text
stringlengths
78
104k
score
float64
0
0.18
def remove_peer_from_group(self, group_jid, peer_jid): """ Kicks someone out of a group :param group_jid: The group JID from which to remove the user :param peer_jid: The JID of the user to remove """ log.info("[+] Requesting removal of user {} from group {}".format(peer_jid, group_jid)) return self._send_xmpp_element(group_adminship.RemoveFromGroupRequest(group_jid, peer_jid))
0.009153
def duplicate(self): ''' Returns a copy of the current contact element. @returns: Contact ''' return self.__class__(name=self.name, identifier=self.identifier, phone=self.phone, require_id=self.__require_id, address=self.address.duplicate())
0.005865
def OpenFile(filename, binary=False, newline=None, encoding=None): ''' Open a file and returns it. Consider the possibility of a remote file (HTTP, HTTPS, FTP) :param unicode filename: Local or remote filename. :param bool binary: If True returns the file as is, ignore any EOL conversion. If set ignores univeral_newlines parameter. :param None|''|'\n'|'\r'|'\r\n' newline: Controls universal newlines. See 'io.open' newline parameter documentation for more details. :param unicode encoding: File's encoding. If not None, contents obtained from file will be decoded using this `encoding`. :returns file: The open file, it must be closed by the caller @raise: FileNotFoundError When the given filename cannot be found .. seealso:: FTP LIMITATIONS at this module's doc for performance issues information ''' from six.moves.urllib.parse import urlparse filename_url = urlparse(filename) # Check if file is local if _UrlIsLocal(filename_url): if not os.path.isfile(filename): from ._exceptions import FileNotFoundError raise FileNotFoundError(filename) mode = 'rb' if binary else 'r' return io.open(filename, mode, encoding=encoding, newline=newline) # Not local from ._exceptions import NotImplementedProtocol raise NotImplementedProtocol(target_url.scheme)
0.002059
def parse(self, xml_file, view_name=None) -> XmlNode: """Parses xml file with xml_path and returns XmlNode""" self._setup_parser() try: self._view_name = view_name self._parser.ParseFile(xml_file) except ExpatError as error: # pylint: disable=E1101 raise XmlError(errors.messages[error.code], ViewInfo(view_name, error.lineno)) root = self._root self._reset() return root
0.006303
def upload_image(vol, img, offset, parallel=1, manual_shared_memory_id=None, manual_shared_memory_bbox=None, manual_shared_memory_order='F'): """Upload img to vol with offset. This is the primary entry point for uploads.""" global NON_ALIGNED_WRITE if not np.issubdtype(img.dtype, np.dtype(vol.dtype).type): raise ValueError('The uploaded image data type must match the volume data type. volume: {}, image: {}'.format(vol.dtype, img.dtype)) (is_aligned, bounds, expanded) = check_grid_aligned(vol, img, offset) if is_aligned: upload_aligned(vol, img, offset, parallel=parallel, manual_shared_memory_id=manual_shared_memory_id, manual_shared_memory_bbox=manual_shared_memory_bbox, manual_shared_memory_order=manual_shared_memory_order) return elif vol.non_aligned_writes == False: msg = NON_ALIGNED_WRITE.format(mip=vol.mip, chunk_size=vol.chunk_size, offset=vol.voxel_offset, got=bounds, check=expanded) raise AlignmentError(msg) # Upload the aligned core retracted = bounds.shrink_to_chunk_size(vol.underlying, vol.voxel_offset) core_bbox = retracted.clone() - bounds.minpt if not core_bbox.subvoxel(): core_img = img[ core_bbox.to_slices() ] upload_aligned(vol, core_img, retracted.minpt, parallel=parallel, manual_shared_memory_id=manual_shared_memory_id, manual_shared_memory_bbox=manual_shared_memory_bbox, manual_shared_memory_order=manual_shared_memory_order) # Download the shell, paint, and upload all_chunks = set(chunknames(expanded, vol.bounds, vol.key, vol.underlying)) core_chunks = set(chunknames(retracted, vol.bounds, vol.key, vol.underlying)) shell_chunks = all_chunks.difference(core_chunks) def shade_and_upload(img3d, bbox): # decode is returning non-writable chunk # we're throwing them away so safe to write img3d.setflags(write=1) shade(img3d, bbox, img, bounds) single_process_upload(vol, img3d, (( Vec(0,0,0), Vec(*img3d.shape[:3]), bbox.minpt, bbox.maxpt),), n_threads=0) download_multiple(vol, shell_chunks, fn=shade_and_upload)
0.019277
def run_bwa(job, fastqs, sample_type, univ_options, bwa_options): """ This module aligns the SAMPLE_TYPE dna fastqs to the reference ARGUMENTS -- <ST> depicts the sample type. Substitute with 'tumor'/'normal' 1. fastqs: Dict of list of input WGS/WXS fastqs fastqs +- '<ST>_dna': [<JSid for 1.fastq> , <JSid for 2.fastq>] 2. sample_type: string of 'tumor_dna' or 'normal_dna' 3. univ_options: Dict of universal arguments used by almost all tools univ_options +- 'dockerhub': <dockerhub to use> 4. bwa_options: Dict of parameters specific to bwa bwa_options |- 'index_tar': <JSid for the bwa index tarball> +- 'n': <number of threads to allocate> RETURN VALUES 1. output_files: Dict of aligned bam + reference (nested return) output_files |- '<ST>_fix_pg_sorted.bam': <JSid> +- '<ST>_fix_pg_sorted.bam.bai': <JSid> This module corresponds to nodes 3 and 4 on the tree """ job.fileStore.logToMaster('Running bwa on %s:%s' % (univ_options['patient'], sample_type)) work_dir = job.fileStore.getLocalTempDir() fq_extn = '.gz' if fastqs['gzipped'] else '' input_files = { 'dna_1.fastq' + fq_extn: fastqs[sample_type][0], 'dna_2.fastq' + fq_extn: fastqs[sample_type][1], 'bwa_index.tar.gz': bwa_options['index_tar']} input_files = get_files_from_filestore(job, input_files, work_dir, docker=True) parameters = ['mem', '-t', str(bwa_options['n']), '-v', '1', # Don't print INFO messages to the stderr '/'.join([input_files['bwa_index'], 'hg19.fa']), input_files['dna_1.fastq'], input_files['dna_2.fastq']] with open(''.join([work_dir, '/', sample_type, '_aligned.sam']), 'w') as samfile: docker_call(tool='bwa', tool_parameters=parameters, work_dir=work_dir, dockerhub=univ_options['dockerhub'], outfile=samfile) # samfile.name retains the path info output_file = job.fileStore.writeGlobalFile(samfile.name) samfile_processing = job.wrapJobFn(bam_conversion, output_file, sample_type, univ_options, disk='60G') job.addChild(samfile_processing) # Return values get passed up the chain to here. The return value will be a dict with # SAMPLE_TYPE_fix_pg_sorted.bam: jobStoreID # SAMPLE_TYPE_fix_pg_sorted.bam.bai: jobStoreID return samfile_processing.rv()
0.00235
def ijk_to_xyz(dset,ijk): '''convert the dset indices ``ijk`` to RAI coordinates ``xyz``''' i = nl.dset_info(dset) orient_codes = [int(x) for x in nl.run(['@AfniOrient2RAImap',i.orient]).output.split()] orient_is = [abs(x)-1 for x in orient_codes] rai = [] for rai_i in xrange(3): ijk_i = orient_is[rai_i] if orient_codes[rai_i] > 0: rai.append(ijk[ijk_i]*i.voxel_size[rai_i] + i.spatial_from[rai_i]) else: rai.append(i.spatial_to[rai_i] - ijk[ijk_i]*i.voxel_size[rai_i]) return rai
0.017762
def base(ctx, verbose, config): """Puzzle: manage DNA variant resources.""" # configure root logger to print to STDERR loglevel = LEVELS.get(min(verbose, 3)) configure_stream(level=loglevel) ctx.obj = {} if config and os.path.exists(config): ctx.obj = yaml.load(open(config, 'r')) or {} ctx.obj['config_path'] = config # launch the command line interface logger.debug('Booting up command line interface')
0.002212
def make_export_strategy( args, keep_target, assets_extra, features, schema, stats): """Makes prediction graph that takes json input. Args: args: command line args keep_target: If ture, target column is returned in prediction graph. Target column must also exist in input data assets_extra: other fiels to copy to the output folder job_dir: root job folder features: features dict schema: schema list stats: stats dict """ target_name = feature_transforms.get_target_name(features) csv_header = [col['name'] for col in schema] if not keep_target: csv_header.remove(target_name) def export_fn(estimator, export_dir_base, checkpoint_path=None, eval_result=None): with ops.Graph().as_default() as g: contrib_variables.create_global_step(g) input_ops = feature_transforms.build_csv_serving_tensors_for_training_step( args.analysis, features, schema, stats, keep_target) model_fn_ops = estimator._call_model_fn(input_ops.features, None, model_fn_lib.ModeKeys.INFER) output_fetch_tensors = make_prediction_output_tensors( args=args, features=features, input_ops=input_ops, model_fn_ops=model_fn_ops, keep_target=keep_target) # Don't use signature_def_utils.predict_signature_def as that renames # tensor names if there is only 1 input/output tensor! signature_inputs = {key: tf.saved_model.utils.build_tensor_info(tensor) for key, tensor in six.iteritems(input_ops.default_inputs)} signature_outputs = {key: tf.saved_model.utils.build_tensor_info(tensor) for key, tensor in six.iteritems(output_fetch_tensors)} signature_def_map = { 'serving_default': signature_def_utils.build_signature_def( signature_inputs, signature_outputs, tf.saved_model.signature_constants.PREDICT_METHOD_NAME)} if not checkpoint_path: # Locate the latest checkpoint checkpoint_path = saver.latest_checkpoint(estimator._model_dir) if not checkpoint_path: raise ValueError("Couldn't find trained model at %s." % estimator._model_dir) export_dir = saved_model_export_utils.get_timestamped_export_dir( export_dir_base) if (model_fn_ops.scaffold is not None and model_fn_ops.scaffold.saver is not None): saver_for_restore = model_fn_ops.scaffold.saver else: saver_for_restore = saver.Saver(sharded=True) with tf_session.Session('') as session: saver_for_restore.restore(session, checkpoint_path) init_op = control_flow_ops.group( variables.local_variables_initializer(), resources.initialize_resources(resources.shared_resources()), tf.tables_initializer()) # Perform the export builder = saved_model_builder.SavedModelBuilder(export_dir) builder.add_meta_graph_and_variables( session, [tag_constants.SERVING], signature_def_map=signature_def_map, assets_collection=ops.get_collection( ops.GraphKeys.ASSET_FILEPATHS), legacy_init_op=init_op) builder.save(False) # Add the extra assets if assets_extra: assets_extra_path = os.path.join(compat.as_bytes(export_dir), compat.as_bytes('assets.extra')) for dest_relative, source in assets_extra.items(): dest_absolute = os.path.join(compat.as_bytes(assets_extra_path), compat.as_bytes(dest_relative)) dest_path = os.path.dirname(dest_absolute) file_io.recursive_create_dir(dest_path) file_io.copy(source, dest_absolute) # only keep the last 3 models saved_model_export_utils.garbage_collect_exports( export_dir_base, exports_to_keep=3) # save the last model to the model folder. # export_dir_base = A/B/intermediate_models/ if keep_target: final_dir = os.path.join(args.job_dir, 'evaluation_model') else: final_dir = os.path.join(args.job_dir, 'model') if file_io.is_directory(final_dir): file_io.delete_recursively(final_dir) file_io.recursive_create_dir(final_dir) recursive_copy(export_dir, final_dir) return export_dir if keep_target: intermediate_dir = 'intermediate_evaluation_models' else: intermediate_dir = 'intermediate_prediction_models' return export_strategy.ExportStrategy(intermediate_dir, export_fn)
0.007731
def get_members(self, selector): """ Returns the members that satisfy the given selector. :param selector: (:class:`~hazelcast.core.MemberSelector`), Selector to be applied to the members. :return: (List), List of members. """ members = [] for member in self.get_member_list(): if selector.select(member): members.append(member) return members
0.006865
def create(self, doc_details): ''' a method to create a new document in the collection :param doc_details: dictionary with document details and user id value :return: dictionary with document details and _id and _rev values ''' # https://developer.couchbase.com/documentation/mobile/1.5/references/sync-gateway/admin-rest-api/index.html#/document/post__db___doc_ title = '%s.create' % self.__class__.__name__ # validate input if self.model: doc_details = self.model.validate(doc_details, path_to_root='', object_title='%s(doc_details={...}' % title) # define request fields from copy import deepcopy new_record = deepcopy(doc_details) url = self.bucket_url + '/' # send request and construct output response = requests.post(url, json=new_record) if response.status_code not in (200, 201): response = response.json() raise Exception('%s() error: %s' % (title, response)) response = response.json() new_record['_id'] = response['id'] new_record['_rev'] = response['rev'] return new_record
0.004188
def new_comment(self, string, start, end, line): """ Possibly add a new comment. Only adds a new comment if this comment is the only thing on the line. Otherwise, it extends the noncomment block. """ prefix = line[:start[1]] if prefix.strip(): # Oops! Trailing comment, not a comment block. self.current_block.add(string, start, end, line) else: # A comment block. block = Comment(start[0], end[0], string) self.blocks.append(block) self.current_block = block
0.003401
def recipe_status(backend): """ Compare local recipe to remote recipe for the current recipe. """ kitchen = DKCloudCommandRunner.which_kitchen_name() if kitchen is None: raise click.ClickException('You are not in a Kitchen') recipe_dir = DKRecipeDisk.find_recipe_root_dir() if recipe_dir is None: raise click.ClickException('You must be in a Recipe folder') recipe_name = DKRecipeDisk.find_recipe_name() click.secho("%s - Getting the status of Recipe '%s' in Kitchen '%s'\n\tversus directory '%s'" % ( get_datetime(), recipe_name, kitchen, recipe_dir), fg='green') check_and_print(DKCloudCommandRunner.recipe_status(backend.dki, kitchen, recipe_name, recipe_dir))
0.004127
def set_out(self, que_out, num_followers): """Set the queue in output and the number of parallel tasks that follow""" self._que_out = que_out self._num_followers = num_followers
0.014925
def loadOrInitSettings(self, groupName=None): """ Reads the registry items from the persistent settings store, falls back on the default plugins if there are no settings in the store for this registry. """ groupName = groupName if groupName else self.settingsGroupName settings = QtCore.QSettings() #for key in sorted(settings.allKeys()): # print(key) if containsSettingsGroup(groupName, settings): self.loadSettings(groupName) else: logger.info("Group {!r} not found, falling back on default settings".format(groupName)) for item in self.getDefaultItems(): self.registerItem(item) self.saveSettings(groupName) assert containsSettingsGroup(groupName, settings), \ "Sanity check failed. {} not found".format(groupName)
0.006742
def type(self, s, enter=False, clear=False): """Input some text, this method has been tested not very stable on some device. "Hi world" maybe spell into "H iworld" Args: - s: string (text to input), better to be unicode - enter(bool): input enter at last - next(bool): perform editor action Next - clear(bool): clear text before type - ui_select_kwargs(**): tap then type The android source code show that space need to change to %s insteresting thing is that if want to input %s, it is really unconvinent. android source code can be found here. https://android.googlesource.com/platform/frameworks/base/+/android-4.4.2_r1/cmds/input/src/com/android/commands/input/Input.java#159 app source see here: https://github.com/openatx/android-unicode """ if clear: self.clear_text() self._uiauto.send_keys(s) if enter: self.keyevent('KEYCODE_ENTER')
0.003865
def seq_seqhash(seq, normalize=True): """returns 24-byte Truncated Digest sequence `seq` >>> seq_seqhash("") 'z4PhNX7vuL3xVChQ1m2AB9Yg5AULVxXc' >>> seq_seqhash("ACGT") 'aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2' >>> seq_seqhash("acgt") 'aKF498dAxcJAqme6QYQ7EZ07-fiw8Kw2' >>> seq_seqhash("acgt", normalize=False) 'eFwawHHdibaZBDcs9kW3gm31h1NNJcQe' """ seq = normalize_sequence(seq) if normalize else seq return str(vmc_digest(seq, digest_size=24))
0.002037
def clean_config(config): """Check if all values have defaults and replace errors with their default value :param config: the configobj to clean :type config: ConfigObj :returns: None :raises: ConfigError The object is validated, so we need a spec file. All failed values will be replaced by their default values. If default values are not specified in the spec, a MissingDefaultError will be raised. If the replaced values still fail validation, a ValueError is raised. This can occur if the default is of the wrong type. If the object does not have a config spec, this function does nothing. You are on your own then. """ if config.configspec is None: return vld = Validator() validation = config.validate(vld, copy=True) config.configspec.walk(check_default_values, validator=vld) fix_errors(config, validation) validation = config.validate(vld, copy=True) if not (validation == True): # NOQA seems unpythonic but this validation evaluates that way only msg = 'The config could not be fixed. Make sure that all default values have the right type!' log.debug(msg) raise ConfigError(msg)
0.004167
def map_lrepr( entries: Callable[[], Iterable[Tuple[Any, Any]]], start: str, end: str, meta=None, **kwargs, ) -> str: """Produce a Lisp representation of an associative collection, bookended with the start and end string supplied. The entries argument must be a callable which will produce tuples of key-value pairs. The keyword arguments will be passed along to lrepr for the sequence elements.""" print_level = kwargs["print_level"] if isinstance(print_level, int) and print_level < 1: return SURPASSED_PRINT_LEVEL kwargs = _process_kwargs(**kwargs) def entry_reprs(): for k, v in entries(): yield "{k} {v}".format(k=lrepr(k, **kwargs), v=lrepr(v, **kwargs)) trailer = [] print_dup = kwargs["print_dup"] print_length = kwargs["print_length"] if not print_dup and isinstance(print_length, int): items = seq(entry_reprs()).take(print_length + 1).to_list() if len(items) > print_length: items.pop() trailer.append(SURPASSED_PRINT_LENGTH) else: items = list(entry_reprs()) seq_lrepr = PRINT_SEPARATOR.join(items + trailer) print_meta = kwargs["print_meta"] if print_meta and meta: return f"^{lrepr(meta, **kwargs)} {start}{seq_lrepr}{end}" return f"{start}{seq_lrepr}{end}"
0.000739
def _reset(self): ''' _reset - reset this object. Assigned to .reset after __init__ call. ''' HTMLParser.reset(self) self.root = None self.doctype = None self._inTag = []
0.008658
def namedb_offset_count_predicate( offset=None, count=None ): """ Make an offset/count predicate even if offset=None or count=None. Return (query, args) """ offset_count_query = "" offset_count_args = () if count is not None: offset_count_query += "LIMIT ? " offset_count_args += (count,) if count is not None and offset is not None: offset_count_query += "OFFSET ? " offset_count_args += (offset,) return (offset_count_query, offset_count_args)
0.005758
def widgetForName(self, name): """Gets a widget with *name* :param name: the widgets in this container should all have a name() method. This is the string to match to that result :type name: str """ for iwidget in range(len(self)): if self.widget(iwidget).name() == name: return self.widget(iwidget)
0.005305
def _validate_pixel_density(self): """ Validate image pixel density See `spec <https://ocr-d.github.io/mets#pixel-density-of-images-must-be-explicit-and-high-enough>`_. """ for f in [f for f in self.mets.find_files() if f.mimetype.startswith('image/')]: if not f.local_filename and not self.download: self.report.add_notice("Won't download remote image <%s>" % f.url) continue exif = self.workspace.resolve_image_exif(f.url) for k in ['xResolution', 'yResolution']: v = exif.__dict__.get(k) if v is None or v <= 72: self.report.add_error("Image %s: %s (%s pixels per %s) is too low" % (f.ID, k, v, exif.resolutionUnit))
0.007692
def findfirst(f, coll): """Return first occurrence matching f, otherwise None""" result = list(dropwhile(f, coll)) return result[0] if result else None
0.006024
def selectedConnections( self ): """ Returns a list of the selected connections in a scene. :return <list> [ <XNodeConnection>, .. ] """ output = [] for item in self.selectedItems(): if ( isinstance(item, XNodeConnection) ): output.append(item) return output
0.019718
def destroy_comment(self, access_token, comment_id): """doc: http://open.youku.com/docs/doc?id=42 """ url = 'https://openapi.youku.com/v2/comments/destroy.json' data = { 'client_id': self.client_id, 'access_token': access_token, 'comment_id': comment_id } r = requests.post(url, data=data) check_error(r) return r.json()['id']
0.004695
def count_integers(arr, weights=None, minlength=None, maxlength=None, axis=None, dtype=tf.int32, name=None): """Counts the number of occurrences of each value in an integer array `arr`. Works like `tf.math.bincount`, but provides an `axis` kwarg that specifies dimensions to reduce over. With `~axis = [i for i in range(arr.ndim) if i not in axis]`, this function returns a `Tensor` of shape `[K] + arr.shape[~axis]`. If `minlength` and `maxlength` are not given, `K = tf.reduce_max(arr) + 1` if `arr` is non-empty, and 0 otherwise. If `weights` are non-None, then index `i` of the output stores the sum of the value in `weights` at each index where the corresponding value in `arr` is `i`. Args: arr: An `int32` `Tensor` of non-negative values. weights: If non-None, must be the same shape as arr. For each value in `arr`, the bin will be incremented by the corresponding weight instead of 1. minlength: If given, ensures the output has length at least `minlength`, padding with zeros at the end if necessary. maxlength: If given, skips values in `arr` that are equal or greater than `maxlength`, ensuring that the output has length at most `maxlength`. axis: A `0-D` or `1-D` `int32` `Tensor` (with static values) designating dimensions in `arr` to reduce over. `Default value:` `None`, meaning reduce over all dimensions. dtype: If `weights` is None, determines the type of the output bins. name: A name scope for the associated operations (optional). Returns: A vector with the same dtype as `weights` or the given `dtype`. The bin values. """ with tf.compat.v1.name_scope( name, 'count_integers', values=[arr, weights, minlength, maxlength, axis]): if axis is None: return tf.math.bincount( arr, weights=weights, minlength=minlength, maxlength=maxlength, dtype=dtype) arr = tf.convert_to_tensor(value=arr, dtype=tf.int32, name='arr') arr_ndims = _get_static_ndims(arr, expect_static=True) axis = _make_static_axis_non_negative_list(axis, arr_ndims) # ~axis from docstring. Dims in arr that are not in axis. not_axis = sorted(set(range(arr_ndims)).difference(axis)) # If we're reducing over everything, just use standard bincount. if not not_axis: return tf.math.bincount( arr, weights=weights, minlength=minlength, maxlength=maxlength, dtype=dtype) # Move dims in ~axis to the left, so we can tf.map_fn bincount over them, # Producing counts for every index I in ~axis. # Thus, flat_arr is not totally flat, it just has the dims in ~axis # flattened. flat_arr = _move_dims_to_flat_end(arr, not_axis, arr_ndims, right_end=False) # tf.map_fn over dim 0. if weights is None: def one_bincount(arr_slice): return tf.math.bincount( arr_slice, weights=None, minlength=minlength, maxlength=maxlength, dtype=dtype) flat_counts = tf.map_fn(one_bincount, elems=flat_arr, dtype=dtype) else: weights = tf.convert_to_tensor(value=weights, name='weights') _get_static_ndims(weights, expect_static=True, expect_ndims=arr_ndims) flat_weights = _move_dims_to_flat_end( weights, not_axis, arr_ndims, right_end=False) def one_bincount(arr_and_weights_slices): arr_slice, weights_slice = arr_and_weights_slices return tf.math.bincount( arr_slice, weights=weights_slice, minlength=minlength, maxlength=maxlength, dtype=dtype) flat_counts = tf.map_fn( one_bincount, elems=[flat_arr, flat_weights], dtype=weights.dtype) # flat_counts.shape = [prod(~axis), K], because map_fn stacked on axis 0. # bincount needs to have the K bins in axis 0, so transpose... flat_counts_t = tf.transpose(a=flat_counts, perm=[1, 0]) # Throw in this assert, to ensure shape assumptions are correct. _get_static_ndims(flat_counts_t, expect_ndims=2, expect_static=True) # not_axis_shape = arr.shape[~axis] not_axis_shape = tf.gather(tf.shape(input=arr), indices=not_axis) # The first index of flat_counts_t indexes bins 0,..,K-1, the rest are ~axis out_shape = tf.concat([[-1], not_axis_shape], axis=0) return tf.reshape(flat_counts_t, out_shape)
0.003038
def SegmentSum(a, ids, *args): """ Segmented sum op. """ func = lambda idxs: reduce(np.add, a[idxs]) return seg_map(func, a, ids),
0.013333
def _get_ref_from_galaxy_loc(name, genome_build, loc_file, galaxy_dt, need_remap, galaxy_config, data): """Retrieve reference genome file from Galaxy *.loc file. Reads from tool_data_table_conf.xml information for the index if it exists, otherwise uses heuristics to find line based on most common setups. """ refs = [ref for dbkey, ref in _galaxy_loc_iter(loc_file, galaxy_dt, need_remap) if dbkey == genome_build] remap_fn = alignment.TOOLS[name].remap_index_fn need_remap = remap_fn is not None if len(refs) == 0: raise ValueError("Did not find genome build %s in bcbio installation: %s" % (genome_build, os.path.normpath(loc_file))) else: cur_ref = refs[-1] # Find genome directory and check for packed wf tarballs cur_ref_norm = os.path.normpath(utils.add_full_path(cur_ref, galaxy_config["tool_data_path"])) base_dir_i = cur_ref_norm.find("/%s/" % genome_build) base_dir = os.path.join(cur_ref_norm[:base_dir_i], genome_build) for tarball in glob.glob(os.path.join(base_dir, "*-wf.tar.gz")): cwlutils.unpack_tarballs(tarball, {"dirs": {"work": base_dir}}, use_subdir=False) if need_remap: assert remap_fn is not None, "%s requires remapping function from base location file" % name cur_ref = os.path.normpath(utils.add_full_path(cur_ref, galaxy_config["tool_data_path"])) cur_ref = remap_fn(os.path.abspath(cur_ref)) return cur_ref
0.005277
def _declare(self, var): """ Declare the variable `var` """ if var.name in self._declarations: raise ValueError('Variable already declared') self._declarations[var.name] = var return var
0.008696
def _Backward3_P_hs(h, s): """Backward equation for region 3, P=f(h,s) Parameters ---------- h : float Specific enthalpy, [kJ/kg] s : float Specific entropy, [kJ/kgK] Returns ------- P : float Pressure, [MPa] """ sc = 4.41202148223476 if s <= sc: return _Backward3a_P_hs(h, s) else: return _Backward3b_P_hs(h, s)
0.002488
def register(): """Plugin registration.""" from pelican import signals signals.initialized.connect(setup_git) signals.article_generator_finalized.connect(replace_git_url)
0.005319
def hiveconfs(self): """ Returns a dict of key=value settings to be passed along to the hive command line via --hiveconf. By default, sets mapred.job.name to task_id and if not None, sets: * mapred.reduce.tasks (n_reduce_tasks) * mapred.fairscheduler.pool (pool) or mapred.job.queue.name (pool) * hive.exec.reducers.bytes.per.reducer (bytes_per_reducer) * hive.exec.reducers.max (reducers_max) """ jcs = {} jcs['mapred.job.name'] = "'" + self.task_id + "'" if self.n_reduce_tasks is not None: jcs['mapred.reduce.tasks'] = self.n_reduce_tasks if self.pool is not None: # Supporting two schedulers: fair (default) and capacity using the same option scheduler_type = luigi.configuration.get_config().get('hadoop', 'scheduler', 'fair') if scheduler_type == 'fair': jcs['mapred.fairscheduler.pool'] = self.pool elif scheduler_type == 'capacity': jcs['mapred.job.queue.name'] = self.pool if self.bytes_per_reducer is not None: jcs['hive.exec.reducers.bytes.per.reducer'] = self.bytes_per_reducer if self.reducers_max is not None: jcs['hive.exec.reducers.max'] = self.reducers_max return jcs
0.003762
def dumps(self, indent=1): """ Returns nested string representation of the dictionary (like json.dumps). :param indent: indentation level. """ str_keys_dict = OrderedDict({str(k): v for k, v in self.items()}) for k, v in str_keys_dict.items(): if isinstance(v, dict): str_keys_dict[k] = OrderedDict({str(k1): v1 for k1, v1 in v.items()}) for k1, v1 in str_keys_dict[k].items(): if isinstance(v1, dict): str_keys_dict[k][k1] = OrderedDict({str(k2): v2 for k2, v2 in v1.items()}) return json.dumps(str_keys_dict, indent=indent)
0.007541
def quantile_binning(data=None, bins=10, *, qrange=(0.0, 1.0), **kwargs) -> StaticBinning: """Binning schema based on quantile ranges. This binning finds equally spaced quantiles. This should lead to all bins having roughly the same frequencies. Note: weights are not (yet) take into account for calculating quantiles. Parameters ---------- bins: sequence or Optional[int] Number of bins qrange: Optional[tuple] Two floats as minimum and maximum quantile (default: 0.0, 1.0) Returns ------- StaticBinning """ if np.isscalar(bins): bins = np.linspace(qrange[0] * 100, qrange[1] * 100, bins + 1) bins = np.percentile(data, bins) return static_binning(bins=make_bin_array(bins), includes_right_edge=True)
0.002519
def build_map(function: Callable[[Any], Any] = None, unpack: bool = False): """ Decorator to wrap a function to return a Map operator. :param function: function to be wrapped :param unpack: value from emits will be unpacked (*value) """ def _build_map(function: Callable[[Any], Any]): @wraps(function) def _wrapper(*args, **kwargs) -> Map: if 'unpack' in kwargs: raise TypeError('"unpack" has to be defined by decorator') return Map(function, *args, unpack=unpack, **kwargs) return _wrapper if function: return _build_map(function) return _build_map
0.001502
def make_node(can_device_name, **kwargs): """Constructs a node instance with specified CAN device. :param can_device_name: CAN device name, e.g. "/dev/ttyACM0", "COM9", "can0". :param kwargs: These arguments will be supplied to the CAN driver factory and to the node constructor. """ can = driver.make_driver(can_device_name, **kwargs) return Node(can, **kwargs)
0.007772
def mark(self, lineno, count=1): """Mark a given source line as executed count times. Multiple calls to mark for the same lineno add up. """ self.sourcelines[lineno] = self.sourcelines.get(lineno, 0) + count
0.008333
def get_region(service, region, profile): """ Retrieve the region for a particular AWS service based on configured region and/or profile. """ _, region, _, _ = _get_profile(service, region, None, None, profile) return region
0.008163
def _handle_error(self, data, params): """Handle an error response from the SABnzbd API""" error = data.get('error', 'API call failed') mode = params.get('mode') raise SabnzbdApiException(error, mode=mode)
0.008439
def addCurvatureScalars(self, method=0, lut=None): """ Build an ``Actor`` that contains the color coded surface curvature calculated in three different ways. :param int method: 0-gaussian, 1-mean, 2-max, 3-min curvature. :param float lut: optional look up table. :Example: .. code-block:: python from vtkplotter import * t = Torus().addCurvatureScalars() show(t) |curvature| """ curve = vtk.vtkCurvatures() curve.SetInputData(self.poly) curve.SetCurvatureType(method) curve.Update() self.poly = curve.GetOutput() scls = self.poly.GetPointData().GetScalars().GetRange() print("curvature(): scalar range is", scls) self.mapper.SetInputData(self.poly) if lut: self.mapper.SetLookupTable(lut) self.mapper.SetUseLookupTableScalarRange(1) self.mapper.Update() self.Modified() self.mapper.ScalarVisibilityOn() return self
0.002757
def span_in_context(span): """ Create a context manager that stores the given span in the thread-local request context. This function should only be used in single-threaded applications like Flask / uWSGI. ## Usage example in WSGI middleware: .. code-block:: python from opentracing_instrumentation.http_server import WSGIRequestWrapper from opentracing_instrumentation.http_server import before_request from opentracing_instrumentation import request_context def create_wsgi_tracing_middleware(other_wsgi): def wsgi_tracing_middleware(environ, start_response): request = WSGIRequestWrapper.from_wsgi_environ(environ) span = before_request(request=request, tracer=tracer) # Wrapper around the real start_response object to log # additional information to opentracing Span def start_response_wrapper(status, response_headers, exc_info=None): if exc_info is not None: span.log(event='exception', payload=exc_info) span.finish() return start_response(status, response_headers) with request_context.span_in_context(span): return other_wsgi(environ, start_response_wrapper) return wsgi_tracing_middleware :param span: OpenTracing Span :return: Return context manager that wraps the request context. """ # Return a no-op Scope if None was specified. if span is None: return opentracing.Scope(None, None) return opentracing.tracer.scope_manager.activate(span, False)
0.000577
def _treat_devices_removed(self): """Process the removed devices.""" for device in self._removed_ports.copy(): eventlet.spawn_n(self._process_removed_port, device)
0.010471
def grad_local_log_likelihood(self, x): """ d/d \psi y \psi - log (1 + exp(\psi)) = y - exp(\psi) / (1 + exp(\psi)) = y - sigma(psi) = y - p d \psi / dx = C d / dx = (y - sigma(psi)) * C """ C, D, u, y = self.C, self.D, self.inputs, self.data psi = x.dot(C.T) + u.dot(D.T) p = 1. / (1 + np.exp(-psi)) return (y - p).dot(C)
0.018476
def record(self): # type: () -> bytes ''' Generate a string representing the Rock Ridge Symbolic Link record. Parameters: None. Returns: String containing the Rock Ridge record. ''' if not self._initialized: raise pycdlibexception.PyCdlibInternalError('SL record not yet initialized!') outlist = [b'SL', struct.pack('=BBB', self.current_length(), SU_ENTRY_VERSION, self.flags)] for comp in self.symlink_components: outlist.append(comp.record()) return b''.join(outlist)
0.008418
def setValueSafe(self, row, value): 'setValue and ignore exceptions' try: return self.setValue(row, value) except Exception as e: exceptionCaught(e)
0.010204
def compile_proto(source, python_out, proto_path): """Invoke Protocol Compiler to generate python from given source .proto.""" if not protoc: sys.exit('protoc not found. Is the protobuf-compiler installed?\n') protoc_command = [ protoc, '--proto_path', proto_path, '--python_out', python_out, source, ] if subprocess.call(protoc_command) != 0: sys.exit('Make sure your protoc version >= 2.6. You can use a custom ' 'protoc by setting the PROTOC environment variable.')
0.009542
def _compute_quads(self, element, data, mapping): """ Computes the node quad glyph data.x """ quad_mapping = {'left': 'x0', 'right': 'x1', 'bottom': 'y0', 'top': 'y1'} quad_data = dict(data['scatter_1']) quad_data.update({'x0': [], 'x1': [], 'y0': [], 'y1': []}) for node in element._sankey['nodes']: quad_data['x0'].append(node['x0']) quad_data['y0'].append(node['y0']) quad_data['x1'].append(node['x1']) quad_data['y1'].append(node['y1']) data['scatter_1'].update(quad_data) data['quad_1'] = data['scatter_1'] mapping['quad_1'] = quad_mapping
0.004438
def get_translations(self, context_id): """Retrieves all translation entries for a tunnel context. :param int context_id: The id-value representing the context instance. :return list(dict): Translations associated with the given context """ _mask = ('[mask[addressTranslations[customerIpAddressRecord,' 'internalIpAddressRecord]]]') context = self.get_tunnel_context(context_id, mask=_mask) # Pull the internal and remote IP addresses into the translation for translation in context.get('addressTranslations', []): remote_ip = translation.get('customerIpAddressRecord', {}) internal_ip = translation.get('internalIpAddressRecord', {}) translation['customerIpAddress'] = remote_ip.get('ipAddress', '') translation['internalIpAddress'] = internal_ip.get('ipAddress', '') translation.pop('customerIpAddressRecord', None) translation.pop('internalIpAddressRecord', None) return context['addressTranslations']
0.001876
def mmInformation(NetworkName_presence=0, NetworkName_presence1=0, TimeZone_presence=0, TimeZoneAndTime_presence=0, LsaIdentifier_presence=0): """MM INFORMATION Section 9.2.15a""" a = TpPd(pd=0x5) b = MessageType(mesType=0x32) # 00110010 packet = a / b if NetworkName_presence is 1: c = NetworkNameHdr(ieiNN=0x43, eightBitNN=0x0) packet = packet / c if NetworkName_presence1 is 1: d = NetworkNameHdr(ieiNN=0x45, eightBitNN=0x0) packet = packet / d if TimeZone_presence is 1: e = TimeZoneHdr(ieiTZ=0x46, eightBitTZ=0x0) packet = packet / e if TimeZoneAndTime_presence is 1: f = TimeZoneAndTimeHdr(ieiTZAT=0x47, eightBitTZAT=0x0) packet = packet / f if LsaIdentifier_presence is 1: g = LsaIdentifierHdr(ieiLI=0x48, eightBitLI=0x0) packet = packet / g return packet
0.001088
def share_application_with_accounts(application_id, account_ids, sar_client=None): """ Share the application privately with given AWS account IDs. :param application_id: The Amazon Resource Name (ARN) of the application :type application_id: str :param account_ids: List of AWS account IDs, or * :type account_ids: list of str :param sar_client: The boto3 client used to access SAR :type sar_client: boto3.client :raises ValueError """ if not application_id or not account_ids: raise ValueError('Require application id and list of AWS account IDs to share the app') if not sar_client: sar_client = boto3.client('serverlessrepo') application_policy = ApplicationPolicy(account_ids, [ApplicationPolicy.DEPLOY]) application_policy.validate() sar_client.put_application_policy( ApplicationId=application_id, Statements=[application_policy.to_statement()] )
0.004206
def _create(self): """Create the Whisper file on disk""" if not os.path.exists(settings.SALMON_WHISPER_DB_PATH): os.makedirs(settings.SALMON_WHISPER_DB_PATH) archives = [whisper.parseRetentionDef(retentionDef) for retentionDef in settings.ARCHIVES.split(",")] whisper.create(self.path, archives, xFilesFactor=settings.XFILEFACTOR, aggregationMethod=settings.AGGREGATION_METHOD)
0.004107
def update(self, i): """D.update(E) -> None. Update D from iterable E with pre-existing items being overwritten. Elements in E are assumed to be dicts containing the primary key to allow the equivelent of: for k in E: D[k.primary_key] = k """ key_list = self.key_list keynone = {key:None for key in key_list} # Generator which fills in missing data from the original iterator def datagen(i): for datum in i: tmp = keynone.copy() tmp.update(datum) yield tmp with self._connection as con: con.executemany( """INSERT OR REPLACE INTO {table} ({keylist}) VALUES (:{vallist}); """.format(table=self.table, keylist=", ".join(self.key_list), vallist=", :".join(self.key_list) ), datagen(i))
0.008368
def my_import(name): """ dynamic importing """ module, attr = name.rsplit('.', 1) mod = __import__(module, fromlist=[attr]) klass = getattr(mod, attr) return klass()
0.005405
def index(): """Generate a list of all crawlers, alphabetically, with op counts.""" crawlers = [] for crawler in manager: data = Event.get_counts(crawler) data['last_active'] = crawler.last_run data['total_ops'] = crawler.op_count data['running'] = crawler.is_running data['crawler'] = crawler crawlers.append(data) return render_template('index.html', crawlers=crawlers)
0.002299
def checkCAS(CASRN): '''Checks if a CAS number is valid. Returns False if the parser cannot parse the given string.. Parameters ---------- CASRN : string A three-piece, dash-separated set of numbers Returns ------- result : bool Boolean value if CASRN was valid. If parsing fails, return False also. Notes ----- Check method is according to Chemical Abstract Society. However, no lookup to their service is performed; therefore, this function cannot detect false positives. Function also does not support additional separators, apart from '-'. CAS numbers up to the series 1 XXX XXX-XX-X are now being issued. A long can hold CAS numbers up to 2 147 483-64-7 Examples -------- >>> checkCAS('7732-18-5') True >>> checkCAS('77332-18-5') False ''' try: check = CASRN[-1] CASRN = CASRN[::-1][1:] productsum = 0 i = 1 for num in CASRN: if num == '-': pass else: productsum += i*int(num) i += 1 return (productsum % 10 == int(check)) except: return False
0.004139
def remote_unpack(self): """ Called by remote worker to state that no more data will be transferred """ # Make sure remote_close is called, otherwise atomic rename won't happen self.remote_close() # Map configured compression to a TarFile setting if self.compress == 'bz2': mode = 'r|bz2' elif self.compress == 'gz': mode = 'r|gz' else: mode = 'r' # Unpack archive and clean up after self archive = tarfile.open(name=self.tarname, mode=mode) archive.extractall(path=self.destroot) archive.close() os.remove(self.tarname)
0.004478
def send_to_back(self): """adjusts sprite's z-order so that the sprite is behind it's siblings""" if not self.parent: return self.z_order = self.parent._z_ordered_sprites[0].z_order - 1
0.008734
def log_errors(f, self, *args, **kwargs): """decorator to log unhandled exceptions raised in a method. For use wrapping on_recv callbacks, so that exceptions do not cause the stream to be closed. """ try: return f(self, *args, **kwargs) except Exception: self.log.error("Uncaught exception in %r" % f, exc_info=True)
0.00554
def update_backend(use_pypi=False, index='dev', build=True, user=None, version=None): """ Install the backend from the given devpi index at the given version on the target host and restart the service. If version is None, it defaults to the latest version Optionally, build and upload the application first from local sources. This requires a full backend development environment on the machine running this command (pyramid etc.) """ get_vars() if value_asbool(build): upload_backend(index=index, user=user) with fab.cd('{apphome}'.format(**AV)): if value_asbool(use_pypi): command = 'bin/pip install --upgrade briefkasten' else: command = 'bin/pip install --upgrade --pre -i {ploy_default_publish_devpi}/briefkasten/{index}/+simple/ briefkasten'.format( index=index, user=user, **AV) if version: command = '%s==%s' % (command, version) fab.sudo(command) briefkasten_ctl('restart')
0.00572
def stft(self, samples: np.ndarray): """ Perform Short-time Fourier transform to get the spectrogram for the given samples :return: short-time Fourier transform of the given signal """ window = self.window_function(self.window_size) hop_size = self.hop_size if len(samples) < self.window_size: samples = np.append(samples, np.zeros(self.window_size - len(samples))) num_frames = max(1, (len(samples) - self.window_size) // hop_size + 1) # Get frames as numpy view with stride_tricks to save RAM # Same as: frames = [padded_samples[i*hop_size:i*hop_size+self.window_size] for i in range(num_frames)] shape = (num_frames, self.window_size) strides = (hop_size * samples.strides[-1], samples.strides[-1]) frames = np.lib.stride_tricks.as_strided(samples, shape=shape, strides=strides) result = np.fft.fft(frames * window, self.window_size) / np.atleast_1d(self.window_size) return result
0.006863
def add_projection(query_proto, *projection): """Add projection properties to the given datatstore.Query proto message.""" for p in projection: proto = query_proto.projection.add() proto.property.name = p
0.013889
def _get_site(self, url, headers, cookies, timeout, driver_args, driver_kwargs): """ Try and return page content in the requested format using requests """ try: # Headers and cookies are combined to the ones stored in the requests session # Ones passed in here will override the ones in the session if they are the same key response = self.driver.get(url, *driver_args, headers=headers, cookies=cookies, timeout=timeout, **driver_kwargs) # Set data to access from script self.status_code = response.status_code self.url = response.url self.response = response if response.status_code == requests.codes.ok: # Return the correct format return response.text response.raise_for_status() except Exception as e: raise e.with_traceback(sys.exc_info()[2])
0.00439
def p_primary_expr_no_brace_4(self, p): """primary_expr_no_brace : LPAREN expr RPAREN""" if isinstance(p[2], self.asttypes.GroupingOp): # this reduces the grouping operator to one. p[0] = p[2] else: p[0] = self.asttypes.GroupingOp(expr=p[2]) p[0].setpos(p)
0.006098
def assert_shape_match(shape1, shape2): """Ensure the shape1 match the pattern given by shape2. Ex: assert_shape_match((64, 64, 3), (None, None, 3)) Args: shape1 (tuple): Static shape shape2 (tuple): Dynamic shape (can contain None) """ shape1 = tf.TensorShape(shape1) shape2 = tf.TensorShape(shape2) if shape1.ndims is None or shape2.ndims is None: raise ValueError('Shapes must have known rank. Got %s and %s.' % (shape1.ndims, shape2.ndims)) shape1.assert_same_rank(shape2) shape1.assert_is_compatible_with(shape2)
0.012195
async def json(self, *, encoding: Optional[str]=None) -> Any: """Like read(), but assumes that body parts contains JSON data.""" data = await self.read(decode=True) if not data: return None encoding = encoding or self.get_charset(default='utf-8') return json.loads(data.decode(encoding))
0.011799
def fetch(self, recursive=1, exclude_children=False, exclude_back_refs=False): """Fetch resource from the API server :param recursive: level of recursion for fetching resources :type recursive: int :param exclude_children: don't get children references :type exclude_children: bool :param exclude_back_refs: don't get back_refs references :type exclude_back_refs: bool :rtype: Resource """ if not self.path.is_resource and not self.path.is_uuid: self.check() params = {} # even if the param is False the API will exclude resources if exclude_children: params['exclude_children'] = True if exclude_back_refs: params['exclude_back_refs'] = True data = self.session.get_json(self.href, **params)[self.type] self.from_dict(data) return self
0.002198
def open_image(fname_or_instance: Union[str, IO[bytes]]): """Opens a Image and returns it. :param fname_or_instance: Can either be the location of the image as a string or the Image.Image instance itself. """ if isinstance(fname_or_instance, Image.Image): return fname_or_instance return Image.open(fname_or_instance)
0.002653
def get_ngroups(self, field=None): ''' Returns ngroups count if it was specified in the query, otherwise ValueError. If grouping on more than one field, provide the field argument to specify which count you are looking for. ''' field = field if field else self._determine_group_field(field) if 'ngroups' in self.data['grouped'][field]: return self.data['grouped'][field]['ngroups'] raise ValueError("ngroups not found in response. specify group.ngroups in the query.")
0.009311
def egg_info_writer(cmd, basename, filename): # type: (setuptools.command.egg_info.egg_info, str, str) -> None """Read rcli configuration and write it out to the egg info. Args: cmd: An egg info command instance to use for writing. basename: The basename of the file to write. filename: The full path of the file to write into the egg info. """ setupcfg = next((f for f in setuptools.findall() if os.path.basename(f) == 'setup.cfg'), None) if not setupcfg: return parser = six.moves.configparser.ConfigParser() # type: ignore parser.read(setupcfg) if not parser.has_section('rcli') or not parser.items('rcli'): return config = dict(parser.items('rcli')) # type: typing.Dict[str, typing.Any] for k, v in six.iteritems(config): if v.lower() in ('y', 'yes', 'true'): config[k] = True elif v.lower() in ('n', 'no', 'false'): config[k] = False else: try: config[k] = json.loads(v) except ValueError: pass cmd.write_file(basename, filename, json.dumps(config))
0.000855
def validateBool(value, blank=False, strip=None, allowlistRegexes=None, blocklistRegexes=None, trueVal='True', falseVal='False', caseSensitive=False, excMsg=None): """Raises ValidationException if value is not an email address. Returns the yesVal or noVal argument, not value. * value (str): The value being validated as an email address. * blank (bool): If True, a blank string will be accepted. Defaults to False. * strip (bool, str, None): If None, whitespace is stripped from value. If a str, the characters in it are stripped from value. If False, nothing is stripped. * allowlistRegexes (Sequence, None): A sequence of regex str that will explicitly pass validation, even if they aren't numbers. * blocklistRegexes (Sequence, None): A sequence of regex str or (regex_str, response_str) tuples that, if matched, will explicitly fail validation. * excMsg (str): A custom message to use in the raised ValidationException. >>> import pysimplevalidate as pysv >>> pysv.validateYesNo('y') 'yes' >>> pysv.validateYesNo('YES') 'yes' >>> pysv.validateYesNo('No') 'no' >>> pysv.validateYesNo('OUI', yesVal='oui', noVal='no') 'oui' """ # Validate parameters. TODO - can probably improve this to remove the duplication. _validateGenericParameters(blank=blank, strip=strip, allowlistRegexes=allowlistRegexes, blocklistRegexes=blocklistRegexes) returnNow, value = _prevalidationCheck(value, blank, strip, allowlistRegexes, blocklistRegexes, excMsg) if returnNow: return value # Replace the exception messages used in validateYesNo(): trueVal = str(trueVal) falseVal = str(falseVal) if len(trueVal) == 0: raise PySimpleValidateException('trueVal argument must be a non-empty string.') if len(falseVal) == 0: raise PySimpleValidateException('falseVal argument must be a non-empty string.') if (trueVal == falseVal) or (not caseSensitive and trueVal.upper() == falseVal.upper()): raise PySimpleValidateException('trueVal and noVal arguments must be different.') if (trueVal[0] == falseVal[0]) or (not caseSensitive and trueVal[0].upper() == falseVal[0].upper()): raise PySimpleValidateException('first character of trueVal and noVal arguments must be different') result = validateYesNo(value, blank=blank, strip=strip, allowlistRegexes=allowlistRegexes, blocklistRegexes=blocklistRegexes, yesVal=trueVal, noVal=falseVal, caseSensitive=caseSensitive, excMsg=None) # Return a bool value instead of a string. if result == trueVal: return True elif result == falseVal: return False else: assert False, 'inner validateYesNo() call returned something that was not yesVal or noVal. This should never happen.'
0.006076
def _serve_clients(self): ''' Accept cients and serve, one separate thread per client. ''' self.__up = True while self.__up: log.debug('Waiting for a client to connect') try: conn, addr = self.skt.accept() log.debug('Received connection from %s:%d', addr[0], addr[1]) except socket.error as error: if not self.__up: return msg = 'Received listener socket error: {}'.format(error) log.error(msg, exc_info=True) raise ListenerException(msg) client_thread = threading.Thread(target=self._client_connection, args=(conn, addr,)) client_thread.start()
0.003942
def specwindow_lsp_value(times, mags, errs, omega): '''This calculates the peak associated with the spectral window function for times and at the specified omega. NOTE: this is classical Lomb-Scargle, not the Generalized Lomb-Scargle. `mags` and `errs` are silently ignored since we're calculating the periodogram of the observing window function. These are kept to present a consistent external API so the `pgen_lsp` function below can call this transparently. Parameters ---------- times,mags,errs : np.array The time-series to calculate the periodogram value for. omega : float The frequency to calculate the periodogram value at. Returns ------- periodogramvalue : float The normalized periodogram at the specified test frequency `omega`. ''' norm_times = times - times.min() tau = ( (1.0/(2.0*omega)) * nparctan( npsum(npsin(2.0*omega*norm_times)) / npsum(npcos(2.0*omega*norm_times)) ) ) lspval_top_cos = (npsum(1.0 * npcos(omega*(norm_times-tau))) * npsum(1.0 * npcos(omega*(norm_times-tau)))) lspval_bot_cos = npsum( (npcos(omega*(norm_times-tau))) * (npcos(omega*(norm_times-tau))) ) lspval_top_sin = (npsum(1.0 * npsin(omega*(norm_times-tau))) * npsum(1.0 * npsin(omega*(norm_times-tau)))) lspval_bot_sin = npsum( (npsin(omega*(norm_times-tau))) * (npsin(omega*(norm_times-tau))) ) lspval = 0.5 * ( (lspval_top_cos/lspval_bot_cos) + (lspval_top_sin/lspval_bot_sin) ) return lspval
0.005959
def _update_gecos(name, key, value, root=None): ''' Common code to change a user's GECOS information ''' if value is None: value = '' elif not isinstance(value, six.string_types): value = six.text_type(value) else: value = salt.utils.stringutils.to_unicode(value) pre_info = _get_gecos(name, root=root) if not pre_info: return False if value == pre_info[key]: return True gecos_data = copy.deepcopy(pre_info) gecos_data[key] = value cmd = ['usermod'] if root is not None and __grains__['kernel'] != 'AIX': cmd.extend(('-R', root)) cmd.extend(('-c', _build_gecos(gecos_data), name)) __salt__['cmd.run'](cmd, python_shell=False) return _get_gecos(name, root=root).get(key) == value
0.001261
def info(*packages, **kwargs): ''' Returns a detailed summary of package information for provided package names. If no packages are specified, all packages will be returned. .. versionadded:: 2015.8.1 packages The names of the packages for which to return information. failhard Whether to throw an exception if none of the packages are installed. Defaults to True. .. versionadded:: 2016.11.3 attr Comma-separated package attributes. If no 'attr' is specified, all available attributes returned. Valid attributes are: version, vendor, release, build_date, build_date_time_t, install_date, install_date_time_t, build_host, group, source_rpm, arch, epoch, size, license, signature, packager, url, summary, description. .. versionadded:: Neon CLI example: .. code-block:: bash salt '*' lowpkg.info salt '*' lowpkg.info apache2 bash salt '*' lowpkg.info 'php5*' failhard=false ''' # Get the missing information from the /var/lib/dpkg/available, if it is there. # However, this file is operated by dselect which has to be installed. dselect_pkg_avail = _get_pkg_ds_avail() kwargs = salt.utils.args.clean_kwargs(**kwargs) failhard = kwargs.pop('failhard', True) attr = kwargs.pop('attr', None) or None if attr: attr = attr.split(',') if kwargs: salt.utils.args.invalid_kwargs(kwargs) ret = dict() for pkg in _get_pkg_info(*packages, failhard=failhard): # Merge extra information from the dselect, if available for pkg_ext_k, pkg_ext_v in dselect_pkg_avail.get(pkg['package'], {}).items(): if pkg_ext_k not in pkg: pkg[pkg_ext_k] = pkg_ext_v # Remove "technical" keys for t_key in ['installed_size', 'depends', 'recommends', 'provides', 'replaces', 'conflicts', 'bugs', 'description-md5', 'task']: if t_key in pkg: del pkg[t_key] lic = _get_pkg_license(pkg['package']) if lic: pkg['license'] = lic # Remove keys that aren't in attrs pkg_name = pkg['package'] if attr: for k in list(pkg.keys())[:]: if k not in attr: del pkg[k] ret[pkg_name] = pkg return ret
0.002903
def _handle_actionconstantpool(self, _): """Handle the ActionConstantPool action.""" obj = _make_object("ActionConstantPool") obj.Count = count = unpack_ui16(self._src) obj.ConstantPool = pool = [] for _ in range(count): pool.append(self._get_struct_string()) yield obj
0.006079
async def on_error(self, event_method, *args, **kwargs): """|coro| The default error handler provided by the client. By default this prints to :data:`sys.stderr` however it could be overridden to have a different implementation. Check :func:`discord.on_error` for more details. """ print('Ignoring exception in {}'.format(event_method), file=sys.stderr) traceback.print_exc()
0.004535
def checksum(digits, scale): """ Calculate checksum of Norwegian personal identity code. Checksum is calculated with "Module 11" method using a scale. The digits of the personal code are multiplied by the corresponding number in the scale and summed; if remainder of module 11 of the sum is less than 10, checksum is the remainder. If remainder is 0, the checksum is 0. https://no.wikipedia.org/wiki/F%C3%B8dselsnummer """ chk_nbr = 11 - (sum(map(operator.mul, digits, scale)) % 11) if chk_nbr == 11: return 0 return chk_nbr
0.001706
def generate_settings(): """ This command is run when ``default_path`` doesn't exist, or ``init`` is run and returns a string representing the default data to put into their settings file. """ conf_file = os.path.join(os.path.dirname(base_settings.__file__), 'example', 'conf.py') conf_template = open(conf_file).read() default_url = 'http://salmon.example.com' site_url = raw_input("What will be the URL for Salmon? [{0}]".format( default_url)) site_url = site_url or default_url secret_key = base64.b64encode(os.urandom(KEY_LENGTH)) api_key = base64.b64encode(os.urandom(KEY_LENGTH)) output = conf_template.format(api_key=api_key, secret_key=secret_key, site_url=site_url) return output
0.001227
def add_untagged_ok(self, text: MaybeBytes, code: Optional[ResponseCode] = None) -> None: """Add an untagged ``OK`` response. See Also: :meth:`.add_untagged`, :class:`ResponseOk` Args: text: The response text. code: Optional response code. """ response = ResponseOk(b'*', text, code) self.add_untagged(response)
0.007109
def security_rule_exists(name, rulename=None, vsys='1', action=None, disabled=None, sourcezone=None, destinationzone=None, source=None, destination=None, application=None, service=None, description=None, logsetting=None, logstart=None, logend=None, negatesource=None, negatedestination=None, profilegroup=None, datafilter=None, fileblock=None, spyware=None, urlfilter=None, virus=None, vulnerability=None, wildfire=None, move=None, movetarget=None, commit=False): ''' Ensures that a security rule exists on the device. Also, ensure that all configurations are set appropriately. This method will create the rule if it does not exist. If the rule does exist, it will ensure that the configurations are set appropriately. If the rule does not exist and is created, any value that is not provided will be provided as the default. The action, to, from, source, destination, application, and service fields are mandatory and must be provided. This will enforce the exact match of the rule. For example, if the rule is currently configured with the log-end option, but this option is not specified in the state method, it will be removed and reset to the system default. It is strongly recommended to specify all options to ensure proper operation. When defining the profile group settings, the device can only support either a profile group or individual settings. If both are specified, the profile group will be preferred and the individual settings are ignored. If neither are specified, the value will be set to system default of none. name: The name of the module function to execute. rulename(str): The name of the security rule. The name is case-sensitive and can have up to 31 characters, which can be letters, numbers, spaces, hyphens, and underscores. The name must be unique on a firewall and, on Panorama, unique within its device group and any ancestor or descendant device groups. vsys(str): The string representation of the VSYS ID. Defaults to VSYS 1. action(str): The action that the security rule will enforce. Valid options are: allow, deny, drop, reset-client, reset-server, reset-both. disabled(bool): Controls if the rule is disabled. Set 'True' to disable and 'False' to enable. sourcezone(str, list): The source zone(s). The value 'any' will match all zones. destinationzone(str, list): The destination zone(s). The value 'any' will match all zones. source(str, list): The source address(es). The value 'any' will match all addresses. destination(str, list): The destination address(es). The value 'any' will match all addresses. application(str, list): The application(s) matched. The value 'any' will match all applications. service(str, list): The service(s) matched. The value 'any' will match all services. The value 'application-default' will match based upon the application defined ports. description(str): A description for the policy (up to 255 characters). logsetting(str): The name of a valid log forwarding profile. logstart(bool): Generates a traffic log entry for the start of a session (disabled by default). logend(bool): Generates a traffic log entry for the end of a session (enabled by default). negatesource(bool): Match all but the specified source addresses. negatedestination(bool): Match all but the specified destination addresses. profilegroup(str): A valid profile group name. datafilter(str): A valid data filter profile name. Ignored with the profilegroup option set. fileblock(str): A valid file blocking profile name. Ignored with the profilegroup option set. spyware(str): A valid spyware profile name. Ignored with the profilegroup option set. urlfilter(str): A valid URL filtering profile name. Ignored with the profilegroup option set. virus(str): A valid virus profile name. Ignored with the profilegroup option set. vulnerability(str): A valid vulnerability profile name. Ignored with the profilegroup option set. wildfire(str): A valid vulnerability profile name. Ignored with the profilegroup option set. move(str): An optional argument that ensure the rule is moved to a specific location. Valid options are 'top', 'bottom', 'before', or 'after'. The 'before' and 'after' options require the use of the 'movetarget' argument to define the location of the move request. movetarget(str): An optional argument that defines the target of the move operation if the move argument is set to 'before' or 'after'. commit(bool): If true the firewall will commit the changes, if false do not commit changes. SLS Example: .. code-block:: yaml panos/rulebase/security/rule01: panos.security_rule_exists: - rulename: rule01 - vsys: 1 - action: allow - disabled: False - sourcezone: untrust - destinationzone: trust - source: - 10.10.10.0/24 - 1.1.1.1 - destination: - 2.2.2.2-2.2.2.4 - application: - any - service: - tcp-25 - description: My test security rule - logsetting: logprofile - logstart: False - logend: True - negatesource: False - negatedestination: False - profilegroup: myprofilegroup - move: top - commit: False panos/rulebase/security/rule01: panos.security_rule_exists: - rulename: rule01 - vsys: 1 - action: allow - disabled: False - sourcezone: untrust - destinationzone: trust - source: - 10.10.10.0/24 - 1.1.1.1 - destination: - 2.2.2.2-2.2.2.4 - application: - any - service: - tcp-25 - description: My test security rule - logsetting: logprofile - logstart: False - logend: False - datafilter: foobar - fileblock: foobar - spyware: foobar - urlfilter: foobar - virus: foobar - vulnerability: foobar - wildfire: foobar - move: after - movetarget: rule02 - commit: False ''' ret = _default_ret(name) if not rulename: return ret # Check if rule currently exists rule = __salt__['panos.get_security_rule'](rulename, vsys)['result'] if rule and 'entry' in rule: rule = rule['entry'] else: rule = {} # Build the rule element element = "" if sourcezone: element += "<from>{0}</from>".format(_build_members(sourcezone, True)) else: ret.update({'comment': "The sourcezone field must be provided."}) return ret if destinationzone: element += "<to>{0}</to>".format(_build_members(destinationzone, True)) else: ret.update({'comment': "The destinationzone field must be provided."}) return ret if source: element += "<source>{0}</source>".format(_build_members(source, True)) else: ret.update({'comment': "The source field must be provided."}) return if destination: element += "<destination>{0}</destination>".format(_build_members(destination, True)) else: ret.update({'comment': "The destination field must be provided."}) return ret if application: element += "<application>{0}</application>".format(_build_members(application, True)) else: ret.update({'comment': "The application field must be provided."}) return ret if service: element += "<service>{0}</service>".format(_build_members(service, True)) else: ret.update({'comment': "The service field must be provided."}) return ret if action: element += "<action>{0}</action>".format(action) else: ret.update({'comment': "The action field must be provided."}) return ret if disabled is not None: if disabled: element += "<disabled>yes</disabled>" else: element += "<disabled>no</disabled>" if description: element += "<description>{0}</description>".format(description) if logsetting: element += "<log-setting>{0}</log-setting>".format(logsetting) if logstart is not None: if logstart: element += "<log-start>yes</log-start>" else: element += "<log-start>no</log-start>" if logend is not None: if logend: element += "<log-end>yes</log-end>" else: element += "<log-end>no</log-end>" if negatesource is not None: if negatesource: element += "<negate-source>yes</negate-source>" else: element += "<negate-source>no</negate-source>" if negatedestination is not None: if negatedestination: element += "<negate-destination>yes</negate-destination>" else: element += "<negate-destination>no</negate-destination>" # Build the profile settings profile_string = None if profilegroup: profile_string = "<group><member>{0}</member></group>".format(profilegroup) else: member_string = "" if datafilter: member_string += "<data-filtering><member>{0}</member></data-filtering>".format(datafilter) if fileblock: member_string += "<file-blocking><member>{0}</member></file-blocking>".format(fileblock) if spyware: member_string += "<spyware><member>{0}</member></spyware>".format(spyware) if urlfilter: member_string += "<url-filtering><member>{0}</member></url-filtering>".format(urlfilter) if virus: member_string += "<virus><member>{0}</member></virus>".format(virus) if vulnerability: member_string += "<vulnerability><member>{0}</member></vulnerability>".format(vulnerability) if wildfire: member_string += "<wildfire-analysis><member>{0}</member></wildfire-analysis>".format(wildfire) if member_string != "": profile_string = "<profiles>{0}</profiles>".format(member_string) if profile_string: element += "<profile-setting>{0}</profile-setting>".format(profile_string) full_element = "<entry name='{0}'>{1}</entry>".format(rulename, element) new_rule = xml.to_dict(ET.fromstring(full_element), True) config_change = False if rule == new_rule: ret.update({ 'comment': 'Security rule already exists. No changes required.' }) else: config_change = True xpath = "/config/devices/entry[@name=\'localhost.localdomain\']/vsys/entry[@name=\'vsys{0}\']/rulebase/" \ "security/rules/entry[@name=\'{1}\']".format(vsys, rulename) result, msg = _edit_config(xpath, full_element) if not result: ret.update({ 'comment': msg }) return ret ret.update({ 'changes': {'before': rule, 'after': new_rule}, 'comment': 'Security rule verified successfully.' }) if move: movepath = "/config/devices/entry[@name=\'localhost.localdomain\']/vsys/entry[@name=\'vsys{0}\']/rulebase/" \ "security/rules/entry[@name=\'{1}\']".format(vsys, rulename) move_result = False move_msg = '' if move == "before" and movetarget: move_result, move_msg = _move_before(movepath, movetarget) elif move == "after": move_result, move_msg = _move_after(movepath, movetarget) elif move == "top": move_result, move_msg = _move_top(movepath) elif move == "bottom": move_result, move_msg = _move_bottom(movepath) if config_change: ret.update({ 'changes': {'before': rule, 'after': new_rule, 'move': move_msg} }) else: ret.update({ 'changes': {'move': move_msg} }) if not move_result: ret.update({ 'comment': move_msg }) return ret if commit is True: ret.update({ 'commit': __salt__['panos.commit'](), 'result': True }) else: ret.update({ 'result': True }) return ret
0.003646
def _pool_one_shape(features_2d, area_width, area_height, batch_size, width, height, depth, fn=tf.reduce_max, name=None): """Pools for an area in features_2d. Args: features_2d: a Tensor in a shape of [batch_size, height, width, depth]. area_width: the max width allowed for an area. area_height: the max height allowed for an area. batch_size: the batch size. width: the width of the memory. height: the height of the memory. depth: the depth of the features. fn: the TF function for the pooling. name: the op name. Returns: pool_tensor: A Tensor of shape [batch_size, num_areas, depth] """ with tf.name_scope(name, default_name="pool_one_shape"): images = [] for y_shift in range(area_height): image_height = tf.maximum(height - area_height + 1 + y_shift, 0) for x_shift in range(area_width): image_width = tf.maximum(width - area_width + 1 + x_shift, 0) area = features_2d[:, y_shift:image_height, x_shift:image_width, :] flatten_area = tf.reshape(area, [batch_size, -1, depth, 1]) images.append(flatten_area) image_tensor = tf.concat(images, axis=3) max_tensor = fn(image_tensor, axis=3) return max_tensor
0.004831
def pack(self, topic_dims, t): """ Packs selected logs into a numpy array :param list topic_dims: list of (topic, dims) tuples, where topic is a string and dims a list dimensions to be packed for that topic :param int t: time indexes to be packed """ data = [] for topic, dims in topic_dims: for d in dims: data.append(self.logs[topic][t, d]) return array(data).T
0.006579
def u2open(self, u2request): """ Open a connection. @param u2request: A urllib2 request. @type u2request: urllib2.Requet. @return: The opened file-like urllib2 object. @rtype: fp """ tm = self.options.timeout url = build_opener(HTTPSClientAuthHandler(self.context)) if self.u2ver() < 2.6: socket.setdefaulttimeout(tm) return url.open(u2request) else: return url.open(u2request, timeout=tm)
0.003899
def should_build(self, fpath, meta): """ Checks if the file should be built or not Only skips layouts which are tagged as INCREMENTAL Rebuilds only those files with mtime changed since previous build """ if meta.get('layout', self.default_template) in self.inc_layout: if self.prev_mtime.get(fpath, 0) == os.path.getmtime(fpath): return False else: return True return True
0.004132
def transcript_to_fake_psl_line(self,ref): """Convert a mapping to a fake PSL line :param ref: reference genome dictionary :type ref: dict() :return: psl line :rtype: string """ self._initialize() e = self mylen = 0 matches = 0 qstartslist = [] for exon in self.exons: mylen = exon.rng.length() matches += mylen qstartslist.append(matches-mylen) qstarts = ','.join([str(x) for x in qstartslist])+',' oline = str(matches)+"\t" # 1 oline += "0\t" # 2 oline += "0\t" # 3 oline += "0\t" # 4 oline += "0\t" # 5 oline += "0\t" # 6 oline += "0\t" # 7 oline += "0\t" # 8 oline += e.get_strand()+"\t" # 9 oline += e.get_transcript_name()+"\t" # 10 oline += str(matches)+"\t" # 11 oline += "0\t" # 12 oline += str(matches)+"\t" # 13 oline += e.get_chrom()+"\t" # 14 oline += str(len(ref[e.get_chrom()]))+"\t" # 15 oline += str(e.exons[0].rng.start-1)+"\t" # 16 oline += str(e.exons[-1].rng.end)+"\t" # 17 oline += str(len(e.exons))+"\t" # 18 oline += ','.join([str(e.exons[x].rng.end-(e.exons[x].rng.start-1)) for x in range(0,len(e.exons))])+','+"\t" # 19 oline += qstarts + "\t" # 20 oline += ','.join([str(x.rng.start-1) for x in e.exons])+',' # 21 return oline
0.02207
def _extern_decl(return_type, arg_types): """A decorator for methods corresponding to extern functions. All types should be strings. The _FFISpecification class is able to automatically convert these into method declarations for cffi. """ def wrapper(func): signature = _ExternSignature( return_type=str(return_type), method_name=str(func.__name__), arg_types=tuple(arg_types)) func.extern_signature = signature return func return wrapper
0.012474
def conversations(self, getsrcdst=None, **kargs): """Graphes a conversations between sources and destinations and display it (using graphviz and imagemagick) getsrcdst: a function that takes an element of the list and returns the source, the destination and optionally a label. By default, returns the IP source and destination from IP and ARP layers type: output type (svg, ps, gif, jpg, etc.), passed to dot's "-T" option # noqa: E501 target: filename or redirect. Defaults pipe to Imagemagick's display program # noqa: E501 prog: which graphviz program to use""" if getsrcdst is None: def getsrcdst(pkt): """Extract src and dst addresses""" if 'IP' in pkt: return (pkt['IP'].src, pkt['IP'].dst) if 'IPv6' in pkt: return (pkt['IPv6'].src, pkt['IPv6'].dst) if 'ARP' in pkt: return (pkt['ARP'].psrc, pkt['ARP'].pdst) raise TypeError() conv = {} for p in self.res: p = self._elt2pkt(p) try: c = getsrcdst(p) except Exception: # No warning here: it's OK that getsrcdst() raises an # exception, since it might be, for example, a # function that expects a specific layer in each # packet. The try/except approach is faster and # considered more Pythonic than adding tests. continue if len(c) == 3: conv.setdefault(c[:2], set()).add(c[2]) else: conv[c] = conv.get(c, 0) + 1 gr = 'digraph "conv" {\n' for (s, d), l in six.iteritems(conv): gr += '\t "%s" -> "%s" [label="%s"]\n' % ( s, d, ', '.join(str(x) for x in l) if isinstance(l, set) else l ) gr += "}\n" return do_graph(gr, **kargs)
0.00098
def concretize(self, symbolic, policy, maxcount=7): """ This finds a set of solutions for symbolic using policy. This raises TooManySolutions if more solutions than maxcount """ assert self.constraints == self.platform.constraints symbolic = self.migrate_expression(symbolic) vals = [] if policy == 'MINMAX': vals = self._solver.minmax(self._constraints, symbolic) elif policy == 'MAX': vals = self._solver.max(self._constraints, symbolic) elif policy == 'MIN': vals = self._solver.min(self._constraints, symbolic) elif policy == 'SAMPLED': m, M = self._solver.minmax(self._constraints, symbolic) vals += [m, M] if M - m > 3: if self._solver.can_be_true(self._constraints, symbolic == (m + M) // 2): vals.append((m + M) // 2) if M - m > 100: for i in (0, 1, 2, 5, 32, 64, 128, 320): if self._solver.can_be_true(self._constraints, symbolic == m + i): vals.append(m + i) if maxcount <= len(vals): break if M - m > 1000 and maxcount > len(vals): vals += self._solver.get_all_values(self._constraints, symbolic, maxcnt=maxcount - len(vals), silent=True) elif policy == 'ONE': vals = [self._solver.get_value(self._constraints, symbolic)] else: assert policy == 'ALL' vals = solver.get_all_values(self._constraints, symbolic, maxcnt=maxcount, silent=True) return tuple(set(vals))
0.004063
def list_zones(): ''' Displays a list of available time zones. Use this list when setting a time zone using ``timezone.set_zone`` :return: a list of time zones :rtype: list CLI Example: .. code-block:: bash salt '*' timezone.list_zones ''' ret = salt.utils.mac_utils.execute_return_result( 'systemsetup -listtimezones') zones = salt.utils.mac_utils.parse_return(ret) return [x.strip() for x in zones.splitlines()]
0.002092
def set_tensor_final(self, tensor_name): """Denotes a tensor as a final output of the computation. Args: tensor_name: a string, name of a tensor in the graph. """ tensor = self._name_to_tensor(tensor_name) self._final_tensors.add(tensor)
0.003788
def return_dat(self, chan, begsam, endsam): """Return the data as 2D numpy.ndarray. Parameters ---------- chan : int or list index (indices) of the channels to read begsam : int index of the first sample endsam : int index of the last sample Returns ------- numpy.ndarray A 2d matrix, with dimension chan X samples """ dat_begsam = max(begsam, 0) dat_endsam = min(endsam, self.n_samples) dur = dat_endsam - dat_begsam dtype_onlychan = dtype({k: v for k, v in self.dtype.fields.items() if v[0].kind != 'S'}) # make sure we read some data at least, otherwise segfault if dat_begsam < self.n_samples and dat_endsam > 0: with self.filename.open('rb') as f: f.seek(self.header_len, SEEK_SET) # skip header f.seek(self.dtype.itemsize * dat_begsam, SEEK_CUR) dat = fromfile(f, dtype=self.dtype, count=dur) dat = ndarray(dat.shape, dtype_onlychan, dat, 0, dat.strides).view((dtype_onlychan[0], len(dtype_onlychan.names))).T else: n_chan = len(dtype_onlychan.names) dat = empty((n_chan, 0)) if begsam < 0: pad = empty((dat.shape[0], 0 - begsam)) pad.fill(NaN) dat = c_[pad, dat] if endsam >= self.n_samples: pad = empty((dat.shape[0], endsam - self.n_samples)) pad.fill(NaN) dat = c_[dat, pad] return dat[chan, :] * self.gain[chan][:, None]
0.002468
def GetConfigPolicy(self, request, context): """Dispatches the request to the plugins get_config_policy method""" try: policy = self.plugin.get_config_policy() return policy._pb except Exception as err: msg = "message: {}\n\nstack trace: {}".format( err.message, traceback.format_exc()) return GetConfigPolicyReply(error=msg)
0.004843
def post(self, url, postParameters=None, urlParameters=None): """ Convenience method for requesting to google with proper cookies/params. """ if urlParameters: url = url + "?" + self.getParameters(urlParameters) headers = {'Authorization':'GoogleLogin auth=%s' % self.auth_token, 'Content-Type': 'application/x-www-form-urlencoded' } postString = self.postParameters(postParameters) req = requests.post(url, data=postString, headers=headers) return req.text
0.008726
def created(self, instance, commit=True): """ Convenience method for saving a model (automatically commits it to the database and returns the object with an HTTP 201 status code) """ if commit: self.session_manager.save(instance, commit=True) return instance, HTTPStatus.CREATED
0.005917
def clear(self): """ Clears the context. """ self._objects.clear() self._class_aliases = {} self._unicodes = {} self.extra = {}
0.010929
def removeUnreferencedIDs(referencedIDs, identifiedElements): """ Removes the unreferenced ID attributes. Returns the number of ID attributes removed """ global _num_ids_removed keepTags = ['font'] num = 0 for id in identifiedElements: node = identifiedElements[id] if id not in referencedIDs and node.nodeName not in keepTags: node.removeAttribute('id') _num_ids_removed += 1 num += 1 return num
0.002062
def copy( self ): """ Returns a new copy of a C{ParseResults} object. """ ret = ParseResults( self.__toklist ) ret.__tokdict = self.__tokdict.copy() ret.__parent = self.__parent ret.__accumNames.update( self.__accumNames ) ret.__name = self.__name return ret
0.023599
def _wrap_parse(code, filename): """ async wrapper is required to avoid await calls raising a SyntaxError """ code = 'async def wrapper():\n' + indent(code, ' ') return ast.parse(code, filename=filename).body[0].body[0].value
0.007547
def volcano(differential_dfs, title='Axial Volcano Plot', scripts_mode="CDN", data_mode="directory", organism="human", q_value_column_name="q", log2FC_column_name="logFC", output_dir=".", filename="volcano.html", version=this_version): """ Arguments: differential_dfs (dict or pandas.DataFrame): python dict of names to pandas dataframes, or a single dataframe, indexed by gene symbols which must have columns named log2FC and qval. title (str): The title of the plot (to be embedded in the html). scripts_mode (str): Choose from [`"CDN"`, `"directory"`, `"inline"`]: - `"CDN"` compiles a single HTML page with links to scripts hosted on a CDN, - `"directory"` compiles a directory with all scripts locally cached, - `"inline"` compiles a single HTML file with all scripts/styles inlined. data_mode (str): Choose from ["directory", "inline"]: - "directory" compiles a directory with all data locally cached, - "inline" compiles a single HTML file with all data inlined. organism (str): `"human"` or `"mouse"` q_value_column_name (str): log2FC_column_name (str): output_dir (str): the directory in which to output the file filename (str): the filename of the output file version (str): the version of the javascripts to use. Leave the default to pin the version, or choose "latest" to get updates, or choose part of the version string to get minor updates. Returns: Path: The filepath which the html was outputted to. """ output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True, parents=True) # Data ======================= if isinstance(differential_dfs, pd.DataFrame): differential_dfs = {'differential': differential_dfs} for name, df in differential_dfs.items(): df = df[[q_value_column_name, log2FC_column_name]] df.columns = ['q', 'logFC'] df = df.round(2) # TODO drop all zero rows _verify_differential_df(df) del differential_dfs[name] differential_dfs[_sanitize(name)] = df names_and_differentials = f"var names_and_differentials = { '{'+ ','.join([_quote(name)+': '+df.to_json(orient='index') for name, df in differential_dfs.items()]) +'}' };" data_block = _data_block(data_mode, [('names_and_differentials', names_and_differentials)], output_dir, include_gene_sets=False, organism=organism) # Scripts ======================= scripts = third_party_scripts + [CDN_url(version)+"js/util.js", CDN_url(version)+"js/GOrilla.js", CDN_url(version)+"js/volcano.js"] scripts_block = _scripts_block(scripts, scripts_mode, output_dir) html = templateEnv.get_template('volcano.html.j2').render(title=title, scripts_block=scripts_block+'\n'+data_block, organism="HOMO_SAPIENS") (output_dir / filename).write_text(html) return (output_dir / filename).resolve()
0.004647