap_write(tcu->map, TCU_REG_TECR, BIT(timer->channel)); return 0; } static int ingenic_tcu_cevt_set_next(unsigned long next, struct clock_event_device *evt) { struct ingenic_tcu_timer *timer = to_ingenic_tcu_timer(evt); struct ingenic_tcu *tcu = to_ingenic_tcu(timer); if (next > 0xffff) return -EINVAL; regmap_write(tcu->map, TCU_REG_TDFRc(timer->channel), next); regmap_write(tcu->map, TCU_REG_TCNTc(timer->channel), 0); regmap_write(tcu->map, TCU_REG_TESR, BIT(timer->channel)); return 0; } static void ingenic_per_cpu_event_handler(void *info) { struct clock_event_device *cevt = (struct clock_event_device *) info; cevt->event_handler(cevt); } static irqreturn_t ingenic_tcu_cevt_cb(int irq, void *dev_id) { struct ingenic_tcu_timer *timer = dev_id; struct ingenic_tcu *tcu = to_ingenic_tcu(timer); call_single_data_t *csd; regmap_write(tcu->map, TCU_REG_TECR, BIT(timer->channel)); if (timer->cevt.event_handler) { csd = &per_cpu(ingenic_cevt_csd, timer->cpu); csd->info = (void *) &timer->cevt; csd->func = ingenic_per_cpu_event_handler; smp_call_function_single_async(timer->cpu, csd); } return IRQ_HANDLED; } static struct clk *ingenic_tcu_get_clock(struct device_node *np, int id) { struct of_phandle_args args; args.np = np; args.args_count = 1; args.args[0] = id; return of_clk_get_from_provider(&args); } static int ingenic_tcu_setup_cevt(unsigned int cpu) { struct ingenic_tcu *tcu = ingenic_tcu; struct ingenic_tcu_timer *timer = &tcu->timers[cpu]; unsigned int timer_virq; struct irq_domain *domain; unsigned long rate; int err; timer->clk = ingenic_tcu_get_clock(tcu->np, timer->channel); if (IS_ERR(timer->clk)) return PTR_ERR(timer->clk); err = clk_prepare_enable(timer->clk); if (err) goto err_clk_put; rate = clk_get_rate(timer->clk); if (!rate) { err = -EINVAL; goto err_clk_disable; } domain = irq_find_host(tcu->np); if (!domain) { err = -ENODEV; goto err_clk_disable; } timer_virq = irq_create_mapping(domain, timer->channel); if (!timer_virq) { err = -EINVAL; goto err_clk_disable; } snprintf(timer->name, sizeof(timer->name), "TCU%u", timer->channel); err = request_irq(timer_virq, ingenic_tcu_cevt_cb, IRQF_TIMER, timer->name, timer); if (err) goto err_irq_dispose_mapping; timer->cpu = smp_processor_id(); timer->cevt.cpumask = cpumask_of(smp_processor_id()); timer->cevt.features = CLOCK_EVT_FEAT_ONESHOT; timer->cevt.name = timer->name; timer->cevt.rating = 200; timer->cevt.set_state_shutdown = ingenic_tcu_cevt_set_state_shutdown; timer->cevt.set_next_event = ingenic_tcu_cevt_set_next; clockevents_config_and_register(&timer->cevt, rate, 10, 0xffff); return 0; err_irq_dispose_mapping: irq_dispose_mapping(timer_virq); err_clk_disable: clk_disable_unprepare(timer->clk); err_clk_put: clk_put(timer->clk); return err; } static int __init ingenic_tcu_clocksource_init(struct device_node *np, struct ingenic_tcu *tcu) { unsigned int channel = tcu->cs_channel; struct clocksource *cs = &tcu->cs; unsigned long rate; int err; tcu->cs_clk = ingenic_tcu_get_clock(np, channel); if (IS_ERR(tcu->cs_clk)) return PTR_ERR(tcu->cs_clk); err = clk_prepare_enable(tcu->cs_clk); if (err) goto err_clk_put; rate = clk_get_rate(tcu->cs_clk); if (!rate) { err = -EINVAL; goto err_clk_disable; } /* Reset channel */ regmap_update_bits(tcu->map, TCU_REG_TCSRc(channel), 0xffff & ~TCU_TCSR_RESERVED_BITS, 0); /* Reset counter */ regmap_write(tcu->map, TCU_REG_TDFRc(channel), 0xffff); regmap_write(tcu->map, TCU_REG_TCNTc(channel), 0); /* Enable channel */ regmap_write(tcu->map, TCU_REG_TESR, BIT(channel)); cs->name = "ingenic-timer"; cs->rating = 200; cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; cs->mask = CLOCKSOURCE_MASK(16); cs->read = ingenic_tcu_timer_cs_read; err = clocksource_register_hz(cs, rate); if (err) goto err_clk_disable; return 0; err_clk_disable: clk_disable_unprepare(tcu->cs_clk); err_clk_put: clk_put(tcu->cs_clk); return err; } static const struct ingenic_soc_info jz4740_soc_info = { .num_channels = 8, }; static const struct ingenic_soc_info jz4725b_soc_info = { .num_channels = 6, }; static const struct of_device_id ingenic_tcu_of_match[] = { { .compatible = "ingenic,jz4740-tcu", .data = &jz4740_soc_info, }, { .compatible = "ingenic,jz4725b-tcu", .data = &jz4725b_soc_info, }, { .compatible = "ingenic,jz4760-tcu", .data = &jz4740_soc_info, }, { .compatible = "ingenic,jz4770-tcu", .data = &jz4740_soc_info, }, { .compatible = "ingenic,x1000-tcu", .data = &jz4740_soc_info, }, { /* sentinel */ } }; static int __init ingenic_tcu_init(struct device_node *np) { const struct of_device_id *id = of_match_node(ingenic_tcu_of_match, np); const struct ingenic_soc_info *soc_info = id->data; struct ingenic_tcu_timer *timer; struct ingenic_tcu *tcu; struct regmap *map; unsigned int cpu; int ret, last_bit = -1; long rate; of_node_clear_flag(np, OF_POPULATED); map = device_node_to_regmap(np); if (IS_ERR(map)) return PTR_ERR(map); tcu = kzalloc(struct_size(tcu, timers, num_possible_cpus()), GFP_KERNEL); if (!tcu) return -ENOMEM; /* * Enable all TCU channels for PWM use by default except channels 0/1, * and channel 2 if target CPU is JZ4780/X2000 and SMP is selected. */ tcu->pwm_channels_mask = GENMASK(soc_info->num_channels - 1, num_possible_cpus() + 1); of_property_read_u32(np, "ingenic,pwm-channels-mask", (u32 *)&tcu->pwm_channels_mask); /* Verify that we have at least num_possible_cpus() + 1 free channels */ if (hweight8(tcu->pwm_channels_mask) > soc_info->num_channels - num_possible_cpus() + 1) { pr_crit("%s: Invalid PWM channel mask: 0x%02lx\n", __func__, tcu->pwm_channels_mask); ret = -EINVAL; goto err_free_ingenic_tcu; } tcu->map = map; tcu->np = np; ingenic_tcu = tcu; for (cpu = 0; cpu < num_possible_cpus(); cpu++) { timer = &tcu->timers[cpu]; timer->cpu = cpu; timer->channel = find_next_zero_bit(&tcu->pwm_channels_mask, soc_info->num_channels, last_bit + 1); last_bit = timer->channel; } tcu->cs_channel = find_next_zero_bit(&tcu->pwm_channels_mask, soc_info->num_channels, last_bit + 1); ret = ingenic_tcu_clocksource_init(np, tcu); if (ret) { pr_crit("%s: Unable to init clocksource: %d\n", __func__, ret); goto err_free_ingenic_tcu; } /* Setup clock events on each CPU core */ ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "Ingenic XBurst: online", ingenic_tcu_setup_cevt, NULL); if (ret < 0) { pr_crit("%s: Unable to start CPU timers: %d\n", __func__, ret); goto err_tcu_clocksource_cleanup; } /* Register the sched_clock at the end as there's no way to undo it */ rate = clk_get_rate(tcu->cs_clk); sched_clock_register(ingenic_tcu_timer_read, 16, rate); return 0; err_tcu_clocksource_cleanup: clocksource_unregister(&tcu->cs); clk_disable_unprepare(tcu->cs_clk); clk_put(tcu->cs_clk); err_free_ingenic_tcu: kfree(tcu); return ret; } TIMER_OF_DECLARE(jz4740_tcu_intc, "ingenic,jz4740-tcu", ingenic_tcu_init); TIMER_OF_DECLARE(jz4725b_tcu_intc, "ingenic,jz4725b-tcu", ingenic_tcu_init); TIMER_OF_DECLARE(jz4760_tcu_intc, "ingenic,jz4760-tcu", ingenic_tcu_init); TIMER_OF_DECLARE(jz4770_tcu_intc, "ingenic,jz4770-tcu", ingenic_tcu_init); TIMER_OF_DECLARE(x1000_tcu_intc, "ingenic,x1000-tcu", ingenic_tcu_init); static int __init ingenic_tcu_probe(struct platform_device *pdev) { platform_set_drvdata(pdev, ingenic_tcu); return 0; } static int ingenic_tcu_suspend(struct device *dev) { struct ingenic_tcu *tcu = dev_get_drvdata(dev); unsigned int cpu; clk_disable(tcu->cs_clk); for (cpu = 0; cpu < num_online_cpus(); cpu++) clk_disable(tcu->timers[cpu].clk); return 0; } static int ingenic_tcu_resume(struct device *dev) { struct ingenic_tcu *tcu = dev_get_drvdata(dev); unsigned int cpu; int ret; for (cpu = 0; cpu < num_online_cpus(); cpu++) { ret = clk_enable(tcu->timers[cpu].clk); if (ret) goto err_timer_clk_disable; } ret = clk_enable(tcu->cs_clk); if (ret) goto err_timer_clk_disable; return 0; err_timer_clk_disable: for (; cpu > 0; cpu--) clk_disable(tcu->timers[cpu - 1].clk); return ret; } static const struct dev_pm_ops ingenic_tcu_pm_ops = { /* _noirq: We want the TCU clocks to be gated last / ungated first */ .suspend_noirq = ingenic_tcu_suspend, .resume_noirq = ingenic_tcu_resume, }; static struct platform_driver ingenic_tcu_driver = { .driver = { .name = "ingenic-tcu-timer", .pm = pm_sleep_ptr(&ingenic_tcu_pm_ops), .of_match_table = ingenic_tcu_of_match, }, }; builtin_platform_driver_probe(ingenic_tcu_driver, ingenic_tcu_probe);
linux-master
drivers/clocksource/ingenic-timer.c
// SPDX-License-Identifier: GPL-2.0-only /* * at91sam926x_time.c - Periodic Interval Timer (PIT) for at91sam926x * * Copyright (C) 2005-2006 M. Amine SAYA, ATMEL Rousset, France * Revision 2005 M. Nicolas Diremdjian, ATMEL Rousset, France * Converted to ClockSource/ClockEvents by David Brownell. */ #define pr_fmt(fmt) "AT91: PIT: " fmt #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/slab.h> #define AT91_PIT_MR 0x00 /* Mode Register */ #define AT91_PIT_PITIEN BIT(25) /* Timer Interrupt Enable */ #define AT91_PIT_PITEN BIT(24) /* Timer Enabled */ #define AT91_PIT_PIV GENMASK(19, 0) /* Periodic Interval Value */ #define AT91_PIT_SR 0x04 /* Status Register */ #define AT91_PIT_PITS BIT(0) /* Timer Status */ #define AT91_PIT_PIVR 0x08 /* Periodic Interval Value Register */ #define AT91_PIT_PIIR 0x0c /* Periodic Interval Image Register */ #define AT91_PIT_PICNT GENMASK(31, 20) /* Interval Counter */ #define AT91_PIT_CPIV GENMASK(19, 0) /* Inverval Value */ #define PIT_CPIV(x) ((x) & AT91_PIT_CPIV) #define PIT_PICNT(x) (((x) & AT91_PIT_PICNT) >> 20) struct pit_data { struct clock_event_device clkevt; struct clocksource clksrc; void __iomem *base; u32 cycle; u32 cnt; unsigned int irq; struct clk *mck; }; static inline struct pit_data *clksrc_to_pit_data(struct clocksource *clksrc) { return container_of(clksrc, struct pit_data, clksrc); } static inline struct pit_data *clkevt_to_pit_data(struct clock_event_device *clkevt) { return container_of(clkevt, struct pit_data, clkevt); } static inline unsigned int pit_read(void __iomem *base, unsigned int reg_offset) { return readl_relaxed(base + reg_offset); } static inline void pit_write(void __iomem *base, unsigned int reg_offset, unsigned long value) { writel_relaxed(value, base + reg_offset); } /* * Clocksource: just a monotonic counter of MCK/16 cycles. * We don't care whether or not PIT irqs are enabled. */ static u64 read_pit_clk(struct clocksource *cs) { struct pit_data *data = clksrc_to_pit_data(cs); unsigned long flags; u32 elapsed; u32 t; raw_local_irq_save(flags); elapsed = data->cnt; t = pit_read(data->base, AT91_PIT_PIIR); raw_local_irq_restore(flags); elapsed += PIT_PICNT(t) * data->cycle; elapsed += PIT_CPIV(t); return elapsed; } static int pit_clkevt_shutdown(struct clock_event_device *dev) { struct pit_data *data = clkevt_to_pit_data(dev); /* disable irq, leaving the clocksource active */ pit_write(data->base, AT91_PIT_MR, (data->cycle - 1) | AT91_PIT_PITEN); return 0; } /* * Clockevent device: interrupts every 1/HZ (== pit_cycles * MCK/16) */ static int pit_clkevt_set_periodic(struct clock_event_device *dev) { struct pit_data *data = clkevt_to_pit_data(dev); /* update clocksource counter */ data->cnt += data->cycle * PIT_PICNT(pit_read(data->base, AT91_PIT_PIVR)); pit_write(data->base, AT91_PIT_MR, (data->cycle - 1) | AT91_PIT_PITEN | AT91_PIT_PITIEN); return 0; } static void at91sam926x_pit_suspend(struct clock_event_device *cedev) { struct pit_data *data = clkevt_to_pit_data(cedev); /* Disable timer */ pit_write(data->base, AT91_PIT_MR, 0); } static void at91sam926x_pit_reset(struct pit_data *data) { /* Disable timer and irqs */ pit_write(data->base, AT91_PIT_MR, 0); /* Clear any pending interrupts, wait for PIT to stop counting */ while (PIT_CPIV(pit_read(data->base, AT91_PIT_PIVR)) != 0) cpu_relax(); /* Start PIT but don't enable IRQ */ pit_write(data->base, AT91_PIT_MR, (data->cycle - 1) | AT91_PIT_PITEN); } static void at91sam926x_pit_resume(struct clock_event_device *cedev) { struct pit_data *data = clkevt_to_pit_data(cedev); at91sam926x_pit_reset(data); } /* * IRQ handler for the timer. */ static irqreturn_t at91sam926x_pit_interrupt(int irq, void *dev_id) { struct pit_data *data = dev_id; /* The PIT interrupt may be disabled, and is shared */ if (clockevent_state_periodic(&data->clkevt) && (pit_read(data->base, AT91_PIT_SR) & AT91_PIT_PITS)) { /* Get number of ticks performed before irq, and ack it */ data->cnt += data->cycle * PIT_PICNT(pit_read(data->base, AT91_PIT_PIVR)); data->clkevt.event_handler(&data->clkevt); return IRQ_HANDLED; } return IRQ_NONE; } /* * Set up both clocksource and clockevent support. */ static int __init at91sam926x_pit_dt_init(struct device_node *node) { unsigned long pit_rate; unsigned bits; int ret; struct pit_data *data; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->base = of_iomap(node, 0); if (!data->base) { pr_err("Could not map PIT address\n"); ret = -ENXIO; goto exit; } data->mck = of_clk_get(node, 0); if (IS_ERR(data->mck)) { pr_err("Unable to get mck clk\n"); ret = PTR_ERR(data->mck); goto exit; } ret = clk_prepare_enable(data->mck); if (ret) { pr_err("Unable to enable mck\n"); goto exit; } /* Get the interrupts property */ data->irq = irq_of_parse_and_map(node, 0); if (!data->irq) { pr_err("Unable to get IRQ from DT\n"); ret = -EINVAL; goto exit; } /* * Use our actual MCK to figure out how many MCK/16 ticks per * 1/HZ period (instead of a compile-time constant LATCH). */ pit_rate = clk_get_rate(data->mck) / 16; data->cycle = DIV_ROUND_CLOSEST(pit_rate, HZ); WARN_ON(((data->cycle - 1) & ~AT91_PIT_PIV) != 0); /* Initialize and enable the timer */ at91sam926x_pit_reset(data); /* * Register clocksource. The high order bits of PIV are unused, * so this isn't a 32-bit counter unless we get clockevent irqs. */ bits = 12 /* PICNT */ + ilog2(data->cycle) /* PIV */; data->clksrc.mask = CLOCKSOURCE_MASK(bits); data->clksrc.name = "pit"; data->clksrc.rating = 175; data->clksrc.read = read_pit_clk; data->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; ret = clocksource_register_hz(&data->clksrc, pit_rate); if (ret) { pr_err("Failed to register clocksource\n"); goto exit; } /* Set up irq handler */ ret = request_irq(data->irq, at91sam926x_pit_interrupt, IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL, "at91_tick", data); if (ret) { pr_err("Unable to setup IRQ\n"); clocksource_unregister(&data->clksrc); goto exit; } /* Set up and register clockevents */ data->clkevt.name = "pit"; data->clkevt.features = CLOCK_EVT_FEAT_PERIODIC; data->clkevt.shift = 32; data->clkevt.mult = div_sc(pit_rate, NSEC_PER_SEC, data->clkevt.shift); data->clkevt.rating = 100; data->clkevt.cpumask = cpumask_of(0); data->clkevt.set_state_shutdown = pit_clkevt_shutdown; data->clkevt.set_state_periodic = pit_clkevt_set_periodic; data->clkevt.resume = at91sam926x_pit_resume; data->clkevt.suspend = at91sam926x_pit_suspend; clockevents_register_device(&data->clkevt); return 0; exit: kfree(data); return ret; } TIMER_OF_DECLARE(at91sam926x_pit, "atmel,at91sam9260-pit", at91sam926x_pit_dt_init);
linux-master
drivers/clocksource/timer-atmel-pit.c
// SPDX-License-Identifier: GPL-2.0+ /* * linux/arch/arm/plat-omap/dmtimer.c * * OMAP Dual-Mode Timers * * Copyright (C) 2010 Texas Instruments Incorporated - https://www.ti.com/ * Tarun Kanti DebBarma <[email protected]> * Thara Gopinath <[email protected]> * * dmtimer adaptation to platform_driver. * * Copyright (C) 2005 Nokia Corporation * OMAP2 support by Juha Yrjola * API improvements and OMAP2 clock framework support by Timo Teras * * Copyright (C) 2009 Texas Instruments * Added OMAP4 support - Santosh Shilimkar <[email protected]> */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/cpu_pm.h> #include <linux/module.h> #include <linux/io.h> #include <linux/device.h> #include <linux/err.h> #include <linux/pm_runtime.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/platform_data/dmtimer-omap.h> #include <clocksource/timer-ti-dm.h> /* * timer errata flags * * Errata i103/i767 impacts all OMAP3/4/5 devices including AM33xx. This * errata prevents us from using posted mode on these devices, unless the * timer counter register is never read. For more details please refer to * the OMAP3/4/5 errata documents. */ #define OMAP_TIMER_ERRATA_I103_I767 0x80000000 /* posted mode types */ #define OMAP_TIMER_NONPOSTED 0x00 #define OMAP_TIMER_POSTED 0x01 /* register offsets with the write pending bit encoded */ #define WPSHIFT 16 #define OMAP_TIMER_WAKEUP_EN_REG (_OMAP_TIMER_WAKEUP_EN_OFFSET \ | (WP_NONE << WPSHIFT)) #define OMAP_TIMER_CTRL_REG (_OMAP_TIMER_CTRL_OFFSET \ | (WP_TCLR << WPSHIFT)) #define OMAP_TIMER_COUNTER_REG (_OMAP_TIMER_COUNTER_OFFSET \ | (WP_TCRR << WPSHIFT)) #define OMAP_TIMER_LOAD_REG (_OMAP_TIMER_LOAD_OFFSET \ | (WP_TLDR << WPSHIFT)) #define OMAP_TIMER_TRIGGER_REG (_OMAP_TIMER_TRIGGER_OFFSET \ | (WP_TTGR << WPSHIFT)) #define OMAP_TIMER_WRITE_PEND_REG (_OMAP_TIMER_WRITE_PEND_OFFSET \ | (WP_NONE << WPSHIFT)) #define OMAP_TIMER_MATCH_REG (_OMAP_TIMER_MATCH_OFFSET \ | (WP_TMAR << WPSHIFT)) #define OMAP_TIMER_CAPTURE_REG (_OMAP_TIMER_CAPTURE_OFFSET \ | (WP_NONE << WPSHIFT)) #define OMAP_TIMER_IF_CTRL_REG (_OMAP_TIMER_IF_CTRL_OFFSET \ | (WP_NONE << WPSHIFT)) #define OMAP_TIMER_CAPTURE2_REG (_OMAP_TIMER_CAPTURE2_OFFSET \ | (WP_NONE << WPSHIFT)) #define OMAP_TIMER_TICK_POS_REG (_OMAP_TIMER_TICK_POS_OFFSET \ | (WP_TPIR << WPSHIFT)) #define OMAP_TIMER_TICK_NEG_REG (_OMAP_TIMER_TICK_NEG_OFFSET \ | (WP_TNIR << WPSHIFT)) #define OMAP_TIMER_TICK_COUNT_REG (_OMAP_TIMER_TICK_COUNT_OFFSET \ | (WP_TCVR << WPSHIFT)) #define OMAP_TIMER_TICK_INT_MASK_SET_REG \ (_OMAP_TIMER_TICK_INT_MASK_SET_OFFSET | (WP_TOCR << WPSHIFT)) #define OMAP_TIMER_TICK_INT_MASK_COUNT_REG \ (_OMAP_TIMER_TICK_INT_MASK_COUNT_OFFSET | (WP_TOWR << WPSHIFT)) struct timer_regs { u32 ocp_cfg; u32 tidr; u32 tier; u32 twer; u32 tclr; u32 tcrr; u32 tldr; u32 ttrg; u32 twps; u32 tmar; u32 tcar1; u32 tsicr; u32 tcar2; u32 tpir; u32 tnir; u32 tcvr; u32 tocr; u32 towr; }; struct dmtimer { struct omap_dm_timer cookie; int id; int irq; struct clk *fclk; void __iomem *io_base; int irq_stat; /* TISR/IRQSTATUS interrupt status */ int irq_ena; /* irq enable */ int irq_dis; /* irq disable, only on v2 ip */ void __iomem *pend; /* write pending */ void __iomem *func_base; /* function register base */ atomic_t enabled; unsigned long rate; unsigned reserved:1; unsigned posted:1; unsigned omap1:1; struct timer_regs context; int revision; u32 capability; u32 errata; struct platform_device *pdev; struct list_head node; struct notifier_block nb; }; static u32 omap_reserved_systimers; static LIST_HEAD(omap_timer_list); static DEFINE_SPINLOCK(dm_timer_lock); enum { REQUEST_ANY = 0, REQUEST_BY_ID, REQUEST_BY_CAP, REQUEST_BY_NODE, }; /** * dmtimer_read - read timer registers in posted and non-posted mode * @timer: timer pointer over which read operation to perform * @reg: lowest byte holds the register offset * * The posted mode bit is encoded in reg. Note that in posted mode, write * pending bit must be checked. Otherwise a read of a non completed write * will produce an error. */ static inline u32 dmtimer_read(struct dmtimer *timer, u32 reg) { u16 wp, offset; wp = reg >> WPSHIFT; offset = reg & 0xff; /* Wait for a possible write pending bit in posted mode */ if (wp && timer->posted) while (readl_relaxed(timer->pend) & wp) cpu_relax(); return readl_relaxed(timer->func_base + offset); } /** * dmtimer_write - write timer registers in posted and non-posted mode * @timer: timer pointer over which write operation is to perform * @reg: lowest byte holds the register offset * @value: data to write into the register * * The posted mode bit is encoded in reg. Note that in posted mode, the write * pending bit must be checked. Otherwise a write on a register which has a * pending write will be lost. */ static inline void dmtimer_write(struct dmtimer *timer, u32 reg, u32 val) { u16 wp, offset; wp = reg >> WPSHIFT; offset = reg & 0xff; /* Wait for a possible write pending bit in posted mode */ if (wp && timer->posted) while (readl_relaxed(timer->pend) & wp) cpu_relax(); writel_relaxed(val, timer->func_base + offset); } static inline void __omap_dm_timer_init_regs(struct dmtimer *timer) { u32 tidr; /* Assume v1 ip if bits [31:16] are zero */ tidr = readl_relaxed(timer->io_base); if (!(tidr >> 16)) { timer->revision = 1; timer->irq_stat = OMAP_TIMER_V1_STAT_OFFSET; timer->irq_ena = OMAP_TIMER_V1_INT_EN_OFFSET; timer->irq_dis = OMAP_TIMER_V1_INT_EN_OFFSET; timer->pend = timer->io_base + _OMAP_TIMER_WRITE_PEND_OFFSET; timer->func_base = timer->io_base; } else { timer->revision = 2; timer->irq_stat = OMAP_TIMER_V2_IRQSTATUS - OMAP_TIMER_V2_FUNC_OFFSET; timer->irq_ena = OMAP_TIMER_V2_IRQENABLE_SET - OMAP_TIMER_V2_FUNC_OFFSET; timer->irq_dis = OMAP_TIMER_V2_IRQENABLE_CLR - OMAP_TIMER_V2_FUNC_OFFSET; timer->pend = timer->io_base + _OMAP_TIMER_WRITE_PEND_OFFSET + OMAP_TIMER_V2_FUNC_OFFSET; timer->func_base = timer->io_base + OMAP_TIMER_V2_FUNC_OFFSET; } } /* * __omap_dm_timer_enable_posted - enables write posted mode * @timer: pointer to timer instance handle * * Enables the write posted mode for the timer. When posted mode is enabled * writes to certain timer registers are immediately acknowledged by the * internal bus and hence prevents stalling the CPU waiting for the write to * complete. Enabling this feature can improve performance for writing to the * timer registers. */ static inline void __omap_dm_timer_enable_posted(struct dmtimer *timer) { if (timer->posted) return; if (timer->errata & OMAP_TIMER_ERRATA_I103_I767) { timer->posted = OMAP_TIMER_NONPOSTED; dmtimer_write(timer, OMAP_TIMER_IF_CTRL_REG, 0); return; } dmtimer_write(timer, OMAP_TIMER_IF_CTRL_REG, OMAP_TIMER_CTRL_POSTED); timer->context.tsicr = OMAP_TIMER_CTRL_POSTED; timer->posted = OMAP_TIMER_POSTED; } static inline void __omap_dm_timer_stop(struct dmtimer *timer, unsigned long rate) { u32 l; l = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); if (l & OMAP_TIMER_CTRL_ST) { l &= ~0x1; dmtimer_write(timer, OMAP_TIMER_CTRL_REG, l); #ifdef CONFIG_ARCH_OMAP2PLUS /* Readback to make sure write has completed */ dmtimer_read(timer, OMAP_TIMER_CTRL_REG); /* * Wait for functional clock period x 3.5 to make sure that * timer is stopped */ udelay(3500000 / rate + 1); #endif } /* Ack possibly pending interrupt */ dmtimer_write(timer, timer->irq_stat, OMAP_TIMER_INT_OVERFLOW); } static inline void __omap_dm_timer_int_enable(struct dmtimer *timer, unsigned int value) { dmtimer_write(timer, timer->irq_ena, value); dmtimer_write(timer, OMAP_TIMER_WAKEUP_EN_REG, value); } static inline unsigned int __omap_dm_timer_read_counter(struct dmtimer *timer) { return dmtimer_read(timer, OMAP_TIMER_COUNTER_REG); } static inline void __omap_dm_timer_write_status(struct dmtimer *timer, unsigned int value) { dmtimer_write(timer, timer->irq_stat, value); } static void omap_timer_restore_context(struct dmtimer *timer) { dmtimer_write(timer, OMAP_TIMER_OCP_CFG_OFFSET, timer->context.ocp_cfg); dmtimer_write(timer, OMAP_TIMER_WAKEUP_EN_REG, timer->context.twer); dmtimer_write(timer, OMAP_TIMER_COUNTER_REG, timer->context.tcrr); dmtimer_write(timer, OMAP_TIMER_LOAD_REG, timer->context.tldr); dmtimer_write(timer, OMAP_TIMER_MATCH_REG, timer->context.tmar); dmtimer_write(timer, OMAP_TIMER_IF_CTRL_REG, timer->context.tsicr); dmtimer_write(timer, timer->irq_ena, timer->context.tier); dmtimer_write(timer, OMAP_TIMER_CTRL_REG, timer->context.tclr); } static void omap_timer_save_context(struct dmtimer *timer) { timer->context.ocp_cfg = dmtimer_read(timer, OMAP_TIMER_OCP_CFG_OFFSET); timer->context.tclr = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); timer->context.twer = dmtimer_read(timer, OMAP_TIMER_WAKEUP_EN_REG); timer->context.tldr = dmtimer_read(timer, OMAP_TIMER_LOAD_REG); timer->context.tmar = dmtimer_read(timer, OMAP_TIMER_MATCH_REG); timer->context.tier = dmtimer_read(timer, timer->irq_ena); timer->context.tsicr = dmtimer_read(timer, OMAP_TIMER_IF_CTRL_REG); } static int omap_timer_context_notifier(struct notifier_block *nb, unsigned long cmd, void *v) { struct dmtimer *timer; timer = container_of(nb, struct dmtimer, nb); switch (cmd) { case CPU_CLUSTER_PM_ENTER: if ((timer->capability & OMAP_TIMER_ALWON) || !atomic_read(&timer->enabled)) break; omap_timer_save_context(timer); break; case CPU_CLUSTER_PM_ENTER_FAILED: /* No need to restore context */ break; case CPU_CLUSTER_PM_EXIT: if ((timer->capability & OMAP_TIMER_ALWON) || !atomic_read(&timer->enabled)) break; omap_timer_restore_context(timer); break; } return NOTIFY_OK; } static int omap_dm_timer_reset(struct dmtimer *timer) { u32 l, timeout = 100000; if (timer->revision != 1) return -EINVAL; dmtimer_write(timer, OMAP_TIMER_IF_CTRL_REG, 0x06); do { l = dmtimer_read(timer, OMAP_TIMER_V1_SYS_STAT_OFFSET); } while (!l && timeout--); if (!timeout) { dev_err(&timer->pdev->dev, "Timer failed to reset\n"); return -ETIMEDOUT; } /* Configure timer for smart-idle mode */ l = dmtimer_read(timer, OMAP_TIMER_OCP_CFG_OFFSET); l |= 0x2 << 0x3; dmtimer_write(timer, OMAP_TIMER_OCP_CFG_OFFSET, l); timer->posted = 0; return 0; } /* * Functions exposed to PWM and remoteproc drivers via platform_data. * Do not use these in the driver, these will get deprecated and will * will be replaced by Linux generic framework functions such as * chained interrupts and clock framework. */ static struct dmtimer *to_dmtimer(struct omap_dm_timer *cookie) { if (!cookie) return NULL; return container_of(cookie, struct dmtimer, cookie); } static int omap_dm_timer_set_source(struct omap_dm_timer *cookie, int source) { int ret; const char *parent_name; struct clk *parent; struct dmtimer_platform_data *pdata; struct dmtimer *timer; timer = to_dmtimer(cookie); if (unlikely(!timer) || IS_ERR(timer->fclk)) return -EINVAL; switch (source) { case OMAP_TIMER_SRC_SYS_CLK: parent_name = "timer_sys_ck"; break; case OMAP_TIMER_SRC_32_KHZ: parent_name = "timer_32k_ck"; break; case OMAP_TIMER_SRC_EXT_CLK: parent_name = "timer_ext_ck"; break; default: return -EINVAL; } pdata = timer->pdev->dev.platform_data; /* * FIXME: Used for OMAP1 devices only because they do not currently * use the clock framework to set the parent clock. To be removed * once OMAP1 migrated to using clock framework for dmtimers */ if (timer->omap1 && pdata && pdata->set_timer_src) return pdata->set_timer_src(timer->pdev, source); #if defined(CONFIG_COMMON_CLK) /* Check if the clock has configurable parents */ if (clk_hw_get_num_parents(__clk_get_hw(timer->fclk)) < 2) return 0; #endif parent = clk_get(&timer->pdev->dev, parent_name); if (IS_ERR(parent)) { pr_err("%s: %s not found\n", __func__, parent_name); return -EINVAL; } ret = clk_set_parent(timer->fclk, parent); if (ret < 0) pr_err("%s: failed to set %s as parent\n", __func__, parent_name); clk_put(parent); return ret; } static void omap_dm_timer_enable(struct omap_dm_timer *cookie) { struct dmtimer *timer = to_dmtimer(cookie); struct device *dev = &timer->pdev->dev; int rc; rc = pm_runtime_resume_and_get(dev); if (rc) dev_err(dev, "could not enable timer\n"); } static void omap_dm_timer_disable(struct omap_dm_timer *cookie) { struct dmtimer *timer = to_dmtimer(cookie); struct device *dev = &timer->pdev->dev; pm_runtime_put_sync(dev); } static int omap_dm_timer_prepare(struct dmtimer *timer) { struct device *dev = &timer->pdev->dev; int rc; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; if (timer->capability & OMAP_TIMER_NEEDS_RESET) { rc = omap_dm_timer_reset(timer); if (rc) { pm_runtime_put_sync(dev); return rc; } } __omap_dm_timer_enable_posted(timer); pm_runtime_put_sync(dev); return 0; } static inline u32 omap_dm_timer_reserved_systimer(int id) { return (omap_reserved_systimers & (1 << (id - 1))) ? 1 : 0; } static struct dmtimer *_omap_dm_timer_request(int req_type, void *data) { struct dmtimer *timer = NULL, *t; struct device_node *np = NULL; unsigned long flags; u32 cap = 0; int id = 0; switch (req_type) { case REQUEST_BY_ID: id = *(int *)data; break; case REQUEST_BY_CAP: cap = *(u32 *)data; break; case REQUEST_BY_NODE: np = (struct device_node *)data; break; default: /* REQUEST_ANY */ break; } spin_lock_irqsave(&dm_timer_lock, flags); list_for_each_entry(t, &omap_timer_list, node) { if (t->reserved) continue; switch (req_type) { case REQUEST_BY_ID: if (id == t->pdev->id) { timer = t; timer->reserved = 1; goto found; } break; case REQUEST_BY_CAP: if (cap == (t->capability & cap)) { /* * If timer is not NULL, we have already found * one timer. But it was not an exact match * because it had more capabilities than what * was required. Therefore, unreserve the last * timer found and see if this one is a better * match. */ if (timer) timer->reserved = 0; timer = t; timer->reserved = 1; /* Exit loop early if we find an exact match */ if (t->capability == cap) goto found; } break; case REQUEST_BY_NODE: if (np == t->pdev->dev.of_node) { timer = t; timer->reserved = 1; goto found; } break; default: /* REQUEST_ANY */ timer = t; timer->reserved = 1; goto found; } } found: spin_unlock_irqrestore(&dm_timer_lock, flags); if (timer && omap_dm_timer_prepare(timer)) { timer->reserved = 0; timer = NULL; } if (!timer) pr_debug("%s: timer request failed!\n", __func__); return timer; } static struct omap_dm_timer *omap_dm_timer_request(void) { struct dmtimer *timer; timer = _omap_dm_timer_request(REQUEST_ANY, NULL); if (!timer) return NULL; return &timer->cookie; } static struct omap_dm_timer *omap_dm_timer_request_specific(int id) { struct dmtimer *timer; /* Requesting timer by ID is not supported when device tree is used */ if (of_have_populated_dt()) { pr_warn("%s: Please use omap_dm_timer_request_by_node()\n", __func__); return NULL; } timer = _omap_dm_timer_request(REQUEST_BY_ID, &id); if (!timer) return NULL; return &timer->cookie; } /** * omap_dm_timer_request_by_node - Request a timer by device-tree node * @np: Pointer to device-tree timer node * * Request a timer based upon a device node pointer. Returns pointer to * timer handle on success and a NULL pointer on failure. */ static struct omap_dm_timer *omap_dm_timer_request_by_node(struct device_node *np) { struct dmtimer *timer; if (!np) return NULL; timer = _omap_dm_timer_request(REQUEST_BY_NODE, np); if (!timer) return NULL; return &timer->cookie; } static int omap_dm_timer_free(struct omap_dm_timer *cookie) { struct dmtimer *timer; struct device *dev; int rc; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; WARN_ON(!timer->reserved); timer->reserved = 0; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; /* Clear timer configuration */ dmtimer_write(timer, OMAP_TIMER_CTRL_REG, 0); pm_runtime_put_sync(dev); return 0; } static int omap_dm_timer_get_irq(struct omap_dm_timer *cookie) { struct dmtimer *timer = to_dmtimer(cookie); if (timer) return timer->irq; return -EINVAL; } #if defined(CONFIG_ARCH_OMAP1) #include <linux/soc/ti/omap1-io.h> static struct clk *omap_dm_timer_get_fclk(struct omap_dm_timer *cookie) { return NULL; } /** * omap_dm_timer_modify_idlect_mask - Check if any running timers use ARMXOR * @inputmask: current value of idlect mask */ __u32 omap_dm_timer_modify_idlect_mask(__u32 inputmask) { int i = 0; struct dmtimer *timer = NULL; unsigned long flags; /* If ARMXOR cannot be idled this function call is unnecessary */ if (!(inputmask & (1 << 1))) return inputmask; /* If any active timer is using ARMXOR return modified mask */ spin_lock_irqsave(&dm_timer_lock, flags); list_for_each_entry(timer, &omap_timer_list, node) { u32 l; l = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); if (l & OMAP_TIMER_CTRL_ST) { if (((omap_readl(MOD_CONF_CTRL_1) >> (i * 2)) & 0x03) == 0) inputmask &= ~(1 << 1); else inputmask &= ~(1 << 2); } i++; } spin_unlock_irqrestore(&dm_timer_lock, flags); return inputmask; } #else static struct clk *omap_dm_timer_get_fclk(struct omap_dm_timer *cookie) { struct dmtimer *timer = to_dmtimer(cookie); if (timer && !IS_ERR(timer->fclk)) return timer->fclk; return NULL; } __u32 omap_dm_timer_modify_idlect_mask(__u32 inputmask) { BUG(); return 0; } #endif static int omap_dm_timer_start(struct omap_dm_timer *cookie) { struct dmtimer *timer; struct device *dev; int rc; u32 l; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; l = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); if (!(l & OMAP_TIMER_CTRL_ST)) { l |= OMAP_TIMER_CTRL_ST; dmtimer_write(timer, OMAP_TIMER_CTRL_REG, l); } return 0; } static int omap_dm_timer_stop(struct omap_dm_timer *cookie) { struct dmtimer *timer; struct device *dev; unsigned long rate = 0; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; if (!timer->omap1) rate = clk_get_rate(timer->fclk); __omap_dm_timer_stop(timer, rate); pm_runtime_put_sync(dev); return 0; } static int omap_dm_timer_set_load(struct omap_dm_timer *cookie, unsigned int load) { struct dmtimer *timer; struct device *dev; int rc; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; dmtimer_write(timer, OMAP_TIMER_LOAD_REG, load); pm_runtime_put_sync(dev); return 0; } static int omap_dm_timer_set_match(struct omap_dm_timer *cookie, int enable, unsigned int match) { struct dmtimer *timer; struct device *dev; int rc; u32 l; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; l = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); if (enable) l |= OMAP_TIMER_CTRL_CE; else l &= ~OMAP_TIMER_CTRL_CE; dmtimer_write(timer, OMAP_TIMER_MATCH_REG, match); dmtimer_write(timer, OMAP_TIMER_CTRL_REG, l); pm_runtime_put_sync(dev); return 0; } static int omap_dm_timer_set_pwm(struct omap_dm_timer *cookie, int def_on, int toggle, int trigger, int autoreload) { struct dmtimer *timer; struct device *dev; int rc; u32 l; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; l = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); l &= ~(OMAP_TIMER_CTRL_GPOCFG | OMAP_TIMER_CTRL_SCPWM | OMAP_TIMER_CTRL_PT | (0x03 << 10) | OMAP_TIMER_CTRL_AR); if (def_on) l |= OMAP_TIMER_CTRL_SCPWM; if (toggle) l |= OMAP_TIMER_CTRL_PT; l |= trigger << 10; if (autoreload) l |= OMAP_TIMER_CTRL_AR; dmtimer_write(timer, OMAP_TIMER_CTRL_REG, l); pm_runtime_put_sync(dev); return 0; } static int omap_dm_timer_get_pwm_status(struct omap_dm_timer *cookie) { struct dmtimer *timer; struct device *dev; int rc; u32 l; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; l = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); pm_runtime_put_sync(dev); return l; } static int omap_dm_timer_set_prescaler(struct omap_dm_timer *cookie, int prescaler) { struct dmtimer *timer; struct device *dev; int rc; u32 l; timer = to_dmtimer(cookie); if (unlikely(!timer) || prescaler < -1 || prescaler > 7) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; l = dmtimer_read(timer, OMAP_TIMER_CTRL_REG); l &= ~(OMAP_TIMER_CTRL_PRE | (0x07 << 2)); if (prescaler >= 0) { l |= OMAP_TIMER_CTRL_PRE; l |= prescaler << 2; } dmtimer_write(timer, OMAP_TIMER_CTRL_REG, l); pm_runtime_put_sync(dev); return 0; } static int omap_dm_timer_set_int_enable(struct omap_dm_timer *cookie, unsigned int value) { struct dmtimer *timer; struct device *dev; int rc; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; __omap_dm_timer_int_enable(timer, value); pm_runtime_put_sync(dev); return 0; } /** * omap_dm_timer_set_int_disable - disable timer interrupts * @timer: pointer to timer handle * @mask: bit mask of interrupts to be disabled * * Disables the specified timer interrupts for a timer. */ static int omap_dm_timer_set_int_disable(struct omap_dm_timer *cookie, u32 mask) { struct dmtimer *timer; struct device *dev; u32 l = mask; int rc; timer = to_dmtimer(cookie); if (unlikely(!timer)) return -EINVAL; dev = &timer->pdev->dev; rc = pm_runtime_resume_and_get(dev); if (rc) return rc; if (timer->revision == 1) l = dmtimer_read(timer, timer->irq_ena) & ~mask; dmtimer_write(timer, timer->irq_dis, l); l = dmtimer_read(timer, OMAP_TIMER_WAKEUP_EN_REG) & ~mask; dmtimer_write(timer, OMAP_TIMER_WAKEUP_EN_REG, l); pm_runtime_put_sync(dev); return 0; } static unsigned int omap_dm_timer_read_status(struct omap_dm_timer *cookie) { struct dmtimer *timer; unsigned int l; timer = to_dmtimer(cookie); if (unlikely(!timer || !atomic_read(&timer->enabled))) { pr_err("%s: timer not available or enabled.\n", __func__); return 0; } l = dmtimer_read(timer, timer->irq_stat); return l; } static int omap_dm_timer_write_status(struct omap_dm_timer *cookie, unsigned int value) { struct dmtimer *timer; timer = to_dmtimer(cookie); if (unlikely(!timer || !atomic_read(&timer->enabled))) return -EINVAL; __omap_dm_timer_write_status(timer, value); return 0; } static unsigned int omap_dm_timer_read_counter(struct omap_dm_timer *cookie) { struct dmtimer *timer; timer = to_dmtimer(cookie); if (unlikely(!timer || !atomic_read(&timer->enabled))) { pr_err("%s: timer not iavailable or enabled.\n", __func__); return 0; } return __omap_dm_timer_read_counter(timer); } static int omap_dm_timer_write_counter(struct omap_dm_timer *cookie, unsigned int value) { struct dmtimer *timer; timer = to_dmtimer(cookie); if (unlikely(!timer || !atomic_read(&timer->enabled))) { pr_err("%s: timer not available or enabled.\n", __func__); return -EINVAL; } dmtimer_write(timer, OMAP_TIMER_COUNTER_REG, value); /* Save the context */ timer->context.tcrr = value; return 0; } static int __maybe_unused omap_dm_timer_runtime_suspend(struct device *dev) { struct dmtimer *timer = dev_get_drvdata(dev); atomic_set(&timer->enabled, 0); if (timer->capability & OMAP_TIMER_ALWON || !timer->func_base) return 0; omap_timer_save_context(timer); return 0; } static int __maybe_unused omap_dm_timer_runtime_resume(struct device *dev) { struct dmtimer *timer = dev_get_drvdata(dev); if (!(timer->capability & OMAP_TIMER_ALWON) && timer->func_base) omap_timer_restore_context(timer); atomic_set(&timer->enabled, 1); return 0; } static const struct dev_pm_ops omap_dm_timer_pm_ops = { SET_RUNTIME_PM_OPS(omap_dm_timer_runtime_suspend, omap_dm_timer_runtime_resume, NULL) }; static const struct of_device_id omap_timer_match[]; /** * omap_dm_timer_probe - probe function called for every registered device * @pdev: pointer to current timer platform device * * Called by driver framework at the end of device registration for all * timer devices. */ static int omap_dm_timer_probe(struct platform_device *pdev) { unsigned long flags; struct dmtimer *timer; struct device *dev = &pdev->dev; const struct dmtimer_platform_data *pdata; int ret; pdata = of_device_get_match_data(dev); if (!pdata) pdata = dev_get_platdata(dev); else dev->platform_data = (void *)pdata; if (!pdata) { dev_err(dev, "%s: no platform data.\n", __func__); return -ENODEV; } timer = devm_kzalloc(dev, sizeof(*timer), GFP_KERNEL); if (!timer) return -ENOMEM; timer->irq = platform_get_irq(pdev, 0); if (timer->irq < 0) return timer->irq; timer->io_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(timer->io_base)) return PTR_ERR(timer->io_base); platform_set_drvdata(pdev, timer); if (dev->of_node) { if (of_property_read_bool(dev->of_node, "ti,timer-alwon")) timer->capability |= OMAP_TIMER_ALWON; if (of_property_read_bool(dev->of_node, "ti,timer-dsp")) timer->capability |= OMAP_TIMER_HAS_DSP_IRQ; if (of_property_read_bool(dev->of_node, "ti,timer-pwm")) timer->capability |= OMAP_TIMER_HAS_PWM; if (of_property_read_bool(dev->of_node, "ti,timer-secure")) timer->capability |= OMAP_TIMER_SECURE; } else { timer->id = pdev->id; timer->capability = pdata->timer_capability; timer->reserved = omap_dm_timer_reserved_systimer(timer->id); } timer->omap1 = timer->capability & OMAP_TIMER_NEEDS_RESET; /* OMAP1 devices do not yet use the clock framework for dmtimers */ if (!timer->omap1) { timer->fclk = devm_clk_get(dev, "fck"); if (IS_ERR(timer->fclk)) return PTR_ERR(timer->fclk); } else { timer->fclk = ERR_PTR(-ENODEV); } if (!(timer->capability & OMAP_TIMER_ALWON)) { timer->nb.notifier_call = omap_timer_context_notifier; cpu_pm_register_notifier(&timer->nb); } timer->errata = pdata->timer_errata; timer->pdev = pdev; pm_runtime_enable(dev); if (!timer->reserved) { ret = pm_runtime_resume_and_get(dev); if (ret) { dev_err(dev, "%s: pm_runtime_get_sync failed!\n", __func__); goto err_disable; } __omap_dm_timer_init_regs(timer); /* Clear timer configuration */ dmtimer_write(timer, OMAP_TIMER_CTRL_REG, 0); pm_runtime_put(dev); } /* add the timer element to the list */ spin_lock_irqsave(&dm_timer_lock, flags); list_add_tail(&timer->node, &omap_timer_list); spin_unlock_irqrestore(&dm_timer_lock, flags); dev_dbg(dev, "Device Probed.\n"); return 0; err_disable: pm_runtime_disable(dev); return ret; } /** * omap_dm_timer_remove - cleanup a registered timer device * @pdev: pointer to current timer platform device * * Called by driver framework whenever a timer device is unregistered. * In addition to freeing platform resources it also deletes the timer * entry from the local list. */ static void omap_dm_timer_remove(struct platform_device *pdev) { struct dmtimer *timer; unsigned long flags; int ret = -EINVAL; spin_lock_irqsave(&dm_timer_lock, flags); list_for_each_entry(timer, &omap_timer_list, node) if (!strcmp(dev_name(&timer->pdev->dev), dev_name(&pdev->dev))) { if (!(timer->capability & OMAP_TIMER_ALWON)) cpu_pm_unregister_notifier(&timer->nb); list_del(&timer->node); ret = 0; break; } spin_unlock_irqrestore(&dm_timer_lock, flags); pm_runtime_disable(&pdev->dev); if (ret) dev_err(&pdev->dev, "Unable to determine timer entry in list of drivers on remove\n"); } static const struct omap_dm_timer_ops dmtimer_ops = { .request_by_node = omap_dm_timer_request_by_node, .request_specific = omap_dm_timer_request_specific, .request = omap_dm_timer_request, .set_source = omap_dm_timer_set_source, .get_irq = omap_dm_timer_get_irq, .set_int_enable = omap_dm_timer_set_int_enable, .set_int_disable = omap_dm_timer_set_int_disable, .free = omap_dm_timer_free, .enable = omap_dm_timer_enable, .disable = omap_dm_timer_disable, .get_fclk = omap_dm_timer_get_fclk, .start = omap_dm_timer_start, .stop = omap_dm_timer_stop, .set_load = omap_dm_timer_set_load, .set_match = omap_dm_timer_set_match, .set_pwm = omap_dm_timer_set_pwm, .get_pwm_status = omap_dm_timer_get_pwm_status, .set_prescaler = omap_dm_timer_set_prescaler, .read_counter = omap_dm_timer_read_counter, .write_counter = omap_dm_timer_write_counter, .read_status = omap_dm_timer_read_status, .write_status = omap_dm_timer_write_status, }; static const struct dmtimer_platform_data omap3plus_pdata = { .timer_errata = OMAP_TIMER_ERRATA_I103_I767, .timer_ops = &dmtimer_ops, }; static const struct dmtimer_platform_data am6_pdata = { .timer_ops = &dmtimer_ops, }; static const struct of_device_id omap_timer_match[] = { { .compatible = "ti,omap2420-timer", }, { .compatible = "ti,omap3430-timer", .data = &omap3plus_pdata, }, { .compatible = "ti,omap4430-timer", .data = &omap3plus_pdata, }, { .compatible = "ti,omap5430-timer", .data = &omap3plus_pdata, }, { .compatible = "ti,am335x-timer", .data = &omap3plus_pdata, }, { .compatible = "ti,am335x-timer-1ms", .data = &omap3plus_pdata, }, { .compatible = "ti,dm816-timer", .data = &omap3plus_pdata, }, { .compatible = "ti,am654-timer", .data = &am6_pdata, }, {}, }; MODULE_DEVICE_TABLE(of, omap_timer_match); static struct platform_driver omap_dm_timer_driver = { .probe = omap_dm_timer_probe, .remove_new = omap_dm_timer_remove, .driver = { .name = "omap_timer", .of_match_table = omap_timer_match, .pm = &omap_dm_timer_pm_ops, }, }; module_platform_driver(omap_dm_timer_driver); MODULE_DESCRIPTION("OMAP Dual-Mode Timer Driver"); MODULE_AUTHOR("Texas Instruments Inc");
linux-master
drivers/clocksource/timer-ti-dm.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2010 Google, Inc. * * Author: * Colin Cross <[email protected]> */ #define pr_fmt(fmt) "tegra-timer: " fmt #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/cpumask.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/percpu.h> #include <linux/sched_clock.h> #include <linux/time.h> #include "timer-of.h" #define RTC_SECONDS 0x08 #define RTC_SHADOW_SECONDS 0x0c #define RTC_MILLISECONDS 0x10 #define TIMERUS_CNTR_1US 0x10 #define TIMERUS_USEC_CFG 0x14 #define TIMERUS_CNTR_FREEZE 0x4c #define TIMER_PTV 0x0 #define TIMER_PTV_EN BIT(31) #define TIMER_PTV_PER BIT(30) #define TIMER_PCR 0x4 #define TIMER_PCR_INTR_CLR BIT(30) #define TIMER1_BASE 0x00 #define TIMER2_BASE 0x08 #define TIMER3_BASE 0x50 #define TIMER4_BASE 0x58 #define TIMER10_BASE 0x90 #define TIMER1_IRQ_IDX 0 #define TIMER10_IRQ_IDX 10 #define TIMER_1MHz 1000000 static u32 usec_config; static void __iomem *timer_reg_base; static int tegra_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); /* * Tegra's timer uses n+1 scheme for the counter, i.e. timer will * fire after one tick if 0 is loaded. * * The minimum and maximum numbers of oneshot ticks are defined * by clockevents_config_and_register(1, 0x1fffffff + 1) invocation * below in the code. Hence the cycles (ticks) can't be outside of * a range supportable by hardware. */ writel_relaxed(TIMER_PTV_EN | (cycles - 1), reg_base + TIMER_PTV); return 0; } static int tegra_timer_shutdown(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel_relaxed(0, reg_base + TIMER_PTV); return 0; } static int tegra_timer_set_periodic(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); unsigned long period = timer_of_period(to_timer_of(evt)); writel_relaxed(TIMER_PTV_EN | TIMER_PTV_PER | (period - 1), reg_base + TIMER_PTV); return 0; } static irqreturn_t tegra_timer_isr(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); evt->event_handler(evt); return IRQ_HANDLED; } static void tegra_timer_suspend(struct clock_event_device *evt) { void __iomem *reg_base = timer_of_base(to_timer_of(evt)); writel_relaxed(TIMER_PCR_INTR_CLR, reg_base + TIMER_PCR); } static void tegra_timer_resume(struct clock_event_device *evt) { writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG); } static DEFINE_PER_CPU(struct timer_of, tegra_to) = { .flags = TIMER_OF_CLOCK | TIMER_OF_BASE, .clkevt = { .name = "tegra_timer", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .set_next_event = tegra_timer_set_next_event, .set_state_shutdown = tegra_timer_shutdown, .set_state_periodic = tegra_timer_set_periodic, .set_state_oneshot = tegra_timer_shutdown, .tick_resume = tegra_timer_shutdown, .suspend = tegra_timer_suspend, .resume = tegra_timer_resume, }, }; static int tegra_timer_setup(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); writel_relaxed(0, timer_of_base(to) + TIMER_PTV); writel_relaxed(TIMER_PCR_INTR_CLR, timer_of_base(to) + TIMER_PCR); irq_force_affinity(to->clkevt.irq, cpumask_of(cpu)); enable_irq(to->clkevt.irq); /* * Tegra's timer uses n+1 scheme for the counter, i.e. timer will * fire after one tick if 0 is loaded and thus minimum number of * ticks is 1. In result both of the clocksource's tick limits are * higher than a minimum and maximum that hardware register can * take by 1, this is then taken into account by set_next_event * callback. */ clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 1, /* min */ 0x1fffffff + 1); /* max 29 bits + 1 */ return 0; } static int tegra_timer_stop(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&tegra_to, cpu); to->clkevt.set_state_shutdown(&to->clkevt); disable_irq_nosync(to->clkevt.irq); return 0; } static u64 notrace tegra_read_sched_clock(void) { return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US); } #ifdef CONFIG_ARM static unsigned long tegra_delay_timer_read_counter_long(void) { return readl_relaxed(timer_reg_base + TIMERUS_CNTR_1US); } static struct delay_timer tegra_delay_timer = { .read_current_timer = tegra_delay_timer_read_counter_long, .freq = TIMER_1MHz, }; #endif static struct timer_of suspend_rtc_to = { .flags = TIMER_OF_BASE | TIMER_OF_CLOCK, }; /* * tegra_rtc_read - Reads the Tegra RTC registers * Care must be taken that this function is not called while the * tegra_rtc driver could be executing to avoid race conditions * on the RTC shadow register */ static u64 tegra_rtc_read_ms(struct clocksource *cs) { void __iomem *reg_base = timer_of_base(&suspend_rtc_to); u32 ms = readl_relaxed(reg_base + RTC_MILLISECONDS); u32 s = readl_relaxed(reg_base + RTC_SHADOW_SECONDS); return (u64)s * MSEC_PER_SEC + ms; } static struct clocksource suspend_rtc_clocksource = { .name = "tegra_suspend_timer", .rating = 200, .read = tegra_rtc_read_ms, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, }; static inline unsigned int tegra_base_for_cpu(int cpu, bool tegra20) { if (tegra20) { switch (cpu) { case 0: return TIMER1_BASE; case 1: return TIMER2_BASE; case 2: return TIMER3_BASE; default: return TIMER4_BASE; } } return TIMER10_BASE + cpu * 8; } static inline unsigned int tegra_irq_idx_for_cpu(int cpu, bool tegra20) { if (tegra20) return TIMER1_IRQ_IDX + cpu; return TIMER10_IRQ_IDX + cpu; } static inline unsigned long tegra_rate_for_timer(struct timer_of *to, bool tegra20) { /* * TIMER1-9 are fixed to 1MHz, TIMER10-13 are running off the * parent clock. */ if (tegra20) return TIMER_1MHz; return timer_of_rate(to); } static int __init tegra_init_timer(struct device_node *np, bool tegra20, int rating) { struct timer_of *to; int cpu, ret; to = this_cpu_ptr(&tegra_to); ret = timer_of_init(np, to); if (ret) goto out; timer_reg_base = timer_of_base(to); /* * Configure microsecond timers to have 1MHz clock * Config register is 0xqqww, where qq is "dividend", ww is "divisor" * Uses n+1 scheme */ switch (timer_of_rate(to)) { case 12000000: usec_config = 0x000b; /* (11+1)/(0+1) */ break; case 12800000: usec_config = 0x043f; /* (63+1)/(4+1) */ break; case 13000000: usec_config = 0x000c; /* (12+1)/(0+1) */ break; case 16800000: usec_config = 0x0453; /* (83+1)/(4+1) */ break; case 19200000: usec_config = 0x045f; /* (95+1)/(4+1) */ break; case 26000000: usec_config = 0x0019; /* (25+1)/(0+1) */ break; case 38400000: usec_config = 0x04bf; /* (191+1)/(4+1) */ break; case 48000000: usec_config = 0x002f; /* (47+1)/(0+1) */ break; default: ret = -EINVAL; goto out; } writel_relaxed(usec_config, timer_reg_base + TIMERUS_USEC_CFG); for_each_possible_cpu(cpu) { struct timer_of *cpu_to = per_cpu_ptr(&tegra_to, cpu); unsigned long flags = IRQF_TIMER | IRQF_NOBALANCING; unsigned long rate = tegra_rate_for_timer(to, tegra20); unsigned int base = tegra_base_for_cpu(cpu, tegra20); unsigned int idx = tegra_irq_idx_for_cpu(cpu, tegra20); unsigned int irq = irq_of_parse_and_map(np, idx); if (!irq) { pr_err("failed to map irq for cpu%d\n", cpu); ret = -EINVAL; goto out_irq; } cpu_to->clkevt.irq = irq; cpu_to->clkevt.rating = rating; cpu_to->clkevt.cpumask = cpumask_of(cpu); cpu_to->of_base.base = timer_reg_base + base; cpu_to->of_clk.period = rate / HZ; cpu_to->of_clk.rate = rate; irq_set_status_flags(cpu_to->clkevt.irq, IRQ_NOAUTOEN); ret = request_irq(cpu_to->clkevt.irq, tegra_timer_isr, flags, cpu_to->clkevt.name, &cpu_to->clkevt); if (ret) { pr_err("failed to set up irq for cpu%d: %d\n", cpu, ret); irq_dispose_mapping(cpu_to->clkevt.irq); cpu_to->clkevt.irq = 0; goto out_irq; } } sched_clock_register(tegra_read_sched_clock, 32, TIMER_1MHz); ret = clocksource_mmio_init(timer_reg_base + TIMERUS_CNTR_1US, "timer_us", TIMER_1MHz, 300, 32, clocksource_mmio_readl_up); if (ret) pr_err("failed to register clocksource: %d\n", ret); #ifdef CONFIG_ARM register_current_timer_delay(&tegra_delay_timer); #endif ret = cpuhp_setup_state(CPUHP_AP_TEGRA_TIMER_STARTING, "AP_TEGRA_TIMER_STARTING", tegra_timer_setup, tegra_timer_stop); if (ret) pr_err("failed to set up cpu hp state: %d\n", ret); return ret; out_irq: for_each_possible_cpu(cpu) { struct timer_of *cpu_to; cpu_to = per_cpu_ptr(&tegra_to, cpu); if (cpu_to->clkevt.irq) { free_irq(cpu_to->clkevt.irq, &cpu_to->clkevt); irq_dispose_mapping(cpu_to->clkevt.irq); } } to->of_base.base = timer_reg_base; out: timer_of_cleanup(to); return ret; } static int __init tegra210_init_timer(struct device_node *np) { /* * Arch-timer can't survive across power cycle of CPU core and * after CPUPORESET signal due to a system design shortcoming, * hence tegra-timer is more preferable on Tegra210. */ return tegra_init_timer(np, false, 460); } TIMER_OF_DECLARE(tegra210_timer, "nvidia,tegra210-timer", tegra210_init_timer); static int __init tegra20_init_timer(struct device_node *np) { int rating; /* * Tegra20 and Tegra30 have Cortex A9 CPU that has a TWD timer, * that timer runs off the CPU clock and hence is subjected to * a jitter caused by DVFS clock rate changes. Tegra-timer is * more preferable for older Tegra's, while later SoC generations * have arch-timer as a main per-CPU timer and it is not affected * by DVFS changes. */ if (of_machine_is_compatible("nvidia,tegra20") || of_machine_is_compatible("nvidia,tegra30")) rating = 460; else rating = 330; return tegra_init_timer(np, true, rating); } TIMER_OF_DECLARE(tegra20_timer, "nvidia,tegra20-timer", tegra20_init_timer); static int __init tegra20_init_rtc(struct device_node *np) { int ret; ret = timer_of_init(np, &suspend_rtc_to); if (ret) return ret; return clocksource_register_hz(&suspend_rtc_clocksource, 1000); } TIMER_OF_DECLARE(tegra20_rtc, "nvidia,tegra20-rtc", tegra20_init_rtc);
linux-master
drivers/clocksource/timer-tegra.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Clocksource using the Low Power Timer found in the Low Power Controller (LPC) * * Copyright (C) 2015 STMicroelectronics – All Rights Reserved * * Author(s): Francesco Virlinzi <[email protected]> * Ajit Pal Singh <[email protected]> */ #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/init.h> #include <linux/of_address.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include <dt-bindings/mfd/st-lpc.h> /* Low Power Timer */ #define LPC_LPT_LSB_OFF 0x400 #define LPC_LPT_MSB_OFF 0x404 #define LPC_LPT_START_OFF 0x408 static struct st_clksrc_ddata { struct clk *clk; void __iomem *base; } ddata; static void __init st_clksrc_reset(void) { writel_relaxed(0, ddata.base + LPC_LPT_START_OFF); writel_relaxed(0, ddata.base + LPC_LPT_MSB_OFF); writel_relaxed(0, ddata.base + LPC_LPT_LSB_OFF); writel_relaxed(1, ddata.base + LPC_LPT_START_OFF); } static u64 notrace st_clksrc_sched_clock_read(void) { return (u64)readl_relaxed(ddata.base + LPC_LPT_LSB_OFF); } static int __init st_clksrc_init(void) { unsigned long rate; int ret; st_clksrc_reset(); rate = clk_get_rate(ddata.clk); sched_clock_register(st_clksrc_sched_clock_read, 32, rate); ret = clocksource_mmio_init(ddata.base + LPC_LPT_LSB_OFF, "clksrc-st-lpc", rate, 300, 32, clocksource_mmio_readl_up); if (ret) { pr_err("clksrc-st-lpc: Failed to register clocksource\n"); return ret; } return 0; } static int __init st_clksrc_setup_clk(struct device_node *np) { struct clk *clk; clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("clksrc-st-lpc: Failed to get LPC clock\n"); return PTR_ERR(clk); } if (clk_prepare_enable(clk)) { pr_err("clksrc-st-lpc: Failed to enable LPC clock\n"); return -EINVAL; } if (!clk_get_rate(clk)) { pr_err("clksrc-st-lpc: Failed to get LPC clock rate\n"); clk_disable_unprepare(clk); return -EINVAL; } ddata.clk = clk; return 0; } static int __init st_clksrc_of_register(struct device_node *np) { int ret; uint32_t mode; ret = of_property_read_u32(np, "st,lpc-mode", &mode); if (ret) { pr_err("clksrc-st-lpc: An LPC mode must be provided\n"); return ret; } /* LPC can either run as a Clocksource or in RTC or WDT mode */ if (mode != ST_LPC_MODE_CLKSRC) return 0; ddata.base = of_iomap(np, 0); if (!ddata.base) { pr_err("clksrc-st-lpc: Unable to map iomem\n"); return -ENXIO; } ret = st_clksrc_setup_clk(np); if (ret) { iounmap(ddata.base); return ret; } ret = st_clksrc_init(); if (ret) { clk_disable_unprepare(ddata.clk); clk_put(ddata.clk); iounmap(ddata.base); return ret; } pr_info("clksrc-st-lpc: clocksource initialised - running @ %luHz\n", clk_get_rate(ddata.clk)); return ret; } TIMER_OF_DECLARE(ddata, "st,stih407-lpc", st_clksrc_of_register);
linux-master
drivers/clocksource/clksrc_st_lpc.c
// SPDX-License-Identifier: GPL-2.0 /* * Allwinner SoCs hstimer driver. * * Copyright (C) 2013 Maxime Ripard * * Maxime Ripard <[email protected]> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqreturn.h> #include <linux/reset.h> #include <linux/slab.h> #include <linux/platform_device.h> #define TIMER_IRQ_EN_REG 0x00 #define TIMER_IRQ_EN(val) BIT(val) #define TIMER_IRQ_ST_REG 0x04 #define TIMER_CTL_REG(val) (0x20 * (val) + 0x10) #define TIMER_CTL_ENABLE BIT(0) #define TIMER_CTL_RELOAD BIT(1) #define TIMER_CTL_CLK_PRES(val) (((val) & 0x7) << 4) #define TIMER_CTL_ONESHOT BIT(7) #define TIMER_INTVAL_LO_REG(val) (0x20 * (val) + 0x14) #define TIMER_INTVAL_HI_REG(val) (0x20 * (val) + 0x18) #define TIMER_CNTVAL_LO_REG(val) (0x20 * (val) + 0x1c) #define TIMER_CNTVAL_HI_REG(val) (0x20 * (val) + 0x20) #define TIMER_SYNC_TICKS 3 struct sun5i_timer { void __iomem *base; struct clk *clk; struct notifier_block clk_rate_cb; u32 ticks_per_jiffy; struct clocksource clksrc; struct clock_event_device clkevt; }; #define nb_to_sun5i_timer(x) \ container_of(x, struct sun5i_timer, clk_rate_cb) #define clksrc_to_sun5i_timer(x) \ container_of(x, struct sun5i_timer, clksrc) #define clkevt_to_sun5i_timer(x) \ container_of(x, struct sun5i_timer, clkevt) /* * When we disable a timer, we need to wait at least for 2 cycles of * the timer source clock. We will use for that the clocksource timer * that is already setup and runs at the same frequency than the other * timers, and we never will be disabled. */ static void sun5i_clkevt_sync(struct sun5i_timer *ce) { u32 old = readl(ce->base + TIMER_CNTVAL_LO_REG(1)); while ((old - readl(ce->base + TIMER_CNTVAL_LO_REG(1))) < TIMER_SYNC_TICKS) cpu_relax(); } static void sun5i_clkevt_time_stop(struct sun5i_timer *ce, u8 timer) { u32 val = readl(ce->base + TIMER_CTL_REG(timer)); writel(val & ~TIMER_CTL_ENABLE, ce->base + TIMER_CTL_REG(timer)); sun5i_clkevt_sync(ce); } static void sun5i_clkevt_time_setup(struct sun5i_timer *ce, u8 timer, u32 delay) { writel(delay, ce->base + TIMER_INTVAL_LO_REG(timer)); } static void sun5i_clkevt_time_start(struct sun5i_timer *ce, u8 timer, bool periodic) { u32 val = readl(ce->base + TIMER_CTL_REG(timer)); if (periodic) val &= ~TIMER_CTL_ONESHOT; else val |= TIMER_CTL_ONESHOT; writel(val | TIMER_CTL_ENABLE | TIMER_CTL_RELOAD, ce->base + TIMER_CTL_REG(timer)); } static int sun5i_clkevt_shutdown(struct clock_event_device *clkevt) { struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt); sun5i_clkevt_time_stop(ce, 0); return 0; } static int sun5i_clkevt_set_oneshot(struct clock_event_device *clkevt) { struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt); sun5i_clkevt_time_stop(ce, 0); sun5i_clkevt_time_start(ce, 0, false); return 0; } static int sun5i_clkevt_set_periodic(struct clock_event_device *clkevt) { struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt); sun5i_clkevt_time_stop(ce, 0); sun5i_clkevt_time_setup(ce, 0, ce->ticks_per_jiffy); sun5i_clkevt_time_start(ce, 0, true); return 0; } static int sun5i_clkevt_next_event(unsigned long evt, struct clock_event_device *clkevt) { struct sun5i_timer *ce = clkevt_to_sun5i_timer(clkevt); sun5i_clkevt_time_stop(ce, 0); sun5i_clkevt_time_setup(ce, 0, evt - TIMER_SYNC_TICKS); sun5i_clkevt_time_start(ce, 0, false); return 0; } static irqreturn_t sun5i_timer_interrupt(int irq, void *dev_id) { struct sun5i_timer *ce = dev_id; writel(0x1, ce->base + TIMER_IRQ_ST_REG); ce->clkevt.event_handler(&ce->clkevt); return IRQ_HANDLED; } static u64 sun5i_clksrc_read(struct clocksource *clksrc) { struct sun5i_timer *cs = clksrc_to_sun5i_timer(clksrc); return ~readl(cs->base + TIMER_CNTVAL_LO_REG(1)); } static int sun5i_rate_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct sun5i_timer *cs = nb_to_sun5i_timer(nb); switch (event) { case PRE_RATE_CHANGE: clocksource_unregister(&cs->clksrc); break; case POST_RATE_CHANGE: clocksource_register_hz(&cs->clksrc, ndata->new_rate); clockevents_update_freq(&cs->clkevt, ndata->new_rate); cs->ticks_per_jiffy = DIV_ROUND_UP(ndata->new_rate, HZ); break; default: break; } return NOTIFY_DONE; } static int sun5i_setup_clocksource(struct platform_device *pdev, unsigned long rate) { struct sun5i_timer *cs = platform_get_drvdata(pdev); void __iomem *base = cs->base; int ret; writel(~0, base + TIMER_INTVAL_LO_REG(1)); writel(TIMER_CTL_ENABLE | TIMER_CTL_RELOAD, base + TIMER_CTL_REG(1)); cs->clksrc.name = pdev->dev.of_node->name; cs->clksrc.rating = 340; cs->clksrc.read = sun5i_clksrc_read; cs->clksrc.mask = CLOCKSOURCE_MASK(32); cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; ret = clocksource_register_hz(&cs->clksrc, rate); if (ret) { dev_err(&pdev->dev, "Couldn't register clock source.\n"); return ret; } return 0; } static int sun5i_setup_clockevent(struct platform_device *pdev, unsigned long rate, int irq) { struct device *dev = &pdev->dev; struct sun5i_timer *ce = platform_get_drvdata(pdev); void __iomem *base = ce->base; int ret; u32 val; ce->clkevt.name = dev->of_node->name; ce->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; ce->clkevt.set_next_event = sun5i_clkevt_next_event; ce->clkevt.set_state_shutdown = sun5i_clkevt_shutdown; ce->clkevt.set_state_periodic = sun5i_clkevt_set_periodic; ce->clkevt.set_state_oneshot = sun5i_clkevt_set_oneshot; ce->clkevt.tick_resume = sun5i_clkevt_shutdown; ce->clkevt.rating = 340; ce->clkevt.irq = irq; ce->clkevt.cpumask = cpu_possible_mask; /* Enable timer0 interrupt */ val = readl(base + TIMER_IRQ_EN_REG); writel(val | TIMER_IRQ_EN(0), base + TIMER_IRQ_EN_REG); clockevents_config_and_register(&ce->clkevt, rate, TIMER_SYNC_TICKS, 0xffffffff); ret = devm_request_irq(dev, irq, sun5i_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "sun5i_timer0", ce); if (ret) { dev_err(dev, "Unable to register interrupt\n"); return ret; } return 0; } static int sun5i_timer_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct sun5i_timer *st; struct reset_control *rstc; void __iomem *timer_base; struct clk *clk; unsigned long rate; int irq, ret; st = devm_kzalloc(dev, sizeof(*st), GFP_KERNEL); if (!st) return -ENOMEM; platform_set_drvdata(pdev, st); timer_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(timer_base)) { dev_err(dev, "Can't map registers\n"); return PTR_ERR(timer_base); } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(dev, "Can't get IRQ\n"); return irq; } clk = devm_clk_get_enabled(dev, NULL); if (IS_ERR(clk)) { dev_err(dev, "Can't get timer clock\n"); return PTR_ERR(clk); } rate = clk_get_rate(clk); if (!rate) { dev_err(dev, "Couldn't get parent clock rate\n"); return -EINVAL; } st->base = timer_base; st->ticks_per_jiffy = DIV_ROUND_UP(rate, HZ); st->clk = clk; st->clk_rate_cb.notifier_call = sun5i_rate_cb; st->clk_rate_cb.next = NULL; ret = devm_clk_notifier_register(dev, clk, &st->clk_rate_cb); if (ret) { dev_err(dev, "Unable to register clock notifier.\n"); return ret; } rstc = devm_reset_control_get_optional_exclusive(dev, NULL); if (rstc) reset_control_deassert(rstc); ret = sun5i_setup_clocksource(pdev, rate); if (ret) return ret; ret = sun5i_setup_clockevent(pdev, rate, irq); if (ret) goto err_unreg_clocksource; return 0; err_unreg_clocksource: clocksource_unregister(&st->clksrc); return ret; } static void sun5i_timer_remove(struct platform_device *pdev) { struct sun5i_timer *st = platform_get_drvdata(pdev); clocksource_unregister(&st->clksrc); } static const struct of_device_id sun5i_timer_of_match[] = { { .compatible = "allwinner,sun5i-a13-hstimer" }, { .compatible = "allwinner,sun7i-a20-hstimer" }, {}, }; MODULE_DEVICE_TABLE(of, sun5i_timer_of_match); static struct platform_driver sun5i_timer_driver = { .probe = sun5i_timer_probe, .remove_new = sun5i_timer_remove, .driver = { .name = "sun5i-timer", .of_match_table = sun5i_timer_of_match, .suppress_bind_attrs = true, }, }; module_platform_driver(sun5i_timer_driver);
linux-master
drivers/clocksource/timer-sun5i.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Clocksource driver for Loongson-1 SoC * * Copyright (c) 2023 Keguang Zhang <[email protected]> */ #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/sizes.h> #include "timer-of.h" /* Loongson-1 PWM Timer Register Definitions */ #define PWM_CNTR 0x0 #define PWM_HRC 0x4 #define PWM_LRC 0x8 #define PWM_CTRL 0xc /* PWM Control Register Bits */ #define INT_LRC_EN BIT(11) #define INT_HRC_EN BIT(10) #define CNTR_RST BIT(7) #define INT_SR BIT(6) #define INT_EN BIT(5) #define PWM_SINGLE BIT(4) #define PWM_OE BIT(3) #define CNT_EN BIT(0) #define CNTR_WIDTH 24 static DEFINE_RAW_SPINLOCK(ls1x_timer_lock); struct ls1x_clocksource { void __iomem *reg_base; unsigned long ticks_per_jiffy; struct clocksource clksrc; }; static inline struct ls1x_clocksource *to_ls1x_clksrc(struct clocksource *c) { return container_of(c, struct ls1x_clocksource, clksrc); } static inline void ls1x_pwmtimer_set_period(unsigned int period, struct timer_of *to) { writel(period, timer_of_base(to) + PWM_LRC); writel(period, timer_of_base(to) + PWM_HRC); } static inline void ls1x_pwmtimer_clear(struct timer_of *to) { writel(0, timer_of_base(to) + PWM_CNTR); } static inline void ls1x_pwmtimer_start(struct timer_of *to) { writel((INT_EN | PWM_OE | CNT_EN), timer_of_base(to) + PWM_CTRL); } static inline void ls1x_pwmtimer_stop(struct timer_of *to) { writel(0, timer_of_base(to) + PWM_CTRL); } static inline void ls1x_pwmtimer_irq_ack(struct timer_of *to) { int val; val = readl(timer_of_base(to) + PWM_CTRL); val |= INT_SR; writel(val, timer_of_base(to) + PWM_CTRL); } static irqreturn_t ls1x_clockevent_isr(int irq, void *dev_id) { struct clock_event_device *clkevt = dev_id; struct timer_of *to = to_timer_of(clkevt); ls1x_pwmtimer_irq_ack(to); ls1x_pwmtimer_clear(to); ls1x_pwmtimer_start(to); clkevt->event_handler(clkevt); return IRQ_HANDLED; } static int ls1x_clockevent_set_state_periodic(struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); raw_spin_lock(&ls1x_timer_lock); ls1x_pwmtimer_set_period(timer_of_period(to), to); ls1x_pwmtimer_clear(to); ls1x_pwmtimer_start(to); raw_spin_unlock(&ls1x_timer_lock); return 0; } static int ls1x_clockevent_tick_resume(struct clock_event_device *clkevt) { raw_spin_lock(&ls1x_timer_lock); ls1x_pwmtimer_start(to_timer_of(clkevt)); raw_spin_unlock(&ls1x_timer_lock); return 0; } static int ls1x_clockevent_set_state_shutdown(struct clock_event_device *clkevt) { raw_spin_lock(&ls1x_timer_lock); ls1x_pwmtimer_stop(to_timer_of(clkevt)); raw_spin_unlock(&ls1x_timer_lock); return 0; } static int ls1x_clockevent_set_next(unsigned long evt, struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); raw_spin_lock(&ls1x_timer_lock); ls1x_pwmtimer_set_period(evt, to); ls1x_pwmtimer_clear(to); ls1x_pwmtimer_start(to); raw_spin_unlock(&ls1x_timer_lock); return 0; } static struct timer_of ls1x_to = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = "ls1x-pwmtimer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 300, .set_next_event = ls1x_clockevent_set_next, .set_state_periodic = ls1x_clockevent_set_state_periodic, .set_state_oneshot = ls1x_clockevent_set_state_shutdown, .set_state_shutdown = ls1x_clockevent_set_state_shutdown, .tick_resume = ls1x_clockevent_tick_resume, }, .of_irq = { .handler = ls1x_clockevent_isr, .flags = IRQF_TIMER, }, }; /* * Since the PWM timer overflows every two ticks, its not very useful * to just read by itself. So use jiffies to emulate a free * running counter: */ static u64 ls1x_clocksource_read(struct clocksource *cs) { struct ls1x_clocksource *ls1x_cs = to_ls1x_clksrc(cs); unsigned long flags; int count; u32 jifs; static int old_count; static u32 old_jifs; raw_spin_lock_irqsave(&ls1x_timer_lock, flags); /* * Although our caller may have the read side of xtime_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; /* read the count */ count = readl(ls1x_cs->reg_base + PWM_CNTR); /* * It's possible for count to appear to go the wrong way for this * reason: * * The timer counter underflows, but we haven't handled the resulting * interrupt and incremented jiffies yet. * * Previous attempts to handle these cases intelligently were buggy, so * we just do the simple thing now. */ if (count < old_count && jifs == old_jifs) count = old_count; old_count = count; old_jifs = jifs; raw_spin_unlock_irqrestore(&ls1x_timer_lock, flags); return (u64)(jifs * ls1x_cs->ticks_per_jiffy) + count; } static struct ls1x_clocksource ls1x_clocksource = { .clksrc = { .name = "ls1x-pwmtimer", .rating = 300, .read = ls1x_clocksource_read, .mask = CLOCKSOURCE_MASK(CNTR_WIDTH), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, }; static int __init ls1x_pwm_clocksource_init(struct device_node *np) { struct timer_of *to = &ls1x_to; int ret; ret = timer_of_init(np, to); if (ret) return ret; clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1, GENMASK(CNTR_WIDTH - 1, 0)); ls1x_clocksource.reg_base = timer_of_base(to); ls1x_clocksource.ticks_per_jiffy = timer_of_period(to); return clocksource_register_hz(&ls1x_clocksource.clksrc, timer_of_rate(to)); } TIMER_OF_DECLARE(ls1x_pwm_clocksource, "loongson,ls1b-pwmtimer", ls1x_pwm_clocksource_init);
linux-master
drivers/clocksource/timer-loongson1-pwm.c
// SPDX-License-Identifier: GPL-2.0+ // // Copyright 2016 Freescale Semiconductor, Inc. // Copyright 2017 NXP #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/sched_clock.h> #include "timer-of.h" #define TPM_PARAM 0x4 #define TPM_PARAM_WIDTH_SHIFT 16 #define TPM_PARAM_WIDTH_MASK (0xff << 16) #define TPM_SC 0x10 #define TPM_SC_CMOD_INC_PER_CNT (0x1 << 3) #define TPM_SC_CMOD_DIV_DEFAULT 0x3 #define TPM_SC_CMOD_DIV_MAX 0x7 #define TPM_SC_TOF_MASK (0x1 << 7) #define TPM_CNT 0x14 #define TPM_MOD 0x18 #define TPM_STATUS 0x1c #define TPM_STATUS_CH0F BIT(0) #define TPM_C0SC 0x20 #define TPM_C0SC_CHIE BIT(6) #define TPM_C0SC_MODE_SHIFT 2 #define TPM_C0SC_MODE_MASK 0x3c #define TPM_C0SC_MODE_SW_COMPARE 0x4 #define TPM_C0SC_CHF_MASK (0x1 << 7) #define TPM_C0V 0x24 static int counter_width __ro_after_init; static void __iomem *timer_base __ro_after_init; static inline void tpm_timer_disable(void) { unsigned int val; /* channel disable */ val = readl(timer_base + TPM_C0SC); val &= ~(TPM_C0SC_MODE_MASK | TPM_C0SC_CHIE); writel(val, timer_base + TPM_C0SC); } static inline void tpm_timer_enable(void) { unsigned int val; /* channel enabled in sw compare mode */ val = readl(timer_base + TPM_C0SC); val |= (TPM_C0SC_MODE_SW_COMPARE << TPM_C0SC_MODE_SHIFT) | TPM_C0SC_CHIE; writel(val, timer_base + TPM_C0SC); } static inline void tpm_irq_acknowledge(void) { writel(TPM_STATUS_CH0F, timer_base + TPM_STATUS); } static inline unsigned long tpm_read_counter(void) { return readl(timer_base + TPM_CNT); } #if defined(CONFIG_ARM) static struct delay_timer tpm_delay_timer; static unsigned long tpm_read_current_timer(void) { return tpm_read_counter(); } static u64 notrace tpm_read_sched_clock(void) { return tpm_read_counter(); } #endif static int tpm_set_next_event(unsigned long delta, struct clock_event_device *evt) { unsigned long next, now; next = tpm_read_counter(); next += delta; writel(next, timer_base + TPM_C0V); now = tpm_read_counter(); /* * NOTE: We observed in a very small probability, the bus fabric * contention between GPU and A7 may results a few cycles delay * of writing CNT registers which may cause the min_delta event got * missed, so we need add a ETIME check here in case it happened. */ return (int)(next - now) <= 0 ? -ETIME : 0; } static int tpm_set_state_oneshot(struct clock_event_device *evt) { tpm_timer_enable(); return 0; } static int tpm_set_state_shutdown(struct clock_event_device *evt) { tpm_timer_disable(); return 0; } static irqreturn_t tpm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; tpm_irq_acknowledge(); evt->event_handler(evt); return IRQ_HANDLED; } static struct timer_of to_tpm = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = "i.MX TPM Timer", .rating = 200, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ, .set_state_shutdown = tpm_set_state_shutdown, .set_state_oneshot = tpm_set_state_oneshot, .set_next_event = tpm_set_next_event, .cpumask = cpu_possible_mask, }, .of_irq = { .handler = tpm_timer_interrupt, .flags = IRQF_TIMER, }, .of_clk = { .name = "per", }, }; static int __init tpm_clocksource_init(void) { #if defined(CONFIG_ARM) tpm_delay_timer.read_current_timer = &tpm_read_current_timer; tpm_delay_timer.freq = timer_of_rate(&to_tpm) >> 3; register_current_timer_delay(&tpm_delay_timer); sched_clock_register(tpm_read_sched_clock, counter_width, timer_of_rate(&to_tpm) >> 3); #endif return clocksource_mmio_init(timer_base + TPM_CNT, "imx-tpm", timer_of_rate(&to_tpm) >> 3, to_tpm.clkevt.rating, counter_width, clocksource_mmio_readl_up); } static void __init tpm_clockevent_init(void) { clockevents_config_and_register(&to_tpm.clkevt, timer_of_rate(&to_tpm) >> 3, 300, GENMASK(counter_width - 1, 1)); } static int __init tpm_timer_init(struct device_node *np) { struct clk *ipg; int ret; ipg = of_clk_get_by_name(np, "ipg"); if (IS_ERR(ipg)) { pr_err("tpm: failed to get ipg clk\n"); return -ENODEV; } /* enable clk before accessing registers */ ret = clk_prepare_enable(ipg); if (ret) { pr_err("tpm: ipg clock enable failed (%d)\n", ret); clk_put(ipg); return ret; } ret = timer_of_init(np, &to_tpm); if (ret) return ret; timer_base = timer_of_base(&to_tpm); counter_width = (readl(timer_base + TPM_PARAM) & TPM_PARAM_WIDTH_MASK) >> TPM_PARAM_WIDTH_SHIFT; /* use rating 200 for 32-bit counter and 150 for 16-bit counter */ to_tpm.clkevt.rating = counter_width == 0x20 ? 200 : 150; /* * Initialize tpm module to a known state * 1) Counter disabled * 2) TPM counter operates in up counting mode * 3) Timer Overflow Interrupt disabled * 4) Channel0 disabled * 5) DMA transfers disabled */ /* make sure counter is disabled */ writel(0, timer_base + TPM_SC); /* TOF is W1C */ writel(TPM_SC_TOF_MASK, timer_base + TPM_SC); writel(0, timer_base + TPM_CNT); /* CHF is W1C */ writel(TPM_C0SC_CHF_MASK, timer_base + TPM_C0SC); /* * increase per cnt, * div 8 for 32-bit counter and div 128 for 16-bit counter */ writel(TPM_SC_CMOD_INC_PER_CNT | (counter_width == 0x20 ? TPM_SC_CMOD_DIV_DEFAULT : TPM_SC_CMOD_DIV_MAX), timer_base + TPM_SC); /* set MOD register to maximum for free running mode */ writel(GENMASK(counter_width - 1, 0), timer_base + TPM_MOD); tpm_clockevent_init(); return tpm_clocksource_init(); } TIMER_OF_DECLARE(imx7ulp, "fsl,imx7ulp-tpm", tpm_timer_init);
linux-master
drivers/clocksource/timer-imx-tpm.c
// SPDX-License-Identifier: GPL-2.0 /* * SuperH Timer Support - CMT * * Copyright (C) 2008 Magnus Damm */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/ioport.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/sh_timer.h> #include <linux/slab.h> #include <linux/spinlock.h> #ifdef CONFIG_SUPERH #include <asm/platform_early.h> #endif struct sh_cmt_device; /* * The CMT comes in 5 different identified flavours, depending not only on the * SoC but also on the particular instance. The following table lists the main * characteristics of those flavours. * * 16B 32B 32B-F 48B R-Car Gen2 * ----------------------------------------------------------------------------- * Channels 2 1/4 1 6 2/8 * Control Width 16 16 16 16 32 * Counter Width 16 32 32 32/48 32/48 * Shared Start/Stop Y Y Y Y N * * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register * located in the channel registers block. All other versions have a shared * start/stop register located in the global space. * * Channels are indexed from 0 to N-1 in the documentation. The channel index * infers the start/stop bit position in the control register and the channel * registers block address. Some CMT instances have a subset of channels * available, in which case the index in the documentation doesn't match the * "real" index as implemented in hardware. This is for instance the case with * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0 * in the documentation but using start/stop bit 5 and having its registers * block at 0x60. * * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable. */ enum sh_cmt_model { SH_CMT_16BIT, SH_CMT_32BIT, SH_CMT_48BIT, SH_CMT0_RCAR_GEN2, SH_CMT1_RCAR_GEN2, }; struct sh_cmt_info { enum sh_cmt_model model; unsigned int channels_mask; unsigned long width; /* 16 or 32 bit version of hardware block */ u32 overflow_bit; u32 clear_bits; /* callbacks for CMSTR and CMCSR access */ u32 (*read_control)(void __iomem *base, unsigned long offs); void (*write_control)(void __iomem *base, unsigned long offs, u32 value); /* callbacks for CMCNT and CMCOR access */ u32 (*read_count)(void __iomem *base, unsigned long offs); void (*write_count)(void __iomem *base, unsigned long offs, u32 value); }; struct sh_cmt_channel { struct sh_cmt_device *cmt; unsigned int index; /* Index in the documentation */ unsigned int hwidx; /* Real hardware index */ void __iomem *iostart; void __iomem *ioctrl; unsigned int timer_bit; unsigned long flags; u32 match_value; u32 next_match_value; u32 max_match_value; raw_spinlock_t lock; struct clock_event_device ced; struct clocksource cs; u64 total_cycles; bool cs_enabled; }; struct sh_cmt_device { struct platform_device *pdev; const struct sh_cmt_info *info; void __iomem *mapbase; struct clk *clk; unsigned long rate; unsigned int reg_delay; raw_spinlock_t lock; /* Protect the shared start/stop register */ struct sh_cmt_channel *channels; unsigned int num_channels; unsigned int hw_channels; bool has_clockevent; bool has_clocksource; }; #define SH_CMT16_CMCSR_CMF (1 << 7) #define SH_CMT16_CMCSR_CMIE (1 << 6) #define SH_CMT16_CMCSR_CKS8 (0 << 0) #define SH_CMT16_CMCSR_CKS32 (1 << 0) #define SH_CMT16_CMCSR_CKS128 (2 << 0) #define SH_CMT16_CMCSR_CKS512 (3 << 0) #define SH_CMT16_CMCSR_CKS_MASK (3 << 0) #define SH_CMT32_CMCSR_CMF (1 << 15) #define SH_CMT32_CMCSR_OVF (1 << 14) #define SH_CMT32_CMCSR_WRFLG (1 << 13) #define SH_CMT32_CMCSR_STTF (1 << 12) #define SH_CMT32_CMCSR_STPF (1 << 11) #define SH_CMT32_CMCSR_SSIE (1 << 10) #define SH_CMT32_CMCSR_CMS (1 << 9) #define SH_CMT32_CMCSR_CMM (1 << 8) #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7) #define SH_CMT32_CMCSR_CMR_NONE (0 << 4) #define SH_CMT32_CMCSR_CMR_DMA (1 << 4) #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4) #define SH_CMT32_CMCSR_CMR_MASK (3 << 4) #define SH_CMT32_CMCSR_DBGIVD (1 << 3) #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0) #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0) #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0) #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0) #define SH_CMT32_CMCSR_CKS_MASK (7 << 0) static u32 sh_cmt_read16(void __iomem *base, unsigned long offs) { return ioread16(base + (offs << 1)); } static u32 sh_cmt_read32(void __iomem *base, unsigned long offs) { return ioread32(base + (offs << 2)); } static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value) { iowrite16(value, base + (offs << 1)); } static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value) { iowrite32(value, base + (offs << 2)); } static const struct sh_cmt_info sh_cmt_info[] = { [SH_CMT_16BIT] = { .model = SH_CMT_16BIT, .width = 16, .overflow_bit = SH_CMT16_CMCSR_CMF, .clear_bits = ~SH_CMT16_CMCSR_CMF, .read_control = sh_cmt_read16, .write_control = sh_cmt_write16, .read_count = sh_cmt_read16, .write_count = sh_cmt_write16, }, [SH_CMT_32BIT] = { .model = SH_CMT_32BIT, .width = 32, .overflow_bit = SH_CMT32_CMCSR_CMF, .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), .read_control = sh_cmt_read16, .write_control = sh_cmt_write16, .read_count = sh_cmt_read32, .write_count = sh_cmt_write32, }, [SH_CMT_48BIT] = { .model = SH_CMT_48BIT, .channels_mask = 0x3f, .width = 32, .overflow_bit = SH_CMT32_CMCSR_CMF, .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), .read_control = sh_cmt_read32, .write_control = sh_cmt_write32, .read_count = sh_cmt_read32, .write_count = sh_cmt_write32, }, [SH_CMT0_RCAR_GEN2] = { .model = SH_CMT0_RCAR_GEN2, .channels_mask = 0x60, .width = 32, .overflow_bit = SH_CMT32_CMCSR_CMF, .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), .read_control = sh_cmt_read32, .write_control = sh_cmt_write32, .read_count = sh_cmt_read32, .write_count = sh_cmt_write32, }, [SH_CMT1_RCAR_GEN2] = { .model = SH_CMT1_RCAR_GEN2, .channels_mask = 0xff, .width = 32, .overflow_bit = SH_CMT32_CMCSR_CMF, .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF), .read_control = sh_cmt_read32, .write_control = sh_cmt_write32, .read_count = sh_cmt_read32, .write_count = sh_cmt_write32, }, }; #define CMCSR 0 /* channel register */ #define CMCNT 1 /* channel register */ #define CMCOR 2 /* channel register */ #define CMCLKE 0x1000 /* CLK Enable Register (R-Car Gen2) */ static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch) { if (ch->iostart) return ch->cmt->info->read_control(ch->iostart, 0); else return ch->cmt->info->read_control(ch->cmt->mapbase, 0); } static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value) { u32 old_value = sh_cmt_read_cmstr(ch); if (value != old_value) { if (ch->iostart) { ch->cmt->info->write_control(ch->iostart, 0, value); udelay(ch->cmt->reg_delay); } else { ch->cmt->info->write_control(ch->cmt->mapbase, 0, value); udelay(ch->cmt->reg_delay); } } } static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch) { return ch->cmt->info->read_control(ch->ioctrl, CMCSR); } static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value) { u32 old_value = sh_cmt_read_cmcsr(ch); if (value != old_value) { ch->cmt->info->write_control(ch->ioctrl, CMCSR, value); udelay(ch->cmt->reg_delay); } } static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch) { return ch->cmt->info->read_count(ch->ioctrl, CMCNT); } static inline int sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value) { /* Tests showed that we need to wait 3 clocks here */ unsigned int cmcnt_delay = DIV_ROUND_UP(3 * ch->cmt->reg_delay, 2); u32 reg; if (ch->cmt->info->model > SH_CMT_16BIT) { int ret = read_poll_timeout_atomic(sh_cmt_read_cmcsr, reg, !(reg & SH_CMT32_CMCSR_WRFLG), 1, cmcnt_delay, false, ch); if (ret < 0) return ret; } ch->cmt->info->write_count(ch->ioctrl, CMCNT, value); udelay(cmcnt_delay); return 0; } static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value) { u32 old_value = ch->cmt->info->read_count(ch->ioctrl, CMCOR); if (value != old_value) { ch->cmt->info->write_count(ch->ioctrl, CMCOR, value); udelay(ch->cmt->reg_delay); } } static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped) { u32 v1, v2, v3; u32 o1, o2; o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; /* Make sure the timer value is stable. Stolen from acpi_pm.c */ do { o2 = o1; v1 = sh_cmt_read_cmcnt(ch); v2 = sh_cmt_read_cmcnt(ch); v3 = sh_cmt_read_cmcnt(ch); o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit; } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); *has_wrapped = o1; return v2; } static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start) { unsigned long flags; u32 value; /* start stop register shared by multiple timer channels */ raw_spin_lock_irqsave(&ch->cmt->lock, flags); value = sh_cmt_read_cmstr(ch); if (start) value |= 1 << ch->timer_bit; else value &= ~(1 << ch->timer_bit); sh_cmt_write_cmstr(ch, value); raw_spin_unlock_irqrestore(&ch->cmt->lock, flags); } static int sh_cmt_enable(struct sh_cmt_channel *ch) { int ret; dev_pm_syscore_device(&ch->cmt->pdev->dev, true); /* enable clock */ ret = clk_enable(ch->cmt->clk); if (ret) { dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n", ch->index); goto err0; } /* make sure channel is disabled */ sh_cmt_start_stop_ch(ch, 0); /* configure channel, periodic mode and maximum timeout */ if (ch->cmt->info->width == 16) { sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE | SH_CMT16_CMCSR_CKS512); } else { u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ? SH_CMT32_CMCSR_CMTOUT_IE : 0; sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM | SH_CMT32_CMCSR_CMR_IRQ | SH_CMT32_CMCSR_CKS_RCLK8); } sh_cmt_write_cmcor(ch, 0xffffffff); ret = sh_cmt_write_cmcnt(ch, 0); if (ret || sh_cmt_read_cmcnt(ch)) { dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n", ch->index); ret = -ETIMEDOUT; goto err1; } /* enable channel */ sh_cmt_start_stop_ch(ch, 1); return 0; err1: /* stop clock */ clk_disable(ch->cmt->clk); err0: return ret; } static void sh_cmt_disable(struct sh_cmt_channel *ch) { /* disable channel */ sh_cmt_start_stop_ch(ch, 0); /* disable interrupts in CMT block */ sh_cmt_write_cmcsr(ch, 0); /* stop clock */ clk_disable(ch->cmt->clk); dev_pm_syscore_device(&ch->cmt->pdev->dev, false); } /* private flags */ #define FLAG_CLOCKEVENT (1 << 0) #define FLAG_CLOCKSOURCE (1 << 1) #define FLAG_REPROGRAM (1 << 2) #define FLAG_SKIPEVENT (1 << 3) #define FLAG_IRQCONTEXT (1 << 4) static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch, int absolute) { u32 value = ch->next_match_value; u32 new_match; u32 delay = 0; u32 now = 0; u32 has_wrapped; now = sh_cmt_get_counter(ch, &has_wrapped); ch->flags |= FLAG_REPROGRAM; /* force reprogram */ if (has_wrapped) { /* we're competing with the interrupt handler. * -> let the interrupt handler reprogram the timer. * -> interrupt number two handles the event. */ ch->flags |= FLAG_SKIPEVENT; return; } if (absolute) now = 0; do { /* reprogram the timer hardware, * but don't save the new match value yet. */ new_match = now + value + delay; if (new_match > ch->max_match_value) new_match = ch->max_match_value; sh_cmt_write_cmcor(ch, new_match); now = sh_cmt_get_counter(ch, &has_wrapped); if (has_wrapped && (new_match > ch->match_value)) { /* we are changing to a greater match value, * so this wrap must be caused by the counter * matching the old value. * -> first interrupt reprograms the timer. * -> interrupt number two handles the event. */ ch->flags |= FLAG_SKIPEVENT; break; } if (has_wrapped) { /* we are changing to a smaller match value, * so the wrap must be caused by the counter * matching the new value. * -> save programmed match value. * -> let isr handle the event. */ ch->match_value = new_match; break; } /* be safe: verify hardware settings */ if (now < new_match) { /* timer value is below match value, all good. * this makes sure we won't miss any match events. * -> save programmed match value. * -> let isr handle the event. */ ch->match_value = new_match; break; } /* the counter has reached a value greater * than our new match value. and since the * has_wrapped flag isn't set we must have * programmed a too close event. * -> increase delay and retry. */ if (delay) delay <<= 1; else delay = 1; if (!delay) dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n", ch->index); } while (delay); } static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) { if (delta > ch->max_match_value) dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n", ch->index); ch->next_match_value = delta; sh_cmt_clock_event_program_verify(ch, 0); } static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta) { unsigned long flags; raw_spin_lock_irqsave(&ch->lock, flags); __sh_cmt_set_next(ch, delta); raw_spin_unlock_irqrestore(&ch->lock, flags); } static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id) { struct sh_cmt_channel *ch = dev_id; /* clear flags */ sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) & ch->cmt->info->clear_bits); /* update clock source counter to begin with if enabled * the wrap flag should be cleared by the timer specific * isr before we end up here. */ if (ch->flags & FLAG_CLOCKSOURCE) ch->total_cycles += ch->match_value + 1; if (!(ch->flags & FLAG_REPROGRAM)) ch->next_match_value = ch->max_match_value; ch->flags |= FLAG_IRQCONTEXT; if (ch->flags & FLAG_CLOCKEVENT) { if (!(ch->flags & FLAG_SKIPEVENT)) { if (clockevent_state_oneshot(&ch->ced)) { ch->next_match_value = ch->max_match_value; ch->flags |= FLAG_REPROGRAM; } ch->ced.event_handler(&ch->ced); } } ch->flags &= ~FLAG_SKIPEVENT; if (ch->flags & FLAG_REPROGRAM) { ch->flags &= ~FLAG_REPROGRAM; sh_cmt_clock_event_program_verify(ch, 1); if (ch->flags & FLAG_CLOCKEVENT) if ((clockevent_state_shutdown(&ch->ced)) || (ch->match_value == ch->next_match_value)) ch->flags &= ~FLAG_REPROGRAM; } ch->flags &= ~FLAG_IRQCONTEXT; return IRQ_HANDLED; } static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag) { int ret = 0; unsigned long flags; if (flag & FLAG_CLOCKSOURCE) pm_runtime_get_sync(&ch->cmt->pdev->dev); raw_spin_lock_irqsave(&ch->lock, flags); if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) { if (flag & FLAG_CLOCKEVENT) pm_runtime_get_sync(&ch->cmt->pdev->dev); ret = sh_cmt_enable(ch); } if (ret) goto out; ch->flags |= flag; /* setup timeout if no clockevent */ if (ch->cmt->num_channels == 1 && flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT))) __sh_cmt_set_next(ch, ch->max_match_value); out: raw_spin_unlock_irqrestore(&ch->lock, flags); return ret; } static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag) { unsigned long flags; unsigned long f; raw_spin_lock_irqsave(&ch->lock, flags); f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE); ch->flags &= ~flag; if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) { sh_cmt_disable(ch); if (flag & FLAG_CLOCKEVENT) pm_runtime_put(&ch->cmt->pdev->dev); } /* adjust the timeout to maximum if only clocksource left */ if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE)) __sh_cmt_set_next(ch, ch->max_match_value); raw_spin_unlock_irqrestore(&ch->lock, flags); if (flag & FLAG_CLOCKSOURCE) pm_runtime_put(&ch->cmt->pdev->dev); } static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs) { return container_of(cs, struct sh_cmt_channel, cs); } static u64 sh_cmt_clocksource_read(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); u32 has_wrapped; if (ch->cmt->num_channels == 1) { unsigned long flags; u64 value; u32 raw; raw_spin_lock_irqsave(&ch->lock, flags); value = ch->total_cycles; raw = sh_cmt_get_counter(ch, &has_wrapped); if (unlikely(has_wrapped)) raw += ch->match_value + 1; raw_spin_unlock_irqrestore(&ch->lock, flags); return value + raw; } return sh_cmt_get_counter(ch, &has_wrapped); } static int sh_cmt_clocksource_enable(struct clocksource *cs) { int ret; struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); WARN_ON(ch->cs_enabled); ch->total_cycles = 0; ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE); if (!ret) ch->cs_enabled = true; return ret; } static void sh_cmt_clocksource_disable(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); WARN_ON(!ch->cs_enabled); sh_cmt_stop(ch, FLAG_CLOCKSOURCE); ch->cs_enabled = false; } static void sh_cmt_clocksource_suspend(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); if (!ch->cs_enabled) return; sh_cmt_stop(ch, FLAG_CLOCKSOURCE); dev_pm_genpd_suspend(&ch->cmt->pdev->dev); } static void sh_cmt_clocksource_resume(struct clocksource *cs) { struct sh_cmt_channel *ch = cs_to_sh_cmt(cs); if (!ch->cs_enabled) return; dev_pm_genpd_resume(&ch->cmt->pdev->dev); sh_cmt_start(ch, FLAG_CLOCKSOURCE); } static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch, const char *name) { struct clocksource *cs = &ch->cs; cs->name = name; cs->rating = 125; cs->read = sh_cmt_clocksource_read; cs->enable = sh_cmt_clocksource_enable; cs->disable = sh_cmt_clocksource_disable; cs->suspend = sh_cmt_clocksource_suspend; cs->resume = sh_cmt_clocksource_resume; cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width); cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n", ch->index); clocksource_register_hz(cs, ch->cmt->rate); return 0; } static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced) { return container_of(ced, struct sh_cmt_channel, ced); } static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic) { sh_cmt_start(ch, FLAG_CLOCKEVENT); if (periodic) sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1); else sh_cmt_set_next(ch, ch->max_match_value); } static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); sh_cmt_stop(ch, FLAG_CLOCKEVENT); return 0; } static int sh_cmt_clock_event_set_state(struct clock_event_device *ced, int periodic) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); /* deal with old setting first */ if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) sh_cmt_stop(ch, FLAG_CLOCKEVENT); dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n", ch->index, periodic ? "periodic" : "oneshot"); sh_cmt_clock_event_start(ch, periodic); return 0; } static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced) { return sh_cmt_clock_event_set_state(ced, 0); } static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced) { return sh_cmt_clock_event_set_state(ced, 1); } static int sh_cmt_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); BUG_ON(!clockevent_state_oneshot(ced)); if (likely(ch->flags & FLAG_IRQCONTEXT)) ch->next_match_value = delta - 1; else sh_cmt_set_next(ch, delta - 1); return 0; } static void sh_cmt_clock_event_suspend(struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); dev_pm_genpd_suspend(&ch->cmt->pdev->dev); clk_unprepare(ch->cmt->clk); } static void sh_cmt_clock_event_resume(struct clock_event_device *ced) { struct sh_cmt_channel *ch = ced_to_sh_cmt(ced); clk_prepare(ch->cmt->clk); dev_pm_genpd_resume(&ch->cmt->pdev->dev); } static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch, const char *name) { struct clock_event_device *ced = &ch->ced; int irq; int ret; irq = platform_get_irq(ch->cmt->pdev, ch->index); if (irq < 0) return irq; ret = request_irq(irq, sh_cmt_interrupt, IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, dev_name(&ch->cmt->pdev->dev), ch); if (ret) { dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n", ch->index, irq); return ret; } ced->name = name; ced->features = CLOCK_EVT_FEAT_PERIODIC; ced->features |= CLOCK_EVT_FEAT_ONESHOT; ced->rating = 125; ced->cpumask = cpu_possible_mask; ced->set_next_event = sh_cmt_clock_event_next; ced->set_state_shutdown = sh_cmt_clock_event_shutdown; ced->set_state_periodic = sh_cmt_clock_event_set_periodic; ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot; ced->suspend = sh_cmt_clock_event_suspend; ced->resume = sh_cmt_clock_event_resume; /* TODO: calculate good shift from rate and counter bit width */ ced->shift = 32; ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift); ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced); ced->max_delta_ticks = ch->max_match_value; ced->min_delta_ns = clockevent_delta2ns(0x1f, ced); ced->min_delta_ticks = 0x1f; dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n", ch->index); clockevents_register_device(ced); return 0; } static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name, bool clockevent, bool clocksource) { int ret; if (clockevent) { ch->cmt->has_clockevent = true; ret = sh_cmt_register_clockevent(ch, name); if (ret < 0) return ret; } if (clocksource) { ch->cmt->has_clocksource = true; sh_cmt_register_clocksource(ch, name); } return 0; } static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index, unsigned int hwidx, bool clockevent, bool clocksource, struct sh_cmt_device *cmt) { u32 value; int ret; /* Skip unused channels. */ if (!clockevent && !clocksource) return 0; ch->cmt = cmt; ch->index = index; ch->hwidx = hwidx; ch->timer_bit = hwidx; /* * Compute the address of the channel control register block. For the * timers with a per-channel start/stop register, compute its address * as well. */ switch (cmt->info->model) { case SH_CMT_16BIT: ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6; break; case SH_CMT_32BIT: case SH_CMT_48BIT: ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10; break; case SH_CMT0_RCAR_GEN2: case SH_CMT1_RCAR_GEN2: ch->iostart = cmt->mapbase + ch->hwidx * 0x100; ch->ioctrl = ch->iostart + 0x10; ch->timer_bit = 0; /* Enable the clock supply to the channel */ value = ioread32(cmt->mapbase + CMCLKE); value |= BIT(hwidx); iowrite32(value, cmt->mapbase + CMCLKE); break; } if (cmt->info->width == (sizeof(ch->max_match_value) * 8)) ch->max_match_value = ~0; else ch->max_match_value = (1 << cmt->info->width) - 1; ch->match_value = ch->max_match_value; raw_spin_lock_init(&ch->lock); ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev), clockevent, clocksource); if (ret) { dev_err(&cmt->pdev->dev, "ch%u: registration failed\n", ch->index); return ret; } ch->cs_enabled = false; return 0; } static int sh_cmt_map_memory(struct sh_cmt_device *cmt) { struct resource *mem; mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0); if (!mem) { dev_err(&cmt->pdev->dev, "failed to get I/O memory\n"); return -ENXIO; } cmt->mapbase = ioremap(mem->start, resource_size(mem)); if (cmt->mapbase == NULL) { dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n"); return -ENXIO; } return 0; } static const struct platform_device_id sh_cmt_id_table[] = { { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] }, { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] }, { } }; MODULE_DEVICE_TABLE(platform, sh_cmt_id_table); static const struct of_device_id sh_cmt_of_table[] __maybe_unused = { { /* deprecated, preserved for backward compatibility */ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] }, { /* deprecated, preserved for backward compatibility */ .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] }, { .compatible = "renesas,r8a7740-cmt1", .data = &sh_cmt_info[SH_CMT_48BIT] }, { .compatible = "renesas,sh73a0-cmt1", .data = &sh_cmt_info[SH_CMT_48BIT] }, { .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] }, { .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] }, { .compatible = "renesas,rcar-gen3-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] }, { .compatible = "renesas,rcar-gen3-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] }, { .compatible = "renesas,rcar-gen4-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] }, { .compatible = "renesas,rcar-gen4-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] }, { } }; MODULE_DEVICE_TABLE(of, sh_cmt_of_table); static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev) { unsigned int mask, i; unsigned long rate; int ret; cmt->pdev = pdev; raw_spin_lock_init(&cmt->lock); if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { cmt->info = of_device_get_match_data(&pdev->dev); cmt->hw_channels = cmt->info->channels_mask; } else if (pdev->dev.platform_data) { struct sh_timer_config *cfg = pdev->dev.platform_data; const struct platform_device_id *id = pdev->id_entry; cmt->info = (const struct sh_cmt_info *)id->driver_data; cmt->hw_channels = cfg->channels_mask; } else { dev_err(&cmt->pdev->dev, "missing platform data\n"); return -ENXIO; } /* Get hold of clock. */ cmt->clk = clk_get(&cmt->pdev->dev, "fck"); if (IS_ERR(cmt->clk)) { dev_err(&cmt->pdev->dev, "cannot get clock\n"); return PTR_ERR(cmt->clk); } ret = clk_prepare(cmt->clk); if (ret < 0) goto err_clk_put; /* Determine clock rate. */ ret = clk_enable(cmt->clk); if (ret < 0) goto err_clk_unprepare; rate = clk_get_rate(cmt->clk); if (!rate) { ret = -EINVAL; goto err_clk_disable; } /* We shall wait 2 input clks after register writes */ if (cmt->info->model >= SH_CMT_48BIT) cmt->reg_delay = DIV_ROUND_UP(2UL * USEC_PER_SEC, rate); cmt->rate = rate / (cmt->info->width == 16 ? 512 : 8); /* Map the memory resource(s). */ ret = sh_cmt_map_memory(cmt); if (ret < 0) goto err_clk_disable; /* Allocate and setup the channels. */ cmt->num_channels = hweight8(cmt->hw_channels); cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels), GFP_KERNEL); if (cmt->channels == NULL) { ret = -ENOMEM; goto err_unmap; } /* * Use the first channel as a clock event device and the second channel * as a clock source. If only one channel is available use it for both. */ for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) { unsigned int hwidx = ffs(mask) - 1; bool clocksource = i == 1 || cmt->num_channels == 1; bool clockevent = i == 0; ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx, clockevent, clocksource, cmt); if (ret < 0) goto err_unmap; mask &= ~(1 << hwidx); } clk_disable(cmt->clk); platform_set_drvdata(pdev, cmt); return 0; err_unmap: kfree(cmt->channels); iounmap(cmt->mapbase); err_clk_disable: clk_disable(cmt->clk); err_clk_unprepare: clk_unprepare(cmt->clk); err_clk_put: clk_put(cmt->clk); return ret; } static int sh_cmt_probe(struct platform_device *pdev) { struct sh_cmt_device *cmt = platform_get_drvdata(pdev); int ret; if (!is_sh_early_platform_device(pdev)) { pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); } if (cmt) { dev_info(&pdev->dev, "kept as earlytimer\n"); goto out; } cmt = kzalloc(sizeof(*cmt), GFP_KERNEL); if (cmt == NULL) return -ENOMEM; ret = sh_cmt_setup(cmt, pdev); if (ret) { kfree(cmt); pm_runtime_idle(&pdev->dev); return ret; } if (is_sh_early_platform_device(pdev)) return 0; out: if (cmt->has_clockevent || cmt->has_clocksource) pm_runtime_irq_safe(&pdev->dev); else pm_runtime_idle(&pdev->dev); return 0; } static struct platform_driver sh_cmt_device_driver = { .probe = sh_cmt_probe, .driver = { .name = "sh_cmt", .of_match_table = of_match_ptr(sh_cmt_of_table), .suppress_bind_attrs = true, }, .id_table = sh_cmt_id_table, }; static int __init sh_cmt_init(void) { return platform_driver_register(&sh_cmt_device_driver); } static void __exit sh_cmt_exit(void) { platform_driver_unregister(&sh_cmt_device_driver); } #ifdef CONFIG_SUPERH sh_early_platform_init("earlytimer", &sh_cmt_device_driver); #endif subsys_initcall(sh_cmt_init); module_exit(sh_cmt_exit); MODULE_AUTHOR("Magnus Damm"); MODULE_DESCRIPTION("SuperH CMT Timer Driver");
linux-master
drivers/clocksource/sh_cmt.c
// SPDX-License-Identifier: GPL-2.0+ /* * RDA8810PL SoC timer driver * * Copyright RDA Microelectronics Company Limited * Copyright (c) 2017 Andreas Färber * Copyright (c) 2018 Manivannan Sadhasivam * * RDA8810PL has two independent timers: OSTIMER (56 bit) and HWTIMER (64 bit). * Each timer provides optional interrupt support. In this driver, OSTIMER is * used for clockevents and HWTIMER is used for clocksource. */ #include <linux/init.h> #include <linux/interrupt.h> #include "timer-of.h" #define RDA_OSTIMER_LOADVAL_L 0x000 #define RDA_OSTIMER_CTRL 0x004 #define RDA_HWTIMER_LOCKVAL_L 0x024 #define RDA_HWTIMER_LOCKVAL_H 0x028 #define RDA_TIMER_IRQ_MASK_SET 0x02c #define RDA_TIMER_IRQ_MASK_CLR 0x030 #define RDA_TIMER_IRQ_CLR 0x034 #define RDA_OSTIMER_CTRL_ENABLE BIT(24) #define RDA_OSTIMER_CTRL_REPEAT BIT(28) #define RDA_OSTIMER_CTRL_LOAD BIT(30) #define RDA_TIMER_IRQ_MASK_OSTIMER BIT(0) #define RDA_TIMER_IRQ_CLR_OSTIMER BIT(0) static int rda_ostimer_start(void __iomem *base, bool periodic, u64 cycles) { u32 ctrl, load_l; load_l = (u32)cycles; ctrl = ((cycles >> 32) & 0xffffff); ctrl |= RDA_OSTIMER_CTRL_LOAD | RDA_OSTIMER_CTRL_ENABLE; if (periodic) ctrl |= RDA_OSTIMER_CTRL_REPEAT; /* Enable ostimer interrupt first */ writel_relaxed(RDA_TIMER_IRQ_MASK_OSTIMER, base + RDA_TIMER_IRQ_MASK_SET); /* Write low 32 bits first, high 24 bits are with ctrl */ writel_relaxed(load_l, base + RDA_OSTIMER_LOADVAL_L); writel_relaxed(ctrl, base + RDA_OSTIMER_CTRL); return 0; } static int rda_ostimer_stop(void __iomem *base) { /* Disable ostimer interrupt first */ writel_relaxed(RDA_TIMER_IRQ_MASK_OSTIMER, base + RDA_TIMER_IRQ_MASK_CLR); writel_relaxed(0, base + RDA_OSTIMER_CTRL); return 0; } static int rda_ostimer_set_state_shutdown(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); rda_ostimer_stop(timer_of_base(to)); return 0; } static int rda_ostimer_set_state_oneshot(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); rda_ostimer_stop(timer_of_base(to)); return 0; } static int rda_ostimer_set_state_periodic(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); unsigned long cycles_per_jiffy; rda_ostimer_stop(timer_of_base(to)); cycles_per_jiffy = ((unsigned long long)NSEC_PER_SEC / HZ * evt->mult) >> evt->shift; rda_ostimer_start(timer_of_base(to), true, cycles_per_jiffy); return 0; } static int rda_ostimer_tick_resume(struct clock_event_device *evt) { return 0; } static int rda_ostimer_set_next_event(unsigned long evt, struct clock_event_device *ev) { struct timer_of *to = to_timer_of(ev); rda_ostimer_start(timer_of_base(to), false, evt); return 0; } static irqreturn_t rda_ostimer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; struct timer_of *to = to_timer_of(evt); /* clear timer int */ writel_relaxed(RDA_TIMER_IRQ_CLR_OSTIMER, timer_of_base(to) + RDA_TIMER_IRQ_CLR); if (evt->event_handler) evt->event_handler(evt); return IRQ_HANDLED; } static struct timer_of rda_ostimer_of = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE, .clkevt = { .name = "rda-ostimer", .rating = 250, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ, .set_state_shutdown = rda_ostimer_set_state_shutdown, .set_state_oneshot = rda_ostimer_set_state_oneshot, .set_state_periodic = rda_ostimer_set_state_periodic, .tick_resume = rda_ostimer_tick_resume, .set_next_event = rda_ostimer_set_next_event, }, .of_base = { .name = "rda-timer", .index = 0, }, .of_irq = { .name = "ostimer", .handler = rda_ostimer_interrupt, .flags = IRQF_TIMER, }, }; static u64 rda_hwtimer_read(struct clocksource *cs) { void __iomem *base = timer_of_base(&rda_ostimer_of); u32 lo, hi; /* Always read low 32 bits first */ do { lo = readl_relaxed(base + RDA_HWTIMER_LOCKVAL_L); hi = readl_relaxed(base + RDA_HWTIMER_LOCKVAL_H); } while (hi != readl_relaxed(base + RDA_HWTIMER_LOCKVAL_H)); return ((u64)hi << 32) | lo; } static struct clocksource rda_hwtimer_clocksource = { .name = "rda-timer", .rating = 400, .read = rda_hwtimer_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init rda_timer_init(struct device_node *np) { unsigned long rate = 2000000; int ret; ret = timer_of_init(np, &rda_ostimer_of); if (ret) return ret; clocksource_register_hz(&rda_hwtimer_clocksource, rate); clockevents_config_and_register(&rda_ostimer_of.clkevt, rate, 0x2, UINT_MAX); return 0; } TIMER_OF_DECLARE(rda8810pl, "rda,8810pl-timer", rda_timer_init);
linux-master
drivers/clocksource/timer-rda.c
// SPDX-License-Identifier: GPL-2.0-only /* * arch/arm/mach-pxa/time.c * * PXA clocksource, clockevents, and OST interrupt handlers. * Copyright (c) 2007 by Bill Gatliff <[email protected]>. * * Derived from Nicolas Pitre's PXA timer handler Copyright (c) 2001 * by MontaVista Software, Inc. (Nico, your code rocks!) */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched/clock.h> #include <linux/sched_clock.h> #include <clocksource/pxa.h> #include <asm/div64.h> #define OSMR0 0x00 /* OS Timer 0 Match Register */ #define OSMR1 0x04 /* OS Timer 1 Match Register */ #define OSMR2 0x08 /* OS Timer 2 Match Register */ #define OSMR3 0x0C /* OS Timer 3 Match Register */ #define OSCR 0x10 /* OS Timer Counter Register */ #define OSSR 0x14 /* OS Timer Status Register */ #define OWER 0x18 /* OS Timer Watchdog Enable Register */ #define OIER 0x1C /* OS Timer Interrupt Enable Register */ #define OSSR_M3 (1 << 3) /* Match status channel 3 */ #define OSSR_M2 (1 << 2) /* Match status channel 2 */ #define OSSR_M1 (1 << 1) /* Match status channel 1 */ #define OSSR_M0 (1 << 0) /* Match status channel 0 */ #define OIER_E0 (1 << 0) /* Interrupt enable channel 0 */ /* * This is PXA's sched_clock implementation. This has a resolution * of at least 308 ns and a maximum value of 208 days. * * The return value is guaranteed to be monotonic in that range as * long as there is always less than 582 seconds between successive * calls to sched_clock() which should always be the case in practice. */ #define timer_readl(reg) readl_relaxed(timer_base + (reg)) #define timer_writel(val, reg) writel_relaxed((val), timer_base + (reg)) static void __iomem *timer_base; static u64 notrace pxa_read_sched_clock(void) { return timer_readl(OSCR); } #define MIN_OSCR_DELTA 16 static irqreturn_t pxa_ost0_interrupt(int irq, void *dev_id) { struct clock_event_device *c = dev_id; /* Disarm the compare/match, signal the event. */ timer_writel(timer_readl(OIER) & ~OIER_E0, OIER); timer_writel(OSSR_M0, OSSR); c->event_handler(c); return IRQ_HANDLED; } static int pxa_osmr0_set_next_event(unsigned long delta, struct clock_event_device *dev) { unsigned long next, oscr; timer_writel(timer_readl(OIER) | OIER_E0, OIER); next = timer_readl(OSCR) + delta; timer_writel(next, OSMR0); oscr = timer_readl(OSCR); return (signed)(next - oscr) <= MIN_OSCR_DELTA ? -ETIME : 0; } static int pxa_osmr0_shutdown(struct clock_event_device *evt) { /* initializing, released, or preparing for suspend */ timer_writel(timer_readl(OIER) & ~OIER_E0, OIER); timer_writel(OSSR_M0, OSSR); return 0; } #ifdef CONFIG_PM static unsigned long osmr[4], oier, oscr; static void pxa_timer_suspend(struct clock_event_device *cedev) { osmr[0] = timer_readl(OSMR0); osmr[1] = timer_readl(OSMR1); osmr[2] = timer_readl(OSMR2); osmr[3] = timer_readl(OSMR3); oier = timer_readl(OIER); oscr = timer_readl(OSCR); } static void pxa_timer_resume(struct clock_event_device *cedev) { /* * Ensure that we have at least MIN_OSCR_DELTA between match * register 0 and the OSCR, to guarantee that we will receive * the one-shot timer interrupt. We adjust OSMR0 in preference * to OSCR to guarantee that OSCR is monotonically incrementing. */ if (osmr[0] - oscr < MIN_OSCR_DELTA) osmr[0] += MIN_OSCR_DELTA; timer_writel(osmr[0], OSMR0); timer_writel(osmr[1], OSMR1); timer_writel(osmr[2], OSMR2); timer_writel(osmr[3], OSMR3); timer_writel(oier, OIER); timer_writel(oscr, OSCR); } #else #define pxa_timer_suspend NULL #define pxa_timer_resume NULL #endif static struct clock_event_device ckevt_pxa_osmr0 = { .name = "osmr0", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_next_event = pxa_osmr0_set_next_event, .set_state_shutdown = pxa_osmr0_shutdown, .set_state_oneshot = pxa_osmr0_shutdown, .suspend = pxa_timer_suspend, .resume = pxa_timer_resume, }; static int __init pxa_timer_common_init(int irq, unsigned long clock_tick_rate) { int ret; timer_writel(0, OIER); timer_writel(OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3, OSSR); sched_clock_register(pxa_read_sched_clock, 32, clock_tick_rate); ckevt_pxa_osmr0.cpumask = cpumask_of(0); ret = request_irq(irq, pxa_ost0_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "ost0", &ckevt_pxa_osmr0); if (ret) { pr_err("Failed to setup irq\n"); return ret; } ret = clocksource_mmio_init(timer_base + OSCR, "oscr0", clock_tick_rate, 200, 32, clocksource_mmio_readl_up); if (ret) { pr_err("Failed to init clocksource\n"); return ret; } clockevents_config_and_register(&ckevt_pxa_osmr0, clock_tick_rate, MIN_OSCR_DELTA * 2, 0x7fffffff); return 0; } static int __init pxa_timer_dt_init(struct device_node *np) { struct clk *clk; int irq, ret; /* timer registers are shared with watchdog timer */ timer_base = of_iomap(np, 0); if (!timer_base) { pr_err("%pOFn: unable to map resource\n", np); return -ENXIO; } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_crit("%pOFn: unable to get clk\n", np); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_crit("Failed to prepare clock\n"); return ret; } /* we are only interested in OS-timer0 irq */ irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_crit("%pOFn: unable to parse OS-timer0 irq\n", np); return -EINVAL; } return pxa_timer_common_init(irq, clk_get_rate(clk)); } TIMER_OF_DECLARE(pxa_timer, "marvell,pxa-timer", pxa_timer_dt_init); /* * Legacy timer init for non device-tree boards. */ void __init pxa_timer_nodt_init(int irq, void __iomem *base) { struct clk *clk; timer_base = base; clk = clk_get(NULL, "OSTIMER0"); if (clk && !IS_ERR(clk)) { clk_prepare_enable(clk); pxa_timer_common_init(irq, clk_get_rate(clk)); } else { pr_crit("%s: unable to get clk\n", __func__); } }
linux-master
drivers/clocksource/timer-pxa.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2012 Broadcom Corporation #include <linux/init.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/jiffies.h> #include <linux/clockchips.h> #include <linux/types.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define KONA_GPTIMER_STCS_OFFSET 0x00000000 #define KONA_GPTIMER_STCLO_OFFSET 0x00000004 #define KONA_GPTIMER_STCHI_OFFSET 0x00000008 #define KONA_GPTIMER_STCM0_OFFSET 0x0000000C #define KONA_GPTIMER_STCS_TIMER_MATCH_SHIFT 0 #define KONA_GPTIMER_STCS_COMPARE_ENABLE_SHIFT 4 struct kona_bcm_timers { int tmr_irq; void __iomem *tmr_regs; }; static struct kona_bcm_timers timers; static u32 arch_timer_rate; /* * We use the peripheral timers for system tick, the cpu global timer for * profile tick */ static void kona_timer_disable_and_clear(void __iomem *base) { uint32_t reg; /* * clear and disable interrupts * We are using compare/match register 0 for our system interrupts */ reg = readl(base + KONA_GPTIMER_STCS_OFFSET); /* Clear compare (0) interrupt */ reg |= 1 << KONA_GPTIMER_STCS_TIMER_MATCH_SHIFT; /* disable compare */ reg &= ~(1 << KONA_GPTIMER_STCS_COMPARE_ENABLE_SHIFT); writel(reg, base + KONA_GPTIMER_STCS_OFFSET); } static int kona_timer_get_counter(void __iomem *timer_base, uint32_t *msw, uint32_t *lsw) { int loop_limit = 3; /* * Read 64-bit free running counter * 1. Read hi-word * 2. Read low-word * 3. Read hi-word again * 4.1 * if new hi-word is not equal to previously read hi-word, then * start from #1 * 4.2 * if new hi-word is equal to previously read hi-word then stop. */ do { *msw = readl(timer_base + KONA_GPTIMER_STCHI_OFFSET); *lsw = readl(timer_base + KONA_GPTIMER_STCLO_OFFSET); if (*msw == readl(timer_base + KONA_GPTIMER_STCHI_OFFSET)) break; } while (--loop_limit); if (!loop_limit) { pr_err("bcm_kona_timer: getting counter failed.\n"); pr_err(" Timer will be impacted\n"); return -ETIMEDOUT; } return 0; } static int kona_timer_set_next_event(unsigned long clc, struct clock_event_device *unused) { /* * timer (0) is disabled by the timer interrupt already * so, here we reload the next event value and re-enable * the timer. * * This way, we are potentially losing the time between * timer-interrupt->set_next_event. CPU local timers, when * they come in should get rid of skew. */ uint32_t lsw, msw; uint32_t reg; int ret; ret = kona_timer_get_counter(timers.tmr_regs, &msw, &lsw); if (ret) return ret; /* Load the "next" event tick value */ writel(lsw + clc, timers.tmr_regs + KONA_GPTIMER_STCM0_OFFSET); /* Enable compare */ reg = readl(timers.tmr_regs + KONA_GPTIMER_STCS_OFFSET); reg |= (1 << KONA_GPTIMER_STCS_COMPARE_ENABLE_SHIFT); writel(reg, timers.tmr_regs + KONA_GPTIMER_STCS_OFFSET); return 0; } static int kona_timer_shutdown(struct clock_event_device *evt) { kona_timer_disable_and_clear(timers.tmr_regs); return 0; } static struct clock_event_device kona_clockevent_timer = { .name = "timer 1", .features = CLOCK_EVT_FEAT_ONESHOT, .set_next_event = kona_timer_set_next_event, .set_state_shutdown = kona_timer_shutdown, .tick_resume = kona_timer_shutdown, }; static void __init kona_timer_clockevents_init(void) { kona_clockevent_timer.cpumask = cpumask_of(0); clockevents_config_and_register(&kona_clockevent_timer, arch_timer_rate, 6, 0xffffffff); } static irqreturn_t kona_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = &kona_clockevent_timer; kona_timer_disable_and_clear(timers.tmr_regs); evt->event_handler(evt); return IRQ_HANDLED; } static int __init kona_timer_init(struct device_node *node) { u32 freq; struct clk *external_clk; external_clk = of_clk_get_by_name(node, NULL); if (!IS_ERR(external_clk)) { arch_timer_rate = clk_get_rate(external_clk); clk_prepare_enable(external_clk); } else if (!of_property_read_u32(node, "clock-frequency", &freq)) { arch_timer_rate = freq; } else { pr_err("Kona Timer v1 unable to determine clock-frequency\n"); return -EINVAL; } /* Setup IRQ numbers */ timers.tmr_irq = irq_of_parse_and_map(node, 0); /* Setup IO addresses */ timers.tmr_regs = of_iomap(node, 0); kona_timer_disable_and_clear(timers.tmr_regs); kona_timer_clockevents_init(); if (request_irq(timers.tmr_irq, kona_timer_interrupt, IRQF_TIMER, "Kona Timer Tick", NULL)) pr_err("%s: request_irq() failed\n", "Kona Timer Tick"); kona_timer_set_next_event((arch_timer_rate / HZ), NULL); return 0; } TIMER_OF_DECLARE(brcm_kona, "brcm,kona-timer", kona_timer_init); /* * bcm,kona-timer is deprecated by brcm,kona-timer * being kept here for driver compatibility */ TIMER_OF_DECLARE(bcm_kona, "bcm,kona-timer", kona_timer_init);
linux-master
drivers/clocksource/bcm_kona_timer.c
// SPDX-License-Identifier: GPL-2.0 /* * i8253 PIT clocksource */ #include <linux/clockchips.h> #include <linux/init.h> #include <linux/io.h> #include <linux/spinlock.h> #include <linux/timex.h> #include <linux/module.h> #include <linux/i8253.h> #include <linux/smp.h> /* * Protects access to I/O ports * * 0040-0043 : timer0, i8253 / i8254 * 0061-0061 : NMI Control Register which contains two speaker control bits. */ DEFINE_RAW_SPINLOCK(i8253_lock); EXPORT_SYMBOL(i8253_lock); /* * Handle PIT quirk in pit_shutdown() where zeroing the counter register * restarts the PIT, negating the shutdown. On platforms with the quirk, * platform specific code can set this to false. */ bool i8253_clear_counter_on_shutdown __ro_after_init = true; #ifdef CONFIG_CLKSRC_I8253 /* * Since the PIT overflows every tick, its not very useful * to just read by itself. So use jiffies to emulate a free * running counter: */ static u64 i8253_read(struct clocksource *cs) { static int old_count; static u32 old_jifs; unsigned long flags; int count; u32 jifs; raw_spin_lock_irqsave(&i8253_lock, flags); /* * Although our caller may have the read side of jiffies_lock, * this is now a seqlock, and we are cheating in this routine * by having side effects on state that we cannot undo if * there is a collision on the seqlock and our caller has to * retry. (Namely, old_jifs and old_count.) So we must treat * jiffies as volatile despite the lock. We read jiffies * before latching the timer count to guarantee that although * the jiffies value might be older than the count (that is, * the counter may underflow between the last point where * jiffies was incremented and the point where we latch the * count), it cannot be newer. */ jifs = jiffies; outb_p(0x00, PIT_MODE); /* latch the count ASAP */ count = inb_p(PIT_CH0); /* read the latched count */ count |= inb_p(PIT_CH0) << 8; /* VIA686a test code... reset the latch if count > max + 1 */ if (count > PIT_LATCH) { outb_p(0x34, PIT_MODE); outb_p(PIT_LATCH & 0xff, PIT_CH0); outb_p(PIT_LATCH >> 8, PIT_CH0); count = PIT_LATCH - 1; } /* * It's possible for count to appear to go the wrong way for a * couple of reasons: * * 1. The timer counter underflows, but we haven't handled the * resulting interrupt and incremented jiffies yet. * 2. Hardware problem with the timer, not giving us continuous time, * the counter does small "jumps" upwards on some Pentium systems, * (see c't 95/10 page 335 for Neptun bug.) * * Previous attempts to handle these cases intelligently were * buggy, so we just do the simple thing now. */ if (count > old_count && jifs == old_jifs) count = old_count; old_count = count; old_jifs = jifs; raw_spin_unlock_irqrestore(&i8253_lock, flags); count = (PIT_LATCH - 1) - count; return (u64)(jifs * PIT_LATCH) + count; } static struct clocksource i8253_cs = { .name = "pit", .rating = 110, .read = i8253_read, .mask = CLOCKSOURCE_MASK(32), }; int __init clocksource_i8253_init(void) { return clocksource_register_hz(&i8253_cs, PIT_TICK_RATE); } #endif #ifdef CONFIG_CLKEVT_I8253 static int pit_shutdown(struct clock_event_device *evt) { if (!clockevent_state_oneshot(evt) && !clockevent_state_periodic(evt)) return 0; raw_spin_lock(&i8253_lock); outb_p(0x30, PIT_MODE); if (i8253_clear_counter_on_shutdown) { outb_p(0, PIT_CH0); outb_p(0, PIT_CH0); } raw_spin_unlock(&i8253_lock); return 0; } static int pit_set_oneshot(struct clock_event_device *evt) { raw_spin_lock(&i8253_lock); outb_p(0x38, PIT_MODE); raw_spin_unlock(&i8253_lock); return 0; } static int pit_set_periodic(struct clock_event_device *evt) { raw_spin_lock(&i8253_lock); /* binary, mode 2, LSB/MSB, ch 0 */ outb_p(0x34, PIT_MODE); outb_p(PIT_LATCH & 0xff, PIT_CH0); /* LSB */ outb_p(PIT_LATCH >> 8, PIT_CH0); /* MSB */ raw_spin_unlock(&i8253_lock); return 0; } /* * Program the next event in oneshot mode * * Delta is given in PIT ticks */ static int pit_next_event(unsigned long delta, struct clock_event_device *evt) { raw_spin_lock(&i8253_lock); outb_p(delta & 0xff , PIT_CH0); /* LSB */ outb_p(delta >> 8 , PIT_CH0); /* MSB */ raw_spin_unlock(&i8253_lock); return 0; } /* * On UP the PIT can serve all of the possible timer functions. On SMP systems * it can be solely used for the global tick. */ struct clock_event_device i8253_clockevent = { .name = "pit", .features = CLOCK_EVT_FEAT_PERIODIC, .set_state_shutdown = pit_shutdown, .set_state_periodic = pit_set_periodic, .set_next_event = pit_next_event, }; /* * Initialize the conversion factor and the min/max deltas of the clock event * structure and register the clock event source with the framework. */ void __init clockevent_i8253_init(bool oneshot) { if (oneshot) { i8253_clockevent.features |= CLOCK_EVT_FEAT_ONESHOT; i8253_clockevent.set_state_oneshot = pit_set_oneshot; } /* * Start pit with the boot cpu mask. x86 might make it global * when it is used as broadcast device later. */ i8253_clockevent.cpumask = cpumask_of(smp_processor_id()); clockevents_config_and_register(&i8253_clockevent, PIT_TICK_RATE, 0xF, 0x7FFF); } #endif
linux-master
drivers/clocksource/i8253.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Maxime Coquelin 2015 * Author: Maxime Coquelin <[email protected]> * * Inspired by time-efm32.c from Uwe Kleine-Koenig */ #include <linux/kernel.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/clk.h> #include <linux/reset.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include "timer-of.h" #define TIM_CR1 0x00 #define TIM_DIER 0x0c #define TIM_SR 0x10 #define TIM_EGR 0x14 #define TIM_CNT 0x24 #define TIM_PSC 0x28 #define TIM_ARR 0x2c #define TIM_CCR1 0x34 #define TIM_CR1_CEN BIT(0) #define TIM_CR1_UDIS BIT(1) #define TIM_CR1_OPM BIT(3) #define TIM_CR1_ARPE BIT(7) #define TIM_DIER_UIE BIT(0) #define TIM_DIER_CC1IE BIT(1) #define TIM_SR_UIF BIT(0) #define TIM_EGR_UG BIT(0) #define TIM_PSC_MAX USHRT_MAX #define TIM_PSC_CLKRATE 10000 struct stm32_timer_private { int bits; }; /** * stm32_timer_of_bits_set - set accessor helper * @to: a timer_of structure pointer * @bits: the number of bits (16 or 32) * * Accessor helper to set the number of bits in the timer-of private * structure. * */ static void stm32_timer_of_bits_set(struct timer_of *to, int bits) { struct stm32_timer_private *pd = to->private_data; pd->bits = bits; } /** * stm32_timer_of_bits_get - get accessor helper * @to: a timer_of structure pointer * * Accessor helper to get the number of bits in the timer-of private * structure. * * Returns an integer corresponding to the number of bits. */ static int stm32_timer_of_bits_get(struct timer_of *to) { struct stm32_timer_private *pd = to->private_data; return pd->bits; } static void __iomem *stm32_timer_cnt __read_mostly; static u64 notrace stm32_read_sched_clock(void) { return readl_relaxed(stm32_timer_cnt); } static struct delay_timer stm32_timer_delay; static unsigned long stm32_read_delay(void) { return readl_relaxed(stm32_timer_cnt); } static void stm32_clock_event_disable(struct timer_of *to) { writel_relaxed(0, timer_of_base(to) + TIM_DIER); } /** * stm32_timer_start - Start the counter without event * @to: a timer_of structure pointer * * Start the timer in order to have the counter reset and start * incrementing but disable interrupt event when there is a counter * overflow. By default, the counter direction is used as upcounter. */ static void stm32_timer_start(struct timer_of *to) { writel_relaxed(TIM_CR1_UDIS | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1); } static int stm32_clock_event_shutdown(struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); stm32_clock_event_disable(to); return 0; } static int stm32_clock_event_set_next_event(unsigned long evt, struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); unsigned long now, next; next = readl_relaxed(timer_of_base(to) + TIM_CNT) + evt; writel_relaxed(next, timer_of_base(to) + TIM_CCR1); now = readl_relaxed(timer_of_base(to) + TIM_CNT); if ((next - now) > evt) return -ETIME; writel_relaxed(TIM_DIER_CC1IE, timer_of_base(to) + TIM_DIER); return 0; } static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); stm32_timer_start(to); return stm32_clock_event_set_next_event(timer_of_period(to), clkevt); } static int stm32_clock_event_set_oneshot(struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); stm32_timer_start(to); return 0; } static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id) { struct clock_event_device *clkevt = (struct clock_event_device *)dev_id; struct timer_of *to = to_timer_of(clkevt); writel_relaxed(0, timer_of_base(to) + TIM_SR); if (clockevent_state_periodic(clkevt)) stm32_clock_event_set_periodic(clkevt); else stm32_clock_event_shutdown(clkevt); clkevt->event_handler(clkevt); return IRQ_HANDLED; } /** * stm32_timer_width - Sort out the timer width (32/16) * @to: a pointer to a timer-of structure * * Write the 32-bit max value and read/return the result. If the timer * is 32 bits wide, the result will be UINT_MAX, otherwise it will * be truncated by the 16-bit register to USHRT_MAX. * */ static void __init stm32_timer_set_width(struct timer_of *to) { u32 width; writel_relaxed(UINT_MAX, timer_of_base(to) + TIM_ARR); width = readl_relaxed(timer_of_base(to) + TIM_ARR); stm32_timer_of_bits_set(to, width == UINT_MAX ? 32 : 16); } /** * stm32_timer_set_prescaler - Compute and set the prescaler register * @to: a pointer to a timer-of structure * * Depending on the timer width, compute the prescaler to always * target a 10MHz timer rate for 16 bits. 32-bit timers are * considered precise and long enough to not use the prescaler. */ static void __init stm32_timer_set_prescaler(struct timer_of *to) { int prescaler = 1; if (stm32_timer_of_bits_get(to) != 32) { prescaler = DIV_ROUND_CLOSEST(timer_of_rate(to), TIM_PSC_CLKRATE); /* * The prescaler register is an u16, the variable * can't be greater than TIM_PSC_MAX, let's cap it in * this case. */ prescaler = prescaler < TIM_PSC_MAX ? prescaler : TIM_PSC_MAX; } writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC); writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR); writel_relaxed(0, timer_of_base(to) + TIM_SR); /* Adjust rate and period given the prescaler value */ to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler); to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ); } static int __init stm32_clocksource_init(struct timer_of *to) { u32 bits = stm32_timer_of_bits_get(to); const char *name = to->np->full_name; /* * This driver allows to register several timers and relies on * the generic time framework to select the right one. * However, nothing allows to do the same for the * sched_clock. We are not interested in a sched_clock for the * 16-bit timers but only for the 32-bit one, so if no 32-bit * timer is registered yet, we select this 32-bit timer as a * sched_clock. */ if (bits == 32 && !stm32_timer_cnt) { /* * Start immediately the counter as we will be using * it right after. */ stm32_timer_start(to); stm32_timer_cnt = timer_of_base(to) + TIM_CNT; sched_clock_register(stm32_read_sched_clock, bits, timer_of_rate(to)); pr_info("%s: STM32 sched_clock registered\n", name); stm32_timer_delay.read_current_timer = stm32_read_delay; stm32_timer_delay.freq = timer_of_rate(to); register_current_timer_delay(&stm32_timer_delay); pr_info("%s: STM32 delay timer registered\n", name); } return clocksource_mmio_init(timer_of_base(to) + TIM_CNT, name, timer_of_rate(to), bits == 32 ? 250 : 100, bits, clocksource_mmio_readl_up); } static void __init stm32_clockevent_init(struct timer_of *to) { u32 bits = stm32_timer_of_bits_get(to); to->clkevt.name = to->np->full_name; to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; to->clkevt.set_state_shutdown = stm32_clock_event_shutdown; to->clkevt.set_state_periodic = stm32_clock_event_set_periodic; to->clkevt.set_state_oneshot = stm32_clock_event_set_oneshot; to->clkevt.tick_resume = stm32_clock_event_shutdown; to->clkevt.set_next_event = stm32_clock_event_set_next_event; to->clkevt.rating = bits == 32 ? 250 : 100; clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 0x1, (1 << bits) - 1); pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n", to->np, bits); } static int __init stm32_timer_init(struct device_node *node) { struct reset_control *rstc; struct timer_of *to; int ret; to = kzalloc(sizeof(*to), GFP_KERNEL); if (!to) return -ENOMEM; to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE; to->of_irq.handler = stm32_clock_event_handler; ret = timer_of_init(node, to); if (ret) goto err; to->private_data = kzalloc(sizeof(struct stm32_timer_private), GFP_KERNEL); if (!to->private_data) { ret = -ENOMEM; goto deinit; } rstc = of_reset_control_get(node, NULL); if (!IS_ERR(rstc)) { reset_control_assert(rstc); reset_control_deassert(rstc); } stm32_timer_set_width(to); stm32_timer_set_prescaler(to); ret = stm32_clocksource_init(to); if (ret) goto deinit; stm32_clockevent_init(to); return 0; deinit: timer_of_cleanup(to); err: kfree(to); return ret; } TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);
linux-master
drivers/clocksource/timer-stm32.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * MediaTek SoCs CPUX General Purpose Timer handling * * Based on timer-mediatek.c: * Copyright (C) 2014 Matthias Brugger <[email protected]> * * Copyright (C) 2022 Collabora Ltd. * AngeloGioacchino Del Regno <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/irqreturn.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include "timer-of.h" #define TIMER_SYNC_TICKS 3 /* cpux mcusys wrapper */ #define CPUX_CON_REG 0x0 #define CPUX_IDX_REG 0x4 /* cpux */ #define CPUX_IDX_GLOBAL_CTRL 0x0 #define CPUX_ENABLE BIT(0) #define CPUX_CLK_DIV_MASK GENMASK(10, 8) #define CPUX_CLK_DIV1 BIT(8) #define CPUX_CLK_DIV2 BIT(9) #define CPUX_CLK_DIV4 BIT(10) #define CPUX_IDX_GLOBAL_IRQ 0x30 static u32 mtk_cpux_readl(u32 reg_idx, struct timer_of *to) { writel(reg_idx, timer_of_base(to) + CPUX_IDX_REG); return readl(timer_of_base(to) + CPUX_CON_REG); } static void mtk_cpux_writel(u32 val, u32 reg_idx, struct timer_of *to) { writel(reg_idx, timer_of_base(to) + CPUX_IDX_REG); writel(val, timer_of_base(to) + CPUX_CON_REG); } static void mtk_cpux_set_irq(struct timer_of *to, bool enable) { const unsigned long *irq_mask = cpumask_bits(cpu_possible_mask); u32 val; val = mtk_cpux_readl(CPUX_IDX_GLOBAL_IRQ, to); if (enable) val |= *irq_mask; else val &= ~(*irq_mask); mtk_cpux_writel(val, CPUX_IDX_GLOBAL_IRQ, to); } static int mtk_cpux_clkevt_shutdown(struct clock_event_device *clkevt) { /* Clear any irq */ mtk_cpux_set_irq(to_timer_of(clkevt), false); /* * Disabling CPUXGPT timer will crash the platform, especially * if Trusted Firmware is using it (usually, for sleep states), * so we only mask the IRQ and call it a day. */ return 0; } static int mtk_cpux_clkevt_resume(struct clock_event_device *clkevt) { mtk_cpux_set_irq(to_timer_of(clkevt), true); return 0; } static struct timer_of to = { /* * There are per-cpu interrupts for the CPUX General Purpose Timer * but since this timer feeds the AArch64 System Timer we can rely * on the CPU timer PPIs as well, so we don't declare TIMER_OF_IRQ. */ .flags = TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = "mtk-cpuxgpt", .cpumask = cpu_possible_mask, .rating = 10, .set_state_shutdown = mtk_cpux_clkevt_shutdown, .tick_resume = mtk_cpux_clkevt_resume, }, }; static int __init mtk_cpux_init(struct device_node *node) { u32 freq, val; int ret; /* If this fails, bad things are about to happen... */ ret = timer_of_init(node, &to); if (ret) { WARN(1, "Cannot start CPUX timers.\n"); return ret; } /* * Check if we're given a clock with the right frequency for this * timer, otherwise warn but keep going with the setup anyway, as * that makes it possible to still boot the kernel, even though * it may not work correctly (random lockups, etc). * The reason behind this is that having an early UART may not be * possible for everyone and this gives a chance to retrieve kmsg * for eventual debugging even on consumer devices. */ freq = timer_of_rate(&to); if (freq > 13000000) WARN(1, "Requested unsupported timer frequency %u\n", freq); /* Clock input is 26MHz, set DIV2 to achieve 13MHz clock */ val = mtk_cpux_readl(CPUX_IDX_GLOBAL_CTRL, &to); val &= ~CPUX_CLK_DIV_MASK; val |= CPUX_CLK_DIV2; mtk_cpux_writel(val, CPUX_IDX_GLOBAL_CTRL, &to); /* Enable all CPUXGPT timers */ val = mtk_cpux_readl(CPUX_IDX_GLOBAL_CTRL, &to); mtk_cpux_writel(val | CPUX_ENABLE, CPUX_IDX_GLOBAL_CTRL, &to); clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), TIMER_SYNC_TICKS, 0xffffffff); return 0; } TIMER_OF_DECLARE(mtk_mt6795, "mediatek,mt6795-systimer", mtk_cpux_init);
linux-master
drivers/clocksource/timer-mediatek-cpux.c
// SPDX-License-Identifier: GPL-2.0-only /* * Clock event driver for the CS5535/CS5536 * * Copyright (C) 2006, Advanced Micro Devices, Inc. * Copyright (C) 2007 Andres Salomon <[email protected]> * Copyright (C) 2009 Andres Salomon <[email protected]> * * The MFGPTs are documented in AMD Geode CS5536 Companion Device Data Book. */ #include <linux/kernel.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/module.h> #include <linux/cs5535.h> #include <linux/clockchips.h> #define DRV_NAME "cs5535-clockevt" static int timer_irq; module_param_hw_named(irq, timer_irq, int, irq, 0644); MODULE_PARM_DESC(irq, "Which IRQ to use for the clock source MFGPT ticks."); /* * We are using the 32.768kHz input clock - it's the only one that has the * ranges we find desirable. The following table lists the suitable * divisors and the associated Hz, minimum interval and the maximum interval: * * Divisor Hz Min Delta (s) Max Delta (s) * 1 32768 .00048828125 2.000 * 2 16384 .0009765625 4.000 * 4 8192 .001953125 8.000 * 8 4096 .00390625 16.000 * 16 2048 .0078125 32.000 * 32 1024 .015625 64.000 * 64 512 .03125 128.000 * 128 256 .0625 256.000 * 256 128 .125 512.000 */ static struct cs5535_mfgpt_timer *cs5535_event_clock; /* Selected from the table above */ #define MFGPT_DIVISOR 16 #define MFGPT_SCALE 4 /* divisor = 2^(scale) */ #define MFGPT_HZ (32768 / MFGPT_DIVISOR) #define MFGPT_PERIODIC (MFGPT_HZ / HZ) /* * The MFGPT timers on the CS5536 provide us with suitable timers to use * as clock event sources - not as good as a HPET or APIC, but certainly * better than the PIT. This isn't a general purpose MFGPT driver, but * a simplified one designed specifically to act as a clock event source. * For full details about the MFGPT, please consult the CS5536 data sheet. */ static void disable_timer(struct cs5535_mfgpt_timer *timer) { /* avoid races by clearing CMP1 and CMP2 unconditionally */ cs5535_mfgpt_write(timer, MFGPT_REG_SETUP, (uint16_t) ~MFGPT_SETUP_CNTEN | MFGPT_SETUP_CMP1 | MFGPT_SETUP_CMP2); } static void start_timer(struct cs5535_mfgpt_timer *timer, uint16_t delta) { cs5535_mfgpt_write(timer, MFGPT_REG_CMP2, delta); cs5535_mfgpt_write(timer, MFGPT_REG_COUNTER, 0); cs5535_mfgpt_write(timer, MFGPT_REG_SETUP, MFGPT_SETUP_CNTEN | MFGPT_SETUP_CMP2); } static int mfgpt_shutdown(struct clock_event_device *evt) { disable_timer(cs5535_event_clock); return 0; } static int mfgpt_set_periodic(struct clock_event_device *evt) { disable_timer(cs5535_event_clock); start_timer(cs5535_event_clock, MFGPT_PERIODIC); return 0; } static int mfgpt_next_event(unsigned long delta, struct clock_event_device *evt) { start_timer(cs5535_event_clock, delta); return 0; } static struct clock_event_device cs5535_clockevent = { .name = DRV_NAME, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = mfgpt_shutdown, .set_state_periodic = mfgpt_set_periodic, .set_state_oneshot = mfgpt_shutdown, .tick_resume = mfgpt_shutdown, .set_next_event = mfgpt_next_event, .rating = 250, }; static irqreturn_t mfgpt_tick(int irq, void *dev_id) { uint16_t val = cs5535_mfgpt_read(cs5535_event_clock, MFGPT_REG_SETUP); /* See if the interrupt was for us */ if (!(val & (MFGPT_SETUP_SETUP | MFGPT_SETUP_CMP2 | MFGPT_SETUP_CMP1))) return IRQ_NONE; /* Turn off the clock (and clear the event) */ disable_timer(cs5535_event_clock); if (clockevent_state_detached(&cs5535_clockevent) || clockevent_state_shutdown(&cs5535_clockevent)) return IRQ_HANDLED; /* Clear the counter */ cs5535_mfgpt_write(cs5535_event_clock, MFGPT_REG_COUNTER, 0); /* Restart the clock in periodic mode */ if (clockevent_state_periodic(&cs5535_clockevent)) cs5535_mfgpt_write(cs5535_event_clock, MFGPT_REG_SETUP, MFGPT_SETUP_CNTEN | MFGPT_SETUP_CMP2); cs5535_clockevent.event_handler(&cs5535_clockevent); return IRQ_HANDLED; } static int __init cs5535_mfgpt_init(void) { unsigned long flags = IRQF_NOBALANCING | IRQF_TIMER | IRQF_SHARED; struct cs5535_mfgpt_timer *timer; int ret; uint16_t val; timer = cs5535_mfgpt_alloc_timer(MFGPT_TIMER_ANY, MFGPT_DOMAIN_WORKING); if (!timer) { printk(KERN_ERR DRV_NAME ": Could not allocate MFGPT timer\n"); return -ENODEV; } cs5535_event_clock = timer; /* Set up the IRQ on the MFGPT side */ if (cs5535_mfgpt_setup_irq(timer, MFGPT_CMP2, &timer_irq)) { printk(KERN_ERR DRV_NAME ": Could not set up IRQ %d\n", timer_irq); goto err_timer; } /* And register it with the kernel */ ret = request_irq(timer_irq, mfgpt_tick, flags, DRV_NAME, timer); if (ret) { printk(KERN_ERR DRV_NAME ": Unable to set up the interrupt.\n"); goto err_irq; } /* Set the clock scale and enable the event mode for CMP2 */ val = MFGPT_SCALE | (3 << 8); cs5535_mfgpt_write(cs5535_event_clock, MFGPT_REG_SETUP, val); /* Set up the clock event */ printk(KERN_INFO DRV_NAME ": Registering MFGPT timer as a clock event, using IRQ %d\n", timer_irq); clockevents_config_and_register(&cs5535_clockevent, MFGPT_HZ, 0xF, 0xFFFE); return 0; err_irq: cs5535_mfgpt_release_irq(cs5535_event_clock, MFGPT_CMP2, &timer_irq); err_timer: cs5535_mfgpt_free_timer(cs5535_event_clock); printk(KERN_ERR DRV_NAME ": Unable to set up the MFGPT clock source\n"); return -EIO; } module_init(cs5535_mfgpt_init); MODULE_AUTHOR("Andres Salomon <[email protected]>"); MODULE_DESCRIPTION("CS5535/CS5536 MFGPT clock event driver"); MODULE_LICENSE("GPL");
linux-master
drivers/clocksource/timer-cs5535.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2017 Spreadtrum Communications Inc. */ #include <linux/init.h> #include <linux/interrupt.h> #include "timer-of.h" #define TIMER_NAME "sprd_timer" #define TIMER_LOAD_LO 0x0 #define TIMER_LOAD_HI 0x4 #define TIMER_VALUE_LO 0x8 #define TIMER_VALUE_HI 0xc #define TIMER_CTL 0x10 #define TIMER_CTL_PERIOD_MODE BIT(0) #define TIMER_CTL_ENABLE BIT(1) #define TIMER_CTL_64BIT_WIDTH BIT(16) #define TIMER_INT 0x14 #define TIMER_INT_EN BIT(0) #define TIMER_INT_RAW_STS BIT(1) #define TIMER_INT_MASK_STS BIT(2) #define TIMER_INT_CLR BIT(3) #define TIMER_VALUE_SHDW_LO 0x18 #define TIMER_VALUE_SHDW_HI 0x1c #define TIMER_VALUE_LO_MASK GENMASK(31, 0) static void sprd_timer_enable(void __iomem *base, u32 flag) { u32 val = readl_relaxed(base + TIMER_CTL); val |= TIMER_CTL_ENABLE; if (flag & TIMER_CTL_64BIT_WIDTH) val |= TIMER_CTL_64BIT_WIDTH; else val &= ~TIMER_CTL_64BIT_WIDTH; if (flag & TIMER_CTL_PERIOD_MODE) val |= TIMER_CTL_PERIOD_MODE; else val &= ~TIMER_CTL_PERIOD_MODE; writel_relaxed(val, base + TIMER_CTL); } static void sprd_timer_disable(void __iomem *base) { u32 val = readl_relaxed(base + TIMER_CTL); val &= ~TIMER_CTL_ENABLE; writel_relaxed(val, base + TIMER_CTL); } static void sprd_timer_update_counter(void __iomem *base, unsigned long cycles) { writel_relaxed(cycles & TIMER_VALUE_LO_MASK, base + TIMER_LOAD_LO); writel_relaxed(0, base + TIMER_LOAD_HI); } static void sprd_timer_enable_interrupt(void __iomem *base) { writel_relaxed(TIMER_INT_EN, base + TIMER_INT); } static void sprd_timer_clear_interrupt(void __iomem *base) { u32 val = readl_relaxed(base + TIMER_INT); val |= TIMER_INT_CLR; writel_relaxed(val, base + TIMER_INT); } static int sprd_timer_set_next_event(unsigned long cycles, struct clock_event_device *ce) { struct timer_of *to = to_timer_of(ce); sprd_timer_disable(timer_of_base(to)); sprd_timer_update_counter(timer_of_base(to), cycles); sprd_timer_enable(timer_of_base(to), 0); return 0; } static int sprd_timer_set_periodic(struct clock_event_device *ce) { struct timer_of *to = to_timer_of(ce); sprd_timer_disable(timer_of_base(to)); sprd_timer_update_counter(timer_of_base(to), timer_of_period(to)); sprd_timer_enable(timer_of_base(to), TIMER_CTL_PERIOD_MODE); return 0; } static int sprd_timer_shutdown(struct clock_event_device *ce) { struct timer_of *to = to_timer_of(ce); sprd_timer_disable(timer_of_base(to)); return 0; } static irqreturn_t sprd_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *ce = (struct clock_event_device *)dev_id; struct timer_of *to = to_timer_of(ce); sprd_timer_clear_interrupt(timer_of_base(to)); if (clockevent_state_oneshot(ce)) sprd_timer_disable(timer_of_base(to)); ce->event_handler(ce); return IRQ_HANDLED; } static struct timer_of to = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = TIMER_NAME, .rating = 300, .features = CLOCK_EVT_FEAT_DYNIRQ | CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = sprd_timer_shutdown, .set_state_periodic = sprd_timer_set_periodic, .set_next_event = sprd_timer_set_next_event, .cpumask = cpu_possible_mask, }, .of_irq = { .handler = sprd_timer_interrupt, .flags = IRQF_TIMER | IRQF_IRQPOLL, }, }; static int __init sprd_timer_init(struct device_node *np) { int ret; ret = timer_of_init(np, &to); if (ret) return ret; sprd_timer_enable_interrupt(timer_of_base(&to)); clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), 1, UINT_MAX); return 0; } static struct timer_of suspend_to = { .flags = TIMER_OF_BASE | TIMER_OF_CLOCK, }; static u64 sprd_suspend_timer_read(struct clocksource *cs) { return ~(u64)readl_relaxed(timer_of_base(&suspend_to) + TIMER_VALUE_SHDW_LO) & cs->mask; } static int sprd_suspend_timer_enable(struct clocksource *cs) { sprd_timer_update_counter(timer_of_base(&suspend_to), TIMER_VALUE_LO_MASK); sprd_timer_enable(timer_of_base(&suspend_to), TIMER_CTL_PERIOD_MODE); return 0; } static void sprd_suspend_timer_disable(struct clocksource *cs) { sprd_timer_disable(timer_of_base(&suspend_to)); } static struct clocksource suspend_clocksource = { .name = "sprd_suspend_timer", .rating = 200, .read = sprd_suspend_timer_read, .enable = sprd_suspend_timer_enable, .disable = sprd_suspend_timer_disable, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, }; static int __init sprd_suspend_timer_init(struct device_node *np) { int ret; ret = timer_of_init(np, &suspend_to); if (ret) return ret; clocksource_register_hz(&suspend_clocksource, timer_of_rate(&suspend_to)); return 0; } TIMER_OF_DECLARE(sc9860_timer, "sprd,sc9860-timer", sprd_timer_init); TIMER_OF_DECLARE(sc9860_persistent_timer, "sprd,sc9860-suspend-timer", sprd_suspend_timer_init);
linux-master
drivers/clocksource/timer-sprd.c
// SPDX-License-Identifier: GPL-2.0 /* * Clocksource driver for the synthetic counter and timers * provided by the Hyper-V hypervisor to guest VMs, as described * in the Hyper-V Top Level Functional Spec (TLFS). This driver * is instruction set architecture independent. * * Copyright (C) 2019, Microsoft, Inc. * * Author: Michael Kelley <[email protected]> */ #include <linux/percpu.h> #include <linux/cpumask.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <linux/mm.h> #include <linux/cpuhotplug.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/acpi.h> #include <linux/hyperv.h> #include <clocksource/hyperv_timer.h> #include <asm/hyperv-tlfs.h> #include <asm/mshyperv.h> static struct clock_event_device __percpu *hv_clock_event; static u64 hv_sched_clock_offset __ro_after_init; /* * If false, we're using the old mechanism for stimer0 interrupts * where it sends a VMbus message when it expires. The old * mechanism is used when running on older versions of Hyper-V * that don't support Direct Mode. While Hyper-V provides * four stimer's per CPU, Linux uses only stimer0. * * Because Direct Mode does not require processing a VMbus * message, stimer interrupts can be enabled earlier in the * process of booting a CPU, and consistent with when timer * interrupts are enabled for other clocksource drivers. * However, for legacy versions of Hyper-V when Direct Mode * is not enabled, setting up stimer interrupts must be * delayed until VMbus is initialized and can process the * interrupt message. */ static bool direct_mode_enabled; static int stimer0_irq = -1; static int stimer0_message_sint; static __maybe_unused DEFINE_PER_CPU(long, stimer0_evt); /* * Common code for stimer0 interrupts coming via Direct Mode or * as a VMbus message. */ void hv_stimer0_isr(void) { struct clock_event_device *ce; ce = this_cpu_ptr(hv_clock_event); ce->event_handler(ce); } EXPORT_SYMBOL_GPL(hv_stimer0_isr); /* * stimer0 interrupt handler for architectures that support * per-cpu interrupts, which also implies Direct Mode. */ static irqreturn_t __maybe_unused hv_stimer0_percpu_isr(int irq, void *dev_id) { hv_stimer0_isr(); return IRQ_HANDLED; } static int hv_ce_set_next_event(unsigned long delta, struct clock_event_device *evt) { u64 current_tick; current_tick = hv_read_reference_counter(); current_tick += delta; hv_set_register(HV_REGISTER_STIMER0_COUNT, current_tick); return 0; } static int hv_ce_shutdown(struct clock_event_device *evt) { hv_set_register(HV_REGISTER_STIMER0_COUNT, 0); hv_set_register(HV_REGISTER_STIMER0_CONFIG, 0); if (direct_mode_enabled && stimer0_irq >= 0) disable_percpu_irq(stimer0_irq); return 0; } static int hv_ce_set_oneshot(struct clock_event_device *evt) { union hv_stimer_config timer_cfg; timer_cfg.as_uint64 = 0; timer_cfg.enable = 1; timer_cfg.auto_enable = 1; if (direct_mode_enabled) { /* * When it expires, the timer will directly interrupt * on the specified hardware vector/IRQ. */ timer_cfg.direct_mode = 1; timer_cfg.apic_vector = HYPERV_STIMER0_VECTOR; if (stimer0_irq >= 0) enable_percpu_irq(stimer0_irq, IRQ_TYPE_NONE); } else { /* * When it expires, the timer will generate a VMbus message, * to be handled by the normal VMbus interrupt handler. */ timer_cfg.direct_mode = 0; timer_cfg.sintx = stimer0_message_sint; } hv_set_register(HV_REGISTER_STIMER0_CONFIG, timer_cfg.as_uint64); return 0; } /* * hv_stimer_init - Per-cpu initialization of the clockevent */ static int hv_stimer_init(unsigned int cpu) { struct clock_event_device *ce; if (!hv_clock_event) return 0; ce = per_cpu_ptr(hv_clock_event, cpu); ce->name = "Hyper-V clockevent"; ce->features = CLOCK_EVT_FEAT_ONESHOT; ce->cpumask = cpumask_of(cpu); ce->rating = 1000; ce->set_state_shutdown = hv_ce_shutdown; ce->set_state_oneshot = hv_ce_set_oneshot; ce->set_next_event = hv_ce_set_next_event; clockevents_config_and_register(ce, HV_CLOCK_HZ, HV_MIN_DELTA_TICKS, HV_MAX_MAX_DELTA_TICKS); return 0; } /* * hv_stimer_cleanup - Per-cpu cleanup of the clockevent */ int hv_stimer_cleanup(unsigned int cpu) { struct clock_event_device *ce; if (!hv_clock_event) return 0; /* * In the legacy case where Direct Mode is not enabled * (which can only be on x86/64), stimer cleanup happens * relatively early in the CPU offlining process. We * must unbind the stimer-based clockevent device so * that the LAPIC timer can take over until clockevents * are no longer needed in the offlining process. Note * that clockevents_unbind_device() eventually calls * hv_ce_shutdown(). * * The unbind should not be done when Direct Mode is * enabled because we may be on an architecture where * there are no other clockevent devices to fallback to. */ ce = per_cpu_ptr(hv_clock_event, cpu); if (direct_mode_enabled) hv_ce_shutdown(ce); else clockevents_unbind_device(ce, cpu); return 0; } EXPORT_SYMBOL_GPL(hv_stimer_cleanup); /* * These placeholders are overridden by arch specific code on * architectures that need special setup of the stimer0 IRQ because * they don't support per-cpu IRQs (such as x86/x64). */ void __weak hv_setup_stimer0_handler(void (*handler)(void)) { }; void __weak hv_remove_stimer0_handler(void) { }; #ifdef CONFIG_ACPI /* Called only on architectures with per-cpu IRQs (i.e., not x86/x64) */ static int hv_setup_stimer0_irq(void) { int ret; ret = acpi_register_gsi(NULL, HYPERV_STIMER0_VECTOR, ACPI_EDGE_SENSITIVE, ACPI_ACTIVE_HIGH); if (ret < 0) { pr_err("Can't register Hyper-V stimer0 GSI. Error %d", ret); return ret; } stimer0_irq = ret; ret = request_percpu_irq(stimer0_irq, hv_stimer0_percpu_isr, "Hyper-V stimer0", &stimer0_evt); if (ret) { pr_err("Can't request Hyper-V stimer0 IRQ %d. Error %d", stimer0_irq, ret); acpi_unregister_gsi(stimer0_irq); stimer0_irq = -1; } return ret; } static void hv_remove_stimer0_irq(void) { if (stimer0_irq == -1) { hv_remove_stimer0_handler(); } else { free_percpu_irq(stimer0_irq, &stimer0_evt); acpi_unregister_gsi(stimer0_irq); stimer0_irq = -1; } } #else static int hv_setup_stimer0_irq(void) { return 0; } static void hv_remove_stimer0_irq(void) { } #endif /* hv_stimer_alloc - Global initialization of the clockevent and stimer0 */ int hv_stimer_alloc(bool have_percpu_irqs) { int ret; /* * Synthetic timers are always available except on old versions of * Hyper-V on x86. In that case, return as error as Linux will use a * clockevent based on emulated LAPIC timer hardware. */ if (!(ms_hyperv.features & HV_MSR_SYNTIMER_AVAILABLE)) return -EINVAL; hv_clock_event = alloc_percpu(struct clock_event_device); if (!hv_clock_event) return -ENOMEM; direct_mode_enabled = ms_hyperv.misc_features & HV_STIMER_DIRECT_MODE_AVAILABLE; /* * If Direct Mode isn't enabled, the remainder of the initialization * is done later by hv_stimer_legacy_init() */ if (!direct_mode_enabled) return 0; if (have_percpu_irqs) { ret = hv_setup_stimer0_irq(); if (ret) goto free_clock_event; } else { hv_setup_stimer0_handler(hv_stimer0_isr); } /* * Since we are in Direct Mode, stimer initialization * can be done now with a CPUHP value in the same range * as other clockevent devices. */ ret = cpuhp_setup_state(CPUHP_AP_HYPERV_TIMER_STARTING, "clockevents/hyperv/stimer:starting", hv_stimer_init, hv_stimer_cleanup); if (ret < 0) { hv_remove_stimer0_irq(); goto free_clock_event; } return ret; free_clock_event: free_percpu(hv_clock_event); hv_clock_event = NULL; return ret; } EXPORT_SYMBOL_GPL(hv_stimer_alloc); /* * hv_stimer_legacy_init -- Called from the VMbus driver to handle * the case when Direct Mode is not enabled, and the stimer * must be initialized late in the CPU onlining process. * */ void hv_stimer_legacy_init(unsigned int cpu, int sint) { if (direct_mode_enabled) return; /* * This function gets called by each vCPU, so setting the * global stimer_message_sint value each time is conceptually * not ideal, but the value passed in is always the same and * it avoids introducing yet another interface into this * clocksource driver just to set the sint in the legacy case. */ stimer0_message_sint = sint; (void)hv_stimer_init(cpu); } EXPORT_SYMBOL_GPL(hv_stimer_legacy_init); /* * hv_stimer_legacy_cleanup -- Called from the VMbus driver to * handle the case when Direct Mode is not enabled, and the * stimer must be cleaned up early in the CPU offlining * process. */ void hv_stimer_legacy_cleanup(unsigned int cpu) { if (direct_mode_enabled) return; (void)hv_stimer_cleanup(cpu); } EXPORT_SYMBOL_GPL(hv_stimer_legacy_cleanup); /* * Do a global cleanup of clockevents for the cases of kexec and * vmbus exit */ void hv_stimer_global_cleanup(void) { int cpu; /* * hv_stime_legacy_cleanup() will stop the stimer if Direct * Mode is not enabled, and fallback to the LAPIC timer. */ for_each_present_cpu(cpu) { hv_stimer_legacy_cleanup(cpu); } if (!hv_clock_event) return; if (direct_mode_enabled) { cpuhp_remove_state(CPUHP_AP_HYPERV_TIMER_STARTING); hv_remove_stimer0_irq(); stimer0_irq = -1; } free_percpu(hv_clock_event); hv_clock_event = NULL; } EXPORT_SYMBOL_GPL(hv_stimer_global_cleanup); static __always_inline u64 read_hv_clock_msr(void) { /* * Read the partition counter to get the current tick count. This count * is set to 0 when the partition is created and is incremented in 100 * nanosecond units. * * Use hv_raw_get_register() because this function is used from * noinstr. Notable; while HV_REGISTER_TIME_REF_COUNT is a synthetic * register it doesn't need the GHCB path. */ return hv_raw_get_register(HV_REGISTER_TIME_REF_COUNT); } /* * Code and definitions for the Hyper-V clocksources. Two * clocksources are defined: one that reads the Hyper-V defined MSR, and * the other that uses the TSC reference page feature as defined in the * TLFS. The MSR version is for compatibility with old versions of * Hyper-V and 32-bit x86. The TSC reference page version is preferred. */ static union { struct ms_hyperv_tsc_page page; u8 reserved[PAGE_SIZE]; } tsc_pg __bss_decrypted __aligned(PAGE_SIZE); static struct ms_hyperv_tsc_page *tsc_page = &tsc_pg.page; static unsigned long tsc_pfn; unsigned long hv_get_tsc_pfn(void) { return tsc_pfn; } EXPORT_SYMBOL_GPL(hv_get_tsc_pfn); struct ms_hyperv_tsc_page *hv_get_tsc_page(void) { return tsc_page; } EXPORT_SYMBOL_GPL(hv_get_tsc_page); static __always_inline u64 read_hv_clock_tsc(void) { u64 cur_tsc, time; /* * The Hyper-V Top-Level Function Spec (TLFS), section Timers, * subsection Refererence Counter, guarantees that the TSC and MSR * times are in sync and monotonic. Therefore we can fall back * to the MSR in case the TSC page indicates unavailability. */ if (!hv_read_tsc_page_tsc(tsc_page, &cur_tsc, &time)) time = read_hv_clock_msr(); return time; } static u64 notrace read_hv_clock_tsc_cs(struct clocksource *arg) { return read_hv_clock_tsc(); } static u64 noinstr read_hv_sched_clock_tsc(void) { return (read_hv_clock_tsc() - hv_sched_clock_offset) * (NSEC_PER_SEC / HV_CLOCK_HZ); } static void suspend_hv_clock_tsc(struct clocksource *arg) { union hv_reference_tsc_msr tsc_msr; /* Disable the TSC page */ tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC); tsc_msr.enable = 0; hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64); } static void resume_hv_clock_tsc(struct clocksource *arg) { union hv_reference_tsc_msr tsc_msr; /* Re-enable the TSC page */ tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC); tsc_msr.enable = 1; tsc_msr.pfn = tsc_pfn; hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64); } #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK static int hv_cs_enable(struct clocksource *cs) { vclocks_set_used(VDSO_CLOCKMODE_HVCLOCK); return 0; } #endif static struct clocksource hyperv_cs_tsc = { .name = "hyperv_clocksource_tsc_page", .rating = 500, .read = read_hv_clock_tsc_cs, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .suspend= suspend_hv_clock_tsc, .resume = resume_hv_clock_tsc, #ifdef HAVE_VDSO_CLOCKMODE_HVCLOCK .enable = hv_cs_enable, .vdso_clock_mode = VDSO_CLOCKMODE_HVCLOCK, #else .vdso_clock_mode = VDSO_CLOCKMODE_NONE, #endif }; static u64 notrace read_hv_clock_msr_cs(struct clocksource *arg) { return read_hv_clock_msr(); } static struct clocksource hyperv_cs_msr = { .name = "hyperv_clocksource_msr", .rating = 495, .read = read_hv_clock_msr_cs, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; /* * Reference to pv_ops must be inline so objtool * detection of noinstr violations can work correctly. */ #ifdef CONFIG_GENERIC_SCHED_CLOCK static __always_inline void hv_setup_sched_clock(void *sched_clock) { /* * We're on an architecture with generic sched clock (not x86/x64). * The Hyper-V sched clock read function returns nanoseconds, not * the normal 100ns units of the Hyper-V synthetic clock. */ sched_clock_register(sched_clock, 64, NSEC_PER_SEC); } #elif defined CONFIG_PARAVIRT static __always_inline void hv_setup_sched_clock(void *sched_clock) { /* We're on x86/x64 *and* using PV ops */ paravirt_set_sched_clock(sched_clock); } #else /* !CONFIG_GENERIC_SCHED_CLOCK && !CONFIG_PARAVIRT */ static __always_inline void hv_setup_sched_clock(void *sched_clock) {} #endif /* CONFIG_GENERIC_SCHED_CLOCK */ static void __init hv_init_tsc_clocksource(void) { union hv_reference_tsc_msr tsc_msr; /* * If Hyper-V offers TSC_INVARIANT, then the virtualized TSC correctly * handles frequency and offset changes due to live migration, * pause/resume, and other VM management operations. So lower the * Hyper-V Reference TSC rating, causing the generic TSC to be used. * TSC_INVARIANT is not offered on ARM64, so the Hyper-V Reference * TSC will be preferred over the virtualized ARM64 arch counter. */ if (ms_hyperv.features & HV_ACCESS_TSC_INVARIANT) { hyperv_cs_tsc.rating = 250; hyperv_cs_msr.rating = 245; } if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) return; hv_read_reference_counter = read_hv_clock_tsc; /* * TSC page mapping works differently in root compared to guest. * - In guest partition the guest PFN has to be passed to the * hypervisor. * - In root partition it's other way around: it has to map the PFN * provided by the hypervisor. * But it can't be mapped right here as it's too early and MMU isn't * ready yet. So, we only set the enable bit here and will remap the * page later in hv_remap_tsc_clocksource(). * * It worth mentioning, that TSC clocksource read function * (read_hv_clock_tsc) has a MSR-based fallback mechanism, used when * TSC page is zeroed (which is the case until the PFN is remapped) and * thus TSC clocksource will work even without the real TSC page * mapped. */ tsc_msr.as_uint64 = hv_get_register(HV_REGISTER_REFERENCE_TSC); if (hv_root_partition) tsc_pfn = tsc_msr.pfn; else tsc_pfn = HVPFN_DOWN(virt_to_phys(tsc_page)); tsc_msr.enable = 1; tsc_msr.pfn = tsc_pfn; hv_set_register(HV_REGISTER_REFERENCE_TSC, tsc_msr.as_uint64); clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100); /* * If TSC is invariant, then let it stay as the sched clock since it * will be faster than reading the TSC page. But if not invariant, use * the TSC page so that live migrations across hosts with different * frequencies is handled correctly. */ if (!(ms_hyperv.features & HV_ACCESS_TSC_INVARIANT)) { hv_sched_clock_offset = hv_read_reference_counter(); hv_setup_sched_clock(read_hv_sched_clock_tsc); } } void __init hv_init_clocksource(void) { /* * Try to set up the TSC page clocksource, then the MSR clocksource. * At least one of these will always be available except on very old * versions of Hyper-V on x86. In that case we won't have a Hyper-V * clocksource, but Linux will still run with a clocksource based * on the emulated PIT or LAPIC timer. * * Never use the MSR clocksource as sched clock. It's too slow. * Better to use the native sched clock as the fallback. */ hv_init_tsc_clocksource(); if (ms_hyperv.features & HV_MSR_TIME_REF_COUNT_AVAILABLE) clocksource_register_hz(&hyperv_cs_msr, NSEC_PER_SEC/100); } void __init hv_remap_tsc_clocksource(void) { if (!(ms_hyperv.features & HV_MSR_REFERENCE_TSC_AVAILABLE)) return; if (!hv_root_partition) { WARN(1, "%s: attempt to remap TSC page in guest partition\n", __func__); return; } tsc_page = memremap(tsc_pfn << HV_HYP_PAGE_SHIFT, sizeof(tsc_pg), MEMREMAP_WB); if (!tsc_page) pr_err("Failed to remap Hyper-V TSC page.\n"); }
linux-master
drivers/clocksource/hyperv_timer.c
// SPDX-License-Identifier: GPL-2.0-only /* * drivers/clocksource/arm_global_timer.c * * Copyright (C) 2013 STMicroelectronics (R&D) Limited. * Author: Stuart Menefy <[email protected]> * Author: Srinivas Kandagatla <[email protected]> */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/sched_clock.h> #include <asm/cputype.h> #define GT_COUNTER0 0x00 #define GT_COUNTER1 0x04 #define GT_CONTROL 0x08 #define GT_CONTROL_TIMER_ENABLE BIT(0) /* this bit is NOT banked */ #define GT_CONTROL_COMP_ENABLE BIT(1) /* banked */ #define GT_CONTROL_IRQ_ENABLE BIT(2) /* banked */ #define GT_CONTROL_AUTO_INC BIT(3) /* banked */ #define GT_CONTROL_PRESCALER_SHIFT 8 #define GT_CONTROL_PRESCALER_MAX 0xF #define GT_CONTROL_PRESCALER_MASK (GT_CONTROL_PRESCALER_MAX << \ GT_CONTROL_PRESCALER_SHIFT) #define GT_INT_STATUS 0x0c #define GT_INT_STATUS_EVENT_FLAG BIT(0) #define GT_COMP0 0x10 #define GT_COMP1 0x14 #define GT_AUTO_INC 0x18 #define MAX_F_ERR 50 /* * We are expecting to be clocked by the ARM peripheral clock. * * Note: it is assumed we are using a prescaler value of zero, so this is * the units for all operations. */ static void __iomem *gt_base; static struct notifier_block gt_clk_rate_change_nb; static u32 gt_psv_new, gt_psv_bck, gt_target_rate; static int gt_ppi; static struct clock_event_device __percpu *gt_evt; /* * To get the value from the Global Timer Counter register proceed as follows: * 1. Read the upper 32-bit timer counter register * 2. Read the lower 32-bit timer counter register * 3. Read the upper 32-bit timer counter register again. If the value is * different to the 32-bit upper value read previously, go back to step 2. * Otherwise the 64-bit timer counter value is correct. */ static u64 notrace _gt_counter_read(void) { u64 counter; u32 lower; u32 upper, old_upper; upper = readl_relaxed(gt_base + GT_COUNTER1); do { old_upper = upper; lower = readl_relaxed(gt_base + GT_COUNTER0); upper = readl_relaxed(gt_base + GT_COUNTER1); } while (upper != old_upper); counter = upper; counter <<= 32; counter |= lower; return counter; } static u64 gt_counter_read(void) { return _gt_counter_read(); } /** * To ensure that updates to comparator value register do not set the * Interrupt Status Register proceed as follows: * 1. Clear the Comp Enable bit in the Timer Control Register. * 2. Write the lower 32-bit Comparator Value Register. * 3. Write the upper 32-bit Comparator Value Register. * 4. Set the Comp Enable bit and, if necessary, the IRQ enable bit. */ static void gt_compare_set(unsigned long delta, int periodic) { u64 counter = gt_counter_read(); unsigned long ctrl; counter += delta; ctrl = readl(gt_base + GT_CONTROL); ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE | GT_CONTROL_AUTO_INC); ctrl |= GT_CONTROL_TIMER_ENABLE; writel_relaxed(ctrl, gt_base + GT_CONTROL); writel_relaxed(lower_32_bits(counter), gt_base + GT_COMP0); writel_relaxed(upper_32_bits(counter), gt_base + GT_COMP1); if (periodic) { writel_relaxed(delta, gt_base + GT_AUTO_INC); ctrl |= GT_CONTROL_AUTO_INC; } ctrl |= GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE; writel_relaxed(ctrl, gt_base + GT_CONTROL); } static int gt_clockevent_shutdown(struct clock_event_device *evt) { unsigned long ctrl; ctrl = readl(gt_base + GT_CONTROL); ctrl &= ~(GT_CONTROL_COMP_ENABLE | GT_CONTROL_IRQ_ENABLE | GT_CONTROL_AUTO_INC); writel(ctrl, gt_base + GT_CONTROL); return 0; } static int gt_clockevent_set_periodic(struct clock_event_device *evt) { gt_compare_set(DIV_ROUND_CLOSEST(gt_target_rate, HZ), 1); return 0; } static int gt_clockevent_set_next_event(unsigned long evt, struct clock_event_device *unused) { gt_compare_set(evt, 0); return 0; } static irqreturn_t gt_clockevent_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; if (!(readl_relaxed(gt_base + GT_INT_STATUS) & GT_INT_STATUS_EVENT_FLAG)) return IRQ_NONE; /** * ERRATA 740657( Global Timer can send 2 interrupts for * the same event in single-shot mode) * Workaround: * Either disable single-shot mode. * Or * Modify the Interrupt Handler to avoid the * offending sequence. This is achieved by clearing * the Global Timer flag _after_ having incremented * the Comparator register value to a higher value. */ if (clockevent_state_oneshot(evt)) gt_compare_set(ULONG_MAX, 0); writel_relaxed(GT_INT_STATUS_EVENT_FLAG, gt_base + GT_INT_STATUS); evt->event_handler(evt); return IRQ_HANDLED; } static int gt_starting_cpu(unsigned int cpu) { struct clock_event_device *clk = this_cpu_ptr(gt_evt); clk->name = "arm_global_timer"; clk->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERCPU; clk->set_state_shutdown = gt_clockevent_shutdown; clk->set_state_periodic = gt_clockevent_set_periodic; clk->set_state_oneshot = gt_clockevent_shutdown; clk->set_state_oneshot_stopped = gt_clockevent_shutdown; clk->set_next_event = gt_clockevent_set_next_event; clk->cpumask = cpumask_of(cpu); clk->rating = 300; clk->irq = gt_ppi; clockevents_config_and_register(clk, gt_target_rate, 1, 0xffffffff); enable_percpu_irq(clk->irq, IRQ_TYPE_NONE); return 0; } static int gt_dying_cpu(unsigned int cpu) { struct clock_event_device *clk = this_cpu_ptr(gt_evt); gt_clockevent_shutdown(clk); disable_percpu_irq(clk->irq); return 0; } static u64 gt_clocksource_read(struct clocksource *cs) { return gt_counter_read(); } static void gt_resume(struct clocksource *cs) { unsigned long ctrl; ctrl = readl(gt_base + GT_CONTROL); if (!(ctrl & GT_CONTROL_TIMER_ENABLE)) /* re-enable timer on resume */ writel(GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL); } static struct clocksource gt_clocksource = { .name = "arm_global_timer", .rating = 300, .read = gt_clocksource_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .resume = gt_resume, }; #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK static u64 notrace gt_sched_clock_read(void) { return _gt_counter_read(); } #endif static unsigned long gt_read_long(void) { return readl_relaxed(gt_base + GT_COUNTER0); } static struct delay_timer gt_delay_timer = { .read_current_timer = gt_read_long, }; static void gt_write_presc(u32 psv) { u32 reg; reg = readl(gt_base + GT_CONTROL); reg &= ~GT_CONTROL_PRESCALER_MASK; reg |= psv << GT_CONTROL_PRESCALER_SHIFT; writel(reg, gt_base + GT_CONTROL); } static u32 gt_read_presc(void) { u32 reg; reg = readl(gt_base + GT_CONTROL); reg &= GT_CONTROL_PRESCALER_MASK; return reg >> GT_CONTROL_PRESCALER_SHIFT; } static void __init gt_delay_timer_init(void) { gt_delay_timer.freq = gt_target_rate; register_current_timer_delay(&gt_delay_timer); } static int __init gt_clocksource_init(void) { writel(0, gt_base + GT_CONTROL); writel(0, gt_base + GT_COUNTER0); writel(0, gt_base + GT_COUNTER1); /* set prescaler and enable timer on all the cores */ writel(((CONFIG_ARM_GT_INITIAL_PRESCALER_VAL - 1) << GT_CONTROL_PRESCALER_SHIFT) | GT_CONTROL_TIMER_ENABLE, gt_base + GT_CONTROL); #ifdef CONFIG_CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK sched_clock_register(gt_sched_clock_read, 64, gt_target_rate); #endif return clocksource_register_hz(&gt_clocksource, gt_target_rate); } static int gt_clk_rate_change_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; switch (event) { case PRE_RATE_CHANGE: { int psv; psv = DIV_ROUND_CLOSEST(ndata->new_rate, gt_target_rate); if (abs(gt_target_rate - (ndata->new_rate / psv)) > MAX_F_ERR) return NOTIFY_BAD; psv--; /* prescaler within legal range? */ if (psv < 0 || psv > GT_CONTROL_PRESCALER_MAX) return NOTIFY_BAD; /* * store timer clock ctrl register so we can restore it in case * of an abort. */ gt_psv_bck = gt_read_presc(); gt_psv_new = psv; /* scale down: adjust divider in post-change notification */ if (ndata->new_rate < ndata->old_rate) return NOTIFY_DONE; /* scale up: adjust divider now - before frequency change */ gt_write_presc(psv); break; } case POST_RATE_CHANGE: /* scale up: pre-change notification did the adjustment */ if (ndata->new_rate > ndata->old_rate) return NOTIFY_OK; /* scale down: adjust divider now - after frequency change */ gt_write_presc(gt_psv_new); break; case ABORT_RATE_CHANGE: /* we have to undo the adjustment in case we scale up */ if (ndata->new_rate < ndata->old_rate) return NOTIFY_OK; /* restore original register value */ gt_write_presc(gt_psv_bck); break; default: return NOTIFY_DONE; } return NOTIFY_DONE; } static int __init global_timer_of_register(struct device_node *np) { struct clk *gt_clk; static unsigned long gt_clk_rate; int err = 0; /* * In A9 r2p0 the comparators for each processor with the global timer * fire when the timer value is greater than or equal to. In previous * revisions the comparators fired when the timer value was equal to. */ if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A9 && (read_cpuid_id() & 0xf0000f) < 0x200000) { pr_warn("global-timer: non support for this cpu version.\n"); return -ENOSYS; } gt_ppi = irq_of_parse_and_map(np, 0); if (!gt_ppi) { pr_warn("global-timer: unable to parse irq\n"); return -EINVAL; } gt_base = of_iomap(np, 0); if (!gt_base) { pr_warn("global-timer: invalid base address\n"); return -ENXIO; } gt_clk = of_clk_get(np, 0); if (!IS_ERR(gt_clk)) { err = clk_prepare_enable(gt_clk); if (err) goto out_unmap; } else { pr_warn("global-timer: clk not found\n"); err = -EINVAL; goto out_unmap; } gt_clk_rate = clk_get_rate(gt_clk); gt_target_rate = gt_clk_rate / CONFIG_ARM_GT_INITIAL_PRESCALER_VAL; gt_clk_rate_change_nb.notifier_call = gt_clk_rate_change_cb; err = clk_notifier_register(gt_clk, &gt_clk_rate_change_nb); if (err) { pr_warn("Unable to register clock notifier\n"); goto out_clk; } gt_evt = alloc_percpu(struct clock_event_device); if (!gt_evt) { pr_warn("global-timer: can't allocate memory\n"); err = -ENOMEM; goto out_clk_nb; } err = request_percpu_irq(gt_ppi, gt_clockevent_interrupt, "gt", gt_evt); if (err) { pr_warn("global-timer: can't register interrupt %d (%d)\n", gt_ppi, err); goto out_free; } /* Register and immediately configure the timer on the boot CPU */ err = gt_clocksource_init(); if (err) goto out_irq; err = cpuhp_setup_state(CPUHP_AP_ARM_GLOBAL_TIMER_STARTING, "clockevents/arm/global_timer:starting", gt_starting_cpu, gt_dying_cpu); if (err) goto out_irq; gt_delay_timer_init(); return 0; out_irq: free_percpu_irq(gt_ppi, gt_evt); out_free: free_percpu(gt_evt); out_clk_nb: clk_notifier_unregister(gt_clk, &gt_clk_rate_change_nb); out_clk: clk_disable_unprepare(gt_clk); out_unmap: iounmap(gt_base); WARN(err, "ARM Global timer register failed (%d)\n", err); return err; } /* Only tested on r2p2 and r3p0 */ TIMER_OF_DECLARE(arm_gt, "arm,cortex-a9-global-timer", global_timer_of_register);
linux-master
drivers/clocksource/arm_global_timer.c
// SPDX-License-Identifier: GPL-2.0 /* * 64-bit Periodic Interval Timer driver * * Copyright (C) 2019 Microchip Technology Inc. and its subsidiaries * * Author: Claudiu Beznea <[email protected]> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/slab.h> #define MCHP_PIT64B_CR 0x00 /* Control Register */ #define MCHP_PIT64B_CR_START BIT(0) #define MCHP_PIT64B_CR_SWRST BIT(8) #define MCHP_PIT64B_MR 0x04 /* Mode Register */ #define MCHP_PIT64B_MR_CONT BIT(0) #define MCHP_PIT64B_MR_ONE_SHOT (0) #define MCHP_PIT64B_MR_SGCLK BIT(3) #define MCHP_PIT64B_MR_PRES GENMASK(11, 8) #define MCHP_PIT64B_LSB_PR 0x08 /* LSB Period Register */ #define MCHP_PIT64B_MSB_PR 0x0C /* MSB Period Register */ #define MCHP_PIT64B_IER 0x10 /* Interrupt Enable Register */ #define MCHP_PIT64B_IER_PERIOD BIT(0) #define MCHP_PIT64B_ISR 0x1C /* Interrupt Status Register */ #define MCHP_PIT64B_TLSBR 0x20 /* Timer LSB Register */ #define MCHP_PIT64B_TMSBR 0x24 /* Timer MSB Register */ #define MCHP_PIT64B_PRES_MAX 0x10 #define MCHP_PIT64B_LSBMASK GENMASK_ULL(31, 0) #define MCHP_PIT64B_PRES_TO_MODE(p) (MCHP_PIT64B_MR_PRES & ((p) << 8)) #define MCHP_PIT64B_MODE_TO_PRES(m) ((MCHP_PIT64B_MR_PRES & (m)) >> 8) #define MCHP_PIT64B_DEF_FREQ 5000000UL /* 5 MHz */ #define MCHP_PIT64B_NAME "pit64b" /** * struct mchp_pit64b_timer - PIT64B timer data structure * @base: base address of PIT64B hardware block * @pclk: PIT64B's peripheral clock * @gclk: PIT64B's generic clock * @mode: precomputed value for mode register */ struct mchp_pit64b_timer { void __iomem *base; struct clk *pclk; struct clk *gclk; u32 mode; }; /** * struct mchp_pit64b_clkevt - PIT64B clockevent data structure * @timer: PIT64B timer * @clkevt: clockevent */ struct mchp_pit64b_clkevt { struct mchp_pit64b_timer timer; struct clock_event_device clkevt; }; #define clkevt_to_mchp_pit64b_timer(x) \ ((struct mchp_pit64b_timer *)container_of(x,\ struct mchp_pit64b_clkevt, clkevt)) /** * struct mchp_pit64b_clksrc - PIT64B clocksource data structure * @timer: PIT64B timer * @clksrc: clocksource */ struct mchp_pit64b_clksrc { struct mchp_pit64b_timer timer; struct clocksource clksrc; }; #define clksrc_to_mchp_pit64b_timer(x) \ ((struct mchp_pit64b_timer *)container_of(x,\ struct mchp_pit64b_clksrc, clksrc)) /* Base address for clocksource timer. */ static void __iomem *mchp_pit64b_cs_base; /* Default cycles for clockevent timer. */ static u64 mchp_pit64b_ce_cycles; /* Delay timer. */ static struct delay_timer mchp_pit64b_dt; static inline u64 mchp_pit64b_cnt_read(void __iomem *base) { unsigned long flags; u32 low, high; raw_local_irq_save(flags); /* * When using a 64 bit period TLSB must be read first, followed by the * read of TMSB. This sequence generates an atomic read of the 64 bit * timer value whatever the lapse of time between the accesses. */ low = readl_relaxed(base + MCHP_PIT64B_TLSBR); high = readl_relaxed(base + MCHP_PIT64B_TMSBR); raw_local_irq_restore(flags); return (((u64)high << 32) | low); } static inline void mchp_pit64b_reset(struct mchp_pit64b_timer *timer, u64 cycles, u32 mode, u32 irqs) { u32 low, high; low = cycles & MCHP_PIT64B_LSBMASK; high = cycles >> 32; writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); writel_relaxed(mode | timer->mode, timer->base + MCHP_PIT64B_MR); writel_relaxed(high, timer->base + MCHP_PIT64B_MSB_PR); writel_relaxed(low, timer->base + MCHP_PIT64B_LSB_PR); writel_relaxed(irqs, timer->base + MCHP_PIT64B_IER); writel_relaxed(MCHP_PIT64B_CR_START, timer->base + MCHP_PIT64B_CR); } static void mchp_pit64b_suspend(struct mchp_pit64b_timer *timer) { writel_relaxed(MCHP_PIT64B_CR_SWRST, timer->base + MCHP_PIT64B_CR); if (timer->mode & MCHP_PIT64B_MR_SGCLK) clk_disable_unprepare(timer->gclk); clk_disable_unprepare(timer->pclk); } static void mchp_pit64b_resume(struct mchp_pit64b_timer *timer) { clk_prepare_enable(timer->pclk); if (timer->mode & MCHP_PIT64B_MR_SGCLK) clk_prepare_enable(timer->gclk); } static void mchp_pit64b_clksrc_suspend(struct clocksource *cs) { struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); mchp_pit64b_suspend(timer); } static void mchp_pit64b_clksrc_resume(struct clocksource *cs) { struct mchp_pit64b_timer *timer = clksrc_to_mchp_pit64b_timer(cs); mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); } static u64 mchp_pit64b_clksrc_read(struct clocksource *cs) { return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); } static u64 notrace mchp_pit64b_sched_read_clk(void) { return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); } static unsigned long notrace mchp_pit64b_dt_read(void) { return mchp_pit64b_cnt_read(mchp_pit64b_cs_base); } static int mchp_pit64b_clkevt_shutdown(struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); if (!clockevent_state_detached(cedev)) mchp_pit64b_suspend(timer); return 0; } static int mchp_pit64b_clkevt_set_periodic(struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); if (clockevent_state_shutdown(cedev)) mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_CONT, MCHP_PIT64B_IER_PERIOD); return 0; } static int mchp_pit64b_clkevt_set_oneshot(struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); if (clockevent_state_shutdown(cedev)) mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, mchp_pit64b_ce_cycles, MCHP_PIT64B_MR_ONE_SHOT, MCHP_PIT64B_IER_PERIOD); return 0; } static int mchp_pit64b_clkevt_set_next_event(unsigned long evt, struct clock_event_device *cedev) { struct mchp_pit64b_timer *timer = clkevt_to_mchp_pit64b_timer(cedev); mchp_pit64b_reset(timer, evt, MCHP_PIT64B_MR_ONE_SHOT, MCHP_PIT64B_IER_PERIOD); return 0; } static irqreturn_t mchp_pit64b_interrupt(int irq, void *dev_id) { struct mchp_pit64b_clkevt *irq_data = dev_id; /* Need to clear the interrupt. */ readl_relaxed(irq_data->timer.base + MCHP_PIT64B_ISR); irq_data->clkevt.event_handler(&irq_data->clkevt); return IRQ_HANDLED; } static void __init mchp_pit64b_pres_compute(u32 *pres, u32 clk_rate, u32 max_rate) { u32 tmp; for (*pres = 0; *pres < MCHP_PIT64B_PRES_MAX; (*pres)++) { tmp = clk_rate / (*pres + 1); if (tmp <= max_rate) break; } /* Use the biggest prescaler if we didn't match one. */ if (*pres == MCHP_PIT64B_PRES_MAX) *pres = MCHP_PIT64B_PRES_MAX - 1; } /** * mchp_pit64b_init_mode() - prepare PIT64B mode register value to be used at * runtime; this includes prescaler and SGCLK bit * @timer: pointer to pit64b timer to init * @max_rate: maximum rate that timer's clock could use * * PIT64B timer may be fed by gclk or pclk. When gclk is used its rate has to * be at least 3 times lower that pclk's rate. pclk rate is fixed, gclk rate * could be changed via clock APIs. The chosen clock (pclk or gclk) could be * divided by the internal PIT64B's divider. * * This function, first tries to use GCLK by requesting the desired rate from * PMC and then using the internal PIT64B prescaler, if any, to reach the * requested rate. If PCLK/GCLK < 3 (condition requested by PIT64B hardware) * then the function falls back on using PCLK as clock source for PIT64B timer * choosing the highest prescaler in case it doesn't locate one to match the * requested frequency. * * Below is presented the PIT64B block in relation with PMC: * * PIT64B * PMC +------------------------------------+ * +----+ | +-----+ | * | |-->gclk -->|-->| | +---------+ +-----+ | * | | | | MUX |--->| Divider |->|timer| | * | |-->pclk -->|-->| | +---------+ +-----+ | * +----+ | +-----+ | * | ^ | * | sel | * +------------------------------------+ * * Where: * - gclk rate <= pclk rate/3 * - gclk rate could be requested from PMC * - pclk rate is fixed (cannot be requested from PMC) */ static int __init mchp_pit64b_init_mode(struct mchp_pit64b_timer *timer, unsigned long max_rate) { unsigned long pclk_rate, diff = 0, best_diff = ULONG_MAX; long gclk_round = 0; u32 pres, best_pres = 0; pclk_rate = clk_get_rate(timer->pclk); if (!pclk_rate) return -EINVAL; timer->mode = 0; /* Try using GCLK. */ gclk_round = clk_round_rate(timer->gclk, max_rate); if (gclk_round < 0) goto pclk; if (pclk_rate / gclk_round < 3) goto pclk; mchp_pit64b_pres_compute(&pres, gclk_round, max_rate); best_diff = abs(gclk_round / (pres + 1) - max_rate); best_pres = pres; if (!best_diff) { timer->mode |= MCHP_PIT64B_MR_SGCLK; clk_set_rate(timer->gclk, gclk_round); goto done; } pclk: /* Check if requested rate could be obtained using PCLK. */ mchp_pit64b_pres_compute(&pres, pclk_rate, max_rate); diff = abs(pclk_rate / (pres + 1) - max_rate); if (best_diff > diff) { /* Use PCLK. */ best_pres = pres; } else { /* Use GCLK. */ timer->mode |= MCHP_PIT64B_MR_SGCLK; clk_set_rate(timer->gclk, gclk_round); } done: timer->mode |= MCHP_PIT64B_PRES_TO_MODE(best_pres); pr_info("PIT64B: using clk=%s with prescaler %u, freq=%lu [Hz]\n", timer->mode & MCHP_PIT64B_MR_SGCLK ? "gclk" : "pclk", best_pres, timer->mode & MCHP_PIT64B_MR_SGCLK ? gclk_round / (best_pres + 1) : pclk_rate / (best_pres + 1)); return 0; } static int __init mchp_pit64b_init_clksrc(struct mchp_pit64b_timer *timer, u32 clk_rate) { struct mchp_pit64b_clksrc *cs; int ret; cs = kzalloc(sizeof(*cs), GFP_KERNEL); if (!cs) return -ENOMEM; mchp_pit64b_resume(timer); mchp_pit64b_reset(timer, ULLONG_MAX, MCHP_PIT64B_MR_CONT, 0); mchp_pit64b_cs_base = timer->base; cs->timer.base = timer->base; cs->timer.pclk = timer->pclk; cs->timer.gclk = timer->gclk; cs->timer.mode = timer->mode; cs->clksrc.name = MCHP_PIT64B_NAME; cs->clksrc.mask = CLOCKSOURCE_MASK(64); cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; cs->clksrc.rating = 210; cs->clksrc.read = mchp_pit64b_clksrc_read; cs->clksrc.suspend = mchp_pit64b_clksrc_suspend; cs->clksrc.resume = mchp_pit64b_clksrc_resume; ret = clocksource_register_hz(&cs->clksrc, clk_rate); if (ret) { pr_debug("clksrc: Failed to register PIT64B clocksource!\n"); /* Stop timer. */ mchp_pit64b_suspend(timer); kfree(cs); return ret; } sched_clock_register(mchp_pit64b_sched_read_clk, 64, clk_rate); mchp_pit64b_dt.read_current_timer = mchp_pit64b_dt_read; mchp_pit64b_dt.freq = clk_rate; register_current_timer_delay(&mchp_pit64b_dt); return 0; } static int __init mchp_pit64b_init_clkevt(struct mchp_pit64b_timer *timer, u32 clk_rate, u32 irq) { struct mchp_pit64b_clkevt *ce; int ret; ce = kzalloc(sizeof(*ce), GFP_KERNEL); if (!ce) return -ENOMEM; mchp_pit64b_ce_cycles = DIV_ROUND_CLOSEST(clk_rate, HZ); ce->timer.base = timer->base; ce->timer.pclk = timer->pclk; ce->timer.gclk = timer->gclk; ce->timer.mode = timer->mode; ce->clkevt.name = MCHP_PIT64B_NAME; ce->clkevt.features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; ce->clkevt.rating = 150; ce->clkevt.set_state_shutdown = mchp_pit64b_clkevt_shutdown; ce->clkevt.set_state_periodic = mchp_pit64b_clkevt_set_periodic; ce->clkevt.set_state_oneshot = mchp_pit64b_clkevt_set_oneshot; ce->clkevt.set_next_event = mchp_pit64b_clkevt_set_next_event; ce->clkevt.cpumask = cpumask_of(0); ce->clkevt.irq = irq; ret = request_irq(irq, mchp_pit64b_interrupt, IRQF_TIMER, "pit64b_tick", ce); if (ret) { pr_debug("clkevt: Failed to setup PIT64B IRQ\n"); kfree(ce); return ret; } clockevents_config_and_register(&ce->clkevt, clk_rate, 1, ULONG_MAX); return 0; } static int __init mchp_pit64b_dt_init_timer(struct device_node *node, bool clkevt) { struct mchp_pit64b_timer timer; unsigned long clk_rate; u32 irq = 0; int ret; /* Parse DT node. */ timer.pclk = of_clk_get_by_name(node, "pclk"); if (IS_ERR(timer.pclk)) return PTR_ERR(timer.pclk); timer.gclk = of_clk_get_by_name(node, "gclk"); if (IS_ERR(timer.gclk)) return PTR_ERR(timer.gclk); timer.base = of_iomap(node, 0); if (!timer.base) return -ENXIO; if (clkevt) { irq = irq_of_parse_and_map(node, 0); if (!irq) { ret = -ENODEV; goto io_unmap; } } /* Initialize mode (prescaler + SGCK bit). To be used at runtime. */ ret = mchp_pit64b_init_mode(&timer, MCHP_PIT64B_DEF_FREQ); if (ret) goto irq_unmap; if (timer.mode & MCHP_PIT64B_MR_SGCLK) clk_rate = clk_get_rate(timer.gclk); else clk_rate = clk_get_rate(timer.pclk); clk_rate = clk_rate / (MCHP_PIT64B_MODE_TO_PRES(timer.mode) + 1); if (clkevt) ret = mchp_pit64b_init_clkevt(&timer, clk_rate, irq); else ret = mchp_pit64b_init_clksrc(&timer, clk_rate); if (ret) goto irq_unmap; return 0; irq_unmap: irq_dispose_mapping(irq); io_unmap: iounmap(timer.base); return ret; } static int __init mchp_pit64b_dt_init(struct device_node *node) { static int inits; switch (inits++) { case 0: /* 1st request, register clockevent. */ return mchp_pit64b_dt_init_timer(node, true); case 1: /* 2nd request, register clocksource. */ return mchp_pit64b_dt_init_timer(node, false); } /* The rest, don't care. */ return -EINVAL; } TIMER_OF_DECLARE(mchp_pit64b, "microchip,sam9x60-pit64b", mchp_pit64b_dt_init);
linux-master
drivers/clocksource/timer-microchip-pit64b.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Mediatek SoCs General-Purpose Timer handling. * * Copyright (C) 2014 Matthias Brugger * * Matthias Brugger <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/irqreturn.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include "timer-of.h" #define TIMER_CLK_EVT (1) #define TIMER_CLK_SRC (2) #define TIMER_SYNC_TICKS (3) /* gpt */ #define GPT_IRQ_EN_REG 0x00 #define GPT_IRQ_ENABLE(val) BIT((val) - 1) #define GPT_IRQ_ACK_REG 0x08 #define GPT_IRQ_ACK(val) BIT((val) - 1) #define GPT_CTRL_REG(val) (0x10 * (val)) #define GPT_CTRL_OP(val) (((val) & 0x3) << 4) #define GPT_CTRL_OP_ONESHOT (0) #define GPT_CTRL_OP_REPEAT (1) #define GPT_CTRL_OP_FREERUN (3) #define GPT_CTRL_CLEAR (2) #define GPT_CTRL_ENABLE (1) #define GPT_CTRL_DISABLE (0) #define GPT_CLK_REG(val) (0x04 + (0x10 * (val))) #define GPT_CLK_SRC(val) (((val) & 0x1) << 4) #define GPT_CLK_SRC_SYS13M (0) #define GPT_CLK_SRC_RTC32K (1) #define GPT_CLK_DIV1 (0x0) #define GPT_CLK_DIV2 (0x1) #define GPT_CNT_REG(val) (0x08 + (0x10 * (val))) #define GPT_CMP_REG(val) (0x0C + (0x10 * (val))) /* system timer */ #define SYST_BASE (0x40) #define SYST_CON (SYST_BASE + 0x0) #define SYST_VAL (SYST_BASE + 0x4) #define SYST_CON_REG(to) (timer_of_base(to) + SYST_CON) #define SYST_VAL_REG(to) (timer_of_base(to) + SYST_VAL) /* * SYST_CON_EN: Clock enable. Shall be set to * - Start timer countdown. * - Allow timeout ticks being updated. * - Allow changing interrupt status,like clear irq pending. * * SYST_CON_IRQ_EN: Set to enable interrupt. * * SYST_CON_IRQ_CLR: Set to clear interrupt. */ #define SYST_CON_EN BIT(0) #define SYST_CON_IRQ_EN BIT(1) #define SYST_CON_IRQ_CLR BIT(4) static void __iomem *gpt_sched_reg __read_mostly; static void mtk_syst_ack_irq(struct timer_of *to) { /* Clear and disable interrupt */ writel(SYST_CON_EN, SYST_CON_REG(to)); writel(SYST_CON_IRQ_CLR | SYST_CON_EN, SYST_CON_REG(to)); } static irqreturn_t mtk_syst_handler(int irq, void *dev_id) { struct clock_event_device *clkevt = dev_id; struct timer_of *to = to_timer_of(clkevt); mtk_syst_ack_irq(to); clkevt->event_handler(clkevt); return IRQ_HANDLED; } static int mtk_syst_clkevt_next_event(unsigned long ticks, struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); /* Enable clock to allow timeout tick update later */ writel(SYST_CON_EN, SYST_CON_REG(to)); /* * Write new timeout ticks. Timer shall start countdown * after timeout ticks are updated. */ writel(ticks, SYST_VAL_REG(to)); /* Enable interrupt */ writel(SYST_CON_EN | SYST_CON_IRQ_EN, SYST_CON_REG(to)); return 0; } static int mtk_syst_clkevt_shutdown(struct clock_event_device *clkevt) { /* Clear any irq */ mtk_syst_ack_irq(to_timer_of(clkevt)); /* Disable timer */ writel(0, SYST_CON_REG(to_timer_of(clkevt))); return 0; } static int mtk_syst_clkevt_resume(struct clock_event_device *clkevt) { return mtk_syst_clkevt_shutdown(clkevt); } static int mtk_syst_clkevt_oneshot(struct clock_event_device *clkevt) { return 0; } static u64 notrace mtk_gpt_read_sched_clock(void) { return readl_relaxed(gpt_sched_reg); } static void mtk_gpt_clkevt_time_stop(struct timer_of *to, u8 timer) { u32 val; val = readl(timer_of_base(to) + GPT_CTRL_REG(timer)); writel(val & ~GPT_CTRL_ENABLE, timer_of_base(to) + GPT_CTRL_REG(timer)); } static void mtk_gpt_clkevt_time_setup(struct timer_of *to, unsigned long delay, u8 timer) { writel(delay, timer_of_base(to) + GPT_CMP_REG(timer)); } static void mtk_gpt_clkevt_time_start(struct timer_of *to, bool periodic, u8 timer) { u32 val; /* Acknowledge interrupt */ writel(GPT_IRQ_ACK(timer), timer_of_base(to) + GPT_IRQ_ACK_REG); val = readl(timer_of_base(to) + GPT_CTRL_REG(timer)); /* Clear 2 bit timer operation mode field */ val &= ~GPT_CTRL_OP(0x3); if (periodic) val |= GPT_CTRL_OP(GPT_CTRL_OP_REPEAT); else val |= GPT_CTRL_OP(GPT_CTRL_OP_ONESHOT); writel(val | GPT_CTRL_ENABLE | GPT_CTRL_CLEAR, timer_of_base(to) + GPT_CTRL_REG(timer)); } static int mtk_gpt_clkevt_shutdown(struct clock_event_device *clk) { mtk_gpt_clkevt_time_stop(to_timer_of(clk), TIMER_CLK_EVT); return 0; } static int mtk_gpt_clkevt_set_periodic(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT); mtk_gpt_clkevt_time_setup(to, to->of_clk.period, TIMER_CLK_EVT); mtk_gpt_clkevt_time_start(to, true, TIMER_CLK_EVT); return 0; } static int mtk_gpt_clkevt_next_event(unsigned long event, struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mtk_gpt_clkevt_time_stop(to, TIMER_CLK_EVT); mtk_gpt_clkevt_time_setup(to, event, TIMER_CLK_EVT); mtk_gpt_clkevt_time_start(to, false, TIMER_CLK_EVT); return 0; } static irqreturn_t mtk_gpt_interrupt(int irq, void *dev_id) { struct clock_event_device *clkevt = (struct clock_event_device *)dev_id; struct timer_of *to = to_timer_of(clkevt); /* Acknowledge timer0 irq */ writel(GPT_IRQ_ACK(TIMER_CLK_EVT), timer_of_base(to) + GPT_IRQ_ACK_REG); clkevt->event_handler(clkevt); return IRQ_HANDLED; } static void __init mtk_gpt_setup(struct timer_of *to, u8 timer, u8 option) { writel(GPT_CTRL_CLEAR | GPT_CTRL_DISABLE, timer_of_base(to) + GPT_CTRL_REG(timer)); writel(GPT_CLK_SRC(GPT_CLK_SRC_SYS13M) | GPT_CLK_DIV1, timer_of_base(to) + GPT_CLK_REG(timer)); writel(0x0, timer_of_base(to) + GPT_CMP_REG(timer)); writel(GPT_CTRL_OP(option) | GPT_CTRL_ENABLE, timer_of_base(to) + GPT_CTRL_REG(timer)); } static void mtk_gpt_enable_irq(struct timer_of *to, u8 timer) { u32 val; /* Disable all interrupts */ writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG); /* Acknowledge all spurious pending interrupts */ writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG); val = readl(timer_of_base(to) + GPT_IRQ_EN_REG); writel(val | GPT_IRQ_ENABLE(timer), timer_of_base(to) + GPT_IRQ_EN_REG); } static void mtk_gpt_resume(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mtk_gpt_enable_irq(to, TIMER_CLK_EVT); } static void mtk_gpt_suspend(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); /* Disable all interrupts */ writel(0x0, timer_of_base(to) + GPT_IRQ_EN_REG); /* * This is called with interrupts disabled, * so we need to ack any interrupt that is pending * or for example ATF will prevent a suspend from completing. */ writel(0x3f, timer_of_base(to) + GPT_IRQ_ACK_REG); } static struct timer_of to = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = "mtk-clkevt", .rating = 300, .cpumask = cpu_possible_mask, }, .of_irq = { .flags = IRQF_TIMER | IRQF_IRQPOLL, }, }; static int __init mtk_syst_init(struct device_node *node) { int ret; to.clkevt.features = CLOCK_EVT_FEAT_DYNIRQ | CLOCK_EVT_FEAT_ONESHOT; to.clkevt.set_state_shutdown = mtk_syst_clkevt_shutdown; to.clkevt.set_state_oneshot = mtk_syst_clkevt_oneshot; to.clkevt.tick_resume = mtk_syst_clkevt_resume; to.clkevt.set_next_event = mtk_syst_clkevt_next_event; to.of_irq.handler = mtk_syst_handler; ret = timer_of_init(node, &to); if (ret) return ret; clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), TIMER_SYNC_TICKS, 0xffffffff); return 0; } static int __init mtk_gpt_init(struct device_node *node) { int ret; to.clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; to.clkevt.set_state_shutdown = mtk_gpt_clkevt_shutdown; to.clkevt.set_state_periodic = mtk_gpt_clkevt_set_periodic; to.clkevt.set_state_oneshot = mtk_gpt_clkevt_shutdown; to.clkevt.tick_resume = mtk_gpt_clkevt_shutdown; to.clkevt.set_next_event = mtk_gpt_clkevt_next_event; to.clkevt.suspend = mtk_gpt_suspend; to.clkevt.resume = mtk_gpt_resume; to.of_irq.handler = mtk_gpt_interrupt; ret = timer_of_init(node, &to); if (ret) return ret; /* Configure clock source */ mtk_gpt_setup(&to, TIMER_CLK_SRC, GPT_CTRL_OP_FREERUN); clocksource_mmio_init(timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC), node->name, timer_of_rate(&to), 300, 32, clocksource_mmio_readl_up); gpt_sched_reg = timer_of_base(&to) + GPT_CNT_REG(TIMER_CLK_SRC); sched_clock_register(mtk_gpt_read_sched_clock, 32, timer_of_rate(&to)); /* Configure clock event */ mtk_gpt_setup(&to, TIMER_CLK_EVT, GPT_CTRL_OP_REPEAT); clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), TIMER_SYNC_TICKS, 0xffffffff); mtk_gpt_enable_irq(&to, TIMER_CLK_EVT); return 0; } TIMER_OF_DECLARE(mtk_mt6577, "mediatek,mt6577-timer", mtk_gpt_init); TIMER_OF_DECLARE(mtk_mt6765, "mediatek,mt6765-timer", mtk_syst_init);
linux-master
drivers/clocksource/timer-mediatek.c
// SPDX-License-Identifier: GPL-2.0 /* * Allwinner A1X SoCs timer handling. * * Copyright (C) 2012 Maxime Ripard * * Maxime Ripard <[email protected]> * * Based on code from * Allwinner Technology Co., Ltd. <www.allwinnertech.com> * Benn Huang <[email protected]> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqreturn.h> #include <linux/sched_clock.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include "timer-of.h" #define TIMER_IRQ_EN_REG 0x00 #define TIMER_IRQ_EN(val) BIT(val) #define TIMER_IRQ_ST_REG 0x04 #define TIMER_IRQ_CLEAR(val) BIT(val) #define TIMER_CTL_REG(val) (0x10 * val + 0x10) #define TIMER_CTL_ENABLE BIT(0) #define TIMER_CTL_RELOAD BIT(1) #define TIMER_CTL_CLK_SRC(val) (((val) & 0x3) << 2) #define TIMER_CTL_CLK_SRC_OSC24M (1) #define TIMER_CTL_CLK_PRES(val) (((val) & 0x7) << 4) #define TIMER_CTL_ONESHOT BIT(7) #define TIMER_INTVAL_REG(val) (0x10 * (val) + 0x14) #define TIMER_CNTVAL_REG(val) (0x10 * (val) + 0x18) #define TIMER_SYNC_TICKS 3 /* * When we disable a timer, we need to wait at least for 2 cycles of * the timer source clock. We will use for that the clocksource timer * that is already setup and runs at the same frequency than the other * timers, and we never will be disabled. */ static void sun4i_clkevt_sync(void __iomem *base) { u32 old = readl(base + TIMER_CNTVAL_REG(1)); while ((old - readl(base + TIMER_CNTVAL_REG(1))) < TIMER_SYNC_TICKS) cpu_relax(); } static void sun4i_clkevt_time_stop(void __iomem *base, u8 timer) { u32 val = readl(base + TIMER_CTL_REG(timer)); writel(val & ~TIMER_CTL_ENABLE, base + TIMER_CTL_REG(timer)); sun4i_clkevt_sync(base); } static void sun4i_clkevt_time_setup(void __iomem *base, u8 timer, unsigned long delay) { writel(delay, base + TIMER_INTVAL_REG(timer)); } static void sun4i_clkevt_time_start(void __iomem *base, u8 timer, bool periodic) { u32 val = readl(base + TIMER_CTL_REG(timer)); if (periodic) val &= ~TIMER_CTL_ONESHOT; else val |= TIMER_CTL_ONESHOT; writel(val | TIMER_CTL_ENABLE | TIMER_CTL_RELOAD, base + TIMER_CTL_REG(timer)); } static int sun4i_clkevt_shutdown(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); sun4i_clkevt_time_stop(timer_of_base(to), 0); return 0; } static int sun4i_clkevt_set_oneshot(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); sun4i_clkevt_time_stop(timer_of_base(to), 0); sun4i_clkevt_time_start(timer_of_base(to), 0, false); return 0; } static int sun4i_clkevt_set_periodic(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); sun4i_clkevt_time_stop(timer_of_base(to), 0); sun4i_clkevt_time_setup(timer_of_base(to), 0, timer_of_period(to)); sun4i_clkevt_time_start(timer_of_base(to), 0, true); return 0; } static int sun4i_clkevt_next_event(unsigned long evt, struct clock_event_device *clkevt) { struct timer_of *to = to_timer_of(clkevt); sun4i_clkevt_time_stop(timer_of_base(to), 0); sun4i_clkevt_time_setup(timer_of_base(to), 0, evt - TIMER_SYNC_TICKS); sun4i_clkevt_time_start(timer_of_base(to), 0, false); return 0; } static void sun4i_timer_clear_interrupt(void __iomem *base) { writel(TIMER_IRQ_CLEAR(0), base + TIMER_IRQ_ST_REG); } static irqreturn_t sun4i_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; struct timer_of *to = to_timer_of(evt); sun4i_timer_clear_interrupt(timer_of_base(to)); evt->event_handler(evt); return IRQ_HANDLED; } static struct timer_of to = { .flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE, .clkevt = { .name = "sun4i_tick", .rating = 350, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ, .set_state_shutdown = sun4i_clkevt_shutdown, .set_state_periodic = sun4i_clkevt_set_periodic, .set_state_oneshot = sun4i_clkevt_set_oneshot, .tick_resume = sun4i_clkevt_shutdown, .set_next_event = sun4i_clkevt_next_event, .cpumask = cpu_possible_mask, }, .of_irq = { .handler = sun4i_timer_interrupt, .flags = IRQF_TIMER | IRQF_IRQPOLL, }, }; static u64 notrace sun4i_timer_sched_read(void) { return ~readl(timer_of_base(&to) + TIMER_CNTVAL_REG(1)); } static int __init sun4i_timer_init(struct device_node *node) { int ret; u32 val; ret = timer_of_init(node, &to); if (ret) return ret; writel(~0, timer_of_base(&to) + TIMER_INTVAL_REG(1)); writel(TIMER_CTL_ENABLE | TIMER_CTL_RELOAD | TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M), timer_of_base(&to) + TIMER_CTL_REG(1)); /* * sched_clock_register does not have priorities, and on sun6i and * later there is a better sched_clock registered by arm_arch_timer.c */ if (of_machine_is_compatible("allwinner,sun4i-a10") || of_machine_is_compatible("allwinner,sun5i-a13") || of_machine_is_compatible("allwinner,sun5i-a10s") || of_machine_is_compatible("allwinner,suniv-f1c100s")) sched_clock_register(sun4i_timer_sched_read, 32, timer_of_rate(&to)); ret = clocksource_mmio_init(timer_of_base(&to) + TIMER_CNTVAL_REG(1), node->name, timer_of_rate(&to), 350, 32, clocksource_mmio_readl_down); if (ret) { pr_err("Failed to register clocksource\n"); return ret; } writel(TIMER_CTL_CLK_SRC(TIMER_CTL_CLK_SRC_OSC24M), timer_of_base(&to) + TIMER_CTL_REG(0)); /* Make sure timer is stopped before playing with interrupts */ sun4i_clkevt_time_stop(timer_of_base(&to), 0); /* clear timer0 interrupt */ sun4i_timer_clear_interrupt(timer_of_base(&to)); clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), TIMER_SYNC_TICKS, 0xffffffff); /* Enable timer0 interrupt */ val = readl(timer_of_base(&to) + TIMER_IRQ_EN_REG); writel(val | TIMER_IRQ_EN(0), timer_of_base(&to) + TIMER_IRQ_EN_REG); return ret; } TIMER_OF_DECLARE(sun4i, "allwinner,sun4i-a10-timer", sun4i_timer_init); TIMER_OF_DECLARE(sun8i_a23, "allwinner,sun8i-a23-timer", sun4i_timer_init); TIMER_OF_DECLARE(sun8i_v3s, "allwinner,sun8i-v3s-timer", sun4i_timer_init); TIMER_OF_DECLARE(suniv, "allwinner,suniv-f1c100s-timer", sun4i_timer_init);
linux-master
drivers/clocksource/timer-sun4i.c
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/clocksource/zevio-timer.c * * Copyright (C) 2013 Daniel Tang <[email protected]> */ #include <linux/io.h> #include <linux/irq.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/cpumask.h> #include <linux/interrupt.h> #include <linux/slab.h> #define IO_CURRENT_VAL 0x00 #define IO_DIVIDER 0x04 #define IO_CONTROL 0x08 #define IO_TIMER1 0x00 #define IO_TIMER2 0x0C #define IO_MATCH_BEGIN 0x18 #define IO_MATCH(x) (IO_MATCH_BEGIN + ((x) << 2)) #define IO_INTR_STS 0x00 #define IO_INTR_ACK 0x00 #define IO_INTR_MSK 0x04 #define CNTL_STOP_TIMER (1 << 4) #define CNTL_RUN_TIMER (0 << 4) #define CNTL_INC (1 << 3) #define CNTL_DEC (0 << 3) #define CNTL_TOZERO 0 #define CNTL_MATCH(x) ((x) + 1) #define CNTL_FOREVER 7 /* There are 6 match registers but we only use one. */ #define TIMER_MATCH 0 #define TIMER_INTR_MSK (1 << (TIMER_MATCH)) #define TIMER_INTR_ALL 0x3F struct zevio_timer { void __iomem *base; void __iomem *timer1, *timer2; void __iomem *interrupt_regs; struct clk *clk; struct clock_event_device clkevt; char clocksource_name[64]; char clockevent_name[64]; }; static int zevio_timer_set_event(unsigned long delta, struct clock_event_device *dev) { struct zevio_timer *timer = container_of(dev, struct zevio_timer, clkevt); writel(delta, timer->timer1 + IO_CURRENT_VAL); writel(CNTL_RUN_TIMER | CNTL_DEC | CNTL_MATCH(TIMER_MATCH), timer->timer1 + IO_CONTROL); return 0; } static int zevio_timer_shutdown(struct clock_event_device *dev) { struct zevio_timer *timer = container_of(dev, struct zevio_timer, clkevt); /* Disable timer interrupts */ writel(0, timer->interrupt_regs + IO_INTR_MSK); writel(TIMER_INTR_ALL, timer->interrupt_regs + IO_INTR_ACK); /* Stop timer */ writel(CNTL_STOP_TIMER, timer->timer1 + IO_CONTROL); return 0; } static int zevio_timer_set_oneshot(struct clock_event_device *dev) { struct zevio_timer *timer = container_of(dev, struct zevio_timer, clkevt); /* Enable timer interrupts */ writel(TIMER_INTR_MSK, timer->interrupt_regs + IO_INTR_MSK); writel(TIMER_INTR_ALL, timer->interrupt_regs + IO_INTR_ACK); return 0; } static irqreturn_t zevio_timer_interrupt(int irq, void *dev_id) { struct zevio_timer *timer = dev_id; u32 intr; intr = readl(timer->interrupt_regs + IO_INTR_ACK); if (!(intr & TIMER_INTR_MSK)) return IRQ_NONE; writel(TIMER_INTR_MSK, timer->interrupt_regs + IO_INTR_ACK); writel(CNTL_STOP_TIMER, timer->timer1 + IO_CONTROL); if (timer->clkevt.event_handler) timer->clkevt.event_handler(&timer->clkevt); return IRQ_HANDLED; } static int __init zevio_timer_add(struct device_node *node) { struct zevio_timer *timer; struct resource res; int irqnr, ret; timer = kzalloc(sizeof(*timer), GFP_KERNEL); if (!timer) return -ENOMEM; timer->base = of_iomap(node, 0); if (!timer->base) { ret = -EINVAL; goto error_free; } timer->timer1 = timer->base + IO_TIMER1; timer->timer2 = timer->base + IO_TIMER2; timer->clk = of_clk_get(node, 0); if (IS_ERR(timer->clk)) { ret = PTR_ERR(timer->clk); pr_err("Timer clock not found! (error %d)\n", ret); goto error_unmap; } timer->interrupt_regs = of_iomap(node, 1); irqnr = irq_of_parse_and_map(node, 0); of_address_to_resource(node, 0, &res); scnprintf(timer->clocksource_name, sizeof(timer->clocksource_name), "%llx.%pOFn_clocksource", (unsigned long long)res.start, node); scnprintf(timer->clockevent_name, sizeof(timer->clockevent_name), "%llx.%pOFn_clockevent", (unsigned long long)res.start, node); if (timer->interrupt_regs && irqnr) { timer->clkevt.name = timer->clockevent_name; timer->clkevt.set_next_event = zevio_timer_set_event; timer->clkevt.set_state_shutdown = zevio_timer_shutdown; timer->clkevt.set_state_oneshot = zevio_timer_set_oneshot; timer->clkevt.tick_resume = zevio_timer_set_oneshot; timer->clkevt.rating = 200; timer->clkevt.cpumask = cpu_possible_mask; timer->clkevt.features = CLOCK_EVT_FEAT_ONESHOT; timer->clkevt.irq = irqnr; writel(CNTL_STOP_TIMER, timer->timer1 + IO_CONTROL); writel(0, timer->timer1 + IO_DIVIDER); /* Start with timer interrupts disabled */ writel(0, timer->interrupt_regs + IO_INTR_MSK); writel(TIMER_INTR_ALL, timer->interrupt_regs + IO_INTR_ACK); /* Interrupt to occur when timer value matches 0 */ writel(0, timer->base + IO_MATCH(TIMER_MATCH)); if (request_irq(irqnr, zevio_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, timer->clockevent_name, timer)) { pr_err("%s: request_irq() failed\n", timer->clockevent_name); } clockevents_config_and_register(&timer->clkevt, clk_get_rate(timer->clk), 0x0001, 0xffff); pr_info("Added %s as clockevent\n", timer->clockevent_name); } writel(CNTL_STOP_TIMER, timer->timer2 + IO_CONTROL); writel(0, timer->timer2 + IO_CURRENT_VAL); writel(0, timer->timer2 + IO_DIVIDER); writel(CNTL_RUN_TIMER | CNTL_FOREVER | CNTL_INC, timer->timer2 + IO_CONTROL); clocksource_mmio_init(timer->timer2 + IO_CURRENT_VAL, timer->clocksource_name, clk_get_rate(timer->clk), 200, 16, clocksource_mmio_readw_up); pr_info("Added %s as clocksource\n", timer->clocksource_name); return 0; error_unmap: iounmap(timer->base); error_free: kfree(timer); return ret; } static int __init zevio_timer_init(struct device_node *node) { return zevio_timer_add(node); } TIMER_OF_DECLARE(zevio_timer, "lsi,zevio-timer", zevio_timer_init);
linux-master
drivers/clocksource/timer-zevio.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2016-17 Synopsys, Inc. (www.synopsys.com) * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) */ /* ARC700 has two 32bit independent prog Timers: TIMER0 and TIMER1, Each can be * programmed to go from @count to @limit and optionally interrupt. * We've designated TIMER0 for clockevents and TIMER1 for clocksource * * ARCv2 based HS38 cores have RTC (in-core) and GFRC (inside ARConnect/MCIP) * which are suitable for UP and SMP based clocksources respectively */ #include <linux/interrupt.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <soc/arc/timers.h> #include <soc/arc/mcip.h> static unsigned long arc_timer_freq; static int noinline arc_get_timer_clk(struct device_node *node) { struct clk *clk; int ret; clk = of_clk_get(node, 0); if (IS_ERR(clk)) { pr_err("timer missing clk\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_err("Couldn't enable parent clk\n"); return ret; } arc_timer_freq = clk_get_rate(clk); return 0; } /********** Clock Source Device *********/ #ifdef CONFIG_ARC_TIMERS_64BIT static u64 arc_read_gfrc(struct clocksource *cs) { unsigned long flags; u32 l, h; /* * From a programming model pov, there seems to be just one instance of * MCIP_CMD/MCIP_READBACK however micro-architecturally there's * an instance PER ARC CORE (not per cluster), and there are dedicated * hardware decode logic (per core) inside ARConnect to handle * simultaneous read/write accesses from cores via those two registers. * So several concurrent commands to ARConnect are OK if they are * trying to access two different sub-components (like GFRC, * inter-core interrupt, etc...). HW also supports simultaneously * accessing GFRC by multiple cores. * That's why it is safe to disable hard interrupts on the local CPU * before access to GFRC instead of taking global MCIP spinlock * defined in arch/arc/kernel/mcip.c */ local_irq_save(flags); __mcip_cmd(CMD_GFRC_READ_LO, 0); l = read_aux_reg(ARC_REG_MCIP_READBACK); __mcip_cmd(CMD_GFRC_READ_HI, 0); h = read_aux_reg(ARC_REG_MCIP_READBACK); local_irq_restore(flags); return (((u64)h) << 32) | l; } static notrace u64 arc_gfrc_clock_read(void) { return arc_read_gfrc(NULL); } static struct clocksource arc_counter_gfrc = { .name = "ARConnect GFRC", .rating = 400, .read = arc_read_gfrc, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init arc_cs_setup_gfrc(struct device_node *node) { struct mcip_bcr mp; int ret; READ_BCR(ARC_REG_MCIP_BCR, mp); if (!mp.gfrc) { pr_warn("Global-64-bit-Ctr clocksource not detected\n"); return -ENXIO; } ret = arc_get_timer_clk(node); if (ret) return ret; sched_clock_register(arc_gfrc_clock_read, 64, arc_timer_freq); return clocksource_register_hz(&arc_counter_gfrc, arc_timer_freq); } TIMER_OF_DECLARE(arc_gfrc, "snps,archs-timer-gfrc", arc_cs_setup_gfrc); #define AUX_RTC_CTRL 0x103 #define AUX_RTC_LOW 0x104 #define AUX_RTC_HIGH 0x105 static u64 arc_read_rtc(struct clocksource *cs) { unsigned long status; u32 l, h; /* * hardware has an internal state machine which tracks readout of * low/high and updates the CTRL.status if * - interrupt/exception taken between the two reads * - high increments after low has been read */ do { l = read_aux_reg(AUX_RTC_LOW); h = read_aux_reg(AUX_RTC_HIGH); status = read_aux_reg(AUX_RTC_CTRL); } while (!(status & BIT(31))); return (((u64)h) << 32) | l; } static notrace u64 arc_rtc_clock_read(void) { return arc_read_rtc(NULL); } static struct clocksource arc_counter_rtc = { .name = "ARCv2 RTC", .rating = 350, .read = arc_read_rtc, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init arc_cs_setup_rtc(struct device_node *node) { struct bcr_timer timer; int ret; READ_BCR(ARC_REG_TIMERS_BCR, timer); if (!timer.rtc) { pr_warn("Local-64-bit-Ctr clocksource not detected\n"); return -ENXIO; } /* Local to CPU hence not usable in SMP */ if (IS_ENABLED(CONFIG_SMP)) { pr_warn("Local-64-bit-Ctr not usable in SMP\n"); return -EINVAL; } ret = arc_get_timer_clk(node); if (ret) return ret; write_aux_reg(AUX_RTC_CTRL, 1); sched_clock_register(arc_rtc_clock_read, 64, arc_timer_freq); return clocksource_register_hz(&arc_counter_rtc, arc_timer_freq); } TIMER_OF_DECLARE(arc_rtc, "snps,archs-timer-rtc", arc_cs_setup_rtc); #endif /* * 32bit TIMER1 to keep counting monotonically and wraparound */ static u64 arc_read_timer1(struct clocksource *cs) { return (u64) read_aux_reg(ARC_REG_TIMER1_CNT); } static notrace u64 arc_timer1_clock_read(void) { return arc_read_timer1(NULL); } static struct clocksource arc_counter_timer1 = { .name = "ARC Timer1", .rating = 300, .read = arc_read_timer1, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int __init arc_cs_setup_timer1(struct device_node *node) { int ret; /* Local to CPU hence not usable in SMP */ if (IS_ENABLED(CONFIG_SMP)) return -EINVAL; ret = arc_get_timer_clk(node); if (ret) return ret; write_aux_reg(ARC_REG_TIMER1_LIMIT, ARC_TIMERN_MAX); write_aux_reg(ARC_REG_TIMER1_CNT, 0); write_aux_reg(ARC_REG_TIMER1_CTRL, ARC_TIMER_CTRL_NH); sched_clock_register(arc_timer1_clock_read, 32, arc_timer_freq); return clocksource_register_hz(&arc_counter_timer1, arc_timer_freq); } /********** Clock Event Device *********/ static int arc_timer_irq; /* * Arm the timer to interrupt after @cycles * The distinction for oneshot/periodic is done in arc_event_timer_ack() below */ static void arc_timer_event_setup(unsigned int cycles) { write_aux_reg(ARC_REG_TIMER0_LIMIT, cycles); write_aux_reg(ARC_REG_TIMER0_CNT, 0); /* start from 0 */ write_aux_reg(ARC_REG_TIMER0_CTRL, ARC_TIMER_CTRL_IE | ARC_TIMER_CTRL_NH); } static int arc_clkevent_set_next_event(unsigned long delta, struct clock_event_device *dev) { arc_timer_event_setup(delta); return 0; } static int arc_clkevent_set_periodic(struct clock_event_device *dev) { /* * At X Hz, 1 sec = 1000ms -> X cycles; * 10ms -> X / 100 cycles */ arc_timer_event_setup(arc_timer_freq / HZ); return 0; } static DEFINE_PER_CPU(struct clock_event_device, arc_clockevent_device) = { .name = "ARC Timer0", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .rating = 300, .set_next_event = arc_clkevent_set_next_event, .set_state_periodic = arc_clkevent_set_periodic, }; static irqreturn_t timer_irq_handler(int irq, void *dev_id) { /* * Note that generic IRQ core could have passed @evt for @dev_id if * irq_set_chip_and_handler() asked for handle_percpu_devid_irq() */ struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int irq_reenable = clockevent_state_periodic(evt); /* * 1. ACK the interrupt * - For ARC700, any write to CTRL reg ACKs it, so just rewrite * Count when [N]ot [H]alted bit. * - For HS3x, it is a bit subtle. On taken count-down interrupt, * IP bit [3] is set, which needs to be cleared for ACK'ing. * The write below can only update the other two bits, hence * explicitly clears IP bit * 2. Re-arm interrupt if periodic by writing to IE bit [0] */ write_aux_reg(ARC_REG_TIMER0_CTRL, irq_reenable | ARC_TIMER_CTRL_NH); evt->event_handler(evt); return IRQ_HANDLED; } static int arc_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); evt->cpumask = cpumask_of(smp_processor_id()); clockevents_config_and_register(evt, arc_timer_freq, 0, ARC_TIMERN_MAX); enable_percpu_irq(arc_timer_irq, 0); return 0; } static int arc_timer_dying_cpu(unsigned int cpu) { disable_percpu_irq(arc_timer_irq); return 0; } /* * clockevent setup for boot CPU */ static int __init arc_clockevent_setup(struct device_node *node) { struct clock_event_device *evt = this_cpu_ptr(&arc_clockevent_device); int ret; arc_timer_irq = irq_of_parse_and_map(node, 0); if (arc_timer_irq <= 0) { pr_err("clockevent: missing irq\n"); return -EINVAL; } ret = arc_get_timer_clk(node); if (ret) return ret; /* Needs apriori irq_set_percpu_devid() done in intc map function */ ret = request_percpu_irq(arc_timer_irq, timer_irq_handler, "Timer0 (per-cpu-tick)", evt); if (ret) { pr_err("clockevent: unable to request irq\n"); return ret; } ret = cpuhp_setup_state(CPUHP_AP_ARC_TIMER_STARTING, "clockevents/arc/timer:starting", arc_timer_starting_cpu, arc_timer_dying_cpu); if (ret) { pr_err("Failed to setup hotplug state\n"); return ret; } return 0; } static int __init arc_of_timer_init(struct device_node *np) { static int init_count = 0; int ret; if (!init_count) { init_count = 1; ret = arc_clockevent_setup(np); } else { ret = arc_cs_setup_timer1(np); } return ret; } TIMER_OF_DECLARE(arc_clkevt, "snps,arc-timer", arc_of_timer_init);
linux-master
drivers/clocksource/arc_timer.c
// SPDX-License-Identifier: GPL-2.0 #include <linux/init.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/syscore_ops.h> #include <soc/at91/atmel_tcb.h> /* * We're configured to use a specific TC block, one that's not hooked * up to external hardware, to provide a time solution: * * - Two channels combine to create a free-running 32 bit counter * with a base rate of 5+ MHz, packaged as a clocksource (with * resolution better than 200 nsec). * - Some chips support 32 bit counter. A single channel is used for * this 32 bit free-running counter. the second channel is not used. * * - The third channel may be used to provide a clockevent source, used in * either periodic or oneshot mode. For 16-bit counter its runs at 32 KiHZ, * and can handle delays of up to two seconds. For 32-bit counters, it runs at * the same rate as the clocksource * * REVISIT behavior during system suspend states... we should disable * all clocks and save the power. Easily done for clockevent devices, * but clocksources won't necessarily get the needed notifications. * For deeper system sleep states, this will be mandatory... */ static void __iomem *tcaddr; static struct { u32 cmr; u32 imr; u32 rc; bool clken; } tcb_cache[3]; static u32 bmr_cache; static const u8 atmel_tcb_divisors[] = { 2, 8, 32, 128 }; static u64 tc_get_cycles(struct clocksource *cs) { unsigned long flags; u32 lower, upper; raw_local_irq_save(flags); do { upper = readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV)); lower = readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV)); } while (upper != readl_relaxed(tcaddr + ATMEL_TC_REG(1, CV))); raw_local_irq_restore(flags); return (upper << 16) | lower; } static u64 tc_get_cycles32(struct clocksource *cs) { return readl_relaxed(tcaddr + ATMEL_TC_REG(0, CV)); } static void tc_clksrc_suspend(struct clocksource *cs) { int i; for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) { tcb_cache[i].cmr = readl(tcaddr + ATMEL_TC_REG(i, CMR)); tcb_cache[i].imr = readl(tcaddr + ATMEL_TC_REG(i, IMR)); tcb_cache[i].rc = readl(tcaddr + ATMEL_TC_REG(i, RC)); tcb_cache[i].clken = !!(readl(tcaddr + ATMEL_TC_REG(i, SR)) & ATMEL_TC_CLKSTA); } bmr_cache = readl(tcaddr + ATMEL_TC_BMR); } static void tc_clksrc_resume(struct clocksource *cs) { int i; for (i = 0; i < ARRAY_SIZE(tcb_cache); i++) { /* Restore registers for the channel, RA and RB are not used */ writel(tcb_cache[i].cmr, tcaddr + ATMEL_TC_REG(i, CMR)); writel(tcb_cache[i].rc, tcaddr + ATMEL_TC_REG(i, RC)); writel(0, tcaddr + ATMEL_TC_REG(i, RA)); writel(0, tcaddr + ATMEL_TC_REG(i, RB)); /* Disable all the interrupts */ writel(0xff, tcaddr + ATMEL_TC_REG(i, IDR)); /* Reenable interrupts that were enabled before suspending */ writel(tcb_cache[i].imr, tcaddr + ATMEL_TC_REG(i, IER)); /* Start the clock if it was used */ if (tcb_cache[i].clken) writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(i, CCR)); } /* Dual channel, chain channels */ writel(bmr_cache, tcaddr + ATMEL_TC_BMR); /* Finally, trigger all the channels*/ writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); } static struct clocksource clksrc = { .rating = 200, .read = tc_get_cycles, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .suspend = tc_clksrc_suspend, .resume = tc_clksrc_resume, }; static u64 notrace tc_sched_clock_read(void) { return tc_get_cycles(&clksrc); } static u64 notrace tc_sched_clock_read32(void) { return tc_get_cycles32(&clksrc); } static struct delay_timer tc_delay_timer; static unsigned long tc_delay_timer_read(void) { return tc_get_cycles(&clksrc); } static unsigned long notrace tc_delay_timer_read32(void) { return tc_get_cycles32(&clksrc); } #ifdef CONFIG_GENERIC_CLOCKEVENTS struct tc_clkevt_device { struct clock_event_device clkevt; struct clk *clk; u32 rate; void __iomem *regs; }; static struct tc_clkevt_device *to_tc_clkevt(struct clock_event_device *clkevt) { return container_of(clkevt, struct tc_clkevt_device, clkevt); } static u32 timer_clock; static int tc_shutdown(struct clock_event_device *d) { struct tc_clkevt_device *tcd = to_tc_clkevt(d); void __iomem *regs = tcd->regs; writel(0xff, regs + ATMEL_TC_REG(2, IDR)); writel(ATMEL_TC_CLKDIS, regs + ATMEL_TC_REG(2, CCR)); if (!clockevent_state_detached(d)) clk_disable(tcd->clk); return 0; } static int tc_set_oneshot(struct clock_event_device *d) { struct tc_clkevt_device *tcd = to_tc_clkevt(d); void __iomem *regs = tcd->regs; if (clockevent_state_oneshot(d) || clockevent_state_periodic(d)) tc_shutdown(d); clk_enable(tcd->clk); /* count up to RC, then irq and stop */ writel(timer_clock | ATMEL_TC_CPCSTOP | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR)); writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); /* set_next_event() configures and starts the timer */ return 0; } static int tc_set_periodic(struct clock_event_device *d) { struct tc_clkevt_device *tcd = to_tc_clkevt(d); void __iomem *regs = tcd->regs; if (clockevent_state_oneshot(d) || clockevent_state_periodic(d)) tc_shutdown(d); /* By not making the gentime core emulate periodic mode on top * of oneshot, we get lower overhead and improved accuracy. */ clk_enable(tcd->clk); /* count up to RC, then irq and restart */ writel(timer_clock | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP_AUTO, regs + ATMEL_TC_REG(2, CMR)); writel((tcd->rate + HZ / 2) / HZ, tcaddr + ATMEL_TC_REG(2, RC)); /* Enable clock and interrupts on RC compare */ writel(ATMEL_TC_CPCS, regs + ATMEL_TC_REG(2, IER)); /* go go gadget! */ writel(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, regs + ATMEL_TC_REG(2, CCR)); return 0; } static int tc_next_event(unsigned long delta, struct clock_event_device *d) { writel_relaxed(delta, tcaddr + ATMEL_TC_REG(2, RC)); /* go go gadget! */ writel_relaxed(ATMEL_TC_CLKEN | ATMEL_TC_SWTRG, tcaddr + ATMEL_TC_REG(2, CCR)); return 0; } static struct tc_clkevt_device clkevt = { .clkevt = { .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, /* Should be lower than at91rm9200's system timer */ .rating = 125, .set_next_event = tc_next_event, .set_state_shutdown = tc_shutdown, .set_state_periodic = tc_set_periodic, .set_state_oneshot = tc_set_oneshot, }, }; static irqreturn_t ch2_irq(int irq, void *handle) { struct tc_clkevt_device *dev = handle; unsigned int sr; sr = readl_relaxed(dev->regs + ATMEL_TC_REG(2, SR)); if (sr & ATMEL_TC_CPCS) { dev->clkevt.event_handler(&dev->clkevt); return IRQ_HANDLED; } return IRQ_NONE; } static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx) { int ret; struct clk *t2_clk = tc->clk[2]; int irq = tc->irq[2]; int bits = tc->tcb_config->counter_width; /* try to enable t2 clk to avoid future errors in mode change */ ret = clk_prepare_enable(t2_clk); if (ret) return ret; clkevt.regs = tc->regs; clkevt.clk = t2_clk; if (bits == 32) { timer_clock = divisor_idx; clkevt.rate = clk_get_rate(t2_clk) / atmel_tcb_divisors[divisor_idx]; } else { ret = clk_prepare_enable(tc->slow_clk); if (ret) { clk_disable_unprepare(t2_clk); return ret; } clkevt.rate = clk_get_rate(tc->slow_clk); timer_clock = ATMEL_TC_TIMER_CLOCK5; } clk_disable(t2_clk); clkevt.clkevt.cpumask = cpumask_of(0); ret = request_irq(irq, ch2_irq, IRQF_TIMER, "tc_clkevt", &clkevt); if (ret) { clk_unprepare(t2_clk); if (bits != 32) clk_disable_unprepare(tc->slow_clk); return ret; } clockevents_config_and_register(&clkevt.clkevt, clkevt.rate, 1, BIT(bits) - 1); return ret; } #else /* !CONFIG_GENERIC_CLOCKEVENTS */ static int __init setup_clkevents(struct atmel_tc *tc, int divisor_idx) { /* NOTHING */ return 0; } #endif static void __init tcb_setup_dual_chan(struct atmel_tc *tc, int mck_divisor_idx) { /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */ writel(mck_divisor_idx /* likely divide-by-8 */ | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP /* free-run */ | ATMEL_TC_ACPA_SET /* TIOA0 rises at 0 */ | ATMEL_TC_ACPC_CLEAR, /* (duty cycle 50%) */ tcaddr + ATMEL_TC_REG(0, CMR)); writel(0x0000, tcaddr + ATMEL_TC_REG(0, RA)); writel(0x8000, tcaddr + ATMEL_TC_REG(0, RC)); writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); /* channel 1: waveform mode, input TIOA0 */ writel(ATMEL_TC_XC1 /* input: TIOA0 */ | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP, /* free-run */ tcaddr + ATMEL_TC_REG(1, CMR)); writel(0xff, tcaddr + ATMEL_TC_REG(1, IDR)); /* no irqs */ writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(1, CCR)); /* chain channel 0 to channel 1*/ writel(ATMEL_TC_TC1XC1S_TIOA0, tcaddr + ATMEL_TC_BMR); /* then reset all the timers */ writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); } static void __init tcb_setup_single_chan(struct atmel_tc *tc, int mck_divisor_idx) { /* channel 0: waveform mode, input mclk/8 */ writel(mck_divisor_idx /* likely divide-by-8 */ | ATMEL_TC_WAVE | ATMEL_TC_WAVESEL_UP, /* free-run */ tcaddr + ATMEL_TC_REG(0, CMR)); writel(0xff, tcaddr + ATMEL_TC_REG(0, IDR)); /* no irqs */ writel(ATMEL_TC_CLKEN, tcaddr + ATMEL_TC_REG(0, CCR)); /* then reset all the timers */ writel(ATMEL_TC_SYNC, tcaddr + ATMEL_TC_BCR); } static struct atmel_tcb_config tcb_rm9200_config = { .counter_width = 16, }; static struct atmel_tcb_config tcb_sam9x5_config = { .counter_width = 32, }; static struct atmel_tcb_config tcb_sama5d2_config = { .counter_width = 32, .has_gclk = 1, }; static const struct of_device_id atmel_tcb_of_match[] = { { .compatible = "atmel,at91rm9200-tcb", .data = &tcb_rm9200_config, }, { .compatible = "atmel,at91sam9x5-tcb", .data = &tcb_sam9x5_config, }, { .compatible = "atmel,sama5d2-tcb", .data = &tcb_sama5d2_config, }, { /* sentinel */ } }; static int __init tcb_clksrc_init(struct device_node *node) { struct atmel_tc tc; struct clk *t0_clk; const struct of_device_id *match; u64 (*tc_sched_clock)(void); u32 rate, divided_rate = 0; int best_divisor_idx = -1; int bits; int i; int ret; /* Protect against multiple calls */ if (tcaddr) return 0; tc.regs = of_iomap(node->parent, 0); if (!tc.regs) return -ENXIO; t0_clk = of_clk_get_by_name(node->parent, "t0_clk"); if (IS_ERR(t0_clk)) return PTR_ERR(t0_clk); tc.slow_clk = of_clk_get_by_name(node->parent, "slow_clk"); if (IS_ERR(tc.slow_clk)) return PTR_ERR(tc.slow_clk); tc.clk[0] = t0_clk; tc.clk[1] = of_clk_get_by_name(node->parent, "t1_clk"); if (IS_ERR(tc.clk[1])) tc.clk[1] = t0_clk; tc.clk[2] = of_clk_get_by_name(node->parent, "t2_clk"); if (IS_ERR(tc.clk[2])) tc.clk[2] = t0_clk; tc.irq[2] = of_irq_get(node->parent, 2); if (tc.irq[2] <= 0) { tc.irq[2] = of_irq_get(node->parent, 0); if (tc.irq[2] <= 0) return -EINVAL; } match = of_match_node(atmel_tcb_of_match, node->parent); if (!match) return -ENODEV; tc.tcb_config = match->data; bits = tc.tcb_config->counter_width; for (i = 0; i < ARRAY_SIZE(tc.irq); i++) writel(ATMEL_TC_ALL_IRQ, tc.regs + ATMEL_TC_REG(i, IDR)); ret = clk_prepare_enable(t0_clk); if (ret) { pr_debug("can't enable T0 clk\n"); return ret; } /* How fast will we be counting? Pick something over 5 MHz. */ rate = (u32) clk_get_rate(t0_clk); i = 0; if (tc.tcb_config->has_gclk) i = 1; for (; i < ARRAY_SIZE(atmel_tcb_divisors); i++) { unsigned divisor = atmel_tcb_divisors[i]; unsigned tmp; tmp = rate / divisor; pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp); if ((best_divisor_idx >= 0) && (tmp < 5 * 1000 * 1000)) break; divided_rate = tmp; best_divisor_idx = i; } clksrc.name = kbasename(node->parent->full_name); clkevt.clkevt.name = kbasename(node->parent->full_name); pr_debug("%s at %d.%03d MHz\n", clksrc.name, divided_rate / 1000000, ((divided_rate % 1000000) + 500) / 1000); tcaddr = tc.regs; if (bits == 32) { /* use appropriate function to read 32 bit counter */ clksrc.read = tc_get_cycles32; /* setup only channel 0 */ tcb_setup_single_chan(&tc, best_divisor_idx); tc_sched_clock = tc_sched_clock_read32; tc_delay_timer.read_current_timer = tc_delay_timer_read32; } else { /* we have three clocks no matter what the * underlying platform supports. */ ret = clk_prepare_enable(tc.clk[1]); if (ret) { pr_debug("can't enable T1 clk\n"); goto err_disable_t0; } /* setup both channel 0 & 1 */ tcb_setup_dual_chan(&tc, best_divisor_idx); tc_sched_clock = tc_sched_clock_read; tc_delay_timer.read_current_timer = tc_delay_timer_read; } /* and away we go! */ ret = clocksource_register_hz(&clksrc, divided_rate); if (ret) goto err_disable_t1; /* channel 2: periodic and oneshot timer support */ ret = setup_clkevents(&tc, best_divisor_idx); if (ret) goto err_unregister_clksrc; sched_clock_register(tc_sched_clock, 32, divided_rate); tc_delay_timer.freq = divided_rate; register_current_timer_delay(&tc_delay_timer); return 0; err_unregister_clksrc: clocksource_unregister(&clksrc); err_disable_t1: if (bits != 32) clk_disable_unprepare(tc.clk[1]); err_disable_t0: clk_disable_unprepare(t0_clk); tcaddr = NULL; return ret; } TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);
linux-master
drivers/clocksource/timer-atmel-tcb.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017, Linaro Ltd. All rights reserved. * * Author: Daniel Lezcano <[email protected]> */ #include <linux/clk.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/slab.h> #include "timer-of.h" /** * timer_of_irq_exit - Release the interrupt * @of_irq: an of_timer_irq structure pointer * * Free the irq resource */ static __init void timer_of_irq_exit(struct of_timer_irq *of_irq) { struct timer_of *to = container_of(of_irq, struct timer_of, of_irq); struct clock_event_device *clkevt = &to->clkevt; if (of_irq->percpu) free_percpu_irq(of_irq->irq, clkevt); else free_irq(of_irq->irq, clkevt); } /** * timer_of_irq_init - Request the interrupt * @np: a device tree node pointer * @of_irq: an of_timer_irq structure pointer * * Get the interrupt number from the DT from its definition and * request it. The interrupt is gotten by falling back the following way: * * - Get interrupt number by name * - Get interrupt number by index * * When the interrupt is per CPU, 'request_percpu_irq()' is called, * otherwise 'request_irq()' is used. * * Returns 0 on success, < 0 otherwise */ static __init int timer_of_irq_init(struct device_node *np, struct of_timer_irq *of_irq) { int ret; struct timer_of *to = container_of(of_irq, struct timer_of, of_irq); struct clock_event_device *clkevt = &to->clkevt; if (of_irq->name) { of_irq->irq = ret = of_irq_get_byname(np, of_irq->name); if (ret < 0) { pr_err("Failed to get interrupt %s for %pOF\n", of_irq->name, np); return ret; } } else { of_irq->irq = irq_of_parse_and_map(np, of_irq->index); } if (!of_irq->irq) { pr_err("Failed to map interrupt for %pOF\n", np); return -EINVAL; } ret = of_irq->percpu ? request_percpu_irq(of_irq->irq, of_irq->handler, np->full_name, clkevt) : request_irq(of_irq->irq, of_irq->handler, of_irq->flags ? of_irq->flags : IRQF_TIMER, np->full_name, clkevt); if (ret) { pr_err("Failed to request irq %d for %pOF\n", of_irq->irq, np); return ret; } clkevt->irq = of_irq->irq; return 0; } /** * timer_of_clk_exit - Release the clock resources * @of_clk: a of_timer_clk structure pointer * * Disables and releases the refcount on the clk */ static __init void timer_of_clk_exit(struct of_timer_clk *of_clk) { of_clk->rate = 0; clk_disable_unprepare(of_clk->clk); clk_put(of_clk->clk); } /** * timer_of_clk_init - Initialize the clock resources * @np: a device tree node pointer * @of_clk: a of_timer_clk structure pointer * * Get the clock by name or by index, enable it and get the rate * * Returns 0 on success, < 0 otherwise */ static __init int timer_of_clk_init(struct device_node *np, struct of_timer_clk *of_clk) { int ret; of_clk->clk = of_clk->name ? of_clk_get_by_name(np, of_clk->name) : of_clk_get(np, of_clk->index); if (IS_ERR(of_clk->clk)) { ret = PTR_ERR(of_clk->clk); if (ret != -EPROBE_DEFER) pr_err("Failed to get clock for %pOF\n", np); goto out; } ret = clk_prepare_enable(of_clk->clk); if (ret) { pr_err("Failed for enable clock for %pOF\n", np); goto out_clk_put; } of_clk->rate = clk_get_rate(of_clk->clk); if (!of_clk->rate) { ret = -EINVAL; pr_err("Failed to get clock rate for %pOF\n", np); goto out_clk_disable; } of_clk->period = DIV_ROUND_UP(of_clk->rate, HZ); out: return ret; out_clk_disable: clk_disable_unprepare(of_clk->clk); out_clk_put: clk_put(of_clk->clk); goto out; } static __init void timer_of_base_exit(struct of_timer_base *of_base) { iounmap(of_base->base); } static __init int timer_of_base_init(struct device_node *np, struct of_timer_base *of_base) { of_base->base = of_base->name ? of_io_request_and_map(np, of_base->index, of_base->name) : of_iomap(np, of_base->index); if (IS_ERR_OR_NULL(of_base->base)) { pr_err("Failed to iomap (%s:%s)\n", np->name, of_base->name); return of_base->base ? PTR_ERR(of_base->base) : -ENOMEM; } return 0; } int __init timer_of_init(struct device_node *np, struct timer_of *to) { int ret = -EINVAL; int flags = 0; if (to->flags & TIMER_OF_BASE) { ret = timer_of_base_init(np, &to->of_base); if (ret) goto out_fail; flags |= TIMER_OF_BASE; } if (to->flags & TIMER_OF_CLOCK) { ret = timer_of_clk_init(np, &to->of_clk); if (ret) goto out_fail; flags |= TIMER_OF_CLOCK; } if (to->flags & TIMER_OF_IRQ) { ret = timer_of_irq_init(np, &to->of_irq); if (ret) goto out_fail; flags |= TIMER_OF_IRQ; } if (!to->clkevt.name) to->clkevt.name = np->full_name; to->np = np; return ret; out_fail: if (flags & TIMER_OF_IRQ) timer_of_irq_exit(&to->of_irq); if (flags & TIMER_OF_CLOCK) timer_of_clk_exit(&to->of_clk); if (flags & TIMER_OF_BASE) timer_of_base_exit(&to->of_base); return ret; } /** * timer_of_cleanup - release timer_of resources * @to: timer_of structure * * Release the resources that has been used in timer_of_init(). * This function should be called in init error cases */ void __init timer_of_cleanup(struct timer_of *to) { if (to->flags & TIMER_OF_IRQ) timer_of_irq_exit(&to->of_irq); if (to->flags & TIMER_OF_CLOCK) timer_of_clk_exit(&to->of_clk); if (to->flags & TIMER_OF_BASE) timer_of_base_exit(&to->of_base); }
linux-master
drivers/clocksource/timer-of.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. #define pr_fmt(fmt) "mips-gic-timer: " fmt #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/notifier.h> #include <linux/of_irq.h> #include <linux/percpu.h> #include <linux/sched_clock.h> #include <linux/smp.h> #include <linux/time.h> #include <asm/mips-cps.h> static DEFINE_PER_CPU(struct clock_event_device, gic_clockevent_device); static int gic_timer_irq; static unsigned int gic_frequency; static bool __read_mostly gic_clock_unstable; static void gic_clocksource_unstable(char *reason); static u64 notrace gic_read_count_2x32(void) { unsigned int hi, hi2, lo; do { hi = read_gic_counter_32h(); lo = read_gic_counter_32l(); hi2 = read_gic_counter_32h(); } while (hi2 != hi); return (((u64) hi) << 32) + lo; } static u64 notrace gic_read_count_64(void) { return read_gic_counter(); } static u64 notrace gic_read_count(void) { if (mips_cm_is64) return gic_read_count_64(); return gic_read_count_2x32(); } static int gic_next_event(unsigned long delta, struct clock_event_device *evt) { int cpu = cpumask_first(evt->cpumask); u64 cnt; int res; cnt = gic_read_count(); cnt += (u64)delta; if (cpu == raw_smp_processor_id()) { write_gic_vl_compare(cnt); } else { write_gic_vl_other(mips_cm_vp_id(cpu)); write_gic_vo_compare(cnt); } res = ((int)(gic_read_count() - cnt) >= 0) ? -ETIME : 0; return res; } static irqreturn_t gic_compare_interrupt(int irq, void *dev_id) { struct clock_event_device *cd = dev_id; write_gic_vl_compare(read_gic_vl_compare()); cd->event_handler(cd); return IRQ_HANDLED; } static struct irqaction gic_compare_irqaction = { .handler = gic_compare_interrupt, .percpu_dev_id = &gic_clockevent_device, .flags = IRQF_PERCPU | IRQF_TIMER, .name = "timer", }; static void gic_clockevent_cpu_init(unsigned int cpu, struct clock_event_device *cd) { cd->name = "MIPS GIC"; cd->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP; cd->rating = 350; cd->irq = gic_timer_irq; cd->cpumask = cpumask_of(cpu); cd->set_next_event = gic_next_event; clockevents_config_and_register(cd, gic_frequency, 0x300, 0x7fffffff); enable_percpu_irq(gic_timer_irq, IRQ_TYPE_NONE); } static void gic_clockevent_cpu_exit(struct clock_event_device *cd) { disable_percpu_irq(gic_timer_irq); } static void gic_update_frequency(void *data) { unsigned long rate = (unsigned long)data; clockevents_update_freq(this_cpu_ptr(&gic_clockevent_device), rate); } static int gic_starting_cpu(unsigned int cpu) { gic_clockevent_cpu_init(cpu, this_cpu_ptr(&gic_clockevent_device)); return 0; } static int gic_clk_notifier(struct notifier_block *nb, unsigned long action, void *data) { struct clk_notifier_data *cnd = data; if (action == POST_RATE_CHANGE) { gic_clocksource_unstable("ref clock rate change"); on_each_cpu(gic_update_frequency, (void *)cnd->new_rate, 1); } return NOTIFY_OK; } static int gic_dying_cpu(unsigned int cpu) { gic_clockevent_cpu_exit(this_cpu_ptr(&gic_clockevent_device)); return 0; } static struct notifier_block gic_clk_nb = { .notifier_call = gic_clk_notifier, }; static int gic_clockevent_init(void) { int ret; if (!gic_frequency) return -ENXIO; ret = setup_percpu_irq(gic_timer_irq, &gic_compare_irqaction); if (ret < 0) { pr_err("IRQ %d setup failed (%d)\n", gic_timer_irq, ret); return ret; } cpuhp_setup_state(CPUHP_AP_MIPS_GIC_TIMER_STARTING, "clockevents/mips/gic/timer:starting", gic_starting_cpu, gic_dying_cpu); return 0; } static u64 gic_hpt_read(struct clocksource *cs) { return gic_read_count(); } static struct clocksource gic_clocksource = { .name = "GIC", .read = gic_hpt_read, .flags = CLOCK_SOURCE_IS_CONTINUOUS, .vdso_clock_mode = VDSO_CLOCKMODE_GIC, }; static void gic_clocksource_unstable(char *reason) { if (gic_clock_unstable) return; gic_clock_unstable = true; pr_info("GIC timer is unstable due to %s\n", reason); clocksource_mark_unstable(&gic_clocksource); } static int __init __gic_clocksource_init(void) { unsigned int count_width; int ret; /* Set clocksource mask. */ count_width = read_gic_config() & GIC_CONFIG_COUNTBITS; count_width >>= __ffs(GIC_CONFIG_COUNTBITS); count_width *= 4; count_width += 32; gic_clocksource.mask = CLOCKSOURCE_MASK(count_width); /* Calculate a somewhat reasonable rating value. */ gic_clocksource.rating = 200 + gic_frequency / 10000000; ret = clocksource_register_hz(&gic_clocksource, gic_frequency); if (ret < 0) pr_warn("Unable to register clocksource\n"); return ret; } static int __init gic_clocksource_of_init(struct device_node *node) { struct clk *clk; int ret; if (!mips_gic_present() || !node->parent || !of_device_is_compatible(node->parent, "mti,gic")) { pr_warn("No DT definition\n"); return -ENXIO; } clk = of_clk_get(node, 0); if (!IS_ERR(clk)) { ret = clk_prepare_enable(clk); if (ret < 0) { pr_err("Failed to enable clock\n"); clk_put(clk); return ret; } gic_frequency = clk_get_rate(clk); } else if (of_property_read_u32(node, "clock-frequency", &gic_frequency)) { pr_err("Frequency not specified\n"); return -EINVAL; } gic_timer_irq = irq_of_parse_and_map(node, 0); if (!gic_timer_irq) { pr_err("IRQ not specified\n"); return -EINVAL; } ret = __gic_clocksource_init(); if (ret) return ret; ret = gic_clockevent_init(); if (!ret && !IS_ERR(clk)) { if (clk_notifier_register(clk, &gic_clk_nb) < 0) pr_warn("Unable to register clock notifier\n"); } /* And finally start the counter */ clear_gic_config(GIC_CONFIG_COUNTSTOP); /* * It's safe to use the MIPS GIC timer as a sched clock source only if * its ticks are stable, which is true on either the platforms with * stable CPU frequency or on the platforms with CM3 and CPU frequency * change performed by the CPC core clocks divider. */ if (mips_cm_revision() >= CM_REV_CM3 || !IS_ENABLED(CONFIG_CPU_FREQ)) { sched_clock_register(mips_cm_is64 ? gic_read_count_64 : gic_read_count_2x32, 64, gic_frequency); } return 0; } TIMER_OF_DECLARE(mips_gic_timer, "mti,gic-timer", gic_clocksource_of_init);
linux-master
drivers/clocksource/mips-gic-timer.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2014-2018 Nuvoton Technologies [email protected] * All rights reserved. * * Copyright 2017 Google, Inc. */ #include <linux/kernel.h> #include <linux/sched.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/io.h> #include <linux/clockchips.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include "timer-of.h" /* Timers registers */ #define NPCM7XX_REG_TCSR0 0x0 /* Timer 0 Control and Status Register */ #define NPCM7XX_REG_TICR0 0x8 /* Timer 0 Initial Count Register */ #define NPCM7XX_REG_TCSR1 0x4 /* Timer 1 Control and Status Register */ #define NPCM7XX_REG_TICR1 0xc /* Timer 1 Initial Count Register */ #define NPCM7XX_REG_TDR1 0x14 /* Timer 1 Data Register */ #define NPCM7XX_REG_TISR 0x18 /* Timer Interrupt Status Register */ /* Timers control */ #define NPCM7XX_Tx_RESETINT 0x1f #define NPCM7XX_Tx_PERIOD BIT(27) #define NPCM7XX_Tx_INTEN BIT(29) #define NPCM7XX_Tx_COUNTEN BIT(30) #define NPCM7XX_Tx_ONESHOT 0x0 #define NPCM7XX_Tx_OPER GENMASK(28, 27) #define NPCM7XX_Tx_MIN_PRESCALE 0x1 #define NPCM7XX_Tx_TDR_MASK_BITS 24 #define NPCM7XX_Tx_MAX_CNT 0xFFFFFF #define NPCM7XX_T0_CLR_INT 0x1 #define NPCM7XX_Tx_CLR_CSR 0x0 /* Timers operating mode */ #define NPCM7XX_START_PERIODIC_Tx (NPCM7XX_Tx_PERIOD | NPCM7XX_Tx_COUNTEN | \ NPCM7XX_Tx_INTEN | \ NPCM7XX_Tx_MIN_PRESCALE) #define NPCM7XX_START_ONESHOT_Tx (NPCM7XX_Tx_ONESHOT | NPCM7XX_Tx_COUNTEN | \ NPCM7XX_Tx_INTEN | \ NPCM7XX_Tx_MIN_PRESCALE) #define NPCM7XX_START_Tx (NPCM7XX_Tx_COUNTEN | NPCM7XX_Tx_PERIOD | \ NPCM7XX_Tx_MIN_PRESCALE) #define NPCM7XX_DEFAULT_CSR (NPCM7XX_Tx_CLR_CSR | NPCM7XX_Tx_MIN_PRESCALE) static int npcm7xx_timer_resume(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); u32 val; val = readl(timer_of_base(to) + NPCM7XX_REG_TCSR0); val |= NPCM7XX_Tx_COUNTEN; writel(val, timer_of_base(to) + NPCM7XX_REG_TCSR0); return 0; } static int npcm7xx_timer_shutdown(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); u32 val; val = readl(timer_of_base(to) + NPCM7XX_REG_TCSR0); val &= ~NPCM7XX_Tx_COUNTEN; writel(val, timer_of_base(to) + NPCM7XX_REG_TCSR0); return 0; } static int npcm7xx_timer_oneshot(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); u32 val; val = readl(timer_of_base(to) + NPCM7XX_REG_TCSR0); val &= ~NPCM7XX_Tx_OPER; val |= NPCM7XX_START_ONESHOT_Tx; writel(val, timer_of_base(to) + NPCM7XX_REG_TCSR0); return 0; } static int npcm7xx_timer_periodic(struct clock_event_device *evt) { struct timer_of *to = to_timer_of(evt); u32 val; writel(timer_of_period(to), timer_of_base(to) + NPCM7XX_REG_TICR0); val = readl(timer_of_base(to) + NPCM7XX_REG_TCSR0); val &= ~NPCM7XX_Tx_OPER; val |= NPCM7XX_START_PERIODIC_Tx; writel(val, timer_of_base(to) + NPCM7XX_REG_TCSR0); return 0; } static int npcm7xx_clockevent_set_next_event(unsigned long evt, struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); u32 val; writel(evt, timer_of_base(to) + NPCM7XX_REG_TICR0); val = readl(timer_of_base(to) + NPCM7XX_REG_TCSR0); val |= NPCM7XX_START_Tx; writel(val, timer_of_base(to) + NPCM7XX_REG_TCSR0); return 0; } static irqreturn_t npcm7xx_timer0_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; struct timer_of *to = to_timer_of(evt); writel(NPCM7XX_T0_CLR_INT, timer_of_base(to) + NPCM7XX_REG_TISR); evt->event_handler(evt); return IRQ_HANDLED; } static struct timer_of npcm7xx_to = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = "npcm7xx-timer0", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_next_event = npcm7xx_clockevent_set_next_event, .set_state_shutdown = npcm7xx_timer_shutdown, .set_state_periodic = npcm7xx_timer_periodic, .set_state_oneshot = npcm7xx_timer_oneshot, .tick_resume = npcm7xx_timer_resume, .rating = 300, }, .of_irq = { .handler = npcm7xx_timer0_interrupt, .flags = IRQF_TIMER | IRQF_IRQPOLL, }, }; static void __init npcm7xx_clockevents_init(void) { writel(NPCM7XX_DEFAULT_CSR, timer_of_base(&npcm7xx_to) + NPCM7XX_REG_TCSR0); writel(NPCM7XX_Tx_RESETINT, timer_of_base(&npcm7xx_to) + NPCM7XX_REG_TISR); npcm7xx_to.clkevt.cpumask = cpumask_of(0); clockevents_config_and_register(&npcm7xx_to.clkevt, timer_of_rate(&npcm7xx_to), 0x1, NPCM7XX_Tx_MAX_CNT); } static void __init npcm7xx_clocksource_init(void) { u32 val; writel(NPCM7XX_DEFAULT_CSR, timer_of_base(&npcm7xx_to) + NPCM7XX_REG_TCSR1); writel(NPCM7XX_Tx_MAX_CNT, timer_of_base(&npcm7xx_to) + NPCM7XX_REG_TICR1); val = readl(timer_of_base(&npcm7xx_to) + NPCM7XX_REG_TCSR1); val |= NPCM7XX_START_Tx; writel(val, timer_of_base(&npcm7xx_to) + NPCM7XX_REG_TCSR1); clocksource_mmio_init(timer_of_base(&npcm7xx_to) + NPCM7XX_REG_TDR1, "npcm7xx-timer1", timer_of_rate(&npcm7xx_to), 200, (unsigned int)NPCM7XX_Tx_TDR_MASK_BITS, clocksource_mmio_readl_down); } static int __init npcm7xx_timer_init(struct device_node *np) { struct clk *clk; int ret; ret = timer_of_init(np, &npcm7xx_to); if (ret) return ret; /* Clock input is divided by PRESCALE + 1 before it is fed */ /* to the counter */ npcm7xx_to.of_clk.rate = npcm7xx_to.of_clk.rate / (NPCM7XX_Tx_MIN_PRESCALE + 1); /* Enable the clock for timer1, if it exists */ clk = of_clk_get(np, 1); if (clk) { if (!IS_ERR(clk)) clk_prepare_enable(clk); else pr_warn("%pOF: Failed to get clock for timer1: %pe", np, clk); } npcm7xx_clocksource_init(); npcm7xx_clockevents_init(); pr_info("Enabling NPCM7xx clocksource timer base: %px, IRQ: %d ", timer_of_base(&npcm7xx_to), timer_of_irq(&npcm7xx_to)); return 0; } TIMER_OF_DECLARE(wpcm450, "nuvoton,wpcm450-timer", npcm7xx_timer_init); TIMER_OF_DECLARE(npcm7xx, "nuvoton,npcm750-timer", npcm7xx_timer_init);
linux-master
drivers/clocksource/timer-npcm7xx.c
// SPDX-License-Identifier: GPL-2.0 /* * IXP4 timer driver * Copyright (C) 2019 Linus Walleij <[email protected]> * * Based on arch/arm/mach-ixp4xx/common.c * Copyright 2002 (C) Intel Corporation * Copyright 2003-2004 (C) MontaVista, Software, Inc. * Copyright (C) Deepak Saxena <[email protected]> */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include <linux/bitops.h> #include <linux/delay.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> /* * Constants to make it easy to access Timer Control/Status registers */ #define IXP4XX_OSTS_OFFSET 0x00 /* Continuous Timestamp */ #define IXP4XX_OST1_OFFSET 0x04 /* Timer 1 Timestamp */ #define IXP4XX_OSRT1_OFFSET 0x08 /* Timer 1 Reload */ #define IXP4XX_OST2_OFFSET 0x0C /* Timer 2 Timestamp */ #define IXP4XX_OSRT2_OFFSET 0x10 /* Timer 2 Reload */ #define IXP4XX_OSST_OFFSET 0x20 /* Timer Status */ /* * Timer register values and bit definitions */ #define IXP4XX_OST_ENABLE 0x00000001 #define IXP4XX_OST_ONE_SHOT 0x00000002 /* Low order bits of reload value ignored */ #define IXP4XX_OST_RELOAD_MASK 0x00000003 #define IXP4XX_OST_DISABLED 0x00000000 #define IXP4XX_OSST_TIMER_1_PEND 0x00000001 #define IXP4XX_OSST_TIMER_2_PEND 0x00000002 #define IXP4XX_OSST_TIMER_TS_PEND 0x00000004 /* Remaining registers are for the watchdog and defined in the watchdog driver */ struct ixp4xx_timer { void __iomem *base; u32 latch; struct clock_event_device clkevt; #ifdef CONFIG_ARM struct delay_timer delay_timer; #endif }; /* * A local singleton used by sched_clock and delay timer reads, which are * fast and stateless */ static struct ixp4xx_timer *local_ixp4xx_timer; static inline struct ixp4xx_timer * to_ixp4xx_timer(struct clock_event_device *evt) { return container_of(evt, struct ixp4xx_timer, clkevt); } static unsigned long ixp4xx_read_timer(void) { return __raw_readl(local_ixp4xx_timer->base + IXP4XX_OSTS_OFFSET); } static u64 notrace ixp4xx_read_sched_clock(void) { return ixp4xx_read_timer(); } static u64 ixp4xx_clocksource_read(struct clocksource *c) { return ixp4xx_read_timer(); } static irqreturn_t ixp4xx_timer_interrupt(int irq, void *dev_id) { struct ixp4xx_timer *tmr = dev_id; struct clock_event_device *evt = &tmr->clkevt; /* Clear Pending Interrupt */ __raw_writel(IXP4XX_OSST_TIMER_1_PEND, tmr->base + IXP4XX_OSST_OFFSET); evt->event_handler(evt); return IRQ_HANDLED; } static int ixp4xx_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct ixp4xx_timer *tmr = to_ixp4xx_timer(evt); u32 val; val = __raw_readl(tmr->base + IXP4XX_OSRT1_OFFSET); /* Keep enable/oneshot bits */ val &= IXP4XX_OST_RELOAD_MASK; __raw_writel((cycles & ~IXP4XX_OST_RELOAD_MASK) | val, tmr->base + IXP4XX_OSRT1_OFFSET); return 0; } static int ixp4xx_shutdown(struct clock_event_device *evt) { struct ixp4xx_timer *tmr = to_ixp4xx_timer(evt); u32 val; val = __raw_readl(tmr->base + IXP4XX_OSRT1_OFFSET); val &= ~IXP4XX_OST_ENABLE; __raw_writel(val, tmr->base + IXP4XX_OSRT1_OFFSET); return 0; } static int ixp4xx_set_oneshot(struct clock_event_device *evt) { struct ixp4xx_timer *tmr = to_ixp4xx_timer(evt); __raw_writel(IXP4XX_OST_ENABLE | IXP4XX_OST_ONE_SHOT, tmr->base + IXP4XX_OSRT1_OFFSET); return 0; } static int ixp4xx_set_periodic(struct clock_event_device *evt) { struct ixp4xx_timer *tmr = to_ixp4xx_timer(evt); u32 val; val = tmr->latch & ~IXP4XX_OST_RELOAD_MASK; val |= IXP4XX_OST_ENABLE; __raw_writel(val, tmr->base + IXP4XX_OSRT1_OFFSET); return 0; } static int ixp4xx_resume(struct clock_event_device *evt) { struct ixp4xx_timer *tmr = to_ixp4xx_timer(evt); u32 val; val = __raw_readl(tmr->base + IXP4XX_OSRT1_OFFSET); val |= IXP4XX_OST_ENABLE; __raw_writel(val, tmr->base + IXP4XX_OSRT1_OFFSET); return 0; } /* * IXP4xx timer tick * We use OS timer1 on the CPU for the timer tick and the timestamp * counter as a source of real clock ticks to account for missed jiffies. */ static __init int ixp4xx_timer_register(void __iomem *base, int timer_irq, unsigned int timer_freq) { struct ixp4xx_timer *tmr; int ret; tmr = kzalloc(sizeof(*tmr), GFP_KERNEL); if (!tmr) return -ENOMEM; tmr->base = base; /* * The timer register doesn't allow to specify the two least * significant bits of the timeout value and assumes them being zero. * So make sure the latch is the best value with the two least * significant bits unset. */ tmr->latch = DIV_ROUND_CLOSEST(timer_freq, (IXP4XX_OST_RELOAD_MASK + 1) * HZ) * (IXP4XX_OST_RELOAD_MASK + 1); local_ixp4xx_timer = tmr; /* Reset/disable counter */ __raw_writel(0, tmr->base + IXP4XX_OSRT1_OFFSET); /* Clear any pending interrupt on timer 1 */ __raw_writel(IXP4XX_OSST_TIMER_1_PEND, tmr->base + IXP4XX_OSST_OFFSET); /* Reset time-stamp counter */ __raw_writel(0, tmr->base + IXP4XX_OSTS_OFFSET); clocksource_mmio_init(NULL, "OSTS", timer_freq, 200, 32, ixp4xx_clocksource_read); tmr->clkevt.name = "ixp4xx timer1"; tmr->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; tmr->clkevt.rating = 200; tmr->clkevt.set_state_shutdown = ixp4xx_shutdown; tmr->clkevt.set_state_periodic = ixp4xx_set_periodic; tmr->clkevt.set_state_oneshot = ixp4xx_set_oneshot; tmr->clkevt.tick_resume = ixp4xx_resume; tmr->clkevt.set_next_event = ixp4xx_set_next_event; tmr->clkevt.cpumask = cpumask_of(0); tmr->clkevt.irq = timer_irq; ret = request_irq(timer_irq, ixp4xx_timer_interrupt, IRQF_TIMER, "IXP4XX-TIMER1", tmr); if (ret) { pr_crit("no timer IRQ\n"); return -ENODEV; } clockevents_config_and_register(&tmr->clkevt, timer_freq, 0xf, 0xfffffffe); sched_clock_register(ixp4xx_read_sched_clock, 32, timer_freq); #ifdef CONFIG_ARM /* Also use this timer for delays */ tmr->delay_timer.read_current_timer = ixp4xx_read_timer; tmr->delay_timer.freq = timer_freq; register_current_timer_delay(&tmr->delay_timer); #endif return 0; } static struct platform_device ixp4xx_watchdog_device = { .name = "ixp4xx-watchdog", .id = -1, }; /* * This probe gets called after the timer is already up and running. The main * function on this platform is to spawn the watchdog device as a child. */ static int ixp4xx_timer_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; /* Pass the base address as platform data and nothing else */ ixp4xx_watchdog_device.dev.platform_data = local_ixp4xx_timer->base; ixp4xx_watchdog_device.dev.parent = dev; return platform_device_register(&ixp4xx_watchdog_device); } static const struct of_device_id ixp4xx_timer_dt_id[] = { { .compatible = "intel,ixp4xx-timer", }, { /* sentinel */ }, }; static struct platform_driver ixp4xx_timer_driver = { .probe = ixp4xx_timer_probe, .driver = { .name = "ixp4xx-timer", .of_match_table = ixp4xx_timer_dt_id, .suppress_bind_attrs = true, }, }; builtin_platform_driver(ixp4xx_timer_driver); static __init int ixp4xx_of_timer_init(struct device_node *np) { void __iomem *base; int irq; int ret; base = of_iomap(np, 0); if (!base) { pr_crit("IXP4xx: can't remap timer\n"); return -ENODEV; } irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_err("Can't parse IRQ\n"); ret = -EINVAL; goto out_unmap; } /* TODO: get some fixed clocks into the device tree */ ret = ixp4xx_timer_register(base, irq, 66666000); if (ret) goto out_unmap; return 0; out_unmap: iounmap(base); return ret; } TIMER_OF_DECLARE(ixp4xx, "intel,ixp4xx-timer", ixp4xx_of_timer_init);
linux-master
drivers/clocksource/timer-ixp4xx.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Socionext Inc. */ #include <linux/clk.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqreturn.h> #include <linux/sched_clock.h> #include "timer-of.h" #define MLB_TMR_TMCSR_OFS 0x0 #define MLB_TMR_TMR_OFS 0x4 #define MLB_TMR_TMRLR1_OFS 0x8 #define MLB_TMR_TMRLR2_OFS 0xc #define MLB_TMR_REGSZPCH 0x10 #define MLB_TMR_TMCSR_OUTL BIT(5) #define MLB_TMR_TMCSR_RELD BIT(4) #define MLB_TMR_TMCSR_INTE BIT(3) #define MLB_TMR_TMCSR_UF BIT(2) #define MLB_TMR_TMCSR_CNTE BIT(1) #define MLB_TMR_TMCSR_TRG BIT(0) #define MLB_TMR_TMCSR_CSL_DIV2 0 #define MLB_TMR_DIV_CNT 2 #define MLB_TMR_SRC_CH 1 #define MLB_TMR_EVT_CH 0 #define MLB_TMR_SRC_CH_OFS (MLB_TMR_REGSZPCH * MLB_TMR_SRC_CH) #define MLB_TMR_EVT_CH_OFS (MLB_TMR_REGSZPCH * MLB_TMR_EVT_CH) #define MLB_TMR_SRC_TMCSR_OFS (MLB_TMR_SRC_CH_OFS + MLB_TMR_TMCSR_OFS) #define MLB_TMR_SRC_TMR_OFS (MLB_TMR_SRC_CH_OFS + MLB_TMR_TMR_OFS) #define MLB_TMR_SRC_TMRLR1_OFS (MLB_TMR_SRC_CH_OFS + MLB_TMR_TMRLR1_OFS) #define MLB_TMR_SRC_TMRLR2_OFS (MLB_TMR_SRC_CH_OFS + MLB_TMR_TMRLR2_OFS) #define MLB_TMR_EVT_TMCSR_OFS (MLB_TMR_EVT_CH_OFS + MLB_TMR_TMCSR_OFS) #define MLB_TMR_EVT_TMR_OFS (MLB_TMR_EVT_CH_OFS + MLB_TMR_TMR_OFS) #define MLB_TMR_EVT_TMRLR1_OFS (MLB_TMR_EVT_CH_OFS + MLB_TMR_TMRLR1_OFS) #define MLB_TMR_EVT_TMRLR2_OFS (MLB_TMR_EVT_CH_OFS + MLB_TMR_TMRLR2_OFS) #define MLB_TIMER_RATING 500 #define MLB_TIMER_ONESHOT 0 #define MLB_TIMER_PERIODIC 1 static irqreturn_t mlb_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *clk = dev_id; struct timer_of *to = to_timer_of(clk); u32 val; val = readl_relaxed(timer_of_base(to) + MLB_TMR_EVT_TMCSR_OFS); val &= ~MLB_TMR_TMCSR_UF; writel_relaxed(val, timer_of_base(to) + MLB_TMR_EVT_TMCSR_OFS); clk->event_handler(clk); return IRQ_HANDLED; } static void mlb_evt_timer_start(struct timer_of *to, bool periodic) { u32 val = MLB_TMR_TMCSR_CSL_DIV2; val |= MLB_TMR_TMCSR_CNTE | MLB_TMR_TMCSR_TRG | MLB_TMR_TMCSR_INTE; if (periodic) val |= MLB_TMR_TMCSR_RELD; writel_relaxed(val, timer_of_base(to) + MLB_TMR_EVT_TMCSR_OFS); } static void mlb_evt_timer_stop(struct timer_of *to) { u32 val = readl_relaxed(timer_of_base(to) + MLB_TMR_EVT_TMCSR_OFS); val &= ~MLB_TMR_TMCSR_CNTE; writel_relaxed(val, timer_of_base(to) + MLB_TMR_EVT_TMCSR_OFS); } static void mlb_evt_timer_register_count(struct timer_of *to, unsigned long cnt) { writel_relaxed(cnt, timer_of_base(to) + MLB_TMR_EVT_TMRLR1_OFS); } static int mlb_set_state_periodic(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mlb_evt_timer_stop(to); mlb_evt_timer_register_count(to, to->of_clk.period); mlb_evt_timer_start(to, MLB_TIMER_PERIODIC); return 0; } static int mlb_set_state_oneshot(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mlb_evt_timer_stop(to); mlb_evt_timer_start(to, MLB_TIMER_ONESHOT); return 0; } static int mlb_set_state_shutdown(struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mlb_evt_timer_stop(to); return 0; } static int mlb_clkevt_next_event(unsigned long event, struct clock_event_device *clk) { struct timer_of *to = to_timer_of(clk); mlb_evt_timer_stop(to); mlb_evt_timer_register_count(to, event); mlb_evt_timer_start(to, MLB_TIMER_ONESHOT); return 0; } static int mlb_config_clock_source(struct timer_of *to) { u32 val = MLB_TMR_TMCSR_CSL_DIV2; writel_relaxed(val, timer_of_base(to) + MLB_TMR_SRC_TMCSR_OFS); writel_relaxed(~0, timer_of_base(to) + MLB_TMR_SRC_TMRLR1_OFS); writel_relaxed(~0, timer_of_base(to) + MLB_TMR_SRC_TMRLR2_OFS); val |= MLB_TMR_TMCSR_RELD | MLB_TMR_TMCSR_CNTE | MLB_TMR_TMCSR_TRG; writel_relaxed(val, timer_of_base(to) + MLB_TMR_SRC_TMCSR_OFS); return 0; } static int mlb_config_clock_event(struct timer_of *to) { writel_relaxed(0, timer_of_base(to) + MLB_TMR_EVT_TMCSR_OFS); return 0; } static struct timer_of to = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .name = "mlb-clkevt", .rating = MLB_TIMER_RATING, .cpumask = cpu_possible_mask, .features = CLOCK_EVT_FEAT_DYNIRQ | CLOCK_EVT_FEAT_ONESHOT, .set_state_oneshot = mlb_set_state_oneshot, .set_state_periodic = mlb_set_state_periodic, .set_state_shutdown = mlb_set_state_shutdown, .set_next_event = mlb_clkevt_next_event, }, .of_irq = { .flags = IRQF_TIMER | IRQF_IRQPOLL, .handler = mlb_timer_interrupt, }, }; static u64 notrace mlb_timer_sched_read(void) { return ~readl_relaxed(timer_of_base(&to) + MLB_TMR_SRC_TMR_OFS); } static int __init mlb_timer_init(struct device_node *node) { int ret; unsigned long rate; ret = timer_of_init(node, &to); if (ret) return ret; rate = timer_of_rate(&to) / MLB_TMR_DIV_CNT; mlb_config_clock_source(&to); clocksource_mmio_init(timer_of_base(&to) + MLB_TMR_SRC_TMR_OFS, node->name, rate, MLB_TIMER_RATING, 32, clocksource_mmio_readl_down); sched_clock_register(mlb_timer_sched_read, 32, rate); mlb_config_clock_event(&to); clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), 15, 0xffffffff); return 0; } TIMER_OF_DECLARE(mlb_peritimer, "socionext,milbeaut-timer", mlb_timer_init);
linux-master
drivers/clocksource/timer-milbeaut.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2014 Oleksij Rempel <[email protected]> */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/sched.h> #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/bitops.h> #define DRIVER_NAME "asm9260-timer" /* * this device provide 4 offsets for each register: * 0x0 - plain read write mode * 0x4 - set mode, OR logic. * 0x8 - clr mode, XOR logic. * 0xc - togle mode. */ #define SET_REG 4 #define CLR_REG 8 #define HW_IR 0x0000 /* RW. Interrupt */ #define BM_IR_CR0 BIT(4) #define BM_IR_MR3 BIT(3) #define BM_IR_MR2 BIT(2) #define BM_IR_MR1 BIT(1) #define BM_IR_MR0 BIT(0) #define HW_TCR 0x0010 /* RW. Timer controller */ /* BM_C*_RST * Timer Counter and the Prescale Counter are synchronously reset on the * next positive edge of PCLK. The counters remain reset until TCR[1] is * returned to zero. */ #define BM_C3_RST BIT(7) #define BM_C2_RST BIT(6) #define BM_C1_RST BIT(5) #define BM_C0_RST BIT(4) /* BM_C*_EN * 1 - Timer Counter and Prescale Counter are enabled for counting * 0 - counters are disabled */ #define BM_C3_EN BIT(3) #define BM_C2_EN BIT(2) #define BM_C1_EN BIT(1) #define BM_C0_EN BIT(0) #define HW_DIR 0x0020 /* RW. Direction? */ /* 00 - count up * 01 - count down * 10 - ?? 2^n/2 */ #define BM_DIR_COUNT_UP 0 #define BM_DIR_COUNT_DOWN 1 #define BM_DIR0_SHIFT 0 #define BM_DIR1_SHIFT 4 #define BM_DIR2_SHIFT 8 #define BM_DIR3_SHIFT 12 #define BM_DIR_DEFAULT (BM_DIR_COUNT_UP << BM_DIR0_SHIFT | \ BM_DIR_COUNT_UP << BM_DIR1_SHIFT | \ BM_DIR_COUNT_UP << BM_DIR2_SHIFT | \ BM_DIR_COUNT_UP << BM_DIR3_SHIFT) #define HW_TC0 0x0030 /* RO. Timer counter 0 */ /* HW_TC*. Timer counter owerflow (0xffff.ffff to 0x0000.0000) do not generate * interrupt. This registers can be used to detect overflow */ #define HW_TC1 0x0040 #define HW_TC2 0x0050 #define HW_TC3 0x0060 #define HW_PR 0x0070 /* RW. prescaler */ #define BM_PR_DISABLE 0 #define HW_PC 0x0080 /* RO. Prescaler counter */ #define HW_MCR 0x0090 /* RW. Match control */ /* enable interrupt on match */ #define BM_MCR_INT_EN(n) (1 << (n * 3 + 0)) /* enable TC reset on match */ #define BM_MCR_RES_EN(n) (1 << (n * 3 + 1)) /* enable stop TC on match */ #define BM_MCR_STOP_EN(n) (1 << (n * 3 + 2)) #define HW_MR0 0x00a0 /* RW. Match reg */ #define HW_MR1 0x00b0 #define HW_MR2 0x00C0 #define HW_MR3 0x00D0 #define HW_CTCR 0x0180 /* Counter control */ #define BM_CTCR0_SHIFT 0 #define BM_CTCR1_SHIFT 2 #define BM_CTCR2_SHIFT 4 #define BM_CTCR3_SHIFT 6 #define BM_CTCR_TM 0 /* Timer mode. Every rising PCLK edge. */ #define BM_CTCR_DEFAULT (BM_CTCR_TM << BM_CTCR0_SHIFT | \ BM_CTCR_TM << BM_CTCR1_SHIFT | \ BM_CTCR_TM << BM_CTCR2_SHIFT | \ BM_CTCR_TM << BM_CTCR3_SHIFT) static struct asm9260_timer_priv { void __iomem *base; unsigned long ticks_per_jiffy; } priv; static int asm9260_timer_set_next_event(unsigned long delta, struct clock_event_device *evt) { /* configure match count for TC0 */ writel_relaxed(delta, priv.base + HW_MR0); /* enable TC0 */ writel_relaxed(BM_C0_EN, priv.base + HW_TCR + SET_REG); return 0; } static inline void __asm9260_timer_shutdown(struct clock_event_device *evt) { /* stop timer0 */ writel_relaxed(BM_C0_EN, priv.base + HW_TCR + CLR_REG); } static int asm9260_timer_shutdown(struct clock_event_device *evt) { __asm9260_timer_shutdown(evt); return 0; } static int asm9260_timer_set_oneshot(struct clock_event_device *evt) { __asm9260_timer_shutdown(evt); /* enable reset and stop on match */ writel_relaxed(BM_MCR_RES_EN(0) | BM_MCR_STOP_EN(0), priv.base + HW_MCR + SET_REG); return 0; } static int asm9260_timer_set_periodic(struct clock_event_device *evt) { __asm9260_timer_shutdown(evt); /* disable reset and stop on match */ writel_relaxed(BM_MCR_RES_EN(0) | BM_MCR_STOP_EN(0), priv.base + HW_MCR + CLR_REG); /* configure match count for TC0 */ writel_relaxed(priv.ticks_per_jiffy, priv.base + HW_MR0); /* enable TC0 */ writel_relaxed(BM_C0_EN, priv.base + HW_TCR + SET_REG); return 0; } static struct clock_event_device event_dev = { .name = DRIVER_NAME, .rating = 200, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_next_event = asm9260_timer_set_next_event, .set_state_shutdown = asm9260_timer_shutdown, .set_state_periodic = asm9260_timer_set_periodic, .set_state_oneshot = asm9260_timer_set_oneshot, .tick_resume = asm9260_timer_shutdown, }; static irqreturn_t asm9260_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); writel_relaxed(BM_IR_MR0, priv.base + HW_IR); return IRQ_HANDLED; } /* * --------------------------------------------------------------------------- * Timer initialization * --------------------------------------------------------------------------- */ static int __init asm9260_timer_init(struct device_node *np) { int irq; struct clk *clk; int ret; unsigned long rate; priv.base = of_io_request_and_map(np, 0, np->name); if (IS_ERR(priv.base)) { pr_err("%pOFn: unable to map resource\n", np); return PTR_ERR(priv.base); } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("Failed to get clk!\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_err("Failed to enable clk!\n"); return ret; } irq = irq_of_parse_and_map(np, 0); ret = request_irq(irq, asm9260_timer_interrupt, IRQF_TIMER, DRIVER_NAME, &event_dev); if (ret) { pr_err("Failed to setup irq!\n"); return ret; } /* set all timers for count-up */ writel_relaxed(BM_DIR_DEFAULT, priv.base + HW_DIR); /* disable divider */ writel_relaxed(BM_PR_DISABLE, priv.base + HW_PR); /* make sure all timers use every rising PCLK edge. */ writel_relaxed(BM_CTCR_DEFAULT, priv.base + HW_CTCR); /* enable interrupt for TC0 and clean setting for all other lines */ writel_relaxed(BM_MCR_INT_EN(0) , priv.base + HW_MCR); rate = clk_get_rate(clk); clocksource_mmio_init(priv.base + HW_TC1, DRIVER_NAME, rate, 200, 32, clocksource_mmio_readl_up); /* Seems like we can't use counter without match register even if * actions for MR are disabled. So, set MR to max value. */ writel_relaxed(0xffffffff, priv.base + HW_MR1); /* enable TC1 */ writel_relaxed(BM_C1_EN, priv.base + HW_TCR + SET_REG); priv.ticks_per_jiffy = DIV_ROUND_CLOSEST(rate, HZ); event_dev.cpumask = cpumask_of(0); clockevents_config_and_register(&event_dev, rate, 0x2c00, 0xfffffffe); return 0; } TIMER_OF_DECLARE(asm9260_timer, "alphascale,asm9260-timer", asm9260_timer_init);
linux-master
drivers/clocksource/asm9260_timer.c
// SPDX-License-Identifier: GPL-2.0-only /* * Keystone broadcast clock-event * * Copyright 2013 Texas Instruments, Inc. * * Author: Ivan Khoronzhuk <[email protected]> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define TIMER_NAME "timer-keystone" /* Timer register offsets */ #define TIM12 0x10 #define TIM34 0x14 #define PRD12 0x18 #define PRD34 0x1c #define TCR 0x20 #define TGCR 0x24 #define INTCTLSTAT 0x44 /* Timer register bitfields */ #define TCR_ENAMODE_MASK 0xC0 #define TCR_ENAMODE_ONESHOT_MASK 0x40 #define TCR_ENAMODE_PERIODIC_MASK 0x80 #define TGCR_TIM_UNRESET_MASK 0x03 #define INTCTLSTAT_ENINT_MASK 0x01 /** * struct keystone_timer: holds timer's data * @base: timer memory base address * @hz_period: cycles per HZ period * @event_dev: event device based on timer */ static struct keystone_timer { void __iomem *base; unsigned long hz_period; struct clock_event_device event_dev; } timer; static inline u32 keystone_timer_readl(unsigned long rg) { return readl_relaxed(timer.base + rg); } static inline void keystone_timer_writel(u32 val, unsigned long rg) { writel_relaxed(val, timer.base + rg); } /** * keystone_timer_barrier: write memory barrier * use explicit barrier to avoid using readl/writel non relaxed function * variants, because in our case non relaxed variants hide the true places * where barrier is needed. */ static inline void keystone_timer_barrier(void) { __iowmb(); } /** * keystone_timer_config: configures timer to work in oneshot/periodic modes. * @ mask: mask of the mode to configure * @ period: cycles number to configure for */ static int keystone_timer_config(u64 period, int mask) { u32 tcr; u32 off; tcr = keystone_timer_readl(TCR); off = tcr & ~(TCR_ENAMODE_MASK); /* set enable mode */ tcr |= mask; /* disable timer */ keystone_timer_writel(off, TCR); /* here we have to be sure the timer has been disabled */ keystone_timer_barrier(); /* reset counter to zero, set new period */ keystone_timer_writel(0, TIM12); keystone_timer_writel(0, TIM34); keystone_timer_writel(period & 0xffffffff, PRD12); keystone_timer_writel(period >> 32, PRD34); /* * enable timer * here we have to be sure that CNTLO, CNTHI, PRDLO, PRDHI registers * have been written. */ keystone_timer_barrier(); keystone_timer_writel(tcr, TCR); return 0; } static void keystone_timer_disable(void) { u32 tcr; tcr = keystone_timer_readl(TCR); /* disable timer */ tcr &= ~(TCR_ENAMODE_MASK); keystone_timer_writel(tcr, TCR); } static irqreturn_t keystone_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static int keystone_set_next_event(unsigned long cycles, struct clock_event_device *evt) { return keystone_timer_config(cycles, TCR_ENAMODE_ONESHOT_MASK); } static int keystone_shutdown(struct clock_event_device *evt) { keystone_timer_disable(); return 0; } static int keystone_set_periodic(struct clock_event_device *evt) { keystone_timer_config(timer.hz_period, TCR_ENAMODE_PERIODIC_MASK); return 0; } static int __init keystone_timer_init(struct device_node *np) { struct clock_event_device *event_dev = &timer.event_dev; unsigned long rate; struct clk *clk; int irq, error; irq = irq_of_parse_and_map(np, 0); if (!irq) { pr_err("%s: failed to map interrupts\n", __func__); return -EINVAL; } timer.base = of_iomap(np, 0); if (!timer.base) { pr_err("%s: failed to map registers\n", __func__); return -ENXIO; } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("%s: failed to get clock\n", __func__); iounmap(timer.base); return PTR_ERR(clk); } error = clk_prepare_enable(clk); if (error) { pr_err("%s: failed to enable clock\n", __func__); goto err; } rate = clk_get_rate(clk); /* disable, use internal clock source */ keystone_timer_writel(0, TCR); /* here we have to be sure the timer has been disabled */ keystone_timer_barrier(); /* reset timer as 64-bit, no pre-scaler, plus features are disabled */ keystone_timer_writel(0, TGCR); /* unreset timer */ keystone_timer_writel(TGCR_TIM_UNRESET_MASK, TGCR); /* init counter to zero */ keystone_timer_writel(0, TIM12); keystone_timer_writel(0, TIM34); timer.hz_period = DIV_ROUND_UP(rate, HZ); /* enable timer interrupts */ keystone_timer_writel(INTCTLSTAT_ENINT_MASK, INTCTLSTAT); error = request_irq(irq, keystone_timer_interrupt, IRQF_TIMER, TIMER_NAME, event_dev); if (error) { pr_err("%s: failed to setup irq\n", __func__); goto err; } /* setup clockevent */ event_dev->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; event_dev->set_next_event = keystone_set_next_event; event_dev->set_state_shutdown = keystone_shutdown; event_dev->set_state_periodic = keystone_set_periodic; event_dev->set_state_oneshot = keystone_shutdown; event_dev->cpumask = cpu_possible_mask; event_dev->owner = THIS_MODULE; event_dev->name = TIMER_NAME; event_dev->irq = irq; clockevents_config_and_register(event_dev, rate, 1, ULONG_MAX); pr_info("keystone timer clock @%lu Hz\n", rate); return 0; err: clk_put(clk); iounmap(timer.base); return error; } TIMER_OF_DECLARE(keystone_timer, "ti,keystone-timer", keystone_timer_init);
linux-master
drivers/clocksource/timer-keystone.c
// SPDX-License-Identifier: GPL-2.0 /* * Ingenic XBurst SoCs SYSOST clocks driver * Copyright (c) 2020 周琰杰 (Zhou Yanjie) <[email protected]> */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/mfd/syscon.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include <linux/syscore_ops.h> #include <dt-bindings/clock/ingenic,sysost.h> /* OST register offsets */ #define OST_REG_OSTCCR 0x00 #define OST_REG_OSTCR 0x08 #define OST_REG_OSTFR 0x0c #define OST_REG_OSTMR 0x10 #define OST_REG_OST1DFR 0x14 #define OST_REG_OST1CNT 0x18 #define OST_REG_OST2CNTL 0x20 #define OST_REG_OSTCNT2HBUF 0x24 #define OST_REG_OSTESR 0x34 #define OST_REG_OSTECR 0x38 /* bits within the OSTCCR register */ #define OSTCCR_PRESCALE1_MASK 0x3 #define OSTCCR_PRESCALE2_MASK 0xc /* bits within the OSTCR register */ #define OSTCR_OST1CLR BIT(0) #define OSTCR_OST2CLR BIT(1) /* bits within the OSTFR register */ #define OSTFR_FFLAG BIT(0) /* bits within the OSTMR register */ #define OSTMR_FMASK BIT(0) /* bits within the OSTESR register */ #define OSTESR_OST1ENS BIT(0) #define OSTESR_OST2ENS BIT(1) /* bits within the OSTECR register */ #define OSTECR_OST1ENC BIT(0) #define OSTECR_OST2ENC BIT(1) struct ingenic_soc_info { unsigned int num_channels; }; struct ingenic_ost_clk_info { struct clk_init_data init_data; u8 ostccr_reg; }; struct ingenic_ost_clk { struct clk_hw hw; unsigned int idx; struct ingenic_ost *ost; const struct ingenic_ost_clk_info *info; }; struct ingenic_ost { void __iomem *base; const struct ingenic_soc_info *soc_info; struct clk *clk, *percpu_timer_clk, *global_timer_clk; struct clock_event_device cevt; struct clocksource cs; char name[20]; struct clk_hw_onecell_data *clocks; }; static struct ingenic_ost *ingenic_ost; static inline struct ingenic_ost_clk *to_ost_clk(struct clk_hw *hw) { return container_of(hw, struct ingenic_ost_clk, hw); } static unsigned long ingenic_ost_percpu_timer_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct ingenic_ost_clk *ost_clk = to_ost_clk(hw); const struct ingenic_ost_clk_info *info = ost_clk->info; unsigned int prescale; prescale = readl(ost_clk->ost->base + info->ostccr_reg); prescale = FIELD_GET(OSTCCR_PRESCALE1_MASK, prescale); return parent_rate >> (prescale * 2); } static unsigned long ingenic_ost_global_timer_recalc_rate(struct clk_hw *hw, unsigned long parent_rate) { struct ingenic_ost_clk *ost_clk = to_ost_clk(hw); const struct ingenic_ost_clk_info *info = ost_clk->info; unsigned int prescale; prescale = readl(ost_clk->ost->base + info->ostccr_reg); prescale = FIELD_GET(OSTCCR_PRESCALE2_MASK, prescale); return parent_rate >> (prescale * 2); } static u8 ingenic_ost_get_prescale(unsigned long rate, unsigned long req_rate) { u8 prescale; for (prescale = 0; prescale < 2; prescale++) if ((rate >> (prescale * 2)) <= req_rate) return prescale; return 2; /* /16 divider */ } static long ingenic_ost_round_rate(struct clk_hw *hw, unsigned long req_rate, unsigned long *parent_rate) { unsigned long rate = *parent_rate; u8 prescale; if (req_rate > rate) return rate; prescale = ingenic_ost_get_prescale(rate, req_rate); return rate >> (prescale * 2); } static int ingenic_ost_percpu_timer_set_rate(struct clk_hw *hw, unsigned long req_rate, unsigned long parent_rate) { struct ingenic_ost_clk *ost_clk = to_ost_clk(hw); const struct ingenic_ost_clk_info *info = ost_clk->info; u8 prescale = ingenic_ost_get_prescale(parent_rate, req_rate); int val; val = readl(ost_clk->ost->base + info->ostccr_reg); val &= ~OSTCCR_PRESCALE1_MASK; val |= FIELD_PREP(OSTCCR_PRESCALE1_MASK, prescale); writel(val, ost_clk->ost->base + info->ostccr_reg); return 0; } static int ingenic_ost_global_timer_set_rate(struct clk_hw *hw, unsigned long req_rate, unsigned long parent_rate) { struct ingenic_ost_clk *ost_clk = to_ost_clk(hw); const struct ingenic_ost_clk_info *info = ost_clk->info; u8 prescale = ingenic_ost_get_prescale(parent_rate, req_rate); int val; val = readl(ost_clk->ost->base + info->ostccr_reg); val &= ~OSTCCR_PRESCALE2_MASK; val |= FIELD_PREP(OSTCCR_PRESCALE2_MASK, prescale); writel(val, ost_clk->ost->base + info->ostccr_reg); return 0; } static const struct clk_ops ingenic_ost_percpu_timer_ops = { .recalc_rate = ingenic_ost_percpu_timer_recalc_rate, .round_rate = ingenic_ost_round_rate, .set_rate = ingenic_ost_percpu_timer_set_rate, }; static const struct clk_ops ingenic_ost_global_timer_ops = { .recalc_rate = ingenic_ost_global_timer_recalc_rate, .round_rate = ingenic_ost_round_rate, .set_rate = ingenic_ost_global_timer_set_rate, }; static const char * const ingenic_ost_clk_parents[] = { "ext" }; static const struct ingenic_ost_clk_info x1000_ost_clk_info[] = { [OST_CLK_PERCPU_TIMER] = { .init_data = { .name = "percpu timer", .parent_names = ingenic_ost_clk_parents, .num_parents = ARRAY_SIZE(ingenic_ost_clk_parents), .ops = &ingenic_ost_percpu_timer_ops, .flags = CLK_SET_RATE_UNGATE, }, .ostccr_reg = OST_REG_OSTCCR, }, [OST_CLK_GLOBAL_TIMER] = { .init_data = { .name = "global timer", .parent_names = ingenic_ost_clk_parents, .num_parents = ARRAY_SIZE(ingenic_ost_clk_parents), .ops = &ingenic_ost_global_timer_ops, .flags = CLK_SET_RATE_UNGATE, }, .ostccr_reg = OST_REG_OSTCCR, }, }; static u64 notrace ingenic_ost_global_timer_read_cntl(void) { struct ingenic_ost *ost = ingenic_ost; unsigned int count; count = readl(ost->base + OST_REG_OST2CNTL); return count; } static u64 notrace ingenic_ost_clocksource_read(struct clocksource *cs) { return ingenic_ost_global_timer_read_cntl(); } static inline struct ingenic_ost *to_ingenic_ost(struct clock_event_device *evt) { return container_of(evt, struct ingenic_ost, cevt); } static int ingenic_ost_cevt_set_state_shutdown(struct clock_event_device *evt) { struct ingenic_ost *ost = to_ingenic_ost(evt); writel(OSTECR_OST1ENC, ost->base + OST_REG_OSTECR); return 0; } static int ingenic_ost_cevt_set_next(unsigned long next, struct clock_event_device *evt) { struct ingenic_ost *ost = to_ingenic_ost(evt); writel((u32)~OSTFR_FFLAG, ost->base + OST_REG_OSTFR); writel(next, ost->base + OST_REG_OST1DFR); writel(OSTCR_OST1CLR, ost->base + OST_REG_OSTCR); writel(OSTESR_OST1ENS, ost->base + OST_REG_OSTESR); writel((u32)~OSTMR_FMASK, ost->base + OST_REG_OSTMR); return 0; } static irqreturn_t ingenic_ost_cevt_cb(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; struct ingenic_ost *ost = to_ingenic_ost(evt); writel(OSTECR_OST1ENC, ost->base + OST_REG_OSTECR); if (evt->event_handler) evt->event_handler(evt); return IRQ_HANDLED; } static int __init ingenic_ost_register_clock(struct ingenic_ost *ost, unsigned int idx, const struct ingenic_ost_clk_info *info, struct clk_hw_onecell_data *clocks) { struct ingenic_ost_clk *ost_clk; int val, err; ost_clk = kzalloc(sizeof(*ost_clk), GFP_KERNEL); if (!ost_clk) return -ENOMEM; ost_clk->hw.init = &info->init_data; ost_clk->idx = idx; ost_clk->info = info; ost_clk->ost = ost; /* Reset clock divider */ val = readl(ost->base + info->ostccr_reg); val &= ~(OSTCCR_PRESCALE1_MASK | OSTCCR_PRESCALE2_MASK); writel(val, ost->base + info->ostccr_reg); err = clk_hw_register(NULL, &ost_clk->hw); if (err) { kfree(ost_clk); return err; } clocks->hws[idx] = &ost_clk->hw; return 0; } static struct clk * __init ingenic_ost_get_clock(struct device_node *np, int id) { struct of_phandle_args args; args.np = np; args.args_count = 1; args.args[0] = id; return of_clk_get_from_provider(&args); } static int __init ingenic_ost_percpu_timer_init(struct device_node *np, struct ingenic_ost *ost) { unsigned int timer_virq, channel = OST_CLK_PERCPU_TIMER; unsigned long rate; int err; ost->percpu_timer_clk = ingenic_ost_get_clock(np, channel); if (IS_ERR(ost->percpu_timer_clk)) return PTR_ERR(ost->percpu_timer_clk); err = clk_prepare_enable(ost->percpu_timer_clk); if (err) goto err_clk_put; rate = clk_get_rate(ost->percpu_timer_clk); if (!rate) { err = -EINVAL; goto err_clk_disable; } timer_virq = of_irq_get(np, 0); if (!timer_virq) { err = -EINVAL; goto err_clk_disable; } snprintf(ost->name, sizeof(ost->name), "OST percpu timer"); err = request_irq(timer_virq, ingenic_ost_cevt_cb, IRQF_TIMER, ost->name, &ost->cevt); if (err) goto err_irq_dispose_mapping; ost->cevt.cpumask = cpumask_of(smp_processor_id()); ost->cevt.features = CLOCK_EVT_FEAT_ONESHOT; ost->cevt.name = ost->name; ost->cevt.rating = 400; ost->cevt.set_state_shutdown = ingenic_ost_cevt_set_state_shutdown; ost->cevt.set_next_event = ingenic_ost_cevt_set_next; clockevents_config_and_register(&ost->cevt, rate, 4, 0xffffffff); return 0; err_irq_dispose_mapping: irq_dispose_mapping(timer_virq); err_clk_disable: clk_disable_unprepare(ost->percpu_timer_clk); err_clk_put: clk_put(ost->percpu_timer_clk); return err; } static int __init ingenic_ost_global_timer_init(struct device_node *np, struct ingenic_ost *ost) { unsigned int channel = OST_CLK_GLOBAL_TIMER; struct clocksource *cs = &ost->cs; unsigned long rate; int err; ost->global_timer_clk = ingenic_ost_get_clock(np, channel); if (IS_ERR(ost->global_timer_clk)) return PTR_ERR(ost->global_timer_clk); err = clk_prepare_enable(ost->global_timer_clk); if (err) goto err_clk_put; rate = clk_get_rate(ost->global_timer_clk); if (!rate) { err = -EINVAL; goto err_clk_disable; } /* Clear counter CNT registers */ writel(OSTCR_OST2CLR, ost->base + OST_REG_OSTCR); /* Enable OST channel */ writel(OSTESR_OST2ENS, ost->base + OST_REG_OSTESR); cs->name = "ingenic-ost"; cs->rating = 400; cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; cs->mask = CLOCKSOURCE_MASK(32); cs->read = ingenic_ost_clocksource_read; err = clocksource_register_hz(cs, rate); if (err) goto err_clk_disable; return 0; err_clk_disable: clk_disable_unprepare(ost->global_timer_clk); err_clk_put: clk_put(ost->global_timer_clk); return err; } static const struct ingenic_soc_info x1000_soc_info = { .num_channels = 2, }; static const struct of_device_id __maybe_unused ingenic_ost_of_matches[] __initconst = { { .compatible = "ingenic,x1000-ost", .data = &x1000_soc_info }, { /* sentinel */ } }; static int __init ingenic_ost_probe(struct device_node *np) { const struct of_device_id *id = of_match_node(ingenic_ost_of_matches, np); struct ingenic_ost *ost; unsigned int i; int ret; ost = kzalloc(sizeof(*ost), GFP_KERNEL); if (!ost) return -ENOMEM; ost->base = of_io_request_and_map(np, 0, of_node_full_name(np)); if (IS_ERR(ost->base)) { pr_err("%s: Failed to map OST registers\n", __func__); ret = PTR_ERR(ost->base); goto err_free_ost; } ost->clk = of_clk_get_by_name(np, "ost"); if (IS_ERR(ost->clk)) { ret = PTR_ERR(ost->clk); pr_crit("%s: Cannot get OST clock\n", __func__); goto err_free_ost; } ret = clk_prepare_enable(ost->clk); if (ret) { pr_crit("%s: Unable to enable OST clock\n", __func__); goto err_put_clk; } ost->soc_info = id->data; ost->clocks = kzalloc(struct_size(ost->clocks, hws, ost->soc_info->num_channels), GFP_KERNEL); if (!ost->clocks) { ret = -ENOMEM; goto err_clk_disable; } ost->clocks->num = ost->soc_info->num_channels; for (i = 0; i < ost->clocks->num; i++) { ret = ingenic_ost_register_clock(ost, i, &x1000_ost_clk_info[i], ost->clocks); if (ret) { pr_crit("%s: Cannot register clock %d\n", __func__, i); goto err_unregister_ost_clocks; } } ret = of_clk_add_hw_provider(np, of_clk_hw_onecell_get, ost->clocks); if (ret) { pr_crit("%s: Cannot add OF clock provider\n", __func__); goto err_unregister_ost_clocks; } ingenic_ost = ost; return 0; err_unregister_ost_clocks: for (i = 0; i < ost->clocks->num; i++) if (ost->clocks->hws[i]) clk_hw_unregister(ost->clocks->hws[i]); kfree(ost->clocks); err_clk_disable: clk_disable_unprepare(ost->clk); err_put_clk: clk_put(ost->clk); err_free_ost: kfree(ost); return ret; } static int __init ingenic_ost_init(struct device_node *np) { struct ingenic_ost *ost; unsigned long rate; int ret; ret = ingenic_ost_probe(np); if (ret) { pr_crit("%s: Failed to initialize OST clocks: %d\n", __func__, ret); return ret; } of_node_clear_flag(np, OF_POPULATED); ost = ingenic_ost; if (IS_ERR(ost)) return PTR_ERR(ost); ret = ingenic_ost_global_timer_init(np, ost); if (ret) { pr_crit("%s: Unable to init global timer: %x\n", __func__, ret); goto err_free_ingenic_ost; } ret = ingenic_ost_percpu_timer_init(np, ost); if (ret) goto err_ost_global_timer_cleanup; /* Register the sched_clock at the end as there's no way to undo it */ rate = clk_get_rate(ost->global_timer_clk); sched_clock_register(ingenic_ost_global_timer_read_cntl, 32, rate); return 0; err_ost_global_timer_cleanup: clocksource_unregister(&ost->cs); clk_disable_unprepare(ost->global_timer_clk); clk_put(ost->global_timer_clk); err_free_ingenic_ost: kfree(ost); return ret; } TIMER_OF_DECLARE(x1000_ost, "ingenic,x1000-ost", ingenic_ost_init);
linux-master
drivers/clocksource/ingenic-sysost.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/arch/arm/mach-at91/at91rm9200_time.c * * Copyright (C) 2003 SAN People * Copyright (C) 2003 ATMEL */ #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/export.h> #include <linux/mfd/syscon.h> #include <linux/mfd/syscon/atmel-st.h> #include <linux/of_irq.h> #include <linux/regmap.h> static unsigned long last_crtr; static u32 irqmask; static struct clock_event_device clkevt; static struct regmap *regmap_st; static int timer_latch; /* * The ST_CRTR is updated asynchronously to the master clock ... but * the updates as seen by the CPU don't seem to be strictly monotonic. * Waiting until we read the same value twice avoids glitching. */ static inline unsigned long read_CRTR(void) { unsigned int x1, x2; regmap_read(regmap_st, AT91_ST_CRTR, &x1); do { regmap_read(regmap_st, AT91_ST_CRTR, &x2); if (x1 == x2) break; x1 = x2; } while (1); return x1; } /* * IRQ handler for the timer. */ static irqreturn_t at91rm9200_timer_interrupt(int irq, void *dev_id) { u32 sr; regmap_read(regmap_st, AT91_ST_SR, &sr); sr &= irqmask; /* * irqs should be disabled here, but as the irq is shared they are only * guaranteed to be off if the timer irq is registered first. */ WARN_ON_ONCE(!irqs_disabled()); /* simulate "oneshot" timer with alarm */ if (sr & AT91_ST_ALMS) { clkevt.event_handler(&clkevt); return IRQ_HANDLED; } /* periodic mode should handle delayed ticks */ if (sr & AT91_ST_PITS) { u32 crtr = read_CRTR(); while (((crtr - last_crtr) & AT91_ST_CRTV) >= timer_latch) { last_crtr += timer_latch; clkevt.event_handler(&clkevt); } return IRQ_HANDLED; } /* this irq is shared ... */ return IRQ_NONE; } static u64 read_clk32k(struct clocksource *cs) { return read_CRTR(); } static struct clocksource clk32k = { .name = "32k_counter", .rating = 150, .read = read_clk32k, .mask = CLOCKSOURCE_MASK(20), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static void clkdev32k_disable_and_flush_irq(void) { unsigned int val; /* Disable and flush pending timer interrupts */ regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_ALMS); regmap_read(regmap_st, AT91_ST_SR, &val); last_crtr = read_CRTR(); } static int clkevt32k_shutdown(struct clock_event_device *evt) { clkdev32k_disable_and_flush_irq(); irqmask = 0; regmap_write(regmap_st, AT91_ST_IER, irqmask); return 0; } static int clkevt32k_set_oneshot(struct clock_event_device *dev) { clkdev32k_disable_and_flush_irq(); /* * ALM for oneshot irqs, set by next_event() * before 32 seconds have passed. */ irqmask = AT91_ST_ALMS; regmap_write(regmap_st, AT91_ST_RTAR, last_crtr); regmap_write(regmap_st, AT91_ST_IER, irqmask); return 0; } static int clkevt32k_set_periodic(struct clock_event_device *dev) { clkdev32k_disable_and_flush_irq(); /* PIT for periodic irqs; fixed rate of 1/HZ */ irqmask = AT91_ST_PITS; regmap_write(regmap_st, AT91_ST_PIMR, timer_latch); regmap_write(regmap_st, AT91_ST_IER, irqmask); return 0; } static int clkevt32k_next_event(unsigned long delta, struct clock_event_device *dev) { u32 alm; unsigned int val; BUG_ON(delta < 2); /* The alarm IRQ uses absolute time (now+delta), not the relative * time (delta) in our calling convention. Like all clockevents * using such "match" hardware, we have a race to defend against. * * Our defense here is to have set up the clockevent device so the * delta is at least two. That way we never end up writing RTAR * with the value then held in CRTR ... which would mean the match * wouldn't trigger until 32 seconds later, after CRTR wraps. */ alm = read_CRTR(); /* Cancel any pending alarm; flush any pending IRQ */ regmap_write(regmap_st, AT91_ST_RTAR, alm); regmap_read(regmap_st, AT91_ST_SR, &val); /* Schedule alarm by writing RTAR. */ alm += delta; regmap_write(regmap_st, AT91_ST_RTAR, alm); return 0; } static struct clock_event_device clkevt = { .name = "at91_tick", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 150, .set_next_event = clkevt32k_next_event, .set_state_shutdown = clkevt32k_shutdown, .set_state_periodic = clkevt32k_set_periodic, .set_state_oneshot = clkevt32k_set_oneshot, .tick_resume = clkevt32k_shutdown, }; /* * ST (system timer) module supports both clockevents and clocksource. */ static int __init atmel_st_timer_init(struct device_node *node) { struct clk *sclk; unsigned int sclk_rate, val; int irq, ret; regmap_st = syscon_node_to_regmap(node); if (IS_ERR(regmap_st)) { pr_err("Unable to get regmap\n"); return PTR_ERR(regmap_st); } /* Disable all timer interrupts, and clear any pending ones */ regmap_write(regmap_st, AT91_ST_IDR, AT91_ST_PITS | AT91_ST_WDOVF | AT91_ST_RTTINC | AT91_ST_ALMS); regmap_read(regmap_st, AT91_ST_SR, &val); /* Get the interrupts property */ irq = irq_of_parse_and_map(node, 0); if (!irq) { pr_err("Unable to get IRQ from DT\n"); return -EINVAL; } /* Make IRQs happen for the system timer */ ret = request_irq(irq, at91rm9200_timer_interrupt, IRQF_SHARED | IRQF_TIMER | IRQF_IRQPOLL, "at91_tick", regmap_st); if (ret) { pr_err("Unable to setup IRQ\n"); return ret; } sclk = of_clk_get(node, 0); if (IS_ERR(sclk)) { pr_err("Unable to get slow clock\n"); return PTR_ERR(sclk); } ret = clk_prepare_enable(sclk); if (ret) { pr_err("Could not enable slow clock\n"); return ret; } sclk_rate = clk_get_rate(sclk); if (!sclk_rate) { pr_err("Invalid slow clock rate\n"); return -EINVAL; } timer_latch = (sclk_rate + HZ / 2) / HZ; /* The 32KiHz "Slow Clock" (tick every 30517.58 nanoseconds) is used * directly for the clocksource and all clockevents, after adjusting * its prescaler from the 1 Hz default. */ regmap_write(regmap_st, AT91_ST_RTMR, 1); /* Setup timer clockevent, with minimum of two ticks (important!!) */ clkevt.cpumask = cpumask_of(0); clockevents_config_and_register(&clkevt, sclk_rate, 2, AT91_ST_ALMV); /* register clocksource */ return clocksource_register_hz(&clk32k, sclk_rate); } TIMER_OF_DECLARE(atmel_st_timer, "atmel,at91rm9200-st", atmel_st_timer_init);
linux-master
drivers/clocksource/timer-atmel-st.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 ARM Limited * * Author: Vladimir Murzin <[email protected]> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/of_address.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/slab.h> #define TIMER_CTRL 0x0 #define TIMER_CTRL_ENABLE BIT(0) #define TIMER_CTRL_IE BIT(3) #define TIMER_VALUE 0x4 #define TIMER_RELOAD 0x8 #define TIMER_INT 0xc struct clockevent_mps2 { void __iomem *reg; u32 clock_count_per_tick; struct clock_event_device clkevt; }; static void __iomem *sched_clock_base; static u64 notrace mps2_sched_read(void) { return ~readl_relaxed(sched_clock_base + TIMER_VALUE); } static inline struct clockevent_mps2 *to_mps2_clkevt(struct clock_event_device *c) { return container_of(c, struct clockevent_mps2, clkevt); } static void clockevent_mps2_writel(u32 val, struct clock_event_device *c, u32 offset) { writel_relaxed(val, to_mps2_clkevt(c)->reg + offset); } static int mps2_timer_shutdown(struct clock_event_device *ce) { clockevent_mps2_writel(0, ce, TIMER_RELOAD); clockevent_mps2_writel(0, ce, TIMER_CTRL); return 0; } static int mps2_timer_set_next_event(unsigned long next, struct clock_event_device *ce) { clockevent_mps2_writel(next, ce, TIMER_VALUE); clockevent_mps2_writel(TIMER_CTRL_IE | TIMER_CTRL_ENABLE, ce, TIMER_CTRL); return 0; } static int mps2_timer_set_periodic(struct clock_event_device *ce) { u32 clock_count_per_tick = to_mps2_clkevt(ce)->clock_count_per_tick; clockevent_mps2_writel(clock_count_per_tick, ce, TIMER_RELOAD); clockevent_mps2_writel(clock_count_per_tick, ce, TIMER_VALUE); clockevent_mps2_writel(TIMER_CTRL_IE | TIMER_CTRL_ENABLE, ce, TIMER_CTRL); return 0; } static irqreturn_t mps2_timer_interrupt(int irq, void *dev_id) { struct clockevent_mps2 *ce = dev_id; u32 status = readl_relaxed(ce->reg + TIMER_INT); if (!status) { pr_warn("spurious interrupt\n"); return IRQ_NONE; } writel_relaxed(1, ce->reg + TIMER_INT); ce->clkevt.event_handler(&ce->clkevt); return IRQ_HANDLED; } static int __init mps2_clockevent_init(struct device_node *np) { void __iomem *base; struct clk *clk = NULL; struct clockevent_mps2 *ce; u32 rate; int irq, ret; const char *name = "mps2-clkevt"; ret = of_property_read_u32(np, "clock-frequency", &rate); if (ret) { clk = of_clk_get(np, 0); if (IS_ERR(clk)) { ret = PTR_ERR(clk); pr_err("failed to get clock for clockevent: %d\n", ret); goto out; } ret = clk_prepare_enable(clk); if (ret) { pr_err("failed to enable clock for clockevent: %d\n", ret); goto out_clk_put; } rate = clk_get_rate(clk); } base = of_iomap(np, 0); if (!base) { ret = -EADDRNOTAVAIL; pr_err("failed to map register for clockevent: %d\n", ret); goto out_clk_disable; } irq = irq_of_parse_and_map(np, 0); if (!irq) { ret = -ENOENT; pr_err("failed to get irq for clockevent: %d\n", ret); goto out_iounmap; } ce = kzalloc(sizeof(*ce), GFP_KERNEL); if (!ce) { ret = -ENOMEM; goto out_iounmap; } ce->reg = base; ce->clock_count_per_tick = DIV_ROUND_CLOSEST(rate, HZ); ce->clkevt.irq = irq; ce->clkevt.name = name; ce->clkevt.rating = 200; ce->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; ce->clkevt.cpumask = cpu_possible_mask; ce->clkevt.set_state_shutdown = mps2_timer_shutdown; ce->clkevt.set_state_periodic = mps2_timer_set_periodic; ce->clkevt.set_state_oneshot = mps2_timer_shutdown; ce->clkevt.set_next_event = mps2_timer_set_next_event; /* Ensure timer is disabled */ writel_relaxed(0, base + TIMER_CTRL); ret = request_irq(irq, mps2_timer_interrupt, IRQF_TIMER, name, ce); if (ret) { pr_err("failed to request irq for clockevent: %d\n", ret); goto out_kfree; } clockevents_config_and_register(&ce->clkevt, rate, 0xf, 0xffffffff); return 0; out_kfree: kfree(ce); out_iounmap: iounmap(base); out_clk_disable: /* clk_{disable, unprepare, put}() can handle NULL as a parameter */ clk_disable_unprepare(clk); out_clk_put: clk_put(clk); out: return ret; } static int __init mps2_clocksource_init(struct device_node *np) { void __iomem *base; struct clk *clk = NULL; u32 rate; int ret; const char *name = "mps2-clksrc"; ret = of_property_read_u32(np, "clock-frequency", &rate); if (ret) { clk = of_clk_get(np, 0); if (IS_ERR(clk)) { ret = PTR_ERR(clk); pr_err("failed to get clock for clocksource: %d\n", ret); goto out; } ret = clk_prepare_enable(clk); if (ret) { pr_err("failed to enable clock for clocksource: %d\n", ret); goto out_clk_put; } rate = clk_get_rate(clk); } base = of_iomap(np, 0); if (!base) { ret = -EADDRNOTAVAIL; pr_err("failed to map register for clocksource: %d\n", ret); goto out_clk_disable; } /* Ensure timer is disabled */ writel_relaxed(0, base + TIMER_CTRL); /* ... and set it up as free-running clocksource */ writel_relaxed(0xffffffff, base + TIMER_VALUE); writel_relaxed(0xffffffff, base + TIMER_RELOAD); writel_relaxed(TIMER_CTRL_ENABLE, base + TIMER_CTRL); ret = clocksource_mmio_init(base + TIMER_VALUE, name, rate, 200, 32, clocksource_mmio_readl_down); if (ret) { pr_err("failed to init clocksource: %d\n", ret); goto out_iounmap; } sched_clock_base = base; sched_clock_register(mps2_sched_read, 32, rate); return 0; out_iounmap: iounmap(base); out_clk_disable: /* clk_{disable, unprepare, put}() can handle NULL as a parameter */ clk_disable_unprepare(clk); out_clk_put: clk_put(clk); out: return ret; } static int __init mps2_timer_init(struct device_node *np) { static int has_clocksource, has_clockevent; int ret; if (!has_clocksource) { ret = mps2_clocksource_init(np); if (!ret) { has_clocksource = 1; return 0; } } if (!has_clockevent) { ret = mps2_clockevent_init(np); if (!ret) { has_clockevent = 1; return 0; } } return 0; } TIMER_OF_DECLARE(mps2_timer, "arm,mps2-timer", mps2_timer_init);
linux-master
drivers/clocksource/mps2-timer.c
// SPDX-License-Identifier: GPL-2.0-only /* * Rockchip timer support * * Copyright (C) Daniel Lezcano <[email protected]> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define TIMER_NAME "rk_timer" #define TIMER_LOAD_COUNT0 0x00 #define TIMER_LOAD_COUNT1 0x04 #define TIMER_CURRENT_VALUE0 0x08 #define TIMER_CURRENT_VALUE1 0x0C #define TIMER_CONTROL_REG3288 0x10 #define TIMER_CONTROL_REG3399 0x1c #define TIMER_INT_STATUS 0x18 #define TIMER_DISABLE 0x0 #define TIMER_ENABLE 0x1 #define TIMER_MODE_FREE_RUNNING (0 << 1) #define TIMER_MODE_USER_DEFINED_COUNT (1 << 1) #define TIMER_INT_UNMASK (1 << 2) struct rk_timer { void __iomem *base; void __iomem *ctrl; struct clk *clk; struct clk *pclk; u32 freq; int irq; }; struct rk_clkevt { struct clock_event_device ce; struct rk_timer timer; }; static struct rk_clkevt *rk_clkevt; static struct rk_timer *rk_clksrc; static inline struct rk_timer *rk_timer(struct clock_event_device *ce) { return &container_of(ce, struct rk_clkevt, ce)->timer; } static inline void rk_timer_disable(struct rk_timer *timer) { writel_relaxed(TIMER_DISABLE, timer->ctrl); } static inline void rk_timer_enable(struct rk_timer *timer, u32 flags) { writel_relaxed(TIMER_ENABLE | flags, timer->ctrl); } static void rk_timer_update_counter(unsigned long cycles, struct rk_timer *timer) { writel_relaxed(cycles, timer->base + TIMER_LOAD_COUNT0); writel_relaxed(0, timer->base + TIMER_LOAD_COUNT1); } static void rk_timer_interrupt_clear(struct rk_timer *timer) { writel_relaxed(1, timer->base + TIMER_INT_STATUS); } static inline int rk_timer_set_next_event(unsigned long cycles, struct clock_event_device *ce) { struct rk_timer *timer = rk_timer(ce); rk_timer_disable(timer); rk_timer_update_counter(cycles, timer); rk_timer_enable(timer, TIMER_MODE_USER_DEFINED_COUNT | TIMER_INT_UNMASK); return 0; } static int rk_timer_shutdown(struct clock_event_device *ce) { struct rk_timer *timer = rk_timer(ce); rk_timer_disable(timer); return 0; } static int rk_timer_set_periodic(struct clock_event_device *ce) { struct rk_timer *timer = rk_timer(ce); rk_timer_disable(timer); rk_timer_update_counter(timer->freq / HZ - 1, timer); rk_timer_enable(timer, TIMER_MODE_FREE_RUNNING | TIMER_INT_UNMASK); return 0; } static irqreturn_t rk_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *ce = dev_id; struct rk_timer *timer = rk_timer(ce); rk_timer_interrupt_clear(timer); if (clockevent_state_oneshot(ce)) rk_timer_disable(timer); ce->event_handler(ce); return IRQ_HANDLED; } static u64 notrace rk_timer_sched_read(void) { return ~readl_relaxed(rk_clksrc->base + TIMER_CURRENT_VALUE0); } static int __init rk_timer_probe(struct rk_timer *timer, struct device_node *np) { struct clk *timer_clk; struct clk *pclk; int ret = -EINVAL, irq; u32 ctrl_reg = TIMER_CONTROL_REG3288; timer->base = of_iomap(np, 0); if (!timer->base) { pr_err("Failed to get base address for '%s'\n", TIMER_NAME); return -ENXIO; } if (of_device_is_compatible(np, "rockchip,rk3399-timer")) ctrl_reg = TIMER_CONTROL_REG3399; timer->ctrl = timer->base + ctrl_reg; pclk = of_clk_get_by_name(np, "pclk"); if (IS_ERR(pclk)) { ret = PTR_ERR(pclk); pr_err("Failed to get pclk for '%s'\n", TIMER_NAME); goto out_unmap; } ret = clk_prepare_enable(pclk); if (ret) { pr_err("Failed to enable pclk for '%s'\n", TIMER_NAME); goto out_unmap; } timer->pclk = pclk; timer_clk = of_clk_get_by_name(np, "timer"); if (IS_ERR(timer_clk)) { ret = PTR_ERR(timer_clk); pr_err("Failed to get timer clock for '%s'\n", TIMER_NAME); goto out_timer_clk; } ret = clk_prepare_enable(timer_clk); if (ret) { pr_err("Failed to enable timer clock\n"); goto out_timer_clk; } timer->clk = timer_clk; timer->freq = clk_get_rate(timer_clk); irq = irq_of_parse_and_map(np, 0); if (!irq) { ret = -EINVAL; pr_err("Failed to map interrupts for '%s'\n", TIMER_NAME); goto out_irq; } timer->irq = irq; rk_timer_interrupt_clear(timer); rk_timer_disable(timer); return 0; out_irq: clk_disable_unprepare(timer_clk); out_timer_clk: clk_disable_unprepare(pclk); out_unmap: iounmap(timer->base); return ret; } static void __init rk_timer_cleanup(struct rk_timer *timer) { clk_disable_unprepare(timer->clk); clk_disable_unprepare(timer->pclk); iounmap(timer->base); } static int __init rk_clkevt_init(struct device_node *np) { struct clock_event_device *ce; int ret = -EINVAL; rk_clkevt = kzalloc(sizeof(struct rk_clkevt), GFP_KERNEL); if (!rk_clkevt) { ret = -ENOMEM; goto out; } ret = rk_timer_probe(&rk_clkevt->timer, np); if (ret) goto out_probe; ce = &rk_clkevt->ce; ce->name = TIMER_NAME; ce->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ; ce->set_next_event = rk_timer_set_next_event; ce->set_state_shutdown = rk_timer_shutdown; ce->set_state_periodic = rk_timer_set_periodic; ce->irq = rk_clkevt->timer.irq; ce->cpumask = cpu_possible_mask; ce->rating = 250; ret = request_irq(rk_clkevt->timer.irq, rk_timer_interrupt, IRQF_TIMER, TIMER_NAME, ce); if (ret) { pr_err("Failed to initialize '%s': %d\n", TIMER_NAME, ret); goto out_irq; } clockevents_config_and_register(&rk_clkevt->ce, rk_clkevt->timer.freq, 1, UINT_MAX); return 0; out_irq: rk_timer_cleanup(&rk_clkevt->timer); out_probe: kfree(rk_clkevt); out: /* Leave rk_clkevt not NULL to prevent future init */ rk_clkevt = ERR_PTR(ret); return ret; } static int __init rk_clksrc_init(struct device_node *np) { int ret = -EINVAL; rk_clksrc = kzalloc(sizeof(struct rk_timer), GFP_KERNEL); if (!rk_clksrc) { ret = -ENOMEM; goto out; } ret = rk_timer_probe(rk_clksrc, np); if (ret) goto out_probe; rk_timer_update_counter(UINT_MAX, rk_clksrc); rk_timer_enable(rk_clksrc, 0); ret = clocksource_mmio_init(rk_clksrc->base + TIMER_CURRENT_VALUE0, TIMER_NAME, rk_clksrc->freq, 250, 32, clocksource_mmio_readl_down); if (ret) { pr_err("Failed to register clocksource\n"); goto out_clocksource; } sched_clock_register(rk_timer_sched_read, 32, rk_clksrc->freq); return 0; out_clocksource: rk_timer_cleanup(rk_clksrc); out_probe: kfree(rk_clksrc); out: /* Leave rk_clksrc not NULL to prevent future init */ rk_clksrc = ERR_PTR(ret); return ret; } static int __init rk_timer_init(struct device_node *np) { if (!rk_clkevt) return rk_clkevt_init(np); if (!rk_clksrc) return rk_clksrc_init(np); pr_err("Too many timer definitions for '%s'\n", TIMER_NAME); return -EINVAL; } TIMER_OF_DECLARE(rk3288_timer, "rockchip,rk3288-timer", rk_timer_init); TIMER_OF_DECLARE(rk3399_timer, "rockchip,rk3399-timer", rk_timer_init);
linux-master
drivers/clocksource/timer-rockchip.c
// SPDX-License-Identifier: GPL-2.0 /* * Marvell Armada 370/XP SoC timer handling. * * Copyright (C) 2012 Marvell * * Lior Amsalem <[email protected]> * Gregory CLEMENT <[email protected]> * Thomas Petazzoni <[email protected]> * * Timer 0 is used as free-running clocksource, while timer 1 is * used as clock_event_device. * * --- * Clocksource driver for Armada 370 and Armada XP SoC. * This driver implements one compatible string for each SoC, given * each has its own characteristics: * * * Armada 370 has no 25 MHz fixed timer. * * * Armada XP cannot work properly without such 25 MHz fixed timer as * doing otherwise leads to using a clocksource whose frequency varies * when doing cpufreq frequency changes. * * See Documentation/devicetree/bindings/timer/marvell,armada-370-xp-timer.txt */ #include <linux/init.h> #include <linux/platform_device.h> #include <linux/kernel.h> #include <linux/clk.h> #include <linux/cpu.h> #include <linux/timer.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/sched_clock.h> #include <linux/percpu.h> #include <linux/syscore_ops.h> #include <asm/delay.h> /* * Timer block registers. */ #define TIMER_CTRL_OFF 0x0000 #define TIMER0_EN BIT(0) #define TIMER0_RELOAD_EN BIT(1) #define TIMER0_25MHZ BIT(11) #define TIMER0_DIV(div) ((div) << 19) #define TIMER1_EN BIT(2) #define TIMER1_RELOAD_EN BIT(3) #define TIMER1_25MHZ BIT(12) #define TIMER1_DIV(div) ((div) << 22) #define TIMER_EVENTS_STATUS 0x0004 #define TIMER0_CLR_MASK (~0x1) #define TIMER1_CLR_MASK (~0x100) #define TIMER0_RELOAD_OFF 0x0010 #define TIMER0_VAL_OFF 0x0014 #define TIMER1_RELOAD_OFF 0x0018 #define TIMER1_VAL_OFF 0x001c #define LCL_TIMER_EVENTS_STATUS 0x0028 /* Global timers are connected to the coherency fabric clock, and the below divider reduces their incrementing frequency. */ #define TIMER_DIVIDER_SHIFT 5 #define TIMER_DIVIDER (1 << TIMER_DIVIDER_SHIFT) /* * SoC-specific data. */ static void __iomem *timer_base, *local_base; static unsigned int timer_clk; static bool timer25Mhz = true; static u32 enable_mask; /* * Number of timer ticks per jiffy. */ static u32 ticks_per_jiffy; static struct clock_event_device __percpu *armada_370_xp_evt; static void local_timer_ctrl_clrset(u32 clr, u32 set) { writel((readl(local_base + TIMER_CTRL_OFF) & ~clr) | set, local_base + TIMER_CTRL_OFF); } static u64 notrace armada_370_xp_read_sched_clock(void) { return ~readl(timer_base + TIMER0_VAL_OFF); } /* * Clockevent handling. */ static int armada_370_xp_clkevt_next_event(unsigned long delta, struct clock_event_device *dev) { /* * Clear clockevent timer interrupt. */ writel(TIMER0_CLR_MASK, local_base + LCL_TIMER_EVENTS_STATUS); /* * Setup new clockevent timer value. */ writel(delta, local_base + TIMER0_VAL_OFF); /* * Enable the timer. */ local_timer_ctrl_clrset(TIMER0_RELOAD_EN, enable_mask); return 0; } static int armada_370_xp_clkevt_shutdown(struct clock_event_device *evt) { /* * Disable timer. */ local_timer_ctrl_clrset(TIMER0_EN, 0); /* * ACK pending timer interrupt. */ writel(TIMER0_CLR_MASK, local_base + LCL_TIMER_EVENTS_STATUS); return 0; } static int armada_370_xp_clkevt_set_periodic(struct clock_event_device *evt) { /* * Setup timer to fire at 1/HZ intervals. */ writel(ticks_per_jiffy - 1, local_base + TIMER0_RELOAD_OFF); writel(ticks_per_jiffy - 1, local_base + TIMER0_VAL_OFF); /* * Enable timer. */ local_timer_ctrl_clrset(0, TIMER0_RELOAD_EN | enable_mask); return 0; } static int armada_370_xp_clkevt_irq; static irqreturn_t armada_370_xp_timer_interrupt(int irq, void *dev_id) { /* * ACK timer interrupt and call event handler. */ struct clock_event_device *evt = dev_id; writel(TIMER0_CLR_MASK, local_base + LCL_TIMER_EVENTS_STATUS); evt->event_handler(evt); return IRQ_HANDLED; } /* * Setup the local clock events for a CPU. */ static int armada_370_xp_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *evt = per_cpu_ptr(armada_370_xp_evt, cpu); u32 clr = 0, set = 0; if (timer25Mhz) set = TIMER0_25MHZ; else clr = TIMER0_25MHZ; local_timer_ctrl_clrset(clr, set); evt->name = "armada_370_xp_per_cpu_tick"; evt->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; evt->shift = 32; evt->rating = 300; evt->set_next_event = armada_370_xp_clkevt_next_event; evt->set_state_shutdown = armada_370_xp_clkevt_shutdown; evt->set_state_periodic = armada_370_xp_clkevt_set_periodic; evt->set_state_oneshot = armada_370_xp_clkevt_shutdown; evt->tick_resume = armada_370_xp_clkevt_shutdown; evt->irq = armada_370_xp_clkevt_irq; evt->cpumask = cpumask_of(cpu); clockevents_config_and_register(evt, timer_clk, 1, 0xfffffffe); enable_percpu_irq(evt->irq, 0); return 0; } static int armada_370_xp_timer_dying_cpu(unsigned int cpu) { struct clock_event_device *evt = per_cpu_ptr(armada_370_xp_evt, cpu); evt->set_state_shutdown(evt); disable_percpu_irq(evt->irq); return 0; } static u32 timer0_ctrl_reg, timer0_local_ctrl_reg; static int armada_370_xp_timer_suspend(void) { timer0_ctrl_reg = readl(timer_base + TIMER_CTRL_OFF); timer0_local_ctrl_reg = readl(local_base + TIMER_CTRL_OFF); return 0; } static void armada_370_xp_timer_resume(void) { writel(0xffffffff, timer_base + TIMER0_VAL_OFF); writel(0xffffffff, timer_base + TIMER0_RELOAD_OFF); writel(timer0_ctrl_reg, timer_base + TIMER_CTRL_OFF); writel(timer0_local_ctrl_reg, local_base + TIMER_CTRL_OFF); } static struct syscore_ops armada_370_xp_timer_syscore_ops = { .suspend = armada_370_xp_timer_suspend, .resume = armada_370_xp_timer_resume, }; static unsigned long armada_370_delay_timer_read(void) { return ~readl(timer_base + TIMER0_VAL_OFF); } static struct delay_timer armada_370_delay_timer = { .read_current_timer = armada_370_delay_timer_read, }; static int __init armada_370_xp_timer_common_init(struct device_node *np) { u32 clr = 0, set = 0; int res; timer_base = of_iomap(np, 0); if (!timer_base) { pr_err("Failed to iomap\n"); return -ENXIO; } local_base = of_iomap(np, 1); if (!local_base) { pr_err("Failed to iomap\n"); return -ENXIO; } if (timer25Mhz) { set = TIMER0_25MHZ; enable_mask = TIMER0_EN; } else { clr = TIMER0_25MHZ; enable_mask = TIMER0_EN | TIMER0_DIV(TIMER_DIVIDER_SHIFT); } atomic_io_modify(timer_base + TIMER_CTRL_OFF, clr | set, set); local_timer_ctrl_clrset(clr, set); /* * We use timer 0 as clocksource, and private(local) timer 0 * for clockevents */ armada_370_xp_clkevt_irq = irq_of_parse_and_map(np, 4); ticks_per_jiffy = (timer_clk + HZ / 2) / HZ; /* * Setup free-running clocksource timer (interrupts * disabled). */ writel(0xffffffff, timer_base + TIMER0_VAL_OFF); writel(0xffffffff, timer_base + TIMER0_RELOAD_OFF); atomic_io_modify(timer_base + TIMER_CTRL_OFF, TIMER0_RELOAD_EN | enable_mask, TIMER0_RELOAD_EN | enable_mask); armada_370_delay_timer.freq = timer_clk; register_current_timer_delay(&armada_370_delay_timer); /* * Set scale and timer for sched_clock. */ sched_clock_register(armada_370_xp_read_sched_clock, 32, timer_clk); res = clocksource_mmio_init(timer_base + TIMER0_VAL_OFF, "armada_370_xp_clocksource", timer_clk, 300, 32, clocksource_mmio_readl_down); if (res) { pr_err("Failed to initialize clocksource mmio\n"); return res; } armada_370_xp_evt = alloc_percpu(struct clock_event_device); if (!armada_370_xp_evt) return -ENOMEM; /* * Setup clockevent timer (interrupt-driven). */ res = request_percpu_irq(armada_370_xp_clkevt_irq, armada_370_xp_timer_interrupt, "armada_370_xp_per_cpu_tick", armada_370_xp_evt); /* Immediately configure the timer on the boot CPU */ if (res) { pr_err("Failed to request percpu irq\n"); return res; } res = cpuhp_setup_state(CPUHP_AP_ARMADA_TIMER_STARTING, "clockevents/armada:starting", armada_370_xp_timer_starting_cpu, armada_370_xp_timer_dying_cpu); if (res) { pr_err("Failed to setup hotplug state and timer\n"); return res; } register_syscore_ops(&armada_370_xp_timer_syscore_ops); return 0; } static int __init armada_xp_timer_init(struct device_node *np) { struct clk *clk = of_clk_get_by_name(np, "fixed"); int ret; if (IS_ERR(clk)) { pr_err("Failed to get clock\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) return ret; timer_clk = clk_get_rate(clk); return armada_370_xp_timer_common_init(np); } TIMER_OF_DECLARE(armada_xp, "marvell,armada-xp-timer", armada_xp_timer_init); static int __init armada_375_timer_init(struct device_node *np) { struct clk *clk; int ret; clk = of_clk_get_by_name(np, "fixed"); if (!IS_ERR(clk)) { ret = clk_prepare_enable(clk); if (ret) return ret; timer_clk = clk_get_rate(clk); } else { /* * This fallback is required in order to retain proper * devicetree backwards compatibility. */ clk = of_clk_get(np, 0); /* Must have at least a clock */ if (IS_ERR(clk)) { pr_err("Failed to get clock\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) return ret; timer_clk = clk_get_rate(clk) / TIMER_DIVIDER; timer25Mhz = false; } return armada_370_xp_timer_common_init(np); } TIMER_OF_DECLARE(armada_375, "marvell,armada-375-timer", armada_375_timer_init); static int __init armada_370_timer_init(struct device_node *np) { struct clk *clk; int ret; clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("Failed to get clock\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) return ret; timer_clk = clk_get_rate(clk) / TIMER_DIVIDER; timer25Mhz = false; return armada_370_xp_timer_common_init(np); } TIMER_OF_DECLARE(armada_370, "marvell,armada-370-timer", armada_370_timer_init);
linux-master
drivers/clocksource/timer-armada-370-xp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2006 Jim Cromie * * This is a clocksource driver for the Geode SCx200's 1 or 27 MHz * high-resolution timer. The Geode SC-1100 (at least) has a buggy * time stamp counter (TSC), which loses time unless 'idle=poll' is * given as a boot-arg. In its absence, the Generic Timekeeping code * will detect and de-rate the bad TSC, allowing this timer to take * over timekeeping duties. * * Based on work by John Stultz, and Ted Phelps (in a 2.6.12-rc6 patch) */ #include <linux/clocksource.h> #include <linux/init.h> #include <linux/module.h> #include <linux/ioport.h> #include <linux/scx200.h> #define NAME "scx200_hrt" static int mhz27; module_param(mhz27, int, 0); /* load time only */ MODULE_PARM_DESC(mhz27, "count at 27.0 MHz (default is 1.0 MHz)"); static int ppm; module_param(ppm, int, 0); /* load time only */ MODULE_PARM_DESC(ppm, "+-adjust to actual XO freq (ppm)"); /* HiRes Timer configuration register address */ #define SCx200_TMCNFG_OFFSET (SCx200_TIMER_OFFSET + 5) /* and config settings */ #define HR_TMEN (1 << 0) /* timer interrupt enable */ #define HR_TMCLKSEL (1 << 1) /* 1|0 counts at 27|1 MHz */ #define HR_TM27MPD (1 << 2) /* 1 turns off input clock (power-down) */ /* The base timer frequency, * 27 if selected */ #define HRT_FREQ 1000000 static u64 read_hrt(struct clocksource *cs) { /* Read the timer value */ return (u64) inl(scx200_cb_base + SCx200_TIMER_OFFSET); } static struct clocksource cs_hrt = { .name = "scx200_hrt", .rating = 250, .read = read_hrt, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, /* mult, shift are set based on mhz27 flag */ }; static int __init init_hrt_clocksource(void) { u32 freq; /* Make sure scx200 has initialized the configuration block */ if (!scx200_cb_present()) return -ENODEV; /* Reserve the timer's ISA io-region for ourselves */ if (!request_region(scx200_cb_base + SCx200_TIMER_OFFSET, SCx200_TIMER_SIZE, "NatSemi SCx200 High-Resolution Timer")) { pr_warn("unable to lock timer region\n"); return -ENODEV; } /* write timer config */ outb(HR_TMEN | (mhz27 ? HR_TMCLKSEL : 0), scx200_cb_base + SCx200_TMCNFG_OFFSET); freq = (HRT_FREQ + ppm); if (mhz27) freq *= 27; pr_info("enabling scx200 high-res timer (%s MHz +%d ppm)\n", mhz27 ? "27":"1", ppm); return clocksource_register_hz(&cs_hrt, freq); } module_init(init_hrt_clocksource); MODULE_AUTHOR("Jim Cromie <[email protected]>"); MODULE_DESCRIPTION("clocksource on SCx200 HiRes Timer"); MODULE_LICENSE("GPL");
linux-master
drivers/clocksource/scx200_hrt.c
// SPDX-License-Identifier: GPL-2.0 /* Copyright (C) 2022 Hewlett-Packard Enterprise Development Company, L.P. */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/sched_clock.h> #define TIMER0_FREQ 1000000 #define GXP_TIMER_CNT_OFS 0x00 #define GXP_TIMESTAMP_OFS 0x08 #define GXP_TIMER_CTRL_OFS 0x14 /* TCS Stands for Timer Control/Status: these are masks to be used in */ /* the Timer Count Registers */ #define MASK_TCS_ENABLE 0x01 #define MASK_TCS_PERIOD 0x02 #define MASK_TCS_RELOAD 0x04 #define MASK_TCS_TC 0x80 struct gxp_timer { void __iomem *counter; void __iomem *control; struct clock_event_device evt; }; static struct gxp_timer *gxp_timer; static void __iomem *system_clock __ro_after_init; static inline struct gxp_timer *to_gxp_timer(struct clock_event_device *evt_dev) { return container_of(evt_dev, struct gxp_timer, evt); } static u64 notrace gxp_sched_read(void) { return readl_relaxed(system_clock); } static int gxp_time_set_next_event(unsigned long event, struct clock_event_device *evt_dev) { struct gxp_timer *timer = to_gxp_timer(evt_dev); /* Stop counting and disable interrupt before updating */ writeb_relaxed(MASK_TCS_TC, timer->control); writel_relaxed(event, timer->counter); writeb_relaxed(MASK_TCS_TC | MASK_TCS_ENABLE, timer->control); return 0; } static irqreturn_t gxp_timer_interrupt(int irq, void *dev_id) { struct gxp_timer *timer = (struct gxp_timer *)dev_id; if (!(readb_relaxed(timer->control) & MASK_TCS_TC)) return IRQ_NONE; writeb_relaxed(MASK_TCS_TC, timer->control); timer->evt.event_handler(&timer->evt); return IRQ_HANDLED; } static int __init gxp_timer_init(struct device_node *node) { void __iomem *base; struct clk *clk; u32 freq; int ret, irq; gxp_timer = kzalloc(sizeof(*gxp_timer), GFP_KERNEL); if (!gxp_timer) { ret = -ENOMEM; pr_err("Can't allocate gxp_timer"); return ret; } clk = of_clk_get(node, 0); if (IS_ERR(clk)) { ret = (int)PTR_ERR(clk); pr_err("%pOFn clock not found: %d\n", node, ret); goto err_free; } ret = clk_prepare_enable(clk); if (ret) { pr_err("%pOFn clock enable failed: %d\n", node, ret); goto err_clk_enable; } base = of_iomap(node, 0); if (!base) { ret = -ENXIO; pr_err("Can't map timer base registers"); goto err_iomap; } /* Set the offsets to the clock register and timer registers */ gxp_timer->counter = base + GXP_TIMER_CNT_OFS; gxp_timer->control = base + GXP_TIMER_CTRL_OFS; system_clock = base + GXP_TIMESTAMP_OFS; gxp_timer->evt.name = node->name; gxp_timer->evt.rating = 300; gxp_timer->evt.features = CLOCK_EVT_FEAT_ONESHOT; gxp_timer->evt.set_next_event = gxp_time_set_next_event; gxp_timer->evt.cpumask = cpumask_of(0); irq = irq_of_parse_and_map(node, 0); if (irq <= 0) { ret = -EINVAL; pr_err("GXP Timer Can't parse IRQ %d", irq); goto err_exit; } freq = clk_get_rate(clk); ret = clocksource_mmio_init(system_clock, node->name, freq, 300, 32, clocksource_mmio_readl_up); if (ret) { pr_err("%pOFn init clocksource failed: %d", node, ret); goto err_exit; } sched_clock_register(gxp_sched_read, 32, freq); irq = irq_of_parse_and_map(node, 0); if (irq <= 0) { ret = -EINVAL; pr_err("%pOFn Can't parse IRQ %d", node, irq); goto err_exit; } clockevents_config_and_register(&gxp_timer->evt, TIMER0_FREQ, 0xf, 0xffffffff); ret = request_irq(irq, gxp_timer_interrupt, IRQF_TIMER | IRQF_SHARED, node->name, gxp_timer); if (ret) { pr_err("%pOFn request_irq() failed: %d", node, ret); goto err_exit; } pr_debug("gxp: system timer (irq = %d)\n", irq); return 0; err_exit: iounmap(base); err_iomap: clk_disable_unprepare(clk); err_clk_enable: clk_put(clk); err_free: kfree(gxp_timer); return ret; } /* * This probe gets called after the timer is already up and running. This will create * the watchdog device as a child since the registers are shared. */ static int gxp_timer_probe(struct platform_device *pdev) { struct platform_device *gxp_watchdog_device; struct device *dev = &pdev->dev; int ret; if (!gxp_timer) { pr_err("Gxp Timer not initialized, cannot create watchdog"); return -ENOMEM; } gxp_watchdog_device = platform_device_alloc("gxp-wdt", -1); if (!gxp_watchdog_device) { pr_err("Timer failed to allocate gxp-wdt"); return -ENOMEM; } /* Pass the base address (counter) as platform data and nothing else */ gxp_watchdog_device->dev.platform_data = gxp_timer->counter; gxp_watchdog_device->dev.parent = dev; ret = platform_device_add(gxp_watchdog_device); if (ret) platform_device_put(gxp_watchdog_device); return ret; } static const struct of_device_id gxp_timer_of_match[] = { { .compatible = "hpe,gxp-timer", }, {}, }; static struct platform_driver gxp_timer_driver = { .probe = gxp_timer_probe, .driver = { .name = "gxp-timer", .of_match_table = gxp_timer_of_match, .suppress_bind_attrs = true, }, }; builtin_platform_driver(gxp_timer_driver); TIMER_OF_DECLARE(gxp, "hpe,gxp-timer", gxp_timer_init);
linux-master
drivers/clocksource/timer-gxp.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2012 Regents of the University of California * Copyright (C) 2017 SiFive * * All RISC-V systems have a timer attached to every hart. These timers can * either be read from the "time" and "timeh" CSRs, and can use the SBI to * setup events, or directly accessed using MMIO registers. */ #define pr_fmt(fmt) "riscv-timer: " fmt #include <linux/acpi.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/delay.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/module.h> #include <linux/sched_clock.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/interrupt.h> #include <linux/of_irq.h> #include <clocksource/timer-riscv.h> #include <asm/smp.h> #include <asm/hwcap.h> #include <asm/sbi.h> #include <asm/timex.h> static DEFINE_STATIC_KEY_FALSE(riscv_sstc_available); static bool riscv_timer_cannot_wake_cpu; static int riscv_clock_next_event(unsigned long delta, struct clock_event_device *ce) { u64 next_tval = get_cycles64() + delta; csr_set(CSR_IE, IE_TIE); if (static_branch_likely(&riscv_sstc_available)) { #if defined(CONFIG_32BIT) csr_write(CSR_STIMECMP, next_tval & 0xFFFFFFFF); csr_write(CSR_STIMECMPH, next_tval >> 32); #else csr_write(CSR_STIMECMP, next_tval); #endif } else sbi_set_timer(next_tval); return 0; } static unsigned int riscv_clock_event_irq; static DEFINE_PER_CPU(struct clock_event_device, riscv_clock_event) = { .name = "riscv_timer_clockevent", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 100, .set_next_event = riscv_clock_next_event, }; /* * It is guaranteed that all the timers across all the harts are synchronized * within one tick of each other, so while this could technically go * backwards when hopping between CPUs, practically it won't happen. */ static unsigned long long riscv_clocksource_rdtime(struct clocksource *cs) { return get_cycles64(); } static u64 notrace riscv_sched_clock(void) { return get_cycles64(); } static struct clocksource riscv_clocksource = { .name = "riscv_clocksource", .rating = 400, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .read = riscv_clocksource_rdtime, #if IS_ENABLED(CONFIG_GENERIC_GETTIMEOFDAY) .vdso_clock_mode = VDSO_CLOCKMODE_ARCHTIMER, #else .vdso_clock_mode = VDSO_CLOCKMODE_NONE, #endif }; static int riscv_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *ce = per_cpu_ptr(&riscv_clock_event, cpu); ce->cpumask = cpumask_of(cpu); ce->irq = riscv_clock_event_irq; if (riscv_timer_cannot_wake_cpu) ce->features |= CLOCK_EVT_FEAT_C3STOP; clockevents_config_and_register(ce, riscv_timebase, 100, 0x7fffffff); enable_percpu_irq(riscv_clock_event_irq, irq_get_trigger_type(riscv_clock_event_irq)); return 0; } static int riscv_timer_dying_cpu(unsigned int cpu) { disable_percpu_irq(riscv_clock_event_irq); return 0; } void riscv_cs_get_mult_shift(u32 *mult, u32 *shift) { *mult = riscv_clocksource.mult; *shift = riscv_clocksource.shift; } EXPORT_SYMBOL_GPL(riscv_cs_get_mult_shift); /* called directly from the low-level interrupt handler */ static irqreturn_t riscv_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evdev = this_cpu_ptr(&riscv_clock_event); csr_clear(CSR_IE, IE_TIE); evdev->event_handler(evdev); return IRQ_HANDLED; } static int __init riscv_timer_init_common(void) { int error; struct irq_domain *domain; struct fwnode_handle *intc_fwnode = riscv_get_intc_hwnode(); domain = irq_find_matching_fwnode(intc_fwnode, DOMAIN_BUS_ANY); if (!domain) { pr_err("Failed to find irq_domain for INTC node [%pfwP]\n", intc_fwnode); return -ENODEV; } riscv_clock_event_irq = irq_create_mapping(domain, RV_IRQ_TIMER); if (!riscv_clock_event_irq) { pr_err("Failed to map timer interrupt for node [%pfwP]\n", intc_fwnode); return -ENODEV; } error = clocksource_register_hz(&riscv_clocksource, riscv_timebase); if (error) { pr_err("RISCV timer registration failed [%d]\n", error); return error; } sched_clock_register(riscv_sched_clock, 64, riscv_timebase); error = request_percpu_irq(riscv_clock_event_irq, riscv_timer_interrupt, "riscv-timer", &riscv_clock_event); if (error) { pr_err("registering percpu irq failed [%d]\n", error); return error; } if (riscv_isa_extension_available(NULL, SSTC)) { pr_info("Timer interrupt in S-mode is available via sstc extension\n"); static_branch_enable(&riscv_sstc_available); } error = cpuhp_setup_state(CPUHP_AP_RISCV_TIMER_STARTING, "clockevents/riscv/timer:starting", riscv_timer_starting_cpu, riscv_timer_dying_cpu); if (error) pr_err("cpu hp setup state failed for RISCV timer [%d]\n", error); return error; } static int __init riscv_timer_init_dt(struct device_node *n) { int cpuid, error; unsigned long hartid; struct device_node *child; error = riscv_of_processor_hartid(n, &hartid); if (error < 0) { pr_warn("Invalid hartid for node [%pOF] error = [%lu]\n", n, hartid); return error; } cpuid = riscv_hartid_to_cpuid(hartid); if (cpuid < 0) { pr_warn("Invalid cpuid for hartid [%lu]\n", hartid); return cpuid; } if (cpuid != smp_processor_id()) return 0; child = of_find_compatible_node(NULL, NULL, "riscv,timer"); if (child) { riscv_timer_cannot_wake_cpu = of_property_read_bool(child, "riscv,timer-cannot-wake-cpu"); of_node_put(child); } return riscv_timer_init_common(); } TIMER_OF_DECLARE(riscv_timer, "riscv", riscv_timer_init_dt); #ifdef CONFIG_ACPI static int __init riscv_timer_acpi_init(struct acpi_table_header *table) { return riscv_timer_init_common(); } TIMER_ACPI_DECLARE(aclint_mtimer, ACPI_SIG_RHCT, riscv_timer_acpi_init); #endif
linux-master
drivers/clocksource/timer-riscv.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Freescale FlexTimer Module (FTM) timer driver. * * Copyright 2014 Freescale Semiconductor, Inc. */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include <linux/fsl/ftm.h> #define FTM_SC_CLK(c) ((c) << FTM_SC_CLK_MASK_SHIFT) struct ftm_clock_device { void __iomem *clksrc_base; void __iomem *clkevt_base; unsigned long periodic_cyc; unsigned long ps; bool big_endian; }; static struct ftm_clock_device *priv; static inline u32 ftm_readl(void __iomem *addr) { if (priv->big_endian) return ioread32be(addr); else return ioread32(addr); } static inline void ftm_writel(u32 val, void __iomem *addr) { if (priv->big_endian) iowrite32be(val, addr); else iowrite32(val, addr); } static inline void ftm_counter_enable(void __iomem *base) { u32 val; /* select and enable counter clock source */ val = ftm_readl(base + FTM_SC); val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); val |= priv->ps | FTM_SC_CLK(1); ftm_writel(val, base + FTM_SC); } static inline void ftm_counter_disable(void __iomem *base) { u32 val; /* disable counter clock source */ val = ftm_readl(base + FTM_SC); val &= ~(FTM_SC_PS_MASK | FTM_SC_CLK_MASK); ftm_writel(val, base + FTM_SC); } static inline void ftm_irq_acknowledge(void __iomem *base) { u32 val; val = ftm_readl(base + FTM_SC); val &= ~FTM_SC_TOF; ftm_writel(val, base + FTM_SC); } static inline void ftm_irq_enable(void __iomem *base) { u32 val; val = ftm_readl(base + FTM_SC); val |= FTM_SC_TOIE; ftm_writel(val, base + FTM_SC); } static inline void ftm_irq_disable(void __iomem *base) { u32 val; val = ftm_readl(base + FTM_SC); val &= ~FTM_SC_TOIE; ftm_writel(val, base + FTM_SC); } static inline void ftm_reset_counter(void __iomem *base) { /* * The CNT register contains the FTM counter value. * Reset clears the CNT register. Writing any value to COUNT * updates the counter with its initial value, CNTIN. */ ftm_writel(0x00, base + FTM_CNT); } static u64 notrace ftm_read_sched_clock(void) { return ftm_readl(priv->clksrc_base + FTM_CNT); } static int ftm_set_next_event(unsigned long delta, struct clock_event_device *unused) { /* * The CNNIN and MOD are all double buffer registers, writing * to the MOD register latches the value into a buffer. The MOD * register is updated with the value of its write buffer with * the following scenario: * a, the counter source clock is disabled. */ ftm_counter_disable(priv->clkevt_base); /* Force the value of CNTIN to be loaded into the FTM counter */ ftm_reset_counter(priv->clkevt_base); /* * The counter increments until the value of MOD is reached, * at which point the counter is reloaded with the value of CNTIN. * The TOF (the overflow flag) bit is set when the FTM counter * changes from MOD to CNTIN. So we should using the delta - 1. */ ftm_writel(delta - 1, priv->clkevt_base + FTM_MOD); ftm_counter_enable(priv->clkevt_base); ftm_irq_enable(priv->clkevt_base); return 0; } static int ftm_set_oneshot(struct clock_event_device *evt) { ftm_counter_disable(priv->clkevt_base); return 0; } static int ftm_set_periodic(struct clock_event_device *evt) { ftm_set_next_event(priv->periodic_cyc, evt); return 0; } static irqreturn_t ftm_evt_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; ftm_irq_acknowledge(priv->clkevt_base); if (likely(clockevent_state_oneshot(evt))) { ftm_irq_disable(priv->clkevt_base); ftm_counter_disable(priv->clkevt_base); } evt->event_handler(evt); return IRQ_HANDLED; } static struct clock_event_device ftm_clockevent = { .name = "Freescale ftm timer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_periodic = ftm_set_periodic, .set_state_oneshot = ftm_set_oneshot, .set_next_event = ftm_set_next_event, .rating = 300, }; static int __init ftm_clockevent_init(unsigned long freq, int irq) { int err; ftm_writel(0x00, priv->clkevt_base + FTM_CNTIN); ftm_writel(~0u, priv->clkevt_base + FTM_MOD); ftm_reset_counter(priv->clkevt_base); err = request_irq(irq, ftm_evt_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "Freescale ftm timer", &ftm_clockevent); if (err) { pr_err("ftm: setup irq failed: %d\n", err); return err; } ftm_clockevent.cpumask = cpumask_of(0); ftm_clockevent.irq = irq; clockevents_config_and_register(&ftm_clockevent, freq / (1 << priv->ps), 1, 0xffff); ftm_counter_enable(priv->clkevt_base); return 0; } static int __init ftm_clocksource_init(unsigned long freq) { int err; ftm_writel(0x00, priv->clksrc_base + FTM_CNTIN); ftm_writel(~0u, priv->clksrc_base + FTM_MOD); ftm_reset_counter(priv->clksrc_base); sched_clock_register(ftm_read_sched_clock, 16, freq / (1 << priv->ps)); err = clocksource_mmio_init(priv->clksrc_base + FTM_CNT, "fsl-ftm", freq / (1 << priv->ps), 300, 16, clocksource_mmio_readl_up); if (err) { pr_err("ftm: init clock source mmio failed: %d\n", err); return err; } ftm_counter_enable(priv->clksrc_base); return 0; } static int __init __ftm_clk_init(struct device_node *np, char *cnt_name, char *ftm_name) { struct clk *clk; int err; clk = of_clk_get_by_name(np, cnt_name); if (IS_ERR(clk)) { pr_err("ftm: Cannot get \"%s\": %ld\n", cnt_name, PTR_ERR(clk)); return PTR_ERR(clk); } err = clk_prepare_enable(clk); if (err) { pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n", cnt_name, err); return err; } clk = of_clk_get_by_name(np, ftm_name); if (IS_ERR(clk)) { pr_err("ftm: Cannot get \"%s\": %ld\n", ftm_name, PTR_ERR(clk)); return PTR_ERR(clk); } err = clk_prepare_enable(clk); if (err) pr_err("ftm: clock failed to prepare+enable \"%s\": %d\n", ftm_name, err); return clk_get_rate(clk); } static unsigned long __init ftm_clk_init(struct device_node *np) { long freq; freq = __ftm_clk_init(np, "ftm-evt-counter-en", "ftm-evt"); if (freq <= 0) return 0; freq = __ftm_clk_init(np, "ftm-src-counter-en", "ftm-src"); if (freq <= 0) return 0; return freq; } static int __init ftm_calc_closest_round_cyc(unsigned long freq) { priv->ps = 0; /* The counter register is only using the lower 16 bits, and * if the 'freq' value is to big here, then the periodic_cyc * may exceed 0xFFFF. */ do { priv->periodic_cyc = DIV_ROUND_CLOSEST(freq, HZ * (1 << priv->ps++)); } while (priv->periodic_cyc > 0xFFFF); if (priv->ps > FTM_PS_MAX) { pr_err("ftm: the prescaler is %lu > %d\n", priv->ps, FTM_PS_MAX); return -EINVAL; } return 0; } static int __init ftm_timer_init(struct device_node *np) { unsigned long freq; int ret, irq; priv = kzalloc(sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; ret = -ENXIO; priv->clkevt_base = of_iomap(np, 0); if (!priv->clkevt_base) { pr_err("ftm: unable to map event timer registers\n"); goto err_clkevt; } priv->clksrc_base = of_iomap(np, 1); if (!priv->clksrc_base) { pr_err("ftm: unable to map source timer registers\n"); goto err_clksrc; } ret = -EINVAL; irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_err("ftm: unable to get IRQ from DT, %d\n", irq); goto err; } priv->big_endian = of_property_read_bool(np, "big-endian"); freq = ftm_clk_init(np); if (!freq) goto err; ret = ftm_calc_closest_round_cyc(freq); if (ret) goto err; ret = ftm_clocksource_init(freq); if (ret) goto err; ret = ftm_clockevent_init(freq, irq); if (ret) goto err; return 0; err: iounmap(priv->clksrc_base); err_clksrc: iounmap(priv->clkevt_base); err_clkevt: kfree(priv); return ret; } TIMER_OF_DECLARE(flextimer, "fsl,ftm-timer", ftm_timer_init);
linux-master
drivers/clocksource/timer-fsl-ftm.c
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2012 Simon Arlott */ #include <linux/bitops.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/irqreturn.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/sched_clock.h> #include <asm/irq.h> #define REG_CONTROL 0x00 #define REG_COUNTER_LO 0x04 #define REG_COUNTER_HI 0x08 #define REG_COMPARE(n) (0x0c + (n) * 4) #define MAX_TIMER 3 #define DEFAULT_TIMER 3 struct bcm2835_timer { void __iomem *control; void __iomem *compare; int match_mask; struct clock_event_device evt; }; static void __iomem *system_clock __read_mostly; static u64 notrace bcm2835_sched_read(void) { return readl_relaxed(system_clock); } static int bcm2835_time_set_next_event(unsigned long event, struct clock_event_device *evt_dev) { struct bcm2835_timer *timer = container_of(evt_dev, struct bcm2835_timer, evt); writel_relaxed(readl_relaxed(system_clock) + event, timer->compare); return 0; } static irqreturn_t bcm2835_time_interrupt(int irq, void *dev_id) { struct bcm2835_timer *timer = dev_id; void (*event_handler)(struct clock_event_device *); if (readl_relaxed(timer->control) & timer->match_mask) { writel_relaxed(timer->match_mask, timer->control); event_handler = READ_ONCE(timer->evt.event_handler); if (event_handler) event_handler(&timer->evt); return IRQ_HANDLED; } else { return IRQ_NONE; } } static int __init bcm2835_timer_init(struct device_node *node) { void __iomem *base; u32 freq; int irq, ret; struct bcm2835_timer *timer; base = of_iomap(node, 0); if (!base) { pr_err("Can't remap registers\n"); return -ENXIO; } ret = of_property_read_u32(node, "clock-frequency", &freq); if (ret) { pr_err("Can't read clock-frequency\n"); goto err_iounmap; } system_clock = base + REG_COUNTER_LO; sched_clock_register(bcm2835_sched_read, 32, freq); clocksource_mmio_init(base + REG_COUNTER_LO, node->name, freq, 300, 32, clocksource_mmio_readl_up); irq = irq_of_parse_and_map(node, DEFAULT_TIMER); if (irq <= 0) { pr_err("Can't parse IRQ\n"); ret = -EINVAL; goto err_iounmap; } timer = kzalloc(sizeof(*timer), GFP_KERNEL); if (!timer) { ret = -ENOMEM; goto err_iounmap; } timer->control = base + REG_CONTROL; timer->compare = base + REG_COMPARE(DEFAULT_TIMER); timer->match_mask = BIT(DEFAULT_TIMER); timer->evt.name = node->name; timer->evt.rating = 300; timer->evt.features = CLOCK_EVT_FEAT_ONESHOT; timer->evt.set_next_event = bcm2835_time_set_next_event; timer->evt.cpumask = cpumask_of(0); ret = request_irq(irq, bcm2835_time_interrupt, IRQF_TIMER | IRQF_SHARED, node->name, timer); if (ret) { pr_err("Can't set up timer IRQ\n"); goto err_timer_free; } clockevents_config_and_register(&timer->evt, freq, 0xf, 0xffffffff); pr_info("bcm2835: system timer (irq = %d)\n", irq); return 0; err_timer_free: kfree(timer); err_iounmap: iounmap(base); return ret; } TIMER_OF_DECLARE(bcm2835, "brcm,bcm2835-system-timer", bcm2835_timer_init);
linux-master
drivers/clocksource/bcm2835_timer.c
// SPDX-License-Identifier: GPL-2.0 /* * Pistachio clocksource based on general-purpose timers * * Copyright (C) 2015 Imagination Technologies */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/spinlock.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/sched_clock.h> #include <linux/time.h> /* Top level reg */ #define CR_TIMER_CTRL_CFG 0x00 #define TIMER_ME_GLOBAL BIT(0) #define CR_TIMER_REV 0x10 /* Timer specific registers */ #define TIMER_CFG 0x20 #define TIMER_ME_LOCAL BIT(0) #define TIMER_RELOAD_VALUE 0x24 #define TIMER_CURRENT_VALUE 0x28 #define TIMER_CURRENT_OVERFLOW_VALUE 0x2C #define TIMER_IRQ_STATUS 0x30 #define TIMER_IRQ_CLEAR 0x34 #define TIMER_IRQ_MASK 0x38 #define PERIP_TIMER_CONTROL 0x90 /* Timer specific configuration Values */ #define RELOAD_VALUE 0xffffffff struct pistachio_clocksource { void __iomem *base; raw_spinlock_t lock; struct clocksource cs; }; static struct pistachio_clocksource pcs_gpt; #define to_pistachio_clocksource(cs) \ container_of(cs, struct pistachio_clocksource, cs) static inline u32 gpt_readl(void __iomem *base, u32 offset, u32 gpt_id) { return readl(base + 0x20 * gpt_id + offset); } static inline void gpt_writel(void __iomem *base, u32 value, u32 offset, u32 gpt_id) { writel(value, base + 0x20 * gpt_id + offset); } static u64 notrace pistachio_clocksource_read_cycles(struct clocksource *cs) { struct pistachio_clocksource *pcs = to_pistachio_clocksource(cs); __maybe_unused u32 overflow; u32 counter; unsigned long flags; /* * The counter value is only refreshed after the overflow value is read. * And they must be read in strict order, hence raw spin lock added. */ raw_spin_lock_irqsave(&pcs->lock, flags); overflow = gpt_readl(pcs->base, TIMER_CURRENT_OVERFLOW_VALUE, 0); counter = gpt_readl(pcs->base, TIMER_CURRENT_VALUE, 0); raw_spin_unlock_irqrestore(&pcs->lock, flags); return (u64)~counter; } static u64 notrace pistachio_read_sched_clock(void) { return pistachio_clocksource_read_cycles(&pcs_gpt.cs); } static void pistachio_clksrc_set_mode(struct clocksource *cs, int timeridx, int enable) { struct pistachio_clocksource *pcs = to_pistachio_clocksource(cs); u32 val; val = gpt_readl(pcs->base, TIMER_CFG, timeridx); if (enable) val |= TIMER_ME_LOCAL; else val &= ~TIMER_ME_LOCAL; gpt_writel(pcs->base, val, TIMER_CFG, timeridx); } static void pistachio_clksrc_enable(struct clocksource *cs, int timeridx) { struct pistachio_clocksource *pcs = to_pistachio_clocksource(cs); /* Disable GPT local before loading reload value */ pistachio_clksrc_set_mode(cs, timeridx, false); gpt_writel(pcs->base, RELOAD_VALUE, TIMER_RELOAD_VALUE, timeridx); pistachio_clksrc_set_mode(cs, timeridx, true); } static void pistachio_clksrc_disable(struct clocksource *cs, int timeridx) { /* Disable GPT local */ pistachio_clksrc_set_mode(cs, timeridx, false); } static int pistachio_clocksource_enable(struct clocksource *cs) { pistachio_clksrc_enable(cs, 0); return 0; } static void pistachio_clocksource_disable(struct clocksource *cs) { pistachio_clksrc_disable(cs, 0); } /* Desirable clock source for pistachio platform */ static struct pistachio_clocksource pcs_gpt = { .cs = { .name = "gptimer", .rating = 300, .enable = pistachio_clocksource_enable, .disable = pistachio_clocksource_disable, .read = pistachio_clocksource_read_cycles, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, }, }; static int __init pistachio_clksrc_of_init(struct device_node *node) { struct clk *sys_clk, *fast_clk; struct regmap *periph_regs; unsigned long rate; int ret; pcs_gpt.base = of_iomap(node, 0); if (!pcs_gpt.base) { pr_err("cannot iomap\n"); return -ENXIO; } periph_regs = syscon_regmap_lookup_by_phandle(node, "img,cr-periph"); if (IS_ERR(periph_regs)) { pr_err("cannot get peripheral regmap (%ld)\n", PTR_ERR(periph_regs)); return PTR_ERR(periph_regs); } /* Switch to using the fast counter clock */ ret = regmap_update_bits(periph_regs, PERIP_TIMER_CONTROL, 0xf, 0x0); if (ret) return ret; sys_clk = of_clk_get_by_name(node, "sys"); if (IS_ERR(sys_clk)) { pr_err("clock get failed (%ld)\n", PTR_ERR(sys_clk)); return PTR_ERR(sys_clk); } fast_clk = of_clk_get_by_name(node, "fast"); if (IS_ERR(fast_clk)) { pr_err("clock get failed (%lu)\n", PTR_ERR(fast_clk)); return PTR_ERR(fast_clk); } ret = clk_prepare_enable(sys_clk); if (ret < 0) { pr_err("failed to enable clock (%d)\n", ret); return ret; } ret = clk_prepare_enable(fast_clk); if (ret < 0) { pr_err("failed to enable clock (%d)\n", ret); clk_disable_unprepare(sys_clk); return ret; } rate = clk_get_rate(fast_clk); /* Disable irq's for clocksource usage */ gpt_writel(pcs_gpt.base, 0, TIMER_IRQ_MASK, 0); gpt_writel(pcs_gpt.base, 0, TIMER_IRQ_MASK, 1); gpt_writel(pcs_gpt.base, 0, TIMER_IRQ_MASK, 2); gpt_writel(pcs_gpt.base, 0, TIMER_IRQ_MASK, 3); /* Enable timer block */ writel(TIMER_ME_GLOBAL, pcs_gpt.base); raw_spin_lock_init(&pcs_gpt.lock); sched_clock_register(pistachio_read_sched_clock, 32, rate); return clocksource_register_hz(&pcs_gpt.cs, rate); } TIMER_OF_DECLARE(pistachio_gptimer, "img,pistachio-gptimer", pistachio_clksrc_of_init);
linux-master
drivers/clocksource/timer-pistachio.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2008 STMicroelectronics * Copyright (C) 2010 Alessandro Rubini * Copyright (C) 2010 Linus Walleij for ST-Ericsson */ #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/clk.h> #include <linux/jiffies.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/sched_clock.h> #include <asm/mach/time.h> /* * The MTU device hosts four different counters, with 4 set of * registers. These are register names. */ #define MTU_IMSC 0x00 /* Interrupt mask set/clear */ #define MTU_RIS 0x04 /* Raw interrupt status */ #define MTU_MIS 0x08 /* Masked interrupt status */ #define MTU_ICR 0x0C /* Interrupt clear register */ /* per-timer registers take 0..3 as argument */ #define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */ #define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */ #define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */ #define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */ /* bits for the control register */ #define MTU_CRn_ENA 0x80 #define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */ #define MTU_CRn_PRESCALE_MASK 0x0c #define MTU_CRn_PRESCALE_1 0x00 #define MTU_CRn_PRESCALE_16 0x04 #define MTU_CRn_PRESCALE_256 0x08 #define MTU_CRn_32BITS 0x02 #define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/ /* Other registers are usual amba/primecell registers, currently not used */ #define MTU_ITCR 0xff0 #define MTU_ITOP 0xff4 #define MTU_PERIPH_ID0 0xfe0 #define MTU_PERIPH_ID1 0xfe4 #define MTU_PERIPH_ID2 0xfe8 #define MTU_PERIPH_ID3 0xfeC #define MTU_PCELL0 0xff0 #define MTU_PCELL1 0xff4 #define MTU_PCELL2 0xff8 #define MTU_PCELL3 0xffC static void __iomem *mtu_base; static bool clkevt_periodic; static u32 clk_prescale; static u32 nmdk_cycle; /* write-once */ static struct delay_timer mtu_delay_timer; /* * Override the global weak sched_clock symbol with this * local implementation which uses the clocksource to get some * better resolution when scheduling the kernel. */ static u64 notrace nomadik_read_sched_clock(void) { if (unlikely(!mtu_base)) return 0; return -readl(mtu_base + MTU_VAL(0)); } static unsigned long nmdk_timer_read_current_timer(void) { return ~readl_relaxed(mtu_base + MTU_VAL(0)); } /* Clockevent device: use one-shot mode */ static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev) { writel(1 << 1, mtu_base + MTU_IMSC); writel(evt, mtu_base + MTU_LR(1)); /* Load highest value, enable device, enable interrupts */ writel(MTU_CRn_ONESHOT | clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, mtu_base + MTU_CR(1)); return 0; } static void nmdk_clkevt_reset(void) { if (clkevt_periodic) { /* Timer: configure load and background-load, and fire it up */ writel(nmdk_cycle, mtu_base + MTU_LR(1)); writel(nmdk_cycle, mtu_base + MTU_BGLR(1)); writel(MTU_CRn_PERIODIC | clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, mtu_base + MTU_CR(1)); writel(1 << 1, mtu_base + MTU_IMSC); } else { /* Generate an interrupt to start the clockevent again */ (void) nmdk_clkevt_next(nmdk_cycle, NULL); } } static int nmdk_clkevt_shutdown(struct clock_event_device *evt) { writel(0, mtu_base + MTU_IMSC); /* disable timer */ writel(0, mtu_base + MTU_CR(1)); /* load some high default value */ writel(0xffffffff, mtu_base + MTU_LR(1)); return 0; } static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt) { clkevt_periodic = false; return 0; } static int nmdk_clkevt_set_periodic(struct clock_event_device *evt) { clkevt_periodic = true; nmdk_clkevt_reset(); return 0; } static void nmdk_clksrc_reset(void) { /* Disable */ writel(0, mtu_base + MTU_CR(0)); /* ClockSource: configure load and background-load, and fire it up */ writel(nmdk_cycle, mtu_base + MTU_LR(0)); writel(nmdk_cycle, mtu_base + MTU_BGLR(0)); writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA, mtu_base + MTU_CR(0)); } static void nmdk_clkevt_resume(struct clock_event_device *cedev) { nmdk_clkevt_reset(); nmdk_clksrc_reset(); } static struct clock_event_device nmdk_clkevt = { .name = "mtu_1", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_DYNIRQ, .rating = 200, .set_state_shutdown = nmdk_clkevt_shutdown, .set_state_periodic = nmdk_clkevt_set_periodic, .set_state_oneshot = nmdk_clkevt_set_oneshot, .set_next_event = nmdk_clkevt_next, .resume = nmdk_clkevt_resume, }; /* * IRQ Handler for timer 1 of the MTU block. */ static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evdev = dev_id; writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */ evdev->event_handler(evdev); return IRQ_HANDLED; } static int __init nmdk_timer_init(void __iomem *base, int irq, struct clk *pclk, struct clk *clk) { unsigned long rate; int ret; int min_ticks; mtu_base = base; BUG_ON(clk_prepare_enable(pclk)); BUG_ON(clk_prepare_enable(clk)); /* * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz * for ux500, and in one specific Ux500 case 32768 Hz. * * Use a divide-by-16 counter if the tick rate is more than 32MHz. * At 32 MHz, the timer (with 32 bit counter) can be programmed * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer * with 16 gives too low timer resolution. */ rate = clk_get_rate(clk); if (rate > 32000000) { rate /= 16; clk_prescale = MTU_CRn_PRESCALE_16; } else { clk_prescale = MTU_CRn_PRESCALE_1; } /* Cycles for periodic mode */ nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ); /* Timer 0 is the free running clocksource */ nmdk_clksrc_reset(); ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0", rate, 200, 32, clocksource_mmio_readl_down); if (ret) { pr_err("timer: failed to initialize clock source %s\n", "mtu_0"); return ret; } sched_clock_register(nomadik_read_sched_clock, 32, rate); /* Timer 1 is used for events, register irq and clockevents */ if (request_irq(irq, nmdk_timer_interrupt, IRQF_TIMER, "Nomadik Timer Tick", &nmdk_clkevt)) pr_err("%s: request_irq() failed\n", "Nomadik Timer Tick"); nmdk_clkevt.cpumask = cpumask_of(0); nmdk_clkevt.irq = irq; if (rate < 100000) min_ticks = 5; else min_ticks = 2; clockevents_config_and_register(&nmdk_clkevt, rate, min_ticks, 0xffffffffU); mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer; mtu_delay_timer.freq = rate; register_current_timer_delay(&mtu_delay_timer); return 0; } static int __init nmdk_timer_of_init(struct device_node *node) { struct clk *pclk; struct clk *clk; void __iomem *base; int irq; base = of_iomap(node, 0); if (!base) { pr_err("Can't remap registers\n"); return -ENXIO; } pclk = of_clk_get_by_name(node, "apb_pclk"); if (IS_ERR(pclk)) { pr_err("could not get apb_pclk\n"); return PTR_ERR(pclk); } clk = of_clk_get_by_name(node, "timclk"); if (IS_ERR(clk)) { pr_err("could not get timclk\n"); return PTR_ERR(clk); } irq = irq_of_parse_and_map(node, 0); if (irq <= 0) { pr_err("Can't parse IRQ\n"); return -EINVAL; } return nmdk_timer_init(base, irq, pclk, clk); } TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu", nmdk_timer_of_init);
linux-master
drivers/clocksource/nomadik-mtu.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Integrator/AP timer driver * Copyright (C) 2000-2003 Deep Blue Solutions Ltd * Copyright (c) 2014, Linaro Limited */ #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/of.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/sched_clock.h> #include "timer-sp.h" static void __iomem * sched_clk_base; static u64 notrace integrator_read_sched_clock(void) { return -readl(sched_clk_base + TIMER_VALUE); } static int __init integrator_clocksource_init(unsigned long inrate, void __iomem *base) { u32 ctrl = TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC; unsigned long rate = inrate; int ret; if (rate >= 1500000) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } writel(0xffff, base + TIMER_LOAD); writel(ctrl, base + TIMER_CTRL); ret = clocksource_mmio_init(base + TIMER_VALUE, "timer2", rate, 200, 16, clocksource_mmio_readl_down); if (ret) return ret; sched_clk_base = base; sched_clock_register(integrator_read_sched_clock, 16, rate); return 0; } static unsigned long timer_reload; static void __iomem * clkevt_base; /* * IRQ handler for the timer */ static irqreturn_t integrator_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; /* clear the interrupt */ writel(1, clkevt_base + TIMER_INTCLR); evt->event_handler(evt); return IRQ_HANDLED; } static int clkevt_shutdown(struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE; /* Disable timer */ writel(ctrl, clkevt_base + TIMER_CTRL); return 0; } static int clkevt_set_oneshot(struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~(TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC); /* Leave the timer disabled, .set_next_event will enable it */ writel(ctrl, clkevt_base + TIMER_CTRL); return 0; } static int clkevt_set_periodic(struct clock_event_device *evt) { u32 ctrl = readl(clkevt_base + TIMER_CTRL) & ~TIMER_CTRL_ENABLE; /* Disable timer */ writel(ctrl, clkevt_base + TIMER_CTRL); /* Enable the timer and start the periodic tick */ writel(timer_reload, clkevt_base + TIMER_LOAD); ctrl |= TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE; writel(ctrl, clkevt_base + TIMER_CTRL); return 0; } static int clkevt_set_next_event(unsigned long next, struct clock_event_device *evt) { unsigned long ctrl = readl(clkevt_base + TIMER_CTRL); writel(ctrl & ~TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); writel(next, clkevt_base + TIMER_LOAD); writel(ctrl | TIMER_CTRL_ENABLE, clkevt_base + TIMER_CTRL); return 0; } static struct clock_event_device integrator_clockevent = { .name = "timer1", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = clkevt_shutdown, .set_state_periodic = clkevt_set_periodic, .set_state_oneshot = clkevt_set_oneshot, .tick_resume = clkevt_shutdown, .set_next_event = clkevt_set_next_event, .rating = 300, }; static int integrator_clockevent_init(unsigned long inrate, void __iomem *base, int irq) { unsigned long rate = inrate; unsigned int ctrl = 0; int ret; clkevt_base = base; /* Calculate and program a divisor */ if (rate > 0x100000 * HZ) { rate /= 256; ctrl |= TIMER_CTRL_DIV256; } else if (rate > 0x10000 * HZ) { rate /= 16; ctrl |= TIMER_CTRL_DIV16; } timer_reload = rate / HZ; writel(ctrl, clkevt_base + TIMER_CTRL); ret = request_irq(irq, integrator_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "timer", &integrator_clockevent); if (ret) return ret; clockevents_config_and_register(&integrator_clockevent, rate, 1, 0xffffU); return 0; } static int __init integrator_ap_timer_init_of(struct device_node *node) { const char *path; void __iomem *base; int err; int irq; struct clk *clk; unsigned long rate; struct device_node *alias_node; base = of_io_request_and_map(node, 0, "integrator-timer"); if (IS_ERR(base)) return PTR_ERR(base); clk = of_clk_get(node, 0); if (IS_ERR(clk)) { pr_err("No clock for %pOFn\n", node); return PTR_ERR(clk); } clk_prepare_enable(clk); rate = clk_get_rate(clk); writel(0, base + TIMER_CTRL); err = of_property_read_string(of_aliases, "arm,timer-primary", &path); if (err) { pr_warn("Failed to read property\n"); return err; } alias_node = of_find_node_by_path(path); /* * The pointer is used as an identifier not as a pointer, we * can drop the refcount on the of__node immediately after * getting it. */ of_node_put(alias_node); if (node == alias_node) /* The primary timer lacks IRQ, use as clocksource */ return integrator_clocksource_init(rate, base); err = of_property_read_string(of_aliases, "arm,timer-secondary", &path); if (err) { pr_warn("Failed to read property\n"); return err; } alias_node = of_find_node_by_path(path); of_node_put(alias_node); if (node == alias_node) { /* The secondary timer will drive the clock event */ irq = irq_of_parse_and_map(node, 0); return integrator_clockevent_init(rate, base, irq); } pr_info("Timer @%p unused\n", base); clk_disable_unprepare(clk); return 0; } TIMER_OF_DECLARE(integrator_ap_timer, "arm,integrator-timer", integrator_ap_timer_init_of);
linux-master
drivers/clocksource/timer-integrator-ap.c
// SPDX-License-Identifier: GPL-2.0+ #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpuhotplug.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/err.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/clk/clk-conf.h> #include <clocksource/timer-ti-dm.h> #include <dt-bindings/bus/ti-sysc.h> /* For type1, set SYSC_OMAP2_CLOCKACTIVITY for fck off on idle, l4 clock on */ #define DMTIMER_TYPE1_ENABLE ((1 << 9) | (SYSC_IDLE_SMART << 3) | \ SYSC_OMAP2_ENAWAKEUP | SYSC_OMAP2_AUTOIDLE) #define DMTIMER_TYPE1_DISABLE (SYSC_OMAP2_SOFTRESET | SYSC_OMAP2_AUTOIDLE) #define DMTIMER_TYPE2_ENABLE (SYSC_IDLE_SMART_WKUP << 2) #define DMTIMER_RESET_WAIT 100000 #define DMTIMER_INST_DONT_CARE ~0U static int counter_32k; static u32 clocksource; static u32 clockevent; /* * Subset of the timer registers we use. Note that the register offsets * depend on the timer revision detected. */ struct dmtimer_systimer { void __iomem *base; u8 sysc; u8 irq_stat; u8 irq_ena; u8 pend; u8 load; u8 counter; u8 ctrl; u8 wakeup; u8 ifctrl; struct clk *fck; struct clk *ick; unsigned long rate; }; struct dmtimer_clockevent { struct clock_event_device dev; struct dmtimer_systimer t; u32 period; }; struct dmtimer_clocksource { struct clocksource dev; struct dmtimer_systimer t; unsigned int loadval; }; /* Assumes v1 ip if bits [31:16] are zero */ static bool dmtimer_systimer_revision1(struct dmtimer_systimer *t) { u32 tidr = readl_relaxed(t->base); return !(tidr >> 16); } static void dmtimer_systimer_enable(struct dmtimer_systimer *t) { u32 val; if (dmtimer_systimer_revision1(t)) val = DMTIMER_TYPE1_ENABLE; else val = DMTIMER_TYPE2_ENABLE; writel_relaxed(val, t->base + t->sysc); } static void dmtimer_systimer_disable(struct dmtimer_systimer *t) { if (!dmtimer_systimer_revision1(t)) return; writel_relaxed(DMTIMER_TYPE1_DISABLE, t->base + t->sysc); } static int __init dmtimer_systimer_type1_reset(struct dmtimer_systimer *t) { void __iomem *syss = t->base + OMAP_TIMER_V1_SYS_STAT_OFFSET; int ret; u32 l; dmtimer_systimer_enable(t); writel_relaxed(BIT(1) | BIT(2), t->base + t->ifctrl); ret = readl_poll_timeout_atomic(syss, l, l & BIT(0), 100, DMTIMER_RESET_WAIT); return ret; } /* Note we must use io_base instead of func_base for type2 OCP regs */ static int __init dmtimer_systimer_type2_reset(struct dmtimer_systimer *t) { void __iomem *sysc = t->base + t->sysc; u32 l; dmtimer_systimer_enable(t); l = readl_relaxed(sysc); l |= BIT(0); writel_relaxed(l, sysc); return readl_poll_timeout_atomic(sysc, l, !(l & BIT(0)), 100, DMTIMER_RESET_WAIT); } static int __init dmtimer_systimer_reset(struct dmtimer_systimer *t) { int ret; if (dmtimer_systimer_revision1(t)) ret = dmtimer_systimer_type1_reset(t); else ret = dmtimer_systimer_type2_reset(t); if (ret < 0) { pr_err("%s failed with %i\n", __func__, ret); return ret; } return 0; } static const struct of_device_id counter_match_table[] = { { .compatible = "ti,omap-counter32k" }, { /* Sentinel */ }, }; /* * Check if the SoC als has a usable working 32 KiHz counter. The 32 KiHz * counter is handled by timer-ti-32k, but we need to detect it as it * affects the preferred dmtimer system timer configuration. There is * typically no use for a dmtimer clocksource if the 32 KiHz counter is * present, except on am437x as described below. */ static void __init dmtimer_systimer_check_counter32k(void) { struct device_node *np; if (counter_32k) return; np = of_find_matching_node(NULL, counter_match_table); if (!np) { counter_32k = -ENODEV; return; } if (of_device_is_available(np)) counter_32k = 1; else counter_32k = -ENODEV; of_node_put(np); } static const struct of_device_id dmtimer_match_table[] = { { .compatible = "ti,omap2420-timer", }, { .compatible = "ti,omap3430-timer", }, { .compatible = "ti,omap4430-timer", }, { .compatible = "ti,omap5430-timer", }, { .compatible = "ti,am335x-timer", }, { .compatible = "ti,am335x-timer-1ms", }, { .compatible = "ti,dm814-timer", }, { .compatible = "ti,dm816-timer", }, { /* Sentinel */ }, }; /* * Checks that system timers are configured to not reset and idle during * the generic timer-ti-dm device driver probe. And that the system timer * source clocks are properly configured. Also, let's not hog any DSP and * PWM capable timers unnecessarily as system timers. */ static bool __init dmtimer_is_preferred(struct device_node *np) { if (!of_device_is_available(np)) return false; if (!of_property_read_bool(np->parent, "ti,no-reset-on-init")) return false; if (!of_property_read_bool(np->parent, "ti,no-idle")) return false; /* Secure gptimer12 is always clocked with a fixed source */ if (!of_property_read_bool(np, "ti,timer-secure")) { if (!of_property_read_bool(np, "assigned-clocks")) return false; if (!of_property_read_bool(np, "assigned-clock-parents")) return false; } if (of_property_read_bool(np, "ti,timer-dsp")) return false; if (of_property_read_bool(np, "ti,timer-pwm")) return false; return true; } /* * Finds the first available usable always-on timer, and assigns it to either * clockevent or clocksource depending if the counter_32k is available on the * SoC or not. * * Some omap3 boards with unreliable oscillator must not use the counter_32k * or dmtimer1 with 32 KiHz source. Additionally, the boards with unreliable * oscillator should really set counter_32k as disabled, and delete dmtimer1 * ti,always-on property, but let's not count on it. For these quirky cases, * we prefer using the always-on secure dmtimer12 with the internal 32 KiHz * clock as the clocksource, and any available dmtimer as clockevent. * * For am437x, we are using am335x style dmtimer clocksource. It is unclear * if this quirk handling is really needed, but let's change it separately * based on testing as it might cause side effects. */ static void __init dmtimer_systimer_assign_alwon(void) { struct device_node *np; u32 pa = 0; bool quirk_unreliable_oscillator = false; /* Quirk unreliable 32 KiHz oscillator with incomplete dts */ if (of_machine_is_compatible("ti,omap3-beagle-ab4")) { quirk_unreliable_oscillator = true; counter_32k = -ENODEV; } /* Quirk am437x using am335x style dmtimer clocksource */ if (of_machine_is_compatible("ti,am43")) counter_32k = -ENODEV; for_each_matching_node(np, dmtimer_match_table) { struct resource res; if (!dmtimer_is_preferred(np)) continue; if (!of_property_read_bool(np, "ti,timer-alwon")) continue; if (of_address_to_resource(np, 0, &res)) continue; pa = res.start; /* Quirky omap3 boards must use dmtimer12 */ if (quirk_unreliable_oscillator && pa == 0x48318000) continue; of_node_put(np); break; } /* Usually no need for dmtimer clocksource if we have counter32 */ if (counter_32k >= 0) { clockevent = pa; clocksource = 0; } else { clocksource = pa; clockevent = DMTIMER_INST_DONT_CARE; } } /* Finds the first usable dmtimer, used for the don't care case */ static u32 __init dmtimer_systimer_find_first_available(void) { struct device_node *np; u32 pa = 0; for_each_matching_node(np, dmtimer_match_table) { struct resource res; if (!dmtimer_is_preferred(np)) continue; if (of_address_to_resource(np, 0, &res)) continue; if (res.start == clocksource || res.start == clockevent) continue; pa = res.start; of_node_put(np); break; } return pa; } /* Selects the best clocksource and clockevent to use */ static void __init dmtimer_systimer_select_best(void) { dmtimer_systimer_check_counter32k(); dmtimer_systimer_assign_alwon(); if (clockevent == DMTIMER_INST_DONT_CARE) clockevent = dmtimer_systimer_find_first_available(); pr_debug("%s: counter_32k: %i clocksource: %08x clockevent: %08x\n", __func__, counter_32k, clocksource, clockevent); } /* Interface clocks are only available on some SoCs variants */ static int __init dmtimer_systimer_init_clock(struct dmtimer_systimer *t, struct device_node *np, const char *name, unsigned long *rate) { struct clk *clock; unsigned long r; bool is_ick = false; int error; is_ick = !strncmp(name, "ick", 3); clock = of_clk_get_by_name(np, name); if ((PTR_ERR(clock) == -EINVAL) && is_ick) return 0; else if (IS_ERR(clock)) return PTR_ERR(clock); error = clk_prepare_enable(clock); if (error) return error; r = clk_get_rate(clock); if (!r) { clk_disable_unprepare(clock); return -ENODEV; } if (is_ick) t->ick = clock; else t->fck = clock; *rate = r; return 0; } static int __init dmtimer_systimer_setup(struct device_node *np, struct dmtimer_systimer *t) { unsigned long rate; u8 regbase; int error; if (!of_device_is_compatible(np->parent, "ti,sysc")) return -EINVAL; t->base = of_iomap(np, 0); if (!t->base) return -ENXIO; /* * Enable optional assigned-clock-parents configured at the timer * node level. For regular device drivers, this is done automatically * by bus related code such as platform_drv_probe(). */ error = of_clk_set_defaults(np, false); if (error < 0) pr_err("%s: clock source init failed: %i\n", __func__, error); /* For ti-sysc, we have timer clocks at the parent module level */ error = dmtimer_systimer_init_clock(t, np->parent, "fck", &rate); if (error) goto err_unmap; t->rate = rate; error = dmtimer_systimer_init_clock(t, np->parent, "ick", &rate); if (error) goto err_unmap; if (dmtimer_systimer_revision1(t)) { t->irq_stat = OMAP_TIMER_V1_STAT_OFFSET; t->irq_ena = OMAP_TIMER_V1_INT_EN_OFFSET; t->pend = _OMAP_TIMER_WRITE_PEND_OFFSET; regbase = 0; } else { t->irq_stat = OMAP_TIMER_V2_IRQSTATUS; t->irq_ena = OMAP_TIMER_V2_IRQENABLE_SET; regbase = OMAP_TIMER_V2_FUNC_OFFSET; t->pend = regbase + _OMAP_TIMER_WRITE_PEND_OFFSET; } t->sysc = OMAP_TIMER_OCP_CFG_OFFSET; t->load = regbase + _OMAP_TIMER_LOAD_OFFSET; t->counter = regbase + _OMAP_TIMER_COUNTER_OFFSET; t->ctrl = regbase + _OMAP_TIMER_CTRL_OFFSET; t->wakeup = regbase + _OMAP_TIMER_WAKEUP_EN_OFFSET; t->ifctrl = regbase + _OMAP_TIMER_IF_CTRL_OFFSET; dmtimer_systimer_reset(t); dmtimer_systimer_enable(t); pr_debug("dmtimer rev %08x sysc %08x\n", readl_relaxed(t->base), readl_relaxed(t->base + t->sysc)); return 0; err_unmap: iounmap(t->base); return error; } /* Clockevent */ static struct dmtimer_clockevent * to_dmtimer_clockevent(struct clock_event_device *clockevent) { return container_of(clockevent, struct dmtimer_clockevent, dev); } static irqreturn_t dmtimer_clockevent_interrupt(int irq, void *data) { struct dmtimer_clockevent *clkevt = data; struct dmtimer_systimer *t = &clkevt->t; writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_stat); clkevt->dev.event_handler(&clkevt->dev); return IRQ_HANDLED; } static int dmtimer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; void __iomem *pend = t->base + t->pend; while (readl_relaxed(pend) & WP_TCRR) cpu_relax(); writel_relaxed(0xffffffff - cycles, t->base + t->counter); while (readl_relaxed(pend) & WP_TCLR) cpu_relax(); writel_relaxed(OMAP_TIMER_CTRL_ST, t->base + t->ctrl); return 0; } static int dmtimer_clockevent_shutdown(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; void __iomem *ctrl = t->base + t->ctrl; u32 l; l = readl_relaxed(ctrl); if (l & OMAP_TIMER_CTRL_ST) { l &= ~BIT(0); writel_relaxed(l, ctrl); /* Flush posted write */ l = readl_relaxed(ctrl); /* Wait for functional clock period x 3.5 */ udelay(3500000 / t->rate + 1); } writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_stat); return 0; } static int dmtimer_set_periodic(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; void __iomem *pend = t->base + t->pend; dmtimer_clockevent_shutdown(evt); /* Looks like we need to first set the load value separately */ while (readl_relaxed(pend) & WP_TLDR) cpu_relax(); writel_relaxed(clkevt->period, t->base + t->load); while (readl_relaxed(pend) & WP_TCRR) cpu_relax(); writel_relaxed(clkevt->period, t->base + t->counter); while (readl_relaxed(pend) & WP_TCLR) cpu_relax(); writel_relaxed(OMAP_TIMER_CTRL_AR | OMAP_TIMER_CTRL_ST, t->base + t->ctrl); return 0; } static void omap_clockevent_idle(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; dmtimer_systimer_disable(t); clk_disable(t->fck); } static void omap_clockevent_unidle(struct clock_event_device *evt) { struct dmtimer_clockevent *clkevt = to_dmtimer_clockevent(evt); struct dmtimer_systimer *t = &clkevt->t; int error; error = clk_enable(t->fck); if (error) pr_err("could not enable timer fck on resume: %i\n", error); dmtimer_systimer_enable(t); writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_ena); writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->wakeup); } static int __init dmtimer_clkevt_init_common(struct dmtimer_clockevent *clkevt, struct device_node *np, unsigned int features, const struct cpumask *cpumask, const char *name, int rating) { struct clock_event_device *dev; struct dmtimer_systimer *t; int error; t = &clkevt->t; dev = &clkevt->dev; /* * We mostly use cpuidle_coupled with ARM local timers for runtime, * so there's probably no use for CLOCK_EVT_FEAT_DYNIRQ here. */ dev->features = features; dev->rating = rating; dev->set_next_event = dmtimer_set_next_event; dev->set_state_shutdown = dmtimer_clockevent_shutdown; dev->set_state_periodic = dmtimer_set_periodic; dev->set_state_oneshot = dmtimer_clockevent_shutdown; dev->set_state_oneshot_stopped = dmtimer_clockevent_shutdown; dev->tick_resume = dmtimer_clockevent_shutdown; dev->cpumask = cpumask; dev->irq = irq_of_parse_and_map(np, 0); if (!dev->irq) return -ENXIO; error = dmtimer_systimer_setup(np, &clkevt->t); if (error) return error; clkevt->period = 0xffffffff - DIV_ROUND_CLOSEST(t->rate, HZ); /* * For clock-event timers we never read the timer counter and * so we are not impacted by errata i103 and i767. Therefore, * we can safely ignore this errata for clock-event timers. */ writel_relaxed(OMAP_TIMER_CTRL_POSTED, t->base + t->ifctrl); error = request_irq(dev->irq, dmtimer_clockevent_interrupt, IRQF_TIMER, name, clkevt); if (error) goto err_out_unmap; writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->irq_ena); writel_relaxed(OMAP_TIMER_INT_OVERFLOW, t->base + t->wakeup); pr_info("TI gptimer %s: %s%lu Hz at %pOF\n", name, of_property_read_bool(np, "ti,timer-alwon") ? "always-on " : "", t->rate, np->parent); return 0; err_out_unmap: iounmap(t->base); return error; } static int __init dmtimer_clockevent_init(struct device_node *np) { struct dmtimer_clockevent *clkevt; int error; clkevt = kzalloc(sizeof(*clkevt), GFP_KERNEL); if (!clkevt) return -ENOMEM; error = dmtimer_clkevt_init_common(clkevt, np, CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, cpu_possible_mask, "clockevent", 300); if (error) goto err_out_free; clockevents_config_and_register(&clkevt->dev, clkevt->t.rate, 3, /* Timer internal resync latency */ 0xffffffff); if (of_machine_is_compatible("ti,am33xx") || of_machine_is_compatible("ti,am43")) { clkevt->dev.suspend = omap_clockevent_idle; clkevt->dev.resume = omap_clockevent_unidle; } return 0; err_out_free: kfree(clkevt); return error; } /* Dmtimer as percpu timer. See dra7 ARM architected timer wrap erratum i940 */ static DEFINE_PER_CPU(struct dmtimer_clockevent, dmtimer_percpu_timer); static int __init dmtimer_percpu_timer_init(struct device_node *np, int cpu) { struct dmtimer_clockevent *clkevt; int error; if (!cpu_possible(cpu)) return -EINVAL; if (!of_property_read_bool(np->parent, "ti,no-reset-on-init") || !of_property_read_bool(np->parent, "ti,no-idle")) pr_warn("Incomplete dtb for percpu dmtimer %pOF\n", np->parent); clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); error = dmtimer_clkevt_init_common(clkevt, np, CLOCK_EVT_FEAT_ONESHOT, cpumask_of(cpu), "percpu-dmtimer", 500); if (error) return error; return 0; } /* See TRM for timer internal resynch latency */ static int omap_dmtimer_starting_cpu(unsigned int cpu) { struct dmtimer_clockevent *clkevt = per_cpu_ptr(&dmtimer_percpu_timer, cpu); struct clock_event_device *dev = &clkevt->dev; struct dmtimer_systimer *t = &clkevt->t; clockevents_config_and_register(dev, t->rate, 3, ULONG_MAX); irq_force_affinity(dev->irq, cpumask_of(cpu)); return 0; } static int __init dmtimer_percpu_timer_startup(void) { struct dmtimer_clockevent *clkevt = per_cpu_ptr(&dmtimer_percpu_timer, 0); struct dmtimer_systimer *t = &clkevt->t; if (t->sysc) { cpuhp_setup_state(CPUHP_AP_TI_GP_TIMER_STARTING, "clockevents/omap/gptimer:starting", omap_dmtimer_starting_cpu, NULL); } return 0; } subsys_initcall(dmtimer_percpu_timer_startup); static int __init dmtimer_percpu_quirk_init(struct device_node *np, u32 pa) { struct device_node *arm_timer; arm_timer = of_find_compatible_node(NULL, NULL, "arm,armv7-timer"); if (of_device_is_available(arm_timer)) { pr_warn_once("ARM architected timer wrap issue i940 detected\n"); return 0; } if (pa == 0x4882c000) /* dra7 dmtimer15 */ return dmtimer_percpu_timer_init(np, 0); else if (pa == 0x4882e000) /* dra7 dmtimer16 */ return dmtimer_percpu_timer_init(np, 1); return 0; } /* Clocksource */ static struct dmtimer_clocksource * to_dmtimer_clocksource(struct clocksource *cs) { return container_of(cs, struct dmtimer_clocksource, dev); } static u64 dmtimer_clocksource_read_cycles(struct clocksource *cs) { struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); struct dmtimer_systimer *t = &clksrc->t; return (u64)readl_relaxed(t->base + t->counter); } static void __iomem *dmtimer_sched_clock_counter; static u64 notrace dmtimer_read_sched_clock(void) { return readl_relaxed(dmtimer_sched_clock_counter); } static void dmtimer_clocksource_suspend(struct clocksource *cs) { struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); struct dmtimer_systimer *t = &clksrc->t; clksrc->loadval = readl_relaxed(t->base + t->counter); dmtimer_systimer_disable(t); clk_disable(t->fck); } static void dmtimer_clocksource_resume(struct clocksource *cs) { struct dmtimer_clocksource *clksrc = to_dmtimer_clocksource(cs); struct dmtimer_systimer *t = &clksrc->t; int error; error = clk_enable(t->fck); if (error) pr_err("could not enable timer fck on resume: %i\n", error); dmtimer_systimer_enable(t); writel_relaxed(clksrc->loadval, t->base + t->counter); writel_relaxed(OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, t->base + t->ctrl); } static int __init dmtimer_clocksource_init(struct device_node *np) { struct dmtimer_clocksource *clksrc; struct dmtimer_systimer *t; struct clocksource *dev; int error; clksrc = kzalloc(sizeof(*clksrc), GFP_KERNEL); if (!clksrc) return -ENOMEM; dev = &clksrc->dev; t = &clksrc->t; error = dmtimer_systimer_setup(np, t); if (error) goto err_out_free; dev->name = "dmtimer"; dev->rating = 300; dev->read = dmtimer_clocksource_read_cycles; dev->mask = CLOCKSOURCE_MASK(32); dev->flags = CLOCK_SOURCE_IS_CONTINUOUS; /* Unlike for clockevent, legacy code sets suspend only for am4 */ if (of_machine_is_compatible("ti,am43")) { dev->suspend = dmtimer_clocksource_suspend; dev->resume = dmtimer_clocksource_resume; } writel_relaxed(0, t->base + t->counter); writel_relaxed(OMAP_TIMER_CTRL_ST | OMAP_TIMER_CTRL_AR, t->base + t->ctrl); pr_info("TI gptimer clocksource: %s%pOF\n", of_property_read_bool(np, "ti,timer-alwon") ? "always-on " : "", np->parent); if (!dmtimer_sched_clock_counter) { dmtimer_sched_clock_counter = t->base + t->counter; sched_clock_register(dmtimer_read_sched_clock, 32, t->rate); } if (clocksource_register_hz(dev, t->rate)) pr_err("Could not register clocksource %pOF\n", np); return 0; err_out_free: kfree(clksrc); return -ENODEV; } /* * To detect between a clocksource and clockevent, we assume the device tree * has no interrupts configured for a clocksource timer. */ static int __init dmtimer_systimer_init(struct device_node *np) { struct resource res; u32 pa; /* One time init for the preferred timer configuration */ if (!clocksource && !clockevent) dmtimer_systimer_select_best(); if (!clocksource && !clockevent) { pr_err("%s: unable to detect system timers, update dtb?\n", __func__); return -EINVAL; } of_address_to_resource(np, 0, &res); pa = (u32)res.start; if (!pa) return -EINVAL; if (counter_32k <= 0 && clocksource == pa) return dmtimer_clocksource_init(np); if (clockevent == pa) return dmtimer_clockevent_init(np); if (of_machine_is_compatible("ti,dra7")) return dmtimer_percpu_quirk_init(np, pa); return 0; } TIMER_OF_DECLARE(systimer_omap2, "ti,omap2420-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_omap3, "ti,omap3430-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_omap4, "ti,omap4430-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_omap5, "ti,omap5430-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_am33x, "ti,am335x-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_am3ms, "ti,am335x-timer-1ms", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_dm814, "ti,dm814-timer", dmtimer_systimer_init); TIMER_OF_DECLARE(systimer_dm816, "ti,dm816-timer", dmtimer_systimer_init);
linux-master
drivers/clocksource/timer-ti-dm-systimer.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Cirrus Logic CLPS711X clocksource driver * * Copyright (C) 2014 Alexander Shiyan <[email protected]> */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <linux/slab.h> enum { CLPS711X_CLKSRC_CLOCKSOURCE, CLPS711X_CLKSRC_CLOCKEVENT, }; static void __iomem *tcd; static u64 notrace clps711x_sched_clock_read(void) { return ~readw(tcd); } static void __init clps711x_clksrc_init(struct clk *clock, void __iomem *base) { unsigned long rate = clk_get_rate(clock); tcd = base; clocksource_mmio_init(tcd, "clps711x-clocksource", rate, 300, 16, clocksource_mmio_readw_down); sched_clock_register(clps711x_sched_clock_read, 16, rate); } static irqreturn_t clps711x_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static int __init _clps711x_clkevt_init(struct clk *clock, void __iomem *base, unsigned int irq) { struct clock_event_device *clkevt; unsigned long rate; clkevt = kzalloc(sizeof(*clkevt), GFP_KERNEL); if (!clkevt) return -ENOMEM; rate = clk_get_rate(clock); /* Set Timer prescaler */ writew(DIV_ROUND_CLOSEST(rate, HZ), base); clkevt->name = "clps711x-clockevent"; clkevt->rating = 300; clkevt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_C3STOP; clkevt->cpumask = cpumask_of(0); clockevents_config_and_register(clkevt, HZ, 0, 0); return request_irq(irq, clps711x_timer_interrupt, IRQF_TIMER, "clps711x-timer", clkevt); } static int __init clps711x_timer_init(struct device_node *np) { unsigned int irq = irq_of_parse_and_map(np, 0); struct clk *clock = of_clk_get(np, 0); void __iomem *base = of_iomap(np, 0); if (!base) return -ENOMEM; if (!irq) return -EINVAL; if (IS_ERR(clock)) return PTR_ERR(clock); switch (of_alias_get_id(np, "timer")) { case CLPS711X_CLKSRC_CLOCKSOURCE: clps711x_clksrc_init(clock, base); break; case CLPS711X_CLKSRC_CLOCKEVENT: return _clps711x_clkevt_init(clock, base, irq); default: return -EINVAL; } return 0; } TIMER_OF_DECLARE(clps711x, "cirrus,ep7209-timer", clps711x_timer_init);
linux-master
drivers/clocksource/clps711x-timer.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd. #include <linux/init.h> #include <linux/interrupt.h> #include <linux/sched_clock.h> #include <linux/cpu.h> #include <linux/of_irq.h> #include <asm/reg_ops.h> #include "timer-of.h" #define PTIM_CCVR "cr<3, 14>" #define PTIM_CTLR "cr<0, 14>" #define PTIM_LVR "cr<6, 14>" #define PTIM_TSR "cr<1, 14>" static int csky_mptimer_irq; static int csky_mptimer_set_next_event(unsigned long delta, struct clock_event_device *ce) { mtcr(PTIM_LVR, delta); return 0; } static int csky_mptimer_shutdown(struct clock_event_device *ce) { mtcr(PTIM_CTLR, 0); return 0; } static int csky_mptimer_oneshot(struct clock_event_device *ce) { mtcr(PTIM_CTLR, 1); return 0; } static int csky_mptimer_oneshot_stopped(struct clock_event_device *ce) { mtcr(PTIM_CTLR, 0); return 0; } static DEFINE_PER_CPU(struct timer_of, csky_to) = { .flags = TIMER_OF_CLOCK, .clkevt = { .rating = 300, .features = CLOCK_EVT_FEAT_PERCPU | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = csky_mptimer_shutdown, .set_state_oneshot = csky_mptimer_oneshot, .set_state_oneshot_stopped = csky_mptimer_oneshot_stopped, .set_next_event = csky_mptimer_set_next_event, }, }; static irqreturn_t csky_timer_interrupt(int irq, void *dev) { struct timer_of *to = this_cpu_ptr(&csky_to); mtcr(PTIM_TSR, 0); to->clkevt.event_handler(&to->clkevt); return IRQ_HANDLED; } /* * clock event for percpu */ static int csky_mptimer_starting_cpu(unsigned int cpu) { struct timer_of *to = per_cpu_ptr(&csky_to, cpu); to->clkevt.cpumask = cpumask_of(cpu); enable_percpu_irq(csky_mptimer_irq, 0); clockevents_config_and_register(&to->clkevt, timer_of_rate(to), 2, ULONG_MAX); return 0; } static int csky_mptimer_dying_cpu(unsigned int cpu) { disable_percpu_irq(csky_mptimer_irq); return 0; } /* * clock source */ static u64 notrace sched_clock_read(void) { return (u64)mfcr(PTIM_CCVR); } static u64 clksrc_read(struct clocksource *c) { return (u64)mfcr(PTIM_CCVR); } struct clocksource csky_clocksource = { .name = "csky", .rating = 400, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .read = clksrc_read, }; static int __init csky_mptimer_init(struct device_node *np) { int ret, cpu, cpu_rollback; struct timer_of *to = NULL; /* * Csky_mptimer is designed for C-SKY SMP multi-processors and * every core has it's own private irq and regs for clkevt and * clksrc. * * The regs is accessed by cpu instruction: mfcr/mtcr instead of * mmio map style. So we needn't mmio-address in dts, but we still * need to give clk and irq number. * * We use private irq for the mptimer and irq number is the same * for every core. So we use request_percpu_irq() in timer_of_init. */ csky_mptimer_irq = irq_of_parse_and_map(np, 0); if (csky_mptimer_irq <= 0) return -EINVAL; ret = request_percpu_irq(csky_mptimer_irq, csky_timer_interrupt, "csky_mp_timer", &csky_to); if (ret) return -EINVAL; for_each_possible_cpu(cpu) { to = per_cpu_ptr(&csky_to, cpu); ret = timer_of_init(np, to); if (ret) goto rollback; } clocksource_register_hz(&csky_clocksource, timer_of_rate(to)); sched_clock_register(sched_clock_read, 32, timer_of_rate(to)); ret = cpuhp_setup_state(CPUHP_AP_CSKY_TIMER_STARTING, "clockevents/csky/timer:starting", csky_mptimer_starting_cpu, csky_mptimer_dying_cpu); if (ret) return -EINVAL; return 0; rollback: for_each_possible_cpu(cpu_rollback) { if (cpu_rollback == cpu) break; to = per_cpu_ptr(&csky_to, cpu_rollback); timer_of_cleanup(to); } return -EINVAL; } TIMER_OF_DECLARE(csky_mptimer, "csky,mptimer", csky_mptimer_init);
linux-master
drivers/clocksource/timer-mp-csky.c
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/clocksource/acpi_pm.c * * This file contains the ACPI PM based clocksource. * * This code was largely moved from the i386 timer_pm.c file * which was (C) Dominik Brodowski <[email protected]> 2003 * and contained the following comments: * * Driver to use the Power Management Timer (PMTMR) available in some * southbridges as primary timing source for the Linux kernel. * * Based on parts of linux/drivers/acpi/hardware/hwtimer.c, timer_pit.c, * timer_hpet.c, and on Arjan van de Ven's implementation for 2.4. */ #include <linux/acpi_pmtmr.h> #include <linux/clocksource.h> #include <linux/timex.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/pci.h> #include <linux/delay.h> #include <asm/io.h> #include <asm/time.h> /* * The I/O port the PMTMR resides at. * The location is detected during setup_arch(), * in arch/i386/kernel/acpi/boot.c */ u32 pmtmr_ioport __read_mostly; static inline u32 read_pmtmr(void) { /* mask the output to 24 bits */ return inl(pmtmr_ioport) & ACPI_PM_MASK; } u32 acpi_pm_read_verified(void) { u32 v1 = 0, v2 = 0, v3 = 0; /* * It has been reported that because of various broken * chipsets (ICH4, PIIX4 and PIIX4E) where the ACPI PM clock * source is not latched, you must read it multiple * times to ensure a safe value is read: */ do { v1 = read_pmtmr(); v2 = read_pmtmr(); v3 = read_pmtmr(); } while (unlikely((v1 > v2 && v1 < v3) || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2))); return v2; } static u64 acpi_pm_read(struct clocksource *cs) { return (u64)read_pmtmr(); } static struct clocksource clocksource_acpi_pm = { .name = "acpi_pm", .rating = 200, .read = acpi_pm_read, .mask = (u64)ACPI_PM_MASK, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; #ifdef CONFIG_PCI static int acpi_pm_good; static int __init acpi_pm_good_setup(char *__str) { acpi_pm_good = 1; return 1; } __setup("acpi_pm_good", acpi_pm_good_setup); static u64 acpi_pm_read_slow(struct clocksource *cs) { return (u64)acpi_pm_read_verified(); } static inline void acpi_pm_need_workaround(void) { clocksource_acpi_pm.read = acpi_pm_read_slow; clocksource_acpi_pm.rating = 120; } /* * PIIX4 Errata: * * The power management timer may return improper results when read. * Although the timer value settles properly after incrementing, * while incrementing there is a 3 ns window every 69.8 ns where the * timer value is indeterminate (a 4.2% chance that the data will be * incorrect when read). As a result, the ACPI free running count up * timer specification is violated due to erroneous reads. */ static void acpi_pm_check_blacklist(struct pci_dev *dev) { if (acpi_pm_good) return; /* the bug has been fixed in PIIX4M */ if (dev->revision < 3) { pr_warn("* Found PM-Timer Bug on the chipset. Due to workarounds for a bug,\n" "* this clock source is slow. Consider trying other clock sources\n"); acpi_pm_need_workaround(); } } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82371AB_3, acpi_pm_check_blacklist); static void acpi_pm_check_graylist(struct pci_dev *dev) { if (acpi_pm_good) return; pr_warn("* The chipset may have PM-Timer Bug. Due to workarounds for a bug,\n" "* this clock source is slow. If you are sure your timer does not have\n" "* this bug, please use \"acpi_pm_good\" to disable the workaround\n"); acpi_pm_need_workaround(); } DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82801DB_0, acpi_pm_check_graylist); DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_SERVERWORKS, PCI_DEVICE_ID_SERVERWORKS_LE, acpi_pm_check_graylist); #endif #ifndef CONFIG_X86_64 #include <asm/mach_timer.h> #define PMTMR_EXPECTED_RATE \ ((CALIBRATE_LATCH * (PMTMR_TICKS_PER_SEC >> 10)) / (PIT_TICK_RATE>>10)) /* * Some boards have the PMTMR running way too fast. We check * the PMTMR rate against PIT channel 2 to catch these cases. */ static int verify_pmtmr_rate(void) { u64 value1, value2; unsigned long count, delta; mach_prepare_counter(); value1 = clocksource_acpi_pm.read(&clocksource_acpi_pm); mach_countup(&count); value2 = clocksource_acpi_pm.read(&clocksource_acpi_pm); delta = (value2 - value1) & ACPI_PM_MASK; /* Check that the PMTMR delta is within 5% of what we expect */ if (delta < (PMTMR_EXPECTED_RATE * 19) / 20 || delta > (PMTMR_EXPECTED_RATE * 21) / 20) { pr_info("PM-Timer running at invalid rate: %lu%% of normal - aborting.\n", 100UL * delta / PMTMR_EXPECTED_RATE); return -1; } return 0; } #else #define verify_pmtmr_rate() (0) #endif /* Number of monotonicity checks to perform during initialization */ #define ACPI_PM_MONOTONICITY_CHECKS 10 /* Number of reads we try to get two different values */ #define ACPI_PM_READ_CHECKS 10000 static int __init init_acpi_pm_clocksource(void) { u64 value1, value2; unsigned int i, j = 0; if (!pmtmr_ioport) return -ENODEV; /* "verify" this timing source: */ for (j = 0; j < ACPI_PM_MONOTONICITY_CHECKS; j++) { udelay(100 * j); value1 = clocksource_acpi_pm.read(&clocksource_acpi_pm); for (i = 0; i < ACPI_PM_READ_CHECKS; i++) { value2 = clocksource_acpi_pm.read(&clocksource_acpi_pm); if (value2 == value1) continue; if (value2 > value1) break; if ((value2 < value1) && ((value2) < 0xFFF)) break; pr_info("PM-Timer had inconsistent results: %#llx, %#llx - aborting.\n", value1, value2); pmtmr_ioport = 0; return -EINVAL; } if (i == ACPI_PM_READ_CHECKS) { pr_info("PM-Timer failed consistency check (%#llx) - aborting.\n", value1); pmtmr_ioport = 0; return -ENODEV; } } if (verify_pmtmr_rate() != 0){ pmtmr_ioport = 0; return -ENODEV; } if (tsc_clocksource_watchdog_disabled()) clocksource_acpi_pm.flags |= CLOCK_SOURCE_MUST_VERIFY; return clocksource_register_hz(&clocksource_acpi_pm, PMTMR_TICKS_PER_SEC); } /* We use fs_initcall because we want the PCI fixups to have run * but we still need to load before device_initcall */ fs_initcall(init_acpi_pm_clocksource); /* * Allow an override of the IOPort. Stupid BIOSes do not tell us about * the PMTimer, but we might know where it is. */ static int __init parse_pmtmr(char *arg) { unsigned int base; int ret; ret = kstrtouint(arg, 16, &base); if (ret) { pr_warn("PMTMR: invalid 'pmtmr=' value: '%s'\n", arg); return 1; } pr_info("PMTMR IOPort override: 0x%04x -> 0x%04x\n", pmtmr_ioport, base); pmtmr_ioport = base; return 1; } __setup("pmtmr=", parse_pmtmr);
linux-master
drivers/clocksource/acpi_pm.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2012-2013 Freescale Semiconductor, Inc. */ #include <linux/interrupt.h> #include <linux/clockchips.h> #include <linux/clk.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> /* * Each pit takes 0x10 Bytes register space */ #define PITMCR 0x00 #define PIT0_OFFSET 0x100 #define PITn_OFFSET(n) (PIT0_OFFSET + 0x10 * (n)) #define PITLDVAL 0x00 #define PITCVAL 0x04 #define PITTCTRL 0x08 #define PITTFLG 0x0c #define PITMCR_MDIS (0x1 << 1) #define PITTCTRL_TEN (0x1 << 0) #define PITTCTRL_TIE (0x1 << 1) #define PITCTRL_CHN (0x1 << 2) #define PITTFLG_TIF 0x1 static void __iomem *clksrc_base; static void __iomem *clkevt_base; static unsigned long cycle_per_jiffy; static inline void pit_timer_enable(void) { __raw_writel(PITTCTRL_TEN | PITTCTRL_TIE, clkevt_base + PITTCTRL); } static inline void pit_timer_disable(void) { __raw_writel(0, clkevt_base + PITTCTRL); } static inline void pit_irq_acknowledge(void) { __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG); } static u64 notrace pit_read_sched_clock(void) { return ~__raw_readl(clksrc_base + PITCVAL); } static int __init pit_clocksource_init(unsigned long rate) { /* set the max load value and start the clock source counter */ __raw_writel(0, clksrc_base + PITTCTRL); __raw_writel(~0UL, clksrc_base + PITLDVAL); __raw_writel(PITTCTRL_TEN, clksrc_base + PITTCTRL); sched_clock_register(pit_read_sched_clock, 32, rate); return clocksource_mmio_init(clksrc_base + PITCVAL, "vf-pit", rate, 300, 32, clocksource_mmio_readl_down); } static int pit_set_next_event(unsigned long delta, struct clock_event_device *unused) { /* * set a new value to PITLDVAL register will not restart the timer, * to abort the current cycle and start a timer period with the new * value, the timer must be disabled and enabled again. * and the PITLAVAL should be set to delta minus one according to pit * hardware requirement. */ pit_timer_disable(); __raw_writel(delta - 1, clkevt_base + PITLDVAL); pit_timer_enable(); return 0; } static int pit_shutdown(struct clock_event_device *evt) { pit_timer_disable(); return 0; } static int pit_set_periodic(struct clock_event_device *evt) { pit_set_next_event(cycle_per_jiffy, evt); return 0; } static irqreturn_t pit_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; pit_irq_acknowledge(); /* * pit hardware doesn't support oneshot, it will generate an interrupt * and reload the counter value from PITLDVAL when PITCVAL reach zero, * and start the counter again. So software need to disable the timer * to stop the counter loop in ONESHOT mode. */ if (likely(clockevent_state_oneshot(evt))) pit_timer_disable(); evt->event_handler(evt); return IRQ_HANDLED; } static struct clock_event_device clockevent_pit = { .name = "VF pit timer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = pit_shutdown, .set_state_periodic = pit_set_periodic, .set_next_event = pit_set_next_event, .rating = 300, }; static int __init pit_clockevent_init(unsigned long rate, int irq) { __raw_writel(0, clkevt_base + PITTCTRL); __raw_writel(PITTFLG_TIF, clkevt_base + PITTFLG); BUG_ON(request_irq(irq, pit_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "VF pit timer", &clockevent_pit)); clockevent_pit.cpumask = cpumask_of(0); clockevent_pit.irq = irq; /* * The value for the LDVAL register trigger is calculated as: * LDVAL trigger = (period / clock period) - 1 * The pit is a 32-bit down count timer, when the counter value * reaches 0, it will generate an interrupt, thus the minimal * LDVAL trigger value is 1. And then the min_delta is * minimal LDVAL trigger value + 1, and the max_delta is full 32-bit. */ clockevents_config_and_register(&clockevent_pit, rate, 2, 0xffffffff); return 0; } static int __init pit_timer_init(struct device_node *np) { struct clk *pit_clk; void __iomem *timer_base; unsigned long clk_rate; int irq, ret; timer_base = of_iomap(np, 0); if (!timer_base) { pr_err("Failed to iomap\n"); return -ENXIO; } /* * PIT0 and PIT1 can be chained to build a 64-bit timer, * so choose PIT2 as clocksource, PIT3 as clockevent device, * and leave PIT0 and PIT1 unused for anyone else who needs them. */ clksrc_base = timer_base + PITn_OFFSET(2); clkevt_base = timer_base + PITn_OFFSET(3); irq = irq_of_parse_and_map(np, 0); if (irq <= 0) return -EINVAL; pit_clk = of_clk_get(np, 0); if (IS_ERR(pit_clk)) return PTR_ERR(pit_clk); ret = clk_prepare_enable(pit_clk); if (ret) return ret; clk_rate = clk_get_rate(pit_clk); cycle_per_jiffy = clk_rate / (HZ); /* enable the pit module */ __raw_writel(~PITMCR_MDIS, timer_base + PITMCR); ret = pit_clocksource_init(clk_rate); if (ret) return ret; return pit_clockevent_init(clk_rate, irq); } TIMER_OF_DECLARE(vf610, "fsl,vf610-pit", pit_timer_init);
linux-master
drivers/clocksource/timer-vf-pit.c
// SPDX-License-Identifier: GPL-2.0-only /* * Generic MMIO clocksource support */ #include <linux/clocksource.h> #include <linux/errno.h> #include <linux/init.h> #include <linux/slab.h> struct clocksource_mmio { void __iomem *reg; struct clocksource clksrc; }; static inline struct clocksource_mmio *to_mmio_clksrc(struct clocksource *c) { return container_of(c, struct clocksource_mmio, clksrc); } u64 clocksource_mmio_readl_up(struct clocksource *c) { return (u64)readl_relaxed(to_mmio_clksrc(c)->reg); } u64 clocksource_mmio_readl_down(struct clocksource *c) { return ~(u64)readl_relaxed(to_mmio_clksrc(c)->reg) & c->mask; } u64 clocksource_mmio_readw_up(struct clocksource *c) { return (u64)readw_relaxed(to_mmio_clksrc(c)->reg); } u64 clocksource_mmio_readw_down(struct clocksource *c) { return ~(u64)readw_relaxed(to_mmio_clksrc(c)->reg) & c->mask; } /** * clocksource_mmio_init - Initialize a simple mmio based clocksource * @base: Virtual address of the clock readout register * @name: Name of the clocksource * @hz: Frequency of the clocksource in Hz * @rating: Rating of the clocksource * @bits: Number of valid bits * @read: One of clocksource_mmio_read*() above */ int __init clocksource_mmio_init(void __iomem *base, const char *name, unsigned long hz, int rating, unsigned bits, u64 (*read)(struct clocksource *)) { struct clocksource_mmio *cs; if (bits > 64 || bits < 16) return -EINVAL; cs = kzalloc(sizeof(struct clocksource_mmio), GFP_KERNEL); if (!cs) return -ENOMEM; cs->reg = base; cs->clksrc.name = name; cs->clksrc.rating = rating; cs->clksrc.read = read; cs->clksrc.mask = CLOCKSOURCE_MASK(bits); cs->clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS; return clocksource_register_hz(&cs->clksrc, hz); }
linux-master
drivers/clocksource/mmio.c
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/clocksource/arm_arch_timer.c * * Copyright (C) 2011 ARM Ltd. * All Rights Reserved */ #define pr_fmt(fmt) "arch_timer: " fmt #include <linux/init.h> #include <linux/kernel.h> #include <linux/device.h> #include <linux/smp.h> #include <linux/cpu.h> #include <linux/cpu_pm.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/clocksource_ids.h> #include <linux/interrupt.h> #include <linux/kstrtox.h> #include <linux/of_irq.h> #include <linux/of_address.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/sched/clock.h> #include <linux/sched_clock.h> #include <linux/acpi.h> #include <linux/arm-smccc.h> #include <linux/ptp_kvm.h> #include <asm/arch_timer.h> #include <asm/virt.h> #include <clocksource/arm_arch_timer.h> #define CNTTIDR 0x08 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4)) #define CNTACR(n) (0x40 + ((n) * 4)) #define CNTACR_RPCT BIT(0) #define CNTACR_RVCT BIT(1) #define CNTACR_RFRQ BIT(2) #define CNTACR_RVOFF BIT(3) #define CNTACR_RWVT BIT(4) #define CNTACR_RWPT BIT(5) #define CNTPCT_LO 0x00 #define CNTVCT_LO 0x08 #define CNTFRQ 0x10 #define CNTP_CVAL_LO 0x20 #define CNTP_CTL 0x2c #define CNTV_CVAL_LO 0x30 #define CNTV_CTL 0x3c /* * The minimum amount of time a generic counter is guaranteed to not roll over * (40 years) */ #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600) static unsigned arch_timers_present __initdata; struct arch_timer { void __iomem *base; struct clock_event_device evt; }; static struct arch_timer *arch_timer_mem __ro_after_init; #define to_arch_timer(e) container_of(e, struct arch_timer, evt) static u32 arch_timer_rate __ro_after_init; static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init; static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = { [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys", [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys", [ARCH_TIMER_VIRT_PPI] = "virt", [ARCH_TIMER_HYP_PPI] = "hyp-phys", [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt", }; static struct clock_event_device __percpu *arch_timer_evt; static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI; static bool arch_timer_c3stop __ro_after_init; static bool arch_timer_mem_use_virtual __ro_after_init; static bool arch_counter_suspend_stop __ro_after_init; #ifdef CONFIG_GENERIC_GETTIMEOFDAY static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER; #else static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE; #endif /* CONFIG_GENERIC_GETTIMEOFDAY */ static cpumask_t evtstrm_available = CPU_MASK_NONE; static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM); static int __init early_evtstrm_cfg(char *buf) { return kstrtobool(buf, &evtstrm_enable); } early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg); /* * Makes an educated guess at a valid counter width based on the Generic Timer * specification. Of note: * 1) the system counter is at least 56 bits wide * 2) a roll-over time of not less than 40 years * * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details. */ static int arch_counter_get_width(void) { u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate; /* guarantee the returned width is within the valid range */ return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64); } /* * Architected system timer support. */ static __always_inline void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val, struct clock_event_device *clk) { if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: writel_relaxed((u32)val, timer->base + CNTP_CTL); break; case ARCH_TIMER_REG_CVAL: /* * Not guaranteed to be atomic, so the timer * must be disabled at this point. */ writeq_relaxed(val, timer->base + CNTP_CVAL_LO); break; default: BUILD_BUG(); } } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: writel_relaxed((u32)val, timer->base + CNTV_CTL); break; case ARCH_TIMER_REG_CVAL: /* Same restriction as above */ writeq_relaxed(val, timer->base + CNTV_CVAL_LO); break; default: BUILD_BUG(); } } else { arch_timer_reg_write_cp15(access, reg, val); } } static __always_inline u32 arch_timer_reg_read(int access, enum arch_timer_reg reg, struct clock_event_device *clk) { u32 val; if (access == ARCH_TIMER_MEM_PHYS_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: val = readl_relaxed(timer->base + CNTP_CTL); break; default: BUILD_BUG(); } } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) { struct arch_timer *timer = to_arch_timer(clk); switch (reg) { case ARCH_TIMER_REG_CTRL: val = readl_relaxed(timer->base + CNTV_CTL); break; default: BUILD_BUG(); } } else { val = arch_timer_reg_read_cp15(access, reg); } return val; } static noinstr u64 raw_counter_get_cntpct_stable(void) { return __arch_counter_get_cntpct_stable(); } static notrace u64 arch_counter_get_cntpct_stable(void) { u64 val; preempt_disable_notrace(); val = __arch_counter_get_cntpct_stable(); preempt_enable_notrace(); return val; } static noinstr u64 arch_counter_get_cntpct(void) { return __arch_counter_get_cntpct(); } static noinstr u64 raw_counter_get_cntvct_stable(void) { return __arch_counter_get_cntvct_stable(); } static notrace u64 arch_counter_get_cntvct_stable(void) { u64 val; preempt_disable_notrace(); val = __arch_counter_get_cntvct_stable(); preempt_enable_notrace(); return val; } static noinstr u64 arch_counter_get_cntvct(void) { return __arch_counter_get_cntvct(); } /* * Default to cp15 based access because arm64 uses this function for * sched_clock() before DT is probed and the cp15 method is guaranteed * to exist on arm64. arm doesn't use this before DT is probed so even * if we don't have the cp15 accessors we won't have a problem. */ u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct; EXPORT_SYMBOL_GPL(arch_timer_read_counter); static u64 arch_counter_read(struct clocksource *cs) { return arch_timer_read_counter(); } static u64 arch_counter_read_cc(const struct cyclecounter *cc) { return arch_timer_read_counter(); } static struct clocksource clocksource_counter = { .name = "arch_sys_counter", .id = CSID_ARM_ARCH_COUNTER, .rating = 400, .read = arch_counter_read, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static struct cyclecounter cyclecounter __ro_after_init = { .read = arch_counter_read_cc, }; struct ate_acpi_oem_info { char oem_id[ACPI_OEM_ID_SIZE + 1]; char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1]; u32 oem_revision; }; #ifdef CONFIG_FSL_ERRATUM_A008585 /* * The number of retries is an arbitrary value well beyond the highest number * of iterations the loop has been observed to take. */ #define __fsl_a008585_read_reg(reg) ({ \ u64 _old, _new; \ int _retries = 200; \ \ do { \ _old = read_sysreg(reg); \ _new = read_sysreg(reg); \ _retries--; \ } while (unlikely(_old != _new) && _retries); \ \ WARN_ON_ONCE(!_retries); \ _new; \ }) static u64 notrace fsl_a008585_read_cntpct_el0(void) { return __fsl_a008585_read_reg(cntpct_el0); } static u64 notrace fsl_a008585_read_cntvct_el0(void) { return __fsl_a008585_read_reg(cntvct_el0); } #endif #ifdef CONFIG_HISILICON_ERRATUM_161010101 /* * Verify whether the value of the second read is larger than the first by * less than 32 is the only way to confirm the value is correct, so clear the * lower 5 bits to check whether the difference is greater than 32 or not. * Theoretically the erratum should not occur more than twice in succession * when reading the system counter, but it is possible that some interrupts * may lead to more than twice read errors, triggering the warning, so setting * the number of retries far beyond the number of iterations the loop has been * observed to take. */ #define __hisi_161010101_read_reg(reg) ({ \ u64 _old, _new; \ int _retries = 50; \ \ do { \ _old = read_sysreg(reg); \ _new = read_sysreg(reg); \ _retries--; \ } while (unlikely((_new - _old) >> 5) && _retries); \ \ WARN_ON_ONCE(!_retries); \ _new; \ }) static u64 notrace hisi_161010101_read_cntpct_el0(void) { return __hisi_161010101_read_reg(cntpct_el0); } static u64 notrace hisi_161010101_read_cntvct_el0(void) { return __hisi_161010101_read_reg(cntvct_el0); } static struct ate_acpi_oem_info hisi_161010101_oem_info[] = { /* * Note that trailing spaces are required to properly match * the OEM table information. */ { .oem_id = "HISI ", .oem_table_id = "HIP05 ", .oem_revision = 0, }, { .oem_id = "HISI ", .oem_table_id = "HIP06 ", .oem_revision = 0, }, { .oem_id = "HISI ", .oem_table_id = "HIP07 ", .oem_revision = 0, }, { /* Sentinel indicating the end of the OEM array */ }, }; #endif #ifdef CONFIG_ARM64_ERRATUM_858921 static u64 notrace arm64_858921_read_cntpct_el0(void) { u64 old, new; old = read_sysreg(cntpct_el0); new = read_sysreg(cntpct_el0); return (((old ^ new) >> 32) & 1) ? old : new; } static u64 notrace arm64_858921_read_cntvct_el0(void) { u64 old, new; old = read_sysreg(cntvct_el0); new = read_sysreg(cntvct_el0); return (((old ^ new) >> 32) & 1) ? old : new; } #endif #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 /* * The low bits of the counter registers are indeterminate while bit 10 or * greater is rolling over. Since the counter value can jump both backward * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values * with all ones or all zeros in the low bits. Bound the loop by the maximum * number of CPU cycles in 3 consecutive 24 MHz counter periods. */ #define __sun50i_a64_read_reg(reg) ({ \ u64 _val; \ int _retries = 150; \ \ do { \ _val = read_sysreg(reg); \ _retries--; \ } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \ \ WARN_ON_ONCE(!_retries); \ _val; \ }) static u64 notrace sun50i_a64_read_cntpct_el0(void) { return __sun50i_a64_read_reg(cntpct_el0); } static u64 notrace sun50i_a64_read_cntvct_el0(void) { return __sun50i_a64_read_reg(cntvct_el0); } #endif #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround); EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround); static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0); /* * Force the inlining of this function so that the register accesses * can be themselves correctly inlined. */ static __always_inline void erratum_set_next_event_generic(const int access, unsigned long evt, struct clock_event_device *clk) { unsigned long ctrl; u64 cval; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; if (access == ARCH_TIMER_PHYS_ACCESS) { cval = evt + arch_counter_get_cntpct_stable(); write_sysreg(cval, cntp_cval_el0); } else { cval = evt + arch_counter_get_cntvct_stable(); write_sysreg(cval, cntv_cval_el0); } arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); } static __maybe_unused int erratum_set_next_event_virt(unsigned long evt, struct clock_event_device *clk) { erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk); return 0; } static __maybe_unused int erratum_set_next_event_phys(unsigned long evt, struct clock_event_device *clk) { erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk); return 0; } static const struct arch_timer_erratum_workaround ool_workarounds[] = { #ifdef CONFIG_FSL_ERRATUM_A008585 { .match_type = ate_match_dt, .id = "fsl,erratum-a008585", .desc = "Freescale erratum a005858", .read_cntpct_el0 = fsl_a008585_read_cntpct_el0, .read_cntvct_el0 = fsl_a008585_read_cntvct_el0, .set_next_event_phys = erratum_set_next_event_phys, .set_next_event_virt = erratum_set_next_event_virt, }, #endif #ifdef CONFIG_HISILICON_ERRATUM_161010101 { .match_type = ate_match_dt, .id = "hisilicon,erratum-161010101", .desc = "HiSilicon erratum 161010101", .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, .set_next_event_phys = erratum_set_next_event_phys, .set_next_event_virt = erratum_set_next_event_virt, }, { .match_type = ate_match_acpi_oem_info, .id = hisi_161010101_oem_info, .desc = "HiSilicon erratum 161010101", .read_cntpct_el0 = hisi_161010101_read_cntpct_el0, .read_cntvct_el0 = hisi_161010101_read_cntvct_el0, .set_next_event_phys = erratum_set_next_event_phys, .set_next_event_virt = erratum_set_next_event_virt, }, #endif #ifdef CONFIG_ARM64_ERRATUM_858921 { .match_type = ate_match_local_cap_id, .id = (void *)ARM64_WORKAROUND_858921, .desc = "ARM erratum 858921", .read_cntpct_el0 = arm64_858921_read_cntpct_el0, .read_cntvct_el0 = arm64_858921_read_cntvct_el0, .set_next_event_phys = erratum_set_next_event_phys, .set_next_event_virt = erratum_set_next_event_virt, }, #endif #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1 { .match_type = ate_match_dt, .id = "allwinner,erratum-unknown1", .desc = "Allwinner erratum UNKNOWN1", .read_cntpct_el0 = sun50i_a64_read_cntpct_el0, .read_cntvct_el0 = sun50i_a64_read_cntvct_el0, .set_next_event_phys = erratum_set_next_event_phys, .set_next_event_virt = erratum_set_next_event_virt, }, #endif #ifdef CONFIG_ARM64_ERRATUM_1418040 { .match_type = ate_match_local_cap_id, .id = (void *)ARM64_WORKAROUND_1418040, .desc = "ARM erratum 1418040", .disable_compat_vdso = true, }, #endif }; typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *, const void *); static bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa, const void *arg) { const struct device_node *np = arg; return of_property_read_bool(np, wa->id); } static bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa, const void *arg) { return this_cpu_has_cap((uintptr_t)wa->id); } static bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa, const void *arg) { static const struct ate_acpi_oem_info empty_oem_info = {}; const struct ate_acpi_oem_info *info = wa->id; const struct acpi_table_header *table = arg; /* Iterate over the ACPI OEM info array, looking for a match */ while (memcmp(info, &empty_oem_info, sizeof(*info))) { if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) && !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) && info->oem_revision == table->oem_revision) return true; info++; } return false; } static const struct arch_timer_erratum_workaround * arch_timer_iterate_errata(enum arch_timer_erratum_match_type type, ate_match_fn_t match_fn, void *arg) { int i; for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) { if (ool_workarounds[i].match_type != type) continue; if (match_fn(&ool_workarounds[i], arg)) return &ool_workarounds[i]; } return NULL; } static void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa, bool local) { int i; if (local) { __this_cpu_write(timer_unstable_counter_workaround, wa); } else { for_each_possible_cpu(i) per_cpu(timer_unstable_counter_workaround, i) = wa; } if (wa->read_cntvct_el0 || wa->read_cntpct_el0) atomic_set(&timer_unstable_counter_workaround_in_use, 1); /* * Don't use the vdso fastpath if errata require using the * out-of-line counter accessor. We may change our mind pretty * late in the game (with a per-CPU erratum, for example), so * change both the default value and the vdso itself. */ if (wa->read_cntvct_el0) { clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE; vdso_default = VDSO_CLOCKMODE_NONE; } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) { vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT; clocksource_counter.vdso_clock_mode = vdso_default; } } static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type, void *arg) { const struct arch_timer_erratum_workaround *wa, *__wa; ate_match_fn_t match_fn = NULL; bool local = false; switch (type) { case ate_match_dt: match_fn = arch_timer_check_dt_erratum; break; case ate_match_local_cap_id: match_fn = arch_timer_check_local_cap_erratum; local = true; break; case ate_match_acpi_oem_info: match_fn = arch_timer_check_acpi_oem_erratum; break; default: WARN_ON(1); return; } wa = arch_timer_iterate_errata(type, match_fn, arg); if (!wa) return; __wa = __this_cpu_read(timer_unstable_counter_workaround); if (__wa && wa != __wa) pr_warn("Can't enable workaround for %s (clashes with %s\n)", wa->desc, __wa->desc); if (__wa) return; arch_timer_enable_workaround(wa, local); pr_info("Enabling %s workaround for %s\n", local ? "local" : "global", wa->desc); } static bool arch_timer_this_cpu_has_cntvct_wa(void) { return has_erratum_handler(read_cntvct_el0); } static bool arch_timer_counter_has_wa(void) { return atomic_read(&timer_unstable_counter_workaround_in_use); } #else #define arch_timer_check_ool_workaround(t,a) do { } while(0) #define arch_timer_this_cpu_has_cntvct_wa() ({false;}) #define arch_timer_counter_has_wa() ({false;}) #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */ static __always_inline irqreturn_t timer_handler(const int access, struct clock_event_device *evt) { unsigned long ctrl; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt); if (ctrl & ARCH_TIMER_CTRL_IT_STAT) { ctrl |= ARCH_TIMER_CTRL_IT_MASK; arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt); evt->event_handler(evt); return IRQ_HANDLED; } return IRQ_NONE; } static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt); } static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt); } static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt); } static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt); } static __always_inline int arch_timer_shutdown(const int access, struct clock_event_device *clk) { unsigned long ctrl; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl &= ~ARCH_TIMER_CTRL_ENABLE; arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); return 0; } static int arch_timer_shutdown_virt(struct clock_event_device *clk) { return arch_timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk); } static int arch_timer_shutdown_phys(struct clock_event_device *clk) { return arch_timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk); } static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk) { return arch_timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk); } static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk) { return arch_timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk); } static __always_inline void set_next_event(const int access, unsigned long evt, struct clock_event_device *clk) { unsigned long ctrl; u64 cnt; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; if (access == ARCH_TIMER_PHYS_ACCESS) cnt = __arch_counter_get_cntpct(); else cnt = __arch_counter_get_cntvct(); arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); } static int arch_timer_set_next_event_virt(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_phys(unsigned long evt, struct clock_event_device *clk) { set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk); return 0; } static noinstr u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo) { u32 cnt_lo, cnt_hi, tmp_hi; do { cnt_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4)); cnt_lo = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo)); tmp_hi = __le32_to_cpu((__le32 __force)__raw_readl(t->base + offset_lo + 4)); } while (cnt_hi != tmp_hi); return ((u64) cnt_hi << 32) | cnt_lo; } static __always_inline void set_next_event_mem(const int access, unsigned long evt, struct clock_event_device *clk) { struct arch_timer *timer = to_arch_timer(clk); unsigned long ctrl; u64 cnt; ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk); /* Timer must be disabled before programming CVAL */ if (ctrl & ARCH_TIMER_CTRL_ENABLE) { ctrl &= ~ARCH_TIMER_CTRL_ENABLE; arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); } ctrl |= ARCH_TIMER_CTRL_ENABLE; ctrl &= ~ARCH_TIMER_CTRL_IT_MASK; if (access == ARCH_TIMER_MEM_VIRT_ACCESS) cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO); else cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO); arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk); arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk); } static int arch_timer_set_next_event_virt_mem(unsigned long evt, struct clock_event_device *clk) { set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk); return 0; } static int arch_timer_set_next_event_phys_mem(unsigned long evt, struct clock_event_device *clk) { set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk); return 0; } static u64 __arch_timer_check_delta(void) { #ifdef CONFIG_ARM64 const struct midr_range broken_cval_midrs[] = { /* * XGene-1 implements CVAL in terms of TVAL, meaning * that the maximum timer range is 32bit. Shame on them. * * Note that TVAL is signed, thus has only 31 of its * 32 bits to express magnitude. */ MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM, APM_CPU_PART_POTENZA)), {}, }; if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) { pr_warn_once("Broken CNTx_CVAL_EL1, using 31 bit TVAL instead.\n"); return CLOCKSOURCE_MASK(31); } #endif return CLOCKSOURCE_MASK(arch_counter_get_width()); } static void __arch_timer_setup(unsigned type, struct clock_event_device *clk) { u64 max_delta; clk->features = CLOCK_EVT_FEAT_ONESHOT; if (type == ARCH_TIMER_TYPE_CP15) { typeof(clk->set_next_event) sne; arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL); if (arch_timer_c3stop) clk->features |= CLOCK_EVT_FEAT_C3STOP; clk->name = "arch_sys_timer"; clk->rating = 450; clk->cpumask = cpumask_of(smp_processor_id()); clk->irq = arch_timer_ppi[arch_timer_uses_ppi]; switch (arch_timer_uses_ppi) { case ARCH_TIMER_VIRT_PPI: clk->set_state_shutdown = arch_timer_shutdown_virt; clk->set_state_oneshot_stopped = arch_timer_shutdown_virt; sne = erratum_handler(set_next_event_virt); break; case ARCH_TIMER_PHYS_SECURE_PPI: case ARCH_TIMER_PHYS_NONSECURE_PPI: case ARCH_TIMER_HYP_PPI: clk->set_state_shutdown = arch_timer_shutdown_phys; clk->set_state_oneshot_stopped = arch_timer_shutdown_phys; sne = erratum_handler(set_next_event_phys); break; default: BUG(); } clk->set_next_event = sne; max_delta = __arch_timer_check_delta(); } else { clk->features |= CLOCK_EVT_FEAT_DYNIRQ; clk->name = "arch_mem_timer"; clk->rating = 400; clk->cpumask = cpu_possible_mask; if (arch_timer_mem_use_virtual) { clk->set_state_shutdown = arch_timer_shutdown_virt_mem; clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem; clk->set_next_event = arch_timer_set_next_event_virt_mem; } else { clk->set_state_shutdown = arch_timer_shutdown_phys_mem; clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem; clk->set_next_event = arch_timer_set_next_event_phys_mem; } max_delta = CLOCKSOURCE_MASK(56); } clk->set_state_shutdown(clk); clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta); } static void arch_timer_evtstrm_enable(unsigned int divider) { u32 cntkctl = arch_timer_get_cntkctl(); #ifdef CONFIG_ARM64 /* ECV is likely to require a large divider. Use the EVNTIS flag. */ if (cpus_have_const_cap(ARM64_HAS_ECV) && divider > 15) { cntkctl |= ARCH_TIMER_EVT_INTERVAL_SCALE; divider -= 8; } #endif divider = min(divider, 15U); cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK; /* Set the divider and enable virtual event stream */ cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT) | ARCH_TIMER_VIRT_EVT_EN; arch_timer_set_cntkctl(cntkctl); arch_timer_set_evtstrm_feature(); cpumask_set_cpu(smp_processor_id(), &evtstrm_available); } static void arch_timer_configure_evtstream(void) { int evt_stream_div, lsb; /* * As the event stream can at most be generated at half the frequency * of the counter, use half the frequency when computing the divider. */ evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2; /* * Find the closest power of two to the divisor. If the adjacent bit * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1). */ lsb = fls(evt_stream_div) - 1; if (lsb > 0 && (evt_stream_div & BIT(lsb - 1))) lsb++; /* enable event stream */ arch_timer_evtstrm_enable(max(0, lsb)); } static void arch_counter_set_user_access(void) { u32 cntkctl = arch_timer_get_cntkctl(); /* Disable user access to the timers and both counters */ /* Also disable virtual event stream */ cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN | ARCH_TIMER_USR_VT_ACCESS_EN | ARCH_TIMER_USR_VCT_ACCESS_EN | ARCH_TIMER_VIRT_EVT_EN | ARCH_TIMER_USR_PCT_ACCESS_EN); /* * Enable user access to the virtual counter if it doesn't * need to be workaround. The vdso may have been already * disabled though. */ if (arch_timer_this_cpu_has_cntvct_wa()) pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id()); else cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN; arch_timer_set_cntkctl(cntkctl); } static bool arch_timer_has_nonsecure_ppi(void) { return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI && arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); } static u32 check_ppi_trigger(int irq) { u32 flags = irq_get_trigger_type(irq); if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) { pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq); pr_warn("WARNING: Please fix your firmware\n"); flags = IRQF_TRIGGER_LOW; } return flags; } static int arch_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); u32 flags; __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk); flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]); enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags); if (arch_timer_has_nonsecure_ppi()) { flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], flags); } arch_counter_set_user_access(); if (evtstrm_enable) arch_timer_configure_evtstream(); return 0; } static int validate_timer_rate(void) { if (!arch_timer_rate) return -EINVAL; /* Arch timer frequency < 1MHz can cause trouble */ WARN_ON(arch_timer_rate < 1000000); return 0; } /* * For historical reasons, when probing with DT we use whichever (non-zero) * rate was probed first, and don't verify that others match. If the first node * probed has a clock-frequency property, this overrides the HW register. */ static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np) { /* Who has more than one independent system counter? */ if (arch_timer_rate) return; if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) arch_timer_rate = rate; /* Check the timer frequency. */ if (validate_timer_rate()) pr_warn("frequency not available\n"); } static void __init arch_timer_banner(unsigned type) { pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n", type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "", type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? " and " : "", type & ARCH_TIMER_TYPE_MEM ? "mmio" : "", (unsigned long)arch_timer_rate / 1000000, (unsigned long)(arch_timer_rate / 10000) % 100, type & ARCH_TIMER_TYPE_CP15 ? (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" : "", type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "", type & ARCH_TIMER_TYPE_MEM ? arch_timer_mem_use_virtual ? "virt" : "phys" : ""); } u32 arch_timer_get_rate(void) { return arch_timer_rate; } bool arch_timer_evtstrm_available(void) { /* * We might get called from a preemptible context. This is fine * because availability of the event stream should be always the same * for a preemptible context and context where we might resume a task. */ return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available); } static noinstr u64 arch_counter_get_cntvct_mem(void) { return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO); } static struct arch_timer_kvm_info arch_timer_kvm_info; struct arch_timer_kvm_info *arch_timer_get_kvm_info(void) { return &arch_timer_kvm_info; } static void __init arch_counter_register(unsigned type) { u64 (*scr)(void); u64 start_count; int width; /* Register the CP15 based counter if we have one */ if (type & ARCH_TIMER_TYPE_CP15) { u64 (*rd)(void); if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) || arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) { if (arch_timer_counter_has_wa()) { rd = arch_counter_get_cntvct_stable; scr = raw_counter_get_cntvct_stable; } else { rd = arch_counter_get_cntvct; scr = arch_counter_get_cntvct; } } else { if (arch_timer_counter_has_wa()) { rd = arch_counter_get_cntpct_stable; scr = raw_counter_get_cntpct_stable; } else { rd = arch_counter_get_cntpct; scr = arch_counter_get_cntpct; } } arch_timer_read_counter = rd; clocksource_counter.vdso_clock_mode = vdso_default; } else { arch_timer_read_counter = arch_counter_get_cntvct_mem; scr = arch_counter_get_cntvct_mem; } width = arch_counter_get_width(); clocksource_counter.mask = CLOCKSOURCE_MASK(width); cyclecounter.mask = CLOCKSOURCE_MASK(width); if (!arch_counter_suspend_stop) clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; start_count = arch_timer_read_counter(); clocksource_register_hz(&clocksource_counter, arch_timer_rate); cyclecounter.mult = clocksource_counter.mult; cyclecounter.shift = clocksource_counter.shift; timecounter_init(&arch_timer_kvm_info.timecounter, &cyclecounter, start_count); sched_clock_register(scr, width, arch_timer_rate); } static void arch_timer_stop(struct clock_event_device *clk) { pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id()); disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]); if (arch_timer_has_nonsecure_ppi()) disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]); clk->set_state_shutdown(clk); } static int arch_timer_dying_cpu(unsigned int cpu) { struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt); cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); arch_timer_stop(clk); return 0; } #ifdef CONFIG_CPU_PM static DEFINE_PER_CPU(unsigned long, saved_cntkctl); static int arch_timer_cpu_pm_notify(struct notifier_block *self, unsigned long action, void *hcpu) { if (action == CPU_PM_ENTER) { __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl()); cpumask_clear_cpu(smp_processor_id(), &evtstrm_available); } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) { arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl)); if (arch_timer_have_evtstrm_feature()) cpumask_set_cpu(smp_processor_id(), &evtstrm_available); } return NOTIFY_OK; } static struct notifier_block arch_timer_cpu_pm_notifier = { .notifier_call = arch_timer_cpu_pm_notify, }; static int __init arch_timer_cpu_pm_init(void) { return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier); } static void __init arch_timer_cpu_pm_deinit(void) { WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier)); } #else static int __init arch_timer_cpu_pm_init(void) { return 0; } static void __init arch_timer_cpu_pm_deinit(void) { } #endif static int __init arch_timer_register(void) { int err; int ppi; arch_timer_evt = alloc_percpu(struct clock_event_device); if (!arch_timer_evt) { err = -ENOMEM; goto out; } ppi = arch_timer_ppi[arch_timer_uses_ppi]; switch (arch_timer_uses_ppi) { case ARCH_TIMER_VIRT_PPI: err = request_percpu_irq(ppi, arch_timer_handler_virt, "arch_timer", arch_timer_evt); break; case ARCH_TIMER_PHYS_SECURE_PPI: case ARCH_TIMER_PHYS_NONSECURE_PPI: err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); if (!err && arch_timer_has_nonsecure_ppi()) { ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); if (err) free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI], arch_timer_evt); } break; case ARCH_TIMER_HYP_PPI: err = request_percpu_irq(ppi, arch_timer_handler_phys, "arch_timer", arch_timer_evt); break; default: BUG(); } if (err) { pr_err("can't register interrupt %d (%d)\n", ppi, err); goto out_free; } err = arch_timer_cpu_pm_init(); if (err) goto out_unreg_notify; /* Register and immediately configure the timer on the boot CPU */ err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING, "clockevents/arm/arch_timer:starting", arch_timer_starting_cpu, arch_timer_dying_cpu); if (err) goto out_unreg_cpupm; return 0; out_unreg_cpupm: arch_timer_cpu_pm_deinit(); out_unreg_notify: free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt); if (arch_timer_has_nonsecure_ppi()) free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI], arch_timer_evt); out_free: free_percpu(arch_timer_evt); out: return err; } static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq) { int ret; irq_handler_t func; arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL); if (!arch_timer_mem) return -ENOMEM; arch_timer_mem->base = base; arch_timer_mem->evt.irq = irq; __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt); if (arch_timer_mem_use_virtual) func = arch_timer_handler_virt_mem; else func = arch_timer_handler_phys_mem; ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt); if (ret) { pr_err("Failed to request mem timer irq\n"); kfree(arch_timer_mem); arch_timer_mem = NULL; } return ret; } static const struct of_device_id arch_timer_of_match[] __initconst = { { .compatible = "arm,armv7-timer", }, { .compatible = "arm,armv8-timer", }, {}, }; static const struct of_device_id arch_timer_mem_of_match[] __initconst = { { .compatible = "arm,armv7-timer-mem", }, {}, }; static bool __init arch_timer_needs_of_probing(void) { struct device_node *dn; bool needs_probing = false; unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM; /* We have two timers, and both device-tree nodes are probed. */ if ((arch_timers_present & mask) == mask) return false; /* * Only one type of timer is probed, * check if we have another type of timer node in device-tree. */ if (arch_timers_present & ARCH_TIMER_TYPE_CP15) dn = of_find_matching_node(NULL, arch_timer_mem_of_match); else dn = of_find_matching_node(NULL, arch_timer_of_match); if (dn && of_device_is_available(dn)) needs_probing = true; of_node_put(dn); return needs_probing; } static int __init arch_timer_common_init(void) { arch_timer_banner(arch_timers_present); arch_counter_register(arch_timers_present); return arch_timer_arch_init(); } /** * arch_timer_select_ppi() - Select suitable PPI for the current system. * * If HYP mode is available, we know that the physical timer * has been configured to be accessible from PL1. Use it, so * that a guest can use the virtual timer instead. * * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE * accesses to CNTP_*_EL1 registers are silently redirected to * their CNTHP_*_EL2 counterparts, and use a different PPI * number. * * If no interrupt provided for virtual timer, we'll have to * stick to the physical timer. It'd better be accessible... * For arm64 we never use the secure interrupt. * * Return: a suitable PPI type for the current system. */ static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void) { if (is_kernel_in_hyp_mode()) return ARCH_TIMER_HYP_PPI; if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI]) return ARCH_TIMER_VIRT_PPI; if (IS_ENABLED(CONFIG_ARM64)) return ARCH_TIMER_PHYS_NONSECURE_PPI; return ARCH_TIMER_PHYS_SECURE_PPI; } static void __init arch_timer_populate_kvm_info(void) { arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI]; if (is_kernel_in_hyp_mode()) arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]; } static int __init arch_timer_of_init(struct device_node *np) { int i, irq, ret; u32 rate; bool has_names; if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { pr_warn("multiple nodes in dt, skipping\n"); return 0; } arch_timers_present |= ARCH_TIMER_TYPE_CP15; has_names = of_property_read_bool(np, "interrupt-names"); for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) { if (has_names) irq = of_irq_get_byname(np, arch_timer_ppi_names[i]); else irq = of_irq_get(np, i); if (irq > 0) arch_timer_ppi[i] = irq; } arch_timer_populate_kvm_info(); rate = arch_timer_get_cntfrq(); arch_timer_of_configure_rate(rate, np); arch_timer_c3stop = !of_property_read_bool(np, "always-on"); /* Check for globally applicable workarounds */ arch_timer_check_ool_workaround(ate_match_dt, np); /* * If we cannot rely on firmware initializing the timer registers then * we should use the physical timers instead. */ if (IS_ENABLED(CONFIG_ARM) && of_property_read_bool(np, "arm,cpu-registers-not-fw-configured")) arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI; else arch_timer_uses_ppi = arch_timer_select_ppi(); if (!arch_timer_ppi[arch_timer_uses_ppi]) { pr_err("No interrupt available, giving up\n"); return -EINVAL; } /* On some systems, the counter stops ticking when in suspend. */ arch_counter_suspend_stop = of_property_read_bool(np, "arm,no-tick-in-suspend"); ret = arch_timer_register(); if (ret) return ret; if (arch_timer_needs_of_probing()) return 0; return arch_timer_common_init(); } TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init); TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init); static u32 __init arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame) { void __iomem *base; u32 rate; base = ioremap(frame->cntbase, frame->size); if (!base) { pr_err("Unable to map frame @ %pa\n", &frame->cntbase); return 0; } rate = readl_relaxed(base + CNTFRQ); iounmap(base); return rate; } static struct arch_timer_mem_frame * __init arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem) { struct arch_timer_mem_frame *frame, *best_frame = NULL; void __iomem *cntctlbase; u32 cnttidr; int i; cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size); if (!cntctlbase) { pr_err("Can't map CNTCTLBase @ %pa\n", &timer_mem->cntctlbase); return NULL; } cnttidr = readl_relaxed(cntctlbase + CNTTIDR); /* * Try to find a virtual capable frame. Otherwise fall back to a * physical capable frame. */ for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT | CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT; frame = &timer_mem->frame[i]; if (!frame->valid) continue; /* Try enabling everything, and see what sticks */ writel_relaxed(cntacr, cntctlbase + CNTACR(i)); cntacr = readl_relaxed(cntctlbase + CNTACR(i)); if ((cnttidr & CNTTIDR_VIRT(i)) && !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) { best_frame = frame; arch_timer_mem_use_virtual = true; break; } if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT)) continue; best_frame = frame; } iounmap(cntctlbase); return best_frame; } static int __init arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame) { void __iomem *base; int ret, irq = 0; if (arch_timer_mem_use_virtual) irq = frame->virt_irq; else irq = frame->phys_irq; if (!irq) { pr_err("Frame missing %s irq.\n", arch_timer_mem_use_virtual ? "virt" : "phys"); return -EINVAL; } if (!request_mem_region(frame->cntbase, frame->size, "arch_mem_timer")) return -EBUSY; base = ioremap(frame->cntbase, frame->size); if (!base) { pr_err("Can't map frame's registers\n"); return -ENXIO; } ret = arch_timer_mem_register(base, irq); if (ret) { iounmap(base); return ret; } arch_timers_present |= ARCH_TIMER_TYPE_MEM; return 0; } static int __init arch_timer_mem_of_init(struct device_node *np) { struct arch_timer_mem *timer_mem; struct arch_timer_mem_frame *frame; struct device_node *frame_node; struct resource res; int ret = -EINVAL; u32 rate; timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL); if (!timer_mem) return -ENOMEM; if (of_address_to_resource(np, 0, &res)) goto out; timer_mem->cntctlbase = res.start; timer_mem->size = resource_size(&res); for_each_available_child_of_node(np, frame_node) { u32 n; struct arch_timer_mem_frame *frame; if (of_property_read_u32(frame_node, "frame-number", &n)) { pr_err(FW_BUG "Missing frame-number.\n"); of_node_put(frame_node); goto out; } if (n >= ARCH_TIMER_MEM_MAX_FRAMES) { pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n", ARCH_TIMER_MEM_MAX_FRAMES - 1); of_node_put(frame_node); goto out; } frame = &timer_mem->frame[n]; if (frame->valid) { pr_err(FW_BUG "Duplicated frame-number.\n"); of_node_put(frame_node); goto out; } if (of_address_to_resource(frame_node, 0, &res)) { of_node_put(frame_node); goto out; } frame->cntbase = res.start; frame->size = resource_size(&res); frame->virt_irq = irq_of_parse_and_map(frame_node, ARCH_TIMER_VIRT_SPI); frame->phys_irq = irq_of_parse_and_map(frame_node, ARCH_TIMER_PHYS_SPI); frame->valid = true; } frame = arch_timer_mem_find_best_frame(timer_mem); if (!frame) { pr_err("Unable to find a suitable frame in timer @ %pa\n", &timer_mem->cntctlbase); ret = -EINVAL; goto out; } rate = arch_timer_mem_frame_get_cntfrq(frame); arch_timer_of_configure_rate(rate, np); ret = arch_timer_mem_frame_register(frame); if (!ret && !arch_timer_needs_of_probing()) ret = arch_timer_common_init(); out: kfree(timer_mem); return ret; } TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem", arch_timer_mem_of_init); #ifdef CONFIG_ACPI_GTDT static int __init arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem) { struct arch_timer_mem_frame *frame; u32 rate; int i; for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) { frame = &timer_mem->frame[i]; if (!frame->valid) continue; rate = arch_timer_mem_frame_get_cntfrq(frame); if (rate == arch_timer_rate) continue; pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n", &frame->cntbase, (unsigned long)rate, (unsigned long)arch_timer_rate); return -EINVAL; } return 0; } static int __init arch_timer_mem_acpi_init(int platform_timer_count) { struct arch_timer_mem *timers, *timer; struct arch_timer_mem_frame *frame, *best_frame = NULL; int timer_count, i, ret = 0; timers = kcalloc(platform_timer_count, sizeof(*timers), GFP_KERNEL); if (!timers) return -ENOMEM; ret = acpi_arch_timer_mem_init(timers, &timer_count); if (ret || !timer_count) goto out; /* * While unlikely, it's theoretically possible that none of the frames * in a timer expose the combination of feature we want. */ for (i = 0; i < timer_count; i++) { timer = &timers[i]; frame = arch_timer_mem_find_best_frame(timer); if (!best_frame) best_frame = frame; ret = arch_timer_mem_verify_cntfrq(timer); if (ret) { pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n"); goto out; } if (!best_frame) /* implies !frame */ /* * Only complain about missing suitable frames if we * haven't already found one in a previous iteration. */ pr_err("Unable to find a suitable frame in timer @ %pa\n", &timer->cntctlbase); } if (best_frame) ret = arch_timer_mem_frame_register(best_frame); out: kfree(timers); return ret; } /* Initialize per-processor generic timer and memory-mapped timer(if present) */ static int __init arch_timer_acpi_init(struct acpi_table_header *table) { int ret, platform_timer_count; if (arch_timers_present & ARCH_TIMER_TYPE_CP15) { pr_warn("already initialized, skipping\n"); return -EINVAL; } arch_timers_present |= ARCH_TIMER_TYPE_CP15; ret = acpi_gtdt_init(table, &platform_timer_count); if (ret) return ret; arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] = acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI); arch_timer_ppi[ARCH_TIMER_VIRT_PPI] = acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI); arch_timer_ppi[ARCH_TIMER_HYP_PPI] = acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI); arch_timer_populate_kvm_info(); /* * When probing via ACPI, we have no mechanism to override the sysreg * CNTFRQ value. This *must* be correct. */ arch_timer_rate = arch_timer_get_cntfrq(); ret = validate_timer_rate(); if (ret) { pr_err(FW_BUG "frequency not available.\n"); return ret; } arch_timer_uses_ppi = arch_timer_select_ppi(); if (!arch_timer_ppi[arch_timer_uses_ppi]) { pr_err("No interrupt available, giving up\n"); return -EINVAL; } /* Always-on capability */ arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi); /* Check for globally applicable workarounds */ arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table); ret = arch_timer_register(); if (ret) return ret; if (platform_timer_count && arch_timer_mem_acpi_init(platform_timer_count)) pr_err("Failed to initialize memory-mapped timer.\n"); return arch_timer_common_init(); } TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init); #endif int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts, struct clocksource **cs) { struct arm_smccc_res hvc_res; u32 ptp_counter; ktime_t ktime; if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY)) return -EOPNOTSUPP; if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ptp_counter = KVM_PTP_VIRT_COUNTER; else ptp_counter = KVM_PTP_PHYS_COUNTER; arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID, ptp_counter, &hvc_res); if ((int)(hvc_res.a0) < 0) return -EOPNOTSUPP; ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1; *ts = ktime_to_timespec64(ktime); if (cycle) *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3; if (cs) *cs = &clocksource_counter; return 0; } EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
linux-master
drivers/clocksource/arm_arch_timer.c
// SPDX-License-Identifier: GPL-2.0-only /* * Emma Mobile Timer Support - STI * * Copyright (C) 2012 Magnus Damm */ #include <linux/init.h> #include <linux/platform_device.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/io.h> #include <linux/clk.h> #include <linux/irq.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/slab.h> #include <linux/module.h> enum { USER_CLOCKSOURCE, USER_CLOCKEVENT, USER_NR }; struct em_sti_priv { void __iomem *base; struct clk *clk; struct platform_device *pdev; unsigned int active[USER_NR]; unsigned long rate; raw_spinlock_t lock; struct clock_event_device ced; struct clocksource cs; }; #define STI_CONTROL 0x00 #define STI_COMPA_H 0x10 #define STI_COMPA_L 0x14 #define STI_COMPB_H 0x18 #define STI_COMPB_L 0x1c #define STI_COUNT_H 0x20 #define STI_COUNT_L 0x24 #define STI_COUNT_RAW_H 0x28 #define STI_COUNT_RAW_L 0x2c #define STI_SET_H 0x30 #define STI_SET_L 0x34 #define STI_INTSTATUS 0x40 #define STI_INTRAWSTATUS 0x44 #define STI_INTENSET 0x48 #define STI_INTENCLR 0x4c #define STI_INTFFCLR 0x50 static inline unsigned long em_sti_read(struct em_sti_priv *p, int offs) { return ioread32(p->base + offs); } static inline void em_sti_write(struct em_sti_priv *p, int offs, unsigned long value) { iowrite32(value, p->base + offs); } static int em_sti_enable(struct em_sti_priv *p) { int ret; /* enable clock */ ret = clk_enable(p->clk); if (ret) { dev_err(&p->pdev->dev, "cannot enable clock\n"); return ret; } /* reset the counter */ em_sti_write(p, STI_SET_H, 0x40000000); em_sti_write(p, STI_SET_L, 0x00000000); /* mask and clear pending interrupts */ em_sti_write(p, STI_INTENCLR, 3); em_sti_write(p, STI_INTFFCLR, 3); /* enable updates of counter registers */ em_sti_write(p, STI_CONTROL, 1); return 0; } static void em_sti_disable(struct em_sti_priv *p) { /* mask interrupts */ em_sti_write(p, STI_INTENCLR, 3); /* stop clock */ clk_disable(p->clk); } static u64 em_sti_count(struct em_sti_priv *p) { u64 ticks; unsigned long flags; /* the STI hardware buffers the 48-bit count, but to * break it out into two 32-bit access the registers * must be accessed in a certain order. * Always read STI_COUNT_H before STI_COUNT_L. */ raw_spin_lock_irqsave(&p->lock, flags); ticks = (u64)(em_sti_read(p, STI_COUNT_H) & 0xffff) << 32; ticks |= em_sti_read(p, STI_COUNT_L); raw_spin_unlock_irqrestore(&p->lock, flags); return ticks; } static u64 em_sti_set_next(struct em_sti_priv *p, u64 next) { unsigned long flags; raw_spin_lock_irqsave(&p->lock, flags); /* mask compare A interrupt */ em_sti_write(p, STI_INTENCLR, 1); /* update compare A value */ em_sti_write(p, STI_COMPA_H, next >> 32); em_sti_write(p, STI_COMPA_L, next & 0xffffffff); /* clear compare A interrupt source */ em_sti_write(p, STI_INTFFCLR, 1); /* unmask compare A interrupt */ em_sti_write(p, STI_INTENSET, 1); raw_spin_unlock_irqrestore(&p->lock, flags); return next; } static irqreturn_t em_sti_interrupt(int irq, void *dev_id) { struct em_sti_priv *p = dev_id; p->ced.event_handler(&p->ced); return IRQ_HANDLED; } static int em_sti_start(struct em_sti_priv *p, unsigned int user) { unsigned long flags; int used_before; int ret = 0; raw_spin_lock_irqsave(&p->lock, flags); used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT]; if (!used_before) ret = em_sti_enable(p); if (!ret) p->active[user] = 1; raw_spin_unlock_irqrestore(&p->lock, flags); return ret; } static void em_sti_stop(struct em_sti_priv *p, unsigned int user) { unsigned long flags; int used_before, used_after; raw_spin_lock_irqsave(&p->lock, flags); used_before = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT]; p->active[user] = 0; used_after = p->active[USER_CLOCKSOURCE] | p->active[USER_CLOCKEVENT]; if (used_before && !used_after) em_sti_disable(p); raw_spin_unlock_irqrestore(&p->lock, flags); } static struct em_sti_priv *cs_to_em_sti(struct clocksource *cs) { return container_of(cs, struct em_sti_priv, cs); } static u64 em_sti_clocksource_read(struct clocksource *cs) { return em_sti_count(cs_to_em_sti(cs)); } static int em_sti_clocksource_enable(struct clocksource *cs) { struct em_sti_priv *p = cs_to_em_sti(cs); return em_sti_start(p, USER_CLOCKSOURCE); } static void em_sti_clocksource_disable(struct clocksource *cs) { em_sti_stop(cs_to_em_sti(cs), USER_CLOCKSOURCE); } static void em_sti_clocksource_resume(struct clocksource *cs) { em_sti_clocksource_enable(cs); } static int em_sti_register_clocksource(struct em_sti_priv *p) { struct clocksource *cs = &p->cs; cs->name = dev_name(&p->pdev->dev); cs->rating = 200; cs->read = em_sti_clocksource_read; cs->enable = em_sti_clocksource_enable; cs->disable = em_sti_clocksource_disable; cs->suspend = em_sti_clocksource_disable; cs->resume = em_sti_clocksource_resume; cs->mask = CLOCKSOURCE_MASK(48); cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; dev_info(&p->pdev->dev, "used as clock source\n"); clocksource_register_hz(cs, p->rate); return 0; } static struct em_sti_priv *ced_to_em_sti(struct clock_event_device *ced) { return container_of(ced, struct em_sti_priv, ced); } static int em_sti_clock_event_shutdown(struct clock_event_device *ced) { struct em_sti_priv *p = ced_to_em_sti(ced); em_sti_stop(p, USER_CLOCKEVENT); return 0; } static int em_sti_clock_event_set_oneshot(struct clock_event_device *ced) { struct em_sti_priv *p = ced_to_em_sti(ced); dev_info(&p->pdev->dev, "used for oneshot clock events\n"); em_sti_start(p, USER_CLOCKEVENT); return 0; } static int em_sti_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct em_sti_priv *p = ced_to_em_sti(ced); u64 next; int safe; next = em_sti_set_next(p, em_sti_count(p) + delta); safe = em_sti_count(p) < (next - 1); return !safe; } static void em_sti_register_clockevent(struct em_sti_priv *p) { struct clock_event_device *ced = &p->ced; ced->name = dev_name(&p->pdev->dev); ced->features = CLOCK_EVT_FEAT_ONESHOT; ced->rating = 200; ced->cpumask = cpu_possible_mask; ced->set_next_event = em_sti_clock_event_next; ced->set_state_shutdown = em_sti_clock_event_shutdown; ced->set_state_oneshot = em_sti_clock_event_set_oneshot; dev_info(&p->pdev->dev, "used for clock events\n"); clockevents_config_and_register(ced, p->rate, 2, 0xffffffff); } static int em_sti_probe(struct platform_device *pdev) { struct em_sti_priv *p; int irq, ret; p = devm_kzalloc(&pdev->dev, sizeof(*p), GFP_KERNEL); if (p == NULL) return -ENOMEM; p->pdev = pdev; platform_set_drvdata(pdev, p); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; /* map memory, let base point to the STI instance */ p->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(p->base)) return PTR_ERR(p->base); ret = devm_request_irq(&pdev->dev, irq, em_sti_interrupt, IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, dev_name(&pdev->dev), p); if (ret) { dev_err(&pdev->dev, "failed to request low IRQ\n"); return ret; } /* get hold of clock */ p->clk = devm_clk_get(&pdev->dev, "sclk"); if (IS_ERR(p->clk)) { dev_err(&pdev->dev, "cannot get clock\n"); return PTR_ERR(p->clk); } ret = clk_prepare(p->clk); if (ret < 0) { dev_err(&pdev->dev, "cannot prepare clock\n"); return ret; } ret = clk_enable(p->clk); if (ret < 0) { dev_err(&p->pdev->dev, "cannot enable clock\n"); clk_unprepare(p->clk); return ret; } p->rate = clk_get_rate(p->clk); clk_disable(p->clk); raw_spin_lock_init(&p->lock); em_sti_register_clockevent(p); em_sti_register_clocksource(p); return 0; } static const struct of_device_id em_sti_dt_ids[] = { { .compatible = "renesas,em-sti", }, {}, }; MODULE_DEVICE_TABLE(of, em_sti_dt_ids); static struct platform_driver em_sti_device_driver = { .probe = em_sti_probe, .driver = { .name = "em_sti", .of_match_table = em_sti_dt_ids, .suppress_bind_attrs = true, } }; static int __init em_sti_init(void) { return platform_driver_register(&em_sti_device_driver); } static void __exit em_sti_exit(void) { platform_driver_unregister(&em_sti_device_driver); } subsys_initcall(em_sti_init); module_exit(em_sti_exit); MODULE_AUTHOR("Magnus Damm"); MODULE_DESCRIPTION("Renesas Emma Mobile STI Timer Driver");
linux-master
drivers/clocksource/em_sti.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2012, NVIDIA CORPORATION. All rights reserved. */ #include <linux/acpi.h> #include <linux/init.h> #include <linux/of.h> #include <linux/clocksource.h> extern struct of_device_id __timer_of_table[]; static const struct of_device_id __timer_of_table_sentinel __used __section("__timer_of_table_end"); void __init timer_probe(void) { struct device_node *np; const struct of_device_id *match; of_init_fn_1_ret init_func_ret; unsigned timers = 0; int ret; for_each_matching_node_and_match(np, __timer_of_table, &match) { if (!of_device_is_available(np)) continue; init_func_ret = match->data; ret = init_func_ret(np); if (ret) { if (ret != -EPROBE_DEFER) pr_err("Failed to initialize '%pOF': %d\n", np, ret); continue; } timers++; } timers += acpi_probe_device_table(timer); if (!timers) pr_crit("%s: no matching timers found\n", __func__); }
linux-master
drivers/clocksource/timer-probe.c
// SPDX-License-Identifier: GPL-2.0-only /* * (C) Copyright 2009 Intel Corporation * Author: Jacob Pan ([email protected]) * * Shared with ARM platforms, Jamie Iles, Picochip 2011 * * Support for the Synopsys DesignWare APB Timers. */ #include <linux/dw_apb_timer.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/slab.h> #define APBT_MIN_PERIOD 4 #define APBT_MIN_DELTA_USEC 200 #define APBTMR_N_LOAD_COUNT 0x00 #define APBTMR_N_CURRENT_VALUE 0x04 #define APBTMR_N_CONTROL 0x08 #define APBTMR_N_EOI 0x0c #define APBTMR_N_INT_STATUS 0x10 #define APBTMRS_INT_STATUS 0xa0 #define APBTMRS_EOI 0xa4 #define APBTMRS_RAW_INT_STATUS 0xa8 #define APBTMRS_COMP_VERSION 0xac #define APBTMR_CONTROL_ENABLE (1 << 0) /* 1: periodic, 0:free running. */ #define APBTMR_CONTROL_MODE_PERIODIC (1 << 1) #define APBTMR_CONTROL_INT (1 << 2) static inline struct dw_apb_clock_event_device * ced_to_dw_apb_ced(struct clock_event_device *evt) { return container_of(evt, struct dw_apb_clock_event_device, ced); } static inline struct dw_apb_clocksource * clocksource_to_dw_apb_clocksource(struct clocksource *cs) { return container_of(cs, struct dw_apb_clocksource, cs); } static inline u32 apbt_readl(struct dw_apb_timer *timer, unsigned long offs) { return readl(timer->base + offs); } static inline void apbt_writel(struct dw_apb_timer *timer, u32 val, unsigned long offs) { writel(val, timer->base + offs); } static inline u32 apbt_readl_relaxed(struct dw_apb_timer *timer, unsigned long offs) { return readl_relaxed(timer->base + offs); } static inline void apbt_writel_relaxed(struct dw_apb_timer *timer, u32 val, unsigned long offs) { writel_relaxed(val, timer->base + offs); } static void apbt_disable_int(struct dw_apb_timer *timer) { u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL); ctrl |= APBTMR_CONTROL_INT; apbt_writel(timer, ctrl, APBTMR_N_CONTROL); } /** * dw_apb_clockevent_pause() - stop the clock_event_device from running * * @dw_ced: The APB clock to stop generating events. */ void dw_apb_clockevent_pause(struct dw_apb_clock_event_device *dw_ced) { disable_irq(dw_ced->timer.irq); apbt_disable_int(&dw_ced->timer); } static void apbt_eoi(struct dw_apb_timer *timer) { apbt_readl_relaxed(timer, APBTMR_N_EOI); } static irqreturn_t dw_apb_clockevent_irq(int irq, void *data) { struct clock_event_device *evt = data; struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); if (!evt->event_handler) { pr_info("Spurious APBT timer interrupt %d\n", irq); return IRQ_NONE; } if (dw_ced->eoi) dw_ced->eoi(&dw_ced->timer); evt->event_handler(evt); return IRQ_HANDLED; } static void apbt_enable_int(struct dw_apb_timer *timer) { u32 ctrl = apbt_readl(timer, APBTMR_N_CONTROL); /* clear pending intr */ apbt_readl(timer, APBTMR_N_EOI); ctrl &= ~APBTMR_CONTROL_INT; apbt_writel(timer, ctrl, APBTMR_N_CONTROL); } static int apbt_shutdown(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); u32 ctrl; pr_debug("%s CPU %d state=shutdown\n", __func__, cpumask_first(evt->cpumask)); ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } static int apbt_set_oneshot(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); u32 ctrl; pr_debug("%s CPU %d state=oneshot\n", __func__, cpumask_first(evt->cpumask)); ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); /* * set free running mode, this mode will let timer reload max * timeout which will give time (3min on 25MHz clock) to rearm * the next event, therefore emulate the one-shot mode. */ ctrl &= ~APBTMR_CONTROL_ENABLE; ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* write again to set free running mode */ apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* * DW APB p. 46, load counter with all 1s before starting free * running mode. */ apbt_writel(&dw_ced->timer, ~0, APBTMR_N_LOAD_COUNT); ctrl &= ~APBTMR_CONTROL_INT; ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } static int apbt_set_periodic(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); unsigned long period = DIV_ROUND_UP(dw_ced->timer.freq, HZ); u32 ctrl; pr_debug("%s CPU %d state=periodic\n", __func__, cpumask_first(evt->cpumask)); ctrl = apbt_readl(&dw_ced->timer, APBTMR_N_CONTROL); ctrl |= APBTMR_CONTROL_MODE_PERIODIC; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* * DW APB p. 46, have to disable timer before load counter, * may cause sync problem. */ ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); udelay(1); pr_debug("Setting clock period %lu for HZ %d\n", period, HZ); apbt_writel(&dw_ced->timer, period, APBTMR_N_LOAD_COUNT); ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } static int apbt_resume(struct clock_event_device *evt) { struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); pr_debug("%s CPU %d state=resume\n", __func__, cpumask_first(evt->cpumask)); apbt_enable_int(&dw_ced->timer); return 0; } static int apbt_next_event(unsigned long delta, struct clock_event_device *evt) { u32 ctrl; struct dw_apb_clock_event_device *dw_ced = ced_to_dw_apb_ced(evt); /* Disable timer */ ctrl = apbt_readl_relaxed(&dw_ced->timer, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); /* write new count */ apbt_writel_relaxed(&dw_ced->timer, delta, APBTMR_N_LOAD_COUNT); ctrl |= APBTMR_CONTROL_ENABLE; apbt_writel_relaxed(&dw_ced->timer, ctrl, APBTMR_N_CONTROL); return 0; } /** * dw_apb_clockevent_init() - use an APB timer as a clock_event_device * * @cpu: The CPU the events will be targeted at or -1 if CPU affiliation * isn't required. * @name: The name used for the timer and the IRQ for it. * @rating: The rating to give the timer. * @base: I/O base for the timer registers. * @irq: The interrupt number to use for the timer. * @freq: The frequency that the timer counts at. * * This creates a clock_event_device for using with the generic clock layer * but does not start and register it. This should be done with * dw_apb_clockevent_register() as the next step. If this is the first time * it has been called for a timer then the IRQ will be requested, if not it * just be enabled to allow CPU hotplug to avoid repeatedly requesting and * releasing the IRQ. */ struct dw_apb_clock_event_device * dw_apb_clockevent_init(int cpu, const char *name, unsigned rating, void __iomem *base, int irq, unsigned long freq) { struct dw_apb_clock_event_device *dw_ced = kzalloc(sizeof(*dw_ced), GFP_KERNEL); int err; if (!dw_ced) return NULL; dw_ced->timer.base = base; dw_ced->timer.irq = irq; dw_ced->timer.freq = freq; clockevents_calc_mult_shift(&dw_ced->ced, freq, APBT_MIN_PERIOD); dw_ced->ced.max_delta_ns = clockevent_delta2ns(0x7fffffff, &dw_ced->ced); dw_ced->ced.max_delta_ticks = 0x7fffffff; dw_ced->ced.min_delta_ns = clockevent_delta2ns(5000, &dw_ced->ced); dw_ced->ced.min_delta_ticks = 5000; dw_ced->ced.cpumask = cpu < 0 ? cpu_possible_mask : cpumask_of(cpu); dw_ced->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ; dw_ced->ced.set_state_shutdown = apbt_shutdown; dw_ced->ced.set_state_periodic = apbt_set_periodic; dw_ced->ced.set_state_oneshot = apbt_set_oneshot; dw_ced->ced.set_state_oneshot_stopped = apbt_shutdown; dw_ced->ced.tick_resume = apbt_resume; dw_ced->ced.set_next_event = apbt_next_event; dw_ced->ced.irq = dw_ced->timer.irq; dw_ced->ced.rating = rating; dw_ced->ced.name = name; dw_ced->eoi = apbt_eoi; err = request_irq(irq, dw_apb_clockevent_irq, IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, dw_ced->ced.name, &dw_ced->ced); if (err) { pr_err("failed to request timer irq\n"); kfree(dw_ced); dw_ced = NULL; } return dw_ced; } /** * dw_apb_clockevent_resume() - resume a clock that has been paused. * * @dw_ced: The APB clock to resume. */ void dw_apb_clockevent_resume(struct dw_apb_clock_event_device *dw_ced) { enable_irq(dw_ced->timer.irq); } /** * dw_apb_clockevent_stop() - stop the clock_event_device and release the IRQ. * * @dw_ced: The APB clock to stop generating the events. */ void dw_apb_clockevent_stop(struct dw_apb_clock_event_device *dw_ced) { free_irq(dw_ced->timer.irq, &dw_ced->ced); } /** * dw_apb_clockevent_register() - register the clock with the generic layer * * @dw_ced: The APB clock to register as a clock_event_device. */ void dw_apb_clockevent_register(struct dw_apb_clock_event_device *dw_ced) { apbt_writel(&dw_ced->timer, 0, APBTMR_N_CONTROL); clockevents_register_device(&dw_ced->ced); apbt_enable_int(&dw_ced->timer); } /** * dw_apb_clocksource_start() - start the clocksource counting. * * @dw_cs: The clocksource to start. * * This is used to start the clocksource before registration and can be used * to enable calibration of timers. */ void dw_apb_clocksource_start(struct dw_apb_clocksource *dw_cs) { /* * start count down from 0xffff_ffff. this is done by toggling the * enable bit then load initial load count to ~0. */ u32 ctrl = apbt_readl(&dw_cs->timer, APBTMR_N_CONTROL); ctrl &= ~APBTMR_CONTROL_ENABLE; apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); apbt_writel(&dw_cs->timer, ~0, APBTMR_N_LOAD_COUNT); /* enable, mask interrupt */ ctrl &= ~APBTMR_CONTROL_MODE_PERIODIC; ctrl |= (APBTMR_CONTROL_ENABLE | APBTMR_CONTROL_INT); apbt_writel(&dw_cs->timer, ctrl, APBTMR_N_CONTROL); /* read it once to get cached counter value initialized */ dw_apb_clocksource_read(dw_cs); } static u64 __apbt_read_clocksource(struct clocksource *cs) { u32 current_count; struct dw_apb_clocksource *dw_cs = clocksource_to_dw_apb_clocksource(cs); current_count = apbt_readl_relaxed(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); return (u64)~current_count; } static void apbt_restart_clocksource(struct clocksource *cs) { struct dw_apb_clocksource *dw_cs = clocksource_to_dw_apb_clocksource(cs); dw_apb_clocksource_start(dw_cs); } /** * dw_apb_clocksource_init() - use an APB timer as a clocksource. * * @rating: The rating to give the clocksource. * @name: The name for the clocksource. * @base: The I/O base for the timer registers. * @freq: The frequency that the timer counts at. * * This creates a clocksource using an APB timer but does not yet register it * with the clocksource system. This should be done with * dw_apb_clocksource_register() as the next step. */ struct dw_apb_clocksource * dw_apb_clocksource_init(unsigned rating, const char *name, void __iomem *base, unsigned long freq) { struct dw_apb_clocksource *dw_cs = kzalloc(sizeof(*dw_cs), GFP_KERNEL); if (!dw_cs) return NULL; dw_cs->timer.base = base; dw_cs->timer.freq = freq; dw_cs->cs.name = name; dw_cs->cs.rating = rating; dw_cs->cs.read = __apbt_read_clocksource; dw_cs->cs.mask = CLOCKSOURCE_MASK(32); dw_cs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; dw_cs->cs.resume = apbt_restart_clocksource; return dw_cs; } /** * dw_apb_clocksource_register() - register the APB clocksource. * * @dw_cs: The clocksource to register. */ void dw_apb_clocksource_register(struct dw_apb_clocksource *dw_cs) { clocksource_register_hz(&dw_cs->cs, dw_cs->timer.freq); } /** * dw_apb_clocksource_read() - read the current value of a clocksource. * * @dw_cs: The clocksource to read. */ u64 dw_apb_clocksource_read(struct dw_apb_clocksource *dw_cs) { return (u64)~apbt_readl(&dw_cs->timer, APBTMR_N_CURRENT_VALUE); }
linux-master
drivers/clocksource/dw_apb_timer.c
// SPDX-License-Identifier: GPL-2.0 /* * Clocksource driver for NXP LPC32xx/18xx/43xx timer * * Copyright (C) 2015 Joachim Eastwood <[email protected]> * * Based on: * time-efm32 Copyright (C) 2013 Pengutronix * mach-lpc32xx/timer.c Copyright (C) 2009 - 2010 NXP Semiconductors */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #define LPC32XX_TIMER_IR 0x000 #define LPC32XX_TIMER_IR_MR0INT BIT(0) #define LPC32XX_TIMER_TCR 0x004 #define LPC32XX_TIMER_TCR_CEN BIT(0) #define LPC32XX_TIMER_TCR_CRST BIT(1) #define LPC32XX_TIMER_TC 0x008 #define LPC32XX_TIMER_PR 0x00c #define LPC32XX_TIMER_MCR 0x014 #define LPC32XX_TIMER_MCR_MR0I BIT(0) #define LPC32XX_TIMER_MCR_MR0R BIT(1) #define LPC32XX_TIMER_MCR_MR0S BIT(2) #define LPC32XX_TIMER_MR0 0x018 #define LPC32XX_TIMER_CTCR 0x070 struct lpc32xx_clock_event_ddata { struct clock_event_device evtdev; void __iomem *base; u32 ticks_per_jiffy; }; /* Needed for the sched clock */ static void __iomem *clocksource_timer_counter; static u64 notrace lpc32xx_read_sched_clock(void) { return readl(clocksource_timer_counter); } static unsigned long lpc32xx_delay_timer_read(void) { return readl(clocksource_timer_counter); } static struct delay_timer lpc32xx_delay_timer = { .read_current_timer = lpc32xx_delay_timer_read, }; static int lpc32xx_clkevt_next_event(unsigned long delta, struct clock_event_device *evtdev) { struct lpc32xx_clock_event_ddata *ddata = container_of(evtdev, struct lpc32xx_clock_event_ddata, evtdev); /* * Place timer in reset and program the delta in the match * channel 0 (MR0). When the timer counter matches the value * in MR0 register the match will trigger an interrupt. * After setup the timer is released from reset and enabled. */ writel_relaxed(LPC32XX_TIMER_TCR_CRST, ddata->base + LPC32XX_TIMER_TCR); writel_relaxed(delta, ddata->base + LPC32XX_TIMER_MR0); writel_relaxed(LPC32XX_TIMER_TCR_CEN, ddata->base + LPC32XX_TIMER_TCR); return 0; } static int lpc32xx_clkevt_shutdown(struct clock_event_device *evtdev) { struct lpc32xx_clock_event_ddata *ddata = container_of(evtdev, struct lpc32xx_clock_event_ddata, evtdev); /* Disable the timer */ writel_relaxed(0, ddata->base + LPC32XX_TIMER_TCR); return 0; } static int lpc32xx_clkevt_oneshot(struct clock_event_device *evtdev) { struct lpc32xx_clock_event_ddata *ddata = container_of(evtdev, struct lpc32xx_clock_event_ddata, evtdev); /* * When using oneshot, we must also disable the timer * to wait for the first call to set_next_event(). */ writel_relaxed(0, ddata->base + LPC32XX_TIMER_TCR); /* Enable interrupt, reset on match and stop on match (MCR). */ writel_relaxed(LPC32XX_TIMER_MCR_MR0I | LPC32XX_TIMER_MCR_MR0R | LPC32XX_TIMER_MCR_MR0S, ddata->base + LPC32XX_TIMER_MCR); return 0; } static int lpc32xx_clkevt_periodic(struct clock_event_device *evtdev) { struct lpc32xx_clock_event_ddata *ddata = container_of(evtdev, struct lpc32xx_clock_event_ddata, evtdev); /* Enable interrupt and reset on match. */ writel_relaxed(LPC32XX_TIMER_MCR_MR0I | LPC32XX_TIMER_MCR_MR0R, ddata->base + LPC32XX_TIMER_MCR); /* * Place timer in reset and program the delta in the match * channel 0 (MR0). */ writel_relaxed(LPC32XX_TIMER_TCR_CRST, ddata->base + LPC32XX_TIMER_TCR); writel_relaxed(ddata->ticks_per_jiffy, ddata->base + LPC32XX_TIMER_MR0); writel_relaxed(LPC32XX_TIMER_TCR_CEN, ddata->base + LPC32XX_TIMER_TCR); return 0; } static irqreturn_t lpc32xx_clock_event_handler(int irq, void *dev_id) { struct lpc32xx_clock_event_ddata *ddata = dev_id; /* Clear match on channel 0 */ writel_relaxed(LPC32XX_TIMER_IR_MR0INT, ddata->base + LPC32XX_TIMER_IR); ddata->evtdev.event_handler(&ddata->evtdev); return IRQ_HANDLED; } static struct lpc32xx_clock_event_ddata lpc32xx_clk_event_ddata = { .evtdev = { .name = "lpc3220 clockevent", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .rating = 300, .set_next_event = lpc32xx_clkevt_next_event, .set_state_shutdown = lpc32xx_clkevt_shutdown, .set_state_oneshot = lpc32xx_clkevt_oneshot, .set_state_periodic = lpc32xx_clkevt_periodic, }, }; static int __init lpc32xx_clocksource_init(struct device_node *np) { void __iomem *base; unsigned long rate; struct clk *clk; int ret; clk = of_clk_get_by_name(np, "timerclk"); if (IS_ERR(clk)) { pr_err("clock get failed (%ld)\n", PTR_ERR(clk)); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_err("clock enable failed (%d)\n", ret); goto err_clk_enable; } base = of_iomap(np, 0); if (!base) { pr_err("unable to map registers\n"); ret = -EADDRNOTAVAIL; goto err_iomap; } /* * Disable and reset timer then set it to free running timer * mode (CTCR) with no prescaler (PR) or match operations (MCR). * After setup the timer is released from reset and enabled. */ writel_relaxed(LPC32XX_TIMER_TCR_CRST, base + LPC32XX_TIMER_TCR); writel_relaxed(0, base + LPC32XX_TIMER_PR); writel_relaxed(0, base + LPC32XX_TIMER_MCR); writel_relaxed(0, base + LPC32XX_TIMER_CTCR); writel_relaxed(LPC32XX_TIMER_TCR_CEN, base + LPC32XX_TIMER_TCR); rate = clk_get_rate(clk); ret = clocksource_mmio_init(base + LPC32XX_TIMER_TC, "lpc3220 timer", rate, 300, 32, clocksource_mmio_readl_up); if (ret) { pr_err("failed to init clocksource (%d)\n", ret); goto err_clocksource_init; } clocksource_timer_counter = base + LPC32XX_TIMER_TC; lpc32xx_delay_timer.freq = rate; register_current_timer_delay(&lpc32xx_delay_timer); sched_clock_register(lpc32xx_read_sched_clock, 32, rate); return 0; err_clocksource_init: iounmap(base); err_iomap: clk_disable_unprepare(clk); err_clk_enable: clk_put(clk); return ret; } static int __init lpc32xx_clockevent_init(struct device_node *np) { void __iomem *base; unsigned long rate; struct clk *clk; int ret, irq; clk = of_clk_get_by_name(np, "timerclk"); if (IS_ERR(clk)) { pr_err("clock get failed (%ld)\n", PTR_ERR(clk)); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_err("clock enable failed (%d)\n", ret); goto err_clk_enable; } base = of_iomap(np, 0); if (!base) { pr_err("unable to map registers\n"); ret = -EADDRNOTAVAIL; goto err_iomap; } irq = irq_of_parse_and_map(np, 0); if (!irq) { pr_err("get irq failed\n"); ret = -ENOENT; goto err_irq; } /* * Disable timer and clear any pending interrupt (IR) on match * channel 0 (MR0). Clear the prescaler as it's not used. */ writel_relaxed(0, base + LPC32XX_TIMER_TCR); writel_relaxed(0, base + LPC32XX_TIMER_PR); writel_relaxed(0, base + LPC32XX_TIMER_CTCR); writel_relaxed(LPC32XX_TIMER_IR_MR0INT, base + LPC32XX_TIMER_IR); rate = clk_get_rate(clk); lpc32xx_clk_event_ddata.base = base; lpc32xx_clk_event_ddata.ticks_per_jiffy = DIV_ROUND_CLOSEST(rate, HZ); clockevents_config_and_register(&lpc32xx_clk_event_ddata.evtdev, rate, 1, -1); ret = request_irq(irq, lpc32xx_clock_event_handler, IRQF_TIMER | IRQF_IRQPOLL, "lpc3220 clockevent", &lpc32xx_clk_event_ddata); if (ret) { pr_err("request irq failed\n"); goto err_irq; } return 0; err_irq: iounmap(base); err_iomap: clk_disable_unprepare(clk); err_clk_enable: clk_put(clk); return ret; } /* * This function asserts that we have exactly one clocksource and one * clock_event_device in the end. */ static int __init lpc32xx_timer_init(struct device_node *np) { static int has_clocksource, has_clockevent; int ret = 0; if (!has_clocksource) { ret = lpc32xx_clocksource_init(np); if (!ret) { has_clocksource = 1; return 0; } } if (!has_clockevent) { ret = lpc32xx_clockevent_init(np); if (!ret) { has_clockevent = 1; return 0; } } return ret; } TIMER_OF_DECLARE(lpc32xx_timer, "nxp,lpc3220-timer", lpc32xx_timer_init);
linux-master
drivers/clocksource/timer-lpc32xx.c
// SPDX-License-Identifier: GPL-2.0 /* * SuperH Timer Support - MTU2 * * Copyright (C) 2009 Magnus Damm */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/sh_timer.h> #include <linux/slab.h> #include <linux/spinlock.h> #ifdef CONFIG_SUPERH #include <asm/platform_early.h> #endif struct sh_mtu2_device; struct sh_mtu2_channel { struct sh_mtu2_device *mtu; unsigned int index; void __iomem *base; struct clock_event_device ced; }; struct sh_mtu2_device { struct platform_device *pdev; void __iomem *mapbase; struct clk *clk; raw_spinlock_t lock; /* Protect the shared registers */ struct sh_mtu2_channel *channels; unsigned int num_channels; bool has_clockevent; }; #define TSTR -1 /* shared register */ #define TCR 0 /* channel register */ #define TMDR 1 /* channel register */ #define TIOR 2 /* channel register */ #define TIER 3 /* channel register */ #define TSR 4 /* channel register */ #define TCNT 5 /* channel register */ #define TGR 6 /* channel register */ #define TCR_CCLR_NONE (0 << 5) #define TCR_CCLR_TGRA (1 << 5) #define TCR_CCLR_TGRB (2 << 5) #define TCR_CCLR_SYNC (3 << 5) #define TCR_CCLR_TGRC (5 << 5) #define TCR_CCLR_TGRD (6 << 5) #define TCR_CCLR_MASK (7 << 5) #define TCR_CKEG_RISING (0 << 3) #define TCR_CKEG_FALLING (1 << 3) #define TCR_CKEG_BOTH (2 << 3) #define TCR_CKEG_MASK (3 << 3) /* Values 4 to 7 are channel-dependent */ #define TCR_TPSC_P1 (0 << 0) #define TCR_TPSC_P4 (1 << 0) #define TCR_TPSC_P16 (2 << 0) #define TCR_TPSC_P64 (3 << 0) #define TCR_TPSC_CH0_TCLKA (4 << 0) #define TCR_TPSC_CH0_TCLKB (5 << 0) #define TCR_TPSC_CH0_TCLKC (6 << 0) #define TCR_TPSC_CH0_TCLKD (7 << 0) #define TCR_TPSC_CH1_TCLKA (4 << 0) #define TCR_TPSC_CH1_TCLKB (5 << 0) #define TCR_TPSC_CH1_P256 (6 << 0) #define TCR_TPSC_CH1_TCNT2 (7 << 0) #define TCR_TPSC_CH2_TCLKA (4 << 0) #define TCR_TPSC_CH2_TCLKB (5 << 0) #define TCR_TPSC_CH2_TCLKC (6 << 0) #define TCR_TPSC_CH2_P1024 (7 << 0) #define TCR_TPSC_CH34_P256 (4 << 0) #define TCR_TPSC_CH34_P1024 (5 << 0) #define TCR_TPSC_CH34_TCLKA (6 << 0) #define TCR_TPSC_CH34_TCLKB (7 << 0) #define TCR_TPSC_MASK (7 << 0) #define TMDR_BFE (1 << 6) #define TMDR_BFB (1 << 5) #define TMDR_BFA (1 << 4) #define TMDR_MD_NORMAL (0 << 0) #define TMDR_MD_PWM_1 (2 << 0) #define TMDR_MD_PWM_2 (3 << 0) #define TMDR_MD_PHASE_1 (4 << 0) #define TMDR_MD_PHASE_2 (5 << 0) #define TMDR_MD_PHASE_3 (6 << 0) #define TMDR_MD_PHASE_4 (7 << 0) #define TMDR_MD_PWM_SYNC (8 << 0) #define TMDR_MD_PWM_COMP_CREST (13 << 0) #define TMDR_MD_PWM_COMP_TROUGH (14 << 0) #define TMDR_MD_PWM_COMP_BOTH (15 << 0) #define TMDR_MD_MASK (15 << 0) #define TIOC_IOCH(n) ((n) << 4) #define TIOC_IOCL(n) ((n) << 0) #define TIOR_OC_RETAIN (0 << 0) #define TIOR_OC_0_CLEAR (1 << 0) #define TIOR_OC_0_SET (2 << 0) #define TIOR_OC_0_TOGGLE (3 << 0) #define TIOR_OC_1_CLEAR (5 << 0) #define TIOR_OC_1_SET (6 << 0) #define TIOR_OC_1_TOGGLE (7 << 0) #define TIOR_IC_RISING (8 << 0) #define TIOR_IC_FALLING (9 << 0) #define TIOR_IC_BOTH (10 << 0) #define TIOR_IC_TCNT (12 << 0) #define TIOR_MASK (15 << 0) #define TIER_TTGE (1 << 7) #define TIER_TTGE2 (1 << 6) #define TIER_TCIEU (1 << 5) #define TIER_TCIEV (1 << 4) #define TIER_TGIED (1 << 3) #define TIER_TGIEC (1 << 2) #define TIER_TGIEB (1 << 1) #define TIER_TGIEA (1 << 0) #define TSR_TCFD (1 << 7) #define TSR_TCFU (1 << 5) #define TSR_TCFV (1 << 4) #define TSR_TGFD (1 << 3) #define TSR_TGFC (1 << 2) #define TSR_TGFB (1 << 1) #define TSR_TGFA (1 << 0) static unsigned long mtu2_reg_offs[] = { [TCR] = 0, [TMDR] = 1, [TIOR] = 2, [TIER] = 4, [TSR] = 5, [TCNT] = 6, [TGR] = 8, }; static inline unsigned long sh_mtu2_read(struct sh_mtu2_channel *ch, int reg_nr) { unsigned long offs; if (reg_nr == TSTR) return ioread8(ch->mtu->mapbase + 0x280); offs = mtu2_reg_offs[reg_nr]; if ((reg_nr == TCNT) || (reg_nr == TGR)) return ioread16(ch->base + offs); else return ioread8(ch->base + offs); } static inline void sh_mtu2_write(struct sh_mtu2_channel *ch, int reg_nr, unsigned long value) { unsigned long offs; if (reg_nr == TSTR) return iowrite8(value, ch->mtu->mapbase + 0x280); offs = mtu2_reg_offs[reg_nr]; if ((reg_nr == TCNT) || (reg_nr == TGR)) iowrite16(value, ch->base + offs); else iowrite8(value, ch->base + offs); } static void sh_mtu2_start_stop_ch(struct sh_mtu2_channel *ch, int start) { unsigned long flags, value; /* start stop register shared by multiple timer channels */ raw_spin_lock_irqsave(&ch->mtu->lock, flags); value = sh_mtu2_read(ch, TSTR); if (start) value |= 1 << ch->index; else value &= ~(1 << ch->index); sh_mtu2_write(ch, TSTR, value); raw_spin_unlock_irqrestore(&ch->mtu->lock, flags); } static int sh_mtu2_enable(struct sh_mtu2_channel *ch) { unsigned long periodic; unsigned long rate; int ret; pm_runtime_get_sync(&ch->mtu->pdev->dev); dev_pm_syscore_device(&ch->mtu->pdev->dev, true); /* enable clock */ ret = clk_enable(ch->mtu->clk); if (ret) { dev_err(&ch->mtu->pdev->dev, "ch%u: cannot enable clock\n", ch->index); return ret; } /* make sure channel is disabled */ sh_mtu2_start_stop_ch(ch, 0); rate = clk_get_rate(ch->mtu->clk) / 64; periodic = (rate + HZ/2) / HZ; /* * "Periodic Counter Operation" * Clear on TGRA compare match, divide clock by 64. */ sh_mtu2_write(ch, TCR, TCR_CCLR_TGRA | TCR_TPSC_P64); sh_mtu2_write(ch, TIOR, TIOC_IOCH(TIOR_OC_0_CLEAR) | TIOC_IOCL(TIOR_OC_0_CLEAR)); sh_mtu2_write(ch, TGR, periodic); sh_mtu2_write(ch, TCNT, 0); sh_mtu2_write(ch, TMDR, TMDR_MD_NORMAL); sh_mtu2_write(ch, TIER, TIER_TGIEA); /* enable channel */ sh_mtu2_start_stop_ch(ch, 1); return 0; } static void sh_mtu2_disable(struct sh_mtu2_channel *ch) { /* disable channel */ sh_mtu2_start_stop_ch(ch, 0); /* stop clock */ clk_disable(ch->mtu->clk); dev_pm_syscore_device(&ch->mtu->pdev->dev, false); pm_runtime_put(&ch->mtu->pdev->dev); } static irqreturn_t sh_mtu2_interrupt(int irq, void *dev_id) { struct sh_mtu2_channel *ch = dev_id; /* acknowledge interrupt */ sh_mtu2_read(ch, TSR); sh_mtu2_write(ch, TSR, ~TSR_TGFA); /* notify clockevent layer */ ch->ced.event_handler(&ch->ced); return IRQ_HANDLED; } static struct sh_mtu2_channel *ced_to_sh_mtu2(struct clock_event_device *ced) { return container_of(ced, struct sh_mtu2_channel, ced); } static int sh_mtu2_clock_event_shutdown(struct clock_event_device *ced) { struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced); if (clockevent_state_periodic(ced)) sh_mtu2_disable(ch); return 0; } static int sh_mtu2_clock_event_set_periodic(struct clock_event_device *ced) { struct sh_mtu2_channel *ch = ced_to_sh_mtu2(ced); if (clockevent_state_periodic(ced)) sh_mtu2_disable(ch); dev_info(&ch->mtu->pdev->dev, "ch%u: used for periodic clock events\n", ch->index); sh_mtu2_enable(ch); return 0; } static void sh_mtu2_clock_event_suspend(struct clock_event_device *ced) { dev_pm_genpd_suspend(&ced_to_sh_mtu2(ced)->mtu->pdev->dev); } static void sh_mtu2_clock_event_resume(struct clock_event_device *ced) { dev_pm_genpd_resume(&ced_to_sh_mtu2(ced)->mtu->pdev->dev); } static void sh_mtu2_register_clockevent(struct sh_mtu2_channel *ch, const char *name) { struct clock_event_device *ced = &ch->ced; ced->name = name; ced->features = CLOCK_EVT_FEAT_PERIODIC; ced->rating = 200; ced->cpumask = cpu_possible_mask; ced->set_state_shutdown = sh_mtu2_clock_event_shutdown; ced->set_state_periodic = sh_mtu2_clock_event_set_periodic; ced->suspend = sh_mtu2_clock_event_suspend; ced->resume = sh_mtu2_clock_event_resume; dev_info(&ch->mtu->pdev->dev, "ch%u: used for clock events\n", ch->index); clockevents_register_device(ced); } static int sh_mtu2_register(struct sh_mtu2_channel *ch, const char *name) { ch->mtu->has_clockevent = true; sh_mtu2_register_clockevent(ch, name); return 0; } static const unsigned int sh_mtu2_channel_offsets[] = { 0x300, 0x380, 0x000, }; static int sh_mtu2_setup_channel(struct sh_mtu2_channel *ch, unsigned int index, struct sh_mtu2_device *mtu) { char name[6]; int irq; int ret; ch->mtu = mtu; sprintf(name, "tgi%ua", index); irq = platform_get_irq_byname(mtu->pdev, name); if (irq < 0) { /* Skip channels with no declared interrupt. */ return 0; } ret = request_irq(irq, sh_mtu2_interrupt, IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, dev_name(&ch->mtu->pdev->dev), ch); if (ret) { dev_err(&ch->mtu->pdev->dev, "ch%u: failed to request irq %d\n", index, irq); return ret; } ch->base = mtu->mapbase + sh_mtu2_channel_offsets[index]; ch->index = index; return sh_mtu2_register(ch, dev_name(&mtu->pdev->dev)); } static int sh_mtu2_map_memory(struct sh_mtu2_device *mtu) { struct resource *res; res = platform_get_resource(mtu->pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&mtu->pdev->dev, "failed to get I/O memory\n"); return -ENXIO; } mtu->mapbase = ioremap(res->start, resource_size(res)); if (mtu->mapbase == NULL) return -ENXIO; return 0; } static int sh_mtu2_setup(struct sh_mtu2_device *mtu, struct platform_device *pdev) { unsigned int i; int ret; mtu->pdev = pdev; raw_spin_lock_init(&mtu->lock); /* Get hold of clock. */ mtu->clk = clk_get(&mtu->pdev->dev, "fck"); if (IS_ERR(mtu->clk)) { dev_err(&mtu->pdev->dev, "cannot get clock\n"); return PTR_ERR(mtu->clk); } ret = clk_prepare(mtu->clk); if (ret < 0) goto err_clk_put; /* Map the memory resource. */ ret = sh_mtu2_map_memory(mtu); if (ret < 0) { dev_err(&mtu->pdev->dev, "failed to remap I/O memory\n"); goto err_clk_unprepare; } /* Allocate and setup the channels. */ ret = platform_irq_count(pdev); if (ret < 0) goto err_unmap; mtu->num_channels = min_t(unsigned int, ret, ARRAY_SIZE(sh_mtu2_channel_offsets)); mtu->channels = kcalloc(mtu->num_channels, sizeof(*mtu->channels), GFP_KERNEL); if (mtu->channels == NULL) { ret = -ENOMEM; goto err_unmap; } for (i = 0; i < mtu->num_channels; ++i) { ret = sh_mtu2_setup_channel(&mtu->channels[i], i, mtu); if (ret < 0) goto err_unmap; } platform_set_drvdata(pdev, mtu); return 0; err_unmap: kfree(mtu->channels); iounmap(mtu->mapbase); err_clk_unprepare: clk_unprepare(mtu->clk); err_clk_put: clk_put(mtu->clk); return ret; } static int sh_mtu2_probe(struct platform_device *pdev) { struct sh_mtu2_device *mtu = platform_get_drvdata(pdev); int ret; if (!is_sh_early_platform_device(pdev)) { pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); } if (mtu) { dev_info(&pdev->dev, "kept as earlytimer\n"); goto out; } mtu = kzalloc(sizeof(*mtu), GFP_KERNEL); if (mtu == NULL) return -ENOMEM; ret = sh_mtu2_setup(mtu, pdev); if (ret) { kfree(mtu); pm_runtime_idle(&pdev->dev); return ret; } if (is_sh_early_platform_device(pdev)) return 0; out: if (mtu->has_clockevent) pm_runtime_irq_safe(&pdev->dev); else pm_runtime_idle(&pdev->dev); return 0; } static const struct platform_device_id sh_mtu2_id_table[] = { { "sh-mtu2", 0 }, { }, }; MODULE_DEVICE_TABLE(platform, sh_mtu2_id_table); static const struct of_device_id sh_mtu2_of_table[] __maybe_unused = { { .compatible = "renesas,mtu2" }, { } }; MODULE_DEVICE_TABLE(of, sh_mtu2_of_table); static struct platform_driver sh_mtu2_device_driver = { .probe = sh_mtu2_probe, .driver = { .name = "sh_mtu2", .of_match_table = of_match_ptr(sh_mtu2_of_table), .suppress_bind_attrs = true, }, .id_table = sh_mtu2_id_table, }; static int __init sh_mtu2_init(void) { return platform_driver_register(&sh_mtu2_device_driver); } static void __exit sh_mtu2_exit(void) { platform_driver_unregister(&sh_mtu2_device_driver); } #ifdef CONFIG_SUPERH sh_early_platform_init("earlytimer", &sh_mtu2_device_driver); #endif subsys_initcall(sh_mtu2_init); module_exit(sh_mtu2_exit); MODULE_AUTHOR("Magnus Damm"); MODULE_DESCRIPTION("SuperH MTU2 Timer Driver");
linux-master
drivers/clocksource/sh_mtu2.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2007 Google, Inc. * Copyright (c) 2009-2012,2014, The Linux Foundation. All rights reserved. */ #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <asm/delay.h> #define TIMER_MATCH_VAL 0x0000 #define TIMER_COUNT_VAL 0x0004 #define TIMER_ENABLE 0x0008 #define TIMER_ENABLE_CLR_ON_MATCH_EN BIT(1) #define TIMER_ENABLE_EN BIT(0) #define TIMER_CLEAR 0x000C #define DGT_CLK_CTL 0x10 #define DGT_CLK_CTL_DIV_4 0x3 #define TIMER_STS_GPT0_CLR_PEND BIT(10) #define GPT_HZ 32768 static void __iomem *event_base; static void __iomem *sts_base; static irqreturn_t msm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; /* Stop the timer tick */ if (clockevent_state_oneshot(evt)) { u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE); ctrl &= ~TIMER_ENABLE_EN; writel_relaxed(ctrl, event_base + TIMER_ENABLE); } evt->event_handler(evt); return IRQ_HANDLED; } static int msm_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { u32 ctrl = readl_relaxed(event_base + TIMER_ENABLE); ctrl &= ~TIMER_ENABLE_EN; writel_relaxed(ctrl, event_base + TIMER_ENABLE); writel_relaxed(ctrl, event_base + TIMER_CLEAR); writel_relaxed(cycles, event_base + TIMER_MATCH_VAL); if (sts_base) while (readl_relaxed(sts_base) & TIMER_STS_GPT0_CLR_PEND) cpu_relax(); writel_relaxed(ctrl | TIMER_ENABLE_EN, event_base + TIMER_ENABLE); return 0; } static int msm_timer_shutdown(struct clock_event_device *evt) { u32 ctrl; ctrl = readl_relaxed(event_base + TIMER_ENABLE); ctrl &= ~(TIMER_ENABLE_EN | TIMER_ENABLE_CLR_ON_MATCH_EN); writel_relaxed(ctrl, event_base + TIMER_ENABLE); return 0; } static struct clock_event_device __percpu *msm_evt; static void __iomem *source_base; static notrace u64 msm_read_timer_count(struct clocksource *cs) { return readl_relaxed(source_base + TIMER_COUNT_VAL); } static struct clocksource msm_clocksource = { .name = "dg_timer", .rating = 300, .read = msm_read_timer_count, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int msm_timer_irq; static int msm_timer_has_ppi; static int msm_local_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu); int err; evt->irq = msm_timer_irq; evt->name = "msm_timer"; evt->features = CLOCK_EVT_FEAT_ONESHOT; evt->rating = 200; evt->set_state_shutdown = msm_timer_shutdown; evt->set_state_oneshot = msm_timer_shutdown; evt->tick_resume = msm_timer_shutdown; evt->set_next_event = msm_timer_set_next_event; evt->cpumask = cpumask_of(cpu); clockevents_config_and_register(evt, GPT_HZ, 4, 0xffffffff); if (msm_timer_has_ppi) { enable_percpu_irq(evt->irq, IRQ_TYPE_EDGE_RISING); } else { err = request_irq(evt->irq, msm_timer_interrupt, IRQF_TIMER | IRQF_NOBALANCING | IRQF_TRIGGER_RISING, "gp_timer", evt); if (err) pr_err("request_irq failed\n"); } return 0; } static int msm_local_timer_dying_cpu(unsigned int cpu) { struct clock_event_device *evt = per_cpu_ptr(msm_evt, cpu); evt->set_state_shutdown(evt); disable_percpu_irq(evt->irq); return 0; } static u64 notrace msm_sched_clock_read(void) { return msm_clocksource.read(&msm_clocksource); } static unsigned long msm_read_current_timer(void) { return msm_clocksource.read(&msm_clocksource); } static struct delay_timer msm_delay_timer = { .read_current_timer = msm_read_current_timer, }; static int __init msm_timer_init(u32 dgt_hz, int sched_bits, int irq, bool percpu) { struct clocksource *cs = &msm_clocksource; int res = 0; msm_timer_irq = irq; msm_timer_has_ppi = percpu; msm_evt = alloc_percpu(struct clock_event_device); if (!msm_evt) { pr_err("memory allocation failed for clockevents\n"); goto err; } if (percpu) res = request_percpu_irq(irq, msm_timer_interrupt, "gp_timer", msm_evt); if (res) { pr_err("request_percpu_irq failed\n"); } else { /* Install and invoke hotplug callbacks */ res = cpuhp_setup_state(CPUHP_AP_QCOM_TIMER_STARTING, "clockevents/qcom/timer:starting", msm_local_timer_starting_cpu, msm_local_timer_dying_cpu); if (res) { free_percpu_irq(irq, msm_evt); goto err; } } err: writel_relaxed(TIMER_ENABLE_EN, source_base + TIMER_ENABLE); res = clocksource_register_hz(cs, dgt_hz); if (res) pr_err("clocksource_register failed\n"); sched_clock_register(msm_sched_clock_read, sched_bits, dgt_hz); msm_delay_timer.freq = dgt_hz; register_current_timer_delay(&msm_delay_timer); return res; } static int __init msm_dt_timer_init(struct device_node *np) { u32 freq; int irq, ret; struct resource res; u32 percpu_offset; void __iomem *base; void __iomem *cpu0_base; base = of_iomap(np, 0); if (!base) { pr_err("Failed to map event base\n"); return -ENXIO; } /* We use GPT0 for the clockevent */ irq = irq_of_parse_and_map(np, 1); if (irq <= 0) { pr_err("Can't get irq\n"); return -EINVAL; } /* We use CPU0's DGT for the clocksource */ if (of_property_read_u32(np, "cpu-offset", &percpu_offset)) percpu_offset = 0; ret = of_address_to_resource(np, 0, &res); if (ret) { pr_err("Failed to parse DGT resource\n"); return ret; } cpu0_base = ioremap(res.start + percpu_offset, resource_size(&res)); if (!cpu0_base) { pr_err("Failed to map source base\n"); return -EINVAL; } if (of_property_read_u32(np, "clock-frequency", &freq)) { pr_err("Unknown frequency\n"); return -EINVAL; } event_base = base + 0x4; sts_base = base + 0x88; source_base = cpu0_base + 0x24; freq /= 4; writel_relaxed(DGT_CLK_CTL_DIV_4, source_base + DGT_CLK_CTL); return msm_timer_init(freq, 32, irq, !!percpu_offset); } TIMER_OF_DECLARE(kpss_timer, "qcom,kpss-timer", msm_dt_timer_init); TIMER_OF_DECLARE(scss_timer, "qcom,scss-timer", msm_dt_timer_init);
linux-master
drivers/clocksource/timer-qcom.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2014 ARM Limited */ #include <linux/clocksource.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/sched_clock.h> #define SYS_24MHZ 0x05c static void __iomem *versatile_sys_24mhz; static u64 notrace versatile_sys_24mhz_read(void) { return readl(versatile_sys_24mhz); } static int __init versatile_sched_clock_init(struct device_node *node) { void __iomem *base = of_iomap(node, 0); of_node_clear_flag(node, OF_POPULATED); if (!base) return -ENXIO; versatile_sys_24mhz = base + SYS_24MHZ; sched_clock_register(versatile_sys_24mhz_read, 32, 24000000); return 0; } TIMER_OF_DECLARE(vexpress, "arm,vexpress-sysreg", versatile_sched_clock_init); TIMER_OF_DECLARE(versatile, "arm,versatile-sysreg", versatile_sched_clock_init);
linux-master
drivers/clocksource/timer-versatile.c
// SPDX-License-Identifier: GPL-2.0 /* * Faraday Technology FTTMR010 timer driver * Copyright (C) 2017 Linus Walleij <[email protected]> * * Based on a rewrite of arch/arm/mach-gemini/timer.c: * Copyright (C) 2001-2006 Storlink, Corp. * Copyright (C) 2008-2009 Paulius Zaleckas <[email protected]> */ #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <linux/clk.h> #include <linux/slab.h> #include <linux/bitops.h> #include <linux/delay.h> /* * Register definitions common for all the timer variants. */ #define TIMER1_COUNT (0x00) #define TIMER1_LOAD (0x04) #define TIMER1_MATCH1 (0x08) #define TIMER1_MATCH2 (0x0c) #define TIMER2_COUNT (0x10) #define TIMER2_LOAD (0x14) #define TIMER2_MATCH1 (0x18) #define TIMER2_MATCH2 (0x1c) #define TIMER3_COUNT (0x20) #define TIMER3_LOAD (0x24) #define TIMER3_MATCH1 (0x28) #define TIMER3_MATCH2 (0x2c) #define TIMER_CR (0x30) /* * Control register set to clear for ast2600 only. */ #define AST2600_TIMER_CR_CLR (0x3c) /* * Control register (TMC30) bit fields for fttmr010/gemini/moxart timers. */ #define TIMER_1_CR_ENABLE BIT(0) #define TIMER_1_CR_CLOCK BIT(1) #define TIMER_1_CR_INT BIT(2) #define TIMER_2_CR_ENABLE BIT(3) #define TIMER_2_CR_CLOCK BIT(4) #define TIMER_2_CR_INT BIT(5) #define TIMER_3_CR_ENABLE BIT(6) #define TIMER_3_CR_CLOCK BIT(7) #define TIMER_3_CR_INT BIT(8) #define TIMER_1_CR_UPDOWN BIT(9) #define TIMER_2_CR_UPDOWN BIT(10) #define TIMER_3_CR_UPDOWN BIT(11) /* * Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers. * The aspeed timers move bits around in the control register and lacks * bits for setting the timer to count upwards. */ #define TIMER_1_CR_ASPEED_ENABLE BIT(0) #define TIMER_1_CR_ASPEED_CLOCK BIT(1) #define TIMER_1_CR_ASPEED_INT BIT(2) #define TIMER_2_CR_ASPEED_ENABLE BIT(4) #define TIMER_2_CR_ASPEED_CLOCK BIT(5) #define TIMER_2_CR_ASPEED_INT BIT(6) #define TIMER_3_CR_ASPEED_ENABLE BIT(8) #define TIMER_3_CR_ASPEED_CLOCK BIT(9) #define TIMER_3_CR_ASPEED_INT BIT(10) /* * Interrupt status/mask register definitions for fttmr010/gemini/moxart * timers. * The registers don't exist and they are not needed on aspeed timers * because: * - aspeed timer overflow interrupt is controlled by bits in Control * Register (TMC30). * - aspeed timers always generate interrupt when either one of the * Match registers equals to Status register. */ #define TIMER_INTR_STATE (0x34) #define TIMER_INTR_MASK (0x38) #define TIMER_1_INT_MATCH1 BIT(0) #define TIMER_1_INT_MATCH2 BIT(1) #define TIMER_1_INT_OVERFLOW BIT(2) #define TIMER_2_INT_MATCH1 BIT(3) #define TIMER_2_INT_MATCH2 BIT(4) #define TIMER_2_INT_OVERFLOW BIT(5) #define TIMER_3_INT_MATCH1 BIT(6) #define TIMER_3_INT_MATCH2 BIT(7) #define TIMER_3_INT_OVERFLOW BIT(8) #define TIMER_INT_ALL_MASK 0x1ff struct fttmr010 { void __iomem *base; unsigned int tick_rate; bool is_aspeed; u32 t1_enable_val; struct clock_event_device clkevt; int (*timer_shutdown)(struct clock_event_device *evt); #ifdef CONFIG_ARM struct delay_timer delay_timer; #endif }; /* * A local singleton used by sched_clock and delay timer reads, which are * fast and stateless */ static struct fttmr010 *local_fttmr; static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt) { return container_of(evt, struct fttmr010, clkevt); } static unsigned long fttmr010_read_current_timer_up(void) { return readl(local_fttmr->base + TIMER2_COUNT); } static unsigned long fttmr010_read_current_timer_down(void) { return ~readl(local_fttmr->base + TIMER2_COUNT); } static u64 notrace fttmr010_read_sched_clock_up(void) { return fttmr010_read_current_timer_up(); } static u64 notrace fttmr010_read_sched_clock_down(void) { return fttmr010_read_current_timer_down(); } static int fttmr010_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct fttmr010 *fttmr010 = to_fttmr010(evt); u32 cr; /* Stop */ fttmr010->timer_shutdown(evt); if (fttmr010->is_aspeed) { /* * ASPEED Timer Controller will load TIMER1_LOAD register * into TIMER1_COUNT register when the timer is re-enabled. */ writel(cycles, fttmr010->base + TIMER1_LOAD); } else { /* Setup the match register forward in time */ cr = readl(fttmr010->base + TIMER1_COUNT); writel(cr + cycles, fttmr010->base + TIMER1_MATCH1); } /* Start */ cr = readl(fttmr010->base + TIMER_CR); cr |= fttmr010->t1_enable_val; writel(cr, fttmr010->base + TIMER_CR); return 0; } static int ast2600_timer_shutdown(struct clock_event_device *evt) { struct fttmr010 *fttmr010 = to_fttmr010(evt); /* Stop */ writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR); return 0; } static int fttmr010_timer_shutdown(struct clock_event_device *evt) { struct fttmr010 *fttmr010 = to_fttmr010(evt); u32 cr; /* Stop */ cr = readl(fttmr010->base + TIMER_CR); cr &= ~fttmr010->t1_enable_val; writel(cr, fttmr010->base + TIMER_CR); return 0; } static int fttmr010_timer_set_oneshot(struct clock_event_device *evt) { struct fttmr010 *fttmr010 = to_fttmr010(evt); u32 cr; /* Stop */ fttmr010->timer_shutdown(evt); /* Setup counter start from 0 or ~0 */ writel(0, fttmr010->base + TIMER1_COUNT); if (fttmr010->is_aspeed) { writel(~0, fttmr010->base + TIMER1_LOAD); } else { writel(0, fttmr010->base + TIMER1_LOAD); /* Enable interrupt */ cr = readl(fttmr010->base + TIMER_INTR_MASK); cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2); cr |= TIMER_1_INT_MATCH1; writel(cr, fttmr010->base + TIMER_INTR_MASK); } return 0; } static int fttmr010_timer_set_periodic(struct clock_event_device *evt) { struct fttmr010 *fttmr010 = to_fttmr010(evt); u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ); u32 cr; /* Stop */ fttmr010->timer_shutdown(evt); /* Setup timer to fire at 1/HZ intervals. */ if (fttmr010->is_aspeed) { writel(period, fttmr010->base + TIMER1_LOAD); } else { cr = 0xffffffff - (period - 1); writel(cr, fttmr010->base + TIMER1_COUNT); writel(cr, fttmr010->base + TIMER1_LOAD); /* Enable interrupt on overflow */ cr = readl(fttmr010->base + TIMER_INTR_MASK); cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2); cr |= TIMER_1_INT_OVERFLOW; writel(cr, fttmr010->base + TIMER_INTR_MASK); } /* Start the timer */ cr = readl(fttmr010->base + TIMER_CR); cr |= fttmr010->t1_enable_val; writel(cr, fttmr010->base + TIMER_CR); return 0; } /* * IRQ handler for the timer */ static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; struct fttmr010 *fttmr010 = to_fttmr010(evt); writel(0x1, fttmr010->base + TIMER_INTR_STATE); evt->event_handler(evt); return IRQ_HANDLED; } static int __init fttmr010_common_init(struct device_node *np, bool is_aspeed, bool is_ast2600) { struct fttmr010 *fttmr010; int irq; struct clk *clk; int ret; u32 val; /* * These implementations require a clock reference. * FIXME: we currently only support clocking using PCLK * and using EXTCLK is not supported in the driver. */ clk = of_clk_get_by_name(np, "PCLK"); if (IS_ERR(clk)) { pr_err("could not get PCLK\n"); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_err("failed to enable PCLK\n"); return ret; } fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL); if (!fttmr010) { ret = -ENOMEM; goto out_disable_clock; } fttmr010->tick_rate = clk_get_rate(clk); fttmr010->base = of_iomap(np, 0); if (!fttmr010->base) { pr_err("Can't remap registers\n"); ret = -ENXIO; goto out_free; } /* IRQ for timer 1 */ irq = irq_of_parse_and_map(np, 0); if (irq <= 0) { pr_err("Can't parse IRQ\n"); ret = -EINVAL; goto out_unmap; } /* * The Aspeed timers move bits around in the control register. */ if (is_aspeed) { fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE | TIMER_1_CR_ASPEED_INT; fttmr010->is_aspeed = true; } else { fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT; /* * Reset the interrupt mask and status */ writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK); writel(0, fttmr010->base + TIMER_INTR_STATE); } /* * Enable timer 1 count up, timer 2 count up, except on Aspeed, * where everything just counts down. */ if (is_aspeed) val = TIMER_2_CR_ASPEED_ENABLE; else { val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN | TIMER_2_CR_UPDOWN; } writel(val, fttmr010->base + TIMER_CR); /* * Setup free-running clocksource timer (interrupts * disabled.) */ local_fttmr = fttmr010; writel(0, fttmr010->base + TIMER2_COUNT); writel(0, fttmr010->base + TIMER2_MATCH1); writel(0, fttmr010->base + TIMER2_MATCH2); if (fttmr010->is_aspeed) { writel(~0, fttmr010->base + TIMER2_LOAD); clocksource_mmio_init(fttmr010->base + TIMER2_COUNT, "FTTMR010-TIMER2", fttmr010->tick_rate, 300, 32, clocksource_mmio_readl_down); sched_clock_register(fttmr010_read_sched_clock_down, 32, fttmr010->tick_rate); } else { writel(0, fttmr010->base + TIMER2_LOAD); clocksource_mmio_init(fttmr010->base + TIMER2_COUNT, "FTTMR010-TIMER2", fttmr010->tick_rate, 300, 32, clocksource_mmio_readl_up); sched_clock_register(fttmr010_read_sched_clock_up, 32, fttmr010->tick_rate); } /* * Setup clockevent timer (interrupt-driven) on timer 1. */ writel(0, fttmr010->base + TIMER1_COUNT); writel(0, fttmr010->base + TIMER1_LOAD); writel(0, fttmr010->base + TIMER1_MATCH1); writel(0, fttmr010->base + TIMER1_MATCH2); if (is_ast2600) { fttmr010->timer_shutdown = ast2600_timer_shutdown; ret = request_irq(irq, ast2600_timer_interrupt, IRQF_TIMER, "FTTMR010-TIMER1", &fttmr010->clkevt); } else { fttmr010->timer_shutdown = fttmr010_timer_shutdown; ret = request_irq(irq, fttmr010_timer_interrupt, IRQF_TIMER, "FTTMR010-TIMER1", &fttmr010->clkevt); } if (ret) { pr_err("FTTMR010-TIMER1 no IRQ\n"); goto out_unmap; } fttmr010->clkevt.name = "FTTMR010-TIMER1"; /* Reasonably fast and accurate clock event */ fttmr010->clkevt.rating = 300; fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event; fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown; fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic; fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot; fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown; fttmr010->clkevt.cpumask = cpumask_of(0); fttmr010->clkevt.irq = irq; clockevents_config_and_register(&fttmr010->clkevt, fttmr010->tick_rate, 1, 0xffffffff); #ifdef CONFIG_ARM /* Also use this timer for delays */ if (fttmr010->is_aspeed) fttmr010->delay_timer.read_current_timer = fttmr010_read_current_timer_down; else fttmr010->delay_timer.read_current_timer = fttmr010_read_current_timer_up; fttmr010->delay_timer.freq = fttmr010->tick_rate; register_current_timer_delay(&fttmr010->delay_timer); #endif return 0; out_unmap: iounmap(fttmr010->base); out_free: kfree(fttmr010); out_disable_clock: clk_disable_unprepare(clk); return ret; } static __init int ast2600_timer_init(struct device_node *np) { return fttmr010_common_init(np, true, true); } static __init int aspeed_timer_init(struct device_node *np) { return fttmr010_common_init(np, true, false); } static __init int fttmr010_timer_init(struct device_node *np) { return fttmr010_common_init(np, false, false); } TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init); TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init); TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init); TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init); TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init); TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
linux-master
drivers/clocksource/timer-fttmr010.c
// SPDX-License-Identifier: GPL-2.0-only /** * timer-ti-32k.c - OMAP2 32k Timer Support * * Copyright (C) 2009 Nokia Corporation * * Update to use new clocksource/clockevent layers * Author: Kevin Hilman, MontaVista Software, Inc. <[email protected]> * Copyright (C) 2007 MontaVista Software, Inc. * * Original driver: * Copyright (C) 2005 Nokia Corporation * Author: Paul Mundt <[email protected]> * Juha Yrjölä <[email protected]> * OMAP Dual-mode timer framework support by Timo Teras * * Some parts based off of TI's 24xx code: * * Copyright (C) 2004-2009 Texas Instruments, Inc. * * Roughly modelled after the OMAP1 MPU timer code. * Added OMAP4 support - Santosh Shilimkar <[email protected]> * * Copyright (C) 2015 Texas Instruments Incorporated - https://www.ti.com */ #include <linux/clk.h> #include <linux/init.h> #include <linux/time.h> #include <linux/sched_clock.h> #include <linux/clocksource.h> #include <linux/of.h> #include <linux/of_address.h> /* * 32KHz clocksource ... always available, on pretty most chips except * OMAP 730 and 1510. Other timers could be used as clocksources, with * higher resolution in free-running counter modes (e.g. 12 MHz xtal), * but systems won't necessarily want to spend resources that way. */ #define OMAP2_32KSYNCNT_REV_OFF 0x0 #define OMAP2_32KSYNCNT_REV_SCHEME (0x3 << 30) #define OMAP2_32KSYNCNT_CR_OFF_LOW 0x10 #define OMAP2_32KSYNCNT_CR_OFF_HIGH 0x30 struct ti_32k { void __iomem *base; void __iomem *counter; struct clocksource cs; }; static inline struct ti_32k *to_ti_32k(struct clocksource *cs) { return container_of(cs, struct ti_32k, cs); } static u64 notrace ti_32k_read_cycles(struct clocksource *cs) { struct ti_32k *ti = to_ti_32k(cs); return (u64)readl_relaxed(ti->counter); } static struct ti_32k ti_32k_timer = { .cs = { .name = "32k_counter", .rating = 250, .read = ti_32k_read_cycles, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }, }; static u64 notrace omap_32k_read_sched_clock(void) { return ti_32k_read_cycles(&ti_32k_timer.cs); } static void __init ti_32k_timer_enable_clock(struct device_node *np, const char *name) { struct clk *clock; int error; clock = of_clk_get_by_name(np->parent, name); if (IS_ERR(clock)) { /* Only some SoCs have a separate interface clock */ if (PTR_ERR(clock) == -EINVAL && !strncmp("ick", name, 3)) return; pr_warn("%s: could not get clock %s %li\n", __func__, name, PTR_ERR(clock)); return; } error = clk_prepare_enable(clock); if (error) { pr_warn("%s: could not enable %s: %i\n", __func__, name, error); return; } } static void __init ti_32k_timer_module_init(struct device_node *np, void __iomem *base) { void __iomem *sysc = base + 4; if (!of_device_is_compatible(np->parent, "ti,sysc")) return; ti_32k_timer_enable_clock(np, "fck"); ti_32k_timer_enable_clock(np, "ick"); /* * Force idle module as wkup domain is active with MPU. * No need to tag the module disabled for ti-sysc probe. */ writel_relaxed(0, sysc); } static int __init ti_32k_timer_init(struct device_node *np) { int ret; ti_32k_timer.base = of_iomap(np, 0); if (!ti_32k_timer.base) { pr_err("Can't ioremap 32k timer base\n"); return -ENXIO; } if (!of_machine_is_compatible("ti,am43")) ti_32k_timer.cs.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP; ti_32k_timer.counter = ti_32k_timer.base; ti_32k_timer_module_init(np, ti_32k_timer.base); /* * 32k sync Counter IP register offsets vary between the highlander * version and the legacy ones. * * The 'SCHEME' bits(30-31) of the revision register is used to identify * the version. */ if (readl_relaxed(ti_32k_timer.base + OMAP2_32KSYNCNT_REV_OFF) & OMAP2_32KSYNCNT_REV_SCHEME) ti_32k_timer.counter += OMAP2_32KSYNCNT_CR_OFF_HIGH; else ti_32k_timer.counter += OMAP2_32KSYNCNT_CR_OFF_LOW; pr_info("OMAP clocksource: 32k_counter at 32768 Hz\n"); ret = clocksource_register_hz(&ti_32k_timer.cs, 32768); if (ret) { pr_err("32k_counter: can't register clocksource\n"); return ret; } sched_clock_register(omap_32k_read_sched_clock, 32, 32768); return 0; } TIMER_OF_DECLARE(ti_32k_timer, "ti,omap-counter32k", ti_32k_timer_init);
linux-master
drivers/clocksource/timer-ti-32k.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2020 Western Digital Corporation or its affiliates. * * Most of the M-mode (i.e. NoMMU) RISC-V systems usually have a * CLINT MMIO timer device. */ #define pr_fmt(fmt) "clint: " fmt #include <linux/bitops.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/sched_clock.h> #include <linux/io-64-nonatomic-lo-hi.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqchip/chained_irq.h> #include <linux/irqdomain.h> #include <linux/of_irq.h> #include <linux/smp.h> #include <linux/timex.h> #ifndef CONFIG_RISCV_M_MODE #include <asm/clint.h> #endif #define CLINT_IPI_OFF 0 #define CLINT_TIMER_CMP_OFF 0x4000 #define CLINT_TIMER_VAL_OFF 0xbff8 /* CLINT manages IPI and Timer for RISC-V M-mode */ static u32 __iomem *clint_ipi_base; static unsigned int clint_ipi_irq; static u64 __iomem *clint_timer_cmp; static u64 __iomem *clint_timer_val; static unsigned long clint_timer_freq; static unsigned int clint_timer_irq; #ifdef CONFIG_RISCV_M_MODE u64 __iomem *clint_time_val; EXPORT_SYMBOL(clint_time_val); #endif #ifdef CONFIG_SMP static void clint_send_ipi(unsigned int cpu) { writel(1, clint_ipi_base + cpuid_to_hartid_map(cpu)); } static void clint_clear_ipi(void) { writel(0, clint_ipi_base + cpuid_to_hartid_map(smp_processor_id())); } static void clint_ipi_interrupt(struct irq_desc *desc) { struct irq_chip *chip = irq_desc_get_chip(desc); chained_irq_enter(chip, desc); clint_clear_ipi(); ipi_mux_process(); chained_irq_exit(chip, desc); } #endif #ifdef CONFIG_64BIT #define clint_get_cycles() readq_relaxed(clint_timer_val) #else #define clint_get_cycles() readl_relaxed(clint_timer_val) #define clint_get_cycles_hi() readl_relaxed(((u32 *)clint_timer_val) + 1) #endif #ifdef CONFIG_64BIT static u64 notrace clint_get_cycles64(void) { return clint_get_cycles(); } #else /* CONFIG_64BIT */ static u64 notrace clint_get_cycles64(void) { u32 hi, lo; do { hi = clint_get_cycles_hi(); lo = clint_get_cycles(); } while (hi != clint_get_cycles_hi()); return ((u64)hi << 32) | lo; } #endif /* CONFIG_64BIT */ static u64 clint_rdtime(struct clocksource *cs) { return clint_get_cycles64(); } static struct clocksource clint_clocksource = { .name = "clint_clocksource", .rating = 300, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .read = clint_rdtime, }; static int clint_clock_next_event(unsigned long delta, struct clock_event_device *ce) { void __iomem *r = clint_timer_cmp + cpuid_to_hartid_map(smp_processor_id()); csr_set(CSR_IE, IE_TIE); writeq_relaxed(clint_get_cycles64() + delta, r); return 0; } static DEFINE_PER_CPU(struct clock_event_device, clint_clock_event) = { .name = "clint_clockevent", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 100, .set_next_event = clint_clock_next_event, }; static int clint_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *ce = per_cpu_ptr(&clint_clock_event, cpu); ce->cpumask = cpumask_of(cpu); clockevents_config_and_register(ce, clint_timer_freq, 100, 0x7fffffff); enable_percpu_irq(clint_timer_irq, irq_get_trigger_type(clint_timer_irq)); enable_percpu_irq(clint_ipi_irq, irq_get_trigger_type(clint_ipi_irq)); return 0; } static int clint_timer_dying_cpu(unsigned int cpu) { disable_percpu_irq(clint_timer_irq); /* * Don't disable IPI when CPU goes offline because * the masking/unmasking of virtual IPIs is done * via generic IPI-Mux */ return 0; } static irqreturn_t clint_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evdev = this_cpu_ptr(&clint_clock_event); csr_clear(CSR_IE, IE_TIE); evdev->event_handler(evdev); return IRQ_HANDLED; } static int __init clint_timer_init_dt(struct device_node *np) { int rc; u32 i, nr_irqs; void __iomem *base; struct of_phandle_args oirq; /* * Ensure that CLINT device interrupts are either RV_IRQ_TIMER or * RV_IRQ_SOFT. If it's anything else then we ignore the device. */ nr_irqs = of_irq_count(np); for (i = 0; i < nr_irqs; i++) { if (of_irq_parse_one(np, i, &oirq)) { pr_err("%pOFP: failed to parse irq %d.\n", np, i); continue; } if ((oirq.args_count != 1) || (oirq.args[0] != RV_IRQ_TIMER && oirq.args[0] != RV_IRQ_SOFT)) { pr_err("%pOFP: invalid irq %d (hwirq %d)\n", np, i, oirq.args[0]); return -ENODEV; } /* Find parent irq domain and map ipi irq */ if (!clint_ipi_irq && oirq.args[0] == RV_IRQ_SOFT && irq_find_host(oirq.np)) clint_ipi_irq = irq_of_parse_and_map(np, i); /* Find parent irq domain and map timer irq */ if (!clint_timer_irq && oirq.args[0] == RV_IRQ_TIMER && irq_find_host(oirq.np)) clint_timer_irq = irq_of_parse_and_map(np, i); } /* If CLINT ipi or timer irq not found then fail */ if (!clint_ipi_irq || !clint_timer_irq) { pr_err("%pOFP: ipi/timer irq not found\n", np); return -ENODEV; } base = of_iomap(np, 0); if (!base) { pr_err("%pOFP: could not map registers\n", np); return -ENODEV; } clint_ipi_base = base + CLINT_IPI_OFF; clint_timer_cmp = base + CLINT_TIMER_CMP_OFF; clint_timer_val = base + CLINT_TIMER_VAL_OFF; clint_timer_freq = riscv_timebase; #ifdef CONFIG_RISCV_M_MODE /* * Yes, that's an odd naming scheme. time_val is public, but hopefully * will die in favor of something cleaner. */ clint_time_val = clint_timer_val; #endif pr_info("%pOFP: timer running at %ld Hz\n", np, clint_timer_freq); rc = clocksource_register_hz(&clint_clocksource, clint_timer_freq); if (rc) { pr_err("%pOFP: clocksource register failed [%d]\n", np, rc); goto fail_iounmap; } sched_clock_register(clint_get_cycles64, 64, clint_timer_freq); rc = request_percpu_irq(clint_timer_irq, clint_timer_interrupt, "clint-timer", &clint_clock_event); if (rc) { pr_err("registering percpu irq failed [%d]\n", rc); goto fail_iounmap; } #ifdef CONFIG_SMP rc = ipi_mux_create(BITS_PER_BYTE, clint_send_ipi); if (rc <= 0) { pr_err("unable to create muxed IPIs\n"); rc = (rc < 0) ? rc : -ENODEV; goto fail_free_irq; } irq_set_chained_handler(clint_ipi_irq, clint_ipi_interrupt); riscv_ipi_set_virq_range(rc, BITS_PER_BYTE, true); clint_clear_ipi(); #endif rc = cpuhp_setup_state(CPUHP_AP_CLINT_TIMER_STARTING, "clockevents/clint/timer:starting", clint_timer_starting_cpu, clint_timer_dying_cpu); if (rc) { pr_err("%pOFP: cpuhp setup state failed [%d]\n", np, rc); goto fail_free_irq; } return 0; fail_free_irq: free_percpu_irq(clint_timer_irq, &clint_clock_event); fail_iounmap: iounmap(base); return rc; } TIMER_OF_DECLARE(clint_timer, "riscv,clint0", clint_timer_init_dt); TIMER_OF_DECLARE(clint_timer1, "sifive,clint0", clint_timer_init_dt);
linux-master
drivers/clocksource/timer-clint.c
// SPDX-License-Identifier: GPL-2.0 /* * Amlogic Meson6 SoCs timer handling. * * Copyright (C) 2014 Carlo Caione <[email protected]> * * Based on code from Amlogic, Inc */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqreturn.h> #include <linux/sched_clock.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #ifdef CONFIG_ARM #include <linux/delay.h> #endif #define MESON_ISA_TIMER_MUX 0x00 #define MESON_ISA_TIMER_MUX_TIMERD_EN BIT(19) #define MESON_ISA_TIMER_MUX_TIMERC_EN BIT(18) #define MESON_ISA_TIMER_MUX_TIMERB_EN BIT(17) #define MESON_ISA_TIMER_MUX_TIMERA_EN BIT(16) #define MESON_ISA_TIMER_MUX_TIMERD_MODE BIT(15) #define MESON_ISA_TIMER_MUX_TIMERC_MODE BIT(14) #define MESON_ISA_TIMER_MUX_TIMERB_MODE BIT(13) #define MESON_ISA_TIMER_MUX_TIMERA_MODE BIT(12) #define MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_MASK GENMASK(10, 8) #define MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_SYSTEM_CLOCK 0x0 #define MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_1US 0x1 #define MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_10US 0x2 #define MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_100US 0x3 #define MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_1MS 0x4 #define MESON_ISA_TIMER_MUX_TIMERD_INPUT_CLOCK_MASK GENMASK(7, 6) #define MESON_ISA_TIMER_MUX_TIMERC_INPUT_CLOCK_MASK GENMASK(5, 4) #define MESON_ISA_TIMER_MUX_TIMERB_INPUT_CLOCK_MASK GENMASK(3, 2) #define MESON_ISA_TIMER_MUX_TIMERA_INPUT_CLOCK_MASK GENMASK(1, 0) #define MESON_ISA_TIMER_MUX_TIMERABCD_INPUT_CLOCK_1US 0x0 #define MESON_ISA_TIMER_MUX_TIMERABCD_INPUT_CLOCK_10US 0x1 #define MESON_ISA_TIMER_MUX_TIMERABCD_INPUT_CLOCK_100US 0x0 #define MESON_ISA_TIMER_MUX_TIMERABCD_INPUT_CLOCK_1MS 0x3 #define MESON_ISA_TIMERA 0x04 #define MESON_ISA_TIMERB 0x08 #define MESON_ISA_TIMERC 0x0c #define MESON_ISA_TIMERD 0x10 #define MESON_ISA_TIMERE 0x14 static void __iomem *timer_base; #ifdef CONFIG_ARM static unsigned long meson6_read_current_timer(void) { return readl_relaxed(timer_base + MESON_ISA_TIMERE); } static struct delay_timer meson6_delay_timer = { .read_current_timer = meson6_read_current_timer, .freq = 1000 * 1000, }; #endif static u64 notrace meson6_timer_sched_read(void) { return (u64)readl(timer_base + MESON_ISA_TIMERE); } static void meson6_clkevt_time_stop(void) { u32 val = readl(timer_base + MESON_ISA_TIMER_MUX); writel(val & ~MESON_ISA_TIMER_MUX_TIMERA_EN, timer_base + MESON_ISA_TIMER_MUX); } static void meson6_clkevt_time_setup(unsigned long delay) { writel(delay, timer_base + MESON_ISA_TIMERA); } static void meson6_clkevt_time_start(bool periodic) { u32 val = readl(timer_base + MESON_ISA_TIMER_MUX); if (periodic) val |= MESON_ISA_TIMER_MUX_TIMERA_MODE; else val &= ~MESON_ISA_TIMER_MUX_TIMERA_MODE; writel(val | MESON_ISA_TIMER_MUX_TIMERA_EN, timer_base + MESON_ISA_TIMER_MUX); } static int meson6_shutdown(struct clock_event_device *evt) { meson6_clkevt_time_stop(); return 0; } static int meson6_set_oneshot(struct clock_event_device *evt) { meson6_clkevt_time_stop(); meson6_clkevt_time_start(false); return 0; } static int meson6_set_periodic(struct clock_event_device *evt) { meson6_clkevt_time_stop(); meson6_clkevt_time_setup(USEC_PER_SEC / HZ - 1); meson6_clkevt_time_start(true); return 0; } static int meson6_clkevt_next_event(unsigned long evt, struct clock_event_device *unused) { meson6_clkevt_time_stop(); meson6_clkevt_time_setup(evt); meson6_clkevt_time_start(false); return 0; } static struct clock_event_device meson6_clockevent = { .name = "meson6_tick", .rating = 400, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = meson6_shutdown, .set_state_periodic = meson6_set_periodic, .set_state_oneshot = meson6_set_oneshot, .tick_resume = meson6_shutdown, .set_next_event = meson6_clkevt_next_event, }; static irqreturn_t meson6_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static int __init meson6_timer_init(struct device_node *node) { u32 val; int ret, irq; timer_base = of_io_request_and_map(node, 0, "meson6-timer"); if (IS_ERR(timer_base)) { pr_err("Can't map registers\n"); return -ENXIO; } irq = irq_of_parse_and_map(node, 0); if (irq <= 0) { pr_err("Can't parse IRQ\n"); return -EINVAL; } /* Set 1us for timer E */ val = readl(timer_base + MESON_ISA_TIMER_MUX); val &= ~MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_MASK; val |= FIELD_PREP(MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_MASK, MESON_ISA_TIMER_MUX_TIMERE_INPUT_CLOCK_1US); writel(val, timer_base + MESON_ISA_TIMER_MUX); sched_clock_register(meson6_timer_sched_read, 32, USEC_PER_SEC); clocksource_mmio_init(timer_base + MESON_ISA_TIMERE, node->name, 1000 * 1000, 300, 32, clocksource_mmio_readl_up); /* Timer A base 1us */ val &= ~MESON_ISA_TIMER_MUX_TIMERA_INPUT_CLOCK_MASK; val |= FIELD_PREP(MESON_ISA_TIMER_MUX_TIMERA_INPUT_CLOCK_MASK, MESON_ISA_TIMER_MUX_TIMERABCD_INPUT_CLOCK_1US); writel(val, timer_base + MESON_ISA_TIMER_MUX); /* Stop the timer A */ meson6_clkevt_time_stop(); ret = request_irq(irq, meson6_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "meson6_timer", &meson6_clockevent); if (ret) { pr_warn("failed to setup irq %d\n", irq); return ret; } meson6_clockevent.cpumask = cpu_possible_mask; meson6_clockevent.irq = irq; clockevents_config_and_register(&meson6_clockevent, USEC_PER_SEC, 1, 0xfffe); #ifdef CONFIG_ARM /* Also use MESON_ISA_TIMERE for delays */ register_current_timer_delay(&meson6_delay_timer); #endif return 0; } TIMER_OF_DECLARE(meson6, "amlogic,meson6-timer", meson6_timer_init);
linux-master
drivers/clocksource/timer-meson6.c
// SPDX-License-Identifier: GPL-2.0 /* * SuperH Timer Support - TMU * * Copyright (C) 2009 Magnus Damm */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_domain.h> #include <linux/pm_runtime.h> #include <linux/sh_timer.h> #include <linux/slab.h> #include <linux/spinlock.h> #ifdef CONFIG_SUPERH #include <asm/platform_early.h> #endif enum sh_tmu_model { SH_TMU, SH_TMU_SH3, }; struct sh_tmu_device; struct sh_tmu_channel { struct sh_tmu_device *tmu; unsigned int index; void __iomem *base; int irq; unsigned long periodic; struct clock_event_device ced; struct clocksource cs; bool cs_enabled; unsigned int enable_count; }; struct sh_tmu_device { struct platform_device *pdev; void __iomem *mapbase; struct clk *clk; unsigned long rate; enum sh_tmu_model model; raw_spinlock_t lock; /* Protect the shared start/stop register */ struct sh_tmu_channel *channels; unsigned int num_channels; bool has_clockevent; bool has_clocksource; }; #define TSTR -1 /* shared register */ #define TCOR 0 /* channel register */ #define TCNT 1 /* channel register */ #define TCR 2 /* channel register */ #define TCR_UNF (1 << 8) #define TCR_UNIE (1 << 5) #define TCR_TPSC_CLK4 (0 << 0) #define TCR_TPSC_CLK16 (1 << 0) #define TCR_TPSC_CLK64 (2 << 0) #define TCR_TPSC_CLK256 (3 << 0) #define TCR_TPSC_CLK1024 (4 << 0) #define TCR_TPSC_MASK (7 << 0) static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr) { unsigned long offs; if (reg_nr == TSTR) { switch (ch->tmu->model) { case SH_TMU_SH3: return ioread8(ch->tmu->mapbase + 2); case SH_TMU: return ioread8(ch->tmu->mapbase + 4); } } offs = reg_nr << 2; if (reg_nr == TCR) return ioread16(ch->base + offs); else return ioread32(ch->base + offs); } static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr, unsigned long value) { unsigned long offs; if (reg_nr == TSTR) { switch (ch->tmu->model) { case SH_TMU_SH3: return iowrite8(value, ch->tmu->mapbase + 2); case SH_TMU: return iowrite8(value, ch->tmu->mapbase + 4); } } offs = reg_nr << 2; if (reg_nr == TCR) iowrite16(value, ch->base + offs); else iowrite32(value, ch->base + offs); } static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start) { unsigned long flags, value; /* start stop register shared by multiple timer channels */ raw_spin_lock_irqsave(&ch->tmu->lock, flags); value = sh_tmu_read(ch, TSTR); if (start) value |= 1 << ch->index; else value &= ~(1 << ch->index); sh_tmu_write(ch, TSTR, value); raw_spin_unlock_irqrestore(&ch->tmu->lock, flags); } static int __sh_tmu_enable(struct sh_tmu_channel *ch) { int ret; /* enable clock */ ret = clk_enable(ch->tmu->clk); if (ret) { dev_err(&ch->tmu->pdev->dev, "ch%u: cannot enable clock\n", ch->index); return ret; } /* make sure channel is disabled */ sh_tmu_start_stop_ch(ch, 0); /* maximum timeout */ sh_tmu_write(ch, TCOR, 0xffffffff); sh_tmu_write(ch, TCNT, 0xffffffff); /* configure channel to parent clock / 4, irq off */ sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); /* enable channel */ sh_tmu_start_stop_ch(ch, 1); return 0; } static int sh_tmu_enable(struct sh_tmu_channel *ch) { if (ch->enable_count++ > 0) return 0; pm_runtime_get_sync(&ch->tmu->pdev->dev); dev_pm_syscore_device(&ch->tmu->pdev->dev, true); return __sh_tmu_enable(ch); } static void __sh_tmu_disable(struct sh_tmu_channel *ch) { /* disable channel */ sh_tmu_start_stop_ch(ch, 0); /* disable interrupts in TMU block */ sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); /* stop clock */ clk_disable(ch->tmu->clk); } static void sh_tmu_disable(struct sh_tmu_channel *ch) { if (WARN_ON(ch->enable_count == 0)) return; if (--ch->enable_count > 0) return; __sh_tmu_disable(ch); dev_pm_syscore_device(&ch->tmu->pdev->dev, false); pm_runtime_put(&ch->tmu->pdev->dev); } static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta, int periodic) { /* stop timer */ sh_tmu_start_stop_ch(ch, 0); /* acknowledge interrupt */ sh_tmu_read(ch, TCR); /* enable interrupt */ sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4); /* reload delta value in case of periodic timer */ if (periodic) sh_tmu_write(ch, TCOR, delta); else sh_tmu_write(ch, TCOR, 0xffffffff); sh_tmu_write(ch, TCNT, delta); /* start timer */ sh_tmu_start_stop_ch(ch, 1); } static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id) { struct sh_tmu_channel *ch = dev_id; /* disable or acknowledge interrupt */ if (clockevent_state_oneshot(&ch->ced)) sh_tmu_write(ch, TCR, TCR_TPSC_CLK4); else sh_tmu_write(ch, TCR, TCR_UNIE | TCR_TPSC_CLK4); /* notify clockevent layer */ ch->ced.event_handler(&ch->ced); return IRQ_HANDLED; } static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs) { return container_of(cs, struct sh_tmu_channel, cs); } static u64 sh_tmu_clocksource_read(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); return sh_tmu_read(ch, TCNT) ^ 0xffffffff; } static int sh_tmu_clocksource_enable(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); int ret; if (WARN_ON(ch->cs_enabled)) return 0; ret = sh_tmu_enable(ch); if (!ret) ch->cs_enabled = true; return ret; } static void sh_tmu_clocksource_disable(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); if (WARN_ON(!ch->cs_enabled)) return; sh_tmu_disable(ch); ch->cs_enabled = false; } static void sh_tmu_clocksource_suspend(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); if (!ch->cs_enabled) return; if (--ch->enable_count == 0) { __sh_tmu_disable(ch); dev_pm_genpd_suspend(&ch->tmu->pdev->dev); } } static void sh_tmu_clocksource_resume(struct clocksource *cs) { struct sh_tmu_channel *ch = cs_to_sh_tmu(cs); if (!ch->cs_enabled) return; if (ch->enable_count++ == 0) { dev_pm_genpd_resume(&ch->tmu->pdev->dev); __sh_tmu_enable(ch); } } static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch, const char *name) { struct clocksource *cs = &ch->cs; cs->name = name; cs->rating = 200; cs->read = sh_tmu_clocksource_read; cs->enable = sh_tmu_clocksource_enable; cs->disable = sh_tmu_clocksource_disable; cs->suspend = sh_tmu_clocksource_suspend; cs->resume = sh_tmu_clocksource_resume; cs->mask = CLOCKSOURCE_MASK(32); cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; dev_info(&ch->tmu->pdev->dev, "ch%u: used as clock source\n", ch->index); clocksource_register_hz(cs, ch->tmu->rate); return 0; } static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced) { return container_of(ced, struct sh_tmu_channel, ced); } static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic) { sh_tmu_enable(ch); if (periodic) { ch->periodic = (ch->tmu->rate + HZ/2) / HZ; sh_tmu_set_next(ch, ch->periodic, 1); } } static int sh_tmu_clock_event_shutdown(struct clock_event_device *ced) { struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) sh_tmu_disable(ch); return 0; } static int sh_tmu_clock_event_set_state(struct clock_event_device *ced, int periodic) { struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); /* deal with old setting first */ if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) sh_tmu_disable(ch); dev_info(&ch->tmu->pdev->dev, "ch%u: used for %s clock events\n", ch->index, periodic ? "periodic" : "oneshot"); sh_tmu_clock_event_start(ch, periodic); return 0; } static int sh_tmu_clock_event_set_oneshot(struct clock_event_device *ced) { return sh_tmu_clock_event_set_state(ced, 0); } static int sh_tmu_clock_event_set_periodic(struct clock_event_device *ced) { return sh_tmu_clock_event_set_state(ced, 1); } static int sh_tmu_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct sh_tmu_channel *ch = ced_to_sh_tmu(ced); BUG_ON(!clockevent_state_oneshot(ced)); /* program new delta value */ sh_tmu_set_next(ch, delta, 0); return 0; } static void sh_tmu_clock_event_suspend(struct clock_event_device *ced) { dev_pm_genpd_suspend(&ced_to_sh_tmu(ced)->tmu->pdev->dev); } static void sh_tmu_clock_event_resume(struct clock_event_device *ced) { dev_pm_genpd_resume(&ced_to_sh_tmu(ced)->tmu->pdev->dev); } static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch, const char *name) { struct clock_event_device *ced = &ch->ced; int ret; ced->name = name; ced->features = CLOCK_EVT_FEAT_PERIODIC; ced->features |= CLOCK_EVT_FEAT_ONESHOT; ced->rating = 200; ced->cpumask = cpu_possible_mask; ced->set_next_event = sh_tmu_clock_event_next; ced->set_state_shutdown = sh_tmu_clock_event_shutdown; ced->set_state_periodic = sh_tmu_clock_event_set_periodic; ced->set_state_oneshot = sh_tmu_clock_event_set_oneshot; ced->suspend = sh_tmu_clock_event_suspend; ced->resume = sh_tmu_clock_event_resume; dev_info(&ch->tmu->pdev->dev, "ch%u: used for clock events\n", ch->index); clockevents_config_and_register(ced, ch->tmu->rate, 0x300, 0xffffffff); ret = request_irq(ch->irq, sh_tmu_interrupt, IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING, dev_name(&ch->tmu->pdev->dev), ch); if (ret) { dev_err(&ch->tmu->pdev->dev, "ch%u: failed to request irq %d\n", ch->index, ch->irq); return; } } static int sh_tmu_register(struct sh_tmu_channel *ch, const char *name, bool clockevent, bool clocksource) { if (clockevent) { ch->tmu->has_clockevent = true; sh_tmu_register_clockevent(ch, name); } else if (clocksource) { ch->tmu->has_clocksource = true; sh_tmu_register_clocksource(ch, name); } return 0; } static int sh_tmu_channel_setup(struct sh_tmu_channel *ch, unsigned int index, bool clockevent, bool clocksource, struct sh_tmu_device *tmu) { /* Skip unused channels. */ if (!clockevent && !clocksource) return 0; ch->tmu = tmu; ch->index = index; if (tmu->model == SH_TMU_SH3) ch->base = tmu->mapbase + 4 + ch->index * 12; else ch->base = tmu->mapbase + 8 + ch->index * 12; ch->irq = platform_get_irq(tmu->pdev, index); if (ch->irq < 0) return ch->irq; ch->cs_enabled = false; ch->enable_count = 0; return sh_tmu_register(ch, dev_name(&tmu->pdev->dev), clockevent, clocksource); } static int sh_tmu_map_memory(struct sh_tmu_device *tmu) { struct resource *res; res = platform_get_resource(tmu->pdev, IORESOURCE_MEM, 0); if (!res) { dev_err(&tmu->pdev->dev, "failed to get I/O memory\n"); return -ENXIO; } tmu->mapbase = ioremap(res->start, resource_size(res)); if (tmu->mapbase == NULL) return -ENXIO; return 0; } static int sh_tmu_parse_dt(struct sh_tmu_device *tmu) { struct device_node *np = tmu->pdev->dev.of_node; tmu->model = SH_TMU; tmu->num_channels = 3; of_property_read_u32(np, "#renesas,channels", &tmu->num_channels); if (tmu->num_channels != 2 && tmu->num_channels != 3) { dev_err(&tmu->pdev->dev, "invalid number of channels %u\n", tmu->num_channels); return -EINVAL; } return 0; } static int sh_tmu_setup(struct sh_tmu_device *tmu, struct platform_device *pdev) { unsigned int i; int ret; tmu->pdev = pdev; raw_spin_lock_init(&tmu->lock); if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) { ret = sh_tmu_parse_dt(tmu); if (ret < 0) return ret; } else if (pdev->dev.platform_data) { const struct platform_device_id *id = pdev->id_entry; struct sh_timer_config *cfg = pdev->dev.platform_data; tmu->model = id->driver_data; tmu->num_channels = hweight8(cfg->channels_mask); } else { dev_err(&tmu->pdev->dev, "missing platform data\n"); return -ENXIO; } /* Get hold of clock. */ tmu->clk = clk_get(&tmu->pdev->dev, "fck"); if (IS_ERR(tmu->clk)) { dev_err(&tmu->pdev->dev, "cannot get clock\n"); return PTR_ERR(tmu->clk); } ret = clk_prepare(tmu->clk); if (ret < 0) goto err_clk_put; /* Determine clock rate. */ ret = clk_enable(tmu->clk); if (ret < 0) goto err_clk_unprepare; tmu->rate = clk_get_rate(tmu->clk) / 4; clk_disable(tmu->clk); /* Map the memory resource. */ ret = sh_tmu_map_memory(tmu); if (ret < 0) { dev_err(&tmu->pdev->dev, "failed to remap I/O memory\n"); goto err_clk_unprepare; } /* Allocate and setup the channels. */ tmu->channels = kcalloc(tmu->num_channels, sizeof(*tmu->channels), GFP_KERNEL); if (tmu->channels == NULL) { ret = -ENOMEM; goto err_unmap; } /* * Use the first channel as a clock event device and the second channel * as a clock source. */ for (i = 0; i < tmu->num_channels; ++i) { ret = sh_tmu_channel_setup(&tmu->channels[i], i, i == 0, i == 1, tmu); if (ret < 0) goto err_unmap; } platform_set_drvdata(pdev, tmu); return 0; err_unmap: kfree(tmu->channels); iounmap(tmu->mapbase); err_clk_unprepare: clk_unprepare(tmu->clk); err_clk_put: clk_put(tmu->clk); return ret; } static int sh_tmu_probe(struct platform_device *pdev) { struct sh_tmu_device *tmu = platform_get_drvdata(pdev); int ret; if (!is_sh_early_platform_device(pdev)) { pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); } if (tmu) { dev_info(&pdev->dev, "kept as earlytimer\n"); goto out; } tmu = kzalloc(sizeof(*tmu), GFP_KERNEL); if (tmu == NULL) return -ENOMEM; ret = sh_tmu_setup(tmu, pdev); if (ret) { kfree(tmu); pm_runtime_idle(&pdev->dev); return ret; } if (is_sh_early_platform_device(pdev)) return 0; out: if (tmu->has_clockevent || tmu->has_clocksource) pm_runtime_irq_safe(&pdev->dev); else pm_runtime_idle(&pdev->dev); return 0; } static const struct platform_device_id sh_tmu_id_table[] = { { "sh-tmu", SH_TMU }, { "sh-tmu-sh3", SH_TMU_SH3 }, { } }; MODULE_DEVICE_TABLE(platform, sh_tmu_id_table); static const struct of_device_id sh_tmu_of_table[] __maybe_unused = { { .compatible = "renesas,tmu" }, { } }; MODULE_DEVICE_TABLE(of, sh_tmu_of_table); static struct platform_driver sh_tmu_device_driver = { .probe = sh_tmu_probe, .driver = { .name = "sh_tmu", .of_match_table = of_match_ptr(sh_tmu_of_table), .suppress_bind_attrs = true, }, .id_table = sh_tmu_id_table, }; static int __init sh_tmu_init(void) { return platform_driver_register(&sh_tmu_device_driver); } static void __exit sh_tmu_exit(void) { platform_driver_unregister(&sh_tmu_device_driver); } #ifdef CONFIG_SUPERH sh_early_platform_init("earlytimer", &sh_tmu_device_driver); #endif subsys_initcall(sh_tmu_init); module_exit(sh_tmu_exit); MODULE_AUTHOR("Magnus Damm"); MODULE_DESCRIPTION("SuperH TMU Timer Driver");
linux-master
drivers/clocksource/sh_tmu.c
// SPDX-License-Identifier: GPL-2.0 /* * JZ47xx SoCs TCU Operating System Timer driver * * Copyright (C) 2016 Maarten ter Huurne <[email protected]> * Copyright (C) 2020 Paul Cercueil <[email protected]> */ #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/mfd/ingenic-tcu.h> #include <linux/mfd/syscon.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/regmap.h> #include <linux/sched_clock.h> #define TCU_OST_TCSR_MASK 0xffc0 #define TCU_OST_TCSR_CNT_MD BIT(15) #define TCU_OST_CHANNEL 15 /* * The TCU_REG_OST_CNT{L,R} from <linux/mfd/ingenic-tcu.h> are only for the * regmap; these are for use with the __iomem pointer. */ #define OST_REG_CNTL 0x4 #define OST_REG_CNTH 0x8 struct ingenic_ost_soc_info { bool is64bit; }; struct ingenic_ost { void __iomem *regs; struct clk *clk; struct clocksource cs; }; static struct ingenic_ost *ingenic_ost; static u64 notrace ingenic_ost_read_cntl(void) { /* Read using __iomem pointer instead of regmap to avoid locking */ return readl(ingenic_ost->regs + OST_REG_CNTL); } static u64 notrace ingenic_ost_read_cnth(void) { /* Read using __iomem pointer instead of regmap to avoid locking */ return readl(ingenic_ost->regs + OST_REG_CNTH); } static u64 notrace ingenic_ost_clocksource_readl(struct clocksource *cs) { return ingenic_ost_read_cntl(); } static u64 notrace ingenic_ost_clocksource_readh(struct clocksource *cs) { return ingenic_ost_read_cnth(); } static int __init ingenic_ost_probe(struct platform_device *pdev) { const struct ingenic_ost_soc_info *soc_info; struct device *dev = &pdev->dev; struct ingenic_ost *ost; struct clocksource *cs; struct regmap *map; unsigned long rate; int err; soc_info = device_get_match_data(dev); if (!soc_info) return -EINVAL; ost = devm_kzalloc(dev, sizeof(*ost), GFP_KERNEL); if (!ost) return -ENOMEM; ingenic_ost = ost; ost->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ost->regs)) return PTR_ERR(ost->regs); map = device_node_to_regmap(dev->parent->of_node); if (IS_ERR(map)) { dev_err(dev, "regmap not found"); return PTR_ERR(map); } ost->clk = devm_clk_get(dev, "ost"); if (IS_ERR(ost->clk)) return PTR_ERR(ost->clk); err = clk_prepare_enable(ost->clk); if (err) return err; /* Clear counter high/low registers */ if (soc_info->is64bit) regmap_write(map, TCU_REG_OST_CNTL, 0); regmap_write(map, TCU_REG_OST_CNTH, 0); /* Don't reset counter at compare value. */ regmap_update_bits(map, TCU_REG_OST_TCSR, TCU_OST_TCSR_MASK, TCU_OST_TCSR_CNT_MD); rate = clk_get_rate(ost->clk); /* Enable OST TCU channel */ regmap_write(map, TCU_REG_TESR, BIT(TCU_OST_CHANNEL)); cs = &ost->cs; cs->name = "ingenic-ost"; cs->rating = 320; cs->flags = CLOCK_SOURCE_IS_CONTINUOUS; cs->mask = CLOCKSOURCE_MASK(32); if (soc_info->is64bit) cs->read = ingenic_ost_clocksource_readl; else cs->read = ingenic_ost_clocksource_readh; err = clocksource_register_hz(cs, rate); if (err) { dev_err(dev, "clocksource registration failed"); clk_disable_unprepare(ost->clk); return err; } if (soc_info->is64bit) sched_clock_register(ingenic_ost_read_cntl, 32, rate); else sched_clock_register(ingenic_ost_read_cnth, 32, rate); return 0; } static int ingenic_ost_suspend(struct device *dev) { struct ingenic_ost *ost = dev_get_drvdata(dev); clk_disable(ost->clk); return 0; } static int ingenic_ost_resume(struct device *dev) { struct ingenic_ost *ost = dev_get_drvdata(dev); return clk_enable(ost->clk); } static const struct dev_pm_ops ingenic_ost_pm_ops = { /* _noirq: We want the OST clock to be gated last / ungated first */ .suspend_noirq = ingenic_ost_suspend, .resume_noirq = ingenic_ost_resume, }; static const struct ingenic_ost_soc_info jz4725b_ost_soc_info = { .is64bit = false, }; static const struct ingenic_ost_soc_info jz4760b_ost_soc_info = { .is64bit = true, }; static const struct of_device_id ingenic_ost_of_match[] = { { .compatible = "ingenic,jz4725b-ost", .data = &jz4725b_ost_soc_info, }, { .compatible = "ingenic,jz4760b-ost", .data = &jz4760b_ost_soc_info, }, { .compatible = "ingenic,jz4770-ost", .data = &jz4760b_ost_soc_info, }, { } }; static struct platform_driver ingenic_ost_driver = { .driver = { .name = "ingenic-ost", .pm = pm_sleep_ptr(&ingenic_ost_pm_ops), .of_match_table = ingenic_ost_of_match, }, }; builtin_platform_driver_probe(ingenic_ost_driver, ingenic_ost_probe);
linux-master
drivers/clocksource/ingenic-ost.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2019-2020 NVIDIA Corporation. All rights reserved. */ #include <linux/clocksource.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/watchdog.h> /* shared registers */ #define TKETSC0 0x000 #define TKETSC1 0x004 #define TKEUSEC 0x008 #define TKEOSC 0x00c #define TKEIE(x) (0x100 + ((x) * 4)) #define TKEIE_WDT_MASK(x, y) ((y) << (16 + 4 * (x))) /* timer registers */ #define TMRCR 0x000 #define TMRCR_ENABLE BIT(31) #define TMRCR_PERIODIC BIT(30) #define TMRCR_PTV(x) ((x) & 0x0fffffff) #define TMRSR 0x004 #define TMRSR_INTR_CLR BIT(30) #define TMRCSSR 0x008 #define TMRCSSR_SRC_USEC (0 << 0) /* watchdog registers */ #define WDTCR 0x000 #define WDTCR_SYSTEM_POR_RESET_ENABLE BIT(16) #define WDTCR_SYSTEM_DEBUG_RESET_ENABLE BIT(15) #define WDTCR_REMOTE_INT_ENABLE BIT(14) #define WDTCR_LOCAL_FIQ_ENABLE BIT(13) #define WDTCR_LOCAL_INT_ENABLE BIT(12) #define WDTCR_PERIOD_MASK (0xff << 4) #define WDTCR_PERIOD(x) (((x) & 0xff) << 4) #define WDTCR_TIMER_SOURCE_MASK 0xf #define WDTCR_TIMER_SOURCE(x) ((x) & 0xf) #define WDTCMDR 0x008 #define WDTCMDR_DISABLE_COUNTER BIT(1) #define WDTCMDR_START_COUNTER BIT(0) #define WDTUR 0x00c #define WDTUR_UNLOCK_PATTERN 0x0000c45a struct tegra186_timer_soc { unsigned int num_timers; unsigned int num_wdts; }; struct tegra186_tmr { struct tegra186_timer *parent; void __iomem *regs; unsigned int index; unsigned int hwirq; }; struct tegra186_wdt { struct watchdog_device base; void __iomem *regs; unsigned int index; bool locked; struct tegra186_tmr *tmr; }; static inline struct tegra186_wdt *to_tegra186_wdt(struct watchdog_device *wdd) { return container_of(wdd, struct tegra186_wdt, base); } struct tegra186_timer { const struct tegra186_timer_soc *soc; struct device *dev; void __iomem *regs; struct tegra186_wdt *wdt; struct clocksource usec; struct clocksource tsc; struct clocksource osc; }; static void tmr_writel(struct tegra186_tmr *tmr, u32 value, unsigned int offset) { writel_relaxed(value, tmr->regs + offset); } static void wdt_writel(struct tegra186_wdt *wdt, u32 value, unsigned int offset) { writel_relaxed(value, wdt->regs + offset); } static u32 wdt_readl(struct tegra186_wdt *wdt, unsigned int offset) { return readl_relaxed(wdt->regs + offset); } static struct tegra186_tmr *tegra186_tmr_create(struct tegra186_timer *tegra, unsigned int index) { unsigned int offset = 0x10000 + index * 0x10000; struct tegra186_tmr *tmr; tmr = devm_kzalloc(tegra->dev, sizeof(*tmr), GFP_KERNEL); if (!tmr) return ERR_PTR(-ENOMEM); tmr->parent = tegra; tmr->regs = tegra->regs + offset; tmr->index = index; tmr->hwirq = 0; return tmr; } static const struct watchdog_info tegra186_wdt_info = { .options = WDIOF_SETTIMEOUT | WDIOF_MAGICCLOSE | WDIOF_KEEPALIVEPING, .identity = "NVIDIA Tegra186 WDT", }; static void tegra186_wdt_disable(struct tegra186_wdt *wdt) { /* unlock and disable the watchdog */ wdt_writel(wdt, WDTUR_UNLOCK_PATTERN, WDTUR); wdt_writel(wdt, WDTCMDR_DISABLE_COUNTER, WDTCMDR); /* disable timer */ tmr_writel(wdt->tmr, 0, TMRCR); } static void tegra186_wdt_enable(struct tegra186_wdt *wdt) { struct tegra186_timer *tegra = wdt->tmr->parent; u32 value; /* unmask hardware IRQ, this may have been lost across powergate */ value = TKEIE_WDT_MASK(wdt->index, 1); writel(value, tegra->regs + TKEIE(wdt->tmr->hwirq)); /* clear interrupt */ tmr_writel(wdt->tmr, TMRSR_INTR_CLR, TMRSR); /* select microsecond source */ tmr_writel(wdt->tmr, TMRCSSR_SRC_USEC, TMRCSSR); /* configure timer (system reset happens on the fifth expiration) */ value = TMRCR_PTV(wdt->base.timeout * USEC_PER_SEC / 5) | TMRCR_PERIODIC | TMRCR_ENABLE; tmr_writel(wdt->tmr, value, TMRCR); if (!wdt->locked) { value = wdt_readl(wdt, WDTCR); /* select the proper timer source */ value &= ~WDTCR_TIMER_SOURCE_MASK; value |= WDTCR_TIMER_SOURCE(wdt->tmr->index); /* single timer period since that's already configured */ value &= ~WDTCR_PERIOD_MASK; value |= WDTCR_PERIOD(1); /* enable local interrupt for WDT petting */ value |= WDTCR_LOCAL_INT_ENABLE; /* enable local FIQ and remote interrupt for debug dump */ if (0) value |= WDTCR_REMOTE_INT_ENABLE | WDTCR_LOCAL_FIQ_ENABLE; /* enable system debug reset (doesn't properly reboot) */ if (0) value |= WDTCR_SYSTEM_DEBUG_RESET_ENABLE; /* enable system POR reset */ value |= WDTCR_SYSTEM_POR_RESET_ENABLE; wdt_writel(wdt, value, WDTCR); } wdt_writel(wdt, WDTCMDR_START_COUNTER, WDTCMDR); } static int tegra186_wdt_start(struct watchdog_device *wdd) { struct tegra186_wdt *wdt = to_tegra186_wdt(wdd); tegra186_wdt_enable(wdt); return 0; } static int tegra186_wdt_stop(struct watchdog_device *wdd) { struct tegra186_wdt *wdt = to_tegra186_wdt(wdd); tegra186_wdt_disable(wdt); return 0; } static int tegra186_wdt_ping(struct watchdog_device *wdd) { struct tegra186_wdt *wdt = to_tegra186_wdt(wdd); tegra186_wdt_disable(wdt); tegra186_wdt_enable(wdt); return 0; } static int tegra186_wdt_set_timeout(struct watchdog_device *wdd, unsigned int timeout) { struct tegra186_wdt *wdt = to_tegra186_wdt(wdd); if (watchdog_active(&wdt->base)) tegra186_wdt_disable(wdt); wdt->base.timeout = timeout; if (watchdog_active(&wdt->base)) tegra186_wdt_enable(wdt); return 0; } static const struct watchdog_ops tegra186_wdt_ops = { .owner = THIS_MODULE, .start = tegra186_wdt_start, .stop = tegra186_wdt_stop, .ping = tegra186_wdt_ping, .set_timeout = tegra186_wdt_set_timeout, }; static struct tegra186_wdt *tegra186_wdt_create(struct tegra186_timer *tegra, unsigned int index) { unsigned int offset = 0x10000, source; struct tegra186_wdt *wdt; u32 value; int err; offset += tegra->soc->num_timers * 0x10000 + index * 0x10000; wdt = devm_kzalloc(tegra->dev, sizeof(*wdt), GFP_KERNEL); if (!wdt) return ERR_PTR(-ENOMEM); wdt->regs = tegra->regs + offset; wdt->index = index; /* read the watchdog configuration since it might be locked down */ value = wdt_readl(wdt, WDTCR); if (value & WDTCR_LOCAL_INT_ENABLE) wdt->locked = true; source = value & WDTCR_TIMER_SOURCE_MASK; wdt->tmr = tegra186_tmr_create(tegra, source); if (IS_ERR(wdt->tmr)) return ERR_CAST(wdt->tmr); wdt->base.info = &tegra186_wdt_info; wdt->base.ops = &tegra186_wdt_ops; wdt->base.min_timeout = 1; wdt->base.max_timeout = 255; wdt->base.parent = tegra->dev; err = watchdog_init_timeout(&wdt->base, 5, tegra->dev); if (err < 0) { dev_err(tegra->dev, "failed to initialize timeout: %d\n", err); return ERR_PTR(err); } err = devm_watchdog_register_device(tegra->dev, &wdt->base); if (err < 0) { dev_err(tegra->dev, "failed to register WDT: %d\n", err); return ERR_PTR(err); } return wdt; } static u64 tegra186_timer_tsc_read(struct clocksource *cs) { struct tegra186_timer *tegra = container_of(cs, struct tegra186_timer, tsc); u32 hi, lo, ss; hi = readl_relaxed(tegra->regs + TKETSC1); /* * The 56-bit value of the TSC is spread across two registers that are * not synchronized. In order to read them atomically, ensure that the * high 24 bits match before and after reading the low 32 bits. */ do { /* snapshot the high 24 bits */ ss = hi; lo = readl_relaxed(tegra->regs + TKETSC0); hi = readl_relaxed(tegra->regs + TKETSC1); } while (hi != ss); return (u64)hi << 32 | lo; } static int tegra186_timer_tsc_init(struct tegra186_timer *tegra) { tegra->tsc.name = "tsc"; tegra->tsc.rating = 300; tegra->tsc.read = tegra186_timer_tsc_read; tegra->tsc.mask = CLOCKSOURCE_MASK(56); tegra->tsc.flags = CLOCK_SOURCE_IS_CONTINUOUS; return clocksource_register_hz(&tegra->tsc, 31250000); } static u64 tegra186_timer_osc_read(struct clocksource *cs) { struct tegra186_timer *tegra = container_of(cs, struct tegra186_timer, osc); return readl_relaxed(tegra->regs + TKEOSC); } static int tegra186_timer_osc_init(struct tegra186_timer *tegra) { tegra->osc.name = "osc"; tegra->osc.rating = 300; tegra->osc.read = tegra186_timer_osc_read; tegra->osc.mask = CLOCKSOURCE_MASK(32); tegra->osc.flags = CLOCK_SOURCE_IS_CONTINUOUS; return clocksource_register_hz(&tegra->osc, 38400000); } static u64 tegra186_timer_usec_read(struct clocksource *cs) { struct tegra186_timer *tegra = container_of(cs, struct tegra186_timer, usec); return readl_relaxed(tegra->regs + TKEUSEC); } static int tegra186_timer_usec_init(struct tegra186_timer *tegra) { tegra->usec.name = "usec"; tegra->usec.rating = 300; tegra->usec.read = tegra186_timer_usec_read; tegra->usec.mask = CLOCKSOURCE_MASK(32); tegra->usec.flags = CLOCK_SOURCE_IS_CONTINUOUS; return clocksource_register_hz(&tegra->usec, USEC_PER_SEC); } static irqreturn_t tegra186_timer_irq(int irq, void *data) { struct tegra186_timer *tegra = data; if (watchdog_active(&tegra->wdt->base)) { tegra186_wdt_disable(tegra->wdt); tegra186_wdt_enable(tegra->wdt); } return IRQ_HANDLED; } static int tegra186_timer_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct tegra186_timer *tegra; unsigned int irq; int err; tegra = devm_kzalloc(dev, sizeof(*tegra), GFP_KERNEL); if (!tegra) return -ENOMEM; tegra->soc = of_device_get_match_data(dev); dev_set_drvdata(dev, tegra); tegra->dev = dev; tegra->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(tegra->regs)) return PTR_ERR(tegra->regs); err = platform_get_irq(pdev, 0); if (err < 0) return err; irq = err; /* create a watchdog using a preconfigured timer */ tegra->wdt = tegra186_wdt_create(tegra, 0); if (IS_ERR(tegra->wdt)) { err = PTR_ERR(tegra->wdt); dev_err(dev, "failed to create WDT: %d\n", err); return err; } err = tegra186_timer_tsc_init(tegra); if (err < 0) { dev_err(dev, "failed to register TSC counter: %d\n", err); return err; } err = tegra186_timer_osc_init(tegra); if (err < 0) { dev_err(dev, "failed to register OSC counter: %d\n", err); goto unregister_tsc; } err = tegra186_timer_usec_init(tegra); if (err < 0) { dev_err(dev, "failed to register USEC counter: %d\n", err); goto unregister_osc; } err = devm_request_irq(dev, irq, tegra186_timer_irq, 0, "tegra186-timer", tegra); if (err < 0) { dev_err(dev, "failed to request IRQ#%u: %d\n", irq, err); goto unregister_usec; } return 0; unregister_usec: clocksource_unregister(&tegra->usec); unregister_osc: clocksource_unregister(&tegra->osc); unregister_tsc: clocksource_unregister(&tegra->tsc); return err; } static void tegra186_timer_remove(struct platform_device *pdev) { struct tegra186_timer *tegra = platform_get_drvdata(pdev); clocksource_unregister(&tegra->usec); clocksource_unregister(&tegra->osc); clocksource_unregister(&tegra->tsc); } static int __maybe_unused tegra186_timer_suspend(struct device *dev) { struct tegra186_timer *tegra = dev_get_drvdata(dev); if (watchdog_active(&tegra->wdt->base)) tegra186_wdt_disable(tegra->wdt); return 0; } static int __maybe_unused tegra186_timer_resume(struct device *dev) { struct tegra186_timer *tegra = dev_get_drvdata(dev); if (watchdog_active(&tegra->wdt->base)) tegra186_wdt_enable(tegra->wdt); return 0; } static SIMPLE_DEV_PM_OPS(tegra186_timer_pm_ops, tegra186_timer_suspend, tegra186_timer_resume); static const struct tegra186_timer_soc tegra186_timer = { .num_timers = 10, .num_wdts = 3, }; static const struct tegra186_timer_soc tegra234_timer = { .num_timers = 16, .num_wdts = 3, }; static const struct of_device_id tegra186_timer_of_match[] = { { .compatible = "nvidia,tegra186-timer", .data = &tegra186_timer }, { .compatible = "nvidia,tegra234-timer", .data = &tegra234_timer }, { } }; MODULE_DEVICE_TABLE(of, tegra186_timer_of_match); static struct platform_driver tegra186_wdt_driver = { .driver = { .name = "tegra186-timer", .pm = &tegra186_timer_pm_ops, .of_match_table = tegra186_timer_of_match, }, .probe = tegra186_timer_probe, .remove_new = tegra186_timer_remove, }; module_platform_driver(tegra186_wdt_driver); MODULE_AUTHOR("Thierry Reding <[email protected]>"); MODULE_DESCRIPTION("NVIDIA Tegra186 timers driver");
linux-master
drivers/clocksource/timer-tegra186.c
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2015 Numascale AS. All rights reserved. */ #include <linux/clockchips.h> #include <asm/irq.h> #include <asm/numachip/numachip.h> #include <asm/numachip/numachip_csr.h> static DEFINE_PER_CPU(struct clock_event_device, numachip2_ced); static cycles_t numachip2_timer_read(struct clocksource *cs) { return numachip2_read64_lcsr(NUMACHIP2_TIMER_NOW); } static struct clocksource numachip2_clocksource = { .name = "numachip2", .rating = 295, .read = numachip2_timer_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .mult = 1, .shift = 0, }; static int numachip2_set_next_event(unsigned long delta, struct clock_event_device *ced) { numachip2_write64_lcsr(NUMACHIP2_TIMER_DEADLINE + numachip2_timer(), delta); return 0; } static const struct clock_event_device numachip2_clockevent __initconst = { .name = "numachip2", .rating = 400, .set_next_event = numachip2_set_next_event, .features = CLOCK_EVT_FEAT_ONESHOT, .mult = 1, .shift = 0, .min_delta_ns = 1250, .min_delta_ticks = 1250, .max_delta_ns = LONG_MAX, .max_delta_ticks = LONG_MAX, }; static void numachip_timer_interrupt(void) { struct clock_event_device *ced = this_cpu_ptr(&numachip2_ced); ced->event_handler(ced); } static __init void numachip_timer_each(struct work_struct *work) { unsigned local_apicid = __this_cpu_read(x86_cpu_to_apicid) & 0xff; struct clock_event_device *ced = this_cpu_ptr(&numachip2_ced); /* Setup IPI vector to local core and relative timing mode */ numachip2_write64_lcsr(NUMACHIP2_TIMER_INT + numachip2_timer(), (3 << 22) | (X86_PLATFORM_IPI_VECTOR << 14) | (local_apicid << 6)); *ced = numachip2_clockevent; ced->cpumask = cpumask_of(smp_processor_id()); clockevents_register_device(ced); } static int __init numachip_timer_init(void) { if (numachip_system != 2) return -ENODEV; /* Reset timer */ numachip2_write64_lcsr(NUMACHIP2_TIMER_RESET, 0); clocksource_register_hz(&numachip2_clocksource, NSEC_PER_SEC); /* Setup per-cpu clockevents */ x86_platform_ipi_callback = numachip_timer_interrupt; schedule_on_each_cpu(&numachip_timer_each); return 0; } arch_initcall(numachip_timer_init);
linux-master
drivers/clocksource/numachip.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) ST-Ericsson SA 2011 * * Author: Mattias Wallin <[email protected]> for ST-Ericsson * Author: Sundar Iyer for ST-Ericsson * sched_clock implementation is based on: * plat-nomadik/timer.c Linus Walleij <[email protected]> * * DBx500-PRCMU Timer * The PRCMU has 5 timers which are available in a always-on * power domain. We use the Timer 4 for our always-on clock * source on DB8500. */ #include <linux/of.h> #include <linux/of_address.h> #include <linux/clockchips.h> #define RATE_32K 32768 #define TIMER_MODE_CONTINUOUS 0x1 #define TIMER_DOWNCOUNT_VAL 0xffffffff #define PRCMU_TIMER_REF 0 #define PRCMU_TIMER_DOWNCOUNT 0x4 #define PRCMU_TIMER_MODE 0x8 static void __iomem *clksrc_dbx500_timer_base; static u64 notrace clksrc_dbx500_prcmu_read(struct clocksource *cs) { void __iomem *base = clksrc_dbx500_timer_base; u32 count, count2; do { count = readl_relaxed(base + PRCMU_TIMER_DOWNCOUNT); count2 = readl_relaxed(base + PRCMU_TIMER_DOWNCOUNT); } while (count2 != count); /* Negate because the timer is a decrementing counter */ return ~count; } static struct clocksource clocksource_dbx500_prcmu = { .name = "dbx500-prcmu-timer", .rating = 100, .read = clksrc_dbx500_prcmu_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP, }; static int __init clksrc_dbx500_prcmu_init(struct device_node *node) { clksrc_dbx500_timer_base = of_iomap(node, 0); /* * The A9 sub system expects the timer to be configured as * a continuous looping timer. * The PRCMU should configure it but if it for some reason * don't we do it here. */ if (readl(clksrc_dbx500_timer_base + PRCMU_TIMER_MODE) != TIMER_MODE_CONTINUOUS) { writel(TIMER_MODE_CONTINUOUS, clksrc_dbx500_timer_base + PRCMU_TIMER_MODE); writel(TIMER_DOWNCOUNT_VAL, clksrc_dbx500_timer_base + PRCMU_TIMER_REF); } return clocksource_register_hz(&clocksource_dbx500_prcmu, RATE_32K); } TIMER_OF_DECLARE(dbx500_prcmu, "stericsson,db8500-prcmu-timer-4", clksrc_dbx500_prcmu_init);
linux-master
drivers/clocksource/clksrc-dbx500-prcmu.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * arch/arm/mach-vt8500/timer.c * * Copyright (C) 2012 Tony Prisk <[email protected]> * Copyright (C) 2010 Alexey Charkov <[email protected]> */ /* * This file is copied and modified from the original timer.c provided by * Alexey Charkov. Minor changes have been made for Device Tree Support. */ #include <linux/io.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define VT8500_TIMER_OFFSET 0x0100 #define VT8500_TIMER_HZ 3000000 #define TIMER_MATCH_VAL 0x0000 #define TIMER_COUNT_VAL 0x0010 #define TIMER_STATUS_VAL 0x0014 #define TIMER_IER_VAL 0x001c /* interrupt enable */ #define TIMER_CTRL_VAL 0x0020 #define TIMER_AS_VAL 0x0024 /* access status */ #define TIMER_COUNT_R_ACTIVE (1 << 5) /* not ready for read */ #define TIMER_COUNT_W_ACTIVE (1 << 4) /* not ready for write */ #define TIMER_MATCH_W_ACTIVE (1 << 0) /* not ready for write */ #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t) #define MIN_OSCR_DELTA 16 static void __iomem *regbase; static u64 vt8500_timer_read(struct clocksource *cs) { int loops = msecs_to_loops(10); writel(3, regbase + TIMER_CTRL_VAL); while ((readl((regbase + TIMER_AS_VAL)) & TIMER_COUNT_R_ACTIVE) && --loops) cpu_relax(); return readl(regbase + TIMER_COUNT_VAL); } static struct clocksource clocksource = { .name = "vt8500_timer", .rating = 200, .read = vt8500_timer_read, .mask = CLOCKSOURCE_MASK(32), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static int vt8500_timer_set_next_event(unsigned long cycles, struct clock_event_device *evt) { int loops = msecs_to_loops(10); u64 alarm = clocksource.read(&clocksource) + cycles; while ((readl(regbase + TIMER_AS_VAL) & TIMER_MATCH_W_ACTIVE) && --loops) cpu_relax(); writel((unsigned long)alarm, regbase + TIMER_MATCH_VAL); if ((signed)(alarm - clocksource.read(&clocksource)) <= MIN_OSCR_DELTA) return -ETIME; writel(1, regbase + TIMER_IER_VAL); return 0; } static int vt8500_shutdown(struct clock_event_device *evt) { writel(readl(regbase + TIMER_CTRL_VAL) | 1, regbase + TIMER_CTRL_VAL); writel(0, regbase + TIMER_IER_VAL); return 0; } static struct clock_event_device clockevent = { .name = "vt8500_timer", .features = CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_next_event = vt8500_timer_set_next_event, .set_state_shutdown = vt8500_shutdown, .set_state_oneshot = vt8500_shutdown, }; static irqreturn_t vt8500_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; writel(0xf, regbase + TIMER_STATUS_VAL); evt->event_handler(evt); return IRQ_HANDLED; } static int __init vt8500_timer_init(struct device_node *np) { int timer_irq, ret; regbase = of_iomap(np, 0); if (!regbase) { pr_err("%s: Missing iobase description in Device Tree\n", __func__); return -ENXIO; } timer_irq = irq_of_parse_and_map(np, 0); if (!timer_irq) { pr_err("%s: Missing irq description in Device Tree\n", __func__); return -EINVAL; } writel(1, regbase + TIMER_CTRL_VAL); writel(0xf, regbase + TIMER_STATUS_VAL); writel(~0, regbase + TIMER_MATCH_VAL); ret = clocksource_register_hz(&clocksource, VT8500_TIMER_HZ); if (ret) { pr_err("%s: clocksource_register failed for %s\n", __func__, clocksource.name); return ret; } clockevent.cpumask = cpumask_of(0); ret = request_irq(timer_irq, vt8500_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "vt8500_timer", &clockevent); if (ret) { pr_err("%s: setup_irq failed for %s\n", __func__, clockevent.name); return ret; } clockevents_config_and_register(&clockevent, VT8500_TIMER_HZ, MIN_OSCR_DELTA * 2, 0xf0000000); return 0; } TIMER_OF_DECLARE(vt8500, "via,vt8500-timer", vt8500_timer_init);
linux-master
drivers/clocksource/timer-vt8500.c
// SPDX-License-Identifier: GPL-2.0 /* * Marvell Orion SoC timer handling. * * Sebastian Hesselbarth <[email protected]> * * Timer 0 is used as free-running clocksource, while timer 1 is * used as clock_event_device. */ #include <linux/kernel.h> #include <linux/bitops.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/spinlock.h> #include <linux/sched_clock.h> #define TIMER_CTRL 0x00 #define TIMER0_EN BIT(0) #define TIMER0_RELOAD_EN BIT(1) #define TIMER1_EN BIT(2) #define TIMER1_RELOAD_EN BIT(3) #define TIMER0_RELOAD 0x10 #define TIMER0_VAL 0x14 #define TIMER1_RELOAD 0x18 #define TIMER1_VAL 0x1c #define ORION_ONESHOT_MIN 1 #define ORION_ONESHOT_MAX 0xfffffffe static void __iomem *timer_base; static unsigned long notrace orion_read_timer(void) { return ~readl(timer_base + TIMER0_VAL); } static struct delay_timer orion_delay_timer = { .read_current_timer = orion_read_timer, }; static void orion_delay_timer_init(unsigned long rate) { orion_delay_timer.freq = rate; register_current_timer_delay(&orion_delay_timer); } /* * Free-running clocksource handling. */ static u64 notrace orion_read_sched_clock(void) { return ~readl(timer_base + TIMER0_VAL); } /* * Clockevent handling. */ static u32 ticks_per_jiffy; static int orion_clkevt_next_event(unsigned long delta, struct clock_event_device *dev) { /* setup and enable one-shot timer */ writel(delta, timer_base + TIMER1_VAL); atomic_io_modify(timer_base + TIMER_CTRL, TIMER1_RELOAD_EN | TIMER1_EN, TIMER1_EN); return 0; } static int orion_clkevt_shutdown(struct clock_event_device *dev) { /* disable timer */ atomic_io_modify(timer_base + TIMER_CTRL, TIMER1_RELOAD_EN | TIMER1_EN, 0); return 0; } static int orion_clkevt_set_periodic(struct clock_event_device *dev) { /* setup and enable periodic timer at 1/HZ intervals */ writel(ticks_per_jiffy - 1, timer_base + TIMER1_RELOAD); writel(ticks_per_jiffy - 1, timer_base + TIMER1_VAL); atomic_io_modify(timer_base + TIMER_CTRL, TIMER1_RELOAD_EN | TIMER1_EN, TIMER1_RELOAD_EN | TIMER1_EN); return 0; } static struct clock_event_device orion_clkevt = { .name = "orion_event", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC, .shift = 32, .rating = 300, .set_next_event = orion_clkevt_next_event, .set_state_shutdown = orion_clkevt_shutdown, .set_state_periodic = orion_clkevt_set_periodic, .set_state_oneshot = orion_clkevt_shutdown, .tick_resume = orion_clkevt_shutdown, }; static irqreturn_t orion_clkevt_irq_handler(int irq, void *dev_id) { orion_clkevt.event_handler(&orion_clkevt); return IRQ_HANDLED; } static int __init orion_timer_init(struct device_node *np) { unsigned long rate; struct clk *clk; int irq, ret; /* timer registers are shared with watchdog timer */ timer_base = of_iomap(np, 0); if (!timer_base) { pr_err("%pOFn: unable to map resource\n", np); return -ENXIO; } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("%pOFn: unable to get clk\n", np); return PTR_ERR(clk); } ret = clk_prepare_enable(clk); if (ret) { pr_err("Failed to prepare clock\n"); return ret; } /* we are only interested in timer1 irq */ irq = irq_of_parse_and_map(np, 1); if (irq <= 0) { pr_err("%pOFn: unable to parse timer1 irq\n", np); ret = -EINVAL; goto out_unprep_clk; } rate = clk_get_rate(clk); /* setup timer0 as free-running clocksource */ writel(~0, timer_base + TIMER0_VAL); writel(~0, timer_base + TIMER0_RELOAD); atomic_io_modify(timer_base + TIMER_CTRL, TIMER0_RELOAD_EN | TIMER0_EN, TIMER0_RELOAD_EN | TIMER0_EN); ret = clocksource_mmio_init(timer_base + TIMER0_VAL, "orion_clocksource", rate, 300, 32, clocksource_mmio_readl_down); if (ret) { pr_err("Failed to initialize mmio timer\n"); goto out_unprep_clk; } sched_clock_register(orion_read_sched_clock, 32, rate); /* setup timer1 as clockevent timer */ ret = request_irq(irq, orion_clkevt_irq_handler, IRQF_TIMER, "orion_event", NULL); if (ret) { pr_err("%pOFn: unable to setup irq\n", np); goto out_unprep_clk; } ticks_per_jiffy = (clk_get_rate(clk) + HZ/2) / HZ; orion_clkevt.cpumask = cpumask_of(0); orion_clkevt.irq = irq; clockevents_config_and_register(&orion_clkevt, rate, ORION_ONESHOT_MIN, ORION_ONESHOT_MAX); orion_delay_timer_init(rate); return 0; out_unprep_clk: clk_disable_unprepare(clk); return ret; } TIMER_OF_DECLARE(orion_timer, "marvell,orion-timer", orion_timer_init);
linux-master
drivers/clocksource/timer-orion.c
// SPDX-License-Identifier: GPL-2.0 // Copyright (C) 2018 Hangzhou C-SKY Microsystems co.,ltd. #include <linux/init.h> #include <linux/interrupt.h> #include <linux/sched_clock.h> #include "timer-of.h" #define CLKSRC_OFFSET 0x40 #define TIMER_STATUS 0x00 #define TIMER_VALUE 0x04 #define TIMER_CONTRL 0x10 #define TIMER_CONFIG 0x20 #define TIMER_DIV 0x24 #define TIMER_INI 0x28 #define GX6605S_STATUS_CLR BIT(0) #define GX6605S_CONTRL_RST BIT(0) #define GX6605S_CONTRL_START BIT(1) #define GX6605S_CONFIG_EN BIT(0) #define GX6605S_CONFIG_IRQ_EN BIT(1) static irqreturn_t gx6605s_timer_interrupt(int irq, void *dev) { struct clock_event_device *ce = dev; void __iomem *base = timer_of_base(to_timer_of(ce)); writel_relaxed(GX6605S_STATUS_CLR, base + TIMER_STATUS); writel_relaxed(0, base + TIMER_INI); ce->event_handler(ce); return IRQ_HANDLED; } static int gx6605s_timer_set_oneshot(struct clock_event_device *ce) { void __iomem *base = timer_of_base(to_timer_of(ce)); /* reset and stop counter */ writel_relaxed(GX6605S_CONTRL_RST, base + TIMER_CONTRL); /* enable with irq and start */ writel_relaxed(GX6605S_CONFIG_EN | GX6605S_CONFIG_IRQ_EN, base + TIMER_CONFIG); return 0; } static int gx6605s_timer_set_next_event(unsigned long delta, struct clock_event_device *ce) { void __iomem *base = timer_of_base(to_timer_of(ce)); /* use reset to pause timer */ writel_relaxed(GX6605S_CONTRL_RST, base + TIMER_CONTRL); /* config next timeout value */ writel_relaxed(ULONG_MAX - delta, base + TIMER_INI); writel_relaxed(GX6605S_CONTRL_START, base + TIMER_CONTRL); return 0; } static int gx6605s_timer_shutdown(struct clock_event_device *ce) { void __iomem *base = timer_of_base(to_timer_of(ce)); writel_relaxed(0, base + TIMER_CONTRL); writel_relaxed(0, base + TIMER_CONFIG); return 0; } static struct timer_of to = { .flags = TIMER_OF_IRQ | TIMER_OF_BASE | TIMER_OF_CLOCK, .clkevt = { .rating = 300, .features = CLOCK_EVT_FEAT_DYNIRQ | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = gx6605s_timer_shutdown, .set_state_oneshot = gx6605s_timer_set_oneshot, .set_next_event = gx6605s_timer_set_next_event, .cpumask = cpu_possible_mask, }, .of_irq = { .handler = gx6605s_timer_interrupt, .flags = IRQF_TIMER | IRQF_IRQPOLL, }, }; static u64 notrace gx6605s_sched_clock_read(void) { void __iomem *base; base = timer_of_base(&to) + CLKSRC_OFFSET; return (u64)readl_relaxed(base + TIMER_VALUE); } static void gx6605s_clkevt_init(void __iomem *base) { writel_relaxed(0, base + TIMER_DIV); writel_relaxed(0, base + TIMER_CONFIG); clockevents_config_and_register(&to.clkevt, timer_of_rate(&to), 2, ULONG_MAX); } static int gx6605s_clksrc_init(void __iomem *base) { writel_relaxed(0, base + TIMER_DIV); writel_relaxed(0, base + TIMER_INI); writel_relaxed(GX6605S_CONTRL_RST, base + TIMER_CONTRL); writel_relaxed(GX6605S_CONFIG_EN, base + TIMER_CONFIG); writel_relaxed(GX6605S_CONTRL_START, base + TIMER_CONTRL); sched_clock_register(gx6605s_sched_clock_read, 32, timer_of_rate(&to)); return clocksource_mmio_init(base + TIMER_VALUE, "gx6605s", timer_of_rate(&to), 200, 32, clocksource_mmio_readl_up); } static int __init gx6605s_timer_init(struct device_node *np) { int ret; /* * The timer driver is for nationalchip gx6605s SOC and there are two * same timer in gx6605s. We use one for clkevt and another for clksrc. * * The timer is mmio map to access, so we need give mmio address in dts. * * It provides a 32bit countup timer and interrupt will be caused by * count-overflow. * So we need set-next-event by ULONG_MAX - delta in TIMER_INI reg. * * The counter at 0x0 offset is clock event. * The counter at 0x40 offset is clock source. * They are the same in hardware, just different used by driver. */ ret = timer_of_init(np, &to); if (ret) return ret; gx6605s_clkevt_init(timer_of_base(&to)); return gx6605s_clksrc_init(timer_of_base(&to) + CLKSRC_OFFSET); } TIMER_OF_DECLARE(csky_gx6605s_timer, "csky,gx6605s-timer", gx6605s_timer_init);
linux-master
drivers/clocksource/timer-gx6605s.c
// SPDX-License-Identifier: GPL-2.0 /* * MStar timer driver * * Copyright (C) 2021 Daniel Palmer * Copyright (C) 2021 Romain Perier * */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqreturn.h> #include <linux/sched_clock.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #ifdef CONFIG_ARM #include <linux/delay.h> #endif #include "timer-of.h" #define TIMER_NAME "msc313e_timer" #define MSC313E_REG_CTRL 0x00 #define MSC313E_REG_CTRL_TIMER_EN BIT(0) #define MSC313E_REG_CTRL_TIMER_TRIG BIT(1) #define MSC313E_REG_CTRL_TIMER_INT_EN BIT(8) #define MSC313E_REG_TIMER_MAX_LOW 0x08 #define MSC313E_REG_TIMER_MAX_HIGH 0x0c #define MSC313E_REG_COUNTER_LOW 0x10 #define MSC313E_REG_COUNTER_HIGH 0x14 #define MSC313E_REG_TIMER_DIVIDE 0x18 #define MSC313E_CLK_DIVIDER 9 #define TIMER_SYNC_TICKS 3 #ifdef CONFIG_ARM struct msc313e_delay { void __iomem *base; struct delay_timer delay; }; static struct msc313e_delay msc313e_delay; #endif static void __iomem *msc313e_clksrc; static void msc313e_timer_stop(void __iomem *base) { writew(0, base + MSC313E_REG_CTRL); } static void msc313e_timer_start(void __iomem *base, bool periodic) { u16 reg; reg = readw(base + MSC313E_REG_CTRL); if (periodic) reg |= MSC313E_REG_CTRL_TIMER_EN; else reg |= MSC313E_REG_CTRL_TIMER_TRIG; writew(reg | MSC313E_REG_CTRL_TIMER_INT_EN, base + MSC313E_REG_CTRL); } static void msc313e_timer_setup(void __iomem *base, unsigned long delay) { unsigned long flags; local_irq_save(flags); writew(delay >> 16, base + MSC313E_REG_TIMER_MAX_HIGH); writew(delay & 0xffff, base + MSC313E_REG_TIMER_MAX_LOW); local_irq_restore(flags); } static unsigned long msc313e_timer_current_value(void __iomem *base) { unsigned long flags; u16 l, h; local_irq_save(flags); l = readw(base + MSC313E_REG_COUNTER_LOW); h = readw(base + MSC313E_REG_COUNTER_HIGH); local_irq_restore(flags); return (((u32)h) << 16 | l); } static int msc313e_timer_clkevt_shutdown(struct clock_event_device *evt) { struct timer_of *timer = to_timer_of(evt); msc313e_timer_stop(timer_of_base(timer)); return 0; } static int msc313e_timer_clkevt_set_oneshot(struct clock_event_device *evt) { struct timer_of *timer = to_timer_of(evt); msc313e_timer_stop(timer_of_base(timer)); msc313e_timer_start(timer_of_base(timer), false); return 0; } static int msc313e_timer_clkevt_set_periodic(struct clock_event_device *evt) { struct timer_of *timer = to_timer_of(evt); msc313e_timer_stop(timer_of_base(timer)); msc313e_timer_setup(timer_of_base(timer), timer_of_period(timer)); msc313e_timer_start(timer_of_base(timer), true); return 0; } static int msc313e_timer_clkevt_next_event(unsigned long evt, struct clock_event_device *clkevt) { struct timer_of *timer = to_timer_of(clkevt); msc313e_timer_stop(timer_of_base(timer)); msc313e_timer_setup(timer_of_base(timer), evt); msc313e_timer_start(timer_of_base(timer), false); return 0; } static irqreturn_t msc313e_timer_clkevt_irq(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; evt->event_handler(evt); return IRQ_HANDLED; } static u64 msc313e_timer_clksrc_read(struct clocksource *cs) { return msc313e_timer_current_value(msc313e_clksrc) & cs->mask; } #ifdef CONFIG_ARM static unsigned long msc313e_read_delay_timer_read(void) { return msc313e_timer_current_value(msc313e_delay.base); } #endif static u64 msc313e_timer_sched_clock_read(void) { return msc313e_timer_current_value(msc313e_clksrc); } static struct clock_event_device msc313e_clkevt = { .name = TIMER_NAME, .rating = 300, .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = msc313e_timer_clkevt_shutdown, .set_state_periodic = msc313e_timer_clkevt_set_periodic, .set_state_oneshot = msc313e_timer_clkevt_set_oneshot, .tick_resume = msc313e_timer_clkevt_shutdown, .set_next_event = msc313e_timer_clkevt_next_event, }; static int __init msc313e_clkevt_init(struct device_node *np) { int ret; struct timer_of *to; to = kzalloc(sizeof(*to), GFP_KERNEL); if (!to) return -ENOMEM; to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE; to->of_irq.handler = msc313e_timer_clkevt_irq; ret = timer_of_init(np, to); if (ret) return ret; if (of_device_is_compatible(np, "sstar,ssd20xd-timer")) { to->of_clk.rate = clk_get_rate(to->of_clk.clk) / MSC313E_CLK_DIVIDER; to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ); writew(MSC313E_CLK_DIVIDER - 1, timer_of_base(to) + MSC313E_REG_TIMER_DIVIDE); } msc313e_clkevt.cpumask = cpu_possible_mask; msc313e_clkevt.irq = to->of_irq.irq; to->clkevt = msc313e_clkevt; clockevents_config_and_register(&to->clkevt, timer_of_rate(to), TIMER_SYNC_TICKS, 0xffffffff); return 0; } static int __init msc313e_clksrc_init(struct device_node *np) { struct timer_of to = { 0 }; int ret; u16 reg; to.flags = TIMER_OF_BASE | TIMER_OF_CLOCK; ret = timer_of_init(np, &to); if (ret) return ret; msc313e_clksrc = timer_of_base(&to); reg = readw(msc313e_clksrc + MSC313E_REG_CTRL); reg |= MSC313E_REG_CTRL_TIMER_EN; writew(reg, msc313e_clksrc + MSC313E_REG_CTRL); #ifdef CONFIG_ARM msc313e_delay.base = timer_of_base(&to); msc313e_delay.delay.read_current_timer = msc313e_read_delay_timer_read; msc313e_delay.delay.freq = timer_of_rate(&to); register_current_timer_delay(&msc313e_delay.delay); #endif sched_clock_register(msc313e_timer_sched_clock_read, 32, timer_of_rate(&to)); return clocksource_mmio_init(timer_of_base(&to), TIMER_NAME, timer_of_rate(&to), 300, 32, msc313e_timer_clksrc_read); } static int __init msc313e_timer_init(struct device_node *np) { int ret = 0; static int num_called; switch (num_called) { case 0: ret = msc313e_clksrc_init(np); if (ret) return ret; break; default: ret = msc313e_clkevt_init(np); if (ret) return ret; break; } num_called++; return 0; } TIMER_OF_DECLARE(msc313, "mstar,msc313e-timer", msc313e_timer_init); TIMER_OF_DECLARE(ssd20xd, "sstar,ssd20xd-timer", msc313e_timer_init);
linux-master
drivers/clocksource/timer-msc313e.c
// SPDX-License-Identifier: GPL-2.0+ // // Copyright (C) 2000-2001 Deep Blue Solutions // Copyright (C) 2002 Shane Nay ([email protected]) // Copyright (C) 2006-2007 Pavel Pisa ([email protected]) // Copyright (C) 2008 Juergen Beisert ([email protected]) #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clockchips.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> /* * There are 4 versions of the timer hardware on Freescale MXC hardware. * - MX1/MXL * - MX21, MX27. * - MX25, MX31, MX35, MX37, MX51, MX6Q(rev1.0) * - MX6DL, MX6SX, MX6Q(rev1.1+) */ enum imx_gpt_type { GPT_TYPE_IMX1, /* i.MX1 */ GPT_TYPE_IMX21, /* i.MX21/27 */ GPT_TYPE_IMX31, /* i.MX31/35/25/37/51/6Q */ GPT_TYPE_IMX6DL, /* i.MX6DL/SX/SL */ }; /* defines common for all i.MX */ #define MXC_TCTL 0x00 #define MXC_TCTL_TEN (1 << 0) /* Enable module */ #define MXC_TPRER 0x04 /* MX1, MX21, MX27 */ #define MX1_2_TCTL_CLK_PCLK1 (1 << 1) #define MX1_2_TCTL_IRQEN (1 << 4) #define MX1_2_TCTL_FRR (1 << 8) #define MX1_2_TCMP 0x08 #define MX1_2_TCN 0x10 #define MX1_2_TSTAT 0x14 /* MX21, MX27 */ #define MX2_TSTAT_CAPT (1 << 1) #define MX2_TSTAT_COMP (1 << 0) /* MX31, MX35, MX25, MX5, MX6 */ #define V2_TCTL_WAITEN (1 << 3) /* Wait enable mode */ #define V2_TCTL_CLK_IPG (1 << 6) #define V2_TCTL_CLK_PER (2 << 6) #define V2_TCTL_CLK_OSC_DIV8 (5 << 6) #define V2_TCTL_FRR (1 << 9) #define V2_TCTL_24MEN (1 << 10) #define V2_TPRER_PRE24M 12 #define V2_IR 0x0c #define V2_TSTAT 0x08 #define V2_TSTAT_OF1 (1 << 0) #define V2_TCN 0x24 #define V2_TCMP 0x10 #define V2_TIMER_RATE_OSC_DIV8 3000000 struct imx_timer { enum imx_gpt_type type; void __iomem *base; int irq; struct clk *clk_per; struct clk *clk_ipg; const struct imx_gpt_data *gpt; struct clock_event_device ced; }; struct imx_gpt_data { int reg_tstat; int reg_tcn; int reg_tcmp; void (*gpt_setup_tctl)(struct imx_timer *imxtm); void (*gpt_irq_enable)(struct imx_timer *imxtm); void (*gpt_irq_disable)(struct imx_timer *imxtm); void (*gpt_irq_acknowledge)(struct imx_timer *imxtm); int (*set_next_event)(unsigned long evt, struct clock_event_device *ced); }; static inline struct imx_timer *to_imx_timer(struct clock_event_device *ced) { return container_of(ced, struct imx_timer, ced); } static void imx1_gpt_irq_disable(struct imx_timer *imxtm) { unsigned int tmp; tmp = readl_relaxed(imxtm->base + MXC_TCTL); writel_relaxed(tmp & ~MX1_2_TCTL_IRQEN, imxtm->base + MXC_TCTL); } static void imx31_gpt_irq_disable(struct imx_timer *imxtm) { writel_relaxed(0, imxtm->base + V2_IR); } static void imx1_gpt_irq_enable(struct imx_timer *imxtm) { unsigned int tmp; tmp = readl_relaxed(imxtm->base + MXC_TCTL); writel_relaxed(tmp | MX1_2_TCTL_IRQEN, imxtm->base + MXC_TCTL); } static void imx31_gpt_irq_enable(struct imx_timer *imxtm) { writel_relaxed(1<<0, imxtm->base + V2_IR); } static void imx1_gpt_irq_acknowledge(struct imx_timer *imxtm) { writel_relaxed(0, imxtm->base + MX1_2_TSTAT); } static void imx21_gpt_irq_acknowledge(struct imx_timer *imxtm) { writel_relaxed(MX2_TSTAT_CAPT | MX2_TSTAT_COMP, imxtm->base + MX1_2_TSTAT); } static void imx31_gpt_irq_acknowledge(struct imx_timer *imxtm) { writel_relaxed(V2_TSTAT_OF1, imxtm->base + V2_TSTAT); } static void __iomem *sched_clock_reg; static u64 notrace mxc_read_sched_clock(void) { return sched_clock_reg ? readl_relaxed(sched_clock_reg) : 0; } #if defined(CONFIG_ARM) static struct delay_timer imx_delay_timer; static unsigned long imx_read_current_timer(void) { return readl_relaxed(sched_clock_reg); } #endif static int __init mxc_clocksource_init(struct imx_timer *imxtm) { unsigned int c = clk_get_rate(imxtm->clk_per); void __iomem *reg = imxtm->base + imxtm->gpt->reg_tcn; #if defined(CONFIG_ARM) imx_delay_timer.read_current_timer = &imx_read_current_timer; imx_delay_timer.freq = c; register_current_timer_delay(&imx_delay_timer); #endif sched_clock_reg = reg; sched_clock_register(mxc_read_sched_clock, 32, c); return clocksource_mmio_init(reg, "mxc_timer1", c, 200, 32, clocksource_mmio_readl_up); } /* clock event */ static int mx1_2_set_next_event(unsigned long evt, struct clock_event_device *ced) { struct imx_timer *imxtm = to_imx_timer(ced); unsigned long tcmp; tcmp = readl_relaxed(imxtm->base + MX1_2_TCN) + evt; writel_relaxed(tcmp, imxtm->base + MX1_2_TCMP); return (int)(tcmp - readl_relaxed(imxtm->base + MX1_2_TCN)) < 0 ? -ETIME : 0; } static int v2_set_next_event(unsigned long evt, struct clock_event_device *ced) { struct imx_timer *imxtm = to_imx_timer(ced); unsigned long tcmp; tcmp = readl_relaxed(imxtm->base + V2_TCN) + evt; writel_relaxed(tcmp, imxtm->base + V2_TCMP); return evt < 0x7fffffff && (int)(tcmp - readl_relaxed(imxtm->base + V2_TCN)) < 0 ? -ETIME : 0; } static int mxc_shutdown(struct clock_event_device *ced) { struct imx_timer *imxtm = to_imx_timer(ced); u32 tcn; /* Disable interrupt in GPT module */ imxtm->gpt->gpt_irq_disable(imxtm); tcn = readl_relaxed(imxtm->base + imxtm->gpt->reg_tcn); /* Set event time into far-far future */ writel_relaxed(tcn - 3, imxtm->base + imxtm->gpt->reg_tcmp); /* Clear pending interrupt */ imxtm->gpt->gpt_irq_acknowledge(imxtm); #ifdef DEBUG printk(KERN_INFO "%s: changing mode\n", __func__); #endif /* DEBUG */ return 0; } static int mxc_set_oneshot(struct clock_event_device *ced) { struct imx_timer *imxtm = to_imx_timer(ced); /* Disable interrupt in GPT module */ imxtm->gpt->gpt_irq_disable(imxtm); if (!clockevent_state_oneshot(ced)) { u32 tcn = readl_relaxed(imxtm->base + imxtm->gpt->reg_tcn); /* Set event time into far-far future */ writel_relaxed(tcn - 3, imxtm->base + imxtm->gpt->reg_tcmp); /* Clear pending interrupt */ imxtm->gpt->gpt_irq_acknowledge(imxtm); } #ifdef DEBUG printk(KERN_INFO "%s: changing mode\n", __func__); #endif /* DEBUG */ /* * Do not put overhead of interrupt enable/disable into * mxc_set_next_event(), the core has about 4 minutes * to call mxc_set_next_event() or shutdown clock after * mode switching */ imxtm->gpt->gpt_irq_enable(imxtm); return 0; } /* * IRQ handler for the timer */ static irqreturn_t mxc_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *ced = dev_id; struct imx_timer *imxtm = to_imx_timer(ced); uint32_t tstat; tstat = readl_relaxed(imxtm->base + imxtm->gpt->reg_tstat); imxtm->gpt->gpt_irq_acknowledge(imxtm); ced->event_handler(ced); return IRQ_HANDLED; } static int __init mxc_clockevent_init(struct imx_timer *imxtm) { struct clock_event_device *ced = &imxtm->ced; ced->name = "mxc_timer1"; ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ; ced->set_state_shutdown = mxc_shutdown; ced->set_state_oneshot = mxc_set_oneshot; ced->tick_resume = mxc_shutdown; ced->set_next_event = imxtm->gpt->set_next_event; ced->rating = 200; ced->cpumask = cpumask_of(0); ced->irq = imxtm->irq; clockevents_config_and_register(ced, clk_get_rate(imxtm->clk_per), 0xff, 0xfffffffe); return request_irq(imxtm->irq, mxc_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "i.MX Timer Tick", ced); } static void imx1_gpt_setup_tctl(struct imx_timer *imxtm) { u32 tctl_val; tctl_val = MX1_2_TCTL_FRR | MX1_2_TCTL_CLK_PCLK1 | MXC_TCTL_TEN; writel_relaxed(tctl_val, imxtm->base + MXC_TCTL); } static void imx31_gpt_setup_tctl(struct imx_timer *imxtm) { u32 tctl_val; tctl_val = V2_TCTL_FRR | V2_TCTL_WAITEN | MXC_TCTL_TEN; if (clk_get_rate(imxtm->clk_per) == V2_TIMER_RATE_OSC_DIV8) tctl_val |= V2_TCTL_CLK_OSC_DIV8; else tctl_val |= V2_TCTL_CLK_PER; writel_relaxed(tctl_val, imxtm->base + MXC_TCTL); } static void imx6dl_gpt_setup_tctl(struct imx_timer *imxtm) { u32 tctl_val; tctl_val = V2_TCTL_FRR | V2_TCTL_WAITEN | MXC_TCTL_TEN; if (clk_get_rate(imxtm->clk_per) == V2_TIMER_RATE_OSC_DIV8) { tctl_val |= V2_TCTL_CLK_OSC_DIV8; /* 24 / 8 = 3 MHz */ writel_relaxed(7 << V2_TPRER_PRE24M, imxtm->base + MXC_TPRER); tctl_val |= V2_TCTL_24MEN; } else { tctl_val |= V2_TCTL_CLK_PER; } writel_relaxed(tctl_val, imxtm->base + MXC_TCTL); } static const struct imx_gpt_data imx1_gpt_data = { .reg_tstat = MX1_2_TSTAT, .reg_tcn = MX1_2_TCN, .reg_tcmp = MX1_2_TCMP, .gpt_irq_enable = imx1_gpt_irq_enable, .gpt_irq_disable = imx1_gpt_irq_disable, .gpt_irq_acknowledge = imx1_gpt_irq_acknowledge, .gpt_setup_tctl = imx1_gpt_setup_tctl, .set_next_event = mx1_2_set_next_event, }; static const struct imx_gpt_data imx21_gpt_data = { .reg_tstat = MX1_2_TSTAT, .reg_tcn = MX1_2_TCN, .reg_tcmp = MX1_2_TCMP, .gpt_irq_enable = imx1_gpt_irq_enable, .gpt_irq_disable = imx1_gpt_irq_disable, .gpt_irq_acknowledge = imx21_gpt_irq_acknowledge, .gpt_setup_tctl = imx1_gpt_setup_tctl, .set_next_event = mx1_2_set_next_event, }; static const struct imx_gpt_data imx31_gpt_data = { .reg_tstat = V2_TSTAT, .reg_tcn = V2_TCN, .reg_tcmp = V2_TCMP, .gpt_irq_enable = imx31_gpt_irq_enable, .gpt_irq_disable = imx31_gpt_irq_disable, .gpt_irq_acknowledge = imx31_gpt_irq_acknowledge, .gpt_setup_tctl = imx31_gpt_setup_tctl, .set_next_event = v2_set_next_event, }; static const struct imx_gpt_data imx6dl_gpt_data = { .reg_tstat = V2_TSTAT, .reg_tcn = V2_TCN, .reg_tcmp = V2_TCMP, .gpt_irq_enable = imx31_gpt_irq_enable, .gpt_irq_disable = imx31_gpt_irq_disable, .gpt_irq_acknowledge = imx31_gpt_irq_acknowledge, .gpt_setup_tctl = imx6dl_gpt_setup_tctl, .set_next_event = v2_set_next_event, }; static int __init _mxc_timer_init(struct imx_timer *imxtm) { int ret; switch (imxtm->type) { case GPT_TYPE_IMX1: imxtm->gpt = &imx1_gpt_data; break; case GPT_TYPE_IMX21: imxtm->gpt = &imx21_gpt_data; break; case GPT_TYPE_IMX31: imxtm->gpt = &imx31_gpt_data; break; case GPT_TYPE_IMX6DL: imxtm->gpt = &imx6dl_gpt_data; break; default: return -EINVAL; } if (IS_ERR(imxtm->clk_per)) { pr_err("i.MX timer: unable to get clk\n"); return PTR_ERR(imxtm->clk_per); } if (!IS_ERR(imxtm->clk_ipg)) clk_prepare_enable(imxtm->clk_ipg); clk_prepare_enable(imxtm->clk_per); /* * Initialise to a known state (all timers off, and timing reset) */ writel_relaxed(0, imxtm->base + MXC_TCTL); writel_relaxed(0, imxtm->base + MXC_TPRER); /* see datasheet note */ imxtm->gpt->gpt_setup_tctl(imxtm); /* init and register the timer to the framework */ ret = mxc_clocksource_init(imxtm); if (ret) return ret; return mxc_clockevent_init(imxtm); } static int __init mxc_timer_init_dt(struct device_node *np, enum imx_gpt_type type) { struct imx_timer *imxtm; static int initialized; int ret; /* Support one instance only */ if (initialized) return 0; imxtm = kzalloc(sizeof(*imxtm), GFP_KERNEL); if (!imxtm) return -ENOMEM; imxtm->base = of_iomap(np, 0); if (!imxtm->base) return -ENXIO; imxtm->irq = irq_of_parse_and_map(np, 0); if (imxtm->irq <= 0) return -EINVAL; imxtm->clk_ipg = of_clk_get_by_name(np, "ipg"); /* Try osc_per first, and fall back to per otherwise */ imxtm->clk_per = of_clk_get_by_name(np, "osc_per"); if (IS_ERR(imxtm->clk_per)) imxtm->clk_per = of_clk_get_by_name(np, "per"); imxtm->type = type; ret = _mxc_timer_init(imxtm); if (ret) return ret; initialized = 1; return 0; } static int __init imx1_timer_init_dt(struct device_node *np) { return mxc_timer_init_dt(np, GPT_TYPE_IMX1); } static int __init imx21_timer_init_dt(struct device_node *np) { return mxc_timer_init_dt(np, GPT_TYPE_IMX21); } static int __init imx31_timer_init_dt(struct device_node *np) { enum imx_gpt_type type = GPT_TYPE_IMX31; /* * We were using the same compatible string for i.MX6Q/D and i.MX6DL/S * GPT device, while they actually have different programming model. * This is a workaround to keep the existing i.MX6DL/S DTBs continue * working with the new kernel. */ if (of_machine_is_compatible("fsl,imx6dl")) type = GPT_TYPE_IMX6DL; return mxc_timer_init_dt(np, type); } static int __init imx6dl_timer_init_dt(struct device_node *np) { return mxc_timer_init_dt(np, GPT_TYPE_IMX6DL); } TIMER_OF_DECLARE(imx1_timer, "fsl,imx1-gpt", imx1_timer_init_dt); TIMER_OF_DECLARE(imx21_timer, "fsl,imx21-gpt", imx21_timer_init_dt); TIMER_OF_DECLARE(imx27_timer, "fsl,imx27-gpt", imx21_timer_init_dt); TIMER_OF_DECLARE(imx31_timer, "fsl,imx31-gpt", imx31_timer_init_dt); TIMER_OF_DECLARE(imx25_timer, "fsl,imx25-gpt", imx31_timer_init_dt); TIMER_OF_DECLARE(imx50_timer, "fsl,imx50-gpt", imx31_timer_init_dt); TIMER_OF_DECLARE(imx51_timer, "fsl,imx51-gpt", imx31_timer_init_dt); TIMER_OF_DECLARE(imx53_timer, "fsl,imx53-gpt", imx31_timer_init_dt); TIMER_OF_DECLARE(imx6q_timer, "fsl,imx6q-gpt", imx31_timer_init_dt); TIMER_OF_DECLARE(imx6dl_timer, "fsl,imx6dl-gpt", imx6dl_timer_init_dt); TIMER_OF_DECLARE(imx6sl_timer, "fsl,imx6sl-gpt", imx6dl_timer_init_dt); TIMER_OF_DECLARE(imx6sx_timer, "fsl,imx6sx-gpt", imx6dl_timer_init_dt);
linux-master
drivers/clocksource/timer-imx-gpt.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com/ * * samsung - Common hr-timer support (s3c and s5p) */ #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/err.h> #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/sched_clock.h> #include <clocksource/samsung_pwm.h> /* * Clocksource driver */ #define REG_TCFG0 0x00 #define REG_TCFG1 0x04 #define REG_TCON 0x08 #define REG_TINT_CSTAT 0x44 #define REG_TCNTB(chan) (0x0c + 12 * (chan)) #define REG_TCMPB(chan) (0x10 + 12 * (chan)) #define TCFG0_PRESCALER_MASK 0xff #define TCFG0_PRESCALER1_SHIFT 8 #define TCFG1_SHIFT(x) ((x) * 4) #define TCFG1_MUX_MASK 0xf /* * Each channel occupies 4 bits in TCON register, but there is a gap of 4 * bits (one channel) after channel 0, so channels have different numbering * when accessing TCON register. * * In addition, the location of autoreload bit for channel 4 (TCON channel 5) * in its set of bits is 2 as opposed to 3 for other channels. */ #define TCON_START(chan) (1 << (4 * (chan) + 0)) #define TCON_MANUALUPDATE(chan) (1 << (4 * (chan) + 1)) #define TCON_INVERT(chan) (1 << (4 * (chan) + 2)) #define _TCON_AUTORELOAD(chan) (1 << (4 * (chan) + 3)) #define _TCON_AUTORELOAD4(chan) (1 << (4 * (chan) + 2)) #define TCON_AUTORELOAD(chan) \ ((chan < 5) ? _TCON_AUTORELOAD(chan) : _TCON_AUTORELOAD4(chan)) DEFINE_SPINLOCK(samsung_pwm_lock); EXPORT_SYMBOL(samsung_pwm_lock); struct samsung_pwm_clocksource { void __iomem *base; const void __iomem *source_reg; unsigned int irq[SAMSUNG_PWM_NUM]; struct samsung_pwm_variant variant; struct clk *timerclk; unsigned int event_id; unsigned int source_id; unsigned int tcnt_max; unsigned int tscaler_div; unsigned int tdiv; unsigned long clock_count_per_tick; }; static struct samsung_pwm_clocksource pwm; static void samsung_timer_set_prescale(unsigned int channel, u16 prescale) { unsigned long flags; u8 shift = 0; u32 reg; if (channel >= 2) shift = TCFG0_PRESCALER1_SHIFT; spin_lock_irqsave(&samsung_pwm_lock, flags); reg = readl(pwm.base + REG_TCFG0); reg &= ~(TCFG0_PRESCALER_MASK << shift); reg |= (prescale - 1) << shift; writel(reg, pwm.base + REG_TCFG0); spin_unlock_irqrestore(&samsung_pwm_lock, flags); } static void samsung_timer_set_divisor(unsigned int channel, u8 divisor) { u8 shift = TCFG1_SHIFT(channel); unsigned long flags; u32 reg; u8 bits; bits = (fls(divisor) - 1) - pwm.variant.div_base; spin_lock_irqsave(&samsung_pwm_lock, flags); reg = readl(pwm.base + REG_TCFG1); reg &= ~(TCFG1_MUX_MASK << shift); reg |= bits << shift; writel(reg, pwm.base + REG_TCFG1); spin_unlock_irqrestore(&samsung_pwm_lock, flags); } static void samsung_time_stop(unsigned int channel) { unsigned long tcon; unsigned long flags; if (channel > 0) ++channel; spin_lock_irqsave(&samsung_pwm_lock, flags); tcon = readl_relaxed(pwm.base + REG_TCON); tcon &= ~TCON_START(channel); writel_relaxed(tcon, pwm.base + REG_TCON); spin_unlock_irqrestore(&samsung_pwm_lock, flags); } static void samsung_time_setup(unsigned int channel, unsigned long tcnt) { unsigned long tcon; unsigned long flags; unsigned int tcon_chan = channel; if (tcon_chan > 0) ++tcon_chan; spin_lock_irqsave(&samsung_pwm_lock, flags); tcon = readl_relaxed(pwm.base + REG_TCON); tcon &= ~(TCON_START(tcon_chan) | TCON_AUTORELOAD(tcon_chan)); tcon |= TCON_MANUALUPDATE(tcon_chan); writel_relaxed(tcnt, pwm.base + REG_TCNTB(channel)); writel_relaxed(tcnt, pwm.base + REG_TCMPB(channel)); writel_relaxed(tcon, pwm.base + REG_TCON); spin_unlock_irqrestore(&samsung_pwm_lock, flags); } static void samsung_time_start(unsigned int channel, bool periodic) { unsigned long tcon; unsigned long flags; if (channel > 0) ++channel; spin_lock_irqsave(&samsung_pwm_lock, flags); tcon = readl_relaxed(pwm.base + REG_TCON); tcon &= ~TCON_MANUALUPDATE(channel); tcon |= TCON_START(channel); if (periodic) tcon |= TCON_AUTORELOAD(channel); else tcon &= ~TCON_AUTORELOAD(channel); writel_relaxed(tcon, pwm.base + REG_TCON); spin_unlock_irqrestore(&samsung_pwm_lock, flags); } static int samsung_set_next_event(unsigned long cycles, struct clock_event_device *evt) { /* * This check is needed to account for internal rounding * errors inside clockevents core, which might result in * passing cycles = 0, which in turn would not generate any * timer interrupt and hang the system. * * Another solution would be to set up the clockevent device * with min_delta = 2, but this would unnecessarily increase * the minimum sleep period. */ if (!cycles) cycles = 1; samsung_time_setup(pwm.event_id, cycles); samsung_time_start(pwm.event_id, false); return 0; } static int samsung_shutdown(struct clock_event_device *evt) { samsung_time_stop(pwm.event_id); return 0; } static int samsung_set_periodic(struct clock_event_device *evt) { samsung_time_stop(pwm.event_id); samsung_time_setup(pwm.event_id, pwm.clock_count_per_tick - 1); samsung_time_start(pwm.event_id, true); return 0; } static void samsung_clockevent_resume(struct clock_event_device *cev) { samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div); samsung_timer_set_divisor(pwm.event_id, pwm.tdiv); if (pwm.variant.has_tint_cstat) { u32 mask = (1 << pwm.event_id); writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); } } static struct clock_event_device time_event_device = { .name = "samsung_event_timer", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 200, .set_next_event = samsung_set_next_event, .set_state_shutdown = samsung_shutdown, .set_state_periodic = samsung_set_periodic, .set_state_oneshot = samsung_shutdown, .tick_resume = samsung_shutdown, .resume = samsung_clockevent_resume, }; static irqreturn_t samsung_clock_event_isr(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; if (pwm.variant.has_tint_cstat) { u32 mask = (1 << pwm.event_id); writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); } evt->event_handler(evt); return IRQ_HANDLED; } static void __init samsung_clockevent_init(void) { unsigned long pclk; unsigned long clock_rate; unsigned int irq_number; pclk = clk_get_rate(pwm.timerclk); samsung_timer_set_prescale(pwm.event_id, pwm.tscaler_div); samsung_timer_set_divisor(pwm.event_id, pwm.tdiv); clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv); pwm.clock_count_per_tick = clock_rate / HZ; time_event_device.cpumask = cpumask_of(0); clockevents_config_and_register(&time_event_device, clock_rate, 1, pwm.tcnt_max); irq_number = pwm.irq[pwm.event_id]; if (request_irq(irq_number, samsung_clock_event_isr, IRQF_TIMER | IRQF_IRQPOLL, "samsung_time_irq", &time_event_device)) pr_err("%s: request_irq() failed\n", "samsung_time_irq"); if (pwm.variant.has_tint_cstat) { u32 mask = (1 << pwm.event_id); writel(mask | (mask << 5), pwm.base + REG_TINT_CSTAT); } } static void samsung_clocksource_suspend(struct clocksource *cs) { samsung_time_stop(pwm.source_id); } static void samsung_clocksource_resume(struct clocksource *cs) { samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div); samsung_timer_set_divisor(pwm.source_id, pwm.tdiv); samsung_time_setup(pwm.source_id, pwm.tcnt_max); samsung_time_start(pwm.source_id, true); } static u64 notrace samsung_clocksource_read(struct clocksource *c) { return ~readl_relaxed(pwm.source_reg); } static struct clocksource samsung_clocksource = { .name = "samsung_clocksource_timer", .rating = 250, .read = samsung_clocksource_read, .suspend = samsung_clocksource_suspend, .resume = samsung_clocksource_resume, .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; /* * Override the global weak sched_clock symbol with this * local implementation which uses the clocksource to get some * better resolution when scheduling the kernel. We accept that * this wraps around for now, since it is just a relative time * stamp. (Inspired by U300 implementation.) */ static u64 notrace samsung_read_sched_clock(void) { return samsung_clocksource_read(NULL); } static int __init samsung_clocksource_init(void) { unsigned long pclk; unsigned long clock_rate; pclk = clk_get_rate(pwm.timerclk); samsung_timer_set_prescale(pwm.source_id, pwm.tscaler_div); samsung_timer_set_divisor(pwm.source_id, pwm.tdiv); clock_rate = pclk / (pwm.tscaler_div * pwm.tdiv); samsung_time_setup(pwm.source_id, pwm.tcnt_max); samsung_time_start(pwm.source_id, true); if (pwm.source_id == 4) pwm.source_reg = pwm.base + 0x40; else pwm.source_reg = pwm.base + pwm.source_id * 0x0c + 0x14; sched_clock_register(samsung_read_sched_clock, pwm.variant.bits, clock_rate); samsung_clocksource.mask = CLOCKSOURCE_MASK(pwm.variant.bits); return clocksource_register_hz(&samsung_clocksource, clock_rate); } static void __init samsung_timer_resources(void) { clk_prepare_enable(pwm.timerclk); pwm.tcnt_max = (1UL << pwm.variant.bits) - 1; if (pwm.variant.bits == 16) { pwm.tscaler_div = 25; pwm.tdiv = 2; } else { pwm.tscaler_div = 2; pwm.tdiv = 1; } } /* * PWM master driver */ static int __init _samsung_pwm_clocksource_init(void) { u8 mask; int channel; mask = ~pwm.variant.output_mask & ((1 << SAMSUNG_PWM_NUM) - 1); channel = fls(mask) - 1; if (channel < 0) { pr_crit("failed to find PWM channel for clocksource\n"); return -EINVAL; } pwm.source_id = channel; mask &= ~(1 << channel); channel = fls(mask) - 1; if (channel < 0) { pr_crit("failed to find PWM channel for clock event\n"); return -EINVAL; } pwm.event_id = channel; samsung_timer_resources(); samsung_clockevent_init(); return samsung_clocksource_init(); } void __init samsung_pwm_clocksource_init(void __iomem *base, unsigned int *irqs, const struct samsung_pwm_variant *variant) { pwm.base = base; memcpy(&pwm.variant, variant, sizeof(pwm.variant)); memcpy(pwm.irq, irqs, SAMSUNG_PWM_NUM * sizeof(*irqs)); pwm.timerclk = clk_get(NULL, "timers"); if (IS_ERR(pwm.timerclk)) panic("failed to get timers clock for timer"); _samsung_pwm_clocksource_init(); } #ifdef CONFIG_TIMER_OF static int __init samsung_pwm_alloc(struct device_node *np, const struct samsung_pwm_variant *variant) { struct property *prop; const __be32 *cur; u32 val; int i, ret; memcpy(&pwm.variant, variant, sizeof(pwm.variant)); for (i = 0; i < SAMSUNG_PWM_NUM; ++i) pwm.irq[i] = irq_of_parse_and_map(np, i); of_property_for_each_u32(np, "samsung,pwm-outputs", prop, cur, val) { if (val >= SAMSUNG_PWM_NUM) { pr_warn("%s: invalid channel index in samsung,pwm-outputs property\n", __func__); continue; } pwm.variant.output_mask |= 1 << val; } pwm.base = of_iomap(np, 0); if (!pwm.base) { pr_err("%s: failed to map PWM registers\n", __func__); return -ENXIO; } pwm.timerclk = of_clk_get_by_name(np, "timers"); if (IS_ERR(pwm.timerclk)) { pr_crit("failed to get timers clock for timer\n"); ret = PTR_ERR(pwm.timerclk); goto err_clk; } ret = _samsung_pwm_clocksource_init(); if (ret) goto err_clocksource; return 0; err_clocksource: clk_put(pwm.timerclk); pwm.timerclk = NULL; err_clk: iounmap(pwm.base); pwm.base = NULL; return ret; } static const struct samsung_pwm_variant s3c24xx_variant = { .bits = 16, .div_base = 1, .has_tint_cstat = false, .tclk_mask = (1 << 4), }; static int __init s3c2410_pwm_clocksource_init(struct device_node *np) { return samsung_pwm_alloc(np, &s3c24xx_variant); } TIMER_OF_DECLARE(s3c2410_pwm, "samsung,s3c2410-pwm", s3c2410_pwm_clocksource_init); static const struct samsung_pwm_variant s3c64xx_variant = { .bits = 32, .div_base = 0, .has_tint_cstat = true, .tclk_mask = (1 << 7) | (1 << 6) | (1 << 5), }; static int __init s3c64xx_pwm_clocksource_init(struct device_node *np) { return samsung_pwm_alloc(np, &s3c64xx_variant); } TIMER_OF_DECLARE(s3c6400_pwm, "samsung,s3c6400-pwm", s3c64xx_pwm_clocksource_init); static const struct samsung_pwm_variant s5p64x0_variant = { .bits = 32, .div_base = 0, .has_tint_cstat = true, .tclk_mask = 0, }; static int __init s5p64x0_pwm_clocksource_init(struct device_node *np) { return samsung_pwm_alloc(np, &s5p64x0_variant); } TIMER_OF_DECLARE(s5p6440_pwm, "samsung,s5p6440-pwm", s5p64x0_pwm_clocksource_init); static const struct samsung_pwm_variant s5p_variant = { .bits = 32, .div_base = 0, .has_tint_cstat = true, .tclk_mask = (1 << 5), }; static int __init s5p_pwm_clocksource_init(struct device_node *np) { return samsung_pwm_alloc(np, &s5p_variant); } TIMER_OF_DECLARE(s5pc100_pwm, "samsung,s5pc100-pwm", s5p_pwm_clocksource_init); #endif
linux-master
drivers/clocksource/samsung_pwm_timer.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) Maxime Coquelin 2015 * Author: Maxime Coquelin <[email protected]> */ #include <linux/kernel.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/clk.h> #include <linux/bitops.h> #define SYST_CSR 0x00 #define SYST_RVR 0x04 #define SYST_CVR 0x08 #define SYST_CALIB 0x0c #define SYST_CSR_ENABLE BIT(0) #define SYSTICK_LOAD_RELOAD_MASK 0x00FFFFFF static int __init system_timer_of_register(struct device_node *np) { struct clk *clk = NULL; void __iomem *base; u32 rate; int ret; base = of_iomap(np, 0); if (!base) { pr_warn("system-timer: invalid base address\n"); return -ENXIO; } ret = of_property_read_u32(np, "clock-frequency", &rate); if (ret) { clk = of_clk_get(np, 0); if (IS_ERR(clk)) { ret = PTR_ERR(clk); goto out_unmap; } ret = clk_prepare_enable(clk); if (ret) goto out_clk_put; rate = clk_get_rate(clk); if (!rate) { ret = -EINVAL; goto out_clk_disable; } } writel_relaxed(SYSTICK_LOAD_RELOAD_MASK, base + SYST_RVR); writel_relaxed(SYST_CSR_ENABLE, base + SYST_CSR); ret = clocksource_mmio_init(base + SYST_CVR, "arm_system_timer", rate, 200, 24, clocksource_mmio_readl_down); if (ret) { pr_err("failed to init clocksource (%d)\n", ret); if (clk) goto out_clk_disable; else goto out_unmap; } pr_info("ARM System timer initialized as clocksource\n"); return 0; out_clk_disable: clk_disable_unprepare(clk); out_clk_put: clk_put(clk); out_unmap: iounmap(base); pr_warn("ARM System timer register failed (%d)\n", ret); return ret; } TIMER_OF_DECLARE(arm_systick, "arm,armv7m-systick", system_timer_of_register);
linux-master
drivers/clocksource/armv7m_systick.c
// SPDX-License-Identifier: GPL-2.0 /* * J-Core SoC PIT/clocksource driver * * Copyright (C) 2015-2016 Smart Energy Instruments, Inc. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/interrupt.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/sched_clock.h> #include <linux/cpu.h> #include <linux/cpuhotplug.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define PIT_IRQ_SHIFT 12 #define PIT_PRIO_SHIFT 20 #define PIT_ENABLE_SHIFT 26 #define PIT_PRIO_MASK 0xf #define REG_PITEN 0x00 #define REG_THROT 0x10 #define REG_COUNT 0x14 #define REG_BUSPD 0x18 #define REG_SECHI 0x20 #define REG_SECLO 0x24 #define REG_NSEC 0x28 struct jcore_pit { struct clock_event_device ced; void __iomem *base; unsigned long periodic_delta; u32 enable_val; }; static void __iomem *jcore_pit_base; static struct jcore_pit __percpu *jcore_pit_percpu; static notrace u64 jcore_sched_clock_read(void) { u32 seclo, nsec, seclo0; __iomem void *base = jcore_pit_base; seclo = readl(base + REG_SECLO); do { seclo0 = seclo; nsec = readl(base + REG_NSEC); seclo = readl(base + REG_SECLO); } while (seclo0 != seclo); return seclo * NSEC_PER_SEC + nsec; } static u64 jcore_clocksource_read(struct clocksource *cs) { return jcore_sched_clock_read(); } static int jcore_pit_disable(struct jcore_pit *pit) { writel(0, pit->base + REG_PITEN); return 0; } static int jcore_pit_set(unsigned long delta, struct jcore_pit *pit) { jcore_pit_disable(pit); writel(delta, pit->base + REG_THROT); writel(pit->enable_val, pit->base + REG_PITEN); return 0; } static int jcore_pit_set_state_shutdown(struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_disable(pit); } static int jcore_pit_set_state_oneshot(struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_disable(pit); } static int jcore_pit_set_state_periodic(struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_set(pit->periodic_delta, pit); } static int jcore_pit_set_next_event(unsigned long delta, struct clock_event_device *ced) { struct jcore_pit *pit = container_of(ced, struct jcore_pit, ced); return jcore_pit_set(delta, pit); } static int jcore_pit_local_init(unsigned cpu) { struct jcore_pit *pit = this_cpu_ptr(jcore_pit_percpu); unsigned buspd, freq; pr_info("Local J-Core PIT init on cpu %u\n", cpu); buspd = readl(pit->base + REG_BUSPD); freq = DIV_ROUND_CLOSEST(NSEC_PER_SEC, buspd); pit->periodic_delta = DIV_ROUND_CLOSEST(NSEC_PER_SEC, HZ * buspd); clockevents_config_and_register(&pit->ced, freq, 1, ULONG_MAX); return 0; } static irqreturn_t jcore_timer_interrupt(int irq, void *dev_id) { struct jcore_pit *pit = this_cpu_ptr(dev_id); if (clockevent_state_oneshot(&pit->ced)) jcore_pit_disable(pit); pit->ced.event_handler(&pit->ced); return IRQ_HANDLED; } static int __init jcore_pit_init(struct device_node *node) { int err; unsigned pit_irq, cpu; unsigned long hwirq; u32 irqprio, enable_val; jcore_pit_base = of_iomap(node, 0); if (!jcore_pit_base) { pr_err("Error: Cannot map base address for J-Core PIT\n"); return -ENXIO; } pit_irq = irq_of_parse_and_map(node, 0); if (!pit_irq) { pr_err("Error: J-Core PIT has no IRQ\n"); return -ENXIO; } pr_info("Initializing J-Core PIT at %p IRQ %d\n", jcore_pit_base, pit_irq); err = clocksource_mmio_init(jcore_pit_base, "jcore_pit_cs", NSEC_PER_SEC, 400, 32, jcore_clocksource_read); if (err) { pr_err("Error registering clocksource device: %d\n", err); return err; } sched_clock_register(jcore_sched_clock_read, 32, NSEC_PER_SEC); jcore_pit_percpu = alloc_percpu(struct jcore_pit); if (!jcore_pit_percpu) { pr_err("Failed to allocate memory for clock event device\n"); return -ENOMEM; } err = request_irq(pit_irq, jcore_timer_interrupt, IRQF_TIMER | IRQF_PERCPU, "jcore_pit", jcore_pit_percpu); if (err) { pr_err("pit irq request failed: %d\n", err); free_percpu(jcore_pit_percpu); return err; } /* * The J-Core PIT is not hard-wired to a particular IRQ, but * integrated with the interrupt controller such that the IRQ it * generates is programmable, as follows: * * The bit layout of the PIT enable register is: * * .....e..ppppiiiiiiii............ * * where the .'s indicate unrelated/unused bits, e is enable, * p is priority, and i is hard irq number. * * For the PIT included in AIC1 (obsolete but still in use), * any hard irq (trap number) can be programmed via the 8 * iiiiiiii bits, and a priority (0-15) is programmable * separately in the pppp bits. * * For the PIT included in AIC2 (current), the programming * interface is equivalent modulo interrupt mapping. This is * why a different compatible tag was not used. However only * traps 64-127 (the ones actually intended to be used for * interrupts, rather than syscalls/exceptions/etc.) can be * programmed (the high 2 bits of i are ignored) and the * priority pppp is <<2'd and or'd onto the irq number. This * choice seems to have been made on the hardware engineering * side under an assumption that preserving old AIC1 priority * mappings was important. Future models will likely ignore * the pppp field. */ hwirq = irq_get_irq_data(pit_irq)->hwirq; irqprio = (hwirq >> 2) & PIT_PRIO_MASK; enable_val = (1U << PIT_ENABLE_SHIFT) | (hwirq << PIT_IRQ_SHIFT) | (irqprio << PIT_PRIO_SHIFT); for_each_present_cpu(cpu) { struct jcore_pit *pit = per_cpu_ptr(jcore_pit_percpu, cpu); pit->base = of_iomap(node, cpu); if (!pit->base) { pr_err("Unable to map PIT for cpu %u\n", cpu); continue; } pit->ced.name = "jcore_pit"; pit->ced.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERCPU; pit->ced.cpumask = cpumask_of(cpu); pit->ced.rating = 400; pit->ced.irq = pit_irq; pit->ced.set_state_shutdown = jcore_pit_set_state_shutdown; pit->ced.set_state_periodic = jcore_pit_set_state_periodic; pit->ced.set_state_oneshot = jcore_pit_set_state_oneshot; pit->ced.set_next_event = jcore_pit_set_next_event; pit->enable_val = enable_val; } cpuhp_setup_state(CPUHP_AP_JCORE_TIMER_STARTING, "clockevents/jcore:starting", jcore_pit_local_init, NULL); return 0; } TIMER_OF_DECLARE(jcore_pit, "jcore,pit", jcore_pit_init);
linux-master
drivers/clocksource/jcore-pit.c
// SPDX-License-Identifier: GPL-2.0 /* * Renesas Timer Support - OSTM * * Copyright (C) 2017 Renesas Electronics America, Inc. * Copyright (C) 2017 Chris Brandt */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/sched_clock.h> #include <linux/slab.h> #include "timer-of.h" /* * The OSTM contains independent channels. * The first OSTM channel probed will be set up as a free running * clocksource. Additionally we will use this clocksource for the system * schedule timer sched_clock(). * * The second (or more) channel probed will be set up as an interrupt * driven clock event. */ static void __iomem *system_clock; /* For sched_clock() */ /* OSTM REGISTERS */ #define OSTM_CMP 0x000 /* RW,32 */ #define OSTM_CNT 0x004 /* R,32 */ #define OSTM_TE 0x010 /* R,8 */ #define OSTM_TS 0x014 /* W,8 */ #define OSTM_TT 0x018 /* W,8 */ #define OSTM_CTL 0x020 /* RW,8 */ #define TE 0x01 #define TS 0x01 #define TT 0x01 #define CTL_PERIODIC 0x00 #define CTL_ONESHOT 0x02 #define CTL_FREERUN 0x02 static void ostm_timer_stop(struct timer_of *to) { if (readb(timer_of_base(to) + OSTM_TE) & TE) { writeb(TT, timer_of_base(to) + OSTM_TT); /* * Read back the register simply to confirm the write operation * has completed since I/O writes can sometimes get queued by * the bus architecture. */ while (readb(timer_of_base(to) + OSTM_TE) & TE) ; } } static int __init ostm_init_clksrc(struct timer_of *to) { ostm_timer_stop(to); writel(0, timer_of_base(to) + OSTM_CMP); writeb(CTL_FREERUN, timer_of_base(to) + OSTM_CTL); writeb(TS, timer_of_base(to) + OSTM_TS); return clocksource_mmio_init(timer_of_base(to) + OSTM_CNT, to->np->full_name, timer_of_rate(to), 300, 32, clocksource_mmio_readl_up); } static u64 notrace ostm_read_sched_clock(void) { return readl(system_clock); } static void __init ostm_init_sched_clock(struct timer_of *to) { system_clock = timer_of_base(to) + OSTM_CNT; sched_clock_register(ostm_read_sched_clock, 32, timer_of_rate(to)); } static int ostm_clock_event_next(unsigned long delta, struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); ostm_timer_stop(to); writel(delta, timer_of_base(to) + OSTM_CMP); writeb(CTL_ONESHOT, timer_of_base(to) + OSTM_CTL); writeb(TS, timer_of_base(to) + OSTM_TS); return 0; } static int ostm_shutdown(struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); ostm_timer_stop(to); return 0; } static int ostm_set_periodic(struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced)) ostm_timer_stop(to); writel(timer_of_period(to) - 1, timer_of_base(to) + OSTM_CMP); writeb(CTL_PERIODIC, timer_of_base(to) + OSTM_CTL); writeb(TS, timer_of_base(to) + OSTM_TS); return 0; } static int ostm_set_oneshot(struct clock_event_device *ced) { struct timer_of *to = to_timer_of(ced); ostm_timer_stop(to); return 0; } static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *ced = dev_id; if (clockevent_state_oneshot(ced)) ostm_timer_stop(to_timer_of(ced)); /* notify clockevent layer */ if (ced->event_handler) ced->event_handler(ced); return IRQ_HANDLED; } static int __init ostm_init_clkevt(struct timer_of *to) { struct clock_event_device *ced = &to->clkevt; ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC; ced->set_state_shutdown = ostm_shutdown; ced->set_state_periodic = ostm_set_periodic; ced->set_state_oneshot = ostm_set_oneshot; ced->set_next_event = ostm_clock_event_next; ced->shift = 32; ced->rating = 300; ced->cpumask = cpumask_of(0); clockevents_config_and_register(ced, timer_of_rate(to), 0xf, 0xffffffff); return 0; } static int __init ostm_init(struct device_node *np) { struct reset_control *rstc; struct timer_of *to; int ret; to = kzalloc(sizeof(*to), GFP_KERNEL); if (!to) return -ENOMEM; rstc = of_reset_control_get_optional_exclusive(np, NULL); if (IS_ERR(rstc)) { ret = PTR_ERR(rstc); goto err_free; } reset_control_deassert(rstc); to->flags = TIMER_OF_BASE | TIMER_OF_CLOCK; if (system_clock) { /* * clock sources don't use interrupts, clock events do */ to->flags |= TIMER_OF_IRQ; to->of_irq.flags = IRQF_TIMER | IRQF_IRQPOLL; to->of_irq.handler = ostm_timer_interrupt; } ret = timer_of_init(np, to); if (ret) goto err_reset; /* * First probed device will be used as system clocksource. Any * additional devices will be used as clock events. */ if (!system_clock) { ret = ostm_init_clksrc(to); if (ret) goto err_cleanup; ostm_init_sched_clock(to); pr_info("%pOF: used for clocksource\n", np); } else { ret = ostm_init_clkevt(to); if (ret) goto err_cleanup; pr_info("%pOF: used for clock events\n", np); } return 0; err_cleanup: timer_of_cleanup(to); err_reset: reset_control_assert(rstc); reset_control_put(rstc); err_free: kfree(to); return ret; } TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init); #ifdef CONFIG_ARCH_RZG2L static int __init ostm_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; return ostm_init(dev->of_node); } static const struct of_device_id ostm_of_table[] = { { .compatible = "renesas,ostm", }, { /* sentinel */ } }; static struct platform_driver ostm_device_driver = { .driver = { .name = "renesas_ostm", .of_match_table = of_match_ptr(ostm_of_table), .suppress_bind_attrs = true, }, }; builtin_platform_driver_probe(ostm_device_driver, ostm_probe); #endif
linux-master
drivers/clocksource/renesas-ostm.c
// SPDX-License-Identifier: GPL-2.0-only /* * TI DaVinci clocksource driver * * Copyright (C) 2019 Texas Instruments * Author: Bartosz Golaszewski <[email protected]> * (with tiny parts adopted from code by Kevin Hilman <[email protected]>) */ #define pr_fmt(fmt) "%s: " fmt, __func__ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include <clocksource/timer-davinci.h> #define DAVINCI_TIMER_REG_TIM12 0x10 #define DAVINCI_TIMER_REG_TIM34 0x14 #define DAVINCI_TIMER_REG_PRD12 0x18 #define DAVINCI_TIMER_REG_PRD34 0x1c #define DAVINCI_TIMER_REG_TCR 0x20 #define DAVINCI_TIMER_REG_TGCR 0x24 #define DAVINCI_TIMER_TIMMODE_MASK GENMASK(3, 2) #define DAVINCI_TIMER_RESET_MASK GENMASK(1, 0) #define DAVINCI_TIMER_TIMMODE_32BIT_UNCHAINED BIT(2) #define DAVINCI_TIMER_UNRESET GENMASK(1, 0) #define DAVINCI_TIMER_ENAMODE_MASK GENMASK(1, 0) #define DAVINCI_TIMER_ENAMODE_DISABLED 0x00 #define DAVINCI_TIMER_ENAMODE_ONESHOT BIT(0) #define DAVINCI_TIMER_ENAMODE_PERIODIC BIT(1) #define DAVINCI_TIMER_ENAMODE_SHIFT_TIM12 6 #define DAVINCI_TIMER_ENAMODE_SHIFT_TIM34 22 #define DAVINCI_TIMER_MIN_DELTA 0x01 #define DAVINCI_TIMER_MAX_DELTA 0xfffffffe #define DAVINCI_TIMER_CLKSRC_BITS 32 #define DAVINCI_TIMER_TGCR_DEFAULT \ (DAVINCI_TIMER_TIMMODE_32BIT_UNCHAINED | DAVINCI_TIMER_UNRESET) struct davinci_clockevent { struct clock_event_device dev; void __iomem *base; unsigned int cmp_off; }; /* * This must be globally accessible by davinci_timer_read_sched_clock(), so * let's keep it here. */ static struct { struct clocksource dev; void __iomem *base; unsigned int tim_off; } davinci_clocksource; static struct davinci_clockevent * to_davinci_clockevent(struct clock_event_device *clockevent) { return container_of(clockevent, struct davinci_clockevent, dev); } static unsigned int davinci_clockevent_read(struct davinci_clockevent *clockevent, unsigned int reg) { return readl_relaxed(clockevent->base + reg); } static void davinci_clockevent_write(struct davinci_clockevent *clockevent, unsigned int reg, unsigned int val) { writel_relaxed(val, clockevent->base + reg); } static void davinci_tim12_shutdown(void __iomem *base) { unsigned int tcr; tcr = DAVINCI_TIMER_ENAMODE_DISABLED << DAVINCI_TIMER_ENAMODE_SHIFT_TIM12; /* * This function is only ever called if we're using both timer * halves. In this case TIM34 runs in periodic mode and we must * not modify it. */ tcr |= DAVINCI_TIMER_ENAMODE_PERIODIC << DAVINCI_TIMER_ENAMODE_SHIFT_TIM34; writel_relaxed(tcr, base + DAVINCI_TIMER_REG_TCR); } static void davinci_tim12_set_oneshot(void __iomem *base) { unsigned int tcr; tcr = DAVINCI_TIMER_ENAMODE_ONESHOT << DAVINCI_TIMER_ENAMODE_SHIFT_TIM12; /* Same as above. */ tcr |= DAVINCI_TIMER_ENAMODE_PERIODIC << DAVINCI_TIMER_ENAMODE_SHIFT_TIM34; writel_relaxed(tcr, base + DAVINCI_TIMER_REG_TCR); } static int davinci_clockevent_shutdown(struct clock_event_device *dev) { struct davinci_clockevent *clockevent; clockevent = to_davinci_clockevent(dev); davinci_tim12_shutdown(clockevent->base); return 0; } static int davinci_clockevent_set_oneshot(struct clock_event_device *dev) { struct davinci_clockevent *clockevent = to_davinci_clockevent(dev); davinci_clockevent_write(clockevent, DAVINCI_TIMER_REG_TIM12, 0x0); davinci_tim12_set_oneshot(clockevent->base); return 0; } static int davinci_clockevent_set_next_event_std(unsigned long cycles, struct clock_event_device *dev) { struct davinci_clockevent *clockevent = to_davinci_clockevent(dev); davinci_clockevent_shutdown(dev); davinci_clockevent_write(clockevent, DAVINCI_TIMER_REG_TIM12, 0x0); davinci_clockevent_write(clockevent, DAVINCI_TIMER_REG_PRD12, cycles); davinci_clockevent_set_oneshot(dev); return 0; } static int davinci_clockevent_set_next_event_cmp(unsigned long cycles, struct clock_event_device *dev) { struct davinci_clockevent *clockevent = to_davinci_clockevent(dev); unsigned int curr_time; curr_time = davinci_clockevent_read(clockevent, DAVINCI_TIMER_REG_TIM12); davinci_clockevent_write(clockevent, clockevent->cmp_off, curr_time + cycles); return 0; } static irqreturn_t davinci_timer_irq_timer(int irq, void *data) { struct davinci_clockevent *clockevent = data; if (!clockevent_state_oneshot(&clockevent->dev)) davinci_tim12_shutdown(clockevent->base); clockevent->dev.event_handler(&clockevent->dev); return IRQ_HANDLED; } static u64 notrace davinci_timer_read_sched_clock(void) { return readl_relaxed(davinci_clocksource.base + davinci_clocksource.tim_off); } static u64 davinci_clocksource_read(struct clocksource *dev) { return davinci_timer_read_sched_clock(); } /* * Standard use-case: we're using tim12 for clockevent and tim34 for * clocksource. The default is making the former run in oneshot mode * and the latter in periodic mode. */ static void davinci_clocksource_init_tim34(void __iomem *base) { int tcr; tcr = DAVINCI_TIMER_ENAMODE_PERIODIC << DAVINCI_TIMER_ENAMODE_SHIFT_TIM34; tcr |= DAVINCI_TIMER_ENAMODE_ONESHOT << DAVINCI_TIMER_ENAMODE_SHIFT_TIM12; writel_relaxed(0x0, base + DAVINCI_TIMER_REG_TIM34); writel_relaxed(UINT_MAX, base + DAVINCI_TIMER_REG_PRD34); writel_relaxed(tcr, base + DAVINCI_TIMER_REG_TCR); } /* * Special use-case on da830: the DSP may use tim34. We're using tim12 for * both clocksource and clockevent. We set tim12 to periodic and don't touch * tim34. */ static void davinci_clocksource_init_tim12(void __iomem *base) { unsigned int tcr; tcr = DAVINCI_TIMER_ENAMODE_PERIODIC << DAVINCI_TIMER_ENAMODE_SHIFT_TIM12; writel_relaxed(0x0, base + DAVINCI_TIMER_REG_TIM12); writel_relaxed(UINT_MAX, base + DAVINCI_TIMER_REG_PRD12); writel_relaxed(tcr, base + DAVINCI_TIMER_REG_TCR); } static void davinci_timer_init(void __iomem *base) { /* Set clock to internal mode and disable it. */ writel_relaxed(0x0, base + DAVINCI_TIMER_REG_TCR); /* * Reset both 32-bit timers, set no prescaler for timer 34, set the * timer to dual 32-bit unchained mode, unreset both 32-bit timers. */ writel_relaxed(DAVINCI_TIMER_TGCR_DEFAULT, base + DAVINCI_TIMER_REG_TGCR); /* Init both counters to zero. */ writel_relaxed(0x0, base + DAVINCI_TIMER_REG_TIM12); writel_relaxed(0x0, base + DAVINCI_TIMER_REG_TIM34); } int __init davinci_timer_register(struct clk *clk, const struct davinci_timer_cfg *timer_cfg) { struct davinci_clockevent *clockevent; unsigned int tick_rate; void __iomem *base; int rv; rv = clk_prepare_enable(clk); if (rv) { pr_err("Unable to prepare and enable the timer clock\n"); return rv; } if (!request_mem_region(timer_cfg->reg.start, resource_size(&timer_cfg->reg), "davinci-timer")) { pr_err("Unable to request memory region\n"); rv = -EBUSY; goto exit_clk_disable; } base = ioremap(timer_cfg->reg.start, resource_size(&timer_cfg->reg)); if (!base) { pr_err("Unable to map the register range\n"); rv = -ENOMEM; goto exit_mem_region; } davinci_timer_init(base); tick_rate = clk_get_rate(clk); clockevent = kzalloc(sizeof(*clockevent), GFP_KERNEL); if (!clockevent) { rv = -ENOMEM; goto exit_iounmap_base; } clockevent->dev.name = "tim12"; clockevent->dev.features = CLOCK_EVT_FEAT_ONESHOT; clockevent->dev.cpumask = cpumask_of(0); clockevent->base = base; if (timer_cfg->cmp_off) { clockevent->cmp_off = timer_cfg->cmp_off; clockevent->dev.set_next_event = davinci_clockevent_set_next_event_cmp; } else { clockevent->dev.set_next_event = davinci_clockevent_set_next_event_std; clockevent->dev.set_state_oneshot = davinci_clockevent_set_oneshot; clockevent->dev.set_state_shutdown = davinci_clockevent_shutdown; } rv = request_irq(timer_cfg->irq[DAVINCI_TIMER_CLOCKEVENT_IRQ].start, davinci_timer_irq_timer, IRQF_TIMER, "clockevent/tim12", clockevent); if (rv) { pr_err("Unable to request the clockevent interrupt\n"); goto exit_free_clockevent; } davinci_clocksource.dev.rating = 300; davinci_clocksource.dev.read = davinci_clocksource_read; davinci_clocksource.dev.mask = CLOCKSOURCE_MASK(DAVINCI_TIMER_CLKSRC_BITS); davinci_clocksource.dev.flags = CLOCK_SOURCE_IS_CONTINUOUS; davinci_clocksource.base = base; if (timer_cfg->cmp_off) { davinci_clocksource.dev.name = "tim12"; davinci_clocksource.tim_off = DAVINCI_TIMER_REG_TIM12; davinci_clocksource_init_tim12(base); } else { davinci_clocksource.dev.name = "tim34"; davinci_clocksource.tim_off = DAVINCI_TIMER_REG_TIM34; davinci_clocksource_init_tim34(base); } clockevents_config_and_register(&clockevent->dev, tick_rate, DAVINCI_TIMER_MIN_DELTA, DAVINCI_TIMER_MAX_DELTA); rv = clocksource_register_hz(&davinci_clocksource.dev, tick_rate); if (rv) { pr_err("Unable to register clocksource\n"); goto exit_free_irq; } sched_clock_register(davinci_timer_read_sched_clock, DAVINCI_TIMER_CLKSRC_BITS, tick_rate); return 0; exit_free_irq: free_irq(timer_cfg->irq[DAVINCI_TIMER_CLOCKEVENT_IRQ].start, clockevent); exit_free_clockevent: kfree(clockevent); exit_iounmap_base: iounmap(base); exit_mem_region: release_mem_region(timer_cfg->reg.start, resource_size(&timer_cfg->reg)); exit_clk_disable: clk_disable_unprepare(clk); return rv; } static int __init of_davinci_timer_register(struct device_node *np) { struct davinci_timer_cfg timer_cfg = { }; struct clk *clk; int rv; rv = of_address_to_resource(np, 0, &timer_cfg.reg); if (rv) { pr_err("Unable to get the register range for timer\n"); return rv; } rv = of_irq_to_resource_table(np, timer_cfg.irq, DAVINCI_TIMER_NUM_IRQS); if (rv != DAVINCI_TIMER_NUM_IRQS) { pr_err("Unable to get the interrupts for timer\n"); return rv; } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("Unable to get the timer clock\n"); return PTR_ERR(clk); } rv = davinci_timer_register(clk, &timer_cfg); if (rv) clk_put(clk); return rv; } TIMER_OF_DECLARE(davinci_timer, "ti,da830-timer", of_davinci_timer_register);
linux-master
drivers/clocksource/timer-davinci.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/drivers/clocksource/timer-sp.c * * Copyright (C) 1999 - 2003 ARM Limited * Copyright (C) 2000 Deep Blue Solutions Ltd */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/clk.h> #include <linux/clocksource.h> #include <linux/clockchips.h> #include <linux/err.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/io.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_clk.h> #include <linux/of_irq.h> #include <linux/sched_clock.h> #include "timer-sp.h" /* Hisilicon 64-bit timer(a variant of ARM SP804) */ #define HISI_TIMER_1_BASE 0x00 #define HISI_TIMER_2_BASE 0x40 #define HISI_TIMER_LOAD 0x00 #define HISI_TIMER_LOAD_H 0x04 #define HISI_TIMER_VALUE 0x08 #define HISI_TIMER_VALUE_H 0x0c #define HISI_TIMER_CTRL 0x10 #define HISI_TIMER_INTCLR 0x14 #define HISI_TIMER_RIS 0x18 #define HISI_TIMER_MIS 0x1c #define HISI_TIMER_BGLOAD 0x20 #define HISI_TIMER_BGLOAD_H 0x24 static struct sp804_timer arm_sp804_timer __initdata = { .load = TIMER_LOAD, .value = TIMER_VALUE, .ctrl = TIMER_CTRL, .intclr = TIMER_INTCLR, .timer_base = {TIMER_1_BASE, TIMER_2_BASE}, .width = 32, }; static struct sp804_timer hisi_sp804_timer __initdata = { .load = HISI_TIMER_LOAD, .load_h = HISI_TIMER_LOAD_H, .value = HISI_TIMER_VALUE, .value_h = HISI_TIMER_VALUE_H, .ctrl = HISI_TIMER_CTRL, .intclr = HISI_TIMER_INTCLR, .timer_base = {HISI_TIMER_1_BASE, HISI_TIMER_2_BASE}, .width = 64, }; static struct sp804_clkevt sp804_clkevt[NR_TIMERS]; static long __init sp804_get_clock_rate(struct clk *clk, const char *name) { int err; if (!clk) clk = clk_get_sys("sp804", name); if (IS_ERR(clk)) { pr_err("%s clock not found: %ld\n", name, PTR_ERR(clk)); return PTR_ERR(clk); } err = clk_prepare_enable(clk); if (err) { pr_err("clock failed to enable: %d\n", err); clk_put(clk); return err; } return clk_get_rate(clk); } static struct sp804_clkevt * __init sp804_clkevt_get(void __iomem *base) { int i; for (i = 0; i < NR_TIMERS; i++) { if (sp804_clkevt[i].base == base) return &sp804_clkevt[i]; } /* It's impossible to reach here */ WARN_ON(1); return NULL; } static struct sp804_clkevt *sched_clkevt; static u64 notrace sp804_read(void) { return ~readl_relaxed(sched_clkevt->value); } static int __init sp804_clocksource_and_sched_clock_init(void __iomem *base, const char *name, struct clk *clk, int use_sched_clock) { long rate; struct sp804_clkevt *clkevt; rate = sp804_get_clock_rate(clk, name); if (rate < 0) return -EINVAL; clkevt = sp804_clkevt_get(base); writel(0, clkevt->ctrl); writel(0xffffffff, clkevt->load); writel(0xffffffff, clkevt->value); if (clkevt->width == 64) { writel(0xffffffff, clkevt->load_h); writel(0xffffffff, clkevt->value_h); } writel(TIMER_CTRL_32BIT | TIMER_CTRL_ENABLE | TIMER_CTRL_PERIODIC, clkevt->ctrl); clocksource_mmio_init(clkevt->value, name, rate, 200, 32, clocksource_mmio_readl_down); if (use_sched_clock) { sched_clkevt = clkevt; sched_clock_register(sp804_read, 32, rate); } return 0; } static struct sp804_clkevt *common_clkevt; /* * IRQ handler for the timer */ static irqreturn_t sp804_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; /* clear the interrupt */ writel(1, common_clkevt->intclr); evt->event_handler(evt); return IRQ_HANDLED; } static inline void evt_timer_shutdown(struct clock_event_device *evt) { writel(0, common_clkevt->ctrl); } static int sp804_shutdown(struct clock_event_device *evt) { evt_timer_shutdown(evt); return 0; } static int sp804_set_periodic(struct clock_event_device *evt) { unsigned long ctrl = TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_PERIODIC | TIMER_CTRL_ENABLE; evt_timer_shutdown(evt); writel(common_clkevt->reload, common_clkevt->load); writel(ctrl, common_clkevt->ctrl); return 0; } static int sp804_set_next_event(unsigned long next, struct clock_event_device *evt) { unsigned long ctrl = TIMER_CTRL_32BIT | TIMER_CTRL_IE | TIMER_CTRL_ONESHOT | TIMER_CTRL_ENABLE; writel(next, common_clkevt->load); writel(ctrl, common_clkevt->ctrl); return 0; } static struct clock_event_device sp804_clockevent = { .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ, .set_state_shutdown = sp804_shutdown, .set_state_periodic = sp804_set_periodic, .set_state_oneshot = sp804_shutdown, .tick_resume = sp804_shutdown, .set_next_event = sp804_set_next_event, .rating = 300, }; static int __init sp804_clockevents_init(void __iomem *base, unsigned int irq, struct clk *clk, const char *name) { struct clock_event_device *evt = &sp804_clockevent; long rate; rate = sp804_get_clock_rate(clk, name); if (rate < 0) return -EINVAL; common_clkevt = sp804_clkevt_get(base); common_clkevt->reload = DIV_ROUND_CLOSEST(rate, HZ); evt->name = name; evt->irq = irq; evt->cpumask = cpu_possible_mask; writel(0, common_clkevt->ctrl); if (request_irq(irq, sp804_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "timer", &sp804_clockevent)) pr_err("request_irq() failed\n"); clockevents_config_and_register(evt, rate, 0xf, 0xffffffff); return 0; } static void __init sp804_clkevt_init(struct sp804_timer *timer, void __iomem *base) { int i; for (i = 0; i < NR_TIMERS; i++) { void __iomem *timer_base; struct sp804_clkevt *clkevt; timer_base = base + timer->timer_base[i]; clkevt = &sp804_clkevt[i]; clkevt->base = timer_base; clkevt->load = timer_base + timer->load; clkevt->load_h = timer_base + timer->load_h; clkevt->value = timer_base + timer->value; clkevt->value_h = timer_base + timer->value_h; clkevt->ctrl = timer_base + timer->ctrl; clkevt->intclr = timer_base + timer->intclr; clkevt->width = timer->width; } } static int __init sp804_of_init(struct device_node *np, struct sp804_timer *timer) { static bool initialized = false; void __iomem *base; void __iomem *timer1_base; void __iomem *timer2_base; int irq, ret = -EINVAL; u32 irq_num = 0; struct clk *clk1, *clk2; const char *name = of_get_property(np, "compatible", NULL); if (initialized) { pr_debug("%pOF: skipping further SP804 timer device\n", np); return 0; } base = of_iomap(np, 0); if (!base) return -ENXIO; timer1_base = base + timer->timer_base[0]; timer2_base = base + timer->timer_base[1]; /* Ensure timers are disabled */ writel(0, timer1_base + timer->ctrl); writel(0, timer2_base + timer->ctrl); clk1 = of_clk_get(np, 0); if (IS_ERR(clk1)) clk1 = NULL; /* Get the 2nd clock if the timer has 3 timer clocks */ if (of_clk_get_parent_count(np) == 3) { clk2 = of_clk_get(np, 1); if (IS_ERR(clk2)) { pr_err("%pOFn clock not found: %d\n", np, (int)PTR_ERR(clk2)); clk2 = NULL; } } else clk2 = clk1; irq = irq_of_parse_and_map(np, 0); if (irq <= 0) goto err; sp804_clkevt_init(timer, base); of_property_read_u32(np, "arm,sp804-has-irq", &irq_num); if (irq_num == 2) { ret = sp804_clockevents_init(timer2_base, irq, clk2, name); if (ret) goto err; ret = sp804_clocksource_and_sched_clock_init(timer1_base, name, clk1, 1); if (ret) goto err; } else { ret = sp804_clockevents_init(timer1_base, irq, clk1, name); if (ret) goto err; ret = sp804_clocksource_and_sched_clock_init(timer2_base, name, clk2, 1); if (ret) goto err; } initialized = true; return 0; err: iounmap(base); return ret; } static int __init arm_sp804_of_init(struct device_node *np) { return sp804_of_init(np, &arm_sp804_timer); } TIMER_OF_DECLARE(sp804, "arm,sp804", arm_sp804_of_init); static int __init hisi_sp804_of_init(struct device_node *np) { return sp804_of_init(np, &hisi_sp804_timer); } TIMER_OF_DECLARE(hisi_sp804, "hisilicon,sp804", hisi_sp804_of_init); static int __init integrator_cp_of_init(struct device_node *np) { static int init_count = 0; void __iomem *base; int irq, ret = -EINVAL; const char *name = of_get_property(np, "compatible", NULL); struct clk *clk; base = of_iomap(np, 0); if (!base) { pr_err("Failed to iomap\n"); return -ENXIO; } clk = of_clk_get(np, 0); if (IS_ERR(clk)) { pr_err("Failed to get clock\n"); return PTR_ERR(clk); } /* Ensure timer is disabled */ writel(0, base + arm_sp804_timer.ctrl); if (init_count == 2 || !of_device_is_available(np)) goto err; sp804_clkevt_init(&arm_sp804_timer, base); if (!init_count) { ret = sp804_clocksource_and_sched_clock_init(base, name, clk, 0); if (ret) goto err; } else { irq = irq_of_parse_and_map(np, 0); if (irq <= 0) goto err; ret = sp804_clockevents_init(base, irq, clk, name); if (ret) goto err; } init_count++; return 0; err: iounmap(base); return ret; } TIMER_OF_DECLARE(intcp, "arm,integrator-cp-timer", integrator_cp_of_init);
linux-master
drivers/clocksource/timer-sp804.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * Actions Semi Owl timer * * Copyright 2012 Actions Semi Inc. * Author: Actions Semi, Inc. * * Copyright (c) 2017 SUSE Linux GmbH * Author: Andreas Färber */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/irqreturn.h> #include <linux/sched_clock.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #define OWL_Tx_CTL 0x0 #define OWL_Tx_CMP 0x4 #define OWL_Tx_VAL 0x8 #define OWL_Tx_CTL_PD BIT(0) #define OWL_Tx_CTL_INTEN BIT(1) #define OWL_Tx_CTL_EN BIT(2) static void __iomem *owl_timer_base; static void __iomem *owl_clksrc_base; static void __iomem *owl_clkevt_base; static inline void owl_timer_reset(void __iomem *base) { writel(0, base + OWL_Tx_CTL); writel(0, base + OWL_Tx_VAL); writel(0, base + OWL_Tx_CMP); } static inline void owl_timer_set_enabled(void __iomem *base, bool enabled) { u32 ctl = readl(base + OWL_Tx_CTL); /* PD bit is cleared when set */ ctl &= ~OWL_Tx_CTL_PD; if (enabled) ctl |= OWL_Tx_CTL_EN; else ctl &= ~OWL_Tx_CTL_EN; writel(ctl, base + OWL_Tx_CTL); } static u64 notrace owl_timer_sched_read(void) { return (u64)readl(owl_clksrc_base + OWL_Tx_VAL); } static int owl_timer_set_state_shutdown(struct clock_event_device *evt) { owl_timer_set_enabled(owl_clkevt_base, false); return 0; } static int owl_timer_set_state_oneshot(struct clock_event_device *evt) { owl_timer_reset(owl_clkevt_base); return 0; } static int owl_timer_tick_resume(struct clock_event_device *evt) { return 0; } static int owl_timer_set_next_event(unsigned long evt, struct clock_event_device *ev) { void __iomem *base = owl_clkevt_base; owl_timer_set_enabled(base, false); writel(OWL_Tx_CTL_INTEN, base + OWL_Tx_CTL); writel(0, base + OWL_Tx_VAL); writel(evt, base + OWL_Tx_CMP); owl_timer_set_enabled(base, true); return 0; } static struct clock_event_device owl_clockevent = { .name = "owl_tick", .rating = 200, .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ, .set_state_shutdown = owl_timer_set_state_shutdown, .set_state_oneshot = owl_timer_set_state_oneshot, .tick_resume = owl_timer_tick_resume, .set_next_event = owl_timer_set_next_event, }; static irqreturn_t owl_timer1_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = (struct clock_event_device *)dev_id; writel(OWL_Tx_CTL_PD, owl_clkevt_base + OWL_Tx_CTL); evt->event_handler(evt); return IRQ_HANDLED; } static int __init owl_timer_init(struct device_node *node) { struct clk *clk; unsigned long rate; int timer1_irq, ret; owl_timer_base = of_io_request_and_map(node, 0, "owl-timer"); if (IS_ERR(owl_timer_base)) { pr_err("Can't map timer registers\n"); return PTR_ERR(owl_timer_base); } owl_clksrc_base = owl_timer_base + 0x08; owl_clkevt_base = owl_timer_base + 0x14; timer1_irq = of_irq_get_byname(node, "timer1"); if (timer1_irq <= 0) { pr_err("Can't parse timer1 IRQ\n"); return -EINVAL; } clk = of_clk_get(node, 0); if (IS_ERR(clk)) { ret = PTR_ERR(clk); pr_err("Failed to get clock for clocksource (%d)\n", ret); return ret; } rate = clk_get_rate(clk); owl_timer_reset(owl_clksrc_base); owl_timer_set_enabled(owl_clksrc_base, true); sched_clock_register(owl_timer_sched_read, 32, rate); ret = clocksource_mmio_init(owl_clksrc_base + OWL_Tx_VAL, node->name, rate, 200, 32, clocksource_mmio_readl_up); if (ret) { pr_err("Failed to register clocksource (%d)\n", ret); return ret; } owl_timer_reset(owl_clkevt_base); ret = request_irq(timer1_irq, owl_timer1_interrupt, IRQF_TIMER, "owl-timer", &owl_clockevent); if (ret) { pr_err("failed to request irq %d\n", timer1_irq); return ret; } owl_clockevent.cpumask = cpumask_of(0); owl_clockevent.irq = timer1_irq; clockevents_config_and_register(&owl_clockevent, rate, 0xf, 0xffffffff); return 0; } TIMER_OF_DECLARE(owl_s500, "actions,s500-timer", owl_timer_init); TIMER_OF_DECLARE(owl_s700, "actions,s700-timer", owl_timer_init); TIMER_OF_DECLARE(owl_s900, "actions,s900-timer", owl_timer_init);
linux-master
drivers/clocksource/timer-owl.c
// SPDX-License-Identifier: GPL-2.0-only /* * This file contains driver for the Cadence Triple Timer Counter Rev 06 * * Copyright (C) 2011-2013 Xilinx * * based on arch/mips/kernel/time.c timer driver */ #include <linux/clk.h> #include <linux/interrupt.h> #include <linux/clockchips.h> #include <linux/clocksource.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/sched_clock.h> #include <linux/module.h> #include <linux/of_platform.h> /* * This driver configures the 2 16/32-bit count-up timers as follows: * * T1: Timer 1, clocksource for generic timekeeping * T2: Timer 2, clockevent source for hrtimers * T3: Timer 3, <unused> * * The input frequency to the timer module for emulation is 2.5MHz which is * common to all the timer channels (T1, T2, and T3). With a pre-scaler of 32, * the timers are clocked at 78.125KHz (12.8 us resolution). * The input frequency to the timer module in silicon is configurable and * obtained from device tree. The pre-scaler of 32 is used. */ /* * Timer Register Offset Definitions of Timer 1, Increment base address by 4 * and use same offsets for Timer 2 */ #define TTC_CLK_CNTRL_OFFSET 0x00 /* Clock Control Reg, RW */ #define TTC_CNT_CNTRL_OFFSET 0x0C /* Counter Control Reg, RW */ #define TTC_COUNT_VAL_OFFSET 0x18 /* Counter Value Reg, RO */ #define TTC_INTR_VAL_OFFSET 0x24 /* Interval Count Reg, RW */ #define TTC_ISR_OFFSET 0x54 /* Interrupt Status Reg, RO */ #define TTC_IER_OFFSET 0x60 /* Interrupt Enable Reg, RW */ #define TTC_CNT_CNTRL_DISABLE_MASK 0x1 #define TTC_CLK_CNTRL_CSRC_MASK (1 << 5) /* clock source */ #define TTC_CLK_CNTRL_PSV_MASK 0x1e #define TTC_CLK_CNTRL_PSV_SHIFT 1 /* * Setup the timers to use pre-scaling, using a fixed value for now that will * work across most input frequency, but it may need to be more dynamic */ #define PRESCALE_EXPONENT 11 /* 2 ^ PRESCALE_EXPONENT = PRESCALE */ #define PRESCALE 2048 /* The exponent must match this */ #define CLK_CNTRL_PRESCALE ((PRESCALE_EXPONENT - 1) << 1) #define CLK_CNTRL_PRESCALE_EN 1 #define CNT_CNTRL_RESET (1 << 4) #define MAX_F_ERR 50 /** * struct ttc_timer - This definition defines local timer structure * * @base_addr: Base address of timer * @freq: Timer input clock frequency * @clk: Associated clock source * @clk_rate_change_nb Notifier block for clock rate changes */ struct ttc_timer { void __iomem *base_addr; unsigned long freq; struct clk *clk; struct notifier_block clk_rate_change_nb; }; #define to_ttc_timer(x) \ container_of(x, struct ttc_timer, clk_rate_change_nb) struct ttc_timer_clocksource { u32 scale_clk_ctrl_reg_old; u32 scale_clk_ctrl_reg_new; struct ttc_timer ttc; struct clocksource cs; }; #define to_ttc_timer_clksrc(x) \ container_of(x, struct ttc_timer_clocksource, cs) struct ttc_timer_clockevent { struct ttc_timer ttc; struct clock_event_device ce; }; #define to_ttc_timer_clkevent(x) \ container_of(x, struct ttc_timer_clockevent, ce) static void __iomem *ttc_sched_clock_val_reg; /** * ttc_set_interval - Set the timer interval value * * @timer: Pointer to the timer instance * @cycles: Timer interval ticks **/ static void ttc_set_interval(struct ttc_timer *timer, unsigned long cycles) { u32 ctrl_reg; /* Disable the counter, set the counter value and re-enable counter */ ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET); ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); writel_relaxed(cycles, timer->base_addr + TTC_INTR_VAL_OFFSET); /* * Reset the counter (0x10) so that it starts from 0, one-shot * mode makes this needed for timing to be right. */ ctrl_reg |= CNT_CNTRL_RESET; ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); } /** * ttc_clock_event_interrupt - Clock event timer interrupt handler * * @irq: IRQ number of the Timer * @dev_id: void pointer to the ttc_timer instance * * returns: Always IRQ_HANDLED - success **/ static irqreturn_t ttc_clock_event_interrupt(int irq, void *dev_id) { struct ttc_timer_clockevent *ttce = dev_id; struct ttc_timer *timer = &ttce->ttc; /* Acknowledge the interrupt and call event handler */ readl_relaxed(timer->base_addr + TTC_ISR_OFFSET); ttce->ce.event_handler(&ttce->ce); return IRQ_HANDLED; } /** * __ttc_clocksource_read - Reads the timer counter register * * returns: Current timer counter register value **/ static u64 __ttc_clocksource_read(struct clocksource *cs) { struct ttc_timer *timer = &to_ttc_timer_clksrc(cs)->ttc; return (u64)readl_relaxed(timer->base_addr + TTC_COUNT_VAL_OFFSET); } static u64 notrace ttc_sched_clock_read(void) { return readl_relaxed(ttc_sched_clock_val_reg); } /** * ttc_set_next_event - Sets the time interval for next event * * @cycles: Timer interval ticks * @evt: Address of clock event instance * * returns: Always 0 - success **/ static int ttc_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; ttc_set_interval(timer, cycles); return 0; } /** * ttc_set_{shutdown|oneshot|periodic} - Sets the state of timer * * @evt: Address of clock event instance **/ static int ttc_shutdown(struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; u32 ctrl_reg; ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET); ctrl_reg |= TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); return 0; } static int ttc_set_periodic(struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; ttc_set_interval(timer, DIV_ROUND_CLOSEST(ttce->ttc.freq, PRESCALE * HZ)); return 0; } static int ttc_resume(struct clock_event_device *evt) { struct ttc_timer_clockevent *ttce = to_ttc_timer_clkevent(evt); struct ttc_timer *timer = &ttce->ttc; u32 ctrl_reg; ctrl_reg = readl_relaxed(timer->base_addr + TTC_CNT_CNTRL_OFFSET); ctrl_reg &= ~TTC_CNT_CNTRL_DISABLE_MASK; writel_relaxed(ctrl_reg, timer->base_addr + TTC_CNT_CNTRL_OFFSET); return 0; } static int ttc_rate_change_clocksource_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct ttc_timer *ttc = to_ttc_timer(nb); struct ttc_timer_clocksource *ttccs = container_of(ttc, struct ttc_timer_clocksource, ttc); switch (event) { case PRE_RATE_CHANGE: { u32 psv; unsigned long factor, rate_low, rate_high; if (ndata->new_rate > ndata->old_rate) { factor = DIV_ROUND_CLOSEST(ndata->new_rate, ndata->old_rate); rate_low = ndata->old_rate; rate_high = ndata->new_rate; } else { factor = DIV_ROUND_CLOSEST(ndata->old_rate, ndata->new_rate); rate_low = ndata->new_rate; rate_high = ndata->old_rate; } if (!is_power_of_2(factor)) return NOTIFY_BAD; if (abs(rate_high - (factor * rate_low)) > MAX_F_ERR) return NOTIFY_BAD; factor = __ilog2_u32(factor); /* * store timer clock ctrl register so we can restore it in case * of an abort. */ ttccs->scale_clk_ctrl_reg_old = readl_relaxed(ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); psv = (ttccs->scale_clk_ctrl_reg_old & TTC_CLK_CNTRL_PSV_MASK) >> TTC_CLK_CNTRL_PSV_SHIFT; if (ndata->new_rate < ndata->old_rate) psv -= factor; else psv += factor; /* prescaler within legal range? */ if (psv & ~(TTC_CLK_CNTRL_PSV_MASK >> TTC_CLK_CNTRL_PSV_SHIFT)) return NOTIFY_BAD; ttccs->scale_clk_ctrl_reg_new = ttccs->scale_clk_ctrl_reg_old & ~TTC_CLK_CNTRL_PSV_MASK; ttccs->scale_clk_ctrl_reg_new |= psv << TTC_CLK_CNTRL_PSV_SHIFT; /* scale down: adjust divider in post-change notification */ if (ndata->new_rate < ndata->old_rate) return NOTIFY_DONE; /* scale up: adjust divider now - before frequency change */ writel_relaxed(ttccs->scale_clk_ctrl_reg_new, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); break; } case POST_RATE_CHANGE: /* scale up: pre-change notification did the adjustment */ if (ndata->new_rate > ndata->old_rate) return NOTIFY_OK; /* scale down: adjust divider now - after frequency change */ writel_relaxed(ttccs->scale_clk_ctrl_reg_new, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); break; case ABORT_RATE_CHANGE: /* we have to undo the adjustment in case we scale up */ if (ndata->new_rate < ndata->old_rate) return NOTIFY_OK; /* restore original register value */ writel_relaxed(ttccs->scale_clk_ctrl_reg_old, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); fallthrough; default: return NOTIFY_DONE; } return NOTIFY_DONE; } static int __init ttc_setup_clocksource(struct clk *clk, void __iomem *base, u32 timer_width) { struct ttc_timer_clocksource *ttccs; int err; ttccs = kzalloc(sizeof(*ttccs), GFP_KERNEL); if (!ttccs) return -ENOMEM; ttccs->ttc.clk = clk; err = clk_prepare_enable(ttccs->ttc.clk); if (err) { kfree(ttccs); return err; } ttccs->ttc.freq = clk_get_rate(ttccs->ttc.clk); ttccs->ttc.clk_rate_change_nb.notifier_call = ttc_rate_change_clocksource_cb; ttccs->ttc.clk_rate_change_nb.next = NULL; err = clk_notifier_register(ttccs->ttc.clk, &ttccs->ttc.clk_rate_change_nb); if (err) pr_warn("Unable to register clock notifier.\n"); ttccs->ttc.base_addr = base; ttccs->cs.name = "ttc_clocksource"; ttccs->cs.rating = 200; ttccs->cs.read = __ttc_clocksource_read; ttccs->cs.mask = CLOCKSOURCE_MASK(timer_width); ttccs->cs.flags = CLOCK_SOURCE_IS_CONTINUOUS; /* * Setup the clock source counter to be an incrementing counter * with no interrupt and it rolls over at 0xFFFF. Pre-scale * it by 32 also. Let it start running now. */ writel_relaxed(0x0, ttccs->ttc.base_addr + TTC_IER_OFFSET); writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN, ttccs->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); writel_relaxed(CNT_CNTRL_RESET, ttccs->ttc.base_addr + TTC_CNT_CNTRL_OFFSET); err = clocksource_register_hz(&ttccs->cs, ttccs->ttc.freq / PRESCALE); if (err) { kfree(ttccs); return err; } ttc_sched_clock_val_reg = base + TTC_COUNT_VAL_OFFSET; sched_clock_register(ttc_sched_clock_read, timer_width, ttccs->ttc.freq / PRESCALE); return 0; } static int ttc_rate_change_clockevent_cb(struct notifier_block *nb, unsigned long event, void *data) { struct clk_notifier_data *ndata = data; struct ttc_timer *ttc = to_ttc_timer(nb); struct ttc_timer_clockevent *ttcce = container_of(ttc, struct ttc_timer_clockevent, ttc); switch (event) { case POST_RATE_CHANGE: /* update cached frequency */ ttc->freq = ndata->new_rate; clockevents_update_freq(&ttcce->ce, ndata->new_rate / PRESCALE); fallthrough; case PRE_RATE_CHANGE: case ABORT_RATE_CHANGE: default: return NOTIFY_DONE; } } static int __init ttc_setup_clockevent(struct clk *clk, void __iomem *base, u32 irq) { struct ttc_timer_clockevent *ttcce; int err; ttcce = kzalloc(sizeof(*ttcce), GFP_KERNEL); if (!ttcce) return -ENOMEM; ttcce->ttc.clk = clk; err = clk_prepare_enable(ttcce->ttc.clk); if (err) goto out_kfree; ttcce->ttc.clk_rate_change_nb.notifier_call = ttc_rate_change_clockevent_cb; ttcce->ttc.clk_rate_change_nb.next = NULL; err = clk_notifier_register(ttcce->ttc.clk, &ttcce->ttc.clk_rate_change_nb); if (err) { pr_warn("Unable to register clock notifier.\n"); goto out_kfree; } ttcce->ttc.freq = clk_get_rate(ttcce->ttc.clk); ttcce->ttc.base_addr = base; ttcce->ce.name = "ttc_clockevent"; ttcce->ce.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; ttcce->ce.set_next_event = ttc_set_next_event; ttcce->ce.set_state_shutdown = ttc_shutdown; ttcce->ce.set_state_periodic = ttc_set_periodic; ttcce->ce.set_state_oneshot = ttc_shutdown; ttcce->ce.tick_resume = ttc_resume; ttcce->ce.rating = 200; ttcce->ce.irq = irq; ttcce->ce.cpumask = cpu_possible_mask; /* * Setup the clock event timer to be an interval timer which * is prescaled by 32 using the interval interrupt. Leave it * disabled for now. */ writel_relaxed(0x23, ttcce->ttc.base_addr + TTC_CNT_CNTRL_OFFSET); writel_relaxed(CLK_CNTRL_PRESCALE | CLK_CNTRL_PRESCALE_EN, ttcce->ttc.base_addr + TTC_CLK_CNTRL_OFFSET); writel_relaxed(0x1, ttcce->ttc.base_addr + TTC_IER_OFFSET); err = request_irq(irq, ttc_clock_event_interrupt, IRQF_TIMER, ttcce->ce.name, ttcce); if (err) goto out_kfree; clockevents_config_and_register(&ttcce->ce, ttcce->ttc.freq / PRESCALE, 1, 0xfffe); return 0; out_kfree: kfree(ttcce); return err; } static int __init ttc_timer_probe(struct platform_device *pdev) { unsigned int irq; void __iomem *timer_baseaddr; struct clk *clk_cs, *clk_ce; static int initialized; int clksel, ret; u32 timer_width = 16; struct device_node *timer = pdev->dev.of_node; if (initialized) return 0; initialized = 1; /* * Get the 1st Triple Timer Counter (TTC) block from the device tree * and use it. Note that the event timer uses the interrupt and it's the * 2nd TTC hence the irq_of_parse_and_map(,1) */ timer_baseaddr = devm_of_iomap(&pdev->dev, timer, 0, NULL); if (IS_ERR(timer_baseaddr)) { pr_err("ERROR: invalid timer base address\n"); return PTR_ERR(timer_baseaddr); } irq = irq_of_parse_and_map(timer, 1); if (irq <= 0) { pr_err("ERROR: invalid interrupt number\n"); return -EINVAL; } of_property_read_u32(timer, "timer-width", &timer_width); clksel = readl_relaxed(timer_baseaddr + TTC_CLK_CNTRL_OFFSET); clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK); clk_cs = of_clk_get(timer, clksel); if (IS_ERR(clk_cs)) { pr_err("ERROR: timer input clock not found\n"); return PTR_ERR(clk_cs); } clksel = readl_relaxed(timer_baseaddr + 4 + TTC_CLK_CNTRL_OFFSET); clksel = !!(clksel & TTC_CLK_CNTRL_CSRC_MASK); clk_ce = of_clk_get(timer, clksel); if (IS_ERR(clk_ce)) { pr_err("ERROR: timer input clock not found\n"); ret = PTR_ERR(clk_ce); goto put_clk_cs; } ret = ttc_setup_clocksource(clk_cs, timer_baseaddr, timer_width); if (ret) goto put_clk_ce; ret = ttc_setup_clockevent(clk_ce, timer_baseaddr + 4, irq); if (ret) goto put_clk_ce; pr_info("%pOFn #0 at %p, irq=%d\n", timer, timer_baseaddr, irq); return 0; put_clk_ce: clk_put(clk_ce); put_clk_cs: clk_put(clk_cs); return ret; } static const struct of_device_id ttc_timer_of_match[] = { {.compatible = "cdns,ttc"}, {}, }; MODULE_DEVICE_TABLE(of, ttc_timer_of_match); static struct platform_driver ttc_timer_driver = { .driver = { .name = "cdns_ttc_timer", .of_match_table = ttc_timer_of_match, }, }; builtin_platform_driver_probe(ttc_timer_driver, ttc_timer_probe);
linux-master
drivers/clocksource/timer-cadence-ttc.c
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/clocksource/dummy_timer.c * * Copyright (C) 2013 ARM Ltd. * All Rights Reserved */ #include <linux/clockchips.h> #include <linux/cpu.h> #include <linux/init.h> #include <linux/percpu.h> #include <linux/cpumask.h> static DEFINE_PER_CPU(struct clock_event_device, dummy_timer_evt); static int dummy_timer_starting_cpu(unsigned int cpu) { struct clock_event_device *evt = per_cpu_ptr(&dummy_timer_evt, cpu); evt->name = "dummy_timer"; evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DUMMY; evt->rating = 100; evt->cpumask = cpumask_of(cpu); clockevents_register_device(evt); return 0; } static int __init dummy_timer_register(void) { return cpuhp_setup_state(CPUHP_AP_DUMMY_TIMER_STARTING, "clockevents/dummy_timer:starting", dummy_timer_starting_cpu, NULL); } early_initcall(dummy_timer_register);
linux-master
drivers/clocksource/dummy_timer.c
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Altera Corporation * Copyright (c) 2011 Picochip Ltd., Jamie Iles * * Modified from mach-picoxcell/time.c */ #include <linux/delay.h> #include <linux/dw_apb_timer.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/clk.h> #include <linux/reset.h> #include <linux/sched_clock.h> static int __init timer_get_base_and_rate(struct device_node *np, void __iomem **base, u32 *rate) { struct clk *timer_clk; struct clk *pclk; struct reset_control *rstc; int ret; *base = of_iomap(np, 0); if (!*base) panic("Unable to map regs for %pOFn", np); /* * Reset the timer if the reset control is available, wiping * out the state the firmware may have left it */ rstc = of_reset_control_get(np, NULL); if (!IS_ERR(rstc)) { reset_control_assert(rstc); reset_control_deassert(rstc); } /* * Not all implementations use a peripheral clock, so don't panic * if it's not present */ pclk = of_clk_get_by_name(np, "pclk"); if (!IS_ERR(pclk)) if (clk_prepare_enable(pclk)) pr_warn("pclk for %pOFn is present, but could not be activated\n", np); if (!of_property_read_u32(np, "clock-freq", rate) || !of_property_read_u32(np, "clock-frequency", rate)) return 0; timer_clk = of_clk_get_by_name(np, "timer"); if (IS_ERR(timer_clk)) { ret = PTR_ERR(timer_clk); goto out_pclk_disable; } ret = clk_prepare_enable(timer_clk); if (ret) goto out_timer_clk_put; *rate = clk_get_rate(timer_clk); if (!(*rate)) { ret = -EINVAL; goto out_timer_clk_disable; } return 0; out_timer_clk_disable: clk_disable_unprepare(timer_clk); out_timer_clk_put: clk_put(timer_clk); out_pclk_disable: if (!IS_ERR(pclk)) { clk_disable_unprepare(pclk); clk_put(pclk); } iounmap(*base); return ret; } static int __init add_clockevent(struct device_node *event_timer) { void __iomem *iobase; struct dw_apb_clock_event_device *ced; u32 irq, rate; int ret = 0; irq = irq_of_parse_and_map(event_timer, 0); if (irq == 0) panic("No IRQ for clock event timer"); ret = timer_get_base_and_rate(event_timer, &iobase, &rate); if (ret) return ret; ced = dw_apb_clockevent_init(-1, event_timer->name, 300, iobase, irq, rate); if (!ced) return -EINVAL; dw_apb_clockevent_register(ced); return 0; } static void __iomem *sched_io_base; static u32 sched_rate; static int __init add_clocksource(struct device_node *source_timer) { void __iomem *iobase; struct dw_apb_clocksource *cs; u32 rate; int ret; ret = timer_get_base_and_rate(source_timer, &iobase, &rate); if (ret) return ret; cs = dw_apb_clocksource_init(300, source_timer->name, iobase, rate); if (!cs) return -EINVAL; dw_apb_clocksource_start(cs); dw_apb_clocksource_register(cs); /* * Fallback to use the clocksource as sched_clock if no separate * timer is found. sched_io_base then points to the current_value * register of the clocksource timer. */ sched_io_base = iobase + 0x04; sched_rate = rate; return 0; } static u64 notrace read_sched_clock(void) { return ~readl_relaxed(sched_io_base); } static const struct of_device_id sptimer_ids[] __initconst = { { .compatible = "picochip,pc3x2-rtc" }, { /* Sentinel */ }, }; static void __init init_sched_clock(void) { struct device_node *sched_timer; sched_timer = of_find_matching_node(NULL, sptimer_ids); if (sched_timer) { timer_get_base_and_rate(sched_timer, &sched_io_base, &sched_rate); of_node_put(sched_timer); } sched_clock_register(read_sched_clock, 32, sched_rate); } #ifdef CONFIG_ARM static unsigned long dw_apb_delay_timer_read(void) { return ~readl_relaxed(sched_io_base); } static struct delay_timer dw_apb_delay_timer = { .read_current_timer = dw_apb_delay_timer_read, }; #endif static int num_called; static int __init dw_apb_timer_init(struct device_node *timer) { int ret = 0; switch (num_called) { case 1: pr_debug("%s: found clocksource timer\n", __func__); ret = add_clocksource(timer); if (ret) return ret; init_sched_clock(); #ifdef CONFIG_ARM dw_apb_delay_timer.freq = sched_rate; register_current_timer_delay(&dw_apb_delay_timer); #endif break; default: pr_debug("%s: found clockevent timer\n", __func__); ret = add_clockevent(timer); if (ret) return ret; break; } num_called++; return 0; } TIMER_OF_DECLARE(pc3x2_timer, "picochip,pc3x2-timer", dw_apb_timer_init); TIMER_OF_DECLARE(apb_timer_osc, "snps,dw-apb-timer-osc", dw_apb_timer_init); TIMER_OF_DECLARE(apb_timer_sp, "snps,dw-apb-timer-sp", dw_apb_timer_init); TIMER_OF_DECLARE(apb_timer, "snps,dw-apb-timer", dw_apb_timer_init);
linux-master
drivers/clocksource/dw_apb_timer_of.c
// SPDX-License-Identifier: GPL-2.0+ // // Copyright 2017-2019 NXP #include <linux/interrupt.h> #include <linux/clockchips.h> #include "timer-of.h" #define CMP_OFFSET 0x10000 #define CNTCV_LO 0x8 #define CNTCV_HI 0xc #define CMPCV_LO (CMP_OFFSET + 0x20) #define CMPCV_HI (CMP_OFFSET + 0x24) #define CMPCR (CMP_OFFSET + 0x2c) #define SYS_CTR_EN 0x1 #define SYS_CTR_IRQ_MASK 0x2 #define SYS_CTR_CLK_DIV 0x3 static void __iomem *sys_ctr_base __ro_after_init; static u32 cmpcr __ro_after_init; static void sysctr_timer_enable(bool enable) { writel(enable ? cmpcr | SYS_CTR_EN : cmpcr, sys_ctr_base + CMPCR); } static void sysctr_irq_acknowledge(void) { /* * clear the enable bit(EN =0) will clear * the status bit(ISTAT = 0), then the interrupt * signal will be negated(acknowledged). */ sysctr_timer_enable(false); } static inline u64 sysctr_read_counter(void) { u32 cnt_hi, tmp_hi, cnt_lo; do { cnt_hi = readl_relaxed(sys_ctr_base + CNTCV_HI); cnt_lo = readl_relaxed(sys_ctr_base + CNTCV_LO); tmp_hi = readl_relaxed(sys_ctr_base + CNTCV_HI); } while (tmp_hi != cnt_hi); return ((u64) cnt_hi << 32) | cnt_lo; } static int sysctr_set_next_event(unsigned long delta, struct clock_event_device *evt) { u32 cmp_hi, cmp_lo; u64 next; sysctr_timer_enable(false); next = sysctr_read_counter(); next += delta; cmp_hi = (next >> 32) & 0x00fffff; cmp_lo = next & 0xffffffff; writel_relaxed(cmp_hi, sys_ctr_base + CMPCV_HI); writel_relaxed(cmp_lo, sys_ctr_base + CMPCV_LO); sysctr_timer_enable(true); return 0; } static int sysctr_set_state_oneshot(struct clock_event_device *evt) { return 0; } static int sysctr_set_state_shutdown(struct clock_event_device *evt) { sysctr_timer_enable(false); return 0; } static irqreturn_t sysctr_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; sysctr_irq_acknowledge(); evt->event_handler(evt); return IRQ_HANDLED; } static struct timer_of to_sysctr = { .flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE, .clkevt = { .name = "i.MX system counter timer", .features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_DYNIRQ, .set_state_oneshot = sysctr_set_state_oneshot, .set_next_event = sysctr_set_next_event, .set_state_shutdown = sysctr_set_state_shutdown, .rating = 200, }, .of_irq = { .handler = sysctr_timer_interrupt, .flags = IRQF_TIMER, }, .of_clk = { .name = "per", }, }; static void __init sysctr_clockevent_init(void) { to_sysctr.clkevt.cpumask = cpu_possible_mask; clockevents_config_and_register(&to_sysctr.clkevt, timer_of_rate(&to_sysctr), 0xff, 0x7fffffff); } static int __init sysctr_timer_init(struct device_node *np) { int ret = 0; ret = timer_of_init(np, &to_sysctr); if (ret) return ret; if (!of_property_read_bool(np, "nxp,no-divider")) { /* system counter clock is divided by 3 internally */ to_sysctr.of_clk.rate /= SYS_CTR_CLK_DIV; } sys_ctr_base = timer_of_base(&to_sysctr); cmpcr = readl(sys_ctr_base + CMPCR); cmpcr &= ~SYS_CTR_EN; sysctr_clockevent_init(); return 0; } TIMER_OF_DECLARE(sysctr_timer, "nxp,sysctr-timer", sysctr_timer_init);
linux-master
drivers/clocksource/timer-imx-sysctr.c
// SPDX-License-Identifier: GPL-2.0+ // // Copyright (C) 2000-2001 Deep Blue Solutions // Copyright (C) 2002 Shane Nay ([email protected]) // Copyright (C) 2006-2007 Pavel Pisa ([email protected]) // Copyright (C) 2008 Juergen Beisert ([email protected]) // Copyright (C) 2010 Freescale Semiconductor, Inc. All Rights Reserved. #include <linux/err.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/clockchips.h> #include <linux/clk.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/stmp_device.h> #include <linux/sched_clock.h> /* * There are 2 versions of the timrot on Freescale MXS-based SoCs. * The v1 on MX23 only gets 16 bits counter, while v2 on MX28 * extends the counter to 32 bits. * * The implementation uses two timers, one for clock_event and * another for clocksource. MX28 uses timrot 0 and 1, while MX23 * uses 0 and 2. */ #define MX23_TIMROT_VERSION_OFFSET 0x0a0 #define MX28_TIMROT_VERSION_OFFSET 0x120 #define BP_TIMROT_MAJOR_VERSION 24 #define BV_TIMROT_VERSION_1 0x01 #define BV_TIMROT_VERSION_2 0x02 #define timrot_is_v1() (timrot_major_version == BV_TIMROT_VERSION_1) /* * There are 4 registers for each timrotv2 instance, and 2 registers * for each timrotv1. So address step 0x40 in macros below strides * one instance of timrotv2 while two instances of timrotv1. * * As the result, HW_TIMROT_XXXn(1) defines the address of timrot1 * on MX28 while timrot2 on MX23. */ /* common between v1 and v2 */ #define HW_TIMROT_ROTCTRL 0x00 #define HW_TIMROT_TIMCTRLn(n) (0x20 + (n) * 0x40) /* v1 only */ #define HW_TIMROT_TIMCOUNTn(n) (0x30 + (n) * 0x40) /* v2 only */ #define HW_TIMROT_RUNNING_COUNTn(n) (0x30 + (n) * 0x40) #define HW_TIMROT_FIXED_COUNTn(n) (0x40 + (n) * 0x40) #define BM_TIMROT_TIMCTRLn_RELOAD (1 << 6) #define BM_TIMROT_TIMCTRLn_UPDATE (1 << 7) #define BM_TIMROT_TIMCTRLn_IRQ_EN (1 << 14) #define BM_TIMROT_TIMCTRLn_IRQ (1 << 15) #define BP_TIMROT_TIMCTRLn_SELECT 0 #define BV_TIMROTv1_TIMCTRLn_SELECT__32KHZ_XTAL 0x8 #define BV_TIMROTv2_TIMCTRLn_SELECT__32KHZ_XTAL 0xb #define BV_TIMROTv2_TIMCTRLn_SELECT__TICK_ALWAYS 0xf static struct clock_event_device mxs_clockevent_device; static void __iomem *mxs_timrot_base; static u32 timrot_major_version; static inline void timrot_irq_disable(void) { __raw_writel(BM_TIMROT_TIMCTRLn_IRQ_EN, mxs_timrot_base + HW_TIMROT_TIMCTRLn(0) + STMP_OFFSET_REG_CLR); } static inline void timrot_irq_enable(void) { __raw_writel(BM_TIMROT_TIMCTRLn_IRQ_EN, mxs_timrot_base + HW_TIMROT_TIMCTRLn(0) + STMP_OFFSET_REG_SET); } static void timrot_irq_acknowledge(void) { __raw_writel(BM_TIMROT_TIMCTRLn_IRQ, mxs_timrot_base + HW_TIMROT_TIMCTRLn(0) + STMP_OFFSET_REG_CLR); } static u64 timrotv1_get_cycles(struct clocksource *cs) { return ~((__raw_readl(mxs_timrot_base + HW_TIMROT_TIMCOUNTn(1)) & 0xffff0000) >> 16); } static int timrotv1_set_next_event(unsigned long evt, struct clock_event_device *dev) { /* timrot decrements the count */ __raw_writel(evt, mxs_timrot_base + HW_TIMROT_TIMCOUNTn(0)); return 0; } static int timrotv2_set_next_event(unsigned long evt, struct clock_event_device *dev) { /* timrot decrements the count */ __raw_writel(evt, mxs_timrot_base + HW_TIMROT_FIXED_COUNTn(0)); return 0; } static irqreturn_t mxs_timer_interrupt(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; timrot_irq_acknowledge(); evt->event_handler(evt); return IRQ_HANDLED; } static void mxs_irq_clear(char *state) { /* Disable interrupt in timer module */ timrot_irq_disable(); /* Set event time into the furthest future */ if (timrot_is_v1()) __raw_writel(0xffff, mxs_timrot_base + HW_TIMROT_TIMCOUNTn(1)); else __raw_writel(0xffffffff, mxs_timrot_base + HW_TIMROT_FIXED_COUNTn(1)); /* Clear pending interrupt */ timrot_irq_acknowledge(); pr_debug("%s: changing mode to %s\n", __func__, state); } static int mxs_shutdown(struct clock_event_device *evt) { mxs_irq_clear("shutdown"); return 0; } static int mxs_set_oneshot(struct clock_event_device *evt) { if (clockevent_state_oneshot(evt)) mxs_irq_clear("oneshot"); timrot_irq_enable(); return 0; } static struct clock_event_device mxs_clockevent_device = { .name = "mxs_timrot", .features = CLOCK_EVT_FEAT_ONESHOT, .set_state_shutdown = mxs_shutdown, .set_state_oneshot = mxs_set_oneshot, .tick_resume = mxs_shutdown, .set_next_event = timrotv2_set_next_event, .rating = 200, }; static int __init mxs_clockevent_init(struct clk *timer_clk) { if (timrot_is_v1()) mxs_clockevent_device.set_next_event = timrotv1_set_next_event; mxs_clockevent_device.cpumask = cpumask_of(0); clockevents_config_and_register(&mxs_clockevent_device, clk_get_rate(timer_clk), timrot_is_v1() ? 0xf : 0x2, timrot_is_v1() ? 0xfffe : 0xfffffffe); return 0; } static struct clocksource clocksource_mxs = { .name = "mxs_timer", .rating = 200, .read = timrotv1_get_cycles, .mask = CLOCKSOURCE_MASK(16), .flags = CLOCK_SOURCE_IS_CONTINUOUS, }; static u64 notrace mxs_read_sched_clock_v2(void) { return ~readl_relaxed(mxs_timrot_base + HW_TIMROT_RUNNING_COUNTn(1)); } static int __init mxs_clocksource_init(struct clk *timer_clk) { unsigned int c = clk_get_rate(timer_clk); if (timrot_is_v1()) clocksource_register_hz(&clocksource_mxs, c); else { clocksource_mmio_init(mxs_timrot_base + HW_TIMROT_RUNNING_COUNTn(1), "mxs_timer", c, 200, 32, clocksource_mmio_readl_down); sched_clock_register(mxs_read_sched_clock_v2, 32, c); } return 0; } static int __init mxs_timer_init(struct device_node *np) { struct clk *timer_clk; int irq, ret; mxs_timrot_base = of_iomap(np, 0); WARN_ON(!mxs_timrot_base); timer_clk = of_clk_get(np, 0); if (IS_ERR(timer_clk)) { pr_err("%s: failed to get clk\n", __func__); return PTR_ERR(timer_clk); } ret = clk_prepare_enable(timer_clk); if (ret) return ret; /* * Initialize timers to a known state */ stmp_reset_block(mxs_timrot_base + HW_TIMROT_ROTCTRL); /* get timrot version */ timrot_major_version = __raw_readl(mxs_timrot_base + (of_device_is_compatible(np, "fsl,imx23-timrot") ? MX23_TIMROT_VERSION_OFFSET : MX28_TIMROT_VERSION_OFFSET)); timrot_major_version >>= BP_TIMROT_MAJOR_VERSION; /* one for clock_event */ __raw_writel((timrot_is_v1() ? BV_TIMROTv1_TIMCTRLn_SELECT__32KHZ_XTAL : BV_TIMROTv2_TIMCTRLn_SELECT__TICK_ALWAYS) | BM_TIMROT_TIMCTRLn_UPDATE | BM_TIMROT_TIMCTRLn_IRQ_EN, mxs_timrot_base + HW_TIMROT_TIMCTRLn(0)); /* another for clocksource */ __raw_writel((timrot_is_v1() ? BV_TIMROTv1_TIMCTRLn_SELECT__32KHZ_XTAL : BV_TIMROTv2_TIMCTRLn_SELECT__TICK_ALWAYS) | BM_TIMROT_TIMCTRLn_RELOAD, mxs_timrot_base + HW_TIMROT_TIMCTRLn(1)); /* set clocksource timer fixed count to the maximum */ if (timrot_is_v1()) __raw_writel(0xffff, mxs_timrot_base + HW_TIMROT_TIMCOUNTn(1)); else __raw_writel(0xffffffff, mxs_timrot_base + HW_TIMROT_FIXED_COUNTn(1)); /* init and register the timer to the framework */ ret = mxs_clocksource_init(timer_clk); if (ret) return ret; ret = mxs_clockevent_init(timer_clk); if (ret) return ret; /* Make irqs happen */ irq = irq_of_parse_and_map(np, 0); if (irq <= 0) return -EINVAL; return request_irq(irq, mxs_timer_interrupt, IRQF_TIMER | IRQF_IRQPOLL, "MXS Timer Tick", &mxs_clockevent_device); } TIMER_OF_DECLARE(mxs, "fsl,timrot", mxs_timer_init);
linux-master
drivers/clocksource/mxs_timer.c
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2019 - All Rights Reserved * Authors: Benjamin Gaignard <[email protected]> for STMicroelectronics. * Pascal Paillet <[email protected]> for STMicroelectronics. */ #include <linux/clk.h> #include <linux/clockchips.h> #include <linux/interrupt.h> #include <linux/mfd/stm32-lptimer.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/platform_device.h> #include <linux/pm_wakeirq.h> #define CFGR_PSC_OFFSET 9 #define STM32_LP_RATING 1000 #define STM32_TARGET_CLKRATE (32000 * HZ) #define STM32_LP_MAX_PSC 7 struct stm32_lp_private { struct regmap *reg; struct clock_event_device clkevt; unsigned long period; struct device *dev; }; static struct stm32_lp_private* to_priv(struct clock_event_device *clkevt) { return container_of(clkevt, struct stm32_lp_private, clkevt); } static int stm32_clkevent_lp_shutdown(struct clock_event_device *clkevt) { struct stm32_lp_private *priv = to_priv(clkevt); regmap_write(priv->reg, STM32_LPTIM_CR, 0); regmap_write(priv->reg, STM32_LPTIM_IER, 0); /* clear pending flags */ regmap_write(priv->reg, STM32_LPTIM_ICR, STM32_LPTIM_ARRMCF); return 0; } static int stm32_clkevent_lp_set_timer(unsigned long evt, struct clock_event_device *clkevt, int is_periodic) { struct stm32_lp_private *priv = to_priv(clkevt); /* disable LPTIMER to be able to write into IER register*/ regmap_write(priv->reg, STM32_LPTIM_CR, 0); /* enable ARR interrupt */ regmap_write(priv->reg, STM32_LPTIM_IER, STM32_LPTIM_ARRMIE); /* enable LPTIMER to be able to write into ARR register */ regmap_write(priv->reg, STM32_LPTIM_CR, STM32_LPTIM_ENABLE); /* set next event counter */ regmap_write(priv->reg, STM32_LPTIM_ARR, evt); /* start counter */ if (is_periodic) regmap_write(priv->reg, STM32_LPTIM_CR, STM32_LPTIM_CNTSTRT | STM32_LPTIM_ENABLE); else regmap_write(priv->reg, STM32_LPTIM_CR, STM32_LPTIM_SNGSTRT | STM32_LPTIM_ENABLE); return 0; } static int stm32_clkevent_lp_set_next_event(unsigned long evt, struct clock_event_device *clkevt) { return stm32_clkevent_lp_set_timer(evt, clkevt, clockevent_state_periodic(clkevt)); } static int stm32_clkevent_lp_set_periodic(struct clock_event_device *clkevt) { struct stm32_lp_private *priv = to_priv(clkevt); return stm32_clkevent_lp_set_timer(priv->period, clkevt, true); } static int stm32_clkevent_lp_set_oneshot(struct clock_event_device *clkevt) { struct stm32_lp_private *priv = to_priv(clkevt); return stm32_clkevent_lp_set_timer(priv->period, clkevt, false); } static irqreturn_t stm32_clkevent_lp_irq_handler(int irq, void *dev_id) { struct clock_event_device *clkevt = (struct clock_event_device *)dev_id; struct stm32_lp_private *priv = to_priv(clkevt); regmap_write(priv->reg, STM32_LPTIM_ICR, STM32_LPTIM_ARRMCF); if (clkevt->event_handler) clkevt->event_handler(clkevt); return IRQ_HANDLED; } static void stm32_clkevent_lp_set_prescaler(struct stm32_lp_private *priv, unsigned long *rate) { int i; for (i = 0; i <= STM32_LP_MAX_PSC; i++) { if (DIV_ROUND_CLOSEST(*rate, 1 << i) < STM32_TARGET_CLKRATE) break; } regmap_write(priv->reg, STM32_LPTIM_CFGR, i << CFGR_PSC_OFFSET); /* Adjust rate and period given the prescaler value */ *rate = DIV_ROUND_CLOSEST(*rate, (1 << i)); priv->period = DIV_ROUND_UP(*rate, HZ); } static void stm32_clkevent_lp_init(struct stm32_lp_private *priv, struct device_node *np, unsigned long rate) { priv->clkevt.name = np->full_name; priv->clkevt.cpumask = cpu_possible_mask; priv->clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; priv->clkevt.set_state_shutdown = stm32_clkevent_lp_shutdown; priv->clkevt.set_state_periodic = stm32_clkevent_lp_set_periodic; priv->clkevt.set_state_oneshot = stm32_clkevent_lp_set_oneshot; priv->clkevt.set_next_event = stm32_clkevent_lp_set_next_event; priv->clkevt.rating = STM32_LP_RATING; clockevents_config_and_register(&priv->clkevt, rate, 0x1, STM32_LPTIM_MAX_ARR); } static int stm32_clkevent_lp_probe(struct platform_device *pdev) { struct stm32_lptimer *ddata = dev_get_drvdata(pdev->dev.parent); struct stm32_lp_private *priv; unsigned long rate; int ret, irq; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->reg = ddata->regmap; ret = clk_prepare_enable(ddata->clk); if (ret) return -EINVAL; rate = clk_get_rate(ddata->clk); if (!rate) { ret = -EINVAL; goto out_clk_disable; } irq = platform_get_irq(to_platform_device(pdev->dev.parent), 0); if (irq <= 0) { ret = irq; goto out_clk_disable; } if (of_property_read_bool(pdev->dev.parent->of_node, "wakeup-source")) { ret = device_init_wakeup(&pdev->dev, true); if (ret) goto out_clk_disable; ret = dev_pm_set_wake_irq(&pdev->dev, irq); if (ret) goto out_clk_disable; } ret = devm_request_irq(&pdev->dev, irq, stm32_clkevent_lp_irq_handler, IRQF_TIMER, pdev->name, &priv->clkevt); if (ret) goto out_clk_disable; stm32_clkevent_lp_set_prescaler(priv, &rate); stm32_clkevent_lp_init(priv, pdev->dev.parent->of_node, rate); priv->dev = &pdev->dev; return 0; out_clk_disable: clk_disable_unprepare(ddata->clk); return ret; } static const struct of_device_id stm32_clkevent_lp_of_match[] = { { .compatible = "st,stm32-lptimer-timer", }, {}, }; MODULE_DEVICE_TABLE(of, stm32_clkevent_lp_of_match); static struct platform_driver stm32_clkevent_lp_driver = { .probe = stm32_clkevent_lp_probe, .driver = { .name = "stm32-lptimer-timer", .of_match_table = stm32_clkevent_lp_of_match, .suppress_bind_attrs = true, }, }; module_platform_driver(stm32_clkevent_lp_driver); MODULE_ALIAS("platform:stm32-lptimer-timer"); MODULE_DESCRIPTION("STMicroelectronics STM32 clockevent low power driver");
linux-master
drivers/clocksource/timer-stm32-lp.c
// SPDX-License-Identifier: GPL-2.0-or-later /* * ADGS1408/ADGS1409 SPI MUX driver * * Copyright 2018 Analog Devices Inc. */ #include <linux/err.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mux/driver.h> #include <linux/property.h> #include <linux/spi/spi.h> #define ADGS1408_SW_DATA (0x01) #define ADGS1408_REG_READ(reg) ((reg) | 0x80) #define ADGS1408_DISABLE (0x00) #define ADGS1408_MUX(state) (((state) << 1) | 1) enum adgs1408_chip_id { ADGS1408 = 1, ADGS1409, }; static int adgs1408_spi_reg_write(struct spi_device *spi, u8 reg_addr, u8 reg_data) { u8 tx_buf[2]; tx_buf[0] = reg_addr; tx_buf[1] = reg_data; return spi_write_then_read(spi, tx_buf, sizeof(tx_buf), NULL, 0); } static int adgs1408_set(struct mux_control *mux, int state) { struct spi_device *spi = to_spi_device(mux->chip->dev.parent); u8 reg; if (state == MUX_IDLE_DISCONNECT) reg = ADGS1408_DISABLE; else reg = ADGS1408_MUX(state); return adgs1408_spi_reg_write(spi, ADGS1408_SW_DATA, reg); } static const struct mux_control_ops adgs1408_ops = { .set = adgs1408_set, }; static int adgs1408_probe(struct spi_device *spi) { struct device *dev = &spi->dev; enum adgs1408_chip_id chip_id; struct mux_chip *mux_chip; struct mux_control *mux; s32 idle_state; int ret; chip_id = (enum adgs1408_chip_id)device_get_match_data(dev); if (!chip_id) chip_id = spi_get_device_id(spi)->driver_data; mux_chip = devm_mux_chip_alloc(dev, 1, 0); if (IS_ERR(mux_chip)) return PTR_ERR(mux_chip); mux_chip->ops = &adgs1408_ops; ret = adgs1408_spi_reg_write(spi, ADGS1408_SW_DATA, ADGS1408_DISABLE); if (ret < 0) return ret; ret = device_property_read_u32(dev, "idle-state", (u32 *)&idle_state); if (ret < 0) idle_state = MUX_IDLE_AS_IS; mux = mux_chip->mux; if (chip_id == ADGS1408) mux->states = 8; else mux->states = 4; switch (idle_state) { case MUX_IDLE_DISCONNECT: case MUX_IDLE_AS_IS: case 0 ... 7: /* adgs1409 supports only 4 states */ if (idle_state < mux->states) { mux->idle_state = idle_state; break; } fallthrough; default: dev_err(dev, "invalid idle-state %d\n", idle_state); return -EINVAL; } return devm_mux_chip_register(dev, mux_chip); } static const struct spi_device_id adgs1408_spi_id[] = { { "adgs1408", ADGS1408 }, { "adgs1409", ADGS1409 }, { } }; MODULE_DEVICE_TABLE(spi, adgs1408_spi_id); static const struct of_device_id adgs1408_of_match[] = { { .compatible = "adi,adgs1408", .data = (void *)ADGS1408, }, { .compatible = "adi,adgs1409", .data = (void *)ADGS1409, }, { } }; MODULE_DEVICE_TABLE(of, adgs1408_of_match); static struct spi_driver adgs1408_driver = { .driver = { .name = "adgs1408", .of_match_table = adgs1408_of_match, }, .probe = adgs1408_probe, .id_table = adgs1408_spi_id, }; module_spi_driver(adgs1408_driver); MODULE_AUTHOR("Mircea Caprioru <[email protected]>"); MODULE_DESCRIPTION("Analog Devices ADGS1408 MUX driver"); MODULE_LICENSE("GPL");
linux-master
drivers/mux/adgs1408.c
// SPDX-License-Identifier: GPL-2.0 /* * GPIO-controlled multiplexer driver * * Copyright (C) 2017 Axentia Technologies AB * * Author: Peter Rosin <[email protected]> */ #include <linux/bitmap.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/mux/driver.h> #include <linux/platform_device.h> #include <linux/property.h> struct mux_gpio { struct gpio_descs *gpios; }; static int mux_gpio_set(struct mux_control *mux, int state) { struct mux_gpio *mux_gpio = mux_chip_priv(mux->chip); DECLARE_BITMAP(values, BITS_PER_TYPE(state)); u32 value = state; bitmap_from_arr32(values, &value, BITS_PER_TYPE(value)); gpiod_set_array_value_cansleep(mux_gpio->gpios->ndescs, mux_gpio->gpios->desc, mux_gpio->gpios->info, values); return 0; } static const struct mux_control_ops mux_gpio_ops = { .set = mux_gpio_set, }; static const struct of_device_id mux_gpio_dt_ids[] = { { .compatible = "gpio-mux", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mux_gpio_dt_ids); static int mux_gpio_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct mux_chip *mux_chip; struct mux_gpio *mux_gpio; int pins; s32 idle_state; int ret; pins = gpiod_count(dev, "mux"); if (pins < 0) return pins; mux_chip = devm_mux_chip_alloc(dev, 1, sizeof(*mux_gpio)); if (IS_ERR(mux_chip)) return PTR_ERR(mux_chip); mux_gpio = mux_chip_priv(mux_chip); mux_chip->ops = &mux_gpio_ops; mux_gpio->gpios = devm_gpiod_get_array(dev, "mux", GPIOD_OUT_LOW); if (IS_ERR(mux_gpio->gpios)) return dev_err_probe(dev, PTR_ERR(mux_gpio->gpios), "failed to get gpios\n"); WARN_ON(pins != mux_gpio->gpios->ndescs); mux_chip->mux->states = BIT(pins); ret = device_property_read_u32(dev, "idle-state", (u32 *)&idle_state); if (ret >= 0 && idle_state != MUX_IDLE_AS_IS) { if (idle_state < 0 || idle_state >= mux_chip->mux->states) { dev_err(dev, "invalid idle-state %u\n", idle_state); return -EINVAL; } mux_chip->mux->idle_state = idle_state; } ret = devm_mux_chip_register(dev, mux_chip); if (ret < 0) return ret; dev_info(dev, "%u-way mux-controller registered\n", mux_chip->mux->states); return 0; } static struct platform_driver mux_gpio_driver = { .driver = { .name = "gpio-mux", .of_match_table = mux_gpio_dt_ids, }, .probe = mux_gpio_probe, }; module_platform_driver(mux_gpio_driver); MODULE_DESCRIPTION("GPIO-controlled multiplexer driver"); MODULE_AUTHOR("Peter Rosin <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/mux/gpio.c
// SPDX-License-Identifier: GPL-2.0 /* * Multiplexer driver for Analog Devices ADG792A/G Triple 4:1 mux * * Copyright (C) 2017 Axentia Technologies AB * * Author: Peter Rosin <[email protected]> */ #include <linux/err.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/mux/driver.h> #include <linux/property.h> #define ADG792A_LDSW BIT(0) #define ADG792A_RESETB BIT(1) #define ADG792A_DISABLE(mux) (0x50 | (mux)) #define ADG792A_DISABLE_ALL (0x5f) #define ADG792A_MUX(mux, state) (0xc0 | (((mux) + 1) << 2) | (state)) #define ADG792A_MUX_ALL(state) (0xc0 | (state)) static int adg792a_write_cmd(struct i2c_client *i2c, u8 cmd, int reset) { u8 data = ADG792A_RESETB | ADG792A_LDSW; /* ADG792A_RESETB is active low, the chip resets when it is zero. */ if (reset) data &= ~ADG792A_RESETB; return i2c_smbus_write_byte_data(i2c, cmd, data); } static int adg792a_set(struct mux_control *mux, int state) { struct i2c_client *i2c = to_i2c_client(mux->chip->dev.parent); u8 cmd; if (mux->chip->controllers == 1) { /* parallel mux controller operation */ if (state == MUX_IDLE_DISCONNECT) cmd = ADG792A_DISABLE_ALL; else cmd = ADG792A_MUX_ALL(state); } else { unsigned int controller = mux_control_get_index(mux); if (state == MUX_IDLE_DISCONNECT) cmd = ADG792A_DISABLE(controller); else cmd = ADG792A_MUX(controller, state); } return adg792a_write_cmd(i2c, cmd, 0); } static const struct mux_control_ops adg792a_ops = { .set = adg792a_set, }; static int adg792a_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct mux_chip *mux_chip; s32 idle_state[3]; u32 cells; int ret; int i; if (!i2c_check_functionality(i2c->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; ret = device_property_read_u32(dev, "#mux-control-cells", &cells); if (ret < 0) return ret; if (cells >= 2) return -EINVAL; mux_chip = devm_mux_chip_alloc(dev, cells ? 3 : 1, 0); if (IS_ERR(mux_chip)) return PTR_ERR(mux_chip); mux_chip->ops = &adg792a_ops; ret = adg792a_write_cmd(i2c, ADG792A_DISABLE_ALL, 1); if (ret < 0) return ret; ret = device_property_read_u32_array(dev, "idle-state", (u32 *)idle_state, mux_chip->controllers); if (ret < 0) { idle_state[0] = MUX_IDLE_AS_IS; idle_state[1] = MUX_IDLE_AS_IS; idle_state[2] = MUX_IDLE_AS_IS; } for (i = 0; i < mux_chip->controllers; ++i) { struct mux_control *mux = &mux_chip->mux[i]; mux->states = 4; switch (idle_state[i]) { case MUX_IDLE_DISCONNECT: case MUX_IDLE_AS_IS: case 0 ... 4: mux->idle_state = idle_state[i]; break; default: dev_err(dev, "invalid idle-state %d\n", idle_state[i]); return -EINVAL; } } ret = devm_mux_chip_register(dev, mux_chip); if (ret < 0) return ret; if (cells) dev_info(dev, "3x single pole quadruple throw muxes registered\n"); else dev_info(dev, "triple pole quadruple throw mux registered\n"); return 0; } static const struct i2c_device_id adg792a_id[] = { { .name = "adg792a", }, { .name = "adg792g", }, { } }; MODULE_DEVICE_TABLE(i2c, adg792a_id); static const struct of_device_id adg792a_of_match[] = { { .compatible = "adi,adg792a", }, { .compatible = "adi,adg792g", }, { } }; MODULE_DEVICE_TABLE(of, adg792a_of_match); static struct i2c_driver adg792a_driver = { .driver = { .name = "adg792a", .of_match_table = of_match_ptr(adg792a_of_match), }, .probe = adg792a_probe, .id_table = adg792a_id, }; module_i2c_driver(adg792a_driver); MODULE_DESCRIPTION("Analog Devices ADG792A/G Triple 4:1 mux driver"); MODULE_AUTHOR("Peter Rosin <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/mux/adg792a.c
// SPDX-License-Identifier: GPL-2.0 /* * Multiplexer subsystem * * Copyright (C) 2017 Axentia Technologies AB * * Author: Peter Rosin <[email protected]> */ #define pr_fmt(fmt) "mux-core: " fmt #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/export.h> #include <linux/idr.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mux/consumer.h> #include <linux/mux/driver.h> #include <linux/of.h> #include <linux/slab.h> /* * The idle-as-is "state" is not an actual state that may be selected, it * only implies that the state should not be changed. So, use that state * as indication that the cached state of the multiplexer is unknown. */ #define MUX_CACHE_UNKNOWN MUX_IDLE_AS_IS /** * struct mux_state - Represents a mux controller state specific to a given * consumer. * @mux: Pointer to a mux controller. * @state: State of the mux to be selected. * * This structure is specific to the consumer that acquires it and has * information specific to that consumer. */ struct mux_state { struct mux_control *mux; unsigned int state; }; static struct class mux_class = { .name = "mux", }; static DEFINE_IDA(mux_ida); static int __init mux_init(void) { ida_init(&mux_ida); return class_register(&mux_class); } static void __exit mux_exit(void) { class_unregister(&mux_class); ida_destroy(&mux_ida); } static void mux_chip_release(struct device *dev) { struct mux_chip *mux_chip = to_mux_chip(dev); ida_simple_remove(&mux_ida, mux_chip->id); kfree(mux_chip); } static const struct device_type mux_type = { .name = "mux-chip", .release = mux_chip_release, }; /** * mux_chip_alloc() - Allocate a mux-chip. * @dev: The parent device implementing the mux interface. * @controllers: The number of mux controllers to allocate for this chip. * @sizeof_priv: Size of extra memory area for private use by the caller. * * After allocating the mux-chip with the desired number of mux controllers * but before registering the chip, the mux driver is required to configure * the number of valid mux states in the mux_chip->mux[N].states members and * the desired idle state in the returned mux_chip->mux[N].idle_state members. * The default idle state is MUX_IDLE_AS_IS. The mux driver also needs to * provide a pointer to the operations struct in the mux_chip->ops member * before registering the mux-chip with mux_chip_register. * * Return: A pointer to the new mux-chip, or an ERR_PTR with a negative errno. */ struct mux_chip *mux_chip_alloc(struct device *dev, unsigned int controllers, size_t sizeof_priv) { struct mux_chip *mux_chip; int i; if (WARN_ON(!dev || !controllers)) return ERR_PTR(-EINVAL); mux_chip = kzalloc(sizeof(*mux_chip) + controllers * sizeof(*mux_chip->mux) + sizeof_priv, GFP_KERNEL); if (!mux_chip) return ERR_PTR(-ENOMEM); mux_chip->mux = (struct mux_control *)(mux_chip + 1); mux_chip->dev.class = &mux_class; mux_chip->dev.type = &mux_type; mux_chip->dev.parent = dev; mux_chip->dev.of_node = dev->of_node; dev_set_drvdata(&mux_chip->dev, mux_chip); mux_chip->id = ida_simple_get(&mux_ida, 0, 0, GFP_KERNEL); if (mux_chip->id < 0) { int err = mux_chip->id; pr_err("muxchipX failed to get a device id\n"); kfree(mux_chip); return ERR_PTR(err); } dev_set_name(&mux_chip->dev, "muxchip%d", mux_chip->id); mux_chip->controllers = controllers; for (i = 0; i < controllers; ++i) { struct mux_control *mux = &mux_chip->mux[i]; mux->chip = mux_chip; sema_init(&mux->lock, 1); mux->cached_state = MUX_CACHE_UNKNOWN; mux->idle_state = MUX_IDLE_AS_IS; mux->last_change = ktime_get(); } device_initialize(&mux_chip->dev); return mux_chip; } EXPORT_SYMBOL_GPL(mux_chip_alloc); static int mux_control_set(struct mux_control *mux, int state) { int ret = mux->chip->ops->set(mux, state); mux->cached_state = ret < 0 ? MUX_CACHE_UNKNOWN : state; if (ret >= 0) mux->last_change = ktime_get(); return ret; } /** * mux_chip_register() - Register a mux-chip, thus readying the controllers * for use. * @mux_chip: The mux-chip to register. * * Do not retry registration of the same mux-chip on failure. You should * instead put it away with mux_chip_free() and allocate a new one, if you * for some reason would like to retry registration. * * Return: Zero on success or a negative errno on error. */ int mux_chip_register(struct mux_chip *mux_chip) { int i; int ret; for (i = 0; i < mux_chip->controllers; ++i) { struct mux_control *mux = &mux_chip->mux[i]; if (mux->idle_state == mux->cached_state) continue; ret = mux_control_set(mux, mux->idle_state); if (ret < 0) { dev_err(&mux_chip->dev, "unable to set idle state\n"); return ret; } } ret = device_add(&mux_chip->dev); if (ret < 0) dev_err(&mux_chip->dev, "device_add failed in %s: %d\n", __func__, ret); return ret; } EXPORT_SYMBOL_GPL(mux_chip_register); /** * mux_chip_unregister() - Take the mux-chip off-line. * @mux_chip: The mux-chip to unregister. * * mux_chip_unregister() reverses the effects of mux_chip_register(). * But not completely, you should not try to call mux_chip_register() * on a mux-chip that has been registered before. */ void mux_chip_unregister(struct mux_chip *mux_chip) { device_del(&mux_chip->dev); } EXPORT_SYMBOL_GPL(mux_chip_unregister); /** * mux_chip_free() - Free the mux-chip for good. * @mux_chip: The mux-chip to free. * * mux_chip_free() reverses the effects of mux_chip_alloc(). */ void mux_chip_free(struct mux_chip *mux_chip) { if (!mux_chip) return; put_device(&mux_chip->dev); } EXPORT_SYMBOL_GPL(mux_chip_free); static void devm_mux_chip_release(struct device *dev, void *res) { struct mux_chip *mux_chip = *(struct mux_chip **)res; mux_chip_free(mux_chip); } /** * devm_mux_chip_alloc() - Resource-managed version of mux_chip_alloc(). * @dev: The parent device implementing the mux interface. * @controllers: The number of mux controllers to allocate for this chip. * @sizeof_priv: Size of extra memory area for private use by the caller. * * See mux_chip_alloc() for more details. * * Return: A pointer to the new mux-chip, or an ERR_PTR with a negative errno. */ struct mux_chip *devm_mux_chip_alloc(struct device *dev, unsigned int controllers, size_t sizeof_priv) { struct mux_chip **ptr, *mux_chip; ptr = devres_alloc(devm_mux_chip_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); mux_chip = mux_chip_alloc(dev, controllers, sizeof_priv); if (IS_ERR(mux_chip)) { devres_free(ptr); return mux_chip; } *ptr = mux_chip; devres_add(dev, ptr); return mux_chip; } EXPORT_SYMBOL_GPL(devm_mux_chip_alloc); static void devm_mux_chip_reg_release(struct device *dev, void *res) { struct mux_chip *mux_chip = *(struct mux_chip **)res; mux_chip_unregister(mux_chip); } /** * devm_mux_chip_register() - Resource-managed version mux_chip_register(). * @dev: The parent device implementing the mux interface. * @mux_chip: The mux-chip to register. * * See mux_chip_register() for more details. * * Return: Zero on success or a negative errno on error. */ int devm_mux_chip_register(struct device *dev, struct mux_chip *mux_chip) { struct mux_chip **ptr; int res; ptr = devres_alloc(devm_mux_chip_reg_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return -ENOMEM; res = mux_chip_register(mux_chip); if (res) { devres_free(ptr); return res; } *ptr = mux_chip; devres_add(dev, ptr); return res; } EXPORT_SYMBOL_GPL(devm_mux_chip_register); /** * mux_control_states() - Query the number of multiplexer states. * @mux: The mux-control to query. * * Return: The number of multiplexer states. */ unsigned int mux_control_states(struct mux_control *mux) { return mux->states; } EXPORT_SYMBOL_GPL(mux_control_states); /* * The mux->lock must be down when calling this function. */ static int __mux_control_select(struct mux_control *mux, int state) { int ret; if (WARN_ON(state < 0 || state >= mux->states)) return -EINVAL; if (mux->cached_state == state) return 0; ret = mux_control_set(mux, state); if (ret >= 0) return 0; /* The mux update failed, try to revert if appropriate... */ if (mux->idle_state != MUX_IDLE_AS_IS) mux_control_set(mux, mux->idle_state); return ret; } static void mux_control_delay(struct mux_control *mux, unsigned int delay_us) { ktime_t delayend; s64 remaining; if (!delay_us) return; delayend = ktime_add_us(mux->last_change, delay_us); remaining = ktime_us_delta(delayend, ktime_get()); if (remaining > 0) fsleep(remaining); } /** * mux_control_select_delay() - Select the given multiplexer state. * @mux: The mux-control to request a change of state from. * @state: The new requested state. * @delay_us: The time to delay (in microseconds) if the mux state is changed. * * On successfully selecting the mux-control state, it will be locked until * there is a call to mux_control_deselect(). If the mux-control is already * selected when mux_control_select() is called, the caller will be blocked * until mux_control_deselect() or mux_state_deselect() is called (by someone * else). * * Therefore, make sure to call mux_control_deselect() when the operation is * complete and the mux-control is free for others to use, but do not call * mux_control_deselect() if mux_control_select() fails. * * Return: 0 when the mux-control state has the requested state or a negative * errno on error. */ int mux_control_select_delay(struct mux_control *mux, unsigned int state, unsigned int delay_us) { int ret; ret = down_killable(&mux->lock); if (ret < 0) return ret; ret = __mux_control_select(mux, state); if (ret >= 0) mux_control_delay(mux, delay_us); if (ret < 0) up(&mux->lock); return ret; } EXPORT_SYMBOL_GPL(mux_control_select_delay); /** * mux_state_select_delay() - Select the given multiplexer state. * @mstate: The mux-state to select. * @delay_us: The time to delay (in microseconds) if the mux state is changed. * * On successfully selecting the mux-state, its mux-control will be locked * until there is a call to mux_state_deselect(). If the mux-control is already * selected when mux_state_select() is called, the caller will be blocked * until mux_state_deselect() or mux_control_deselect() is called (by someone * else). * * Therefore, make sure to call mux_state_deselect() when the operation is * complete and the mux-control is free for others to use, but do not call * mux_state_deselect() if mux_state_select() fails. * * Return: 0 when the mux-state has been selected or a negative * errno on error. */ int mux_state_select_delay(struct mux_state *mstate, unsigned int delay_us) { return mux_control_select_delay(mstate->mux, mstate->state, delay_us); } EXPORT_SYMBOL_GPL(mux_state_select_delay); /** * mux_control_try_select_delay() - Try to select the given multiplexer state. * @mux: The mux-control to request a change of state from. * @state: The new requested state. * @delay_us: The time to delay (in microseconds) if the mux state is changed. * * On successfully selecting the mux-control state, it will be locked until * mux_control_deselect() is called. * * Therefore, make sure to call mux_control_deselect() when the operation is * complete and the mux-control is free for others to use, but do not call * mux_control_deselect() if mux_control_try_select() fails. * * Return: 0 when the mux-control state has the requested state or a negative * errno on error. Specifically -EBUSY if the mux-control is contended. */ int mux_control_try_select_delay(struct mux_control *mux, unsigned int state, unsigned int delay_us) { int ret; if (down_trylock(&mux->lock)) return -EBUSY; ret = __mux_control_select(mux, state); if (ret >= 0) mux_control_delay(mux, delay_us); if (ret < 0) up(&mux->lock); return ret; } EXPORT_SYMBOL_GPL(mux_control_try_select_delay); /** * mux_state_try_select_delay() - Try to select the given multiplexer state. * @mstate: The mux-state to select. * @delay_us: The time to delay (in microseconds) if the mux state is changed. * * On successfully selecting the mux-state, its mux-control will be locked * until mux_state_deselect() is called. * * Therefore, make sure to call mux_state_deselect() when the operation is * complete and the mux-control is free for others to use, but do not call * mux_state_deselect() if mux_state_try_select() fails. * * Return: 0 when the mux-state has been selected or a negative errno on * error. Specifically -EBUSY if the mux-control is contended. */ int mux_state_try_select_delay(struct mux_state *mstate, unsigned int delay_us) { return mux_control_try_select_delay(mstate->mux, mstate->state, delay_us); } EXPORT_SYMBOL_GPL(mux_state_try_select_delay); /** * mux_control_deselect() - Deselect the previously selected multiplexer state. * @mux: The mux-control to deselect. * * It is required that a single call is made to mux_control_deselect() for * each and every successful call made to either of mux_control_select() or * mux_control_try_select(). * * Return: 0 on success and a negative errno on error. An error can only * occur if the mux has an idle state. Note that even if an error occurs, the * mux-control is unlocked and is thus free for the next access. */ int mux_control_deselect(struct mux_control *mux) { int ret = 0; if (mux->idle_state != MUX_IDLE_AS_IS && mux->idle_state != mux->cached_state) ret = mux_control_set(mux, mux->idle_state); up(&mux->lock); return ret; } EXPORT_SYMBOL_GPL(mux_control_deselect); /** * mux_state_deselect() - Deselect the previously selected multiplexer state. * @mstate: The mux-state to deselect. * * It is required that a single call is made to mux_state_deselect() for * each and every successful call made to either of mux_state_select() or * mux_state_try_select(). * * Return: 0 on success and a negative errno on error. An error can only * occur if the mux has an idle state. Note that even if an error occurs, the * mux-control is unlocked and is thus free for the next access. */ int mux_state_deselect(struct mux_state *mstate) { return mux_control_deselect(mstate->mux); } EXPORT_SYMBOL_GPL(mux_state_deselect); /* Note this function returns a reference to the mux_chip dev. */ static struct mux_chip *of_find_mux_chip_by_node(struct device_node *np) { struct device *dev; dev = class_find_device_by_of_node(&mux_class, np); return dev ? to_mux_chip(dev) : NULL; } /* * mux_get() - Get the mux-control for a device. * @dev: The device that needs a mux-control. * @mux_name: The name identifying the mux-control. * @state: Pointer to where the requested state is returned, or NULL when * the required multiplexer states are handled by other means. * * Return: A pointer to the mux-control, or an ERR_PTR with a negative errno. */ static struct mux_control *mux_get(struct device *dev, const char *mux_name, unsigned int *state) { struct device_node *np = dev->of_node; struct of_phandle_args args; struct mux_chip *mux_chip; unsigned int controller; int index = 0; int ret; if (mux_name) { if (state) index = of_property_match_string(np, "mux-state-names", mux_name); else index = of_property_match_string(np, "mux-control-names", mux_name); if (index < 0) { dev_err(dev, "mux controller '%s' not found\n", mux_name); return ERR_PTR(index); } } if (state) ret = of_parse_phandle_with_args(np, "mux-states", "#mux-state-cells", index, &args); else ret = of_parse_phandle_with_args(np, "mux-controls", "#mux-control-cells", index, &args); if (ret) { dev_err(dev, "%pOF: failed to get mux-%s %s(%i)\n", np, state ? "state" : "control", mux_name ?: "", index); return ERR_PTR(ret); } mux_chip = of_find_mux_chip_by_node(args.np); of_node_put(args.np); if (!mux_chip) return ERR_PTR(-EPROBE_DEFER); controller = 0; if (state) { if (args.args_count > 2 || args.args_count == 0 || (args.args_count < 2 && mux_chip->controllers > 1)) { dev_err(dev, "%pOF: wrong #mux-state-cells for %pOF\n", np, args.np); put_device(&mux_chip->dev); return ERR_PTR(-EINVAL); } if (args.args_count == 2) { controller = args.args[0]; *state = args.args[1]; } else { *state = args.args[0]; } } else { if (args.args_count > 1 || (!args.args_count && mux_chip->controllers > 1)) { dev_err(dev, "%pOF: wrong #mux-control-cells for %pOF\n", np, args.np); put_device(&mux_chip->dev); return ERR_PTR(-EINVAL); } if (args.args_count) controller = args.args[0]; } if (controller >= mux_chip->controllers) { dev_err(dev, "%pOF: bad mux controller %u specified in %pOF\n", np, controller, args.np); put_device(&mux_chip->dev); return ERR_PTR(-EINVAL); } return &mux_chip->mux[controller]; } /** * mux_control_get() - Get the mux-control for a device. * @dev: The device that needs a mux-control. * @mux_name: The name identifying the mux-control. * * Return: A pointer to the mux-control, or an ERR_PTR with a negative errno. */ struct mux_control *mux_control_get(struct device *dev, const char *mux_name) { return mux_get(dev, mux_name, NULL); } EXPORT_SYMBOL_GPL(mux_control_get); /** * mux_control_put() - Put away the mux-control for good. * @mux: The mux-control to put away. * * mux_control_put() reverses the effects of mux_control_get(). */ void mux_control_put(struct mux_control *mux) { put_device(&mux->chip->dev); } EXPORT_SYMBOL_GPL(mux_control_put); static void devm_mux_control_release(struct device *dev, void *res) { struct mux_control *mux = *(struct mux_control **)res; mux_control_put(mux); } /** * devm_mux_control_get() - Get the mux-control for a device, with resource * management. * @dev: The device that needs a mux-control. * @mux_name: The name identifying the mux-control. * * Return: Pointer to the mux-control, or an ERR_PTR with a negative errno. */ struct mux_control *devm_mux_control_get(struct device *dev, const char *mux_name) { struct mux_control **ptr, *mux; ptr = devres_alloc(devm_mux_control_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); mux = mux_control_get(dev, mux_name); if (IS_ERR(mux)) { devres_free(ptr); return mux; } *ptr = mux; devres_add(dev, ptr); return mux; } EXPORT_SYMBOL_GPL(devm_mux_control_get); /* * mux_state_get() - Get the mux-state for a device. * @dev: The device that needs a mux-state. * @mux_name: The name identifying the mux-state. * * Return: A pointer to the mux-state, or an ERR_PTR with a negative errno. */ static struct mux_state *mux_state_get(struct device *dev, const char *mux_name) { struct mux_state *mstate; mstate = kzalloc(sizeof(*mstate), GFP_KERNEL); if (!mstate) return ERR_PTR(-ENOMEM); mstate->mux = mux_get(dev, mux_name, &mstate->state); if (IS_ERR(mstate->mux)) { int err = PTR_ERR(mstate->mux); kfree(mstate); return ERR_PTR(err); } return mstate; } /* * mux_state_put() - Put away the mux-state for good. * @mstate: The mux-state to put away. * * mux_state_put() reverses the effects of mux_state_get(). */ static void mux_state_put(struct mux_state *mstate) { mux_control_put(mstate->mux); kfree(mstate); } static void devm_mux_state_release(struct device *dev, void *res) { struct mux_state *mstate = *(struct mux_state **)res; mux_state_put(mstate); } /** * devm_mux_state_get() - Get the mux-state for a device, with resource * management. * @dev: The device that needs a mux-control. * @mux_name: The name identifying the mux-control. * * Return: Pointer to the mux-state, or an ERR_PTR with a negative errno. */ struct mux_state *devm_mux_state_get(struct device *dev, const char *mux_name) { struct mux_state **ptr, *mstate; ptr = devres_alloc(devm_mux_state_release, sizeof(*ptr), GFP_KERNEL); if (!ptr) return ERR_PTR(-ENOMEM); mstate = mux_state_get(dev, mux_name); if (IS_ERR(mstate)) { devres_free(ptr); return mstate; } *ptr = mstate; devres_add(dev, ptr); return mstate; } EXPORT_SYMBOL_GPL(devm_mux_state_get); /* * Using subsys_initcall instead of module_init here to try to ensure - for * the non-modular case - that the subsystem is initialized when mux consumers * and mux controllers start to use it. * For the modular case, the ordering is ensured with module dependencies. */ subsys_initcall(mux_init); module_exit(mux_exit); MODULE_DESCRIPTION("Multiplexer subsystem"); MODULE_AUTHOR("Peter Rosin <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/mux/core.c
// SPDX-License-Identifier: GPL-2.0 /* * MMIO register bitfield-controlled multiplexer driver * * Copyright (C) 2017 Pengutronix, Philipp Zabel <[email protected]> */ #include <linux/bitops.h> #include <linux/err.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/mux/driver.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/regmap.h> static int mux_mmio_set(struct mux_control *mux, int state) { struct regmap_field **fields = mux_chip_priv(mux->chip); return regmap_field_write(fields[mux_control_get_index(mux)], state); } static const struct mux_control_ops mux_mmio_ops = { .set = mux_mmio_set, }; static const struct of_device_id mux_mmio_dt_ids[] = { { .compatible = "mmio-mux", }, { .compatible = "reg-mux", }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mux_mmio_dt_ids); static int mux_mmio_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct device_node *np = dev->of_node; struct regmap_field **fields; struct mux_chip *mux_chip; struct regmap *regmap; int num_fields; int ret; int i; if (of_device_is_compatible(np, "mmio-mux")) regmap = syscon_node_to_regmap(np->parent); else regmap = dev_get_regmap(dev->parent, NULL) ?: ERR_PTR(-ENODEV); if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(dev, "failed to get regmap: %d\n", ret); return ret; } ret = of_property_count_u32_elems(np, "mux-reg-masks"); if (ret == 0 || ret % 2) ret = -EINVAL; if (ret < 0) { dev_err(dev, "mux-reg-masks property missing or invalid: %d\n", ret); return ret; } num_fields = ret / 2; mux_chip = devm_mux_chip_alloc(dev, num_fields, num_fields * sizeof(*fields)); if (IS_ERR(mux_chip)) return PTR_ERR(mux_chip); fields = mux_chip_priv(mux_chip); for (i = 0; i < num_fields; i++) { struct mux_control *mux = &mux_chip->mux[i]; struct reg_field field; s32 idle_state = MUX_IDLE_AS_IS; u32 reg, mask; int bits; ret = of_property_read_u32_index(np, "mux-reg-masks", 2 * i, &reg); if (!ret) ret = of_property_read_u32_index(np, "mux-reg-masks", 2 * i + 1, &mask); if (ret < 0) { dev_err(dev, "bitfield %d: failed to read mux-reg-masks property: %d\n", i, ret); return ret; } field.reg = reg; field.msb = fls(mask) - 1; field.lsb = ffs(mask) - 1; if (mask != GENMASK(field.msb, field.lsb)) { dev_err(dev, "bitfield %d: invalid mask 0x%x\n", i, mask); return -EINVAL; } fields[i] = devm_regmap_field_alloc(dev, regmap, field); if (IS_ERR(fields[i])) { ret = PTR_ERR(fields[i]); dev_err(dev, "bitfield %d: failed allocate: %d\n", i, ret); return ret; } bits = 1 + field.msb - field.lsb; mux->states = 1 << bits; of_property_read_u32_index(np, "idle-states", i, (u32 *)&idle_state); if (idle_state != MUX_IDLE_AS_IS) { if (idle_state < 0 || idle_state >= mux->states) { dev_err(dev, "bitfield: %d: out of range idle state %d\n", i, idle_state); return -EINVAL; } mux->idle_state = idle_state; } } mux_chip->ops = &mux_mmio_ops; return devm_mux_chip_register(dev, mux_chip); } static struct platform_driver mux_mmio_driver = { .driver = { .name = "mmio-mux", .of_match_table = mux_mmio_dt_ids, }, .probe = mux_mmio_probe, }; module_platform_driver(mux_mmio_driver); MODULE_DESCRIPTION("MMIO register bitfield-controlled multiplexer driver"); MODULE_AUTHOR("Philipp Zabel <[email protected]>"); MODULE_LICENSE("GPL v2");
linux-master
drivers/mux/mmio.c
// SPDX-License-Identifier: GPL-2.0 /* * TI AM33XX EMIF PM Assembly Offsets * * Copyright (C) 2016-2017 Texas Instruments Inc. */ #include <linux/ti-emif-sram.h> int main(void) { ti_emif_asm_offsets(); return 0; }
linux-master
drivers/memory/emif-asm-offsets.c