text
stringlengths
78
104k
score
float64
0
0.18
def get_bounds(self): """ Returns ------- (start, end) Datetime instants of beginning and end of data. If no data, will be: (None, None). """ start, end = None, None if len(self._weather_series) == 0: return start, end for i in (0, -1): # create or find instant if self.has_tuple_instants: row = self._weather_series.iloc[i, :] instant = dt.datetime(row["year"], row["month"], row["day"], row["hour"], row["minute"]) else: instant = self._weather_series.index[i].to_pydatetime() # store if i == 0: start = instant else: end = instant return start, end
0.005006
def subset(self, interval: Interval, flexibility: int = 2) -> "IntervalList": """ Returns an IntervalList that's a subset of this one, only containing intervals that meet the "interval" parameter criterion. What "meet" means is defined by the ``flexibility`` parameter. ``flexibility == 0``: permits only wholly contained intervals: .. code-block:: none interval: I----------------I intervals in self that will/won't be returned: N---N N---N Y---Y N---N N---N N---N N---N ``flexibility == 1``: permits overlapping intervals as well: .. code-block:: none I----------------I N---N Y---Y Y---Y Y---Y N---N N---N N---N ``flexibility == 2``: permits adjoining intervals as well: .. code-block:: none I----------------I N---N Y---Y Y---Y Y---Y N---N Y---Y Y---Y """ if flexibility not in [0, 1, 2]: raise ValueError("subset: bad flexibility value") permitted = [] for i in self.intervals: if flexibility == 0: ok = i.start > interval.start and i.end < interval.end elif flexibility == 1: ok = i.end > interval.start and i.start < interval.end else: ok = i.end >= interval.start and i.start <= interval.end if ok: permitted.append(i) return IntervalList(permitted)
0.001766
async def update_pin(**payload): """Update the onboarding welcome message after recieving a "pin_added" event from Slack. Update timestamp for welcome message as well. """ data = payload["data"] web_client = payload["web_client"] channel_id = data["channel_id"] user_id = data["user"] # Get the original tutorial sent. onboarding_tutorial = onboarding_tutorials_sent[channel_id][user_id] # Mark the pin task as completed. onboarding_tutorial.pin_task_completed = True # Get the new message payload message = onboarding_tutorial.get_message_payload() # Post the updated message in Slack updated_message = await web_client.chat_update(**message) # Update the timestamp saved on the onboarding tutorial object onboarding_tutorial.timestamp = updated_message["ts"]
0.0012
def complete_command_help(self, tokens: List[str], text: str, line: str, begidx: int, endidx: int) -> List[str]: """Supports the completion of sub-commands for commands through the cmd2 help command.""" for idx, token in enumerate(tokens): if idx >= self._token_start_index: if self._positional_completers: # For now argparse only allows 1 sub-command group per level # so this will only loop once. for completers in self._positional_completers.values(): if token in completers: return completers[token].complete_command_help(tokens, text, line, begidx, endidx) else: return self._cmd2_app.basic_complete(text, line, begidx, endidx, completers.keys()) return []
0.007982
def delete(self): """Delete the workspace from FireCloud. Note: This action cannot be undone. Be careful! """ r = fapi.delete_workspace(self.namespace, self.name) fapi._check_response_code(r, 202)
0.008032
def _generate_instances(self): """ ListNode item generator. Will be used internally by __iter__ and __getitem__ Yields: ListNode items (instances) """ for node in self.node_stack: yield node while self._data: yield self._make_instance(self._data.pop(0))
0.008876
def format_units(self, value, unit="B", optimal=5, auto=True, si=False): """ Takes a value and formats it for user output, we can choose the unit to use eg B, MiB, kbits/second. This is mainly for use with bytes/bits it converts the value into a human readable form. It has various additional options but they are really only for special cases. The function returns a tuple containing the new value (this is a number so that the user can still format it if required) and a unit that is the units that we have been converted to. By supplying unit to the function we can force those units to be used eg ``unit=KiB`` would force the output to be in Kibibytes. By default we use non-si units but if the unit is si eg kB then we will switch to si units. Units can also be things like ``Mbit/sec``. If the auto parameter is False then we use the unit provided. This only makes sense when the unit is singular eg 'Bytes' and we want the result in bytes and not say converted to MBytes. optimal is used to control the size of the output value. We try to provide an output value of that number of characters (including decimal point), it may also be less due to rounding. If a fixed unit is used the output may be more than this number of characters. """ UNITS = "KMGTPEZY" DECIMAL_SIZE = 1000 BINARY_SIZE = 1024 CUTOFF = 1000 can_round = False if unit: # try to guess the unit. Do we have a known prefix too it? if unit[0].upper() in UNITS: index = UNITS.index(unit[0].upper()) + 1 post = unit[1:] si = len(unit) > 1 and unit[1] != "i" if si: post = post[1:] if unit[1] == "b": value *= 8 auto = False else: index = 0 post = unit if si: size = DECIMAL_SIZE else: size = BINARY_SIZE if auto: # we will try to use an appropriate prefix if value < CUTOFF: unit_out = post else: value /= size for prefix in UNITS: if abs(value) < CUTOFF: break value /= size if si: # si kilo is lowercase if prefix == "K": prefix = "k" else: post = "i" + post unit_out = prefix + post can_round = True else: # we are using a fixed unit unit_out = unit size = pow(size, index) if size: value /= size can_round = True if can_round and optimal and value: # we will try to make the output value the desired size # we need to keep out value as a numeric type places = int(log10(abs(value))) if places >= optimal - 2: value = int(value) else: value = round(value, max(optimal - places - 2, 0)) return value, unit_out
0.000893
def cached(fn, size=32): ''' this decorator creates a type safe lru_cache around the decorated function. Unlike functools.lru_cache, this will not crash when unhashable arguments are passed to the function''' assert callable(fn) assert isinstance(size, int) return overload(fn)(lru_cache(size, typed=True)(fn))
0.002959
def values_from(self, base): """ A reusable generator for increasing pointer-sized values from an address (usually the stack). """ word_bytes = self._cpu.address_bit_size // 8 while True: yield base base += word_bytes
0.010381
def refractive_index(CASRN, T=None, AvailableMethods=False, Method=None, full_info=True): r'''This function handles the retrieval of a chemical's refractive index. Lookup is based on CASRNs. Will automatically select a data source to use if no Method is provided; returns None if the data is not available. Function has data for approximately 4500 chemicals. Parameters ---------- CASRN : string CASRN [-] Returns ------- RI : float Refractive Index on the Na D line, [-] T : float, only returned if full_info == True Temperature at which refractive index reading was made methods : list, only returned if AvailableMethods == True List of methods which can be used to obtain RI with the given inputs Other Parameters ---------------- Method : string, optional A string for the method name to use, as defined by constants in RI_methods AvailableMethods : bool, optional If True, function will determine which methods can be used to obtain RI for the desired chemical, and will return methods instead of RI full_info : bool, optional If True, function will return the temperature at which the refractive index reading was made Notes ----- Only one source is available in this function. It is: * 'CRC', a compillation of Organic RI data in [1]_. Examples -------- >>> refractive_index(CASRN='64-17-5') (1.3611, 293.15) References ---------- .. [1] Haynes, W.M., Thomas J. Bruno, and David R. Lide. CRC Handbook of Chemistry and Physics, 95E. Boca Raton, FL: CRC press, 2014. ''' def list_methods(): methods = [] if CASRN in CRC_RI_organic.index: methods.append(CRC) methods.append(NONE) return methods if AvailableMethods: return list_methods() if not Method: Method = list_methods()[0] if Method == CRC: _RI = float(CRC_RI_organic.at[CASRN, 'RI']) if full_info: _T = float(CRC_RI_organic.at[CASRN, 'RIT']) elif Method == NONE: _RI, _T = None, None else: raise Exception('Failure in in function') if full_info: return _RI, _T else: return _RI
0.00043
def set_char_callback(window, cbfun): """ Sets the Unicode character callback. Wrapper for: GLFWcharfun glfwSetCharCallback(GLFWwindow* window, GLFWcharfun cbfun); """ window_addr = ctypes.cast(ctypes.pointer(window), ctypes.POINTER(ctypes.c_long)).contents.value if window_addr in _char_callback_repository: previous_callback = _char_callback_repository[window_addr] else: previous_callback = None if cbfun is None: cbfun = 0 c_cbfun = _GLFWcharfun(cbfun) _char_callback_repository[window_addr] = (cbfun, c_cbfun) cbfun = c_cbfun _glfw.glfwSetCharCallback(window, cbfun) if previous_callback is not None and previous_callback[0] != 0: return previous_callback[0]
0.001272
def load_empty(cls, path:PathOrStr, fn:PathOrStr): "Load the state in `fn` to create an empty `LabelList` for inference." return cls.load_state(path, pickle.load(open(Path(path)/fn, 'rb')))
0.019512
def merge_pres_feats(pres, features): """ Helper function to merge pres and features to support legacy features argument """ sub = [] for psub, fsub in zip(pres, features): exp = [] for pexp, fexp in zip(psub, fsub): lst = [] for p, f in zip(pexp, fexp): p.update(f) lst.append(p) exp.append(lst) sub.append(exp) return sub
0.004545
def register_default_prefixes(handler): """\ """ for prefix, ns in _PREFIXES.iteritems(): handler.add_prefix(prefix, str(ns))
0.013793
def get_nonvaried_cfg_lbls(cfg_list, default_cfg=None, mainkey='_cfgname'): r""" TODO: this might only need to return a single value. Maybe not if the names are different. Args: cfg_list (list): default_cfg (None): (default = None) Returns: list: cfglbl_list CommandLine: python -m utool.util_gridsearch --exec-get_nonvaried_cfg_lbls Example: >>> # ENABLE_DOCTEST >>> from utool.util_gridsearch import * # NOQA >>> import utool as ut >>> cfg_list = [{'_cfgname': 'test', 'f': 1, 'b': 1}, >>> {'_cfgname': 'test', 'f': 2, 'b': 1}, >>> {'_cfgname': 'test', 'f': 3, 'b': 1, 'z': 4}] >>> default_cfg = None >>> cfglbl_list = get_nonvaried_cfg_lbls(cfg_list, default_cfg) >>> result = ('cfglbl_list = %s' % (ut.repr2(cfglbl_list),)) >>> print(result) cfglbl_list = ['test:b=1', 'test:b=1', 'test:b=1'] """ try: cfgname_list = [cfg[mainkey] for cfg in cfg_list] except KeyError: cfgname_list = [''] * len(cfg_list) nonvaried_cfg = partition_varied_cfg_list(cfg_list, default_cfg)[0] cfglbl_list = [get_cfg_lbl(nonvaried_cfg, name) for name in cfgname_list] return cfglbl_list
0.000775
def dist(self, src, tar, max_offset=5, max_distance=0): """Return the normalized "common" Sift4 distance between two terms. This is Sift4 distance, normalized to [0, 1]. Parameters ---------- src : str Source string for comparison tar : str Target string for comparison max_offset : int The number of characters to search for matching letters max_distance : int The distance at which to stop and exit Returns ------- float The normalized Sift4 distance Examples -------- >>> cmp = Sift4() >>> round(cmp.dist('cat', 'hat'), 12) 0.333333333333 >>> cmp.dist('Niall', 'Neil') 0.4 >>> cmp.dist('Colin', 'Cuilen') 0.5 >>> cmp.dist('ATCG', 'TAGC') 0.5 """ return self.dist_abs(src, tar, max_offset, max_distance) / ( max(len(src), len(tar), 1) )
0.00197
def get_v_distance(self, latlonalt1, latlonalt2): '''get the horizontal distance between threat and vehicle''' (lat1, lon1, alt1) = latlonalt1 (lat2, lon2, alt2) = latlonalt2 return alt2 - alt1
0.008889
def visit_Assign(self, node): """ Implement assignment walker. Parse class properties defined via the property() function """ # [[[cog # cog.out("print(pcolor('Enter assign visitor', 'magenta'))") # ]]] # [[[end]]] # ### # Class-level assignment may also be a class attribute that is not # a managed attribute, record it anyway, no harm in doing so as it # is not attached to a callable if self._in_class(node): element_full_name = self._pop_indent_stack(node, "prop") code_id = (self._fname, node.lineno) self._processed_line = node.lineno self._callables_db[element_full_name] = { "name": element_full_name, "type": "prop", "code_id": code_id, "last_lineno": None, } self._reverse_callables_db[code_id] = element_full_name # [[[cog # code = """ # print( # pcolor( # 'Visiting property {0} @ {1}'.format( # element_full_name, code_id[1] # ), # 'green' # ) # ) # """ # cog.out(code) # ]]] # [[[end]]] # Get property actions self.generic_visit(node)
0.001407
def mk_size(field): """Builds an identifier for a container type. """ name = field.type_id if name == "string" and field.options.get('size', None): return "%s[%d];" % (field.identifier, field.options.get('size').value) elif name == "string": return "%s[0];" % field.identifier elif name == "array" and field.options.get('size', None): return "%s[%d];" % (field.identifier, field.options.get('size').value) elif name == "array": return "%s[0];" % field.identifier else: return '%s;' % field.identifier
0.014925
def to_sample_rdd(x, y, numSlices=None): """ Conver x and y into RDD[Sample] :param x: ndarray and the first dimension should be batch :param y: ndarray and the first dimension should be batch :param numSlices: :return: """ sc = get_spark_context() from bigdl.util.common import Sample x_rdd = sc.parallelize(x, numSlices) y_rdd = sc.parallelize(y, numSlices) return x_rdd.zip(y_rdd).map(lambda item: Sample.from_ndarray(item[0], item[1]))
0.004107
def get_bulb(self, mac): """ Returns a Bulb object corresponding to the bulb with the mac address `mac` (a 6-byte bytestring). """ return self.bulbs.get(mac, Bulb('Bulb %s' % _bytes(mac), mac))
0.008584
def cc(self) -> Optional[Sequence[AddressHeader]]: """The ``Cc`` header.""" try: return cast(Sequence[AddressHeader], self[b'cc']) except KeyError: return None
0.009662
async def Prune(self, max_history_mb, max_history_time): ''' max_history_mb : int max_history_time : int Returns -> None ''' # map input types to rpc msg _params = dict() msg = dict(type='ActionPruner', request='Prune', version=1, params=_params) _params['max-history-mb'] = max_history_mb _params['max-history-time'] = max_history_time reply = await self.rpc(msg) return reply
0.003774
def execute_cleanup_tasks(ctx, cleanup_tasks, dry_run=False): """Execute several cleanup tasks as part of the cleanup. REQUIRES: ``clean(ctx, dry_run=False)`` signature in cleanup tasks. :param ctx: Context object for the tasks. :param cleanup_tasks: Collection of cleanup tasks (as Collection). :param dry_run: Indicates dry-run mode (bool) """ # pylint: disable=redefined-outer-name executor = Executor(cleanup_tasks, ctx.config) for cleanup_task in cleanup_tasks.tasks: print("CLEANUP TASK: %s" % cleanup_task) executor.execute((cleanup_task, dict(dry_run=dry_run)))
0.00155
def trainGP(self,fast=False,scales0=None,fixed0=None,lambd=None): """ Train the gp Args: fast: if true and the gp has not been initialized, initializes a kronSum gp scales0: initial variance components params fixed0: initial fixed effect params """ assert self.n_terms>0, 'CVarianceDecomposition:: No variance component terms' if not self.init: self.initGP(fast=fast) # set lambda if lambd!=None: self.gp.setLambda(lambd) # set scales0 if scales0!=None: self.setScales(scales0) # init gp params self.vd.initGPparams() # set fixed0 if fixed0!=None: params = self.gp.getParams() params['dataTerm'] = fixed0 self.gp.setParams(params) # LIMIX CVARIANCEDECOMPOSITION TRAINING conv =self.vd.trainGP() self.cache['Sigma'] = None self.cache['Hessian'] = None return conv
0.021033
def impute_element(self, records=('ATOM', 'HETATM'), inplace=False): """Impute element_symbol from atom_name section. Parameters ---------- records : iterable, default: ('ATOM', 'HETATM') Coordinate sections for which the element symbols should be imputed. inplace : bool, (default: False Performs the operation in-place if True and returns a copy of the PDB DataFrame otherwise. Returns --------- DataFrame """ if inplace: t = self.df else: t = self.df.copy() for d in self.df: t[d] = self.df[d].copy() for sec in records: t[sec]['element_symbol'] = \ t[sec][['atom_name', 'element_symbol']].\ apply(lambda x: x[0][1] if len(x[1]) == 3 else x[0][0], axis=1) return t
0.002075
def get_appstruct(self): """ return list of tuples keys and values corresponding to this model's data """ result = [] for k in self._get_keys(): result.append((k, getattr(self, k))) return result
0.008097
def emoji(string): '''emot.emoji is use to detect emoji from text >>> text = "I love python 👨 :-)" >>> emot.emoji(text) >>> {'value': ['👨'], 'mean': [':man:'], 'location': [[14, 14]], 'flag': True} ''' __entities = {} __value = [] __mean = [] __location = [] flag = True try: pro_string = str(string) for pos,ej in enumerate(pro_string): if ej in emo_unicode.UNICODE_EMO: try: __value.append(ej) __mean.append(emo_unicode.UNICODE_EMO[ej]) __location.append([pos,pos]) except Exception as e: flag = False __entities.append({"flag": False}) return __entities except Exception as e: flag = False __entities.append({"flag": False}) return __entities if len(__value) < 1: flag = False __entities = { 'value' : __value, 'mean' : __mean, 'location' : __location, 'flag' : flag } return __entities
0.008065
def _exclude_paths_from_environ(env_prefix=''): """Environment value via `/login;/register`""" paths = os.environ.get(env_prefix + 'WSGI_AUTH_EXCLUDE_PATHS') if not paths: return [] return paths.split(';')
0.004367
def connection(self): """ Provide the connection parameters for kombu's ConsumerMixin. The `Connection` object is a declaration of connection parameters that is lazily evaluated. It doesn't represent an established connection to the broker at this point. """ heartbeat = self.container.config.get( HEARTBEAT_CONFIG_KEY, DEFAULT_HEARTBEAT ) transport_options = self.container.config.get( TRANSPORT_OPTIONS_CONFIG_KEY, DEFAULT_TRANSPORT_OPTIONS ) ssl = self.container.config.get(AMQP_SSL_CONFIG_KEY) conn = Connection(self.amqp_uri, transport_options=transport_options, heartbeat=heartbeat, ssl=ssl ) return conn
0.002392
def wait_for_host(self, host): """Throttle requests to one host.""" t = time.time() if host in self.times: due_time = self.times[host] if due_time > t: wait = due_time - t time.sleep(wait) t = time.time() wait_time = random.uniform(self.wait_time_min, self.wait_time_max) self.times[host] = t + wait_time
0.004808
def get_variable_str(self): """ Utility method to get the variable value or 'var_name=value' if name is not None. Note that values with large string representations will not get printed :return: """ if self.var_name is None: prefix = '' else: prefix = self.var_name suffix = str(self.var_value) if len(suffix) == 0: suffix = "''" elif len(suffix) > self.__max_str_length_displayed__: suffix = '' if len(prefix) > 0 and len(suffix) > 0: return prefix + '=' + suffix else: return prefix + suffix
0.004518
def index(): """Display list of the user's repositories.""" github = GitHubAPI(user_id=current_user.id) token = github.session_token ctx = dict(connected=False) if token: # The user is authenticated and the token we have is still valid. if github.account.extra_data.get('login') is None: github.init_account() db.session.commit() # Sync if needed if request.method == 'POST' or github.check_sync(): # When we're in an XHR request, we want to synchronously sync hooks github.sync(async_hooks=(not request.is_xhr)) db.session.commit() # Generate the repositories view object extra_data = github.account.extra_data repos = extra_data['repos'] if repos: # 'Enhance' our repos dict, from our database model db_repos = Repository.query.filter( Repository.github_id.in_([int(k) for k in repos.keys()]), ).all() for repo in db_repos: repos[str(repo.github_id)]['instance'] = repo repos[str(repo.github_id)]['latest'] = GitHubRelease( repo.latest_release()) last_sync = humanize.naturaltime( (utcnow() - parse_timestamp(extra_data['last_sync']))) ctx.update({ 'connected': True, 'repos': sorted(repos.items(), key=lambda x: x[1]['full_name']), 'last_sync': last_sync, }) return render_template(current_app.config['GITHUB_TEMPLATE_INDEX'], **ctx)
0.000634
def segment_length(curve, start, end, start_point, end_point, error=LENGTH_ERROR, min_depth=LENGTH_MIN_DEPTH, depth=0): """Recursively approximates the length by straight lines""" mid = (start + end)/2 mid_point = curve.point(mid) length = abs(end_point - start_point) first_half = abs(mid_point - start_point) second_half = abs(end_point - mid_point) length2 = first_half + second_half if (length2 - length > error) or (depth < min_depth): # Calculate the length of each segment: depth += 1 return (segment_length(curve, start, mid, start_point, mid_point, error, min_depth, depth) + segment_length(curve, mid, end, mid_point, end_point, error, min_depth, depth)) # This is accurate enough. return length2
0.001152
def read_namespaced_pod(self, name, namespace, **kwargs): # noqa: E501 """read_namespaced_pod # noqa: E501 read the specified Pod # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.read_namespaced_pod(name, namespace, async_req=True) >>> result = thread.get() :param async_req bool :param str name: name of the Pod (required) :param str namespace: object name and auth scope, such as for teams and projects (required) :param str pretty: If 'true', then the output is pretty printed. :param bool exact: Should the export be exact. Exact export maintains cluster-specific fields like 'Namespace'. :param bool export: Should this value be exported. Export strips fields that a user can not specify. :return: V1Pod If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('async_req'): return self.read_namespaced_pod_with_http_info(name, namespace, **kwargs) # noqa: E501 else: (data) = self.read_namespaced_pod_with_http_info(name, namespace, **kwargs) # noqa: E501 return data
0.001471
def col2name(col_item): "helper for SyntheticTable.columns. takes something from SelectX.cols, returns a string column name" if isinstance(col_item, sqparse2.NameX): return col_item.name elif isinstance(col_item, sqparse2.AliasX): return col_item.alias else: raise TypeError(type(col_item), col_item)
0.029221
def setup(app): ''' Required Sphinx extension setup function. ''' app.add_node( bokehjs_content, html=( html_visit_bokehjs_content, html_depart_bokehjs_content ) ) app.add_directive('bokehjs-content', BokehJSContent)
0.003571
def mirror_video(self, is_mirror, callback=None): ''' Mirror video ``is_mirror``: 0 not mirror, 1 mirror ''' params = {'isMirror': is_mirror} return self.execute_command('mirrorVideo', params, callback=callback)
0.007752
def plot_filter_transmissions(log, filterList): """ *Plot the filters on a single plot* **Key Arguments:** - ``log`` -- logger - ``filterList`` -- list of absolute paths to plain text files containing filter transmission profiles **Return:** - None """ ################ > IMPORTS ################ ## STANDARD LIB ## ## THIRD PARTY ## import matplotlib.pyplot as plt import numpy as np ## LOCAL APPLICATION ## ################ > VARIABLE SETTINGS ###### ################ >ACTION(S) ################ for filterFile in filterList: data = np.genfromtxt(filterFile) plt.plot(data[:, 0], data[:, 1]) plt.show() return
0.011127
def get_submission_filenames(self, tournament=None, round_num=None): """Get filenames of the submission of the user. Args: tournament (int): optionally filter by ID of the tournament round_num (int): optionally filter round number Returns: list: list of user filenames (`dict`) Each filenames in the list as the following structure: * filename (`str`) * round_num (`int`) * tournament (`int`) Example: >>> NumerAPI().get_submission_filenames(3, 111) [{'filename': 'model57-dMpHpYMPIUAF.csv', 'round_num': 111, 'tournament': 3}] """ query = ''' query { user { submissions { filename selected round { tournament number } } } } ''' data = self.raw_query(query, authorization=True)['data']['user'] filenames = [{"round_num": item['round']['number'], "tournament": item['round']['tournament'], "filename": item['filename']} for item in data['submissions'] if item['selected']] if round_num is not None: filenames = [f for f in filenames if f['round_num'] == round_num] if tournament is not None: filenames = [f for f in filenames if f['tournament'] == tournament] filenames.sort(key=lambda f: (f['round_num'], f['tournament'])) return filenames
0.001203
def export_coreml(self, filename): """ Export the model in Core ML format. Parameters ---------- filename: str A valid filename where the model can be saved. Examples -------- >>> model.export_coreml("MyModel.mlmodel") """ from turicreate.toolkits import _coreml_utils display_name = "boosted trees classifier" short_description = _coreml_utils._mlmodel_short_description(display_name) context = {"mode" : "classification", "model_type" : "boosted_trees", "version": _turicreate.__version__, "class": self.__class__.__name__, "short_description": short_description, 'user_defined':{ 'turicreate_version': _turicreate.__version__ } } self._export_coreml_impl(filename, context)
0.007368
def _create_credentials(self, n): """ Create security credentials, if necessary. """ if not n: return n elif isinstance(n, SecurityCreds): return n elif isinstance(n, dict): return SecurityCreds(**n) else: raise TypeError("%s is not a valid security configuration" % repr(n))
0.004914
def _parse_spectra(self, line): """Parse and store the spectral details """ if line in ['\n', '\r\n', '//\n', '//\r\n', '', '//']: self.start_spectra = False self.current_id_meta += 1 self.collect_meta = True return splist = line.split() if len(splist) > 2 and not self.ignore_additional_spectra_info: additional_info = ''.join(map(str, splist[2:len(splist)])) else: additional_info = '' srow = ( self.current_id_spectra, float(splist[0]), float(splist[1]), additional_info, self.current_id_meta) self.spectra_all.append(srow) self.current_id_spectra += 1
0.004121
async def addSignalHandlers(self): ''' Register SIGINT signal handler with the ioloop to cancel the currently running cmdloop task. ''' def sigint(): self.printf('<ctrl-c>') if self.cmdtask is not None: self.cmdtask.cancel() self.loop.add_signal_handler(signal.SIGINT, sigint)
0.00838
def copy_w_id_suffix(elem, suffix="_copy"): """Make a deep copy of the provided tree, altering ids.""" mycopy = deepcopy(elem) for id_elem in mycopy.xpath('//*[@id]'): id_elem.set('id', id_elem.get('id') + suffix) return mycopy
0.003984
def quokka_heatmap(size=None, extract=None): """ Returns a heatmap (here: depth map) for the standard example quokka image. Parameters ---------- size : None or float or tuple of int, optional See :func:`imgaug.quokka`. extract : None or 'square' or tuple of number or imgaug.BoundingBox or imgaug.BoundingBoxesOnImage See :func:`imgaug.quokka`. Returns ------- result : imgaug.HeatmapsOnImage Depth map as an heatmap object. Values close to 0.0 denote objects that are close to the camera. Values close to 1.0 denote objects that are furthest away (among all shown objects). """ # TODO get rid of this deferred import from imgaug.augmentables.heatmaps import HeatmapsOnImage img = imageio.imread(QUOKKA_DEPTH_MAP_HALFRES_FP, pilmode="RGB") img = imresize_single_image(img, (643, 960), interpolation="cubic") if extract is not None: bb = _quokka_normalize_extract(extract) img = bb.extract_from_image(img) if size is None: size = img.shape[0:2] shape_resized = _compute_resized_shape(img.shape, size) img = imresize_single_image(img, shape_resized[0:2]) img_0to1 = img[..., 0] # depth map was saved as 3-channel RGB img_0to1 = img_0to1.astype(np.float32) / 255.0 img_0to1 = 1 - img_0to1 # depth map was saved as 0 being furthest away return HeatmapsOnImage(img_0to1, shape=img_0to1.shape[0:2] + (3,))
0.002736
def align_cell(fmt, elem, width): """Returns an aligned element.""" if fmt == "<": return elem + ' ' * (width - len(elem)) if fmt == ">": return ' ' * (width - len(elem)) + elem return elem
0.004525
def compute(self, xt1, yt1, xt, yt, theta1t1, theta2t1, theta1, theta2, learn): """ The main function to call. If learn is False, it will print a prediction: (theta1, theta2) """ dx = xt - xt1 dy = yt - yt1 self.minDx = min(self.minDx, dx) self.maxDx = max(self.maxDx, dx) print >>sys.stderr, "Learn: ", learn print >>sys.stderr, "Training iterations: ", self.trainingIterations print >>sys.stderr, "Test iterations: ", self.testIterations print >>sys.stderr, "Xt's: ", xt1, yt1, xt, yt, "Delta's: ", dx, dy print >>sys.stderr, "Theta t-1: ", theta1t1, theta2t1, "t:",theta1, theta2 bottomUpSDR = self.encodeThetas(theta1, theta2) self.decodeThetas(bottomUpSDR) # Encode the inputs appropriately and train the HTM externalSDR = self.encodeDeltas(dx,dy) if learn: # During learning we provide the current pose angle as bottom up input bottomUpSDR = self.encodeThetas(theta1, theta2) self.trainTM(bottomUpSDR, externalSDR) self.trainingIterations += 1 else: # During inference we provide the previous pose angle as bottom up input # If we don't get a prediction, we keep trying random shifts until we get # something. predictedCells = [] newt1 = theta1t1 newt2 = theta2t1 newdx = dx newdy = dy angleRange = 10 numAttempts = 1 while len(predictedCells) == 0 and numAttempts < 3: print >> sys.stderr, "Attempt:", numAttempts, print >> sys.stderr, "Trying to predict using thetas:", newt1, newt2, print >> sys.stderr, "and deltas:", newdx, newdy externalSDR = self.encodeDeltas(newdx, newdy) bottomUpSDR = self.encodeThetas(newt1, newt2) predictedCells = self.inferTM(bottomUpSDR, externalSDR) predictedValues = self.decodeThetas(predictedCells) print >> sys.stderr, "Predicted values",predictedValues newt1 = theta1t1 + random.randrange(-angleRange,angleRange) newt2 = theta2t1 + random.randrange(-angleRange,angleRange) newdx = dx + (random.random()/2.0 - 0.25) newdy = dy + (random.random()/2.0 - 0.25) # Ensure we are in bounds otherwise we get an exception newt1 = min(self.maxTheta1, max(self.minTheta1, newt1)) newt2 = min(self.maxTheta2, max(self.minTheta2, newt2)) newdx = min(2.0, max(-2.0, newdx)) newdy = min(2.0, max(-2.0, newdy)) numAttempts += 1 if numAttempts % 10 == 0: angleRange += 2 print predictedValues # Accumulate errors for our metrics if len(predictedCells) == 0: self.numMissedPredictions += 1 self.testIterations += 1 error = abs(predictedValues[0] - theta1) + abs(predictedValues[1] - theta2) self.totalPredictionError += error if self.maxPredictionError < error: self.maxPredictionError = error print >> sys.stderr, "Error: ", error print >> sys.stderr
0.01041
def get_cardinality(self, field=None): """ Create a cardinality aggregation object and add it to the aggregation dict :param field: the field present in the index that is to be aggregated :returns: self, which allows the method to be chainable with the other methods """ if not field: raise AttributeError("Please provide field to apply aggregation to!") agg = A("cardinality", field=field, precision_threshold=self.precision_threshold) self.aggregations['cardinality_' + field] = agg return self
0.010309
def parse_qs(qs): """Helper func to parse query string with py2/py3 compatibility Ensures that dict keys are native strings. """ result = {} qs = bstr(qs, 'latin1') pairs = [s2 for s1 in qs.split(b'&') for s2 in s1.split(b';')] uq = urlparse.unquote if PY2 else urlparse.unquote_to_bytes for name_value in pairs: if not name_value: continue nv = name_value.split(b'=', 1) if len(nv) != 2: nv.append(b'') name = nv[0].replace(b'+', b' ') name = uq(name) if not PY2: # pragma: no cover py2 name = ustr(name, 'latin1') value = nv[1].replace(b'+', b' ') value = uq(value) result.setdefault(name, []).append(value) return result
0.001299
def clean_new(self, value): """Return a new object instantiated with cleaned data.""" value = self.schema_class(value).full_clean() return self.object_class(**value)
0.010582
def parse_line_headers(self, line): """We must build headers carefully: there are multiple blank values in the header row, and the instrument may just add more for all we know. """ headers = line.split(",") for i, v in enumerate(headers): if v: headers[i] = v else: headers[i] = str(i) self.headers = headers
0.004762
def select_good_pixel_region(hits, col_span, row_span, min_cut_threshold=0.2, max_cut_threshold=2.0): '''Takes the hit array and masks all pixels with a certain occupancy. Parameters ---------- hits : array like If dim > 2 the additional dimensions are summed up. min_cut_threshold : float A number to specify the minimum threshold, which pixel to take. Pixels are masked if occupancy < min_cut_threshold * np.ma.median(occupancy) 0 means that no pixels are masked max_cut_threshold : float A number to specify the maximum threshold, which pixel to take. Pixels are masked if occupancy > max_cut_threshold * np.ma.median(occupancy) Can be set to None that no pixels are masked by max_cut_threshold Returns ------- numpy.ma.array, shape=(80,336) The hits array with masked pixels. ''' hits = np.sum(hits, axis=(-1)).astype('u8') mask = np.ones(shape=(80, 336), dtype=np.uint8) mask[min(col_span):max(col_span) + 1, min(row_span):max(row_span) + 1] = 0 ma = np.ma.masked_where(mask, hits) if max_cut_threshold is not None: return np.ma.masked_where(np.logical_or(ma < min_cut_threshold * np.ma.median(ma), ma > max_cut_threshold * np.ma.median(ma)), ma) else: return np.ma.masked_where(ma < min_cut_threshold * np.ma.median(ma), ma)
0.004354
def stream_data(self, ostream): """Writes our data directly to the given output stream :param ostream: File object compatible stream object. :return: self""" istream = self.repo.odb.stream(self.binsha) stream_copy(istream, ostream) return self
0.006873
def user_active_directory_deactivate(user, attributes, created, updated): """ Deactivate user accounts based on Active Directory's userAccountControl flags. Requires 'userAccountControl' to be included in LDAP_SYNC_USER_EXTRA_ATTRIBUTES. """ try: user_account_control = int(attributes['userAccountControl'][0]) if user_account_control & 2: user.is_active = False except KeyError: pass
0.002179
def matches_rule(message, rule, destinations = None) : "does Message message match against the specified rule." if not isinstance(message, Message) : raise TypeError("message must be a Message") #end if rule = unformat_rule(rule) eavesdrop = rule.get("eavesdrop", "false") == "true" def match_message_type(expect, actual) : return \ actual == Message.type_from_string(expect) #end match_message_type def match_path_namespace(expect, actual) : return \ ( actual != None and ( expect == actual or actual.startswith(expect) and (expect == "/" or actual[len(expect)] == "/") ) ) #end match_path_namespace def match_dotted_namespace(expect, actual) : return \ ( actual != None and ( expect == actual or actual.startswith(expect) and actual[len(expect)] == "." ) ) #end match_dotted_namespace def get_nth_arg(msg, n, expect_types) : msg_signature = parse_signature(msg.signature) if n >= len(msg_signature) : raise IndexError("arg nr %d beyond nr args %d" % (n, len(msg_signature))) #end if val = msg.all_objects[n] valtype = msg_signature[n] if valtype not in expect_types : if False : raise TypeError \ ( "expecting one of types %s, not %s for arg %d val %s" % ((repr(expect_types), repr(valtype), n, repr(val))) ) #end if val = None # never match #end if return \ val #end get_nth_arg def get_arg_0_str(message) : return \ get_nth_arg(message, 0, [BasicType(TYPE.STRING)]) #end get_arg_0_str def match_arg_paths(expect, actual) : return \ ( actual != None and ( expect == actual or expect.endswith("/") and actual.startswith(expect) or actual.endswith("/") and expect.startswith(actual) ) ) #end match_arg_paths match_types = \ ( # note that message attribute value of None will fail to match # any expected string value, which is exactly what we want ("type", None, match_message_type, None), ("sender", None, operator.eq, None), ("interface", None, operator.eq, None), ("member", None, operator.eq, None), ("path", None, operator.eq, None), ("destination", None, operator.eq, None), ("path_namespace", "path", match_path_namespace, None), ("arg0namespace", None, match_dotted_namespace, get_arg_0_str), # “arg«n»path” handled specially below ) #begin matches_rule keys_used = set(rule.keys()) - {"eavesdrop"} matches = \ ( eavesdrop or destinations == None or message.destination == None or message.destination in destinations ) if matches : try_matching = iter(match_types) while True : try_rule = next(try_matching, None) if try_rule == None : break rulekey, attrname, action, accessor = try_rule if attrname == None : attrname = rulekey #end if if rulekey in rule : if accessor != None : val = accessor(message) else : val = getattr(message, attrname) #end if keys_used.remove(rulekey) if not action(rule[rulekey], val) : matches = False break #end if #end if #end while #end if if matches : try_matching = iter(rule.keys()) while True : try_key = next(try_matching, None) if try_key == None : break if try_key.startswith("arg") and not try_key.endswith("namespace") : argnr = try_key[3:] is_path = argnr.endswith("path") if is_path : argnr = argnr[:-4] #end if argnr = int(argnr) if not (0 <= argnr < 64) : raise ValueError("argnr %d out of range" % argnr) #end if argval = get_nth_arg \ ( message, argnr, [BasicType(TYPE.STRING)] + ([], [BasicType(TYPE.OBJECT_PATH)])[is_path] ) keys_used.remove(try_key) if not (operator.eq, match_arg_paths)[is_path](rule[try_key], argval) : matches = False break #end if #end if #end while #end if if matches and len(keys_used) != 0 : # fixme: not checking for unrecognized rule keys if I didn’t try matching them all raise KeyError("unrecognized rule keywords: %s" % ", ".join(sorted(keys_used))) #end if return \ matches
0.01549
def _replace_rlhist_multiline(self, source_raw, hlen_before_cell): """Store multiple lines as a single entry in history""" # do nothing without readline or disabled multiline if not self.has_readline or not self.multiline_history: return hlen_before_cell # windows rl has no remove_history_item if not hasattr(self.readline, "remove_history_item"): return hlen_before_cell # skip empty cells if not source_raw.rstrip(): return hlen_before_cell # nothing changed do nothing, e.g. when rl removes consecutive dups hlen = self.readline.get_current_history_length() if hlen == hlen_before_cell: return hlen_before_cell for i in range(hlen - hlen_before_cell): self.readline.remove_history_item(hlen - i - 1) stdin_encoding = get_stream_enc(sys.stdin, 'utf-8') self.readline.add_history(py3compat.unicode_to_str(source_raw.rstrip(), stdin_encoding)) return self.readline.get_current_history_length()
0.00271
def search(self, search, **kwargs): """ Search for Repository Configurations based on internal or external url, ignoring the protocol and \".git\" suffix. The matching is done using LIKE. This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please define a `callback` function to be invoked when receiving the response. >>> def callback_function(response): >>> pprint(response) >>> >>> thread = api.search(search, callback=callback_function) :param callback function: The callback function for asynchronous request. (optional) :param str search: Url part to search for (required) :param int page_index: Page Index :param int page_size: Pagination size :param str sort: Sorting RSQL :return: RepositoryConfigurationPage If the method is called asynchronously, returns the request thread. """ kwargs['_return_http_data_only'] = True if kwargs.get('callback'): return self.search_with_http_info(search, **kwargs) else: (data) = self.search_with_http_info(search, **kwargs) return data
0.003147
def gaussian_window(t, params): """ Calculates a Gaussian window function in the time domain which will broaden peaks in the frequency domain by params["line_broadening"] Hertz. :param t: :param params: :return: """ window = suspect.basis.gaussian(t, 0, 0, params["line_broadening"]) # the above gaussian function returns an area 1 fid, for a windowing # function we need to be area preserving (first point must be 1) return window / window[0]
0.002049
def create_container_service(access_token, subscription_id, resource_group, service_name, \ agent_count, agent_vm_size, agent_dns, master_dns, admin_user, location, public_key=None,\ master_count=3, orchestrator='DCOS', app_id=None, app_secret=None, admin_password=None, \ ostype='Linux'): '''Create a new container service - include app_id and app_secret if using Kubernetes. Args: access_token (str): A valid Azure authentication token. subscription_id (str): Azure subscription id. resource_group (str): Azure resource group name. service_name (str): Name of container service. agent_count (int): The number of agent VMs. agent_vm_size (str): VM size of agents, e.g. Standard_D1_v2. agent_dns (str): A unique DNS string for the agent DNS. master_dns (str): A unique string for the master DNS. admin_user (str): Admin user name. location (str): Azure data center location, e.g. westus. public_key (str): RSA public key (utf-8). master_count (int): Number of master VMs. orchestrator (str): Container orchestrator. E.g. DCOS, Kubernetes. app_id (str): Application ID for Kubernetes. app_secret (str): Application secret for Kubernetes. admin_password (str): Admin user password. ostype (str): Operating system. Windows of Linux. Returns: HTTP response. Container service JSON model. ''' endpoint = ''.join([get_rm_endpoint(), '/subscriptions/', subscription_id, '/resourcegroups/', resource_group, '/providers/Microsoft.ContainerService/ContainerServices/', service_name, '?api-version=', ACS_API]) acs_body = {'location': location} properties = {'orchestratorProfile': {'orchestratorType': orchestrator}} properties['masterProfile'] = {'count': master_count, 'dnsPrefix': master_dns} ap_profile = {'name': 'AgentPool1'} ap_profile['count'] = agent_count ap_profile['vmSize'] = agent_vm_size ap_profile['dnsPrefix'] = agent_dns properties['agentPoolProfiles'] = [ap_profile] if ostype == 'Linux': linux_profile = {'adminUsername': admin_user} linux_profile['ssh'] = {'publicKeys': [{'keyData': public_key}]} properties['linuxProfile'] = linux_profile else: # Windows windows_profile = {'adminUsername': admin_user, 'adminPassword': admin_password} properties['windowsProfile'] = windows_profile if orchestrator == 'Kubernetes': sp_profile = {'ClientID': app_id} sp_profile['Secret'] = app_secret properties['servicePrincipalProfile'] = sp_profile acs_body['properties'] = properties body = json.dumps(acs_body) return do_put(endpoint, body, access_token)
0.005616
def scale_and_crop_with_subject_location(im, size, subject_location=False, zoom=None, crop=False, upscale=False, **kwargs): """ Like ``easy_thumbnails.processors.scale_and_crop``, but will use the coordinates in ``subject_location`` to make sure that that part of the image is in the center or at least somewhere on the cropped image. Please not that this does *not* work correctly if the image has been resized by a previous processor (e.g ``autocrop``). ``crop`` needs to be set for this to work, but any special cropping parameters will be ignored. """ subject_location = normalize_subject_location(subject_location) if not (subject_location and crop): # use the normal scale_and_crop return processors.scale_and_crop(im, size, zoom=zoom, crop=crop, upscale=upscale, **kwargs) # for here on we have a subject_location and cropping is on # --snip-- this is a copy and paste of the first few # lines of ``scale_and_crop`` source_x, source_y = [float(v) for v in im.size] target_x, target_y = [float(v) for v in size] if crop or not target_x or not target_y: scale = max(target_x / source_x, target_y / source_y) else: scale = min(target_x / source_x, target_y / source_y) # Handle one-dimensional targets. if not target_x: target_x = source_x * scale elif not target_y: target_y = source_y * scale if zoom: if not crop: target_x = round(source_x * scale) target_y = round(source_y * scale) scale *= (100 + int(zoom)) / 100.0 if scale < 1.0 or (scale > 1.0 and upscale): im = im.resize((int(source_x * scale), int(source_y * scale)), resample=Image.ANTIALIAS) # --endsnip-- begin real code # =============================== # subject location aware cropping # =============================== # res_x, res_y: the resolution of the possibly already resized image res_x, res_y = [float(v) for v in im.size] # subj_x, subj_y: the position of the subject (maybe already re-scaled) subj_x = res_x * float(subject_location[0]) / source_x subj_y = res_y * float(subject_location[1]) / source_y ex = (res_x - min(res_x, target_x)) / 2 ey = (res_y - min(res_y, target_y)) / 2 fx, fy = res_x - ex, res_y - ey # box_width, box_height: dimensions of the target image box_width, box_height = fx - ex, fy - ey # try putting the box in the center around the subject point # (this will be partially outside of the image in most cases) tex, tey = subj_x - (box_width / 2), subj_y - (box_height / 2) tfx, tfy = subj_x + (box_width / 2), subj_y + (box_height / 2) if tex < 0: # its out of the img to the left, move both to the right until tex is 0 tfx = tfx - tex # tex is negative! tex = 0 elif tfx > res_x: # its out of the img to the right tex = tex - (tfx - res_x) tfx = res_x if tey < 0: # its out of the img to the top, move both to the bottom until tey is 0 tfy = tfy - tey # tey is negative!) tey = 0 elif tfy > res_y: # its out of the img to the bottom tey = tey - (tfy - res_y) tfy = res_y if ex or ey: crop_box = ((int(tex), int(tey), int(tfx), int(tfy))) if FILER_SUBJECT_LOCATION_IMAGE_DEBUG: # draw elipse on focal point for Debugging draw = ImageDraw.Draw(im) esize = 10 draw.ellipse(((subj_x - esize, subj_y - esize), (subj_x + esize, subj_y + esize)), outline="#FF0000") im = im.crop(crop_box) return im
0.00026
def readinto(self, b): """Read up to len(b) bytes into the writable buffer *b* and return the number of bytes read. If the socket is non-blocking and no bytes are available, None is returned. If *b* is non-empty, a 0 return value indicates that the connection was shutdown at the other end. """ self._checkClosed() self._checkReadable() if self._timeout_occurred: raise IOError("cannot read from timed out object") while True: try: return self._sock.recv_into(b) except timeout: self._timeout_occurred = True raise # except InterruptedError: # continue except error as e: if e.args[0] in _blocking_errnos: return None raise
0.00227
def disconnect_socket(self): """ Disconnect the underlying socket connection """ self.running = False if self.socket is not None: if self.__need_ssl(): # # Even though we don't want to use the socket, unwrap is the only API method which does a proper SSL # shutdown # try: self.socket = self.socket.unwrap() except Exception: # # unwrap seems flaky on Win with the back-ported ssl mod, so catch any exception and log it # _, e, _ = sys.exc_info() log.warning(e) elif hasattr(socket, 'SHUT_RDWR'): try: self.socket.shutdown(socket.SHUT_RDWR) except socket.error: _, e, _ = sys.exc_info() # ignore when socket already closed if get_errno(e) != errno.ENOTCONN: log.warning("Unable to issue SHUT_RDWR on socket because of error '%s'", e) # # split this into a separate check, because sometimes the socket is nulled between shutdown and this call # if self.socket is not None: try: self.socket.close() except socket.error: _, e, _ = sys.exc_info() log.warning("Unable to close socket because of error '%s'", e) self.current_host_and_port = None self.socket = None self.notify('disconnected')
0.003679
def iter_nautilus(method): """ Iterate NAUTILUS method either interactively, or using given preferences if given Parameters ---------- method : instance of NAUTILUS subclass Fully initialized NAUTILUS method instance """ solution = None while method.current_iter: preference_class = init_nautilus(method) pref = preference_class(method, None) default = ",".join(map(str, pref.default_input())) while method.current_iter: method.print_current_iteration() pref_input = _prompt_wrapper( u"Preferences: ", default=default, validator=VectorValidator(method, pref), ) cmd = _check_cmd(pref_input) if cmd: solution = method.zh break pref = preference_class( method, np.fromstring(pref_input, dtype=np.float, sep=",") ) default = ",".join(map(str, pref.pref_input)) solution, _ = method.next_iteration(pref) if cmd and list(cmd)[0] == "c": break return solution
0.001735
async def extended_analog(self, pin, data): """ This method will send an extended-data analog write command to the selected pin. :param pin: 0 - 127 :param data: 0 - 0xfffff :returns: No return value """ analog_data = [pin, data & 0x7f, (data >> 7) & 0x7f, (data >> 14) & 0x7f] await self._send_sysex(PrivateConstants.EXTENDED_ANALOG, analog_data)
0.007109
def binary(self): """ Get the object this function belongs to. :return: The object this function belongs to. """ return self._project.loader.find_object_containing(self.addr, membership_check=False)
0.012552
def clean_download_cache(self, args): """ Deletes a download cache for recipes passed as arguments. If no argument is passed, it'll delete *all* downloaded caches. :: p4a clean_download_cache kivy,pyjnius This does *not* delete the build caches or final distributions. """ ctx = self.ctx if hasattr(args, 'recipes') and args.recipes: for package in args.recipes: remove_path = join(ctx.packages_path, package) if exists(remove_path): shutil.rmtree(remove_path) info('Download cache removed for: "{}"'.format(package)) else: warning('No download cache found for "{}", skipping'.format( package)) else: if exists(ctx.packages_path): shutil.rmtree(ctx.packages_path) info('Download cache removed.') else: print('No cache found at "{}"'.format(ctx.packages_path))
0.002871
def sign_in(self, timeout=60, safe=True, tries=1, channel=None): ''' Send a sign in request to the master, sets the key information and returns a dict containing the master publish interface to bind to and the decrypted aes key for transport decryption. :param int timeout: Number of seconds to wait before timing out the sign-in request :param bool safe: If True, do not raise an exception on timeout. Retry instead. :param int tries: The number of times to try to authenticate before giving up. :raises SaltReqTimeoutError: If the sign-in request has timed out and :param safe: is not set :return: Return a string on failure indicating the reason for failure. On success, return a dictionary with the publication port and the shared AES key. ''' auth = {} auth_timeout = self.opts.get('auth_timeout', None) if auth_timeout is not None: timeout = auth_timeout auth_safemode = self.opts.get('auth_safemode', None) if auth_safemode is not None: safe = auth_safemode auth_tries = self.opts.get('auth_tries', None) if auth_tries is not None: tries = auth_tries m_pub_fn = os.path.join(self.opts['pki_dir'], self.mpub) auth['master_uri'] = self.opts['master_uri'] close_channel = False if not channel: close_channel = True channel = salt.transport.client.AsyncReqChannel.factory(self.opts, crypt='clear', io_loop=self.io_loop) sign_in_payload = self.minion_sign_in_payload() try: payload = yield channel.send( sign_in_payload, tries=tries, timeout=timeout ) except SaltReqTimeoutError as e: if safe: log.warning('SaltReqTimeoutError: %s', e) raise tornado.gen.Return('retry') if self.opts.get('detect_mode') is True: raise tornado.gen.Return('retry') else: raise SaltClientError('Attempt to authenticate with the salt master failed with timeout error') finally: if close_channel: channel.close() if not isinstance(payload, dict): log.error('Sign-in attempt failed: %s', payload) raise tornado.gen.Return(False) if 'load' in payload: if 'ret' in payload['load']: if not payload['load']['ret']: if self.opts['rejected_retry']: log.error( 'The Salt Master has rejected this minion\'s public ' 'key.\nTo repair this issue, delete the public key ' 'for this minion on the Salt Master.\nThe Salt ' 'Minion will attempt to to re-authenicate.' ) raise tornado.gen.Return('retry') else: log.critical( 'The Salt Master has rejected this minion\'s public ' 'key!\nTo repair this issue, delete the public key ' 'for this minion on the Salt Master and restart this ' 'minion.\nOr restart the Salt Master in open mode to ' 'clean out the keys. The Salt Minion will now exit.' ) # Add a random sleep here for systems that are using a # a service manager to immediately restart the service # to avoid overloading the system time.sleep(random.randint(10, 20)) sys.exit(salt.defaults.exitcodes.EX_NOPERM) # has the master returned that its maxed out with minions? elif payload['load']['ret'] == 'full': raise tornado.gen.Return('full') else: log.error( 'The Salt Master has cached the public key for this ' 'node, this salt minion will wait for %s seconds ' 'before attempting to re-authenticate', self.opts['acceptance_wait_time'] ) raise tornado.gen.Return('retry') auth['aes'] = self.verify_master(payload, master_pub='token' in sign_in_payload) if not auth['aes']: log.critical( 'The Salt Master server\'s public key did not authenticate!\n' 'The master may need to be updated if it is a version of Salt ' 'lower than %s, or\n' 'If you are confident that you are connecting to a valid Salt ' 'Master, then remove the master public key and restart the ' 'Salt Minion.\nThe master public key can be found ' 'at:\n%s', salt.version.__version__, m_pub_fn ) raise SaltClientError('Invalid master key') if self.opts.get('syndic_master', False): # Is syndic syndic_finger = self.opts.get('syndic_finger', self.opts.get('master_finger', False)) if syndic_finger: if salt.utils.crypt.pem_finger(m_pub_fn, sum_type=self.opts['hash_type']) != syndic_finger: self._finger_fail(syndic_finger, m_pub_fn) else: if self.opts.get('master_finger', False): if salt.utils.crypt.pem_finger(m_pub_fn, sum_type=self.opts['hash_type']) != self.opts['master_finger']: self._finger_fail(self.opts['master_finger'], m_pub_fn) auth['publish_port'] = payload['publish_port'] raise tornado.gen.Return(auth)
0.003499
def _bsecurate_cli_view_graph(args): '''Handles the view-graph subcommand''' curate.view_graph(args.basis, args.version, args.data_dir) return ''
0.006329
def get_logger(name, log_level=logging.INFO, log_file=None, global_log_file=False, silence=False): """ Build a logger. All logs will be propagated up to the root logger if not silenced. If log_file is provided, logs will be written out to that file. If global_log_file is true, log_file will be handed the root logger, otherwise it will only be used by this particular logger. Parameters ---------- name :obj:`str` The name of the logger to be built. log_level : `int` The log level. See the python logging module documentation for possible enum values. log_file :obj:`str` The path to the log file to log to. global_log_file :obj:`bool` Whether or not to use the given log_file for this particular logger or for the root logger. silence :obj:`bool` Whether or not to silence this logger. If it is silenced, the only way to get output from this logger is through a non-global log file. Returns ------- :obj:`logging.Logger` A custom logger. """ no_op = False # some checks for silencing/no-op logging if silence and global_log_file: raise ValueError("You can't silence a logger and log to a global log file!") if silence and log_file is None: logging.warning('You are creating a no-op logger!') no_op = True # configure the root logger if it hasn't been already if not Logger.ROOT_CONFIGURED: configure_root() Logger.ROOT_CONFIGURED = True # build a logger logger = logging.getLogger(name) logger.setLevel(log_level) # silence the logger by preventing it from propagating upwards to the root logger.propagate = not silence # configure the log file stream if log_file is not None: # if the log file is global, add it to the root logger if global_log_file: add_root_log_file(log_file) # otherwise add it to this particular logger else: hdlr = logging.FileHandler(log_file) formatter = logging.Formatter('%(asctime)s %(name)-10s %(levelname)-8s %(message)s', datefmt='%m-%d %H:%M:%S') hdlr.setFormatter(formatter) logger.addHandler(hdlr) # add a no-op handler to suppress warnings about there being no handlers if no_op: logger.addHandler(logging.NullHandler()) return logger
0.005401
def VerifyStructure(self, parser_mediator, line): """Verify that this file is a Mac AppFirewall log file. Args: parser_mediator (ParserMediator): mediates interactions between parsers and other components, such as storage and dfvfs. line (str): line from a text file. Returns: bool: True if the line is in the expected format, False if not. """ self._last_month = 0 self._year_use = parser_mediator.GetEstimatedYear() try: structure = self.FIREWALL_LINE.parseString(line) except pyparsing.ParseException as exception: logger.debug(( 'Unable to parse file as a Mac AppFirewall log file with error: ' '{0!s}').format(exception)) return False if structure.action != 'creating /var/log/appfirewall.log': logger.debug( 'Not a Mac AppFirewall log file, invalid action: {0!s}'.format( structure.action)) return False if structure.status != 'Error': logger.debug( 'Not a Mac AppFirewall log file, invalid status: {0!s}'.format( structure.status)) return False time_elements_tuple = self._GetTimeElementsTuple(structure) try: dfdatetime_time_elements.TimeElements( time_elements_tuple=time_elements_tuple) except ValueError: logger.debug(( 'Not a Mac AppFirewall log file, invalid date and time: ' '{0!s}').format(structure.date_time)) return False self._last_month = time_elements_tuple[1] return True
0.007106
def _output_marc(output_complete, categories, kw_field=None, auth_field=None, acro_field=None, provenience='Classifier'): """Output the keywords in the MARCXML format. :var skw_matches: list of single keywords :var ckw_matches: list of composite keywords :var author_keywords: dictionary of extracted author keywords :var acronyms: dictionary of acronyms :var spires: boolean, True=generate spires output - BUT NOTE: it is here only not to break compatibility, in fact spires output should never be used for xml because if we read marc back into the KeywordToken objects, we would not find them :keyword provenience: string that identifies source (authority) that assigned the contents of the field :return: string, formatted MARC """ if kw_field is None: kw_field = current_app.config["CLASSIFIER_RECORD_KEYWORD_FIELD"] if auth_field is None: auth_field = current_app.config[ "CLASSIFIER_RECORD_KEYWORD_AUTHOR_FIELD" ] if acro_field is None: acro_field = current_app.config[ "CLASSIFIER_RECORD_KEYWORD_ACRONYM_FIELD" ] kw_template = ('<datafield tag="%s" ind1="%s" ind2="%s">\n' ' <subfield code="2">%s</subfield>\n' ' <subfield code="a">%s</subfield>\n' ' <subfield code="n">%s</subfield>\n' ' <subfield code="9">%s</subfield>\n' '</datafield>\n') output = [] tag, ind1, ind2 = _parse_marc_code(kw_field) for keywords in (output_complete["single_keywords"], output_complete["core_keywords"]): for kw in keywords: output.append(kw_template % (tag, ind1, ind2, encode_for_xml(provenience), encode_for_xml(kw), keywords[kw], encode_for_xml(categories[kw]))) author_keywords = [keyword['author_keyword'] for keyword in output_complete["author_keywords"]] for field, keywords in ((auth_field, author_keywords), (acro_field, output_complete["acronyms"])): # field='' we shall not save the keywords if keywords and len(keywords) and field: tag, ind1, ind2 = _parse_marc_code(field) for kw, info in keywords.items(): output.append(kw_template % (tag, ind1, ind2, encode_for_xml(provenience), encode_for_xml(kw), '', encode_for_xml(categories[kw]))) return "".join(output)
0.000352
def validate_is_non_abstract_edge_type(self, edge_classname): """Validate that a edge classname corresponds to a non-abstract edge class.""" element = self.get_edge_schema_element_or_raise(edge_classname) if element.abstract: raise InvalidClassError(u'Expected a non-abstract vertex class, but {} is abstract' .format(edge_classname))
0.009828
def as_dict(self): """Dict representation of parsed VCF data""" self_as_dict = {'chrom': self.chrom, 'start': self.start, 'ref_allele': self.ref_allele, 'alt_alleles': self.alt_alleles, 'alleles': [x.as_dict() for x in self.alleles]} try: self_as_dict['info'] = self.info except AttributeError: pass return self_as_dict
0.004175
def _get_seq2c_options(data): """Get adjustable, through resources, or default options for seq2c. """ cov2lr_possible_opts = ["-F"] defaults = {} ropts = config_utils.get_resources("seq2c", data["config"]).get("options", []) assert len(ropts) % 2 == 0, "Expect even number of options for seq2c" % ropts defaults.update(dict(tz.partition(2, ropts))) cov2lr_out, lr2gene_out = [], [] for k, v in defaults.items(): if k in cov2lr_possible_opts: cov2lr_out += [str(k), str(v)] else: lr2gene_out += [str(k), str(v)] return cov2lr_out, lr2gene_out
0.004831
def get_version(self): """Get the DCNM version.""" url = '%s://%s/rest/dcnm-version' % (self.dcnm_protocol, self._ip) payload = {} try: res = self._send_request('GET', url, payload, 'dcnm-version') if res and res.status_code in self._resp_ok: return res.json().get('Dcnm-Version') except dexc.DfaClientRequestFailed as exc: LOG.error("Failed to get DCNM version.") sys.exit("ERROR: Failed to connect to DCNM: %s", exc)
0.003817
def get_derived_from(self, address): """Get the target the specified target was derived from. If a Target was injected programmatically, e.g. from codegen, this allows us to trace its ancestry. If a Target is not derived, default to returning itself. :API: public """ parent_address = self._derived_from_by_derivative.get(address, address) return self.get_target(parent_address)
0.00489
def build(self, builder): """Build XML by appending to builder""" builder.start("BasicDefinitions", {}) for child in self.measurement_units: child.build(builder) builder.end("BasicDefinitions")
0.008439
def add_schemas(path, ext="json"): """Add schemas from files in 'path'. :param path: Path with schema files. Schemas are named by their file, with the extension stripped. e.g., if path is "/tmp/foo", then the schema in "/tmp/foo/bar.json" will be named "bar". :type path: str :param ext: File extension that identifies schema files :type ext: str :return: None :raise: SchemaPathError, if no such path. SchemaParseError, if a schema is not valid JSON. """ if not os.path.exists(path): raise SchemaPathError() filepat = "*." + ext if ext else "*" for f in glob.glob(os.path.join(path, filepat)): with open(f, 'r') as fp: try: schema = json.load(fp) except ValueError: raise SchemaParseError("error parsing '{}'".format(f)) name = os.path.splitext(os.path.basename(f))[0] schemata[name] = Schema(schema)
0.00102
def solve(self): ''' Solves a one period consumption saving problem with risky income, with persistent income explicitly tracked as a state variable. Parameters ---------- None Returns ------- solution : ConsumerSolution The solution to the one period problem, including a consumption function (defined over market resources and persistent income), a marginal value function, bounding MPCs, and human wealth as a func- tion of persistent income. Might also include a value function and marginal marginal value function, depending on options selected. ''' aLvl,pLvl = self.prepareToCalcEndOfPrdvP() EndOfPrdvP = self.calcEndOfPrdvP() if self.vFuncBool: self.makeEndOfPrdvFunc(EndOfPrdvP) if self.CubicBool: interpolator = self.makeCubiccFunc else: interpolator = self.makeLinearcFunc solution = self.makeBasicSolution(EndOfPrdvP,aLvl,pLvl,interpolator) solution = self.addMPCandHumanWealth(solution) if self.vFuncBool: solution.vFunc = self.makevFunc(solution) if self.CubicBool: solution = self.addvPPfunc(solution) return solution
0.006823
def initialize_slot(obj, name, value): """Initalize an unitialized slot to a value. If there is already a value for this slot, this is a nop. Parameters ---------- obj : immutable An immutable object. name : str The name of the slot to initialize. value : any The value to initialize the slot to. """ if not hasattr(obj, name): object_setattr(obj, name, value)
0.002326
def get_server_data(self, UUID): """ Return '/server/uuid' data in Python dict. Creates object representations of any IP-address and Storage. """ data = self.get_request('/server/{0}'.format(UUID)) server = data['server'] # Populate subobjects IPAddresses = IPAddress._create_ip_address_objs(server.pop('ip_addresses'), cloud_manager=self) storages = Storage._create_storage_objs(server.pop('storage_devices'), cloud_manager=self) return server, IPAddresses, storages
0.006088
def get_bookmarks(self, **filters): """ Get Bookmarks for the current user. Filters: :param archive: Filter Bookmarks returned by archived status. :param favorite: Filter Bookmarks returned by favorite status. :param domain: Filter Bookmarks returned by a domain. :param added_since: Filter bookmarks by date added (since this date). :param added_until: Filter bookmarks by date added (until this date). :param opened_since: Filter bookmarks by date opened (since this date). :param opened_until: Filter bookmarks by date opened (until this date). :param archived_since: Filter bookmarks by date archived (since this date.) :param archived_until: Filter bookmarks by date archived (until this date.) :param updated_since: Filter bookmarks by date updated (since this date.) :param updated_until: Filter bookmarks by date updated (until this date.) :param page: What page of results to return. Default is 1. :param per_page: How many results to return per page. Default is 20, max is 50. :param only_deleted: Return only bookmarks that this user has deleted. :param tags: Comma separated string of tags to filter bookmarks. """ filter_dict = filter_args_to_dict(filters, ACCEPTED_BOOKMARK_FILTERS) url = self._generate_url('bookmarks', query_params=filter_dict) return self.get(url)
0.004798
def load_graphs(): '''load graphs from mavgraphs.xml''' mestate.graphs = [] gfiles = ['mavgraphs.xml'] if 'HOME' in os.environ: for dirname, dirnames, filenames in os.walk(os.path.join(os.environ['HOME'], ".mavproxy")): for filename in filenames: if filename.lower().endswith('.xml'): gfiles.append(os.path.join(dirname, filename)) elif 'LOCALAPPDATA' in os.environ: for dirname, dirnames, filenames in os.walk(os.path.join(os.environ['LOCALAPPDATA'], "MAVProxy")): for filename in filenames: if filename.lower().endswith('.xml'): gfiles.append(os.path.join(dirname, filename)) for file in gfiles: if not os.path.exists(file): continue graphs = load_graph_xml(open(file).read(), file) if graphs: mestate.graphs.extend(graphs) mestate.console.writeln("Loaded %s" % file) # also load the built in graphs try: dlist = pkg_resources.resource_listdir("MAVProxy", "tools/graphs") for f in dlist: raw = pkg_resources.resource_stream("MAVProxy", "tools/graphs/%s" % f).read() graphs = load_graph_xml(raw, None) if graphs: mestate.graphs.extend(graphs) mestate.console.writeln("Loaded %s" % f) except Exception: #we're in a Windows exe, where pkg_resources doesn't work import pkgutil for f in ["ekf3Graphs.xml", "ekfGraphs.xml", "mavgraphs.xml", "mavgraphs2.xml"]: raw = pkgutil.get_data( 'MAVProxy', 'tools//graphs//' + f) graphs = load_graph_xml(raw, None) if graphs: mestate.graphs.extend(graphs) mestate.console.writeln("Loaded %s" % f) mestate.graphs = sorted(mestate.graphs, key=lambda g: g.name)
0.003717
def uninstall(ctx, plugin): """ Uninstall the given plugin. """ ensure_inside_venv(ctx) if plugin not in get_installed_plugins(): echo_error("Plugin {} does not seem to be installed.".format(plugin)) sys.exit(1) plugin_name = get_plugin_name(plugin) try: run_command([sys.executable, '-m', 'pip', 'uninstall', '-y', plugin_name]) except subprocess.CalledProcessError as e: echo_error( "Error when trying to uninstall plugin {}. Error message " "was:\n\n{}".format(plugin, e.output.decode()) ) sys.exit(1) else: echo_success("Plugin {} uninstalled successfully.".format(plugin))
0.001397
def get_key_for_enctype(self, etype): """ Returns the encryption key bytes for the enctryption type. """ if etype == EncryptionType.AES256_CTS_HMAC_SHA1_96: if self.kerberos_key_aes_256: return bytes.fromhex(self.kerberos_key_aes_256) if self.password is not None: salt = (self.domain.upper() + self.username).encode() return string_to_key(Enctype.AES256, self.password.encode(), salt).contents raise Exception('There is no key for AES256 encryption') elif etype == EncryptionType.AES128_CTS_HMAC_SHA1_96: if self.kerberos_key_aes_128: return bytes.fromhex(self.kerberos_key_aes_128) if self.password is not None: salt = (self.domain.upper() + self.username).encode() return string_to_key(Enctype.AES128, self.password.encode(), salt).contents raise Exception('There is no key for AES128 encryption') elif etype == EncryptionType.ARCFOUR_HMAC_MD5: if self.kerberos_key_rc4: return bytes.fromhex(self.kerberos_key_rc4) if self.nt_hash: return bytes.fromhex(self.nt_hash) elif self.password: self.nt_hash = hashlib.new('md4', self.password.encode('utf-16-le')).hexdigest().upper() return bytes.fromhex(self.nt_hash) else: raise Exception('There is no key for RC4 encryption') elif etype == EncryptionType.DES3_CBC_SHA1: if self.kerberos_key_des3: return bytes.fromhex(self.kerberos_key_des) elif self.password: salt = (self.domain.upper() + self.username).encode() return string_to_key(Enctype.DES3, self.password.encode(), salt).contents else: raise Exception('There is no key for DES3 encryption') elif etype == EncryptionType.DES_CBC_MD5: #etype == EncryptionType.DES_CBC_CRC or etype == EncryptionType.DES_CBC_MD4 or if self.kerberos_key_des: return bytes.fromhex(self.kerberos_key_des) elif self.password: salt = (self.domain.upper() + self.username).encode() return string_to_key(Enctype.DES_MD5, self.password.encode(), salt).contents else: raise Exception('There is no key for DES3 encryption') else: raise Exception('Unsupported encryption type: %s' % etype.name)
0.026836
def update_ip_address(context, id, ip_address): """Due to NCP-1592 ensure that address_type cannot change after update.""" LOG.info("update_ip_address %s for tenant %s" % (id, context.tenant_id)) ports = [] if 'ip_address' not in ip_address: raise n_exc.BadRequest(resource="ip_addresses", msg="Invalid request body.") with context.session.begin(): db_address = db_api.ip_address_find(context, id=id, scope=db_api.ONE) if not db_address: raise q_exc.IpAddressNotFound(addr_id=id) iptype = db_address.address_type if iptype == ip_types.FIXED and not CONF.QUARK.ipaddr_allow_fixed_ip: raise n_exc.BadRequest( resource="ip_addresses", msg="Fixed ips cannot be updated using this interface.") reset = ip_address['ip_address'].get('reset_allocation_time', False) if reset and db_address['deallocated'] == 1: if context.is_admin: LOG.info("IP's deallocated time being manually reset") db_address['deallocated_at'] = _get_deallocated_override() else: msg = "Modification of reset_allocation_time requires admin" raise webob.exc.HTTPForbidden(detail=msg) port_ids = ip_address['ip_address'].get('port_ids', None) if port_ids is not None and not port_ids: raise n_exc.BadRequest( resource="ip_addresses", msg="Cannot be updated with empty port_id list") if iptype == ip_types.SHARED: has_owner = db_address.has_any_shared_owner() if port_ids: if iptype == ip_types.FIXED and len(port_ids) > 1: raise n_exc.BadRequest( resource="ip_addresses", msg="Fixed ips cannot be updated with more than one port.") _raise_if_shared_and_enabled(ip_address, db_address) ports = db_api.port_find(context, tenant_id=context.tenant_id, id=port_ids, scope=db_api.ALL) # NOTE(name): could be considered inefficient because we're # converting to a list to check length. Maybe revisit if len(ports) != len(port_ids): raise n_exc.PortNotFound(port_id=port_ids) validate_and_fetch_segment(ports, db_address["network_id"]) validate_port_ip_quotas(context, db_address.network_id, ports) if iptype == ip_types.SHARED and has_owner: for assoc in db_address.associations: pid = assoc.port_id if pid not in port_ids and 'none' != assoc.service: raise q_exc.PortRequiresDisassociation() LOG.info("Updating IP address, %s, to only be used by the" "following ports: %s" % (db_address.address_readable, [p.id for p in ports])) new_address = db_api.update_port_associations_for_ip(context, ports, db_address) elif iptype == ip_types.SHARED and has_owner: raise q_exc.PortRequiresDisassociation() elif 'deallocated' in ip_address['ip_address']\ and context.is_admin: # Verify no port associations if len(db_address.associations) != 0: exc_msg = ("IP %s cannot be deallocated or allocated while" " still associated with ports: %s" % (db_address['address_readable'], db_address.associations)) raise q_exc.ActionNotAuthorized(msg=exc_msg) # NOTE: If an admin, allow a user to set deallocated to false # in order to reserve a deallocated IP. Alternatively, allow them # reverse that choice if a mistake was made. if ip_address['ip_address']['deallocated'] == 'False': db_address['deallocated'] = False else: db_address['deallocated'] = True return v._make_ip_dict(db_address, context.is_admin) else: ipam_driver.deallocate_ip_address(context, db_address) return v._make_ip_dict(db_address, context.is_admin) return v._make_ip_dict(new_address, context.is_admin)
0.000222
def reset(self): """Reset this instance. Loses all unprocessed data.""" self.rawdata = '' self.lasttag = '???' self.interesting = interesting_normal self.cdata_elem = None _markupbase.ParserBase.reset(self)
0.007843
def render_item(self, all_posts): """ Renders the Post as HTML using the template specified in :attr:`html_template_path`. :param all_posts: An optional :class:`PostCollection` containing all of the posts in the site. :return: The rendered HTML as a string. """ index = all_posts.index(self) if index > 0: # has newer posts newer_post = all_posts[index - 1] else: newer_post = None if index < len(all_posts) - 1: # has older posts older_post = all_posts[index + 1] else: older_post = None return settings.JINJA_ENV.get_template(self.template).render( post=self, newer_post=newer_post, older_post=older_post, all_posts=all_posts, nav_context='post' )
0.004667
def stop(self, msg=None): '''Stopping a run. Control for loops. Gentle stop/abort. This event should provide a more gentle abort. The run should stop ASAP but the run is still considered complete. ''' if not self.stop_run.is_set(): if msg: logging.info('%s%s Stopping run...', msg, ('' if msg[-1] in punctuation else '.')) else: logging.info('Stopping run...') self.stop_run.set()
0.008386
def to_xml(self): """ Serialize all properties as XML """ ret = '<exif>' for k in self.__dict__: ret += '<%s>%s</%s>' % (k, self.__dict__[k], k) ret += '</exif>' return ret
0.008333
def set_timezone(self, timezone: str): """ sets the timezone for the AP. e.g. "Europe/Berlin" Args: timezone(str): the new timezone """ data = {"timezoneId": timezone} return self._restCall("home/setTimezone", body=json.dumps(data))
0.010309
def flatten_all_paths(group, group_filter=lambda x: True, path_filter=lambda x: True, path_conversions=CONVERSIONS, group_search_xpath=SVG_GROUP_TAG): """Returns the paths inside a group (recursively), expressing the paths in the base coordinates. Note that if the group being passed in is nested inside some parent group(s), we cannot take the parent group(s) into account, because xml.etree.Element has no pointer to its parent. You should use Document.flatten_group(group) to flatten a specific nested group into the root coordinates. Args: group is an Element path_conversions (dict): A dictionary to convert from an SVG element to a path data string. Any element tags that are not included in this dictionary will be ignored (including the `path` tag). To only convert explicit path elements, pass in `path_conversions=CONVERT_ONLY_PATHS`. """ if not isinstance(group, Element): raise TypeError('Must provide an xml.etree.Element object. ' 'Instead you provided {0}'.format(type(group))) # Stop right away if the group_selector rejects this group if not group_filter(group): return [] # To handle the transforms efficiently, we'll traverse the tree of # groups depth-first using a stack of tuples. # The first entry in the tuple is a group element and the second # entry is its transform. As we pop each entry in the stack, we # will add all its child group elements to the stack. StackElement = collections.namedtuple('StackElement', ['group', 'transform']) def new_stack_element(element, last_tf): return StackElement(element, last_tf.dot( parse_transform(element.get('transform')))) def get_relevant_children(parent, last_tf): children = [] for elem in filter(group_filter, parent.iterfind(group_search_xpath, SVG_NAMESPACE)): children.append(new_stack_element(elem, last_tf)) return children stack = [new_stack_element(group, np.identity(3))] FlattenedPath = collections.namedtuple('FlattenedPath', ['path', 'element', 'transform']) paths = [] while stack: top = stack.pop() # For each element type that we know how to convert into path # data, parse the element after confirming that the path_filter # accepts it. for key, converter in path_conversions.items(): for path_elem in filter(path_filter, top.group.iterfind( 'svg:'+key, SVG_NAMESPACE)): path_tf = top.transform.dot( parse_transform(path_elem.get('transform'))) path = transform(parse_path(converter(path_elem)), path_tf) paths.append(FlattenedPath(path, path_elem, path_tf)) stack.extend(get_relevant_children(top.group, top.transform)) return paths
0.000322
def _mid(string, start, end=None): """ Returns a substring delimited by start and end position. """ if end is None: end = len(string) return string[start:start + end]
0.005155
def get_or_create(cls, filter_key=None, with_status=False, **kwargs): """ Convenience method to retrieve an Element or create if it does not exist. If an element does not have a `create` classmethod, then it is considered read-only and the request will be redirected to :meth:`~get`. Any keyword arguments passed except the optional filter_key will be used in a create() call. If filter_key is provided, this should define an attribute and value to use for an exact match on the element. Valid attributes are ones required on the elements ``create`` method or can be viewed by the elements class docs. If no filter_key is provided, the name field will be used to find the element. :: >>> Network.get_or_create( filter_key={'ipv4_network': '123.123.123.0/24'}, name='mynetwork', ipv4_network='123.123.123.0/24') Network(name=mynetwork) The kwargs should be used to satisfy the elements ``create`` classmethod parameters to create in the event it cannot be found. :param dict filter_key: filter key represents the data attribute and value to use to find the element. If none is provided, the name field will be used. :param kwargs: keyword arguments mapping to the elements ``create`` method. :param bool with_status: if set to True, a tuple is returned with (Element, created), where the second tuple item indicates if the element has been created or not. :raises CreateElementFailed: could not create element with reason :raises ElementNotFound: if read-only element does not exist :return: element instance by type :rtype: Element """ was_created = False if 'name' not in kwargs: raise ElementNotFound('Name field is a required parameter ' 'for all create or update_or_create type operations on an element') if filter_key: elements = cls.objects.filter(**filter_key) element = elements.first() if elements.exists() else None else: try: element = cls.get(kwargs.get('name')) except ElementNotFound: if not hasattr(cls, 'create'): raise CreateElementFailed('%s: %r not found and this element ' 'type does not have a create method.' % (cls.__name__, kwargs['name'])) element = None if not element: params = {k: v() if callable(v) else v for k, v in kwargs.items()} try: element = cls.create(**params) was_created = True except TypeError: raise CreateElementFailed('%s: %r not found and missing ' 'constructor arguments to properly create.' % (cls.__name__, kwargs['name'])) if with_status: return element, was_created return element
0.00347
def _prep_jid(self, clear_load, extra): ''' Return a jid for this publication ''' # the jid in clear_load can be None, '', or something else. this is an # attempt to clean up the value before passing to plugins passed_jid = clear_load['jid'] if clear_load.get('jid') else None nocache = extra.get('nocache', False) # Retrieve the jid fstr = '{0}.prep_jid'.format(self.opts['master_job_cache']) try: # Retrieve the jid jid = self.mminion.returners[fstr](nocache=nocache, passed_jid=passed_jid) except (KeyError, TypeError): # The returner is not present msg = ( 'Failed to allocate a jid. The requested returner \'{0}\' ' 'could not be loaded.'.format(fstr.split('.')[0]) ) log.error(msg) return {'error': msg} return jid
0.002041
def scaledBy(self, scale): """ Return a new Selector with scale denominators scaled by a number. """ scaled = deepcopy(self) for test in scaled.elements[0].tests: if type(test.value) in (int, float): if test.property == 'scale-denominator': test.value /= scale elif test.property == 'zoom': test.value += log(scale)/log(2) return scaled
0.008439
def w_diffuser_outer(sed_inputs=sed_dict): """Return the outer width of each diffuser in the sedimentation tank. Parameters ---------- sed_inputs : dict A dictionary of all of the constant inputs needed for sedimentation tank calculations can be found in sed.yaml Returns ------- float Outer width of each diffuser in the sedimentation tank Examples -------- >>> from aide_design.play import* >>> """ return (w_diffuser_inner_min(sed_inputs['tank']['W']) + (2 * sed_inputs['manifold']['diffuser']['thickness_wall'])).to(u.m).magnitude
0.004823
def _call(self, method, auth, arg, defer, notimeout=False): """Calls the Exosite One Platform RPC API. If `defer` is False, result is a tuple with this structure: (success (boolean), response) Otherwise, the result is just True. notimeout, if True, ignores the reuseconnection setting, creating a new connection with no timeout. """ if defer: self.deferred.add(auth, method, arg, notimeout=notimeout) return True else: calls = self._composeCalls([(method, arg)]) return self._callJsonRPC(auth, calls, notimeout=notimeout)
0.003008
def is_number(string): """ checks if a string is a number (int/float) """ string = str(string) if string.isnumeric(): return True try: float(string) return True except ValueError: return False
0.004098