text
stringlengths
78
104k
score
float64
0
0.18
def create_conversation( self, parameters, custom_headers=None, raw=False, **operation_config): """CreateConversation. Create a new Conversation. POST to this method with a * Bot being the bot creating the conversation * IsGroup set to true if this is not a direct message (default is false) * Array containing the members to include in the conversation The return value is a ResourceResponse which contains a conversation id which is suitable for use in the message payload and REST API uris. Most channels only support the semantics of bots initiating a direct message conversation. An example of how to do that would be: ``` var resource = await connector.conversations.CreateConversation(new ConversationParameters(){ Bot = bot, members = new ChannelAccount[] { new ChannelAccount("user1") } ); await connect.Conversations.SendToConversationAsync(resource.Id, new Activity() ... ) ; ```. :param parameters: Parameters to create the conversation from :type parameters: ~botframework.connector.models.ConversationParameters :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: ConversationResourceResponse or ClientRawResponse if raw=true :rtype: ~botframework.connector.models.ConversationResourceResponse or ~msrest.pipeline.ClientRawResponse :raises: :class:`ErrorResponseException<botframework.connector.models.ErrorResponseException>` """ # Construct URL url = self.create_conversation.metadata['url'] # Construct parameters query_parameters = {} # Construct headers header_parameters = {} header_parameters['Accept'] = 'application/json' header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct body body_content = self._serialize.body(parameters, 'ConversationParameters') # Construct and send request request = self._client.post(url, query_parameters, header_parameters, body_content) response = self._client.send(request, stream=False, **operation_config) if response.status_code not in [200, 201, 202]: raise models.ErrorResponseException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ConversationResourceResponse', response) if response.status_code == 201: deserialized = self._deserialize('ConversationResourceResponse', response) if response.status_code == 202: deserialized = self._deserialize('ConversationResourceResponse', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
0.002446
def delay(fn, opts, task, *args, **kwargs): """ delay(t=5, stddev=0., pdf="gauss") Wraps a bound method of a task and delays its execution by *t* seconds. """ if opts["stddev"] <= 0: t = opts["t"] elif opts["pdf"] == "gauss": t = random.gauss(opts["t"], opts["stddev"]) elif opts["pdf"] == "uniform": t = random.uniform(opts["t"], opts["stddev"]) else: raise ValueError("unknown delay decorator pdf '{}'".format(opts["pdf"])) time.sleep(t) return fn(task, *args, **kwargs)
0.00369
def do_resource(self,args): """Go to the specified resource. resource -h for detailed help""" parser = CommandArgumentParser("resource") parser.add_argument('-i','--logical-id',dest='logical-id',help='logical id of the child resource'); args = vars(parser.parse_args(args)) stackName = self.wrappedStack['rawStack'].name logicalId = args['logical-id'] self.stackResource(stackName,logicalId)
0.020089
def set_public_domain(self, public_domain=None): """Sets the public domain flag. :param public_domain: the public domain status :type public_domain: ``boolean`` :raise: ``NoAccess`` -- ``Metadata.isReadOnly()`` is ``true`` *compliance: mandatory -- This method must be implemented.* """ if public_domain is None: raise NullArgument() metadata = Metadata(**settings.METADATA['public_domain']) if metadata.is_read_only(): raise NoAccess() if self._is_valid_input(public_domain, metadata, array=False): self._my_map['publicDomain'] = public_domain else: raise InvalidArgument()
0.002805
def bell(self, percent = 0, onerror = None): """Ring the bell at the volume percent which is relative the base volume. See XBell(3X11).""" request.Bell(display = self.display, onerror = onerror, percent = percent)
0.043011
def check_required(obj, required_parameters): """ Check if a parameter is available on an object :param obj: Object :param required_parameters: list of parameters :return: """ for parameter in required_parameters: if not hasattr(obj, parameter) or getattr(obj, parameter) is None: raise DesignError("parameter '%s' must be set for '%s' object." % (parameter, obj.base_type))
0.004728
def onchange_partner_id(self): ''' When you change partner_id it will update the partner_invoice_id, partner_shipping_id and pricelist_id of the hotel reservation as well --------------------------------------------------------------------- @param self: object pointer ''' if not self.partner_id: self.partner_invoice_id = False self.partner_shipping_id = False self.partner_order_id = False else: addr = self.partner_id.address_get(['delivery', 'invoice', 'contact']) self.partner_invoice_id = addr['invoice'] self.partner_order_id = addr['contact'] self.partner_shipping_id = addr['delivery'] self.pricelist_id = self.partner_id.property_product_pricelist.id
0.002304
def transform(self, X): """Embeds data points in the learned linear embedding space. Transforms samples in ``X`` into ``X_embedded``, samples inside a new embedding space such that: ``X_embedded = X.dot(L.T)``, where ``L`` is the learned linear transformation (See :class:`MahalanobisMixin`). Parameters ---------- X : `numpy.ndarray`, shape=(n_samples, n_features) The data points to embed. Returns ------- X_embedded : `numpy.ndarray`, shape=(n_samples, num_dims) The embedded data points. """ X_checked = check_input(X, type_of_inputs='classic', estimator=self, preprocessor=self.preprocessor_, accept_sparse=True) return X_checked.dot(self.transformer_.T)
0.003827
def prefetch(self, file_size=None): """ Pre-fetch the remaining contents of this file in anticipation of future `.read` calls. If reading the entire file, pre-fetching can dramatically improve the download speed by avoiding roundtrip latency. The file's contents are incrementally buffered in a background thread. The prefetched data is stored in a buffer until read via the `.read` method. Once data has been read, it's removed from the buffer. The data may be read in a random order (using `.seek`); chunks of the buffer that haven't been read will continue to be buffered. :param int file_size: When this is ``None`` (the default), this method calls `stat` to determine the remote file size. In some situations, doing so can cause exceptions or hangs (see `#562 <https://github.com/paramiko/paramiko/pull/562>`_); as a workaround, one may call `stat` explicitly and pass its value in via this parameter. .. versionadded:: 1.5.1 .. versionchanged:: 1.16.0 The ``file_size`` parameter was added (with no default value). .. versionchanged:: 1.16.1 The ``file_size`` parameter was made optional for backwards compatibility. """ if file_size is None: file_size = self.stat().st_size # queue up async reads for the rest of the file chunks = [] n = self._realpos while n < file_size: chunk = min(self.MAX_REQUEST_SIZE, file_size - n) chunks.append((n, chunk)) n += chunk if len(chunks) > 0: self._start_prefetch(chunks)
0.001143
def club(self, sort='desc', ctype='player', defId='', start=0, count=None, page_size=itemsPerPage['club'], level=None, category=None, assetId=None, league=None, club=None, position=None, zone=None, nationality=None, rare=False, playStyle=None): """Return items in your club, excluding consumables. :param ctype: [development / ? / ?] Card type. :param level: (optional) [?/?/gold] Card level. :param category: (optional) [fitness/?/?] Card category. :param assetId: (optional) Asset id. :param defId: (optional) Definition id. :param min_price: (optional) Minimal price. :param max_price: (optional) Maximum price. :param min_buy: (optional) Minimal buy now price. :param max_buy: (optional) Maximum buy now price. :param league: (optional) League id. :param club: (optional) Club id. :param position: (optional) Position. :param nationality: (optional) Nation id. :param rare: (optional) [boolean] True for searching special cards. :param playStyle: (optional) Play style. :param start: (optional) Start page sent to server so it supposed to be 12/15, 24/30 etc. (default platform page_size*n) :param page_size: (optional) Page size (items per page) """ method = 'GET' url = 'club' if count: # backward compatibility, will be removed in future page_size = count params = {'sort': sort, 'type': ctype, 'defId': defId, 'start': start, 'count': page_size} if level: params['level'] = level if category: params['cat'] = category if assetId: params['maskedDefId'] = assetId if league: params['leag'] = league if club: params['team'] = club if position: params['pos'] = position if zone: params['zone'] = zone if nationality: params['nat'] = nationality if rare: params['rare'] = 'SP' if playStyle: params['playStyle'] = playStyle rc = self.__request__(method, url, params=params) # pinEvent if start == 0: if ctype == 'player': pgid = 'Club - Players - List View' elif ctype == 'staff': pgid = 'Club - Staff - List View' elif ctype in ('item', 'kit', 'ball', 'badge', 'stadium'): pgid = 'Club - Club Items - List View' # else: # TODO: THIS IS probably WRONG, detect all ctypes # pgid = 'Club - Club Items - List View' events = [self.pin.event('page_view', 'Hub - Club'), self.pin.event('page_view', pgid)] if rc['itemData']: events.append(self.pin.event('page_view', 'Item - Detail View')) self.pin.send(events) return [itemParse({'itemData': i}) for i in rc['itemData']]
0.003342
def get_zooms(src_dst, ensure_global_max_zoom=False, tilesize=256): """ Calculate raster min/max mercator zoom level. Parameters ---------- src_dst: rasterio.io.DatasetReader Rasterio io.DatasetReader object ensure_global_max_zoom: bool, optional Apply latitude correction factor to ensure max_zoom equality for global datasets covering different latitudes (default: False). tilesize: int, optional Mercator tile size (default: 256). Returns ------- min_zoom, max_zoom: Tuple Min/Max Mercator zoom levels. """ bounds = transform_bounds( *[src_dst.crs, "epsg:4326"] + list(src_dst.bounds), densify_pts=21 ) center = [(bounds[0] + bounds[2]) / 2, (bounds[1] + bounds[3]) / 2] lat = center[1] if ensure_global_max_zoom else 0 dst_affine, w, h = calculate_default_transform( src_dst.crs, "epsg:3857", src_dst.width, src_dst.height, *src_dst.bounds ) mercator_resolution = max(abs(dst_affine[0]), abs(dst_affine[4])) # Correction factor for web-mercator projection latitude scale change latitude_correction_factor = math.cos(math.radians(lat)) adjusted_resolution = mercator_resolution * latitude_correction_factor max_zoom = zoom_for_pixelsize(adjusted_resolution, tilesize=tilesize) ovr_resolution = adjusted_resolution * max(h, w) / tilesize min_zoom = zoom_for_pixelsize(ovr_resolution, tilesize=tilesize) return (min_zoom, max_zoom)
0.001336
def update_identity_pool(IdentityPoolId, IdentityPoolName=None, AllowUnauthenticatedIdentities=False, SupportedLoginProviders=None, DeveloperProviderName=None, OpenIdConnectProviderARNs=None, region=None, key=None, keyid=None, profile=None): ''' Updates the given IdentityPoolId's properties. All parameters except for IdentityPoolId, is optional. SupportedLoginProviders should be a dictionary mapping provider names to provider app IDs. OpenIdConnectProviderARNs should be a list of OpenID Connect provider ARNs. To clear SupportedLoginProviders pass '{}' To clear OpenIdConnectProviderARNs pass '[]' boto3 api prevents DeveloperProviderName to be updated after it has been set for the first time. Returns the updated identity pool if successful CLI Example: .. code-block:: bash salt myminion boto_cognitoidentity.update_identity_pool my_id_pool_id my_id_pool_name \ DeveloperProviderName=custom_developer_provider ''' conn_params = dict(region=region, key=key, keyid=keyid, profile=profile) response = describe_identity_pools('', IdentityPoolId=IdentityPoolId, **conn_params) error = response.get('error') if error is None: error = 'No matching pool' if response.get('identity_pools') is None else None if error: return {'updated': False, 'error': error} id_pool = response.get('identity_pools')[0] request_params = id_pool.copy() # IdentityPoolName and AllowUnauthenticatedIdentities are required for the call to update_identity_pool if IdentityPoolName is not None and IdentityPoolName != request_params.get('IdentityPoolName'): request_params['IdentityPoolName'] = IdentityPoolName if AllowUnauthenticatedIdentities != request_params.get('AllowUnauthenticatedIdentities'): request_params['AllowUnauthenticatedIdentities'] = AllowUnauthenticatedIdentities current_val = request_params.pop('SupportedLoginProviders', None) if SupportedLoginProviders is not None and SupportedLoginProviders != current_val: request_params['SupportedLoginProviders'] = SupportedLoginProviders # we can only set DeveloperProviderName one time per AWS. current_val = request_params.pop('DeveloperProviderName', None) if current_val is None and DeveloperProviderName is not None: request_params['DeveloperProviderName'] = DeveloperProviderName current_val = request_params.pop('OpenIdConnectProviderARNs', None) if OpenIdConnectProviderARNs is not None and OpenIdConnectProviderARNs != current_val: request_params['OpenIdConnectProviderARNs'] = OpenIdConnectProviderARNs conn = _get_conn(**conn_params) try: response = conn.update_identity_pool(**request_params) response.pop('ResponseMetadata', None) return {'updated': True, 'identity_pool': response} except ClientError as e: return {'updated': False, 'error': __utils__['boto3.get_error'](e)}
0.004442
def set_taskfileinfo(self, tfi): """Set the :class:`jukeboxcore.filesys.TaskFileInfo` that the refobject represents. :param tfi: the taskfileinfo for the refobject or None if nothing is loaded. :type tfi: :class:`jukeboxcore.filesys.TaskFileInfo` | None :returns: None :rtype: None :raises: None """ self._taskfileinfo = tfi if tfi: self.set_element(tfi.task.element)
0.00885
def uninstall(cls): """Remove the package manager from the system.""" if os.path.exists(cls.home): shutil.rmtree(cls.home)
0.013333
def encode_simple(d): """Encode strings in basic python objects.""" if isinstance(d, unicode): return d.encode() if isinstance(d, list): return list(map(encode_simple, d)) if isinstance(d, dict): return dict([(encode_simple(k), encode_simple(v)) for k, v in d.items()]) return d
0.006211
def convert_time_string(date_str): """ Change a date string from the format 2018-08-15T23:55:17 into a datetime object """ dt, _, _ = date_str.partition(".") dt = datetime.strptime(dt, "%Y-%m-%dT%H:%M:%S") return dt
0.008658
def clean_undefined(obj): """ Convert Undefined array entries to None (null) """ if isinstance(obj, list): return [ None if isinstance(item, Undefined) else item for item in obj ] if isinstance(obj, dict): for key in obj: obj[key] = clean_undefined(obj[key]) return obj
0.002833
def _get_parent_remote_paths(self): """ Get list of remote folders based on the list of all file urls :return: set([str]): set of remote folders (that contain files) """ parent_paths = set([item.get_remote_parent_path() for item in self.file_urls]) if '' in parent_paths: parent_paths.remove('') return parent_paths
0.007833
def add_key_value(self, key, value): """Add custom field to Indicator object. .. note:: The key must be the exact name required by the batch schema. Example:: file_hash = tcex.batch.file('File', '1d878cdc391461e392678ba3fc9f6f32') file_hash.add_key_value('size', '1024') Args: key (str): The field key to add to the JSON batch data. value (str): The field value to add to the JSON batch data. """ key = self._metadata_map.get(key, key) if key in ['dateAdded', 'lastModified']: self._indicator_data[key] = self._utils.format_datetime( value, date_format='%Y-%m-%dT%H:%M:%SZ' ) elif key == 'confidence': self._indicator_data[key] = int(value) elif key == 'rating': self._indicator_data[key] = float(value) else: self._indicator_data[key] = value
0.003155
def rebuild(self, image, root_pass=None, authorized_keys=None, **kwargs): """ Rebuilding an Instance deletes all existing Disks and Configs and deploys a new :any:`Image` to it. This can be used to reset an existing Instance or to install an Image on an empty Instance. :param image: The Image to deploy to this Instance :type image: str or Image :param root_pass: The root password for the newly rebuilt Instance. If omitted, a password will be generated and returned. :type root_pass: str :param authorized_keys: The ssh public keys to install in the linode's /root/.ssh/authorized_keys file. Each entry may be a single key, or a path to a file containing the key. :type authorized_keys: list or str :returns: The newly generated password, if one was not provided (otherwise True) :rtype: str or bool """ ret_pass = None if not root_pass: ret_pass = Instance.generate_root_password() root_pass = ret_pass authorized_keys = load_and_validate_keys(authorized_keys) params = { 'image': image.id if issubclass(type(image), Base) else image, 'root_pass': root_pass, 'authorized_keys': authorized_keys, } params.update(kwargs) result = self._client.post('{}/rebuild'.format(Instance.api_endpoint), model=self, data=params) if not 'id' in result: raise UnexpectedResponseError('Unexpected response issuing rebuild!', json=result) # update ourself with the newly-returned information self._populate(result) if not ret_pass: return True else: return ret_pass
0.00368
async def discover_master(self, service, timeout): """Perform Master discovery for specified service.""" # TODO: get lock idle_timeout = timeout # FIXME: single timeout used 4 times; # meaning discovery can take up to: # 3 * timeout * (sentinels count) # # having one global timeout also can leed to # a problem when not all sentinels are checked. # use a copy, cause pools can change pools = self._pools[:] for sentinel in pools: try: with async_timeout(timeout, loop=self._loop): address = await self._get_masters_address( sentinel, service) pool = self._masters[service] with async_timeout(timeout, loop=self._loop), \ contextlib.ExitStack() as stack: conn = await pool._create_new_connection(address) stack.callback(conn.close) await self._verify_service_role(conn, 'master') stack.pop_all() return conn except asyncio.CancelledError: # we must correctly handle CancelledError(s): # application may be stopped or function can be cancelled # by outer timeout, so we must stop the look up. raise except asyncio.TimeoutError: continue except DiscoverError as err: sentinel_logger.debug("DiscoverError(%r, %s): %r", sentinel, service, err) await asyncio.sleep(idle_timeout, loop=self._loop) continue except RedisError as err: raise MasterReplyError("Service {} error".format(service), err) except Exception: # TODO: clear (drop) connections to schedule reconnect await asyncio.sleep(idle_timeout, loop=self._loop) continue else: raise MasterNotFoundError("No master found for {}".format(service))
0.000934
def make_energies_hdu(self, extname="ENERGIES"): """ Builds and returns a FITs HDU with the energy bin boundries extname : The HDU extension name """ if self._evals is None: return None cols = [fits.Column("ENERGY", "1E", unit='MeV', array=self._evals)] hdu = fits.BinTableHDU.from_columns( cols, self.make_header(), name=extname) return hdu
0.006466
def _parse_ppm_segment(self, fptr): """Parse the PPM segment. Parameters ---------- fptr : file Open file object. Returns ------- PPMSegment The current PPM segment. """ offset = fptr.tell() - 2 read_buffer = fptr.read(3) length, zppm = struct.unpack('>HB', read_buffer) numbytes = length - 3 read_buffer = fptr.read(numbytes) return PPMsegment(zppm, read_buffer, length, offset)
0.003846
def min_filter(data, size=7, res_g=None, sub_blocks=(1, 1, 1)): """ minimum filter of given size Parameters ---------- data: 2 or 3 dimensional ndarray or OCLArray of type float32 input data size: scalar, tuple the size of the patch to consider res_g: OCLArray store result in buffer if given sub_blocks: perform over subblock tiling (only if data is ndarray) Returns ------- filtered image or None (if OCLArray) """ if data.ndim == 2: _filt = make_filter(_generic_filter_gpu_2d(FUNC="(val<res?val:res)", DEFAULT="INFINITY")) elif data.ndim == 3: _filt = make_filter(_generic_filter_gpu_3d(FUNC="(val<res?val:res)", DEFAULT="INFINITY")) else: raise ValueError("currently only 2 or 3 dimensional data is supported") return _filt(data=data, size=size, res_g=res_g, sub_blocks=sub_blocks)
0.003279
def current(self, value): """set current cursor position""" current = min(max(self._min, value), self._max) self._current = current if current > self._stop : self._stop = current self._start = current-self._width elif current < self._start : self._start = current self._stop = current + self._width if abs(self._start - self._min) <= self._sticky_lenght : self._start = self._min if abs(self._stop - self._max) <= self._sticky_lenght : self._stop = self._max
0.015
def show(self, start=0, geometry=None, output=None): """pretty-print data to the console (similar to q.show, but uses python stdout by default) >>> x = q('([k:`x`y`z]a:1 2 3;b:10 20 30)') >>> x.show() # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- x| 1 10 y| 2 20 z| 3 30 the first optional argument, 'start' specifies the first row to be printed (negative means from the end) >>> x.show(2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- z| 3 30 >>> x.show(-2) # doctest: +NORMALIZE_WHITESPACE k| a b -| ---- y| 2 20 z| 3 30 the geometry is the height and width of the console >>> x.show(geometry=[4, 6]) k| a.. -| -.. x| 1.. .. """ if output is None: output = sys.stdout if geometry is None: geometry = q.value(kp("\\c")) else: geometry = self._I(geometry) if start < 0: start += q.count(self) # Make sure nil is not passed to a q function if self._id() != nil._id(): r = self._show(geometry, start) else: r = '::\n' if isinstance(output, type): return output(r) try: output.write(r) except TypeError: output.write(str(r))
0.001385
def GetExpirationTime(self): """Computes the timestamp at which this breakpoint will expire.""" # TODO(emrekultursay): Move this to a common method. if '.' not in self.definition['createTime']: fmt = '%Y-%m-%dT%H:%M:%S%Z' else: fmt = '%Y-%m-%dT%H:%M:%S.%f%Z' create_datetime = datetime.strptime( self.definition['createTime'].replace('Z', 'UTC'), fmt) return create_datetime + self.expiration_period
0.006757
def init_comm(self): """ Initializes comm and attaches streams. """ if self.comm: return self.comm comm = None if self.dynamic or self.renderer.widget_mode == 'live': comm = self.renderer.comm_manager.get_server_comm() return comm
0.006452
async def add(gc: GroupControl, slaves): """Add speakers to group.""" click.echo("Adding to existing group: %s" % slaves) click.echo(await gc.add(slaves))
0.006024
def check_datasource_perms(self, datasource_type=None, datasource_id=None): """ Check if user can access a cached response from explore_json. This function takes `self` since it must have the same signature as the the decorated method. """ form_data = get_form_data()[0] datasource_id, datasource_type = get_datasource_info( datasource_id, datasource_type, form_data) viz_obj = get_viz( datasource_type=datasource_type, datasource_id=datasource_id, form_data=form_data, force=False, ) security_manager.assert_datasource_permission(viz_obj.datasource)
0.001582
def calc_DUP_parameter(self, modeln, label, fig=10, color='r', marker_type='*', h_core_mass=False): """ Method to calculate the DUP parameter evolution for different TPs specified specified by their model number. Parameters ---------- fig : integer Figure number to plot. modeln : list Array containing pairs of models each corresponding to a TP. First model where h boundary mass will be taken before DUP, second model where DUP reaches lowest mass. leg : string Plot label. color : string Color of the plot. marker_type : string marker type. h_core_mass : boolean, optional If True: plot dependence from h free core , else star mass. The default is False. """ number_DUP=(old_div(len(modeln),2) -1) #START WITH SECOND try: h1_bnd_m=self.get('h1_boundary_mass') except: try: h1_bnd_m=self.get('he_core_mass') except: pass star_mass=self.get('star_mass') age=self.get("star_age") firstTP=h1_bnd_m[modeln[0]] first_m_dredge=h1_bnd_m[modeln[1]] DUP_parameter=np.zeros(number_DUP) DUP_xaxis=np.zeros(number_DUP) j=0 for i in np.arange(2,len(modeln),2): TP=h1_bnd_m[modeln[i]] m_dredge=h1_bnd_m[modeln[i+1]] if i ==2: last_m_dredge=first_m_dredge #print "testest" #print modeln[i] if h_core_mass==True: DUP_xaxis[j]=h1_bnd_m[modeln[i]] #age[modeln[i]] - age[modeln[0]] else: DUP_xaxis[j]=star_mass[modeln[i]] #DUP_xaxis[j]=modeln[i] DUP_parameter[j]=old_div((TP-m_dredge),(TP-last_m_dredge)) last_m_dredge=m_dredge j+=1 pl.figure(fig) pl.rcParams.update({'font.size': 18}) pl.rc('xtick', labelsize=18) pl.rc('ytick', labelsize=18) pl.plot(DUP_xaxis,DUP_parameter,marker=marker_type,markersize=12,mfc=color,color='k',linestyle='-',label=label) if h_core_mass==True: pl.xlabel("$M_H$",fontsize=20) else: pl.xlabel("M/M$_{\odot}$",fontsize=24) pl.ylabel("$\lambda_{DUP}$",fontsize=24) pl.minorticks_on() pl.legend()
0.023172
def sample(self, n=None, frac=None, replace=False, weights=None, random_state=None, axis=None): """ Return a random sample of items from an axis of object. You can use `random_state` for reproducibility. Parameters ---------- n : int, optional Number of items from axis to return. Cannot be used with `frac`. Default = 1 if `frac` = None. frac : float, optional Fraction of axis items to return. Cannot be used with `n`. replace : bool, default False Sample with or without replacement. weights : str or ndarray-like, optional Default 'None' results in equal probability weighting. If passed a Series, will align with target object on index. Index values in weights not found in sampled object will be ignored and index values in sampled object not in weights will be assigned weights of zero. If called on a DataFrame, will accept the name of a column when axis = 0. Unless weights are a Series, weights must be same length as axis being sampled. If weights do not sum to 1, they will be normalized to sum to 1. Missing values in the weights column will be treated as zero. Infinite values not allowed. random_state : int or numpy.random.RandomState, optional Seed for the random number generator (if int), or numpy RandomState object. axis : int or string, optional Axis to sample. Accepts axis number or name. Default is stat axis for given data type (0 for Series and DataFrames, 1 for Panels). Returns ------- Series or DataFrame A new object of same type as caller containing `n` items randomly sampled from the caller object. See Also -------- numpy.random.choice: Generates a random sample from a given 1-D numpy array. Examples -------- >>> df = pd.DataFrame({'num_legs': [2, 4, 8, 0], ... 'num_wings': [2, 0, 0, 0], ... 'num_specimen_seen': [10, 2, 1, 8]}, ... index=['falcon', 'dog', 'spider', 'fish']) >>> df num_legs num_wings num_specimen_seen falcon 2 2 10 dog 4 0 2 spider 8 0 1 fish 0 0 8 Extract 3 random elements from the ``Series`` ``df['num_legs']``: Note that we use `random_state` to ensure the reproducibility of the examples. >>> df['num_legs'].sample(n=3, random_state=1) fish 0 spider 8 falcon 2 Name: num_legs, dtype: int64 A random 50% sample of the ``DataFrame`` with replacement: >>> df.sample(frac=0.5, replace=True, random_state=1) num_legs num_wings num_specimen_seen dog 4 0 2 fish 0 0 8 Using a DataFrame column as weights. Rows with larger value in the `num_specimen_seen` column are more likely to be sampled. >>> df.sample(n=2, weights='num_specimen_seen', random_state=1) num_legs num_wings num_specimen_seen falcon 2 2 10 fish 0 0 8 """ if axis is None: axis = self._stat_axis_number axis = self._get_axis_number(axis) axis_length = self.shape[axis] # Process random_state argument rs = com.random_state(random_state) # Check weights for compliance if weights is not None: # If a series, align with frame if isinstance(weights, pd.Series): weights = weights.reindex(self.axes[axis]) # Strings acceptable if a dataframe and axis = 0 if isinstance(weights, str): if isinstance(self, pd.DataFrame): if axis == 0: try: weights = self[weights] except KeyError: raise KeyError("String passed to weights not a " "valid column") else: raise ValueError("Strings can only be passed to " "weights when sampling from rows on " "a DataFrame") else: raise ValueError("Strings cannot be passed as weights " "when sampling from a Series or Panel.") weights = pd.Series(weights, dtype='float64') if len(weights) != axis_length: raise ValueError("Weights and axis to be sampled must be of " "same length") if (weights == np.inf).any() or (weights == -np.inf).any(): raise ValueError("weight vector may not include `inf` values") if (weights < 0).any(): raise ValueError("weight vector many not include negative " "values") # If has nan, set to zero. weights = weights.fillna(0) # Renormalize if don't sum to 1 if weights.sum() != 1: if weights.sum() != 0: weights = weights / weights.sum() else: raise ValueError("Invalid weights: weights sum to zero") weights = weights.values # If no frac or n, default to n=1. if n is None and frac is None: n = 1 elif n is not None and frac is None and n % 1 != 0: raise ValueError("Only integers accepted as `n` values") elif n is None and frac is not None: n = int(round(frac * axis_length)) elif n is not None and frac is not None: raise ValueError('Please enter a value for `frac` OR `n`, not ' 'both') # Check for negative sizes if n < 0: raise ValueError("A negative number of rows requested. Please " "provide positive value.") locs = rs.choice(axis_length, size=n, replace=replace, p=weights) return self.take(locs, axis=axis, is_copy=False)
0.000448
def ssh_sa_ssh_server_shutdown(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") ssh_sa = ET.SubElement(config, "ssh-sa", xmlns="urn:brocade.com:mgmt:brocade-sec-services") ssh = ET.SubElement(ssh_sa, "ssh") server = ET.SubElement(ssh, "server") shutdown = ET.SubElement(server, "shutdown") callback = kwargs.pop('callback', self._callback) return callback(config)
0.006508
def get_bin_indices(self, values): """Returns index tuple in histogram of bin which contains value""" return tuple([self.get_axis_bin_index(values[ax_i], ax_i) for ax_i in range(self.dimensions)])
0.008547
def get_value_generator(self_,name): # pylint: disable-msg=E0213 """ Return the value or value-generating object of the named attribute. For most parameters, this is simply the parameter's value (i.e. the same as getattr()), but Dynamic parameters have their value-generating object returned. """ cls_or_slf = self_.self_or_cls param_obj = cls_or_slf.param.objects('existing').get(name) if not param_obj: value = getattr(cls_or_slf,name) # CompositeParameter detected by being a Parameter and having 'attribs' elif hasattr(param_obj,'attribs'): value = [cls_or_slf.param.get_value_generator(a) for a in param_obj.attribs] # not a Dynamic Parameter elif not hasattr(param_obj,'_value_is_dynamic'): value = getattr(cls_or_slf,name) # Dynamic Parameter... else: internal_name = "_%s_param_value"%name if hasattr(cls_or_slf,internal_name): # dealing with object and it's been set on this object value = getattr(cls_or_slf,internal_name) else: # dealing with class or isn't set on the object value = param_obj.default return value
0.00921
def to_fp(self, file_pointer, comments=None): """ The method can be used to save a WCNF formula into a file pointer. The file pointer is expected as an argument. Additionally, supplementary comment lines can be specified in the ``comments`` parameter. :param fname: a file name where to store the formula. :param comments: additional comments to put in the file. :type fname: str :type comments: list(str) Example: .. code-block:: python >>> from pysat.formula import WCNF >>> wcnf = WCNF() ... >>> # the formula is filled with a bunch of clauses >>> with open('some-file.wcnf', 'w') as fp: ... wcnf.to_fp(fp) # writing to the file pointer """ # saving formula's internal comments for c in self.comments: print(c, file=file_pointer) # saving externally specified comments if comments: for c in comments: print(c, file=file_pointer) print('p wcnf', self.nv, len(self.hard) + len(self.soft), self.topw, file=file_pointer) # soft clauses are dumped first because # some tools (e.g. LBX) cannot count them properly for i, cl in enumerate(self.soft): print(self.wght[i], ' '.join(str(l) for l in cl), '0', file=file_pointer) for cl in self.hard: print(self.topw, ' '.join(str(l) for l in cl), '0', file=file_pointer)
0.004391
def choose_parent_view(self, request): """ Instantiates a class-based view to provide a view that allows a parent page to be chosen for a new object, where the assigned model extends Wagtail's Page model, and there is more than one potential parent for new instances. The view class used can be overridden by changing the 'choose_parent_view_class' attribute. """ kwargs = {'model_admin': self} view_class = self.choose_parent_view_class return view_class.as_view(**kwargs)(request)
0.003559
def get_fields_with_environment_context(self, db_name, table_name, environment_context): """ Parameters: - db_name - table_name - environment_context """ self.send_get_fields_with_environment_context(db_name, table_name, environment_context) return self.recv_get_fields_with_environment_context()
0.009063
async def selfplay(state, flagfile='selfplay'): """Run selfplay and write a training chunk to the fsdb golden_chunk_dir. Args: state: the RL loop State instance. flagfile: the name of the flagfile to use for selfplay, either 'selfplay' (the default) or 'boostrap'. """ output_dir = os.path.join(fsdb.selfplay_dir(), state.output_model_name) holdout_dir = os.path.join(fsdb.holdout_dir(), state.output_model_name) lines = await run( 'bazel-bin/cc/selfplay', '--flagfile={}.flags'.format(os.path.join(FLAGS.flags_dir, flagfile)), '--model={}'.format(state.best_model_path), '--output_dir={}'.format(output_dir), '--holdout_dir={}'.format(holdout_dir), '--seed={}'.format(state.seed)) result = '\n'.join(lines[-6:]) logging.info(result) stats = parse_win_stats_table(result, 1)[0] num_games = stats.total_wins logging.info('Black won %0.3f, white won %0.3f', stats.black_wins.total / num_games, stats.white_wins.total / num_games) # Write examples to a single record. pattern = os.path.join(output_dir, '*', '*.zz') random.seed(state.seed) tf.set_random_seed(state.seed) np.random.seed(state.seed) # TODO(tommadams): This method of generating one golden chunk per generation # is sub-optimal because each chunk gets reused multiple times for training, # introducing bias. Instead, a fresh dataset should be uniformly sampled out # of *all* games in the training window before the start of each training run. buffer = example_buffer.ExampleBuffer(sampling_frac=1.0) # TODO(tommadams): parallel_fill is currently non-deterministic. Make it not # so. logging.info('Writing golden chunk from "{}"'.format(pattern)) buffer.parallel_fill(tf.gfile.Glob(pattern)) buffer.flush(os.path.join(fsdb.golden_chunk_dir(), state.output_model_name + '.tfrecord.zz'))
0.013591
def learnObjects(self, objectPlacements): """ Learn each provided object in egocentric space. Touch every location on each object. This method doesn't try move the sensor along a path. Instead it just leaps the sensor to each object location, resetting the location layer with each leap. This method simultaneously learns 4 sets of synapses: - location -> input - input -> location - input -> object - object -> input """ for monitor in self.monitors.values(): monitor.afterPlaceObjects(objectPlacements) for objectName, objectDict in self.objects.iteritems(): self.reset() objectPlacement = objectPlacements[objectName] for locationName, featureName in objectDict.iteritems(): egocentricLocation = (locationName[0] + objectPlacement[0], locationName[1] + objectPlacement[1]) locationSDR = self.locations[egocentricLocation] featureSDR = self.features[featureName] transitionSDR = np.empty(0) self.locationLayer.reset() self.inputLayer.reset() for _ in xrange(10): self.doTimestep(locationSDR, transitionSDR, featureSDR, egocentricLocation, learn=True) self.inputRepresentations[(featureName, egocentricLocation)] = ( self.inputLayer.getActiveCells()) self.objectRepresentations[objectName] = self.objectLayer.getActiveCells() self.learnedObjectPlacements[objectName] = objectPlacement
0.006549
def autoconfig_url_from_preferences(): """ Get the PAC ``AutoConfigURL`` value from the macOS System Preferences. This setting is visible as the "URL" field in System Preferences > Network > Advanced... > Proxies > Automatic Proxy Configuration. :return: The value from the registry, or None if the value isn't configured or available. Note that it may be local filesystem path instead of a URL. :rtype: str|None :raises NotDarwinError: If called on a non-macOS/OSX platform. """ if not ON_DARWIN: raise NotDarwinError() try: config = SystemConfiguration.SCDynamicStoreCopyProxies(None) except AttributeError: return # Key or value not found. if all(('ProxyAutoConfigEnable' in config, 'ProxyAutoConfigURLString' in config, not config.get('ProxyAutoDiscoveryEnable', 0))): # Only return a value if it is enabled, not empty, and auto discovery is disabled. return str(config['ProxyAutoConfigURLString'])
0.003813
def contains_remove(self, item): # type (Any, Any) -> Any '''Takes a collection and an item and returns a new collection of the same type with that item removed. The notion of "contains" is defined by the object itself; the following must be ``True``: .. code-block:: python item not in contains_remove(obj, item) This function is used by some lenses (particularly ContainsLens) to remove items from containers when necessary. The corresponding method call for this hook is ``obj._lens_contains_remove(item)``. There is no default implementation. ''' try: self._lens_contains_remove except AttributeError: message = 'Don\'t know how to remove an item from {}' raise NotImplementedError(message.format(type(self))) else: return self._lens_contains_remove(item)
0.001163
def key_usage(self): """The :py:class:`~django_ca.extensions.KeyUsage` extension, or ``None`` if it doesn't exist.""" try: ext = self.x509.extensions.get_extension_for_oid(ExtensionOID.KEY_USAGE) except x509.ExtensionNotFound: return None return KeyUsage(ext)
0.012698
def _get_admin_change_url(self, model, context): """ Returns the admin change url. """ app_label = model._meta.app_label return reverse('%s:%s_%s_changelist' % (get_admin_site_name(context), app_label, model.__name__.lower()))
0.005525
def _make_exception(self, response): """ In case of exception, construct the exception object that holds all important values returned by the response. :return: The exception instance :rtype: PocketException """ headers = response.headers limit_headers = [] if 'X-Limit-User-Limit' in headers: limit_headers = [ headers['X-Limit-User-Limit'], headers['X-Limit-User-Remaining'], headers['X-Limit-User-Reset'], headers['X-Limit-Key-Limit'], headers['X-Limit-Key-Remaining'], headers['X-Limit-Key-Reset'] ] x_error_code = int(headers['X-Error-Code']) exc = PocketException if x_error_code in self.auth_error_codes: exc = PocketAutException return exc( response.status_code, x_error_code, headers['X-Error'], *limit_headers )
0.001953
def netconf_state_sessions_session_source_host(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") netconf_state = ET.SubElement(config, "netconf-state", xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring") sessions = ET.SubElement(netconf_state, "sessions") session = ET.SubElement(sessions, "session") session_id_key = ET.SubElement(session, "session-id") session_id_key.text = kwargs.pop('session_id') source_host = ET.SubElement(session, "source-host") source_host.text = kwargs.pop('source_host') callback = kwargs.pop('callback', self._callback) return callback(config)
0.004274
def xmlSetup(self, logType, logList): """Create xml file with fields from logbook form.""" from xml.etree.ElementTree import Element, SubElement, ElementTree from datetime import datetime curr_time = datetime.now() if logType == "MCC": # Set up xml tags log_entry = Element('log_entry') title = SubElement(log_entry, 'title') program = SubElement(log_entry, 'program') timestamp = SubElement(log_entry, 'timestamp') priority = SubElement(log_entry, 'priority') os_user = SubElement(log_entry, 'os_user') hostname = SubElement(log_entry, 'hostname') text = SubElement(log_entry, 'text') log_user = SubElement(log_entry, 'log_user') # Check for multiple logbooks and parse into seperate tags logbook = [] for i in range(len(logList)): logbook.append(SubElement(log_entry, 'logbook')) logbook[i].text = logList[i].lower() # Take care of dummy, unchanging tags first log_entry.attrib['type'] = "LOGENTRY" program.text = "152" priority.text = "NORMAL" os_user.text = "nobody" hostname.text = "mccelog" text.attrib['type'] = "text/plain" # Handle attachment if image exists if not self.imagePixmap.isNull(): attachment = SubElement(log_entry, 'attachment') attachment.attrib['name'] = "Figure 1" attachment.attrib['type'] = "image/" + self.imageType attachment.text = curr_time.strftime("%Y%m%d_%H%M%S_") + str(curr_time.microsecond) + "." + self.imageType # Set timestamp format timestamp.text = curr_time.strftime("%Y/%m/%d %H:%M:%S") fileName = "/tmp/" + curr_time.strftime("%Y%m%d_%H%M%S_") + str(curr_time.microsecond) + ".xml" else: # If using Physics logbook timeString = curr_time.strftime("%Y-%m-%dT%H:%M:%S") # Set up xml tags log_entry = Element(None) severity = SubElement(log_entry, 'severity') location = SubElement(log_entry, 'location') keywords = SubElement(log_entry, 'keywords') time = SubElement(log_entry, 'time') isodate = SubElement(log_entry, 'isodate') log_user = SubElement(log_entry, 'author') category = SubElement(log_entry, 'category') title = SubElement(log_entry, 'title') metainfo = SubElement(log_entry, 'metainfo') # Handle attachment if image exists if not self.imagePixmap.isNull(): imageFile = SubElement(log_entry, 'link') imageFile.text = timeString + "-00." + self.imageType thumbnail = SubElement(log_entry, 'file') thumbnail.text = timeString + "-00.png" text = SubElement(log_entry, 'text') # Logbook expects Text tag to come last (for some strange reason) # Take care of dummy, unchanging tags first log_entry.attrib['type'] = "LOGENTRY" category.text = "USERLOG" location.text = "not set" severity.text = "NONE" keywords.text = "none" time.text = curr_time.strftime("%H:%M:%S") isodate.text = curr_time.strftime("%Y-%m-%d") metainfo.text = timeString + "-00.xml" fileName = "/tmp/" + metainfo.text # Fill in user inputs log_user.text = str(self.logui.userName.text()) title.text = str(self.logui.titleEntry.text()) if title.text == "": QMessageBox().warning(self, "No Title entered", "Please enter a title for the entry...") return None text.text = str(self.logui.textEntry.toPlainText()) # If text field is truly empty, ElementTree leaves off tag entirely which causes logbook parser to fail if text.text == "": text.text = " " # Create xml file xmlFile = open(fileName, "w") if logType == "MCC": ElementTree(log_entry).write(xmlFile) else: xmlString = self.prettify(log_entry) xmlFile.write(xmlString) xmlFile.write("\n") # Close with newline so cron job parses correctly xmlFile.close() return fileName.rstrip(".xml")
0.008681
def do_or_fake_filter( value, formatter ): """ call a faker if value is None uses: {{ myint|or_fake:'randomInt' }} """ if not value: value = Faker.getGenerator().format( formatter ) return value
0.021186
def update_import_request(self, import_request_to_update, project, repository_id, import_request_id): """UpdateImportRequest. [Preview API] Retry or abandon a failed import request. :param :class:`<GitImportRequest> <azure.devops.v5_0.git.models.GitImportRequest>` import_request_to_update: The updated version of the import request. Currently, the only change allowed is setting the Status to Queued or Abandoned. :param str project: Project ID or project name :param str repository_id: The name or ID of the repository. :param int import_request_id: The unique identifier for the import request to update. :rtype: :class:`<GitImportRequest> <azure.devops.v5_0.git.models.GitImportRequest>` """ route_values = {} if project is not None: route_values['project'] = self._serialize.url('project', project, 'str') if repository_id is not None: route_values['repositoryId'] = self._serialize.url('repository_id', repository_id, 'str') if import_request_id is not None: route_values['importRequestId'] = self._serialize.url('import_request_id', import_request_id, 'int') content = self._serialize.body(import_request_to_update, 'GitImportRequest') response = self._send(http_method='PATCH', location_id='01828ddc-3600-4a41-8633-99b3a73a0eb3', version='5.0-preview.1', route_values=route_values, content=content) return self._deserialize('GitImportRequest', response)
0.00672
def agents_email_show(self, email_id, **kwargs): "https://developer.zendesk.com/rest_api/docs/chat/agents#get-agent-by-email-id" api_path = "/api/v2/agents/email/{email_id}" api_path = api_path.format(email_id=email_id) return self.call(api_path, **kwargs)
0.010417
def stochastic_event_set(sources, source_site_filter=nofilter): """ Generates a 'Stochastic Event Set' (that is a collection of earthquake ruptures) representing a possible *realization* of the seismicity as described by a source model. The calculator loops over sources. For each source, it loops over ruptures. For each rupture, the number of occurrence is randomly sampled by calling :meth:`openquake.hazardlib.source.rupture.BaseProbabilisticRupture.sample_number_of_occurrences` .. note:: This calculator is using random numbers. In order to reproduce the same results numpy random numbers generator needs to be seeded, see http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.seed.html :param sources: An iterator of seismic sources objects (instances of subclasses of :class:`~openquake.hazardlib.source.base.BaseSeismicSource`). :param source_site_filter: The source filter to use (default noop filter) :returns: Generator of :class:`~openquake.hazardlib.source.rupture.Rupture` objects that are contained in an event set. Some ruptures can be missing from it, others can appear one or more times in a row. """ for source, s_sites in source_site_filter(sources): try: for rupture in source.iter_ruptures(): [n_occ] = rupture.sample_number_of_occurrences() for _ in range(n_occ): yield rupture except Exception as err: etype, err, tb = sys.exc_info() msg = 'An error occurred with source id=%s. Error: %s' msg %= (source.source_id, str(err)) raise_(etype, msg, tb)
0.000574
def is_identity_matrix(mat, ignore_phase=False, rtol=RTOL_DEFAULT, atol=ATOL_DEFAULT): """Test if an array is an identity matrix.""" if atol is None: atol = ATOL_DEFAULT if rtol is None: rtol = RTOL_DEFAULT mat = np.array(mat) if mat.ndim != 2: return False if ignore_phase: # If the matrix is equal to an identity up to a phase, we can # remove the phase by multiplying each entry by the complex # conjugate of the phase of the [0, 0] entry. theta = np.angle(mat[0, 0]) mat = np.exp(-1j * theta) * mat # Check if square identity iden = np.eye(len(mat)) return np.allclose(mat, iden, rtol=rtol, atol=atol)
0.001292
def downloadFile(url,outfile=None): ''' Copied from http://stackoverflow.com/questions/16694907/how-to-download-large-file-in-python-with-requests-py ''' if not outfile: outfile = url.split('/')[-1] r = requests.get(url, stream=True) with open(outfile, 'wb') as f: for chunk in r.iter_content(chunk_size=1024): if chunk: f.write(chunk) return outfile
0.014354
def execute(self, operation, parameters=()): """ Wraps execute method to record the query, execution duration and stackframe. """ __traceback_hide__ = True # NOQ # Time the exection of the query start = time.time() try: return self.cursor.execute(operation, parameters) finally: end = time.time() # Save the data data = { 'name': operation, 'args': parameters, 'start': start, 'end': end, } self._record(data)
0.003221
def set_redraw_lag(self, lag_sec): """Set lag time for redrawing the canvas. Parameters ---------- lag_sec : float Number of seconds to wait. """ self.defer_redraw = (lag_sec > 0.0) if self.defer_redraw: self.defer_lagtime = lag_sec
0.006369
def makefractalCIJ(mx_lvl, E, sz_cl, seed=None): ''' This function generates a directed network with a hierarchical modular organization. All modules are fully connected and connection density decays as 1/(E^n), with n = index of hierarchical level. Parameters ---------- mx_lvl : int number of hierarchical levels, N = 2^mx_lvl E : int connection density fall off per level sz_cl : int size of clusters (must be power of 2) seed : hashable, optional If None (default), use the np.random's global random state to generate random numbers. Otherwise, use a new np.random.RandomState instance seeded with the given value. Returns ------- CIJ : NxN np.ndarray connection matrix K : int number of connections present in output CIJ ''' rng = get_rng(seed) # make a stupid little template t = np.ones((2, 2)) * 2 # compute N and cluster size n = 2**mx_lvl sz_cl -= 1 for lvl in range(1, mx_lvl): s = 2**(lvl + 1) CIJ = np.ones((s, s)) grp1 = range(int(s / 2)) grp2 = range(int(s / 2), s) ix1 = np.add.outer(np.array(grp1) * s, grp1).flatten() ix2 = np.add.outer(np.array(grp2) * s, grp2).flatten() CIJ.flat[ix1] = t # numpy indexing is teh sucks :( CIJ.flat[ix2] = t CIJ += 1 t = CIJ.copy() CIJ -= (np.ones((s, s)) + mx_lvl * np.eye(s)) # assign connection probabilities ee = mx_lvl - CIJ - sz_cl ee = (ee > 0) * ee prob = (1 / E**ee) * (np.ones((s, s)) - np.eye(s)) CIJ = (prob > rng.random_sample((n, n))) # count connections k = np.sum(CIJ) return np.array(CIJ, dtype=int), k
0.001724
def _detsat_one(filename, ext, sigma=2.0, low_thresh=0.1, h_thresh=0.5, small_edge=60, line_len=200, line_gap=75, percentile=(4.5, 93.0), buf=200, plot=False, verbose=False): """Called by :func:`detsat`.""" if verbose: t_beg = time.time() fname = '{0}[{1}]'.format(filename, ext) # check extension if ext not in (1, 4, 'SCI', ('SCI', 1), ('SCI', 2)): warnings.warn('{0} is not a valid science extension for ' 'ACS/WFC'.format(ext), AstropyUserWarning) # get the data image = fits.getdata(filename, ext) # image = im.astype('float64') # rescale the image p1, p2 = np.percentile(image, percentile) # there should always be some counts in the image, anything lower should # be set to one. Makes things nicer for finding edges. if p1 < 0: p1 = 0.0 if verbose: print('Rescale intensity percentiles: {0}, {1}'.format(p1, p2)) image = exposure.rescale_intensity(image, in_range=(p1, p2)) # get the edges immax = np.max(image) edge = canny(image, sigma=sigma, low_threshold=immax * low_thresh, high_threshold=immax * h_thresh) # clean up the small objects, will make less noise morph.remove_small_objects(edge, min_size=small_edge, connectivity=8, in_place=True) # create an array of angles from 0 to 180, exactly 0 will get bad columns # but it is unlikely that a satellite will be exactly at 0 degrees, so # don't bother checking. # then, convert to radians. angle = np.radians(np.arange(2, 178, 0.5, dtype=float)) # perform Hough Transform to detect straight lines. # only do if plotting to visualize the image in hough space. # otherwise just preform a Probabilistic Hough Transform. if plot and plt is not None: h, theta, d = transform.hough_line(edge, theta=angle) plt.ion() # perform Probabilistic Hough Transformation to get line segments. # NOTE: Results are slightly different from run to run! result = transform.probabilistic_hough_line( edge, threshold=210, line_length=line_len, line_gap=line_gap, theta=angle) result = np.asarray(result) n_result = len(result) # initially assume there is no satellite satellite = False # only continue if there was more than one point (at least a line) # returned from the PHT if n_result > 1: if verbose: print('Length of PHT result: {0}'.format(n_result)) # create lists for X and Y positions of lines and build points x0 = result[:, 0, 0] y0 = result[:, 0, 1] x1 = result[:, 1, 0] y1 = result[:, 1, 1] # set some boundries ymax, xmax = image.shape topx = xmax - buf topy = ymax - buf if verbose: print('min(x0)={0:4d}, min(x1)={1:4d}, min(y0)={2:4d}, ' 'min(y1)={3:4d}'.format(min(x0), min(x1), min(y0), min(y1))) print('max(x0)={0:4d}, max(x1)={1:4d}, max(y0)={2:4d}, ' 'max(y1)={3:4d}'.format(max(x0), max(x1), max(y0), max(y1))) print('buf={0}'.format(buf)) print('topx={0}, topy={1}'.format(topx, topy)) # set up trail angle "tracking" arrays. # find the angle of each segment and filter things out. # TODO: this may be wrong. Try using arctan2. trail_angle = np.degrees(np.arctan((y1 - y0) / (x1 - x0))) # round to the nearest 5 degrees, trail should not be that curved round_angle = (5 * np.round(trail_angle * 0.2)).astype(int) # take out 90 degree things mask = round_angle % 90 != 0 if not np.any(mask): if verbose: print('No round_angle found') return np.empty(0) round_angle = round_angle[mask] trail_angle = trail_angle[mask] result = result[mask] ang, num = stats.mode(round_angle) # do the filtering truth = round_angle == ang[0] if verbose: print('trail_angle: {0}'.format(trail_angle)) print('round_angle: {0}'.format(round_angle)) print('mode(round_angle): {0}'.format(ang[0])) # filter out the outliers trail_angle = trail_angle[truth] result = result[truth] n_result = len(result) if verbose: print('Filtered trail_angle: {0}'.format(trail_angle)) if n_result < 1: return np.empty(0) # if there is an unreasonable amount of points, it picked up garbage elif n_result > 300: warnings.warn( 'Way too many segments results to be correct ({0}). ' 'Rejecting detection on {1}.'.format(n_result, fname), AstropyUserWarning) return np.empty(0) # remake the point lists with things taken out x0 = result[:, 0, 0] y0 = result[:, 0, 1] x1 = result[:, 1, 0] y1 = result[:, 1, 1] min_x0 = min(x0) min_y0 = min(y0) min_x1 = min(x1) min_y1 = min(y1) max_x0 = max(x0) max_y0 = max(y0) max_x1 = max(x1) max_y1 = max(y1) mean_angle = np.mean(trail_angle) # make decisions on where the trail went and determine if a trail # traversed the image # top to bottom if (((min_y0 < buf) or (min_y1 < buf)) and ((max_y0 > topy) or (max_y1 > topy))): satellite = True if verbose: print('Trail Direction: Top to Bottom') # right to left elif (((min_x0 < buf) or (min_x1 < buf)) and ((max_x0 > topx) or (max_x1 > topx))): satellite = True if verbose: print('Trail Direction: Right to Left') # bottom to left elif (((min_x0 < buf) or (min_x1 < buf)) and ((min_y0 < buf) or (min_y1 < buf)) and (-1 > mean_angle > -89)): satellite = True if verbose: print('Trail Direction: Bottom to Left') # top to left elif (((min_x0 < buf) or (min_x1 < buf)) and ((max_y0 > topy) or (max_y1 > topy)) and (89 > mean_angle > 1)): satellite = True if verbose: print('Trail Direction: Top to Left') # top to right elif (((max_x0 > topx) or (max_x1 > topx)) and ((max_y0 > topy) or (max_y1 > topy)) and (-1 > mean_angle > -89)): satellite = True if verbose: print('Trail Direction: Top to Right') # bottom to right elif (((max_x0 > topx) or (max_x1 > topx)) and ((min_y0 < buf) or (min_y1 < buf)) and (89 > mean_angle > 1)): satellite = True if verbose: print('Trail Direction: Bottom to Right') if satellite: if verbose: print('{0} trail segment(s) detected'.format(n_result)) print('Trail angle list (not returned): ') print(trail_angle) print('End point list:') for i, ((px0, py0), (px1, py1)) in enumerate(result, 1): print('{0:5d}. ({1:4d}, {2:4d}), ({3:4d}, {4:4d})'.format( i, px0, py0, px1, py1)) if plot and plt is not None: mean = np.median(image) stddev = image.std() lower = mean - stddev upper = mean + stddev fig1, ax1 = plt.subplots() ax1.imshow(edge, cmap=plt.cm.gray) ax1.set_title('Edge image for {0}'.format(fname)) for (px0, py0), (px1, py1) in result: # Draw trails ax1.plot((px0, px1), (py0, py1), scalex=False, scaley=False) fig2, ax2 = plt.subplots() ax2.imshow( np.log(1 + h), extent=(np.rad2deg(theta[-1]), np.rad2deg(theta[0]), d[-1], d[0]), aspect=0.02) ax2.set_title('Hough Transform') ax2.set_xlabel('Angles (degrees)') ax2.set_ylabel('Distance from Origin (pixels)') fig3, ax3 = plt.subplots() ax3.imshow(image, vmin=lower, vmax=upper, cmap=plt.cm.gray) ax3.set_title(fname) for (px0, py0), (px1, py1) in result: # Draw trails ax3.plot((px0, px1), (py0, py1), scalex=False, scaley=False) plt.draw() else: # length of result was too small result = np.empty(0) if verbose: print('No trail detected; found {0} segments'.format(n_result)) if plot and plt is not None: fig1, ax1 = plt.subplots() ax1.imshow(edge, cmap=plt.cm.gray) ax1.set_title(fname) # Draw trails for (px0, py0), (px1, py1) in result: ax1.plot((px0, px1), (py0, py1), scalex=False, scaley=False) if verbose: t_end = time.time() print('Run time: {0} s'.format(t_end - t_beg)) return result
0.000109
def __locate_driver_named(name): """Searchs __modules for a driver named @arg name. @returns the package for driver @arg name or None if one can't be found. """ global __modules if type(__modules) is not list: __modules = list(__modules) ms = [d for d in __modules if d.ahioDriverInfo.NAME == name] if not ms: return None return ms[0]
0.002597
def create_context(self, message_queue, task_id): """ Create values to be used by upload_folder_run function. :param message_queue: Queue: queue background process can send messages to us on :param task_id: int: id of this command's task so message will be routed correctly """ params = (self.remote_folder.name, self.parent.kind, self.parent.remote_id) return UploadContext(self.settings, params, message_queue, task_id)
0.010482
def fetch(self): """ Fetch a SampleInstance :returns: Fetched SampleInstance :rtype: twilio.rest.autopilot.v1.assistant.task.sample.SampleInstance """ params = values.of({}) payload = self._version.fetch( 'GET', self._uri, params=params, ) return SampleInstance( self._version, payload, assistant_sid=self._solution['assistant_sid'], task_sid=self._solution['task_sid'], sid=self._solution['sid'], )
0.00346
def convex_comb_dis(model,a,b): """convex_comb_dis -- add piecewise relation with convex combination formulation Parameters: - model: a model where to include the piecewise linear relation - a[k]: x-coordinate of the k-th point in the piecewise linear relation - b[k]: y-coordinate of the k-th point in the piecewise linear relation Returns the model with the piecewise linear relation on added variables X, Y, and z. """ K = len(a)-1 wL,wR,z = {},{},{} for k in range(K): wL[k] = model.addVar(lb=0, ub=1, vtype="C") wR[k] = model.addVar(lb=0, ub=1, vtype="C") z[k] = model.addVar(vtype="B") X = model.addVar(lb=a[0], ub=a[K], vtype="C") Y = model.addVar(lb=-model.infinity(), vtype="C") model.addCons(X == quicksum(a[k]*wL[k] + a[k+1]*wR[k] for k in range(K))) model.addCons(Y == quicksum(b[k]*wL[k] + b[k+1]*wR[k] for k in range(K))) for k in range(K): model.addCons(wL[k] + wR[k] == z[k]) model.addCons(quicksum(z[k] for k in range(K)) == 1) return X,Y,z
0.010261
def pack_tuple(self, values): """ Pack tuple of values <tuple> ::= <cardinality><field>+ :param value: tuple to be packed :type value: tuple of scalar values (bytes, str or int) :return: packed tuple :rtype: bytes """ assert isinstance(values, (tuple, list)) cardinality = [struct_L.pack(len(values))] packed_items = [self.pack_field(v) for v in values] return b''.join(itertools.chain(cardinality, packed_items))
0.003914
def is_dot(ip): """Return true if the IP address is in dotted decimal notation.""" octets = str(ip).split('.') if len(octets) != 4: return False for i in octets: try: val = int(i) except ValueError: return False if val > 255 or val < 0: return False return True
0.002865
def __parse_blacklist(self, json): """Parse blacklist entries using Sorting Hat format. The Sorting Hat blacklist format is a JSON stream that stores a list of blacklisted entries. Next, there is an example of a valid stream: { "blacklist": [ "John Doe", "John Smith", "[email protected]" ] } :param stream: stream to parse :raises InvalidFormatError: raised when the format of the stream is not valid. """ try: for entry in json['blacklist']: if not entry: msg = "invalid json format. Blacklist entries cannot be null or empty" raise InvalidFormatError(cause=msg) excluded = self.__encode(entry) bl = self._blacklist.get(excluded, None) if not bl: bl = MatchingBlacklist(excluded=excluded) self._blacklist[excluded] = bl except KeyError as e: msg = "invalid json format. Attribute %s not found" % e.args raise InvalidFormatError(cause=msg)
0.002502
def fft_convolve(data, h, res_g = None, plan = None, inplace = False, kernel_is_fft = False, kernel_is_fftshifted = False): """ convolves data with kernel h via FFTs data should be either a numpy array or a OCLArray (see doc for fft) both data and h should be same shape if data/h are OCLArrays, then: - type should be complex64 - shape should be equal and power of two - h is assumed to be already fftshifted (otherwise set kernel_is_fftshifted to true) """ if isinstance(data,np.ndarray): return _fft_convolve_numpy(data, h, plan = plan, kernel_is_fft = kernel_is_fft, kernel_is_fftshifted = kernel_is_fftshifted) elif isinstance(data,OCLArray): return _fft_convolve_gpu(data,h, res_g = res_g, plan = plan, inplace = inplace, kernel_is_fft = kernel_is_fft) else: raise TypeError("array argument (1) has bad type: %s"%type(data))
0.029185
def search_media(self, series, query_string): """Search for media from a series starting with query_string, case-sensitive @param crunchyroll.models.Series series the series to search in @param str query_string the search query, same restrictions as `search_anime_series` @return list<crunchyroll.models.Media> """ params = { 'sort': ANDROID.FILTER_PREFIX + query_string, } params.update(self._get_series_query_dict(series)) result = self._android_api.list_media(**params) return result
0.007587
def _calc_waves(self, angular_freqs, profile): """Compute the wave numbers and amplitudes (up- and down-going). Parameters ---------- angular_freqs: :class:`numpy.ndarray` Angular frequency at which the waves are computed. profile: :class:`~.base.site.Profile` Site profile. """ # Compute the complex wave numbers of the system wave_nums = np.empty((len(profile), len(angular_freqs)), np.complex) for i, l in enumerate(profile): wave_nums[i, :] = angular_freqs / l.comp_shear_vel # Compute the waves. In the top surface layer, the up-going and # down-going waves have an amplitude of 1 as they are completely # reflected at the surface. waves_a = np.ones_like(wave_nums, np.complex) waves_b = np.ones_like(wave_nums, np.complex) for i, l in enumerate(profile[:-1]): # Complex impedance -- wave number can be zero which causes an # error. with np.errstate(invalid='ignore'): cimped = ((wave_nums[i] * l.comp_shear_mod) / (wave_nums[i + 1] * profile[i + 1].comp_shear_mod)) # Complex term to simplify equations -- uses full layer height cterm = 1j * wave_nums[i, :] * l.thickness waves_a[i + 1, :] = ( 0.5 * waves_a[i] * (1 + cimped) * np.exp(cterm) + 0.5 * waves_b[i] * (1 - cimped) * np.exp(-cterm)) waves_b[i + 1, :] = ( 0.5 * waves_a[i] * (1 - cimped) * np.exp(cterm) + 0.5 * waves_b[i] * (1 + cimped) * np.exp(-cterm)) # Set wave amplitudes with zero frequency to 1 mask = ~np.isfinite(cimped) waves_a[i + 1, mask] = 1. waves_b[i + 1, mask] = 1. # fixme: Better way to handle this? # Set wave amplitudes to 1 at frequencies near 0 mask = np.isclose(angular_freqs, 0) waves_a[-1, mask] = 1. waves_b[-1, mask] = 1. self._waves_a = waves_a self._waves_b = waves_b self._wave_nums = wave_nums
0.000913
def has_offline_historical_manager_or_raise(self): """Raises an exception if model uses a history manager and historical model history_id is not a UUIDField. Note: expected to use edc_model.HistoricalRecords instead of simple_history.HistoricalRecords. """ try: model = self.instance.__class__.history.model except AttributeError: model = self.instance.__class__ field = [field for field in model._meta.fields if field.name == "history_id"] if field and not isinstance(field[0], UUIDField): raise OfflineHistoricalManagerError( f"Field 'history_id' of historical model " f"'{model._meta.app_label}.{model._meta.model_name}' " "must be an UUIDfield. " "For history = HistoricalRecords() use edc_model.HistoricalRecords instead of " "simple_history.HistoricalRecords(). " f"See '{self.instance._meta.app_label}.{self.instance._meta.model_name}'." )
0.004704
def ignore( self, other ): """ Define expression to be ignored (e.g., comments) while doing pattern matching; may be called repeatedly, to define multiple comment or other ignorable patterns. Example:: patt = OneOrMore(Word(alphas)) patt.parseString('ablaj /* comment */ lskjd') # -> ['ablaj'] patt.ignore(cStyleComment) patt.parseString('ablaj /* comment */ lskjd') # -> ['ablaj', 'lskjd'] """ if isinstance(other, basestring): other = Suppress(other) if isinstance( other, Suppress ): if other not in self.ignoreExprs: self.ignoreExprs.append(other) else: self.ignoreExprs.append( Suppress( other.copy() ) ) return self
0.013665
def element(self, inp=None, data_ptr=None, order=None): """Create a new element. Parameters ---------- inp : `array-like`, optional Input used to initialize the new element. If ``inp`` is `None`, an empty element is created with no guarantee of its state (memory allocation only). The new element will use ``order`` as storage order if provided, otherwise `default_order`. Otherwise, a copy is avoided whenever possible. This requires correct `shape` and `dtype`, and if ``order`` is provided, also contiguousness in that ordering. If any of these conditions is not met, a copy is made. data_ptr : int, optional Pointer to the start memory address of a contiguous Numpy array or an equivalent raw container with the same total number of bytes. For this option, ``order`` must be either ``'C'`` or ``'F'``. The option is also mutually exclusive with ``inp``. order : {None, 'C', 'F'}, optional Storage order of the returned element. For ``'C'`` and ``'F'``, contiguous memory in the respective ordering is enforced. The default ``None`` enforces no contiguousness. Returns ------- element : `NumpyTensor` The new element, created from ``inp`` or from scratch. Examples -------- Without arguments, an uninitialized element is created. With an array-like input, the element can be initialized: >>> space = odl.rn(3) >>> empty = space.element() >>> empty.shape (3,) >>> empty.space rn(3) >>> x = space.element([1, 2, 3]) >>> x rn(3).element([ 1., 2., 3.]) If the input already is a `numpy.ndarray` of correct `dtype`, it will merely be wrapped, i.e., both array and space element access the same memory, such that mutations will affect both: >>> arr = np.array([1, 2, 3], dtype=float) >>> elem = odl.rn(3).element(arr) >>> elem[0] = 0 >>> elem rn(3).element([ 0., 2., 3.]) >>> arr array([ 0., 2., 3.]) Elements can also be constructed from a data pointer, resulting again in shared memory: >>> int_space = odl.tensor_space((2, 3), dtype=int) >>> arr = np.array([[1, 2, 3], ... [4, 5, 6]], dtype=int, order='F') >>> ptr = arr.ctypes.data >>> y = int_space.element(data_ptr=ptr, order='F') >>> y tensor_space((2, 3), dtype=int).element( [[1, 2, 3], [4, 5, 6]] ) >>> y[0, 1] = -1 >>> arr array([[ 1, -1, 3], [ 4, 5, 6]]) """ if order is not None and str(order).upper() not in ('C', 'F'): raise ValueError("`order` {!r} not understood".format(order)) if inp is None and data_ptr is None: if order is None: arr = np.empty(self.shape, dtype=self.dtype, order=self.default_order) else: arr = np.empty(self.shape, dtype=self.dtype, order=order) return self.element_type(self, arr) elif inp is None and data_ptr is not None: if order is None: raise ValueError('`order` cannot be None for element ' 'creation from pointer') ctype_array_def = ctypes.c_byte * self.nbytes as_ctype_array = ctype_array_def.from_address(data_ptr) as_numpy_array = np.ctypeslib.as_array(as_ctype_array) arr = as_numpy_array.view(dtype=self.dtype) arr = arr.reshape(self.shape, order=order) return self.element_type(self, arr) elif inp is not None and data_ptr is None: if inp in self and order is None: # Short-circuit for space elements and no enforced ordering return inp # Try to not copy but require dtype and order if given # (`order=None` is ok as np.array argument) arr = np.array(inp, copy=False, dtype=self.dtype, ndmin=self.ndim, order=order) # Make sure the result is writeable, if not make copy. # This happens for e.g. results of `np.broadcast_to()`. if not arr.flags.writeable: arr = arr.copy() if arr.shape != self.shape: raise ValueError('shape of `inp` not equal to space shape: ' '{} != {}'.format(arr.shape, self.shape)) return self.element_type(self, arr) else: raise TypeError('cannot provide both `inp` and `data_ptr`')
0.000408
def main(pub_port=None, sub_port=None): '''main of forwarder :param sub_port: port for subscribers :param pub_port: port for publishers ''' try: if sub_port is None: sub_port = get_sub_port() if pub_port is None: pub_port = get_pub_port() context = zmq.Context(1) frontend = context.socket(zmq.SUB) backend = context.socket(zmq.PUB) frontend.bind('tcp://*:{pub_port}'.format(pub_port=pub_port)) frontend.setsockopt(zmq.SUBSCRIBE, b'') backend.bind('tcp://*:{sub_port}'.format(sub_port=sub_port)) zmq.device(zmq.FORWARDER, frontend, backend) except KeyboardInterrupt: pass finally: frontend.close() backend.close() context.term()
0.001272
def _get_val(val, full=False): """ Get the value(s) of a dataset as a single value or as 1-d list of values. In the special case of timeseries, when a check is for time-based criteria, you can return the entire timeseries. """ try: val = val.strip() except: pass logging.debug("%s, type=%s", val, type(val)) if isinstance(val, float): return val if isinstance(val, int): return val if isinstance(val, np.ndarray): return list(val) try: val = float(val) return val except: pass try: val = int(val) return val except: pass if type(val) == pd.DataFrame: if full: return val newval = [] values = val.values for v in values: newv = _get_val(v) if type(newv) == list: newval.extend(newv) else: newval.append(newv) val = newval elif type(val) == dict: if full: return val newval = [] for v in val.values(): newv = _get_val(v) if type(newv) == list: newval.extend(newv) else: newval.append(newv) val = newval elif type(val) == list or type(val) == np.ndarray: newval = [] for arr_val in val: v = _get_val(arr_val) newval.append(v) val = newval return val
0.003958
def learn( network, env, seed=None, nsteps=5, total_timesteps=int(80e6), vf_coef=0.5, ent_coef=0.01, max_grad_norm=0.5, lr=7e-4, lrschedule='linear', epsilon=1e-5, alpha=0.99, gamma=0.99, log_interval=100, load_path=None, **network_kwargs): ''' Main entrypoint for A2C algorithm. Train a policy with given network architecture on a given environment using a2c algorithm. Parameters: ----------- network: policy network architecture. Either string (mlp, lstm, lnlstm, cnn_lstm, cnn, cnn_small, conv_only - see baselines.common/models.py for full list) specifying the standard network architecture, or a function that takes tensorflow tensor as input and returns tuple (output_tensor, extra_feed) where output tensor is the last network layer output, extra_feed is None for feed-forward neural nets, and extra_feed is a dictionary describing how to feed state into the network for recurrent neural nets. See baselines.common/policies.py/lstm for more details on using recurrent nets in policies env: RL environment. Should implement interface similar to VecEnv (baselines.common/vec_env) or be wrapped with DummyVecEnv (baselines.common/vec_env/dummy_vec_env.py) seed: seed to make random number sequence in the alorightm reproducible. By default is None which means seed from system noise generator (not reproducible) nsteps: int, number of steps of the vectorized environment per update (i.e. batch size is nsteps * nenv where nenv is number of environment copies simulated in parallel) total_timesteps: int, total number of timesteps to train on (default: 80M) vf_coef: float, coefficient in front of value function loss in the total loss function (default: 0.5) ent_coef: float, coeffictiant in front of the policy entropy in the total loss function (default: 0.01) max_gradient_norm: float, gradient is clipped to have global L2 norm no more than this value (default: 0.5) lr: float, learning rate for RMSProp (current implementation has RMSProp hardcoded in) (default: 7e-4) lrschedule: schedule of learning rate. Can be 'linear', 'constant', or a function [0..1] -> [0..1] that takes fraction of the training progress as input and returns fraction of the learning rate (specified as lr) as output epsilon: float, RMSProp epsilon (stabilizes square root computation in denominator of RMSProp update) (default: 1e-5) alpha: float, RMSProp decay parameter (default: 0.99) gamma: float, reward discounting parameter (default: 0.99) log_interval: int, specifies how frequently the logs are printed out (default: 100) **network_kwargs: keyword arguments to the policy / network builder. See baselines.common/policies.py/build_policy and arguments to a particular type of network For instance, 'mlp' network architecture has arguments num_hidden and num_layers. ''' set_global_seeds(seed) # Get the nb of env nenvs = env.num_envs policy = build_policy(env, network, **network_kwargs) # Instantiate the model object (that creates step_model and train_model) model = Model(policy=policy, env=env, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, lr=lr, alpha=alpha, epsilon=epsilon, total_timesteps=total_timesteps, lrschedule=lrschedule) if load_path is not None: model.load(load_path) # Instantiate the runner object runner = Runner(env, model, nsteps=nsteps, gamma=gamma) epinfobuf = deque(maxlen=100) # Calculate the batch_size nbatch = nenvs*nsteps # Start total timer tstart = time.time() for update in range(1, total_timesteps//nbatch+1): # Get mini batch of experiences obs, states, rewards, masks, actions, values, epinfos = runner.run() epinfobuf.extend(epinfos) policy_loss, value_loss, policy_entropy = model.train(obs, states, rewards, masks, actions, values) nseconds = time.time()-tstart # Calculate the fps (frame per second) fps = int((update*nbatch)/nseconds) if update % log_interval == 0 or update == 1: # Calculates if value function is a good predicator of the returns (ev > 1) # or if it's just worse than predicting nothing (ev =< 0) ev = explained_variance(values, rewards) logger.record_tabular("nupdates", update) logger.record_tabular("total_timesteps", update*nbatch) logger.record_tabular("fps", fps) logger.record_tabular("policy_entropy", float(policy_entropy)) logger.record_tabular("value_loss", float(value_loss)) logger.record_tabular("explained_variance", float(ev)) logger.record_tabular("eprewmean", safemean([epinfo['r'] for epinfo in epinfobuf])) logger.record_tabular("eplenmean", safemean([epinfo['l'] for epinfo in epinfobuf])) logger.dump_tabular() return model
0.005838
def function_name(self): """ Returns name of the function to invoke. If no function identifier is provided, this method will return name of the only function from the template :return string: Name of the function :raises InvokeContextException: If function identifier is not provided """ if self._function_identifier: return self._function_identifier # Function Identifier is *not* provided. If there is only one function in the template, # default to it. all_functions = [f for f in self._function_provider.get_all()] if len(all_functions) == 1: return all_functions[0].name # Get all the available function names to print helpful exception message all_function_names = [f.name for f in all_functions] # There are more functions in the template, and function identifier is not provided, hence raise. raise InvokeContextException("You must provide a function identifier (function's Logical ID in the template). " "Possible options in your template: {}".format(all_function_names))
0.006861
def setCache(self, val = 1): """ Sets cache on (or updates), or turns off """ # first clear the old cached values self.cacheConnections = [] self.cacheLayers = [] if val: for layer in self.layers: if layer.active and not layer.frozen: self.cacheLayers.append( layer ) for connection in self.connections: if connection.active and not connection.frozen: self.cacheConnections.append( connection )
0.015094
def lock(self): """Lock the Sesame. Return True on success, else False.""" endpoint = API_SESAME_CONTROL_ENDPOINT.format(self.device_id) payload = {'type': 'lock'} response = self.account.request('POST', endpoint, payload=payload) if response is None: return False if response.status_code == 200 or response.status_code == 204: return True return False
0.00463
def tab(self): """Move to the next tab space, or the end of the screen if there aren't anymore left. """ for stop in sorted(self.tabstops): if self.cursor.x < stop: column = stop break else: column = self.columns - 1 self.cursor.x = column
0.005814
def HSV_to_RGB(cobj, target_rgb, *args, **kwargs): """ HSV to RGB conversion. H values are in degrees and are 0 to 360. S values are a percentage, 0.0 to 1.0. V values are a percentage, 0.0 to 1.0. """ H = cobj.hsv_h S = cobj.hsv_s V = cobj.hsv_v h_floored = int(math.floor(H)) h_sub_i = int(h_floored / 60) % 6 var_f = (H / 60.0) - (h_floored // 60) var_p = V * (1.0 - S) var_q = V * (1.0 - var_f * S) var_t = V * (1.0 - (1.0 - var_f) * S) if h_sub_i == 0: rgb_r = V rgb_g = var_t rgb_b = var_p elif h_sub_i == 1: rgb_r = var_q rgb_g = V rgb_b = var_p elif h_sub_i == 2: rgb_r = var_p rgb_g = V rgb_b = var_t elif h_sub_i == 3: rgb_r = var_p rgb_g = var_q rgb_b = V elif h_sub_i == 4: rgb_r = var_t rgb_g = var_p rgb_b = V elif h_sub_i == 5: rgb_r = V rgb_g = var_p rgb_b = var_q else: raise ValueError("Unable to convert HSL->RGB due to value error.") # TODO: Investigate intent of following code block. # In the event that they define an HSV color and want to convert it to # a particular RGB space, let them override it here. # if target_rgb is not None: # rgb_type = target_rgb # else: # rgb_type = cobj.rgb_type return target_rgb(rgb_r, rgb_g, rgb_b)
0.000694
def get_user_id_from_email(self, email): """ Uses the get-all-user-accounts Portals API to retrieve the user-id by supplying an email. """ accts = self.get_all_user_accounts() for acct in accts: if acct['email'] == email: return acct['id'] return None
0.00625
def _analyze_read_write(self): """ Compute variables read/written/... """ write_var = [x.variables_written_as_expression for x in self.nodes] write_var = [x for x in write_var if x] write_var = [item for sublist in write_var for item in sublist] write_var = list(set(write_var)) # Remove dupplicate if they share the same string representation write_var = [next(obj) for i, obj in groupby(sorted(write_var, key=lambda x: str(x)), lambda x: str(x))] self._expression_vars_written = write_var write_var = [x.variables_written for x in self.nodes] write_var = [x for x in write_var if x] write_var = [item for sublist in write_var for item in sublist] write_var = list(set(write_var)) # Remove dupplicate if they share the same string representation write_var = [next(obj) for i, obj in\ groupby(sorted(write_var, key=lambda x: str(x)), lambda x: str(x))] self._vars_written = write_var read_var = [x.variables_read_as_expression for x in self.nodes] read_var = [x for x in read_var if x] read_var = [item for sublist in read_var for item in sublist] # Remove dupplicate if they share the same string representation read_var = [next(obj) for i, obj in\ groupby(sorted(read_var, key=lambda x: str(x)), lambda x: str(x))] self._expression_vars_read = read_var read_var = [x.variables_read for x in self.nodes] read_var = [x for x in read_var if x] read_var = [item for sublist in read_var for item in sublist] # Remove dupplicate if they share the same string representation read_var = [next(obj) for i, obj in\ groupby(sorted(read_var, key=lambda x: str(x)), lambda x: str(x))] self._vars_read = read_var self._state_vars_written = [x for x in self.variables_written if\ isinstance(x, StateVariable)] self._state_vars_read = [x for x in self.variables_read if\ isinstance(x, (StateVariable))] self._solidity_vars_read = [x for x in self.variables_read if\ isinstance(x, (SolidityVariable))] self._vars_read_or_written = self._vars_written + self._vars_read slithir_variables = [x.slithir_variables for x in self.nodes] slithir_variables = [x for x in slithir_variables if x] self._slithir_variables = [item for sublist in slithir_variables for item in sublist]
0.006126
def prompt_4_yes_no(question): """ Ask a question and prompt for yes or no :param question: Question to ask; answer is yes/no :return: :boolean """ while True: sys.stdout.write(question + ' (y/n)? ') try: choice = raw_input().lower() except: choice = input().lower() if choice == 'yes' or choice == 'y': return True elif choice == 'no' or choice == 'n': return False else: printError('\'%s\' is not a valid answer. Enter \'yes\'(y) or \'no\'(n).' % choice)
0.004724
def select_server(self, selector, server_selection_timeout=None, address=None): """Like select_servers, but choose a random server if several match.""" return random.choice(self.select_servers(selector, server_selection_timeout, address))
0.011962
def set_credentials(self, client_id=None, client_secret=None): """ set given credentials and reset the session """ self._client_id = client_id self._client_secret = client_secret # make sure to reset session due to credential change self._session = None
0.006452
def get_parent_gradebooks(self, gradebook_id): """Gets the parents of the given gradebook. arg: gradebook_id (osid.id.Id): the ``Id`` of a gradebook return: (osid.grading.GradebookList) - the parents of the gradebook raise: NotFound - ``gradebook_id`` is not found raise: NullArgument - ``gradebook_id`` is ``null`` raise: OperationFailed - unable to complete request raise: PermissionDenied - authorization failure *compliance: mandatory -- This method must be implemented.* """ # Implemented from template for # osid.resource.BinHierarchySession.get_parent_bins if self._catalog_session is not None: return self._catalog_session.get_parent_catalogs(catalog_id=gradebook_id) return GradebookLookupSession( self._proxy, self._runtime).get_gradebooks_by_ids( list(self.get_parent_gradebook_ids(gradebook_id)))
0.003033
def Barati_high(Re): r'''Calculates drag coefficient of a smooth sphere using the method in [1]_. .. math:: C_D = 8\times 10^{-6}\left[(Re/6530)^2 + \tanh(Re) - 8\ln(Re)/\ln(10)\right] - 0.4119\exp(-2.08\times10^{43}/[Re + Re^2]^4) -2.1344\exp(-\{[\ln(Re^2 + 10.7563)/\ln(10)]^2 + 9.9867\}/Re) +0.1357\exp(-[(Re/1620)^2 + 10370]/Re) - 8.5\times 10^{-3}\{2\ln[\tanh(\tanh(Re))]/\ln(10) - 2825.7162\}/Re + 2.4795 Parameters ---------- Re : float Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-] Returns ------- Cd : float Drag coefficient [-] Notes ----- Range is Re <= 1E6 This model is the wider-range model the authors developed. At sufficiently low diameters or Re values, drag is no longer a phenomena. Examples -------- Matching example in [1]_, in a table of calculated values. >>> Barati_high(200.) 0.7730544082789523 References ---------- .. [1] Barati, Reza, Seyed Ali Akbar Salehi Neyshabouri, and Goodarz Ahmadi. "Development of Empirical Models with High Accuracy for Estimation of Drag Coefficient of Flow around a Smooth Sphere: An Evolutionary Approach." Powder Technology 257 (May 2014): 11-19. doi:10.1016/j.powtec.2014.02.045. ''' Re2 = Re*Re t0 = 1.0/Re t1 = (Re/6530.) t2 = (Re/1620.) t3 = log10(Re2 + 10.7563) tanhRe = tanh(Re) Cd = (8E-6*(t1*t1 + tanhRe - 8.0*log10(Re)) - 0.4119*exp(-2.08E43/(Re+Re2)**4) - 2.1344*exp(-t0*(t3*t3 + 9.9867)) + 0.1357*exp(-t0*(t2*t2 + 10370.)) - 8.5E-3*t0*(2.0*log10(tanh(tanhRe)) - 2825.7162) + 2.4795) return Cd
0.003413
def unregister_signal_handlers(): """ set signal handlers to default """ signal.signal(SIGNAL_STACKTRACE, signal.SIG_IGN) signal.signal(SIGNAL_PDB, signal.SIG_IGN)
0.005714
def save_plain_image_as_file(self, filepath, format='png', quality=90): """Used for generating thumbnails. Does not include overlaid graphics. """ img_w = self.get_plain_image_as_widget() # assumes that the image widget has some method for saving to # a file img_w.save(filepath, format=format, quality=quality)
0.005435
def get_failed_requests(self, results): """Return the requests that failed. :param results: the results of a membership request check :type results: :class:`list` :return: the failed requests :rtype: generator """ data = {member['guid']: member for member in results} for request in self.requests: if request['guid'] not in data: yield request
0.004587
def create(self): """ Create the link on the nodes """ node1 = self._nodes[0]["node"] adapter_number1 = self._nodes[0]["adapter_number"] port_number1 = self._nodes[0]["port_number"] node2 = self._nodes[1]["node"] adapter_number2 = self._nodes[1]["adapter_number"] port_number2 = self._nodes[1]["port_number"] # Get an IP allowing communication between both host try: (node1_host, node2_host) = yield from node1.compute.get_ip_on_same_subnet(node2.compute) except ValueError as e: raise aiohttp.web.HTTPConflict(text=str(e)) # Reserve a UDP port on both side response = yield from node1.compute.post("/projects/{}/ports/udp".format(self._project.id)) self._node1_port = response.json["udp_port"] response = yield from node2.compute.post("/projects/{}/ports/udp".format(self._project.id)) self._node2_port = response.json["udp_port"] node1_filters = {} node2_filters = {} filter_node = self._get_filter_node() if filter_node == node1: node1_filters = self.get_active_filters() elif filter_node == node2: node2_filters = self.get_active_filters() # Create the tunnel on both side self._link_data.append({ "lport": self._node1_port, "rhost": node2_host, "rport": self._node2_port, "type": "nio_udp", "filters": node1_filters }) yield from node1.post("/adapters/{adapter_number}/ports/{port_number}/nio".format(adapter_number=adapter_number1, port_number=port_number1), data=self._link_data[0], timeout=120) self._link_data.append({ "lport": self._node2_port, "rhost": node1_host, "rport": self._node1_port, "type": "nio_udp", "filters": node2_filters }) try: yield from node2.post("/adapters/{adapter_number}/ports/{port_number}/nio".format(adapter_number=adapter_number2, port_number=port_number2), data=self._link_data[1], timeout=120) except Exception as e: # We clean the first NIO yield from node1.delete("/adapters/{adapter_number}/ports/{port_number}/nio".format(adapter_number=adapter_number1, port_number=port_number1), timeout=120) raise e self._created = True
0.003284
def load(*files): """ Loads configuration from one or more files by merging right to left. :Parameters: *files : `file-like` A YAML file to read. :Returns: `dict` : the configuration document """ if len(files) == 0: raise errors.ConfigError("No config files provided.") doc = merge(*(yaml.safe_load(f) for f in files)) return propagate_defaults(doc)
0.002387
def process_response(self, request, response): """ Sets the cache and deals with caching headers if needed """ if not self.should_cache(request, response): # We don't need to update the cache, just return return response response = self.patch_headers(response) self.set_cache(request, response) return response
0.007792
def pos(self, x=None, y=None): u'''Move or query the window cursor.''' if x is not None: System.Console.CursorLeft=x else: x = System.Console.CursorLeft if y is not None: System.Console.CursorTop=y else: y = System.Console.CursorTop return x, y
0.011429
def all_state_variables_read(self): """ recursive version of variables_read """ if self._all_state_variables_read is None: self._all_state_variables_read = self._explore_functions( lambda x: x.state_variables_read) return self._all_state_variables_read
0.00641
def rewrite(self, source, token=None, client=None): """Rewrite source blob into this one. If :attr:`user_project` is set on the bucket, bills the API request to that project. :type source: :class:`Blob` :param source: blob whose contents will be rewritten into this blob. :type token: str :param token: Optional. Token returned from an earlier, not-completed call to rewrite the same source blob. If passed, result will include updated status, total bytes written. :type client: :class:`~google.cloud.storage.client.Client` or ``NoneType`` :param client: Optional. The client to use. If not passed, falls back to the ``client`` stored on the blob's bucket. :rtype: tuple :returns: ``(token, bytes_rewritten, total_bytes)``, where ``token`` is a rewrite token (``None`` if the rewrite is complete), ``bytes_rewritten`` is the number of bytes rewritten so far, and ``total_bytes`` is the total number of bytes to be rewritten. """ client = self._require_client(client) headers = _get_encryption_headers(self._encryption_key) headers.update(_get_encryption_headers(source._encryption_key, source=True)) query_params = self._query_params if "generation" in query_params: del query_params["generation"] if token: query_params["rewriteToken"] = token if source.generation: query_params["sourceGeneration"] = source.generation if self.kms_key_name is not None: query_params["destinationKmsKeyName"] = self.kms_key_name api_response = client._connection.api_request( method="POST", path=source.path + "/rewriteTo" + self.path, query_params=query_params, data=self._properties, headers=headers, _target_object=self, ) rewritten = int(api_response["totalBytesRewritten"]) size = int(api_response["objectSize"]) # The resource key is set if and only if the API response is # completely done. Additionally, there is no rewrite token to return # in this case. if api_response["done"]: self._set_properties(api_response["resource"]) return None, rewritten, size return api_response["rewriteToken"], rewritten, size
0.001175
def get_re_experiment(case, minor=1): """ Returns an experiment that uses the Roth-Erev learning method. """ locAdj = "ac" experimentation = 0.55 recency = 0.3 tau = 100.0 decay = 0.999 nStates = 3 # stateless RE? Pd0 = get_pd_max(case, profile) Pd_min = get_pd_min(case, profile) market = pyreto.SmartMarket(case, priceCap=cap, decommit=decommit, auctionType=auctionType, locationalAdjustment=locAdj) experiment = pyreto.continuous.MarketExperiment([], [], market) portfolios, sync_cond = get_portfolios3() for gidx in portfolios: g = [case.generators[i] for i in gidx] learner = VariantRothErev(experimentation, recency) learner.explorer = BoltzmannExplorer(tau, decay) task, agent = get_discrete_task_agent(g, market, nStates, nOffer, markups, withholds, maxSteps, learner, Pd0, Pd_min) print "ALL ACTIONS:", len(task.env._allActions) * nStates experiment.tasks.append(task) experiment.agents.append(agent) passive = [case.generators[i] for i in sync_cond] passive[0].p_min = 0.001 # Avoid invalid offer withholding. passive[0].p_max = 0.002 task, agent = get_zero_task_agent(passive, market, 1, maxSteps) experiment.tasks.append(task) experiment.agents.append(agent) return experiment
0.003531
def make_bindings_type(filenames,color_input,colorkey,file_dictionary,sidebar,bounds): # instantiating string the main string block for the javascript block of html code string = '' ''' # logic for instantiating variable colorkey input if not colorkeyfields == False: colorkey = 'selectedText' ''' # iterating through each geojson filename count = 0 for row in filenames: color_input = '' colorkeyfields = False count += 1 filename = row zoomrange = ['',''] # reading in geojson file into memory with open(filename) as data_file: data = json.load(data_file) #pprint(data) # getting the featuretype which will later dictate what javascript splices are needed data = data['features'] data = data[0] featuretype = data['geometry'] featuretype = featuretype['type'] data = data['properties'] # logic for overwriting colorkey fields if it exists for the filename # in the file dictionary try: colorkeyfields = file_dictionary[filename][str('colorkeyfields')] except KeyError: colorkeyfields = False except TypeError: colorkeyfields = False if not colorkeyfields == False: if len(colorkeyfields) == 1: colorkey = colorkeyfields[0] colorkeyfields = False try: zoomrange = file_dictionary[filename][str('zooms')] except KeyError: zoomrange = ['',''] except TypeError: zoomrange = ['',''] # code for if the file_dictionary input isn't false #(i.e. getting the color inputs out of dictionary variable) if file_dictionary==False and colorkey == False: # logic for getting the colorline for different feature types # the point feature requires a different line of code if featuretype == 'Point': colorline = get_colorline_marker(color_input) else: colorline = get_colorline_marker2(color_input) # setting minzoom and maxzoom to be sent into js parsing minzoom,maxzoom = zoomrange # getting filter file dictionary if filter_dictonary exists if not file_dictionary == False: filter_file_dictionary = file_dictionary[filename] else: filter_file_dictionary = False # checking to see if a chart_dictionary exists try: chart_dictionary = filter_file_dictionary['chart_dictionary'] except KeyError: chart_dictionary = False except TypeError: chart_dictionary = False # sending min and max zoom into the function that makes the zoom block zoomblock = make_zoom_block(minzoom,maxzoom,count,colorkeyfields,bounds,filter_file_dictionary) # logic for if a color key is given # HINT look here for rgb raw color integration in a color line if not colorkey == '': if row == filenames[0]: if colorkey == 'selectedText': colorkey = """feature.properties[%s]""" % colorkey else: colorkey = """feature.properties['%s']""" % colorkey if featuretype == 'Point': colorline = get_colorline_marker(str(colorkey)) else: colorline = get_colorline_marker2(str(colorkey)) # this may be able to be deleted # test later # im not sure what the fuck its here for if file_dictionary == False and colorkey == '': if featuretype == 'Point': colorline = get_colorline_marker(color_input) else: colorline = get_colorline_marker2(color_input) if colorkey == '' and colorkeyfields == False: if featuretype == 'Point': colorline = get_colorline_marker(color_input) else: colorline = get_colorline_marker2(color_input) # iterating through each header headers = [] for row in data: headers.append(str(row)) # logic for getting sidebar string that will be added in make_blockstr() if sidebar == True: sidebarstring = make_sidebar_string(headers,chart_dictionary) else: sidebarstring = '' # section of javascript code dedicated to the adding the data layer if count == 1: blocky = """ function add%s() { \n\tfunction addDataToMap%s(data, map) { \t\tvar dataLayer = L.geoJson(data); \t\tvar map = L.mapbox.map('map', 'mapbox.streets',{ \t\t\tzoom: 5 \t\t\t}).fitBounds(dataLayer.getBounds()); \t\tdataLayer.addTo(map) \t}\n""" % (count,count) else: blocky = """ function add%s() { \n\tfunction addDataToMap%s(data, map) { \t\tvar dataLayer = L.geoJson(data); \t\tdataLayer.addTo(map) \t}\n""" % (count,count) # making the string section that locally links the geojson file to the html document ''' if not time == '': preloc='\tfunction add%s() {\n' % (str(count)) loc = """\t$.getJSON('http://localhost:8000/%s',function(data) { addDataToMap%s(data,map); });""" % (filename,count) loc = preloc + loc else: ''' loc = """\t$.getJSON('http://localhost:8000/%s',function(data) { addDataToMap%s(data,map); });""" % (filename,count) # creating block to be added to the total or constituent string block if featuretype == 'Point': bindings = make_bindings(headers,count,colorline,featuretype,zoomblock,filename,sidebarstring,colorkeyfields)+'\n' stringblock = blocky + loc + bindings else: bindings = make_bindings(headers,count,colorline,featuretype,zoomblock,filename,sidebarstring,colorkeyfields)+'\n' stringblock = blocky + loc + bindings # adding the stringblock (one geojson file javascript block) to the total string block string += stringblock # adding async function to end of string block string = string + async_function_call(count) return string
0.049836
def objects_patch(self, bucket, key, info): """Updates the metadata associated with an object. Args: bucket: the name of the bucket containing the object. key: the key of the object being updated. info: the metadata to update. Returns: A parsed object information dictionary. Raises: Exception if there is an error performing the operation. """ url = Api._ENDPOINT + (Api._OBJECT_PATH % (bucket, Api._escape_key(key))) return google.datalab.utils.Http.request(url, method='PATCH', data=info, credentials=self._credentials)
0.001597
def set(self): """Set event flag to true and resolve future(s) returned by until_set() Notes ----- A call to set() may result in control being transferred to done_callbacks attached to the future returned by until_set(). """ self._flag = True old_future = self._waiting_future # Replace _waiting_future with a fresh one incase someone woken up by set_result() # sets this AsyncEvent to False before waiting on it to be set again. self._waiting_future = tornado_Future() old_future.set_result(True)
0.005042
def _make_minimal(dictionary): """ This function removes all the keys whose value is either None or an empty dictionary. """ new_dict = {} for key, value in dictionary.items(): if value is not None: if isinstance(value, dict): new_value = _make_minimal(value) if new_value: new_dict[key] = new_value else: new_dict[key] = value return new_dict
0.002123
def _get_cgroup_from_proc(self, cgroup, pid, filename): """Find a specific cgroup file, containing metrics to extract.""" params = { "file": filename, } return DockerUtil.find_cgroup_from_proc(self._mountpoints, pid, cgroup, self.docker_util._docker_root) % (params)
0.009677