text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def bandpass_filter(data, low, high, fs, order=5):
"""
Does a bandpass filter over the given data.
:param data: The data (numpy array) to be filtered.
:param low: The low cutoff in Hz.
:param high: The high cutoff in Hz.
:param fs: The sample rate (in Hz) of the data.
:param order: The order of the filter. The higher the order, the tighter the roll-off.
:returns: Filtered data (numpy array).
"""
nyq = 0.5 * fs
low = low / nyq
high = high / nyq
b, a = signal.butter(order, [low, high], btype='band')
y = signal.lfilter(b, a, data)
return y | 0.003317 |
def insertGlyph(self, glyph, name=None):
"""
Insert **glyph** into the layer. ::
>>> glyph = layer.insertGlyph(otherGlyph, name="A")
This method is deprecated. :meth:`BaseFont.__setitem__` instead.
"""
if name is None:
name = glyph.name
self[name] = glyph | 0.006079 |
def writeByte(self, byte):
"""
Writes a byte into the L{WriteData} stream object.
@type byte: int
@param byte: Byte value to write into the stream.
"""
self.data.write(pack("B" if not self.signed else "b", byte)) | 0.011152 |
def bounding_polygon(self):
"""
Returns the bounding box polygon for this tile
:return: `pywom.utils.geo.Polygon` instance
"""
lon_left, lat_bottom, lon_right, lat_top = Tile.tile_coords_to_bbox(self.x, self.y, self.zoom)
print(lon_left, lat_bottom, lon_right, lat_top)
return Polygon([[[lon_left, lat_top],
[lon_right, lat_top],
[lon_right, lat_bottom],
[lon_left, lat_bottom],
[lon_left, lat_top]]]) | 0.005455 |
def param_sweep(model, sequences, param_grid, n_jobs=1, verbose=0):
"""Fit a series of models over a range of parameters.
Parameters
----------
model : msmbuilder.BaseEstimator
An *instance* of an estimator to be used
to fit data.
sequences : list of array-like
List of sequences, or a single sequence. Each
sequence should be a 1D iterable of state
labels. Labels can be integers, strings, or
other orderable objects.
param_grid : dict or sklearn.grid_search.ParameterGrid
Parameter grid to specify models to fit. See
sklearn.grid_search.ParameterGrid for an explanation
n_jobs : int, optional
Number of jobs to run in parallel using joblib.Parallel
Returns
-------
models : list
List of models fit to the data according to
param_grid
"""
if isinstance(param_grid, dict):
param_grid = ParameterGrid(param_grid)
elif not isinstance(param_grid, ParameterGrid):
raise ValueError("param_grid must be a dict or ParamaterGrid instance")
# iterable with (model, sequence) as items
iter_args = ((clone(model).set_params(**params), sequences)
for params in param_grid)
models = Parallel(n_jobs=n_jobs, verbose=verbose)(
delayed(_param_sweep_helper)(args) for args in iter_args)
return models | 0.000722 |
def on_select_task(self, task):
'''Called when a task is selected to fetch & process'''
# inject informations about project
logger.info('select %(project)s:%(taskid)s %(url)s', task)
project_info = self.projects.get(task['project'])
assert project_info, 'no such project'
task['type'] = self.TASK_PACK
task['group'] = project_info.group
task['project_md5sum'] = project_info.md5sum
task['project_updatetime'] = project_info.updatetime
# lazy join project.crawl_config
if getattr(project_info, 'crawl_config', None):
task = BaseHandler.task_join_crawl_config(task, project_info.crawl_config)
project_info.active_tasks.appendleft((time.time(), task))
self.send_task(task)
return task | 0.003713 |
def which(filename, interactive=False, verbose=False):
"""Yield all executable files on path that matches `filename`.
"""
exe = [e.lower() for e in os.environ.get('PATHEXT', '').split(';')]
if sys.platform != 'win32': # pragma: nocover
exe.append('')
name, ext = os.path.splitext(filename)
has_extension = bool(ext)
if has_extension and ext.lower() not in exe:
raise ValueError("which can only search for executable files")
def match(filenames):
"""Returns the sorted subset of ``filenames`` that matches ``filename``.
"""
res = set()
for fname in filenames:
if fname == filename: # pragma: nocover
res.add(fname) # exact match
continue
fname_name, fname_ext = os.path.splitext(fname)
if fname_name == name and fname_ext.lower() in exe: # pragma: nocover
res.add(fname)
return sorted(res)
returnset = set()
found = False
for pth in get_path_directories():
if verbose: # pragma: nocover
print('checking pth..')
fnames = _listdir(pth, exe)
if not fnames:
continue
for m in match(fnames):
found_file = _normalize(os.path.join(pth, m))
if found_file not in returnset: # pragma: nocover
if is_executable(found_file):
yield found_file
returnset.add(found_file)
found = True
if not found and interactive: # pragma: nocover
print("Couldn't find %r anywhere on the path.." % filename)
sys.exit(1) | 0.002435 |
def add_show_function(self, show_name, show_func):
"""
Appends a show function to the locally cached DesignDocument
shows dictionary.
:param show_name: Name used to identify the show function.
:param show_func: Javascript show function.
"""
if self.get_show_function(show_name) is not None:
raise CloudantArgumentError(110, show_name)
self.shows.__setitem__(show_name, show_func) | 0.004376 |
def note_adapter(obj, request):
'''
Adapter for rendering a :class:`skosprovider.skos.Note` to json.
:param skosprovider.skos.Note obj: The note to be rendered.
:rtype: :class:`dict`
'''
return {
'note': obj.note,
'type': obj.type,
'language': obj.language,
'markup': obj.markup
} | 0.002933 |
def get(self, attach, *args, **kwargs):
"""
:param attach: if True, return file as an attachment.
"""
response = self.make_response(*args, **kwargs) # type: Response
response.content_type = self.get_content_type(*args, **kwargs)
if attach:
filename = self.get_filename(*args, **kwargs)
if not filename:
filename = "file.bin"
headers = response.headers
headers.add("Content-Disposition", "attachment", filename=filename)
self.set_cache_headers(response)
return response | 0.003339 |
def _theorem6p2():
"""See Theorem 6.2 in paper.
Prunes (x,...,a) when (x,a) is explored and a has the same neighbour set in both graphs.
"""
pruning_set2 = set()
def _prune2(x, a, nbrs_a):
frozen_nbrs_a = frozenset(nbrs_a)
for i in range(len(x)):
key = (tuple(x[0:i]), a, frozen_nbrs_a)
if key in pruning_set2:
return True
return False
def _explored2(x, a, nbrs_a):
prunable = (tuple(x), a, frozenset(nbrs_a)) # (s,a,N(a))
pruning_set2.add(prunable)
return prunable
def _finished2(prunable):
pruning_set2.remove(prunable)
return _prune2, _explored2, _finished2 | 0.002886 |
def render(self, display):
"""Render basicly the text."""
# to handle changing objects / callable
if self.text != self._last_text:
self._render()
display.blit(self._surface, (self.topleft, self.size)) | 0.008163 |
def main():
parser = argparse.ArgumentParser(description="An interface to CarbonBlack environments")
#profiles = auth.CredentialStore("response").get_profiles()
parser.add_argument('-e', '--environment', choices=auth.CredentialStore("response").get_profiles(),
help='specify a specific instance you want to work with. If not defined \'-t production\' will be used implicitly.')
parser.add_argument('-t', '--envtypes', type=str,
help='specify any combination of envtypes. Default=All \'production\' envtypes. Ignored if -e is set.',
default='production')
#parser.add_argument('--debug', action='store_true', help='print debugging info')
#parser.add_argument('--warnings', action='store_true',
# help="Warn before printing large executions")
subparsers = parser.add_subparsers(dest='command') #title='subcommands', help='additional help')
cbinterface_commands = [ 'query', 'proc', 'collect', 'remediate', 'enumerate_usb', 'vxdetect']
parser_vx = subparsers.add_parser('vxdetect', help="search cbsandbox for processes in vxstream report, show detections")
parser_vx.add_argument('vxstream_report', help='path to vxstream report')
parser_vx.add_argument('-p', '--print-process-tree', action='store_true', help='print the process tree')
parser_usb = subparsers.add_parser('enumerate_usb', help="Show recent removable drive activity on the sensor")
parser_usb.add_argument('sensor', help='hostname of the sensor')
parser_usb.add_argument('-s', '--start-time', action='store',
help='how far back to query (default:ALL time)')
parser_proc = subparsers.add_parser('proc', help="analyze a process GUID. 'proc -h' for more")
parser_proc.add_argument('process', help="the process GUID to analyze")
parser_proc.add_argument('--warnings', action='store_true',
help="Warn before printing large executions")
parser_proc.add_argument('-w', '--walk-tree', action='store_true',
help="walk and analyze the process tree")
parser_proc.add_argument('-wp', '--walk-parents', action='store_true',
help="print details on the process ancestry")
#parser_proc.add_argument('-d', '--detection', action='store_true',
# help="show detections that would result in ACE alerts")
parser_proc.add_argument('-i', '--proc-info', action='store_true',
help="show binary and process information")
parser_proc.add_argument('-c','--show-children', action='store_true',
help="only print process children event details")
parser_proc.add_argument('-nc', '--netconns', action='store_true',
help="print network connections")
parser_proc.add_argument('-fm', '--filemods', action='store_true',
help="print file modifications")
parser_proc.add_argument('-rm', '--regmods', action='store_true',
help="print registry modifications")
parser_proc.add_argument('-um', '--unsigned-modloads', action='store_true',
help="print unsigned modloads")
parser_proc.add_argument('-ml', '--modloads', action='store_true',
help="print modloads")
parser_proc.add_argument('-cp', '--crossprocs', action='store_true',
help="print crossprocs")
#parser_proc.add_argument('-intel', '--intel-hits', action='store_true',
# help="show intel (feed/WL) hits that do not result in ACE alerts")
parser_proc.add_argument('--no-analysis', action='store_true',
help="Don't fetch and print process activity")
parser_proc.add_argument('--json', action='store_true', help='output process summary in json')
parser_proc.add_argument('--segment-limit', action='store', type=int, default=None,
help='stop processing events into json after this many process segments')
facet_args = [
'process_name', 'childproc_name', 'username', 'parent_name', 'path', 'hostname',
'parent_pid', 'comms_ip', 'process_md5', 'start', 'group', 'interface_ip',
'modload_count', 'childproc_count', 'cmdline', 'regmod_count', 'process_pid',
'parent_id', 'os_type', 'rocessblock_count', 'crossproc_count', 'netconn_count',
'parent_md5', 'host_type', 'last_update', 'filemod_count'
]
parser_query = subparsers.add_parser('query',
help="execute a process search query. 'query -h' for more")
parser_query.add_argument('query', help="the process search query you'd like to execute")
parser_query.add_argument('-s', '--start-time', action='store',
help="Only return processes with events after given date/time stamp\
(server’s clock). Format:'Y-m-d H:M:S' eastern time")
parser_query.add_argument('-e', '--end-time', action='store',
help="Set the maximum last update time. Format:'Y-m-d H:M:S' eastern time")
parser_query.add_argument('--facet', action='store', choices=facet_args,
help='stats info on single field accross query results (ex. process_name)')
parser_query.add_argument('--no-warnings', action='store_true',
help="Don't warn before printing large query results")
parser_query.add_argument('-lh', '--logon-history', action='store_true', help="Display available logon history for given username or hostname")
parser_collect = subparsers.add_parser('collect', help='perform LR collection tasks on a host')
parser_collect.add_argument('sensor', help="the hostname/sensor to collect from")
parser_collect.add_argument('-f', '--filepath', action='store', help='collect file')
parser_collect.add_argument('-c', '--command-exec', action='store', help='command to execute')
parser_collect.add_argument('-p', '--process-list', action='store_true',
help='show processes running on sensor')
parser_collect.add_argument('-m', '--memdump', action='store', const='ALLMEM', nargs='?',
help='dump memory on a specific process-id')
parser_collect.add_argument('-lr', '--regkeypath', action='store',
help='List all registry values from the specified registry key.')
parser_collect.add_argument('-r', '--regkeyvalue', action='store',
help='Returns the associated value of the specified registry key.')
parser_collect.add_argument('-i', '--info', action='store_true', help='print sensor information')
parser_collect.add_argument('-gst', '--get-task', action='store_true', help='get scheduled tasks or specifc task')
parser_collect.add_argument('-mc', '--multi-collect', action='store', help='path to ini file listing files and regs to collect')
remediate_file_example = """Example remediate ini file:
[files]
file1=C:\\Users\\user\\Desktop\\testfile.txt
[process_names]
proc1=cmd.exe
proc2=notepad++.exe
[directories]
directory1=C:\\Users\\user\\Desktop\\nanocore
[scheduled_tasks]
task1=\\monkey_task
task1=\\Microsoft\\windows\\some\\flake\\task
[pids]
pid1=10856
[registry_paths]
reg1=HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\\calc
reg2=HKLM\\Software\\Microsoft\\Windows\\CurrentVersion\\Run\\hippo"""
parser_remediate = subparsers.add_parser('remediate', help='remediate a host')
parser_remediate.add_argument('sensor', help="the hostname/sensor needing remediation")
parser_remediate.add_argument('-i', '--isolate', help='toggle host isolation', default=False, action='store_true')
parser_remediate.add_argument('-f', '--remediation-filepath',
help="path to the remediation ini file; 'help' as the filepath for example")
parser_remediate.add_argument('-dst', '--delete-scheduled-task',
help="path of scheduled task to delete")
parser_remediate.add_argument('-kpname', '--kill-process-name', help="kill all processes with this name")
parser_remediate.add_argument('-kpid', '--kill-pid', help="a process id to kill")
parser_remediate.add_argument('-df', '--delete-file', help="path to file needing deletion")
parser_remediate.add_argument('-dr', '--delete-regkey', help="path to regkey value needing deletion")
parser_remediate.add_argument('-dd', '--delete-directory', help="path to directory needing deletion")
args = parser.parse_args()
if args.command == 'remediate' and args.remediation_filepath == 'help':
print(remediate_file_example)
parser.parse_args(['remediate', '-h'])
if args.command is None:
print("\n\n*****")
print("You must specify one of the following commands:\n")
print(cbinterface_commands)
print("\n*****\n\n")
parser.parse_args(['-h'])
#args.debug = True
#if args.debug:
# configure some more logging
root = logging.getLogger()
root.addHandler(logging.StreamHandler())
logging.getLogger("cbapi").setLevel(logging.ERROR)
logging.getLogger("lerc_api").setLevel(logging.WARNING)
''' All VxStream related stuff may be removed in a future version '''
if args.command == 'vxdetect':
cb = CbResponseAPI(profile='vxstream')
process_list = parse_vxstream_report(cb, args.vxstream_report)
if args.print_process_tree:
print()
print(process_list)
print()
return 0
# Set up environment profiles
profile = None
profiles = []
if args.environment:
print("Using {} environment ..".format(args.environment))
profiles.append(args.environment)
else:
# a little hack for getting our environment type variable defined
default_profile = auth.default_profile
default_profile['envtype'] = 'production'
query_envtype = set(args.envtypes.lower().split(','))
for profile in auth.CredentialStore("response").get_profiles():
credentials = auth.CredentialStore("response").get_credentials(profile=profile)
profile_envtype = set(credentials['envtype'].lower().split(','))
if(query_envtype.issubset(profile_envtype)):
profiles.append(profile)
# Process Quering #
if args.command == 'query':
for profile in profiles:
handle_proxy(profile)
print("\nSearching {} environment..".format(profile))
q = CBquery(profile=profile)
q.process_query(args)
return 0
# Select correct environment by sensor hostname and get the sensor object
sensor = None
if args.command == 'collect' or args.command == 'remediate' or args.command == 'enumerate_usb':
cb_results = sensor_search(profiles, args.sensor)
if not isinstance(cb_results, list):
# an error occured
return cb_results
else:
if not cb_results:
LOGGER.info("A sensor with hostname {} wasn't found in any environments".format(args.sensor))
return 0
elif len(cb_results) > 1:
LOGGER.error("A sensor by hostname {} was found in multiple environments".format(args.sensor))
for r in cb_results:
print("Results:")
print("Profile {}: {} (SID:{})".format(r[1],r[0].hostname,r[0].id))
return 1
results = cb_results[0]
profile = results[1]
sensor = results[0]
# Show USB Regmod activity
if args.command == 'enumerate_usb':
enumerate_usb(sensor, args.start_time)
# lerc install arguments can differ by company/environment
# same lazy hack to define in cb config
config = {}
try:
default_profile = auth.default_profile
default_profile['lerc_install_cmd'] = None
config = auth.CredentialStore("response").get_credentials(profile=profile)
except:
pass
# Collection #
if args.command == 'collect':
hyper_lr = hyperLiveResponse(sensor)
if args.info:
print(hyper_lr)
return True
# start a cb lr session
lr_session = hyper_lr.go_live()
if args.multi_collect:
filepaths = regpaths = full_collect = None
config = ConfigParser()
config.read(args.multi_collect)
try:
filepaths = config.items("files")
except:
filepaths = []
try:
regpaths = config.items("registry_paths")
except:
regpaths = []
try:
full_collect = config.get('full_collect', 'action')
except:
pass
if regpaths is not None:
for regpath in regpaths:
if isinstance(regpath, tuple):
regpath = regpath[1]
print("~ Trying to get {}".format(regpath))
try:
result = lr_session.get_registry_value(regpath)
if result:
localfname = args.sensor + '_regkey_' + result['value_name'] + ".txt"
with open(localfname,'wb') as f:
f.write(bytes(result['value_data'], 'UTF-8'))
print("\t+ Data written to: {}".format(localfname))
except Exception as e:
print("[!] Error: {}".format(str(e)))
if filepaths is not None:
for filepath in filepaths:
try:
hyper_lr.getFile_with_timeout(filepath[1])
except Exception as e:
print("[!] Error: {}".format(str(e)))
if full_collect == 'True':
return False #LR_collection(hyper_lr, args)
return True
elif args.filepath:
hyper_lr.getFile_with_timeout(args.filepath)
elif args.process_list:
hyper_lr.print_processes()
elif args.memdump:
# get config items
config = ConfigParser()
config.read(CONFIG_PATH)
#if config.has_section('memory'):
# if
cb_compress = config['memory'].getboolean('cb_default_compress')
custom_compress = config['memory'].getboolean('custom_compress')
custom_compress_file = config['memory']['custom_compress_file']
auto_collect_mem = config['memory'].getboolean('auto_collect_mem_file')
lerc_collect_mem = config['memory'].getboolean('lerc_collect_mem')
path_to_procdump = config['memory']['path_to_procdump']
if args.memdump == "ALLMEM":
return hyper_lr.dump_sensor_memory(cb_compress=cb_compress, custom_compress=custom_compress,
custom_compress_file=custom_compress_file,
auto_collect_result=auto_collect_mem)
else:
return hyper_lr.dump_process_memory(args.memdump, path_to_procdump=path_to_procdump)
elif args.command_exec:
print("executing '{}' on {}".format(args.command_exec, args.sensor))
result = lr_session.create_process(args.command_exec, wait_timeout=60, wait_for_output=True)
print("\n-------------------------")
result = result.decode('utf-8')
print(result + "\n-------------------------")
print()
elif args.regkeypath:
print("\n\t{}".format(args.regkeypath))
results = lr_session.list_registry_keys(args.regkeypath)
for result in results:
print("\t-------------------------")
print("\tName: {}".format(result['value_name']))
print("\tType: {}".format(result['value_type']))
print("\tData: {}".format(result['value_data']))
print()
elif args.regkeyvalue:
print("\n\t{}".format(args.regkeyvalue))
result = lr_session.get_registry_value(args.regkeyvalue)
print("\t-------------------------")
print("\tName: {}".format(result['value_name']))
print("\tType: {}".format(result['value_type']))
print("\tData: {}".format(result['value_data']))
print()
elif args.get_task:
return hyper_lr.get_scheduled_tasks()
else:
# perform full live response collection
if config['lerc_install_cmd']:
result = hyper_lr.get_lerc_status()
if not result or result == 'UNINSTALLED' or result == 'UNKNOWN':
if not hyper_lr.deploy_lerc(config['lerc_install_cmd']):
LOGGER.warn("LERC deployment failed")
else:
LOGGER.info("{} environment is not configrued for LERC deployment".format(profile))
return LR_collection(hyper_lr, args)
# Remediation #
if args.command == 'remediate':
return Remediation(sensor, args)
# Process Investigation #
process_tree = None
if args.command == 'proc':
proc = proc_search_environments(profiles, args.process)
if not proc:
return 1
sp = SuperProcess(proc)
if args.proc_info:
print(sp)
elif args.walk_tree:
sp.walk_process_tree()
print()
print(sp.process_tree)
for process in sp.process_tree:
if process.is_suppressed:
print("+ [DATA SUPPRESSED] {} (PID:{}) - {}".format(process.name, process.pid,
process.id))
continue
print("+ {} (PID:{}) - {}".format(process.name, process.pid, process.id))
if args.filemods:
process.print_filemods()
args.no_analysis = True
if args.netconns:
process.print_netconns()
args.no_analysis = True
if args.regmods:
process.print_regmods()
args.no_analysis = True
if args.unsigned_modloads:
process.print_unsigned_modloads()
args.no_analysis = True
if args.modloads:
process.print_modloads()
args.no_analysis = True
if args.crossprocs:
process.print_crossprocs()
args.no_analysis = True
if args.walk_parents:
sp.show_ancestry()
args.no_analysis = True
if args.no_analysis != True:
if args.json:
if args.segment_limit:
print(process.events_to_json(segment_limit=args.segment_limit))
else:
print(process.events_to_json())
else:
process.default_print()
else:
print()
print(sp.process_tree)
if args.walk_parents:
sp.show_ancestry()
args.no_analysis = True
if args.filemods:
sp.print_filemods()
args.no_analysis = True
if args.netconns:
sp.print_netconns()
args.no_analysis = True
if args.regmods:
sp.print_regmods()
args.no_analysis = True
if args.unsigned_modloads:
sp.print_unsigned_modloads()
args.no_analysis = True
if args.modloads:
sp.print_modloads()
args.no_analysis = True
if args.crossprocs:
sp.print_crossprocs()
args.no_analysis = True
if args.show_children:
sp.print_child_events()
args.no_analysis = True
if args.no_analysis != True:
if args.json:
if args.segment_limit:
print(sp.events_to_json(segment_limit=args.segment_limit))
else:
print(sp.events_to_json())
else:
sp.default_print()
print()
return True | 0.005528 |
def select(self, query, model_class=None, settings=None):
'''
Performs a query and returns a generator of model instances.
- `query`: the SQL query to execute.
- `model_class`: the model class matching the query's table,
or `None` for getting back instances of an ad-hoc model.
- `settings`: query settings to send as HTTP GET parameters
'''
query += ' FORMAT TabSeparatedWithNamesAndTypes'
query = self._substitute(query, model_class)
r = self._send(query, settings, True)
lines = r.iter_lines()
field_names = parse_tsv(next(lines))
field_types = parse_tsv(next(lines))
model_class = model_class or ModelBase.create_ad_hoc_model(zip(field_names, field_types))
for line in lines:
# skip blank line left by WITH TOTALS modifier
if line:
yield model_class.from_tsv(line, field_names, self.server_timezone, self) | 0.004115 |
def _rpc_action_stmt(self, stmt: Statement, sctx: SchemaContext) -> None:
"""Handle rpc or action statement."""
self._handle_child(RpcActionNode(), stmt, sctx) | 0.011429 |
def add_block_widget(self, top=False):
"""
Return a select widget for blocks which can be added to this column.
"""
widget = AddBlockSelect(attrs={
'class': 'glitter-add-block-select',
}, choices=self.add_block_options(top=top))
return widget.render(name='', value=None) | 0.006042 |
def collect_args(n):
'''Returns a function that can be called `n` times with a single
argument before returning all the args that have been passed to it
in a tuple. Useful as a substitute for functions that can't easily be
curried.
>>> collect_args(3)(1)(2)(3)
(1, 2, 3)
'''
args = []
def arg_collector(arg):
args.append(arg)
if len(args) == n:
return tuple(args)
else:
return arg_collector
return arg_collector | 0.001961 |
def drawCheck( self, painter, option, rect, state ):
"""
Renders a check indicator within the rectangle based on the inputed \
check state.
:param painter | <QtGui.QPainter>
option | <QtGui.QStyleOptionViewItem>
rect | <QtGui.QRect>
state | <QtCore.Qt.CheckState>
"""
if not self.useCheckMaps():
return super(XTreeWidgetDelegate, self).drawCheck(painter,
option,
rect,
state)
pixmap = None
if state == QtCore.Qt.Checked:
pixmap = self.checkOnMap()
elif state == QtCore.Qt.PartiallyChecked:
pixmap = self.checkPartialMap()
elif state == QtCore.Qt.Unchecked:
pixmap = self.checkOffMap()
if type(pixmap) in (str, unicode):
pixmap = QtGui.QPixmap(pixmap)
if not pixmap:
return
x = rect.x() + (rect.width() - 16) / 2.0
y = rect.y() + (rect.height() - 16) / 2.0
painter.drawPixmap(int(x), int(y), pixmap) | 0.008246 |
def loadSettings(self, groupName=None):
""" Reads the registry items from the persistent settings store.
"""
groupName = groupName if groupName else self.settingsGroupName
settings = QtCore.QSettings()
logger.info("Reading {!r} from: {}".format(groupName, settings.fileName()))
settings.beginGroup(groupName)
self.clear()
try:
for key in settings.childKeys():
if key.startswith('item'):
dct = ast.literal_eval(settings.value(key))
regItem = self._itemClass.createFromDict(dct)
self.registerItem(regItem)
finally:
settings.endGroup() | 0.004255 |
def str_is_well_formed(xml_str):
"""
Args:
xml_str : str
DataONE API XML doc.
Returns:
bool: **True** if XML doc is well formed.
"""
try:
str_to_etree(xml_str)
except xml.etree.ElementTree.ParseError:
return False
else:
return True | 0.003425 |
def clean_proc(proc, wait_for_kill=10):
'''
Generic method for cleaning up multiprocessing procs
'''
# NoneType and other fun stuff need not apply
if not proc:
return
try:
waited = 0
while proc.is_alive():
proc.terminate()
waited += 1
time.sleep(0.1)
if proc.is_alive() and (waited >= wait_for_kill):
log.error('Process did not die with terminate(): %s', proc.pid)
os.kill(proc.pid, signal.SIGKILL)
except (AssertionError, AttributeError):
# Catch AssertionError when the proc is evaluated inside the child
# Catch AttributeError when the process dies between proc.is_alive()
# and proc.terminate() and turns into a NoneType
pass | 0.001261 |
def connect_to_database(host=None, port=None, connect=False, **kwargs):
"""
Explicitly begins a database connection for the application
(if this function is not called, a connection is created when
it is first needed). Takes arguments identical to
pymongo.MongoClient.__init__
@param host: the hostname to connect to
@param port: the port to connect to
@param connect: if True, immediately begin connecting to MongoDB in the
background; otherwise connect on the first operation
"""
return CONNECTION.connect(host=host, port=port, connect=connect, **kwargs) | 0.003273 |
def get_interpolated_value(self, energy, integrated=False):
"""
Returns the COHP for a particular energy.
Args:
energy: Energy to return the COHP value for.
"""
inter = {}
for spin in self.cohp:
if not integrated:
inter[spin] = get_linear_interpolated_value(self.energies,
self.cohp[spin],
energy)
elif self.icohp is not None:
inter[spin] = get_linear_interpolated_value(self.energies,
self.icohp[spin],
energy)
else:
raise ValueError("ICOHP is empty.")
return inter | 0.002328 |
def root_hash(self):
"""Returns the root hash of this tree. (Only re-computed on change.)"""
if self.__root_hash is None:
self.__root_hash = (
self.__hasher._hash_fold(self.__hashes)
if self.__hashes else self.__hasher.hash_empty())
return self.__root_hash | 0.006173 |
def print_new_versions(strict=False):
"""Prints new requirement versions."""
new_updates = []
same_updates = []
for req in everything_in(all_reqs):
new_versions = []
same_versions = []
for ver_str in all_versions(req):
if newer(ver_str_to_tuple(ver_str), min_versions[req], strict=True):
new_versions.append(ver_str)
elif not strict and newer(ver_str_to_tuple(ver_str), min_versions[req]):
same_versions.append(ver_str)
update_str = req + ": " + ver_tuple_to_str(min_versions[req]) + " -> " + ", ".join(
new_versions + ["(" + v + ")" for v in same_versions],
)
if new_versions:
new_updates.append(update_str)
elif same_versions:
same_updates.append(update_str)
print("\n".join(new_updates + same_updates)) | 0.004582 |
def _GetBytes(partition_key):
"""Gets the bytes representing the value of the partition key.
"""
if isinstance(partition_key, six.string_types):
return bytearray(partition_key, encoding='utf-8')
else:
raise ValueError("Unsupported " + str(type(partition_key)) + " for partitionKey.") | 0.00885 |
def init(cls):
"""
Bind elements to callbacks.
"""
for el in cls.switcher_els:
el.checked = False
cls.bind_switcher()
cls._draw_conspects()
cls._create_searchable_typeahead() | 0.008197 |
def _unique_rows_numpy(a):
"""return unique rows"""
a = np.ascontiguousarray(a)
unique_a = np.unique(a.view([('', a.dtype)] * a.shape[1]))
return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1])) | 0.004444 |
def explain_instance(self, image, classifier_fn, labels=(1,),
hide_color=None,
top_labels=5, num_features=100000, num_samples=1000,
batch_size=10,
segmentation_fn=None,
distance_metric='cosine',
model_regressor=None,
random_seed=None):
"""Generates explanations for a prediction.
First, we generate neighborhood data by randomly perturbing features
from the instance (see __data_inverse). We then learn locally weighted
linear models on this neighborhood data to explain each of the classes
in an interpretable way (see lime_base.py).
Args:
image: 3 dimension RGB image. If this is only two dimensional,
we will assume it's a grayscale image and call gray2rgb.
classifier_fn: classifier prediction probability function, which
takes a numpy array and outputs prediction probabilities. For
ScikitClassifiers , this is classifier.predict_proba.
labels: iterable with labels to be explained.
hide_color: TODO
top_labels: if not None, ignore labels and produce explanations for
the K labels with highest prediction probabilities, where K is
this parameter.
num_features: maximum number of features present in explanation
num_samples: size of the neighborhood to learn the linear model
batch_size: TODO
distance_metric: the distance metric to use for weights.
model_regressor: sklearn regressor to use in explanation. Defaults
to Ridge regression in LimeBase. Must have model_regressor.coef_
and 'sample_weight' as a parameter to model_regressor.fit()
segmentation_fn: SegmentationAlgorithm, wrapped skimage
segmentation function
random_seed: integer used as random seed for the segmentation
algorithm. If None, a random integer, between 0 and 1000,
will be generated using the internal random number generator.
Returns:
An Explanation object (see explanation.py) with the corresponding
explanations.
"""
if len(image.shape) == 2:
image = gray2rgb(image)
if random_seed is None:
random_seed = self.random_state.randint(0, high=1000)
if segmentation_fn is None:
segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4,
max_dist=200, ratio=0.2,
random_seed=random_seed)
try:
segments = segmentation_fn(image)
except ValueError as e:
raise e
fudged_image = image.copy()
if hide_color is None:
for x in np.unique(segments):
fudged_image[segments == x] = (
np.mean(image[segments == x][:, 0]),
np.mean(image[segments == x][:, 1]),
np.mean(image[segments == x][:, 2]))
else:
fudged_image[:] = hide_color
top = labels
data, labels = self.data_labels(image, fudged_image, segments,
classifier_fn, num_samples,
batch_size=batch_size)
distances = sklearn.metrics.pairwise_distances(
data,
data[0].reshape(1, -1),
metric=distance_metric
).ravel()
ret_exp = ImageExplanation(image, segments)
if top_labels:
top = np.argsort(labels[0])[-top_labels:]
ret_exp.top_labels = list(top)
ret_exp.top_labels.reverse()
for label in top:
(ret_exp.intercept[label],
ret_exp.local_exp[label],
ret_exp.score, ret_exp.local_pred) = self.base.explain_instance_with_data(
data, labels, distances, label, num_features,
model_regressor=model_regressor,
feature_selection=self.feature_selection)
return ret_exp | 0.002571 |
def fetch_all(self, sql, *args, **kwargs):
"""Executes an SQL SELECT query and returns all selected rows.
:param sql: statement to execute
:param args: parameters iterable
:param kwargs: parameters iterable
:return: all selected rows
:rtype: list
"""
with self.locked() as conn:
return conn.query(sql, *args, **kwargs).fetch_all() | 0.004914 |
def open_channel(self):
"""
Open a new channel with RabbitMQ by issuing the Channel.Open RPC
command. When RabbitMQ responds that the channel is open, the
on_channel_open callback will be invoked by pika.
"""
self._logger.debug('Creating a new channel')
self._connection.channel(on_open_callback=self.on_channel_open) | 0.005362 |
def combinetargets(targets, targetpath, mol_type='nt'):
"""
Creates a set of all unique sequences in a list of supplied FASTA files. Properly formats headers and sequences
to be compatible with local pipelines. Splits hybrid entries. Removes illegal characters.
:param targets: fasta gene targets to combine
:param targetpath: folder containing the targets
"""
make_path(targetpath)
with open(os.path.join(targetpath, 'combinedtargets.fasta'), 'w') as combined:
idset = set()
for target in targets:
# Remove non-unicode characters present in the FASTA files
cleanedstring = str()
# Read in the file as binary
with open(target, 'rb') as fasta:
# Import all the text
text = fasta.read()
# Convert the binary variable to a string, ignoring non-UTF-8 characters
cleanedstring += text.decode('utf-8', 'ignore')
# Overwrite the file with the clean string
with open(target, 'w') as fasta:
fasta.write(cleanedstring)
# Clean up each record
for record in SeqIO.parse(target, 'fasta'):
# In case FASTA records have been spliced together, allow for the splitting of
# these records
if '>' in record.seq:
# Split the two records apart on '>' symbols
record.seq, hybrid = record.seq.split('>')
# Split the header from the sequence e.g. sspC:6:CP003808.1ATGGAAAGTACATTAGA...
# will be split into sspC:6:CP003808.1 and ATGGAAAGTACATTAGA
hybridid, seq = re.findall('(.+\\d+\\.\\d)(.+)', str(hybrid))[0]
# Replace and dashes in the record.id with underscores
hybridid = hybridid.replace('-', '_')
# Convert the string to a seq object
if mol_type == 'nt':
hybridseq = Seq(seq, generic_dna)
else:
hybridseq = Seq(seq, generic_protein)
# Create a SeqRecord of the sequence - use the sequence object and id
hybridrecord = SeqRecord(hybridseq,
description='',
id=hybridid)
# Remove and dashes or 'N's from the sequence data - makeblastdb can't handle sequences
# with gaps
# noinspection PyProtectedMember
hybridrecord.seq._data = hybridrecord.seq._data.replace('-', '').replace('N', '')
# Write the original record to the file
# Extract the sequence record from each entry in the multifasta
# Replace and dashes in the record.id with underscores
record.id = record.id.replace('-', '_')
# Remove and dashes or 'N's from the sequence data - makeblastdb can't handle sequences
# with gaps
# noinspection PyProtectedMember
record.seq._data = record.seq._data.replace('-', '').replace('N', '')
# Clear the name and description attributes of the record
record.name = ''
record.description = ''
if record.id not in idset:
SeqIO.write(record, combined, 'fasta')
if hybridrecord.id not in idset:
# Write the second record to file
SeqIO.write(hybridrecord, combined, 'fasta')
idset.add(hybridrecord.id)
else:
# Extract the sequence record from each entry in the multifasta
# Replace and dashes in the record.id with underscores
record.id = record.id.replace('-', '_')
# Remove and dashes or 'N's from the sequence data - makeblastdb can't handle sequences
# with gaps
# noinspection PyProtectedMember
record.seq._data = record.seq._data.replace('-', '').replace('N', '')
# Clear the name and description attributes of the record
record.name = ''
record.description = ''
if record.id not in idset:
SeqIO.write(record, combined, 'fasta')
idset.add(record.id) | 0.003916 |
def evaluate_world_model(
real_env, hparams, world_model_dir, debug_video_path,
split=tf.estimator.ModeKeys.EVAL,
):
"""Evaluate the world model (reward accuracy)."""
frame_stack_size = hparams.frame_stack_size
rollout_subsequences = []
def initial_frame_chooser(batch_size):
assert batch_size == len(rollout_subsequences)
return np.stack([
[frame.observation.decode() for frame in subsequence[:frame_stack_size]] # pylint: disable=g-complex-comprehension
for subsequence in rollout_subsequences
])
env_fn = rl.make_simulated_env_fn_from_hparams(
real_env, hparams, batch_size=hparams.wm_eval_batch_size,
initial_frame_chooser=initial_frame_chooser, model_dir=world_model_dir
)
sim_env = env_fn(in_graph=False)
subsequence_length = int(
max(hparams.wm_eval_rollout_ratios) * hparams.simulated_rollout_length
)
rollouts = real_env.current_epoch_rollouts(
split=split,
minimal_rollout_frames=(subsequence_length + frame_stack_size)
)
video_writer = common_video.WholeVideoWriter(
fps=10, output_path=debug_video_path, file_format="avi"
)
reward_accuracies_by_length = {
int(ratio * hparams.simulated_rollout_length): []
for ratio in hparams.wm_eval_rollout_ratios
}
for _ in range(hparams.wm_eval_num_batches):
rollout_subsequences[:] = random_rollout_subsequences(
rollouts, hparams.wm_eval_batch_size,
subsequence_length + frame_stack_size
)
eval_subsequences = [
subsequence[(frame_stack_size - 1):]
for subsequence in rollout_subsequences
]
# Check that the initial observation is the same in the real and simulated
# rollout.
sim_init_obs = sim_env.reset()
def decode_real_obs(index):
return np.stack([
subsequence[index].observation.decode()
for subsequence in eval_subsequences # pylint: disable=cell-var-from-loop
])
real_init_obs = decode_real_obs(0)
assert np.all(sim_init_obs == real_init_obs)
debug_frame_batches = []
def append_debug_frame_batch(sim_obs, real_obs, sim_cum_rews,
real_cum_rews, sim_rews, real_rews):
"""Add a debug frame."""
rews = [[sim_cum_rews, sim_rews], [real_cum_rews, real_rews]]
headers = []
for j in range(len(sim_obs)):
local_nps = []
for i in range(2):
img = PIL_Image().new("RGB", (sim_obs.shape[-2], 11),)
draw = PIL_ImageDraw().Draw(img)
draw.text((0, 0), "c:{:3}, r:{:3}".format(int(rews[i][0][j]),
int(rews[i][1][j])),
fill=(255, 0, 0))
local_nps.append(np.asarray(img))
local_nps.append(np.zeros_like(local_nps[0]))
headers.append(np.concatenate(local_nps, axis=1))
errs = absolute_hinge_difference(sim_obs, real_obs)
headers = np.stack(headers)
debug_frame_batches.append( # pylint: disable=cell-var-from-loop
np.concatenate([headers,
np.concatenate([sim_obs, real_obs, errs], axis=2)],
axis=1)
)
append_debug_frame_batch(sim_init_obs, real_init_obs,
np.zeros(hparams.wm_eval_batch_size),
np.zeros(hparams.wm_eval_batch_size),
np.zeros(hparams.wm_eval_batch_size),
np.zeros(hparams.wm_eval_batch_size))
(sim_cum_rewards, real_cum_rewards) = (
np.zeros(hparams.wm_eval_batch_size) for _ in range(2)
)
for i in range(subsequence_length):
actions = [subsequence[i].action for subsequence in eval_subsequences]
(sim_obs, sim_rewards, _) = sim_env.step(actions)
sim_cum_rewards += sim_rewards
real_rewards = np.array([
subsequence[i + 1].reward for subsequence in eval_subsequences
])
real_cum_rewards += real_rewards
for (length, reward_accuracies) in six.iteritems(
reward_accuracies_by_length
):
if i + 1 == length:
reward_accuracies.append(
np.sum(sim_cum_rewards == real_cum_rewards) /
len(real_cum_rewards)
)
real_obs = decode_real_obs(i + 1)
append_debug_frame_batch(sim_obs, real_obs, sim_cum_rewards,
real_cum_rewards, sim_rewards, real_rewards)
for debug_frames in np.stack(debug_frame_batches, axis=1):
debug_frame = None
for debug_frame in debug_frames:
video_writer.write(debug_frame)
if debug_frame is not None:
# Append two black frames for aesthetics.
for _ in range(2):
video_writer.write(np.zeros_like(debug_frame))
video_writer.finish_to_disk()
return {
"reward_accuracy/at_{}".format(length): np.mean(reward_accuracies)
for (length, reward_accuracies) in six.iteritems(
reward_accuracies_by_length
)
} | 0.008818 |
def _set_child(self, name, child):
"""
Set child.
:param name: Child name.
:param child: Parentable object.
"""
if not isinstance(child, Parentable):
raise ValueError('Parentable child object expected, not {child}'.format(child=child))
child._set_parent(self)
self._store_child(name, child) | 0.008174 |
def runSearchVariantSets(self, request):
"""
Runs the specified SearchVariantSetsRequest.
"""
return self.runSearchRequest(
request, protocol.SearchVariantSetsRequest,
protocol.SearchVariantSetsResponse,
self.variantSetsGenerator) | 0.006711 |
def get_identities(self, item):
"""Return the identities from an item"""
item = item['data']
if 'owner' in item:
owner = self.get_sh_identity(item['owner'])
yield owner
if 'user' in item:
user = self.get_sh_identity(item['user'])
yield user
if 'mentor' in item:
mentor = self.get_sh_identity(item['mentor'])
yield mentor | 0.004619 |
def _update_zipimporter_cache(normalized_path, cache, updater=None):
"""
Update zipimporter cache data for a given normalized path.
Any sub-path entries are processed as well, i.e. those corresponding to zip
archives embedded in other zip archives.
Given updater is a callable taking a cache entry key and the original entry
(after already removing the entry from the cache), and expected to update
the entry and possibly return a new one to be inserted in its place.
Returning None indicates that the entry should not be replaced with a new
one. If no updater is given, the cache entries are simply removed without
any additional processing, the same as if the updater simply returned None.
"""
for p in _collect_zipimporter_cache_entries(normalized_path, cache):
# N.B. pypy's custom zipimport._zip_directory_cache implementation does
# not support the complete dict interface:
# * Does not support item assignment, thus not allowing this function
# to be used only for removing existing cache entries.
# * Does not support the dict.pop() method, forcing us to use the
# get/del patterns instead. For more detailed information see the
# following links:
# https://bitbucket.org/pypa/setuptools/issue/202/more-robust-zipimporter-cache-invalidation#comment-10495960
# https://bitbucket.org/pypy/pypy/src/dd07756a34a41f674c0cacfbc8ae1d4cc9ea2ae4/pypy/module/zipimport/interp_zipimport.py#cl-99
old_entry = cache[p]
del cache[p]
new_entry = updater and updater(p, old_entry)
if new_entry is not None:
cache[p] = new_entry | 0.000586 |
def build_input_partitions(cls, name='inputTablePartitions', input_name='input'):
"""
Build an input table partition parameter
:param name: parameter name
:type name: str
:param input_name: bind input port name
:param input_name: str
:return: input description
:rtype: ParamDef
"""
obj = cls(name)
obj.exporter = 'get_input_partitions'
obj.input_name = input_name
return obj | 0.006263 |
def convert(self, vroot, entry_variables):
"""
All functions are replaced with the same `new` function.
Args:
vroot (:obj:`Variable`): NNabla Variable
entry_variables (:obj:`Variable`): Entry variable from which the conversion starts.
"""
self.graph_info = GraphInfo(vroot)
self.entry_variables = entry_variables
with nn.parameter_scope(self.name):
# Function loop in the forward order
for t, func in enumerate(self.graph_info.funcs):
# TODO: error check
# Batch normalization check, then skip
if func.name == "BatchNormalization":
i0 = func.inputs[0]
bn_func = func
# Test mode check
if bn_func.info.args["batch_stat"] == False:
# `Target Func -> BN` check from BN
if i0.parent.info.type_name in self.inner_prod_functions:
nn.logger.info("{} is skipped.".format(func.name))
continue
# `Target Func -> BN` conversion
if func.name in self.inner_prod_functions:
inner_prod_func = func
o0 = inner_prod_func.outputs[0]
fs = self.graph_info.variable_to_funcs[o0]
# No branch check #TODO: branching check (really needed?)
if fs is not None and len(fs) == 1:
# `Target Func -> BN` check
bn_func = fs[0]
if bn_func.name == "BatchNormalization":
# Test mode check
if bn_func.info.args["batch_stat"] == False:
# Perform `Target Func -> BN` conversion
nn.logger.info("BatchNormalization parameters are folded to "
"the preceding convolution.")
o = self._inner_prod_bn_conversion(
inner_prod_func, bn_func)
continue
# Identity conversion
o = self._identity_conversion(func)
self.end_variable = o
return self.end_variable | 0.002951 |
def _coords2idx(self, coords):
"""
Converts from sky coordinates to pixel indices.
Args:
coords (:obj:`astropy.coordinates.SkyCoord`): Sky coordinates.
Returns:
Pixel indices of the coordinates, with the same shape as the input
coordinates. Pixels which are outside the map are given an index
equal to the number of pixels in the map.
"""
x = self._coords2vec(coords)
idx = self._kd.query(x, p=self._metric_p,
distance_upper_bound=self._max_pix_scale)
return idx[1] | 0.003284 |
def clean(self):
''' priorDays is required for Generic Repeated Expenses to avoid infinite loops '''
if not self.priorDays and not self.startDate:
raise ValidationError(_(
'Either a start date or an "up to __ days in the past" limit is required ' +
'for repeated expense rules that are not associated with a venue or a staff member.'
))
super(GenericRepeatedExpense,self).clean() | 0.013072 |
def add(self, items, force=True, fprogress=lambda *args: None, path_rewriter=None,
write=True, write_extension_data=False):
"""Add files from the working tree, specific blobs or BaseIndexEntries
to the index.
:param items:
Multiple types of items are supported, types can be mixed within one call.
Different types imply a different handling. File paths may generally be
relative or absolute.
- path string
strings denote a relative or absolute path into the repository pointing to
an existing file, i.e. CHANGES, lib/myfile.ext, '/home/gitrepo/lib/myfile.ext'.
Absolute paths must start with working tree directory of this index's repository
to be considered valid. For example, if it was initialized with a non-normalized path, like
`/root/repo/../repo`, absolute paths to be added must start with `/root/repo/../repo`.
Paths provided like this must exist. When added, they will be written
into the object database.
PathStrings may contain globs, such as 'lib/__init__*' or can be directories
like 'lib', the latter ones will add all the files within the dirctory and
subdirectories.
This equals a straight git-add.
They are added at stage 0
- Blob or Submodule object
Blobs are added as they are assuming a valid mode is set.
The file they refer to may or may not exist in the file system, but
must be a path relative to our repository.
If their sha is null ( 40*0 ), their path must exist in the file system
relative to the git repository as an object will be created from
the data at the path.
The handling now very much equals the way string paths are processed, except that
the mode you have set will be kept. This allows you to create symlinks
by settings the mode respectively and writing the target of the symlink
directly into the file. This equals a default Linux-Symlink which
is not dereferenced automatically, except that it can be created on
filesystems not supporting it as well.
Please note that globs or directories are not allowed in Blob objects.
They are added at stage 0
- BaseIndexEntry or type
Handling equals the one of Blob objects, but the stage may be
explicitly set. Please note that Index Entries require binary sha's.
:param force:
**CURRENTLY INEFFECTIVE**
If True, otherwise ignored or excluded files will be
added anyway.
As opposed to the git-add command, we enable this flag by default
as the API user usually wants the item to be added even though
they might be excluded.
:param fprogress:
Function with signature f(path, done=False, item=item) called for each
path to be added, one time once it is about to be added where done==False
and once after it was added where done=True.
item is set to the actual item we handle, either a Path or a BaseIndexEntry
Please note that the processed path is not guaranteed to be present
in the index already as the index is currently being processed.
:param path_rewriter:
Function with signature (string) func(BaseIndexEntry) function returning a path
for each passed entry which is the path to be actually recorded for the
object created from entry.path. This allows you to write an index which
is not identical to the layout of the actual files on your hard-disk.
If not None and ``items`` contain plain paths, these paths will be
converted to Entries beforehand and passed to the path_rewriter.
Please note that entry.path is relative to the git repository.
:param write:
If True, the index will be written once it was altered. Otherwise
the changes only exist in memory and are not available to git commands.
:param write_extension_data:
If True, extension data will be written back to the index. This can lead to issues in case
it is containing the 'TREE' extension, which will cause the `git commit` command to write an
old tree, instead of a new one representing the now changed index.
This doesn't matter if you use `IndexFile.commit()`, which ignores the `TREE` extension altogether.
You should set it to True if you intend to use `IndexFile.commit()` exclusively while maintaining
support for third-party extensions. Besides that, you can usually safely ignore the built-in
extensions when using GitPython on repositories that are not handled manually at all.
All current built-in extensions are listed here:
http://opensource.apple.com/source/Git/Git-26/src/git-htmldocs/technical/index-format.txt
:return:
List(BaseIndexEntries) representing the entries just actually added.
:raise OSError:
if a supplied Path did not exist. Please note that BaseIndexEntry
Objects that do not have a null sha will be added even if their paths
do not exist.
"""
# sort the entries into strings and Entries, Blobs are converted to entries
# automatically
# paths can be git-added, for everything else we use git-update-index
paths, entries = self._preprocess_add_items(items)
entries_added = []
# This code needs a working tree, therefore we try not to run it unless required.
# That way, we are OK on a bare repository as well.
# If there are no paths, the rewriter has nothing to do either
if paths:
entries_added.extend(self._entries_for_paths(paths, path_rewriter, fprogress, entries))
# HANDLE ENTRIES
if entries:
null_mode_entries = [e for e in entries if e.mode == 0]
if null_mode_entries:
raise ValueError(
"At least one Entry has a null-mode - please use index.remove to remove files for clarity")
# END null mode should be remove
# HANLDE ENTRY OBJECT CREATION
# create objects if required, otherwise go with the existing shas
null_entries_indices = [i for i, e in enumerate(entries) if e.binsha == Object.NULL_BIN_SHA]
if null_entries_indices:
@git_working_dir
def handle_null_entries(self):
for ei in null_entries_indices:
null_entry = entries[ei]
new_entry = self._store_path(null_entry.path, fprogress)
# update null entry
entries[ei] = BaseIndexEntry(
(null_entry.mode, new_entry.binsha, null_entry.stage, null_entry.path))
# END for each entry index
# end closure
handle_null_entries(self)
# END null_entry handling
# REWRITE PATHS
# If we have to rewrite the entries, do so now, after we have generated
# all object sha's
if path_rewriter:
for i, e in enumerate(entries):
entries[i] = BaseIndexEntry((e.mode, e.binsha, e.stage, path_rewriter(e)))
# END for each entry
# END handle path rewriting
# just go through the remaining entries and provide progress info
for i, entry in enumerate(entries):
progress_sent = i in null_entries_indices
if not progress_sent:
fprogress(entry.path, False, entry)
fprogress(entry.path, True, entry)
# END handle progress
# END for each enty
entries_added.extend(entries)
# END if there are base entries
# FINALIZE
# add the new entries to this instance
for entry in entries_added:
self.entries[(entry.path, 0)] = IndexEntry.from_base(entry)
if write:
self.write(ignore_extension_data=not write_extension_data)
# END handle write
return entries_added | 0.00569 |
def create_timedelta(timespec):
"""Utility function to translate DD:HH:MM:SS into a timedelta object."""
duration = timespec.split(':')
seconds = int(duration[-1])
minutes = 0
hours = 0
days = 0
if len(duration) > 1:
minutes = int(duration[-2])
if len(duration) > 2:
hours = int(duration[-3])
if len(duration) > 3:
days = int(duration[-4])
return datetime.timedelta(days=days, seconds=seconds, minutes=minutes, hours=hours) | 0.00409 |
def post_unpack_merkleblock(d, f):
"""
A post-processing "post_unpack" to merkleblock messages.
It validates the merkle proofs (throwing an exception if there's
an error), and returns the list of transaction hashes in "tx_hashes".
The transactions are supposed to be sent immediately after the merkleblock message.
"""
level_widths = []
count = d["total_transactions"]
while count > 1:
level_widths.append(count)
count += 1
count //= 2
level_widths.append(1)
level_widths.reverse()
tx_acc = []
flags = d["flags"]
hashes = list(reversed(d["hashes"]))
left_hash, flag_index = _recurse(level_widths, 0, 0, hashes, flags, 0, tx_acc)
if len(hashes) > 0:
raise ValueError("extra hashes: %s" % hashes)
idx, r = divmod(flag_index-1, 8)
if idx != len(flags) - 1:
raise ValueError("not enough flags consumed")
if flags[idx] > (1 << (r+1))-1:
raise ValueError("unconsumed 1 flag bits set")
if left_hash != d["header"].merkle_root:
raise ValueError(
"merkle root %s does not match calculated hash %s" % (
b2h_rev(d["header"].merkle_root), b2h_rev(left_hash)))
d["tx_hashes"] = tx_acc
return d | 0.002381 |
def run(self):
'''This method runs the the plugin in the appropriate mode parsed from
the command line options.
'''
handle = 0
handlers = {
Modes.ONCE: once,
Modes.CRAWL: crawl,
Modes.INTERACTIVE: interactive,
}
handler = handlers[self.mode]
patch_sysargv(self.url or 'plugin://%s/' % self.plugin.id, handle)
return handler(self.plugin) | 0.004535 |
def post(self, request, format=None):
"""
Add a new Channel.
"""
data = request.data.copy()
# Get chat type record
try:
ct = ChatType.objects.get(pk=data.pop("chat_type"))
data["chat_type"] = ct
except ChatType.DoesNotExist:
return typeNotFound404
if not self.is_path_unique(
None, data["publish_path"], ct.publish_path
):
return notUnique400
# Get user record
try:
u = User.objects.get(pk=data.pop("owner"))
data["owner"] = u
except User.DoesNotExist:
return userNotFound404
c = Channel(**data)
c.save()
self.handle_webhook(c)
return Response(
{
"text": "Channel saved.",
"method": "POST",
"saved": ChannelCMSSerializer(c).data,
},
200,
) | 0.002081 |
def forwardCheck(self, variables, domains, assignments, _unassigned=Unassigned):
"""
Helper method for generic forward checking
Currently, this method acts only when there's a single
unassigned variable.
@param variables: Variables affected by that constraint, in the
same order provided by the user
@type variables: sequence
@param domains: Dictionary mapping variables to their domains
@type domains: dict
@param assignments: Dictionary mapping assigned variables to their
current assumed value
@type assignments: dict
@return: Boolean value stating if this constraint is currently
broken or not
@rtype: bool
"""
unassignedvariable = _unassigned
for variable in variables:
if variable not in assignments:
if unassignedvariable is _unassigned:
unassignedvariable = variable
else:
break
else:
if unassignedvariable is not _unassigned:
# Remove from the unassigned variable domain's all
# values which break our variable's constraints.
domain = domains[unassignedvariable]
if domain:
for value in domain[:]:
assignments[unassignedvariable] = value
if not self(variables, domains, assignments):
domain.hideValue(value)
del assignments[unassignedvariable]
if not domain:
return False
return True | 0.001748 |
def run(self, message):
"""Internal instance method run by worker process to actually run the task callable."""
the_callable = self.func_from_info()
try:
task_message = dict(
task=self,
channel_message=message,
)
the_callable(task_message)
finally:
if self.end_running < self.next_run:
self.enabled=False
Channel(KILL_TASK_CHANNEL).send({'id': self.pk})
return
if self.iterations == 0:
return
else:
self.iterations -= 1
if self.iterations == 0:
self.enabled = False
Channel(KILL_TASK_CHANNEL).send({'id':self.pk})
self.save() | 0.00615 |
def static_dag(job, uuid, rg_line, inputs):
"""
Prefer this here as it allows us to pull the job functions from other jobs
without rewrapping the job functions back together.
bwa_inputs: Input arguments to be passed to BWA.
adam_inputs: Input arguments to be passed to ADAM.
gatk_preprocess_inputs: Input arguments to be passed to GATK preprocessing.
gatk_adam_call_inputs: Input arguments to be passed to GATK haplotype caller for the result of ADAM preprocessing.
gatk_gatk_call_inputs: Input arguments to be passed to GATK haplotype caller for the result of GATK preprocessing.
"""
# get work directory
work_dir = job.fileStore.getLocalTempDir()
inputs.cpu_count = cpu_count()
inputs.maxCores = sys.maxint
args = {'uuid': uuid,
's3_bucket': inputs.s3_bucket,
'sequence_dir': inputs.sequence_dir,
'dir_suffix': inputs.dir_suffix}
# get head BWA alignment job function and encapsulate it
inputs.rg_line = rg_line
inputs.output_dir = 's3://{s3_bucket}/alignment{dir_suffix}'.format(**args)
bwa = job.wrapJobFn(download_reference_files,
inputs,
[[uuid,
['s3://{s3_bucket}/{sequence_dir}/{uuid}_1.fastq.gz'.format(**args),
's3://{s3_bucket}/{sequence_dir}/{uuid}_2.fastq.gz'.format(**args)]]]).encapsulate()
# get head ADAM preprocessing job function and encapsulate it
adam_preprocess = job.wrapJobFn(static_adam_preprocessing_dag,
inputs,
's3://{s3_bucket}/alignment{dir_suffix}/{uuid}.bam'.format(**args),
's3://{s3_bucket}/analysis{dir_suffix}/{uuid}'.format(**args),
suffix='.adam').encapsulate()
# Configure options for Toil Germline pipeline. This function call only runs the preprocessing steps.
gatk_preprocessing_inputs = copy.deepcopy(inputs)
gatk_preprocessing_inputs.suffix = '.gatk'
gatk_preprocessing_inputs.preprocess = True
gatk_preprocessing_inputs.preprocess_only = True
gatk_preprocessing_inputs.output_dir = 's3://{s3_bucket}/analysis{dir_suffix}'.format(**args)
# get head GATK preprocessing job function and encapsulate it
gatk_preprocess = job.wrapJobFn(run_gatk_germline_pipeline,
GermlineSample(uuid,
's3://{s3_bucket}/alignment{dir_suffix}/{uuid}.bam'.format(**args),
None, # Does not require second URL or RG_Line
None),
gatk_preprocessing_inputs).encapsulate()
# Configure options for Toil Germline pipeline for preprocessed ADAM BAM file.
adam_call_inputs = inputs
adam_call_inputs.suffix = '.adam'
adam_call_inputs.sorted = True
adam_call_inputs.preprocess = False
adam_call_inputs.run_vqsr = False
adam_call_inputs.joint_genotype = False
adam_call_inputs.output_dir = 's3://{s3_bucket}/analysis{dir_suffix}'.format(**args)
# get head GATK haplotype caller job function for the result of ADAM preprocessing and encapsulate it
gatk_adam_call = job.wrapJobFn(run_gatk_germline_pipeline,
GermlineSample(uuid,
's3://{s3_bucket}/analysis{dir_suffix}/{uuid}/{uuid}.adam.bam'.format(**args),
None,
None),
adam_call_inputs).encapsulate()
# Configure options for Toil Germline pipeline for preprocessed GATK BAM file.
gatk_call_inputs = copy.deepcopy(inputs)
gatk_call_inputs.sorted = True
gatk_call_inputs.preprocess = False
gatk_call_inputs.run_vqsr = False
gatk_call_inputs.joint_genotype = False
gatk_call_inputs.output_dir = 's3://{s3_bucket}/analysis{dir_suffix}'.format(**args)
# get head GATK haplotype caller job function for the result of GATK preprocessing and encapsulate it
gatk_gatk_call = job.wrapJobFn(run_gatk_germline_pipeline,
GermlineSample(uuid,
'S3://{s3_bucket}/analysis{dir_suffix}/{uuid}/{uuid}.gatk.bam'.format(**args),
None, None),
gatk_call_inputs).encapsulate()
# wire up dag
if not inputs.skip_alignment:
job.addChild(bwa)
if (inputs.pipeline_to_run == "adam" or
inputs.pipeline_to_run == "both"):
if inputs.skip_preprocessing:
job.addChild(gatk_adam_call)
else:
if inputs.skip_alignment:
job.addChild(adam_preprocess)
else:
bwa.addChild(adam_preprocess)
adam_preprocess.addChild(gatk_adam_call)
if (inputs.pipeline_to_run == "gatk" or
inputs.pipeline_to_run == "both"):
if inputs.skip_preprocessing:
job.addChild(gatk_gatk_call)
else:
if inputs.skip_alignment:
job.addChild(gatk_preprocess)
else:
bwa.addChild(gatk_preprocess)
gatk_preprocess.addChild(gatk_gatk_call) | 0.00385 |
def data_group_association(self, xid):
"""Return group dict array following all associations.
Args:
xid (str): The xid of the group to retrieve associations.
Returns:
list: A list of group dicts.
"""
groups = []
group_data = None
# get group data from one of the arrays
if self.groups.get(xid) is not None:
group_data = self.groups.get(xid)
del self.groups[xid]
elif self.groups_shelf.get(xid) is not None:
group_data = self.groups_shelf.get(xid)
del self.groups_shelf[xid]
if group_data is not None:
# convert any obj into dict and process file data
group_data = self.data_group_type(group_data)
groups.append(group_data)
# recursively get associations
for assoc_xid in group_data.get('associatedGroupXid', []):
groups.extend(self.data_group_association(assoc_xid))
return groups | 0.001957 |
def plot_qq_exp(fignum, I, title, subplot=False):
"""
plots data against an exponential distribution in 0=>90.
Parameters
_________
fignum : matplotlib figure number
I : data
title : plot title
subplot : boolean, if True plot as subplot with 1 row, two columns with fignum the plot number
"""
if subplot == True:
plt.subplot(1, 2, fignum)
else:
plt.figure(num=fignum)
X, Y, dpos, dneg = [], [], 0., 0.
rad = old_div(np.pi, 180.)
xsum = 0
for i in I:
theta = (90. - i) * rad
X.append(1. - np.cos(theta))
xsum += X[-1]
X.sort()
n = float(len(X))
kappa = old_div((n - 1.), xsum)
for i in range(len(X)):
p = old_div((float(i) - 0.5), n)
Y.append(-np.log(1. - p))
f = 1. - np.exp(-kappa * X[i])
ds = old_div(float(i), n) - f
if dpos < ds:
dpos = ds
ds = f - old_div((float(i) - 1.), n)
if dneg < ds:
dneg = ds
if dneg > dpos:
ds = dneg
else:
ds = dpos
Me = (ds - (old_div(0.2, n))) * (np.sqrt(n) + 0.26 +
(old_div(0.5, (np.sqrt(n))))) # Eq. 5.15 from Fisher et al. (1987)
plt.plot(Y, X, 'ro')
bounds = plt.axis()
plt.axis([0, bounds[1], 0., bounds[3]])
notestr = 'N: ' + '%i' % (n)
plt.text(.1 * bounds[1], .9 * bounds[3], notestr)
notestr = 'Me: ' + '%7.3f' % (Me)
plt.text(.1 * bounds[1], .8 * bounds[3], notestr)
if Me > 1.094:
notestr = "Not Exponential"
else:
notestr = "Exponential (95%)"
plt.text(.1 * bounds[1], .7 * bounds[3], notestr)
plt.title(title)
plt.xlabel('Exponential Quantile')
plt.ylabel('Data Quantile')
return Me, 1.094 | 0.002822 |
def do_page_truncate(self, args: List[str]):
"""Read in a text file and display its output in a pager, truncating long lines if they don't fit.
Truncated lines can still be accessed by scrolling to the right using the arrow keys.
Usage: page_chop <file_path>
"""
if not args:
self.perror('page_truncate requires a path to a file as an argument', traceback_war=False)
return
self.page_file(args[0], chop=True) | 0.010373 |
def default_select(identifier, all_entry_points): # pylint: disable=inconsistent-return-statements
"""
Raise an exception when we have ambiguous entry points.
"""
if len(all_entry_points) == 0:
raise PluginMissingError(identifier)
elif len(all_entry_points) == 1:
return all_entry_points[0]
elif len(all_entry_points) > 1:
raise AmbiguousPluginError(all_entry_points) | 0.004773 |
def transform_header(mtype_name):
'''Add header to json output to wrap around distribution data.
'''
head_dict = OrderedDict()
head_dict["m-type"] = mtype_name
head_dict["components"] = defaultdict(OrderedDict)
return head_dict | 0.003953 |
def MAE(x1, x2=-1):
"""
Mean absolute error - this function accepts two series of data or directly
one series with error.
**Args:**
* `x1` - first data series or error (1d array)
**Kwargs:**
* `x2` - second series (1d array) if first series was not error directly,\\
then this should be the second series
**Returns:**
* `e` - MAE of error (float) obtained directly from `x1`, \\
or as a difference of `x1` and `x2`
"""
e = get_valid_error(x1, x2)
return np.sum(np.abs(e)) / float(len(e)) | 0.001792 |
def peak_interval(data, alpha=_alpha, npoints=_npoints):
"""
Identify interval using Gaussian kernel density estimator.
"""
peak = kde_peak(data,npoints)
x = np.sort(data.flat); n = len(x)
# The number of entries in the interval
window = int(np.rint((1.0-alpha)*n))
# The start, stop, and width of all possible intervals
starts = x[:n-window]; ends = x[window:]
widths = ends - starts
# Just the intervals containing the peak
select = (peak >= starts) & (peak <= ends)
widths = widths[select]
if len(widths) == 0:
raise ValueError('Too few elements for interval calculation')
min_idx = np.argmin(widths)
lo = x[min_idx]
hi = x[min_idx+window]
return interval(peak,lo,hi) | 0.008 |
def _nonempty_project(string):
"""
Argparse validator for ensuring a workspace is provided
"""
value = str(string)
if len(value) == 0:
msg = "No project provided and no default project configured"
raise argparse.ArgumentTypeError(msg)
return value | 0.003484 |
def load_tmp_dh(self, dhfile):
"""
Load parameters for Ephemeral Diffie-Hellman
:param dhfile: The file to load EDH parameters from (``bytes`` or
``unicode``).
:return: None
"""
dhfile = _path_string(dhfile)
bio = _lib.BIO_new_file(dhfile, b"r")
if bio == _ffi.NULL:
_raise_current_error()
bio = _ffi.gc(bio, _lib.BIO_free)
dh = _lib.PEM_read_bio_DHparams(bio, _ffi.NULL, _ffi.NULL, _ffi.NULL)
dh = _ffi.gc(dh, _lib.DH_free)
_lib.SSL_CTX_set_tmp_dh(self._context, dh) | 0.003384 |
def check_the_end_flag(self, state_key):
'''
Check the end flag.
If this return value is `True`, the learning is end.
Args:
state_key: The key of state in `self.t`.
Returns:
bool
'''
# As a rule, the learning can not be stopped.
x, y = state_key
end_point_tuple = np.where(self.__map_arr == self.__end_point_label)
end_point_x_arr, end_point_y_arr = end_point_tuple
if x == end_point_x_arr[0] and y == end_point_y_arr[0]:
return True
else:
return False | 0.004918 |
def fetch_items(self, category, **kwargs):
"""Fetch questions from the Kitsune url
:param category: the category of items to fetch
:param kwargs: backend arguments
:returns: a generator of items
"""
offset = kwargs['offset']
logger.info("Looking for questions at url '%s' using offset %s",
self.url, str(offset))
nquestions = 0 # number of questions processed
tquestions = 0 # number of questions from API data
equestions = 0 # number of questions dropped by errors
# Always get complete pages so the first item is always
# the first one in the page
page = int(offset / KitsuneClient.ITEMS_PER_PAGE)
page_offset = page * KitsuneClient.ITEMS_PER_PAGE
# drop questions from page before the offset
drop_questions = offset - page_offset
current_offset = offset
questions_page = self.client.get_questions(offset)
while True:
try:
raw_questions = next(questions_page)
except StopIteration:
break
except requests.exceptions.HTTPError as e:
# Continue with the next page if it is a 500 error
if e.response.status_code == 500:
logger.exception(e)
logger.error("Problem getting Kitsune questions. "
"Loosing %i questions. Going to the next page.",
KitsuneClient.ITEMS_PER_PAGE)
equestions += KitsuneClient.ITEMS_PER_PAGE
current_offset += KitsuneClient.ITEMS_PER_PAGE
questions_page = self.client.get_questions(current_offset)
continue
else:
# If it is another error just propagate the exception
raise e
try:
questions_data = json.loads(raw_questions)
tquestions = questions_data['count']
questions = questions_data['results']
except (ValueError, KeyError) as ex:
logger.error(ex)
cause = ("Bad JSON format for mozilla_questions: %s" % (raw_questions))
raise ParseError(cause=cause)
for question in questions:
if drop_questions > 0:
# Remove extra questions due to page base retrieval
drop_questions -= 1
continue
question['offset'] = current_offset
current_offset += 1
question['answers_data'] = []
for raw_answers in self.client.get_question_answers(question['id']):
answers = json.loads(raw_answers)['results']
question['answers_data'] += answers
yield question
nquestions += 1
logger.debug("Questions: %i/%i", nquestions + offset, tquestions)
logger.info("Total number of questions: %i (%i total)", nquestions, tquestions)
logger.info("Questions with errors dropped: %i", equestions) | 0.001889 |
def delete(self, key):
"""
Remove a key from the cache.
"""
if key in self.cache:
self.cache.pop(key, None) | 0.013245 |
def ip_allocate(self, public=False):
"""
Allocates a new :any:`IPAddress` for this Instance. Additional public
IPs require justification, and you may need to open a :any:`SupportTicket`
before you can add one. You may only have, at most, one private IP per
Instance.
:param public: If the new IP should be public or private. Defaults to
private.
:type public: bool
:returns: The new IPAddress
:rtype: IPAddress
"""
result = self._client.post(
"{}/ips".format(Instance.api_endpoint),
model=self,
data={
"type": "ipv4",
"public": public,
})
if not 'address' in result:
raise UnexpectedResponseError('Unexpected response allocating IP!',
json=result)
i = IPAddress(self._client, result['address'], result)
return i | 0.004053 |
def toarray(self):
"""
Returns the contents as a local array.
Will likely cause memory problems for large objects.
"""
rdd = self._rdd if self._ordered else self._rdd.sortByKey()
x = rdd.values().collect()
return asarray(x).reshape(self.shape) | 0.006667 |
def _validate_list(self, input_list, schema_list, path_to_root, object_title=''):
'''
a helper method for recursively validating items in a list
:return: input_list
'''
# construct rules for list and items
rules_path_to_root = re.sub('\[\d+\]', '[0]', path_to_root)
list_rules = self.keyMap[rules_path_to_root]
initial_key = rules_path_to_root + '[0]'
item_rules = self.keyMap[initial_key]
# construct list error report template
list_error = {
'object_title': object_title,
'model_schema': self.schema,
'input_criteria': list_rules,
'failed_test': 'value_datatype',
'input_path': path_to_root,
'error_value': 0,
'error_code': 4001
}
# validate list rules
if 'min_size' in list_rules.keys():
if len(input_list) < list_rules['min_size']:
list_error['failed_test'] = 'min_size'
list_error['error_value'] = len(input_list)
list_error['error_code'] = 4031
raise InputValidationError(list_error)
if 'max_size' in list_rules.keys():
if len(input_list) > list_rules['max_size']:
list_error['failed_test'] = 'max_size'
list_error['error_value'] = len(input_list)
list_error['error_code'] = 4032
raise InputValidationError(list_error)
# construct item error report template
item_error = {
'object_title': object_title,
'model_schema': self.schema,
'input_criteria': item_rules,
'failed_test': 'value_datatype',
'input_path': initial_key,
'error_value': None,
'error_code': 4001
}
# validate datatype of items
for i in range(len(input_list)):
input_path = path_to_root + '[%s]' % i
item = input_list[i]
item_error['input_path'] = input_path
try:
item_index = self._datatype_classes.index(item.__class__)
except:
item_error['error_value'] = item.__class__.__name__
raise InputValidationError(item_error)
item_type = self._datatype_names[item_index]
item_error['error_value'] = item
if item_rules['value_datatype'] == 'null':
pass
else:
if item_type != item_rules['value_datatype']:
raise InputValidationError(item_error)
# call appropriate validation sub-routine for datatype of item
if item_type == 'boolean':
input_list[i] = self._validate_boolean(item, input_path, object_title)
elif item_type == 'number':
input_list[i] = self._validate_number(item, input_path, object_title)
elif item_type == 'string':
input_list[i] = self._validate_string(item, input_path, object_title)
elif item_type == 'map':
input_list[i] = self._validate_dict(item, schema_list[0], input_path, object_title)
elif item_type == 'list':
input_list[i] = self._validate_list(item, schema_list[0], input_path, object_title)
# validate unique values in list
if 'unique_values' in list_rules.keys():
if len(set(input_list)) < len(input_list):
list_error['failed_test'] = 'unique_values'
list_error['error_value'] = input_list
list_error['error_code'] = 4033
raise InputValidationError(list_error)
# TODO: validate top-level item values against identical to reference
# TODO: run lambda function and call validation url
return input_list | 0.003103 |
def accessible_to(self, user):
"""
returns all the items that are accessible to the specified user
if user is not authenticated will return public items
:param user: an user instance
"""
if user.is_superuser:
try:
queryset = self.get_queryset()
except AttributeError:
queryset = self
elif user.is_authenticated():
# get user group (higher id)
group = user.groups.all().order_by('-id')[0]
queryset = self.filter(access_level__lte=ACCESS_LEVELS.get(group.name))
else:
queryset = self.filter(access_level__lte=ACCESS_LEVELS.get('public'))
return queryset | 0.006793 |
def create_notes_folder(self, title, parentid=""):
"""Create new folder
:param title: The title of the folder to create
:param parentid: The UUID of the parent folder
"""
if self.standard_grant_type is not "authorization_code":
raise DeviantartError("Authentication through Authorization Code (Grant Type) is required in order to connect to this endpoint.")
response = self._req('/notes/folders/create', post_data={
'title' : title,
'parentid' : parentid
})
return response | 0.008651 |
def delete_target_group(name,
region=None,
key=None,
keyid=None,
profile=None):
'''
Delete target group.
name
(string) - Target Group Name or Amazon Resource Name (ARN).
returns
(bool) - True on success, False on failure.
CLI example:
.. code-block:: bash
salt myminion boto_elbv2.delete_target_group arn:aws:elasticloadbalancing:us-west-2:644138682826:targetgroup/learn1give1-api/414788a16b5cf163
'''
conn = _get_conn(region=region, key=key, keyid=keyid, profile=profile)
if not target_group_exists(name, region, key, keyid, profile):
return True
try:
if name.startswith('arn:aws:elasticloadbalancing'):
conn.delete_target_group(TargetGroupArn=name)
log.info('Deleted target group %s', name)
else:
tg_info = conn.describe_target_groups(Names=[name])
if len(tg_info['TargetGroups']) != 1:
return False
arn = tg_info['TargetGroups'][0]['TargetGroupArn']
conn.delete_target_group(TargetGroupArn=arn)
log.info('Deleted target group %s ARN %s', name, arn)
return True
except ClientError as error:
log.error('Failed to delete target group %s', name,
exc_info_on_loglevel=logging.DEBUG)
return False | 0.001399 |
def isInside(self, point, tol=0.0001):
"""
Return True if point is inside a polydata closed surface.
"""
poly = self.polydata(True)
points = vtk.vtkPoints()
points.InsertNextPoint(point)
pointsPolydata = vtk.vtkPolyData()
pointsPolydata.SetPoints(points)
sep = vtk.vtkSelectEnclosedPoints()
sep.SetTolerance(tol)
sep.CheckSurfaceOff()
sep.SetInputData(pointsPolydata)
sep.SetSurfaceData(poly)
sep.Update()
return sep.IsInside(0) | 0.00365 |
def qteSetWidgetSignature(self, widgetSignatures: (str, tuple, list)):
"""
Specify the widget signatures with which this macro is
compatible.
Qtmacs uses this information at run time to determine if this
macro is compatible with a particular widget, as specified by
the widget's signature. Note that this function overwrites all
previously set values.
|Args|
* ``*widgetSignatures`` (**str, tuple, list**): widget signatures
as a string, or tuple/list of strings.
|Returns|
* **None**
|Raises|
* **QtmacsArgumentError** if at least one argument has an invalid type.
"""
# Convert the argument to a tuple if it is not already a tuple
# or list.
if not isinstance(widgetSignatures, (tuple, list)):
widgetSignatures = widgetSignatures,
# Ensure that all arguments in the tuple/list are strings.
for idx, val in enumerate(widgetSignatures):
if not isinstance(val, str):
args = ('widgetSignatures', 'str', inspect.stack()[0][3])
raise QtmacsArgumentError(*args)
# Store the compatible widget signatures as a tuple (of strings).
self._qteWidgetSignatures = tuple(widgetSignatures) | 0.001517 |
def push_func(self, cuin, callback):
"""Push a function for dfp.
:param cuin: str,unicode: Callback Unique Identifier Name.
:param callback: callable: Corresponding to the cuin to perform a function.
:raises: DFPError,NotCallableError: raises an exception
.. versionadded:: 2.3.0
"""
if cuin and isinstance(cuin, string_types) and callable(callback):
if cuin in self._dfp_funcs:
raise DFPError("The cuin already exists")
else:
self._dfp_funcs[cuin] = callback
else:
if not callable(callback):
raise NotCallableError("The cuin %s cannot be called back" % cuin)
raise DFPError("Invalid parameter") | 0.00527 |
def _at_exit(self):
"""
Resets terminal to normal configuration
"""
if self.process_exit:
try:
term = self.term
if self.set_scroll:
term.reset()
else:
term.move_to(0, term.height)
self.term.feed()
except ValueError: # Possibly closed file handles
pass | 0.004608 |
def connect(self, *, network=None, from_backup=None):
"""
In DBState, a device can be reconnected to BACnet using:
device.connect(network=bacnet) (bacnet = BAC0.connect())
"""
if network and from_backup:
raise WrongParameter("Please provide network OR from_backup")
elif network:
self.properties.network = network
try:
name = self.properties.network.read(
"{} device {} objectName".format(
self.properties.address, self.properties.device_id
)
)
segmentation = self.properties.network.read(
"{} device {} segmentationSupported".format(
self.properties.address, self.properties.device_id
)
)
if not self.segmentation_supported or segmentation not in (
"segmentedTransmit",
"segmentedBoth",
):
segmentation_supported = False
self._log.debug("Segmentation not supported")
else:
segmentation_supported = True
if name:
if segmentation_supported:
self.new_state(RPMDeviceConnected)
else:
self.new_state(RPDeviceConnected)
# self.db.close()
except NoResponseFromController:
self._log.error("Unable to connect, keeping DB mode active")
elif from_backup:
self.properties.db_name = from_backup.split(".")[0]
self._init_state() | 0.001125 |
def apply_host_template(self, host_ids, start_roles):
"""
Apply a host template identified by name on the specified hosts and
optionally start them.
@param host_ids: List of host ids.
@param start_roles: Whether to start the created roles or not.
@return: An ApiCommand object.
"""
return apply_host_template(self._get_resource_root(), self.name, self.clusterRef.clusterName, host_ids, start_roles) | 0.004651 |
def verify_state(self):
""" Verify if session was not yet opened. If it is, open it and call
connections C{connectionMade} """
# If we're in CONNECTING state - send 'o' message to the client
if self.state == SESSION_STATE.CONNECTING:
self.handler.send_pack(proto.CONNECT)
# Call parent implementation
super(Session, self).verify_state() | 0.005038 |
def commit(self):
"""
Put the document into the new state.
"""
if self.textAfter is None:
# If this is the first 'commit' call then do not make
# any changes but store the current document state
# and its style.
line, col = self.qteWidget.getNumLinesAndColumns()
text, style = self.qteWidget.SCIGetStyledText((0, 0, line, col))
self.styleAfter = style
self.textAfter = text.decode('utf-8')
else:
# Put the document into the 'after' state.
self.baseClass.setText(self.textAfter)
self.qteWidget.SCISetStylingEx(0, 0, self.styleAfter)
self.placeCursor(*self.origPosition) | 0.002717 |
def filter_queryset(self, value, queryset):
"""
Filter the queryset to all instances matching the given attribute.
"""
filter_kwargs = {self.field_name: value}
return queryset.filter(**filter_kwargs) | 0.008368 |
def CopyFileInZip(from_zip, from_name, to_zip, to_name=None):
"""Read a file from a ZipFile and write it to a new ZipFile."""
data = from_zip.read(from_name)
if to_name is None:
to_name = from_name
to_zip.writestr(to_name, data) | 0.020833 |
def find_and_reserve_fcp(self, assigner_id):
"""reserve the fcp to assigner_id
The function to reserve a fcp for user
1. Check whether assigner_id has a fcp already
if yes, make the reserve of that record to 1
2. No fcp, then find a fcp and reserve it
fcp will be returned, or None indicate no fcp
"""
fcp_list = self.db.get_from_assigner(assigner_id)
if not fcp_list:
new_fcp = self.db.find_and_reserve()
if new_fcp is None:
LOG.info("no more fcp to be allocated")
return None
LOG.debug("allocated %s fcp for %s assigner" %
(new_fcp, assigner_id))
return new_fcp
else:
# we got it from db, let's reuse it
old_fcp = fcp_list[0][0]
self.db.reserve(fcp_list[0][0])
return old_fcp | 0.002191 |
def choice(self, subscribers, message):
"""
Choose a random connection, favoring those that are reliable from
subscriber pool to deliver specified message.
@param subscribers: Collection of subscribed connections to destination.
@type subscribers: C{list} of L{coilmq.server.StompConnection}
@param message: The message to be delivered.
@type message: L{stompclient.frame.Frame}
@return: A random subscriber from the list or None if list is empty.
@rtype: L{coilmq.server.StompConnection}
"""
if not subscribers:
return None
reliable_subscribers = [
s for s in subscribers if s.reliable_subscriber]
if reliable_subscribers:
return random.choice(reliable_subscribers)
else:
return random.choice(subscribers) | 0.005741 |
def dropNode(self, node):
"""
Drop a node from the network
:param node: node to drop
:type node: Node
"""
conn = self._connections.pop(node, None)
if conn is not None:
# Calling conn.disconnect() immediately triggers the onDisconnected callback if the connection isn't already disconnected, so this is necessary to prevent the automatic reconnect.
self._preventConnectNodes.add(node)
conn.disconnect()
self._preventConnectNodes.remove(node)
if isinstance(node, TCPNode):
self._nodes.discard(node)
self._nodeAddrToNode.pop(node.address, None)
else:
self._readonlyNodes.discard(node)
self._lastConnectAttempt.pop(node, None) | 0.003807 |
def assert_valid_explicit_coords(variables, dims, explicit_coords):
"""Validate explicit coordinate names/dims.
Raise a MergeError if an explicit coord shares a name with a dimension
but is comprised of arbitrary dimensions.
"""
for coord_name in explicit_coords:
if coord_name in dims and variables[coord_name].dims != (coord_name,):
raise MergeError(
'coordinate %s shares a name with a dataset dimension, but is '
'not a 1D variable along that dimension. This is disallowed '
'by the xarray data model.' % coord_name) | 0.001642 |
def external_table(self):
"""
schema.external provides a view of the external hash table for the schema
:return: external table
"""
if self._external is None:
self._external = ExternalTable(self.connection, self.database)
return self._external | 0.009901 |
def _process_response(self, request, response):
"""Log user operation."""
log_format = self._get_log_format(request)
if not log_format:
return response
params = self._get_parameters_from_request(request)
# log a message displayed to user
messages = django_messages.get_messages(request)
result_message = None
if messages:
result_message = ', '.join('%s: %s' % (message.tags, message)
for message in messages)
elif 'action' in request.POST:
result_message = request.POST['action']
params['message'] = result_message
params['http_status'] = response.status_code
self.OPERATION_LOG.info(log_format, params)
return response | 0.002497 |
def create_http_monitor(self, topics, transport_url, transport_token=None, transport_method='PUT', connect_timeout=0,
response_timeout=0, batch_size=1, batch_duration=0, compression='none', format_type='json'):
"""Creates a HTTP Monitor instance in Device Cloud for a given list of topics
:param topics: a string list of topics (e.g. ['DeviceCore[U]',
'FileDataCore']).
:param transport_url: URL of the customer web server.
:param transport_token: Credentials for basic authentication in the following format: username:password
:param transport_method: HTTP method to use for sending data: PUT or POST. The default is PUT.
:param connect_timeout: A value of 0 means use the system default of 5000 (5 seconds).
:param response_timeout: A value of 0 means use the system default of 5000 (5 seconds).
:param batch_size: How many Msgs received before sending data.
:param batch_duration: How long to wait before sending batch if it
does not exceed batch_size.
:param compression: Compression value (i.e. 'gzip').
:param format_type: What format server should send data in (i.e. 'xml' or 'json').
Returns an object of the created Monitor
"""
monitor_xml = """\
<Monitor>
<monTopic>{topics}</monTopic>
<monBatchSize>{batch_size}</monBatchSize>
<monFormatType>{format_type}</monFormatType>
<monTransportType>http</monTransportType>
<monTransportUrl>{transport_url}</monTransportUrl>
<monTransportToken>{transport_token}</monTransportToken>
<monTransportMethod>{transport_method}</monTransportMethod>
<monConnectTimeout>{connect_timeout}</monConnectTimeout>
<monResponseTimeout>{response_timeout}</monResponseTimeout>
<monCompression>{compression}</monCompression>
</Monitor>
""".format(
topics=','.join(topics),
transport_url=transport_url,
transport_token=transport_token,
transport_method=transport_method,
connect_timeout=connect_timeout,
response_timeout=response_timeout,
batch_size=batch_size,
batch_duration=batch_duration,
format_type=format_type,
compression=compression,
)
monitor_xml = textwrap.dedent(monitor_xml)
response = self._conn.post("/ws/Monitor", monitor_xml)
location = ET.fromstring(response.text).find('.//location').text
monitor_id = int(location.split('/')[-1])
return HTTPDeviceCloudMonitor(self._conn, monitor_id) | 0.004044 |
def iterdirty(self):
'''Ordered iterator over dirty elements.'''
return iter(chain(itervalues(self._new), itervalues(self._modified))) | 0.013158 |
def str_cat(x, other):
"""Concatenate two string columns on a row-by-row basis.
:param expression other: The expression of the other column to be concatenated.
:returns: an expression containing the concatenated columns.
Example:
>>> import vaex
>>> text = ['Something', 'very pretty', 'is coming', 'our', 'way.']
>>> df = vaex.from_arrays(text=text)
>>> df
# text
0 Something
1 very pretty
2 is coming
3 our
4 way.
>>> df.text.str.cat(df.text)
Expression = str_cat(text, text)
Length: 5 dtype: str (expression)
---------------------------------
0 SomethingSomething
1 very prettyvery pretty
2 is comingis coming
3 ourour
4 way.way.
"""
sl1 = _to_string_sequence(x)
sl2 = _to_string_sequence(other)
sl = sl1.concat(sl2)
return column.ColumnStringArrow.from_string_sequence(sl) | 0.002099 |
def validate_zone(zone):
"""Checks that the given zone contains the required fields"""
if not has_valid_id(zone):
raise InvalidZone("%s must contain a valid 'id' attribute" % zone.__name__)
if not has_valid_name(zone):
raise InvalidZone("%s must contain a valid 'name' attribute" % zone.__name__) | 0.009202 |
def main():
"""
Discards all pairs of sentences which can't be decoded by latin-1 encoder.
It aims to filter out sentences with rare unicode glyphs and pairs which
are most likely not valid English-German sentences.
Examples of discarded sentences:
✿★★★Hommage au king de la pop ★★★✿ ✿★★★Que son âme repos...
Для их осуществления нам, прежде всего, необходимо преодолеть
возражения рыночных фундаменталистов, которые хотят ликвидировать или
уменьшить роль МВФ.
practised as a scientist in various medical departments of the ⇗Medical
University of Hanover , the ⇗University of Ulm , and the ⇗RWTH Aachen
(rheumatology, pharmacology, physiology, pathology, microbiology,
immunology and electron-microscopy).
The same shift】 and press 【】 【alt out with a smaller diameter
circle.
Brought to you by ABMSUBS ♥leira(Coordinator/Translator)
♥chibichan93(Timer/Typesetter) ♥ja...
Some examples: &0u - ☺ &0U - ☻ &tel - ☏ &PI - ¶ &SU - ☼ &cH- - ♥ &M2=♫
&sn - ﺵ SGML maps SGML to unicode.
"""
args = parse_args()
c = Counter()
skipped = 0
valid = 0
data1 = []
data2 = []
with open(args.file1) as f1, open(args.file2) as f2:
for idx, lines in enumerate(zip(f1, f2)):
line1, line2 = lines
if idx % 100000 == 1:
print('Processed {} lines'.format(idx))
try:
line1.encode('latin1')
line2.encode('latin1')
except UnicodeEncodeError:
skipped += 1
else:
data1.append(line1)
data2.append(line2)
valid += 1
c.update(line1)
ratio = valid / (skipped + valid)
print('Skipped: {}, Valid: {}, Valid ratio {}'.format(skipped, valid, ratio))
print('Character frequency:', c)
save_output(args.file1, data1)
save_output(args.file2, data2) | 0.001001 |
def run_webserver():
''' Run web server '''
host = "0.0.0.0"
port = CONFIG.getint('Server Parameters', 'port')
print "Serving on ", "http://" + host + ":" + str(port)
app.config['TEMPLATES_AUTO_RELOAD'] = True
app.jinja_env.auto_reload = True
app.run(debug=True, host=host, port=port) | 0.00639 |
def show_tree_cache(self, label, current_node=None):
'''
Show tree and cache info with color represent _status
Optionally accpet current_node arg to highlight the current node we are in
'''
import os
import tempfile
import subprocess
assert DEBUG, "Please use dr tree visualization functions in debug mode"
cache_path = os.path.abspath('profiles')
def string_for(self, my_name):
color_mapping = {'new' : 'grey', 'pending':'red', 'cached':'yellow', 'done': 'green'}
if hasattr(self, 'label'):
my_name = self.label
my_name = '%s (%s)' % (my_name, str(self.__class__.__name__))
result = []
if not hasattr(self, 'dterms'):
return result
for dterm in self.dterms:
if hasattr(self, dterm):
dtval = getattr(self, dterm)
if hasattr(dtval, 'dterms') or hasattr(dtval, 'terms'):
child_label = getattr(dtval, 'label') if hasattr(dtval, 'label') else dterm
child_label = '%s (%s)' % (child_label, str(dtval.__class__.__name__))
src = 'aaa%d' % (id(self))
dst = 'aaa%d' % (id(dtval))
s = ''
color = color_mapping[dtval._status] if hasattr(dtval, '_status') else 'grey'
if dtval == current_node:
color = 'blue'
if isinstance(dtval, Concatenate) and len(dtval.dr_cached) > 0:
s = 'dr_cached\n'
for k, v in dtval.dr_cached.items():
if v is not None:
issparse = sp.issparse(v)
size = v.size
if issparse:
size = v.shape[0] * v.shape[1]
nonzero = len(v.data)
else:
nonzero = np.count_nonzero(v)
s += '\nsparse: %s\nsize: %d\nnonzero: %d\n' % (issparse, size, nonzero)
# if dtval.called_dr_wrt:
# # dtval.called_dr_wrt = False
# color = 'brown3'
# else:
# color = 'azure1'
elif len(dtval._cache['drs']) > 0:
s = '_cache\n'
for k, v in dtval._cache['drs'].items():
if v is not None:
issparse = sp.issparse(v)
size = v.size
if issparse:
size = v.shape[0] * v.shape[1]
nonzero = len(v.data)
else:
nonzero = np.count_nonzero(v)
s += '\nsparse: %s\nsize: %d\nnonzero: %d\n' % (issparse, size, nonzero)
if hasattr(dtval, '_cache_info'):
s += '\ncache hit:%s\n' % dtval._cache_info[k]
# if hasattr(dtval,'called_dr_wrt') and dtval.called_dr_wrt:
# # dtval.called_dr_wrt = False
# color = 'brown3'
# else:
# color = 'azure1'
result += ['%s -> %s;' % (src, dst)]
# Do not overwrite src
#result += ['%s [label="%s"];' % (src, my_name)]
result += ['%s [label="%s\n%s\n", color=%s, style=filled];' %
(dst, child_label, s, color)]
result += string_for(getattr(self, dterm), dterm)
return result
dot_file_contents = 'digraph G {\n%s\n}' % '\n'.join(list(set(string_for(self, 'root'))))
dot_file_name = os.path.join(cache_path, label)
png_file_name = os.path.join(cache_path, label+'.png')
with open(dot_file_name, 'w') as dot_file:
with open(png_file_name, 'w') as png_file:
dot_file.write(dot_file_contents)
dot_file.flush()
png_file = tempfile.NamedTemporaryFile(suffix='.png', delete=False)
subprocess.call(['dot', '-Tpng', '-o', png_file.name, dot_file.name])
import webbrowser
webbrowser.open('file://' + png_file.name)
self.loop_children_do(self.reset_flag) | 0.005881 |
def set_address(addr):
"""Sets the address for the next operation."""
# Send DNLOAD with first byte=0x21 and page address
buf = struct.pack("<BI", 0x21, addr)
__dev.ctrl_transfer(0x21, __DFU_DNLOAD, 0, __DFU_INTERFACE, buf, __TIMEOUT)
# Execute last command
if get_status() != __DFU_STATE_DFU_DOWNLOAD_BUSY:
raise Exception("DFU: set address failed")
# Check command state
if get_status() != __DFU_STATE_DFU_DOWNLOAD_IDLE:
raise Exception("DFU: set address failed") | 0.001942 |
def configure(self, options):
"""
Update the plugin's settings.
Args:
options (dict): A key-value mapping of options.
Raises:
:py:class:`docker.errors.APIError`
If the server returns an error.
"""
self.client.api.configure_plugin(self.name, options)
self.reload() | 0.005195 |
def closeEvent(self, event):
"""Emits a signal to update start values on components"""
self.visibilityChanged.emit(0)
model = self.paramList.model()
model.hintRequested.disconnect()
model.rowsInserted.disconnect()
model.rowsRemoved.disconnect() | 0.006849 |
def register_workflow_type(domain=None, name=None, version=None, description=None, defaultTaskStartToCloseTimeout=None, defaultExecutionStartToCloseTimeout=None, defaultTaskList=None, defaultTaskPriority=None, defaultChildPolicy=None, defaultLambdaRole=None):
"""
Registers a new workflow type and its configuration settings in the specified domain.
The retention period for the workflow history is set by the RegisterDomain action.
Access Control
You can use IAM policies to control this action's access to Amazon SWF resources as follows:
If the caller does not have sufficient permissions to invoke the action, or the parameter values fall outside the specified constraints, the action fails. The associated event attribute's cause parameter will be set to OPERATION_NOT_PERMITTED. For details and example IAM policies, see Using IAM to Manage Access to Amazon SWF Workflows .
See also: AWS API Documentation
:example: response = client.register_workflow_type(
domain='string',
name='string',
version='string',
description='string',
defaultTaskStartToCloseTimeout='string',
defaultExecutionStartToCloseTimeout='string',
defaultTaskList={
'name': 'string'
},
defaultTaskPriority='string',
defaultChildPolicy='TERMINATE'|'REQUEST_CANCEL'|'ABANDON',
defaultLambdaRole='string'
)
:type domain: string
:param domain: [REQUIRED]
The name of the domain in which to register the workflow type.
:type name: string
:param name: [REQUIRED]
The name of the workflow type.
The specified string must not start or end with whitespace. It must not contain a : (colon), / (slash), | (vertical bar), or any control characters (u0000-u001f | u007f - u009f). Also, it must not contain the literal string quotarnquot.
:type version: string
:param version: [REQUIRED]
The version of the workflow type.
Note
The workflow type consists of the name and version, the combination of which must be unique within the domain. To get a list of all currently registered workflow types, use the ListWorkflowTypes action.
The specified string must not start or end with whitespace. It must not contain a : (colon), / (slash), | (vertical bar), or any control characters (u0000-u001f | u007f - u009f). Also, it must not contain the literal string quotarnquot.
:type description: string
:param description: Textual description of the workflow type.
:type defaultTaskStartToCloseTimeout: string
:param defaultTaskStartToCloseTimeout: If set, specifies the default maximum duration of decision tasks for this workflow type. This default can be overridden when starting a workflow execution using the StartWorkflowExecution action or the StartChildWorkflowExecution decision.
The duration is specified in seconds; an integer greater than or equal to 0. The value 'NONE' can be used to specify unlimited duration.
:type defaultExecutionStartToCloseTimeout: string
:param defaultExecutionStartToCloseTimeout: If set, specifies the default maximum duration for executions of this workflow type. You can override this default when starting an execution through the StartWorkflowExecution action or StartChildWorkflowExecution decision.
The duration is specified in seconds; an integer greater than or equal to 0. Unlike some of the other timeout parameters in Amazon SWF, you cannot specify a value of 'NONE' for defaultExecutionStartToCloseTimeout ; there is a one-year max limit on the time that a workflow execution can run. Exceeding this limit will always cause the workflow execution to time out.
:type defaultTaskList: dict
:param defaultTaskList: If set, specifies the default task list to use for scheduling decision tasks for executions of this workflow type. This default is used only if a task list is not provided when starting the execution through the StartWorkflowExecution action or StartChildWorkflowExecution decision.
name (string) -- [REQUIRED]The name of the task list.
:type defaultTaskPriority: string
:param defaultTaskPriority: The default task priority to assign to the workflow type. If not assigned, then '0' will be used. Valid values are integers that range from Java's Integer.MIN_VALUE (-2147483648) to Integer.MAX_VALUE (2147483647). Higher numbers indicate higher priority.
For more information about setting task priority, see Setting Task Priority in the Amazon Simple Workflow Developer Guide .
:type defaultChildPolicy: string
:param defaultChildPolicy: If set, specifies the default policy to use for the child workflow executions when a workflow execution of this type is terminated, by calling the TerminateWorkflowExecution action explicitly or due to an expired timeout. This default can be overridden when starting a workflow execution using the StartWorkflowExecution action or the StartChildWorkflowExecution decision.
The supported child policies are:
TERMINATE: the child executions will be terminated.
REQUEST_CANCEL: a request to cancel will be attempted for each child execution by recording a WorkflowExecutionCancelRequested event in its history. It is up to the decider to take appropriate actions when it receives an execution history with this event.
ABANDON: no action will be taken. The child executions will continue to run.
:type defaultLambdaRole: string
:param defaultLambdaRole: The ARN of the default IAM role to use when a workflow execution of this type invokes AWS Lambda functions.
This default can be overridden when starting a workflow execution using the StartWorkflowExecution action or the StartChildWorkflowExecution and ContinueAsNewWorkflowExecution decision.
:returns:
domain (string) -- [REQUIRED]
The name of the domain in which to register the workflow type.
name (string) -- [REQUIRED]
The name of the workflow type.
The specified string must not start or end with whitespace. It must not contain a : (colon), / (slash), | (vertical bar), or any control characters (u0000-u001f | u007f - u009f). Also, it must not contain the literal string quotarnquot.
version (string) -- [REQUIRED]
The version of the workflow type.
Note
The workflow type consists of the name and version, the combination of which must be unique within the domain. To get a list of all currently registered workflow types, use the ListWorkflowTypes action.
The specified string must not start or end with whitespace. It must not contain a : (colon), / (slash), | (vertical bar), or any control characters (u0000-u001f | u007f - u009f). Also, it must not contain the literal string quotarnquot.
description (string) -- Textual description of the workflow type.
defaultTaskStartToCloseTimeout (string) -- If set, specifies the default maximum duration of decision tasks for this workflow type. This default can be overridden when starting a workflow execution using the StartWorkflowExecution action or the StartChildWorkflowExecution decision.
The duration is specified in seconds; an integer greater than or equal to 0. The value "NONE" can be used to specify unlimited duration.
defaultExecutionStartToCloseTimeout (string) -- If set, specifies the default maximum duration for executions of this workflow type. You can override this default when starting an execution through the StartWorkflowExecution action or StartChildWorkflowExecution decision.
The duration is specified in seconds; an integer greater than or equal to 0. Unlike some of the other timeout parameters in Amazon SWF, you cannot specify a value of "NONE" for defaultExecutionStartToCloseTimeout ; there is a one-year max limit on the time that a workflow execution can run. Exceeding this limit will always cause the workflow execution to time out.
defaultTaskList (dict) -- If set, specifies the default task list to use for scheduling decision tasks for executions of this workflow type. This default is used only if a task list is not provided when starting the execution through the StartWorkflowExecution action or StartChildWorkflowExecution decision.
name (string) -- [REQUIRED]The name of the task list.
defaultTaskPriority (string) -- The default task priority to assign to the workflow type. If not assigned, then "0" will be used. Valid values are integers that range from Java's Integer.MIN_VALUE (-2147483648) to Integer.MAX_VALUE (2147483647). Higher numbers indicate higher priority.
For more information about setting task priority, see Setting Task Priority in the Amazon Simple Workflow Developer Guide .
defaultChildPolicy (string) -- If set, specifies the default policy to use for the child workflow executions when a workflow execution of this type is terminated, by calling the TerminateWorkflowExecution action explicitly or due to an expired timeout. This default can be overridden when starting a workflow execution using the StartWorkflowExecution action or the StartChildWorkflowExecution decision.
The supported child policies are:
TERMINATE: the child executions will be terminated.
REQUEST_CANCEL: a request to cancel will be attempted for each child execution by recording a WorkflowExecutionCancelRequested event in its history. It is up to the decider to take appropriate actions when it receives an execution history with this event.
ABANDON: no action will be taken. The child executions will continue to run.
defaultLambdaRole (string) -- The ARN of the default IAM role to use when a workflow execution of this type invokes AWS Lambda functions.
This default can be overridden when starting a workflow execution using the StartWorkflowExecution action or the StartChildWorkflowExecution and ContinueAsNewWorkflowExecution decision.
"""
pass | 0.006552 |
def toFormMarkup(self, action_url, form_tag_attrs=None,
submit_text=u"Continue"):
"""Generate HTML form markup that contains the values in this
message, to be HTTP POSTed as x-www-form-urlencoded UTF-8.
@param action_url: The URL to which the form will be POSTed
@type action_url: str
@param form_tag_attrs: Dictionary of attributes to be added to
the form tag. 'accept-charset' and 'enctype' have defaults
that can be overridden. If a value is supplied for
'action' or 'method', it will be replaced.
@type form_tag_attrs: {unicode: unicode}
@param submit_text: The text that will appear on the submit
button for this form.
@type submit_text: unicode
@returns: A string containing (X)HTML markup for a form that
encodes the values in this Message object.
@rtype: str or unicode
"""
if ElementTree is None:
raise RuntimeError('This function requires ElementTree.')
assert action_url is not None
form = ElementTree.Element(u'form')
if form_tag_attrs:
for name, attr in form_tag_attrs.iteritems():
form.attrib[name] = attr
form.attrib[u'action'] = oidutil.toUnicode(action_url)
form.attrib[u'method'] = u'post'
form.attrib[u'accept-charset'] = u'UTF-8'
form.attrib[u'enctype'] = u'application/x-www-form-urlencoded'
for name, value in self.toPostArgs().iteritems():
attrs = {u'type': u'hidden',
u'name': oidutil.toUnicode(name),
u'value': oidutil.toUnicode(value)}
form.append(ElementTree.Element(u'input', attrs))
submit = ElementTree.Element(u'input',
{u'type':'submit', u'value':oidutil.toUnicode(submit_text)})
form.append(submit)
return ElementTree.tostring(form, encoding='utf-8') | 0.003035 |
def bar(df, figsize=(24, 10), fontsize=16, labels=None, log=False, color='dimgray', inline=False,
filter=None, n=0, p=0, sort=None):
"""
A bar chart visualization of the nullity of the given DataFrame.
:param df: The input DataFrame.
:param log: Whether or not to display a logorithmic plot. Defaults to False (linear).
:param filter: The filter to apply to the heatmap. Should be one of "top", "bottom", or None (default).
:param n: The cap on the number of columns to include in the filtered DataFrame.
:param p: The cap on the percentage fill of the columns in the filtered DataFrame.
:param sort: The sort to apply to the heatmap. Should be one of "ascending", "descending", or None (default).
:param figsize: The size of the figure to display.
:param fontsize: The figure's font size. This default to 16.
:param labels: Whether or not to display the column names. Would need to be turned off on particularly large
displays. Defaults to True.
:param color: The color of the filled columns. Default to the RGB multiple `(0.25, 0.25, 0.25)`.
:return: If `inline` is False, the underlying `matplotlib.figure` object. Else, nothing.
"""
nullity_counts = len(df) - df.isnull().sum()
df = nullity_filter(df, filter=filter, n=n, p=p)
df = nullity_sort(df, sort=sort)
plt.figure(figsize=figsize)
(nullity_counts / len(df)).plot(kind='bar', figsize=figsize, fontsize=fontsize, log=log, color=color)
ax1 = plt.gca()
axes = [ax1]
# Start appending elements, starting with a modified bottom x axis.
if labels or (labels is None and len(df.columns) <= 50):
ax1.set_xticklabels(ax1.get_xticklabels(), rotation=45, ha='right', fontsize=fontsize)
# Create the numerical ticks.
ax2 = ax1.twinx()
axes.append(ax2)
if not log:
ax1.set_ylim([0, 1])
ax2.set_yticks(ax1.get_yticks())
ax2.set_yticklabels([int(n*len(df)) for n in ax1.get_yticks()], fontsize=fontsize)
else:
# For some reason when a logarithmic plot is specified `ax1` always contains two more ticks than actually
# appears in the plot. The fix is to ignore the first and last entries. Also note that when a log scale
# is used, we have to make it match the `ax1` layout ourselves.
ax2.set_yscale('log')
ax2.set_ylim(ax1.get_ylim())
ax2.set_yticklabels([int(n*len(df)) for n in ax1.get_yticks()], fontsize=fontsize)
else:
ax1.set_xticks([])
# Create the third axis, which displays columnar totals above the rest of the plot.
ax3 = ax1.twiny()
axes.append(ax3)
ax3.set_xticks(ax1.get_xticks())
ax3.set_xlim(ax1.get_xlim())
ax3.set_xticklabels(nullity_counts.values, fontsize=fontsize, rotation=45, ha='left')
ax3.grid(False)
for ax in axes:
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['bottom'].set_visible(False)
ax.spines['left'].set_visible(False)
ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')
if inline:
plt.show()
else:
return ax1 | 0.005571 |
def set_timestamp(self,timestamp=None):
"""
Set the timestamp of the linguistic processor, set to None for the current time
@type timestamp:string
@param timestamp: version of the linguistic processor
"""
if timestamp is None:
import time
timestamp = time.strftime('%Y-%m-%dT%H:%M:%S%Z')
self.node.set('timestamp',timestamp) | 0.012376 |
def get_contrib_names(self, contrib):
"""
Returns an appropriate Name and File-As-Name for a contrib element.
This code was refactored out of nav_contributors and
package_contributors to provide a single definition point for a common
job. This is a useful utility that may be well-employed for other
publishers as well.
"""
collab = contrib.find('collab')
anon = contrib.find('anonymous')
if collab is not None:
proper_name = serialize(collab, strip=True)
file_as_name = proper_name
elif anon is not None:
proper_name = 'Anonymous'
file_as_name = proper_name
else:
name = contrib.find('name')
surname = name.find('surname').text
given = name.find('given-names')
if given is not None:
if given.text: # Sometimes these tags are empty
proper_name = ' '.join([surname, given.text])
#File-as name is <surname>, <given-initial-char>
file_as_name = ', '.join([surname, given.text[0]])
else:
proper_name = surname
file_as_name = proper_name
else:
proper_name = surname
file_as_name = proper_name
return proper_name, file_as_name | 0.002146 |
def get_tags_from_job(user, job_id):
"""Retrieve all tags attached to a job."""
job = v1_utils.verify_existence_and_get(job_id, _TABLE)
if not user.is_in_team(job['team_id']) and not user.is_read_only_user():
raise dci_exc.Unauthorized()
JTT = models.JOIN_JOBS_TAGS
query = (sql.select([models.TAGS])
.select_from(JTT.join(models.TAGS))
.where(JTT.c.job_id == job_id))
rows = flask.g.db_conn.execute(query)
return flask.jsonify({'tags': rows, '_meta': {'count': rows.rowcount}}) | 0.001842 |
def annotate(*,
start_msg: Optional[str] = None,
end_msg: Optional[str] = None,
start_no_nl: bool = False) -> types.AnyFunction:
"""A decorator meant for decorating functions that are decorated with the
`animate` decorator. It prints a message to stdout before and/or after the
function has finished.
.. DANGER::
This decorator can also be used standalone, but you should NOT decorate a
function that is decorated with `annotate` with `animate`. That is to say,
the decorator order must be like this:
.. code-block:: python
@annotate
@animate
def some_function()
pass
"""
return core.Annotate(start_msg=start_msg, end_msg=end_msg, start_no_nl=start_no_nl) | 0.004963 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.