text
stringlengths
78
104k
score
float64
0
0.18
def set_feature(dev, feature, recipient = None): r"""Set/enable a specific feature. dev is the Device object to which the request will be sent to. feature is the feature you want to enable. The recipient can be None (on which the status will be queried from the device), an Interface or Endpoint descriptors. """ bmRequestType, wIndex = _parse_recipient(recipient, util.CTRL_OUT) dev.ctrl_transfer(bmRequestType = bmRequestType, bRequest = 0x03, wIndex = wIndex, wValue = feature)
0.018803
def load_waypoints(self, filename): '''load waypoints from a file''' self.wploader.target_system = self.target_system self.wploader.target_component = self.target_component try: self.wploader.load(filename) except Exception as msg: print("Unable to load %s - %s" % (filename, msg)) return print("Loaded %u waypoints from %s" % (self.wploader.count(), filename)) self.send_all_waypoints()
0.006263
def create_floating_ip(kwargs=None, call=None): ''' Create a new floating IP .. versionadded:: 2016.3.0 CLI Examples: .. code-block:: bash salt-cloud -f create_floating_ip my-digitalocean-config region='NYC2' salt-cloud -f create_floating_ip my-digitalocean-config droplet_id='1234567' ''' if call != 'function': log.error( 'The create_floating_ip function must be called with -f or --function.' ) return False if not kwargs: kwargs = {} if 'droplet_id' in kwargs: result = query(method='floating_ips', args={'droplet_id': kwargs['droplet_id']}, http_method='post') return result elif 'region' in kwargs: result = query(method='floating_ips', args={'region': kwargs['region']}, http_method='post') return result else: log.error('A droplet_id or region is required.') return False
0.006667
def get_arg_value(state, host, arg): ''' Runs string arguments through the jinja2 templating system with a state and host. Used to avoid string formatting in deploy operations which result in one operation per host/variable. By parsing the commands after we generate the ``op_hash``, multiple command variations can fall under one op. ''' if isinstance(arg, six.string_types): data = { 'host': host, 'inventory': state.inventory, } try: return get_template(arg, is_string=True).render(data) except (TemplateSyntaxError, UndefinedError) as e: raise PyinfraError('Error in template string: {0}'.format(e)) elif isinstance(arg, list): return [get_arg_value(state, host, value) for value in arg] elif isinstance(arg, tuple): return tuple(get_arg_value(state, host, value) for value in arg) elif isinstance(arg, dict): return { key: get_arg_value(state, host, value) for key, value in six.iteritems(arg) } return arg
0.000912
def _imputeMissing(X, center=True, unit=True, betaNotUnitVariance=False, betaA=1.0, betaB=1.0): ''' fill in missing values in the SNP matrix by the mean value optionally center the data and unit-variance it Args: X: scipy.array of SNP values. If dtype=='int8' the missing values are -9, otherwise the missing values are scipy.nan center: Boolean indicator if data should be mean centered Not supported in C-based parser unit: Boolean indicator if data should be normalized to have unit variance Not supported in C-based parser betaNotUnitVariance: use Beta(betaA,betaB) standardization instead of unit variance (only with C-based parser) (default: False) betaA: shape parameter for Beta(betaA,betaB) standardization (only with C-based parser) betaB: scale parameter for Beta(betaA,betaB) standardization (only with C-based parser) Returns: X: scipy.array of standardized SNPs with scipy.float64 values ''' typeX=X.dtype if typeX!=SP.int8: iNanX = X!=X else: iNanX = X==-9 if iNanX.any() or betaNotUnitVariance: if cparser: print("using C-based imputer") if X.flags["C_CONTIGUOUS"] or typeX!=SP.float32: X = SP.array(X, order="F", dtype=SP.float32) if typeX==SP.int8: X[iNanX]=SP.nan parser.standardize(X,betaNotUnitVariance=betaNotUnitVariance,betaA=betaA,betaB=betaB) X=SP.array(X,dtype=SP.float64) else: parser.standardize(X,betaNotUnitVariance=betaNotUnitVariance,betaA=betaA,betaB=betaB) X=SP.array(X,dtype=SP.float64) else: if betaNotUnitVariance: raise NotImplementedError("Beta(betaA,betaB) standardization only in C-based parser, but not found") nObsX = (~iNanX).sum(0) if typeX!=SP.float64: X=SP.array(X,dtype=SP.float64) X[iNanX] = 0.0 sumX = (X).sum(0) meanX = sumX/nObsX if center: X-=meanX X[iNanX] = 0.0 X_=X else: mean=SP.tile(meanX,(X.shape[0],1)) X[iNanX]=mean[iNanX] X_=X-mean if unit: stdX = SP.sqrt((X_*X_).sum(0)/nObsX) stdX[stdX==0.0]=1.0 X/=stdX else: if X.dtype!=SP.float64: X=SP.array(X,dtype=SP.float64) if center: X-= X.mean(axis=0) if unit: stdX= X.std(axis=0) stdX[stdX==0.0]=1.0 X/=stdX return X
0.017027
def add_operation(self, operation_type, operation, mode=None): """Add an operation to the version :param mode: Name of the mode in which the operation is executed :type mode: str :param operation_type: one of 'pre', 'post' :type operation_type: str :param operation: the operation to add :type operation: :class:`marabunta.model.Operation` """ version_mode = self._get_version_mode(mode=mode) if operation_type == 'pre': version_mode.add_pre(operation) elif operation_type == 'post': version_mode.add_post(operation) else: raise ConfigurationError( u"Type of operation must be 'pre' or 'post', got %s" % (operation_type,) )
0.0025
def _convert_reftype_to_jaeger_reftype(ref): """Convert opencensus reference types to jaeger reference types.""" if ref == link_module.Type.CHILD_LINKED_SPAN: return jaeger.SpanRefType.CHILD_OF if ref == link_module.Type.PARENT_LINKED_SPAN: return jaeger.SpanRefType.FOLLOWS_FROM return None
0.003096
def chol(A): """ Calculate the lower triangular matrix of the Cholesky decomposition of a symmetric, positive-definite matrix. """ A = np.array(A) assert A.shape[0] == A.shape[1], "Input matrix must be square" L = [[0.0] * len(A) for _ in range(len(A))] for i in range(len(A)): for j in range(i + 1): s = sum(L[i][k] * L[j][k] for k in range(j)) L[i][j] = ( (A[i][i] - s) ** 0.5 if (i == j) else (1.0 / L[j][j] * (A[i][j] - s)) ) return np.array(L)
0.003559
def apns_send_message(registration_id, alert, application_id=None, certfile=None, **kwargs): """ Sends an APNS notification to a single registration_id. This will send the notification as form data. If sending multiple notifications, it is more efficient to use apns_send_bulk_message() Note that if set alert should always be a string. If it is not set, it won"t be included in the notification. You will need to pass None to this for silent notifications. """ try: _apns_send( registration_id, alert, application_id=application_id, certfile=certfile, **kwargs ) except apns2_errors.APNsException as apns2_exception: if isinstance(apns2_exception, apns2_errors.Unregistered): device = models.APNSDevice.objects.get(registration_id=registration_id) device.active = False device.save() raise APNSServerError(status=apns2_exception.__class__.__name__)
0.024831
def previous_page(self, max_=None): """ Return a query set which requests the page before this response. :param max_: Maximum number of items to return. :type max_: :class:`int` or :data:`None` :rtype: :class:`ResultSetMetadata` :return: A new request set up to request the previous page. Must be called on a result set which has :attr:`first` set. """ result = type(self)() result.before = Before(self.first.value) result.max_ = max_ return result
0.003656
def pkcs12_kdf(hash_algorithm, password, salt, iterations, key_length, id_): """ KDF from RFC7292 appendix b.2 - https://tools.ietf.org/html/rfc7292#page-19 :param hash_algorithm: The string name of the hash algorithm to use: "md5", "sha1", "sha224", "sha256", "sha384", "sha512" :param password: A byte string of the password to use an input to the KDF :param salt: A cryptographic random byte string :param iterations: The numbers of iterations to use when deriving the key :param key_length: The length of the desired key in bytes :param id_: The ID of the usage - 1 for key, 2 for iv, 3 for mac :return: The derived key as a byte string """ if not isinstance(password, byte_cls): raise TypeError(pretty_message( ''' password must be a byte string, not %s ''', type_name(password) )) if not isinstance(salt, byte_cls): raise TypeError(pretty_message( ''' salt must be a byte string, not %s ''', type_name(salt) )) if not isinstance(iterations, int_types): raise TypeError(pretty_message( ''' iterations must be an integer, not %s ''', type_name(iterations) )) if iterations < 1: raise ValueError(pretty_message( ''' iterations must be greater than 0 - is %s ''', repr(iterations) )) if not isinstance(key_length, int_types): raise TypeError(pretty_message( ''' key_length must be an integer, not %s ''', type_name(key_length) )) if key_length < 1: raise ValueError(pretty_message( ''' key_length must be greater than 0 - is %s ''', repr(key_length) )) if hash_algorithm not in set(['md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512']): raise ValueError(pretty_message( ''' hash_algorithm must be one of "md5", "sha1", "sha224", "sha256", "sha384", "sha512", not %s ''', repr(hash_algorithm) )) if id_ not in set([1, 2, 3]): raise ValueError(pretty_message( ''' id_ must be one of 1, 2, 3, not %s ''', repr(id_) )) utf16_password = password.decode('utf-8').encode('utf-16be') + b'\x00\x00' algo = getattr(hashlib, hash_algorithm) # u and v values are bytes (not bits as in the RFC) u = { 'md5': 16, 'sha1': 20, 'sha224': 28, 'sha256': 32, 'sha384': 48, 'sha512': 64 }[hash_algorithm] if hash_algorithm in ['sha384', 'sha512']: v = 128 else: v = 64 # Step 1 d = chr_cls(id_) * v # Step 2 s = b'' if salt != b'': s_len = v * int(math.ceil(float(len(salt)) / v)) while len(s) < s_len: s += salt s = s[0:s_len] # Step 3 p = b'' if utf16_password != b'': p_len = v * int(math.ceil(float(len(utf16_password)) / v)) while len(p) < p_len: p += utf16_password p = p[0:p_len] # Step 4 i = s + p # Step 5 c = int(math.ceil(float(key_length) / u)) a = b'\x00' * (c * u) for num in range(1, c + 1): # Step 6A a2 = algo(d + i).digest() for _ in range(2, iterations + 1): a2 = algo(a2).digest() if num < c: # Step 6B b = b'' while len(b) < v: b += a2 b = int_from_bytes(b[0:v]) + 1 # Step 6C for num2 in range(0, len(i) // v): start = num2 * v end = (num2 + 1) * v i_num2 = i[start:end] i_num2 = int_to_bytes(int_from_bytes(i_num2) + b) # Ensure the new slice is the right size i_num2_l = len(i_num2) if i_num2_l > v: i_num2 = i_num2[i_num2_l - v:] i = i[0:start] + i_num2 + i[end:] # Step 7 (one peice at a time) begin = (num - 1) * u to_copy = min(key_length, u) a = a[0:begin] + a2[0:to_copy] + a[begin + to_copy:] return a[0:key_length]
0.000448
def availableBranches(self): ''' return a list of GithubComponentVersion objects for the tip of each branch ''' return [ GithubComponentVersion( '', b[0], b[1], self.name, cache_key=None ) for b in _getBranchHeads(self.repo).items() ]
0.009804
def join(self): """Note that the Executor must be close()'d elsewhere, or join() will never return. """ self.inputfeeder_thread.join() self.pool.join() self.resulttracker_thread.join() self.failuretracker_thread.join()
0.038793
def peer_store(key, value, relation_name='cluster'): """Store the key/value pair on the named peer relation `relation_name`.""" cluster_rels = relation_ids(relation_name) if len(cluster_rels) > 0: cluster_rid = cluster_rels[0] relation_set(relation_id=cluster_rid, relation_settings={key: value}) else: raise ValueError('Unable to detect ' 'peer relation {}'.format(relation_name))
0.002141
def find_neighbor_sites(sites, am, flatten=True, include_input=False, logic='or'): r""" Given a symmetric adjacency matrix, finds all sites that are connected to the input sites. Parameters ---------- am : scipy.sparse matrix The adjacency matrix of the network. Must be symmetrical such that if sites *i* and *j* are connected, the matrix contains non-zero values at locations (i, j) and (j, i). flatten : boolean If ``True`` (default) the returned result is a compressed array of all neighbors, or a list of lists with each sub-list containing the neighbors for each input site. Note that an *unflattened* list might be slow to generate since it is a Python ``list`` rather than a Numpy array. include_input : boolean If ``False`` (default) the input sites will be removed from the result. logic : string Specifies logic to filter the resulting list. Options are: **'or'** : (default) All neighbors of the input sites. This is also known as the 'union' in set theory or 'any' in boolean logic. Both keywords are accepted and treated as 'or'. **'xor'** : Only neighbors of one and only one input site. This is useful for finding the sites that are not shared by any of the input sites. 'exclusive_or' is also accepted. **'xnor'** : Neighbors that are shared by two or more input sites. This is equivalent to finding all neighbors with 'or', minus those found with 'xor', and is useful for finding neighbors that the inputs have in common. 'nxor' is also accepted. **'and'** : Only neighbors shared by all input sites. This is also known as 'intersection' in set theory and (somtimes) as 'all' in boolean logic. Both keywords are accepted and treated as 'and'. Returns ------- An array containing the neighboring sites filtered by the given logic. If ``flatten`` is ``False`` then the result is a list of lists containing the neighbors of each input site. See Also -------- find_complement Notes ----- The ``logic`` options are applied to neighboring sites only, thus it is not possible to obtain sites that are part of the global set but not neighbors. This is because (a) the list global sites might be very large, and (b) it is not possible to return a list of neighbors for each input site if global sites are considered. """ if am.format != 'lil': am = am.tolil(copy=False) n_sites = am.shape[0] rows = [am.rows[i] for i in sp.array(sites, ndmin=1)] if len(rows) == 0: return [] neighbors = sp.hstack(rows).astype(sp.int64) # Flatten list to apply logic if logic in ['or', 'union', 'any']: neighbors = sp.unique(neighbors) elif logic in ['xor', 'exclusive_or']: neighbors = sp.unique(sp.where(sp.bincount(neighbors) == 1)[0]) elif logic in ['xnor', 'nxor']: neighbors = sp.unique(sp.where(sp.bincount(neighbors) > 1)[0]) elif logic in ['and', 'all', 'intersection']: neighbors = set(neighbors) [neighbors.intersection_update(i) for i in rows] neighbors = sp.array(list(neighbors), dtype=sp.int64, ndmin=1) else: raise Exception('Specified logic is not implemented') # Deal with removing inputs or not mask = sp.zeros(shape=n_sites, dtype=bool) mask[neighbors] = True if not include_input: mask[sites] = False # Finally flatten or not if flatten: neighbors = sp.where(mask)[0] else: if (neighbors.size > 0): for i in range(len(rows)): vals = sp.array(rows[i], dtype=sp.int64) rows[i] = vals[mask[vals]] neighbors = rows else: neighbors = [sp.array([], dtype=int) for i in range(len(sites))] return neighbors
0.000251
def set_routing(app, view_data): """ apply the routing configuration you've described example: view_data = [ ("/", "app.IndexController", "index"), ] 1. "/" is receive request path 2. "app.IndexController" is to process the received request controller class path 3. "index" string To generate a URL that refers to the application """ routing_modules = convert_routing_module(view_data) for module in routing_modules: view = import_string(module.import_path) app.add_url_rule(module.url, view_func=view.as_view(module.endpoint))
0.00321
def generate_project(self): """ Generate the whole project. Returns True if at least one file has been generated, False otherwise.""" # checks needed properties if not self.name or not self.destdir or \ not os.path.isdir(self.destdir): raise ValueError("Empty or invalid property values: run with 'help' command") _log("Generating project '%s'" % self.name) _log("Destination directory is: '%s'" % self.destdir) top = os.path.join(self.destdir, self.name) src = os.path.join(top, self.src_name) resources = os.path.join(top, self.res_name) utils = os.path.join(src, "utils") if self.complex: models = os.path.join(src, "models") ctrls = os.path.join(src, "ctrls") views = os.path.join(src, "views") else: models = ctrls = views = src res = self.__generate_tree(top, src, resources, models, ctrls, views, utils) res = self.__generate_classes(models, ctrls, views) or res res = self.__mksrc(os.path.join(utils, "globals.py"), templates.glob) or res if self.complex: self.templ.update({'model_import' : "from models.application import ApplModel", 'ctrl_import' : "from ctrls.application import ApplCtrl", 'view_import' : "from views.application import ApplView"}) else: self.templ.update({'model_import' : "from ApplModel import ApplModel", 'ctrl_import' : "from ApplCtrl import ApplCtrl", 'view_import' : "from ApplView import ApplView"}) res = self.__mksrc(os.path.join(top, "%s.py" % self.name), templates.main) or res # builder file if self.builder: res = self.__generate_builder(resources) or res if self.dist_gtkmvc3: res = self.__copy_framework(os.path.join(resources, "external")) or res if not res: _log("No actions were taken") else: _log("Done") return res
0.012369
def _deserialize(self, value, attr, data, **kwargs): """Deserialize an ISO8601-formatted time to a :class:`datetime.time` object.""" if not value: # falsy values are invalid self.fail('invalid') try: return utils.from_iso_time(value) except (AttributeError, TypeError, ValueError): self.fail('invalid')
0.008086
def deletecols(X, cols): """ Delete columns from a numpy ndarry or recarray. Can take a string giving a column name or comma-separated list of column names, or a list of string column names. Implemented by the tabarray method :func:`tabular.tab.tabarray.deletecols`. **Parameters** **X** : numpy recarray or ndarray with structured dtype The numpy array from which to delete columns. **cols** : string or list of strings Name or list of names of columns in `X`. This can be a string giving a column name or comma-separated list of column names, or a list of string column names. **Returns** **out** : numpy ndarray with structured dtype New numpy ndarray with structured dtype given by `X`, excluding the columns named in `cols`. """ if isinstance(cols, str): cols = cols.split(',') retain = [n for n in X.dtype.names if n not in cols] if len(retain) > 0: return X[retain] else: return None
0.003509
def kdf(size, password, salt, opslimit=OPSLIMIT_SENSITIVE, memlimit=MEMLIMIT_SENSITIVE, encoder=nacl.encoding.RawEncoder): """ Derive a ``size`` bytes long key from a caller-supplied ``password`` and ``salt`` pair using the argon2i memory-hard construct. the enclosing module provides the constants - :py:const:`.OPSLIMIT_INTERACTIVE` - :py:const:`.MEMLIMIT_INTERACTIVE` - :py:const:`.OPSLIMIT_MODERATE` - :py:const:`.MEMLIMIT_MODERATE` - :py:const:`.OPSLIMIT_SENSITIVE` - :py:const:`.MEMLIMIT_SENSITIVE` as a guidance for correct settings. :param size: derived key size, must be between :py:const:`.BYTES_MIN` and :py:const:`.BYTES_MAX` :type size: int :param password: password used to seed the key derivation procedure; it length must be between :py:const:`.PASSWD_MIN` and :py:const:`.PASSWD_MAX` :type password: bytes :param salt: **RANDOM** salt used in the key derivation procedure; its length must be exactly :py:const:`.SALTBYTES` :type salt: bytes :param opslimit: the time component (operation count) of the key derivation procedure's computational cost; it must be between :py:const:`.OPSLIMIT_MIN` and :py:const:`.OPSLIMIT_MAX` :type opslimit: int :param memlimit: the memory occupation component of the key derivation procedure's computational cost; it must be between :py:const:`.MEMLIMIT_MIN` and :py:const:`.MEMLIMIT_MAX` :type memlimit: int :rtype: bytes .. versionadded:: 1.2 """ return encoder.encode( nacl.bindings.crypto_pwhash_alg(size, password, salt, opslimit, memlimit, ALG) )
0.000492
def _path_to_module(path): """Translates paths to *.py? files into module paths. >>> _path_to_module("rapport/bar.py") 'rapport.bar' >>> _path_to_module("/usr/lib/rapport/bar.py") 'rapport.bar' """ # Split of preceeding path elements: path = "rapport" + path.split("rapport")[1] # Split of ending and replace os.sep with dots: path = path.replace(os.sep, ".").rsplit(".", 1)[0] return path
0.002222
def scons_copytree(src, dst, symlinks=False): """Recursively copy a directory tree using copy2(). The destination directory must not already exist. If exception(s) occur, an CopytreeError is raised with a list of reasons. If the optional symlinks flag is true, symbolic links in the source tree result in symbolic links in the destination tree; if it is false, the contents of the files pointed to by symbolic links are copied. XXX Consider this example code rather than the ultimate tool. """ names = os.listdir(src) # [email protected] fix: check for dir before making dirs. if not os.path.exists(dst): os.makedirs(dst) errors = [] for name in names: srcname = os.path.join(src, name) dstname = os.path.join(dst, name) try: if symlinks and os.path.islink(srcname): linkto = os.readlink(srcname) os.symlink(linkto, dstname) elif os.path.isdir(srcname): scons_copytree(srcname, dstname, symlinks) else: shutil.copy2(srcname, dstname) # XXX What about devices, sockets etc.? except (IOError, os.error) as why: errors.append((srcname, dstname, str(why))) # catch the CopytreeError from the recursive copytree so that we can # continue with other files except CopytreeError as err: errors.extend(err.args[0]) try: shutil.copystat(src, dst) except SCons.Util.WinError: # can't copy file access times on Windows pass except OSError as why: errors.extend((src, dst, str(why))) if errors: raise CopytreeError(errors)
0.00058
def fatal(*args, **kwargs): """Log an error message and exit. Following arguments are keyword-only. :param exitcode: Optional exit code to use :param cause: Optional Invoke's Result object, i.e. result of a subprocess invocation """ # determine the exitcode to return to the operating system exitcode = None if 'exitcode' in kwargs: exitcode = kwargs.pop('exitcode') if 'cause' in kwargs: cause = kwargs.pop('cause') if not isinstance(cause, Result): raise TypeError( "invalid cause of fatal error: expected %r, got %r" % ( Result, type(cause))) exitcode = exitcode or cause.return_code logging.error(*args, **kwargs) raise Exit(exitcode or -1)
0.001267
def stop(self, key): """ Stop a concurrent operation. This gets the concurrency limiter for the given key (creating it if necessary) and stops a concurrent operation on it. If the concurrency limiter is empty, it is deleted. """ self._get_limiter(key).stop() self._cleanup_limiter(key)
0.005714
def process_formdata(self, valuelist): """ Process data received over the wire from a form. This will be called during form construction with data supplied through the `formdata` argument. Converting primary key to ORM for server processing. :param valuelist: A list of strings to process. """ if valuelist: if self.is_related: self.data = self.datamodel.get_related_interface(self.col_name).get( valuelist[0] ) else: self.data = self.datamodel.get(valuelist[0])
0.004839
def _get_package_data(): """Iterate over the `init` dir for directories and returns all files within them. Only files within `binaries` and `templates` will be added. """ from os import listdir as ls from os.path import join as jn x = 'init' b = jn('serv', x) dr = ['binaries', 'templates'] return [jn(x, d, f) for d in ls(b) if d in dr for f in ls(jn(b, d))]
0.002494
def ParseOptions(self, options): """Parses tool specific options. Args: options (argparse.Namespace): command line arguments. Raises: BadConfigOption: if the options are invalid. """ # The extraction options are dependent on the data location. helpers_manager.ArgumentHelperManager.ParseOptions( options, self, names=['data_location']) self._ReadParserPresetsFromFile() # The output modules options are dependent on the preferred language # and preferred time zone options. self._ParseTimezoneOption(options) argument_helper_names = [ 'artifact_definitions', 'hashers', 'language', 'parsers'] helpers_manager.ArgumentHelperManager.ParseOptions( options, self, names=argument_helper_names) self.list_hashers = self._hasher_names_string == 'list' self.list_language_identifiers = self._preferred_language == 'list' self.list_parsers_and_plugins = self._parser_filter_expression == 'list' # Check the list options first otherwise required options will raise. if (self.list_hashers or self.list_language_identifiers or self.list_parsers_and_plugins or self.list_timezones): return # Check output modules after the other listable options, otherwise # it could raise with "requires an output file". helpers_manager.ArgumentHelperManager.ParseOptions( options, self, names=['output_modules']) self.list_output_modules = self._output_format == 'list' if self.list_output_modules: return self._ParseInformationalOptions(options) argument_helper_names = ['extraction', 'status_view'] helpers_manager.ArgumentHelperManager.ParseOptions( options, self, names=argument_helper_names) self._ParseLogFileOptions(options) self._ParseStorageMediaOptions(options) self._ParsePerformanceOptions(options) self._ParseProcessingOptions(options) self._storage_file_path = getattr(options, 'storage_file', None) if not self._storage_file_path: self._storage_file_path = self._GenerateStorageFileName() self._output_filename = getattr(options, 'write', None) if not self._output_filename: raise errors.BadConfigOption(( 'Output format: {0:s} requires an output file ' '(-w OUTPUT_FILE)').format(self._output_format)) if os.path.exists(self._output_filename): raise errors.BadConfigOption( 'Output file already exists: {0:s}.'.format(self._output_filename)) self._EnforceProcessMemoryLimit(self._process_memory_limit) self._output_module = self._CreateOutputModule(options)
0.002662
def _from_dict(cls, _dict): """Initialize a DocStructure object from a json dictionary.""" args = {} if 'section_titles' in _dict: args['section_titles'] = [ SectionTitles._from_dict(x) for x in (_dict.get('section_titles')) ] if 'leading_sentences' in _dict: args['leading_sentences'] = [ LeadingSentence._from_dict(x) for x in (_dict.get('leading_sentences')) ] return cls(**args)
0.003745
def _save_action(extra_context=None): ''' Save list of revisions revisions for active Conda environment. .. versionchanged:: 0.18 Compress action revision files using ``bz2`` to save disk space. Parameters ---------- extra_context : dict, optional Extra content to store in stored action revision. Returns ------- path_helpers.path, dict Path to which action was written and action object, including list of revisions for active Conda environment. ''' # Get list of revisions to Conda environment since creation. revisions_js = ch.conda_exec('list', '--revisions', '--json', verbose=False) revisions = json.loads(revisions_js) # Save list of revisions to `/etc/microdrop/plugins/actions/rev<rev>.json` # See [wheeler-microfluidics/microdrop#200][i200]. # # [i200]: https://github.com/wheeler-microfluidics/microdrop/issues/200 action = extra_context.copy() if extra_context else {} action['revisions'] = revisions action_path = (MICRODROP_CONDA_ACTIONS .joinpath('rev{}.json.bz2'.format(revisions[-1]['rev']))) action_path.parent.makedirs_p() # Compress action file using bz2 to save disk space. with bz2.BZ2File(action_path, mode='w') as output: json.dump(action, output, indent=2) return action_path, action
0.000714
def get_ipython_module_path(module_str): """Find the path to an IPython module in this version of IPython. This will always find the version of the module that is in this importable IPython package. This will always return the path to the ``.py`` version of the module. """ if module_str == 'IPython': return os.path.join(get_ipython_package_dir(), '__init__.py') mod = import_item(module_str) the_path = mod.__file__.replace('.pyc', '.py') the_path = the_path.replace('.pyo', '.py') return py3compat.cast_unicode(the_path, fs_encoding)
0.001709
def point_scalar(mesh, name): """ Returns point scalars of a vtk object """ vtkarr = mesh.GetPointData().GetArray(name) if vtkarr: if isinstance(vtkarr, vtk.vtkBitArray): vtkarr = vtk_bit_array_to_char(vtkarr) return vtk_to_numpy(vtkarr)
0.00361
def parse(self, elt, ps, **kw): '''attempt to parse sequentially. No way to know ahead of time what this instance represents. Must be simple type so it can not have attributes nor children, so this isn't too bad. ''' self.setMemberTypeCodes() (nsuri,typeName) = self.checkname(elt, ps) #if (nsuri,typeName) not in self.memberTypes: # raise EvaluateException( # 'Union Type mismatch got (%s,%s) not in %s' % \ # (nsuri, typeName, self.memberTypes), ps.Backtrace(elt)) for indx in range(len(self.memberTypeCodes)): typecode = self.memberTypeCodes[indx] try: pyobj = typecode.parse(elt, ps) except ParseException, ex: continue except Exception, ex: continue if indx > 0: self.memberTypeCodes.remove(typecode) self.memberTypeCodes.insert(0, typecode) break else: raise return pyobj
0.003714
def _expand_var(self, in_string, available_variables): """Expand variable to its corresponding value in_string :param string variable: variable name :param value: value to replace with :param string in_string: the string to replace in """ instances = self._get_instances(in_string) for instance in instances: for name, value in available_variables.items(): variable_string = self._get_variable_string(name) if instance == variable_string: in_string = in_string.replace(variable_string, value) return in_string
0.003135
def unlock(self, session=None): """Unlock a previously locked server. :Parameters: - `session` (optional): a :class:`~pymongo.client_session.ClientSession`. .. versionchanged:: 3.6 Added ``session`` parameter. """ cmd = SON([("fsyncUnlock", 1)]) with self._socket_for_writes(session) as sock_info: if sock_info.max_wire_version >= 4: try: with self._tmp_session(session) as s: sock_info.command( "admin", cmd, session=s, client=self) except OperationFailure as exc: # Ignore "DB not locked" to replicate old behavior if exc.code != 125: raise else: message._first_batch(sock_info, "admin", "$cmd.sys.unlock", {}, -1, True, self.codec_options, ReadPreference.PRIMARY, cmd, self._event_listeners)
0.001825
def full_author_notes(soup, fntype_filter=None): """ Find the fn tags included in author-notes """ notes = [] author_notes_section = raw_parser.author_notes(soup) if author_notes_section: fn_nodes = raw_parser.fn(author_notes_section) notes = footnotes(fn_nodes, fntype_filter) return notes
0.002976
def evaluate(self, reference_event_list, estimated_event_list, evaluated_length_seconds=None): """Evaluate file pair (reference and estimated) Parameters ---------- reference_event_list : list of dict or dcase_util.containers.MetaDataContainer Reference event list. estimated_event_list : list of dict or dcase_util.containers.MetaDataContainer Estimated event list. evaluated_length_seconds : float, optional Evaluated length. If none given, maximum offset is used. Default value None Returns ------- self """ # Make sure input is dcase_util.containers.MetaDataContainer if not isinstance(reference_event_list, dcase_util.containers.MetaDataContainer): reference_event_list = dcase_util.containers.MetaDataContainer(reference_event_list) if not isinstance(estimated_event_list, dcase_util.containers.MetaDataContainer): estimated_event_list = dcase_util.containers.MetaDataContainer(estimated_event_list) # Check that input event list have event only from one file reference_files = reference_event_list.unique_files if len(reference_files) > 1: raise ValueError( "reference_event_list contains events from multiple files. Evaluate only file by file." ) estimated_files = estimated_event_list.unique_files if len(estimated_files) > 1: raise ValueError( "estimated_event_list contains events from multiple files. Evaluate only file by file." ) # Evaluate only valid events valid_reference_event_list = dcase_util.containers.MetaDataContainer() for item in reference_event_list: if 'event_onset' in item and 'event_offset' in item and 'event_label' in item: valid_reference_event_list.append(item) elif 'onset' in item and 'offset' in item and 'event_label' in item: valid_reference_event_list.append(item) reference_event_list = valid_reference_event_list valid_estimated_event_list = dcase_util.containers.MetaDataContainer() for item in estimated_event_list: if 'event_onset' in item and 'event_offset' in item and 'event_label' in item: valid_estimated_event_list.append(item) elif 'onset' in item and 'offset' in item and 'event_label' in item: valid_estimated_event_list.append(item) estimated_event_list = valid_estimated_event_list # Convert event list into frame-based representation reference_event_roll = util.event_list_to_event_roll( source_event_list=reference_event_list, event_label_list=self.event_label_list, time_resolution=self.time_resolution ) estimated_event_roll = util.event_list_to_event_roll( source_event_list=estimated_event_list, event_label_list=self.event_label_list, time_resolution=self.time_resolution ) if evaluated_length_seconds is None: evaluated_length_seconds = max(reference_event_list.max_offset, estimated_event_list.max_offset) evaluated_length_segments = int(math.ceil(evaluated_length_seconds * 1 / float(self.time_resolution))) else: evaluated_length_segments = int(math.ceil(evaluated_length_seconds * 1 / float(self.time_resolution))) self.evaluated_length_seconds += evaluated_length_seconds self.evaluated_files += 1 reference_event_roll, estimated_event_roll = util.match_event_roll_lengths( reference_event_roll, estimated_event_roll, evaluated_length_segments ) # Compute segment-based overall metrics for segment_id in range(0, reference_event_roll.shape[0]): annotated_segment = reference_event_roll[segment_id, :] system_segment = estimated_event_roll[segment_id, :] Ntp = sum(system_segment + annotated_segment > 1) Ntn = sum(system_segment + annotated_segment == 0) Nfp = sum(system_segment - annotated_segment > 0) Nfn = sum(annotated_segment - system_segment > 0) Nref = sum(annotated_segment) Nsys = sum(system_segment) S = min(Nref, Nsys) - Ntp D = max(0, Nref - Nsys) I = max(0, Nsys - Nref) self.overall['Ntp'] += Ntp self.overall['Ntn'] += Ntn self.overall['Nfp'] += Nfp self.overall['Nfn'] += Nfn self.overall['Nref'] += Nref self.overall['Nsys'] += Nsys self.overall['S'] += S self.overall['D'] += D self.overall['I'] += I # Compute segment-based class-wise metrics for class_id, class_label in enumerate(self.event_label_list): annotated_segment = reference_event_roll[:, class_id] system_segment = estimated_event_roll[:, class_id] Ntp = sum(system_segment + annotated_segment > 1) Ntn = sum(system_segment + annotated_segment == 0) Nfp = sum(system_segment - annotated_segment > 0) Nfn = sum(annotated_segment - system_segment > 0) Nref = sum(annotated_segment) Nsys = sum(system_segment) self.class_wise[class_label]['Ntp'] += Ntp self.class_wise[class_label]['Ntn'] += Ntn self.class_wise[class_label]['Nfp'] += Nfp self.class_wise[class_label]['Nfn'] += Nfn self.class_wise[class_label]['Nref'] += Nref self.class_wise[class_label]['Nsys'] += Nsys return self
0.003443
def _get_datapoints(self, params): """ Will make a direct REST call with the given json body payload to get datapoints. """ url = self.query_uri + '/v1/datapoints' return self.service._get(url, params=params)
0.007813
def sub(self, *segments): "Get a sub-configuration." d = self for segment in segments: try: d = d[segment] except KeyError: return ConfigDict({}) return d
0.008264
def run(self, **kwargs): """ Start the tornado server, run forever""" try: loop = IOLoop() app = self.make_app() app.listen(self.port) loop.start() except socket.error as serr: # Re raise the socket error if not "[Errno 98] Address already in use" if serr.errno != errno.EADDRINUSE: raise serr else: logger.warning('The webserver port {} is already used. May be the HttpRobotServer is already running or another software is using this port.'.format(self.port))
0.006645
def HTML_results(resultsFile): """generates HTML report of active folders/days.""" foldersByDay=loadResults(resultsFile) # optionally skip dates before a certain date # for day in sorted(list(foldersByDay.keys())): # if time.strptime(day,"%Y-%m-%d")<time.strptime("2016-05-01","%Y-%m-%d"): # del foldersByDay[day] # Create a header html="<div class='heading'>Active Folder Report (updated TIMESTAMP)</div>" html+="<li>When a file is created (or modified) its parent folder is marked active for that day." html+="<li>This page reports all folders which were active in the last several years. " html+="<li>A single folder can be active for more than one date." html=html.replace("TIMESTAMP",(time.strftime('%Y-%m-%d', time.localtime()))) html+="<br>"*5 # create menu at the top of the page html+="<div class='heading'>Active Folder Dates</div>" html+="<code>" lastMonth="" lastYear="" for day in sorted(list(foldersByDay.keys())): month=day[:7] year=day[:4] if year!=lastYear: html+="<br><br><b style='font-size: 200%%;'>%s</b> "%year lastYear=year if month!=lastMonth: html+="<br><b>%s:</b> "%month lastMonth=month html+="<a href='#%s'>%s</a>, "%(day,day[8:]) html+="<br>"*5 html=html.replace(", <br>","<br>") html+="</code>" # create the full list of folders organized by active date html+="<div class='heading'>Active Folders</div>" for day in sorted(list(foldersByDay.keys())): dt=datetime.datetime.strptime(day, "%Y-%m-%d" ) classPrefix="weekday" if int(dt.weekday())>4: classPrefix="weekend" html+="<a name='%s' href='#%s' style='color: black;'>"%(day,day) title="%s (%s)"%(day,DAYSOFWEEK[dt.weekday()]) html+="<div class='%s_datecode'>%s</div></a>"%(classPrefix,title) html+="<div class='%s_folders'>"%(classPrefix) # define folders to skip for folder in foldersByDay[day]: if "\\References\\" in folder: continue if "\\MIP\\" in folder: continue if "LineScan-" and "\\analysis\\" in folder: continue if "trakem2" in folder: continue if "SWHlab-" in folder: continue if "\\swhlab" in folder: continue html+="%s<br>"%folder html+="</div>" fnameSave=resultsFile+".html" html=html.replace("D:\\X_Drive\\","X:\\") with open(fnameSave,'w') as f: f.write(HTML_TEMPLATE.replace("<body>","<body>"+html)) print("saved",fnameSave)
0.021856
def evaluate_expression(expression, vars): '''evaluation an expression''' try: v = eval(expression, globals(), vars) except NameError: return None except ZeroDivisionError: return None return v
0.004219
def to_xml(self, root): ''' Returns a DOM element contaning the XML representation of the ExtensibleXMLiElement @param root:Element Root XML element. @return: Element ''' if not len(self.__custom_elements): return for uri, tags in self.__custom_elements.items(): prefix, url = uri.split(":", 1) for name, value in tags.items(): self.__createElementNS(root, url, prefix + ":" + name, value) return root
0.003795
def add_prefix(self): """ Add prefix according to the specification. The following keys can be used: vrf ID of VRF to place the prefix in prefix the prefix to add if already known family address family (4 or 6) description A short description expires Expiry time of assignment comment Longer comment node Hostname of node type Type of prefix; reservation, assignment, host status Status of prefix; assigned, reserved, quarantine pool ID of pool country Country where the prefix is used order_id Order identifier customer_id Customer identifier vlan VLAN ID alarm_priority Alarm priority of prefix monitor If the prefix should be monitored or not from-prefix A prefix the prefix is to be allocated from from-pool A pool (ID) the prefix is to be allocated from prefix_length Prefix length of allocated prefix """ p = Prefix() # Sanitize input parameters if 'vrf' in request.json: try: if request.json['vrf'] is None or len(unicode(request.json['vrf'])) == 0: p.vrf = None else: p.vrf = VRF.get(int(request.json['vrf'])) except ValueError: return json.dumps({'error': 1, 'message': "Invalid VRF ID '%s'" % request.json['vrf']}) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'description' in request.json: p.description = validate_string(request.json, 'description') if 'expires' in request.json: p.expires = validate_string(request.json, 'expires') if 'comment' in request.json: p.comment = validate_string(request.json, 'comment') if 'node' in request.json: p.node = validate_string(request.json, 'node') if 'status' in request.json: p.status = validate_string(request.json, 'status') if 'type' in request.json: p.type = validate_string(request.json, 'type') if 'pool' in request.json: if request.json['pool'] is not None: try: p.pool = Pool.get(int(request.json['pool'])) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'country' in request.json: p.country = validate_string(request.json, 'country') if 'order_id' in request.json: p.order_id = validate_string(request.json, 'order_id') if 'customer_id' in request.json: p.customer_id = validate_string(request.json, 'customer_id') if 'alarm_priority' in request.json: p.alarm_priority = validate_string(request.json, 'alarm_priority') if 'monitor' in request.json: p.monitor = request.json['monitor'] if 'vlan' in request.json: p.vlan = request.json['vlan'] if 'tags' in request.json: p.tags = request.json['tags'] if 'avps' in request.json: p.avps = request.json['avps'] # arguments args = {} if 'from_prefix' in request.json: args['from-prefix'] = request.json['from_prefix'] if 'from_pool' in request.json: try: args['from-pool'] = Pool.get(int(request.json['from_pool'])) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) if 'family' in request.json: args['family'] = request.json['family'] if 'prefix_length' in request.json: args['prefix_length'] = request.json['prefix_length'] # manual allocation? if args == {}: if 'prefix' in request.json: p.prefix = request.json['prefix'] try: p.save(args) except NipapError, e: return json.dumps({'error': 1, 'message': e.args, 'type': type(e).__name__}) return json.dumps(p, cls=NipapJSONEncoder)
0.001805
def load(path): ''' Load specified fault manager module path: string path of fault manager module CLI Example: .. code-block:: bash salt '*' fmadm.load /module/path ''' ret = {} fmadm = _check_fmadm() cmd = '{cmd} load {path}'.format( cmd=fmadm, path=path ) res = __salt__['cmd.run_all'](cmd) retcode = res['retcode'] result = {} if retcode != 0: result['Error'] = res['stderr'] else: result = True return result
0.00189
def geturi(self): """Return the re-combined version of the original URI reference as a string. """ scheme, authority, path, query, fragment = self # RFC 3986 5.3. Component Recomposition result = [] if scheme is not None: result.extend([scheme, self.COLON]) if authority is not None: result.extend([self.SLASH, self.SLASH, authority]) result.append(path) if query is not None: result.extend([self.QUEST, query]) if fragment is not None: result.extend([self.HASH, fragment]) return self.EMPTY.join(result)
0.003077
def set_parallel(self, width, name=None): """ Set this source stream to be split into multiple channels as the start of a parallel region. Calling ``set_parallel`` on a stream created by :py:meth:`~Topology.source` results in the stream having `width` channels, each created by its own instance of the callable:: s = topo.source(S()) s.set_parallel(3) f = s.filter(F()) e = f.end_parallel() Each channel has independent instances of ``S`` and ``F``. Tuples created by the instance of ``S`` in channel 0 are passed to the instance of ``F`` in channel 0, and so on for channels 1 and 2. Callable transforms instances within the channel can use the runtime functions :py:func:`~streamsx.ec.channel`, :py:func:`~streamsx.ec.local_channel`, :py:func:`~streamsx.ec.max_channels` & :py:func:`~streamsx.ec.local_max_channels` to adapt to being invoked in parallel. For example a source callable can use its channel number to determine which partition to read from in a partitioned external system. Calling ``set_parallel`` on a stream created by :py:meth:`~Topology.subscribe` results in the stream having `width` channels. Subscribe ensures that the stream will contain all published tuples matching the topic subscription and type. A published tuple will appear on one of the channels though the specific channel is not known in advance. A parallel region is terminated by :py:meth:`end_parallel` or :py:meth:`for_each`. The number of channels is set by `width` which may be an `int` greater than zero or a submission parameter created by :py:meth:`Topology.create_submission_parameter`. With IBM Streams 4.3 or later the number of channels can be dynamically changed at runtime. Parallel regions are started on non-source streams using :py:meth:`parallel`. Args: width: The degree of parallelism for the parallel region. name(str): Name of the parallel region. Defaults to the name of this stream. Returns: Stream: Returns this stream. .. seealso:: :py:meth:`parallel`, :py:meth:`end_parallel` .. versionadded:: 1.9 .. versionchanged:: 1.11 `name` parameter added. """ self.oport.operator.config['parallel'] = True self.oport.operator.config['width'] = streamsx.topology.graph._as_spl_json(width, int) if name: name = self.topology.graph._requested_name(str(name), action='set_parallel') self.oport.operator.config['regionName'] = name return self
0.002481
def pick_target_decoy(tfeature, dfeature): """Feed it with a target and decoy score and the protein/gene/id names, and this will return target/decoy type, the winning ID and the score""" tscore, dscore = get_score(tfeature), get_score(dfeature) if tscore == dscore: # same score or both False return False elif False in [tscore, dscore]: # return the non-False feature return [v for k, v in {tscore: tfeature, dscore: dfeature}.items() if k is not False][0] elif tscore > dscore: return tfeature elif tscore < dscore: return dfeature else: # in case uncaught edgecase occurs print('WARNING, target score {} and decoy score {} could not be ' 'compared'.format(tscore, dscore)) return False
0.001217
async def select_page(self, info: SQLQueryInfo, size=1, page=1) -> Tuple[Tuple[DataRecord, ...], int]: """ Select from database :param info: :param size: -1 means infinite :param page: :param need_count: if True, get count as second return value, otherwise -1 :return: records. count """ raise NotImplementedError()
0.010336
def _set_red_profile_ecn(self, v, load=False): """ Setter method for red_profile_ecn, mapped from YANG variable /qos/ecn/red_profile/red_profile_ecn (container) If this variable is read-only (config: false) in the source YANG file, then _set_red_profile_ecn is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_red_profile_ecn() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=red_profile_ecn.red_profile_ecn, is_container='container', presence=False, yang_name="red-profile-ecn", rest_name="ecn", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure RED Profile ECN', u'cli-sequence-commands': None, u'alt-name': u'ecn', u'cli-incomplete-command': None, u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-qos', defining_module='brocade-qos', yang_type='container', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """red_profile_ecn must be of a type compatible with container""", 'defined-type': "container", 'generated-type': """YANGDynClass(base=red_profile_ecn.red_profile_ecn, is_container='container', presence=False, yang_name="red-profile-ecn", rest_name="ecn", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Configure RED Profile ECN', u'cli-sequence-commands': None, u'alt-name': u'ecn', u'cli-incomplete-command': None, u'cli-full-no': None}}, namespace='urn:brocade.com:mgmt:brocade-qos', defining_module='brocade-qos', yang_type='container', is_config=True)""", }) self.__red_profile_ecn = t if hasattr(self, '_set'): self._set()
0.005319
def leastsqbound(func, x0, args=(), bounds=None, Dfun=None, full_output=0, col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8, gtol=0.0, maxfev=0, epsfcn=0.0, factor=100, diag=None): """ Bounded minimization of the sum of squares of a set of equations. :: x = arg min(sum(func(y)**2,axis=0)) y Parameters ---------- func : callable should take at least one (possibly length N vector) argument and returns M floating point numbers. x0 : ndarray The starting estimate for the minimization. args : tuple Any extra arguments to func are placed in this tuple. bounds : list ``(min, max)`` pairs for each element in ``x``, defining the bounds on that parameter. Use None for one of ``min`` or ``max`` when there is no bound in that direction. Dfun : callable A function or method to compute the Jacobian of func with derivatives across the rows. If this is None, the Jacobian will be estimated. full_output : bool non-zero to return all optional outputs. col_deriv : bool non-zero to specify that the Jacobian function computes derivatives down the columns (faster, because there is no transpose operation). ftol : float Relative error desired in the sum of squares. xtol : float Relative error desired in the approximate solution. gtol : float Orthogonality desired between the function vector and the columns of the Jacobian. maxfev : int The maximum number of calls to the function. If zero, then 100*(N+1) is the maximum where N is the number of elements in x0. epsfcn : float A suitable step length for the forward-difference approximation of the Jacobian (for Dfun=None). If epsfcn is less than the machine precision, it is assumed that the relative errors in the functions are of the order of the machine precision. factor : float A parameter determining the initial step bound (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``. diag : sequence N positive entries that serve as a scale factors for the variables. Returns ------- x : ndarray The solution (or the result of the last iteration for an unsuccessful call). cov_x : ndarray Uses the fjac and ipvt optional outputs to construct an estimate of the jacobian around the solution. ``None`` if a singular matrix encountered (indicates very flat curvature in some direction). This matrix must be multiplied by the residual standard deviation to get the covariance of the parameter estimates -- see curve_fit. infodict : dict a dictionary of optional outputs with the key s:: - 'nfev' : the number of function calls - 'fvec' : the function evaluated at the output - 'fjac' : A permutation of the R matrix of a QR factorization of the final approximate Jacobian matrix, stored column wise. Together with ipvt, the covariance of the estimate can be approximated. - 'ipvt' : an integer array of length N which defines a permutation matrix, p, such that fjac*p = q*r, where r is upper triangular with diagonal elements of nonincreasing magnitude. Column j of p is column ipvt(j) of the identity matrix. - 'qtf' : the vector (transpose(q) * fvec). mesg : str A string message giving information about the cause of failure. ier : int An integer flag. If it is equal to 1, 2, 3 or 4, the solution was found. Otherwise, the solution was not found. In either case, the optional output variable 'mesg' gives more information. Notes ----- "leastsq" is a wrapper around MINPACK's lmdif and lmder algorithms. cov_x is a Jacobian approximation to the Hessian of the least squares objective function. This approximation assumes that the objective function is based on the difference between some observed target data (ydata) and a (non-linear) function of the parameters `f(xdata, params)` :: func(params) = ydata - f(xdata, params) so that the objective function is :: min sum((ydata - f(xdata, params))**2, axis=0) params Contraints on the parameters are enforced using an internal parameter list with appropiate transformations such that these internal parameters can be optimized without constraints. The transfomation between a given internal parameter, p_i, and a external parameter, p_e, are as follows: With ``min`` and ``max`` bounds defined :: p_i = arcsin((2 * (p_e - min) / (max - min)) - 1.) p_e = min + ((max - min) / 2.) * (sin(p_i) + 1.) With only ``max`` defined :: p_i = sqrt((p_e - max + 1.)**2 - 1.) p_e = max + 1. - sqrt(p_i**2 + 1.) With only ``min`` defined :: p_i = sqrt((p_e - min + 1.)**2 - 1.) p_e = min - 1. + sqrt(p_i**2 + 1.) These transfomations are used in the MINUIT package, and described in detail in the section 1.3.1 of the MINUIT User's Guide. To Do ----- Currently the ``factor`` and ``diag`` parameters scale the internal parameter list, but should scale the external parameter list. The `qtf` vector in the infodic dictionary reflects internal parameter list, it should be correct to reflect the external parameter list. References ---------- * F. James and M. Winkler. MINUIT User's Guide, July 16, 2004. """ # use leastsq if no bounds are present if bounds is None: return leastsq(func, x0, args, Dfun, full_output, col_deriv, ftol, xtol, gtol, maxfev, epsfcn, factor, diag) # create function which convert between internal and external parameters i2e = _internal2external_func(bounds) e2i = _external2internal_func(bounds) x0 = array(x0, ndmin=1) i0 = e2i(x0) n = len(x0) if len(bounds) != n: raise ValueError('length of x0 != length of bounds') if type(args) != type(()): args = (args,) m = _check_func('leastsq', 'func', func, x0, args, n)[0] if n > m: raise TypeError('Improper input: N=%s must not exceed M=%s' % (n,m)) # define a wrapped func which accept internal parameters, converts them # to external parameters and calls func def wfunc(x, *args): return func(i2e(x), *args) if Dfun is None: if (maxfev == 0): maxfev = 200*(n + 1) retval = _minpack._lmdif(wfunc, i0, args, full_output, ftol, xtol, gtol, maxfev, epsfcn, factor, diag) else: if col_deriv: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n,m)) else: _check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m,n)) if (maxfev == 0): maxfev = 100*(n + 1) def wDfun(x, *args): return Dfun(i2e(x), *args) # wrapped Dfun retval = _minpack._lmder(func, wDfun, i0, args, full_output, col_deriv, ftol, xtol, gtol, maxfev, factor, diag) errors = {0:["Improper input parameters.", TypeError], 1:["Both actual and predicted relative reductions " "in the sum of squares\n are at most %f" % ftol, None], 2:["The relative error between two consecutive " "iterates is at most %f" % xtol, None], 3:["Both actual and predicted relative reductions in " "the sum of squares\n are at most %f and the " "relative error between two consecutive " "iterates is at \n most %f" % (ftol,xtol), None], 4:["The cosine of the angle between func(x) and any " "column of the\n Jacobian is at most %f in " "absolute value" % gtol, None], 5:["Number of calls to function has reached " "maxfev = %d." % maxfev, ValueError], 6:["ftol=%f is too small, no further reduction " "in the sum of squares\n is possible.""" % ftol, ValueError], 7:["xtol=%f is too small, no further improvement in " "the approximate\n solution is possible." % xtol, ValueError], 8:["gtol=%f is too small, func(x) is orthogonal to the " "columns of\n the Jacobian to machine " "precision." % gtol, ValueError], 'unknown':["Unknown error.", TypeError]} info = retval[-1] # The FORTRAN return value if (info not in [1,2,3,4] and not full_output): if info in [5,6,7,8]: warnings.warn(errors[info][0], RuntimeWarning) else: try: raise errors[info][1](errors[info][0]) except KeyError: raise errors['unknown'][1](errors['unknown'][0]) mesg = errors[info][0] x = i2e(retval[0]) # internal params to external params if full_output: # convert fjac from internal params to external grad = _internal2external_grad(retval[0], bounds) retval[1]['fjac'] = (retval[1]['fjac'].T / take(grad, retval[1]['ipvt'] - 1)).T cov_x = None if info in [1,2,3,4]: from numpy.dual import inv from numpy.linalg import LinAlgError perm = take(eye(n),retval[1]['ipvt']-1,0) r = triu(transpose(retval[1]['fjac'])[:n,:]) R = dot(r, perm) try: cov_x = inv(dot(transpose(R),R)) except LinAlgError: pass return (x, cov_x) + retval[1:-1] + (mesg, info) else: return (x, info)
0.004994
def get_cell_lines(self, column_idx): ''' ''returns: the lines of the cell specified by the column_idx or an empty list if the column does not exist ''' return [] if column_idx >= len(self.columns) else self.columns[column_idx].get_cell_lines()
0.013699
def _backwards_search(self, start_node, split_name, max_depth=float('inf'), shortcuts=True): """ Performs a backwards search from the terminal node back to the start node :param start_node: The node from where search starts, or here better way where backwards search should end. :param split_name: List of names :param max_depth: Maximum search depth where to look for :param shortcuts: If shortcuts are allowed """ result_list = [] # Result list of all found items full_name_set = set() # Set containing full names of all found items to avoid finding items # twice due to links colon_name = '.'.join(split_name) key = split_name[-1] candidate_dict = self._get_candidate_dict(key, None, use_upper_bound=False) parent_full_name = start_node.v_full_name split_length = len(split_name) for candidate_name in candidate_dict: # Check if candidate startswith the parent's name candidate = candidate_dict[candidate_name] if key != candidate.v_name or candidate.v_full_name in full_name_set: # If this is not the case we do have link, that we need to skip continue if candidate_name.startswith(parent_full_name): if parent_full_name != '': reduced_candidate_name = candidate_name[len(parent_full_name) + 1:] else: reduced_candidate_name = candidate_name candidate_split_name = reduced_candidate_name.split('.') if len(candidate_split_name) > max_depth: break if len(split_name) == 1 or reduced_candidate_name.endswith(colon_name): result_list.append(candidate) full_name_set.add(candidate.v_full_name) elif shortcuts: candidate_set = set(candidate_split_name) climbing = True for name in split_name: if name not in candidate_set: climbing = False break if climbing: count = 0 candidate_length = len(candidate_split_name) for idx in range(candidate_length): if idx + split_length - count > candidate_length: break if split_name[count] == candidate_split_name[idx]: count += 1 if count == len(split_name): result_list.append(candidate) full_name_set.add(candidate.v_full_name) break return result_list
0.00404
def _sysfs_parse(path, base_attr=None, stats=False, config=False, internals=False, options=False): ''' Helper function for parsing BCache's SysFS interface ''' result = {} # ---------------- Parse through the interfaces list ---------------- intfs = __salt__['sysfs.interfaces'](path) # Actions, we ignore del intfs['w'] # -------- Sorting hat -------- binkeys = [] if internals: binkeys.extend(['inter_ro', 'inter_rw']) if config: binkeys.append('config') if stats: binkeys.append('stats') bintf = {} for key in binkeys: bintf[key] = [] for intf in intfs['r']: if intf.startswith('internal'): key = 'inter_ro' elif 'stats' in intf: key = 'stats' else: # What to do with these??? # I'll utilize 'inter_ro' as 'misc' as well key = 'inter_ro' if key in bintf: bintf[key].append(intf) for intf in intfs['rw']: if intf.startswith('internal'): key = 'inter_rw' else: key = 'config' if key in bintf: bintf[key].append(intf) if base_attr is not None: for intf in bintf: bintf[intf] = [sintf for sintf in bintf[intf] if sintf not in base_attr] bintf['base'] = base_attr mods = { 'stats': ['internal/bset_tree_stats', 'writeback_rate_debug', 'metadata_written', 'nbuckets', 'written', 'average_key_size', 'btree_cache_size'], } for modt, modlist in mods.items(): found = [] if modt not in bintf: continue for mod in modlist: for intflist in bintf.values(): if mod in intflist: found.append(mod) intflist.remove(mod) bintf[modt] += found # -------- Fetch SysFS vals -------- bintflist = [intf for iflist in bintf.values() for intf in iflist] result.update(__salt__['sysfs.read'](bintflist, path)) # -------- Parse through well known string lists -------- for strlist in ('writeback_rate_debug', 'internal/bset_tree_stats', 'priority_stats'): if strlist in result: listres = {} for line in result[strlist].split('\n'): key, val = line.split(':', 1) val = val.strip() try: val = int(val) except Exception: try: val = float(val) except Exception: pass listres[key.strip()] = val result[strlist] = listres # -------- Parse through selection lists -------- if not options: for sellist in ('cache_mode', 'cache_replacement_policy', 'errors'): if sellist in result: result[sellist] = re.search(r'\[(.+)\]', result[sellist]).groups()[0] # -------- Parse through well known bools -------- for boolkey in ('running', 'writeback_running', 'congested'): if boolkey in result: result[boolkey] = bool(result[boolkey]) # -------- Recategorize results -------- bresult = {} for iftype, intflist in bintf.items(): ifres = {} for intf in intflist: if intf in result: ifres[intf] = result.pop(intf) if ifres: bresult[iftype] = ifres return bresult
0.001722
def critical(self, msg, *args, **kwargs): """Log 'msg % args' with the critical severity level""" self._log("CRITICAL", msg, args, kwargs)
0.012987
def community_topic_posts(self, id, **kwargs): "https://developer.zendesk.com/rest_api/docs/help_center/posts#list-posts" api_path = "/api/v2/community/topics/{id}/posts.json" api_path = api_path.format(id=id) return self.call(api_path, **kwargs)
0.010791
def deepfool_attack(sess, x, predictions, logits, grads, sample, nb_candidate, overshoot, max_iter, clip_min, clip_max, feed=None): """ TensorFlow implementation of DeepFool. Paper link: see https://arxiv.org/pdf/1511.04599.pdf :param sess: TF session :param x: The input placeholder :param predictions: The model's sorted symbolic output of logits, only the top nb_candidate classes are contained :param logits: The model's unnormalized output tensor (the input to the softmax layer) :param grads: Symbolic gradients of the top nb_candidate classes, procuded from gradient_graph :param sample: Numpy array with sample input :param nb_candidate: The number of classes to test against, i.e., deepfool only consider nb_candidate classes when attacking(thus accelerate speed). The nb_candidate classes are chosen according to the prediction confidence during implementation. :param overshoot: A termination criterion to prevent vanishing updates :param max_iter: Maximum number of iteration for DeepFool :param clip_min: Minimum value for components of the example returned :param clip_max: Maximum value for components of the example returned :return: Adversarial examples """ adv_x = copy.copy(sample) # Initialize the loop variables iteration = 0 current = utils_tf.model_argmax(sess, x, logits, adv_x, feed=feed) if current.shape == (): current = np.array([current]) w = np.squeeze(np.zeros(sample.shape[1:])) # same shape as original image r_tot = np.zeros(sample.shape) original = current # use original label as the reference _logger.debug( "Starting DeepFool attack up to %s iterations", max_iter) # Repeat this main loop until we have achieved misclassification while (np.any(current == original) and iteration < max_iter): if iteration % 5 == 0 and iteration > 0: _logger.info("Attack result at iteration %s is %s", iteration, current) gradients = sess.run(grads, feed_dict={x: adv_x}) predictions_val = sess.run(predictions, feed_dict={x: adv_x}) for idx in range(sample.shape[0]): pert = np.inf if current[idx] != original[idx]: continue for k in range(1, nb_candidate): w_k = gradients[idx, k, ...] - gradients[idx, 0, ...] f_k = predictions_val[idx, k] - predictions_val[idx, 0] # adding value 0.00001 to prevent f_k = 0 pert_k = (abs(f_k) + 0.00001) / np.linalg.norm(w_k.flatten()) if pert_k < pert: pert = pert_k w = w_k r_i = pert * w / np.linalg.norm(w) r_tot[idx, ...] = r_tot[idx, ...] + r_i adv_x = np.clip(r_tot + sample, clip_min, clip_max) current = utils_tf.model_argmax(sess, x, logits, adv_x, feed=feed) if current.shape == (): current = np.array([current]) # Update loop variables iteration = iteration + 1 # need more revision, including info like how many succeed _logger.info("Attack result at iteration %s is %s", iteration, current) _logger.info("%s out of %s become adversarial examples at iteration %s", sum(current != original), sample.shape[0], iteration) # need to clip this image into the given range adv_x = np.clip((1 + overshoot) * r_tot + sample, clip_min, clip_max) return adv_x
0.007657
def _initialize_tableaux_ig(X, Y, tableaux, bases): """ Given sequences `X` and `Y` of ndarrays, initialize the tableau and basis arrays in place for the "geometric" imitation game as defined in McLennan and Tourky (2006), to be passed to `_lemke_howson_tbl`. Parameters ---------- X, Y : ndarray(float) Arrays of the same shape (m, n). tableaux : tuple(ndarray(float, ndim=2)) Tuple of two arrays to be used to store the tableaux, of shape (2m, 2m). Modified in place. bases : tuple(ndarray(int, ndim=1)) Tuple of two arrays to be used to store the bases, of shape (m,). Modified in place. Returns ------- tableaux : tuple(ndarray(float, ndim=2)) View to `tableaux`. bases : tuple(ndarray(int, ndim=1)) View to `bases`. """ m = X.shape[0] min_ = np.zeros(m) # Mover for i in range(m): for j in range(2*m): if j == i or j == i + m: tableaux[0][i, j] = 1 else: tableaux[0][i, j] = 0 # Right hand side tableaux[0][i, 2*m] = 1 # Imitator for i in range(m): # Slack variables for j in range(m): if j == i: tableaux[1][i, j] = 1 else: tableaux[1][i, j] = 0 # Payoff variables for j in range(m): d = X[i] - Y[j] tableaux[1][i, m+j] = _square_sum(d) * (-1) if tableaux[1][i, m+j] < min_[j]: min_[j] = tableaux[1][i, m+j] # Right hand side tableaux[1][i, 2*m] = 1 # Shift the payoff values for i in range(m): for j in range(m): tableaux[1][i, m+j] -= min_[j] tableaux[1][i, m+j] += 1 for pl, start in enumerate([m, 0]): for i in range(m): bases[pl][i] = start + i return tableaux, bases
0.000519
def parse_bitcode(bitcode, context=None): """ Create Module from a LLVM *bitcode* (a bytes object). """ if context is None: context = get_global_context() buf = c_char_p(bitcode) bufsize = len(bitcode) with ffi.OutputString() as errmsg: mod = ModuleRef(ffi.lib.LLVMPY_ParseBitcode( context, buf, bufsize, errmsg), context) if errmsg: mod.close() raise RuntimeError( "LLVM bitcode parsing error\n{0}".format(errmsg)) return mod
0.001873
def load_wav(path, mono=True): """Loads a .wav file as a numpy array using ``scipy.io.wavfile``. Parameters ---------- path : str Path to a .wav file mono : bool If the provided .wav has more than one channel, it will be converted to mono if ``mono=True``. (Default value = True) Returns ------- audio_data : np.ndarray Array of audio samples, normalized to the range [-1., 1.] fs : int Sampling rate of the audio data """ fs, audio_data = scipy.io.wavfile.read(path) # Make float in range [-1, 1] if audio_data.dtype == 'int8': audio_data = audio_data/float(2**8) elif audio_data.dtype == 'int16': audio_data = audio_data/float(2**16) elif audio_data.dtype == 'int32': audio_data = audio_data/float(2**24) else: raise ValueError('Got unexpected .wav data type ' '{}'.format(audio_data.dtype)) # Optionally convert to mono if mono and audio_data.ndim != 1: audio_data = audio_data.mean(axis=1) return audio_data, fs
0.000909
def set_cookie(cookies, key, value='', max_age=None, expires=None, path='/', domain=None, secure=False, httponly=False): '''Set a cookie key into the cookies dictionary *cookies*.''' cookies[key] = value if expires is not None: if isinstance(expires, datetime): now = (expires.now(expires.tzinfo) if expires.tzinfo else expires.utcnow()) delta = expires - now # Add one second so the date matches exactly (a fraction of # time gets lost between converting to a timedelta and # then the date string). delta = delta + timedelta(seconds=1) # Just set max_age - the max_age logic will set expires. expires = None max_age = max(0, delta.days * 86400 + delta.seconds) else: cookies[key]['expires'] = expires if max_age is not None: cookies[key]['max-age'] = max_age # IE requires expires, so set it if hasn't been already. if not expires: cookies[key]['expires'] = http_date(time.time() + max_age) if path is not None: cookies[key]['path'] = path if domain is not None: cookies[key]['domain'] = domain if secure: cookies[key]['secure'] = True if httponly: cookies[key]['httponly'] = True
0.00074
def gen_triplets_master(wv_master, geometry=None, debugplot=0): """Compute information associated to triplets in master table. Determine all the possible triplets that can be generated from the array `wv_master`. In addition, the relative position of the central line of each triplet is also computed. Parameters ---------- wv_master : 1d numpy array, float Array with wavelengths corresponding to the master table (Angstroms). geometry : tuple (4 integers) or None x, y, dx, dy values employed to set the window geometry. debugplot : int Determines whether intermediate computations and/or plots are displayed. The valid codes are defined in numina.array.display.pause_debugplot. Returns ------- ntriplets_master : int Number of triplets built from master table. ratios_master_sorted : 1d numpy array, float Array with values of the relative position of the central line of each triplet, sorted in ascending order. triplets_master_sorted_list : list of tuples List with tuples of three numbers, corresponding to the three line indices in the master table. The list is sorted to be in correspondence with `ratios_master_sorted`. """ nlines_master = wv_master.size # Check that the wavelengths in the master table are sorted wv_previous = wv_master[0] for i in range(1, nlines_master): if wv_previous >= wv_master[i]: raise ValueError('Wavelengths:\n--> ' + str(wv_previous) + '\n--> ' + str(wv_master[i]) + '\nin master table are duplicated or not sorted') wv_previous = wv_master[i] # Generate all the possible triplets with the numbers of the lines # in the master table. Each triplet is defined as a tuple of three # numbers corresponding to the three line indices in the master # table. The collection of tuples is stored in an ordinary python # list. iter_comb_triplets = itertools.combinations(range(nlines_master), 3) triplets_master_list = [val for val in iter_comb_triplets] # Verify that the number of triplets coincides with the expected # value. ntriplets_master = len(triplets_master_list) if ntriplets_master == comb(nlines_master, 3, exact=True): if abs(debugplot) >= 10: print('>>> Total number of lines in master table:', nlines_master) print('>>> Number of triplets in master table...:', ntriplets_master) else: raise ValueError('Invalid number of combinations') # For each triplet, compute the relative position of the central # line. ratios_master = np.zeros(ntriplets_master) for index, value in enumerate(triplets_master_list): i1, i2, i3 = value delta1 = wv_master[i2] - wv_master[i1] delta2 = wv_master[i3] - wv_master[i1] ratios_master[index] = delta1 / delta2 # Compute the array of indices that index the above ratios in # sorted order. isort_ratios_master = np.argsort(ratios_master) # Simultaneous sort of position ratios and triplets. ratios_master_sorted = ratios_master[isort_ratios_master] triplets_master_sorted_list = [triplets_master_list[i] for i in isort_ratios_master] if abs(debugplot) in [21, 22]: # compute and plot histogram with position ratios bins_in = np.linspace(0.0, 1.0, 41) hist, bins_out = np.histogram(ratios_master, bins=bins_in) # from numina.array.display.matplotlib_qt import plt fig = plt.figure() ax = fig.add_subplot(111) width_hist = 0.8*(bins_out[1]-bins_out[0]) center = (bins_out[:-1]+bins_out[1:])/2 ax.bar(center, hist, align='center', width=width_hist) ax.set_xlabel('distance ratio in each triplet') ax.set_ylabel('Number of triplets') ax.set_title("Number of lines/triplets: " + str(nlines_master) + "/" + str(ntriplets_master)) # set window geometry set_window_geometry(geometry) pause_debugplot(debugplot, pltshow=True, tight_layout=True) return ntriplets_master, ratios_master_sorted, triplets_master_sorted_list
0.00069
def send_wp_requests(self, wps=None): '''send some more WP requests''' if wps is None: wps = self.missing_wps_to_request() tnow = time.time() for seq in wps: #print("REQUESTING %u/%u (%u)" % (seq, self.wploader.expected_count, i)) self.wp_requested[seq] = tnow self.master.waypoint_request_send(seq)
0.010554
def x(self, x): """Project x as y""" if x is None: return None if self._force_vertical: return super(HorizontalView, self).x(x) return super(HorizontalView, self).y(x)
0.008969
def container_freeze(name, remote_addr=None, cert=None, key=None, verify_cert=True): ''' Freeze a container name : Name of the container to freeze remote_addr : An URL to a remote Server, you also have to give cert and key if you provide remote_addr and its a TCP Address! Examples: https://myserver.lan:8443 /var/lib/mysocket.sock cert : PEM Formatted SSL Certificate. Examples: ~/.config/lxc/client.crt key : PEM Formatted SSL Key. Examples: ~/.config/lxc/client.key verify_cert : True Wherever to verify the cert, this is by default True but in the most cases you want to set it off as LXD normaly uses self-signed certificates. ''' container = container_get( name, remote_addr, cert, key, verify_cert, _raw=True ) container.freeze(wait=True) return _pylxd_model_to_dict(container)
0.000995
def extracting(self, *names, **kwargs): """Asserts that val is collection, then extracts the named properties or named zero-arg methods into a list (or list of tuples if multiple names are given).""" if not isinstance(self.val, Iterable): raise TypeError('val is not iterable') if isinstance(self.val, str_types): raise TypeError('val must not be string') if len(names) == 0: raise ValueError('one or more name args must be given') def _extract(x, name): if self._check_dict_like(x, check_values=False, return_as_bool=True): if name in x: return x[name] else: raise ValueError('item keys %s did not contain key <%s>' % (list(x.keys()), name)) elif isinstance(x, Iterable): self._check_iterable(x, name='item') return x[name] elif hasattr(x, name): attr = getattr(x, name) if callable(attr): try: return attr() except TypeError: raise ValueError('val method <%s()> exists, but is not zero-arg method' % name) else: return attr else: raise ValueError('val does not have property or zero-arg method <%s>' % name) def _filter(x): if 'filter' in kwargs: if isinstance(kwargs['filter'], str_types): return bool(_extract(x, kwargs['filter'])) elif self._check_dict_like(kwargs['filter'], check_values=False, return_as_bool=True): for k in kwargs['filter']: if isinstance(k, str_types): if _extract(x, k) != kwargs['filter'][k]: return False return True elif callable(kwargs['filter']): return kwargs['filter'](x) return False return True def _sort(x): if 'sort' in kwargs: if isinstance(kwargs['sort'], str_types): return _extract(x, kwargs['sort']) elif isinstance(kwargs['sort'], Iterable): items = [] for k in kwargs['sort']: if isinstance(k, str_types): items.append(_extract(x, k)) return tuple(items) elif callable(kwargs['sort']): return kwargs['sort'](x) return 0 extracted = [] for i in sorted(self.val, key=lambda x: _sort(x)): if _filter(i): items = [_extract(i, name) for name in names] extracted.append(tuple(items) if len(items) > 1 else items[0]) return AssertionBuilder(extracted, self.description, self.kind)
0.002683
def delete_raw(self): """Delete the current entity. Make an HTTP DELETE call to ``self.path('base')``. Return the response. :return: A ``requests.response`` object. """ return client.delete( self.path(which='self'), **self._server_config.get_client_kwargs() )
0.005988
def classes(equivalences): """Compute mapping from element to list of equivalent elements. `equivalences` is an iterable of (x, y) tuples representing equivalences x ~ y. Returns an OrderedDict mapping each x to the list of elements equivalent to x. """ node = OrderedDict() def N(x): if x in node: return node[x] n = node[x] = Node(x) return n for x, y in equivalences: union(N(x), N(y)) eqclass = OrderedDict() for x, n in node.iteritems(): x_ = find(n).element if x_ not in eqclass: eqclass[x_] = [] eqclass[x_].append(x) eqclass[x] = eqclass[x_] return eqclass
0.002849
def reconnect(self): """ Invoked by the IOLoop timer if the connection is closed. See the on_connection_closed method. """ # This is the old connection IOLoop instance, stop its ioloop self._connection.ioloop.stop() if not self._closing: # Create a new connection self._connection = self.connect() # There is now a new connection, needs a new ioloop to run self._connection.ioloop.start()
0.004057
def get_anchor_point(self, anchor_name): """Return an anchor point of the node, if it exists.""" if anchor_name in self._possible_anchors: return TikZNodeAnchor(self.handle, anchor_name) else: try: anchor = int(anchor_name.split('_')[1]) except: anchor = None if anchor is not None: return TikZNodeAnchor(self.handle, str(anchor)) raise ValueError('Invalid anchor name: "{}"'.format(anchor_name))
0.005693
def find_files(dir_or_filelist, pattern='*'): """ If given a path to a directory, finds files recursively, e.g. all *.txt files in a given directory (or its subdirectories). If given a list of files, yields all of the files that match the given pattern. adapted from: http://stackoverflow.com/a/2186673 """ import os import fnmatch if isinstance(dir_or_filelist, str): directory = dir_or_filelist abspath = os.path.abspath(os.path.expanduser(directory)) for root, dirs, files in os.walk(abspath): for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) yield filename else: filelist = dir_or_filelist for filepath in filelist: if fnmatch.fnmatch(filepath, pattern): yield filepath
0.0011
def download_page(url, data=None): '''Returns the response for the given url. The optional data argument is passed directly to urlopen.''' conn = urllib2.urlopen(url, data) resp = conn.read() conn.close() return resp
0.004167
def create_random(magf, magf_params, errf, errf_params, timef=np.linspace, timef_params=None, size=DEFAULT_SIZE, id=None, ds_name=DS_NAME, description=DESCRIPTION, bands=BANDS, metadata=METADATA): """Generate a data with any given random function. Parameters ---------- magf : callable Function to generate the magnitudes. magf_params : dict-like Parameters to feed the `magf` function. errf : callable Function to generate the magnitudes. errf_params : dict-like Parameters to feed the `errf` function. timef : callable, (default=numpy.linspace) Function to generate the times. timef_params : dict-like or None, (default={"start": 0., "stop": 1.}) Parameters to feed the `timef` callable. size : int (default=10000) Number of obervation of the light curves id : object (default=None) Id of the created data. ds_name : str (default="feets-synthetic") Name of the dataset description : str (default="Lightcurve created with random numbers") Description of the data bands : tuple of strings (default=("B", "V")) The bands to be created metadata : dict-like or None (default=None) The metadata of the created data Returns ------- data A Data object with a random lightcurves. Examples -------- .. code-block:: pycon >>> from numpy import random >>> create_random( ... magf=random.normal, magf_params={"loc": 0, "scale": 1}, ... errf=random.normal, errf_params={"loc": 0, "scale": 0.008}) Data(id=None, ds_name='feets-synthetic', bands=('B', 'V')) """ timef_params = ( {"start": 0., "stop": 1.} if timef_params is None else timef_params.copy()) timef_params.update(num=size) magf_params = magf_params.copy() magf_params.update(size=size) errf_params = errf_params.copy() errf_params.update(size=size) data = {} for band in bands: data[band] = { "time": timef(**timef_params), "magnitude": magf(**magf_params), "error": errf(**errf_params)} return Data( id=id, ds_name=ds_name, description=description, bands=bands, metadata=metadata, data=data)
0.000423
def download(date_array, tag, sat_id, data_path, user=None, password=None): """Routine to download Kp index data Parameters ----------- tag : (string or NoneType) Denotes type of file to load. Accepted types are '1min' and '5min'. (default=None) sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) Returns -------- Void : (NoneType) data downloaded to disk, if available. Notes ----- Called by pysat. Not intended for direct use by user. """ import ftplib from ftplib import FTP import sys ftp = FTP('ftp.gfz-potsdam.de') # connect to host, default port ftp.login() # user anonymous, passwd anonymous@ ftp.cwd('/pub/home/obs/kp-ap/tab') for date in date_array: fname = 'kp{year:02d}{month:02d}.tab' fname = fname.format(year=(date.year - date.year//100*100), month=date.month) local_fname = fname saved_fname = os.path.join(data_path,local_fname) try: print('Downloading file for '+date.strftime('%D')) sys.stdout.flush() ftp.retrbinary('RETR '+fname, open(saved_fname,'wb').write) except ftplib.error_perm as exception: # if exception[0][0:3] != '550': if str(exception.args[0]).split(" ", 1)[0] != '550': raise else: os.remove(saved_fname) print('File not available for '+date.strftime('%D')) ftp.close() return
0.003955
def set(key, value={}, reset=False, init=False): """ Set data :param key: A unique to set, best to use __name__ :param value: dict - the value to save :param reset: bool - If true, it will reset the value to the current one. if False, it will just update the stored value with the current one :param init: bool - If True, it will create the entry if it doesn't exits next time invoked, it will not save anything :return: """ if not isinstance(value, dict): raise ValueError("App Data value must be a dict") k = AppData.get_by_key(key, True) if not k: AppData.create(key=make_key(key), value=value) else: if init is False: if reset is False: nv = copy.deepcopy(value) value = copy.deepcopy(k.value) value.update(nv) k.update(value=value)
0.004283
def _run(self): """ This is the logic to run it all. Heavily influenced by this post: http://nickdesaulniers.github.io/blog/2015/05/25/interpreter-compiler-jit/ :return: """ i = 0 try: while i < len(self.program): if self.program[i] == ">": self._increment_pointer() elif self.program[i] == "<": self._decrement_pointer() elif self.program[i] == "+": self._increment_current_byte() elif self.program[i] == "-": self._decrement_current_byte() elif self.program[i] == ".": self._output_current_byte() elif self.program[i] == ",": self._read_byte() elif self.program[i] == "[": """ if the byte at the data pointer is zero, then instead of moving the instruction pointer forward to the next command, jump it forward to the command after the matching ] command - Wikipedia """ if self.tape[self.pointer] is None or self.tape[self.pointer] == 0: loop = 1 while loop > 0: i += 1 current_instruction = self.program[i] if current_instruction == "]": loop -= 1 elif current_instruction == "[": loop += 1 elif self.program[i] == "]": """ if the byte at the data pointer is nonzero, then instead of moving the instruction pointer forward to the next command, jump it back to the command after the matching [ command. - Wikipedia """ if self.tape[self.pointer] is not None and self.tape[self.pointer] > 0: loop = 1 while loop > 0: i -= 1 current_instruction = self.program[i] if current_instruction == "[": loop -= 1 elif current_instruction == "]": loop += 1 i += 1 except PointerOutOfProgramRange as e: print e.message sys.exit(1) except IndexError as e: print "The program went out of bounds of its instructions" sys.exit(1)
0.003336
def process_tokens(self, tokens): """process tokens from the current module to search for module/block level options """ control_pragmas = {"disable", "enable"} for (tok_type, content, start, _, _) in tokens: if tok_type != tokenize.COMMENT: continue match = OPTION_RGX.search(content) if match is None: continue first_group = match.group(1) if ( first_group.strip() == "disable-all" or first_group.strip() == "skip-file" ): if first_group.strip() == "disable-all": self.add_message( "deprecated-pragma", line=start[0], args=("disable-all", "skip-file"), ) self.add_message("file-ignored", line=start[0]) self._ignore_file = True return try: opt, value = first_group.split("=", 1) except ValueError: self.add_message( "bad-inline-option", args=first_group.strip(), line=start[0] ) continue opt = opt.strip() if opt in self._options_methods or opt in self._bw_options_methods: try: meth = self._options_methods[opt] except KeyError: meth = self._bw_options_methods[opt] # found a "(dis|en)able-msg" pragma deprecated suppression self.add_message( "deprecated-pragma", line=start[0], args=(opt, opt.replace("-msg", "")), ) for msgid in utils._splitstrip(value): # Add the line where a control pragma was encountered. if opt in control_pragmas: self._pragma_lineno[msgid] = start[0] try: if (opt, msgid) == ("disable", "all"): self.add_message( "deprecated-pragma", line=start[0], args=("disable=all", "skip-file"), ) self.add_message("file-ignored", line=start[0]) self._ignore_file = True return meth(msgid, "module", start[0]) except exceptions.UnknownMessageError: self.add_message("bad-option-value", args=msgid, line=start[0]) else: self.add_message("unrecognized-inline-option", args=opt, line=start[0])
0.001753
def main(): """Run newer stuffs.""" logging.basicConfig(format=LOGGING_FORMAT) log = logging.getLogger(__name__) parser = argparse.ArgumentParser() add_debug(parser) add_app(parser) add_env(parser) add_region(parser) add_properties(parser) parser.add_argument("--elb-subnet", help="Subnetnet type, e.g. external, internal", required=True) args = parser.parse_args() logging.getLogger(__package__.split('.')[0]).setLevel(args.debug) log.debug('Parsed arguments: %s', args) spinnakerapps = SpinnakerDns( app=args.app, env=args.env, region=args.region, prop_path=args.properties, elb_subnet=args.elb_subnet) spinnakerapps.create_elb_dns()
0.004243
def get_regions_and_coremasks(self): """Generate a set of ordered paired region and core mask representations. .. note:: The region and core masks are ordered such that ``(region << 32) | core_mask`` is monotonically increasing. Consequently region and core masks generated by this method can be used with SCAMP's Flood-Fill Core Select (FFSC) method. Yields ------ (region, core mask) Pair of integers which represent a region of a SpiNNaker machine and a core mask of selected cores within that region. """ region_code = ((self.base_x << 24) | (self.base_y << 16) | (self.level << 16)) # Generate core masks for any regions which are selected at this level # Create a mapping from subregion mask to core numbers subregions_cores = collections.defaultdict(lambda: 0x0) for core, subregions in enumerate(self.locally_selected): if subregions: # If any subregions are selected on this level subregions_cores[subregions] |= 1 << core # Order the locally selected items and then yield them for (subregions, coremask) in sorted(subregions_cores.items()): yield (region_code | subregions), coremask if self.level < 3: # Iterate through the subregions and recurse, we iterate through in # the order which ensures that anything we yield is in increasing # order. for i in (4*x + y for y in range(4) for x in range(4)): subregion = self.subregions[i] if subregion is not None: for (region, coremask) in \ subregion.get_regions_and_coremasks(): yield (region, coremask)
0.001609
def Page_deleteCookie(self, cookieName, url): """ Function path: Page.deleteCookie Domain: Page Method name: deleteCookie WARNING: This function is marked 'Experimental'! Parameters: Required arguments: 'cookieName' (type: string) -> Name of the cookie to remove. 'url' (type: string) -> URL to match cooke domain and path. No return value. Description: Deletes browser cookie with given name, domain and path. """ assert isinstance(cookieName, (str,) ), "Argument 'cookieName' must be of type '['str']'. Received type: '%s'" % type( cookieName) assert isinstance(url, (str,) ), "Argument 'url' must be of type '['str']'. Received type: '%s'" % type( url) subdom_funcs = self.synchronous_command('Page.deleteCookie', cookieName= cookieName, url=url) return subdom_funcs
0.046838
def t_to_min(x): """ Convert XML 'xs: duration type' to decimal minutes, e.g.: t_to_min('PT1H2M30S') == 62.5 """ g = re.match('PT(?:(.*)H)?(?:(.*)M)?(?:(.*)S)?', x).groups() return sum(0 if g[i] is None else float(g[i]) * 60. ** (1 - i) for i in range(3))
0.003401
def partition_pairs(neurites, neurite_type=NeuriteType.all): '''Partition pairs at bifurcation points of a collection of neurites. Partition pait is defined as the number of bifurcations at the two daughters of the bifurcating section''' return map(_bifurcationfunc.partition_pair, iter_sections(neurites, iterator_type=Tree.ibifurcation_point, neurite_filter=is_type(neurite_type)))
0.002119
def _horizontal_segment(old_offs, new_offs, spacing, diameter): '''Vertices of a horizontal rectangle ''' return np.array(((old_offs[0], old_offs[1] + spacing[1]), (new_offs[0], old_offs[1] + spacing[1]), (new_offs[0], old_offs[1] + spacing[1] - diameter), (old_offs[0], old_offs[1] + spacing[1] - diameter)))
0.002604
def mousePressEvent(self, event): """Begins edit on cell clicked, if allowed, and passes event to super class""" index = self.indexAt(event.pos()) if index.isValid(): self.selectRow(index.row()) # selecting the row sets the current index to 0,0 for tab # order to work correctly, we must set the current index self.setCurrentIndex(index) self.parameterChanged.emit(self.model().selection(index)) self.edit(index, QtGui.QAbstractItemView.DoubleClicked, event) super(AutoParameterTableView, self).mousePressEvent(event)
0.004831
def search(self, string, default=None): """Use re.search to find the result :rtype: list""" default = default if default else [] result = [item[1] for item in self.container if item[0].search(string)] if self.ensure_mapping: assert len(result) < 2, "%s matches more than one pattern: %s" % ( string, result, ) return result if result else default
0.004435
def validate(self, value): """Validate field value.""" if self.required and value is None: raise ValidationError("field is required") if value is not None and self.choices is not None: choices = [choice for choice, _ in self.choices] if value not in choices: raise ValidationError("field must be one of: {}".format( ", ".join(choices), ))
0.004435
def delete_port_postcommit(self, context): """Delete port non-database commit event.""" if self._is_supported_deviceowner(context.current): vlan_segment, vxlan_segment = self._get_segments( context.top_bound_segment, context.bottom_bound_segment) vni = self._port_action_vxlan(context.current, vxlan_segment, self._delete_nve_member) if vxlan_segment else 0 self._port_action_vlan(context.current, vlan_segment, self._delete_switch_entry, vni)
0.00458
def get_filter_form(self, **kwargs): """ If there is a filter_form, initializes that form with the contents of request.GET and returns it. """ form = None if self.filter_form: form = self.filter_form(self.request.GET) elif self.model and hasattr(self.model._meta, '_is_view'): form = VersionFilterForm(self.request.GET) return form
0.004673
def _get_paths(): """Generate paths to test data. Done in a function to protect namespace a bit.""" import os base_path = os.path.dirname(os.path.abspath(__file__)) test_data_dir = os.path.join(base_path, 'tests', 'data', 'Plate01') test_data_file = os.path.join(test_data_dir, 'RFP_Well_A3.fcs') return test_data_dir, test_data_file
0.005602
def all_points_core_distance(distance_matrix, d=2.0): """ Compute the all-points-core-distance for all the points of a cluster. Parameters ---------- distance_matrix : array (cluster_size, cluster_size) The pairwise distance matrix between points in the cluster. d : integer The dimension of the data set, which is used in the computation of the all-point-core-distance as per the paper. Returns ------- core_distances : array (cluster_size,) The all-points-core-distance of each point in the cluster References ---------- Moulavi, D., Jaskowiak, P.A., Campello, R.J., Zimek, A. and Sander, J., 2014. Density-Based Clustering Validation. In SDM (pp. 839-847). """ distance_matrix[distance_matrix != 0] = (1.0 / distance_matrix[ distance_matrix != 0]) ** d result = distance_matrix.sum(axis=1) result /= distance_matrix.shape[0] - 1 result **= (-1.0 / d) return result
0.001012
def _octet_bits(o): """ Get the bits of an octet. :param o: The octets. :return: The bits as a list in LSB-to-MSB order. :rtype: list """ if not isinstance(o, integer_types): raise TypeError("o should be an int") if not (0 <= o <= 255): raise ValueError("o should be between 0 and 255 inclusive") bits = [0] * 8 for i in range(8): if 1 == o & 1: bits[i] = 1 o = o >> 1 return bits
0.002132
def validate_day(year, month, day): """Validate day.""" max_days = LONG_MONTH if month == FEB: max_days = FEB_LEAP_MONTH if ((year % 4 == 0) and (year % 100 != 0)) or (year % 400 == 0) else FEB_MONTH elif month in MONTHS_30: max_days = SHORT_MONTH return 1 <= day <= max_days
0.008824
def cube2map(data_cube, layout): r"""Cube to Map This method transforms the input data from a 3D cube to a 2D map with a specified layout Parameters ---------- data_cube : np.ndarray Input data cube, 3D array of 2D images Layout : tuple 2D layout of 2D images Returns ------- np.ndarray 2D map Raises ------ ValueError For invalid data dimensions ValueError For invalid layout Examples -------- >>> from modopt.base.transform import cube2map >>> a = np.arange(16).reshape((4, 2, 2)) >>> cube2map(a, (2, 2)) array([[ 0, 1, 4, 5], [ 2, 3, 6, 7], [ 8, 9, 12, 13], [10, 11, 14, 15]]) """ if data_cube.ndim != 3: raise ValueError('The input data must have 3 dimensions.') if data_cube.shape[0] != np.prod(layout): raise ValueError('The desired layout must match the number of input ' 'data layers.') return np.vstack([np.hstack(data_cube[slice(layout[1] * i, layout[1] * (i + 1))]) for i in range(layout[0])])
0.000874
def get_email(self, token): """Fetches email address from email API endpoint""" resp = requests.get(self.emails_url, params={'access_token': token.token}) emails = resp.json().get('values', []) email = '' try: email = emails[0].get('email') primary_emails = [e for e in emails if e.get('is_primary', False)] email = primary_emails[0].get('email') except (IndexError, TypeError, KeyError): return '' finally: return email
0.003546
def availability_zone_list(request): """Utility method to retrieve a list of availability zones.""" try: return api.nova.availability_zone_list(request) except Exception: exceptions.handle(request, _('Unable to retrieve Nova availability zones.')) return []
0.003135
def get_complete_slug(self, language=None, hideroot=True): """Return the complete slug of this page by concatenating all parent's slugs. :param language: the wanted slug language.""" if not language: language = settings.PAGE_DEFAULT_LANGUAGE if self._complete_slug and language in self._complete_slug: return self._complete_slug[language] self._complete_slug = cache.get(self.PAGE_URL_KEY % (self.id)) if self._complete_slug is None: self._complete_slug = {} elif language in self._complete_slug: return self._complete_slug[language] if hideroot and settings.PAGE_HIDE_ROOT_SLUG and self.is_first_root(): url = u'' else: url = u'%s' % self.slug(language) for ancestor in self.get_ancestors(ascending=True): url = ancestor.slug(language) + u'/' + url self._complete_slug[language] = url cache.set(self.PAGE_URL_KEY % (self.id), self._complete_slug) return url
0.001889
def _registrant_publication(reg_pub, rules): """ Separate the registration from the publication in a given string. :param reg_pub: A string of digits representing a registration and publication. :param rules: A list of RegistrantRules which designate where to separate the values in the string. :returns: A (registrant, publication) tuple of strings. """ for rule in rules: if rule.min <= reg_pub <= rule.max: reg_len = rule.registrant_length break else: raise Exception('Registrant/Publication not found in registrant ' 'rule list.') registrant, publication = reg_pub[:reg_len], reg_pub[reg_len:] return registrant, publication
0.002451
def from_str(cls, timestr, shaked=False): """Use `dateutil` module to parse the give string :param basestring timestr: string representing a date to parse :param bool shaked: whether the input parameter been already cleaned or not. """ orig = timestr if not shaked: timestr = cls.fix_timezone_separator(timestr) try: date = parser.parse(timestr) except ValueError: if not shaked: shaked = False for shaker in [ cls.fix_mispelled_day, cls.remove_parenthesis_around_tz, cls.remove_quotes_around_tz]: new_timestr = shaker(timestr) if new_timestr is not None: timestr = new_timestr shaked = True if shaked: try: return cls.from_str(timestr, shaked=True) except ValueError: # raise ValueError below with proper message pass msg = u"Unknown string format: {!r}".format(orig) raise ValueError(msg), None, sys.exc_info()[2] else: try: return cls.from_datetime(date) except ValueError: new_str = cls.remove_timezone(orig) if new_str is not None: return cls.from_str(new_str) else: raise
0.001277
def install_auth_basic_user_file(self, site=None): """ Installs users for basic httpd auth. """ r = self.local_renderer hostname = self.current_hostname target_sites = self.genv.available_sites_by_host.get(hostname, None) for _site, site_data in self.iter_sites(site=site, setter=self.set_site_specifics): if self.verbose: print('~'*80, file=sys.stderr) print('Site:', _site, file=sys.stderr) print('env.apache_auth_basic:', r.env.auth_basic, file=sys.stderr) # Only load site configurations that are allowed for this host. if target_sites is not None: assert isinstance(target_sites, (tuple, list)) if _site not in target_sites: continue if not r.env.auth_basic: continue assert r.env.auth_basic_users, 'No apache auth users specified.' for username, password in r.env.auth_basic_users: r.env.auth_basic_username = username r.env.auth_basic_password = password r.env.apache_site = _site r.env.fn = r.format(r.env.auth_basic_authuserfile) if self.files.exists(r.env.fn): r.sudo('htpasswd -b {fn} {auth_basic_username} {auth_basic_password}') else: r.sudo('htpasswd -b -c {fn} {auth_basic_username} {auth_basic_password}')
0.003981
def _download_urls(url_list, storage_folder, overwrite_existing, meta_handler, access_cookie=None): """ Save url from url_list to storage_folder Parameters ---------- url_list: list of str Valid url to download storage_folder: str, valid path Location to store the download, folder will be created if not existing. If the file is already present in the folder, the download depends on the setting in 'overwrite_existing'. overwrite_existing: boolean, optional If False, skip download of file already existing in the storage folder (default). Set to True to replace files. meta_handler: instance of MRIOMetaData Returns ------- The meta_handler is passed back """ for url in url_list: filename = os.path.basename(url) if not overwrite_existing and filename in os.listdir(storage_folder): continue storage_file = os.path.join(storage_folder, filename) # Using requests here - tried with aiohttp but was actually slower # Also don’t use shutil.copyfileobj - corrupts zips from Eora req = requests.post(url, stream=True, cookies=access_cookie) with open(storage_file, 'wb') as lf: for chunk in req.iter_content(1024*5): lf.write(chunk) meta_handler._add_fileio('Downloaded {} to {}'.format(url, filename)) meta_handler.save() return meta_handler
0.000671
def _search_show_id(self, series, year=None): """Search the show id from the `series` and `year`. :param str series: series of the episode. :param year: year of the series, if any. :type year: int :return: the show id, if found. :rtype: int """ # addic7ed doesn't support search with quotes series = series.replace('\'', ' ') # build the params series_year = '%s %d' % (series, year) if year is not None else series params = {'search': series_year, 'Submit': 'Search'} # make the search logger.info('Searching show ids with %r', params) r = self.session.get(self.server_url + 'search.php', params=params, timeout=10) r.raise_for_status() if r.status_code == 304: raise TooManyRequests() soup = ParserBeautifulSoup(r.content, ['lxml', 'html.parser']) # get the suggestion suggestion = soup.select('span.titulo > a[href^="/show/"]') if not suggestion: logger.warning('Show id not found: no suggestion') return None if not sanitize(suggestion[0].i.text.replace('\'', ' ')) == sanitize(series_year): logger.warning('Show id not found: suggestion does not match') return None show_id = int(suggestion[0]['href'][6:]) logger.debug('Found show id %d', show_id) return show_id
0.002789