Chapter
stringclasses
18 values
sentence_range
stringlengths
3
9
Text
stringlengths
7
7.34k
1
3405-3408
22) log kk E T T T T 2 1 2 1 1 2 =2 303 −     a R Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Example 3 10 Example 3 10 Example 3
1
3406-3409
kk E T T T T 2 1 2 1 1 2 =2 303 −     a R Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Example 3 10 Example 3 10 Example 3 10 Example 3
1
3407-3410
10 Example 3 10 Example 3 10 Example 3 10 Example 3
1
3408-3411
10 Example 3 10 Example 3 10 Example 3 10 Example 3
1
3409-3412
10 Example 3 10 Example 3 10 Example 3 9 Example 3
1
3410-3413
10 Example 3 10 Example 3 9 Example 3 9 Example 3
1
3411-3414
10 Example 3 9 Example 3 9 Example 3 9 Example 3
1
3412-3415
9 Example 3 9 Example 3 9 Example 3 9 Example 3
1
3413-3416
9 Example 3 9 Example 3 9 Example 3 9 Rationalised 2023-24 82 Chemistry A catalyst is a substance which increases the rate of a reaction without itself undergoing any permanent chemical change
1
3414-3417
9 Example 3 9 Example 3 9 Rationalised 2023-24 82 Chemistry A catalyst is a substance which increases the rate of a reaction without itself undergoing any permanent chemical change For example, MnO2 catalyses the following reaction so as to increase its rate considerably
1
3415-3418
9 Example 3 9 Rationalised 2023-24 82 Chemistry A catalyst is a substance which increases the rate of a reaction without itself undergoing any permanent chemical change For example, MnO2 catalyses the following reaction so as to increase its rate considerably 2KClO3 MnO2  2 KCl + 3O2 The word catalyst should not be used when the added substance reduces the rate of raction
1
3416-3419
9 Rationalised 2023-24 82 Chemistry A catalyst is a substance which increases the rate of a reaction without itself undergoing any permanent chemical change For example, MnO2 catalyses the following reaction so as to increase its rate considerably 2KClO3 MnO2  2 KCl + 3O2 The word catalyst should not be used when the added substance reduces the rate of raction The substance is then called inhibitor
1
3417-3420
For example, MnO2 catalyses the following reaction so as to increase its rate considerably 2KClO3 MnO2  2 KCl + 3O2 The word catalyst should not be used when the added substance reduces the rate of raction The substance is then called inhibitor The action of the catalyst can be explained by intermediate complex theory
1
3418-3421
2KClO3 MnO2  2 KCl + 3O2 The word catalyst should not be used when the added substance reduces the rate of raction The substance is then called inhibitor The action of the catalyst can be explained by intermediate complex theory According to this theory, a catalyst participates in a chemical reaction by forming temporary bonds with the reactants resulting in an intermediate complex
1
3419-3422
The substance is then called inhibitor The action of the catalyst can be explained by intermediate complex theory According to this theory, a catalyst participates in a chemical reaction by forming temporary bonds with the reactants resulting in an intermediate complex This has a transitory existence and decomposes to yield products and the catalyst
1
3420-3423
The action of the catalyst can be explained by intermediate complex theory According to this theory, a catalyst participates in a chemical reaction by forming temporary bonds with the reactants resulting in an intermediate complex This has a transitory existence and decomposes to yield products and the catalyst It is believed that the catalyst provides an alternate pathway or reaction mechanism by reducing the activation energy between reactants and products and hence lowering the potential energy barrier as shown in Fig
1
3421-3424
According to this theory, a catalyst participates in a chemical reaction by forming temporary bonds with the reactants resulting in an intermediate complex This has a transitory existence and decomposes to yield products and the catalyst It is believed that the catalyst provides an alternate pathway or reaction mechanism by reducing the activation energy between reactants and products and hence lowering the potential energy barrier as shown in Fig 3
1
3422-3425
This has a transitory existence and decomposes to yield products and the catalyst It is believed that the catalyst provides an alternate pathway or reaction mechanism by reducing the activation energy between reactants and products and hence lowering the potential energy barrier as shown in Fig 3 11
1
3423-3426
It is believed that the catalyst provides an alternate pathway or reaction mechanism by reducing the activation energy between reactants and products and hence lowering the potential energy barrier as shown in Fig 3 11 It is clear from Arrhenius equation (3
1
3424-3427
3 11 It is clear from Arrhenius equation (3 18) that lower the value of activation energy faster will be the rate of a reaction
1
3425-3428
11 It is clear from Arrhenius equation (3 18) that lower the value of activation energy faster will be the rate of a reaction A small amount of the catalyst can catalyse a large amount of reactants
1
3426-3429
It is clear from Arrhenius equation (3 18) that lower the value of activation energy faster will be the rate of a reaction A small amount of the catalyst can catalyse a large amount of reactants A catalyst does not alter Gibbs energy, DG of a reaction
1
3427-3430
18) that lower the value of activation energy faster will be the rate of a reaction A small amount of the catalyst can catalyse a large amount of reactants A catalyst does not alter Gibbs energy, DG of a reaction It catalyses the spontaneous reactions but does not catalyse non-spontaneous reactions
1
3428-3431
A small amount of the catalyst can catalyse a large amount of reactants A catalyst does not alter Gibbs energy, DG of a reaction It catalyses the spontaneous reactions but does not catalyse non-spontaneous reactions It is also found that a catalyst does not change the equilibrium constant of a reaction rather, it helps in attaining the equilibrium faster, that is, it catalyses the forward as well as the backward reactions to the same extent so that the equilibrium state remains same but is reached earlier
1
3429-3432
A catalyst does not alter Gibbs energy, DG of a reaction It catalyses the spontaneous reactions but does not catalyse non-spontaneous reactions It is also found that a catalyst does not change the equilibrium constant of a reaction rather, it helps in attaining the equilibrium faster, that is, it catalyses the forward as well as the backward reactions to the same extent so that the equilibrium state remains same but is reached earlier Though Arrhenius equation is applicable under a wide range of circumstances, collision theory, which was developed by Max Trautz and William Lewis in 1916 -18, provides a greater insight into the energetic and mechanistic aspects of reactions
1
3430-3433
It catalyses the spontaneous reactions but does not catalyse non-spontaneous reactions It is also found that a catalyst does not change the equilibrium constant of a reaction rather, it helps in attaining the equilibrium faster, that is, it catalyses the forward as well as the backward reactions to the same extent so that the equilibrium state remains same but is reached earlier Though Arrhenius equation is applicable under a wide range of circumstances, collision theory, which was developed by Max Trautz and William Lewis in 1916 -18, provides a greater insight into the energetic and mechanistic aspects of reactions It is based on kinetic theory of gases
1
3431-3434
It is also found that a catalyst does not change the equilibrium constant of a reaction rather, it helps in attaining the equilibrium faster, that is, it catalyses the forward as well as the backward reactions to the same extent so that the equilibrium state remains same but is reached earlier Though Arrhenius equation is applicable under a wide range of circumstances, collision theory, which was developed by Max Trautz and William Lewis in 1916 -18, provides a greater insight into the energetic and mechanistic aspects of reactions It is based on kinetic theory of gases According to this theory, the reactant molecules are 3
1
3432-3435
Though Arrhenius equation is applicable under a wide range of circumstances, collision theory, which was developed by Max Trautz and William Lewis in 1916 -18, provides a greater insight into the energetic and mechanistic aspects of reactions It is based on kinetic theory of gases According to this theory, the reactant molecules are 3 4
1
3433-3436
It is based on kinetic theory of gases According to this theory, the reactant molecules are 3 4 1 Effect of Catalyst 3
1
3434-3437
According to this theory, the reactant molecules are 3 4 1 Effect of Catalyst 3 5 Collision 3
1
3435-3438
4 1 Effect of Catalyst 3 5 Collision 3 5 Collision 3
1
3436-3439
1 Effect of Catalyst 3 5 Collision 3 5 Collision 3 5 Collision 3
1
3437-3440
5 Collision 3 5 Collision 3 5 Collision 3 5 Collision 3
1
3438-3441
5 Collision 3 5 Collision 3 5 Collision 3 5 Collision Theory of Theory of Theory of Theory of Theory of Chemical Chemical Chemical Chemical Chemical Reactions Reactions Reactions Reactions Reactions Fig
1
3439-3442
5 Collision 3 5 Collision 3 5 Collision Theory of Theory of Theory of Theory of Theory of Chemical Chemical Chemical Chemical Chemical Reactions Reactions Reactions Reactions Reactions Fig 3
1
3440-3443
5 Collision 3 5 Collision Theory of Theory of Theory of Theory of Theory of Chemical Chemical Chemical Chemical Chemical Reactions Reactions Reactions Reactions Reactions Fig 3 11: Effect of catalyst on activation energy log k2 = a 1 1 2 1 1 log 2
1
3441-3444
5 Collision Theory of Theory of Theory of Theory of Theory of Chemical Chemical Chemical Chemical Chemical Reactions Reactions Reactions Reactions Reactions Fig 3 11: Effect of catalyst on activation energy log k2 = a 1 1 2 1 1 log 2 303 E k T T R         =   1 5 1 1 1 1 209000 J mol L log 1
1
3442-3445
3 11: Effect of catalyst on activation energy log k2 = a 1 1 2 1 1 log 2 303 E k T T R         =   1 5 1 1 1 1 209000 J mol L log 1 60 10 600 K 700K 2
1
3443-3446
11: Effect of catalyst on activation energy log k2 = a 1 1 2 1 1 log 2 303 E k T T R         =   1 5 1 1 1 1 209000 J mol L log 1 60 10 600 K 700K 2 303 8
1
3444-3447
303 E k T T R         =   1 5 1 1 1 1 209000 J mol L log 1 60 10 600 K 700K 2 303 8 314 J mol L K               log k2 = – 4
1
3445-3448
60 10 600 K 700K 2 303 8 314 J mol L K               log k2 = – 4 796 + 2
1
3446-3449
303 8 314 J mol L K               log k2 = – 4 796 + 2 599 = – 2
1
3447-3450
314 J mol L K               log k2 = – 4 796 + 2 599 = – 2 197 k2 = 6
1
3448-3451
796 + 2 599 = – 2 197 k2 = 6 36 × 10–3 s–1 Rationalised 2023-24 83 Chemical Kinetics assumed to be hard spheres and reaction is postulated to occur when molecules collide with each other
1
3449-3452
599 = – 2 197 k2 = 6 36 × 10–3 s–1 Rationalised 2023-24 83 Chemical Kinetics assumed to be hard spheres and reaction is postulated to occur when molecules collide with each other The number of collisions per second per unit volume of the reaction mixture is known as collision frequency (Z)
1
3450-3453
197 k2 = 6 36 × 10–3 s–1 Rationalised 2023-24 83 Chemical Kinetics assumed to be hard spheres and reaction is postulated to occur when molecules collide with each other The number of collisions per second per unit volume of the reaction mixture is known as collision frequency (Z) Another factor which affects the rate of chemical reactions is activation energy (as we have already studied)
1
3451-3454
36 × 10–3 s–1 Rationalised 2023-24 83 Chemical Kinetics assumed to be hard spheres and reaction is postulated to occur when molecules collide with each other The number of collisions per second per unit volume of the reaction mixture is known as collision frequency (Z) Another factor which affects the rate of chemical reactions is activation energy (as we have already studied) For a bimolecular elementary reaction A + B ® Products rate of reaction can be expressed as a / AB Rate Z e E RT − = (3
1
3452-3455
The number of collisions per second per unit volume of the reaction mixture is known as collision frequency (Z) Another factor which affects the rate of chemical reactions is activation energy (as we have already studied) For a bimolecular elementary reaction A + B ® Products rate of reaction can be expressed as a / AB Rate Z e E RT − = (3 23) where ZAB represents the collision frequency of reactants, A and B and e -Ea /RT represents the fraction of molecules with energies equal to or greater than Ea
1
3453-3456
Another factor which affects the rate of chemical reactions is activation energy (as we have already studied) For a bimolecular elementary reaction A + B ® Products rate of reaction can be expressed as a / AB Rate Z e E RT − = (3 23) where ZAB represents the collision frequency of reactants, A and B and e -Ea /RT represents the fraction of molecules with energies equal to or greater than Ea Comparing (3
1
3454-3457
For a bimolecular elementary reaction A + B ® Products rate of reaction can be expressed as a / AB Rate Z e E RT − = (3 23) where ZAB represents the collision frequency of reactants, A and B and e -Ea /RT represents the fraction of molecules with energies equal to or greater than Ea Comparing (3 23) with Arrhenius equation, we can say that A is related to collision frequency
1
3455-3458
23) where ZAB represents the collision frequency of reactants, A and B and e -Ea /RT represents the fraction of molecules with energies equal to or greater than Ea Comparing (3 23) with Arrhenius equation, we can say that A is related to collision frequency Equation (3
1
3456-3459
Comparing (3 23) with Arrhenius equation, we can say that A is related to collision frequency Equation (3 23) predicts the value of rate constants fairly accurately for the reactions that involve atomic species or simple molecules but for complex molecules significant deviations are observed
1
3457-3460
23) with Arrhenius equation, we can say that A is related to collision frequency Equation (3 23) predicts the value of rate constants fairly accurately for the reactions that involve atomic species or simple molecules but for complex molecules significant deviations are observed The reason could be that all collisions do not lead to the formation of products
1
3458-3461
Equation (3 23) predicts the value of rate constants fairly accurately for the reactions that involve atomic species or simple molecules but for complex molecules significant deviations are observed The reason could be that all collisions do not lead to the formation of products The collisions in which molecules collide with sufficient kinetic energy (called threshold energy*) and proper orientation, so as to facilitate breaking of bonds between reacting species and formation of new bonds to form products are called as effective collisions
1
3459-3462
23) predicts the value of rate constants fairly accurately for the reactions that involve atomic species or simple molecules but for complex molecules significant deviations are observed The reason could be that all collisions do not lead to the formation of products The collisions in which molecules collide with sufficient kinetic energy (called threshold energy*) and proper orientation, so as to facilitate breaking of bonds between reacting species and formation of new bonds to form products are called as effective collisions For example, formation of methanol from bromoethane depends upon the orientation of reactant molecules as shown in Fig
1
3460-3463
The reason could be that all collisions do not lead to the formation of products The collisions in which molecules collide with sufficient kinetic energy (called threshold energy*) and proper orientation, so as to facilitate breaking of bonds between reacting species and formation of new bonds to form products are called as effective collisions For example, formation of methanol from bromoethane depends upon the orientation of reactant molecules as shown in Fig 3
1
3461-3464
The collisions in which molecules collide with sufficient kinetic energy (called threshold energy*) and proper orientation, so as to facilitate breaking of bonds between reacting species and formation of new bonds to form products are called as effective collisions For example, formation of methanol from bromoethane depends upon the orientation of reactant molecules as shown in Fig 3 12
1
3462-3465
For example, formation of methanol from bromoethane depends upon the orientation of reactant molecules as shown in Fig 3 12 The proper orientation of reactant molecules lead to bond formation whereas improper orientation makes them simply bounce back and no products are formed
1
3463-3466
3 12 The proper orientation of reactant molecules lead to bond formation whereas improper orientation makes them simply bounce back and no products are formed To account for effective collisions, another factor P, called the probability or steric factor is introduced
1
3464-3467
12 The proper orientation of reactant molecules lead to bond formation whereas improper orientation makes them simply bounce back and no products are formed To account for effective collisions, another factor P, called the probability or steric factor is introduced It takes into account the fact that in a collision, molecules must be properly oriented i
1
3465-3468
The proper orientation of reactant molecules lead to bond formation whereas improper orientation makes them simply bounce back and no products are formed To account for effective collisions, another factor P, called the probability or steric factor is introduced It takes into account the fact that in a collision, molecules must be properly oriented i e
1
3466-3469
To account for effective collisions, another factor P, called the probability or steric factor is introduced It takes into account the fact that in a collision, molecules must be properly oriented i e , a / AB Rate Z e E RT P − = Thus, in collision theory activation energy and proper orientation of the molecules together determine the criteria for an effective collision and hence the rate of a chemical reaction
1
3467-3470
It takes into account the fact that in a collision, molecules must be properly oriented i e , a / AB Rate Z e E RT P − = Thus, in collision theory activation energy and proper orientation of the molecules together determine the criteria for an effective collision and hence the rate of a chemical reaction Collision theory also has certain drawbacks as it considers atoms/ molecules to be hard spheres and ignores their structural aspect
1
3468-3471
e , a / AB Rate Z e E RT P − = Thus, in collision theory activation energy and proper orientation of the molecules together determine the criteria for an effective collision and hence the rate of a chemical reaction Collision theory also has certain drawbacks as it considers atoms/ molecules to be hard spheres and ignores their structural aspect You will study details about this theory and more on other theories in your higher classes
1
3469-3472
, a / AB Rate Z e E RT P − = Thus, in collision theory activation energy and proper orientation of the molecules together determine the criteria for an effective collision and hence the rate of a chemical reaction Collision theory also has certain drawbacks as it considers atoms/ molecules to be hard spheres and ignores their structural aspect You will study details about this theory and more on other theories in your higher classes * Threshold energy = Activation Energy + energy possessed by reacting species
1
3470-3473
Collision theory also has certain drawbacks as it considers atoms/ molecules to be hard spheres and ignores their structural aspect You will study details about this theory and more on other theories in your higher classes * Threshold energy = Activation Energy + energy possessed by reacting species Fig
1
3471-3474
You will study details about this theory and more on other theories in your higher classes * Threshold energy = Activation Energy + energy possessed by reacting species Fig 3
1
3472-3475
* Threshold energy = Activation Energy + energy possessed by reacting species Fig 3 12: Diagram showing molecules having proper and improper orientation Rationalised 2023-24 84 Chemistry Intext Questions Intext Questions Intext Questions Intext Questions Intext Questions 3
1
3473-3476
Fig 3 12: Diagram showing molecules having proper and improper orientation Rationalised 2023-24 84 Chemistry Intext Questions Intext Questions Intext Questions Intext Questions Intext Questions 3 7 What will be the effect of temperature on rate constant
1
3474-3477
3 12: Diagram showing molecules having proper and improper orientation Rationalised 2023-24 84 Chemistry Intext Questions Intext Questions Intext Questions Intext Questions Intext Questions 3 7 What will be the effect of temperature on rate constant 3
1
3475-3478
12: Diagram showing molecules having proper and improper orientation Rationalised 2023-24 84 Chemistry Intext Questions Intext Questions Intext Questions Intext Questions Intext Questions 3 7 What will be the effect of temperature on rate constant 3 8 The rate of the chemical reaction doubles for an increase of 10K in absolute temperature from 298K
1
3476-3479
7 What will be the effect of temperature on rate constant 3 8 The rate of the chemical reaction doubles for an increase of 10K in absolute temperature from 298K Calculate Ea
1
3477-3480
3 8 The rate of the chemical reaction doubles for an increase of 10K in absolute temperature from 298K Calculate Ea 3
1
3478-3481
8 The rate of the chemical reaction doubles for an increase of 10K in absolute temperature from 298K Calculate Ea 3 9 The activation energy for the reaction 2 HI(g) ® H2 + I2 (g) is 209
1
3479-3482
Calculate Ea 3 9 The activation energy for the reaction 2 HI(g) ® H2 + I2 (g) is 209 5 kJ mol–1 at 581K
1
3480-3483
3 9 The activation energy for the reaction 2 HI(g) ® H2 + I2 (g) is 209 5 kJ mol–1 at 581K Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy
1
3481-3484
9 The activation energy for the reaction 2 HI(g) ® H2 + I2 (g) is 209 5 kJ mol–1 at 581K Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy Summary Summary Summary Summary Summary Chemical kinetics is the study of chemical reactions with respect to reaction rates, effect of various variables, rearrangement of atoms and formation of intermediates
1
3482-3485
5 kJ mol–1 at 581K Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy Summary Summary Summary Summary Summary Chemical kinetics is the study of chemical reactions with respect to reaction rates, effect of various variables, rearrangement of atoms and formation of intermediates The rate of a reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time
1
3483-3486
Calculate the fraction of molecules of reactants having energy equal to or greater than activation energy Summary Summary Summary Summary Summary Chemical kinetics is the study of chemical reactions with respect to reaction rates, effect of various variables, rearrangement of atoms and formation of intermediates The rate of a reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time
1
3484-3487
Summary Summary Summary Summary Summary Chemical kinetics is the study of chemical reactions with respect to reaction rates, effect of various variables, rearrangement of atoms and formation of intermediates The rate of a reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time A number of factors such as temperature, concentration of reactants, catalyst, affect the rate of a reaction
1
3485-3488
The rate of a reaction is concerned with decrease in concentration of reactants or increase in the concentration of products per unit time It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time A number of factors such as temperature, concentration of reactants, catalyst, affect the rate of a reaction Mathematical representation of rate of a reaction is given by rate law
1
3486-3489
It can be expressed as instantaneous rate at a particular instant of time and average rate over a large interval of time A number of factors such as temperature, concentration of reactants, catalyst, affect the rate of a reaction Mathematical representation of rate of a reaction is given by rate law It has to be determined experimentally and cannot be predicted
1
3487-3490
A number of factors such as temperature, concentration of reactants, catalyst, affect the rate of a reaction Mathematical representation of rate of a reaction is given by rate law It has to be determined experimentally and cannot be predicted Order of a reaction with respect to a reactant is the power of its concentration which appears in the rate law equation
1
3488-3491
Mathematical representation of rate of a reaction is given by rate law It has to be determined experimentally and cannot be predicted Order of a reaction with respect to a reactant is the power of its concentration which appears in the rate law equation The order of a reaction is the sum of all such powers of concentration of terms for different reactants
1
3489-3492
It has to be determined experimentally and cannot be predicted Order of a reaction with respect to a reactant is the power of its concentration which appears in the rate law equation The order of a reaction is the sum of all such powers of concentration of terms for different reactants Rate constant is the proportionality factor in the rate law
1
3490-3493
Order of a reaction with respect to a reactant is the power of its concentration which appears in the rate law equation The order of a reaction is the sum of all such powers of concentration of terms for different reactants Rate constant is the proportionality factor in the rate law Rate constant and order of a reaction can be determined from rate law or its integrated rate equation
1
3491-3494
The order of a reaction is the sum of all such powers of concentration of terms for different reactants Rate constant is the proportionality factor in the rate law Rate constant and order of a reaction can be determined from rate law or its integrated rate equation Molecularity is defined only for an elementary reaction
1
3492-3495
Rate constant is the proportionality factor in the rate law Rate constant and order of a reaction can be determined from rate law or its integrated rate equation Molecularity is defined only for an elementary reaction Its values are limited from 1 to 3 whereas order can be 0, 1, 2, 3 or even a fraction
1
3493-3496
Rate constant and order of a reaction can be determined from rate law or its integrated rate equation Molecularity is defined only for an elementary reaction Its values are limited from 1 to 3 whereas order can be 0, 1, 2, 3 or even a fraction Molecularity and order of an elementary reaction are same
1
3494-3497
Molecularity is defined only for an elementary reaction Its values are limited from 1 to 3 whereas order can be 0, 1, 2, 3 or even a fraction Molecularity and order of an elementary reaction are same Temperature dependence of rate constants is described by Arrhenius equation (k = Ae–Ea/RT)
1
3495-3498
Its values are limited from 1 to 3 whereas order can be 0, 1, 2, 3 or even a fraction Molecularity and order of an elementary reaction are same Temperature dependence of rate constants is described by Arrhenius equation (k = Ae–Ea/RT) Ea corresponds to the activation energy and is given by the energy difference between activated complex and the reactant molecules, and A (Arrhenius factor or pre-exponential factor) corresponds to the collision frequency
1
3496-3499
Molecularity and order of an elementary reaction are same Temperature dependence of rate constants is described by Arrhenius equation (k = Ae–Ea/RT) Ea corresponds to the activation energy and is given by the energy difference between activated complex and the reactant molecules, and A (Arrhenius factor or pre-exponential factor) corresponds to the collision frequency The equation clearly shows that increase of temperature or lowering of Ea will lead to an increase in the rate of reaction and presence of a catalyst lowers the activation energy by providing an alternate path for the reaction
1
3497-3500
Temperature dependence of rate constants is described by Arrhenius equation (k = Ae–Ea/RT) Ea corresponds to the activation energy and is given by the energy difference between activated complex and the reactant molecules, and A (Arrhenius factor or pre-exponential factor) corresponds to the collision frequency The equation clearly shows that increase of temperature or lowering of Ea will lead to an increase in the rate of reaction and presence of a catalyst lowers the activation energy by providing an alternate path for the reaction According to collision theory, another factor P called steric factor which refers to the orientation of molecules which collide, is important and contributes to effective collisions, thus, modifying the Arrhenius equation to a / ZAB e E RT k P  
1
3498-3501
Ea corresponds to the activation energy and is given by the energy difference between activated complex and the reactant molecules, and A (Arrhenius factor or pre-exponential factor) corresponds to the collision frequency The equation clearly shows that increase of temperature or lowering of Ea will lead to an increase in the rate of reaction and presence of a catalyst lowers the activation energy by providing an alternate path for the reaction According to collision theory, another factor P called steric factor which refers to the orientation of molecules which collide, is important and contributes to effective collisions, thus, modifying the Arrhenius equation to a / ZAB e E RT k P   Rationalised 2023-24 85 Chemical Kinetics 3
1
3499-3502
The equation clearly shows that increase of temperature or lowering of Ea will lead to an increase in the rate of reaction and presence of a catalyst lowers the activation energy by providing an alternate path for the reaction According to collision theory, another factor P called steric factor which refers to the orientation of molecules which collide, is important and contributes to effective collisions, thus, modifying the Arrhenius equation to a / ZAB e E RT k P   Rationalised 2023-24 85 Chemical Kinetics 3 1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants
1
3500-3503
According to collision theory, another factor P called steric factor which refers to the orientation of molecules which collide, is important and contributes to effective collisions, thus, modifying the Arrhenius equation to a / ZAB e E RT k P   Rationalised 2023-24 85 Chemical Kinetics 3 1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants (i) 3NO(g) ® N2O (g) Rate = k[NO]2 (ii) H2O2 (aq) + 3I– (aq) + 2H+ ® 2H2O (l) + 3I Rate = k[H2O2][I-] (iii) CH3CHO (g) ® CH4 (g) + CO(g) Rate = k [CH3CHO]3/2 (iv) C2H5Cl (g) ® C2H4 (g) + HCl (g) Rate = k [C2H5Cl] 3
1
3501-3504
Rationalised 2023-24 85 Chemical Kinetics 3 1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants (i) 3NO(g) ® N2O (g) Rate = k[NO]2 (ii) H2O2 (aq) + 3I– (aq) + 2H+ ® 2H2O (l) + 3I Rate = k[H2O2][I-] (iii) CH3CHO (g) ® CH4 (g) + CO(g) Rate = k [CH3CHO]3/2 (iv) C2H5Cl (g) ® C2H4 (g) + HCl (g) Rate = k [C2H5Cl] 3 2 For the reaction: 2A + B ® A2B the rate = k[A][B]2 with k = 2
1
3502-3505
1 From the rate expression for the following reactions, determine their order of reaction and the dimensions of the rate constants (i) 3NO(g) ® N2O (g) Rate = k[NO]2 (ii) H2O2 (aq) + 3I– (aq) + 2H+ ® 2H2O (l) + 3I Rate = k[H2O2][I-] (iii) CH3CHO (g) ® CH4 (g) + CO(g) Rate = k [CH3CHO]3/2 (iv) C2H5Cl (g) ® C2H4 (g) + HCl (g) Rate = k [C2H5Cl] 3 2 For the reaction: 2A + B ® A2B the rate = k[A][B]2 with k = 2 0 × 10–6 mol–2 L2 s–1
1
3503-3506
(i) 3NO(g) ® N2O (g) Rate = k[NO]2 (ii) H2O2 (aq) + 3I– (aq) + 2H+ ® 2H2O (l) + 3I Rate = k[H2O2][I-] (iii) CH3CHO (g) ® CH4 (g) + CO(g) Rate = k [CH3CHO]3/2 (iv) C2H5Cl (g) ® C2H4 (g) + HCl (g) Rate = k [C2H5Cl] 3 2 For the reaction: 2A + B ® A2B the rate = k[A][B]2 with k = 2 0 × 10–6 mol–2 L2 s–1 Calculate the initial rate of the reaction when [A] = 0
1
3504-3507
2 For the reaction: 2A + B ® A2B the rate = k[A][B]2 with k = 2 0 × 10–6 mol–2 L2 s–1 Calculate the initial rate of the reaction when [A] = 0 1 mol L–1, [B] = 0