max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
inn/inn_hotels/report/room_discrepancy/room_discrepancy.py
vinhnguyent090/front-desk
4
12797251
<gh_stars>1-10 # Copyright (c) 2013, Core Initiative and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from datetime import datetime def execute(filters=None): columns = [ { 'fieldname': 'date', 'label': 'Date', 'fieldtype': 'Date', }, { 'fieldname': 'room', 'label': 'Room', 'fieldtype': 'Link', 'options': 'Inn Room', }, { 'fieldname': 'type', 'label': 'Type', 'fieldtype': 'Link', 'options': 'Inn Room Type', }, { 'fieldname': 'system_fo', 'label': 'System FO', 'fieldtype': 'Data', }, { 'fieldname': 'actual_hk', 'label': 'Actual HK', 'fieldtype': 'Data', }, ] data = get_data() print(data) return columns, data def get_rooms(): return frappe.db.sql(""" select number as room, room_type as type, room_status as system_fo from `tabInn Room` order by number""", as_dict=True) def get_data(): rooms = get_rooms() now = datetime.date(datetime.now()) for room in rooms: room['date'] = now words = room['system_fo'].split() letters = [word[0] for word in words] room['system_fo'] = "".join(letters) return rooms
2.359375
2
examples/recipes/prax_shake_head.py
pi-top/pi-top-Python-SDK
28
12797252
from time import sleep from pitop import TiltRollHeadController # Create a head controller object head = TiltRollHeadController() # Initialize the servo angles head.roll.target_angle = 0 head.tilt.target_angle = 50 sleep(1) # Nod 6 times at max speed 5 degrees either side of current angle. Blocks program execution until finished. head.nod(times=6, angle=5, speed=100, block=True) # Shake 4 times at half speed 10 degrees either side of current angle. Blocks program execution until finished. head.shake(times=4, angle=10, speed=50, block=True) # Shake and nod at the same time with default speed and angle # Setting nod with block=False ensures the program continues to the next command head.nod(times=6, block=False) head.shake(times=6, block=True)
3.296875
3
python/unit_test/get_data_test.py
aaronlam88/cmpe295
5
12797253
import sys sys.path.insert(0, '../models') from get_data import GetData # from python.ultilities.get_data import GetData import unittest import csv class TestGetData(unittest.TestCase): def test_getAllFeatures1(self): getData = GetData() features = getData.getAllFeatures() self.assertIsNotNone(features) def test_getAllFeatures2(self): getData = GetData(101) features = getData.getAllFeatures() self.assertIsNotNone(features) self.assertEqual(len(features), 100) def test_getAllFeatures3(self): getData = GetData(5) features = getData.getAllFeatures('open', 'close') self.assertIsNotNone(features) self.assertEqual(len(features[0][0]), 2) if __name__ == '__main__': unittest.main()
2.75
3
tests/test_cli.py
wizardsoftheweb/gitflow-easyrelease
0
12797254
# pylint: disable=missing-docstring from __future__ import print_function from mock import patch from gitflow_easyrelease import cli @patch('gitflow_easyrelease.cli_file.ColorOutput') @patch('gitflow_easyrelease.cli_file.Subcommand') @patch('gitflow_easyrelease.cli_file.Application') def test_execution(mock_app, mock_sub, mock_color): mock_color.assert_not_called() mock_sub.assert_not_called() mock_app.assert_not_called() cli() mock_color.assert_called_once() assert 1 <= mock_sub.call_count mock_app.assert_called_once()
2.109375
2
lib/command.py
GrimHacker/hashcatter
2
12797255
<reponame>GrimHacker/hashcatter ''' .1111... | Title: command .10000000000011. .. | Author: <NAME> .00 000... | Email: <EMAIL> 1 01.. | Description: .. | executes a command as a subprocess .. | GrimHacker .. | .. | grimhacker.com .. | @_grimhacker .. | -------------------------------------------------------------------------------- Created on 22 Sep 2013 @author: GrimHacker ''' import logging from subprocess import CalledProcessError from lib.async_subprocess import AsyncPopen, PIPE class Command(): def __init__(self): self.log = logging.getLogger(__name__) def _stdout(self, out): """ print line from stdout of executed command """ for line in out.split("\n"): if line != "": # output anything that isn't a blank line self.log.info("{0}".format(line)) def _stderr(self, err): """ print line from stderr of executed command """ for line in err.split("\n"): if line != "": # output anything that isn't a blank line self.log.warning("{0}".format(line)) def _execute(self, cmd): """ run the specified command as a subprocess """ self.log.debug("running: '{0}'".format(cmd)) try: proc = AsyncPopen(cmd, stdout=PIPE, stderr=PIPE) while proc.poll() is None: # while subprocess hasn't finished out, err = proc.communicate("s") if err is not None: self._stderr(err) if out is not None: self._stdout(out) #line = proc.stdout.readline().strip("\n") #self._stdout(line) # line = proc.stderr.readline().strip("\n") # waits for stderr. #TODO: need to put this in a thread # self._stderr(line) # when we get to here the subprocess has finished running except CalledProcessError, e: self.log.error("{0}: {1}".format(e.errno, e.strerror)) #return "{0}: {1}".format(e.errno, e.strerror)
2.5
2
kontaktmap.py
muellermartin/kontaktmap
0
12797256
import os from flask import Flask, render_template, request, json app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/save', methods=['POST']) def save(): with open('data.json', 'w+') as f: f.write(json.dumps(request.get_json())) return '' @app.route('/load') def load(): result = '{ "markers": [] }' if os.path.isfile('data.json'): with open('data.json', 'r') as f: result = f.read() return json.jsonify(result) if __name__ == '__main__': app.run()
2.796875
3
relaax/common/metrics.py
j0k/relaax
4
12797257
from __future__ import print_function class Metrics(object): def scalar(self, name, y, x=None): raise NotImplementedError
1.90625
2
server/insctructions/aggregator.py
Ashkan-Agc/web-time-tracker
5
12797258
<reponame>Ashkan-Agc/web-time-tracker<gh_stars>1-10 from django.db.models import Sum, Avg, Max, Min from TimeTracker.models import Sites from datetime import datetime from .dataFunc import DataInstruct class Aggregators(): def __init__(self, user_id): self.now = datetime.now() self.date = self.now.strftime("%Y-%m-%d") self.userSites = Sites.objects.filter(user_id=user_id).all() self.userSitesDay = self.userSites.filter(date=self.date).all() def get_data(self, query, agg): time = DataInstruct() url = self.userSitesDay.filter(time=query['dailyTime__{}'.format(agg)]) m = "" for i in url: m = i.url data = { "url": m, "agg": time.convert_to_time(query['dailyTime__{}'.format(agg)]) } return data def max(self): q = self.userSitesDay.aggregate(Max('dailyTime')) return self.get_data(q, 'max') def min(self): q = self.userSitesDay.aggregate(Min('dailyTime')) return self.get_data(q, 'min') def average(self): q = self.userSitesDay.aggregate(Avg('dailyTime')) return self.get_data(q, 'avg') def sum(self): q = self.userSitesDay.aggregate(Sum('dailyTime')) return self.get_data(q, 'sum')
2.34375
2
qvi/misc/plot.py
amirdib/quantized-variational-inference
0
12797259
<gh_stars>0 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import colors from scipy.spatial import Voronoi, voronoi_plot_2d from scipy.signal import savgol_filter from qvi.core.experiments import compute_traces_from_multiple_trainning class _TFColor(object): """Enum of colors used in TF docs.""" red = '#F15854' blue = '#5DA5DA' orange = '#FAA43A' green = '#60BD68' pink = '#F17CB0' brown = '#B2912F' purple = '#B276B2' yellow = '#DECF3F' gray = '#4D4D4D' qmc = '#33a02c' rqmc = '#fdae61' qvi = '#2c7bb6' rqvi = '#abd9e9' mc = '#d7191c' def __getitem__(self, i): return [ self.red, self.orange, self.green, self.blue, self.pink, self.brown, self.purple, self.yellow, self.gray, ][i % 9] TFColor = _TFColor() def plot2d(array, ax=None, **kwargs): ''' Two dimension plot of an array. Args: array: 2D array. The right-most index is the dimension index. ax: Matplotlib Axes. If None, one would be created. kwargs: key word argument for the scatter plot. ''' ax = plt.subplot() if ax is None else ax X = array[:, 0] Y = array[:, 1] ax.scatter(X, Y, **kwargs) def plot_experiments(experiments, axes, dataset, limits=None, gradylimit=None, dataset_name=None, vi_type=['all'], abscissa='epochs', num_burnin_steps=0, norm=1, **kwargs): """Plotting MCVI, QVI and RQVI Experiment Args: experiments: Iterable of Experiment instances. axes: Matplotlib Axe. dataset: Dataset Number. Must be comptatible with axes. limites: Python `tuple` for xlim and ylim for each plot in Axes. name: Python `str` name dataset name for title display. name: Iterable of Python `str`: 'All', 'mc', 'QVI', 'RQVI'. abscissa: Python `str`: `time` or `epochs`. num_burnin_steps: Python `int`: Number of step to ignore for display. """ for k, experiment in enumerate(sorted(experiments, key=lambda e: e.optimizer_params['learning_rate'])): line = 2*dataset elboax = axes[line, k] gradax = axes[line+1, k] qmc_ls = 'x' rqmc_ls = 'v' qvi_ls = '' rqvi_ls = '.' mc_ls = '^' every = 70 if 'all' in vi_type or 'rqvi' in vi_type: plot(elboax, gradax, experiment.rqvitraces, abscissa=abscissa,marker=rqvi_ls,markevery=every, name='RQVI', log_scale=False, c=TFColor.rqvi, num_burnin_steps=num_burnin_steps, norm=norm,**kwargs) if 'all' in vi_type or 'qmc' in vi_type: plot(elboax, gradax, experiment.qmcvitraces, abscissa=abscissa,marker=qmc_ls,markevery=every, name='QMCVI', log_scale=False, c=TFColor.qmc,num_burnin_steps=num_burnin_steps, gradaxalpha=.6, norm=norm,**kwargs) if 'all' in vi_type or 'rqmc' in vi_type: plot_multiple_traces(elboax, gradax, experiment.rqmcvitraces, color=TFColor.rqmc,marker=rqmc_ls,markevery=every, abscissa=abscissa, name='RQMC multiple', log_scale=True, num_burnin_steps=num_burnin_steps, norm=norm,**kwargs) if 'all' in vi_type or 'qvi' in vi_type: plot(elboax, gradax, experiment.qvitraces, abscissa=abscissa,marker=qvi_ls,markevery=every, name='QVI', log_scale=False, c=TFColor.qvi, num_burnin_steps=num_burnin_steps,gradaxalpha=.6, norm=norm,**kwargs) if 'all' in vi_type or 'mc' in vi_type: plot_multiple_traces(elboax, gradax, experiment.mcvitraces,color=TFColor.red,marker=mc_ls,markevery=every, abscissa=abscissa, name='MC VI Multiple', log_scale=True, num_burnin_steps=num_burnin_steps, norm=norm,**kwargs) elboax.set_xticks(ticks=[]) if abscissa == 'time': xlabel = 'time(s)' elif abscissa == 'epochs': xlabel = 'iterations' xlabel = None else: xlabel = None gradax.set_xlabel(xlabel) elboax.set_yscale('symlog') gradax.set_yscale('symlog') if limits is not None: xlim, ylim = limits elboax.set_xlim(xlim) gradax.set_xlim(xlim) elboax.set_ylim(ylim) if gradylimit is not None: xlim, _ = limits gradax.set_xlim(xlim) gradax.set_ylim(*gradylimit) if k != 0: gradax.set_yticks(ticks=[]) elboax.set_yticks(ticks=[]) gradax.tick_params(axis=u'y', which=u'both', length=0) elboax.tick_params(axis=u'both', which=u'both', length=0) if k == 0: elboax.set_ylabel('ELBO') gradax.set_ylabel(r'$\mathbb{E}|g|_{2}$') elboax.set_title('{}'.format( dataset_name) + r'$(\alpha=${:.0e})'.format(experiment.optimizer_params['learning_rate'])) def plot(elboax, gradax, trace, abscissa='time', name='', log_scale=False, c=None, num_burnin_steps=0, alpha=1, gradaxalpha=1,norm=1, **kwargs): loss, timestamps, grads = trace if abscissa == 'time': x = timestamps - timestamps[num_burnin_steps] elif abscissa == 'epochs': x = np.arange(0, len(loss)) grads = tf.reduce_sum(tf.square(grads), axis=-1)/norm if log_scale is True: grads = tf.math.log(grads) loss = tf.math.log(loss) elboax.plot(x[num_burnin_steps:], - loss[num_burnin_steps:], c=c, label=name, alpha=alpha,**kwargs) gradax.plot(x[num_burnin_steps:], grads[num_burnin_steps:], c=c, label=name, alpha=gradaxalpha,**kwargs) def plot_multiple_traces(elboax, gradax, traces, abscissa='time', name='', log_scale=False, num_burnin_steps=0,color='red', norm=1,**kwargs): losses, timestamps, grads = compute_traces_from_multiple_trainning(traces) if abscissa == 'time': x = timestamps - timestamps[num_burnin_steps] elif abscissa == 'epochs': x = np.arange(0, len(losses)) mean_var_ts(ts=losses[num_burnin_steps:], x=x[num_burnin_steps:], ax=elboax, label='MCVI', log_scale=log_scale, coeff=-1, color=color, norm=1,**kwargs) mean_var_ts(ts=grads[num_burnin_steps:], x=x[num_burnin_steps:], ax=gradax, label='MCVI', log_scale=log_scale,color=color,norm=norm,**kwargs) def mean_var_ts(ts, x, ax, label=None, log_scale=False,color='red', coeff=1, norm=1, lw=.7,**kwargs): window_length_mean = 51 window_length_var = 51 mean = tf.reduce_mean(ts/norm, axis=-1) variance = tf.math.reduce_std(ts/norm, axis=-1) smoothed_mean = savgol_filter(mean, window_length_mean, 2) smoothed_variance = savgol_filter(variance, window_length_var, 3) import pdb #pdb.set_trace() edgecolor = '#CC4F1B' alpha = .6 if log_scale is True: logmean = tf.math.log(smoothed_mean) logvariance = smoothed_variance/smoothed_mean ax.fill_between(x, coeff*tf.math.exp(logmean-logvariance), coeff*tf.math.exp(logmean+logvariance), alpha=alpha, edgecolor=edgecolor, facecolor=color) ax.plot(x, coeff*smoothed_mean, c=color, label=label, lw=lw,**kwargs) else: ax.plot(x, coeff*smoothed_mean, c=color, label=label, lw=lw,**kwargs) ax.fill_between(x, coeff*smoothed_mean-smoothed_variance, coeff*smoothed_mean+smoothed_variance, alpha=alpha, edgecolor=edgecolor, facecolor=color) def scatter_plot_voronoi(qdist,n, ax, title=''): q_samples = qdist.sample(n) speed = qdist.weights minima = min(speed) maxima = max(speed) norm = colors.Normalize(vmin=minima, vmax=maxima, clip=True) mapper = cm.ScalarMappable(norm=norm, cmap=cm.Reds) vor = Voronoi(q_samples.numpy()) voronoi_plot_2d(vor, show_points=False, show_vertices=False, s=1,ax=ax) for r in range(len(vor.point_region)): if r == 12: pass else: region = vor.regions[vor.point_region[r]] if not -1 in region: polygon = [vor.vertices[i] for i in region] plt.fill(*zip(*polygon), color=mapper.to_rgba(speed[r])) ax.plot(q_samples[:,0], q_samples[:,1], 'ko', markersize=2) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.title.set_text(title) def plot_heatmap_2d(dist, xmin=-4.0, xmax=4.0, ymin=-4.0, ymax=4.0, mesh_count=1000, name=None): plt.figure() x = tf.linspace(xmin, xmax, mesh_count) y = tf.linspace(ymin, ymax, mesh_count) X, Y = tf.meshgrid(x, y) concatenated_mesh_coordinates = tf.transpose(tf.stack([tf.reshape(Y, [-1]), tf.reshape(X, [-1])])) prob = dist.prob(concatenated_mesh_coordinates) #plt.hexbin(concatenated_mesh_coordinates[:,0], concatenated_mesh_coordinates[:,1], C=prob, cmap='rainbow') prob = prob.numpy() plt.imshow(tf.transpose(tf.reshape(prob, (mesh_count, mesh_count))), origin="lower") plt.xticks([0, mesh_count * 0.25, mesh_count * 0.5, mesh_count * 0.75, mesh_count], [xmin, xmin/2, 0, xmax/2, xmax]) plt.yticks([0, mesh_count * 0.25, mesh_count * 0.5, mesh_count * 0.75, mesh_count], [ymin, ymin/2, 0, ymax/2, ymax]) if name: plt.savefig(name + ".png", format="png")
2.296875
2
keychain/keychain_urls.py
osgee/keychainserver
2
12797260
<reponame>osgee/keychainserver from django.conf.urls import url, include from keychain import keychain_client_urls from keychain import keychain_web_urls from keychain.views import appview app_name = 'keychain' urlpatterns = [ url(r'^web/', include(keychain_web_urls)), url(r'^client/', include(keychain_client_urls)), url(r'^app/$', appview.ListView.as_view(), name='app_list'), url(r'^app/signup/$', appview.signup, name='app_signup'), url(r'^app/service/(?P<app_id>\w{32})/$', appview.service, name='app_service'), url(r'^app/service/(?P<app_id>\w{32})/(?P<service_id>\w{32})/$', appview.query, name='service_query'), ]
1.960938
2
tools/fake_server.py
uActor/uActor
1
12797261
<filename>tools/fake_server.py import socket import argparse import struct import msgpack parser = argparse.ArgumentParser() parser.add_argument("host") parser.add_argument("port", type=int) parser.add_argument("node_id") arguments = parser.parse_args() with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) s.bind((arguments.host, arguments.port)) s.listen() connection, remote = s.accept() print(remote) with connection: sub_message = {} sub_message["sender_node_id"] = arguments.node_id sub_message["sender_actor_type"] = "test_actor" sub_message["sender_instance_id"] = "1" sub_message["type"] = "subscription_update" sub_message["subscription_node_id"] = arguments.node_id sub_msg = msgpack.packb(sub_message) connection.send(struct.pack("!i", len(sub_msg))) connection.send(sub_msg) sub_message_size_data = connection.recv(4, socket.MsgFlag.MSG_WAITALL) sub_message_size = struct.unpack("!i", sub_message_size_data)[0] sub_message_data = connection.recv(sub_message_size) sub_message = msgpack.unpackb(sub_message_data, raw=False) print(sub_message) assert "subscription_node_id" in sub_message spawn_message = {} spawn_message["sender_node_id"] = arguments.node_id spawn_message["sender_actor_type"] = "test_actor" spawn_message["spawn_node_id"] = sub_message["subscription_node_id"] spawn_message["spawn_actor_type"] = "remotely_spawned_actor" spawn_message["spawn_instance_id"] = arguments.node_id spawn_message["spawn_code"] = f""" function receive(message) print(message.sender_node_id.."."..message.sender_actor_type.."."..message.sender_instance_id.." -> "..node_id.."."..actor_type.."."..instance_id); if(message["type"] == "init" or message["type"] == "periodic_timer") then send({{node_id="{arguments.node_id}", actor_type="test_actor", instance_id="1", message="ping"}}); delayed_publish({{node_id=node_id, actor_type=actor_type, instance_id=instance_id, type="periodic_timer"}}, 5000); end if(message["type"] == "init") then delayed_publish({{node_id=node_id, actor_type=actor_type, instance_id=instance_id, type="exit"}}, 20000); end if(message["type"] == "exit") then send({{node_id="{arguments.node_id}", actor_type="test_actor", instance_id="1", message="goodbye"}}); end end""" spawn_message["node_id"] = sub_message["subscription_node_id"] spawn_message["instance_id"] = "1" spawn_message["actor_type"] = "lua_runtime" spawn_msg = msgpack.packb(spawn_message) connection.send(struct.pack("!i", len(spawn_msg))) connection.send(spawn_msg) while True: res = connection.recv(4, socket.MsgFlag.MSG_WAITALL) if not res: break size = struct.unpack("!i", res)[0] data = connection.recv(size) if not data: break message = msgpack.unpackb(data, raw=False) print(message)
2.328125
2
tests/schema/test_visitor.py
mabrains/ALIGN-public
119
12797262
import pytest from align.schema.types import BaseModel, Optional, List, Dict from align.schema.visitor import Visitor, Transformer, cache @pytest.fixture def dummy(): class DummyModel(BaseModel): arg1: str arg2: Optional[str] arg3: List[str] arg4: List[Optional[str]] arg5: Dict[str, str] arg6: Dict[str, Optional[str]] arg7: "Optional[DummyModel]" arg8: "Optional[List[DummyModel]]" DummyModel.update_forward_refs() base = DummyModel( arg1 = 'arg1', arg3 = ['arg3_1', 'arg3_2'], arg4 = [], arg5 = {'arg5_k': 'arg5_v'}, arg6 = {'arg6_k': None} ) dummy = DummyModel( arg1 = 'arg1', arg3 = ['arg3_1', 'arg3_2'], arg4 = [], arg5 = {'arg5_k': 'arg5_v'}, arg6 = {'arg6_k': None}, arg7 = base, arg8 = [base, base] ) return dummy def test_visitor_no_output(dummy): assert Visitor().visit(dummy) == [] def test_visitor_raw_output(dummy): class StrValVisitor(Visitor): def visit_str(self, node): return node assert StrValVisitor().visit(dummy) == [ 'arg1', 'arg3_1', 'arg3_2', 'arg5_v', 'arg1', 'arg3_1', 'arg3_2', 'arg5_v', 'arg1', 'arg3_1', 'arg3_2', 'arg5_v', 'arg1', 'arg3_1', 'arg3_2', 'arg5_v', ] def test_visitor_processed_output(dummy): class DummyCounter(Visitor): '''Simply counts the number of times the dummy class is encountered''' def visit_DummyModel(self, node): return sum(self.generic_visit(node)) + 1 assert DummyCounter().visit(dummy) == 4 def test_transformer_no_visitor(dummy): assert Transformer().visit(dummy.arg1) is dummy.arg1 assert Transformer().visit(dummy.arg2) is dummy.arg2 assert Transformer().visit(dummy.arg3) is dummy.arg3 assert Transformer().visit(dummy.arg4) is dummy.arg4 assert Transformer().visit(dummy.arg5) is dummy.arg5 assert Transformer().visit(dummy.arg6) is dummy.arg6 assert Transformer().visit(dummy.arg7) is dummy.arg7 assert Transformer().visit(dummy.arg8) is dummy.arg8 assert Transformer().visit(dummy) is dummy def test_transformer_string_visitor(dummy): class AddStringPrefix(Transformer): def visit_str(self, node): return 'prefix_' + node transformed = AddStringPrefix().visit(dummy) assert isinstance(transformed, dummy.__class__) # String in subtree assert transformed.arg1 == 'prefix_arg1' assert transformed.arg1 is not dummy.arg1 # No string in subtree assert transformed.arg2 == None assert transformed.arg2 is dummy.arg2 # String in subtree assert transformed.arg3 == ['prefix_arg3_1', 'prefix_arg3_2'] assert transformed.arg3 is not dummy.arg3 # No string in subtree assert transformed.arg4 == [] assert transformed.arg4 is dummy.arg4, f'old:({id(dummy.arg4)}, {dummy.arg4}), new:({id(transformed.arg4)}, {transformed.arg4})' # String in subtree assert transformed.arg5 == {'arg5_k': 'prefix_arg5_v'} assert transformed.arg5 is not dummy.arg5 # No string in subtree assert transformed.arg6 == {'arg6_k': None} assert transformed.arg6 is dummy.arg6 # Expected result for arg7 and arg8 basedict = {'arg1': 'prefix_arg1', 'arg2': None, 'arg3': ['prefix_arg3_1', 'prefix_arg3_2'], 'arg4': [], 'arg5': {'arg5_k': 'prefix_arg5_v'}, 'arg6': {'arg6_k': None}, 'arg7': None, 'arg8': None} # String in subtree assert transformed.arg7 == basedict assert transformed.arg7 is not dummy.arg7 # String in subtree assert transformed.arg8 == [basedict, basedict] assert transformed.arg8 is not dummy.arg8 # Ensure cache is working for generic_visitor assert transformed.arg7 is transformed.arg8[0] assert transformed.arg8[0] is transformed.arg8[1] def test_cache(dummy): class UncachedTransformer(Transformer): def visit_DummyModel(self, node): if not hasattr(self, 'top'): self.top = node return self.generic_visit(node) else: return node.copy() control = UncachedTransformer().visit(dummy) assert control.arg7 is not control.arg8[0] assert control.arg8[0] is not control.arg8[1] class CachedTransformer(Transformer): @cache # DO THIS FOR MOST VISITORS def visit_DummyModel(self, node): if not hasattr(self, 'top'): self.top = node return self.generic_visit(node) else: return node.copy() transformed = CachedTransformer().visit(dummy) assert transformed.arg7 is transformed.arg8[0] assert transformed.arg8[0] is transformed.arg8[1]
2.234375
2
code/02_modeling/02_model_creation/DataReader.py
suryappal/MachineLearningSamples-BiomedicalEntityExtraction
40
12797263
<gh_stars>10-100 from keras.preprocessing import sequence import numpy as np import nltk from nltk.tokenize import sent_tokenize import _pickle as cPickle class DataReader: def __init__ (self, input_resources_pickle_file =None): # Some constants self.num_classes = 0 self.num_embedding_features = 0 self.max_sentence_len_train =0 # Other stuff self.wordvecs = None self.word_to_ix_map = {} self.n_sentences_all = 0 self.tag_to_vector_map = {} self.vector_to_tag_map = {} if not (input_resources_pickle_file is None): self.load_resources_pickle_file (input_resources_pickle_file) ################################################## # decode_prediction_sequence ################################################## def decode_prediction_sequence (self, pred_seq): pred_tags = [] for class_prs in pred_seq: class_vec = np.zeros(self.num_classes, dtype=np.int32) class_vec[np.argmax(class_prs)] = 1 if tuple(class_vec.tolist()) in self.vector_to_tag_map: pred_tags.append(self.vector_to_tag_map[tuple(class_vec.tolist())]) else: print(tuple(class_vec.tolist())) return pred_tags ################################################## # load_resources_pickle_file ################################################## def load_resources_pickle_file (self, input_resources_pickle_file): print("Loading the resources pickle file {}".format(input_resources_pickle_file)) with open(input_resources_pickle_file, 'rb') as f: pickle_content = cPickle.load(f, encoding='bytes') self.word_to_ix_map = pickle_content["word_to_ix_map"] self.wordvecs = pickle_content["wordvecs"] self.num_embedding_features = pickle_content["num_embedding_features"] self.num_classes = pickle_content["num_classes"] self.max_sentence_len_train = pickle_content["max_sentence_len_train"] self.tag_to_vector_map = pickle_content["tag_to_vector_map"] self.vector_to_tag_map = pickle_content["vector_to_tag_map"] self.zero_vec_pos = pickle_content["zero_vec_pos"] ################################################## # load_embedding_lookup_table ################################################## def load_embedding_lookup_table (self, embeddings_file): ###Load the Word2Vec Model### print("Loading the W2V model from file {}".format(embeddings_file)) #W2V_model = cPickle.load(open(embeddings_file, "rb")) with open(embeddings_file, 'rb') as f: W2V_model = cPickle.load(f, encoding='bytes') vocab = list(W2V_model.keys()) self.word_to_ix_map = {} self.wordvecs = [] ###Create LookUp Table for words and their word vectors### print("Creating the lookup table") for index, word in enumerate(vocab): self.word_to_ix_map[word] = index self.wordvecs.append(W2V_model[vocab[index]]) self.wordvecs = np.array(self.wordvecs) print("Number of entries in the lookup table = {}".format(len(self.wordvecs))) self.num_embedding_features = len(self.wordvecs[0]) print("embedding size = {}".format(self.num_embedding_features)) # Add a zero vector for the Paddings self.wordvecs = np.vstack((self.wordvecs, np.zeros(self.num_embedding_features))) self.zero_vec_pos = self.wordvecs.shape[0] - 1 print("Done") return (self.wordvecs) ################################################## ## read_and_parse_training_data ################################################## def read_and_parse_training_data (self, train_file, output_resources_pickle_file): print("Loading the training data from file {}".format(train_file)) with open(train_file, 'r') as f_train: self.tag_to_vector_map = {} # For storing one hot vector notation for each Tag self.vector_to_tag_map = {} self.num_classes = 0 # Used to put 1 in the one hot vector notation raw_data_train = [] raw_words_train = [] raw_tags_train = [] # Process all lines in the file for line in f_train: line = line.strip() if not line: raw_data_train.append( (tuple(raw_words_train), tuple(raw_tags_train))) raw_words_train = [] raw_tags_train = [] continue word, tag = line.split('\t') raw_words_train.append(word) raw_tags_train.append(tag) if tag not in self.tag_to_vector_map: self.tag_to_vector_map[tag] = None self.num_classes += 1 print("number of training examples = " + str(len(raw_data_train))) all_tags = sorted(list(self.tag_to_vector_map.keys())) for tag_class_id, tag in enumerate(all_tags): one_hot_vec = np.zeros(self.num_classes +1, dtype=np.int32) one_hot_vec[tag_class_id] = 1 self.tag_to_vector_map[tag] = tuple(one_hot_vec) self.vector_to_tag_map[tuple(one_hot_vec)] = tag #Adding a None Tag one_hot_vec = np.zeros(self.num_classes +1, dtype=np.int32) one_hot_vec[self.num_classes] = 1 self.tag_to_vector_map['NONE'] = tuple(one_hot_vec) self.vector_to_tag_map[tuple(one_hot_vec)] = 'NONE' self.num_classes += 1 self.n_sentences_all = len(raw_data_train) # Find the maximum sequence length for Training data self.max_sentence_len_train = 0 for seq in raw_data_train: if len(seq[0]) > self.max_sentence_len_train: self.max_sentence_len_train = len(seq[0]) ############## Create Train Vectors################ all_X_train, all_Y_train = [], [] unk_words = [] count = 0 for word_seq, tag_seq in raw_data_train: elem_wordvecs, elem_tags = [], [] for ix in range(len(word_seq)): w = word_seq[ix] t = tag_seq[ix] w = w.lower() if w in self.word_to_ix_map : count += 1 elem_wordvecs.append(self.word_to_ix_map[w]) elem_tags.append(self.tag_to_vector_map[t]) elif "UNK" in self.word_to_ix_map : unk_words.append(w) elem_wordvecs.append(self.word_to_ix_map["UNK"]) elem_tags.append(self.tag_to_vector_map[t]) else: unk_words.append(w) w = "UNK" new_wv = 2 * np.random.randn(self.num_embedding_features) - 1 # sample from normal distribution norm_const = np.linalg.norm(new_wv) new_wv /= norm_const self.wordvecs = np.vstack((self.wordvecs, new_wv)) self.word_to_ix_map[w] = self.wordvecs.shape[0] - 1 elem_wordvecs.append(self.word_to_ix_map[w]) elem_tags.append(list(self.tag_to_vector_map[t])) # Pad the sequences for missing entries to make them all the same length nil_X = self.zero_vec_pos nil_Y = np.array(self.tag_to_vector_map['NONE']) pad_length = self.max_sentence_len_train - len(elem_wordvecs) all_X_train.append( ((pad_length)*[nil_X]) + elem_wordvecs) all_Y_train.append( ((pad_length)*[nil_Y]) + elem_tags) all_X_train = np.array(all_X_train) all_Y_train = np.array(all_Y_train) print("UNK WORD COUNT = " + str(len(unk_words))) print("Found WORDS COUNT = " + str(count)) print("TOTAL WORDS COUNT= " + str(count+len(unk_words))) self.save_resources(output_resources_pickle_file) print("Done") return (all_X_train, all_Y_train) ################################################## # save_resources ################################################## def save_resources(self, output_resources_pickle_file): print("saving the resources into the file {}".format(output_resources_pickle_file)) pickle_content = {} pickle_content["word_to_ix_map"] = self.word_to_ix_map pickle_content["wordvecs"] = self.wordvecs pickle_content["num_embedding_features"] = self.num_embedding_features pickle_content["num_classes"] = self.num_classes pickle_content["max_sentence_len_train"] = self.max_sentence_len_train pickle_content["tag_to_vector_map"] = self.tag_to_vector_map pickle_content["vector_to_tag_map"] = self.vector_to_tag_map pickle_content["zero_vec_pos"] = self.zero_vec_pos cPickle.dump(pickle_content, open(output_resources_pickle_file, "wb")) print("Done") ################################################## # read_and_parse_test_data ################################################## def read_and_parse_test_data (self, test_file): print("Loading test data from file {}".format(test_file)) with open(test_file, 'r') as f_test: data_set = [] sentence_words = [] sentence_tags = [] # Process all lines in the file for line in f_test: line = line.strip() if not line: data_set.append( (tuple(sentence_words), tuple(sentence_tags))) sentence_words = [] sentence_tags = [] continue word, tag = line.split('\t') sentence_words.append(word) sentence_tags.append(tag) print("number of test examples = " + str(len(data_set))) self.n_sentences_all = len(data_set) #Create TEST feature vectors all_X_test, all_Y_test = [], [] num_tokens_list = [] unk_words = [] count = 0 for word_seq, tag_seq in data_set: if len(word_seq) > self.max_sentence_len_train: print("skip the extra words in the long sentence") word_seq = word_seq[:self.max_sentence_len_train] tag_seq = tag_seq[:self.max_sentence_len_train] elem_wordvecs, elem_tags = [], [] for ix in range(len(word_seq)): w = word_seq[ix] w = w.lower() t = tag_seq[ix] #ignore the word if it has uncovered ground truth entity type if not (t in self.tag_to_vector_map): continue if w in self.word_to_ix_map: count += 1 elem_wordvecs.append(self.word_to_ix_map[w]) elem_tags.append(self.tag_to_vector_map[t]) elif "UNK" in self.word_to_ix_map : unk_words.append(w) elem_wordvecs.append(self.word_to_ix_map["UNK"]) elem_tags.append(self.tag_to_vector_map[t]) else: unk_words.append(w) w = "UNK" self.word_to_ix_map[w] = self.wordvecs.shape[0] - 1 elem_wordvecs.append(self.word_to_ix_map[w]) elem_tags.append(self.tag_to_vector_map[t]) # Pad the sequences for missing entries to make all the sentences the same length nil_X = self.zero_vec_pos nil_Y = np.array(self.tag_to_vector_map['NONE']) num_tokens_list.append(len(elem_wordvecs)) pad_length = self.max_sentence_len_train - len(elem_wordvecs) all_X_test.append( ((pad_length)*[nil_X]) + elem_wordvecs) all_Y_test.append( ((pad_length)*[nil_Y]) + elem_tags) all_X_test = np.array(all_X_test) all_Y_test = np.array(all_Y_test) print("UNK WORD COUNT = " + str(len(unk_words))) print("Found WORDS COUNT = " + str(count)) print("TOTAL WORDS COUNT = " + str(count+len(unk_words))) print("Done") return (all_X_test, all_Y_test, data_set, num_tokens_list) ################################################## # get_feature_vectors_2 ################################################## def get_feature_vectors_2 (self, data_file): print("Loading unlabeled data from file {}".format(data_file)) with open(data_file, 'r') as f_data: all_sentences_words = [] # Process all lines in the file for line in f_data: text = line.strip() #break the input text into sentences before tokenization sentences = sent_tokenize(text) for sent in sentences: sentence_words = nltk.word_tokenize(sent) all_sentences_words.append( tuple(sentence_words) ) self.n_sentences_all = len(all_sentences_words) print("number of unlabeled examples = {}".format(self.n_sentences_all)) return self.create_feature_vectors(all_sentences_words) ################################################## # get_feature_vectors_1 ################################################## def get_feature_vectors_1 (self, data_list): print("Reading unlabeled data from dataframe") # list of list of tokens all_sentences_words = [] # Process all lines in the file for line in data_list: text = line.strip() #break the input text into sentences before tokenization sentences = sent_tokenize(text) for sent in sentences: sentence_words = nltk.word_tokenize(sent) all_sentences_words.append( tuple(sentence_words) ) self.n_sentences_all = len(all_sentences_words) print("number of unlabeled examples = {}".format(self.n_sentences_all)) return self.create_feature_vectors(all_sentences_words) ################################################## # create_feature_vectors ################################################## def create_feature_vectors(self, all_sentences_words): all_X_data = [] word_seq_list = [] num_tokens_list = [] unk_words = [] count = 0 for word_seq in all_sentences_words: if len(word_seq) > self.max_sentence_len_train: print("skip the extra words in the long sentence") word_seq = word_seq[:self.max_sentence_len_train] word_seq_list.append(word_seq) elem_wordvecs = [] for ix in range(len(word_seq)): w = word_seq[ix] w = w.lower() if w in self.word_to_ix_map: count += 1 elem_wordvecs.append(self.word_to_ix_map[w]) elif "UNK" in self.word_to_ix_map : unk_words.append(w) elem_wordvecs.append(self.word_to_ix_map["UNK"]) else: unk_words.append(w) w = "UNK" self.word_to_ix_map[w] = self.wordvecs.shape[0] - 1 elem_wordvecs.append(self.word_to_ix_map[w]) # Pad the sequences for missing entries to make them all the same length nil_X = self.zero_vec_pos num_tokens_list.append(len(elem_wordvecs)) pad_length = self.max_sentence_len_train - len(elem_wordvecs) all_X_data.append( ((pad_length)*[nil_X]) + elem_wordvecs) all_X_data = np.array(all_X_data) print("UNK WORD COUNT = " + str(len(unk_words))) print("Found WORDS COUNT = " + str(count)) print("TOTAL WORDS = " + str(count+len(unk_words))) print("Done") return (all_X_data, word_seq_list, num_tokens_list)
2.65625
3
elasticlog/customlogger.py
gustavohenrique/elasticlog
1
12797264
# coding: utf-8 import sys import logging import settings logFormatter = logging.Formatter('%(asctime)s [%(levelname)-5.5s] %(message)s') logger = logging.getLogger() fileHandler = logging.FileHandler('{0}'.format(settings.LOG_FILE_PATH)) fileHandler.setFormatter(logFormatter) logger.addHandler(fileHandler) consoleHandler = logging.StreamHandler(sys.stdout) consoleHandler.setFormatter(logFormatter) logger.addHandler(consoleHandler)
2.328125
2
phr/ciudadano/migrations/0006_auto_20170131_1114.py
richardqa/django-ex
0
12797265
# -*- coding: utf-8 -*- # Generated by Django 1.10.1 on 2017-01-31 11:14 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ciudadano', '0005_auto_20170127_1841'), ] operations = [ migrations.RemoveField( model_name='ciudadano', name='uuid', ), migrations.AlterField( model_name='ciudadano', name='numero_documento', field=models.CharField(blank=True, max_length=11, null=True, unique=True, verbose_name='Número de documento'), ), ]
1.484375
1
src/train/kuka_reach/with_image/train_with_rllib.py
borninfreedom/deep-rl-with-robots
0
12797266
<filename>src/train/kuka_reach/with_image/train_with_rllib.py import time import ray import ray.rllib.agents.ppo as ppo from ray.tune.logger import pretty_print from env import CustomSkipFrame, KukaCamReachEnv from ray import tune from ray.tune import grid_search from ray.rllib.env.env_context import EnvContext from ray.tune.registry import register_env, register_trainable from ray.rllib.agents.ppo import PPOTrainer from ray.rllib.agents.impala import ImpalaTrainer if __name__=='__main__': ray.shutdown() ray.init(ignore_reinit_error=True) # env_config={ # "is_render":False, # "is_good_view":False, # "max_steps_one_episode":1000, # } # env=KukaCamReachEnv(env_config) # env=CustomSkipFrame(env) register_env("kuka_env",lambda config: CustomSkipFrame(KukaCamReachEnv(config))) #register_env("kuka_env",lambda config: KukaCamReachEnv(config)) config = { "env": "kuka_env", "model":{ "conv_filters":[[32,[3,3],2],[32,[3,3],2],[32,[3,3],2],[32,[3,3],2],[1152,[6,6],1]], # "conv_filters":"relu", "post_fcnet_hiddens":[512,251], "post_fcnet_activation":"relu", }, "env_config":{ "is_render":False, "is_good_view":False, "max_steps_one_episode":1000, }, "num_workers":10, "num_gpus":1, "framework":"torch", # "render_env":False, # "num_gpus_per_worker":0, # "num_envs_per_worker":5, # "rollout_fragment_length":1000, # "train_batch_size":4000, # "batch_mode":"complete_episodes", #"lr":0.0001, # "lr":grid_search([5e-5,0.0001]) } config_for_trainer = { "env": "kuka_env", # "model":{ # "conv_filters":[[32,[3,3],2],[32,[3,3],2],[32,[3,3],2],[32,[3,3],2],[1152,[6,6],1]], # # "conv_filters":"relu", # "post_fcnet_hiddens":[512,251], # "post_fcnet_activation":"relu", # }, "env_config":{ "is_render":False, "is_good_view":False, "max_steps_one_episode":1000, }, "num_workers":1, "num_gpus":1, "framework":"torch", } stop = { "episode_reward_mean": 0.99, "training_iteration":200, } # trainer=PPOTrainer(config=config_for_trainer) # print(trainer.get_policy().model) # # trainer=ImpalaTrainer(config=config_for_trainer) # print(trainer.get_policy().model) results = tune.run( "SAC", # Specify the algorithm to train config=config, stop=stop, checkpoint_freq=1, ) metric="episode_reward_mean" best_trial = results.get_best_trial(metric=metric, mode="max", scope="all") best_checkpoint=results.get_best_checkpoint(best_trial,metric=metric,mode="max") print('best checkpoint: ',best_checkpoint) ray.shutdown()
1.992188
2
tests/test_graphs.py
jodahoney/pyinterview
2
12797267
<reponame>jodahoney/pyinterview import pytest from collections import deque from pyinterview.graphs import ( undirected_adj_list, directed_adj_list, inbound_degrees, find_sources, ) @pytest.mark.parametrize( ("edges", "expected"), [ ([("A", "B"), ("A", "C")], {"A": ["B", "C"], "B": ["A"], "C": ["A"]}), ([("A", "B"), ("B", "C")], {"A": ["B"], "B": ["A", "C"], "C": ["B"]}), ], ) def test_undirected_adj_list(edges, expected): assert undirected_adj_list(edges) == expected @pytest.mark.parametrize( ("edges", "expected"), [ ([("A", "B"), ("A", "C")], {"A": ["B", "C"], "B": [], "C": []}), ([("A", "B"), ("B", "C")], {"A": ["B"], "B": ["C"], "C": []}), ], ) def test_directed_adj_list(edges, expected): assert directed_adj_list(edges) == expected @pytest.mark.parametrize( ("adj_list", "expected"), [ ({"A": ["B", "C"], "B": [], "C": []}, {"A": 0, "B": 1, "C": 1}), ({"A": ["B"], "B": ["C"], "C": []}, {"A": 0, "B": 1, "C": 1}), ({"A": ["B"], "B": ["A"]}, {"A": 1, "B": 1}), ], ) def test_inbound_degrees(adj_list, expected): assert inbound_degrees(adj_list) == expected @pytest.mark.parametrize( ("inbounnd_degrees", "expected"), [ ({"A": 0, "B": 1, "C": 1}, deque(["A"])), ({"A": 0, "B": 1, "C": 1}, deque(["A"])), ({"A": 1, "B": 1}, deque([])), ], ) def test_find_sources(inbounnd_degrees, expected): assert find_sources(inbounnd_degrees) == expected
2.515625
3
web/premises/views.py
beratdogan/arguman.org
0
12797268
# -*- coding:utf-8 -*- import json from datetime import timedelta from markdown2 import markdown from django.contrib import messages from django.core.urlresolvers import reverse from django.utils import timezone from django.db.models import Max from django.utils.timezone import now from django.http import HttpResponse from django.shortcuts import get_object_or_404, redirect from django.template.loader import render_to_string from django.views.generic import DetailView, TemplateView, CreateView, View from django.views.generic.edit import UpdateView from django.db.models import Count from blog.models import Post from premises.utils import int_or_zero from premises.models import Contention, Premise from premises.forms import (ArgumentCreationForm, PremiseCreationForm, PremiseEditForm, ReportForm) from premises.signals import (added_premise_for_premise, added_premise_for_contention, reported_as_fallacy, supported_a_premise) from premises.templatetags.premise_tags import check_content_deletion from newsfeed.models import Entry class ContentionDetailView(DetailView): template_name = "premises/contention_detail.html" model = Contention def get_context_data(self, **kwargs): contention = self.get_object() view = ("list-view" if self.request.GET.get("view") == "list" else "tree-view") edit_mode = ( self.request.user.is_superuser or self.request.user.is_staff or contention.user == self.request.user) return super(ContentionDetailView, self).get_context_data( view=view, path=contention.get_absolute_url(), edit_mode=edit_mode, **kwargs) class ContentionJsonView(DetailView): model = Contention def render_to_response(self, context, **response_kwargs): contention = self.get_object(self.get_queryset()) return HttpResponse(json.dumps({ "nodes": self.build_tree(contention, self.request.user), }), content_type="application/json") def build_tree(self, contention, user): return { "name": contention.title, "parent": None, "pk": contention.pk, "owner": contention.owner, "sources": contention.sources, "is_singular": self.is_singular(contention), "children": self.get_premises(contention, user) } def get_premises(self, contention, user, parent=None): children = [{ "pk": premise.pk, "name": premise.text, "parent": parent.text if parent else None, "reportable_by_authenticated_user": self.user_can_report(premise, user), "report_count": premise.reports.count(), "user": { "id": premise.user.id, "username": premise.user.username, "absolute_url": reverse("auth_profile", args=[premise.user.username]) }, "sources": premise.sources, "premise_type": premise.premise_class(), "children": (self.get_premises(contention, user, parent=premise) if premise.published_children().exists() else []) } for premise in contention.published_premises(parent)] return children def user_can_report(self, premise, user): if user.is_authenticated() and user != premise.user: return not premise.reported_by(user) return False def is_singular(self, contention): result = (contention .premises .all() .aggregate(max_sibling=Max('sibling_count'))) return result['max_sibling'] <= 1 class HomeView(TemplateView): template_name = "index.html" tab_class = "featured" paginate_by = 20 def get_context_data(self, **kwargs): contentions = self.get_contentions() if self.request.user.is_authenticated(): notifications_qs = self.get_unread_notifications() notifications = list(notifications_qs) self.mark_as_read(notifications_qs) else: notifications = None return super(HomeView, self).get_context_data( next_page_url=self.get_next_page_url(), tab_class=self.tab_class, notifications=notifications, has_next_page=self.has_next_page(), announcements=self.get_announcements(), contentions=contentions, **kwargs) def get_announcements(self): return Post.objects.filter(is_announcement=True) def get_offset(self): return int_or_zero(self.request.GET.get("offset")) def get_limit(self): return self.get_offset() + self.paginate_by def has_next_page(self): total = self.get_contentions(paginate=False).count() return total > (self.get_offset() + self.paginate_by) def get_next_page_url(self): offset = self.get_offset() + self.paginate_by return '?offset=%(offset)s' % { "offset": offset } def get_unread_notifications(self): return (self.request.user .notifications .filter(is_read=False) [:5]) def mark_as_read(self, notifications): pks = notifications.values_list("id", flat=True) (self.request.user .notifications .filter(id__in=pks) .update(is_read=True)) def get_contentions(self, paginate=True): contentions = (Contention .objects .featured()) if paginate: contentions = (contentions[self.get_offset(): self.get_limit()]) return contentions class NotificationsView(HomeView): template_name = "notifications.html" def get_context_data(self, **kwargs): notifications_qs = self.request.user.notifications.all()[:40] notifications = list(notifications_qs) self.mark_as_read(notifications_qs) return super(HomeView, self).get_context_data( notifications=notifications, **kwargs) class SearchView(HomeView): tab_class = 'search' def get_context_data(self, **kwargs): return super(SearchView, self).get_context_data( keywords=self.get_keywords(), **kwargs ) def get_keywords(self): return self.request.GET.get('keywords') or "" def get_next_page_url(self): offset = self.get_offset() + self.paginate_by return '?offset=%(offset)s&keywords=%(keywords)s' % { "offset": offset, "keywords": self.get_keywords() } def get_contentions(self, paginate=True): keywords = self.request.GET.get('keywords') if not keywords or len(keywords) < 2: result = Contention.objects.none() else: result = (Contention .objects .filter(title__icontains=keywords)) if paginate: result = result[self.get_offset():self.get_limit()] return result class NewsView(HomeView): tab_class = "news" def get_contentions(self, paginate=True): contentions = Contention.objects.filter( is_published=True) if paginate: contentions = contentions[self.get_offset():self.get_limit()] return contentions class UpdatedArgumentsView(HomeView): tab_class = "updated" def get_contentions(self, paginate=True): contentions = (Contention .objects .filter(is_published=True) .order_by('-date_modification')) if paginate: contentions = contentions[self.get_offset():self.get_limit()] return contentions class ControversialArgumentsView(HomeView): tab_class = "controversial" def get_contentions(self, paginate=True): last_week = now() - timedelta(days=3) contentions = (Contention .objects .annotate(num_children=Count('premises')) .order_by('-num_children') .filter(date_modification__gte=last_week)) if paginate: return contentions[self.get_offset():self.get_limit()] return contentions class AboutView(TemplateView): template_name = "about.html" def get_context_data(self, **kwargs): content = markdown(render_to_string("about.md")) return super(AboutView, self).get_context_data( content=content, **kwargs) class TosView(TemplateView): template_name = "tos.html" def get_context_data(self, **kwargs): content = markdown(render_to_string("tos.md")) return super(TosView, self).get_context_data( content=content, **kwargs) class ArgumentCreationView(CreateView): template_name = "premises/new_contention.html" form_class = ArgumentCreationForm def form_valid(self, form): form.instance.user = self.request.user form.instance.ip_address = self.request.META['REMOTE_ADDR'] response = super(ArgumentCreationView, self).form_valid(form) form.instance.update_sibling_counts() return response class ArgumentUpdateView(UpdateView): template_name = "premises/edit_contention.html" form_class = ArgumentCreationForm def get_queryset(self): contentions = Contention.objects.all() if self.request.user.is_superuser: return contentions return contentions.filter(user=self.request.user) def form_valid(self, form): form.instance.user = self.request.user response = super(ArgumentUpdateView, self).form_valid(form) form.instance.update_sibling_counts() return response class ArgumentPublishView(DetailView): def get_queryset(self): return Contention.objects.filter(user=self.request.user) def post(self, request, slug): contention = self.get_object() if contention.premises.exists(): contention.is_published = True contention.save() messages.info(request, u"Argüman yayına alındı.") else: messages.info(request, u"Argümanı yayına almadan önce en az 1 " u"önerme ekleyin.") return redirect(contention) class ArgumentUnpublishView(DetailView): def get_queryset(self): return Contention.objects.filter(user=self.request.user) def post(self, request, slug): contention = self.get_object() contention.is_published = False contention.save() messages.info(request, u"Argüman yayından kaldırıldı.") return redirect(contention) class ArgumentDeleteView(DetailView): def get_queryset(self): return Contention.objects.filter(user=self.request.user) def post(self, request, slug): contention = self.get_object() if check_content_deletion(contention): # remove notification Entry.objects.delete(contention.get_newsfeed_type(), contention.id) contention.delete() messages.info(request, u"Argümanınız silindi.") return redirect("home") else: messages.info(request, u"Argümanınız silinecek durumda değil.") return redirect(contention) delete = post class PremiseEditView(UpdateView): template_name = "premises/edit_premise.html" form_class = PremiseEditForm def get_queryset(self): premises = Premise.objects.all() if self.request.user.is_superuser: return premises return premises.filter(user=self.request.user) def form_valid(self, form): response = super(PremiseEditView, self).form_valid(form) form.instance.argument.update_sibling_counts() return response def get_context_data(self, **kwargs): return super(PremiseEditView, self).get_context_data( #contention=self.get_contention(), **kwargs) class PremiseCreationView(CreateView): template_name = "premises/new_premise.html" form_class = PremiseCreationForm def get_context_data(self, **kwargs): return super(PremiseCreationView, self).get_context_data( contention=self.get_contention(), parent=self.get_parent(), **kwargs) def form_valid(self, form): contention = self.get_contention() form.instance.user = self.request.user form.instance.argument = contention form.instance.parent = self.get_parent() form.instance.is_approved = True form.instance.ip_address = self.request.META['REMOTE_ADDR'] form.save() contention.update_sibling_counts() if form.instance.parent: added_premise_for_premise.send(sender=self, premise=form.instance) else: added_premise_for_contention.send(sender=self, premise=form.instance) contention.date_modification = timezone.now() contention.save() return redirect(contention) def get_contention(self): return get_object_or_404(Contention, slug=self.kwargs['slug']) def get_parent(self): parent_pk = self.kwargs.get("pk") if parent_pk: return get_object_or_404(Premise, pk=parent_pk) class PremiseSupportView(View): def get_premise(self): premises = Premise.objects.exclude(user=self.request.user) return get_object_or_404(premises, pk=self.kwargs['pk']) def post(self, request, *args, **kwargs): premise = self.get_premise() premise.supporters.add(self.request.user) supported_a_premise.send(sender=self, premise=premise, user=self.request.user) return redirect(self.get_contention()) def get_contention(self): return get_object_or_404(Contention, slug=self.kwargs['slug']) class PremiseUnsupportView(PremiseSupportView): def delete(self, request, *args, **kwargs): premise = self.get_premise() premise.supporters.remove(self.request.user) return redirect(self.get_contention()) post = delete class PremiseDeleteView(View): def get_premise(self): if self.request.user.is_staff: premises = Premise.objects.all() else: premises = Premise.objects.filter(user=self.request.user) return get_object_or_404(premises, pk=self.kwargs['pk']) def delete(self, request, *args, **kwargs): premise = self.get_premise() premise.delete() premise.update_sibling_counts() contention = self.get_contention() if not contention.premises.exists(): contention.is_published = False contention.save() return redirect(contention) post = delete def get_contention(self): return get_object_or_404(Contention, slug=self.kwargs['slug']) class ReportView(CreateView): form_class = ReportForm template_name = "premises/report.html" def get_context_data(self, **kwargs): return super(ReportView, self).get_context_data( premise=self.get_premise(), **kwargs) def get_contention(self): return get_object_or_404(Contention, slug=self.kwargs['slug']) def get_premise(self): return get_object_or_404(Premise, pk=self.kwargs['pk']) def get_initial(self): return { 'contention': self.get_contention(), 'premise': self.get_premise(), 'reporter': self.request.user } def form_valid(self, form): contention = self.get_contention() premise = self.get_premise() form.instance.contention = contention form.instance.premise = premise form.instance.reporter = self.request.user form.save() reported_as_fallacy.send(sender=self, report=form.instance) return redirect(contention)
1.929688
2
tensorbank/tf/points.py
pshved/tensorbank
1
12797269
<reponame>pshved/tensorbank """Point operations =================== Batch operations on points in D-dimensional Eucledian space R^D. """ import tensorflow as tf def pairwise_l2_distance(a, b, sqrt=True): """Compute pairwise L2 distance between all points in A and B. L2 norm is ``sqrt(sum(|x_i - y_i| ^ 2))`` Args: a (Tensor [N x K x D]): point coordinates. N is batch size, K is the number of points in a batch, D is the dimension of the Euclidian space. b (Tensor [N x M x D]): point coordinates, N is batch size, M is the number of points in a batch, D is the dimension of the euclidian space. sqrt (bool, optional): whether take the square root. Defaults to True. Returns: Tensor [N x K x M]: pairwise L2 distance between each pair of points. """ a = tf.convert_to_tensor(a) b = tf.convert_to_tensor(b) # (a_i - b_j)^2 = a_i^2 + b_j^2 - 2 * a_i * b_j a_ext = tf.expand_dims(a, 2) # N x K x 1 x D b_ext = tf.expand_dims(b, 1) # N x 1 x M x D a2 = tf.reduce_sum(a_ext * a_ext, axis=3) # N x K x 1 b2 = tf.reduce_sum(b_ext * b_ext, axis=3) # N x 1 x M ab = tf.matmul(a, tf.transpose(b, (0, 2, 1))) # N x K x M L2_square = a2 + b2 - 2 * ab # N x K x M if sqrt: return L2_square ** 0.5 else: return L2_square def pairwise_l1_distance(a, b): """Compute pairwise L1 distance between all points in A and B. L1 norm is ``sum(|x_i - y_i|)`` Args: a (Tensor [N x K x D]): point coordinates. N is batch size, K is the number of points in a batch, D is the dimension of the Euclidian space. b (Tensor [N x M x D]): point coordinates, N is batch size, M is the number of points in a batch, D is the dimension of the euclidian space. Returns: Tensor [N x K x M]: pairwise L1 distance between each pair of points. """ a = tf.convert_to_tensor(a) b = tf.convert_to_tensor(b) a_ext = tf.expand_dims(a, 2) # N x K x 1 x D b_ext = tf.expand_dims(b, 1) # N x 1 x M x D return tf.reduce_sum(tf.abs(a_ext - b_ext), axis=3) # N x K x M def pairwise_l_inf_distance(a, b): """Compute pairwise L∞ distance between all points in A and B. L-infinity is ``max(|x_i - y_i|)`` Args: a (Tensor [N x K x D]): point coordinates. N is batch size, K is the number of points in a batch, D is the dimension of the Euclidian space. b (Tensor [N x M x D]): point coordinates, N is batch size, M is the number of points in a batch, D is the dimension of the euclidian space. Returns: Tensor [N x K x M]: pairwise L-infinity distance between each pair of points. """ a = tf.convert_to_tensor(a) b = tf.convert_to_tensor(b) a_ext = tf.expand_dims(a, 2) # N x K x 1 x D b_ext = tf.expand_dims(b, 1) # N x 1 x M x D return tf.reduce_max(tf.abs(a_ext - b_ext), axis=3) # N x K x M
3.015625
3
odd_collector/adapters/kafka/mappers/parser/types.py
opendatadiscovery/odd-collector
0
12797270
from typing import Dict, Any RawSchema = Dict[str, Any] Field = Dict[str, Any]
2.03125
2
backend_sqlalchemy/backend_app/common/contents.py
jiz148/medical_app
0
12797271
FORGET_MY_PASSWORD_SUBJECT = """Password Change Confirmation""" FORGET_MY_PASSWORD_CONTENT = """hello {user},\n Please click the following link to change your password:\n http://jinchispace.com:5001/newpass?token={token}\n This link will be expired in {minutes} minutes."""
1.601563
2
blaze/command/replay.py
henry1jin/alohamora
5
12797272
""" Implements the commands for viewing and manipulating the training manifest """ import json import time import os from blaze.action import Policy from blaze.logger import logger as log from blaze.mahimahi.server import start_server from . import command @command.argument("replay_dir", help="The directory containing the save files captured by mahimahi") @command.argument("--policy", help="The file path to a JSON-formatted push policy to serve") @command.argument("--cert_path", help="Location of the server certificate") @command.argument("--key_path", help="Location of the server key") @command.argument( "--cache_time", help="Do not cache objects which expire in less than this time (in seconds)", type=int, default=None ) @command.argument( "--extract_critical_requests", help="true or false to specify if server should inject critical request extractor", action="store_true", ) @command.command def replay(args): """ Starts a replay environment for the given replay directory, including setting up interfaces, running a DNS server, and configuring and running an nginx server to serve the requests """ policy = None cert_path = os.path.abspath(args.cert_path) if args.cert_path else None key_path = os.path.abspath(args.key_path) if args.key_path else None if args.policy: log.debug("reading policy", push_policy=args.policy) with open(args.policy, "r") as policy_file: policy_dict = json.load(policy_file) policy = Policy.from_dict(policy_dict) with start_server( args.replay_dir, cert_path, key_path, policy, cache_time=args.cache_time, extract_critical_requests=args.extract_critical_requests, ): while True: time.sleep(86400)
2.421875
2
examples/example_publisher_subscriber/consumer.py
vladcalin/pymicroservice
2
12797273
<gh_stars>1-10 import gemstone from gemstone.event.transport import RabbitMqEventTransport class ConsumerService(gemstone.MicroService): name = "consumer" port = 8000 event_transports = [ RabbitMqEventTransport("192.168.1.71", 5672, username="admin", password="<PASSWORD>") ] @gemstone.event_handler("test") def broadcast_msg(self, message): print(message) if __name__ == '__main__': ConsumerService().start()
2.40625
2
amocrm_asterisk_ng/crm/amocrm/kernel/calls/call_records/file_converters/impl/PydubFileConverter.py
iqtek/amocrn_asterisk_ng
0
12797274
import os import aiofiles from pydub import AudioSegment from amocrm_asterisk_ng.domain import File from amocrm_asterisk_ng.domain import Filetype from ..core import IFileConverter from ...CallRecordsConfig import CallRecordsConfig __all__ = [ "PydubFileConverter", ] class PydubFileConverter(IFileConverter): __slots__ = ( "__config", ) def __init__( self, config: CallRecordsConfig, ) -> None: self.__config = config async def __get_content_from_file( self, path: str ) -> bytes: async with aiofiles.open(path, mode='rb') as f: content = await f.read() return content async def convert(self, file: File, new_filetype: Filetype) -> File: if file.type == new_filetype: return file if not os.path.exists(self.__config.tmp_directory): try: os.makedirs(self.__config.tmp_directory) except OSError as exc: raise Exception( f"FileConverter: conversion directory error: `{exc!r}`." ) filepath = os.path.join(self.__config.tmp_directory, file.name) async with aiofiles.open(filepath, mode='wb') as f: await f.write(file.content) if file.type == Filetype.MP3: audio = AudioSegment.from_mp3(filepath) elif file.type == Filetype.WAV: audio = AudioSegment.from_wav(filepath) elif file.type == Filetype.WAVE: audio = AudioSegment.from_WAVE(filepath) else: raise Exception(f"Non-convertible type: `{file.type}`.") new_filepath = os.path.join( self.__config.tmp_directory, "converted_" + file.name, ) if new_filetype == Filetype.MP3: new_format = "mp3" elif new_filetype == Filetype.WAV: new_format = "wav" elif new_filetype == Filetype.WAVE: new_format = "wave" else: raise Exception( f"Non-convertible type: `{new_filetype}`." ) audio.export( new_filepath, format=new_format, bitrate='16k' ) content = await self.__get_content_from_file(new_filepath) os.remove(filepath) os.remove(new_filepath) return File( name=file.name, type=new_filetype, content=content, )
2.484375
2
tpapi/client.py
ash30/tpapi
0
12797275
<reponame>ash30/tpapi<filename>tpapi/client.py import os import json import itertools import urllib import requests import entities import collections """ Future Todo: - Pass entity objects into edits - TP client caching """ # Utils # def is_sequence(elem): "Returns true for iterables other than strings" if isinstance( elem,collections.Sequence ) and not isinstance(elem,basestring): return True else: return False def encode_sequence(seq): return ','.join([str(x) for x in seq]) # Response formats # class TPJsonResponseFormat(object): def parse(self,response_object): return response_object.json() def __str__(self): return "json" class TPEntityResponseFormat(TPJsonResponseFormat): def parse(self,response_object): d = super(TPEntityResponseFormat,self).parse( response_object ) return (d.get('Items',(d,)),d.get('Next')) # HTTP layer # class HTTPRequestDispatcher(): """ A simple component wrapper over request.py functionality takes care of sending the http requests and can be easily mocked out for overall testing of the library """ def __init__(self,response_format=TPEntityResponseFormat): self.auth = None self._default_response_format = response_format() self._requests = requests # for mocking def encode_params(self,params): """ Override default requests.py param data serialisation to suit TP """ final_params = { k:encode_sequence(v) if is_sequence(v) else str(v) for k,v in params.iteritems() if v } param_string = "&".join( ["{}={}".format(k,v) for k,v in final_params.iteritems()] ) return urllib.quote(param_string,safe='=&,') def append_params(self,url,params): "Combine params and url into single string" final_url = "{}{}{}".format( url, "?" if "?" not in url else "&", self.encode_params(params), ) return final_url def make_request(self,method,url,params,response_format,**kwargs): params['format'] = response_format final_url = self.append_params(url,params) print final_url r = self._requests.request(method,final_url,auth=self.auth,**kwargs) try: r.raise_for_status() except: print "ERROR",final_url print r.content raise return response_format.parse(r) def single_get_request(self,url,params,response_format=None): if not response_format: response_format = self._default_response_format "Submit a get request to tp api endpoint" return self.make_request('get',url,params,response_format) def paginated_get_request(self,url,params): """ Generator over a series of requests inorder to capture paginated resources """ response,next_url = self.single_get_request(url,params) assert isinstance( response, collections.Sequence ), "Error: Paginated Requests assume iterable response" yield response while next_url: response,next_url = self.single_get_request(next_url,params={}) yield response def post_request(self,url,params,message_body,response_format=None): if not response_format: response_format = self._default_response_format encoded_message = json.dumps(message_body) headers = { "content-type":"application/"+str(response_format), "content-length":len(encoded_message) } return self.make_request( 'post',url,params,response_format=response_format, headers=headers,data=encoded_message ) # Clients # class BasicClient(object): """ Submits reqests to TP and returns data The two main use cases for this class: api endpoints created from user queries api endpoints required for entity data and construction a deprecated third case used to be absolute url endpoints for pagination but this functionality has been moved to the requester level """ def __init__(self,url,requester): self.requester = requester self.tp_api_url = url def authenticate(self,auth): "Replace requester delegate with authenicated one" self.requester.auth = auth def raw_request(self,url,params={},response_format=TPJsonResponseFormat): "Mainly used to return raw response" final_url = '/'.join([self.tp_api_url,url]) return self.requester.single_get_request( final_url,params,response_format()) # SHOULD WE LEAVE PARAMS AS {}? def get_entities(self,entity_endpoint,params={},return_limit=50): """ @params entity_endpoint: can any of the following <entity type> , <entity type>/<id>, <entity type>/<id>/<collection> """ assert isinstance(return_limit,int) and return_limit > 0,\ "return limit should be non negative integer" final_url = '/'.join([self.tp_api_url,entity_endpoint]) return itertools.islice( itertools.chain.from_iterable( self.requester.paginated_get_request(final_url,params) ), 0, return_limit ) def create_entity(self,entity_endpoint,data,params={}): "Create Entity given a dict of attributes" # The base client creation does no error checking on uploaded data final_url = '/'.join([self.tp_api_url,entity_endpoint]) new_entity= self.requester.post_request( final_url,params,data, response_format = TPJsonResponseFormat(), ) return new_entity class ObjectMappingClient(BasicClient): """ Extends the basic client to auto instanciate entitiy classes from data """ def __init__( self,url,requester, entity_class_factory=entities.EntityClassFactory ): super(ObjectMappingClient,self).__init__(url,requester) self.entity_class_factory = entity_class_factory(self) def get_entities(self,entity_endpoint,params={},return_limit=50): "Extend method to return list of entity instances" entity_data = super(TPEntityClient,self).get_entities( entity_endpoint,params,return_limit ) if not entity_data: return [] # guard # THIS DOESN'T WORK AS I SLICE WILL BE TRUE resource_type_hint = entity_endpoint.split('/')[0] entity_class = self.entity_class_factory.get(resource_type_hint,immutable=True) return itertools.imap( lambda n:entity_class(n), entity_data ) def create_entity(self,entity_endpoint,data,params={}): "Create Entity given a dict of attributes" # Create a local mutable entity to check data entity_class = self.entity_class_factory.get( entity_endpoint, immutable = True, ) mutable_entity_class =self.entity_class_factory.get( entity_endpoint, immutable = False, ) proposed_entity = mutable_entity_class.create_from_data(data) msg_content = proposed_entity.toDict() msg_content.pop('Id',None) # No ID for creation! # Send request and return resultant entity dct = super(ObjectMappingClient,self).create_entity( entity_endpoint,msg_content,params ) return entity_class(dct) # Aliases for backwards compatability TPEntityClient = ObjectMappingClient
2.5
2
ex-mundo2/ex065.py
PedroPegado/ex-cursoemvideo
0
12797276
parar = False soma = 0 cont = 0 while parar == False: num = int(input('''\033[1;36mDigite um numero inteiro:\033[m ''')) soma += num cont += 1 print('''Deseja continuar? [ 1 ] SIM [ 2 ] NÃO''') opcao = int(input('Escolha sua opção: ')) if opcao == 2: parar = True elif opcao == 1: parar = False else: print('OPÇÃO INVALIDA.') media = soma/cont print(f'A média é {media}')
3.734375
4
xavier/builder/model.py
fabriciotorquato/pyxavier
5
12797277
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import time import numpy as np import torch import torch.optim as optim from sklearn.model_selection import train_test_split from torch import nn import xavier.constants.config as config from xavier.constants.type import Type from xavier.core.dataLoader import DataLoader from xavier.core.dataset import Dataset from xavier.core.training import Training from xavier.core.transformation import get_standard, init_standard from xavier.net.cnn import Cnn from xavier.net.mlp import Mlp from xavier.net.rnn_lstm_2 import Rnn torch.manual_seed(1234) class Model(object): def __init__(self, filenames, filenames_models, device, learning_rate, num_epoch, batch_size, input_layer=0, hidden_layer=0, output_layer=3, matriz_size=0, type=Type.mlp): self.input_layer = input_layer self.hidden_layer = hidden_layer self.output_layer = output_layer self.matriz_size = matriz_size self.device = device self.filenames = filenames self.matriz_size = matriz_size self.type = type self.batch_size = batch_size self.learning_rate = learning_rate self.filenames_models = filenames_models self.num_epoch = num_epoch self.file_accucary = np.zeros(len(self.filenames)) self.version = config.VERSION def __train_model(self, train_loader, valid_loader, test_loader, train_size, valid_size, show, filename): self.model.first_time = time.time() for epoch in range(1, self.num_epoch+1): print "Epoch " + str(epoch) + "/" + str(self.num_epoch) self.model.train(epoch, train_loader, train_size) self.model.validation(valid_loader, valid_size) print('Data train: ') self.model.validation(train_loader, train_size, train=True) print('Data Test: ') return self.model.test(test_loader, show, filename) def __build_model(self): # build Model if self.type == Type.mlp: model = Mlp(self.device).to(self.device) elif self.type == Type.rnn: model = Rnn(self.device).to(self.device) print(model) elif self.type == Type.cnn: model = Cnn(self.device).to(self.device) # choose optimizer and loss function criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=self.learning_rate) model = model.to(self.device) model_training = Training( model, criterion, optimizer, self.device) return model_training def get_dataset(self, file): dataset = np.loadtxt(file + 'dataset.csv', delimiter=',', dtype=np.float64) dataset_x = np.asarray([l[1:] for l in dataset]) dataset_y = np.asarray([l[0] for l in dataset]) return dataset_x, dataset_y def get_normalization(self, X_train, X_test): if self.type == Type.mlp: X_train, standard = init_standard(X_train) X_test = get_standard(X_test, standard) return X_train, X_test, standard elif self.type == Type.rnn: X_train, standard = init_standard(X_train) X_test = get_standard(X_test, standard) return X_train, X_test, standard elif self.type == Type.cnn: X_train, standard = init_standard(X_train) X_test = get_standard(X_test, standard) return X_train, X_test, standard def get_loader(self, type, batch_size, X_train, y_train, X_test, y_test, matriz_size): if type == Type.mlp: train_data = Dataset(X_train, y_train, Type.mlp) test_data = Dataset(X_test, y_test, Type.mlp) elif type == Type.rnn: train_data = Dataset(X_train, y_train, Type.rnn, matriz_size) test_data = Dataset(X_test, y_test, Type.rnn, matriz_size) elif type == Type.cnn: train_data = Dataset(X_train, y_train, Type.cnn, matriz_size) test_data = Dataset(X_test, y_test, Type.cnn, matriz_size) dataLoader = DataLoader() train_loader, valid_loader, train_size, valid_size = dataLoader.get_train( train_data, batch_size) test_loader = dataLoader.get_test(test_data, batch_size) return train_loader, valid_loader, test_loader, train_size, valid_size def save_model(self, type, path_model, model, acc, standard): # Save the Trained Model path = path_model+type.value if not os.path.exists(path): os.mkdir(path) filename = path + '/'+self.version+' {:.2f}'.format(acc)+'.pkl' torch.save({ 'model': model.model.state_dict(), 'standard': standard }, filename) def create_model(self, times, show): self.file_accucary = np.zeros(len(self.filenames)) for _ in range(times): for idx, file in enumerate(self.filenames): print "\nTraining dataset: " + str(file) + "\n" dataset_x, dataset_y = self.get_dataset(file) X_train, X_test, y_train, y_test = train_test_split( dataset_x, dataset_y, test_size=0.2, random_state=21) X_train, X_test, standard = self.get_normalization( X_train, X_test) train_loader, valid_loader, test_loader, train_size, valid_size = self.get_loader( self.type, self.batch_size, X_train, y_train, X_test, y_test, self.matriz_size) self.input_layer = X_train.shape[1] self.model = self.__build_model() path = self.filenames_models[idx] + \ self.type.value + '/'+self.version accuracy = self.__train_model(train_loader, valid_loader, test_loader, train_size, valid_size, show, filename=path) if accuracy > self.file_accucary[idx]: self.save_model(self.type, self.filenames_models[idx], self.model, accuracy, standard) self.file_accucary[idx] = accuracy
2.640625
3
test/schema/stream_gain_strategy_test.py
hq9000/py-headless-daw
22
12797278
import unittest from typing import List import numpy as np from py_headless_daw.processing.stream.stream_gain import StreamGain from py_headless_daw.schema.dto.time_interval import TimeInterval from py_headless_daw.schema.events.event import Event from py_headless_daw.schema.events.parameter_value_event import ParameterValueEvent class StreamGainStrategyTest(unittest.TestCase): def test_stream_gain_strategy(self): strategy = StreamGain(np.float32(0.25)) interval = TimeInterval() interval.start_in_bars = 0 interval.end_in_bars = 1 in_stream_buffer = np.ones(shape=(100,), dtype=np.float32) out_stream_buffer = np.zeros(shape=(100,), dtype=np.float32) setter_event: ParameterValueEvent = ParameterValueEvent(0, StreamGain.PARAMETER_GAIN, 0.55) input_event_buffer: List[Event] = [setter_event] output_event_buffer: List[Event] = [] strategy.render(interval, [in_stream_buffer], [out_stream_buffer], [input_event_buffer], [output_event_buffer]) # the first few samples are closer to the initial value for x in range(0, 3): self.assertTrue(0.24 < out_stream_buffer[x] < 0.26) # while the last few are closer to the target one for x in range(out_stream_buffer.shape[0] - 3, out_stream_buffer.shape[0]): self.assertTrue(0.24 < out_stream_buffer[x] > 0.45) strategy.render(interval, [in_stream_buffer], [out_stream_buffer], [[]], [[]]) # now we render without any events in the input, the logic in the # strategy is slightly different in this case for x in range(out_stream_buffer.shape[0] - 3, out_stream_buffer.shape[0]): self.assertTrue(out_stream_buffer[x] > 0.45)
2.296875
2
home/views.py
sa-y-an/Qriosity2.0
0
12797279
<reponame>sa-y-an/Qriosity2.0<gh_stars>0 from django.shortcuts import render from django.contrib.auth.decorators import user_passes_test # Create your views here. def not_logged_in(user): return not user.is_authenticated def base(request): return render(request, 'home/base.html') def home(request): return render(request, 'home/home.html') def hello(request): return render(request, 'home/hello.html') @user_passes_test(not_logged_in, login_url='/user/dashboard', redirect_field_name=None) def login(request): return render(request, 'home/login.html') def rules(request): return render(request, 'home/rule.html')
1.992188
2
backend/src/models/Warehouse.py
ahmedsalahacc/Inventory-Management-System
0
12797280
<filename>backend/src/models/Warehouse.py from models import BaseModel, gen_id class WarehouseModel(BaseModel): ''' ORM for Warehouse table with the following structure warehouse( id CHARACTER(10) NOT NULL PRIMARY KEY, name TEXT NOT NULL, location TEXT NOT NULL ); ''' def __init__(self, db_filename: str): super(WarehouseModel, self).__init__(db_filename) def insert(self, data_tuple: tuple): ''' Inserts a new record in warehouse table Parameters ---------- data_tuple: tuple tuple of values (name, location) ''' # aquiring cursor cursor = self.conn.cursor() # sql script sql_script = ''' INSERT INTO warehouse VALUES (?, ?, ?) ''' # executing script id = gen_id() data_tuple = (id, *data_tuple) cursor.execute(sql_script, data_tuple) self.conn.commit() # conceding cursor cursor.close() return id def delete(self, id: str): ''' Deletes a record from warehouse table Parameters ---------- id: str ''' # aquiring cursor cursor = self.conn.cursor() # sql script sql_script = ''' DELETE FROM warehouse WHERE id = ? ''' # executing script cursor.execute(sql_script, (id,)) self.conn.commit() # conceding cursor cursor.close() def update(self, id: str, new_data: tuple): ''' Updates a record of the warehouse table using id Parameters ---------- id: str id of the record in the db data_tuple: tuple tuple of new values (name, location) ''' # aquiring cursor cursor = self.conn.cursor() # sql script sql_script = ''' UPDATE warehouse SET name = ? , location = ? WHERE id = ? ''' # executing script new_data = (*new_data, id) cursor.execute(sql_script, new_data) self.conn.commit() # conceding cursor cursor.close() def getByID(self, id: str): ''' gets a record from the warehouse table using id Parameters ---------- id: str id of the record in the db Returns ------- query: tuple represents the result ''' # aquiring cursor cursor = self.conn.cursor() # sql script sql_script = ''' SELECT * FROM warehouse WHERE id = ? ''' # executing script cursor.execute(sql_script, (id,)) query = cursor.fetchone() # conceding cursor cursor.close() return query def getAll(self, order: str = 'ASC'): ''' gets a record from the warehouse table using id Parameters ---------- order: str Default = 'asc' arrangement of the returned query ASC: ascending order DESC: descending order Returns ------- query: list results list ''' # aquiring cursor cursor = self.conn.cursor() # sql script sql_script = f''' SELECT * FROM warehouse ORDER BY name {order} ''' # executing script cursor.execute(sql_script) query = cursor.fetchall() # conceding cursor cursor.close() return query
3.0625
3
ansibleroler/utils/__init__.py
xoxys/ansible-role
3
12797281
import six import os import yaml import logging import logging.config from appdirs import AppDirs from pkg_resources import resource_filename def setup_logging(log_level): log_config_file = os.path.join(resource_filename('ansibleroler', 'static'), 'config', 'logging.yml') level = logging.getLevelName(log_level) with open(log_config_file, 'rt') as f: log_config = yaml.safe_load(f.read()) logging.config.dictConfig(log_config) if level: logging.getLogger("ansibleroler").setLevel(level) return def update_log_level(log_level): level = logging.getLevelName(log_level) if level: logging.getLogger("ansibleroler").setLevel(level) return def normalize_path(path): normalized = os.path.abspath(os.path.expanduser(path)) return normalized def convert_bool(obj): true_values = (True, 'True', 'true', 'yes', '1') false_values = (False, 'False', 'false', 'no', '0') if obj in true_values: return True elif obj in false_values: return False else: if not isinstance(obj, six.text_type): obj = six.text_type(obj, "utf-8") return obj class Settings(object): def __init__( self, config_file=os.path.join(AppDirs("ansible-roler").user_config_dir, "config.ini"), role_name=None, base_path=os.getcwd(), log_level='WARNING', subdir_template=os.path.join(resource_filename('ansibleroler', 'static'), 'templates', 'main.yml.j2'), root_template=os.path.join(resource_filename('ansibleroler', 'static'), 'templates', '.drone.yml.j2'), exclude_subdirs=['templates', 'files', 'vars'], enable_templating=False, template_vars={} ): self.config_file = config_file self.role_name = role_name self.base_path = base_path self.log_level = log_level self.subdir_template = subdir_template self.root_template = root_template self.exclude_subdirs = exclude_subdirs self.enable_templating = enable_templating self.template_vars = template_vars
2.171875
2
kora/install/rust.py
wannaphong/kora
91
12797282
import os os.system('apt install rustc') os.environ['PATH'] += ':/root/.cargo/bin' os.environ['USER'] = 'user'
1.367188
1
viusitemapparser/sitemap_file.py
VIU-one/VIU-Sitemap-Parser
1
12797283
<gh_stars>1-10 class SitemapFile: sitemap_file_name = None sitemap_contents = None sitemap_headers = None sitemap_source_type = None # remote or local sitemap_file_error = None sitemap_received = False sitemap_lxml = None sitemap_plain_text = None sitemap_type = None # one of xml_sitemap, xml_sitemap_index, rss_feed, atom_feed, plain_text, # invalid_file_format def __init__(self, filename): self.sitemap_file_name = filename def set_remote_file_from_requests(self, result): self.sitemap_source_type = 'remote' self.sitemap_received = True self.sitemap_contents = result.text self.sitemap_headers = result.headers def set_local_file(self, file_contents): self.sitemap_source_type = 'local' self.sitemap_received = True self.sitemap_contents = file_contents def error_receiving_file(self, message): self.sitemap_file_error = message def error_receiving_remote_file(self, message): self.sitemap_source_type = 'remote' self.sitemap_file_error = message def error_receiving_local_file(self, message): self.sitemap_source_type = 'local' self.sitemap_file_error = message def get_file_status_as_dict(self): return {'file_name': self.sitemap_file_name, 'file_headers': self.sitemap_headers, 'source_type': self.sitemap_source_type, 'file_error': self.sitemap_file_error, 'file_received': self.sitemap_received, 'sitemap_type': self.sitemap_type} def get_content(self): if self.sitemap_contents: return self.sitemap_contents.strip() else: return None def has_lxml(self): if self.sitemap_lxml: return True else: return False def set_lxml(self, lxml): self.sitemap_lxml = lxml def set_plain_text(self, content): self.sitemap_plain_text = content def set_sitemap_type(self, sitemap_type): self.sitemap_type = sitemap_type
2.3125
2
habiticaapi/habitica_object.py
nasfarley88/pyhabitica
0
12797284
# User provided config file import config import requests import attrdict import logging def attrdict_or_list(thing): if type(thing) == dict: return attrdict.AttrMap(thing) elif type(thing) == list: return thing else: assert False, "DON'T PANIC. Something that wasn't a list or dict." class NotInHabiticaObject(Exception): pass class HabiticaObject(object): """Abstract class for custom HTTP requests commands for Habitica. """ def __init__(self, uuid, apikey, json=None, endpoint=None): # json must be created with __dict__ to avoid referencing itself in __setattr__ # self.__dict__["json"] = attrdict.AttrMap() self.__dict__["_uuid"] = uuid self.__dict__["_apikey"] = apikey self.__dict__["_habitica_api"] = config.HABITICA_URL+"/api/v2" if json: self.__dict__["json"] = attrdict.AttrMap(json) elif endpoint: self.__dict__["json"] = self._get_or_except(endpoint) else: self.__dict__["json"] = attrdict.AttrMap() def __getstate__(self): return self.__dict__ def __setstate__(self, d): # Use the ordinary, plain, boring, normal setattr so that # pickle doesn't freak out. super(HabiticaObject, self).__setattr__("__dict__", d) def _put_or_except(self, endpoint, json=None): """Return json from PUT request or raise an exception.""" if json: r = requests.put( self._habitica_api+endpoint, headers={ 'x-api-user':self._uuid, 'x-api-key':self._apikey }, json=dict(json) ) else: r = requests.put( self._habitica_api+endpoint, headers={ 'x-api-user':self._uuid, 'x-api-key':self._apikey }, ) try: r.raise_for_status() except Exception as e: print(r) raise(e) return attrdict_or_list(r.json()) def _get_or_except(self, endpoint): """Return json from GET request or raise an exception.""" r = requests.get( self._habitica_api+endpoint, headers={ 'x-api-user':self._uuid, 'x-api-key':self._apikey } ) r.raise_for_status() return attrdict_or_list(r.json()) def _post_or_except(self, endpoint, json={}, query={}): """Return json from POST request or raise an exception.""" r = requests.post( self._habitica_api+endpoint, headers={ 'x-api-user':self._uuid, 'x-api-key':self._apikey }, json=dict(json), params=query ) r.raise_for_status() return attrdict_or_list(r.json()) def _delete_or_except(self, endpoint): """Return json from POST request or raise an exception.""" r = requests.delete( self._habitica_api+endpoint, headers={ 'x-api-user':self._uuid, 'x-api-key':self._apikey } ) r.raise_for_status() return attrdict_or_list(r.json()) def __str__(self): return "HabiticaObject: \n"+str(self.__dict__)
2.765625
3
udemy/python-video-workbook/my_progress/033.py
djrgit/coursework
0
12797285
# Exercise 33 - Local Variables c = 1 def foo(): c = 2 return c c = 3 print(foo())
2.859375
3
bom_tools/part_finder.py
snhobbs/BOMTools
0
12797286
""" part_finder.py Look through two files and search for an internal part number that looks like `match_pattern` """ #!/usr/bin/env python3 import sys, regex, click #first arg is a digikey csv cart #second is a newline deliminated list of eoi partnumbers match_pattern = "\w{3}-\w{4}-\w{2}" @click.argument("--first", "-f", type=str, required=True, help="Design BOM to compare to. Should have the part number somewhere in the line") @click.argument("--second", "-s", type=str, required=True, help="Main BOM to search. Typically the distributer BOM or a text schematic") @click.command def main(first, second): regx = regex.compile(match_pattern) with open(first, 'r') as f: first_parts = [part.strip() for part in f.read().strip().split('\n')] with open(second, 'r') as f: st = f.read().strip() second_parts = regx.findall(st) nfirst = [] nsecond = [] for part in first_parts: if part not in nfirst: nfirst.append(part) for part in second_parts: if part not in parts: nsecond.append(part) print("Not in first: ", nfirst) print("Not in second: ", nsecond) if __name__ == "__main__": main()
3.3125
3
src/10fastfingers-auto-type.py
gordonnguyen/10fastfingers-auto-type
0
12797287
<reponame>gordonnguyen/10fastfingers-auto-type import os,sys,inspect from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import time # Init working folder currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) # URLS SIGNIN_URL = "https://10fastfingers.com/login" # ELEMENTS SELECTORS USERNAME_ID = "UserEmail" PASSWORD_ID = "<PASSWORD>" LOGIN_BTN_ID = "login-form-submit" TARGET_WORD_SLTCR = "#row1 > span.highlight" INPUT_FIELD_ID = "inputfield" # SPECIAL TYPE INPUT SPACE_KEY = "\ue00d" # OTHERS LINE = '<>'*20 WORDS_PER_LINE = 12 RESULT_VIEWING_TIME = 15 FINAL_VIEWING_TIME = 60*60 # 1 hour def main(): # Initilize settings setting = read_ini_settings() typing_test_url = setting['typing_test_url'] use_account = setting['use_account'] word_per_sec = float(setting['word_per_sec']) num_test_loop = int(setting['num_test_loop']) extract_text_to_file = setting['extract_text_to_file'] extracted_text = '' driver = webdriver.Chrome('bin/chromedriver.exe') # Sign in if use_account == True: sign_in(driver, setting) else: print(LINE+"\nPlaying anonymously...") # Get text and type for i in range(num_test_loop): word_count = 0 driver.get(typing_test_url) WebDriverWait(driver, 30).until(EC.presence_of_element_located((By.CSS_SELECTOR, TARGET_WORD_SLTCR))) print("\nYAY! It's typing... "+LINE) while True: target_word = driver.find_element_by_css_selector(TARGET_WORD_SLTCR).text if target_word != '': type_word(target_word, driver) if extract_text_to_file == True: word_count += 1 extracted_text = accumulate_words(target_word, word_count, extracted_text) time.sleep(word_per_sec) else: time.sleep(RESULT_VIEWING_TIME) break # extract words from test to file if extract_text_to_file: with open('data/competition_text_file.txt', 'w') as text_f: text_f.write(extracted_text) print('\n'+LINE+"\nALL DONE! Check your browser for results!") # Retain browser for viewing time.sleep(FINAL_VIEWING_TIME) driver.close() def read_ini_settings(): setting_temp = [] setting = {} num_of_value = 1 seperate_symbol = '=' # Open and read setting.ini with open('data/setting.ini') as f: for item in f: if not (item.startswith('#') or item.startswith('\n')): setting_temp.append(item.split(seperate_symbol)) # Will result with a 2D list # Convert setting list to dictionary for x in range(len(setting_temp)): for y in range(num_of_value): key = setting_temp[x][y].strip() value = setting_temp[x][y+1].strip() if value.lower() == 'true': value = True setting[key] = value return setting def sign_in(driver, setting): email = setting['email'] password = setting['password'] # Fill text fields with account info driver.get(SIGNIN_URL) WebDriverWait(driver, 15).until(EC.element_to_be_clickable((By.ID,USERNAME_ID))) driver.find_element_by_id(USERNAME_ID).send_keys(email) driver.find_element_by_id(PASSWORD_ID).send_keys(password) # Try logging in driver.find_element_by_id(LOGIN_BTN_ID).click() try: WebDriverWait(driver, 15).until(EC.url_changes(SIGNIN_URL)) except: print('Unable to sign in! Playing anonymously...') else: print('Sign in successfully!') def type_word(target_word, driver): driver.find_element_by_id(INPUT_FIELD_ID).send_keys(target_word+SPACE_KEY) def accumulate_words(target_word, word_count, extracted_text): if word_count % WORDS_PER_LINE == 0: extracted_text += target_word + '\n' else: extracted_text += target_word+' ' return extracted_text main()
2.6875
3
xps_convert/read/xmp_parser.py
InternetUnexplorer/XPSConvert
0
12797288
import re from typing import Iterator from xps_convert.read.errors import ParseError from xps_convert.read.xmp import Xmp FIELD_RE = re.compile(r"([\w\s]+):\s(.*)") def parse_xmp(filename: str, lines: Iterator[str]) -> Xmp: xmp = Xmp() # First line is always a comment, skip it next(lines) # Match each line and enumerate (line numbers are needed for errors) for n, match in enumerate((FIELD_RE.match(line) for line in lines)): if match is not None: xmp.values[match.group(1)] = match.group(2) else: raise ParseError("unable to parse line", filename, n) # Verify that required fields are present for field in ("MHS File", "Device", "Package", "SpeedGrade"): if field not in xmp.values: raise ParseError(f"missing required field ‘{field}’", filename) return xmp
2.9375
3
initializer.py
obs145628/py-neural-nets
0
12797289
<reponame>obs145628/py-neural-nets import numpy as np ''' Initializer params(shape): Create initalized tensor @param shape tuple of dimensions of the expected tensor @return initialized tensor ''' class GaussInitializer: def params(self, shape): return np.random.standard_normal(shape) class GaussSqrtInitializer: def params(self, shape): mat = np.random.standard_normal(shape) if len(shape) > 1: mat /= np.sqrt(shape[1]) return mat
3.0625
3
text_extensions_for_pandas/array/tensor.py
lresende/text-extensions-for-pandas
0
12797290
<filename>text_extensions_for_pandas/array/tensor.py # # Copyright (c) 2020 IBM Corp. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # # tensor.py # # Part of text_extensions_for_pandas # # Pandas extensions to support columns of N-dimensional tensors of equal shape. # from typing import * import numpy as np import pandas as pd from pandas.compat import set_function_name from pandas.core import ops # Internal imports import text_extensions_for_pandas.util as util @pd.api.extensions.register_extension_dtype class TensorType(pd.api.extensions.ExtensionDtype): """ Pandas data type for a column of tensors with the same shape. """ @property def type(self): """The type for a single row of a TensorArray column.""" return np.ndarray @property def name(self) -> str: """A string representation of the dtype.""" return "TensorType" @classmethod def construct_from_string(cls, string: str): """ See docstring in `ExtensionDType` class in `pandas/core/dtypes/base.py` for information about this method. """ # Upstream code uses exceptions as part of its normal control flow and # will pass this method bogus class names. if string == cls.__name__: return cls() else: raise TypeError( f"Cannot construct a '{cls.__name__}' from '{string}'") @classmethod def construct_array_type(cls): """ See docstring in `ExtensionDType` class in `pandas/core/dtypes/base.py` for information about this method. """ return TensorArray def __from_arrow__(self, extension_array): from text_extensions_for_pandas.array.arrow_conversion import ArrowTensorArray values = ArrowTensorArray.to_numpy(extension_array) return TensorArray(values) class TensorOpsMixin(pd.api.extensions.ExtensionScalarOpsMixin): """ Mixin to provide operators on underlying ndarray. TODO: would be better to derive from ExtensionOpsMixin, but not available """ @classmethod def _create_method(cls, op, coerce_to_dtype=True): # NOTE: this overrides, but coerce_to_dtype might not be needed def _binop(self, other): lvalues = self._tensor rvalues = other._tensor if isinstance(other, TensorArray) else other res = op(lvalues, rvalues) return TensorArray(res) op_name = ops._get_op_name(op, True) return set_function_name(_binop, op_name, cls) class TensorArray(pd.api.extensions.ExtensionArray, TensorOpsMixin): """ A Pandas `ExtensionArray` that represents a column of `numpy.ndarray`s, or tensors, where the outer dimension is the count of tensors in the column. Each tensor must have the same shape. """ def __init__(self, values: Union[np.ndarray, Sequence[np.ndarray]], make_contiguous: bool = True): """ :param values: A `numpy.ndarray` or sequence of `numpy.ndarray`s of equal shape. :param make_contiguous: force values to be contiguous in memory """ if isinstance(values, np.ndarray): self._tensor = values elif isinstance(values, Sequence): self._tensor = np.stack(values, axis=0) if len(values) > 0 else np.array([]) else: raise TypeError(f"Expected a numpy.ndarray or sequence of numpy.ndarray, " f"but received {values} " f"of type '{type(values)}' instead.") if not self._tensor.flags.c_contiguous and make_contiguous: self._tensor = np.ascontiguousarray(self._tensor) @classmethod def _concat_same_type( cls, to_concat: Sequence["TensorArray"] ) -> "TensorArray": """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ return TensorArray(np.concatenate([a._tensor for a in to_concat])) def isna(self) -> np.array: """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ # TODO any or all values in row nan? return np.any(np.isnan(self._tensor), axis=1) def copy(self) -> "TensorArray": """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ ret = TensorArray( self._tensor.copy(), ) # TODO: Copy cached properties too return ret def take( self, indices: Sequence[int], allow_fill: bool = False, fill_value: Any = None ) -> "TensorArray": """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ values = self._tensor.take(indices, axis=0) if allow_fill: # From API docs: "[If allow_fill == True, then] negative values in # `indices` indicate missing values. These values are set to # `fill_value`. for i in range(len(indices)): if indices[i] < 0: # Note that Numpy will broadcast the fill value to the shape # of each row. values[i] = fill_value return TensorArray(values) @property def dtype(self) -> pd.api.extensions.ExtensionDtype: """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ return TensorType() def to_numpy(self, dtype=None, copy=False, na_value=pd.api.extensions.no_default): """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ # TODO options return self._tensor def __len__(self) -> int: return len(self._tensor) def __getitem__(self, item) -> "TensorArray": """ See docstring in `Extension Array` class in `pandas/core/arrays/base.py` for information about this method. """ # TODO pandas converts series with np.asarray, then applied a function e.g. map_infer(array, is_float) to format strings etc. # Return an ndarray for scalar item, or TensorArray for slice if isinstance(item, int): return self._tensor[item] else: return TensorArray(self._tensor[item]) def __setitem__(self, key: Union[int, np.ndarray], value: Any) -> None: """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ if isinstance(key, (int, slice)): self._tensor[key] = value else: raise NotImplementedError(f"__setitem__ with key type '{type(key)}' " f"not implemented") def __repr__(self): """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ return self._tensor.__repr__() def __str__(self): return self._tensor.__str__() def _reduce(self, name, skipna=True, **kwargs): """ See docstring in `ExtensionArray` class in `pandas/core/arrays/base.py` for information about this method. """ if name == "sum": return TensorArray(np.sum(self._tensor, axis=0)) else: raise NotImplementedError(f"'{name}' aggregate not implemented.") def __arrow_array__(self, type=None): from text_extensions_for_pandas.array.arrow_conversion import ArrowTensorArray return ArrowTensorArray.from_numpy(self._tensor) # Add operators from the mixin to the class TensorArray._add_arithmetic_ops() TensorArray._add_comparison_ops()
2.421875
2
subprojects/laser/data/setup.py
sirca/bdkd_datastore
3
12797291
# Copyright 2015 Nicta # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #!/usr/bin/env python from setuptools import setup import os package_name = 'bdkd-laser-data' webdir = 'wsgi' datafiles = [(os.path.join(package_name, root), [os.path.join(root, f) for f in files]) for root, dirs, files in os.walk(webdir)] setup( name=package_name, version='0.1.0', description='Access dataset data', author='Sirca Ltd', author_email='<EMAIL>', url='http://github.com/sirca/bdkd', package_dir={'': 'lib'}, packages=['bdkd.laser', 'bdkd.laser.util'], data_files = datafiles, scripts=[ 'bin/pack_maps.py', 'bin/pack_raw.py', ], entry_points = { 'console_scripts': [ 'datastore-add-laser = bdkd.laser.util.add:add_laser_util', ], }, install_requires=['boto', 'PyYAML', 'bdkd-datastore', 'h5py'] )
1.515625
2
fact-bounty-flask/api/models/story.py
ganeshpatro321/fact-Bounty
0
12797292
from datetime import datetime from ... import db class Story(db.Model): """ This model holds information about Story """ __tablename__ = 'story' id = db.Column(db.Integer, primary_key=True) title = db.Column(db.Text, nullable=False) content = db.Column(db.Text, nullable=False) featured_img_url = db.Column(db.Text, nullable=False) approved_count = db.Column(db.Integer, nullable=False) fake_count = db.Column(db.Integer, nullable=False) mixedvote_count = db.Column(db.Integer, nullable=False) date_added = db.Column(db.Text, default=datetime.now()) def __init__(self, title, content, featured_img_url, approved_count, fake_count, mixedvote_count): """ Initialize the instance """ self.title = title self.content = content self.featured_img_url = featured_img_url self.approved_count = approved_count self.fake_count = fake_count self.mixedvote_count = mixedvote_count def __repr__(self): """ Returns the object reprensentation """ return '<Task %r>' % self.content def to_json(self): """ Returns a JSON object :return: story JSON object """ json_story = { 'title': self.title, 'content': self.content, 'featured_img_url': self.featured_img_url, 'approved_count': self.approved_count, 'fake_count': self.fake_count, 'mixedvote_count': self.mixedvote_count, 'date_added': self.date_added } return json_story def save(self): """ Save a story to the database. This includes creating a new story and editing one. """ db.session.add(self) db.session.commit()
3.359375
3
cpdb/officers/serializers/response_mobile_serializers.py
invinst/CPDBv2_backend
25
12797293
<filename>cpdb/officers/serializers/response_mobile_serializers.py from rest_framework import serializers from shared.serializer import NoNullSerializer, OfficerPercentileSerializer, OfficerYearlyPercentileSerializer class PoliceUnitMobileSerializer(NoNullSerializer): unit_id = serializers.IntegerField(source='id') unit_name = serializers.CharField() description = serializers.CharField() class OfficerInfoMobileSerializer(NoNullSerializer): officer_id = serializers.IntegerField(source='id') full_name = serializers.CharField() unit = PoliceUnitMobileSerializer(source='last_unit') date_of_appt = serializers.DateField(source='appointed_date', format='%Y-%m-%d') date_of_resignation = serializers.DateField(source='resignation_date', format='%Y-%m-%d') active = serializers.SerializerMethodField() rank = serializers.CharField() race = serializers.CharField() birth_year = serializers.IntegerField() badge = serializers.SerializerMethodField() historic_badges = serializers.ListField(child=serializers.CharField()) gender = serializers.CharField(source='gender_display') percentiles = serializers.SerializerMethodField() allegation_count = serializers.IntegerField() percentile_allegation = serializers.DecimalField( source='complaint_percentile', max_digits=6, decimal_places=4, allow_null=True ) percentile_trr = serializers.DecimalField(source='trr_percentile', max_digits=6, decimal_places=4, allow_null=True) honorable_mention_count = serializers.IntegerField() sustained_count = serializers.IntegerField() unsustained_count = serializers.IntegerField() discipline_count = serializers.IntegerField() civilian_compliment_count = serializers.IntegerField() trr_count = serializers.IntegerField() major_award_count = serializers.IntegerField() honorable_mention_percentile = serializers.DecimalField(max_digits=6, decimal_places=4, allow_null=True) def get_percentiles(self, obj): yearly_percentiles = obj.officeryearlypercentile_set.order_by('year') return OfficerYearlyPercentileSerializer(yearly_percentiles, many=True).data def get_active(self, obj): return obj.get_active_display() def get_badge(self, obj): return obj.current_badge or '' class BaseTimelineMobileSerializer(NoNullSerializer): unit_name = serializers.SerializerMethodField() unit_description = serializers.SerializerMethodField() rank = serializers.SerializerMethodField() priority_sort = serializers.SerializerMethodField() kind = serializers.SerializerMethodField() def get_kind(self, obj): raise NotImplementedError def get_priority_sort(self, obj): raise NotImplementedError def get_unit_name(self, obj): return obj.unit_name if obj.unit_name else '' def get_unit_description(self, obj): return obj.unit_description if obj.unit_description else '' def get_rank(self, obj): return obj.rank_name class RankChangeNewTimelineMobileSerializer(BaseTimelineMobileSerializer): date_sort = serializers.DateField(source='spp_date', format=None) date = serializers.DateField(source='spp_date', format='%Y-%m-%d') def get_kind(self, obj): return 'RANK_CHANGE' def get_priority_sort(self, obj): return 25 def get_rank(self, obj): return obj.rank class JoinedNewTimelineMobileSerializer(BaseTimelineMobileSerializer): date_sort = serializers.DateField(source='appointed_date', format=None) date = serializers.DateField(source='appointed_date', format='%Y-%m-%d') def get_kind(self, obj): return 'JOINED' def get_priority_sort(self, obj): return 10 class UnitChangeNewTimelineMobileSerializer(BaseTimelineMobileSerializer): date_sort = serializers.DateField(source='effective_date', format=None) date = serializers.DateField(source='effective_date', format='%Y-%m-%d') def get_kind(self, obj): return 'UNIT_CHANGE' def get_priority_sort(self, obj): return 20 class VictimMobileSerializer(NoNullSerializer): gender = serializers.CharField(source='gender_display') race = serializers.CharField() age = serializers.IntegerField() class AttachmentFileMobileSerializer(NoNullSerializer): title = serializers.CharField() url = serializers.CharField() preview_image_url = serializers.CharField() file_type = serializers.CharField() id = serializers.CharField() class CRNewTimelineMobileSerializer(BaseTimelineMobileSerializer): date_sort = serializers.SerializerMethodField() date = serializers.SerializerMethodField() crid = serializers.CharField() category = serializers.SerializerMethodField() subcategory = serializers.CharField() finding = serializers.CharField(source='final_finding_display') outcome = serializers.CharField(source='final_outcome') coaccused = serializers.IntegerField(source='coaccused_count') attachments = serializers.SerializerMethodField() point = serializers.SerializerMethodField() victims = VictimMobileSerializer(many=True) def get_date_sort(self, obj): return obj.allegation.incident_date.date() def get_date(self, obj): return obj.allegation.incident_date.date().strftime('%Y-%m-%d') def get_category(self, obj): return obj.category if obj.category else 'Unknown' def get_kind(self, obj): return 'CR' def get_priority_sort(self, obj): return 30 def get_point(self, obj): try: return { 'lon': obj.allegation.point.x, 'lat': obj.allegation.point.y } except AttributeError: return None def get_attachments(self, obj): return AttachmentFileMobileSerializer(obj.allegation.prefetch_filtered_attachments, many=True).data class AwardNewTimelineMobileSerializer(BaseTimelineMobileSerializer): date_sort = serializers.DateField(source='start_date', format=None) date = serializers.DateField(source='start_date', format='%Y-%m-%d') award_type = serializers.CharField() def get_kind(self, obj): return 'AWARD' def get_priority_sort(self, obj): return 40 class TRRNewTimelineMobileSerializer(BaseTimelineMobileSerializer): trr_id = serializers.IntegerField(source='id') date_sort = serializers.SerializerMethodField() date = serializers.SerializerMethodField() taser = serializers.NullBooleanField() firearm_used = serializers.NullBooleanField() point = serializers.SerializerMethodField() def get_kind(self, obj): return 'FORCE' def get_priority_sort(self, obj): return 50 def get_date_sort(self, obj): return obj.trr_datetime.date() def get_date(self, obj): return obj.trr_datetime.date().strftime('%Y-%m-%d') def get_point(self, obj): try: return { 'lon': obj.point.x, 'lat': obj.point.y } except AttributeError: return None class OfficerPercentileMobileSerializer(NoNullSerializer): percentile_trr = serializers.DecimalField( source='trr_percentile', allow_null=True, read_only=True, max_digits=6, decimal_places=4) percentile_allegation_civilian = serializers.DecimalField( source='civilian_allegation_percentile', allow_null=True, read_only=True, max_digits=6, decimal_places=4) percentile_allegation_internal = serializers.DecimalField( source='internal_allegation_percentile', allow_null=True, read_only=True, max_digits=6, decimal_places=4) class CoaccusalCardMobileSerializer(OfficerPercentileSerializer): id = serializers.IntegerField() full_name = serializers.CharField() rank = serializers.CharField() coaccusal_count = serializers.IntegerField() class OfficerCardMobileSerializer(OfficerPercentileSerializer): id = serializers.IntegerField() full_name = serializers.CharField() complaint_count = serializers.IntegerField(source='allegation_count')
2
2
osmcsclassify/Config.py
jremillard/osm-changeset-classification
16
12797294
<filename>osmcsclassify/Config.py historyDbTempDirName = "/home/jason/nn/osm-changeset-classification/osm-planet" historyDbFileName = "osm-planet/history.sqlite" #historyPBF = "../osm-data/vermont.osh.pbf" #historyPBF = 'osm-planet/history-180319.osm.pbf' historyPBF = "/media/jason/E46AC1AC6AC17BB4/Remillard/maps/osm2017/history-180319.osm.pbf" changeSetHistoryOSM = "/media/jason/E46AC1AC6AC17BB4/Remillard/maps/osm2017/changesets-180319.osm.bz2"
0.984375
1
hilearn/mcmc/mcmc_sampler.py
houruiyan/hilearn
4
12797295
<reponame>houruiyan/hilearn<gh_stars>1-10 import numpy as np def Geweke_Z(X, first=0.1, last=0.5): N = X.shape[0] A = X[:int(first*N)] B = X[int(last*N):] if np.sqrt(np.var(A) + np.var(B)) == 0: Z = None else: Z = abs(A.mean() - B.mean()) / np.sqrt(np.var(A) + np.var(B)) return Z def mcmc_sampler(data, prior_pdf, likelihood, propose_pdf, propose_func, xx, param, adaptive_func=None, min_run=1000, max_rum=3000, gap=100): # initialization X_now = propose_func(xx, param) L_now = likelihood(X_now, data, param) P_now = prior_pdf(X_now) + L_now # MCMC running accept_num = 0 L_all = np.zeros(max_rum) X_all = np.zeros((max_rum, len(X_now))) for m in range(max_rum): P_try, L_try = 0.0, 0.0 Q_now, Q_try = 0.0, 0.0 # step 1: propose a value X_try = propose_func(X_now, param) Q_now = propose_pdf(X_now, X_try, param) Q_try = propose_pdf(X_try, X_now, param) L_try = likelihood(X_try, data, param) P_try = prior_pdf(X_try) + L_try # step 2: accept or reject the proposal alpha = np.exp(min(P_try+Q_now-P_now-Q_try, 0)) if alpha is None: print("Warning: accept ratio alpha is none!") elif np.random.rand(1) < alpha: accept_num += 1 X_now = X_try + 0.0 P_now = P_try + 0.0 L_now = L_try + 0.0 L_all[m] = L_now X_all[m,:] = X_now # step 3. convergence diagnostics if m >= min_run and m % gap == 0: z_scores = np.zeros(X_all.shape[1]) for k in range(X_all.shape[1]): z_scores[k] = Geweke_Z(X_all[:m, k]) if sum(z_scores <= 2) == len(z_scores): L_all = L_all[:m] X_all = X_all[:m,:] break # step 4: adaptive MCMC if (adaptive_func is not None and accept_num >= 10 and m % gap == 0): param = adaptive_func(X_all[:m,:], param) print("MCMC summary: %d acceptance in %d run (%.1f%%)." %(accept_num, m, accept_num*100.0/m)) return X_all, L_all, accept_num
2.515625
3
model/user_in_group.py
Belyanova/Python_-training
0
12797296
class UserGroup: def __init__(self, id=None, group_id=None,): self.group_id = group_id self.id = id
2.078125
2
landing/migrations/0001_initial.py
XeryusTC/projman
0
12797297
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models def setup_site(apps, schema_editor): """Populate the sites model""" Site = apps.get_model('sites', 'Site') Site.objects.all().delete() # Register SITE_ID = 1 try: domain = settings.DOMAIN except: domain = 'example.com' Site.objects.create(domain=domain, name='ProjMan') class Migration(migrations.Migration): dependencies = [ ('sites', '0001_initial'), ] operations = [ migrations.RunPython(setup_site) ]
2.09375
2
gmaps/process/gmaps_process.py
cfespinoza/google_maps_exractor
0
12797298
import multiprocessing class GmapsProcess(multiprocessing.Process): # make 'daemon' attribute always return False def _get_daemon(self): return False def _set_daemon(self, value): pass daemon = property(_get_daemon, _set_daemon) # We sub-class multiprocessing.pool.Pool instead of multiprocessing.Pool # because the latter is only a wrapper function, not a proper class. class GmapsProcessPool(multiprocessing.pool.Pool): Process = GmapsProcess
2.71875
3
listful/types.py
d1618033/listful
2
12797299
<gh_stars>1-10 import typing ITEM = typing.TypeVar('ITEM') FIELD = str VALUE = typing.TypeVar('VALUE') GETTER = typing.Callable[[ITEM, FIELD], VALUE]
2.359375
2
amicropyserver.py
IhorNehrutsa/micropyserver
0
12797300
<gh_stars>0 """ MicroPyServer is a simple HTTP server for MicroPython projects. @see https://github.com/troublegum/micropyserver The MIT License Copyright (c) 2019 troublegum. https://github.com/troublegum/micropyserver Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import re import sys import io import utime import gc import uasyncio as asyncio class aMicroPyServer(object): def __init__(self, host="0.0.0.0", port=80, backlog=5, timeout=20): """ Constructor """ self._host = host self._port = port self._routes = [] self._on_request_handler = None self.backlog = backlog self.timeout = timeout self._counter = 0 # Remove it in the production release. async def start(self): """ Start server """ print('Awaiting client connection on {}:{}'.format(self._host, self._port)) self.server = await asyncio.start_server(self.run_client, self._host, self._port, self.backlog) while True: await asyncio.sleep(1) async def run_client(self, sreader, swriter): self.start_time = utime.ticks_ms() #print('Got connection from client', self, sreader, sreader.s.fileno(), sreader.e['peername']) try: request = b'' res = b'' while True: try: ''' # 450-550 ms res = await asyncio.wait_for(sreader.readline(), self.timeout) request += res if res == b'\r\n': # end of HTTP request break ''' # 150-250 ms res = await asyncio.wait_for(sreader.read(1024), self.timeout) print(res) request += res if request[-4:] == b'\r\n\r\n': # end of HTTP request break ''' # 150-250 ms request = await asyncio.wait_for(sreader.readline(), self.timeout) res = await asyncio.wait_for(sreader.read(1024), self.timeout) if res[-4:] == b'\r\n\r\n': # end of HTTP request break ''' except asyncio.TimeoutError as e: print(1, e, "asyncio.TimeoutError", self.timeout) res = b'' if res == b'': # socket connection broken print('raise OSError') raise OSError if request: request = str(request, "utf8") #print('request >>>{}<<<'.format(request)) try: route = self.find_route(request) if route: await route["handler"](swriter, request) else: await self.not_found(swriter) #1/0 # test internal_error except Exception as e: print(2, e) self.internal_error(swriter, e) raise except OSError as e: print(3, e) pass swriter_s_fileno = swriter.s.fileno() await swriter.wait_closed() #print('Client socket closed.', self, swriter, swriter_s_fileno, swriter.s.fileno(), swriter.e['peername']) print('Render time: %i ms' % utime.ticks_diff(utime.ticks_ms(), self.start_time)) gc.collect() #print('---------------------------------------------------------------') async def close(self): print('Closing server...') self.server.close() await self.server.wait_closed() print('Server is closed.') def add_route(self, path, handler, method="GET"): """ Add new route """ self._routes.append({"path": path, "handler": handler, "method": method}) async def send(self, swriter, response, status=200, content_type="Content-Type: text/plain", extra_headers=[]): """ Send response to client """ if swriter is None: raise Exception("Can't send response, no connection instance") status_message = {200: "OK", 400: "Bad Request", 403: "Forbidden", 404: "Not Found", 500: "Internal Server Error"} swriter.write("HTTP/1.0 " + str(status) + " " + status_message[status] + "\r\n" + \ content_type + "\r\n") await swriter.drain() for header in extra_headers: swriter.write(header + "\r\n") ### await swriter.write("X-Powered-By: MicroPyServer\r\n") # not required, vainglory swriter.write("Cache-Control: no-store\r\n") # The response may not be stored in any cache. # This is necessary to execute the code on the server: # switch PIN ON and switch PIN OFF. # This prevents showing the cashed text # when a user presses the "Backward/Forward" button in a browser. swriter.write("\r\n") # end of HTTP header await swriter.drain() self._counter += 1 swriter.write(str(self._counter) + '\r\n') swriter.write(response) #print("swriter.out_buf >>>{}<<<".format(swriter.out_buf)) await swriter.drain() #print("Finished processing request.") def find_route(self, request): """ Find route """ method = re.search("^([A-Z]+)", request).group(1) for route in self._routes: if method != route["method"]: continue path = re.search("^[A-Z]+\\s+(/[-a-zA-Z0-9_.]*)", request).group(1) if path == route["path"]: return route else: match = re.search("^" + route["path"] + "$", path) if match: return route return None ''' def find_route(self, request): """ Find route """ lines = request.split("\r\n") #print('lines', lines) if len(lines[0]) > 0: method = re.search("^([A-Z]+)", lines[0]).group(1) for route in self._routes: if method != route["method"]: continue path = re.search("^[A-Z]+\\s+(/[-a-zA-Z0-9_.]*)", lines[0]).group(1) if path == route["path"]: return route else: match = re.search("^" + route["path"] + "$", path) if match: return route return None ''' async def not_found(self, swriter): """ Not found action """ await self.send(swriter, "404 Not found", status=404) async def internal_error(self, swriter, error): """ Catch error action """ output = io.StringIO() sys.print_exception(error, output) str_error = output.getvalue() output.close() if swriter.s.fileno() != -1: await self.send(swriter, "Error: " + str_error, status=500) def on_request(self, handler): """ Set request handler """ self._on_request_handler = handler
2.25
2
ole.py
nursultanramazanov/123
2
12797301
<reponame>nursultanramazanov/123 # -*- coding:utf-8 -*- # Author: <NAME>(<EMAIL>) import os import sys import struct import types import kernel import kavutil # ------------------------------------------------------------------------- # 메시지 출력 함수 # ------------------------------------------------------------------------- __version__ = '1.0' # ------------------------------------------------------------------------- # 엔진 오류 메시지를 정의 # ------------------------------------------------------------------------- class Error(Exception): pass # --------------------------------------------------------------------- # MisiBase64 인코더 디코더 # --------------------------------------------------------------------- def MsiBase64Encode(x): ct = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz._' if x > 63: return None return ord(ct[x]) def DecodeStreamName(name): wch = [] och = [] for i in range(len(name) / 2): wch.append(kavutil.get_uint16(name, i * 2)) for ch in wch: if 0x3800 <= ch <= 0x4840: if ch >= 0x4800: # 0x4800 - 0x483F # only one charecter can be decoded ch = MsiBase64Encode(ch - 0x4800) if not ch: continue else: # 0x3800 - 0x383F # the value contains two characters ch -= 0x3800 och.append(MsiBase64Encode(ch & 0x3f)) ch = MsiBase64Encode(((ch >> 6) & 0x3f)) och.append(ch) ret_str = '' for ch in och: ret_str += struct.pack('<H', ch) # print ret_str.decode('UTF-16LE', 'replace') return ret_str # --------------------------------------------------------------------- # OLE 내부 링크 구하기 # --------------------------------------------------------------------- def get_block_link(no, bbd_or_sbd_fat): ret = [] fat = bbd_or_sbd_fat next_b = no if next_b != 0xfffffffe: ret.append(next_b) while True: try: next_b = fat[next_b] if next_b == 0xfffffffe: break if len(ret) % 10000 == 0: if next_b in ret: # 이미 링크가 존재하면 종료 break ret.append(next_b) except KeyError: break return ret # --------------------------------------------------------------------- # OLE 블록 읽기 # --------------------------------------------------------------------- def get_bblock(buf, no, bsize): off = (no+1) * bsize return buf[off:off+bsize] # --------------------------------------------------------------------- # OLE의 BBD 리스트를 얻는다. # --------------------------------------------------------------------- def get_bbd_list_array(buf, verbose=False): bbd_list_array = buf[0x4c:0x200] # 전체 bbd_list num_of_bbd_blocks = kavutil.get_uint32(buf, 0x2c) xbbd_start_block = kavutil.get_uint32(buf, 0x44) num_of_xbbd_blocks = kavutil.get_uint32(buf, 0x48) bsize = 1 << kavutil.get_uint16(buf, 0x1e) if verbose: kavutil.vprint(None, 'Num of BBD Blocks', '%d' % num_of_bbd_blocks) kavutil.vprint(None, 'XBBD Start', '%08X' % xbbd_start_block) kavutil.vprint(None, 'Num of XBBD Blocks', '%d' % num_of_xbbd_blocks) if num_of_bbd_blocks > 109: # bbd list 개수가 109보다 크면 xbbd를 가져와야 함 next_b = xbbd_start_block for i in range(num_of_xbbd_blocks): t_data = get_bblock(buf, next_b, bsize) bbd_list_array += t_data[:-4] next_b = kavutil.get_uint32(t_data, bsize-4) return bbd_list_array[:num_of_bbd_blocks*4], num_of_bbd_blocks, num_of_xbbd_blocks, xbbd_start_block # --------------------------------------------------------------------- # OLE의 BBD list의 index를 Offset으로 리턴한다. # --------------------------------------------------------------------- def get_bbd_list_index_to_offset(buf, idx): num_of_bbd_blocks = kavutil.get_uint32(buf, 0x2c) xbbd_start_block = kavutil.get_uint32(buf, 0x44) # num_of_xbbd_blocks = kavutil.get_uint32(buf, 0x48) bsize = 1 << kavutil.get_uint16(buf, 0x1e) if idx >= num_of_bbd_blocks: # 범위를 벗어나면 에러 return -1 if idx <= 109: return 0x4c + (idx * 4) else: t_idx = idx - 109 seg = (t_idx / ((bsize / 4) - 1)) + (1 if (t_idx % ((bsize / 4) - 1)) else 0) off = (t_idx % ((bsize / 4) - 1)) next_b = xbbd_start_block for i in range(seg): if next_b == 0xfffffffe: return -1 t_buf = get_bblock(buf, next_b, bsize) next_b = kavutil.get_uint32(t_buf, bsize-4) return (next_b + 1) * bsize + (off * 4) # --------------------------------------------------------------------- # OLE 파일인지 확인한다. # --------------------------------------------------------------------- def is_olefile(filename): try: buf = open(filename, 'rb').read(8) if buf == 'D0CF11E0A1B11AE1'.decode('hex'): return True except IOError: pass return False # --------------------------------------------------------------------- # OleFile 클래스 # --------------------------------------------------------------------- class OleFile: def __init__(self, input_data, write_mode=False, verbose=False): self.verbose = verbose # 디버깅용 self.isfile = False # 파일로 접근 중인가? if isinstance(input_data, types.StringType): if os.path.exists(input_data): self.isfile = True self.fname = input_data self.fp = open(input_data, 'rb') buf = self.fp.read() else: buf = input_data else: raise Error('Input data is invalid.') # 수정 모드 self.write_mode = write_mode # OLE 주요 데이터 self.mm = None self.bsize = None self.ssize = None self.bbd_list_array = None self.bbd = None self.bbd_fat = {} self.sbd = None self.root = None self.pps = None self.small_block = None self.root_list_array = None self.exploit = [] # 취약점 존재 여부 # 임시 변수 self.__deep = None self.__full_list = None self.init(buf) def init(self, buf): # OLE 주요 데이터 self.mm = buf self.bsize = 0 self.ssize = 0 # 임시 변수 self.__deep = 0 self.__full_list = [] self.parse() # OLE 파일을 분석 def close(self): if self.isfile: self.fp.close() if self.write_mode: open(self.fname, 'wb').write(self.mm) # --------------------------------------------------------------------- # OLE 파싱하기 # --------------------------------------------------------------------- def parse(self): buf = self.mm[:8] if buf != 'D0CF11E0A1B11AE1'.decode('hex'): raise Error('Not Ole signature') # big block, small bloc 크기 구하기 self.bsize = 1 << kavutil.get_uint16(self.mm, 0x1e) self.ssize = 1 << kavutil.get_uint16(self.mm, 0x20) if self.verbose: kavutil.vprint('Header') kavutil.vprint(None, 'Big Block Size', '%d' % self.bsize) kavutil.vprint(None, 'Small Block Size', '%d' % self.ssize) print kavutil.HexDump().Buffer(self.mm, 0, 0x60) print if self.bsize % 0x200 != 0 or self.ssize != 0x40: # 이상 파일 정보 처리 return False # bbd 읽기 self.bbd_list_array, num_of_bbd_blocks, num_of_xbbd_blocks, xbbd_start_block = \ get_bbd_list_array(self.mm, self.verbose) ''' # 상당히 많은 데이터가 출력되어 주석 처리 if self.verbose: print if num_of_bbd_blocks < 109: kavutil.HexDump().Buffer(self.mm, 0x4c, num_of_bbd_blocks * 4) else: kavutil.HexDump().Buffer(self.mm, 0x4c, num_of_bbd_blocks * 109) next_b = xbbd_start_block for i in range(num_of_xbbd_blocks): t_data = get_bblock(self.mm, next_b, self.bsize) print kavutil.HexDump().Buffer(self.mm, (next_b+1) * self.bsize) next_b = kavutil.get_uint32(t_data, self.bsize-4) ''' if len(self.bbd_list_array)/4 < num_of_bbd_blocks: return False self.bbd = '' for i in range(num_of_bbd_blocks): no = kavutil.get_uint32(self.bbd_list_array, i*4) self.bbd += get_bblock(self.mm, no, self.bsize) self.bbd_fat = {} for i in range(len(self.bbd) / 4): n = kavutil.get_uint32(self.bbd, i*4) self.bbd_fat[i] = n if self.verbose: open('bbd.dmp', 'wb').write(self.bbd) print kavutil.vprint('BBD') print kavutil.HexDump().Buffer(self.bbd, 0, 0x80) # Root 읽기 root_startblock = kavutil.get_uint32(self.mm, 0x30) root_list_array = get_block_link(root_startblock, self.bbd_fat) self.root_list_array = root_list_array self.root = '' for no in root_list_array: self.root += get_bblock(self.mm, no, self.bsize) if self.verbose: open('root.dmp', 'wb').write(self.root) print kavutil.vprint('ROOT') kavutil.vprint(None, 'Start Blocks', '%d' % root_startblock) print kavutil.HexDump().Buffer(self.root, 0, 0x80) # sbd 읽기 sbd_startblock = kavutil.get_uint32(self.mm, 0x3c) num_of_sbd_blocks = kavutil.get_uint32(self.mm, 0x40) sbd_list_array = get_block_link(sbd_startblock, self.bbd_fat) self.sbd = '' for no in sbd_list_array: self.sbd += get_bblock(self.mm, no, self.bsize) self.sbd_fat = {} for i in range(len(self.sbd) / 4): n = kavutil.get_uint32(self.sbd, i*4) self.sbd_fat[i] = n if self.verbose: open('sbd.dmp', 'wb').write(self.sbd) print kavutil.vprint('SBD') kavutil.vprint(None, 'Start Blocks', '%d' % sbd_startblock) kavutil.vprint(None, 'Num of SBD Blocks', '%d' % num_of_sbd_blocks) print kavutil.HexDump().Buffer(self.sbd, 0, 0x80) # PPS 읽기 self.pps = [] for i in range(len(self.root) / 0x80): p = {} pps = self.root[i*0x80:(i+1)*0x80] t_size = min(kavutil.get_uint16(pps, 0x40), 0x40) if t_size != 0: # 출력시 이름이 깨질 가능성이 큼 if ord(pps[0]) & 0xF0 == 0x00 and ord(pps[1]) == 0x00: name = '_\x00' + pps[2:t_size-2] else: name = pps[0:t_size-2] p['Name'] = DecodeStreamName(name).decode('UTF-16LE', 'replace') else: p['Name'] = '' p['Type'] = ord(pps[0x42]) p['Prev'] = kavutil.get_uint32(pps, 0x44) p['Next'] = kavutil.get_uint32(pps, 0x48) p['Dir'] = kavutil.get_uint32(pps, 0x4c) p['Start'] = kavutil.get_uint32(pps, 0x74) p['Size'] = kavutil.get_uint32(pps, 0x78) p['Valid'] = False # CVE-2012-0158 검사하기 # pps에 ListView.2의 CLSID가 존재함 # 참고 : https://securelist.com/the-curious-case-of-a-cve-2012-0158-exploit/37158/ # 참고 : https://www.symantec.com/security_response/attacksignatures/detail.jsp?asid=25657 cve_clsids = ['\x4B\xF0\xD1\xBD\x8B\x85\xD1\x11\xB1\x6A\x00\xC0\xF0\x28\x36\x28', '\xE0\xF5\x6B\x99\x44\x80\x50\x46\xAD\xEB\x0B\x01\x39\x14\xE9\x9C', '\xE6\x3F\x83\x66\x83\x85\xD1\x11\xB1\x6A\x00\xC0\xF0\x28\x36\x28', '\x5F\xDC\x81\x91\x7D\xE0\x8A\x41\xAC\xA6\x8E\xEA\x1E\xCB\x8E\x9E', '\xB6\x90\x41\xC7\x89\x85\xD1\x11\xB1\x6A\x00\xC0\xF0\x28\x36\x28' ] if pps[0x50:0x60] in cve_clsids: self.exploit.append('Exploit.OLE.CVE-2012-0158') return False self.pps.append(p) # PPS Tree 검증 if self.__valid_pps_tree() is False: return False if self.verbose: print kavutil.vprint('Property Storage') ''' print ' %-2s %-20s %4s %-8s %-8s %-8s %-8s %-8s' % ('No', 'Name', 'Type', 'Prev', 'Next', 'Dir', 'SB', 'Size') print ' ' + ('-' * 74) for p in self.pps: print ' ' + '%2d %-23s %d %8X %8X %8X %8X %8d' % (self.pps.index(p), p['Name'], p['Type'], p['Prev'], p['Next'], p['Dir'], p['Start'], p['Size']) ''' print ' %-2s %-32s %4s %-4s %-4s %-4s %8s %8s' % ('No', 'Name', 'Type', 'Prev', 'Next', ' Dir', 'SB', 'Size') print ' ' + ('-' * 74) for p in self.pps: if p['Valid'] is False: # 유효한 Tree가 아니면 다음 continue t = '' t += ' - ' if p['Prev'] == 0xffffffff else '%4d ' % p['Prev'] t += ' - ' if p['Next'] == 0xffffffff else '%4d ' % p['Next'] t += ' - ' if p['Dir'] == 0xffffffff else '%4d ' % p['Dir'] t += ' - ' if p['Start'] == 0xffffffff else '%8X ' % p['Start'] tname = p['Name'].encode(sys.stdout.encoding, 'replace') print ' ' + '%2d %-35s %d %22s %8d' % (self.pps.index(p), tname, p['Type'], t, p['Size']) # PPS 전체 경로 구하기 self.__deep = 0 self.__full_list = [] try: self.__get_pps_path() except IndexError: pass # small block link 얻기 self.small_block = get_block_link(self.pps[0]['Start'], self.bbd_fat) if self.verbose: print kavutil.vprint('Small Blocks') print self.small_block return True # --------------------------------------------------------------------- # PPS Tree의 유효성을 체크한다. (내장) # --------------------------------------------------------------------- def __valid_pps_tree(self): scaned_pps_node = [0] # 이미 분석한 노드의 경우 더이상 분석하지 않기 위해 처리 f = [] if len(self.pps) == 0: # 분석된 PPS가 없으면 종료 return False if self.pps[0]['Dir'] != 0xffffffff and self.pps[0]['Type'] == 5: f.append(self.pps[0]['Dir']) scaned_pps_node.append(self.pps[0]['Dir']) self.pps[0]['Valid'] = True if len(f) == 0: # 정상적인 PPS가 없음 return False while len(f): x = f.pop(0) try: if self.pps[x]['Type'] != 1 and self.pps[x]['Type'] != 2 and len(self.pps[x]['Name']) == 0: continue except IndexError: if (x & 0x90900000) == 0x90900000: # CVE-2003-0820 취약점 self.exploit.append('Exploit.OLE.CVE-2003-0820') return False else: # CVE-2003-0347 취약점 self.exploit.append('Exploit.OLE.CVE-2003-0347') return False self.pps[x]['Valid'] = True if self.pps[x]['Prev'] != 0xffffffff: if self.pps[x]['Prev'] in scaned_pps_node: self.pps[x]['Prev'] = 0xffffffff else: f.append(self.pps[x]['Prev']) scaned_pps_node.append(self.pps[x]['Prev']) if self.pps[x]['Next'] != 0xffffffff: if self.pps[x]['Next'] in scaned_pps_node: self.pps[x]['Next'] = 0xffffffff else: f.append(self.pps[x]['Next']) scaned_pps_node.append(self.pps[x]['Next']) if self.pps[x]['Dir'] != 0xffffffff: if self.pps[x]['Dir'] in scaned_pps_node: self.pps[x]['Dir'] = 0xffffffff else: f.append(self.pps[x]['Dir']) scaned_pps_node.append(self.pps[x]['Dir']) return True # --------------------------------------------------------------------- # PPS 전체 경로 구하기 (내장) # --------------------------------------------------------------------- def __get_pps_path(self, node=0, prefix=''): if node == 0: pps_name = '' name = prefix + pps_name else: if self.pps[node]['Valid'] is False: # 유효한 PPS만 처리함 return 0 pps_name = self.pps[node]['Name'].encode('cp949', 'ignore') name = prefix + '/' + pps_name # print ("%02d : %d %s") % (node, self.deep, name) # if self.pps[node]['Type'] != 5: # Stream만 저장 p = {'Node': node, 'Name': name[1:], 'Type': self.pps[node]['Type']} self.__full_list.append(p) if self.pps[node]['Dir'] != 0xFFFFFFFFL: self.__deep += 1 self.__get_pps_path(self.pps[node]['Dir'], name) self.__deep -= 1 if self.pps[node]['Prev'] != 0xFFFFFFFFL: self.__get_pps_path(self.pps[node]['Prev'], prefix) if self.pps[node]['Next'] != 0xFFFFFFFFL: self.__get_pps_path(self.pps[node]['Next'], prefix) return 0 # --------------------------------------------------------------------- # PPS 전체 경로 구하기 (스트림만 출력) # --------------------------------------------------------------------- def listdir(self, streams=True, storages=False): ret = [] for p in self.__full_list: if p['Type'] == 2 and streams: ret.append(p['Name']) elif p['Type'] == 1 and storages: ret.append(p['Name']) else: pass return ret # --------------------------------------------------------------------- # 스트림이 존재하는가? # --------------------------------------------------------------------- def exists(self, name): for p in self.__full_list: if p['Name'] == name: return True else: return False # --------------------------------------------------------------------- # 스트림을 연다 # --------------------------------------------------------------------- def openstream(self, name): # ----------------------------------------------------------------- # 스트림 전용 클래스 # ----------------------------------------------------------------- class Stream: def __init__(self, parent, node): self.parent = parent self.node = node self.read_size = 0 self.fat = None # print self.parent.verbose # 연속된 숫자 값을 리턴한다. # TODO : 임시로 작성한거라 최적화 필요함 def get_liner_value(self, num_list): start = None end = None if not start: start = num_list.pop(0) e = start loop = False for x in num_list: if e + 1 == x: e = x loop = True continue else: while loop: if e == num_list.pop(0): break end = e break else: for i in range(len(num_list)): num_list.pop(0) end = e return start, end def read(self): pps = self.parent.pps[self.node] sb = pps['Start'] size = pps['Size'] if size >= 0x1000: self.read_size = self.parent.bsize self.fat = self.parent.bbd_fat else: self.read_size = self.parent.ssize self.fat = self.parent.sbd_fat list_array = get_block_link(sb, self.fat) data = '' if size >= 0x1000: t_list = list(list_array) while len(t_list): s, e = self.get_liner_value(t_list) # 연속된 링크를 모두 수집해서 한꺼번에 파일로 읽기 off = (s + 1) * self.read_size data += self.parent.mm[off:off + self.read_size * (e - s + 1)] else: for n in list_array: div_n = self.parent.bsize / self.parent.ssize off = (self.parent.small_block[n / div_n] + 1) * self.parent.bsize off += (n % div_n) * self.parent.ssize data += self.parent.mm[off:off + self.read_size] if self.parent.verbose: print kavutil.vprint(pps['Name']) kavutil.HexDump().Buffer(data, 0, 80) return data[:size] def close(self): pass # ----------------------------------------------------------------- for p in self.__full_list: if p['Name'] == name: no = p['Node'] break else: no = -1 if no == -1: raise Error('PPS name is invalid.') return Stream(self, no) # --------------------------------------------------------------------- # 스트림의 데이터를 덮어쓴다. # --------------------------------------------------------------------- def write_stream(self, name, data): for p in self.__full_list: if p['Name'] == name: no = p['Node'] break else: no = -1 if no == -1: raise Error('PPS name(%s) is invalid.' % name) # self.init(self.mm) # return ow = OleWriteStream(self.mm, self.pps, self.bsize, self.ssize, self.bbd, self.bbd_fat, self.sbd, self.sbd_fat, self.root_list_array, self.small_block, self.verbose) t = ow.write(no, data) if t: self.init(t) # 새롭게 OLE 재로딩 # --------------------------------------------------------------------- # 스트림 또는 스토리지를 삭제한다. # --------------------------------------------------------------------- def delete(self, name, delete_storage=False, reset_stream=False): for p in self.__full_list: if p['Name'] == name: no = p['Node'] break else: no = -1 if no == -1: raise Error('PPS name is invalid.') # print no ow = OleWriteStream(self.mm, self.pps, self.bsize, self.ssize, self.bbd, self.bbd_fat, self.sbd, self.sbd_fat, self.root_list_array, self.small_block, self.verbose) target_pps = self.pps[no] if target_pps['Valid'] and target_pps['Type'] == 2: # 유효한 PPS에 대한 삭제인지 확인 if reset_stream: size = target_pps['Size'] t = ow.write(no, '\x00' * size) # 모든 데이터를 0으로 Wipe t = ow.delete(no) if t: self.init(t) # 새롭게 OLE 재로딩 elif target_pps['Valid'] and target_pps['Type'] == 1 and delete_storage: # 유효한 스토리지? t = ow.delete(no) # 링크 삭제 if t: self.init(t) # 새롭게 OLE 재로딩 # --------------------------------------------------------------------- # OleWriteStream 클래스 # --------------------------------------------------------------------- class OleWriteStream: def __init__(self, mm, pps, bsize, ssize, bbd, bbd_fat, sbd, sbd_fat, root_list_array, small_block, verbose): self.verbose = verbose self.mm = mm self.pps = pps self.bsize = bsize self.ssize = ssize self.bbd = bbd self.bbd_fat = bbd_fat self.sbd = sbd self.sbd_fat = sbd_fat self.root_list_array = root_list_array self.small_block = small_block def __get_root_node(self, node): # 해당 정보를 가진 root를 찾기 for i, pps in enumerate(self.pps): if pps['Prev'] == node or pps['Next'] == node or pps['Dir'] == node: return i def __get_max_node(self, node): # 특정 노드의 Max 값을 가진 node를 찾기 no = node while True: pps = self.pps[no] if pps['Next'] == 0xffffffff: # 더이상 오른쪽이 없으면 탐색 종료 break else: # 항상 오른쪽 노드가 큰 값임 no = pps['Next'] return no def delete(self, del_no): del_pps = self.pps[del_no] prev_no = del_pps['Prev'] next_no = del_pps['Next'] dir_no = del_pps['Dir'] # root를 찾기 root_no = self.__get_root_node(del_no) # 양쪽 노드가 존재하는가? if prev_no != 0xffffffff and next_no != 0xffffffff: # 양쪽 모두 노트가 존재함 # 1. prev 노드 값을 root로 보낸다. t_no = prev_no # 2. prev 노드 하위에 next가 없는 node를 찾아서 del_pps의 next_no를 등록한다. blank_next_no = self.__get_max_node(prev_no) self.__set_pps_header(blank_next_no, pps_next=next_no) elif prev_no != 0xffffffff and next_no == 0xffffffff: # Prev만 존재 # 1. prev 노드 값을 root로 보낸다. t_no = prev_no elif prev_no == 0xffffffff and next_no != 0xffffffff: # Next만 존재 # 1. next 노드 값을 root로 보낸다. t_no = next_no else: # prev_no == 0xffffffff and next_no == 0xffffffff: # 단일 노드 # 1. 0xffffffff 노드 값을 root로 보낸다. t_no = 0xffffffff # root 노드를 수정한다. pps = self.pps[root_no] if pps['Prev'] == del_no: self.__set_pps_header(root_no, pps_prev=t_no) elif pps['Next'] == del_no: self.__set_pps_header(root_no, pps_next=t_no) else: # Dir self.__set_pps_header(root_no, pps_dir=t_no) # 삭제 노드 값은 모두 지우기 self.__set_pps_header(del_no, size=0, start=0xffffffff, pps_prev=0xffffffff, pps_next=0xffffffff, pps_dir=0xffffffff, del_info=True) return self.mm def write(self, no, data): # 기존 PPS 정보를 얻는다 org_sb = self.pps[no]['Start'] org_size = self.pps[no]['Size'] ''' if org_size >= 0x1000: # read_size = self.bsize fat = self.bbd else: # read_size = self.ssize fat = self.sbd # org_list_array = get_block_link(org_sb, fat) ''' # 수정된 data를 쓰기 위해 준비한다 if len(data) >= 0x1000: # BBD를 사용한다. if org_size >= 0x1000: # 기존에는 BBD 사용 if org_size >= len(data): # raise error('Not Support : BBD -> BBD (Dec)') # 개발 완료 n = (len(data) / self.bsize) + (1 if (len(data) % self.bsize) else 0) t_data = data + ('\x00' * ((n * self.bsize) - len(data))) # 여분의 크기를 data 뒤쪽에 추가하기 t_link = get_block_link(org_sb, self.bbd_fat) # 이전 링크 수집하기 t_link = self.__decrease_bbd_link(t_link, n) # 필요한 개수로 링크 줄이기 # Big block 영역에 bsize 만큼씩 Overwrite self.__write_data_to_big_block(t_data, t_link) # PPS 크기 수정 self.__set_pps_header(no, size=len(data)) else: # raise error('Not Support : BBD -> BBD (Inc)') n = (len(data) / self.bsize) + (1 if (len(data) % self.bsize) else 0) t_data = data + ('\x00' * ((n * self.bsize) - len(data))) # 여분의 크기를 data 뒤쪽에 추가하기 t_link = get_block_link(org_sb, self.bbd_fat) # 이전 링크 수집하기 t_num = 0 if (len(t_link) * self.bsize) < len(t_data): # 블록 추가해야 하나? t_size = len(t_data) - (len(t_link) * self.bsize) t_num = (t_size / self.bsize) + (1 if (t_size % self.bsize) else 0) self.__add_big_block_num(t_num) # 필요한 블록 수 추가하기 # 수집된 마지막 링크 이후에 존재하는 사용하지 않는 블록을 수집한다. t_link = self.__modify_big_block_link(t_link, t_num) # Big block 영역에 bsize 만큼씩 Overwrite self.__write_data_to_big_block(t_data, t_link) # PPS 크기 수정 self.__set_pps_header(no, size=len(data)) else: # 기존에는 SBD 사용 # raise error('Not Support : SBD -> BBD') # 섹터가 변화는 것은 Dec, Inc가 의미 없음 n = (len(data) / self.bsize) + (1 if (len(data) % self.bsize) else 0) t_data = data + ('\x00' * ((n * self.bsize) - len(data))) # 여분의 크기를 data 뒤쪽에 추가하기 t_num = len(t_data) / self.bsize # 몇개의 블록이 필요한가? self.__add_big_block_num(t_num) # 필요한 블록 수 추가하기 # BBD 링크를 처음 생성하므로 이전 링크가 없다. t_link = self.__modify_big_block_link(None, t_num) # Big block 영역에 bsize 만큼씩 Overwrite self.__write_data_to_big_block(t_data, t_link) # PPS 크기 수정, start 블록 수정 self.__set_pps_header(no, size=len(data), start=t_link[0]) # 이전 SBD의 링크는 모두 삭제한다. # t_link = get_block_link(org_sb, self.sbd) # 이전 링크 수집하기 t_link = get_block_link(org_sb, self.sbd_fat) # 이전 링크 수집하기 sbd = self.sbd for no in t_link: sbd = sbd[:no*4] + '\xff\xff\xff\xff' + sbd[(no+1)*4:] self.__modify_sbd(sbd) else: # SBD를 사용한다. if org_size >= 0x1000: # 기존에는 BBD 사용 # raise error('Not Support : BBD -> SBD') # 섹터가 변화는 것은 Dec, Inc가 의미 없음 n = (len(data) / self.ssize) + (1 if (len(data) % self.ssize) else 0) t_data = data + ('\x00' * ((n * self.ssize) - len(data))) # 여분의 크기를 data 뒤쪽에 추가하기 t_num = len(t_data) / self.ssize # 몇개의 블록이 필요한가? self.__add_small_block_num(t_num) # 필요한 블록 수 추가하기 # SBD 링크를 처음 생성하므로 이전 링크가 없다. t_link = self.__modify_small_block_link(None, t_num) bbd_list_array, _, _, _ = get_bbd_list_array(self.mm) self.bbd = '' for i in range(len(bbd_list_array)/4): n = kavutil.get_uint32(bbd_list_array, i*4) self.bbd += get_bblock(self.mm, n, self.bsize) # 새로운 Small Block 링크가 필요하다 self.small_block = get_block_link(self.pps[0]['Start'], self.bbd_fat) # Small block 영역에 ssize 만큼씩 Overwrite self.__write_data_to_small_bolck(t_data, t_link) # PPS 크기 수정, start 블록 수정 self.__set_pps_header(no, size=len(data), start=t_link[0]) # 이전 BBD의 링크는 모두 삭제한다. # t_link = get_block_link(org_sb, self.bbd) # 이전 링크 수집하기 t_link = get_block_link(org_sb, self.bbd_fat) # 이전 링크 수집하기 bbd = self.bbd for no in t_link: bbd = bbd[:no*4] + '\xff\xff\xff\xff' + bbd[(no+1)*4:] self.__modify_bbd(bbd) else: # 기존에는 SBD 사용 if org_size >= len(data): # raise error('Not Support : SBD -> SBD (Dec)') # 지원 완료 n = (len(data) / self.ssize) + (1 if (len(data) % self.ssize) else 0) t_data = data + ('\x00' * ((n*self.ssize) - len(data))) # 여분의 크기를 data 뒤쪽에 추가하기 t_link = get_block_link(org_sb, self.sbd_fat) # 이전 링크 수집하기 t_link = self.__decrease_sbd_link(t_link, n) # 필요한 개수로 링크 줄이기 # Small block 영역에 ssize 만큼씩 Overwrite self.__write_data_to_small_bolck(t_data, t_link) # PPS 크기 수정 self.__set_pps_header(no, size=len(data)) else: # raise error('Not Support : SBD -> SBD (Inc)') # 작업 완료 n = (len(data) / self.ssize) + (1 if (len(data) % self.ssize) else 0) t_data = data + ('\x00' * ((n*self.ssize) - len(data))) # 여분의 크기를 data 뒤쪽에 추가하기 # t_link = get_block_link(org_sb, self.sbd) # 이전 링크 수집하기 t_link = get_block_link(org_sb, self.sbd_fat) # 이전 링크 수집하기 t_num = 0 if (len(t_link) * self.ssize) < len(t_data): # 블록 추가해야 하나? t_size = len(t_data) - (len(t_link) * self.ssize) t_num = (t_size / self.ssize) + (1 if (t_size % self.ssize) else 0) self.__add_small_block_num(t_num) # 필요한 블록 수 추가하기 # 수집된 마지막 링크 이후에 존재하는 사용하지 않는 블록을 수집한다. t_link = self.__modify_small_block_link(t_link, t_num) # Small block 갱신 self.bbd_fat = {} for i in range(len(self.bbd) / 4): n = kavutil.get_uint32(self.bbd, i * 4) self.bbd_fat[i] = n self.small_block = get_block_link(self.pps[0]['Start'], self.bbd_fat) # Small block 영역에 ssize 만큼씩 Overwrite self.__write_data_to_small_bolck(t_data, t_link) # PPS 크기 수정 self.__set_pps_header(no, size=len(data)) return self.mm # --------------------------------------------------------------------- # 특정 데이터를 big block 링크를 따라 데이터 쓰기 (내장) # --------------------------------------------------------------------- def __write_data_to_big_block(self, t_data, t_link): for i, n in enumerate(t_link): off = (n + 1) * self.bsize self.mm = self.mm[:off] + t_data[i * self.bsize:(i + 1) * self.bsize] + self.mm[off + self.bsize:] # --------------------------------------------------------------------- # 특정 데이터를 small block 링크를 따라 데이터 쓰기 (내장) # --------------------------------------------------------------------- def __write_data_to_small_bolck(self, t_data, t_link): for i, n in enumerate(t_link): off = (self.small_block[n / 8] + 1) * self.bsize off += (n % 8) * self.ssize self.mm = self.mm[:off] + t_data[i * self.ssize:(i + 1) * self.ssize] + self.mm[off + self.ssize:] # --------------------------------------------------------------------- # OLE 영역의 특정 위치에 1개의 Big Block Overwrite하기 (내장) # --------------------------------------------------------------------- def __set_bblock(self, no, data): off = (no + 1) * self.bsize if len(data) == self.bsize: self.mm = self.mm[:off] + data + self.mm[off+self.bsize:] return True return False # --------------------------------------------------------------------- # PPS 헤더에 존재하는 특정 스트림의 크기를 조정한다. (내장) # node : PPS 인덱스 # size : 설정 크기 # start : 시작 링크 # --------------------------------------------------------------------- def __set_pps_header(self, node, size=None, start=None, pps_prev=None, pps_next=None, pps_dir=None, del_info=False): n = self.root_list_array[node / 4] buf = get_bblock(self.mm, n, self.bsize) off = ((node % 4) * 0x80) if del_info and off == 0x180: buf = buf[:off] + '\x00' * 0x80 elif del_info: buf = buf[:off] + '\x00' * 0x80 + buf[off+0x80:] if size is not None: t_off = off + 0x78 buf = buf[:t_off] + struct.pack('<L', size) + buf[t_off + 4:] if start is not None: t_off = off + 0x74 buf = buf[:t_off] + struct.pack('<L', start) + buf[t_off + 4:] if pps_prev is not None: t_off = off + 0x44 buf = buf[:t_off] + struct.pack('<L', pps_prev) + buf[t_off + 4:] if pps_next is not None: t_off = off + 0x48 buf = buf[:t_off] + struct.pack('<L', pps_next) + buf[t_off + 4:] if pps_dir is not None: t_off = off + 0x4C buf = buf[:t_off] + struct.pack('<L', pps_dir) + buf[t_off + 4:] self.__set_bblock(n, buf) if self.verbose: print buf = get_bblock(self.mm, n, self.bsize) kavutil.HexDump().Buffer(buf, 0, 0x200) # --------------------------------------------------------------------- # SBD 링크를 줄인다 # org_link_list : 기존 Small block 링크 # num_link : 필요로 하는 전체 링크 수 # --------------------------------------------------------------------- def __decrease_sbd_link(self, org_link_list, num_link): if len(org_link_list) > num_link: # SBD를 배열로 바꾸기 t_link = [] for i in range(len(self.sbd) / 4): t_link.append(kavutil.get_uint32(self.sbd, i * 4)) t = org_link_list[num_link:] org_link_list = org_link_list[:num_link] t_link[t[0]] = 0xfffffffe # 링크 끝 설정하기 # 남은 링크는 모두 0xffffffff로 설정하기 for i in t[1:]: t_link[i] = 0xffffffff # SBD 배열을 SBD 버퍼로 바꾸기 self.sbd = '' for i in t_link: self.sbd += struct.pack('<L', i) # self.mm에 SBD 적용하기 sbd_startblock = kavutil.get_uint32(self.mm, 0x3c) sbd_list_array = get_block_link(sbd_startblock, self.bbd_fat) for i, n in enumerate(sbd_list_array): self.__set_bblock(n, self.sbd[i*self.bsize:(i+1)*self.bsize]) return org_link_list elif len(org_link_list) == num_link: return org_link_list else: raise Error('Invalid call') # --------------------------------------------------------------------- # BBD 링크를 줄인다 # org_link_list : 기존 Small block 링크 # num_link : 필요로 하는 전체 링크 수 # --------------------------------------------------------------------- def __decrease_bbd_link(self, org_link_list, num_link): if len(org_link_list) > num_link: # BBD를 배열로 바꾸기 t_link = [] for i in range(len(self.bbd) / 4): t_link.append(kavutil.get_uint32(self.bbd, i * 4)) t = org_link_list[num_link:] org_link_list = org_link_list[:num_link] t_link[t[0]] = 0xfffffffe # 링크 끝 설정하기 # 남은 링크는 모두 0xffffffff로 설정하기 for i in t[1:]: t_link[i] = 0xffffffff # BBD 배열을 BBD 버퍼로 바꾸기 self.bbd = '' for i in t_link: self.bbd += struct.pack('<L', i) # self.mm에 BBD 적용하기 t, num_of_bbd_blocks, num_of_xbbd_blocks, xbbd_start_block = \ get_bbd_list_array(self.mm, self.verbose) bbd_list_array = [] for i in range(len(t) / 4): bbd_list_array.append(kavutil.get_uint32(t, i * 4)) for i, n in enumerate(bbd_list_array): self.__set_bblock(n, self.bbd[i*self.bsize:(i+1)*self.bsize]) return org_link_list elif len(org_link_list) == num_link: return org_link_list else: raise Error('Invalid call') # --------------------------------------------------------------------- # Big Block을 주어진 개수만큼 추가한다. # num : 추가할 Big Block 개수 # --------------------------------------------------------------------- def __add_big_block_num(self, num): size = (len(self.mm) / self.bsize) * self.bsize # 파일 크기 self.mm = self.mm[:size] # 뒤쪽 쓸모 없는 부분은 제거 attach_data = self.mm[size:] # 파일 뒤에 붙어 있는 잔여 데이터 # 전체 BBD 링크를 구한다 bbd_list_array, num_of_bbd_blocks, _, _ = get_bbd_list_array(self.mm) # BBD를 모은다 bbd = '' for i in range(num_of_bbd_blocks): no = kavutil.get_uint32(bbd_list_array, i*4) bbd += get_bblock(self.mm, no, self.bsize) bbd_link = [] for i in range(len(bbd) / 4): bbd_link.append(kavutil.get_uint32(bbd, i*4)) # 사용하지 않는 BBD 링크를 찾는다. free_link = [i for i, no in enumerate(bbd_link) if (no == 0xffffffff and i < size / self.bsize)] if len(free_link) >= num: # 여유분이 충분히 존재함... return # 추가할 필요 없음 # 잔여 개수 체크하기 last_no = (size / self.bsize) - 2 # 실제 마지막 Big Block 번호 n = (len(self.bbd) / 4 - 1) - last_no if n >= num: # 잔여 개수가 추가하려는 개수보다 많거나 같으면 추가 블록 개수만 파일 뒤에 추가하기 self.mm += '\x00' * self.bsize * num # 실제 필요한 데이터 블록 self.mm += attach_data else: special_no = [] # 특수 목적의 Big Block 번호. 해당 블록은 0xfffffffd로 처리해야 함 x_data = '' # b_data = '' # add_data = '' add_num = num - n # 추가해야 할 블록 수 add_data = ('\x00' * self.bsize * add_num) # 추가해야 할 BBD list 개수는 한개의 BBD에는 bsize / 4 개수만큼 Big Block을 담을 수 있음 b_num = (add_num / (self.bsize/4)) + (1 if (add_num % (self.bsize/4)) else 0) old_num_bbd = kavutil.get_uint32(self.mm, 0x2c) xbbd_start_block = kavutil.get_uint32(self.mm, 0x44) num_of_xbbd_blocks = kavutil.get_uint32(self.mm, 0x48) # 추가적인 Big Block을 계산한다. BBD List와 XBBD 블록도 추가될 수 있기 때문에... old_b_num = b_num while True: if old_num_bbd + b_num > 109: t_num = (old_num_bbd + b_num - 109) total_xbbd_num = (t_num / ((self.bsize - 4) / 4)) + (1 if (t_num % ((self.bsize - 4) / 4)) else 0) x_num = total_xbbd_num - num_of_xbbd_blocks # 추가해야 할 XBBD 개수 add_num += x_num b_num = (add_num / (self.bsize / 4)) + (1 if (add_num % (self.bsize / 4)) else 0) if old_b_num == b_num: break else: old_b_num = b_num total_bbd_num = old_num_bbd + b_num # 전체 BBD list 개수 self.mm = self.mm[:0x2c] + struct.pack('<L', total_bbd_num) + self.mm[0x30:] last_no += 1 # XBBD 처리하기 if total_bbd_num > 109: t_num = (total_bbd_num - 109) total_xbbd_num = (t_num / ((self.bsize - 4) / 4)) + (1 if (t_num % ((self.bsize - 4) / 4)) else 0) x_num = total_xbbd_num - num_of_xbbd_blocks # 추가해야 할 XBBD 개수 # XBBD를 위한 헤더 수정 if num_of_xbbd_blocks == 0: data = struct.pack('<LL', last_no, total_xbbd_num) self.mm = self.mm[:0x44] + data + self.mm[0x4C:] else: data = struct.pack('<L', total_xbbd_num) self.mm = self.mm[:0x48] + data + self.mm[0x4C:] # XBBD 블록 연결 next_b = xbbd_start_block if num_of_xbbd_blocks == 1: t_data = get_bblock(self.mm, next_b, self.bsize) else: t_data = '' for i in range(num_of_xbbd_blocks-1): t_data = get_bblock(self.mm, next_b, self.bsize) next_b = kavutil.get_uint32(t_data, self.bsize-4) # 기존 XBBD 마지막에 새로운 XBBD 링크 추가 t_data = t_data[:-4] + struct.pack('<L', last_no) off = (next_b + 1) * self.bsize # t_data의 위치 self.mm = self.mm[:off] + t_data + self.mm[off + self.bsize:] # XBBD 생성하기 for i in range(x_num): x_data += '\xff\xff\xff\xff' * ((self.bsize/4) - 1) if i != (x_num-1): x_data += struct.pack('<L', last_no+1) # 다음 블록을 가리켜야 함으로 1를 더함 else: x_data += '\xfe\xff\xff\xff' # 마지막 블록의 링크는 끝을 처리함 special_no.append(last_no) # 특수 블록 등록 last_no += 1 # END of XBBD # BBD 추가하기 bbd_no = [] b_data = '\xff' * self.bsize * b_num for i in range(b_num): bbd_no.append(last_no) last_no += 1 # 최종 조합 self.mm += x_data + b_data + add_data + attach_data # 특수 블록에 BBD list도 추가 special_no += bbd_no # 특수 블록 처리 (bbd_list_array, num_of_bbd_blocks, num_of_xbbd_blocks, xbbd_start_block) bbd_list_array, num_of_bbd_blocks, _, _ = get_bbd_list_array(self.mm) bb_num = (self.bsize/4) # 한개의 BBD list 블록에 들어갈 수 있는 Big Block 개수 for no in special_no: seg = no / bb_num off = no % bb_num # print hex(no), hex(seg), hex(off), hex(kavutil.get_uint32(bbd_list_array, seg*4)) t_no = kavutil.get_uint32(bbd_list_array, seg*4) t_off = ((t_no + 1) * self.bsize) + (off * 4) self.mm = self.mm[:t_off] + '\xfd\xff\xff\xff' + self.mm[t_off+4:] # print repr(self.mm[t_off:t_off+4]) # t = get_bblock(self.mm, t_no, self.bsize) # print repr(t) # t = kavutil.get_uint32(t, off*4) # print hex(t) # BBD List에 BBD 등록하기 for i, no in enumerate(bbd_no): off = get_bbd_list_index_to_offset(self.mm, old_num_bbd + i) # print hex(off) self.mm = (self.mm[:off] + struct.pack('<L', no) + self.mm[off+4:]) # --------------------------------------------------------------------- # Small Block을 주어진 개수만큼 추가한다. # num : 추가할 Big Block 개수 # --------------------------------------------------------------------- def __add_small_block_num(self, num): root = self.pps[0] r_size = root['Size'] r_no = root['Start'] # SBD 링크를 생성한다. sbd_link = [] for i in range(len(self.sbd) / 4): sbd_link.append(kavutil.get_uint32(self.sbd, i*4)) # 사용하지 않는 SBD 링크를 찾는다. free_link = [i for i, no in enumerate(sbd_link) if (no == 0xffffffff and i < r_size / self.ssize)] if len(free_link) >= num: # 여유분이 충분히 존재함... return # 추가할 필요 없음 else: # 여유분이 부족함. 따라서 Root를 늘려야 함 size = num * self.ssize # 추가해야 할 용량 add_big_num = (size / self.bsize) + (1 if (size % self.bsize) else 0) # 추가해야 할 Big Block 개수 self.__add_big_block_num(add_big_num) # Big Block 추가 요청 # t_link = get_block_link(r_no, self.bbd) # 이전 Small Block의 링크를 구함 t_link = get_block_link(r_no, self.bbd_fat) # 이전 Small Block의 링크를 구함 self.__modify_big_block_link(t_link, add_big_num) # 이전 링크에 필요한 블록 수 추가하여 링크를 새롭게 생성 # Root 크기 수정 self.__set_pps_header(0, size=r_size + add_big_num * self.bsize) # --------------------------------------------------------------------- # BBD link 추가 요청한다. (원본 이미지의 BBD link가 수정 됨) # old_link : 기존 BBD link # add_num : 추가 BBD link 개수 # --------------------------------------------------------------------- def __modify_big_block_link(self, old_link, add_num): if add_num < 0: return [] # 전체 BBD 링크를 구한다 bbd_list_array, num_of_bbd_blocks, _, _ = get_bbd_list_array(self.mm) # BBD를 모은다 bbd = '' for i in range(num_of_bbd_blocks): no = kavutil.get_uint32(bbd_list_array, i*4) bbd += get_bblock(self.mm, no, self.bsize) if self.verbose: open('bbd.dm2', 'wb').write(bbd) bbd_link = [] for i in range(len(bbd) / 4): bbd_link.append(kavutil.get_uint32(bbd, i*4)) # 사용하지 않는 BBD 링크를 찾는다. free_link = [i for i, no in enumerate(bbd_link) if (no == 0xffffffff)] if old_link: ret_link = old_link + free_link[:add_num] # 최종 결과의 BBD 링크 t_link = old_link[-1:] + free_link[:add_num] # BBD에 링크 연결하기 else: # 이전 링크가 없다면... ret_link = free_link[:add_num] # 최종 결과의 BBD 링크 t_link = free_link[:add_num] # BBD에 링크 연결하기 for i in range(len(t_link)-1): no = t_link[i+1] data = struct.pack('<L', no) no = t_link[i] bbd = bbd[:no*4] + data + bbd[(no+1)*4:] no = t_link[-1] bbd = bbd[:no * 4] + '\xfe\xff\xff\xff' + bbd[(no + 1) * 4:] if self.verbose: open('bbd.dm3', 'wb').write(bbd) # 원래 이미지에 BBD 덮어쓰기 self.__modify_bbd(bbd) return ret_link # 연결된 링크 # --------------------------------------------------------------------- # SBD link 추가 요청한다. (원본 이미지의 SBD link가 수정 됨) # old_link : 기존 SBD link # add_num : 추가 SBD link 개수 # --------------------------------------------------------------------- def __modify_small_block_link(self, old_link, add_num): if add_num < 0: return [] sbd = self.sbd if self.verbose: open('sbd.dm2', 'wb').write(sbd) # SBD 링크를 생성한다. sbd_link = [] for i in range(len(sbd) / 4): sbd_link.append(kavutil.get_uint32(sbd, i*4)) # 사용하지 않는 SBD 링크를 찾는다. free_link = [i for i, no in enumerate(sbd_link) if (no == 0xffffffff)] if old_link: ret_link = old_link + free_link[:add_num] # 최종 결과의 SBD 링크 t_link = old_link[-1:] + free_link[:add_num] # SBD에 링크 연결하기 else: # 이전 링크가 없다면... ret_link = free_link[:add_num] # 최종 결과의 BBD 링크 t_link = free_link[:add_num] # BBD에 링크 연결하기 for i in range(len(t_link)-1): no = t_link[i+1] data = struct.pack('<L', no) no = t_link[i] sbd = sbd[:no*4] + data + sbd[(no+1)*4:] no = t_link[-1] sbd = sbd[:no * 4] + '\xfe\xff\xff\xff' + sbd[(no + 1) * 4:] # SBD가 나누어 bsize 단위가 아니면 맞춘다. n = len(sbd) % self.bsize if n: t = self.bsize - n sbd += '\xff' * t if self.verbose: open('sbd.dm3', 'wb').write(sbd) self.__modify_sbd(sbd) # 수정된 SDB 적용하기 return ret_link # 연결된 링크 # --------------------------------------------------------------------- # SBD를 수정한다. # sbd : 수정된 SBD 이미지 # --------------------------------------------------------------------- def __modify_sbd(self, sbd): # 원래 이미지에 SBD 덮어쓰기 sbd_no = kavutil.get_uint32(self.mm, 0x3c) # sbd_list_array = get_block_link(sbd_no, self.bbd) sbd_list_array = get_block_link(sbd_no, self.bbd_fat) # print sbd_list_array for i, no in enumerate(sbd_list_array): data = sbd[i*self.bsize:(i+1)*self.bsize] off = (no + 1) * self.bsize self.mm = self.mm[:off] + data + self.mm[off+self.bsize:] # --------------------------------------------------------------------- # BBD를 수정한다. # bbd : 수정된 BBD 이미지 # --------------------------------------------------------------------- def __modify_bbd(self, bbd): self.bbd = bbd # 체크 !!! bbd_list_array, _, _, _ = get_bbd_list_array(self.mm) for i in range(len(bbd_list_array) / 4): no = kavutil.get_uint32(bbd_list_array, i * 4) data = bbd[i * self.bsize:(i + 1) * self.bsize] off = (no + 1) * self.bsize self.mm = self.mm[:off] + data + self.mm[off + self.bsize:] if __name__ == '__main__': # import zlib # o = OleFile('normal.hwp', write_mode=True, verbose=True) o = OleFile('a82d381c20cfdf47d603b4b2b840136ed32f71d2757c64c898dc209868bb57d6', write_mode=True, verbose=True) print o.listdir() o.delete('_VBA_PROJECT_CUR/VBA') # Root 수정, Next 수정 o.close() ''' o = OleFile('normal.hwp', verbose=True) pics = o.openstream('PrvImage') print get_block_link(o.pps[6]['Start'], o.sbd) # d2 = pics.read() o.close() ''' # XBBD 늘어나는 경우 # o = OleFile('xbbd2.ppt', write_mode=True, verbose=True) # o.test() ''' # 늘어나는건 경우의 수가 너무 많음 o = OleFile('normal.hwp', write_mode=True, verbose=True) pics = o.openstream('FileHeader') d = pics.read() d = d + d o.write_stream('FileHeader', d) o.close() ''' ''' # case1 o = OleFile('normal.hwp', write_mode=True, verbose=True) pics = o.openstream('Scripts/DefaultJScript') d = pics.read() d = zlib.decompress(d, -15) d = d.replace(b'v\x00a\x00r', b'f\x00o\x00o') # var -> foo d = zlib.compress(d)[2:] o.write_stream('Scripts/DefaultJScript', d) o.close() ''' # ------------------------------------------------------------------------- # KavMain 클래스 # ------------------------------------------------------------------------- class KavMain: # --------------------------------------------------------------------- # init(self, plugins_path) # 플러그인 엔진을 초기화 한다. # 인력값 : plugins_path - 플러그인 엔진의 위치 # verbose - 디버그 모드 (True or False) # 리턴값 : 0 - 성공, 0 이외의 값 - 실패 # --------------------------------------------------------------------- def init(self, plugins_path, verbose=False): # 플러그인 엔진 초기화 self.handle = {} self.verbose = verbose return 0 # 플러그인 엔진 초기화 성공 # --------------------------------------------------------------------- # uninit(self) # 플러그인 엔진을 종료한다. # 리턴값 : 0 - 성공, 0 이외의 값 - 실패 # --------------------------------------------------------------------- def uninit(self): # 플러그인 엔진 종료 return 0 # 플러그인 엔진 종료 성공 # --------------------------------------------------------------------- # getinfo(self) # 플러그인 엔진의 주요 정보를 알려준다. (제작자, 버전, ...) # 리턴값 : 플러그인 엔진 정보 # --------------------------------------------------------------------- def getinfo(self): # 플러그인 엔진의 주요 정보 info = dict() # 사전형 변수 선언 info['author'] = '<NAME>' # 제작자 info['version'] = '1.1' # 버전 info['title'] = 'OLE Library' # 엔진 설명 info['kmd_name'] = 'ole' # 엔진 파일 이름 info['make_arc_type'] = kernel.MASTER_PACK # 악성코드 치료 후 재압축 유무 info['sig_num'] = len(self.listvirus()) # 진단/치료 가능한 악성코드 수 return info # --------------------------------------------------------------------- # listvirus(self) # 진단/치료 가능한 악성코드의 리스트를 알려준다. # 리턴값 : 악성코드 리스트 # --------------------------------------------------------------------- def listvirus(self): # 진단 가능한 악성코드 리스트 vlist = list() # 리스트형 변수 선언 vlist.append('Exploit.OLE.CVE-2012-0158') # 진단/치료하는 악성코드 이름 등록 vlist.append('Exploit.OLE.CVE-2003-0820') vlist.append('Exploit.OLE.CVE-2003-0347') vlist.sort() return vlist # --------------------------------------------------------------------- # format(self, filehandle, filename, filename_ex) # 파일 포맷을 분석한다. # 입력값 : filehandle - 파일 핸들 # filename - 파일 이름 # filename_ex - 압축 파일 내부 파일 이름 # 리턴값 : {파일 포맷 분석 정보} or None # --------------------------------------------------------------------- def format(self, filehandle, filename, filename_ex): ret = {} mm = filehandle # OLE 헤더와 동일 if mm[:8] == '\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1': ret['ff_ole'] = 'OLE' # OLE 뒤에 첨부된 파일이 있는지를 조사한다. fsize = len(mm) bsize = 1 << kavutil.get_uint16(mm, 0x1e) rsize = (fsize / bsize) * bsize if fsize > rsize: fileformat = { # 포맷 정보를 담을 공간 'Attached_Pos': rsize, 'Attached_Size': fsize - rsize } ret['ff_attach'] = fileformat # HWP 인가? o = OleFile(filename) try: pics = o.openstream('FileHeader') d = pics.read() if d[:0x11] == 'HWP Document File': val = ord(d[0x24]) ret['ff_hwp'] = {'compress': (val & 0x1 == 0x1), 'encrypt': (val & 0x2 == 0x2), 'viewtext': (val & 0x4 == 0x4)} except Error: pass o.close() return ret # --------------------------------------------------------------------- # __get_handle(self, filename) # 압축 파일의 핸들을 얻는다. # 입력값 : filename - 파일 이름 # 리턴값 : 압축 파일 핸들 # --------------------------------------------------------------------- def __get_handle(self, filename): if filename in self.handle: # 이전에 열린 핸들이 존재하는가? zfile = self.handle.get(filename, None) else: zfile = OleFile(filename, verbose=self.verbose) # ole 파일 열기 self.handle[filename] = zfile return zfile # --------------------------------------------------------------------- # arclist(self, filename, fileformat) # 압축 파일 내부의 파일 목록을 얻는다. # 입력값 : filename - 파일 이름 # fileformat - 파일 포맷 분석 정보 # 리턴값 : [[압축 엔진 ID, 압축된 파일 이름]] # --------------------------------------------------------------------- def arclist(self, filename, fileformat): file_scan_list = [] # 검사 대상 정보를 모두 가짐 # 미리 분석된 파일 포맷중에 OLE 파일 포맷이 있는가? if 'ff_ole' in fileformat: try: # OLE Stream 목록 추출하기 o = self.__get_handle(filename) for name in o.listdir(): file_scan_list.append(['arc_ole', name]) return file_scan_list except: pass return [] # --------------------------------------------------------------------- # unarc(self, arc_engine_id, arc_name, fname_in_arc) # 입력값 : arc_engine_id - 압축 엔진 ID # arc_name - 압축 파일 # fname_in_arc - 압축 해제할 파일 이름 # 리턴값 : 압축 해제된 내용 or None # --------------------------------------------------------------------- def unarc(self, arc_engine_id, arc_name, fname_in_arc): data = None if arc_engine_id == 'arc_ole': o = self.__get_handle(arc_name) fp = o.openstream(fname_in_arc) try: data = fp.read() except: data = None return data # --------------------------------------------------------------------- # arcclose(self) # 압축 파일 핸들을 닫는다. # --------------------------------------------------------------------- def arcclose(self): for fname in self.handle.keys(): zfile = self.handle[fname] zfile.close() self.handle.pop(fname) # --------------------------------------------------------------------- # mkarc(self, arc_engine_id, arc_name, file_infos) # 입력값 : arc_engine_id - 압축 가능 엔진 ID # arc_name - 최종적으로 압축될 압축 파일 이름 # file_infos - 압축 대상 파일 정보 구조체 # 리턴값 : 압축 성공 여부 (True or False) # --------------------------------------------------------------------- def mkarc(self, arc_engine_id, arc_name, file_infos): if arc_engine_id == 'arc_ole': o = OleFile(arc_name, write_mode=True) # , verbose=True) # zfile = zipfile.ZipFile(arc_name, 'w') for file_info in file_infos: rname = file_info.get_filename() a_name = file_info.get_filename_in_archive() try: if os.path.exists(rname): with open(rname, 'rb') as fp: buf = fp.read() # print '[-] filename :', rname, len(buf) # print '[-] rname :', o.write_stream(a_name, buf) # zfile.writestr(a_name, buf) else: # 삭제 처리 o.delete(a_name) except IOError: # print file_info.get_filename_in_archive() pass o.close() # zfile.close() return True return False
1.984375
2
segmentation.py
chngchinboon/necklysis
0
12797302
import matplotlib.pyplot as plt # import pydicom import os from pydicom.filereader import dcmread, read_dicomdir from glob import glob import cv2 import numpy as np cv2.destroyAllWindows() # window prop screensize = ((-1440,0),(0,900)) screenwidth = screensize[0][1]-screensize[0][0] screenheight = screensize[1][1]-screensize[1][0] headertop= 30 headerbottom = 8 headerside = 8 n = 3 m = 2 windowwidth = int((screenwidth - n * headerside*2)/ n) windowheight = int((screenheight - m * (headertop + headerbottom)) /m) # input directory dicom_dir = r"E:\BTSynchSGH\datasets\necklysis\input\dicom" fps = glob(os.path.join(dicom_dir,"*.dcm")) ds_list = [dcmread(filename) for filename in fps] # select image image = ds_list[10].pixel_array # image details image_height, image_width = image.shape # image pre-processing image_norm = cv2.normalize(image, dst=None, alpha=0, beta=65536, norm_type=cv2.NORM_MINMAX) # so that can see better image_norm_uint8 = cv2.convertScaleAbs(image_norm) min_head_thresh = 10000 max_head_thresh = 65535 # get outline of head ret, image_thresh = cv2.threshold(image_norm,min_head_thresh, max_head_thresh, cv2.THRESH_TOZERO) image_thresh_uint8 = cv2.convertScaleAbs(image_thresh) image_canny = cv2.Canny(image_thresh_uint8,100,150) # get contour im2, contours, hierarchy = cv2.findContours(image_canny,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE) image_norm_3chan = np.stack([image_norm]*3,axis=-1) # get largest contour perimeter = [cv2.arcLength(cnt,True) for cnt in contours] idx_max = np.argmax(np.array(perimeter)) image_contours = cv2.drawContours(image_norm_3chan.copy(), [contours[idx_max]], 0, (0,65535,0), 3) # display process images # original image cv2.namedWindow("image_norm",cv2.WINDOW_NORMAL) cv2.moveWindow("image_norm",screensize[0][0],0) cv2.resizeWindow("image_norm",(windowwidth,windowheight)) cv2.imshow("image_norm", image_norm) # canny cv2.namedWindow("image_canny",cv2.WINDOW_NORMAL) cv2.imshow("image_canny", image_canny) cv2.resizeWindow("image_canny",(windowwidth,windowheight)) cv2.moveWindow("image_canny",screensize[0][0]+(windowwidth+headerside*2),0) # contours cv2.namedWindow("contours",cv2.WINDOW_NORMAL) cv2.imshow("contours", image_contours) cv2.resizeWindow("contours",(windowwidth,windowheight)) cv2.moveWindow("contours",screensize[0][0]+(windowwidth+headerside)*2,0) # cv2.waitKey(1) # cv2.destroyAllWindows()
2.53125
3
week_10/extra_problems/server.py
vlasenckov/MIPT_py_3_term
5
12797303
import socket import threading import multiprocessing import os def worker(sock): while True: conn, addr = sock.accept() print("PID:", os.getpid()) thread = threading.Thread(target=process_request, args=(conn, addr)) thread.start() def process_request(conn, addr): print("addr: ", addr) with conn: while True: data = conn.recv(1024) if not data: break print(data.decode("utf-8")) if __name__ == "__main__": with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock: sock.bind(("127.0.0.1", 10001)) sock.listen(socket.SOMAXCONN) PROCESS_COUNT = 6 process_list = [multiprocessing.Process(target=worker, args=(sock,)) for _ in range(PROCESS_COUNT)] for process in process_list: process.start() for process in process_list: process.join()
3.046875
3
plot_bathymetry.py
sustain-lab/multibeam-em712
0
12797304
import glob import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np import xarray as xr from mpl_toolkits.basemap import Basemap import gc import matplotlib matplotlib.rc('font', size=12) data_path = 'processed_netcdf' multibeam_files = glob.glob(data_path + '/*.nc') multibeam_files.sort() lon0, lon1 = -122.2, -121.7 lat0, lat1 = 36.6, 37. parallels = np.arange(lat0, lat1 + 0.1, 0.1) meridians = np.arange(lon0, lon1 + 0.1, 0.1) fig = plt.figure(figsize=(8, 6)) map = Basemap(llcrnrlon=lon0, llcrnrlat=lat0, urcrnrlon=lon1, urcrnrlat=lat1, \ resolution='f') map.drawcoastlines() map.drawparallels(parallels, labels=~np.isnan(parallels)) map.drawmeridians(meridians, labels=~np.isnan(meridians)) skip = 4 for f in multibeam_files: print('Plotting ', f) ds = xr.open_dataset(f) lon = np.array(ds.longitude[::skip,::skip]) lat = np.array(ds.latitude[::skip,::skip]) depth = np.array(ds.depth[::skip,::skip]) plt.pcolor(lon, lat, depth, vmin=0, vmax=100, cmap=cm.viridis_r) del lon, lat, depth, ds gc.collect() plt.colorbar() fig.suptitle('Monterey Bay bathymetry from shipboard Multibeam EM-712') plt.savefig('monterey_bay_multibeam_bathymetry.png', dpi=300) plt.close(fig)
2.21875
2
ego/decomposition/relabel.py
fabriziocosta/EGO
0
12797305
<gh_stars>0 #!/usr/bin/env python """Provides scikit interface.""" from ego.component import GraphComponent from collections import Counter def decompose_relabel_node_size(graph_component): new_subgraphs_list = [] new_signatures_list = [] for subgraph, signature in zip(graph_component.subgraphs, graph_component.signatures): node_size_label = '%d' % subgraph.number_of_nodes() new_signature = signature + '_node_size_' + node_size_label new_subgraphs_list.append(subgraph) new_signatures_list.append(new_signature) gc = GraphComponent( graph=graph_component.graph, subgraphs=new_subgraphs_list, signatures=new_signatures_list) return gc def decompose_relabel_node_label_frequency(graph_component): new_subgraphs_list = [] new_signatures_list = [] for subgraph, signature in zip(graph_component.subgraphs, graph_component.signatures): labels = [subgraph.nodes[u]['label'] for u in subgraph.nodes()] new_signature = signature + '_node_label_frequency_' + '_'.join(['%s:%s' % (k, v) for k, v in Counter(labels).most_common()]) new_subgraphs_list.append(subgraph) new_signatures_list.append(new_signature) gc = GraphComponent( graph=graph_component.graph, subgraphs=new_subgraphs_list, signatures=new_signatures_list) return gc def decompose_relabel_distinct_node_labels(graph_component): new_subgraphs_list = [] new_signatures_list = [] for subgraph, signature in zip(graph_component.subgraphs, graph_component.signatures): labels = [subgraph.nodes[u]['label'] for u in subgraph.nodes()] new_signature = signature + '_distinct_node_labels_%d' % len(set(labels)) new_subgraphs_list.append(subgraph) new_signatures_list.append(new_signature) gc = GraphComponent( graph=graph_component.graph, subgraphs=new_subgraphs_list, signatures=new_signatures_list) return gc def decompose_relabel_node_degree_frequency(graph_component): new_subgraphs_list = [] new_signatures_list = [] for subgraph, signature in zip(graph_component.subgraphs, graph_component.signatures): labels = [v for v in dict(subgraph.degree()).values()] new_signature = signature + '_node_degree_frequency_' + '_'.join(['%s:%s' % (k, v) for k, v in Counter(labels).most_common()]) new_subgraphs_list.append(subgraph) new_signatures_list.append(new_signature) gc = GraphComponent( graph=graph_component.graph, subgraphs=new_subgraphs_list, signatures=new_signatures_list) return gc def decompose_relabel_max_node_degree(graph_component): new_subgraphs_list = [] new_signatures_list = [] for subgraph, signature in zip(graph_component.subgraphs, graph_component.signatures): labels = [v for v in dict(subgraph.degree()).values()] new_signature = signature + '_max_node_degree_%d' % max(labels) new_subgraphs_list.append(subgraph) new_signatures_list.append(new_signature) gc = GraphComponent( graph=graph_component.graph, subgraphs=new_subgraphs_list, signatures=new_signatures_list) return gc def decompose_relabel_estimator(graph_component, graph_estimator=None): new_subgraphs_list = [] new_signatures_list = [] preds = graph_estimator.predict(graph_component.subgraphs) for subgraph, signature, pred in zip(graph_component.subgraphs, graph_component.signatures, preds): new_signature = signature + '_estimator_%s' % pred new_subgraphs_list.append(subgraph) new_signatures_list.append(new_signature) gc = GraphComponent( graph=graph_component.graph, subgraphs=new_subgraphs_list, signatures=new_signatures_list) return gc def rlbest(*args, **kargs): return decompose_relabel_estimator(*args, **kargs) def rlbmdgr(*args, **kargs): return decompose_relabel_max_node_degree(*args, **kargs) def rlbdfrq(*args, **kargs): return decompose_relabel_node_degree_frequency(*args, **kargs) def rlbnod(*args, **kargs): return decompose_relabel_distinct_node_labels(*args, **kargs) def rlblfrq(*args, **kargs): return decompose_relabel_node_label_frequency(*args, **kargs) def rlbsiz(*args, **kargs): return decompose_relabel_node_size(*args, **kargs)
2.203125
2
source/Mlos.Python/mlos/OptimizerEvaluationTools/SyntheticFunctions/sample_functions.py
GindaChen/MLOS
81
12797306
# # Copyright (c) Microsoft Corporation. # Licensed under the MIT License. # import math import numpy as np def quadratic(**kwargs) -> float: return sum(x_i ** 2 for _, x_i in kwargs.items()) def ackley(x_1=None, x_2=None, a=20, b=0.2, c=2*math.pi): d = 2 return -a * np.exp(-b * np.sqrt((x_1**2 + x_2**2) / d)) - np.exp(np.cos(c * x_1) + np.cos(c * x_2)) + a + np.exp(1) def flower(**kwargs): a = 1 b = 2 c = 4 x_1 = kwargs['x_1'] x_2 = kwargs['x_2'] x_norm = np.sqrt(x_1**2 + x_2**2) return a * x_norm + b * np.sin(c * np.arctan2(x_1, x_2))
2.96875
3
main.py
adezoguns/flask_server_ml_display
0
12797307
from flask import Flask, url_for, render_template, request, redirect from flask_sqlalchemy import SQLAlchemy from datetime import datetime from werkzeug.utils import secure_filename from werkzeug.serving import run_simple from id_class_locator import id_class_detector import os import time from cv2 import cv2 app=Flask(__name__) #app.config['SQLALCHEMY_DATABASE_URI']='sqlite:///my.db' #db=SQLAlchemy(app) path2File= os.path.dirname(os.path.realpath(__file__)) pathToModel=path2File+'/WorkArea/FRCNN' PATH = path2File+'/static/input' ALLOWED_EXTENSIONS = set(['png', 'jpg', 'jpeg', 'gif']) app.config['PATH']=PATH #app.config["TEMPLATES_AUTO_RELOAD"] = True model = cv2.dnn.readNetFromTensorflow(pathToModel+'/frozen_inference_graph.pb', pathToModel+'/frcnn.pbtxt') @app.route('/hello', methods=['POST', 'GET']) def hello(): return('Hello') @app.route('/', methods=['POST', 'GET']) def index(): return render_template('home.html') @app.route('/upload', methods=['POST', 'GET']) def upload(): if request.method == 'POST': # check if the post request has the file part file = request.files['imageUploadForm'] filename = secure_filename(file.filename) file.save(os.path.join(app.config['PATH'], filename)) print(filename) img=cv2.imread(os.path.join(app.config['PATH'], filename)) id_class_detector(img, model, filename, debug=False) #time.sleep(2) return render_template('home.html', value=filename) if __name__=="__main__": run_simple('127.0.0.1', 9100, app, use_reloader=False)
2.28125
2
zapr/utils/reader.py
zapr-oss/zapr-athena-client
1
12797308
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from configparser import ConfigParser from s3transfer import RetriesExceededError from s3transfer.exceptions import TransferNotDoneError import os import sys S3 = "s3://" S3A = "s3a://" class ConfigReader: def __init__(self, logger, config_location): self.config_location = config_location self.logger = logger def read_config(self): config = ConfigParser() config.read(self.config_location) enable_insert_overwrite = 'True' enable_external_table_drop = 'True' if 'aws' in config and 'region' in config['aws']: aws_region = config['aws']['region'] else: self.logger.error("Not able to read the region from the config ") sys.exit(os.EX_CONFIG) if 'athena' in config: if 'ATHENA_OUTPUT_LOCATION' in config['athena']: athena_output_location = config['athena']['ATHENA_OUTPUT_LOCATION'] else: self.logger.error("Not able to read the ATHENA_OUTPUT_LOCATION from the config ") sys.exit(os.EX_CONFIG) if 'STAGING_DB' in config['athena']: staging_db = config['athena']['STAGING_DB'] else: self.logger.error("Not able to read the STAGING_DB from the config ") sys.exit(os.EX_CONFIG) if 'ENABLE_INSERT_OVERWRITE' in config['athena']: enable_insert_overwrite = config['athena']['ENABLE_INSERT_OVERWRITE'] if 'ENABLE_EXTERNAL_TABLE_DROP' in config['athena']: enable_external_table_drop = config['athena']['ENABLE_INSERT_OVERWRITE'] else: self.logger.error("Not able to read the athena config") sys.exit(os.EX_CONFIG) return aws_region, athena_output_location, staging_db, enable_insert_overwrite, enable_external_table_drop class FileReader: def __init__(self, logger, s3_resource): self.logger = logger self.s3_resource = s3_resource def split_s3_path(self, s3_location): path_parts = s3_location.replace(S3, "").replace(S3A, "").split("/") s3_bucket = path_parts.pop(0) prefix = "/".join(path_parts) return s3_bucket, prefix def download_input_from_s3(self, s3_bucket, prefix, destination_location): try: self.s3_resource.meta.client.download_file(s3_bucket, prefix, destination_location) except RetriesExceededError as e: self.logger.fatal("Unable to download the file {0}".format(e)) self.logger.fatal("Unable to download the file from s3 to local : {0}/{1}".format(s3_bucket, prefix)) sys.exit(os.EX_DATAERR) except TransferNotDoneError as e: self.logger.fatal("Unable to download the file {0}".format(e)) sys.exit(os.EX_OSERR) return destination_location def get_file(self,file_type, source_location, destination_location): if source_location.startswith(S3) or source_location.startswith(S3A): self.logger.info("Downloading the {0} from {1} to {2}".format(file_type, source_location, destination_location)) s3_bucket, prefix = self.split_s3_path(source_location) return self.download_input_from_s3(s3_bucket, prefix, destination_location) else: return source_location
1.828125
2
xcount/events/query.py
Havenir/xcount
0
12797309
import frappe import datetime @frappe.whitelist() def get_batch_nos(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql("""select batch_id, expiry_date from `tabBatch` where item = {item_code} and disabled = 0 and (expiry_date is null or expiry_date > '{cur_date}')""" .format(item_code = frappe.db.escape(filters.get("item")), cur_date = datetime.datetime.today() ))
2.1875
2
djangobmf/contrib/accounting/bmf_module.py
caputomarcos/django-bmf
0
12797310
#!/usr/bin/python # ex:set fileencoding=utf-8: from __future__ import unicode_literals from django import forms from django.utils.translation import ugettext_lazy as _ from djangobmf.dashboards import Accounting from djangobmf.sites import Module from djangobmf.sites import ViewMixin from djangobmf.sites import register from djangobmf.sites import site from .categories import TransactionCategory from .models import ACCOUNTING_INCOME from .models import ACCOUNTING_EXPENSE from .models import ACCOUNTING_ASSET from .models import ACCOUNTING_LIABILITY from .models import Account from .models import Transaction from .models import TransactionItem from .views import TransactionCreateView from .views import TransactionUpdateView @register(dashboard=Accounting) class AccountModule(Module): model = Account default = True @register(dashboard=Accounting) class TransactionModule(Module): model = Transaction default = True create = TransactionCreateView update = TransactionUpdateView @register(dashboard=Accounting) class TransactionItemModule(Module): model = TransactionItem default = True site.register_settings('bmfcontrib_accounting', { 'income': forms.ModelChoiceField(queryset=Account.objects.filter(type=ACCOUNTING_INCOME)), 'expense': forms.ModelChoiceField(queryset=Account.objects.filter(type=ACCOUNTING_EXPENSE)), 'customer': forms.ModelChoiceField(queryset=Account.objects.filter(type=ACCOUNTING_ASSET)), 'supplier': forms.ModelChoiceField(queryset=Account.objects.filter(type=ACCOUNTING_LIABILITY)), }) @register(category=TransactionCategory) class AllAccounts(ViewMixin): model = Account name = _("All Accounts") slug = "accounts" @register(category=TransactionCategory) class OpenTransactions(ViewMixin): model = Transaction name = _("Open transactions") slug = "open" def filter_queryset(self, request, queryset, view): return queryset.filter(draft=True).order_by('-modified') @register(category=TransactionCategory) class ClosedTrancations(ViewMixin): model = Transaction name = _("Closed transactions") slug = "closed" date_resolution = "month" def filter_queryset(self, request, queryset, view): return queryset.filter(draft=False).order_by('modified') @register(category=TransactionCategory) class Archive(ViewMixin): model = TransactionItem name = _("Transaction archive") slug = "archive" date_resolution = "week"
1.984375
2
api/log.py
StonebreakerDesigns/project-boilerplate
0
12797311
# coding: utf-8 '''Centralized logger factory.''' import logging from .config import config # The level options supported in configuration. LEVEL_OPTIONS = list(( 'notset', 'debug', 'info', 'warning', 'error', 'critical' )) def _setup_logger_supply(): '''Create and return a logger generator.''' configured_level = config.development.log_level # Perform basic configuration. logging.basicConfig( level=20, # Configure 3rd party loggers to the INFO level. format='%(asctime)-10s %(name)-30s %(levelname)-8s %(message)s' ) def create_log(name): '''Create a log and elevate it to the configured level.''' log = logging.getLogger(name) log.setLevel(LEVEL_OPTIONS.index(configured_level)*10) return log return create_log # Define the callable that can be used to create properly configured loggers. logger = _setup_logger_supply() # pylint: disable=invalid-name
2.515625
3
tests/test_utilities.py
mhostetter/quaternionic
40
12797312
import sys import numpy as np import quaternionic import pytest def test_self_return(): def f1(a, b, c): d = np.asarray(a).copy() assert isinstance(a, np.ndarray) and isinstance(a, quaternionic.array) assert isinstance(b, np.ndarray) and isinstance(b, quaternionic.array) assert isinstance(c, np.ndarray) and isinstance(c, quaternionic.array) assert isinstance(d, np.ndarray) and not isinstance(d, quaternionic.array) return d a = quaternionic.array.random((17, 3, 4)) b = quaternionic.array.random((13, 3, 4)) c = quaternionic.array.random((11, 3, 4)) d1 = f1(a, b, c) assert isinstance(d1, np.ndarray) and not isinstance(d1, quaternionic.array) f2 = quaternionic.utilities.type_self_return(f1) d2 = f2(a, b, c) assert isinstance(d2, np.ndarray) and isinstance(d2, quaternionic.array) f1.nin = 3 f3 = quaternionic.utilities.type_self_return(f1) d3 = f3(a, b, c) assert isinstance(d3, np.ndarray) and isinstance(d3, quaternionic.array) def test_ndarray_args(): def f1(a, b, c): d = np.asarray(a).copy() assert isinstance(a, np.ndarray) and not isinstance(a, quaternionic.array) assert isinstance(b, np.ndarray) and not isinstance(b, quaternionic.array) assert isinstance(c, np.ndarray) and not isinstance(c, quaternionic.array) assert isinstance(d, np.ndarray) and not isinstance(d, quaternionic.array) return d a = quaternionic.array.random((17, 3, 4)) b = quaternionic.array.random((13, 3, 4)) c = quaternionic.array.random((11, 3, 4)) f2 = quaternionic.utilities.ndarray_args(f1) d2 = f2(a, b, c) assert isinstance(d2, np.ndarray) and not isinstance(d2, quaternionic.array) f1.nin = 3 f3 = quaternionic.utilities.ndarray_args(f1) d3 = f3(a, b, c) assert isinstance(d3, np.ndarray) and not isinstance(d3, quaternionic.array) def test_ndarray_args_and_return(): def f1(a, b, c): d = np.asarray(a).copy() assert isinstance(a, np.ndarray) and not isinstance(a, quaternionic.array) assert isinstance(b, np.ndarray) and not isinstance(b, quaternionic.array) assert isinstance(c, np.ndarray) and not isinstance(c, quaternionic.array) assert isinstance(d, np.ndarray) and not isinstance(d, quaternionic.array) return d a = quaternionic.array.random((17, 3, 4)) b = quaternionic.array.random((13, 3, 4)) c = quaternionic.array.random((11, 3, 4)) f2 = quaternionic.utilities.ndarray_args_and_return(f1) d2 = f2(a, b, c) assert isinstance(d2, np.ndarray) and isinstance(d2, quaternionic.array) f1.nin = 3 f3 = quaternionic.utilities.ndarray_args_and_return(f1) d3 = f3(a, b, c) assert isinstance(d3, np.ndarray) and isinstance(d3, quaternionic.array) @pytest.mark.skipif(sys.implementation.name.lower() == 'pypy', reason="No numba on pypy") def test_types_to_ftylist(): import numba types_to_ftylist = quaternionic.utilities.convert_numpy_ufunc_type_to_numba_ftylist types = '?bhilqpBHILQPfdgF->D' ftylist = numba.complex128( numba.boolean, numba.byte, numba.short, numba.intc, numba.int_, numba.longlong, numba.intp, numba.char, numba.ushort, numba.uintc, numba.uint, numba.ulonglong, numba.uintp, numba.float32, numba.float_, numba.double, numba.complex64, ) assert types_to_ftylist([types]) == [ftylist] def test_pyguvectorize(): _quaternion_resolution = 10 * np.finfo(float).resolution np.random.seed(1234) one = quaternionic.array(1, 0, 0, 0) x = quaternionic.array.random((7, 13, 4)) y = quaternionic.array.random((13, 4)) z = np.random.rand(13) arg0s = [one, -(1+2*_quaternion_resolution)*one, -one, x] for k in dir(quaternionic.algebra_ufuncs): if not k.startswith('__'): f1 = getattr(quaternionic.algebra_ufuncs, k) f2 = getattr(quaternionic.algebra, k) sig = f2.signature inputs = sig.split('->')[0].split(',') for arg0 in arg0s: args = [arg0.ndarray] if inputs[0] == '(n)' else [z,] if len(inputs) > 1: args.append(y.ndarray if inputs[1] == '(n)' else z) assert np.allclose( f1(*args), quaternionic.utilities.pyguvectorize(f2.types, f2.signature)(f2)(*args), atol=0.0, rtol=_quaternion_resolution )
2.484375
2
docs/02.AI_ML/code-1805/Day05all/map.py
mheanng/PythonNote
2
12797313
# -*- coding: utf-8 -*- from __future__ import unicode_literals def f1(x): return x + 3 a = 1 b = f1(a) print(b) A = [1, 2, 3] ''' B = [] for x in A: B.append(f1(x)) ''' B = list(map(f1, A)) print(B) C = list(map(lambda x: x + 3, A)) print(C)
3.796875
4
001_TwoSum/two_sum.py
fangqian/LeetCodes
0
12797314
class Solution(object): def twoSum(self, nums, target): """ :type nums: List[int] :type target: int :rtype: List[int] """ d = {} for i in range(len(nums)): find = target - nums[i] if d.get(find, None) is None: d[nums[i]] = i else: return [d[find], i] class Solution1: # @return a tuple, (index1, index2) def twoSum(self, num, target): tmp = {} for i in range(len(num)): if target - num[i] in tmp: return([tmp[target - num[i]], i]) else: tmp[num[i]] = i nums = [2, 5, 2, 11, 15] target = 4 a = Solution() print(a.twoSum(nums, target)) b = Solution1() print(b.twoSum(nums, target))
3.3125
3
day02/day02.py
andreaskaempf/adventofcode2021
0
12797315
<gh_stars>0 # Advent of Code, Day 2 # State variables for problems 1 & 2 horiz1 = depth1 = 0 horiz2 = depth2 = aim2 = 0 # Process each line of text for l in open('input.txt'): # Get instruction and value instruction, n = l.split() n = int(n) # Process instructions for both problems if instruction == 'forward': horiz1 += n horiz2 += n depth2 += aim2 * n elif instruction == 'down': depth1 += n aim2 += n elif instruction == 'up': depth1 -= n aim2 -= n else: print('Bad instruction:', instruction) # Show results for both problems print(f'Problem 1: Ending pos = {horiz1}, depth = {depth1}, product = {horiz1 * depth1}') print(f'Problem 2: Ending pos = {horiz2}, depth = {depth2}, aim = {aim2}, product = {horiz2 * depth2}')
3.78125
4
runner.py
inXS212/Saltie
0
12797316
<gh_stars>0 import configparser import ctypes import io import mmap import msvcrt import multiprocessing as mp import os import sys import random import time import bot_input_struct as bi import bot_manager import game_data_struct as gd import rlbot_exception from bot_code.conversions.server_converter import ServerConverter PARTICPANT_CONFIGURATION_HEADER = 'Participant Configuration' PARTICPANT_BOT_KEY_PREFIX = 'participant_is_bot_' PARTICPANT_RLBOT_KEY_PREFIX = 'participant_is_rlbot_controlled_' PARTICPANT_CONFIG_KEY_PREFIX = 'participant_config_' PARTICPANT_BOT_SKILL_KEY_PREFIX = 'participant_bot_skill_' PARTICPANT_TEAM_PREFIX = 'participant_team_' RLBOT_CONFIG_FILE = 'rlbot.cfg' RLBOT_CONFIGURATION_HEADER = 'RLBot Configuration' INPUT_SHARED_MEMORY_TAG = 'Local\\RLBotInput' BOT_CONFIG_LOADOUT_HEADER = 'Participant Loadout' BOT_CONFIG_LOADOUT_ORANGE_HEADER = 'Participant Loadout Orange' BOT_CONFIG_MODULE_HEADER = 'Bot Location' USER_CONFIGURATION_HEADER = 'User Info' BOT_CONFIG_AGENT_HEADER = 'Bot Parameters' try: server_manager = ServerConverter('http://saltie.tk:5000', True, True, True, username='unknown') except ImportError: server_manager = ServerConverter('', False, False, False) print('config.py not present, cannot upload replays to collective server') print('Check Discord server for information') if server_manager.error: server_manager.warn_server('unable to connect to server') def get_bot_config_file_list(botCount, config): config_file_list = [] for i in range(botCount): config_file_list.append(config.get(PARTICPANT_CONFIGURATION_HEADER, PARTICPANT_CONFIG_KEY_PREFIX + str(i))) return config_file_list # Cut off at 31 characters and handle duplicates def get_sanitized_bot_name(dict, name): if name not in dict: new_name = name[:31] # Make sure name does not exceed 31 characters dict[name] = 1 else: count = dict[name] new_name = name[:27] + "(" + str(count + 1) + ")" # Truncate at 27 because we can have up to '(10)' appended dict[name] = count + 1 return new_name def run_agent(terminate_event, callback_event, config_file, name, team, index, module_name, game_name, save_data, server_uploader): bm = bot_manager.BotManager(terminate_event, callback_event, config_file, name, team, index, module_name, game_name, save_data, server_uploader) bm.run() def main(): # Set up RLBot.cfg framework_config = configparser.RawConfigParser() framework_config.read(RLBOT_CONFIG_FILE) # Open anonymous shared memory for entire GameInputPacket and map buffer buff = mmap.mmap(-1, ctypes.sizeof(bi.GameInputPacket), INPUT_SHARED_MEMORY_TAG) gameInputPacket = bi.GameInputPacket.from_buffer(buff) # Determine number of participants num_participants = framework_config.getint(RLBOT_CONFIGURATION_HEADER, 'num_participants') try: server_manager.set_player_username(framework_config.get(USER_CONFIGURATION_HEADER, 'username')) except Exception as e: print('username not set in config', e) print('using default username') # Retrieve bot config files participant_configs = get_bot_config_file_list(num_participants, framework_config) # Create empty lists bot_names = [] bot_teams = [] bot_modules = [] processes = [] callbacks = [] bot_parameter_list = [] name_dict = dict() save_data = True save_path = os.path.join(os.getcwd(), 'bot_code', 'training', 'replays') game_name = str(int(round(time.time() * 1000))) + '-' + str(random.randint(0, 1000)) if save_data: print(save_path) if not os.path.exists(save_path): print(os.path.dirname(save_path) + ' does not exist creating') os.makedirs(save_path) joined_path = os.path.join(save_path, game_name) if not os.path.exists(joined_path): os.makedirs(joined_path) print('gameName: ' + game_name + 'in ' + save_path) gameInputPacket.iNumPlayers = num_participants server_manager.load_config() num_team_0 = 0 # Set configuration values for bots and store name and team for i in range(num_participants): bot_config_path = participant_configs[i] sys.path.append(os.path.dirname(bot_config_path)) bot_config = configparser.RawConfigParser() if server_manager.download_config: if 'saltie' in os.path.basename(bot_config_path): bot_config._read(io.StringIO(server_manager.config_response.json()['content']), 'saltie.cfg') else: bot_config.read(bot_config_path) else: bot_config.read(bot_config_path) team_num = framework_config.getint(PARTICPANT_CONFIGURATION_HEADER, PARTICPANT_TEAM_PREFIX + str(i)) loadout_header = BOT_CONFIG_LOADOUT_HEADER if (team_num == 1 and bot_config.has_section(BOT_CONFIG_LOADOUT_ORANGE_HEADER)): loadout_header = BOT_CONFIG_LOADOUT_ORANGE_HEADER if gameInputPacket.sPlayerConfiguration[i].ucTeam == 0: num_team_0 += 1 gameInputPacket.sPlayerConfiguration[i].bBot = framework_config.getboolean(PARTICPANT_CONFIGURATION_HEADER, PARTICPANT_BOT_KEY_PREFIX + str(i)) gameInputPacket.sPlayerConfiguration[i].bRLBotControlled = framework_config.getboolean( PARTICPANT_CONFIGURATION_HEADER, PARTICPANT_RLBOT_KEY_PREFIX + str(i)) gameInputPacket.sPlayerConfiguration[i].fBotSkill = framework_config.getfloat(PARTICPANT_CONFIGURATION_HEADER, PARTICPANT_BOT_SKILL_KEY_PREFIX + str(i)) gameInputPacket.sPlayerConfiguration[i].iPlayerIndex = i gameInputPacket.sPlayerConfiguration[i].wName = get_sanitized_bot_name(name_dict, bot_config.get(loadout_header, 'name')) gameInputPacket.sPlayerConfiguration[i].ucTeam = team_num gameInputPacket.sPlayerConfiguration[i].ucTeamColorID = bot_config.getint(loadout_header, 'team_color_id') gameInputPacket.sPlayerConfiguration[i].ucCustomColorID = bot_config.getint(loadout_header, 'custom_color_id') gameInputPacket.sPlayerConfiguration[i].iCarID = bot_config.getint(loadout_header, 'car_id') gameInputPacket.sPlayerConfiguration[i].iDecalID = bot_config.getint(loadout_header, 'decal_id') gameInputPacket.sPlayerConfiguration[i].iWheelsID = bot_config.getint(loadout_header, 'wheels_id') gameInputPacket.sPlayerConfiguration[i].iBoostID = bot_config.getint(loadout_header, 'boost_id') gameInputPacket.sPlayerConfiguration[i].iAntennaID = bot_config.getint(loadout_header, 'antenna_id') gameInputPacket.sPlayerConfiguration[i].iHatID = bot_config.getint(loadout_header, 'hat_id') gameInputPacket.sPlayerConfiguration[i].iPaintFinish1ID = bot_config.getint(loadout_header, 'paint_finish_1_id') gameInputPacket.sPlayerConfiguration[i].iPaintFinish2ID = bot_config.getint(loadout_header, 'paint_finish_2_id') gameInputPacket.sPlayerConfiguration[i].iEngineAudioID = bot_config.getint(loadout_header, 'engine_audio_id') gameInputPacket.sPlayerConfiguration[i].iTrailsID = bot_config.getint(loadout_header, 'trails_id') gameInputPacket.sPlayerConfiguration[i].iGoalExplosionID = bot_config.getint(loadout_header, 'goal_explosion_id') if bot_config.has_section(BOT_CONFIG_AGENT_HEADER): try: bot_parameter_list.append(bot_config[BOT_CONFIG_AGENT_HEADER]) except Exception as e: bot_parameter_list.append(None) print('failed to load bot parameters') else: bot_parameter_list.append(None) bot_names.append(bot_config.get(loadout_header, 'name')) bot_teams.append(framework_config.getint(PARTICPANT_CONFIGURATION_HEADER, PARTICPANT_TEAM_PREFIX + str(i))) if gameInputPacket.sPlayerConfiguration[i].bRLBotControlled: bot_modules.append(bot_config.get(BOT_CONFIG_MODULE_HEADER, 'agent_module')) else: bot_modules.append('NO_MODULE_FOR_PARTICIPANT') # downloads the model based on the hash in the config try: server_manager.load_model(bot_config[BOT_CONFIG_AGENT_HEADER]['model_hash']) except Exception as e: print ("Couldn't get model hash,", e) server_manager.set_player_amount(num_participants, num_team_0) # Create Quit event quit_event = mp.Event() # Launch processes for i in range(num_participants): if gameInputPacket.sPlayerConfiguration[i].bRLBotControlled: callback = mp.Event() callbacks.append(callback) process = mp.Process(target=run_agent, args=(quit_event, callback, bot_parameter_list[i], str(gameInputPacket.sPlayerConfiguration[i].wName), bot_teams[i], i, bot_modules[i], save_path + '\\' + game_name, save_data, server_manager)) process.start() print("Successfully configured bots. Setting flag for injected dll.") gameInputPacket.bStartMatch = True # Wait 100 milliseconds then check for an error code time.sleep(0.1) game_data_shared_memory = mmap.mmap(-1, ctypes.sizeof(gd.GameTickPacketWithLock), bot_manager.OUTPUT_SHARED_MEMORY_TAG) bot_output = gd.GameTickPacketWithLock.from_buffer(game_data_shared_memory) if not bot_output.iLastError == 0: # Terminate all process and then raise an exception quit_event.set() terminated = False while not terminated: terminated = True for callback in callbacks: if not callback.is_set(): terminated = False raise rlbot_exception.RLBotException().raise_exception_from_error_code(bot_output.iLastError) print("Press any character to exit") msvcrt.getch() print("Shutting Down") quit_event.set() # Wait for all processes to terminate before terminating main process terminated = False while not terminated: terminated = True for callback in callbacks: if not callback.is_set(): terminated = False if __name__ == '__main__': main()
2.0625
2
src/features/FER.py
pandov/myitacademy
1
12797317
import torchvision from ..paths import PATH_DATA_PROCESSED class FER(torchvision.datasets.ImageFolder): def __init__(self, num_classes: int, **kwargs): kwargs['root'] = PATH_DATA_PROCESSED.joinpath(f'FER{num_classes}').as_posix() super().__init__(**kwargs)
2.203125
2
Difficulty/Medium/16.3-sum-closest.py
ryderfang/LeetCode
1
12797318
# # @lc app=leetcode id=16 lang=python3 # # [16] 3Sum Closest # # @lc code=start from typing import List class Solution: def threeSumClosest(self, nums: List[int], target: int) -> int: ans = 0x7fffffff sz = len(nums) nums.sort() for i in range(sz-2): if i > 0 and nums[i] == nums[i-1]: continue p = i + 1 q = sz - 1 b = True while p < q: tmp = nums[i] + nums[p] +nums[q] if abs(tmp - target) < abs(ans - target): ans = tmp if tmp == target: break elif tmp > target: q -= 1 else: p += 1 if ans == target: break return ans # @lc code=end
3.109375
3
yetl/metaconf/__init__.py
semanticinsight/yetl-framework
0
12797319
from ._dataset import DataSet from ._datastore import DataStore from ._environment import Environment from ._project import Project from ._secret_store import SecretStore from ._spark import _Spark, Spark from ._type_mapping import TypeMapping from ._exceptions import * __all__ = [ "DataSet", "DataStore", "Environment", "Project", "SecretStore", "_Spark", "Spark", "TypeMapping", "ProjectVersionInvalid", "ProjectDirectoryNotSet", "ProjectDirectoryNotExists", ]
1.296875
1
cogs/onload.py
paulranshaw/Discord-Bot
0
12797320
<filename>cogs/onload.py<gh_stars>0 import discord import os from discord.errors import ClientException import dotenv import logging import asyncio from discord.ext import commands, tasks from dotenv import load_dotenv from itertools import cycle client = discord.Client() class Onload(commands.Cog): def __init__(self, client): self.client = client @commands.Cog.listener() async def on_ready(self): print('Bot is online.') def setup(client): client.add_cog(Onload(client))
2.484375
2
tests/impls/gen_detector_prop_sal/test_drise_scoring.py
vbhavank/xaitk-saliency
0
12797321
from unittest import TestCase import numpy as np import os from xaitk_saliency.impls.gen_detector_prop_sal.drise_scoring import DetectorRISE from xaitk_saliency import GenerateDetectorProposalSaliency from smqtk_core.configuration import configuration_test_helper from tests import DATA_DIR, EXPECTED_MASKS_4x6 class TestSimilarityScoring (TestCase): def test_init_(self) -> None: """ Test if implementation is usable. """ impl = DetectorRISE() assert impl.is_usable() and isinstance(impl, GenerateDetectorProposalSaliency) def test_default_param(self) -> None: """ Test default construction. """ impl = DetectorRISE() assert impl.proximity_metric == 'cosine' def test_get_config(self) -> None: """ Test expected configuation behavior. """ impl = DetectorRISE('euclidean') for i in configuration_test_helper(impl): assert i.proximity_metric == 'euclidean' def test_metric_args(self) -> None: """ Test non-default metric type. """ impl = DetectorRISE('hamming') assert impl.proximity_metric == 'hamming' def test_shape_sanity(self) -> None: """ Test basic scoring with a single feature for broadcasting sanity check. """ impl = DetectorRISE() np.random.seed(2) image1_dets = np.random.rand(2, (7)) pertb_dets = np.random.rand(10, 2, (7)) pertb_mask = np.random.randint(low=0, high=2, size=(10, 15, 25), dtype='int') sal = impl.generate(image1_dets, pertb_dets, pertb_mask) assert sal.shape == (2, 15, 25) def test_standard_detection(self) -> None: """ Test basic scoring on known values and non-square masks. """ impl = DetectorRISE() image1_dets = np.array([[1, 1, 4, 3, 0, 1, 0.89]]) pertb_dets = np.array([[[1, 2, 6, 6, 0.3, 1, 0.995]], [[0, 1, 2, 2, 0.2, 2, 0.03]], [[1, 0, 2, 2, 0.45, 1, 0.81]], [[1, 1, 6, 6, 0.5, 1, 0.625]], [[0, 2, 3, 5, 0.03, 1, 0.56]], [[1, 2, 6, 3, 0.01, 1, 0.07]],]) sal = impl.generate(image1_dets, pertb_dets, EXPECTED_MASKS_4x6) standard_sal = np.load(os.path.join(DATA_DIR, 'drisesal.npy')) assert sal.shape == (1, 4, 6) assert np.allclose(standard_sal, sal)
2.28125
2
AA_FOOTBALL/GuessLeverage.py
fattail/-
0
12797322
<filename>AA_FOOTBALL/GuessLeverage.py import pandas as pd import numpy as np import os as os def GetLverage(v_win,v_tie,v_los,bet_amt,keep_side): AllocateList = pd.read_csv(r'./data/cmb_list.csv',index_col=None) AllocateList['胜'] = (AllocateList['胜']*bet_amt)/100 AllocateList['平'] = (AllocateList['平']*bet_amt)/100 AllocateList['负'] = (AllocateList['负']*bet_amt)/100 AllocateList['胜入'] = AllocateList['胜']*(v_win+1) AllocateList['平入'] = AllocateList['平']*(v_tie+1) AllocateList['负入'] = AllocateList['负']*(v_los+1) AllocateList['总出'] = AllocateList['胜'] + AllocateList['平'] + AllocateList['负'] AllocateList['胜利'] = AllocateList['胜入'] - AllocateList['总出'] AllocateList['平利'] = AllocateList['平入'] - AllocateList['总出'] AllocateList['负利'] = AllocateList['负入'] - AllocateList['总出'] if keep_side == '留胜': OPTAllocateList = AllocateList.loc[(AllocateList['平利']>0) & (AllocateList['负利']>0),] OPTAllocateList['最小胜'] = (OPTAllocateList['总出']/OPTAllocateList['胜']) - 1 OPTAllocateList['杠杆差'] = OPTAllocateList['最小胜'] - v_win return OPTAllocateList.loc[OPTAllocateList['最小胜'] == OPTAllocateList['最小胜'].min(),] elif keep_side == '留平': OPTAllocateList = AllocateList.loc[(AllocateList['胜利']>0) & (AllocateList['负利']>0),] OPTAllocateList['最小平'] = (OPTAllocateList['总出']/OPTAllocateList['平']) - 1 OPTAllocateList['杠杆差'] = OPTAllocateList['最小平'] - v_tie return OPTAllocateList.loc[OPTAllocateList['最小平'] == OPTAllocateList['最小平'].min(),] elif keep_side == '留负': OPTAllocateList = AllocateList.loc[(AllocateList['平利']>0) & (AllocateList['胜利']>0),] OPTAllocateList['最小负'] = (OPTAllocateList['总出']/OPTAllocateList['负']) - 1 OPTAllocateList['杠杆差'] = OPTAllocateList['最小负'] - v_los return OPTAllocateList.loc[OPTAllocateList['最小负'] == OPTAllocateList['最小负'].min(),] # 波黑-波兰 GetArbitrage(1.55,2.125,1.875,100,'留胜') # 2.125 GetArbitrage(1.55,2.125,1.875,100,'留平') # 3.0 GetArbitrage(1.55,2.125,1.875,100,'留负') # 2.7
2.59375
3
高频120_Lint/Regular Expression Matching.py
lixiaoruiusa/Rui7272
0
12797323
class Solution: """ @param s: A string @param p: A string includes "." and "*" @return: A boolean @ '.'匹配任意一个字母。'*'匹配零个或者多个前面的元素。 @ conner case ?? @ Time | Space """ def isMatch(self, s, p): # 长为S+1 高为p+1 的二维矩阵 dp = [[False] * (len(s) + 1) for _ in range(len(p) + 1)] dp[0][0] = True for i in range(1, len(p)): dp[i + 1][0] = dp[i - 1][0] and p[i] == '*' for i in range(len(p)): for j in range(len(s)): if p[i] == '*': dp[i + 1][j + 1] = dp[i - 1][j + 1] or dp[i][j + 1] if p[i - 1] == s[j] or p[i - 1] == '.': dp[i + 1][j + 1] |= dp[i + 1][j] else: dp[i + 1][j + 1] = dp[i][j] and (p[i] == s[j] or p[i] == '.') return dp[-1][-1]
3.703125
4
src/vis.py
atreyasha/lfw-faces-rgan
0
12797324
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import re import os import glob import imageio import argparse import subprocess import numpy as np from tqdm import tqdm from PIL import Image from pygifsicle import optimize from obj.arg_formatter import arg_metav_formatter def sorted_alphanumeric(data): """ Function to sort number-containing strings Args: data (list): list of strings to sort Returns: (list): sorted list """ convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(data, key=alphanum_key) def make_plot(direct, number_ticks): """ Function to plot values from log csv file Args: direct (str): base directory of logged model number_ticks (int): number of ticks to have on graph """ direct = re.sub(r"(\/)?$", "", direct) direct = re.sub(r"(\.\/)?pickles\/", "", direct) directLong = "./pickles/" + direct if not os.path.isdir(directLong): sys.exit(directLong + " does not exist") # make vis directory within log directory os.makedirs(directLong + "/vis", exist_ok=True) subprocess.call( ["Rscript", "gg.R", "-d", directLong, "-t", str(number_ticks)]) def make_gif(direct, shrink_factor=4, skip_rate=2, interval=0.1, until=None, progress_bar=False): """ Function to create gif from images Args: direct (str): base directory of logged model shrink_factor (int): factor by which to downsample images skip_rate (int): interval to images to use for gif interval (float): temporal interval for gif construction or speed until (int): upper limit for epoch to be used in gif construction progress_bar (bool): True if progress bar should be added to gif """ print("creating training evolution gif") # clean up directory input direct = re.sub(r"(\/)?$", "", direct) direct = re.sub(r"(\.\/)?pickles\/", "", direct) directLong = "./pickles/" + direct if not os.path.isdir(directLong): sys.exit(directLong + " does not exist") # get sorted image list sorted_list = sorted_alphanumeric(glob.glob(directLong + "/img/*png")) # assume all images are of same size size = Image.open(sorted_list[0]).size new_size = tuple([int(el / shrink_factor) for el in size]) if isinstance(until, int): sorted_list = sorted_list[:until] sorted_list = [ Image.open(img).resize(new_size, Image.ANTIALIAS) for i, img in enumerate(tqdm(sorted_list)) if ((i + 1) % skip_rate == 0 or i == 0) ] kargs = {'duration': interval} imageio.mimsave(directLong + "/vis/vis.gif", sorted_list, **kargs) optimize(directLong + "/vis/vis.gif", directLong + "/vis/vis.gif") if progress_bar: print("adding progress bar to gif") output = subprocess.call("cat " + directLong + "/vis/vis.gif" + " | gif-progress --bar-color '#000'" + " > " + directLong + "/vis/out.gif", shell=True) if output != 0: sys.exit("error occurred with gif progress bar, do manual check") if __name__ == "__main__": parser = argparse.ArgumentParser(formatter_class=arg_metav_formatter) required = parser.add_argument_group("required name arguments") required.add_argument("--log-dir", type=str, required=True, help="base directory within pickles from which to" + " visualize") parser.add_argument("--number-ticks", type=int, default=10, help="number of x-axis ticks to use in main plots") parser.add_argument("--create-gif", default=False, action="store_true", help="option to activate gif creation") parser.add_argument("--shrink-factor", type=int, default=4, help="shrinking factor for images, applies only" + " when --create-gif is supplied") parser.add_argument("--skip-rate", type=int, default=2, help="skip interval when using images to construct" + " gif applies only when --create-gif is supplied") parser.add_argument("--interval", type=float, default=0.1, help="time interval when constructing gifs from" + " images, applies only when --create-gif is supplied") parser.add_argument("--until", type=int, default=None, help="set upper epoch limit for gif creation," + " applies only when --create-gif is supplied") parser.add_argument( "--progress-bar", default=False, action="store_true", help="option to add progress bar to gifs, applies" + "only when --create-gif is supplied; check readme for" + " additional go package installation instructions") args = parser.parse_args() # make plot make_plot(args.log_dir, args.number_ticks) # if necessary, make gif if args.create_gif: make_gif(args.log_dir, args.shrink_factor, args.skip_rate, args.interval, args.until, args.progress_bar)
2.46875
2
djangoerp/registration/forms.py
xarala221/django-erp
345
12797325
<filename>djangoerp/registration/forms.py #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import unicode_literals """This file is part of the django ERP project. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __author__ = '<NAME> <<EMAIL>>' __copyright__ = 'Copyright (c) 2013-2015, django ERP Team' __version__ = '0.0.5' from django import forms from django.utils.safestring import mark_safe from django.utils.translation import ugettext as _ from djangoerp.core.forms.auth import UserForm class UserRegistrationForm(UserForm): """Form for user registration. """ def __init__(self, *args, **kwargs): super(UserRegistrationForm, self).__init__(*args, **kwargs) # Improved security. if hasattr(self.fields, 'is_admin'): self.fields.pop('is_admin') if hasattr(self.fields, 'is_staff'): self.fields.pop('is_staff') if hasattr(self.fields, 'is_active'): self.fields.pop('is_active') if hasattr(self.fields, 'is_superuser'): self.fields.pop('is_superuser') if hasattr(self.fields, 'groups'): self.fields.pop('groups') if hasattr(self.fields, 'user_permissions'): self.fields.pop('user_permissions')
1.921875
2
DailyCodingProblem/147_Others_Sort_List_Using_Given_Reverse_Method.py
RafayAK/CodingPrep
5
12797326
""" Given a list, sort it using this method: reverse(lst, i, j), which reverses lst from i to j. """ def reverse(lst, i, j): lst[i: j] = lst[i: j][::-1] def sort_with_reverse(lst:list): iterator = 0 while iterator < len(lst)-1: smallest_value = min(lst[iterator:]) index_smallest = lst.index(smallest_value, iterator, len(lst)) reverse(lst, iterator, index_smallest+1) iterator += 1 return lst if __name__ == '__main__': l = [3, 2, 4, 1] assert sort_with_reverse(l) == [1, 2, 3, 4] l = [5, 2, 3, 4, 5, 6, 2] assert sort_with_reverse(l) == [2, 2, 3, 4, 5, 5, 6]
4.1875
4
pyflsk.py
swathiprabhu3/SwakshaGadgetShop
0
12797327
<reponame>swathiprabhu3/SwakshaGadgetShop from flask import Flask, render_template, request from flask_sqlalchemy import SQLAlchemy from datetime import datetime import pymysql pymysql.install_as_MySQLdb() app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = "mysql://root:@localhost/shoppingwebapp" db = SQLAlchemy(app) class Contacts(db.Model): ''' sno name email mes date ''' sno = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(25), nullable=False) email = db.Column(db.String(20), nullable=False) mes = db.Column(db.String(120), nullable=False) date = db.Column(db.String(12), nullable=True) class Checkout(db.Model): sno = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(25), nullable=False) phone = db.Column(db.String(20), nullable=False) email = db.Column(db.String(20), nullable=False) country = db.Column(db.String(12), nullable=False) address= db.Column(db.String(120), nullable=False) postcode= db.Column(db.String(20), nullable=False) city= db.Column(db.String(20), nullable=False) date = db.Column(db.String(12), nullable=True) class Register(db.Model): sno = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(25), nullable=False) phone = db.Column(db.Integer, nullable=True) email = db.Column(db.String(20), nullable=False) password=db.Column(db.String(20),nullable=False) class Payment(db.Model): sno = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(25), nullable=False) card = db.Column(db.Integer, nullable=True) cvv = db.Column(db.Integer, nullable=False) class Specification(db.Model): sno = db.Column(db.Integer, primary_key=True) size = db.Column(db.Integer, nullable=False) color = db.Column(db.String(25), nullable=True) delivery = db.Column(db.String(25), nullable=False) @app.route('/') def home(): return render_template('index.html') @app.route('/about') def about(): return render_template('about.html') @app.route('/cart') def cart(): return render_template('cart.html') @app.route('/checkout', methods= ['GET', 'POST']) def check(): if(request.method=='POST'): name=request.form.get('name') phone=request.form.get('phone') email=request.form.get('email') country=request.form.get('country') address=request.form.get('address') postcode=request.form.get('postcode') city=request.form.get('city') entry=Checkout(name=name,phone=phone,email=email, country=country,address=address,postcode=postcode,city=city,date=datetime.now()) db.session.add(entry) db.session.commit() return render_template('checkout.html') @app.route("/register", methods=["GET", "POST"]) def register(): if(request.method=='POST'): name=request.form.get('name') email=request.form.get('email') password=request.form.get('password') phone=request.form.get('phone') entry=Register(name=name,email=email,password=password,phone=phone) db.session.add(entry) db.session.commit() return render_template("register.html") @app.route('/specification',methods=['GET','POST']) def specification(): if(request.method=='POST'): size=request.form.get('size') color=request.form.get('color') delivery=request.form.get('delivery') entry=Specification(size=size,color=color,delivery=delivery) db.session.add(entry) db.session.commit() return render_template('specification.html') @app.route('/payment',methods=['GET','POST']) def payment(): if(request.method=='POST'): name=request.form.get('name') card=request.form.get('card') cvv=request.form.get('cvv') entry=Payment(name=name,card=card,cvv=cvv) db.session.add(entry) db.session.commit() return render_template('payment.html') @app.route('/category',methods=['GET','POST']) def category(): return render_template('category.html') @app.route('/product_detail') def productdetail(): return render_template('product_detail.html') @app.route('/search') def search(): return render_template('search.html') @app.route('/contact', methods= ['GET', 'POST']) def contact(): if(request.method=='POST'): '''add entry to database''' name=request.form.get('name') email=request.form.get('email') message=request.form.get('msg') entry=Contacts(name=name,email=email, mes=message,date=datetime.now()) db.session.add(entry) db.session.commit() return render_template('contact.html') @app.route('/product') def product(): return render_template('product.html') app.run(debug=True)
2.28125
2
service/models.py
YuraPogorelov/auto-blog-pyhon
0
12797328
<gh_stars>0 from django.db import models from django.urls import reverse # Create your models here. class Category(models.Model): """Кактегория услуг""" name = models.CharField('Название категории', max_length=120) slug = models.SlugField('URL', max_length=120) text = models.TextField('Текст категории') banner = models.ImageField('Баннер', upload_to='images/', blank=True, null=True) title = models.CharField('Title', max_length=120) description = models.CharField('Description', max_length=120) keywords = models.CharField('Keywords', max_length=250) def __str__(self): return self.name def get_absolute_url(self): return reverse('service_category', kwargs={'slug': self.slug}) class Meta: verbose_name = 'Категория' verbose_name_plural = 'Категории' class Model(models.Model): """Модель из категории""" category = models.ForeignKey(Category, on_delete=models.SET_NULL, null=True, verbose_name='Выбор категории') name = models.CharField('Название услуги', max_length=120) slug = models.SlugField('URL', max_length=120, default='', unique=True) text = models.TextField('Текст модели', default='') header = models.CharField('Заголовок', max_length=240, blank=True, null=True) sub_header = models.CharField('Подзаголовок', max_length=240, blank=True, null=True) images = models.ImageField('Картинка техники', upload_to='images/', blank=True, null=True) active = models.BooleanField('Опубликовать', default=True) title = models.CharField('Title', max_length=120) description = models.CharField('Description', max_length=120) keywords = models.CharField('Keywords', max_length=250) sort = models.PositiveIntegerField('Порядок', default=0, unique=True) banner = models.ImageField('Баннер', upload_to='images/', blank=True, null=True) def __str__(self): return self.name def get_absolute_url(self): return reverse('service_model_view', kwargs={'category': self.category.slug, 'slug': self.slug}) class Meta: verbose_name = 'Модель' verbose_name_plural = 'Модели'
2.296875
2
winning_ticket.py
GYosifov88/Python-Fundamentals
0
12797329
<reponame>GYosifov88/Python-Fundamentals<filename>winning_ticket.py def additional_func(partition): current_max_num = 0 special_char = '' for ch in partition: if ch != special_char: if current_max_num >= 6: break current_max_num = 1 special_char = ch else: current_max_num += 1 return [current_max_num, special_char] def ticket_validator(ticket): ticket_condition = '' if len(ticket) != 20: ticket_condition = "invalid ticket" elif ticket[0] * 20 == ticket and ticket[0] in '@#$^': ticket_condition = f'ticket "{ticket}" - 10{ticket[0]} Jackpot!' else: data_source = '' if additional_func(ticket[0:10]) > additional_func(ticket[10:]): data_source = additional_func(ticket[10:]) else: data_source = additional_func(ticket[0:10]) number_of_special_signs = data_source[0] special_sign = data_source[1] if number_of_special_signs < 6 or special_sign not in '@#$^': ticket_condition = f'ticket "{ticket}" - no match' else: ticket_condition = f'ticket "{ticket}" - {number_of_special_signs}{special_sign}' return ticket_condition def winning_ticket(data): for ticket in data: print(ticket_validator(ticket)) tickets_info = input() data = [x.strip() for x in tickets_info.split(',')] winning_ticket(data)
3.546875
4
migrations/versions/2021_102612_bbedc353f90c_.py
fareszr/app
0
12797330
<gh_stars>0 """empty message Revision ID: bbedc353f90c Revises: d67eab226ecd Create Date: 2021-10-26 12:05:38.840492 """ import sqlalchemy_utils from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'bbedc353f90c' down_revision = 'd67eab226ecd' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint('client_referral_id_fkey', 'client', type_='foreignkey') op.create_foreign_key(None, 'client', 'referral', ['referral_id'], ['id'], ondelete='SET NULL') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint(None, 'client', type_='foreignkey') op.create_foreign_key('client_referral_id_fkey', 'client', 'referral', ['referral_id'], ['id']) # ### end Alembic commands ###
1.359375
1
neuralprocesses/util.py
tom-andersson/neuralprocesses
0
12797331
<reponame>tom-andersson/neuralprocesses from functools import wraps import lab as B import numpy as np from lab.util import resolve_axis from . import _dispatch __all__ = [ "is_framework_module", "modules", "register_module", "models", "register_model", "composite_coders", "register_composite_coder", "is_composite_coder", "wrapped_partial", "is_nonempty", "batch", "compress_batch_dimensions", "split", "split_dimension", "merge_dimensions", "select", "with_first_last", ] @_dispatch def is_framework_module(x): """Check if something is a framework module. Args: x (object): Object to check. Returns: bool: `True` if `x` is a framework module, else `False`. """ return False modules = [] #: Registered modules def register_module(module): """Decorator to register a new module.""" modules.append(module) return module models = [] #: Registered models def register_model(model): """Decorator to register a new model.""" models.append(model) return model composite_coders = [] #: Composite coders def register_composite_coder(coder): """Decorator to register a composite coder.""" composite_coders.append(coder) return coder def is_composite_coder(coder): """Check if a coder is composite. Args: coder (coder): Coder. Returns: bool: Coder is composite. """ return any([isinstance(coder, c) for c in composite_coders]) def wrapped_partial(f, *partial_args, **partial_kw_args): """Like :func:`functools.partial`, but preserves the docstring. Args: f (function): Function to wrap. *partial_args: Partial arguments. **partial_kw_args: Partial keyword arguments. Returns: function: Version of `f` with some arguments and keyword arguments already set. """ @wraps(f) def wrapped_f(*args, **kw_args): return f(*partial_args, *args, **partial_kw_args, **kw_args) return wrapped_f def is_nonempty(x): """Check if a tensor is not empty. Args: x (tensor): Tensor. Returns: bool: `True` if `x` is not empty, otherwise `False`. """ return all([i > 0 for i in B.shape(x)]) def batch(x, other_dims): """Get the shape of the batch of a tensor. Args: x (tensor): Tensor. other_dims (int): Number of non-batch dimensions. Returns: tuple[int]: Shape of batch dimensions. """ return B.shape(x)[:-other_dims] def compress_batch_dimensions(x, other_dims): """Compress multiple batch dimensions of a tensor into a single batch dimension. Args: x (tensor): Tensor to compress. other_dims (int): Number of non-batch dimensions. Returns: tensor: `x` with batch dimensions compressed. function: Function to undo the compression of the batch dimensions. """ b = batch(x, other_dims) if len(b) == 1: return x, lambda x: x else: def uncompress(x_after): return B.reshape(x_after, *b, *B.shape(x_after)[1:]) return B.reshape(x, int(np.prod(b)), *B.shape(x)[len(b) :]), uncompress def split(z, sizes, axis): """Split a tensor into multiple tensors. Args: z (tensor): Tensor to split. sizes (iterable[int]): Sizes of the components. axis (int): Axis. Returns: list[tensor]: Components of the split. """ axis = resolve_axis(z, axis) index = [slice(None, None, None)] * B.rank(z) components = [] i = 0 for size in sizes: index[axis] = slice(i, i + size, None) components.append(z[tuple(index)]) i += size return components def split_dimension(z, axis, sizes): """Split a dimension of a tensor into multiple dimensions. Args: z (tensor): Tensor to split. axis (int): Axis to split sizes (iterable[int]): Sizes of new dimensions. Returns: tensor: Reshaped version of `z`. """ shape = B.shape(z) # The indexing below will only be correct for positive `axis`, so resolve the index. axis = resolve_axis(z, axis) return B.reshape(z, *shape[:axis], *sizes, *shape[axis + 1 :]) def merge_dimensions(z, axis, sizes): """Merge dimensions of a tensor into one dimension. This operation is the opposite of :func:`split_dimension`. Args: z (tensor): Tensor to merge. axis (int): Axis to merge into. sizes (iterable[int]): Sizes of dimensions to merge. Returns: tensor: Reshaped version of `z`. """ shape = B.shape(z) # The indexing below will only be correct for positive `axis`, so resolve the index. axis = resolve_axis(z, axis) return B.reshape( z, *shape[: axis - len(sizes) + 1], np.prod(sizes), *shape[axis + 1 :], ) def select(z, i, axis): """Select a particular index `i` at axis `axis` without squeezing the tensor. Args: z (tensor): Tensor to select from. i (int): Index to select. axis (int): Axis to select from. Returns: tensor: Selection from `z`. """ axis = resolve_axis(z, axis) index = [slice(None, None, None) for _ in range(B.rank(z))] index[axis] = slice(i, i + 1, None) return z[index] def with_first_last(xs): """Return a generator which indicates whether the returned element is the first or last. Args: xs: Generator to wrap. Yields: bool: Element is first. bool: Element is last. object: Element. """ state = {"first": True} def first(): if state["first"]: state["first"] = False return True else: return False prev = None have_prev = False cur = None have_cur = False for x in xs: cur = x have_cur = True if not have_prev: # We will need a `prev`, but there is no `prev` yet. Take the current one as # `prev` and skip to the next iteration. prev = cur have_prev = True continue # We currently have available `prev` and `cur`. We will return `prev` and, # after the loop has finished, return `cur` as the last one. yield first(), False, prev prev = cur if have_cur: yield first(), True, cur
2.28125
2
word2vec/wordvectors.py
fangyw/word2vec
1
12797332
<filename>word2vec/wordvectors.py<gh_stars>1-10 # coding: utf-8 import numpy as np from word2vec.utils import unitvec class WordVectors(object): def __init__(self, vocab=None, vectors=None, saveMemory=True): self.vocab = vocab if not saveMemory: self.vectors = vectors self.l2norm = np.vstack(unitvec(vec) for vec in vectors) def ix(self, word): ''' Returns the index on self.vocab and self.l2norm for `word` ''' temp = np.where(self.vocab == word)[0] if temp.size == 0: raise KeyError('Word not in vocabulary') else: return temp[0] def get_vector(self, word): ''' Returns the (l2norm) vector for `word` in the vocabulary ''' idx = self.ix(word) return self.l2norm[idx] def __getitem__(self, word): return self.get_vector(word) def generate_response(self, indexes, metric, exclude=''): ''' Generates a response as a list of tuples based on the indexes Each tuple is: (vocab[i], metric[i]) ''' if isinstance(exclude, basestring): exclude = [exclude] return [(word, sim) for word, sim in zip(self.vocab[indexes], metric[indexes]) if word not in exclude] def cosine(self, words, n=10): ''' Cosine similarity. metric = dot(l2norm_of_vectors, l2norm_of_target_vector) Uses a precomputed l2norm of the vectors Parameters ---------- words : string or list of string word(s) in the vocabulary to calculate the vectors n : int, optional (default 10) number of neighbors to return Returns ------- dict: with the n similar words and its similarity as a list of tuples Example ------- >>> model.cosine('black', n=2) ``` ``` {'black': [('white', 0.94757425919916516), ('yellow', 0.94640807944950878)] } ''' if isinstance(words, basestring): words = [words] targets = np.vstack((self.get_vector(word) for word in words)) metrics = np.dot(self.l2norm, targets.T) ans = {} for col, word in enumerate(words): best = np.argsort(metrics[:, col])[::-1][:n + 1] best = self.generate_response(best, metrics[:, col], exclude=word) ans[word] = best return ans def _cosine(self, word, n=10): ''' Cosine distance using scipy.distance.cosine Note: This method is **a lot** slower than `self.cosine` and results are the almost the same, really just use `self.cosine` This is just available for testing. Requires: `__init__(..., saveMemory=False)` Parameters ---------- word : string word in the vocabulary to calculate the vectors n : int, optional (default 10) number of neighbors to return ''' from scipy.spatial import distance target_vec = self[word] metric = np.empty(self.vocab.shape) for idx, vector in enumerate(self.vectors): metric[idx] = distance.cosine(target_vec, vector) best = metric.argsort()[:n + 1] return self.generate_response(best, metric, exclude=word) def analogy(self, pos, neg, n=10): ''' Analogy similarity. Parameters ---------- pos : list neg : list Returns ------- List of tuples, each tuple is (word, similarity) Example ------- `king - man + woman = queen` will be: `pos=['king', 'woman'], neg=['man']` ''' words = pos + neg pos = [(word, 1.0) for word in pos] neg = [(word, -1.0) for word in neg] mean = [] for word, direction in pos + neg: mean.append(direction * unitvec(self.get_vector(word))) mean = np.array(mean).mean(axis=0) similarities = np.dot(self.l2norm, mean) best = similarities.argsort()[::-1][:n + len(words) - 1] return self.generate_response(best, similarities, exclude=words)
3.046875
3
tests/features/test_evaluate_constant_expression.py
TomPretty/calculator
0
12797333
<reponame>TomPretty/calculator from calculator import evaluate def test_evaluating_a_constant_expression(): source = "3" assert evaluate(source) == 3
2.8125
3
bot/short.py
dvdrm/gd
14
12797334
<reponame>dvdrm/gd from telethon import events, Button from .utils import split_list, press_event, cmd from asyncio import exceptions from .. import jdbot, chat_id, SHORTCUT_FILE, logger, BOT_SET, ch_name @jdbot.on(events.NewMessage(from_users=chat_id, pattern=r'^/a$')) async def my_a(event): markup = [] SENDER = event.sender_id msg = await jdbot.send_message(chat_id, '正在查询您的常用命令,请稍后') with open(SHORTCUT_FILE, 'r', encoding='utf-8') as f: shortcuts = f.readlines() try: cmdtext = None async with jdbot.conversation(SENDER, timeout=60) as conv: markup = [Button.inline(shortcut.split( '-->')[0], data=str(shortcut.split('-->')[-1])) for shortcut in shortcuts if '-->' in shortcut] markup = split_list(markup, 3) markup.append([Button.inline('取消', data='cancel')]) msg = await jdbot.edit_message(msg, '请做出您的选择:', buttons=markup) convdata = await conv.wait_event(press_event(SENDER)) res = bytes.decode(convdata.data) if res == 'cancel': msg = await jdbot.edit_message(msg, '对话已取消') conv.cancel() else: await jdbot.delete_messages(chat_id, msg) cmdtext = res conv.cancel() if cmdtext: await cmd(cmdtext.replace('nohup ', '')) except exceptions.TimeoutError: msg = await jdbot.edit_message(msg, '选择已超时,对话已停止') except Exception as e: await jdbot.edit_message(msg, f'something wrong,I\'m sorry\n{str(e)}') logger.error(f'something wrong,I\'m sorry\n{str(e)}') @jdbot.on(events.NewMessage(from_users=chat_id, pattern=r'^/b$')) async def my_b(event): markup = [] msg = await jdbot.send_message(chat_id, '正在查询您的常用命令,请稍后') with open(SHORTCUT_FILE, 'r', encoding='utf-8') as f: shortcuts = f.readlines() try: await jdbot.delete_messages(chat_id, msg) markup = [Button.text(shortcut, single_use=True) for shortcut in shortcuts if '-->' not in shortcut] markup = split_list(markup, int(BOT_SET['每页列数'])) await jdbot.send_message(chat_id, '请做出您的选择:', buttons=markup) except Exception as e: await jdbot.edit_message(msg, f'something wrong,I\'m sorry\n{str(e)}') logger.error(f'something wrong,I\'m sorry\n{str(e)}') @jdbot.on(events.NewMessage(from_users=chat_id, pattern=r'^/clearboard$')) async def my_clear(event): try: await jdbot.send_message(chat_id, '已清空您的keyboard',buttons=Button.clear()) except Exception as e: await jdbot.send_message(chat_id, f'something wrong,I\'m sorry\n{str(e)}') logger.error(f'something wrong,I\'m sorry\n{str(e)}') if ch_name: jdbot.add_event_handler(my_a, events.NewMessage( from_users=chat_id, pattern=BOT_SET['命令别名']['a'])) jdbot.add_event_handler(my_b, events.NewMessage(from_users=chat_id, pattern=BOT_SET['命令别名']['b']))
2.09375
2
checks/check_nicusage.py
graphingit/droko-agent
0
12797335
<gh_stars>0 #!/usr/bin/env __PYTHONVER__ import psutil import time import sys if __name__ == "__main__": while True: try: # Get the current unix epoch time now = str(int(time.time() / 1)) # Output needs to be in comma format, eg: # epoch,checkname,value,metadata # Eg: # 1430157858,os.nic.bytes.wlan0_out,32863319809,metric=bps;title=wlan0_out # 1430157858,os.nic.bytes.wlan0_in,6320095757,metric=bps;title=wlan0_in # 1430157858,os.nic.bytes.em1_out,4128073428,metric=bps;title=em1_out # 1430157858,os.nic.bytes.em1_in,3156351939,metric=bps;title=em1_in # List of network devices we want to exclude filternics = ['lo'] nics = psutil.net_io_counters(pernic=True) for nic in nics: (bytes_sent, bytes_recv, packets_sent, packets_recv, errin, errout, dropin, dropout) = nics[nic] if nic not in filternics: # Ignore inactive network interfaces if packets_recv != 0 and packets_sent != 0: print(now + ",os.nic.bytes." + nic + "_out," + str(bytes_sent) + ",metric=bps;function=derivative;inversion=-1;title=" + nic + "_out") print(now + ",os.nic.bytes." + nic + "_in," + str(bytes_recv) + ",metric=bps;function=derivative;inversion=1;title=" + nic + "_in") print(now + ",os.nic.packets." + nic + "_sent," + str(packets_sent) + ",metric=pps;function=derivative;inversion=-1;title=" + nic + "_sent") print(now + ",os.nic.packets." + nic + "_recv," + str(packets_recv) + ",metric=pps;function=derivative;inversion=1;title=" + nic + "_recv") sys.stdout.flush() time.sleep(1) except: pass
2.421875
2
.projectsAg/model/mail.py
Hraesvel/portfolioSite_flutter
0
12797336
<reponame>Hraesvel/portfolioSite_flutter import json import os import boto3 from botocore.exceptions import ClientError # from email.mime.multipart import MIMEMultipart # from email.mime.text import MIMEText # from email.mime.application import MIMEApplication region = os.environ['Region'] def send_mail(msg): client_ses = boto3.client('ses', region) try: verify = client_ses.verify_email_address(EmailAddress=msg) response = client_ses.send_email( Source='<EMAIL>', Destination={ 'ToAddresses': [], 'CcAddresses': [], 'BccAddresses': [] }, Message={ 'Subject': {'Data': f"from {msg['reply_address']}"}, 'Body': {'Text': {'Data': msg['body']}}}, ReplyToAddresses=[msg['reply_address']], ) except ClientError as e: output = e.response['Error']['Message'] else: output = "Email sent! Message ID: " + response['MessageId'] return output def lambda_handler(event, context): # print(event) # print(event['reply_address']) print(send_mail(event)) return { 'statusCode': 200, 'body': json.dumps('Hello from Lambda!') }
2.203125
2
model.py
liuying350169/fl
0
12797337
import torch import time import torch.nn as nn class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=16, kernel_size=5, stride=1, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=32, kernel_size=5, stride=1, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2), ) self.out = nn.Linear(in_features=32 * 7 * 7, out_features=10) def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = x.view(x.size(0), -1) output = self.out(x) return output, x class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self.conv_layers = nn.Sequential( nn.Conv2d(in_channels=1, out_channels=96, kernel_size=3, stride=2, padding=5), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels=96, out_channels=256, kernel_size=5, stride=1, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(in_channels=256, out_channels=384, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(in_channels=384, out_channels=384, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.Conv2d(in_channels=384, out_channels=256, kernel_size=3, stride=1, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.fc_layers = nn.Sequential( nn.Linear(256 * 1 * 1, 4096), nn.Dropout(0.5), nn.Linear(4096, 4096), nn.Dropout(0.5), nn.Linear(4096, 10), ) def forward(self, x): x = self.conv_layers(x) x = x.view(x.size(0), -1) output = self.fc_layers(x) return output, x
3.1875
3
pybabel_acorn/__init__.py
qbane/pybabel-acorn
0
12797338
import sys from contextlib import contextmanager from os import path import importlib # https://stackoverflow.com/a/41904558/2281355 @contextmanager def add_to_path(p): import sys old_path = sys.path old_modules = sys.modules sys.modules = old_modules.copy() sys.path = sys.path[:] sys.path.insert(0, p) try: yield finally: sys.path = old_path sys.modules = old_modules def extract_javascript(fileobj, keywords, comment_tags, options): # import the original lexer before altering sys.path # this way, our mocked tokenizer can still access the original lexer # and utilities import babel.messages.jslexer with add_to_path(path.dirname(__file__)): # replace the jslexer # first, reload all parent namespace so that it can adapt the new sys.path... import babel importlib.reload(babel) import babel.messages importlib.reload(babel.messages) # this should load our mocked jslexer importlib.reload(babel.messages.jslexer) # babel.messages.extract is not changed, so we can use directly from babel.messages.extract import extract_javascript yield from extract_javascript(fileobj, keywords, comment_tags, options)
2.375
2
datastore/db.py
cs0x65/soil-classifier
0
12797339
import psycopg2 from psycopg2 import Error try: # Connect to an existing database connection = psycopg2.connect(user="sa", password="<PASSWORD>", host="127.0.0.1", port="5432", database="soildb") # Create a cursor to perform database operations cursor = connection.cursor() # Print PostgreSQL details print("PostgreSQL server information") print(connection.get_dsn_parameters(), "\n") # Executing a SQL query cursor.execute("SELECT version();") # Fetch result record = cursor.fetchone() print("You are connected to - ", record, "\n") print("Retrieving soil records...") cursor.execute("SELECT * from soil_profile limit 10") # Fetch result records = cursor.fetchall() print(f"soil records = {records}") except (Exception, Error) as error: print("Error while connecting to PostgreSQL", error) finally: if connection: cursor.close() connection.close() print("PostgreSQL connection is closed")
3.5625
4
database/compiled_templates/webapps/galaxy/admin/tool_sheds.mako.py
psnehal/MethylSig
0
12797340
# -*- encoding:ascii -*- from mako import runtime, filters, cache UNDEFINED = runtime.UNDEFINED __M_dict_builtin = dict __M_locals_builtin = locals _magic_number = 6 _modified_time = 1433361565.2110319 _template_filename='templates/webapps/galaxy/admin/tool_sheds.mako' _template_uri='/webapps/galaxy/admin/tool_sheds.mako' _template_cache=cache.Cache(__name__, _modified_time) _source_encoding='ascii' _exports = ['stylesheets', 'title'] def _mako_get_namespace(context, name): try: return context.namespaces[(__name__, name)] except KeyError: _mako_generate_namespaces(context) return context.namespaces[(__name__, name)] def _mako_generate_namespaces(context): # SOURCE LINE 2 ns = runtime.TemplateNamespace('__anon_0x7f903c23edd0', context._clean_inheritance_tokens(), templateuri=u'/message.mako', callables=None, calling_uri=_template_uri) context.namespaces[(__name__, '__anon_0x7f903c23edd0')] = ns def _mako_inherit(template, context): _mako_generate_namespaces(context) return runtime._inherit_from(context, u'/base.mako', _template_uri) def render_body(context,**pageargs): context.caller_stack._push_frame() try: __M_locals = __M_dict_builtin(pageargs=pageargs) _import_ns = {} _mako_get_namespace(context, '__anon_0x7f903c23edd0')._populate(_import_ns, [u'render_msg']) status = _import_ns.get('status', context.get('status', UNDEFINED)) h = _import_ns.get('h', context.get('h', UNDEFINED)) message = _import_ns.get('message', context.get('message', UNDEFINED)) trans = _import_ns.get('trans', context.get('trans', UNDEFINED)) render_msg = _import_ns.get('render_msg', context.get('render_msg', UNDEFINED)) __M_writer = context.writer() # SOURCE LINE 1 __M_writer(u'\n') # SOURCE LINE 2 __M_writer(u'\n\n') # SOURCE LINE 4 __M_writer(u'\n\n') # SOURCE LINE 9 __M_writer(u'\n\n') # SOURCE LINE 11 if message: # SOURCE LINE 12 __M_writer(u' ') __M_writer(unicode(render_msg( message, status ))) __M_writer(u'\n') pass # SOURCE LINE 14 __M_writer(u'\n<div class="toolForm">\n <div class="toolFormTitle">Accessible Galaxy tool sheds</div>\n <div class="toolFormBody">\n <div class="form-row">\n <table class="grid">\n ') # SOURCE LINE 20 shed_id = 0 __M_locals_builtin_stored = __M_locals_builtin() __M_locals.update(__M_dict_builtin([(__M_key, __M_locals_builtin_stored[__M_key]) for __M_key in ['shed_id'] if __M_key in __M_locals_builtin_stored])) __M_writer(u'\n') # SOURCE LINE 21 for name, url in trans.app.tool_shed_registry.tool_sheds.items(): # SOURCE LINE 22 __M_writer(u' <tr class="libraryTitle">\n <td>\n <div style="float: left; margin-left: 1px;" class="menubutton split popup" id="dataset-') # SOURCE LINE 24 __M_writer(unicode(shed_id)) __M_writer(u'-popup">\n <a class="view-info" href="') # SOURCE LINE 25 __M_writer(unicode(h.url_for( controller='admin_toolshed', action='browse_tool_shed', tool_shed_url=url ))) __M_writer(u'">') __M_writer(unicode(name)) __M_writer(u'</a>\n </div>\n <div popupmenu="dataset-') # SOURCE LINE 27 __M_writer(unicode(shed_id)) __M_writer(u'-popup">\n <a class="action-button" href="') # SOURCE LINE 28 __M_writer(unicode(h.url_for( controller='admin_toolshed', action='browse_tool_shed', tool_shed_url=url ))) __M_writer(u'">Browse valid repositories</a>\n <a class="action-button" href="') # SOURCE LINE 29 __M_writer(unicode(h.url_for( controller='admin_toolshed', action='find_tools_in_tool_shed', tool_shed_url=url ))) __M_writer(u'">Search for valid tools</a>\n <a class="action-button" href="') # SOURCE LINE 30 __M_writer(unicode(h.url_for( controller='admin_toolshed', action='find_workflows_in_tool_shed', tool_shed_url=url ))) __M_writer(u'">Search for workflows</a>\n </div>\n </td>\n </tr>\n ') # SOURCE LINE 34 shed_id += 1 __M_locals_builtin_stored = __M_locals_builtin() __M_locals.update(__M_dict_builtin([(__M_key, __M_locals_builtin_stored[__M_key]) for __M_key in ['shed_id'] if __M_key in __M_locals_builtin_stored])) __M_writer(u'\n') pass # SOURCE LINE 36 __M_writer(u' </tr>\n </table>\n </div>\n <div style="clear: both"></div>\n </div>\n</div>\n') return '' finally: context.caller_stack._pop_frame() def render_stylesheets(context): context.caller_stack._push_frame() try: _import_ns = {} _mako_get_namespace(context, '__anon_0x7f903c23edd0')._populate(_import_ns, [u'render_msg']) h = _import_ns.get('h', context.get('h', UNDEFINED)) parent = _import_ns.get('parent', context.get('parent', UNDEFINED)) __M_writer = context.writer() # SOURCE LINE 6 __M_writer(u'\n ') # SOURCE LINE 7 __M_writer(unicode(parent.stylesheets())) __M_writer(u'\n ') # SOURCE LINE 8 __M_writer(unicode(h.css( "library" ))) __M_writer(u'\n') return '' finally: context.caller_stack._pop_frame() def render_title(context): context.caller_stack._push_frame() try: _import_ns = {} _mako_get_namespace(context, '__anon_0x7f903c23edd0')._populate(_import_ns, [u'render_msg']) __M_writer = context.writer() # SOURCE LINE 4 __M_writer(u'Configured Galaxy tool sheds') return '' finally: context.caller_stack._pop_frame()
1.773438
2
tests/xtest_laser_power2.py
dapperfu/python_GCode
0
12797341
import time import grbl import pytest import gcode @pytest.fixture(scope="session") def cnc(request): grbl_cfg = { "port": request.config.getoption("--port"), "baudrate": request.config.getoption("--baudrate"), } cnc = grbl.Grbl(**grbl_cfg) time.sleep(2) cnc.reset() # Metric cnc.cmd("G21") cnc.cmd("G91") cnc.cmd("G0X5Y5F300") # Set this to 0. # TODO: Get end-stops installed. cnc.cmd("G92X0Y0Z0") yield cnc cnc.cmd("G90") cnc.cmd("G0X0Y0F300") def test_default_line(): print(gcode.Line()) def test_00_row1(cnc): prog = gcode.GCode(machine=cnc) prog.G90() prog.G0(X=0, Y=0) prog.run() cnc.reset() @pytest.mark.parametrize("laser_power", [10, 50, 75, 100, 150, 200, 255]) def test_01_laser_power(cnc, laser_power): prog = gcode.Line(power=laser_power, machine=cnc) cnc.cmd("G91") prog.run() cnc.reset() def test_02_row2(cnc): prog = gcode.GCode(machine=cnc) prog.G90() prog.G0(X=0, Y=10) prog.run() cnc.reset() @pytest.mark.parametrize("feed", [30, 60, 120, 180, 240, 300]) def test_03_laser_feed(cnc, feed): prog = gcode.Line(power=255, feed=feed, machine=cnc) cnc.cmd("G91") prog.run() cnc.reset() def test_04_row3(cnc): prog = gcode.GCode(machine=cnc) prog.G90() prog.G0(X=0, Y=20) prog.run() cnc.reset() @pytest.mark.parametrize("dynamic_power", [True, False]) @pytest.mark.parametrize("power", [150, 200, 255]) @pytest.mark.parametrize("feed", [30, 180]) def test_05_laser_power_feed(cnc, dynamic_power, power, feed): prog = gcode.Line(machine=cnc, dynamic_power=dynamic_power, power=power, feed=feed) cnc.cmd("G91") prog.run() cnc.reset()
1.84375
2
tests/test_raw_lightcurve.py
konkolyseismolab/autoeap
3
12797342
import numpy as np import autoeap from numpy.testing import assert_array_almost_equal import os PACKAGEDIR = os.path.abspath(os.path.dirname(__file__)) def test_raw_lightcurve(): time,flux,flux_err = autoeap.createlightcurve('EPIC220198696',campaign=8) lc = np.genfromtxt(os.path.join(PACKAGEDIR,"EPIC220198696_c8_autoEAP.lc"),skip_header=1).T assert_array_almost_equal(time,lc[0]) assert_array_almost_equal(flux,lc[1].astype(np.float32)) assert_array_almost_equal(flux_err,lc[2].astype(np.float32))
2.09375
2
common/services/unchained.py
shapeshift-legacy/watchtower
0
12797343
import logging import os import urllib3 import ast from common.utils.requests import http from common.utils.networks import ETH from common.services import cointainer_web3 as web3 from common.utils.ethereum import ERC20_ABI logger = logging.getLogger('watchtower.common.services.unchained') class UnchainedClient(object): def __init__(self, network): baseurl = self.get_baseurl(network) if baseurl is None: raise Exception( 'UnchainedClient is not supported for network: {}'.format(network) ) self.network = network self.baseurl = baseurl @staticmethod def get_baseurl(network): return { ETH: os.getenv('UNCHAINED_ETH_URL') }.get(network) def get_balances(self, address, account_id, supported_tokens=None): if not address: logger.error("Unable to get %s balances for account: %s. No associated address.", self.network, account_id) return dict() resp = http.get('{}/api/v2/address/{}?details=tokenBalances'.format(self.baseurl, address)).json_data balances = {token.get('contract').lower(): token.get('balance') for token in resp.get('tokens', list())} balances[ETH] = resp.get('balance') try: weth_contract_address = supported_tokens.get('WETH') if supported_tokens and supported_tokens.get('WETH') else None if weth_contract_address: if balances.get(weth_contract_address) is None: weth_address = web3.toChecksumAddress(weth_contract_address) if weth_address: contract = web3.eth.contract(address=weth_address, abi=ERC20_ABI) balance = contract.functions.balanceOf(address).call() balances[weth_address.lower()] = balance except Exception as e: logger.error("Failed to fetch WETH: %s balance for address: %s", weth_contract_address, address) logger.error(e) return balances def get_client(network): return UnchainedClient(network)
2.234375
2
PythonAndOop/N39_method_overloading_3.py
jiauy/before_work
0
12797344
class MyList(list): def __getitem__(self, index): if index == 0: raise IndexError if index > 0: index -= 1 return list.__getitem__(self, index) def __setitem__(self, index, value): if index == 0: raise IndexError if index > 0: index -= 1 list.__setitem__(self, index, value) if __name__ == '__main__': x = MyList(['a', 'b', 'c']) print(x) print("-" * 10) x.append('d') print(x) print("-" * 10) x.__setitem__(4, 'e') print(x) print("-" * 10) print(x[1]) print(x.__getitem__(1)) print("-" * 10) print(x[4]) print(x.__getitem__(4))
3.859375
4
build/lib/drf_advanced_token/management/commands/revoke_all_tokens.py
amp89/drf_advanced_token
2
12797345
from django.core.management.base import BaseCommand from rest_framework.authtoken.models import Token class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument( '--force', action='store_true', help='WARNING - Understand that this logs out and *PERMANENTLY* DELETES THE TOKENS FOR ALL USERS', ) def handle(self, *args, **options): if not options["force"]: print("Include --force if you understand that this will log out all users.") else: Token.objects.all().delete() print("All auth tokens deleted.")
2.046875
2
Tests/test_main_pytest.py
miki4920/ChessAI
0
12797346
from config import Config from main import determine_colour, return_tile_colour, coordinates_to_notation def test_determine_colour(): assert determine_colour(0, 0) assert not determine_colour(0, 7) assert not determine_colour(7, 0) assert determine_colour(7, 7) def test_return_tile_colour(): assert return_tile_colour(True) == Config.COLOUR_WHITE assert return_tile_colour(False) == Config.COLOUR_BLACK def test_coordinates_to_notation(): assert coordinates_to_notation(0, 0) == "A8" assert coordinates_to_notation(7, 0) == "H8" assert coordinates_to_notation(0, 7) == "A1" assert coordinates_to_notation(7, 7) == "H1"
3.109375
3
tools/mqtt_listener.py
SaibboRiginal/Python_remote_PLC
0
12797347
# Essential modules import import json from paho.mqtt.client import * # Variables modules import from tools import * # Importing custom Utility modules from utility.logger import MyLogger log = MyLogger("mqtt") # Logger class Marker(Client): ''' Client Marker : Broker client to send and/or receive MQTT publications. ''' def __init__(self): Client.__init__(self) if USER: # Set authentication, if set self.username_pw_set(USER, PASSW) self.connect(IP_BROKER, PORT) # Connecting Client to Broker self.obj = [] def on_connect(self, client, userdata, flags, rc): ''' Do something when the Client successfully connect to the Broker. ''' # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. for topic in SUBSCRIPTIONS: self.subscribe(topic) def on_message(self, client, userdata, msg): ''' Client receiving a publication. ''' try: topic = msg.topic try: # Checks if payload is a valid JSON j = json.loads(msg.payload.decode("utf-8")); log_message = '' for key, value in j.items(): log_message += "[%s > %s]" % (key, value) message = j json_check = True except: log_message = msg.payload message = msg.payload json_check = False log.info("%s received from %s ~ %s" % (log.timestamp(), topic, log_message)) if self.obj: # Check if any object is connected to MQTT for _obj in self.obj: _obj.receivedMQTT(topic, message, json=json_check) # receiveMQTT() function to receive MQTT pubs except Exception as e: log.warning("Failed something..") log.exception(str(e)) def send_message(self, topic, message): ''' Publish to destination topic a message. topic : <STRING> Topic where to send. message : <STRING> Payload to send. ''' try: if type(message) == dict: self.publish(topic, json.dumps(message)) else: self.publish(topic, message) log.info("Sucseful") #log.info("%s published to %s ~ %s" % (log.timestamp(), topic, message)) except Exception as e: log.warning("Failed something..") log.exception(str(e)) def attach(self, _object): ''' Attach a * to receive MQTT publication with : def receiveMQTT(topic, message, json=False):. #CODE json = <BOOL> True when message is a stringified JSON. ''' try: self.obj.append(_object) log.info("Attached to broker") except Exception as e: log.exception(str(e)) log.error("Not attached to broker")
2.765625
3
vmfw.py
whs/OvzCP
1
12797348
import os, sys, ConfigParser sys.path.insert(0, os.path.join(os.getcwd(), "Jinja2-2.3-py2.5.egg")) sys.path.append(os.path.join(os.getcwd(), "netifaces-0.5-py2.5-linux-i686.egg")) import jinja2, netifaces _config = ConfigParser.SafeConfigParser() _config.read("config.ini") # iptables forwarding configuration generator def update(data): jinja = jinja2.Environment(loader=jinja2.loaders.FileSystemLoader("template")) ip={} for iface in netifaces.interfaces(): try: ip[iface] = netifaces.ifaddresses(iface)[netifaces.AF_INET][0]['addr'] except KeyError: pass except ValueError: pass d = jinja.get_template("vmfw.sh").render(port=data, ip=ip, vmip=_config.get("iface", "vmIP")) open("sysconf/vmfw.sh", "w").write(d) def restart(): os.system("sysconf/vmfw.sh") if __name__ == "__main__": from models import PortForward update(PortForward.select()) restart()
2.28125
2
back/test.py
sresoft/thengrow
0
12797349
<filename>back/test.py from minitwit import * couch = Couch('sre.cloudant.com')
1.335938
1
LeetCode/905 Sort Array By Parity.py
gesuwen/Algorithms
0
12797350
<reponame>gesuwen/Algorithms<filename>LeetCode/905 Sort Array By Parity.py # Array # Given an array A of non-negative integers, return an array consisting of all the even elements of A, followed by all the odd elements of A. # # You may return any answer array that satisfies this condition. # # # # Example 1: # # Input: [3,1,2,4] # Output: [2,4,3,1] # The outputs [4,2,3,1], [2,4,1,3], and [4,2,1,3] would also be accepted. # # # Note: # # 1 <= A.length <= 5000 # 0 <= A[i] <= 5000 class Solution: def sortArrayByParity(self, A): """ :type A: List[int] :rtype: List[int] """ output = [] for i in A: if i % 2 == 0: output = [i] + output else: output += [i] return output
3.96875
4