text
stringlengths 78
104k
| score
float64 0
0.18
|
---|---|
def _handle_force_timeout(self) -> None:
"""Called by IOLoop periodically to ask libcurl to process any
events it may have forgotten about.
"""
while True:
try:
ret, num_handles = self._multi.socket_all()
except pycurl.error as e:
ret = e.args[0]
if ret != pycurl.E_CALL_MULTI_PERFORM:
break
self._finish_pending_requests() | 0.004474 |
def explain_weights_dfs(estimator, **kwargs):
# type: (...) -> Dict[str, pd.DataFrame]
""" Explain weights and export them to a dict with ``pandas.DataFrame``
values (as :func:`eli5.formatters.as_dataframe.format_as_dataframes` does).
All keyword arguments are passed to :func:`eli5.explain_weights`.
Weights of all features are exported by default.
"""
kwargs = _set_defaults(kwargs)
return format_as_dataframes(
eli5.explain_weights(estimator, **kwargs)) | 0.002016 |
def _sge_info(queue):
"""Returns machine information for an sge job scheduler.
"""
qhost_out = subprocess.check_output(["qhost", "-q", "-xml"]).decode()
qstat_queue = ["-q", queue] if queue and "," not in queue else []
qstat_out = subprocess.check_output(["qstat", "-f", "-xml"] + qstat_queue).decode()
slot_info = _sge_get_slots(qstat_out)
mem_info = _sge_get_mem(qhost_out, queue)
machine_keys = slot_info.keys()
#num_cpus_vec = [slot_info[x]["slots_total"] for x in machine_keys]
#mem_vec = [mem_info[x]["mem_total"] for x in machine_keys]
mem_per_slot = [mem_info[x]["mem_total"] / float(slot_info[x]["slots_total"]) for x in machine_keys]
min_ratio_index = mem_per_slot.index(median_left(mem_per_slot))
mem_info[machine_keys[min_ratio_index]]["mem_total"]
return [{"cores": slot_info[machine_keys[min_ratio_index]]["slots_total"],
"memory": mem_info[machine_keys[min_ratio_index]]["mem_total"],
"name": "sge_machine"}] | 0.004975 |
def init_config_files(self):
"""[optionally] copy default config files into profile dir."""
# copy config files
path = self.builtin_profile_dir
if self.copy_config_files:
src = self.profile
cfg = self.config_file_name
if path and os.path.exists(os.path.join(path, cfg)):
self.log.warn("Staging %r from %s into %r [overwrite=%s]"%(
cfg, src, self.profile_dir.location, self.overwrite)
)
self.profile_dir.copy_config_file(cfg, path=path, overwrite=self.overwrite)
else:
self.stage_default_config_file()
else:
# Still stage *bundled* config files, but not generated ones
# This is necessary for `ipython profile=sympy` to load the profile
# on the first go
files = glob.glob(os.path.join(path, '*.py'))
for fullpath in files:
cfg = os.path.basename(fullpath)
if self.profile_dir.copy_config_file(cfg, path=path, overwrite=False):
# file was copied
self.log.warn("Staging bundled %s from %s into %r"%(
cfg, self.profile, self.profile_dir.location)
) | 0.004608 |
def gibbs_binding_energy(self, eads=False):
"""
Returns the adsorption energy or Gibb's binding energy
of an adsorbate on a surface
Args:
eads (bool): Whether to calculate the adsorption energy
(True) or the binding energy (False) which is just
adsorption energy normalized by number of adsorbates.
"""
n = self.get_unit_primitive_area
Nads = self.Nads_in_slab
BE = (self.energy - n * self.clean_entry.energy) / Nads - \
sum([ads.energy_per_atom for ads in self.adsorbates])
return BE * Nads if eads else BE | 0.004673 |
def _write_submit_script(self, template, script_filename, job_name, configs):
"""Generate submit script and write it to a file.
Args:
- template (string) : The template string to be used for the writing submit script
- script_filename (string) : Name of the submit script
- job_name (string) : job name
- configs (dict) : configs that get pushed into the template
Returns:
- True: on success
Raises:
SchedulerMissingArgs : If template is missing args
ScriptPathError : Unable to write submit script out
"""
try:
submit_script = Template(template).substitute(jobname=job_name, **configs)
# submit_script = Template(template).safe_substitute(jobname=job_name, **configs)
with open(script_filename, 'w') as f:
f.write(submit_script)
except KeyError as e:
logger.error("Missing keys for submit script : %s", e)
raise (SchedulerMissingArgs(e.args, self.sitename))
except IOError as e:
logger.error("Failed writing to submit script: %s", script_filename)
raise (ScriptPathError(script_filename, e))
except Exception as e:
print("Template : ", template)
print("Args : ", job_name)
print("Kwargs : ", configs)
logger.error("Uncategorized error: %s", e)
raise (e)
return True | 0.003971 |
def process_result(self, new_sia, min_sia):
"""Check if the new SIA has smaller |big_phi| than the standing
result.
"""
if new_sia.phi == 0:
self.done = True # Short-circuit
return new_sia
elif new_sia < min_sia:
return new_sia
return min_sia | 0.006079 |
def translate_style(style, colormode, colorpalette):
"""
Translate the given style to an ANSI escape code
sequence.
``style`` examples are:
* green
* bold
* red_on_black
* bold_green
* italic_yellow_on_cyan
:param str style: the style to translate
:param int colormode: the color mode to use. See ``translate_rgb_to_ansi_code``
:parma dict colorpalette: the color palette to use for the color name mapping
"""
style_parts = iter(style.split('_'))
ansi_start_sequence = []
ansi_end_sequence = []
try:
# consume all modifiers
part = None
for mod_part in style_parts:
part = mod_part
if part not in ansi.MODIFIERS:
break # all modifiers have been consumed
mod_start_code, mod_end_code = resolve_modifier_to_ansi_code(part, colormode)
ansi_start_sequence.append(mod_start_code)
ansi_end_sequence.append(mod_end_code)
else: # we've consumed all parts, thus we can exit
raise StopIteration()
# next part has to be a foreground color or the 'on' keyword
# which means we have to consume background colors
if part != 'on':
ansi_start_code, ansi_end_code = translate_colorname_to_ansi_code(
part, ansi.FOREGROUND_COLOR_OFFSET, colormode, colorpalette)
ansi_start_sequence.append(ansi_start_code)
ansi_end_sequence.append(ansi_end_code)
# consume the required 'on' keyword after the foreground color
next(style_parts)
# next part has to be the background color
part = next(style_parts)
ansi_start_code, ansi_end_code = translate_colorname_to_ansi_code(
part, ansi.BACKGROUND_COLOR_OFFSET, colormode, colorpalette)
ansi_start_sequence.append(ansi_start_code)
ansi_end_sequence.append(ansi_end_code)
except StopIteration: # we've consumed all parts of the styling string
pass
# construct and return ANSI escape code sequence
return ''.join(ansi_start_sequence), ''.join(ansi_end_sequence) | 0.001862 |
def _delete_transmissions(self, content_metadata_item_ids):
"""
Delete ContentMetadataItemTransmision models associated with the given content metadata items.
"""
# pylint: disable=invalid-name
ContentMetadataItemTransmission = apps.get_model(
'integrated_channel',
'ContentMetadataItemTransmission'
)
ContentMetadataItemTransmission.objects.filter(
enterprise_customer=self.enterprise_configuration.enterprise_customer,
integrated_channel_code=self.enterprise_configuration.channel_code(),
content_id__in=content_metadata_item_ids
).delete() | 0.007508 |
def download(self, name, ids, datas=None, context=None):
"""Download a report from the server and return it as a remote file.
For instance, to download the "Quotation / Order" report of sale orders
identified by the IDs ``[2, 3]``:
.. doctest::
:options: +SKIP
>>> report = odoo.report.download('sale.report_saleorder', [2, 3])
.. doctest::
:hide:
>>> report = odoo.report.download('sale.report_saleorder', [2])
Write it on the file system:
.. doctest::
:options: +SKIP
>>> with open('sale_orders.pdf', 'wb') as report_file:
... report_file.write(report.read())
...
.. doctest::
:hide:
>>> with open('sale_orders.pdf', 'wb') as report_file:
... fileno = report_file.write(report.read()) # Python 3
...
*Python 2:*
:return: `io.BytesIO`
:raise: :class:`odoorpc.error.RPCError` (wrong parameters)
:raise: `ValueError` (received invalid data)
:raise: `urllib2.URLError` (connection error)
*Python 3:*
:return: `io.BytesIO`
:raise: :class:`odoorpc.error.RPCError` (wrong parameters)
:raise: `ValueError` (received invalid data)
:raise: `urllib.error.URLError` (connection error)
"""
if context is None:
context = self._odoo.env.context
def check_report(name):
report_model = 'ir.actions.report'
if v(self._odoo.version)[0] < 11:
report_model = 'ir.actions.report.xml'
IrReport = self._odoo.env[report_model]
report_ids = IrReport.search([('report_name', '=', name)])
report_id = report_ids and report_ids[0] or False
if not report_id:
raise ValueError("The report '%s' does not exist." % name)
return report_id
report_id = check_report(name)
# Odoo >= 11.0
if v(self._odoo.version)[0] >= 11:
IrReport = self._odoo.env['ir.actions.report']
report = IrReport.browse(report_id)
response = report.with_context(context).render(ids, data=datas)
content = response[0]
# On the server the result is a bytes string,
# but the RPC layer of Odoo returns it as a unicode string,
# so we encode it again as bytes
result = content.encode('latin1')
return io.BytesIO(result)
# Odoo < 11.0
else:
args_to_send = [self._odoo.env.db,
self._odoo.env.uid, self._odoo._password,
name, ids, datas, context]
data = self._odoo.json(
'/jsonrpc',
{'service': 'report',
'method': 'render_report',
'args': args_to_send})
if 'result' not in data and not data['result'].get('result'):
raise ValueError("Received invalid data.")
# Encode to bytes forced to be compatible with Python 3.2
# (its 'base64.standard_b64decode()' function only accepts bytes)
result = encode2bytes(data['result']['result'])
content = base64.standard_b64decode(result)
return io.BytesIO(content) | 0.000591 |
def _prepare_data_XYX0(self, X, Y, X_base, X_res, D, F, run_TRs,
no_DC=False):
"""Prepares different forms of products between design matrix X or
data Y or nuisance regressors X0.
These products are re-used a lot during fitting.
So we pre-calculate them.
no_DC means not inserting regressors for DC components
into nuisance regressor.
It will only take effect if X_base is not None.
"""
X_DC = self._gen_X_DC(run_TRs)
reg_sol = np.linalg.lstsq(X_DC, X)
if np.any(np.isclose(reg_sol[1], 0)):
raise ValueError('Your design matrix appears to have '
'included baseline time series.'
'Either remove them, or move them to'
' nuisance regressors.')
X_DC, X_base, idx_DC = self._merge_DC_to_base(X_DC, X_base,
no_DC)
if X_res is None:
X0 = X_base
else:
X0 = np.concatenate((X_base, X_res), axis=1)
n_X0 = X0.shape[1]
X0TX0, X0TDX0, X0TFX0 = self._make_templates(D, F, X0, X0)
XTX0, XTDX0, XTFX0 = self._make_templates(D, F, X, X0)
X0TY, X0TDY, X0TFY = self._make_templates(D, F, X0, Y)
return X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, \
X0TY, X0TDY, X0TFY, X0, X_base, n_X0, idx_DC | 0.002045 |
def write_cycle(filename, graph, cycle, directed):
"""Write an eulerian tour in DOT format
:param filename: the file to be written in DOT format
:param graph: graph in listlist format, cannot be listdict
:param bool directed: describes the graph
:param cycle: tour as a vertex list
:returns: nothing
:complexity: `O(|V|^2 + |E|)`
"""
n = len(graph)
weight = [[float('inf')] * n for _ in range(n)]
for r in range(1, len(cycle)):
weight[cycle[r-1]][cycle[r]] = r
if not directed:
weight[cycle[r]][cycle[r-1]] = r
write_graph(filename, graph, arc_label=weight, directed=directed) | 0.00149 |
def process(fname, allow_type):
"""Process a file."""
fname = str(fname)
# HACK: ignore op.h which is automatically generated
if fname.endswith('op.h'):
return
arr = fname.rsplit('.', 1)
if fname.find('#') != -1 or arr[-1] not in allow_type:
return
if arr[-1] in CXX_SUFFIX:
_HELPER.process_cpp(fname, arr[-1])
if arr[-1] in PYTHON_SUFFIX:
_HELPER.process_python(fname) | 0.00464 |
def skyimage_figure(cluster):
"""
Given a cluster create a Bokeh plot figure using the
cluster's image.
"""
pf_image = figure(x_range=(0, 1), y_range=(0, 1),
title='Image of {0}'.format(cluster.name))
pf_image.image_url(url=[cluster.image_path],
x=0, y=0, w=1, h=1, anchor='bottom_left')
pf_image.toolbar_location = None
pf_image.axis.visible = False
return pf_image | 0.002237 |
def status(name, *args, **kwargs):
'''
Return the status for a service.
If the name contains globbing, a dict mapping service name to True/False
values is returned.
.. versionchanged:: 2018.3.0
The service name can now be a glob (e.g. ``salt*``)
Args:
name (str): The name of the service to check
Returns:
bool: True if running, False otherwise
dict: Maps service name to True if running, False otherwise
CLI Example:
.. code-block:: bash
salt '*' service.status <service name>
'''
results = {}
all_services = get_all()
contains_globbing = bool(re.search(r'\*|\?|\[.+\]', name))
if contains_globbing:
services = fnmatch.filter(all_services, name)
else:
services = [name]
for service in services:
results[service] = info(service)['Status'] in ['Running', 'Stop Pending']
if contains_globbing:
return results
return results[name] | 0.002045 |
def delFromTimeVary(self,*params):
'''
Removes any number of parameters from time_vary for this instance.
Parameters
----------
params : string
Any number of strings naming attributes to be removed from time_vary
Returns
-------
None
'''
for param in params:
if param in self.time_vary:
self.time_vary.remove(param) | 0.009153 |
def set(self, dic, val=None, force=False):
"""set can assign versatile options from
`CMAOptions.versatile_options()` with a new value, use `init()`
for the others.
Arguments
---------
`dic`
either a dictionary or a key. In the latter
case, `val` must be provided
`val`
value for `key`, approximate match is sufficient
`force`
force setting of non-versatile options, use with caution
This method will be most probably used with the ``opts`` attribute of
a `CMAEvolutionStrategy` instance.
"""
if val is not None: # dic is a key in this case
dic = {dic:val} # compose a dictionary
for key_original, val in list(dict(dic).items()):
key = self.corrected_key(key_original)
if not self._lock_setting or \
key in CMAOptions.versatile_options():
self[key] = val
else:
_print_warning('key ' + str(key_original) +
' ignored (not recognized as versatile)',
'set', 'CMAOptions')
return self | 0.004058 |
def _split_props(thing, doc):
"""
Separate properties from other kinds of member.
"""
props = inspect.getmembers(thing, lambda o: isinstance(o, property))
ps = []
docs = [
(*_get_names(names, types), names, types, desc) for names, types, desc in doc
]
for prop_name, prop in props:
in_doc = [d for d in enumerate(docs) if prop_name in d[0]]
for d in in_doc:
docs.remove(d)
ps.append(prop_name)
if len(docs) > 0:
_, _, names, types, descs = zip(*docs)
return ps, zip(names, types, descs)
return ps, [] | 0.003333 |
def description(self):
"this is only a property so it can raise; make it an attr once it works"
if self.lastx is None: return
if type(self.lastx) not in (sqparse2.SelectX,sqparse2.UpdateX,sqparse2.InsertX): return
if type(self.lastx) in (sqparse2.UpdateX,sqparse2.InsertX) and self.lastx.ret is None: return
# at this point we know this is an operation that returns rows
if type(self.lastx) in (sqparse2.UpdateX,sqparse2.InsertX):
raise NotImplementedError('todo: Cursor.description for non-select')
else: # select case
return [description_from_colx(self.connection,self.lastx,colx) for colx in self.lastx.cols.children] | 0.024242 |
def tracer_diffusion_coefficient( self ):
"""
Tracer diffusion coefficient, D*.
Args:
None
Returns:
(Float): The tracer diffusion coefficient, D*.
"""
if self.has_run:
return self.atoms.sum_dr_squared() / ( 6.0 * float( self.number_of_atoms ) * self.lattice.time )
else:
return None | 0.023196 |
def _find_usage_elbv1(self):
"""
Find usage for ELBv1 / Classic ELB and update the appropriate limits.
:returns: number of Classic ELBs in use
:rtype: int
"""
logger.debug("Checking usage for ELBv1")
self.connect()
lbs = paginate_dict(
self.conn.describe_load_balancers,
alc_marker_path=['NextMarker'],
alc_data_path=['LoadBalancerDescriptions'],
alc_marker_param='Marker'
)
for lb in lbs['LoadBalancerDescriptions']:
self.limits['Listeners per load balancer']._add_current_usage(
len(lb['ListenerDescriptions']),
aws_type='AWS::ElasticLoadBalancing::LoadBalancer',
resource_id=lb['LoadBalancerName'],
)
self.limits[
'Registered instances per load balancer'
]._add_current_usage(
len(lb['Instances']),
aws_type='AWS::ElasticLoadBalancing::LoadBalancer',
resource_id=lb['LoadBalancerName']
)
logger.debug('Done with ELBv1 usage')
return len(lbs['LoadBalancerDescriptions']) | 0.001682 |
def _parse_linux_cx_state(self, lines, tcp_states, state_col, protocol=None, ip_version=None):
"""
Parse the output of the command that retrieves the connection state (either `ss` or `netstat`)
Returns a dict metric_name -> value
"""
metrics = {}
for _, val in iteritems(self.cx_state_gauge):
metrics[val] = 0
for l in lines:
cols = l.split()
if cols[0].startswith('tcp') or protocol == 'tcp':
proto = "tcp{0}".format(ip_version) if ip_version else ("tcp4", "tcp6")[cols[0] == "tcp6"]
if cols[state_col] in tcp_states:
metric = self.cx_state_gauge[proto, tcp_states[cols[state_col]]]
metrics[metric] += 1
elif cols[0].startswith('udp') or protocol == 'udp':
proto = "udp{0}".format(ip_version) if ip_version else ("udp4", "udp6")[cols[0] == "udp6"]
metric = self.cx_state_gauge[proto, 'connections']
metrics[metric] += 1
return metrics | 0.007491 |
def clockIsBroken():
"""
Returns whether twisted.internet.task.Clock has the bug that
returns the wrong DelayedCall or not.
"""
clock = Clock()
dc1 = clock.callLater(10, lambda: None)
dc2 = clock.callLater(1, lambda: None)
if dc1 is dc2:
return True
else:
return False | 0.003125 |
def fill_livetime_hist(skydir, tab_sc, tab_gti, zmax, costh_edges):
"""Generate a sequence of livetime distributions at the sky
positions given by ``skydir``. The output of the method are two
NxM arrays containing a sequence of histograms for N sky positions
and M incidence angle bins where the bin edges are defined by
``costh_edges``. This method uses the same algorithm as
`gtltcube` with the exception that SC time intervals are assumed
to be aligned with GTIs.
Parameters
----------
skydir : `~astropy.coordinates.SkyCoord`
Vector of sky directions for which livetime histograms will be
accumulated.
tab_sc : `~astropy.table.Table`
Spacecraft table. Must contain the following columns: START,
STOP, LIVETIME, RA_SCZ, DEC_SZ, RA_ZENITH, DEC_ZENITH.
tab_gti : `~astropy.table.Table`
Table of good time intervals (GTIs).
zmax : float
Zenith cut.
costh_edges : `~numpy.ndarray`
Incidence angle bin edges in cos(angle).
Returns
-------
lt : `~numpy.ndarray`
Array of livetime histograms.
lt_wt : `~numpy.ndarray`
Array of histograms of weighted livetime (livetime x livetime
fraction).
"""
if len(tab_gti) == 0:
shape = (len(costh_edges) - 1, len(skydir))
return (np.zeros(shape), np.zeros(shape))
m = (tab_sc['START'] < tab_gti['STOP'][-1])
m &= (tab_sc['STOP'] > tab_gti['START'][0])
tab_sc = tab_sc[m]
cos_zmax = np.cos(np.radians(zmax))
sc_t0 = np.array(tab_sc['START'].data)
sc_t1 = np.array(tab_sc['STOP'].data)
sc_live = np.array(tab_sc['LIVETIME'].data)
sc_lfrac = sc_live / (sc_t1 - sc_t0)
sc_xyz = angle_to_cartesian(np.radians(tab_sc['RA_SCZ'].data),
np.radians(tab_sc['DEC_SCZ'].data))
zn_xyz = angle_to_cartesian(np.radians(tab_sc['RA_ZENITH'].data),
np.radians(tab_sc['DEC_ZENITH'].data))
tab_gti_t0 = np.array(tab_gti['START'].data)
tab_gti_t1 = np.array(tab_gti['STOP'].data)
# Index of the closest GTI interval
idx = np.digitize(sc_t0, tab_gti_t0) - 1
# start/stop time of closest GTI interval
gti_t0 = np.zeros_like(sc_t0)
gti_t1 = np.zeros_like(sc_t1)
gti_t0[idx >= 0] = tab_gti_t0[idx[idx >= 0]]
gti_t1[idx >= 0] = tab_gti_t1[idx[idx >= 0]]
nbin = len(costh_edges) - 1
lt = np.zeros((nbin,) + skydir.shape)
lt_wt = np.zeros((nbin,) + skydir.shape)
m0 = (idx >= 0) & (sc_t0 >= gti_t0) & (sc_t1 <= gti_t1)
xyz = angle_to_cartesian(skydir.ra.rad, skydir.dec.rad)
for i, t in enumerate(xyz):
cos_sep = utils.dot_prod(t, sc_xyz)
cos_zn = utils.dot_prod(t, zn_xyz)
m = m0 & (cos_zn > cos_zmax) & (cos_sep > 0.0)
bins = np.digitize(cos_sep[m], bins=costh_edges) - 1
bins = np.clip(bins, 0, nbin - 1)
lt[:, i] = np.bincount(bins, weights=sc_live[m], minlength=nbin)
lt_wt[:, i] = np.bincount(bins, weights=sc_live[m] * sc_lfrac[m],
minlength=nbin)
return lt, lt_wt | 0.001271 |
def _add_extra_files(self, files):
'''if extra files are to be analyzed with an sosreport, this will add them to the origin path to be analyzed'''
try:
for f in files:
self.logger.con_out("adding additional file for analysis: %s" % f)
fname = os.path.basename(f)
f_new = os.path.join(self.dir_path, fname)
shutil.copyfile(f,f_new)
except IOError as e:
self.logger.con_out("ExtraFileError: %s is not readable or does not exist. Skipping File" % f)
self.logger.exception(e)
pass
except Exception as e: # pragma: no cover
self.logger.exception(e)
raise Exception("ExtraFileError: Unable to Process Extra File - %s" % f) | 0.010139 |
def save(self, io, little_endian=False):
"""
Saves the `NBTFile()` to `io`, which can be any file-like object
providing `write()`.
"""
if little_endian:
write = lambda fmt, *args: io.write(pack('<' + fmt, *args))
else:
write = lambda fmt, *args: io.write(pack('>' + fmt, *args))
write.io = io
self.write(write) | 0.010025 |
def p_simple_command_element(p):
'''simple_command_element : WORD
| ASSIGNMENT_WORD
| redirection'''
if isinstance(p[1], ast.node):
p[0] = [p[1]]
return
parserobj = p.context
p[0] = [_expandword(parserobj, p.slice[1])]
# change the word node to an assignment if necessary
if p.slice[1].ttype == tokenizer.tokentype.ASSIGNMENT_WORD:
p[0][0].kind = 'assignment' | 0.002132 |
def bovy_end_print(filename,**kwargs):
"""
NAME:
bovy_end_print
PURPOSE:
saves the current figure(s) to filename
INPUT:
filename - filename for plot (with extension)
OPTIONAL INPUTS:
format - file-format
OUTPUT:
(none)
HISTORY:
2009-12-23 - Written - Bovy (NYU)
"""
if 'format' in kwargs:
pyplot.savefig(filename,**kwargs)
else:
pyplot.savefig(filename,format=re.split(r'\.',filename)[-1],**kwargs)
pyplot.close() | 0.011385 |
def render_like(parser, token):
"""
{% likes user as like_list %}
<ul>
{% for like in like_list %}
<li>{% render_like like %}</li>
{% endfor %}
</ul>
"""
tokens = token.split_contents()
var = tokens[1]
return LikeRenderer(var) | 0.003472 |
def _update_result(self, result, insertions, dimension_index):
"""Insert subtotals into resulting ndarray."""
for j, (ind_insertion, value) in enumerate(insertions):
result = np.insert(
result, ind_insertion + j + 1, value, axis=dimension_index
)
return result | 0.006173 |
def response_received(self, response):
"""
Called when a response to a job RPC has been received. Decodes the
response and finalizes the result, then reports the result to the
job manager.
"""
if self._closed:
return
assert self._job is not None
logger.debug("worker {} got response".format(id(self)))
result = self._job.get_result(response)
self._manager.add_result(self._job, result)
self._load_job() | 0.003953 |
def holm(pvals, alpha=.05):
"""P-values correction with Holm method.
Parameters
----------
pvals : array_like
Array of p-values of the individual tests.
alpha : float
Error rate (= alpha level).
Returns
-------
reject : array, bool
True if a hypothesis is rejected, False if not
pvals_corrected : array
P-values adjusted for multiple hypothesis testing using the Holm
procedure.
See also
--------
bonf : Bonferroni correction
fdr : Benjamini/Hochberg and Benjamini/Yekutieli FDR correction
Notes
-----
From Wikipedia:
In statistics, the Holm–Bonferroni method (also called the Holm method) is
used to counteract the problem of multiple comparisons. It is intended to
control the family-wise error rate and offers a simple test uniformly more
powerful than the Bonferroni correction.
The Holm adjusted p-values are the running maximum of the sorted p-values
divided by the corresponding increasing alpha level:
.. math::
\\frac{\\alpha}{n}, \\frac{\\alpha}{n-1}, ..., \\frac{\\alpha}{1}
where :math:`n` is the number of test.
The full mathematical formula is:
.. math::
\\widetilde {p}_{{(i)}}=\\max _{{j\\leq i}}\\left\\{(n-j+1)p_{{(j)}}
\\right\\}_{{1}}
Note that NaN values are not taken into account in the p-values correction.
References
----------
- Holm, S. (1979). A simple sequentially rejective multiple test procedure.
Scandinavian journal of statistics, 65-70.
- https://en.wikipedia.org/wiki/Holm%E2%80%93Bonferroni_method
Examples
--------
>>> from pingouin import holm
>>> pvals = [.50, .003, .32, .054, .0003]
>>> reject, pvals_corr = holm(pvals, alpha=.05)
>>> print(reject, pvals_corr)
[False True False False True] [0.64 0.012 0.64 0.162 0.0015]
"""
# Convert to array and save original shape
pvals = np.asarray(pvals)
shape_init = pvals.shape
pvals = pvals.ravel()
num_nan = np.isnan(pvals).sum()
# Sort the (flattened) p-values
pvals_sortind = np.argsort(pvals)
pvals_sorted = pvals[pvals_sortind]
sortrevind = pvals_sortind.argsort()
ntests = pvals.size - num_nan
# Now we adjust the p-values
pvals_corr = np.diag(pvals_sorted * np.arange(ntests, 0, -1)[..., None])
pvals_corr = np.maximum.accumulate(pvals_corr)
pvals_corr = np.clip(pvals_corr, None, 1)
# And revert to the original shape and order
pvals_corr = np.append(pvals_corr, np.full(num_nan, np.nan))
pvals_corrected = pvals_corr[sortrevind].reshape(shape_init)
with np.errstate(invalid='ignore'):
reject = np.less(pvals_corrected, alpha)
return reject, pvals_corrected | 0.000359 |
def eth_sign_sha3(data: bytes) -> bytes:
"""
eth_sign/recover compatible hasher
Prefixes data with "\x19Ethereum Signed Message:\n<len(data)>"
"""
prefix = b'\x19Ethereum Signed Message:\n'
if not data.startswith(prefix):
data = prefix + b'%d%s' % (len(data), data)
return keccak(data) | 0.003115 |
def apply_T6(word):
'''If a VVV-sequence contains a long vowel, there is a syllable boundary
between it and the third vowel, e.g. [kor.ke.aa], [yh.ti.öön], [ruu.an],
[mää.yt.te].'''
T6 = ''
WORD = word.split('.')
for i, v in enumerate(WORD):
if contains_VVV(v):
VV = [v.find(j) for j in LONG_VOWELS if v.find(j) > 0]
if VV:
I = VV[0]
T6 = ' T6'
if I + 2 == len(v) or is_vowel(v[I + 2]):
WORD[i] = v[:I + 2] + '.' + v[I + 2:] # TODO
else:
WORD[i] = v[:I] + '.' + v[I:]
word = '.'.join(WORD)
word = word.strip('.') # TODO
return word, T6 | 0.002793 |
def get_data_dir(module_name: str) -> str:
"""Ensure the appropriate Bio2BEL data directory exists for the given module, then returns the file path.
:param module_name: The name of the module. Ex: 'chembl'
:return: The module's data directory
"""
module_name = module_name.lower()
data_dir = os.path.join(BIO2BEL_DIR, module_name)
os.makedirs(data_dir, exist_ok=True)
return data_dir | 0.004808 |
def schaffer(self, x):
""" Schaffer function x0 in [-100..100]"""
N = len(x)
s = x[0:N - 1]**2 + x[1:N]**2
return sum(s**0.25 * (np.sin(50 * s**0.1)**2 + 1)) | 0.010582 |
def rguiding(self,*args,**kwargs):
"""
NAME:
rguiding
PURPOSE:
calculate the guiding-center radius (the radius of a circular orbit with the same angular momentum)
INPUT:
pot= potential instance or list of such instances
ro= (Object-wide default) physical scale for distances to use to convert (can be Quantity)
vo= (Object-wide default) physical scale for velocities to use to convert (can be Quantity)
use_physical= use to override Object-wide default for using a physical scale for output
OUTPUT:
R_guiding
HISTORY:
2018-08-29 - Written as thin wrapper around Potential.rl - Bovy (UofT)
"""
pot= kwargs.get('pot',self._orb.__dict__.get('_pot',None))
if pot is None:
raise RuntimeError("You need to specify the potential as pot= to compute the guiding-center radius")
flatten_potential(pot)
if _isNonAxi(pot):
raise RuntimeError('Potential given to rguiding is non-axisymmetric, but rguiding requires an axisymmetric potential')
_check_consistent_units(self,pot)
Lz= self.Lz(*args,use_physical=False)
return nu.array([rl(pot,lz,use_physical=False) for lz in Lz]) | 0.014615 |
def denoise_z15():
"""Replace tokens instead of masking."""
hparams = xmoe2_dense_0()
hparams.decoder_type = "denoising"
hparams.noising_spec_train = {"type": "random_zipfian", "prob": 0.15}
hparams.noising_use_eval_during_train = 0.25
return hparams | 0.026718 |
def is_list_of_states(self, arg):
"""
A list of states example -
[('x1', 'easy'), ('x2', 'hard')]
Returns
-------
True, if arg is a list of states else False.
"""
return isinstance(arg, list) and all(isinstance(i, tuple) for i in arg) | 0.006667 |
def lookup(self, language_ranges):
"""
Perform an RFC4647 language range lookup on the keys in the
dictionary. `language_ranges` must be a sequence of
:class:`LanguageRange` instances.
Return the entry in the dictionary with a key as produced by
`lookup_language`. If `lookup_language` does not find a match and the
mapping contains an entry with key :data:`None`, that entry is
returned, otherwise :class:`KeyError` is raised.
"""
keys = list(self.keys())
try:
keys.remove(None)
except ValueError:
pass
keys.sort()
key = lookup_language(keys, language_ranges)
return self[key] | 0.00277 |
def recursive_symlink_dirs(source_d, destination_d):
'''
Create dirs and symlink all files recursively from source_d, ignoring
errors (e.g. existing files)
'''
func = os.symlink
if os.name == 'nt':
# NOTE: need to verify that default perms only allow admins to create
# symlinks on Windows
func = shutil.copy
if os.path.exists(destination_d):
os.rmdir(destination_d)
shutil.copytree(source_d, destination_d, copy_function=func) | 0.002037 |
def _get_progress(self):
"""
Get current progress of emerge.
Returns a dict containing current and total value.
"""
input_data = []
ret = {}
# traverse emerge.log from bottom up to get latest information
last_lines = self.py3.command_output(["tail", "-50", self.emerge_log_file])
input_data = last_lines.split("\n")
input_data.reverse()
for line in input_data:
if "*** terminating." in line:
# copy content of ret_default, not only the references
ret = copy.deepcopy(self.ret_default)
break
else:
status_re = re.compile(
"\((?P<cu>[\d]+) of (?P<t>[\d]+)\) "
"(?P<a>[a-zA-Z\/]+( [a-zA-Z]+)?) "
"\((?P<ca>[\w\-]+)\/(?P<p>[\w\.]+)"
)
res = status_re.search(line)
if res is not None:
ret["action"] = res.group("a").lower()
ret["category"] = res.group("ca")
ret["current"] = res.group("cu")
ret["pkg"] = res.group("p")
ret["total"] = res.group("t")
break
return ret | 0.010989 |
def security_scheme(self, component_id, component):
"""Add a security scheme which can be referenced.
:param str component_id: component_id to use as reference
:param dict kwargs: security scheme fields
"""
if component_id in self._security_schemes:
raise DuplicateComponentNameError(
'Another security scheme with name "{}" is already registered.'.format(
component_id
)
)
self._security_schemes[component_id] = component
return self | 0.005291 |
def binary_size(self):
'''Return the number of bytes to store this group and its parameters.'''
return (
1 + # group_id
1 + len(self.name.encode('utf-8')) + # size of name and name bytes
2 + # next offset marker
1 + len(self.desc.encode('utf-8')) + # size of desc and desc bytes
sum(p.binary_size() for p in self.params.values())) | 0.017241 |
def swag_from(
specs=None, filetype=None, endpoint=None, methods=None,
validation=False, schema_id=None, data=None, definition=None,
validation_function=None, validation_error_handler=None):
"""
Takes a filename.yml, a dictionary or object and loads swagger specs.
:param specs: a filepath, a dictionary or an object
:param filetype: yml or yaml (json and py to be implemented)
:param endpoint: endpoint to build definition name
:param methods: method to build method based specs
:param validation: perform validation?
:param schema_id: Definition id ot name to use for validation
:param data: data to validate (default is request.json)
:param definition: alias to schema_id
:param validation_function:
custom validation function which takes the positional
arguments: data to be validated at first and schema to validate
against at second
:param validation_error_handler: custom function to handle
exceptions thrown when validating which takes the exception
thrown as the first, the data being validated as the second and
the schema being used to validate as the third argument
"""
def resolve_path(function, filepath):
if not filepath.startswith('/'):
if not hasattr(function, 'root_path'):
function.root_path = get_root_path(function)
res = os.path.join(function.root_path, filepath)
return res
return filepath
def set_from_filepath(function):
final_filepath = resolve_path(function, specs)
function.swag_type = filetype or specs.split('.')[-1]
if endpoint or methods:
if not hasattr(function, 'swag_paths'):
function.swag_paths = {}
if not endpoint and not methods:
function.swag_path = final_filepath
elif endpoint and methods:
for verb in methods:
key = "{}_{}".format(endpoint, verb.lower())
function.swag_paths[key] = final_filepath
elif endpoint and not methods:
function.swag_paths[endpoint] = final_filepath
elif methods and not endpoint:
for verb in methods:
function.swag_paths[verb.lower()] = final_filepath
def set_from_specs_dict(function):
function.specs_dict = specs
def decorator(function):
if isinstance(specs, string_types):
set_from_filepath(function)
# function must have or a single swag_path or a list of them
swag_path = getattr(function, 'swag_path', None)
swag_paths = getattr(function, 'swag_paths', None)
validate_args = {
'filepath': swag_path or swag_paths,
'root': getattr(function, 'root_path', None)
}
if isinstance(specs, dict):
set_from_specs_dict(function)
validate_args = {'specs': specs}
@wraps(function)
def wrapper(*args, **kwargs):
if validation is True:
validate(
data,
schema_id or definition,
validation_function=validation_function,
validation_error_handler=validation_error_handler,
**validate_args
)
return function(*args, **kwargs)
return wrapper
return decorator | 0.00029 |
def _scan_pth_files(dir_paths):
"""Given an iterable of directory paths, yield paths to all .pth files within."""
for dir_path in dir_paths:
if not os.path.exists(dir_path):
continue
pth_filenames = (f for f in os.listdir(dir_path) if f.endswith('.pth'))
for pth_filename in pth_filenames:
yield os.path.join(dir_path, pth_filename) | 0.013333 |
def unsubscribe_list(self, list_id):
"""
Unsubscribe to a list
:param list_id: list ID number
:return: :class:`~responsebot.models.List` object
"""
return List(tweepy_list_to_json(self._client.unsubscribe_list(list_id=list_id))) | 0.01083 |
def _selector_as_string(self, selector):
"""
Returns a selector as a CSS string
:param selector: A list of tinycss Tokens
:type selector: list
:returns: The CSS string for the selector
:rtype: str
"""
return ','.join(
''.join(token.as_css() for token in strip_whitespace(token_list))
for token_list in split_on_comma(selector)) | 0.004808 |
def areaBetween(requestContext, *seriesLists):
"""
Draws the vertical area in between the two series in seriesList. Useful for
visualizing a range such as the minimum and maximum latency for a service.
areaBetween expects **exactly one argument** that results in exactly two
series (see example below). The order of the lower and higher values
series does not matter. The visualization only works when used in
conjunction with ``areaMode=stacked``.
Most likely use case is to provide a band within which another metric
should move. In such case applying an ``alpha()``, as in the second
example, gives best visual results.
Example::
&target=areaBetween(service.latency.{min,max})&areaMode=stacked
&target=alpha(areaBetween(service.latency.{min,max}),0.3)&areaMode=stacked
If for instance, you need to build a seriesList, you should use the
``group`` function, like so::
&target=areaBetween(group(minSeries(a.*.min),maxSeries(a.*.max)))
"""
if len(seriesLists) == 1:
[seriesLists] = seriesLists
assert len(seriesLists) == 2, ("areaBetween series argument must "
"reference *exactly* 2 series")
lower, upper = seriesLists
if len(lower) == 1:
[lower] = lower
if len(upper) == 1:
[upper] = upper
lower.options['stacked'] = True
lower.options['invisible'] = True
upper.options['stacked'] = True
lower.name = upper.name = "areaBetween(%s)" % upper.pathExpression
return [lower, upper] | 0.000641 |
def subtrees_for_phrase(self, phrase_type):
"""
Returns subtrees corresponding all phrases matching a given phrase type
:param phrase_type: POS such as "NP", "VP", "det", etc.
:type phrase_type: str
:return: a list of NLTK.Tree.Subtree instances
:rtype: list of NLTK.Tree.Subtree
"""
return [subtree for subtree in self.parse.subtrees() if subtree.node.lower() == phrase_type.lower()] | 0.006652 |
def delete(self):
''' return DELETE SQL
'''
SQL = 'DELETE FROM %s' % self._table
if self._selectors:
SQL = ' '.join([SQL, 'WHERE', self._selectors]).strip()
return SQL | 0.013158 |
def re_filter(text, regexps):
"""Filter text using regular expressions."""
if not regexps:
return text
matched_text = []
compiled_regexps = [re.compile(x) for x in regexps]
for line in text:
if line in matched_text:
continue
for regexp in compiled_regexps:
found = regexp.search(line)
if found and found.group():
matched_text.append(line)
return matched_text or text | 0.002132 |
def dictlist_replace(dict_list: Iterable[Dict], key: str, value: Any) -> None:
"""
Process an iterable of dictionaries. For each dictionary ``d``, change
(in place) ``d[key]`` to ``value``.
"""
for d in dict_list:
d[key] = value | 0.003906 |
def ip_rtm_config_route_static_route_nh_vrf_static_route_next_hop(self, **kwargs):
"""Auto Generated Code
"""
config = ET.Element("config")
ip = ET.SubElement(config, "ip", xmlns="urn:brocade.com:mgmt:brocade-common-def")
rtm_config = ET.SubElement(ip, "rtm-config", xmlns="urn:brocade.com:mgmt:brocade-rtm")
route = ET.SubElement(rtm_config, "route")
static_route_nh_vrf = ET.SubElement(route, "static-route-nh-vrf")
static_route_next_vrf_dest_key = ET.SubElement(static_route_nh_vrf, "static-route-next-vrf-dest")
static_route_next_vrf_dest_key.text = kwargs.pop('static_route_next_vrf_dest')
next_hop_vrf_key = ET.SubElement(static_route_nh_vrf, "next-hop-vrf")
next_hop_vrf_key.text = kwargs.pop('next_hop_vrf')
static_route_next_hop = ET.SubElement(static_route_nh_vrf, "static-route-next-hop")
static_route_next_hop.text = kwargs.pop('static_route_next_hop')
callback = kwargs.pop('callback', self._callback)
return callback(config) | 0.007554 |
def SetAttributes(self,
urn,
attributes,
to_delete,
add_child_index=True,
mutation_pool=None):
"""Sets the attributes in the data store."""
attributes[AFF4Object.SchemaCls.LAST] = [
rdfvalue.RDFDatetime.Now().SerializeToDataStore()
]
to_delete.add(AFF4Object.SchemaCls.LAST)
if mutation_pool:
pool = mutation_pool
else:
pool = data_store.DB.GetMutationPool()
pool.MultiSet(urn, attributes, replace=False, to_delete=to_delete)
if add_child_index:
self._UpdateChildIndex(urn, pool)
if mutation_pool is None:
pool.Flush() | 0.014514 |
def pvRvz(self,vR,vz,R,z,gl=True,ngl=_DEFAULTNGL2,vTmax=1.5):
"""
NAME:
pvR
PURPOSE:
calculate the marginalized (vR,vz) probability at this location (NOT normalized by the density)
INPUT:
vR - radial velocity (can be Quantity)
vz - vertical velocity (can be Quantity)
R - radius (can be Quantity)
z - height (can be Quantity)
gl - use Gauss-Legendre integration (True, currently the only option)
ngl - order of Gauss-Legendre integration
vTmax - sets integration limits to [0,vTmax] for integration over vT (default: 1.5)
OUTPUT:
p(vR,vz,R,z)
HISTORY:
2013-01-02 - Written - Bovy (IAS)
2018-01-12 - Added Gauss-Legendre integration prefactor vTmax/2 - Trick (MPA)
"""
if gl:
if ngl % 2 == 1:
raise ValueError("ngl must be even")
#Use Gauss-Legendre integration for all
if ngl == _DEFAULTNGL:
glx, glw= self._glxdef, self._glwdef
glx12, glw12= self._glxdef12, self._glwdef12
elif ngl == _DEFAULTNGL2:
glx, glw= self._glxdef2, self._glwdef2
glx12, glw12= self._glxdef, self._glwdef
else:
glx, glw= numpy.polynomial.legendre.leggauss(ngl)
glx12, glw12= numpy.polynomial.legendre.leggauss(ngl//2)
#Evaluate everywhere
vTgl= vTmax/2.*(glx+1.)
vTglw= glw
vTfac= 0.5 * vTmax #integration over [0.,vTmax]
#If inputs are arrays, tile
if isinstance(R,numpy.ndarray):
nR= len(R)
R= numpy.tile(R,(ngl,1)).T.flatten()
z= numpy.tile(z,(ngl,1)).T.flatten()
vR= numpy.tile(vR,(ngl,1)).T.flatten()
vz= numpy.tile(vz,(ngl,1)).T.flatten()
vTgl= numpy.tile(vTgl,(nR,1)).flatten()
vTglw= numpy.tile(vTglw,(nR,1))
scalarOut= False
else:
R= R+numpy.zeros(ngl)
vR= vR+numpy.zeros(ngl)
z= z+numpy.zeros(ngl)
vz= vz+numpy.zeros(ngl)
nR= 1
scalarOut= True
#evaluate
logqeval= numpy.reshape(self(R,
vR,
vTgl,
z,
vz,
log=True,
use_physical=False),
(nR,ngl))
out= numpy.sum(numpy.exp(logqeval)*vTglw*vTfac,axis=1)
if scalarOut: return out[0]
else: return out | 0.021225 |
def process_bucket_inventory(bid, inventory_bucket, inventory_prefix):
"""Load last inventory dump and feed as key source.
"""
log.info("Loading bucket %s keys from inventory s3://%s/%s",
bid, inventory_bucket, inventory_prefix)
account, bucket = bid.split(':', 1)
region = connection.hget('bucket-regions', bid)
versioned = bool(int(connection.hget('bucket-versions', bid)))
session = boto3.Session()
s3 = session.client('s3', region_name=region, config=s3config)
# find any key visitors with inventory filtering
account_info = json.loads(connection.hget('bucket-accounts', account))
ifilters = [v.inventory_filter for v
in get_key_visitors(account_info) if v.inventory_filter]
with bucket_ops(bid, 'inventory'):
page_iterator = load_bucket_inventory(
s3, inventory_bucket, inventory_prefix, versioned, ifilters)
if page_iterator is None:
log.info("bucket:%s could not find inventory" % bid)
# case: inventory configured but not delivered yet
# action: dispatch to bucket partition (assumes 100k+ for inventory)
# - todo consider max inventory age/staleness for usage
return invoke(process_bucket_partitions, bid)
connection.hset('buckets-inventory', bid, 1)
for page in page_iterator:
invoke(process_keyset, bid, page) | 0.001413 |
def getIndexOfHeteroMen(genotypes, menIndex):
"""Get the indexes of heterozygous men.
:param genotypes: the genotypes of everybody.
:param menIndex: the indexes of the men (for the genotypes).
:type genotypes: numpy.array
:type menIndex: numpy.array
:returns: a :py:class:`numpy.array` containing the indexes of the genotypes
to remove.
Finds the mean that have a heterozygous genotype for this current marker.
Usually used on sexual chromosomes.
"""
toRemove = set()
for i in menIndex[0]:
for genotype in [set(j.split(" ")) for j in genotypes[:, i]]:
if len(genotype) != 1:
# We have an heterozygous
toRemove.add(i)
toRemove = list(toRemove)
toRemove.sort()
return (np.array(toRemove, dtype=int),) | 0.001209 |
def _set_arp_entry(self, v, load=False):
"""
Setter method for arp_entry, mapped from YANG variable /rbridge_id/arp_entry (list)
If this variable is read-only (config: false) in the
source YANG file, then _set_arp_entry is considered as a private
method. Backends looking to populate this variable should
do so via calling thisObj._set_arp_entry() directly.
"""
if hasattr(v, "_utype"):
v = v._utype(v)
try:
t = YANGDynClass(v,base=YANGListType("arp_ip_address",arp_entry.arp_entry, yang_name="arp-entry", rest_name="arp", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='arp-ip-address', extensions={u'tailf-common': {u'info': u'Address Resolution Protocol (ARP)', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'alt-name': u'arp', u'cli-compact-syntax': None, u'cli-sequence-commands': None, u'cli-incomplete-command': None, u'callpoint': u'ArpStaticConfigCallpoint'}}), is_container='list', yang_name="arp-entry", rest_name="arp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Address Resolution Protocol (ARP)', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'alt-name': u'arp', u'cli-compact-syntax': None, u'cli-sequence-commands': None, u'cli-incomplete-command': None, u'callpoint': u'ArpStaticConfigCallpoint'}}, namespace='urn:brocade.com:mgmt:brocade-arp', defining_module='brocade-arp', yang_type='list', is_config=True)
except (TypeError, ValueError):
raise ValueError({
'error-string': """arp_entry must be of a type compatible with list""",
'defined-type': "list",
'generated-type': """YANGDynClass(base=YANGListType("arp_ip_address",arp_entry.arp_entry, yang_name="arp-entry", rest_name="arp", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='arp-ip-address', extensions={u'tailf-common': {u'info': u'Address Resolution Protocol (ARP)', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'alt-name': u'arp', u'cli-compact-syntax': None, u'cli-sequence-commands': None, u'cli-incomplete-command': None, u'callpoint': u'ArpStaticConfigCallpoint'}}), is_container='list', yang_name="arp-entry", rest_name="arp", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'info': u'Address Resolution Protocol (ARP)', u'cli-suppress-mode': None, u'cli-suppress-list-no': None, u'alt-name': u'arp', u'cli-compact-syntax': None, u'cli-sequence-commands': None, u'cli-incomplete-command': None, u'callpoint': u'ArpStaticConfigCallpoint'}}, namespace='urn:brocade.com:mgmt:brocade-arp', defining_module='brocade-arp', yang_type='list', is_config=True)""",
})
self.__arp_entry = t
if hasattr(self, '_set'):
self._set() | 0.003767 |
def run(self, clock, generalLedger):
"""
Execute the component at the current clock cycle.
:param clock: The clock containing the current execution time and
period information.
:param generalLedger: The general ledger into which to create the
transactions.
"""
for c in self.components:
c.run(clock, generalLedger)
for a in self.activities:
a.run(clock, generalLedger) | 0.004255 |
def removeQuery( self ):
"""
Removes the currently selected query.
"""
items = self.uiQueryTREE.selectedItems()
tree = self.uiQueryTREE
for item in items:
parent = item.parent()
if ( parent ):
parent.takeChild(parent.indexOfChild(item))
else:
tree.takeTopLevelItem(tree.indexOfTopLevelItem(item))
self.setQuery(self.query()) | 0.016985 |
def _memory_usage_ps():
"""return memory usage of python process in MB
>>> isinstance(_memory_usage_ps(),float)
True
"""
out = subprocess.Popen(
['ps', 'v', '-p', str(os.getpid())],
stdout=subprocess.PIPE).communicate()[0].split(b'\n')
vsz_index = out[0].split().index(b'RSS')
mem = float(out[1].split()[vsz_index]) / 1024
return mem | 0.002611 |
def tlist2dict(tuple_list,**kwargs):
'''
#duplicate keys will lost
tl = [(1,2),(3,4),(1,5)]
tlist2dict(tl)
'''
if('deepcopy' in kwargs):
deepcopy = kwargs['deepcopy']
else:
deepcopy = 1
if('check' in kwargs):
check = kwargs['check']
else:
check = 1
if(check):
if(tltl.is_tlist(tuple_list)):
pass
else:
return(None)
else:
pass
j = {}
if(deepcopy):
new = copy.deepcopy(tuple_list)
else:
new = tuple_list
for i in range(0,new.__len__()):
temp = new[i]
key = temp[0]
value = temp[1]
j[key] = value
return(j) | 0.004243 |
def _kvmatrix2d(km,vm):
'''
km = [[[1], [3]], [[1, 2], [3, 'a']], [[1, 2, 22]]]
show_kmatrix(km)
vm = [[[222]], ['b']]
show_vmatrix(vm)
d = _kvmatrix2d(km,vm)
'''
d = {}
kmwfs = get_kmwfs(km)
vmwfs = elel.get_wfs(vm)
lngth = vmwfs.__len__()
for i in range(0,lngth):
value = elel.getitem_via_pathlist(vm,vmwfs[i])
cond = elel.is_leaf(value)
if(cond):
_setitem_via_pathlist(d,kmwfs[i],value)
else:
_setdefault_via_pathlist(d,kmwfs[i])
return(d) | 0.015306 |
def request_ligodotorg(url, debug=False):
"""Request the given URL using LIGO.ORG SAML authentication.
This requires an active Kerberos ticket for the user, to get one:
$ kinit [email protected]
Parameters
----------
url : `str`
URL path for request
debug : `bool`, optional
Query in verbose debuggin mode, default `False`
Returns
-------
urllib.addinfourl
file object containing output data, use .read() to extract
text content
"""
# set debug to 1 to see all HTTP(s) traffic
debug = int(debug)
# need an instance of HTTPS handler to do HTTPS
httpsHandler = urllib2.HTTPSHandler(debuglevel = debug)
# use a cookie jar to store session cookies
jar = cookielib.LWPCookieJar()
# if a cookier jar exists open it and read the cookies
# and make sure it has the right permissions
if os.path.exists(COOKIE_JAR):
os.chmod(COOKIE_JAR, stat.S_IRUSR | stat.S_IWUSR)
# set ignore_discard so that session cookies are preserved
jar.load(COOKIE_JAR, ignore_discard = True)
# create a cookie handler from the cookier jar
cookie_handler = urllib2.HTTPCookieProcessor(jar)
# need a redirect handler to follow redirects
redirectHandler = urllib2.HTTPRedirectHandler()
# need an auth handler that can do negotiation.
# input parameter is the Kerberos service principal.
auth_handler = HTTPNegotiateAuthHandler(service_principal='HTTP@%s'
% (LIGO_LOGIN_URL))
# create the opener.
opener = urllib2.build_opener(auth_handler, cookie_handler, httpsHandler,
redirectHandler)
# prepare the request object
request = urllib2.Request(url)
# use the opener and the request object to make the request.
response = opener.open(request)
# save the session cookies to a file so that they can
# be used again without having to authenticate
jar.save(COOKIE_JAR, ignore_discard=True)
return response | 0.002882 |
def drop_everything(engine):
'''Droping all tables and custom types (enums) using `engine`.
Taken from http://www.sqlalchemy.org/trac/wiki/UsageRecipes/DropEverything
This method is more robust than `metadata.drop_all(engine)`. B.c. when
you change a table or a type name, `drop_all` does not consider the old one.
Thus, DB holds some unused entities.'''
conn = engine.connect()
# the transaction only applies if the DB supports
# transactional DDL, i.e. Postgresql, MS SQL Server
trans = conn.begin()
inspector = reflection.Inspector.from_engine(engine)
metadata = MetaData()
tbs = []
all_fks = []
types = []
for table_name in inspector.get_table_names():
fks = []
for fk in inspector.get_foreign_keys(table_name):
if not fk['name']:
continue
fks.append(ForeignKeyConstraint((), (), name=fk['name']))
for col in inspector.get_columns(table_name):
if isinstance(col['type'], SchemaType):
types.append(col['type'])
t = Table(table_name, metadata, *fks)
tbs.append(t)
all_fks.extend(fks)
try:
for fkc in all_fks:
conn.execute(DropConstraint(fkc))
for table in tbs:
conn.execute(DropTable(table))
for custom_type in types:
custom_type.drop(conn)
trans.commit()
except: # pragma: no cover
trans.rollback()
raise | 0.00271 |
def main():
"""
The main function of the Andes command-line tool.
This function executes the following workflow:
* Parse the command line inputs
* Show the tool preamble
* Output the requested helps, edit/save configs or remove outputs. Exit
the main program if any of the above is executed
* Process the input files and call ``main.run()`` using single- or
multi-processing
* Show the execution time and exit
Returns
-------
None
"""
t0, s = elapsed()
# parser command line arguments
args = vars(cli_new())
# configure stream handler verbose level
config_logger(log_path=misc.get_log_dir(), stream_level=args['verbose'])
# show preamble
preamble()
logger.debug('command line arguments:')
logger.debug(pprint.pformat(args))
if andeshelp(**args) or search(**args) or edit_conf(**args) or remove_output(**args) \
or save_config(**args):
return
# process input files
if len(args['filename']) == 0:
logger.info('error: no input file. Try \'andes -h\' for help.')
# preprocess cli args
path = args.get('input_path', os.getcwd())
ncpu = args['ncpu']
if ncpu == 0 or ncpu > os.cpu_count():
ncpu = os.cpu_count()
cases = []
for file in args['filename']:
# use absolute path for cases which will be respected by FileMan
full_paths = os.path.abspath(os.path.join(path, file))
found = glob.glob(full_paths)
if len(found) == 0:
logger.info('error: file {} does not exist.'.format(full_paths))
else:
cases += found
# remove folders and make cases unique
cases = list(set(cases))
valid_cases = []
for case in cases:
if os.path.isfile(case):
valid_cases.append(case)
logger.debug('Found files: ' + pprint.pformat(valid_cases))
if len(valid_cases) <= 0:
pass
elif len(valid_cases) == 1:
run(valid_cases[0], **args)
else:
# set verbose level for multi processing
logger.info('Processing {} jobs on {} CPUs'.format(len(valid_cases), ncpu))
logger.handlers[1].setLevel(logging.WARNING)
# start processes
jobs = []
for idx, file in enumerate(valid_cases):
args['pid'] = idx
job = Process(
name='Process {0:d}'.format(idx),
target=run,
args=(file, ),
kwargs=args)
jobs.append(job)
job.start()
start_msg = 'Process {:d} <{:s}> started.'.format(idx, file)
print(start_msg)
logger.debug(start_msg)
if (idx % ncpu == ncpu - 1) or (idx == len(valid_cases) - 1):
sleep(0.1)
for job in jobs:
job.join()
jobs = []
# restore command line output when all jobs are done
logger.handlers[1].setLevel(logging.INFO)
t0, s0 = elapsed(t0)
if len(valid_cases) == 1:
logger.info('-> Single process finished in {:s}.'.format(s0))
elif len(valid_cases) >= 2:
logger.info('-> Multiple processes finished in {:s}.'.format(s0))
return | 0.000925 |
def interpret_waveform(fileContent, RelativeChannelNo):
"""
Extracts the data for just 1 channel and computes the corresponding
time array (in seconds) starting from 0.
Important Note: RelativeChannelNo is NOT the channel number on the Saleae data logger
it is the relative number of the channel that was saved. E.g. if you
save channels 3, 7 and 10, the corresponding RelativeChannelNos would
be 0, 1 and 2.
Parameters
----------
fileContent : bytes
bytes object containing the data from a .bin file exported from
the saleae data logger.
RelativeChannelNo : int
The relative order/position of the channel number in the saved
binary file. See Important Note above!
Returns
-------
time : ndarray
A generated time array corresponding to the data list
Data : list
The data from the relative channel requested
SampleTime : float
The time between samples (in seconds)
"""
(ChannelData, LenOf1Channel,
NumOfChannels, SampleTime) = read_data_from_bytes(fileContent)
if RelativeChannelNo > NumOfChannels-1:
raise ValueError("There are {} channels saved, you attempted to read relative channel number {}. Pick a relative channel number between {} and {}".format(NumOfChannels, RelativeChannelNo, 0, NumOfChannels-1))
data = ChannelData[RelativeChannelNo]
del(ChannelData)
time = _np.arange(0, SampleTime*LenOf1Channel, SampleTime)
return (0,SampleTime*LenOf1Channel,SampleTime), data | 0.007678 |
def to_sympy_matrix(value):
"""
Converts value to a `sympy.Matrix` object, if possible.
Leaves the value as `sympy.Matrix` if it already was
:param value: value to convert
:return:
:rtype: `sympy.Matrix`
"""
if isinstance(value, sympy.Matrix):
return value
try:
return sympy.Matrix(value)
except ValueError as original_exception:
if isinstance(value, list) and len(value) and all([not isinstance(x, list) for x in value]):
# Let's try to convert the contents into a list
# (this is required for 0.7.4 if we pass in a list of strings)
# See `test_creation_of_column_matrix_from_list_of_strings` test
list_of_lists_value = [[x] for x in value]
try:
m = sympy.Matrix(list_of_lists_value)
return m
except Exception:
raise original_exception
else:
raise original_exception | 0.00206 |
def _assert_path_is_rw(self):
"""
Make sure, that `self.path` exists, is directory a readable/writeable.
Raises:
IOError: In case that any of the assumptions failed.
ValueError: In case that `self.path` is not set.
"""
if not self.path:
raise ValueError("`path` argument must be set!")
if not os.path.exists(self.path):
raise IOError("`%s` not found." % self.path)
if not os.path.isdir(self.path):
raise IOError("`%s` is not a directory!" % self.path)
if not os.access(self.path, (os.R_OK or os.W_OK)):
raise IOError(
"Can't access `%s`, please check permissions." % self.path
) | 0.002681 |
def delete_many(self, **kwargs):
""" Delete multiple objects from collection.
First ES is queried, then the results are used to query the DB.
This is done to make sure deleted objects are those filtered
by ES in the 'index' method (so user deletes what he saw).
"""
db_objects = self.get_dbcollection_with_es(**kwargs)
return self.Model._delete_many(db_objects, self.request) | 0.00463 |
def patch_namespaced_service(self, name, namespace, body, **kwargs): # noqa: E501
"""patch_namespaced_service # noqa: E501
partially update the specified Service # noqa: E501
This method makes a synchronous HTTP request by default. To make an
asynchronous HTTP request, please pass async_req=True
>>> thread = api.patch_namespaced_service(name, namespace, body, async_req=True)
>>> result = thread.get()
:param async_req bool
:param str name: name of the Service (required)
:param str namespace: object name and auth scope, such as for teams and projects (required)
:param UNKNOWN_BASE_TYPE body: (required)
:param str pretty: If 'true', then the output is pretty printed.
:param str dry_run: When present, indicates that modifications should not be persisted. An invalid or unrecognized dryRun directive will result in an error response and no further processing of the request. Valid values are: - All: all dry run stages will be processed
:return: V1Service
If the method is called asynchronously,
returns the request thread.
"""
kwargs['_return_http_data_only'] = True
if kwargs.get('async_req'):
return self.patch_namespaced_service_with_http_info(name, namespace, body, **kwargs) # noqa: E501
else:
(data) = self.patch_namespaced_service_with_http_info(name, namespace, body, **kwargs) # noqa: E501
return data | 0.001308 |
def _reprJSON(self):
"""Returns a JSON serializable represenation of a ``Smi`` class
instance. Use :func:`maspy.core.Sai._fromJSON()` to generate a new
``Smi`` instance from the return value.
:returns: a JSON serializable python object
"""
return {'__Smi__': (self.id, self.specfile, self.attributes,
self.params, self.scanListParams, self.scanList,
self.precursorList, self.productList
)
} | 0.003711 |
def list(self, request, *args, **kwargs):
"""
To get a list of supported resources' actions, run **OPTIONS** against
*/api/<resource_url>/* as an authenticated user.
It is possible to filter and order by resource-specific fields, but this filters will be applied only to
resources that support such filtering. For example it is possible to sort resource by ?o=ram, but SugarCRM crms
will ignore this ordering, because they do not support such option.
Filter resources by type or category
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There are two query argument to select resources by their type.
- Specify explicitly list of resource types, for example:
/api/<resource_endpoint>/?resource_type=DigitalOcean.Droplet&resource_type=OpenStack.Instance
- Specify category, one of vms, apps, private_clouds or storages for example:
/api/<resource_endpoint>/?category=vms
Filtering by monitoring fields
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Resources may have SLA attached to it. Example rendering of SLA:
.. code-block:: javascript
"sla": {
"value": 95.0
"agreed_value": 99.0,
"period": "2016-03"
}
You may filter or order resources by SLA. Default period is current year and month.
- Example query for filtering list of resources by actual SLA:
/api/<resource_endpoint>/?actual_sla=90&period=2016-02
- Warning! If resource does not have SLA attached to it, it is not included in ordered response.
Example query for ordering list of resources by actual SLA:
/api/<resource_endpoint>/?o=actual_sla&period=2016-02
Service list is displaying current SLAs for each of the items. By default,
SLA period is set to the current month. To change the period pass it as a query argument:
- ?period=YYYY-MM - return a list with SLAs for a given month
- ?period=YYYY - return a list with SLAs for a given year
In all cases all currently running resources are returned, if SLA for the given period is
not known or not present, it will be shown as **null** in the response.
Resources may have monitoring items attached to it. Example rendering of monitoring items:
.. code-block:: javascript
"monitoring_items": {
"application_state": 1
}
You may filter or order resources by monitoring item.
- Example query for filtering list of resources by installation state:
/api/<resource_endpoint>/?monitoring__installation_state=1
- Warning! If resource does not have monitoring item attached to it, it is not included in ordered response.
Example query for ordering list of resources by installation state:
/api/<resource_endpoint>/?o=monitoring__installation_state
Filtering by tags
^^^^^^^^^^^^^^^^^
Resource may have tags attached to it. Example of tags rendering:
.. code-block:: javascript
"tags": [
"license-os:centos7",
"os-family:linux",
"license-application:postgresql",
"support:premium"
]
Tags filtering:
- ?tag=IaaS - filter by full tag name, using method OR. Can be list.
- ?rtag=os-family:linux - filter by full tag name, using AND method. Can be list.
- ?tag__license-os=centos7 - filter by tags with particular prefix.
Tags ordering:
- ?o=tag__license-os - order by tag with particular prefix. Instances without given tag will not be returned.
"""
return super(ResourceSummaryViewSet, self).list(request, *args, **kwargs) | 0.003904 |
def resize(self, size, disk=None):
"""
Resize the droplet
:param size: a size slug or a `Size` object representing the size to
resize to
:type size: string or `Size`
:param bool disk: Set to `True` for a permanent resize, including
disk changes
:return: an `Action` representing the in-progress operation on the
droplet
:rtype: Action
:raises DOAPIError: if the API endpoint replies with an error
"""
if isinstance(size, Size):
size = size.slug
opts = {"disk": disk} if disk is not None else {}
return self.act(type='resize', size=size, **opts) | 0.002903 |
def find_resources(self, rsrc_type, sort=None, yield_pages=False, **kwargs):
"""Find instances of `rsrc_type` that match the filter in `**kwargs`"""
return rsrc_type.find(self, sort=sort, yield_pages=yield_pages, **kwargs) | 0.012605 |
def make_request(
ins, method, url, stripe_account=None, params=None, headers=None, **kwargs
):
"""
Return a deferred or handle error.
For overriding in various classes.
"""
if txstripe.api_key is None:
raise error.AuthenticationError(
'No API key provided. (HINT: set your API key using '
'"stripe.api_key = <API-KEY>"). You can generate API keys '
'from the Stripe web interface. See https://stripe.com/api '
'for details, or email [email protected] if you have any '
'questions.')
abs_url = '{}{}'.format(txstripe.api_base, url)
ua = {
'lang': 'python',
'publisher': 'lextoumbourou',
'httplib': 'Twisted',
}
headers = headers or {}
headers.update({
'X-Stripe-Client-User-Agent': util.json.dumps(ua),
'User-Agent': 'txstripe',
'Authorization': 'Bearer %s' % (txstripe.api_key,)
})
if stripe_account:
headers['Stripe-Account'] = stripe_account
if txstripe.api_version is not None:
headers['Stripe-Version'] = txstripe.api_version
if method == 'get' or method == 'delete':
data = None
elif method == 'post':
data = {k: v for (k, v) in _api_encode(params)}
params = None
else:
raise error.APIConnectionError(
'Unrecognized HTTP method %r. This may indicate a bug in the '
'Stripe bindings.' % (method,))
resp = yield treq.request(
method, abs_url, params=params, data=data, headers=headers, **kwargs)
if resp.code >= 400:
yield util.handle_api_error(resp)
return
body = yield resp.json()
defer.returnValue(
convert_to_stripe_object(
body, txstripe.api_key, stripe_account)) | 0.000555 |
def count_tokens(tokens, to_lower=False, counter=None):
r"""Counts tokens in the specified string.
For token_delim='(td)' and seq_delim='(sd)', a specified string of two sequences of tokens may
look like::
(td)token1(td)token2(td)token3(td)(sd)(td)token4(td)token5(td)(sd)
Parameters
----------
tokens : list of str
A source list of tokens.
to_lower : bool, default False
Whether to convert the source source_str to the lower case.
counter : Counter or None, default None
The Counter instance to be updated with the counts of `tokens`. If
None, return a new Counter instance counting tokens from `tokens`.
Returns
-------
The `counter` Counter instance after being updated with the token
counts of `source_str`. If `counter` is None, return a new Counter
instance counting tokens from `source_str`.
Examples
--------
>>> import re
>>> source_str = ' Life is great ! \n life is good . \n'
>>> source_str_tokens = filter(None, re.split(' |\n', source_str))
>>> gluonnlp.data.count_tokens(source_str_tokens)
Counter({'is': 2, 'Life': 1, 'great': 1, '!': 1, 'life': 1, 'good': 1, '.': 1})
"""
if to_lower:
tokens = [t.lower() for t in tokens]
if counter is None:
return Counter(tokens)
else:
counter.update(tokens)
return counter | 0.002141 |
def build_ebound_table(self):
""" Build and return an EBOUNDS table with the encapsulated data.
"""
cols = [
Column(name="E_MIN", dtype=float, data=self._emin, unit='MeV'),
Column(name="E_MAX", dtype=float, data=self._emax, unit='MeV'),
Column(name="E_REF", dtype=float, data=self._eref, unit='MeV'),
Column(name="REF_DNDE", dtype=float, data=self._ref_dnde,
unit='ph / (MeV cm2 s)'),
Column(name="REF_FLUX", dtype=float, data=self._ref_flux,
unit='ph / (cm2 s)'),
Column(name="REF_EFLUX", dtype=float, data=self._ref_eflux,
unit='MeV / (cm2 s)'),
Column(name="REF_NPRED", dtype=float, data=self._ref_npred,
unit='ph')
]
tab = Table(data=cols)
return tab | 0.00232 |
def columnForCell(self, cell):
"""
Returns the index of the column that a cell belongs to.
:param cell: (int) Cell index
:returns: (int) Column index
"""
self._validateCell(cell)
return int(cell / self.cellsPerColumn) | 0.004032 |
def multi_replace(instr, search_list=[], repl_list=None):
"""
Does a string replace with a list of search and replacements
TODO: rename
"""
repl_list = [''] * len(search_list) if repl_list is None else repl_list
for ser, repl in zip(search_list, repl_list):
instr = instr.replace(ser, repl)
return instr | 0.002941 |
def Read(self, expected_ids, read_data=True):
"""Read ADB messages and return FileSync packets."""
if self.send_idx:
self._Flush()
# Read one filesync packet off the recv buffer.
header_data = self._ReadBuffered(self.recv_header_len)
header = struct.unpack(self.recv_header_format, header_data)
# Header is (ID, ...).
command_id = self.wire_to_id[header[0]]
if command_id not in expected_ids:
if command_id == b'FAIL':
reason = ''
if self.recv_buffer:
reason = self.recv_buffer.decode('utf-8', errors='ignore')
raise usb_exceptions.AdbCommandFailureException('Command failed: {}'.format(reason))
raise adb_protocol.InvalidResponseError(
'Expected one of %s, got %s' % (expected_ids, command_id))
if not read_data:
return command_id, header[1:]
# Header is (ID, ..., size).
size = header[-1]
data = self._ReadBuffered(size)
return command_id, header[1:-1], data | 0.002727 |
def find(self, nameFilter=None, typeFilter=None, enabledFilter=None, serviceId=None):
"""
Gets the list of Historian connectors, they are used to configure the Watson IoT Platform to store IoT data in compatible services.
Parameters:
- nameFilter(string) - Filter the results by the specified name
- typeFilter(string) - Filter the results by the specified type, Available values : cloudant, eventstreams
- enabledFilter(boolean) - Filter the results by the enabled flag
- serviceId(string) - Filter the results by the service id
- limit(number) - Max number of results returned, defaults 25
- bookmark(string) - used for paging through results
Throws APIException on failure.
"""
queryParms = {}
if nameFilter:
queryParms["name"] = nameFilter
if typeFilter:
queryParms["type"] = typeFilter
if enabledFilter:
queryParms["enabled"] = enabledFilter
if serviceId:
queryParms["serviceId"] = serviceId
return IterableConnectorList(self._apiClient, filters=queryParms) | 0.008914 |
def user_exists(self,
user,
note=None,
loglevel=logging.DEBUG):
"""Returns true if the specified username exists.
@param user: username to check for
@param note: See send()
@type user: string
@rtype: boolean
"""
shutit = self.shutit
shutit.handle_note(note)
exists = False
if user == '':
return exists
# v the space is intentional, to avoid polluting bash history.
# The quotes before XIST are deliberate, to prevent the command from matching the expect.
ret = self.send(ShutItSendSpec(self,
send=' command id %s && echo E""XIST || echo N""XIST' % user,
expect=['NXIST', 'EXIST'],
echo=False,
loglevel=loglevel,
ignore_background=True))
if ret:
exists = True
# sync with the prompt
self.expect(self.default_expect)
shutit.handle_note_after(note=note)
return exists | 0.040797 |
def user_method(user_event):
"""Decorator of the Pdb user_* methods that controls the RemoteSocket."""
def wrapper(self, *args):
stdin = self.stdin
is_sock = isinstance(stdin, RemoteSocket)
try:
try:
if is_sock and not stdin.connect():
return
return user_event(self, *args)
except Exception:
self.close()
raise
finally:
if is_sock and stdin.closed():
self.do_detach(None)
return wrapper | 0.001767 |
def _refresh_state(self):
""" Refresh the job info. """
# DataFlow's DataflowPipelineResult does not refresh state, so we have to do it ourselves
# as a workaround.
# TODO(Change this to use runner_results.state once it refreshes itself)
dataflow_internal_job = (
self._runner_results._runner.dataflow_client.get_job(self._runner_results.job_id()))
self._is_complete = str(dataflow_internal_job.currentState) in ['JOB_STATE_STOPPED',
'JOB_STATE_DONE',
'JOB_STATE_FAILED',
'JOB_STATE_CANCELLED']
self._fatal_error = getattr(self._runner_results._runner, 'last_error_msg', None)
# Sometimes Dataflow does not populate runner.last_error_msg even if the job fails.
if self._fatal_error is None and self._runner_results.state == 'FAILED':
self._fatal_error = 'FAILED' | 0.009833 |
def load(self):
"""Load the library."""
if not git:
raise EnvironmentError(MISSING_GIT_ERROR)
if os.path.exists(self.path):
if not config.CACHE_DISABLE:
return
shutil.rmtree(self.path, ignore_errors=True)
with files.remove_on_exception(self.path):
url = self.GIT_URL.format(**vars(self))
repo = git.Repo.clone_from(
url=url, to_path=self.path, b=self.branch)
if self.commit:
repo.head.reset(self.commit, index=True, working_tree=True) | 0.003401 |
def load_config(self):
"""
Used to dynamically load variables from the Flask application config
into the blueprint. To tell this blueprint to pull configuration from
the app, just set key-value pairs in the ``from_config`` dict. Keys
are the name of the local variable to set on the blueprint object,
and values are the variable name in the Flask application config.
For example:
blueprint.from_config["session.client_id"] = "GITHUB_OAUTH_CLIENT_ID"
"""
for local_var, config_var in self.from_config.items():
value = flask.current_app.config.get(config_var)
if value:
if "." in local_var:
# this is a dotpath -- needs special handling
body, tail = local_var.rsplit(".", 1)
obj = getattrd(self, body)
setattr(obj, tail, value)
else:
# just use a normal setattr call
setattr(self, local_var, value) | 0.002836 |
def markers(data, marker, f_tooltip=None, marker_preferred_size=32):
"""
Draw markers
:param data: data access object
:param marker: full filename of the marker image
:param f_tooltip: function to generate a tooltip on mouseover
:param marker_preferred_size: size in pixel for the marker images
"""
from geoplotlib.layers import MarkersLayer
_global_config.layers.append(MarkersLayer(data, marker, f_tooltip, marker_preferred_size)) | 0.004264 |
def calc_refr_sp_wc_v1(self):
"""Calculate refreezing of the water content within the snow layer and
update both the snow layers ice and the water content.
Required control parameters:
|NmbZones|
|ZoneType|
|CFMax|
|CFR|
Required derived parameter:
|TTM|
Required flux sequences:
|TC|
Calculated fluxes sequences:
|Refr|
Required state sequence:
|WC|
Updated state sequence:
|SP|
Basic equations:
:math:`\\frac{dSP}{dt} = + Refr` \n
:math:`\\frac{dWC}{dt} = - Refr` \n
:math:`Refr = min(cfr \\cdot cfmax \\cdot (TTM-TC), WC)`
Examples:
Six zones are initialized with the same threshold
temperature, degree day factor and refreezing coefficient, but
with different zone types and initial states:
>>> from hydpy.models.hland import *
>>> parameterstep('1d')
>>> simulationstep('12h')
>>> nmbzones(6)
>>> zonetype(ILAKE, GLACIER, FIELD, FOREST, FIELD, FIELD)
>>> cfmax(4.0)
>>> cfr(0.1)
>>> derived.ttm = 2.0
>>> states.sp = 2.0
>>> states.wc = 0.0, 1.0, 1.0, 1.0, 0.5, 0.0
Note that the assumed length of the simulation step is only
a half day. Hence the effective value of the degree day
factor is not 4 but 2:
>>> cfmax
cfmax(4.0)
>>> cfmax.values
array([ 2., 2., 2., 2., 2., 2.])
When the actual temperature is equal to the threshold
temperature for melting and refreezing, neither no refreezing
occurs and the states remain unchanged:
>>> fluxes.tc = 2.0
>>> model.calc_refr_sp_wc_v1()
>>> fluxes.refr
refr(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
>>> states.sp
sp(0.0, 2.0, 2.0, 2.0, 2.0, 2.0)
>>> states.wc
wc(0.0, 1.0, 1.0, 1.0, 0.5, 0.0)
The same holds true for an actual temperature higher than the
threshold temperature:
>>> states.sp = 2.0
>>> states.wc = 0.0, 1.0, 1.0, 1.0, 0.5, 0.0
>>> fluxes.tc = 2.0
>>> model.calc_refr_sp_wc_v1()
>>> fluxes.refr
refr(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
>>> states.sp
sp(0.0, 2.0, 2.0, 2.0, 2.0, 2.0)
>>> states.wc
wc(0.0, 1.0, 1.0, 1.0, 0.5, 0.0)
With an actual temperature 3°C above the threshold temperature,
only melting can occur. Actual melting is consistent with
potential melting, except for the first zone, which is an
internal lake, and the last two zones, for which potential
melting exceeds the available frozen water content of the
snow layer:
>>> states.sp = 2.0
>>> states.wc = 0.0, 1.0, 1.0, 1.0, 0.5, 0.0
>>> fluxes.tc = 5.0
>>> model.calc_refr_sp_wc_v1()
>>> fluxes.refr
refr(0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
>>> states.sp
sp(0.0, 2.0, 2.0, 2.0, 2.0, 2.0)
>>> states.wc
wc(0.0, 1.0, 1.0, 1.0, 0.5, 0.0)
With an actual temperature 3°C below the threshold temperature,
refreezing can occur. Actual refreezing is consistent with
potential refreezing, except for the first zone, which is an
internal lake, and the last two zones, for which potential
refreezing exceeds the available liquid water content of the
snow layer:
>>> states.sp = 2.0
>>> states.wc = 0.0, 1.0, 1.0, 1.0, 0.5, 0.0
>>> fluxes.tc = -1.0
>>> model.calc_refr_sp_wc_v1()
>>> fluxes.refr
refr(0.0, 0.6, 0.6, 0.6, 0.5, 0.0)
>>> states.sp
sp(0.0, 2.6, 2.6, 2.6, 2.5, 2.0)
>>> states.wc
wc(0.0, 0.4, 0.4, 0.4, 0.0, 0.0)
"""
con = self.parameters.control.fastaccess
der = self.parameters.derived.fastaccess
flu = self.sequences.fluxes.fastaccess
sta = self.sequences.states.fastaccess
for k in range(con.nmbzones):
if con.zonetype[k] != ILAKE:
if flu.tc[k] < der.ttm[k]:
flu.refr[k] = min(con.cfr[k]*con.cfmax[k] *
(der.ttm[k]-flu.tc[k]), sta.wc[k])
sta.sp[k] += flu.refr[k]
sta.wc[k] -= flu.refr[k]
else:
flu.refr[k] = 0.
else:
flu.refr[k] = 0.
sta.wc[k] = 0.
sta.sp[k] = 0. | 0.000226 |
def fetch(self, ui_version=values.unset):
"""
Fetch a ConfigurationInstance
:param unicode ui_version: Pinned UI version
:returns: Fetched ConfigurationInstance
:rtype: twilio.rest.flex_api.v1.configuration.ConfigurationInstance
"""
return self._proxy.fetch(ui_version=ui_version, ) | 0.005882 |
def find_coverage(self, zoom):
"""
Returns the bounding box (minx, miny, maxx, maxy) of an adjacent
group of tiles at this zoom level.
"""
# Find a group of adjacent available tiles at this zoom level
rows = self._query('''SELECT tile_column, tile_row FROM tiles
WHERE zoom_level=?
ORDER BY tile_column, tile_row;''', (zoom,))
t = rows.fetchone()
xmin, ymin = t
previous = t
while t and t[0] - previous[0] <= 1:
# adjacent, go on
previous = t
t = rows.fetchone()
xmax, ymax = previous
# Transform (xmin, ymin) (xmax, ymax) to pixels
S = self.tilesize
bottomleft = (xmin * S, (ymax + 1) * S)
topright = ((xmax + 1) * S, ymin * S)
# Convert center to (lon, lat)
proj = GoogleProjection(S, [zoom]) # WGS84
return proj.unproject_pixels(bottomleft, zoom) + proj.unproject_pixels(topright, zoom) | 0.002913 |
def krylovMethod(self,tol=1e-8):
"""
We obtain ``pi`` by using the :func:``gmres`` solver for the system of linear equations.
It searches in Krylov subspace for a vector with minimal residual. The result is stored in the class attribute ``pi``.
Example
-------
>>> P = np.array([[0.5,0.5],[0.6,0.4]])
>>> mc = markovChain(P)
>>> mc.krylovMethod()
>>> print(mc.pi)
[ 0.54545455 0.45454545]
Parameters
----------
tol : float, optional(default=1e-8)
Tolerance level for the precision of the end result. A lower tolerance leads to more accurate estimate of ``pi``.
Remarks
-------
For large state spaces, this method may not always give a solution.
Code due to http://stackoverflow.com/questions/21308848/
"""
P = self.getIrreducibleTransitionMatrix()
#if P consists of one element, then set self.pi = 1.0
if P.shape == (1, 1):
self.pi = np.array([1.0])
return
size = P.shape[0]
dP = P - eye(size)
#Replace the first equation by the normalizing condition.
A = vstack([np.ones(size), dP.T[1:,:]]).tocsr()
rhs = np.zeros((size,))
rhs[0] = 1
pi, info = gmres(A, rhs, tol=tol)
if info != 0:
raise RuntimeError("gmres did not converge")
self.pi = pi | 0.018182 |
def extract(zf, content, out_dir='.'):
'''
Extracting a Java 1.6 XNAT ZIP archive in Python.
:param zf: ZipFile object
:type zf: zipfile.ZipFile
:param out_dir: Output directory
:type out_dir: str
'''
previous_header_offset = 0
compensation = Namespace(value=2**32, factor=0)
for i,member in enumerate(zf.infolist()):
'''
Right... so when Java 1.6 produces a Zip filesystem that exceeds 2^32
bytes, the Central Directory local file header offsets after the 2^32
byte appear to overflow. The Python zipfile module then adds any
unexpected bytes to each header offset thereafter. This attempts to fix
that. My guess is that this comment might make perfect sense now, but
will make aboslutely no sense in about a year.
'''
# undo concat padding added from zipfile.py:819
if i == 0:
concat = member.header_offset
member.header_offset -= concat
# if a header offset moves backward, add 2^32 bytes * factor
if previous_header_offset > member.header_offset:
compensation.factor += 1
previous_header_offset = member.header_offset
member.header_offset += compensation.value * compensation.factor
# read the archive member into a bytes file-like object
try:
bio = io.BytesIO(zf.read(member.filename))
except zipfile.BadZipfile:
with tf.NamedTemporaryFile(dir=out_dir, prefix="xnat",
suffix=".zip", delete=False) as fo:
content.seek(0)
fo.write(content.read())
raise DownloadError("bad zip file, written to %s" % fo.name)
# xnat archives may contain files that are gzipped without the .gz
if not member.filename.endswith(".gz"):
try:
gz = gzip.GzipFile(fileobj=bio, mode="rb")
gz.read()
bio = gz
except IOError:
pass
# write the file out to the filesystem
bio.seek(0)
f = os.path.join(out_dir, os.path.basename(member.filename))
with open(f, "wb") as fo:
fo.write(bio.read()) | 0.003142 |
def proximal(self):
"""Return the `proximal factory` of the functional.
The proximal operator separates over separable sums.
Returns
-------
proximal : combine_proximals
"""
proximals = [func.proximal for func in self.functionals]
return combine_proximals(*proximals) | 0.006006 |
def handle_keypress(self, k):
"""Last resort for keypresses."""
if k == "esc":
self.save_file()
raise urwid.ExitMainLoop()
elif k == "delete":
# delete at end of line
self.walker.combine_focus_with_next()
elif k == "backspace":
# backspace at beginning of line
self.walker.combine_focus_with_prev()
elif k == "enter":
# start new line
self.walker.split_focus()
# move the cursor to the new line and reset pref_col
self.view.keypress(size, "down")
self.view.keypress(size, "home") | 0.003072 |
def log_create(self, instance, **kwargs):
"""
Helper method to create a new log entry. This method automatically populates some fields when no explicit value
is given.
:param instance: The model instance to log a change for.
:type instance: Model
:param kwargs: Field overrides for the :py:class:`LogEntry` object.
:return: The new log entry or `None` if there were no changes.
:rtype: LogEntry
"""
changes = kwargs.get('changes', None)
pk = self._get_pk_value(instance)
if changes is not None:
kwargs.setdefault('content_type', ContentType.objects.get_for_model(instance))
kwargs.setdefault('object_pk', pk)
kwargs.setdefault('object_repr', smart_text(instance))
if isinstance(pk, integer_types):
kwargs.setdefault('object_id', pk)
get_additional_data = getattr(instance, 'get_additional_data', None)
if callable(get_additional_data):
kwargs.setdefault('additional_data', get_additional_data())
# Delete log entries with the same pk as a newly created model. This should only be necessary when an pk is
# used twice.
if kwargs.get('action', None) is LogEntry.Action.CREATE:
if kwargs.get('object_id', None) is not None and self.filter(content_type=kwargs.get('content_type'), object_id=kwargs.get('object_id')).exists():
self.filter(content_type=kwargs.get('content_type'), object_id=kwargs.get('object_id')).delete()
else:
self.filter(content_type=kwargs.get('content_type'), object_pk=kwargs.get('object_pk', '')).delete()
# save LogEntry to same database instance is using
db = instance._state.db
return self.create(**kwargs) if db is None or db == '' else self.using(db).create(**kwargs)
return None | 0.005099 |
def run(self, train_set, valid_set=None, test_set=None, train_size=None, epoch_controllers=None):
"""
Run until the end.
:param epoch_controllers: deprecated
"""
epoch_controllers = epoch_controllers if epoch_controllers else []
epoch_controllers += self._epoch_controllers
if isinstance(train_set, Dataset):
dataset = train_set
train_set = dataset.train_set()
valid_set = dataset.valid_set()
test_set = dataset.test_set()
train_size = dataset.train_size()
self._current_train_set = train_set
self._current_valid_set = valid_set
self._current_test_set = test_set
if epoch_controllers:
for controller in epoch_controllers:
controller.bind(self)
timer = Timer()
for _ in self.train(train_set, valid_set=valid_set, test_set=test_set, train_size=train_size):
if epoch_controllers:
for controller in epoch_controllers:
controller.invoke()
if self._ended:
break
if self._report_time:
timer.report() | 0.00339 |
def cli(self, prt=sys.stdout):
"""Command-line interface to print specified GO Terms from the DAG source ."""
kws = self.objdoc.get_docargs(prt=None)
print("KWS", kws)
goids = GetGOs().get_goids(kws.get('GO'), kws.get('GO_FILE'), sys.stdout)
if not goids and 'name' in kws:
goids = self.objsub.get_goids(kws['obo'], kws['name'])
self.objsub.prt_goterms(kws['obo'], goids, prt, b_prt=False)
print("Printing {N:6} GO IDs: {GOs}".format(N=len(goids), GOs=goids)) | 0.00759 |
def create_tags(user):
"""Create a tag."""
values = {
'id': utils.gen_uuid(),
'created_at': datetime.datetime.utcnow().isoformat()
}
values.update(schemas.tag.post(flask.request.json))
with flask.g.db_conn.begin():
where_clause = sql.and_(
_TABLE.c.name == values['name'])
query = sql.select([_TABLE.c.id]).where(where_clause)
if flask.g.db_conn.execute(query).fetchone():
raise dci_exc.DCIConflict('Tag already exists', values)
# create the label/value row
query = _TABLE.insert().values(**values)
flask.g.db_conn.execute(query)
result = json.dumps({'tag': values})
return flask.Response(result, 201,
content_type='application/json') | 0.001264 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.