text
stringlengths
78
104k
score
float64
0
0.18
def set_data_points(self, points): """ Input `points` must be in data coordinates, will be converted to the coordinate space of the object and stored. """ self.points = np.asarray(self.crdmap.data_to(points))
0.008065
def mnist(training): """Downloads MNIST and loads it into numpy arrays.""" if training: data_filename = 'train-images-idx3-ubyte.gz' labels_filename = 'train-labels-idx1-ubyte.gz' count = 60000 else: data_filename = 't10k-images-idx3-ubyte.gz' labels_filename = 't10k-labels-idx1-ubyte.gz' count = 10000 data_filename = maybe_download(MNIST_URL, data_filename) labels_filename = maybe_download(MNIST_URL, labels_filename) return (mnist_extract_data(data_filename, count), mnist_extract_labels(labels_filename, count))
0.012411
def update_fact(self, fact_id, fact, temporary_activity = False): """Update fact values. See add_fact for rules. Update is performed via remove/insert, so the fact_id after update should not be used anymore. Instead use the ID from the fact dict that is returned by this function""" start_time = timegm((fact.start_time or dt.datetime.now()).timetuple()) end_time = fact.end_time or 0 if end_time: end_time = timegm(end_time.timetuple()) new_id = self.conn.UpdateFact(fact_id, fact.serialized_name(), start_time, end_time, temporary_activity) return new_id
0.007491
def _sentence(self, words): """Generate a sentence""" db = self.database # Generate 2 words to start a sentence with seed = random.randint(0, db['word_count'] - 3) seed_word, next_word = db['words'][seed], db['words'][seed + 1] w1, w2 = seed_word, next_word # Generate the complete sentence sentence = [] for i in range(0, words - 1): sentence.append(w1) w1, w2 = w2, random.choice(db['freqs'][(w1, w2)]) sentence.append(w2) # Make the sentence respectable sentence = ' '.join(sentence) # Capitalize the sentence sentence = sentence.capitalize() # Remove additional sentence ending puntuation sentence = sentence.replace('.', '') sentence = sentence.replace('!', '') sentence = sentence.replace('?', '') sentence = sentence.replace(':', '') # Remove quote tags sentence = sentence.replace('.', '') sentence = sentence.replace('!', '') sentence = sentence.replace('?', '') sentence = sentence.replace(':', '') sentence = sentence.replace('"', '') # If the last character is not an alphanumeric remove it sentence = re.sub('[^a-zA-Z0-9]$', '', sentence) # Remove excess space sentence = re.sub('\s+', ' ', sentence) # Add a full stop sentence += '.' return sentence
0.002065
def build(args): """Build the documentation for the projects specified in the CLI. It will do 4 different things for each project the user asks for (see flags): 1. Update mkdocs's index.md file with links to project documentations 2. Build these documentations 3. Update the documentations' index.html file to add a link back to the home of all documentations 4. Build mkdoc's home documentation Args: args (ArgumentParser): parsed args from an ArgumentParser """ # Proceed? go = False # Current working directory dir_path = Path().resolve() # Set of all available projects in the dir # Projects must contain a PROJECT_MARKER file. all_projects = { m for m in os.listdir(dir_path) if os.path.isdir(m) and "source" in os.listdir(dir_path / m) } if args.all and args.projects: print( "{}Can't use both the 'projects' and 'all' flags{}".format( utils.colors.FAIL, utils.colors.ENDC ) ) return if not args.all and not args.projects: print( "{}You have to specify at least one project (or all){}".format( utils.colors.FAIL, utils.colors.ENDC ) ) return if args.force: go = True projects = ( all_projects if args.all else all_projects.intersection(set(args.projects)) ) elif args.projects: s = "You are about to build the docs for: " s += "\n- {}\nContinue? (y/n) ".format("\n- ".join(args.projects)) if "y" in input(s): go = True projects = all_projects.intersection(set(args.projects)) elif args.all: s = "You're about to build the docs for ALL projects." s += "\nContinue? (y/n) " if "y" in input(s): go = True projects = all_projects if go: # Update projects links listed_projects = utils.get_listed_projects() # Don't update projects which are not listed in the Documentation's # Home if the -o flag was used if args.only_index: projects = listed_projects.intersection(projects) print("projects", projects) for project_to_build in projects: # Re-build documentation warnings.warn("[sphinx]") if args.verbose: os.system( "cd {} && make clean && make html".format( dir_path / project_to_build ) ) else: os.system( "cd {} && make clean && make html > /dev/null".format( dir_path / project_to_build ) ) # Add link to Documentation's Home utils.overwrite_view_source(project_to_build, dir_path) if args.verbose: print("\n>>>>>> Done {}\n\n\n".format(project_to_build)) # Build Documentation if args.verbose: os.system("mkdocs build") print("\n\n>>>>>> Build Complete.") else: warnings.warn("[mkdocs]") os.system("mkdocs build > /dev/null") if args.offline: utils.make_offline()
0.000596
def detach_screens(self, screen_ids): """Unplugs monitors from the virtual graphics card. in screen_ids of type int """ if not isinstance(screen_ids, list): raise TypeError("screen_ids can only be an instance of type list") for a in screen_ids[:10]: if not isinstance(a, baseinteger): raise TypeError( "array can only contain objects of type baseinteger") self._call("detachScreens", in_p=[screen_ids])
0.005587
def remove(self, elem): """Removes _elem_ from the collection, will raise a KeyError is _elem_ is missing # Parameters _elem_ : `object` > The object to be removed """ try: return self._collection.remove(elem) except KeyError: raise KeyError("'{}' was not found in the {}: '{}'.".format(elem, type(self).__name__, self)) from None
0.009685
def _write_branch_and_tag_to_meta_yaml(self): """ Write branch and tag to meta.yaml by editing in place """ ## set the branch to pull source from with open(self.meta_yaml.replace("meta", "template"), 'r') as infile: dat = infile.read() newdat = dat.format(**{'tag': self.tag, 'branch': self.branch}) with open(self.meta_yaml, 'w') as outfile: outfile.write(newdat)
0.006682
def framers(self): """ Reset the framers in use for the connection to be a tendril.IdentityFramer. The framer states will be reset next time their respective framer is used. """ f = self.default_framer() self._send_framer = f self._recv_framer = f
0.00639
def get_group(self, t, i): """Get group number.""" try: value = [] if t in _DIGIT and t != '0': value.append(t) t = next(i) if t in _DIGIT: value.append(t) else: i.rewind(1) except StopIteration: pass return ''.join(value) if value else None
0.004831
def to_cnf(self): """Return an equivalent expression in conjunctive normal form.""" node = self.node.to_cnf() if node is self.node: return self else: return _expr(node)
0.008929
def Disconnect(self, reason=None, isDead=True): """Close the connection with the remote node client.""" self.disconnecting = True self.expect_verack_next = False if reason: logger.debug(f"Disconnecting with reason: {reason}") self.stop_block_loop() self.stop_header_loop() self.stop_peerinfo_loop() if isDead: self.leader.AddDeadAddress(self.address, reason=f"{self.prefix} Forced disconnect by us") self.leader.forced_disconnect_by_us += 1 self.disconnect_deferred = defer.Deferred() self.disconnect_deferred.debug = True # force disconnection without waiting on the other side # calling later to give func caller time to add callbacks to the deferred reactor.callLater(1, self.transport.abortConnection) return self.disconnect_deferred
0.00453
def nFreeParams(self): """Count the number of free parameters in the active model.""" nF = 0 pars = self.params() for par in pars: if par.isFree(): nF += 1 return nF
0.008584
def splitFile(inputFileName, linePerFile, outPrefix): """Split a file. :param inputFileName: the name of the input file. :param linePerFile: the number of line per file (after splitting). :param outPrefix: the prefix of the output files. :type inputFileName: str :type linePerFile: int :type outPrefix: str :returns: the number of created temporary files. Splits a file (``inputFileName`` into multiple files containing at most ``linePerFile`` lines. """ nbTmpFile = 1 nbLine = 0 tmpFile = None try: with open(inputFileName, "r") as inputFile: for line in inputFile: row = line.rstrip("\r\n").split(" ") nbLine += 1 if tmpFile is None: try: tmpFile = open( outPrefix + "_tmp.list%d" % nbTmpFile, "w", ) except IOError: msg = "tmp.list%d: can't write file" % nbTmpFile raise ProgramError(msg) print >>tmpFile, " ".join(row[:2]) if nbLine == linePerFile: nbLine = 0 nbTmpFile += 1 tmpFile.close() try: tmpFile = open( outPrefix + "_tmp.list%d" % nbTmpFile, "w", ) except IOError: msg = "tmp.list%d: can't write file" % nbTmpFile raise ProgramError(msg) tmpFile.close() # Check if the number of line is zero (hence the last file is empty) if nbLine == 0: # We delete the last file file_name = outPrefix + "_tmp.list{}".format(nbTmpFile) if os.path.isfile(file_name): os.remove(file_name) nbTmpFile -= 1 except IOError: msg = "%s: no such file" % inputFileName raise ProgramError(msg) return nbTmpFile
0.000471
def get_template(name): """ Look for 'name' in the vr.runners.templates folder. Return its contents. >>> import six >>> tmpl = get_template('base_image.lxc') >>> isinstance(tmpl, six.string_types) True """ path = 'templates/' + name b_stream = pkg_resources.resource_stream('vr.imager', path) return b_stream.read().decode('utf-8')
0.002681
def _trna_annotation(data): """ use tDRmapper to quantify tRNAs """ trna_ref = op.join(dd.get_srna_trna_file(data)) name = dd.get_sample_name(data) work_dir = utils.safe_makedir(os.path.join(dd.get_work_dir(data), "trna", name)) in_file = op.basename(data["clean_fastq"]) tdrmapper = os.path.join(os.path.dirname(sys.executable), "TdrMappingScripts.pl") perl_export = utils.get_perl_exports() if not file_exists(trna_ref) or not file_exists(tdrmapper): logger.info("There is no tRNA annotation to run TdrMapper.") return work_dir out_file = op.join(work_dir, in_file + ".hq_cs.mapped") if not file_exists(out_file): with tx_tmpdir(data) as txdir: with utils.chdir(txdir): utils.symlink_plus(data["clean_fastq"], op.join(txdir, in_file)) cmd = ("{perl_export} && perl {tdrmapper} {trna_ref} {in_file}").format(**locals()) do.run(cmd, "tRNA for %s" % name) for filename in glob.glob("*mapped*"): shutil.move(filename, work_dir) return work_dir
0.004492
def read_dir(self, path): """ Reads the given path into the tree """ self.tree = {} self.file_count = 0 self.path = path for root, _, filelist in os.walk(path): rel = root[len(path):].lstrip('/\\') # empty rel, means file is in root dir if not rel: rel = ' ' for filename in filelist: filename = filename.split('.') if len(filename) <= 1: raise RuntimeError("Files without an extension are not supported: {0}".format( repr(os.path.join(root, '.'.join(filename))), )) ext = filename[-1] filename = '.'.join(filename[:-1]) if ext not in self.tree: self.tree[ext] = {} if rel not in self.tree[ext]: self.tree[ext][rel] = [] self.tree[ext][rel].append(filename) self.file_count += 1 self.tree_length = self.calculate_tree_length()
0.003549
def init_gl(self): """ Perform the magic incantations to create an OpenGL scene using pyglet. """ # default background color is white-ish background = [.99, .99, .99, 1.0] # if user passed a background color use it if 'background' in self.kwargs: try: # convert to (4,) uint8 RGBA background = to_rgba(self.kwargs['background']) # convert to 0.0 - 1.0 float background = background.astype(np.float64) / 255.0 except BaseException: log.error('background color set but wrong!', exc_info=True) self._gl_set_background(background) self._gl_enable_depth(self.scene) self._gl_enable_color_material() self._gl_enable_blending() self._gl_enable_smooth_lines() self._gl_enable_lighting(self.scene)
0.002146
def convert_descriptor(self, descriptor): """Convert descriptor to BigQuery """ # Fields fields = [] fallbacks = [] schema = tableschema.Schema(descriptor) for index, field in enumerate(schema.fields): converted_type = self.convert_type(field.type) if not converted_type: converted_type = 'STRING' fallbacks.append(index) mode = 'NULLABLE' if field.required: mode = 'REQUIRED' fields.append({ 'name': _slugify_field_name(field.name), 'type': converted_type, 'mode': mode, }) # Descriptor converted_descriptor = { 'fields': fields, } return (converted_descriptor, fallbacks)
0.00237
def from_record(self, record): """ Constructs and returns a sequenced item object, from given ORM object. """ kwargs = self.get_field_kwargs(record) return self.sequenced_item_class(**kwargs)
0.008658
def get_result_xml(result): """ Formats a scan result to XML format. Arguments: result (dict): Dictionary with a scan result. Return: Result as xml element object. """ result_xml = Element('result') for name, value in [('name', result['name']), ('type', ResultType.get_str(result['type'])), ('severity', result['severity']), ('host', result['host']), ('test_id', result['test_id']), ('port', result['port']), ('qod', result['qod'])]: result_xml.set(name, str(value)) result_xml.text = result['value'] return result_xml
0.001389
def _apply_updates(self, gradients): """Apply AdaGrad update to parameters. Parameters ---------- gradients Returns ------- """ if not hasattr(self, 'optimizers'): self.optimizers = \ {obj: AdaGradOptimizer(self.learning_rate) for obj in ['W', 'C', 'bw', 'bc']} self.W -= self.optimizers['W'].get_step(gradients['W']) self.C -= self.optimizers['C'].get_step(gradients['C']) self.bw -= self.optimizers['bw'].get_step(gradients['bw']) self.bc -= self.optimizers['bc'].get_step(gradients['bc'])
0.00315
def route(self, uri, *args, **kwargs): """Create a plugin route from a decorated function. :param uri: endpoint at which the route will be accessible. :type uri: str :param args: captures all of the positional arguments passed in :type args: tuple(Any) :param kwargs: captures the keyword arguments passed in :type kwargs: dict(Any) :return: The exception function to use as the decorator :rtype: fn """ if len(args) == 0 and callable(uri): # pragma: no cover raise RuntimeError("Cannot use the @route decorator without " "arguments.") kwargs.setdefault('methods', frozenset({'GET'})) kwargs.setdefault('host', None) kwargs.setdefault('strict_slashes', False) kwargs.setdefault('stream', False) kwargs.setdefault('name', None) def wrapper(handler_f): self._routes.append(FutureRoute(handler_f, uri, args, kwargs)) return handler_f return wrapper
0.00189
def deploy_ext(self): ''' Deploy the ext_mods tarball ''' if self.mods.get('file'): self.shell.send( self.mods['file'], os.path.join(self.thin_dir, 'salt-ext_mods.tgz'), ) return True
0.007168
def remove_colormap(self, removal_type): """Remove a palette (colormap); if no colormap, returns a copy of this image removal_type - any of lept.REMOVE_CMAP_* """ with _LeptonicaErrorTrap(): return Pix( lept.pixRemoveColormapGeneral(self._cdata, removal_type, lept.L_COPY) )
0.008333
def get_package_for_module(module): """Get package name for a module. Helper calculates the package name of a module. Args: module: Module to get name for. If module is a string, try to find module in sys.modules. Returns: If module contains 'package' attribute, uses that as package name. Else, if module is not the '__main__' module, the module __name__. Else, the base name of the module file name. Else None. """ if isinstance(module, six.string_types): try: module = sys.modules[module] except KeyError: return None try: return six.text_type(module.package) except AttributeError: if module.__name__ == '__main__': try: file_name = module.__file__ except AttributeError: pass else: base_name = os.path.basename(file_name) split_name = os.path.splitext(base_name) if len(split_name) == 1: return six.text_type(base_name) return u'.'.join(split_name[:-1]) return six.text_type(module.__name__)
0.000845
def _none_subst(self, *args): """ Helper function to insert full ranges for |None| for X_iter methods. Custom method, specifically tailored, taking in the arguments from an X_iter method and performing the replacement of |None| after error-checking the arguments for a max of one |None| value, and ensuring that if a |None| is present, no other non-|str| iterables are present. Parameters ---------- args : 3-5 arguments of |int| or iterable |int|, or |None| First argument is always the indices for the geometries; all following are for the atoms in sequence as required for the particular :samp:`{x}_iter` method Returns ------- arglist : 3-5 arguments, matching input params Argument list, with |None| substituted if validly present Raises ------ ~exceptions.ValueError : If more than one |None| argument is present ~exceptions.ValueError : If an arg is non-|str| iterable when one |None| is present """ # Imports import numpy as np # Initialize argument list return value, and as None not found arglist = [a for a in args] none_found = False # Check for None values none_vals = list(map(lambda e: isinstance(e, type(None)), arglist)) # Error if more than one None; handle if exactly one; pass through if # none. if np.count_nonzero(none_vals) > 1: raise ValueError( "Multiple 'None' values [indices {0}] not supported" .format(tuple(np.nonzero(none_vals)[0]))) elif np.count_nonzero(none_vals) == 1: # Must be no iterables that are not strings. Thus, an element-wise # test for iterability and an element-wise test for stringiness # must give matching arrays if not all(np.equal(list(map(np.iterable, arglist)), list(map(lambda e: isinstance(e, str), arglist)))): raise ValueError( "'None' as parameter invalid with non-str iterables") ## end if # Parameters okay; replace the None with the appropriate range() none_found = True none_loc = np.nonzero(none_vals)[0][0] arglist[none_loc] = \ range(self.num_geoms if none_loc == 0 else self.num_atoms) ## end if # Return the arguments list and the none-found value return arglist
0.003089
def collect_segment_partitions(self): """Return a dict of segments partitions, keyed on the name of the parent partition """ from collections import defaultdict # Group the segments by their parent partition name, which is the # same name, but without the segment. partitions = defaultdict(set) for p in self.dataset.partitions: if p.type == p.TYPE.SEGMENT: name = p.identity.name name.segment = None partitions[name].add(p) return partitions
0.005282
def _save_notebook(self, os_path, nb): """Save a notebook to an os_path.""" with self.atomic_writing(os_path, encoding='utf-8') as f: if ftdetect(os_path) == 'notebook': nbformat.write(nb, f, version=nbformat.NO_CONVERT) elif ftdetect(os_path) == 'markdown': nbjson = nbformat.writes(nb, version=nbformat.NO_CONVERT) markdown = convert(nbjson, informat='notebook', outformat='markdown', strip_outputs=self.strip_outputs) f.write(markdown)
0.003091
def schema_to_json(self, schema_list, destination): """Takes a list of schema field objects. Serializes the list of schema field objects as json to a file. Destination is a file path or a file object. """ json_schema_list = [f.to_api_repr() for f in schema_list] if isinstance(destination, io.IOBase): return self._schema_to_json_file_object(json_schema_list, destination) with open(destination, mode="w") as file_obj: return self._schema_to_json_file_object(json_schema_list, file_obj)
0.005263
def get_client_by_appid(self, authorizer_appid): """ 通过 authorizer_appid 获取 Client 对象 :params authorizer_appid: 授权公众号appid """ access_token_key = '{0}_access_token'.format(authorizer_appid) refresh_token_key = '{0}_refresh_token'.format(authorizer_appid) access_token = self.session.get(access_token_key) refresh_token = self.session.get(refresh_token_key) assert refresh_token if not access_token: ret = self.refresh_authorizer_token( authorizer_appid, refresh_token ) access_token = ret['authorizer_access_token'] refresh_token = ret['authorizer_refresh_token'] access_token_key = '{0}_access_token'.format(authorizer_appid) expires_in = 7200 if 'expires_in' in ret: expires_in = ret['expires_in'] self.session.set(access_token_key, access_token, expires_in) return WeChatComponentClient( authorizer_appid, self, session=self.session )
0.001792
def expr_tokenizer(expr, operator_tokens): """expr_tokenizer yields the components ("tokens") forming the expression. Tokens are split by whitespace which is never considered a token in its own right. operator_tokens should likely include "(" and ")" and strictly the expression. This means that the word 'test' will be split into ['t', 'e', 'st'] if 'e' is an operator. :param expr: The expression to break into tokens. :param operator_tokens: A list of operators to extract as tokens. """ operator_tokens.sort(key=len, reverse=True) for m in re.finditer( r"""(\s+) | # Whitespace ({0}) | # Operators (.+?)(?={0}|\s|$) # Patterns """.format("|".join(re.escape(op) for op in operator_tokens)), expr, re.X ): token = m.group(2) or m.group(3) if token: yield token
0.001098
def read(self, subpath=None): """ Returns the UTF-8 Readme content. Raises ReadmeNotFoundError if subpath is specified since subpaths are not supported for text readers. """ # Lazily read STDIN if self.text is None and subpath is None: self.text = self.read_stdin() return super(StdinReader, self).read(subpath)
0.005141
def palette(hues, saturations, values): """Generate a palette. Parameters ---------- hues : `int` Number of hues. saturations : `int` Number of saturations. values : `int` Number of values. Raises ------ ValueError If `hues` * `saturations` * `values` > 256 or min(`hues`, `saturations`, `values`) < 1. Returns ------- `list` of `int` Palette for `PIL.Image.putpalette`. """ size = hues * saturations * values if size > 256: raise ValueError('palette size > 256: {0}'.format(size)) if min(hues, saturations, values) < 1: raise ValueError('invalid palette size: {0} {1} {2}' .format(hues, saturations, values)) ret = [] if hues == 1 and saturations == 1: if values == 1: size = 0 else: nvalues = values - 1 for value in range(values): value1 = value * 255 // nvalues ret.extend((value1, value1, value1)) else: for saturation in range(1, saturations + 1): saturation1 = saturation / saturations for hue in range(1, hues + 1): hue1 = hue / hues for value in range(1, values + 1): value1 = value / values ret.extend(floor(x * 255) for x in hsv_to_rgb(hue1, saturation1, value1)) ret.extend(0 for _ in range((256 - size) * 3)) return ret
0.000654
def _inertia_from_labels(X, centers, labels): """Compute inertia with cosine distance using known labels. """ n_examples, n_features = X.shape inertia = np.zeros((n_examples,)) for ee in range(n_examples): inertia[ee] = 1 - X[ee, :].dot(centers[int(labels[ee]), :].T) return np.sum(inertia)
0.003096
def unsubscribe(self, jid, node=None, *, subscription_jid=None, subid=None): """ Unsubscribe from a node. :param jid: Address of the PubSub service. :type jid: :class:`aioxmpp.JID` :param node: Name of the PubSub node to unsubscribe from. :type node: :class:`str` :param subscription_jid: The address to subscribe from the service. :type subscription_jid: :class:`aioxmpp.JID` :param subid: Unique ID of the subscription to remove. :type subid: :class:`str` :raises aioxmpp.errors.XMPPError: as returned by the service By default, the unsubscribe request will be for the bare JID of the client. It can be specified explicitly using the `subscription_jid` argument. If available, the `subid` should also be specified. If an error occurs, the corresponding :class:`~.errors.XMPPError` is raised. """ subscription_jid = subscription_jid or self.client.local_jid.bare() iq = aioxmpp.stanza.IQ(to=jid, type_=aioxmpp.structs.IQType.SET) iq.payload = pubsub_xso.Request( pubsub_xso.Unsubscribe(subscription_jid, node=node, subid=subid) ) yield from self.client.send(iq)
0.003065
def save(self, inplace=True): """ Saves modification to the api server. """ modified = self._modified_data() if bool(modified): new_data = self.permissions.copy() new_data.update(modified['permissions']) data = { 'permissions': new_data } url = six.text_type(self.href) self._api.patch(url=url, data=data, append_base=False) else: raise ResourceNotModified()
0.003953
async def fetch_batch(self, request): """Fetches a specific batch from the validator, specified by id. Request: path: - batch_id: The 128-character id of the batch to be fetched Response: data: A JSON object with the data from the fully expanded Batch link: The link to this exact query """ error_traps = [error_handlers.BatchNotFoundTrap] batch_id = request.match_info.get('batch_id', '') self._validate_id(batch_id) response = await self._query_validator( Message.CLIENT_BATCH_GET_REQUEST, client_batch_pb2.ClientBatchGetResponse, client_batch_pb2.ClientBatchGetRequest(batch_id=batch_id), error_traps) return self._wrap_response( request, data=self._expand_batch(response['batch']), metadata=self._get_metadata(request, response))
0.002114
def sample(self, batch_size, batch_idxs=None): """Return a randomized batch of experiences # Argument batch_size (int): Size of the all batch batch_idxs (int): Indexes to extract # Returns A list of experiences randomly selected """ # It is not possible to tell whether the first state in the memory is terminal, because it # would require access to the "terminal" flag associated to the previous state. As a result # we will never return this first state (only using `self.terminals[0]` to know whether the # second state is terminal). # In addition we need enough entries to fill the desired window length. assert self.nb_entries >= self.window_length + 2, 'not enough entries in the memory' if batch_idxs is None: # Draw random indexes such that we have enough entries before each index to fill the # desired window length. batch_idxs = sample_batch_indexes( self.window_length, self.nb_entries - 1, size=batch_size) batch_idxs = np.array(batch_idxs) + 1 assert np.min(batch_idxs) >= self.window_length + 1 assert np.max(batch_idxs) < self.nb_entries assert len(batch_idxs) == batch_size # Create experiences experiences = [] for idx in batch_idxs: terminal0 = self.terminals[idx - 2] while terminal0: # Skip this transition because the environment was reset here. Select a new, random # transition and use this instead. This may cause the batch to contain the same # transition twice. idx = sample_batch_indexes(self.window_length + 1, self.nb_entries, size=1)[0] terminal0 = self.terminals[idx - 2] assert self.window_length + 1 <= idx < self.nb_entries # This code is slightly complicated by the fact that subsequent observations might be # from different episodes. We ensure that an experience never spans multiple episodes. # This is probably not that important in practice but it seems cleaner. state0 = [self.observations[idx - 1]] for offset in range(0, self.window_length - 1): current_idx = idx - 2 - offset assert current_idx >= 1 current_terminal = self.terminals[current_idx - 1] if current_terminal and not self.ignore_episode_boundaries: # The previously handled observation was terminal, don't add the current one. # Otherwise we would leak into a different episode. break state0.insert(0, self.observations[current_idx]) while len(state0) < self.window_length: state0.insert(0, zeroed_observation(state0[0])) action = self.actions[idx - 1] reward = self.rewards[idx - 1] terminal1 = self.terminals[idx - 1] # Okay, now we need to create the follow-up state. This is state0 shifted on timestep # to the right. Again, we need to be careful to not include an observation from the next # episode if the last state is terminal. state1 = [np.copy(x) for x in state0[1:]] state1.append(self.observations[idx]) assert len(state0) == self.window_length assert len(state1) == len(state0) experiences.append(Experience(state0=state0, action=action, reward=reward, state1=state1, terminal1=terminal1)) assert len(experiences) == batch_size return experiences
0.004548
def create_pool(self, name, method='ROUND_ROBIN'): ''' Create a pool on the F5 load balancer ''' lbmethods = self.bigIP.LocalLB.Pool.typefactory.create( 'LocalLB.LBMethod' ) supported_method = [i[0] for i in lbmethods if ( i[0].split('_', 2)[-1] == method.upper() )] if supported_method and not self.check_pool(name): try: self.bigIP.LocalLB.Pool.create(pool_names=[name], lb_methods=[supported_method], members=[[]]) except Exception as e: raise Exception( 'Unable to create `{0}` pool\n\n{1}'.format(name, e) ) else: raise Exception('Unsupported method') return True
0.002294
def __rename_path(self, source, target): """ Renames given source with given target name. :param source: Source file. :type source: unicode :param target: Target file. :type target: unicode """ if not foundations.common.path_exists(source): return parent_directory = os.path.dirname(source) is_path_registered = self.__engine.file_system_events_manager.is_path_registered(parent_directory) is_path_registered and self.__engine.file_system_events_manager.unregister_path(parent_directory) os.rename(source, target) is_path_registered and self.__engine.file_system_events_manager.register_path(parent_directory)
0.006868
def _parse_transpile_args(circuits, backend, basis_gates, coupling_map, backend_properties, initial_layout, seed_transpiler, optimization_level, pass_manager): """Resolve the various types of args allowed to the transpile() function through duck typing, overriding args, etc. Refer to the transpile() docstring for details on what types of inputs are allowed. Here the args are resolved by converting them to standard instances, and prioritizing them in case a transpile option is passed through multiple args (explicitly setting an arg has more priority than the arg set by backend) Returns: list[TranspileConfig]: a transpile config for each circuit, which is a standardized object that configures the transpiler and determines the pass manager to use. """ # Each arg could be single or a list. If list, it must be the same size as # number of circuits. If single, duplicate to create a list of that size. num_circuits = len(circuits) basis_gates = _parse_basis_gates(basis_gates, backend, circuits) coupling_map = _parse_coupling_map(coupling_map, backend, num_circuits) backend_properties = _parse_backend_properties(backend_properties, backend, num_circuits) initial_layout = _parse_initial_layout(initial_layout, circuits) seed_transpiler = _parse_seed_transpiler(seed_transpiler, num_circuits) optimization_level = _parse_optimization_level(optimization_level, num_circuits) pass_manager = _parse_pass_manager(pass_manager, num_circuits) transpile_configs = [] for args in zip(basis_gates, coupling_map, backend_properties, initial_layout, seed_transpiler, optimization_level, pass_manager): transpile_config = TranspileConfig(basis_gates=args[0], coupling_map=args[1], backend_properties=args[2], initial_layout=args[3], seed_transpiler=args[4], optimization_level=args[5], pass_manager=args[6]) transpile_configs.append(transpile_config) return transpile_configs
0.004241
def _set_ipv6_address(self, v, load=False): """ Setter method for ipv6_address, mapped from YANG variable /interface/fortygigabitethernet/ipv6/ipv6_config/address/ipv6_address (list) If this variable is read-only (config: false) in the source YANG file, then _set_ipv6_address is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_ipv6_address() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("address",ipv6_address.ipv6_address, yang_name="ipv6-address", rest_name="ipv6-address", parent=self, is_container='list', user_ordered=True, path_helper=self._path_helper, yang_keys='address', extensions={u'tailf-common': {u'info': u'Set the IP address of an interface', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-compact-syntax': None, u'cli-drop-node-name': None, u'cli-no-match-completion': None, u'callpoint': u'phy-intf-ipv6-addr-cp'}}), is_container='list', yang_name="ipv6-address", rest_name="ipv6-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the IP address of an interface', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-compact-syntax': None, u'cli-drop-node-name': None, u'cli-no-match-completion': None, u'callpoint': u'phy-intf-ipv6-addr-cp'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-config', defining_module='brocade-ipv6-config', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """ipv6_address must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("address",ipv6_address.ipv6_address, yang_name="ipv6-address", rest_name="ipv6-address", parent=self, is_container='list', user_ordered=True, path_helper=self._path_helper, yang_keys='address', extensions={u'tailf-common': {u'info': u'Set the IP address of an interface', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-compact-syntax': None, u'cli-drop-node-name': None, u'cli-no-match-completion': None, u'callpoint': u'phy-intf-ipv6-addr-cp'}}), is_container='list', yang_name="ipv6-address", rest_name="ipv6-address", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Set the IP address of an interface', u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'cli-compact-syntax': None, u'cli-drop-node-name': None, u'cli-no-match-completion': None, u'callpoint': u'phy-intf-ipv6-addr-cp'}}, namespace='urn:brocade.com:mgmt:brocade-ipv6-config', defining_module='brocade-ipv6-config', yang_type='list', is_config=True)""", }) self.__ipv6_address = t if hasattr(self, '_set'): self._set()
0.003726
def memoize(obj): """ Memoize objects to trade memory for execution speed Use a limited size cache to store the value, which takes into account The calling args and kwargs See https://wiki.python.org/moin/PythonDecoratorLibrary#Memoize """ cache = obj.cache = {} @functools.wraps(obj) def memoizer(*args, **kwargs): key = str(args) + str(kwargs) if key not in cache: cache[key] = obj(*args, **kwargs) # only keep the most recent 100 entries if len(cache) > 100: cache.popitem(last=False) return cache[key] return memoizer
0.001543
def add_prefix(self, args): """ Add a prefix. Valid keys in the `args`-struct: * `auth` [struct] Authentication options passed to the :class:`AuthFactory`. * `attr` [struct] Attributes to set on the new prefix. * `args` [srgs] Arguments for addition of prefix, such as what pool or prefix it should be allocated from. Returns ID of created prefix. """ try: res = self.nip.add_prefix(args.get('auth'), args.get('attr'), args.get('args')) # mangle result res = _mangle_prefix(res) return res except (AuthError, NipapError) as exc: self.logger.debug(unicode(exc)) raise Fault(exc.error_code, unicode(exc))
0.003601
def entrance_angled(angle, method='Idelchik'): r'''Returns loss coefficient for a sharp, angled entrance to a pipe flush with the wall of a reservoir. First published in [2]_, it has been recommended in [3]_ as well as in [1]_. .. math:: K = 0.57 + 0.30\cos(\theta) + 0.20\cos(\theta)^2 .. figure:: fittings/entrance_mounted_at_an_angle.png :scale: 30 % :alt: entrace mounted at an angle; after [1]_ Parameters ---------- angle : float Angle of inclination (90° = straight, 0° = parallel to pipe wall), [degrees] method : str, optional The method to use; only 'Idelchik' is supported Returns ------- K : float Loss coefficient [-] Notes ----- Not reliable for angles under 20 degrees. Loss coefficient is the same for an upward or downward angled inlet. Examples -------- >>> entrance_angled(30) 0.9798076211353315 References ---------- .. [1] Rennels, Donald C., and Hobart M. Hudson. Pipe Flow: A Practical and Comprehensive Guide. 1st edition. Hoboken, N.J: Wiley, 2012. .. [2] Idel’chik, I. E. Handbook of Hydraulic Resistance: Coefficients of Local Resistance and of Friction (Spravochnik Po Gidravlicheskim Soprotivleniyam, Koeffitsienty Mestnykh Soprotivlenii i Soprotivleniya Treniya). National technical information Service, 1966. .. [3] Blevins, Robert D. Applied Fluid Dynamics Handbook. New York, N.Y.: Van Nostrand Reinhold Co., 1984. ''' if method is None: method = 'Idelchik' if method == 'Idelchik': cos_term = cos(radians(angle)) return 0.57 + cos_term*(0.2*cos_term + 0.3) else: raise ValueError('Specified method not recognized; methods are %s' %(entrance_angled_methods))
0.003755
def pave_event_space(fn=pair): """ :return: a pair producer that ensures the seeder and delegator share the same event space. """ global _event_space event_space = next(_event_space) @_ensure_seeders_list def p(seeders, delegator_factory, *args, **kwargs): return fn(seeders + [per_event_source_id(event_space)], delegator_factory, *args, event_space=event_space, **kwargs) return p
0.004454
def _linearEOM(y,t,pot): """ NAME: linearEOM PURPOSE: the one-dimensional equation-of-motion INPUT: y - current phase-space position t - current time pot - (list of) linearPotential instance(s) OUTPUT: dy/dt HISTORY: 2010-07-13 - Bovy (NYU) """ return [y[1],_evaluatelinearForces(pot,y[0],t=t)]
0.016
def _output_to_list(cmdoutput): ''' Convert rabbitmqctl output to a list of strings (assuming whitespace-delimited output). Ignores output lines that shouldn't be parsed, like warnings. cmdoutput: string output of rabbitmqctl commands ''' return [item for line in cmdoutput.splitlines() if _safe_output(line) for item in line.split()]
0.00838
def get_identifiability_dataframe(self,singular_value=None,precondition=False): """get the parameter identifiability as a pandas dataframe Parameters ---------- singular_value : int the singular spectrum truncation point. Defaults to minimum of non-zero-weighted observations and adjustable parameters precondition : bool flag to use the preconditioned hessian (xtqt + sigma_theta^-1). Default is False Returns ------- pandas.DataFrame : pandas.DataFrame A pandas dataframe of the V_1**2 Matrix with the identifiability in the column labeled "ident" """ if singular_value is None: singular_value = int(min(self.pst.nnz_obs, self.pst.npar_adj)) #v1_df = self.qhalfx.v[:, :singular_value].to_dataframe() ** 2 xtqx = self.xtqx if precondition: xtqx = xtqx + self.parcov.inv #v1_df = self.xtqx.v[:, :singular_value].to_dataframe() ** 2 v1_df = xtqx.v[:, :singular_value].to_dataframe() ** 2 v1_df["ident"] = v1_df.sum(axis=1) return v1_df
0.005133
def save_list(lst, path): """ Save items from list to the file. """ with open(path, 'wb') as out: lines = [] for item in lst: if isinstance(item, (six.text_type, six.binary_type)): lines.append(make_str(item)) else: lines.append(make_str(json.dumps(item))) out.write(b'\n'.join(lines) + b'\n')
0.002564
def bg_compensate(img, sigma, splinepoints, scale): '''Reads file, subtracts background. Returns [compensated image, background].''' from PIL import Image import pylab from matplotlib.image import pil_to_array from centrosome.filter import canny import matplotlib img = Image.open(img) if img.mode=='I;16': # 16-bit image # deal with the endianness explicitly... I'm not sure # why PIL doesn't get this right. imgdata = np.fromstring(img.tostring(),np.uint8) imgdata.shape=(int(imgdata.shape[0]/2),2) imgdata = imgdata.astype(np.uint16) hi,lo = (0,1) if img.tag.prefix == 'MM' else (1,0) imgdata = imgdata[:,hi]*256 + imgdata[:,lo] img_size = list(img.size) img_size.reverse() new_img = imgdata.reshape(img_size) # The magic # for maximum sample value is 281 if 281 in img.tag: img = new_img.astype(np.float32) / img.tag[281][0] elif np.max(new_img) < 4096: img = new_img.astype(np.float32) / 4095. else: img = new_img.astype(np.float32) / 65535. else: img = pil_to_array(img) pylab.subplot(1,3,1).imshow(img, cmap=matplotlib.cm.Greys_r) pylab.show() if len(img.shape)>2: raise ValueError('Image must be grayscale') ## Create mask that will fix problem when image has black areas outside of well edges = canny(img, np.ones(img.shape, bool), 2, .1, .3) ci = np.cumsum(edges, 0) cj = np.cumsum(edges, 1) i,j = np.mgrid[0:img.shape[0], 0:img.shape[1]] mask = ci > 0 mask = mask & (cj > 0) mask[1:,:] &= (ci[0:-1,:] < ci[-1,j[0:-1,:]]) mask[:,1:] &= (cj[:,0:-1] < cj[i[:,0:-1],-1]) import time t0 = time.clock() bg = backgr(img, mask, MODE_AUTO, sigma, splinepoints=splinepoints, scale=scale) print("Executed in %f sec" % (time.clock() - t0)) bg[~mask] = img[~mask] pylab.subplot(1,3,2).imshow(img - bg, cmap=matplotlib.cm.Greys_r) pylab.subplot(1,3,3).imshow(bg, cmap=matplotlib.cm.Greys_r) pylab.show()
0.015662
def sentence_matches(self, sentence_text): """Returns true iff the sentence contains this mention's upstream and downstream participants, and if one of the stemmed verbs in the sentence is the same as the stemmed action type.""" has_upstream = False has_downstream = False has_verb = False # Get the first word of the action type and assume this is the verb # (Ex. get depends for depends on) actiontype_words = word_tokenize(self.mention.actiontype) actiontype_verb_stemmed = stem(actiontype_words[0]) words = word_tokenize(sentence_text) if self.string_matches_sans_whitespace(sentence_text.lower(), self.mention.upstream.lower()): has_upstream = True if self.string_matches_sans_whitespace(sentence_text.lower(), self.mention.downstream.lower()): has_downstream = True for word in words: if actiontype_verb_stemmed == stem(word): has_verb = True return has_upstream and has_downstream and has_verb
0.005445
def ul( self, text): """*convert plain-text to MMD unordered list* **Key Arguments:** - ``text`` -- the text to convert to MMD unordered list **Return:** - ``ul`` -- the MMD unordered list **Usage:** To convert text to a MMD unordered list: .. code-block:: python ul = md.ul(" This is a list item ") print ul # OUTPUT: # * This is a list item # """ m = self.reWS.match(text) ul = [] for l in m.group(2).split("\n"): prefix, text, suffix = self._snip_whitespace(l) ul.append("%(prefix)s* %(text)s " % locals()) return ("\n").join(ul) + "\n\n"
0.003745
def _find_parameter(self, name_list, create_missing=False, quiet=False): """ Tries to find and return the parameter of the specified name. The name should be of the form ['branch1','branch2', 'parametername'] Setting create_missing=True means if it doesn't find a branch it will create one. Setting quiet=True will suppress error messages (for checking) """ # make a copy so this isn't destructive to the supplied list s = list(name_list) # if the length is zero, return the root widget if len(s)==0: return self._widget # the first name must be treated differently because it is # the main widget, not a branch r = self._clean_up_name(s.pop(0)) # search for the root name result = self._widget.findItems(r, _g.QtCore.Qt.MatchCaseSensitive | _g.QtCore.Qt.MatchFixedString) # if it pooped and we're not supposed to create it, quit if len(result) == 0 and not create_missing: if not quiet: self.print_message("ERROR: Could not find '"+r+"'") return None # otherwise use the first value elif len(result): x = result[0].param # otherwise, if there are more names in the list, # create the branch and keep going else: x = _g.parametertree.Parameter.create(name=r, type='group', children=[]) self._widget.addParameters(x) # loop over the remaining names, and use a different search method for n in s: # first clean up n = self._clean_up_name(n) # try to search for the name try: x = x.param(n) # name doesn't exist except: # if we're supposed to, create the new branch if create_missing: x = x.addChild(_g.parametertree.Parameter.create(name=n, type='group', children=[])) # otherwise poop out else: if not quiet: self.print_message("ERROR: Could not find '"+n+"' in '"+x.name()+"'") return None # return the last one we found / created. return x
0.006352
def rename(self, old_fieldname, new_fieldname): """ Renames a specific field, and preserves the underlying order. """ if old_fieldname not in self: raise Exception("DataTable does not have field `%s`" % old_fieldname) if not isinstance(new_fieldname, basestring): raise ValueError("DataTable fields must be strings, not `%s`" % type(new_fieldname)) if old_fieldname == new_fieldname: return new_names = self.fields location = new_names.index(old_fieldname) del new_names[location] new_names.insert(location, new_fieldname) self.fields = new_names
0.00274
def cross_state_value(state): """ Compute the state value of the cross solving search. """ centres, edges = state value = 0 for edge in edges: if "U" in edge: if edge["U"] == centres["D"]["D"]: value += 1 else: value += 2 elif "D" in edge: if edge["D"] != centres["D"]["D"]: value += 3 else: value += 1 edgeposes = {} counts = {f: 0 for f in "LFRB"} ngedges = [] for edge in edges: if "U" in edge and edge["U"] == centres["D"]["D"]: k = "".join(edge.facings.keys()).replace("U", "") edgeposes[k] = edge[k] counts[k] += 1 elif "D" in edge and edge["D"] == centres["D"]["D"]: k = "".join(edge.facings.keys()).replace("D", "") edgeposes[k] = edge[k] counts[k] += 1 elif "U" in edge or "D" in edge: ngedges.append(edge) else: for k, s in edge: if s != centres["D"]["D"]: edgeposes[k] = s counts[k] += 1 break for edge in ngedges: idx = "LFRB".index(edge[centres["D"].colour]) for i in [-1, 1]: if "LFRB"[(idx+1)%4] not in edgeposes: k = "".join(edge.facings.keys()).replace("LFRB"[idx], "") edgeposes["LFRB"[(idx+1)%4]] = edge[k] counts["LFRB"[(idx+1)%4]] += 1 break else: k = "".join(edge.facings.keys()).replace("LFRB"[idx], "") if counts["LFRB"[(idx-1)%4]] > counts["LFRB"[(idx+1)%4]]: edgeposes["LFRB"[(idx-1)%4]] = edge[k] else: edgeposes["LFRB"[(idx+1)%4]] = edge[k] relative_pos = {f: centres[f][f] for f in "LFRB"} if len(edgeposes) == 4: for i in range(4): edgeposes["L"], edgeposes["F"], edgeposes["R"], edgeposes["B"] = \ edgeposes["F"], edgeposes["R"], edgeposes["B"], edgeposes["L"] if edgeposes == relative_pos: break else: value += 5 else: value += 3 return value
0.004461
def _add_command(parser, subparser_fn, handler, cell_required=False, cell_prohibited=False): """ Create and initialize a pipeline subcommand handler. """ sub_parser = subparser_fn(parser) sub_parser.set_defaults(func=lambda args, cell: _dispatch_handler( args, cell, sub_parser, handler, cell_required=cell_required, cell_prohibited=cell_prohibited))
0.01039
def get_all_hits(self): """ Return all of a Requester's HITs Despite what search_hits says, it does not return all hits, but instead returns a page of hits. This method will pull the hits from the server 100 at a time, but will yield the results iteratively, so subsequent requests are made on demand. """ page_size = 100 search_rs = self.search_hits(page_size=page_size) total_records = int(search_rs.TotalNumResults) get_page_hits = lambda(page): self.search_hits(page_size=page_size, page_number=page) page_nums = self._get_pages(page_size, total_records) hit_sets = itertools.imap(get_page_hits, page_nums) return itertools.chain.from_iterable(hit_sets)
0.006427
def calculate_betweenness_centality(graph: BELGraph, number_samples: int = CENTRALITY_SAMPLES) -> Counter: """Calculate the betweenness centrality over nodes in the graph. Tries to do it with a certain number of samples, but then tries a complete approach if it fails. """ try: res = nx.betweenness_centrality(graph, k=number_samples) except Exception: res = nx.betweenness_centrality(graph) return Counter(res)
0.006637
def scan(self, cursor='0', match=None, count=10): """Emulate scan.""" def value_function(): return sorted(self.redis.keys()) # sorted list for consistent order return self._common_scan(value_function, cursor=cursor, match=match, count=count)
0.014388
def pretty_print(input_word, anagrams, by_length=False): """Prints the anagram results sorted by score to stdout. Args: input_word: the base word we searched on anagrams: generator of (word, score) from anagrams_in_word by_length: a boolean to declare printing by length instead of score """ scores = {} if by_length: noun = "tiles" for word, score in anagrams: try: scores[len(word)].append("{0} ({1:d})".format(word, score)) except KeyError: scores[len(word)] = ["{0} ({1:d})".format(word, score)] else: noun = "points" for word, score in anagrams: try: scores[score].append(word) except KeyError: scores[score] = [word] print("Anagrams for {0}{1}:".format(input_word, " (score)" * by_length)) if not valid_scrabble_word(input_word): print("{0} is not possible in Scrabble.".format(input_word)) for key, value in sorted(scores.items(), reverse=True): print("{0:d} {1}: {2}".format(key, noun, ", ".join(value)))
0.00088
def is_suspicious( pe ): """ unusual locations of import tables non recognized section names presence of long ASCII strings """ relocations_overlap_entry_point = False sequential_relocs = 0 # If relocation data is found and the entries go over the entry point, and also are very # continuous or point outside section's boundaries => it might imply that an obfuscation # trick is being used or the relocations are corrupt (maybe intentionally) # if hasattr(pe, 'DIRECTORY_ENTRY_BASERELOC'): for base_reloc in pe.DIRECTORY_ENTRY_BASERELOC: last_reloc_rva = None for reloc in base_reloc.entries: if reloc.rva <= pe.OPTIONAL_HEADER.AddressOfEntryPoint <= reloc.rva + 4: relocations_overlap_entry_point = True if last_reloc_rva is not None and last_reloc_rva <= reloc.rva <= last_reloc_rva + 4: sequential_relocs += 1 last_reloc_rva = reloc.rva # If import tables or strings exist (are pointed to) to within the header or in the area # between the PE header and the first section that's supicious # # IMPLEMENT warnings_while_parsing = False # If we have warnings, that's suspicious, some of those will be because of out-of-ordinary # values are found in the PE header fields # Things that are reported in warnings: # (parsing problems, special section characteristics i.e. W & X, uncommon values of fields, # unusual entrypoint, suspicious imports) # warnings = pe.get_warnings() if warnings: warnings_while_parsing # If there are few or none (should come with a standard "density" of strings/kilobytes of data) longer (>8) # ascii sequences that might indicate packed data, (this is similar to the entropy test in some ways but # might help to discard cases of legitimate installer or compressed data) # If compressed data (high entropy) and is_driver => uuuuhhh, nasty pass
0.006893
def _uri_split(uri): """Splits up an URI or IRI.""" scheme, netloc, path, query, fragment = _safe_urlsplit(uri) auth = None port = None if '@' in netloc: auth, netloc = netloc.split('@', 1) if netloc.startswith('['): host, port_part = netloc[1:].split(']', 1) if port_part.startswith(':'): port = port_part[1:] elif ':' in netloc: host, port = netloc.split(':', 1) else: host = netloc return scheme, auth, host, port, path, query, fragment
0.001887
def variantcall_batch_region(items): """CWL entry point: variant call a batch of samples in a block of regions. """ items = [utils.to_single_data(x) for x in items] align_bams = [dd.get_align_bam(x) for x in items] variantcaller = _get_batch_variantcaller(items) region_blocks = list(set([tuple(x.get("region_block")) for x in items if "region_block" in x])) assert len(region_blocks) == 1, region_blocks region_block = region_blocks[0] # Pre-called input variant files if not variantcaller and all(d.get("vrn_file") for d in items): return {"vrn_file_region": None, "region_block": region_block} caller_fn = get_variantcallers()[variantcaller] assoc_files = tz.get_in(("genome_resources", "variation"), items[0], {}) region = _region_to_coords(region_block[0]) chrom, start, end = region region_str = "_".join(str(x) for x in region) batch_name = _get_batch_name(items) out_file = os.path.join(dd.get_work_dir(items[0]), variantcaller, chrom, "%s-%s-block.vcf.gz" % (batch_name, region_str)) utils.safe_makedir(os.path.dirname(out_file)) with pshared.bedtools_tmpdir(items[0]): if variantcaller in SUPPORT_MULTICORE: call_file = caller_fn(align_bams, items, dd.get_ref_file(items[0]), assoc_files, [_region_to_coords(r) for r in region_block], out_file) else: call_file = _run_variantcall_batch_multicore(items, region_block, out_file) return {"vrn_file_region": call_file, "region_block": region_block}
0.003137
def included(self, path, is_dir=False): """Check patterns in order, last match that includes or excludes `path` wins. Return `None` on undecided.""" inclusive = None for pattern in self.patterns: if pattern.is_dir == is_dir and pattern.matches(path): inclusive = pattern.inclusive #print('+++' if inclusive else '---', path, pattern) return inclusive
0.009547
def get_annotations(cls, __fn): """Get the annotations of a given callable.""" if hasattr(__fn, '__func__'): __fn = __fn.__func__ if hasattr(__fn, '__notes__'): return __fn.__notes__ raise AttributeError('{!r} does not have annotations'.format(__fn))
0.006536
def concentration(self, pM=False): """Return the concentration (in Moles) of the particles in the box. """ concentr = (self.num_particles / NA) / self.box.volume_L if pM: concentr *= 1e12 return concentr
0.007843
def context(self): """ An execution context created using :mod:`executor.contexts`. The value of :attr:`context` defaults to a :class:`~executor.contexts.LocalContext` object with the following characteristics: - The working directory of the execution context is set to the value of :attr:`directory`. - The environment variable given by :data:`DIRECTORY_VARIABLE` is set to the value of :attr:`directory`. :raises: :exc:`.MissingPasswordStoreError` when :attr:`directory` doesn't exist. """ # Make sure the directory exists. self.ensure_directory_exists() # Prepare the environment variables. environment = {DIRECTORY_VARIABLE: self.directory} try: # Try to enable the GPG agent in headless sessions. environment.update(get_gpg_variables()) except Exception: # If we failed then let's at least make sure that the # $GPG_TTY environment variable is set correctly. environment.update(GPG_TTY=execute("tty", capture=True, check=False, tty=True, silent=True)) return LocalContext(directory=self.directory, environment=environment)
0.002389
def _load_raw_data(self, resource_name): """Extract raw data from resource :param resource_name: """ # Instantiating the resource again as a simple `Resource` ensures that # ``data`` will be returned as bytes. upcast_resource = datapackage.Resource( self.__resources[resource_name].descriptor, default_base_path=self.__base_path) return upcast_resource.data
0.004566
def fit(self, X, y=None): """Compute mixture of von Mises Fisher clustering. Parameters ---------- X : array-like or sparse matrix, shape=(n_samples, n_features) """ if self.normalize: X = normalize(X) self._check_force_weights() random_state = check_random_state(self.random_state) X = self._check_fit_data(X) ( self.cluster_centers_, self.labels_, self.inertia_, self.weights_, self.concentrations_, self.posterior_, ) = movMF( X, self.n_clusters, posterior_type=self.posterior_type, force_weights=self.force_weights, n_init=self.n_init, n_jobs=self.n_jobs, max_iter=self.max_iter, verbose=self.verbose, init=self.init, random_state=random_state, tol=self.tol, copy_x=self.copy_x, ) return self
0.001938
def remove_value(self, keys, value): """ Remove a value (data item) from this tree node and its children. Also updates the tree node's cumulative child count. """ self.count -= 1 if not self.key: keys = self.__value_reverse_mapping[value] del self.__value_reverse_mapping[value] if len(keys) == 0: self.values.remove(value) else: key = keys[0] index = bisect.bisect_left(self.children, TreeNode(key, reversed=self.reversed)) assert index != len(self.children) and self.children[index].key == key self.children[index].remove_value(keys[1:], value) if self.tree_node_updated: self.tree_node_updated(self.children[index]) if self.children[index].count == 0: del self.children[index] if self.child_removed: self.child_removed(self, index)
0.004073
def bulk_add_units(unit_list, **kwargs): """ Save all the units contained in the passed list, with the name of their dimension. """ # for unit in unit_list: # add_unit(unit, **kwargs) added_units = [] for unit in unit_list: added_units.append(add_unit(unit, **kwargs)) return JSONObject({"units": added_units})
0.005556
def create_policy_for_vhost( self, vhost, name, definition, pattern=None, priority=0, apply_to='all'): """ Create a policy for a vhost. :param vhost: The virtual host the policy is for :type vhost: str :param name: The name of the policy :type name: str :param definition: The definition of the policy. Required :type definition: dict :param priority: The priority of the policy. Defaults to 0 :param pattern: The pattern of resource names to apply the policy to :type pattern: str :type priority: int :param apply_to: What resource type to apply the policy to. Usually "exchanges", "queues", or "all". Defaults to "all" :type apply_to: str Example :: # Makes all queues and exchanges on vhost "/" highly available >>> api.create_policy_for_vhost( ... vhost="/", ... name="ha-all", ... definition={"ha-mode": "all"}, ... pattern="", ... apply_to="all") """ data = { "pattern": pattern, "definition": definition, "priority": priority, "apply-to": apply_to } self._api_put( '/api/policies/{0}/{1}'.format( urllib.parse.quote_plus(vhost), urllib.parse.quote_plus(name), ), data=data, )
0.001317
def setup_failures(self, gremlins): """Add gremlins to environment""" assert isinstance(gremlins, dict) and 'gremlins' in gremlins for gremlin in gremlins['gremlins']: self.setup_failure(**gremlin) self.push_rules()
0.007692
def add_directives(kb_app: kb, sphinx_app: Sphinx, sphinx_env: BuildEnvironment, docnames=List[str], ): """ For each resource type, register a new Sphinx directive """ for k, v in list(kb_app.config.resources.items()): sphinx_app.add_directive(k, ResourceDirective)
0.002793
def makeMrkvHist(self): ''' Makes a history of macroeconomic Markov states, stored in the attribute MrkvNow_hist. This version ensures that each state is reached a sufficient number of times to have a valid sample for calcDynamics to produce a good dynamic rule. It will sometimes cause act_T to be increased beyond its initially specified level. Parameters ---------- None Returns ------- None ''' if hasattr(self,'loops_max'): loops_max = self.loops_max else: # Maximum number of loops; final act_T never exceeds act_T*loops_max loops_max = 10 state_T_min = 50 # Choose minimum number of periods in each state for a valid Markov sequence logit_scale = 0.2 # Scaling factor on logit choice shocks when jumping to a new state # Values close to zero make the most underrepresented states very likely to visit, while # large values of logit_scale make any state very likely to be jumped to. # Reset act_T to the level actually specified by the user if hasattr(self,'act_T_orig'): act_T = self.act_T_orig else: # Or store it for the first time self.act_T_orig = self.act_T act_T = self.act_T # Find the long run distribution of Markov states w, v = np.linalg.eig(np.transpose(self.MrkvArray)) idx = (np.abs(w-1.0)).argmin() x = v[:,idx].astype(float) LR_dstn = (x/np.sum(x)) # Initialize the Markov history and set up transitions MrkvNow_hist = np.zeros(self.act_T_orig,dtype=int) cutoffs = np.cumsum(self.MrkvArray,axis=1) loops = 0 go = True MrkvNow = self.MrkvNow_init t = 0 StateCount = self.MrkvArray.shape[0] # Add histories until each state has been visited at least state_T_min times while go: draws = drawUniform(N=self.act_T_orig,seed=loops) for s in range(draws.size): # Add act_T_orig more periods MrkvNow_hist[t] = MrkvNow MrkvNow = np.searchsorted(cutoffs[MrkvNow,:],draws[s]) t += 1 # Calculate the empirical distribution state_T = np.zeros(StateCount) for i in range(StateCount): state_T[i] = np.sum(MrkvNow_hist==i) # Check whether each state has been visited state_T_min times if np.all(state_T >= state_T_min): go = False # If so, terminate the loop continue # Choose an underrepresented state to "jump" to if np.any(state_T == 0): # If any states have *never* been visited, randomly choose one of those never_visited = np.where(np.array(state_T == 0))[0] MrkvNow = np.random.choice(never_visited) else: # Otherwise, use logit choice probabilities to visit an underrepresented state emp_dstn = state_T/act_T ratios = LR_dstn/emp_dstn ratios_adj = ratios - np.max(ratios) ratios_exp = np.exp(ratios_adj/logit_scale) ratios_sum = np.sum(ratios_exp) jump_probs = ratios_exp/ratios_sum cum_probs = np.cumsum(jump_probs) MrkvNow = np.searchsorted(cum_probs,draws[-1]) loops += 1 # Make the Markov state history longer by act_T_orig periods if loops >= loops_max: go = False print('makeMrkvHist reached maximum number of loops without generating a valid sequence!') else: MrkvNow_new = np.zeros(self.act_T_orig,dtype=int) MrkvNow_hist = np.concatenate((MrkvNow_hist,MrkvNow_new)) act_T += self.act_T_orig # Store the results as attributes of self self.MrkvNow_hist = MrkvNow_hist self.act_T = act_T
0.009457
def json_tuple(col, *fields): """Creates a new row for a json column according to the given field names. :param col: string column in json format :param fields: list of fields to extract >>> data = [("1", '''{"f1": "value1", "f2": "value2"}'''), ("2", '''{"f1": "value12"}''')] >>> df = spark.createDataFrame(data, ("key", "jstring")) >>> df.select(df.key, json_tuple(df.jstring, 'f1', 'f2')).collect() [Row(key=u'1', c0=u'value1', c1=u'value2'), Row(key=u'2', c0=u'value12', c1=None)] """ sc = SparkContext._active_spark_context jc = sc._jvm.functions.json_tuple(_to_java_column(col), _to_seq(sc, fields)) return Column(jc)
0.00597
def find_invalid_venues(all_items): """Find venues assigned slots that aren't on the allowed list of days.""" venues = {} for item in all_items: valid = False item_days = list(item.venue.days.all()) for slot in item.slots.all(): for day in item_days: if day == slot.get_day(): valid = True break if not valid: venues.setdefault(item.venue, []) venues[item.venue].append(item) return venues.items()
0.001838
def backing_type_for(value): """Returns the DynamoDB backing type for a given python value's type :: 4 -> 'N' ['x', 3] -> 'L' {2, 4} -> 'SS' """ if isinstance(value, str): vtype = "S" elif isinstance(value, bytes): vtype = "B" # NOTE: numbers.Number check must come **AFTER** bool check since isinstance(True, numbers.Number) elif isinstance(value, bool): vtype = "BOOL" elif isinstance(value, numbers.Number): vtype = "N" elif isinstance(value, dict): vtype = "M" elif isinstance(value, list): vtype = "L" elif isinstance(value, set): if not value: vtype = "SS" # doesn't matter, Set(x) should dump an empty set the same for all x else: inner = next(iter(value)) if isinstance(inner, str): vtype = "SS" elif isinstance(inner, bytes): vtype = "BS" elif isinstance(inner, numbers.Number): vtype = "NS" else: raise ValueError(f"Unknown set type for inner value {inner!r}") else: raise ValueError(f"Can't dump unexpected type {type(value)!r} for value {value!r}") return vtype
0.004286
def fromElement(cls, elem): """ Read properties from a MetaDataVersion element :param lxml.etree._Element elem: Source etree Element """ self = cls() self.oid = elem.get("OID") self.name = elem.get("Name") return self
0.007042
def _write_model(self, specification, specification_set): """ Write autogenerate specification file """ filename = "vspk/%s%s.cs" % (self._class_prefix, specification.entity_name) override_content = self._extract_override_content(specification.entity_name) superclass_name = "RestObject" defaults = {} section = specification.entity_name if self.attrs_defaults.has_section(section): for attribute in self.attrs_defaults.options(section): defaults[attribute] = self.attrs_defaults.get(section, attribute) self.write(destination=self.output_directory, filename=filename, template_name="model.cs.tpl", specification=specification, specification_set=specification_set, version=self.api_version, name=self._name, class_prefix=self._class_prefix, product_accronym=self._product_accronym, override_content=override_content, superclass_name=superclass_name, header=self.header_content, version_string=self._api_version_string, package_name=self._package_name, attribute_defaults=defaults) return (filename, specification.entity_name)
0.003561
def __save_plots_of_the_current_page(self, section, page, output_path): """This method saves plots in the appropriate section folder. As a consequence two plots cannot have the same name within the same section.""" for key in self.sections[section].pages[page].elements.keys(): print(section, page, key) # debug print buf_temp = self.sections[section].pages[page].elements[key].plot_object if buf_temp is not None : plot_path = os.path.join(output_path, "output", self.name, "site", section, key + ".svg") try : my_file = open(plot_path, "wb") my_file.write(buf_temp) my_file.close() except Exception as e: print (e) print ("In {section} and {page}, an element exists without a valid plot object.".format(section = section, page = page))
0.01996
def primers(self): """Setup and create threads for ePCR""" # Create the threads for the ePCR analysis for sample in self.metadata: if sample.general.bestassemblyfile != 'NA': threads = Thread(target=self.epcr, args=()) threads.setDaemon(True) threads.start() for sample in self.metadata: if sample.general.bestassemblyfile != 'NA': setattr(sample, self.analysistype, GenObject()) # Get the primers ready try: sample[self.analysistype].primers = glob(os.path.join(self.reffilepath, self.analysistype, sample.general.referencegenus, 'primers', '*.txt'))[0] # Find the name of the probe file sample[self.analysistype].probes = glob(os.path.join(self.reffilepath, self.analysistype, sample.general.referencegenus, 'probes', '*.fa'))[0] # Create the BLAST database of the probes (if necessary) self.makeblastdb(sample[self.analysistype].probes) # Initialise a list to store the names of the targets sample[self.analysistype].targets = list() # Open the primer file, and read the names of the targets into a list with open(sample[self.analysistype].primers, 'r') as primerfile: for line in primerfile: sample[self.analysistype].targets.append(line.split('\t')[0]) # Organisms without primer/probe files will fail. Populate metadata with 'NA' values except IndexError: sample[self.analysistype].primers = 'NA' sample[self.analysistype].probes = 'NA' # Only try to process organisms with primer files if sample[self.analysistype].primers != 'NA': # Make the output path sample[self.analysistype].reportdir = os.path.join(sample.general.outputdirectory, self.analysistype) make_path(sample[self.analysistype].reportdir) # Set the base name of the output file outfile = sample[self.analysistype].reportdir + sample.name # Set the hashing and mapping commands sample.commands.famap = 'famap -b {}.famap {}.fasta'.format(outfile, sample.general.filenoext) sample.commands.fahash = 'fahash -b {}.hash {}.famap'.format(outfile, outfile) # re-PCR uses the subtyping primers list to search the contigs file using the following parameters # -S {hash file} (Perform STS lookup using hash-file), -r + (Enable/disable reverse STS lookup) # -m 10000 (Set variability for STS size for lookup), # -n 1 (Set max allowed mismatches per primer for lookup) # -g 0 (Set max allowed indels per primer for lookup), # -G (Print alignments in comments), -o {output file} sample.commands.epcr = 're-PCR -S {}.hash -r + -m 10000 -n 2 -g 0 -G -q -o {}.txt {}' \ .format(outfile, outfile, sample[self.analysistype].primers) # Add the variables to the queue self.epcrqueue.put((sample, outfile)) self.epcrqueue.join()
0.005855
def check_resources(self, number): '''Check <number> of URLs that have not been (recently) checked''' if not current_app.config.get('LINKCHECKING_ENABLED'): log.error('Link checking is disabled.') return base_pipeline = [ {'$match': {'resources': {'$gt': []}}}, {'$project': {'resources._id': True, 'resources.extras.check:date': True}}, {'$unwind': '$resources'}, ] # unchecked resources pipeline = base_pipeline + [ {'$match': {'resources.extras.check:date': {'$eq': None}}}, {'$limit': number} ] resources = list(Dataset.objects.aggregate(*pipeline)) # not recently checked resources slots_left = number - len(resources) if slots_left: pipeline = base_pipeline + [ {'$match': {'resources.extras.check:date': {'$ne': None}}}, {'$sort': {'resources.extras.check:date': 1}}, {'$limit': slots_left} ] resources += list(Dataset.objects.aggregate(*pipeline)) nb_resources = len(resources) log.info('Checking %s resources...', nb_resources) for idx, dataset_resource in enumerate(resources): dataset_obj = Dataset.objects.get(id=dataset_resource['_id']) resource_id = dataset_resource['resources']['_id'] rid = uuid.UUID(resource_id) resource_obj = get_by(dataset_obj.resources, 'id', rid) log.info('Checking resource %s (%s/%s)', resource_id, idx + 1, nb_resources) if resource_obj.need_check(): check_resource(resource_obj) else: log.info("--> Skipping this resource, cache is fresh enough.") log.info('Done.')
0.000587
def load_jws_from_request(req): """ This function performs almost entirely bitjws authentication tasks. If valid bitjws message and signature headers are found, then the request will be assigned 'jws_header' and 'jws_payload' attributes. :param req: The flask request to load the jwt claim set from. """ current_app.logger.info("loading request with headers: %s" % req.headers) if (("content-type" in req.headers and "application/jose" in req.headers['content-type']) or ("Content-Type" in req.headers and "application/jose" in req.headers['Content-Type'])): path = urlparse.urlsplit(req.url).path for rule in current_app.url_map.iter_rules(): if path == rule.rule and req.method in rule.methods: dedata = req.get_data().decode('utf8') bp = current_app.bitjws.basepath req.jws_header, req.jws_payload = \ bitjws.validate_deserialize(dedata, requrl=bp + rule.rule) break
0.001923
def mergecopy(src, dest): """ copy2, but only if the destination isn't up to date """ if os.path.exists(dest) and os.stat(dest).st_mtime >= os.stat(src).st_mtime: return copy2(src, dest)
0.009346
def renderHTTP(self, context): """ Render C{self.resource} through a L{StylesheetRewritingRequestWrapper}. """ request = IRequest(context) request = StylesheetRewritingRequestWrapper( request, self.installedOfferingNames, self.rootURL) context.remember(request, IRequest) return self.resource.renderHTTP(context)
0.005263
def set_mode(self, mode): """Configure how this console will react to the cursor writing past the end if the console. This is for methods that use the virtual cursor, such as :any:`print_str`. Args: mode (Text): The mode to set. Possible settings are: - 'error' - A TDLError will be raised once the cursor reaches the end of the console. Everything up until the error will still be drawn. This is the default setting. - 'scroll' - The console will scroll up as stuff is written to the end. You can restrict the region with :any:`tdl.Window` when doing this. ..seealso:: :any:`write`, :any:`print_str` """ MODES = ['error', 'scroll'] if mode.lower() not in MODES: raise TDLError('mode must be one of %s, got %s' % (MODES, repr(mode))) self._scrollMode = mode.lower()
0.00304
def netconf_state_schemas_schema_version(self, **kwargs): """Auto Generated Code """ config = ET.Element("config") netconf_state = ET.SubElement(config, "netconf-state", xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-monitoring") schemas = ET.SubElement(netconf_state, "schemas") schema = ET.SubElement(schemas, "schema") identifier_key = ET.SubElement(schema, "identifier") identifier_key.text = kwargs.pop('identifier') format_key = ET.SubElement(schema, "format") format_key.text = kwargs.pop('format') version = ET.SubElement(schema, "version") version.text = kwargs.pop('version') callback = kwargs.pop('callback', self._callback) return callback(config)
0.003881
def DomainTokensCreate(self, domain_id, amount): """ This method creates tokens that can be used by users who want to join the domain. Tokens are automatically deleted after usage. Only domain managers can create tokens. """ if self.__SenseApiCall__('/domains/{0}/tokens.json'.format(domain_id), 'POST', parameters = {"amount":amount}): return True else: self.__error__ = "api call unsuccessful" return False
0.017176
def all_dimensions_names(self): """ Returns all the dimensions names, including the names of sub_fields and their corresponding packed fields """ return frozenset(self.array.dtype.names + tuple(self.sub_fields_dict.keys()))
0.011765
def usages_list(location, **kwargs): ''' .. versionadded:: 2019.2.0 List subscription network usage for a location. :param location: The Azure location to query for network usage. CLI Example: .. code-block:: bash salt-call azurearm_network.usages_list westus ''' netconn = __utils__['azurearm.get_client']('network', **kwargs) try: result = __utils__['azurearm.paged_object_to_list'](netconn.usages.list(location)) except CloudError as exc: __utils__['azurearm.log_cloud_error']('network', str(exc), **kwargs) result = {'error': str(exc)} return result
0.003145
def _get_func(cls, source_ver, target_ver): """ Return exactly one function to convert from source to target """ matches = ( func for func in cls._upgrade_funcs if func.source == source_ver and func.target == target_ver ) try: match, = matches except ValueError: raise ValueError( f"No migration from {source_ver} to {target_ver}") return match
0.039894
def start_depth_socket(self, symbol, callback, depth=None): """Start a websocket for symbol market depth returning either a diff or a partial book https://github.com/binance-exchange/binance-official-api-docs/blob/master/web-socket-streams.md#partial-book-depth-streams :param symbol: required :type symbol: str :param callback: callback function to handle messages :type callback: function :param depth: optional Number of depth entries to return, default None. If passed returns a partial book instead of a diff :type depth: str :returns: connection key string if successful, False otherwise Partial Message Format .. code-block:: python { "lastUpdateId": 160, # Last update ID "bids": [ # Bids to be updated [ "0.0024", # price level to be updated "10", # quantity [] # ignore ] ], "asks": [ # Asks to be updated [ "0.0026", # price level to be updated "100", # quantity [] # ignore ] ] } Diff Message Format .. code-block:: python { "e": "depthUpdate", # Event type "E": 123456789, # Event time "s": "BNBBTC", # Symbol "U": 157, # First update ID in event "u": 160, # Final update ID in event "b": [ # Bids to be updated [ "0.0024", # price level to be updated "10", # quantity [] # ignore ] ], "a": [ # Asks to be updated [ "0.0026", # price level to be updated "100", # quantity [] # ignore ] ] } """ socket_name = symbol.lower() + '@depth' if depth and depth != '1': socket_name = '{}{}'.format(socket_name, depth) return self._start_socket(socket_name, callback)
0.001596
def register_dde_task(self, *args, **kwargs): """Register a Dde task.""" kwargs["task_class"] = DdeTask return self.register_task(*args, **kwargs)
0.011765
def alpha(reliability_data=None, value_counts=None, value_domain=None, level_of_measurement='interval', dtype=np.float64): """Compute Krippendorff's alpha. See https://en.wikipedia.org/wiki/Krippendorff%27s_alpha for more information. Parameters ---------- reliability_data : array_like, with shape (M, N) Reliability data matrix which has the rate the i coder gave to the j unit, where M is the number of raters and N is the unit count. Missing rates are represented with `np.nan`. If it's provided then `value_counts` must not be provided. value_counts : ndarray, with shape (N, V) Number of coders that assigned a certain value to a determined unit, where N is the number of units and V is the value count. If it's provided then `reliability_data` must not be provided. value_domain : array_like, with shape (V,) Possible values the units can take. If the level of measurement is not nominal, it must be ordered. If `reliability_data` is provided, then the default value is the ordered list of unique rates that appear. Else, the default value is `list(range(V))`. level_of_measurement : string or callable Steven's level of measurement of the variable. It must be one of 'nominal', 'ordinal', 'interval', 'ratio' or a callable. dtype : data-type Result and computation data-type. Returns ------- alpha : `dtype` Scalar value of Krippendorff's alpha of type `dtype`. Examples -------- >>> reliability_data = [[np.nan, np.nan, np.nan, np.nan, np.nan, 3, 4, 1, 2, 1, 1, 3, 3, np.nan, 3], ... [1, np.nan, 2, 1, 3, 3, 4, 3, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], ... [np.nan, np.nan, 2, 1, 3, 4, 4, np.nan, 2, 1, 1, 3, 3, np.nan, 4]] >>> print(round(alpha(reliability_data=reliability_data, level_of_measurement='nominal'), 6)) 0.691358 >>> print(round(alpha(reliability_data=reliability_data, level_of_measurement='interval'), 6)) 0.810845 >>> value_counts = np.array([[1, 0, 0, 0], ... [0, 0, 0, 0], ... [0, 2, 0, 0], ... [2, 0, 0, 0], ... [0, 0, 2, 0], ... [0, 0, 2, 1], ... [0, 0, 0, 3], ... [1, 0, 1, 0], ... [0, 2, 0, 0], ... [2, 0, 0, 0], ... [2, 0, 0, 0], ... [0, 0, 2, 0], ... [0, 0, 2, 0], ... [0, 0, 0, 0], ... [0, 0, 1, 1]]) >>> print(round(alpha(value_counts=value_counts, level_of_measurement='nominal'), 6)) 0.691358 >>> # The following examples were extracted from >>> # https://www.statisticshowto.datasciencecentral.com/wp-content/uploads/2016/07/fulltext.pdf, page 8. >>> reliability_data = [[1, 2, 3, 3, 2, 1, 4, 1, 2, np.nan, np.nan, np.nan], ... [1, 2, 3, 3, 2, 2, 4, 1, 2, 5, np.nan, 3.], ... [np.nan, 3, 3, 3, 2, 3, 4, 2, 2, 5, 1, np.nan], ... [1, 2, 3, 3, 2, 4, 4, 1, 2, 5, 1, np.nan]] >>> print(round(alpha(reliability_data, level_of_measurement='ordinal'), 3)) 0.815 >>> print(round(alpha(reliability_data, level_of_measurement='ratio'), 3)) 0.797 """ if (reliability_data is None) == (value_counts is None): raise ValueError("Either reliability_data or value_counts must be provided, but not both.") # Don't know if it's a list or numpy array. If it's the latter, the truth value is ambiguous. So, ask for None. if value_counts is None: if type(reliability_data) is not np.ndarray: reliability_data = np.array(reliability_data) value_domain = value_domain or np.unique(reliability_data[~np.isnan(reliability_data)]) value_counts = _reliability_data_to_value_counts(reliability_data, value_domain) else: # elif reliability_data is None if value_domain: assert value_counts.shape[1] == len(value_domain), \ "The value domain should be equal to the number of columns of value_counts." else: value_domain = tuple(range(value_counts.shape[1])) distance_metric = _distance_metric(level_of_measurement) o = _coincidences(value_counts, value_domain, dtype=dtype) n_v = np.sum(o, axis=0) n = np.sum(n_v) e = _random_coincidences(value_domain, n, n_v) d = _distances(value_domain, distance_metric, n_v) return 1 - np.sum(o * d) / np.sum(e * d)
0.004364
def run_band_structure(self, paths, with_eigenvectors=False, with_group_velocities=False, is_band_connection=False, path_connections=None, labels=None, is_legacy_plot=False): """Run phonon band structure calculation. Parameters ---------- paths : List of array_like Sets of qpoints that can be passed to phonopy.set_band_structure(). Numbers of qpoints can be different. shape of each array_like : (qpoints, 3) with_eigenvectors : bool, optional Flag whether eigenvectors are calculated or not. Default is False. with_group_velocities : bool, optional Flag whether group velocities are calculated or not. Default is False. is_band_connection : bool, optional Flag whether each band is connected or not. This is achieved by comparing similarity of eigenvectors of neghboring poins. Sometimes this fails. Default is False. path_connections : List of bool, optional This is only used in graphical plot of band structure and gives whether each path is connected to the next path or not, i.e., if False, there is a jump of q-points. Number of elements is the same at that of paths. Default is None. labels : List of str, optional This is only used in graphical plot of band structure and gives labels of end points of each path. The number of labels is equal to (2 - np.array(path_connections)).sum(). is_legacy_plot: bool, optional This makes the old style band structure plot. Default is False. """ if self._dynamical_matrix is None: msg = ("Dynamical matrix has not yet built.") raise RuntimeError(msg) if with_group_velocities: if self._group_velocity is None: self._set_group_velocity() group_velocity = self._group_velocity else: group_velocity = None self._band_structure = BandStructure( paths, self._dynamical_matrix, with_eigenvectors=with_eigenvectors, is_band_connection=is_band_connection, group_velocity=group_velocity, path_connections=path_connections, labels=labels, is_legacy_plot=is_legacy_plot, factor=self._factor)
0.003419
def __get_inferred_data_res_2(v=None, calc=True): """ Use a list of values to calculate m/m/m/m. Resolution values or otherwise. :param numpy array v: Values :param bool calc: If false, we don't need calculations :return dict: Results of calculation """ # Base: If something goes wrong, or if there are no values, then use "NaN" placeholders. d = { "hasMinValue": "nan", "hasMaxValue": "nan", "hasMeanValue": "nan", "hasMedianValue": "nan", } try: if calc: _min = np.nanmin(v) _max = np.nanmax(v) _mean = np.nanmean(v) _med = np.nanmedian(v) if np.isnan(_min): _min = "nan" else: _min = abs(_min) if np.isnan(_max): _max = "nan" else: _min = abs(_min) if np.isnan(_mean): _mean = "nan" else: _min = abs(_min) if np.isnan(_med): _med = "nan" else: _min = abs(_min) d = { "hasMinValue": _min, "hasMaxValue": _max, "hasMeanValue": _mean, "hasMedianValue": _med } except Exception as e: logger_inferred_data.error("get_inferred_data_res_2: {}".format(e)) return d
0.001426
def _get_cache_dates(self): """ Get s list of dates (:py:class:`datetime.datetime`) present in cache, beginning with the longest contiguous set of dates that isn't missing more than one date in series. :return: list of datetime objects for contiguous dates in cache :rtype: ``list`` """ all_dates = self.cache.get_dates_for_project(self.project_name) dates = [] last_date = None for val in sorted(all_dates): if last_date is None: last_date = val continue if val - last_date > timedelta(hours=48): # reset dates to start from here logger.warning("Last cache date was %s, current date is %s; " "delta is too large. Starting cache date series " "at current date.", last_date, val) dates = [] last_date = val dates.append(val) # find the first download record, and only look at dates after that for idx, cache_date in enumerate(dates): data = self._cache_get(cache_date) if not self._is_empty_cache_record(data): logger.debug("First cache date with data: %s", cache_date) return dates[idx:] return dates
0.002208