text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def generate_security_data(self):
"""Generate a dict of security data for "initial" data."""
timestamp = int(time.time())
security_dict = {
'content_type': str(self.target_object._meta),
'object_pk': str(self.target_object._get_pk_val()),
'timestamp': str(timestamp),
'security_hash': self.initial_security_hash(timestamp),
}
return security_dict | 0.004608 |
def clear_cache(self):
"""
Clears any cache associated with the serial model and the engines
seen by the direct view.
"""
self.underlying_model.clear_cache()
try:
logger.info('DirectView results has {} items. Clearing.'.format(
len(self._dv.results)
))
self._dv.purge_results('all')
if self._purge_client:
self._dv.client.purge_everything()
except:
pass | 0.005988 |
def remove_core_element(self, model):
"""Remove respective core element of handed scoped variable model
:param ScopedVariableModel model: Scoped variable model which core element should be removed
:return:
"""
assert model.scoped_variable.parent is self.model.state
gui_helper_state_machine.delete_core_element_of_model(model) | 0.008 |
def load(self, **kwargs):
"""Custom load method to address issue in 11.6.0 Final,
where non existing objects would be True.
"""
if LooseVersion(self.tmos_ver) == LooseVersion('11.6.0'):
return self._load_11_6(**kwargs)
else:
return super(Rule, self)._load(**kwargs) | 0.006061 |
def sort_values(self, by, ascending=True):
"""Sort the DataFrame based on a column.
Unlike Pandas, one can sort by data from both index and regular columns.
Currently possible to sort only on a single column since Weld is missing multiple-column sort.
Note this is an expensive operation (brings all data to Weld).
Parameters
----------
by : str or list of str
Column names to sort.
ascending : bool, optional
Returns
-------
DataFrame
DataFrame sorted according to the column.
"""
check_type(ascending, bool)
check_str_or_list_str(by)
by = as_list(by)
if len(by) > 1:
raise NotImplementedError('Weld does not yet support sorting on multiple columns')
all_data = self.reset_index()
by_data = all_data[by]
sorted_indices = weld_sort(by_data._gather_data_for_weld(),
by_data._gather_weld_types(),
'sort_index',
ascending=ascending)
new_index = self.index._iloc_indices(sorted_indices)
new_columns = list(self._iter())
new_column_names = [column.name for column in new_columns]
new_columns = [_series_iloc(column, sorted_indices, new_index) for column in new_columns]
new_data = OrderedDict(zip(new_column_names, new_columns))
return DataFrame(new_data, new_index) | 0.003968 |
def sync(self):
"""Sync a bucket.
Force all API calls to S3 and populate the database with the current state of S3.
"""
for key in mimicdb.backend.smembers(tpl.bucket % self.name):
mimicdb.backend.delete(tpl.key % (self.name, key))
mimicdb.backend.delete(tpl.bucket % self.name)
mimicdb.backend.sadd(tpl.connection, self.name)
for key in self.list(force=True):
mimicdb.backend.sadd(tpl.bucket % self.name, key.name)
mimicdb.backend.hmset(tpl.key % (self.name, key.name), dict(size=key.size, md5=key.etag.strip('"'))) | 0.006547 |
def getStreamURL(self, **params):
""" Returns a stream url that may be used by external applications such as VLC.
Parameters:
**params (dict): optional parameters to manipulate the playback when accessing
the stream. A few known parameters include: maxVideoBitrate, videoResolution
offset, copyts, protocol, mediaIndex, platform.
Raises:
:class:`plexapi.exceptions.Unsupported`: When the item doesn't support fetching a stream URL.
"""
if self.TYPE not in ('movie', 'episode', 'track'):
raise Unsupported('Fetching stream URL for %s is unsupported.' % self.TYPE)
mvb = params.get('maxVideoBitrate')
vr = params.get('videoResolution', '')
params = {
'path': self.key,
'offset': params.get('offset', 0),
'copyts': params.get('copyts', 1),
'protocol': params.get('protocol'),
'mediaIndex': params.get('mediaIndex', 0),
'X-Plex-Platform': params.get('platform', 'Chrome'),
'maxVideoBitrate': max(mvb, 64) if mvb else None,
'videoResolution': vr if re.match('^\d+x\d+$', vr) else None
}
# remove None values
params = {k: v for k, v in params.items() if v is not None}
streamtype = 'audio' if self.TYPE in ('track', 'album') else 'video'
# sort the keys since the randomness fucks with my tests..
sorted_params = sorted(params.items(), key=lambda val: val[0])
return self._server.url('/%s/:/transcode/universal/start.m3u8?%s' %
(streamtype, urlencode(sorted_params)), includeToken=True) | 0.005875 |
def reads_overlapping_variant(
samfile,
variant,
chromosome=None,
use_duplicate_reads=USE_DUPLICATE_READS,
use_secondary_alignments=USE_SECONDARY_ALIGNMENTS,
min_mapping_quality=MIN_READ_MAPPING_QUALITY):
"""
Find reads in the given SAM/BAM file which overlap the given variant and
return them as a list of AlleleRead objects.
Parameters
----------
samfile : pysam.AlignmentFile
variant : varcode.Variant
chromosome : str
use_duplicate_reads : bool
Should we use reads that have been marked as PCR duplicates
use_secondary_alignments : bool
Should we use reads at locations other than their best alignment
min_mapping_quality : int
Drop reads below this mapping quality
only_alt_allele : bool
Filter reads to only include those that support the alt allele of
the variant.
Returns sequence of AlleleRead objects.
"""
logger.info("Gathering reads for %s", variant)
if chromosome is None:
chromosome = variant.contig
logger.info(
"Gathering variant reads for variant %s (chromosome = %s, gene names = %s)",
variant,
chromosome,
variant.gene_names)
base1_position, ref, alt = trim_variant(variant)
if len(ref) == 0:
# if the variant is an insertion
base1_position_before_variant = base1_position
base1_position_after_variant = base1_position + 1
else:
base1_position_before_variant = base1_position - 1
base1_position_after_variant = base1_position + len(ref)
locus_reads = locus_read_generator(
samfile=samfile,
chromosome=chromosome,
base1_position_before_variant=base1_position_before_variant,
base1_position_after_variant=base1_position_after_variant,
use_duplicate_reads=use_duplicate_reads,
use_secondary_alignments=use_secondary_alignments,
min_mapping_quality=min_mapping_quality)
allele_reads = allele_reads_from_locus_reads(
locus_reads=locus_reads,
n_ref=len(ref))
return allele_reads | 0.000936 |
def video_category(self):
"""doc: http://open.youku.com/docs/doc?id=90
"""
url = 'https://openapi.youku.com/v2/schemas/video/category.json'
r = requests.get(url)
check_error(r)
return r.json() | 0.008333 |
def add(self, component: Union[Component, Sequence[Component]]) -> None:
"""Add a widget to the grid in the next available cell.
Searches over columns then rows for available cells.
Parameters
----------
components : bowtie._Component
A Bowtie widget instance.
"""
try:
self[Span(*self._available_cell())] = component
except NoUnusedCellsError:
span = list(self._spans.keys())[-1]
self._spans[span] += component | 0.003802 |
def recv(self, timeout=None):
"""Receive an ISOTP frame, blocking if none is available in the buffer
for at most 'timeout' seconds."""
try:
return self.rx_queue.get(timeout is None or timeout > 0, timeout)
except queue.Empty:
return None | 0.006803 |
def get_or_default_template_file_name(ctx, param, provided_value, include_build):
"""
Default value for the template file name option is more complex than what Click can handle.
This method either returns user provided file name or one of the two default options (template.yaml/template.yml)
depending on the file that exists
:param ctx: Click Context
:param param: Param name
:param provided_value: Value provided by Click. It could either be the default value or provided by user.
:return: Actual value to be used in the CLI
"""
search_paths = [
"template.yaml",
"template.yml",
]
if include_build:
search_paths.insert(0, os.path.join(".aws-sam", "build", "template.yaml"))
if provided_value == _TEMPLATE_OPTION_DEFAULT_VALUE:
# Default value was used. Value can either be template.yaml or template.yml. Decide based on which file exists
# .yml is the default, even if it does not exist.
provided_value = "template.yml"
for option in search_paths:
if os.path.exists(option):
provided_value = option
break
result = os.path.abspath(provided_value)
LOG.debug("Using SAM Template at %s", result)
return result | 0.005482 |
def tx_context_for_idx(self, tx_in_idx):
"""
solution_script: alleged solution to the puzzle_script
puzzle_script: the script protecting the coins
"""
tx_in = self.tx.txs_in[tx_in_idx]
tx_context = TxContext()
tx_context.lock_time = self.tx.lock_time
tx_context.version = self.tx.version
tx_context.puzzle_script = b'' if self.tx.missing_unspent(tx_in_idx) else self.tx.unspents[tx_in_idx].script
tx_context.solution_script = tx_in.script
tx_context.witness_solution_stack = tx_in.witness
tx_context.sequence = tx_in.sequence
tx_context.tx_in_idx = tx_in_idx
return tx_context | 0.004354 |
def close(self):
"""Close the queue, signalling that no more data can be put into the queue."""
self.read_queue.put(QueueClosed)
self.write_queue.put(QueueClosed) | 0.016129 |
def get_ad_info(self):
"""
Polls for basic AD information (needed for determine password usage characteristics!)
"""
logger.debug('Polling AD for basic info')
ldap_filter = r'(distinguishedName=%s)' % self._tree
attributes = MSADInfo.ATTRS
for entry in self.pagedsearch(ldap_filter, attributes):
self._ldapinfo = MSADInfo.from_ldap(entry)
return self._ldapinfo
logger.debug('Poll finished!') | 0.031401 |
def add(lhs, rhs):
"""Returns element-wise sum of the input arrays with broadcasting.
Equivalent to ``lhs + rhs``, ``mx.nd.broadcast_add(lhs, rhs)`` and
``mx.nd.broadcast_plus(lhs, rhs)``.
.. note::
If the corresponding dimensions of two arrays have the same size or one of them has size 1,
then the arrays are broadcastable to a common shape
Parameters
----------
lhs : scalar or mxnet.ndarray.array
First array to be added.
rhs : scalar or mxnet.ndarray.array
Second array to be added.
If ``lhs.shape != rhs.shape``, they must be
broadcastable to a common shape.
Returns
-------
NDArray
The element-wise sum of the input arrays.
Examples
--------
>>> x = mx.nd.ones((2,3))
>>> y = mx.nd.arange(2).reshape((2,1))
>>> z = mx.nd.arange(2).reshape((1,2))
>>> x.asnumpy()
array([[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=float32)
>>> y.asnumpy()
array([[ 0.],
[ 1.]], dtype=float32)
>>> z.asnumpy()
array([[ 0., 1.]], dtype=float32)
>>> (x+2).asnumpy()
array([[ 3., 3., 3.],
[ 3., 3., 3.]], dtype=float32)
>>> (x+y).asnumpy()
array([[ 1., 1., 1.],
[ 2., 2., 2.]], dtype=float32)
>>> mx.nd.add(x,y).asnumpy()
array([[ 1., 1., 1.],
[ 2., 2., 2.]], dtype=float32)
>>> (z + y).asnumpy()
array([[ 0., 1.],
[ 1., 2.]], dtype=float32)
"""
# pylint: disable= no-member, protected-access
return _ufunc_helper(
lhs,
rhs,
op.broadcast_add,
operator.add,
_internal._plus_scalar,
None) | 0.001183 |
def render(self, flags: Flags) -> List[Text]:
"""
Returns a list of randomly chosen outcomes for each sentence of the
list.
"""
return [x.render(flags) for x in self.sentences] | 0.009259 |
def _get_char(self):
"""Read a character from input.
@rtype: string
"""
if self.ungotten_char is None:
if self.eof:
c = ''
else:
c = self.file.read(1)
if c == '':
self.eof = True
elif c == '\n':
self.line_number += 1
else:
c = self.ungotten_char
self.ungotten_char = None
return c | 0.004158 |
def _get_offset_front_id_after_onset_sample_idx(onset_sample_idx, offset_fronts):
"""
Returns the offset_front_id which corresponds to the offset front which occurs
first entirely after the given onset sample_idx.
"""
# get all the offset_front_ids
offset_front_ids = [i for i in np.unique(offset_fronts) if i != 0]
best_id_so_far = -1
closest_offset_sample_idx = sys.maxsize
for offset_front_id in offset_front_ids:
# get all that offset front's indexes
offset_front_idxs = _get_front_idxs_from_id(offset_fronts, offset_front_id)
# get the sample indexes
offset_front_sample_idxs = [s for _f, s in offset_front_idxs]
# if each sample index is greater than onset_sample_idx, keep this offset front if it is the best one so far
min_sample_idx = min(offset_front_sample_idxs)
if min_sample_idx > onset_sample_idx and min_sample_idx < closest_offset_sample_idx:
closest_offset_sample_idx = min_sample_idx
best_id_so_far = offset_front_id
assert best_id_so_far > 1 or best_id_so_far == -1
return best_id_so_far | 0.005291 |
def list(context, sort, limit, where, verbose):
"""list(context, sort, limit, where, verbose)
List all products.
>>> dcictl product list
:param string sort: Field to apply sort
:param integer limit: Max number of rows to return
:param string where: An optional filter criteria
:param boolean verbose: Display verbose output
"""
result = product.list(context, sort=sort, limit=limit, where=where)
utils.format_output(result, context.format, verbose=verbose) | 0.002004 |
def _ram_buffer(self):
"""Setup the RAM buffer from the C++ code."""
# get the address of the RAM
address = _LIB.Memory(self._env)
# create a buffer from the contents of the address location
buffer_ = ctypes.cast(address, ctypes.POINTER(RAM_VECTOR)).contents
# create a NumPy array from the buffer
return np.frombuffer(buffer_, dtype='uint8') | 0.005025 |
def sanitize_for_archive(url, headers, payload):
"""Sanitize URL of a HTTP request by removing the token information
before storing/retrieving archived items
:param: url: HTTP url request
:param: headers: HTTP headers request
:param: payload: HTTP payload request
:returns the sanitized url, plus the headers and payload
"""
url = re.sub('bot.*/', 'botXXXXX/', url)
return url, headers, payload | 0.004264 |
def t_BIN_STRING(self, t):
r'\'[01]*\'[bB]'
value = t.value[1:-2]
while value and value[0] == '0' and len(value) % 8:
value = value[1:]
# XXX raise in strict mode
# if len(value) % 8:
# raise error.PySmiLexerError("Number of 0s and 1s have to divide by 8 in binary string %s" % t.value, lineno=t.lineno)
return t | 0.007732 |
def accepts(self, tp, converter):
''' Declare that other types may be converted to this property type.
Args:
tp (Property) :
A type that may be converted automatically to this property
type.
converter (callable) :
A function accepting ``value`` to perform conversion of the
value to this property type.
Returns:
self
'''
tp = ParameterizedProperty._validate_type_param(tp)
self.alternatives.append((tp, converter))
return self | 0.003407 |
def _latex_circuit_drawer(circuit,
scale=0.7,
filename=None,
style=None,
plot_barriers=True,
reverse_bits=False,
justify=None):
"""Draw a quantum circuit based on latex (Qcircuit package)
Requires version >=2.6.0 of the qcircuit LaTeX package.
Args:
circuit (QuantumCircuit): a quantum circuit
scale (float): scaling factor
filename (str): file path to save image to
style (dict or str): dictionary of style or file name of style file
reverse_bits (bool): When set to True reverse the bit order inside
registers for the output visualization.
plot_barriers (bool): Enable/disable drawing barriers in the output
circuit. Defaults to True.
justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how
the circuit should be justified.
Returns:
PIL.Image: an in-memory representation of the circuit diagram
Raises:
OSError: usually indicates that ```pdflatex``` or ```pdftocairo``` is
missing.
CalledProcessError: usually points errors during diagram creation.
"""
tmpfilename = 'circuit'
with tempfile.TemporaryDirectory() as tmpdirname:
tmppath = os.path.join(tmpdirname, tmpfilename + '.tex')
_generate_latex_source(circuit, filename=tmppath,
scale=scale, style=style,
plot_barriers=plot_barriers,
reverse_bits=reverse_bits, justify=justify)
image = None
try:
subprocess.run(["pdflatex", "-halt-on-error",
"-output-directory={}".format(tmpdirname),
"{}".format(tmpfilename + '.tex')],
stdout=subprocess.PIPE, stderr=subprocess.DEVNULL,
check=True)
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to compile latex. '
'Is `pdflatex` installed? '
'Skipping latex circuit drawing...')
raise
except subprocess.CalledProcessError as ex:
with open('latex_error.log', 'wb') as error_file:
error_file.write(ex.stdout)
logger.warning('WARNING Unable to compile latex. '
'The output from the pdflatex command can '
'be found in latex_error.log')
raise
else:
try:
base = os.path.join(tmpdirname, tmpfilename)
subprocess.run(["pdftocairo", "-singlefile", "-png", "-q",
base + '.pdf', base])
image = Image.open(base + '.png')
image = utils._trim(image)
os.remove(base + '.png')
if filename:
image.save(filename, 'PNG')
except OSError as ex:
if ex.errno == errno.ENOENT:
logger.warning('WARNING: Unable to convert pdf to image. '
'Is `poppler` installed? '
'Skipping circuit drawing...')
raise
return image | 0.00029 |
def _frame_received(self, frame):
"""
Put the frame into the _rx_frames dict with a key of the frame_id.
"""
try:
self._rx_frames[frame["frame_id"]] = frame
except KeyError:
# Has no frame_id, ignore?
pass
_LOGGER.debug("Frame received: %s", frame)
# Give the frame to any interested functions
for handler in self._rx_handlers:
handler(frame) | 0.004405 |
def get_plugin_actions(self):
"""Return a list of actions related to plugin"""
self.new_project_action = create_action(self,
_("New Project..."),
triggered=self.create_new_project)
self.open_project_action = create_action(self,
_("Open Project..."),
triggered=lambda v: self.open_project())
self.close_project_action = create_action(self,
_("Close Project"),
triggered=self.close_project)
self.delete_project_action = create_action(self,
_("Delete Project"),
triggered=self.delete_project)
self.clear_recent_projects_action =\
create_action(self, _("Clear this list"),
triggered=self.clear_recent_projects)
self.edit_project_preferences_action =\
create_action(self, _("Project Preferences"),
triggered=self.edit_project_preferences)
self.recent_project_menu = QMenu(_("Recent Projects"), self)
if self.main is not None:
self.main.projects_menu_actions += [self.new_project_action,
MENU_SEPARATOR,
self.open_project_action,
self.close_project_action,
self.delete_project_action,
MENU_SEPARATOR,
self.recent_project_menu,
self.toggle_view_action]
self.setup_menu_actions()
return [] | 0.003132 |
def __callbacks(self, msg):
'''this method exists only to make profiling results easier to read'''
if self.callback:
self.callback(msg, *self.callback_args, **self.callback_kwargs) | 0.013636 |
def manage(commands, argv=None, delim=':'):
'''
Parses argv and runs neccessary command. Is to be used in manage.py file.
Accept a dict with digest name as keys and instances of
:class:`Cli<iktomi.management.commands.Cli>`
objects as values.
The format of command is the following::
./manage.py digest_name:command_name[ arg1[ arg2[...]]][ --key1=kwarg1[...]]
where command_name is a part of digest instance method name, args and kwargs
are passed to the method. For details, see
:class:`Cli<iktomi.management.commands.Cli>` docs.
'''
commands = {(k.decode('utf-8') if isinstance(k, six.binary_type) else k): v
for k, v in commands.items()}
# Default django autocompletion script is registered to manage.py
# We use the same name for this script and it seems to be ok
# to implement the same interface
def perform_auto_complete(commands):
from .lazy import LazyCli
cwords = os.environ['COMP_WORDS'].split()[1:]
cword = int(os.environ['COMP_CWORD'])
try:
curr = cwords[cword - 1]
except IndexError:
curr = ''
suggest = []
if len(cwords) > 1 and cwords[0] in commands.keys():
value = commands[cwords[0]]
if isinstance(value, LazyCli):
value = value.get_digest()
for cmd_name, _ in value.get_funcs():
cmd_name = cmd_name[8:]
suggest.append(cmd_name)
if curr == ":":
curr = ''
else:
suggest += list(commands.keys()) + [x+":" for x in commands.keys()]
suggest.sort()
output = u" ".join(filter(lambda x: x.startswith(curr), suggest))
sys.stdout.write(output)
auto_complete = 'IKTOMI_AUTO_COMPLETE' in os.environ or \
'DJANGO_AUTO_COMPLETE' in os.environ
if auto_complete:
perform_auto_complete(commands)
sys.exit(0)
argv = sys.argv if argv is None else argv
if len(argv) > 1:
cmd_name = argv[1]
raw_args = argv[2:]
args, kwargs = [], {}
# parsing params
for item in raw_args:
if item.startswith('--'):
splited = item[2:].split('=', 1)
if len(splited) == 2:
k,v = splited
elif len(splited) == 1:
k,v = splited[0], True
kwargs[k] = v
else:
args.append(item)
# trying to get command instance
if delim in cmd_name:
digest_name, command = cmd_name.split(delim)
else:
digest_name = cmd_name
command = None
try:
digest = commands[digest_name]
except KeyError:
_command_list(commands)
sys.exit('ERROR: Command "{}" not found'.format(digest_name))
try:
if command is None:
if isinstance(digest, Cli):
help_ = digest.description(argv[0], digest_name)
sys.stdout.write(help_)
sys.exit('ERROR: "{}" command digest requires command name'\
.format(digest_name))
digest(*args, **kwargs)
else:
digest(command, *args, **kwargs)
except CommandNotFound:
help_ = digest.description(argv[0], digest_name)
sys.stdout.write(help_)
sys.exit('ERROR: Command "{}:{}" not found'.format(digest_name, command))
else:
_command_list(commands)
sys.exit('Please provide any command') | 0.002459 |
def _create_socket(self):
"""
Creates a new SSL enabled socket and sets its timeout.
"""
log.warning('No certificate check is performed for SSL connections')
s = super(SSL, self)._create_socket()
return wrap_socket(s) | 0.007547 |
def get_tags(name=None,
instance_id=None,
call=None,
location=None,
kwargs=None,
resource_id=None): # pylint: disable=W0613
'''
Retrieve tags for a resource. Normally a VM name or instance_id is passed
in, but a resource_id may be passed instead. If both are passed in, the
instance_id will be used.
CLI Examples:
.. code-block:: bash
salt-cloud -a get_tags mymachine
salt-cloud -a get_tags resource_id=vol-3267ab32
'''
if location is None:
location = get_location()
if instance_id is None:
if resource_id is None:
if name:
instance_id = _get_node(name)['instanceId']
elif 'instance_id' in kwargs:
instance_id = kwargs['instance_id']
elif 'resource_id' in kwargs:
instance_id = kwargs['resource_id']
else:
instance_id = resource_id
params = {'Action': 'DescribeTags',
'Filter.1.Name': 'resource-id',
'Filter.1.Value': instance_id}
return aws.query(params,
setname='tagSet',
location=location,
provider=get_provider(),
opts=__opts__,
sigver='4') | 0.000752 |
def get_edges(self):
"""Get the directed edges from GO term to GO term."""
edge_from_to = []
for parent, children in self.p_from_cs.items():
for child in children:
edge_from_to.append((child, parent))
for parent, children in self.c_from_ps.items():
for child in children:
edge_from_to.append((child, parent))
return edge_from_to | 0.004717 |
def getString(self, config, relation=0):
"""
Return a representation of a Radix according to config.
:param DisplayConfig config: configuration
:param int relation: the relation of this value to actual value
"""
return String(config, self.base).xform(self, relation) | 0.006349 |
def _is_valid_part(self):
"""
Return True if the value of component in attribute "part" is valid,
and otherwise False.
:returns: True if value of component is valid, False otherwise
:rtype: boolean
"""
comp_str = self._encoded_value
# Check if value of component do not have wildcard
if ((comp_str.find(self.WILDCARD_ONE) == -1) and
(comp_str.find(self.WILDCARD_MULTI) == -1)):
return super(CPEComponent2_3, self)._is_valid_part()
# Compilation of regular expression associated with value of part
part_pattern = "^(\{0}|\{1})$".format(self.WILDCARD_ONE,
self.WILDCARD_MULTI)
part_rxc = re.compile(part_pattern)
return part_rxc.match(comp_str) is not None | 0.004802 |
def start(self):
"""Start the component's event loop (thread-safe).
After the event loop is started the Qt thread calls the
component's :py:meth:`~Component.start_event` method, then calls
its :py:meth:`~Component.new_frame_event` and
:py:meth:`~Component.new_config_event` methods as required until
:py:meth:`~Component.stop` is called. Finally the component's
:py:meth:`~Component.stop_event` method is called before the
event loop terminates.
"""
if self._running:
raise RuntimeError('Component {} is already running'.format(
self._owner.__class__.__name__))
self._running = True
self.queue_command(self._owner.start_event)
# process any events that arrived before we started
while self._incoming:
self.queue_command(self._incoming.popleft()) | 0.002225 |
def run_out_of_sample_mds(boot_collection, ref_collection, ref_distance_matrix, index, dimensions, task=_fast_geo, rooted=False, **kwargs):
"""
index = index of the locus the bootstrap sample corresponds to - only important if
using recalc=True in kwargs
"""
fit = np.empty((len(boot_collection), dimensions))
if ISPY3:
query_trees = [PhyloTree(tree.encode(), rooted) for tree in boot_collection.trees]
ref_trees = [PhyloTree(tree.encode(), rooted) for tree in ref_collection.trees]
else:
query_trees = [PhyloTree(tree, rooted) for tree in boot_collection.trees]
ref_trees = [PhyloTree(tree, rooted) for tree in ref_collection.trees]
for i, tree in enumerate(query_trees):
distvec = np.array([task(tree, ref_tree, False) for ref_tree in ref_trees])
oos = OutOfSampleMDS(ref_distance_matrix)
fit[i] = oos.fit(index, distvec, dimensions=dimensions, **kwargs)
return fit | 0.007239 |
def find_latex_font_serif():
r'''
Find an available font to mimic LaTeX, and return its name.
'''
import os, re
import matplotlib.font_manager
name = lambda font: os.path.splitext(os.path.split(font)[-1])[0].split(' - ')[0]
fonts = matplotlib.font_manager.findSystemFonts(fontpaths=None, fontext='ttf')
matches = [
r'.*Computer\ Modern\ Roman.*',
r'.*CMU\ Serif.*',
r'.*CMU.*',
r'.*Times.*',
r'.*DejaVu.*',
r'.*Serif.*',
]
for match in matches:
for font in fonts:
if re.match(match,font):
return name(font)
return None | 0.025597 |
def traverse_preorder(self, leaves=True, internal=True):
'''Perform a preorder traversal starting at this ``Node`` object
Args:
``leaves`` (``bool``): ``True`` to include leaves, otherwise ``False``
``internal`` (``bool``): ``True`` to include internal nodes, otherwise ``False``
'''
s = deque(); s.append(self)
while len(s) != 0:
n = s.pop()
if (leaves and n.is_leaf()) or (internal and not n.is_leaf()):
yield n
s.extend(n.children) | 0.009058 |
def _de_casteljau_one_round(nodes, degree, lambda1, lambda2, lambda3):
r"""Performs one "round" of the de Casteljau algorithm for surfaces.
.. note::
There is also a Fortran implementation of this function, which
will be used if it can be built.
.. note::
This is a helper function, used by :func:`make_transform` and
:func:`_specialize_surface` (and :func:`make_transform` is **only**
used by :func:`_specialize_surface`).
Converts the ``nodes`` into a basis for a surface one degree smaller
by using the barycentric weights:
.. math::
q_{i, j, k} = \lambda_1 \cdot p_{i + 1, j, k} +
\lambda_2 \cdot p_{i, j + 1, k} + \lambda_2 \cdot p_{i, j, k + 1}
.. note:
For degree :math:`d`, the number of nodes should be
:math:`(d + 1)(d + 2)/2`, but we don't verify this.
Args:
nodes (numpy.ndarray): The nodes to reduce.
degree (int): The degree of the surface.
lambda1 (float): Parameter along the reference triangle.
lambda2 (float): Parameter along the reference triangle.
lambda3 (float): Parameter along the reference triangle.
Returns:
numpy.ndarray: The converted nodes.
"""
dimension, num_nodes = nodes.shape
num_new_nodes = num_nodes - degree - 1
new_nodes = np.empty((dimension, num_new_nodes), order="F")
index = 0
# parent_i1 = index + k
# parent_i2 = index + k + 1
# parent_i3 = index + degree + 1
parent_i1 = 0
parent_i2 = 1
parent_i3 = degree + 1
for k in six.moves.xrange(degree):
for unused_j in six.moves.xrange(degree - k):
# NOTE: i = (degree - 1) - j - k
new_nodes[:, index] = (
lambda1 * nodes[:, parent_i1]
+ lambda2 * nodes[:, parent_i2]
+ lambda3 * nodes[:, parent_i3]
)
# Update all the indices.
parent_i1 += 1
parent_i2 += 1
parent_i3 += 1
index += 1
# Update the indices that depend on k.
parent_i1 += 1
parent_i2 += 1
return new_nodes | 0.000466 |
def cli(variant_file, vep, split):
"""Parses a vcf file.\n
\n
Usage:\n
parser infile.vcf\n
If pipe:\n
parser -
"""
from datetime import datetime
from pprint import pprint as pp
if variant_file == '-':
my_parser = VCFParser(fsock=sys.stdin, split_variants=split)
else:
my_parser = VCFParser(infile = variant_file, split_variants=split)
start = datetime.now()
nr_of_variants = 0
for line in my_parser.metadata.print_header():
print(line)
for variant in my_parser:
pp(variant)
nr_of_variants += 1
print('Number of variants: %s' % nr_of_variants) | 0.005926 |
def update(self, values):
""" Updates this row """
response = self.session.patch(self.build_url(''), data={'values': values})
if not response:
return False
data = response.json()
self.values = data.get('values', self.values)
return True | 0.010135 |
def _report_net_metrics(self, container, tags):
"""Find container network metrics by looking at /proc/$PID/net/dev of the container process."""
if self._disable_net_metrics:
self.log.debug("Network metrics are disabled. Skipping")
return
proc_net_file = os.path.join(container['_proc_root'], 'net/dev')
try:
if container['Id'] in self.network_mappings:
networks = self.network_mappings[container['Id']]
else:
networks = self.docker_util.get_container_network_mapping(container)
if not networks:
networks = {'eth0': 'bridge'}
self.network_mappings[container['Id']] = networks
except Exception as e:
# Revert to previous behaviour if the method is missing or failing
# Debug message will only appear once per container, then the cache is used
self.log.debug("Failed to build docker network mapping, using failsafe. Exception: {0}".format(e))
networks = {'eth0': 'bridge'}
self.network_mappings[container['Id']] = networks
try:
with open(proc_net_file, 'r') as fp:
lines = fp.readlines()
"""Two first lines are headers:
Inter-| Receive | Transmit
face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier compressed
"""
for l in lines[2:]:
cols = l.split(':', 1)
interface_name = str(cols[0]).strip()
if interface_name in networks:
net_tags = tags + ['docker_network:'+networks[interface_name]]
x = cols[1].split()
m_func = FUNC_MAP[RATE][self.use_histogram]
m_func(self, "docker.net.bytes_rcvd", long(x[0]), net_tags)
m_func(self, "docker.net.bytes_sent", long(x[8]), net_tags)
except IOError as e:
# It is possible that the container got stopped between the API call and now
self.log.debug("Cannot read network interface file, container likely raced to finish : {0}".format(e)) | 0.005973 |
def saveDirectory(alias):
"""save a directory to a certain alias/nickname"""
if not settings.platformCompatible():
return False
dataFile = open(settings.getDataFile(), "wb")
currentDirectory = os.path.abspath(".")
directory = {alias : currentDirectory}
pickle.dump(directory, dataFile)
speech.success(alias + " will now link to " + currentDirectory + ".")
speech.success("Tip: use 'hallie go to " + alias + "' to change to this directory.") | 0.026667 |
def set_meta_all(self, props):
"""Set metadata values for collection.
``props`` a dict with values for properties.
"""
delta_props = self.get_meta()
for key in delta_props.keys():
if key not in props:
delta_props[key] = None
delta_props.update(props)
self.set_meta(delta_props) | 0.00551 |
def deltas(predicted_values, rewards, mask, gamma=0.99):
r"""Computes TD-residuals from V(s) and rewards.
Where a `delta`, i.e. a td-residual is defined as:
delta_{b,t} = r_{b,t} + \gamma * v_{b,t+1} - v_{b,t}.
Args:
predicted_values: ndarray of shape (B, T+1). NOTE: Expects axis 2 was
squeezed. These represent V(s_bt) for b < B and t < T+1
rewards: ndarray of shape (B, T) of rewards.
mask: ndarray of shape (B, T) of mask for rewards.
gamma: float, discount factor.
Returns:
ndarray of shape (B, T) of one-step TD-residuals.
"""
# `d`s are basically one-step TD residuals.
d = []
_, T = rewards.shape # pylint: disable=invalid-name
for t in range(T):
d.append(rewards[:, t] + (gamma * predicted_values[:, t + 1]) -
predicted_values[:, t])
return np.array(d).T * mask | 0.008314 |
def select_as_dict(self, table_name, columns=None, where=None, extra=None):
"""
Get data in the database and return fetched data as a
|OrderedDict| list.
:param str table_name: |arg_select_table_name|
:param list columns: |arg_select_as_xx_columns|
:param where: |arg_select_where|
:type where: |arg_where_type|
:param str extra: |arg_select_extra|
:return: Table data as |OrderedDict| instances.
:rtype: |list| of |OrderedDict|
:raises simplesqlite.NullDatabaseConnectionError:
|raises_check_connection|
:raises simplesqlite.TableNotFoundError:
|raises_verify_table_existence|
:raises simplesqlite.OperationalError: |raises_operational_error|
:Example:
:ref:`example-select-as-dict`
"""
return self.select_as_tabledata(table_name, columns, where, extra).as_dict().get(table_name) | 0.003168 |
def en_dis_able_interrupts(self, mask):
"""
This callback might be used by a Register to enable/disable Interrupts.
``mask`` is an ``int``, the Interrupts are bits in this mask, the first registered interrupt
has the bit ``(1 << 0)``, the n-th Interrupt the bit ``(1 << (n - 1))``.
If the bit is cleared (``0``) the Interrupt will be disabled.
"""
for shift, interrupt in enumerate(self.interrupts):
if(mask & (1 << shift)):
interrupt.enable = True
else:
interrupt.enable = False | 0.027559 |
def attach_rconfiguration(context, id, name, topic_id, component_types, data):
"""attach_rconfiguration(context, name, topic_id, component_types, data):
Attach an rconfiguration to a Remote CI
>>> dcictl remoteci-attach-rconfiguration ID [OPTIONS]
:param string id: id of the remoteci
:param string name: name of the rconfiguration [required]
:param string topic_id: ID of the topic to associate this rconfiguration
with [required]
:param string component_types: list data to represent the overriden
component_types
:param string data: JSON data of the rconfiguration
"""
result = remoteci.add_rconfiguration(context, id, name, topic_id,
component_types, data)
utils.format_output(result, context.format) | 0.001236 |
def tplot_restore(filename):
"""
This function will restore tplot variables that have been saved with the "tplot_save" command.
.. note::
This function is compatible with the IDL tplot_save routine.
If you have a ".tplot" file generated from IDL, this procedure will restore the data contained in the file.
Not all plot options will transfer over at this time.
Parameters:
filename : str
The file name and full path generated by the "tplot_save" command.
Returns:
None
Examples:
>>> # Restore the saved data from the tplot_save example
>>> import pytplot
>>> pytplot.restore('C:/temp/variable1.pytplot')
"""
#Error check
if not (os.path.isfile(filename)):
print("Not a valid file name")
return
#Check if the restored file was an IDL file
if filename.endswith('.tplot'):
temp_tplot = readsav(filename)
for i in range(len(temp_tplot['dq'])):
data_name = temp_tplot['dq'][i][0].decode("utf-8")
temp_x_data = temp_tplot['dq'][i][1][0][0]
#Pandas reads in data the other way I guess
if len(temp_tplot['dq'][i][1][0][2].shape) == 2:
temp_y_data = np.transpose(temp_tplot['dq'][i][1][0][2])
else:
temp_y_data = temp_tplot['dq'][i][1][0][2]
#If there are more than 4 fields, that means it is a spectrogram
if len(temp_tplot['dq'][i][1][0]) > 4:
temp_v_data = temp_tplot['dq'][i][1][0][4]
#Change from little endian to big endian, since pandas apparently hates little endian
#We might want to move this into the store_data procedure eventually
if (temp_x_data.dtype.byteorder == '>'):
temp_x_data = temp_x_data.byteswap().newbyteorder()
if (temp_y_data.dtype.byteorder == '>'):
temp_y_data = temp_y_data.byteswap().newbyteorder()
if (temp_v_data.dtype.byteorder == '>'):
temp_v_data = temp_v_data.byteswap().newbyteorder()
store_data(data_name, data={'x':temp_x_data, 'y':temp_y_data, 'v':temp_v_data})
else:
#Change from little endian to big endian, since pandas apparently hates little endian
#We might want to move this into the store_data procedure eventually
if (temp_x_data.dtype.byteorder == '>'):
temp_x_data = temp_x_data.byteswap().newbyteorder()
if (temp_y_data.dtype.byteorder == '>'):
temp_y_data = temp_y_data.byteswap().newbyteorder()
store_data(data_name, data={'x':temp_x_data, 'y':temp_y_data})
if temp_tplot['dq'][i][3].dtype.names is not None:
for option_name in temp_tplot['dq'][i][3].dtype.names:
options(data_name, option_name, temp_tplot['dq'][i][3][option_name][0])
data_quants[data_name].trange = temp_tplot['dq'][i][4].tolist()
data_quants[data_name].dtype = temp_tplot['dq'][i][5]
data_quants[data_name].create_time = temp_tplot['dq'][i][6]
for option_name in temp_tplot['tv'][0][0].dtype.names:
if option_name == 'TRANGE':
tplot_options('x_range', temp_tplot['tv'][0][0][option_name][0])
if option_name == 'WSIZE':
tplot_options('wsize', temp_tplot['tv'][0][0][option_name][0])
if option_name == 'VAR_LABEL':
tplot_options('var_label', temp_tplot['tv'][0][0][option_name][0])
if 'P' in temp_tplot['tv'][0][1].tolist():
for option_name in temp_tplot['tv'][0][1]['P'][0].dtype.names:
if option_name == 'TITLE':
tplot_options('title', temp_tplot['tv'][0][1]['P'][0][option_name][0])
#temp_tplot['tv'][0][1] is all of the "settings" variables
#temp_tplot['tv'][0][1]['D'][0] is "device" options
#temp_tplot['tv'][0][1]['P'][0] is "plot" options
#temp_tplot['tv'][0][1]['X'][0] is x axis options
#temp_tplot['tv'][0][1]['Y'][0] is y axis options
####################################################################
else:
temp = pickle.load(open(filename,"rb"))
num_data_quants = temp[0]
for i in range(0, num_data_quants):
data_quants[temp[i+1].name] = temp[i+1]
tplot_opt_glob = temp[num_data_quants+1]
return | 0.011762 |
def get_staking_leaderboard(self, round_num=0, tournament=1):
"""Retrieves the leaderboard of the staking competition for the given
round.
Args:
round_num (int, optional): The round you are interested in,
defaults to current round.
tournament (int, optional): ID of the tournament, defaults to 1
Returns:
list: list of stakers (`dict`)
Each stake in the list as the following structure:
* username (`str`)
* consistency (`float`)
* liveLogloss (`float` or `None`)
* liveAuroc (`float` or `None`)
* validationLogloss (`float`)
* validationAuroc (`float` or `None`)
* stake (`dict`)
* confidence (`decimal.Decimal`)
* insertedAt (`datetime`)
* soc (`decimal.Decimal`)
* txHash (`str`)
* value (`decimal.Decimal`)
Example:
>>> NumerAPI().get_staking_leaderboard(99)
[{'consistency': 83.33333333333334,
'liveLogloss': 0.6941153941722517,
'liveAuroc': 0.5241153941722517,
'stake': {'confidence': Decimal('0.055'),
'insertedAt': datetime.datetime(2018, 3, 18, 0, 20, 31, 724728, tzinfo=tzutc()),
'soc': Decimal('18.18'),
'txHash': '0xf1460c7fe08e7920d3e61492501337db5c89bff22af9fd88b9ff1ad604939f61',
'value': Decimal('1.00')},
'username': 'ci_wp',
'validationLogloss': 0.692269984475575},
'validationAuroc': 0.512269984475575},
..
]
"""
msg = "getting stakes for tournament {} round {}"
self.logger.info(msg.format(tournament, round_num))
query = '''
query($number: Int!
$tournament: Int!) {
rounds(number: $number
tournament: $tournament) {
leaderboard {
consistency
liveLogloss
liveAuroc
username
validationLogloss
validationAuroc
stake {
insertedAt
soc
confidence
value
txHash
}
}
}
}
'''
arguments = {'number': round_num, 'tournament': tournament}
result = self.raw_query(query, arguments)['data']['rounds'][0]
if result is None:
return None
stakes = result['leaderboard']
# filter those with actual stakes
stakes = [item for item in stakes if item["stake"] is not None]
# convert strings to python objects
for s in stakes:
utils.replace(s["stake"], "insertedAt",
utils.parse_datetime_string)
utils.replace(s["stake"], "confidence", utils.parse_float_string)
utils.replace(s["stake"], "soc", utils.parse_float_string)
utils.replace(s["stake"], "value", utils.parse_float_string)
return stakes | 0.001229 |
def withdraw(self, account_id, **params):
"""https://developers.coinbase.com/api/v2#withdraw-funds"""
for required in ['payment_method', 'amount', 'currency']:
if required not in params:
raise ValueError("Missing required parameter: %s" % required)
response = self._post('v2', 'accounts', account_id, 'withdrawals', data=params)
return self._make_api_object(response, Withdrawal) | 0.006834 |
def mutate(self, mutation, timeout=None, metadata=None, credentials=None):
"""Runs mutate operation."""
return self.stub.Mutate(mutation, timeout=timeout, metadata=metadata,
credentials=credentials) | 0.00813 |
def set(self, item, value):
"""
Set new item in-place. Does not consolidate. Adds new Block if not
contained in the current set of items
"""
# FIXME: refactor, clearly separate broadcasting & zip-like assignment
# can prob also fix the various if tests for sparse/categorical
# TODO(EA): Remove an is_extension_ when all extension types satisfy
# the interface
value_is_extension_type = (is_extension_type(value) or
is_extension_array_dtype(value))
# categorical/spares/datetimetz
if value_is_extension_type:
def value_getitem(placement):
return value
else:
if value.ndim == self.ndim - 1:
value = _safe_reshape(value, (1,) + value.shape)
def value_getitem(placement):
return value
else:
def value_getitem(placement):
return value[placement.indexer]
if value.shape[1:] != self.shape[1:]:
raise AssertionError('Shape of new values must be compatible '
'with manager shape')
try:
loc = self.items.get_loc(item)
except KeyError:
# This item wasn't present, just insert at end
self.insert(len(self.items), item, value)
return
if isinstance(loc, int):
loc = [loc]
blknos = self._blknos[loc]
blklocs = self._blklocs[loc].copy()
unfit_mgr_locs = []
unfit_val_locs = []
removed_blknos = []
for blkno, val_locs in libinternals.get_blkno_placements(blknos,
self.nblocks,
group=True):
blk = self.blocks[blkno]
blk_locs = blklocs[val_locs.indexer]
if blk.should_store(value):
blk.set(blk_locs, value_getitem(val_locs))
else:
unfit_mgr_locs.append(blk.mgr_locs.as_array[blk_locs])
unfit_val_locs.append(val_locs)
# If all block items are unfit, schedule the block for removal.
if len(val_locs) == len(blk.mgr_locs):
removed_blknos.append(blkno)
else:
self._blklocs[blk.mgr_locs.indexer] = -1
blk.delete(blk_locs)
self._blklocs[blk.mgr_locs.indexer] = np.arange(len(blk))
if len(removed_blknos):
# Remove blocks & update blknos accordingly
is_deleted = np.zeros(self.nblocks, dtype=np.bool_)
is_deleted[removed_blknos] = True
new_blknos = np.empty(self.nblocks, dtype=np.int64)
new_blknos.fill(-1)
new_blknos[~is_deleted] = np.arange(self.nblocks -
len(removed_blknos))
self._blknos = algos.take_1d(new_blknos, self._blknos, axis=0,
allow_fill=False)
self.blocks = tuple(blk for i, blk in enumerate(self.blocks)
if i not in set(removed_blknos))
if unfit_val_locs:
unfit_mgr_locs = np.concatenate(unfit_mgr_locs)
unfit_count = len(unfit_mgr_locs)
new_blocks = []
if value_is_extension_type:
# This code (ab-)uses the fact that sparse blocks contain only
# one item.
new_blocks.extend(
make_block(values=value.copy(), ndim=self.ndim,
placement=slice(mgr_loc, mgr_loc + 1))
for mgr_loc in unfit_mgr_locs)
self._blknos[unfit_mgr_locs] = (np.arange(unfit_count) +
len(self.blocks))
self._blklocs[unfit_mgr_locs] = 0
else:
# unfit_val_locs contains BlockPlacement objects
unfit_val_items = unfit_val_locs[0].append(unfit_val_locs[1:])
new_blocks.append(
make_block(values=value_getitem(unfit_val_items),
ndim=self.ndim, placement=unfit_mgr_locs))
self._blknos[unfit_mgr_locs] = len(self.blocks)
self._blklocs[unfit_mgr_locs] = np.arange(unfit_count)
self.blocks += tuple(new_blocks)
# Newly created block's dtype may already be present.
self._known_consolidated = False | 0.000429 |
def mixins(self, name):
""" Search mixins for name.
Allow '>' to be ignored. '.a .b()' == '.a > .b()'
Args:
name (string): Search term
Returns:
Mixin object list OR False
"""
m = self._smixins(name)
if m:
return m
return self._smixins(name.replace('?>?', ' ')) | 0.005556 |
def get_text(self):
"""Return extended progress bar text"""
done_units = to_reasonable_unit(self.done, self.units)
current = round(self.current / done_units['multiplier'], 2)
percent = int(self.current * 100 / self.done)
return '{0:.2f} of {1:.2f} {2} ({3}%)'.format(current,
done_units['val'],
done_units['label'],
percent) | 0.003802 |
def xmlresponse(py_data):
"""
Generates an XML formatted method response for the given python
data.
:param py_data | <variant>
"""
xroot = ElementTree.Element('methodResponse')
xparams = ElementTree.SubElement(xroot, 'params')
xparam = ElementTree.SubElement(xparams, 'param')
type_map = {'bool': 'boolean',
'float': 'double',
'str': 'string',
'unicode': 'string',
'datetime': 'dateTime.iso8601',
'date': 'date.iso8601',
'time': 'time.iso8601'}
def xobj(xparent, py_obj):
# convert a list of information
if type(py_obj) in (tuple, list):
xarr = ElementTree.SubElement(xparent, 'array')
xdata = ElementTree.SubElement(xarr, 'data')
for val in py_obj:
xval = ElementTree.SubElement(xdata, 'value')
xobj(xval, val)
# convert a dictionary of information
elif type(py_obj) == dict:
xstruct = ElementTree.SubElement(xparent, 'struct')
for key, val in py_obj.items():
xmember = ElementTree.SubElement(xstruct, 'member')
xname = ElementTree.SubElement(xmember, 'name')
xname.text = key
xval = ElementTree.SubElement(xmember, 'value')
xobj(xval, val)
# convert a None value
elif py_obj is None:
ElementTree.SubElement(xparent, 'nil')
# convert a basic value
else:
typ = type(py_obj).__name__
typ = type_map.get(typ, typ)
xitem = ElementTree.SubElement(xparent, typ)
# convert a datetime/date/time
if isinstance(py_obj, datetime.date) or \
isinstance(py_obj, datetime.time) or \
isinstance(py_obj, datetime.datetime):
if py_obj.tzinfo and pytz:
data = py_obj.astimezone(pytz.utc).replace(tzinfo=None)
xitem.text = data.isoformat()
else:
xitem.text = py_obj.isoformat()
# convert a boolean
elif type(py_obj) == bool:
xitem.text = nstr(int(py_obj))
# convert a non-string object
elif not type(py_obj) in (str, unicode):
xitem.text = nstr(py_obj)
# convert a string object
else:
xitem.text = py_obj
xobj(xparam, py_data)
projex.text.xmlindent(xroot)
return ElementTree.tostring(xroot) | 0.000769 |
def __dispatch_msg(self, message):
"""Verify the signature and update RequestEvents / perform callbacks
Note messages with an invalid wrapper, invalid hash, invalid sequence number or unexpected clientRef
will be sent to debug_bad callback.
"""
msg = self.__validate_decode_msg(message)
if msg:
msg, seqnum = msg
else:
self.__fire_callback(_CB_DEBUG_BAD, message.body, message.content_type)
return
if DEBUG_ENABLED:
logger.debug(decode_rcvd_msg('decode_rcvd_msg', msg, seqnum))
self.__fire_callback(_CB_DEBUG_RCVD, msg)
# no reference, or set by client (not container)
if msg[M_TYPE] not in _RSP_CONTAINER_REF:
# solicitied
if msg[M_CLIENTREF]:
if not self.__handle_known_solicited(msg):
logger.debug('Ignoring response for unknown request %s of type %s', msg[M_CLIENTREF], msg[M_TYPE])
# unsolicitied
else:
self.__perform_unsolicited_callbacks(msg)
# unsolicited but can have reference set by container
elif msg[M_TYPE] == E_CONTROLREQ:
self.__handle_controlreq(msg[M_PAYLOAD], msg[M_CLIENTREF])
else:
logger.error('Unhandled unsolicited message of type %s', msg[M_TYPE]) | 0.004409 |
def query(input, representation, resolvers=None, **kwargs):
""" Get all results for resolving input to the specified output representation """
apiurl = API_BASE+'/%s/%s/xml' % (urlquote(input), representation)
if resolvers:
kwargs['resolver'] = ",".join(resolvers)
if kwargs:
apiurl+= '?%s' % urlencode(kwargs)
result = []
try:
tree = ET.parse(urlopen(apiurl))
for data in tree.findall(".//data"):
datadict = {'resolver':data.attrib['resolver'],
'notation':data.attrib['notation'],
'value':[]}
for item in data.findall("item"):
datadict['value'].append(item.text)
if len(datadict['value']) == 1:
datadict['value'] = datadict['value'][0]
result.append(datadict)
except HTTPError:
# TODO: Proper handling of 404, for now just returns None
pass
return result if result else None | 0.006104 |
def format_to_json(data):
"""Converts `data` into json
If stdout is a tty it performs a pretty print.
"""
if sys.stdout.isatty():
return json.dumps(data, indent=4, separators=(',', ': '))
else:
return json.dumps(data) | 0.003953 |
def remove(name_or_path):
'''Remove an environment'''
click.echo()
try:
r = cpenv.resolve(name_or_path)
except cpenv.ResolveError as e:
click.echo(e)
return
obj = r.resolved[0]
if not isinstance(obj, cpenv.VirtualEnvironment):
click.echo('{} is a module. Use `cpenv module remove` instead.')
return
click.echo(format_objects([obj]))
click.echo()
user_confirmed = click.confirm(
red('Are you sure you want to remove this environment?')
)
if user_confirmed:
click.echo('Attempting to remove...', nl=False)
try:
obj.remove()
except Exception as e:
click.echo(bold_red('FAIL'))
click.echo(e)
else:
click.echo(bold_green('OK!')) | 0.00125 |
def _do_east_asian(self):
"""Fetch and update east-asian tables."""
self._do_retrieve(self.EAW_URL, self.EAW_IN)
(version, date, values) = self._parse_east_asian(
fname=self.EAW_IN,
properties=(u'W', u'F',)
)
table = self._make_table(values)
self._do_write(self.EAW_OUT, 'WIDE_EASTASIAN', version, date, table) | 0.005236 |
def cint8_array_to_numpy(cptr, length):
"""Convert a ctypes int pointer array to a numpy array."""
if isinstance(cptr, ctypes.POINTER(ctypes.c_int8)):
return np.fromiter(cptr, dtype=np.int8, count=length)
else:
raise RuntimeError('Expected int pointer') | 0.003559 |
def _software_params_to_argparse(parameters):
"""
Converts a SoftwareParameterCollection into an ArgumentParser object.
Parameters
----------
parameters: SoftwareParameterCollection
The software parameters
Returns
-------
argparse: ArgumentParser
An initialized argument parser
"""
# Check software parameters
argparse = ArgumentParser()
boolean_defaults = {}
for parameter in parameters:
arg_desc = {"dest": parameter.name, "required": parameter.required, "help": ""} # TODO add help
if parameter.type == "Boolean":
default = _to_bool(parameter.defaultParamValue)
arg_desc["action"] = "store_true" if not default else "store_false"
boolean_defaults[parameter.name] = default
else:
python_type = _convert_type(parameter.type)
arg_desc["type"] = python_type
arg_desc["default"] = None if parameter.defaultParamValue is None else python_type(parameter.defaultParamValue)
argparse.add_argument(*_cytomine_parameter_name_synonyms(parameter.name), **arg_desc)
argparse.set_defaults(**boolean_defaults)
return argparse | 0.00335 |
def iter_options(grouped_choices, cutoff=None, cutoff_text=None):
"""
Helper function for options and option groups in templates.
"""
class StartOptionGroup(object):
start_option_group = True
end_option_group = False
def __init__(self, label):
self.label = label
class EndOptionGroup(object):
start_option_group = False
end_option_group = True
class Option(object):
start_option_group = False
end_option_group = False
def __init__(self, value, display_text, disabled=False):
self.value = value
self.display_text = display_text
self.disabled = disabled
count = 0
for key, value in grouped_choices.items():
if cutoff and count >= cutoff:
break
if isinstance(value, dict):
yield StartOptionGroup(label=key)
for sub_key, sub_value in value.items():
if cutoff and count >= cutoff:
break
yield Option(value=sub_key, display_text=sub_value)
count += 1
yield EndOptionGroup()
else:
yield Option(value=key, display_text=value)
count += 1
if cutoff and count >= cutoff and cutoff_text:
cutoff_text = cutoff_text.format(count=cutoff)
yield Option(value='n/a', display_text=cutoff_text, disabled=True) | 0.000702 |
def cif(self):
"""
https://es.wikipedia.org/wiki/C%C3%B3digo_de_identificaci%C3%B3n_fiscal
:return: a random Spanish CIF
"""
first_chr = random.choice('ABCDEFGHJNPQRSUVW')
doi_body = str(random.randrange(0, 10000000)).zfill(7)
cif = first_chr + doi_body
return cif + self._calculate_control_cif(cif) | 0.005495 |
def fastaSubtract(fastaFiles):
"""
Given a list of open file descriptors, each with FASTA content,
remove the reads found in the 2nd, 3rd, etc files from the first file
in the list.
@param fastaFiles: a C{list} of FASTA filenames.
@raises IndexError: if passed an empty list.
@return: An iterator producing C{Bio.SeqRecord} instances suitable for
writing to a file using C{Bio.SeqIO.write}.
"""
reads = {}
firstFile = fastaFiles.pop(0)
for seq in SeqIO.parse(firstFile, 'fasta'):
reads[seq.id] = seq
for fastaFile in fastaFiles:
for seq in SeqIO.parse(fastaFile, 'fasta'):
# Make sure that reads with the same id have the same sequence.
if seq.id in reads:
assert str(seq.seq) == str(reads[seq.id].seq)
reads.pop(seq.id, None)
return iter(reads.values()) | 0.001129 |
def calc_synch_snu_ujy(b, ne, delta, sinth, width, elongation, dist, ghz, E0=1.):
"""Calculate a flux density from pure gyrosynchrotron emission.
This combines Dulk (1985) equations 40 and 41, which are fitting functions
assuming a power-law electron population, with standard radiative transfer
through a uniform medium. Arguments are:
b
Magnetic field strength in Gauss
ne
The density of electrons per cubic centimeter with energies greater than 10 keV.
delta
The power-law index defining the energy distribution of the electron population,
with ``n(E) ~ E^(-delta)``. The equation is valid for ``2 <~ delta <~ 5``.
sinth
The sine of the angle between the line of sight and the magnetic field direction.
It's not specified for what range of values the expressions work well.
width
The characteristic cross-sectional width of the emitting region, in cm.
elongation
The the elongation of the emitting region; ``depth = width * elongation``.
dist
The distance to the emitting region, in cm.
ghz
The frequencies at which to evaluate the spectrum, **in GHz**.
E0
The minimum energy of electrons to consider, in MeV. Defaults to 1 so that
these functions can be called identically to the gyrosynchrotron functions.
The return value is the flux density **in μJy**. The arguments can be
Numpy arrays.
No complaints are raised if you attempt to use the equations outside of
their range of validity.
"""
hz = ghz * 1e9
eta = calc_synch_eta(b, ne, delta, sinth, hz, E0=E0)
kappa = calc_synch_kappa(b, ne, delta, sinth, hz, E0=E0)
snu = calc_snu(eta, kappa, width, elongation, dist)
ujy = snu * cgs.jypercgs * 1e6
return ujy | 0.005036 |
def mirror(self, axes='x', inplace=False):
"""
Generates a symmetry of the Space respect global axes.
:param axes: 'x', 'y', 'z', 'xy', 'xz', 'yz'...
:type axes: str
:param inplace: If True, the new ``pyny.Space`` is copied and
added to the current ``pyny.Space``. If False, it returns
the new ``pyny.Space``.
:type inplace: bool
:returns: None, ``pyny.Space``
"""
state = Polygon.verify
Polygon.verify = False
mirror = np.ones(3)
if 'x' in axes:
mirror *= np.array([-1, 1, 1])
if 'y' in axes:
mirror *= np.array([1, -1, 1])
if 'z' in axes:
mirror *= np.array([1, 1, -1])
map_ = self.get_map()[1] * mirror
space = self.map2pyny(map_)
Polygon.verify = state
if inplace:
self.add_spaces(space)
return None
else:
return space | 0.007715 |
def __do_parse(self, pattern_str):
"""
Parses the given pattern and returns the antlr parse tree.
:param pattern_str: The STIX pattern
:return: The parse tree
:raises ParseException: If there is a parse error
"""
in_ = antlr4.InputStream(pattern_str)
lexer = STIXPatternLexer(in_)
lexer.removeErrorListeners() # remove the default "console" listener
token_stream = antlr4.CommonTokenStream(lexer)
parser = STIXPatternParser(token_stream)
parser.removeErrorListeners() # remove the default "console" listener
error_listener = ParserErrorListener()
parser.addErrorListener(error_listener)
# I found no public API for this...
# The default error handler tries to keep parsing, and I don't
# think that's appropriate here. (These error handlers are only for
# handling the built-in RecognitionException errors.)
parser._errHandler = antlr4.BailErrorStrategy()
# To improve error messages, replace "<INVALID>" in the literal
# names with symbolic names. This is a hack, but seemed like
# the simplest workaround.
for i, lit_name in enumerate(parser.literalNames):
if lit_name == u"<INVALID>":
parser.literalNames[i] = parser.symbolicNames[i]
# parser.setTrace(True)
try:
tree = parser.pattern()
# print(tree.toStringTree(recog=parser))
return tree
except antlr4.error.Errors.ParseCancellationException as e:
# The cancellation exception wraps the real RecognitionException
# which caused the parser to bail.
real_exc = e.args[0]
# I want to bail when the first error is hit. But I also want
# a decent error message. When an error is encountered in
# Parser.match(), the BailErrorStrategy produces the
# ParseCancellationException. It is not a subclass of
# RecognitionException, so none of the 'except' clauses which would
# normally report an error are invoked.
#
# Error message creation is buried in the ErrorStrategy, and I can
# (ab)use the API to get a message: register an error listener with
# the parser, force an error report, then get the message out of the
# listener. Error listener registration is above; now we force its
# invocation. Wish this could be cleaner...
parser._errHandler.reportError(parser, real_exc)
# should probably chain exceptions if we can...
# Should I report the cancellation or recognition exception as the
# cause...?
six.raise_from(ParseException(error_listener.error_message),
real_exc) | 0.001042 |
def put(self, filename, data):
"""Create or update the specified file with the provided data.
"""
# Open the file for writing on the board and write chunks of data.
self._pyboard.enter_raw_repl()
self._pyboard.exec_("f = open('{0}', 'wb')".format(filename))
size = len(data)
# Loop through and write a buffer size chunk of data at a time.
for i in range(0, size, BUFFER_SIZE):
chunk_size = min(BUFFER_SIZE, size - i)
chunk = repr(data[i : i + chunk_size])
# Make sure to send explicit byte strings (handles python 2 compatibility).
if not chunk.startswith("b"):
chunk = "b" + chunk
self._pyboard.exec_("f.write({0})".format(chunk))
self._pyboard.exec_("f.close()")
self._pyboard.exit_raw_repl() | 0.004706 |
def _zoom(scale:uniform=1.0, row_pct:uniform=0.5, col_pct:uniform=0.5):
"Zoom image by `scale`. `row_pct`,`col_pct` select focal point of zoom."
s = 1-1/scale
col_c = s * (2*col_pct - 1)
row_c = s * (2*row_pct - 1)
return _get_zoom_mat(1/scale, 1/scale, col_c, row_c) | 0.034843 |
def integer_decimation(data, decimation_factor):
"""
Downsampling by applying a simple integer decimation.
Make sure that no signal is present in frequency bands above the new
Nyquist frequency (samp_rate/2/decimation_factor), e.g. by applying a
lowpass filter beforehand!
New sampling rate is old sampling rate divided by decimation_factor.
:type data: numpy.ndarray
:param data: Data to filter.
:param decimation_factor: Integer decimation factor
:return: Downsampled data (array length: old length / decimation_factor)
"""
if not isinstance(decimation_factor, int):
msg = "Decimation_factor must be an integer!"
raise TypeError(msg)
# reshape and only use every decimation_factor-th sample
data = np.array(data[::decimation_factor])
return data | 0.001211 |
def som_get_capture_objects(som_pointer):
"""!
@brief Returns list of indexes of captured objects by each neuron.
@param[in] som_pointer (c_pointer): pointer to object of self-organized map.
"""
ccore = ccore_library.get()
ccore.som_get_capture_objects.restype = POINTER(pyclustering_package)
package = ccore.som_get_capture_objects(som_pointer)
result = package_extractor(package).extract()
return result | 0.014583 |
def bytes2human(n, format="%(value).1f%(symbol)s"):
"""
>>> bytes2human(10000)
'9K'
>>> bytes2human(100001221)
'95M'
"""
symbols = ('B', 'K', 'M', 'G', 'T', 'P', 'E', 'Z', 'Y')
prefix = {}
for i, s in enumerate(symbols[1:]):
prefix[s] = 1 << (i + 1) * 10
for symbol in reversed(symbols[1:]):
if n >= prefix[symbol]:
value = float(n) / prefix[symbol]
return format % locals()
return format % dict(symbol=symbols[0], value=n) | 0.001972 |
def _clean_data(api_response):
'''
Returns the DATA response from a Linode API query as a single pre-formatted dictionary
api_response
The query to be cleaned.
'''
data = {}
data.update(api_response['DATA'])
if not data:
response_data = api_response['DATA']
data.update(response_data)
return data | 0.005634 |
def tf_demo_loss(self, states, actions, terminal, reward, internals, update, reference=None):
"""
Extends the q-model loss via the dqfd large-margin loss.
"""
embedding = self.network.apply(x=states, internals=internals, update=update)
deltas = list()
for name in sorted(actions):
action = actions[name]
distr_params = self.distributions[name].parameterize(x=embedding)
state_action_value = self.distributions[name].state_action_value(distr_params=distr_params, action=action)
# Create the supervised margin loss
# Zero for the action taken, one for all other actions, now multiply by expert margin
if self.actions_spec[name]['type'] == 'bool':
num_actions = 2
action = tf.cast(x=action, dtype=util.tf_dtype('int'))
else:
num_actions = self.actions_spec[name]['num_actions']
one_hot = tf.one_hot(indices=action, depth=num_actions)
ones = tf.ones_like(tensor=one_hot, dtype=tf.float32)
inverted_one_hot = ones - one_hot
# max_a([Q(s,a) + l(s,a_E,a)], l(s,a_E, a) is 0 for expert action and margin value for others
state_action_values = self.distributions[name].state_action_value(distr_params=distr_params)
state_action_values = state_action_values + inverted_one_hot * self.expert_margin
supervised_selector = tf.reduce_max(input_tensor=state_action_values, axis=-1)
# J_E(Q) = max_a([Q(s,a) + l(s,a_E,a)] - Q(s,a_E)
delta = supervised_selector - state_action_value
action_size = util.prod(self.actions_spec[name]['shape'])
delta = tf.reshape(tensor=delta, shape=(-1, action_size))
deltas.append(delta)
loss_per_instance = tf.reduce_mean(input_tensor=tf.concat(values=deltas, axis=1), axis=1)
loss_per_instance = tf.square(x=loss_per_instance)
return tf.reduce_mean(input_tensor=loss_per_instance, axis=0) | 0.005337 |
def _check_section_underline(cls, section_name, context, indentation):
"""D4{07,08,09,12}, D215: Section underline checks.
Check for correct formatting for docstring sections. Checks that:
* The line that follows the section name contains
dashes (D40{7,8}).
* The amount of dashes is equal to the length of the section
name (D409).
* The section's content does not begin in the line that follows
the section header (D412).
* The indentation of the dashed line is equal to the docstring's
indentation (D215).
"""
blank_lines_after_header = 0
for line in context.following_lines:
if not is_blank(line):
break
blank_lines_after_header += 1
else:
# There are only blank lines after the header.
yield violations.D407(section_name)
return
non_empty_line = context.following_lines[blank_lines_after_header]
dash_line_found = ''.join(set(non_empty_line.strip())) == '-'
if not dash_line_found:
yield violations.D407(section_name)
if blank_lines_after_header > 0:
yield violations.D412(section_name)
else:
if blank_lines_after_header > 0:
yield violations.D408(section_name)
if non_empty_line.strip() != "-" * len(section_name):
yield violations.D409(len(section_name),
section_name,
len(non_empty_line.strip()))
if leading_space(non_empty_line) > indentation:
yield violations.D215(section_name)
line_after_dashes_index = blank_lines_after_header + 1
# If the line index after the dashes is in range (perhaps we have
# a header + underline followed by another section header).
if line_after_dashes_index < len(context.following_lines):
line_after_dashes = \
context.following_lines[line_after_dashes_index]
if is_blank(line_after_dashes):
rest_of_lines = \
context.following_lines[line_after_dashes_index:]
if not is_blank(''.join(rest_of_lines)):
yield violations.D412(section_name)
else:
yield violations.D414(section_name)
else:
yield violations.D414(section_name) | 0.000773 |
def map(self, func, iterable, callback=None):
"""A wrapper around the built-in ``map()`` function to provide a
consistent interface with the other ``Pool`` classes.
Parameters
----------
worker : callable
A function or callable object that is executed on each element of
the specified ``tasks`` iterable. This object must be picklable
(i.e. it can't be a function scoped within a function or a
``lambda`` function). This should accept a single positional
argument and return a single object.
tasks : iterable
A list or iterable of tasks. Each task can be itself an iterable
(e.g., tuple) of values or data to pass in to the worker function.
callback : callable, optional
An optional callback function (or callable) that is called with the
result from each worker run and is executed on the master process.
This is useful for, e.g., saving results to a file, since the
callback is only called on the master thread.
Returns
-------
results : generator
"""
return self._call_callback(callback, map(func, iterable)) | 0.00161 |
def executeTask(self,
inputs,
outSR=None,
processSR=None,
returnZ=False,
returnM=False,
f="json",
method="POST"
):
"""
performs the execute task method
"""
params = {
"f" : f
}
url = self._url + "/execute"
params = { "f" : "json" }
if not outSR is None:
params['env:outSR'] = outSR
if not processSR is None:
params['end:processSR'] = processSR
params['returnZ'] = returnZ
params['returnM'] = returnM
for p in inputs:
if isinstance(p, BaseGPObject):
params[p.paramName] = p.value
del p
if method.lower() == "post":
return self._post(url=url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port)
else:
return self._get(url=url,
param_dict=params,
securityHandler=self._securityHandler,
proxy_url=self._proxy_url,
proxy_port=self._proxy_port) | 0.016713 |
def pretty_str(self, indent=0):
"""Return a human-readable string representation of this object.
Kwargs:
indent (int): The amount of spaces to use as indentation.
"""
if self.body:
return '\n'.join(stmt.pretty_str(indent) for stmt in self.body)
else:
return (' ' * indent) + '[empty]' | 0.00554 |
def translate(srcCol, matching, replace):
"""A function translate any character in the `srcCol` by a character in `matching`.
The characters in `replace` is corresponding to the characters in `matching`.
The translate will happen when any character in the string matching with the character
in the `matching`.
>>> spark.createDataFrame([('translate',)], ['a']).select(translate('a', "rnlt", "123") \\
... .alias('r')).collect()
[Row(r=u'1a2s3ae')]
"""
sc = SparkContext._active_spark_context
return Column(sc._jvm.functions.translate(_to_java_column(srcCol), matching, replace)) | 0.009631 |
def lognormal(mu, sigma, random_state):
'''
mu: float or array_like of floats
sigma: float or array_like of floats
random_state: an object of numpy.random.RandomState
'''
return np.exp(normal(mu, sigma, random_state)) | 0.004149 |
def discharge_coefficient_to_K(D, Do, C):
r'''Converts a discharge coefficient to a standard loss coefficient,
for use in computation of the actual pressure drop of an orifice or other
device.
.. math::
K = \left[\frac{\sqrt{1-\beta^4(1-C^2)}}{C\beta^2} - 1\right]^2
Parameters
----------
D : float
Upstream internal pipe diameter, [m]
Do : float
Diameter of orifice at flow conditions, [m]
C : float
Coefficient of discharge of the orifice, [-]
Returns
-------
K : float
Loss coefficient with respect to the velocity and density of the fluid
just upstream of the orifice, [-]
Notes
-----
If expansibility is used in the orifice calculation, the result will not
match with the specified pressure drop formula in [1]_; it can almost
be matched by dividing the calculated mass flow by the expansibility factor
and using that mass flow with the loss coefficient.
Examples
--------
>>> discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512)
5.2314291729754
References
----------
.. [1] American Society of Mechanical Engineers. Mfc-3M-2004 Measurement
Of Fluid Flow In Pipes Using Orifice, Nozzle, And Venturi. ASME, 2001.
.. [2] ISO 5167-2:2003 - Measurement of Fluid Flow by Means of Pressure
Differential Devices Inserted in Circular Cross-Section Conduits Running
Full -- Part 2: Orifice Plates.
'''
beta = Do/D
beta2 = beta*beta
beta4 = beta2*beta2
return ((1.0 - beta4*(1.0 - C*C))**0.5/(C*beta2) - 1.0)**2 | 0.004297 |
def pct_change(self, periods=1, fill_method='pad', limit=None, freq=None):
"""Calcuate pct_change of each value to previous entry in group"""
# TODO: Remove this conditional when #23918 is fixed
if freq:
return self.apply(lambda x: x.pct_change(periods=periods,
fill_method=fill_method,
limit=limit, freq=freq))
filled = getattr(self, fill_method)(limit=limit)
fill_grp = filled.groupby(self.grouper.labels)
shifted = fill_grp.shift(periods=periods, freq=freq)
return (filled / shifted) - 1 | 0.003008 |
def ufloatDict_nominal(self, ufloat_dict):
'This gives us a dictionary of nominal values from a dictionary of uncertainties'
return OrderedDict(izip(ufloat_dict.keys(), map(lambda x: x.nominal_value, ufloat_dict.values()))) | 0.016736 |
def download(self, attr):
"""
Download an attribute attachment
(if type is malware-sample or attachment only)
:param attr: attribute (should be MispAttribute instance)
:returns: value of the attachment
"""
if attr.type not in ['malware-sample', 'attachment']:
raise ValueError('Only malware-sample and attachment can be downloaded')
return self.GET('/attributes/downloadAttachment/download/%i' % attr.id) | 0.006237 |
def bartlett(timeseries, segmentlength, noverlap=None, window=None, plan=None):
# pylint: disable=unused-argument
"""Calculate an PSD of this `TimeSeries` using Bartlett's method
Parameters
----------
timeseries : `~gwpy.timeseries.TimeSeries`
input `TimeSeries` data.
segmentlength : `int`
number of samples in single average.
noverlap : `int`
number of samples to overlap between segments, defaults to 50%.
window : `tuple`, `str`, optional
window parameters to apply to timeseries prior to FFT
plan : `REAL8FFTPlan`, optional
LAL FFT plan to use when generating average spectrum
Returns
-------
spectrum : `~gwpy.frequencyseries.FrequencySeries`
average power `FrequencySeries`
See also
--------
lal.REAL8AverageSpectrumWelch
"""
return _lal_spectrum(timeseries, segmentlength, noverlap=0,
method='welch', window=window, plan=plan) | 0.001018 |
def clone_network(network_id, recipient_user_id=None, new_network_name=None, project_id=None, project_name=None, new_project=True, **kwargs):
"""
Create an exact clone of the specified network for the specified user.
If project_id is specified, put the new network in there.
Otherwise create a new project with the specified name and put it in there.
"""
user_id = kwargs['user_id']
ex_net = db.DBSession.query(Network).filter(Network.id==network_id).one()
ex_net.check_read_permission(user_id)
if project_id is None and new_project == True:
log.info("Creating a new project for cloned network")
ex_proj = db.DBSession.query(Project).filter(Project.id==ex_net.project_id).one()
user = db.DBSession.query(User).filter(User.id==user_id).one()
project = Project()
if project_name is None or project_name=="":
project_name=ex_proj.name + " (Cloned by %s)" % user.display_name
#check a project with this name doesn't already exist:
ex_project = db.DBSession.query(Project).filter(Project.name==project_name,
Project.created_by==user_id).all()
#If it exists, use it.
if len(ex_project) > 0:
project=ex_project[0]
else:
project.name = project_name
project.created_by = user_id
project.set_owner(user_id)
if recipient_user_id!=None:
project.set_owner(recipient_user_id)
db.DBSession.add(project)
db.DBSession.flush()
project_id=project.id
elif project_id is None:
log.info("Using current project for cloned network")
project_id=ex_net.project_id
if new_network_name is None or new_network_name == "":
new_network_name=ex_net.name
log.info('Cloning Network...')
#Find if there's any projects with this name in the project already
ex_network = db.DBSession.query(Network).filter(Network.project_id==project_id,
Network.name.like("{0}%".format(new_network_name))).all()
if len(ex_network) > 0:
new_network_name = new_network_name + " " + str(len(ex_network))
newnet = Network()
newnet.project_id = project_id
newnet.name = new_network_name
newnet.description = ex_net.description
newnet.layout = ex_net.layout
newnet.status = ex_net.status
newnet.projection = ex_net.projection
newnet.created_by = user_id
newnet.set_owner(user_id)
if recipient_user_id is not None:
newnet.set_owner(recipient_user_id)
db.DBSession.add(newnet)
db.DBSession.flush()
newnetworkid = newnet.id
log.info('CLoning Nodes')
node_id_map = _clone_nodes(network_id, newnetworkid)
log.info('Cloning Links')
link_id_map = _clone_links(network_id, newnetworkid, node_id_map)
log.info('CLoning Groups')
group_id_map = _clone_groups(network_id,
newnetworkid,
node_id_map,
link_id_map)
log.info("Cloning Resource Attributes")
ra_id_map = _clone_resourceattrs(network_id, newnetworkid, node_id_map, link_id_map, group_id_map)
log.info("Cloning Resource Types")
_clone_resourcetypes(network_id, newnetworkid, node_id_map, link_id_map, group_id_map)
log.info('Cloning Scenarios')
_clone_scenarios(network_id, newnetworkid, ra_id_map, node_id_map, link_id_map, group_id_map, user_id)
db.DBSession.flush()
return newnetworkid | 0.00933 |
def log_pdf(self, y, mu, weights=None):
"""
computes the log of the pdf or pmf of the values under the current distribution
Parameters
----------
y : array-like of length n
target values
mu : array-like of length n
expected values
weights : array-like shape (n,) or None, default: None
containing sample weights
if None, defaults to array of ones
Returns
-------
pdf/pmf : np.array of length n
"""
if weights is None:
weights = np.ones_like(mu)
nu = weights / self.scale
return sp.stats.gamma.logpdf(x=y, a=nu, scale=mu / nu) | 0.004292 |
def delete_job(job_id, connection=None):
"""Deletes a job.
:param job_id: unique identifier for this job
>>> delete_job('http://example.com/test')
"""
if connection is None:
connection = r
with connection.pipeline() as pipe:
pipe.delete(job_key(job_id))
pipe.zrem(REDIS_KEY, job_id)
pipe.execute() | 0.002817 |
def rasterize(vectorobject, reference, outname=None, burn_values=1, expressions=None, nodata=0, append=False):
"""
rasterize a vector object
Parameters
----------
vectorobject: Vector
the vector object to be rasterized
reference: Raster
a reference Raster object to retrieve geo information and extent from
outname: str or None
the name of the GeoTiff output file; if None, an in-memory object of type :class:`Raster` is returned and
parameter outname is ignored
burn_values: int or list
the values to be written to the raster file
expressions: list
SQL expressions to filter the vector object by attributes
nodata: int
the nodata value of the target raster file
append: bool
if the output file already exists, update this file with new rasterized values?
If True and the output file exists, parameters `reference` and `nodata` are ignored.
Returns
-------
Raster or None
if outname is `None`, a raster object pointing to an in-memory dataset else `None`
Example
-------
>>> from spatialist import Vector, Raster, rasterize
>>> vec = Vector('source.shp')
>>> ref = Raster('reference.tif')
>>> outname = 'target.tif'
>>> expressions = ['ATTRIBUTE=1', 'ATTRIBUTE=2']
>>> burn_values = [1, 2]
>>> rasterize(vec, reference, outname, burn_values, expressions)
"""
if expressions is None:
expressions = ['']
if isinstance(burn_values, (int, float)):
burn_values = [burn_values]
if len(expressions) != len(burn_values):
raise RuntimeError('expressions and burn_values of different length')
failed = []
for exp in expressions:
try:
vectorobject.layer.SetAttributeFilter(exp)
except RuntimeError:
failed.append(exp)
if len(failed) > 0:
raise RuntimeError('failed to set the following attribute filter(s): ["{}"]'.format('", '.join(failed)))
if append and outname is not None and os.path.isfile(outname):
target_ds = gdal.Open(outname, GA_Update)
else:
if not isinstance(reference, Raster):
raise RuntimeError("parameter 'reference' must be of type Raster")
if outname is not None:
target_ds = gdal.GetDriverByName('GTiff').Create(outname, reference.cols, reference.rows, 1, gdal.GDT_Byte)
else:
target_ds = gdal.GetDriverByName('MEM').Create('', reference.cols, reference.rows, 1, gdal.GDT_Byte)
target_ds.SetGeoTransform(reference.raster.GetGeoTransform())
target_ds.SetProjection(reference.raster.GetProjection())
band = target_ds.GetRasterBand(1)
band.SetNoDataValue(nodata)
band.FlushCache()
band = None
for expression, value in zip(expressions, burn_values):
vectorobject.layer.SetAttributeFilter(expression)
gdal.RasterizeLayer(target_ds, [1], vectorobject.layer, burn_values=[value])
vectorobject.layer.SetAttributeFilter('')
if outname is None:
return Raster(target_ds)
else:
target_ds = None | 0.003813 |
def username_enable(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
username = ET.SubElement(config, "username", xmlns="urn:brocade.com:mgmt:brocade-aaa")
name_key = ET.SubElement(username, "name")
name_key.text = kwargs.pop('name')
enable = ET.SubElement(username, "enable")
enable.text = kwargs.pop('enable')
callback = kwargs.pop('callback', self._callback)
return callback(config) | 0.00611 |
def run_MDR(n,stack_float,labels=None):
"""run utility function for MDR nodes."""
# need to check that tmp is categorical
x1 = stack_float.pop()
x2 = stack_float.pop()
# check data is categorical
if len(np.unique(x1))<=3 and len(np.unique(x2))<=3:
tmp = np.vstack((x1,x2)).transpose()
if labels is None: # prediction
return n.model.transform(tmp)[:,0]
else: # training
out = n.model.fit_transform(tmp,labels)[:,0]
return out
else:
return np.zeros(x1.shape[0]) | 0.021467 |
def connect(self):
"""Connect to host
"""
try:
self.client.connect(self.host, username=self.username,
password=self.password, port=self.port,
pkey=self.pkey, timeout=self.timeout)
except sock_gaierror, ex:
raise Exception("Unknown host '%s'" % self.host)
except sock_error, ex:
raise Exception("Error connecting to host '%s:%s'\n%s" % (self.host, self.port, ex))
except paramiko.AuthenticationException, ex:
msg = "Host is '%s:%s'"
raise Exception("Authentication Error to host '%s'" % self.host)
except paramiko.SSHException, ex:
msg = "General SSH error - %s" % ex
raise Exception(msg) | 0.006402 |
def _parallel_compare_helper(class_obj, pairs, x, x_link=None):
"""Internal function to overcome pickling problem in python2."""
return class_obj._compute(pairs, x, x_link) | 0.005556 |
def _needs_evaluation(self) -> bool:
"""
Returns True when:
1. Where clause is not specified
2. Where WHERE clause is specified and it evaluates to True
Returns false if a where clause is specified and it evaluates to False
"""
return self._schema.when is None or self._schema.when.evaluate(self._evaluation_context) | 0.007895 |
def get_modifications(self):
"""Extract Modification INDRA Statements."""
# Find all event frames that are a type of protein modification
qstr = "$.events.frames[(@.type is 'protein-modification')]"
res = self.tree.execute(qstr)
if res is None:
return
# Extract each of the results when possible
for r in res:
# The subtype of the modification
modification_type = r.get('subtype')
# Skip negated events (i.e. something doesn't happen)
epistemics = self._get_epistemics(r)
if epistemics.get('negated'):
continue
annotations, context = self._get_annot_context(r)
frame_id = r['frame_id']
args = r['arguments']
site = None
theme = None
# Find the substrate (the "theme" agent here) and the
# site and position it is modified on
for a in args:
if self._get_arg_type(a) == 'theme':
theme = a['arg']
elif self._get_arg_type(a) == 'site':
site = a['text']
theme_agent, theme_coords = self._get_agent_from_entity(theme)
if site is not None:
mods = self._parse_site_text(site)
else:
mods = [(None, None)]
for mod in mods:
# Add up to one statement for each site
residue, pos = mod
# Now we need to look for all regulation event to get to the
# enzymes (the "controller" here)
qstr = "$.events.frames[(@.type is 'regulation') and " + \
"(@.arguments[0].arg is '%s')]" % frame_id
reg_res = self.tree.execute(qstr)
reg_res = list(reg_res)
for reg in reg_res:
controller_agent, controller_coords = None, None
for a in reg['arguments']:
if self._get_arg_type(a) == 'controller':
controller = a.get('arg')
if controller is not None:
controller_agent, controller_coords = \
self._get_agent_from_entity(controller)
break
# Check the polarity of the regulation and if negative,
# flip the modification type.
# For instance, negative-regulation of a phosphorylation
# will become an (indirect) dephosphorylation
reg_subtype = reg.get('subtype')
if reg_subtype == 'negative-regulation':
modification_type = \
modtype_to_inverse.get(modification_type)
if not modification_type:
logger.warning('Unhandled modification type: %s' %
modification_type)
continue
sentence = reg['verbose-text']
annotations['agents']['coords'] = [controller_coords,
theme_coords]
ev = Evidence(source_api='reach', text=sentence,
annotations=annotations, pmid=self.citation,
context=context, epistemics=epistemics)
args = [controller_agent, theme_agent, residue, pos, ev]
# Here ModStmt is a sub-class of Modification
ModStmt = modtype_to_modclass.get(modification_type)
if ModStmt is None:
logger.warning('Unhandled modification type: %s' %
modification_type)
else:
# Handle this special case here because only
# enzyme argument is needed
if modification_type == 'autophosphorylation':
args = [theme_agent, residue, pos, ev]
self.statements.append(ModStmt(*args)) | 0.000705 |
def is_valid_uid(uid):
"""
:return: True if it is a valid DHIS2 UID, False if not
"""
pattern = r'^[A-Za-z][A-Za-z0-9]{10}$'
if not isinstance(uid, string_types):
return False
return bool(re.compile(pattern).match(uid)) | 0.003984 |
def listAttachments(self, oid):
""" list attachements for a given OBJECT ID """
url = self._url + "/%s/attachments" % oid
params = {
"f":"json"
}
return self._get(url, params,
securityHandler=self._securityHandler,
proxy_port=self._proxy_port,
proxy_url=self._proxy_url) | 0.014778 |
def status(name, sig=None):
'''
Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.
.. versionchanged:: 2018.3.0
The service name can now be a glob (e.g. ``salt*``)
Args:
name (str): The name of the service to check
sig (str): Not implemented
Returns:
bool: True if running, False otherwise
dict: Maps service name to True if running, False otherwise
CLI Example:
.. code-block:: bash
salt '*' service.status <service name>
'''
contains_globbing = bool(re.search(r'\*|\?|\[.+\]', name))
if contains_globbing:
services = fnmatch.filter(get_all(), name)
else:
services = [name]
results = {}
for service in services:
cmd = '/usr/bin/svcs -H -o STATE {0}'.format(service)
line = __salt__['cmd.run'](cmd, python_shell=False)
results[service] = line == 'online'
if contains_globbing:
return results
return results[name] | 0.000946 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.