max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
uoftscrapers/scrapers/buildings/__init__.py
kshvmdn/uoft-scrapers
49
12797151
<filename>uoftscrapers/scrapers/buildings/__init__.py from ..utils import Scraper, LayersScraper from bs4 import BeautifulSoup from collections import OrderedDict from decimal import * import os import re class Buildings: """A scraper for UofT's buildings. UofT Map is located at http://map.utoronto.ca/. """ host = 'http://map.utoronto.ca/' campuses = ['utsg', 'utm', 'utsc'] @staticmethod def scrape(location='.'): """Update the local JSON files for this scraper.""" Scraper.logger.info('Buildings initialized.') for campus in Buildings.campuses: data = Buildings.get_map_json(campus) regions = Buildings.get_regions_json(campus)['buildings'] for building in data['buildings']: _id = building['id'] code = building['code'] name = building['title'] short_name = LayersScraper.get_value(building, 'short_name') lat = LayersScraper.get_value(building, 'lat', True) lng = LayersScraper.get_value(building, 'lng', True) street = ' '.join(filter(None, LayersScraper.get_value(building, 'street').split(' '))) city = LayersScraper.get_value(building, 'city') province = LayersScraper.get_value(building, 'province') country = LayersScraper.get_value(building, 'country') postal = LayersScraper.get_value(building, 'postal') polygon = [] for region in regions: if region['id'] == _id: lat_lng = region['center_point'] if lat_lng: lat_lng = lat_lng[1:-2].split(', ') if len(lat_lng) == 2: lat = float(lat_lng[0]) lng = float(lat_lng[1]) polygon = region['points'] doc = OrderedDict([ ('id', _id), ('code', code), ('name', name), ('short_name', short_name), ('campus', campus.upper()), ('address', OrderedDict([ ('street', street), ('city', city), ('province', province), ('country', country), ('postal', postal) ])), ('lat', lat), ('lng', lng), ('polygon', polygon) ]) Scraper.save_json(doc, location, _id) Scraper.logger.info('Buildings completed.') @staticmethod def get_map_json(campus): """Retrieve the JSON structure from host.""" Scraper.logger.info('Scraping %s.' % campus.upper()) Scraper.get(Buildings.host) headers = {'Referer': Buildings.host} data = Scraper.get('%s%s%s' % ( Buildings.host, 'data/map/', campus ), headers=headers, json=True) return data @staticmethod def get_regions_json(campus): """Retrieve the JSON structure from host.""" Scraper.get(Buildings.host) headers = {'Referer': Buildings.host} data = Scraper.get('%s%s%s' % ( Buildings.host, 'data/regions/', campus ), headers=headers, json=True) return data
3.046875
3
character/models/__init__.py
SamusChief/myth-caster-api
0
12797152
<gh_stars>0 """ Models for Characters """ from .ancestry import Ancestry, SubAncestry from .background import Background from .character import Character, ClassAndLevel, InventoryAdventuringGear, \ InventoryArmor, InventoryTool, InventoryWeapon, InventoryWondrousItem, SkillProficiency from .character_class import CharacterClass, Archetype, FeaturesAtLevel, \ SpellsKnownAtLevel, SpellSlotsAtLevel from .feature import Feature
1.023438
1
i3-wm/myScript/files/get-schedule-text.py
Mirasire/dotfiles
5
12797153
<reponame>Mirasire/dotfiles #!/bin/python #feature: html -> text #reglex import re #import BeautifulSoup from bs4 import BeautifulSoup def sigleOrDoubel(str0): num=2; if str0.find('单')!=-1: num=1 elif str0.find('每')!=-1: num=0 return num if __name__ == "__main__": #dealwith the printf soup = BeautifulSoup(open("schedule.html","r",encoding='GBK')) #print(soup.prettify()) tbody=soup.find_all("tbody") all_tr=tbody[0].find_all('tr') class_list=[[] for i in range(10)] for tr in all_tr[0:len(all_tr)-1]: all_td=tr.find_all('td') num=0 for td in all_td: info=td.contents; if num==0: timeinfo=info[2].split('-') if tr['class'][0]=='odd': for i in range(1,8): if len(class_list[i])!=0 and class_list[i][-1][0]==1: class_list[i][-1][0]=0 class_list[i][-1][1][1]=timeinfo[1] elif len(info)==7: #0=1-16, 1=single(1-16), 2=double(1-16) #[flag,time_info,class_name,class_location,week_range,SigleorDouble] class_list[num].append([1,timeinfo,info[0][0:info[0].find('(',1)],info[4],re.match(r'[0-9]-[0-9][0-9]',info[6]).group(),sigleOrDoubel(info[6])]) num+=1 print("class_info=[",end='') for i in class_list: if len(i)>=1: print(i,('' if(i==class_list[5]) else ','),end='') num+=1 print("]")
2.84375
3
src/tools/ncbi/ncbi_entrez_download_fasta.py
uct-cbio/galaxy-tools
0
12797154
<gh_stars>0 #!/usr/bin/python # Retrieve FASTA sequence from NCBI based on an Entrez query. # to start a new download # entrez_download_fasta.py -m <EMAIL> -d nucleotide -e "Cypripedioideae[Orgn] AND matK[Gene]" -f out.fasta -i download_info.txt # to continue a previous download # entrez_download_fasta.py -m <EMAIL> -d nucleotide -c -w "NCID_1_38065753_192.168.127.12_9001_1300878409_78339627" -q 1 -s 11 -n 38 -f out_continue.fasta -i info_continue.txt import sys import os import string import re from optparse import OptionParser from Bio import Entrez def main(): usage = "usage: %prog -m EMAIL -d DATABASE -e ENTREZ_QUERY -c -w WEB_ENV -q QUERY_KEY -s START_POS -n NR_SEQ_QUERY -f FASTA_FILE -i INFO_FILE" parser = OptionParser(usage=usage) parser.add_option("-m", "--email", dest="email", help="Email address. Need to provide this when doing an Entrez search and fetch") parser.add_option("-d", "--database", dest="database", help="Database e.g. nucleotide") parser.add_option("-e", "--entrez_query", dest="entrez_query", help="Entrez query e.g. \"Bacteria\"[Organism] OR \"Archaea\"[Organism] OR prokaryotes[All Fields] not \"Escherichia coli\"[Organism]") parser.add_option("-c", "--continue_download", action="store_true", dest="continue_download", default=False, help="If flag is specified program will continue a previous download. User need to provide the WEB_ENV, QUERY_KEY and SEQ_START") parser.add_option("-w", "--web_env", dest="web_env", help="Please provide the previous web_env.") parser.add_option("-q", "--query_key", dest="query_key", help="Please provide the previous query_key.") parser.add_option("-s", "--start_pos", dest="start_pos", help="Please provide position of the sequence to start downloading from. E.g. the position where the previous download failed.") parser.add_option("-n", "--nr_seq_query", dest="nr_seq_query", help="Please provide the number of sequences found in the original query.") parser.add_option("-f", "--fasta_file", dest="fasta_file", help="FASTA output file") parser.add_option("-i", "--info_file", dest="info_file", help="Information related to the download. Contains the web_env and query_key for the search.") (options, args) = parser.parse_args() if not options.continue_download: print "Start a new download..." if not options.email: print "Please specify an email address. Need to provide this when doing an Entrez search or fetch (-m EMAIL)" return - 1 if not options.database: print "Please specify the database to fetch info from (-d DATABASE)" return - 2 if not options.entrez_query: print "Please specify an entrez query (-e ENTREZ_QUERY)" return - 3 if not options.fasta_file: print "Please specify the FASTA output file (-f FASTA_FILE)" return - 4 if not options.info_file: print "Please specify the download info file (-i INFO_FILE)" return - 5 # Need to to some checking on the on the length of the arguments provided. Currently not working because we have 2 options # (1) Start new download and (2) Continue previous download. Need to handle these separately. Sort it out later. Not to crucial. else: print "Continue a previous download..." if not options.email: print "Please specify an email address. Need to provide this when doing an Entrez search or fetch (-m EMAIL)" return - 6 if not options.database: print "Please specify the database to fetch info from (-d DATABASE)" return - 7 if not options.web_env: print "Please specify the previous web_env (-w WEB_ENV)" return - 8 if not options.query_key: print "Please specify the previous query_key (-q QUERY_KEY)" return - 9 if not options.start_pos: print "Please specify the position of the sequence to start downloading from (-s START_POS)" return - 10 if not options.nr_seq_query: print "Please specify the number of sequences in original query (-n NR_SEQ_QUERY)" return - 11 if not options.fasta_file: print "Please specify the FASTA output file (-f FASTA_FILE)" return - 12 if not options.info_file: print "Please specify the download info file (-i INFO_FILE)" return - 13 if (len(args) > 0): print "Too many arguments" return - 14 BATCH_SIZE = 100 # Input strings generated by browser/galaxy needs to be replaced mapped_chars = { '>' :'__gt__', '<' :'__lt__', '\'' :'__sq__', '"' :'__dq__', '[' :'__ob__', ']' :'__cb__', '{' :'__oc__', '}' :'__cc__', '@' :'__at__', } # Start a new download if(not options.continue_download): email = options.email database = options.database entrez_query = options.entrez_query fasta_file = options.fasta_file info_file = options.info_file for key, value in mapped_chars.items(): database = database.replace(value, key) entrez_query = entrez_query.replace(value, key) email = email.replace(value, key) Entrez.email = email # Open info_file for writing info_file_fd = open(info_file, "w") info_file_fd.write('Email address: %s\n' % Entrez.email) info_file_fd.write('Database: %s\n' % database) info_file_fd.write('Entrez query: %s\n' % entrez_query) try: handle = Entrez.esearch(db=database,term=entrez_query, usehistory='y') results = Entrez.read(handle) handle.close() except Exception, e: info_file_fd.write( "Error raised when trying do an Entrez.esearch: %s\n" % str(e)) info_file_fd.close() sys.exit( "Error raised! Exiting now!") gi_list = results["IdList"] nr_seq_query = int(results["Count"]) # assert count == len(gi_list) # do not do this test gi_list it is always 20 # Get web_env and query_key from search results web_env = results["WebEnv"] query_key = results["QueryKey"] # Write query specific info to info_file info_file_fd.write('Number of sequences in query: %d\n' % nr_seq_query) info_file_fd.write('Number of sequences to be dowloaded: %d\n' % nr_seq_query) info_file_fd.write('Download sequences from position: %d\n' % 0) info_file_fd.write('web_env: %s\n' % web_env) info_file_fd.write('query_key: %s\n'% query_key) info_file_fd.write('Downloading sequences in batches of %d\n' % BATCH_SIZE) info_file_fd.close() # Now retrieve the FASTA sequences in batches of 5 fasta_file_fd = open(fasta_file, "w") for start in range(0,nr_seq_query, BATCH_SIZE): end = min(nr_seq_query, start + BATCH_SIZE) print "Dowloading sequence %i to %i" % (start+1, end) try: fetch_handle = Entrez.efetch(db=database, rettype="fasta", retstart=start, retmax=BATCH_SIZE, webenv=web_env, query_key=query_key) data = fetch_handle.read() except Exception, e: info_file_fd = open(info_file, "a") info_file_fd.write( "Error raised when trying do an Entrez.efind: %s\n" % str(e)) info_file_fd.close() sys.exit( "Error raised! Exiting now!") fetch_handle.close() fasta_file_fd.write(data) info_file_fd = open(info_file, "a") info_file_fd.write('Downloaded sequence %i to %i\n' % (start+1, end)) info_file_fd.close() fasta_file_fd.close() else: # Continue a previous download email = options.email database = options.database web_env = options.web_env query_key = options.query_key start_pos = int(options.start_pos); # should check if start position is a integer nr_seq_query = int(options.nr_seq_query); # should check if nr_seq_query is a integer fasta_file = options.fasta_file info_file = options.info_file for key, value in mapped_chars.items(): database = database.replace(value, key) email = email.replace(value, key) web_env = web_env.replace(value, key) query_key = query_key.replace(value, key) Entrez.email = email # Open info_file for writing info_file_fd = open(info_file, "w") info_file_fd.write('Email address: %s\n' % Entrez.email) info_file_fd.write('Database: %s\n' % database) # Write query specific info to info_file info_file_fd.write('Number of sequences in original query: %d\n' % nr_seq_query) info_file_fd.write('Number of sequences to be dowloaded: %d\n' % (int(nr_seq_query) - int(start_pos) + 1)) info_file_fd.write('Download sequences from position: %d\n' % start_pos) info_file_fd.write('web_env: %s\n' % web_env) info_file_fd.write('query_key: %s\n' % query_key) info_file_fd.write('Downloading sequences in batches of %d\n' % BATCH_SIZE) info_file_fd.close() info_file_fd = open(info_file, "a") # Now retrieve the FASTA sequences in batches of BATCH_SIZE fasta_file_fd = open(fasta_file, "w") for start in range(start_pos - 1,nr_seq_query, BATCH_SIZE): end = min(nr_seq_query, start + BATCH_SIZE) print "Dowloading sequence %i to %i" % (start+1, end) try: fetch_handle = Entrez.efetch(db=database, rettype="fasta", retstart=start, retmax=BATCH_SIZE, webenv=web_env, query_key=query_key) data = fetch_handle.read() except Exception, e: info_file_fd = open(info_file, "a") info_file_fd.write( "Error raised when trying do an Entrez.efind: %s\n" % str(e)) info_file_fd.write( "Retrying...") info_file_fd.close() # sys.exit( "Error raised! Exiting now!") # do not exit anymore fetch_handle.close() fasta_file_fd.write(data) info_file_fd = open(info_file, "a") info_file_fd.write('Downloaded sequence %i to %i\n' % (start+1, end)) info_file_fd.close() fasta_file_fd.close() if __name__ == "__main__": sys.exit(main())
2.71875
3
__init__.py
karttur/geoimagine02-ancillary
0
12797155
""" ancillary ========================================== Package belonging to Karttur´s GeoImagine Framework. Author ------ <NAME> (<EMAIL>) """ from .version import __version__, VERSION, metadataD from .ancillary import ProcessAncillary from .searchjson import SearchJsonTandemX, UnZipJsonTandemX __all__ = ['ProcessAncillary']
0.96875
1
examples/fractal.py
Lnk2past/copperhead
12
12797156
<filename>examples/fractal.py import sys import copperhead as cpp extra_compile_args = "'/std:c++14'" if sys.version.split('[')[1].startswith('MSC') else "'-std=c++14'" config = { 'extra_compile_args': extra_compile_args } mandelbrot_cpp = r''' #include <cmath> #include <complex> #include <fstream> inline int mandelbrot(const std::complex<double> &c) { const int max_iter {100}; int i {0}; std::complex<double> z {0.0, 0.0}; while (std::abs(z) < 2.0 && i < max_iter) { z = z * z + c; ++i; } return max_iter - i; } void compute(std::string filename, double x, double y, double h) { const auto n {std::lround(2.5 / h)}; std::ofstream f(filename); for (long yidx {0}; yidx < n; ++yidx) { for (long xidx {0}; xidx < n; ++xidx) { f << mandelbrot(std::complex<double>(x, y)) << " "; x += h; } f << "\n"; y -= h; x -= 2.5; } }''' compute = cpp.generate('compute', 'void(std::string, double, double, double)', mandelbrot_cpp, config=config) compute('fractal.dat', -2.0, 1.25, 0.005)
2.859375
3
src/data_analysis/background_subtractors.py
otimgren/centrex-data-analysis
0
12797157
""" Objects used for subtracting background from camera images """ from abc import ABC, abstractmethod from dataclasses import dataclass import numpy as np import pandas as pd class BackgroundSubtractor: """ Subtracts background from an image """ @abstractmethod def subtract_background(self, image: np.ndarray) -> np.ndarray: """ Subtracts background from an image """ ... class AcquiredBackgroundSubtractor(BackgroundSubtractor): """ Subtracts a background that is based on multiple images stored in an hdf dataset. """ def __init__(self, background_dset: pd.DataFrame) -> None: super().__init__() self.background_dset = background_dset # Calculate background image self.calculate_mean_background(background_dset) def subtract_background(self, image: np.ndarray) -> np.ndarray: # Subtract background image_bs = image - self.mean_background # Return background subtracted image return image_bs def calculate_mean_background(self, df: pd.DataFrame) -> None: """ Calculates the mean of the background images """ data = self.background_dset["CameraData"] self.mean_background = np.nanmean(np.array(list(data)), axis=0) class FittedBackgroundSubtractor(BackgroundSubtractor): """ Subtracts a background based on fit around the image. """ # todo
3.5
4
bokeh/plotting.py
csaid/bokeh
1
12797158
<reponame>csaid/bokeh from __future__ import print_function from functools import wraps import itertools import time import logging import os import uuid import warnings from . import browserlib from . import _glyph_functions as gf from .document import Document from .embed import notebook_div, file_html, autoload_server from .objects import Axis, ColumnDataSource, Glyph, Grid, GridPlot, Legend from .palettes import brewer from .plotting_helpers import ( get_default_color, get_default_alpha, _handle_1d_data_args, _list_attr_splat ) from .resources import Resources from .session import Cloud, DEFAULT_SERVER_URL, Session logger = logging.getLogger(__name__) _default_document = Document() _default_session = None _default_file = None _default_notebook = None def curdoc(): ''' Return the current document. Returns: doc : the current default document object. ''' try: """This is used when we need to call the plotting API from within the server, within a request context. (Applets do this for example) in this case you still want the API to work but you don't want to use the global module level document """ from flask import request doc = request.bokeh_server_document logger.debug("returning config from flask request") return doc except (ImportError, RuntimeError, AttributeError): return _default_document def curplot(): ''' Return the current default plot object. Returns: plot : the current default plot (or None) ''' return curdoc().curplot() def cursession(): ''' Return the current session, if there is one. Returns: session : the current default session object (or None) ''' return _default_session def hold(value=True): ''' Set or clear the plot hold status on the current document. This is a convenience function that acts on the current document, and is equivalent to curdoc().hold(...) Args: value (bool, optional) : whether hold should be turned on or off (default: True) Returns: None ''' curdoc().hold(value) def figure(**kwargs): ''' Activate a new figure for plotting. All subsequent plotting operations will affect the new figure. This function accepts all plot style keyword parameters. Returns: None ''' curdoc().figure(**kwargs) def output_server(docname, session=None, url="default", name=None): """ Cause plotting commands to automatically persist plots to a Bokeh server. Can use explicitly provided Session for persistence, or the default session. Args: docname (str) : name of document to push on Bokeh server An existing documents with the same name will be overwritten. session (Session, optional) : An explicit session to use (default: None) If session is None, use the default session url (str, optianal) : URL of the Bokeh server (default: "default") if url is "default" use session.DEFAULT_SERVER_URL name (str, optional) : if name is None, use the server URL as the name Additional keyword arguments like **username**, **userapikey**, and **base_url** can also be supplied. Returns: None .. note:: Generally, this should be called at the beginning of an interactive session or the top of a script. .. note:: Calling this function will replaces any existing default Server session """ global _default_session if url == "default": url = DEFAULT_SERVER_URL if name is None: name = url if not session: if not _default_session: _default_session = Session(name=name, root_url=url) session = _default_session session.use_doc(docname) session.load_document(curdoc()) def output_cloud(docname): """ Cause plotting commands to automatically persist plots to the Bokeh cloud server. Args: docname (str) : name of document to push on Bokeh server An existing documents with the same name will be overwritten. .. note:: Generally, this should be called at the beginning of an interactive session or the top of a script. .. note:: Calling this function will replaces any existing default Server session """ output_server(docname, session=Cloud()) def output_notebook(url=None, docname=None, session=None, name=None): if session or url or name: if docname is None: docname = "IPython Session at %s" % time.ctime() output_server(docname, url=url, session=session, name=name) else: from . import load_notebook load_notebook() global _default_notebook _default_notebook = True def output_file(filename, title="Bokeh Plot", autosave=True, mode="inline", root_dir=None): """ Outputs to a static HTML file. .. note:: This file will be overwritten each time show() or save() is invoked. Args: autosave (bool, optional) : whether to automatically save (default: True) If **autosave** is True, then every time plot() or one of the other visual functions is called, this causes the file to be saved. If it is False, then the file is only saved upon calling show(). mode (str, optional) : how to inlude BokehJS (default: "inline") **mode** can be 'inline', 'cdn', 'relative(-dev)' or 'absolute(-dev)'. In the 'relative(-dev)' case, **root_dir** can be specified to indicate the base directory from which the path to the various static files should be computed. .. note:: Generally, this should be called at the beginning of an interactive session or the top of a script. """ global _default_file _default_file = { 'filename' : filename, 'resources' : Resources(mode=mode, root_dir=root_dir, minified=False), 'autosave' : autosave, 'title' : title, } if os.path.isfile(filename): print("Session output file '%s' already exists, will be overwritten." % filename) def show(browser=None, new="tab", url=None): """ 'shows' the current plot, by auto-raising the window or tab displaying the current plot (for file/server output modes) or displaying it in an output cell (IPython notebook). Args: browser (str, optional) : browser to show with (default: None) For systems that support it, the **browser** argument allows specifying which browser to display in, e.g. "safari", "firefox", "opera", "windows-default". (See the webbrowser module documentation in the standard lib for more details.) new (str, optional) : new file output mode (default: "tab") For file-based output, opens or raises the browser window showing the current output file. If **new** is 'tab', then opens a new tab. If **new** is 'window', then opens a new window. """ filename = _default_file['filename'] if _default_file else None session = cursession() notebook = _default_notebook # Map our string argument to the webbrowser.open argument new_param = {'tab': 2, 'window': 1}[new] controller = browserlib.get_browser_controller(browser=browser) plot = curplot() if not plot: warnings.warn("No current plot to show. Use renderer functions (circle, rect, etc.) to create a current plot (see http://bokeh.pydata.org/index.html)") return if notebook and session: import IPython.core.displaypub as displaypub push(session=session) snippet = autoload_server(plot, cursession()) displaypub.publish_display_data('bokeh', {'text/html': snippet}) elif notebook: import IPython.core.displaypub as displaypub displaypub.publish_display_data('bokeh', {'text/html': notebook_div(plot)}) elif session: push() if url: controller.open(url, new=new_param) else: controller.open(session.object_link(curdoc()._plotcontext)) elif filename: save(filename) controller.open("file://" + os.path.abspath(filename), new=new_param) def save(filename=None, resources=None): """ Updates the file with the data for the current document. If a filename is supplied, or output_file(...) has been called, this will save the plot to the given filename. Args: filename (str, optional) : filename to save document under (default: None) if `filename` is None, the current output_file(...) filename is used if present resources (Resources, optional) : BokehJS resource config to use if `resources` is None, the current default resource config is used Returns: None """ if filename is None and _default_file: filename = _default_file['filename'] if resources is None and _default_file: resources = _default_file['resources'] if not filename: warnings.warn("save() called but no filename was supplied and output_file(...) was never called, nothing saved") return if not resources: warnings.warn("save() called but no resources was supplied and output_file(...) was never called, nothing saved") return if not curplot(): warnings.warn("No current plot to save. Use renderer functions (circle, rect, etc.) to create a current plot (see http://bokeh.pydata.org/index.html)") return html = file_html(curdoc(), resources, _default_file['title']) with open(filename, "w") as f: f.write(html) def push(session=None, document=None): """ Updates the server with the data for the current document. Args: session (Sesion, optional) : filename to save document under (default: None) if `sessiokn` is None, the current output_server(...) session is used if present document (Document, optional) : BokehJS document to push if `document` is None, the current default document is pushed Returns: None """ if not session: session = cursession() if not document: document = curdoc() if session: return session.store_document(curdoc()) else: warnings.warn("push() called but no session was supplied and output_server(...) was never called, nothing pushed") def _doc_wrap(func): @wraps(func) def wrapper(*args, **kwargs): retval = func(curdoc(), *args, **kwargs) if cursession() and curdoc()._autostore: push() if _default_file and _default_file['autosave']: save() return retval wrapper.__doc__ += "\nThis is a convenience function that acts on the current document, and is equivalent to curdoc().%s(...)" % func.__name__ return wrapper annular_wedge = _doc_wrap(gf.annular_wedge) annulus = _doc_wrap(gf.annulus) arc = _doc_wrap(gf.arc) asterisk = _doc_wrap(gf.asterisk) bezier = _doc_wrap(gf.bezier) circle = _doc_wrap(gf.circle) circle_cross = _doc_wrap(gf.circle_cross) circle_x = _doc_wrap(gf.circle_x) cross = _doc_wrap(gf.cross) diamond = _doc_wrap(gf.diamond) diamond_cross = _doc_wrap(gf.diamond_cross) image = _doc_wrap(gf.image) image_rgba = _doc_wrap(gf.image_rgba) image_url = _doc_wrap(gf.image_url) inverted_triangle = _doc_wrap(gf.inverted_triangle) line = _doc_wrap(gf.line) multi_line = _doc_wrap(gf.multi_line) oval = _doc_wrap(gf.oval) patch = _doc_wrap(gf.patch) patches = _doc_wrap(gf.patches) quad = _doc_wrap(gf.quad) quadratic = _doc_wrap(gf.quadratic) ray = _doc_wrap(gf.ray) rect = _doc_wrap(gf.rect) segment = _doc_wrap(gf.segment) square = _doc_wrap(gf.square) square_cross = _doc_wrap(gf.square_cross) square_x = _doc_wrap(gf.square_x) text = _doc_wrap(gf.text) triangle = _doc_wrap(gf.triangle) wedge = _doc_wrap(gf.wedge) x = _doc_wrap(gf.x) _marker_types = { "asterisk": asterisk, "circle": circle, "circle_cross": circle_cross, "circle_x": circle_x, "cross": cross, "diamond": diamond, "diamond_cross": diamond_cross, "inverted_triangle": inverted_triangle, "square": square, "square_x": square_x, "square_cross": square_cross, "triangle": triangle, "x": x, "*": asterisk, "+": cross, "o": circle, "ox": circle_x, "o+": circle_cross, } def markers(): """ Prints a list of valid marker types for scatter() Returns: None """ print(list(sorted(_marker_types.keys()))) _color_fields = set(["color", "fill_color", "line_color"]) _alpha_fields = set(["alpha", "fill_alpha", "line_alpha"]) def scatter(*args, **kwargs): """ Creates a scatter plot of the given x and y items. Args: *args : The data to plot. Can be of several forms: (X, Y) Two 1D arrays or iterables (XNAME, YNAME) Two bokeh DataSource/ColumnsRef marker (str, optional): a valid marker_type, defaults to "circle" color (color value, optional): shorthand to set both fill and line color All the :ref:`userguide_line_properties` and :ref:`userguide_fill_properties` are also accepted as keyword parameters. Examples: >>> scatter([1,2,3],[4,5,6], fill_color="red") >>> scatter("data1", "data2", source=data_source, ...) """ ds = kwargs.get("source", None) names, datasource = _handle_1d_data_args(args, datasource=ds) kwargs["source"] = datasource markertype = kwargs.get("marker", "circle") # TODO: How to handle this? Just call curplot()? if not len(_color_fields.intersection(set(kwargs.keys()))): kwargs['color'] = get_default_color() if not len(_alpha_fields.intersection(set(kwargs.keys()))): kwargs['alpha'] = get_default_alpha() if markertype not in _marker_types: raise ValueError("Invalid marker type '%s'. Use markers() to see a list of valid marker types." % markertype) return _marker_types[markertype](*args, **kwargs) def gridplot(plot_arrangement, name=None): """ Generate a plot that arranges several subplots into a grid. Args: plot_arrangement (list[:class:`Plot <bokeh.objects.Plot>`]) : plots to arrange in a grid name (str) : name for this plot .. note:: `plot_arrangement` can be nested, e.g [[p1, p2], [p3, p4]] Returns: grid_plot: the current :class:`GridPlot <bokeh.objects.GridPlot>` """ grid = GridPlot(children=plot_arrangement) if name: grid._id = name # Walk the plot_arrangement and remove them from the plotcontext, # so they don't show up twice subplots = itertools.chain.from_iterable(plot_arrangement) curdoc().get_context().children = list(set(curdoc().get_context().children) - set(subplots)) curdoc().add(grid) curdoc()._current_plot = grid # TODO (bev) don't use private attrs if _default_session: push() if _default_file and _default_file['autosave']: save() return grid def xaxis(): """ Get the current axis objects Returns: Returns axis object or splattable list of axis objects on the current plot """ p = curplot() if p is None: return None axis = [obj for obj in p.renderers if isinstance(obj, Axis) and obj.dimension==0] return _list_attr_splat(axis) def yaxis(): """ Get the current `y` axis object(s) Returns: Returns y-axis object or splattable list of y-axis objects on the current plot """ p = curplot() if p is None: return None axis = [obj for obj in p.renderers if isinstance(obj, Axis) and obj.dimension==1] return _list_attr_splat(axis) def axis(): """ Get the current `x` axis object(s) Returns: Returns x-axis object or splattable list of x-axis objects on the current plot """ return _list_attr_splat(xaxis() + yaxis()) def legend(): """ Get the current :class:`legend <bokeh.objects.Legend>` object(s) Returns: Returns legend object or splattable list of legend objects on the current plot """ p = curplot() if p is None: return None legends = [obj for obj in p.renderers if isinstance(obj, Legend)] return _list_attr_splat(legends) def xgrid(): """ Get the current `x` :class:`grid <bokeh.objects.Grid>` object(s) Returns: Returns legend object or splattable list of legend objects on the current plot """ p = curplot() if p is None: return None grid = [obj for obj in p.renderers if isinstance(obj, Grid) and obj.dimension==0] return _list_attr_splat(grid) def ygrid(): """ Get the current `y` :class:`grid <bokeh.objects.Grid>` object(s) Returns: Returns y-grid object or splattable list of y-grid objects on the current plot """ p = curplot() if p is None: return None grid = [obj for obj in p.renderers if isinstance(obj, Grid) and obj.dimension==1] return _list_attr_splat(grid) def grid(): """ Get the current :class:`grid <bokeh.objects.Grid>` object(s) Returns: Returns grid object or splattable list of grid objects on the current plot """ return _list_attr_splat(xgrid() + ygrid()) def load_object(obj): """updates object from the server """ cursession().load_object(obj, curdoc())
2.671875
3
auton_survival/__init__.py
PotosnakW/auton-survival
15
12797159
<reponame>PotosnakW/auton-survival r''' [![Build Status](https://travis-ci.org/autonlab/DeepSurvivalMachines.svg?branch=master)](https://travis-ci.org/autonlab/DeepSurvivalMachines) &nbsp;&nbsp;&nbsp; [![codecov](https://codecov.io/gh/autonlab/DeepSurvivalMachines/branch/master/graph/badge.svg?token=FU1HB5O92D)](https://codecov.io/gh/autonlab/DeepSurvivalMachines) &nbsp;&nbsp;&nbsp; [![License: MIT](https://img.shields.io/badge/License-MIT-yellow.svg)](https://opensource.org/licenses/MIT) &nbsp;&nbsp;&nbsp; [![GitHub Repo stars](https://img.shields.io/github/stars/autonlab/auton-survival?style=social)](https://github.com/autonlab/auton-survival) <img align=right style="align:right;" src="https://ndownloader.figshare.com/files/34052981" width=30%> <br> The `auton-survival` Package --------------------------- The python package `auton-survival` is repository of reusable utilities for projects involving censored Time-to-Event Data. `auton-survival` provides a flexible APIs allowing rapid experimentation including dataset preprocessing, regression, counterfactual estimation, clustering and phenotyping and propensity adjusted evaluation. **For complete details on** `auton-survival` **see**: <h3>• <a href="https://www.cs.cmu.edu/~chiragn/papers/auton_survival.pdf">White Paper</a> &nbsp;&nbsp; • <a href="https://autonlab.github.io/auton-survival/">Documentation</a> &nbsp;&nbsp; • <a href="https://nbviewer.org/github/autonlab/auton-survival/tree/master/examples/">Demo Notebooks</a></h3> What is Survival Analysis? -------------------------- **Survival Analysis** involves estimating when an event of interest, \( T \) would take places given some features or covariates \( X \). In statistics and ML these scenarious are modelled as regression to estimate the conditional survival distribution, \( \mathbb{P}(T>t|X) \). As compared to typical regression problems, Survival Analysis differs in two major ways: * The Event distribution, \( T \) has positive support ie. \( T \in [0, \infty) \). * There is presence of censoring ie. a large number of instances of data are lost to follow up. Survival Regression ------------------- #### `auton_survival.models` Training a Deep Cox Proportional Hazards Model with `auton-survival` ```python from auton_survival import datasets, preprocessing, models # Load the SUPPORT Dataset outcomes, features = datasets.load_dataset("SUPPORT") # Preprocess (Impute and Scale) the features features = preprocessing.Preprocessor().fit_transform(features) # Train a Deep Cox Proportional Hazards (DCPH) model model = models.cph.DeepCoxPH(layers=[100]) model.fit(features, outcomes.time, outcomes.event) # Predict risk at specific time horizons. predictions = model.predict_risk(features, t=[8, 12, 16]) ``` #### `auton_survival.estimators` This module provides a wrapper `auton_survival.estimators.SurvivalModel` to model survival datasets with standard survival (time-to-event) analysis methods. The use of the wrapper allows a simple standard interface for multiple different survival regression methods. `auton_survival.estimators` also provides convenient wrappers around other popular python survival analysis packages to experiment with Random Survival Forests and Weibull Accelerated Failure Time regression models. ```python from auton_survival import estimators # Train a Deep Survival Machines model using the SurvivalModel class. model = estimators.SurvivalModel(model='dsm') model.fit(features, outcomes) # Predict risk at time horizons. predictions = model.predict_risk(features, times=[8, 12, 16]) ``` #### `auton_survival.experiments` Modules to perform standard survival analysis experiments. This module provides a top-level interface to run `auton-survival` style experiments of survival analysis, involving cross-validation style experiments with multiple different survival analysis models ```python # auton-survival Style Cross Validation Experiment. from auton_survival.experiments import SurvivalRegressionCV # Define the Hyperparameter grid to perform Cross Validation hyperparam_grid = {'n_estimators' : [50, 100], 'max_depth' : [3, 5], 'max_features' : ['sqrt', 'log2']} # Train a RSF model with cross-validation using the SurvivalRegressionCV class model = SurvivalRegressionCV(model='rsf', cv_folds=5, hyperparam_grid=hyperparam_grid) model.fit(features, outcomes) ``` Phenotyping and Knowledge Discovery ----------------------------------- #### `auton_survival.phenotyping` `auton_survival.phenotyping` allows extraction of latent clusters or subgroups of patients that demonstrate similar outcomes. In the context of this package, we refer to this task as **phenotyping**. `auton_survival.phenotyping` allows: - **Unsupervised Phenotyping**: Involves first performing dimensionality reduction on the inpute covariates \( x \) followed by the use of a clustering algorithm on this representation. ```python from auton_survival.phenotyping import ClusteringPhenotyper # Dimensionality reduction using Principal Component Analysis (PCA) to 8 dimensions. dim_red_method, = 'pca', 8 # We use a Gaussian Mixture Model (GMM) with 3 components and diagonal covariance. clustering_method, n_clusters = 'gmm', 3 # Initialize the phenotyper with the above hyperparameters. phenotyper = ClusteringPhenotyper(clustering_method=clustering_method, dim_red_method=dim_red_method, n_components=n_components, n_clusters=n_clusters) # Fit and infer the phenogroups. phenotypes = phenotyper.fit_phenotype(features) # Plot the phenogroup specific Kaplan-Meier survival estimate. auton_survival.reporting.plot_kaplanmeier(outcomes, phenotypes) ``` - **Factual Phenotyping**: Involves the use of structured latent variable models, `auton_survival.models.dcm.DeepCoxMixtures` or `auton_survival.models.dsm.DeepSurvivalMachines` to recover phenogroups that demonstrate differential observed survival rates. - **Counterfactual Phenotyping**: Involves learning phenotypes that demonstrate heterogenous treatment effects. That is, the learnt phenogroups have differential response to a specific intervention. Relies on the specially designed `auton_survival.models.cmhe.DeepCoxMixturesHeterogenousEffects` latent variable model. Dataset Loading and Preprocessing --------------------------------- Helper functions to load and prerocsss various time-to-event data like the popular `SUPPORT`, `FRAMINGHAM` and `PBC` dataset for survival analysis. #### `auton_survival.datasets` ```python # Load the SUPPORT Dataset from auton_survival import dataset features, outcomes = datasets.load_dataset('SUPPORT') ``` #### `auton_survival.preprocessing` This module provides a flexible API to perform imputation and data normalization for downstream machine learning models. The module has 3 distinct classes, `Scaler`, `Imputer` and `Preprocessor`. The `Preprocessor` class is a composite transform that does both Imputing ***and*** Scaling with a single function call. ```python # Preprocessing loaded Datasets from auton_survival import datasets features, outcomes = datasets.load_topcat() from auton_survival.preprocessing import Preprocessing features = Preprocessor().fit_transform(features, cat_feats=['GENDER', 'ETHNICITY', 'SMOKE'], num_feats=['height', 'weight']) # The `cat_feats` and `num_feats` lists would contain all the categorical and # numerical features in the dataset. ``` Evaluation and Reporting ------------------------- #### `auton_survival.metrics` Helper functions to generate standard reports for common Survival Analysis tasks. Citing and References ---------------------- Please cite the following if you use `auton-survival`: [auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data (2022)](https://arxiv.org/abs/2204.07276)</a> ``` @article{nagpal2022autonsurvival, url = {https://arxiv.org/abs/2204.07276}, author = {<NAME> <NAME> <NAME>}, title = {auton-survival: an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and Phenotyping with Censored Time-to-Event Data}, publisher = {arXiv}, year = {2022}, } ``` Additionally, models and methods in `auton_survival` come from the following papers. Please cite the individual papers if you employ them in your research: [1] [Deep Survival Machines: Fully Parametric Survival Regression and Representation Learning for Censored Data with Competing Risks." IEEE Journal of Biomedical and Health Informatics (2021)](https://arxiv.org/abs/2003.01176)</a> ``` @article{nagpal2021dsm, title={Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks}, author={<NAME> and <NAME> <NAME>}, journal={IEEE Journal of Biomedical and Health Informatics}, volume={25}, number={8}, pages={3163--3175}, year={2021}, publisher={IEEE} } ``` [2] [Deep Parametric Time-to-Event Regression with Time-Varying Covariates. AAAI Spring Symposium (2021)](http://proceedings.mlr.press/v146/nagpal21a.html)</a> ``` @InProceedings{pmlr-v146-nagpal21a, title={Deep Parametric Time-to-Event Regression with Time-Varying Covariates}, author={<NAME> <NAME> <NAME>}, booktitle={Proceedings of AAAI Spring Symposium on Survival Prediction - Algorithms, Challenges, and Applications 2021}, series={Proceedings of Machine Learning Research}, publisher={PMLR}, } ``` [3] [Deep Cox Mixtures for Survival Regression. Conference on Machine Learning for Healthcare (2021)](https://arxiv.org/abs/2101.06536)</a> ``` @inproceedings{nagpal2021dcm, title={Deep Cox mixtures for survival regression}, author={<NAME> Yadlowsky, <NAME> Rostamzadeh, Negar and <NAME>}, booktitle={Machine Learning for Healthcare Conference}, pages={674--708}, year={2021}, organization={PMLR} } ``` [4] [Counterfactual Phenotyping with Censored Time-to-Events (2022)](https://arxiv.org/abs/2202.11089)</a> ``` @article{nagpal2022counterfactual, title={Counterfactual Phenotyping with Censored Time-to-Events}, author={<NAME> <NAME> <NAME> <NAME>}, journal={arXiv preprint arXiv:2202.11089}, year={2022} } ``` ## Installation ```console foo@bar:~$ git clone https://github.com/autonlab/auton_survival foo@bar:~$ pip install -r requirements.txt ``` Compatibility ------------- `auton-survival` requires `python` 3.5+ and `pytorch` 1.1+. To evaluate performance using standard metrics `auton-survival` requires `scikit-survival`. Contributing ------------ `auton-survival` is [on GitHub]. Bug reports and pull requests are welcome. [on GitHub]: https://github.com/autonlab/auton-survival License ------- MIT License Copyright (c) 2022 Car<NAME> University, [Auton Lab](http://autonlab.org) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. <img align="right" height ="120px" src="https://www.cs.cmu.edu/~chiragn/cmu_logo.jpeg"> <img align="right" height ="110px" src="https://www.cs.cmu.edu/~chiragn/auton_logo.png"> <br><br><br><br><br> ''' __version__ = "0.1.0" from .models.dsm import DeepSurvivalMachines from .models.dcm import DeepCoxMixtures from .models.cph import DeepCoxPH, DeepRecurrentCoxPH from .models.cmhe import DeepCoxMixturesHeterogenousEffects
1.367188
1
src/packModules/filewrite.py
PauloHenriqueRCS/InterPy
0
12797160
<filename>src/packModules/filewrite.py def filewrite(outcontent,filename): try: filecontent = open("outFiles/outcontent.txt", mode="a", encoding="utf-8") filecontent.write("\n\n\n=========={}==========\n".format(filename)) filecontent.write("\n".join(str(el) for el in outcontent)) except IOError as identifier: print(str(identifier)) finally: filecontent.close()
3.203125
3
api/models.py
szczesnymateo/words-world-api
0
12797161
from fractions import Fraction from django.db import models from django.contrib.auth.models import User from django.dispatch import receiver from django.db.models.signals import post_save @receiver(post_save, sender=User) def create_blank_statistics(sender, instance=None, created=False, **kwargs): if created: Statistic.objects.create(user=instance) class Language(models.Model): name = models.CharField(max_length=32) users = models.ManyToManyField(User, related_name='selected_languages', blank=True) language_code = models.CharField(max_length=32, null=True, blank=True) def __str__(self): return self.name def __eq__(self, other): if isinstance(other, Language): return self.name == other.name else: return False class Achievement(models.Model): LEVEL_CHOICES = ( ("1", "Bronze"), ("2", "Silver"), ("3", "Gold"), ("4", "Diamond"), ) condition = models.TextField(max_length=2048) name = models.CharField(max_length=128) font_awesome_icon = models.TextField(max_length=2048) users = models.ManyToManyField(User, related_name="achievements", blank=True) level = models.CharField(max_length=1, choices=LEVEL_CHOICES) score = models.IntegerField() def __str__(self): return str(self.name) def try_award_to(self, user): has_achievement = self in user.achievements.all() if has_achievement: return False condition_result = eval(str(self.condition)) if condition_result: user.achievements.add(self) return True else: return False class UserFollowing(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='following') following = models.ForeignKey(User, on_delete=models.CASCADE, related_name='followed_by') class Statistic(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE, related_name='statistics') correctly_swiped_taboo_cards = models.IntegerField(default=0) swiped_taboo_cards = models.IntegerField(default=0) correctly_ans_flashcards = models.IntegerField(default=0) ans_flashcards = models.IntegerField(default=0) translated_words = models.IntegerField(default=0) @property def taboo_efficiency(self): if self.swiped_taboo_cards is not 0: return round(Fraction(self.correctly_swiped_taboo_cards, self.swiped_taboo_cards), 2) else: return 0 class TabooCard(models.Model): key_word = models.CharField(max_length=128) black_list = models.CharField(max_length=2048) owner = models.ForeignKey(User, on_delete=models.DO_NOTHING, related_name='cards') language = models.ForeignKey(Language, on_delete=models.DO_NOTHING, related_name='cards') times_shown = models.IntegerField(default=0) answered_correctly = models.IntegerField(default=0) @property def difficulty(self): if self.times_shown is 0: return "NOT ENOUGH STATS" ratio = Fraction(self.answered_correctly, self.times_shown) if 0 <= ratio < 0.25: return "INSANE" elif 0.25 <= ratio < 0.5: return "HARD" elif 0.5 <= ratio < 0.75: return "MEDIUM" elif 0.75 <= ratio: return "EASY" @property def card_efficiency(self): if self.times_shown is not 0: return round(Fraction(self.answered_correctly, self.times_shown), 2) else: return 0 def __str__(self): return str(self.pk) + ' | ' + str(self.key_word) + ' | ' + str(self.language.language_code) @receiver(post_save, sender=Statistic) @receiver(post_save, sender=UserFollowing) @receiver(post_save, sender=User) def trigger_achievements_after_statistics_save(sender, instance=None, created=False, **kwargs): if isinstance(instance, User): if not created: grant_achievements(instance) else: grant_achievements(instance.user) def grant_achievements(user): for achievement in Achievement.objects.all(): achievement.try_award_to(user)
2.09375
2
heterocl/compute_api.py
Kins1ley/tvm
0
12797162
<filename>heterocl/compute_api.py """Compute APIs in HeteroCL""" #pylint: disable=no-member, redefined-builtin, too-many-arguments, missing-docstring import numbers from collections import OrderedDict from tvm import expr_hcl as _expr, stmt as _stmt from tvm.tir import IterVar as _IterVar from util import get_index, get_name, make_for, CastRemover from tensor import Scalar, Tensor, TensorSlice from schedule import Stage from debug import APIError from module import Module ############################################################################## # Helper classes and functions ############################################################################## class ReplaceReturn(CastRemover): """Replace all Return statement with a Store statement. Attributes ---------- buffer_var : Var The buffer variable of the Store statement dtype : Type The data type of the Store statement index : Expr The index of the Store statement """ def __init__(self, buffer_var, dtype, index): self.buffer_var = buffer_var self.dtype = dtype self.index = index def mutate_KerenlDef(self, node): """Omit the KernelDef statement We do not need to replace the Return statement inside. """ #pylint: disable=no-self-use return node def mutate_Return(self, node): """Replace the Return statement with a Store statement """ return _make.Store(self.buffer_var, _make.Cast(self.dtype, node.value), self.index) def process_fcompute(fcompute, shape): """Pre-process the fcompute field of an API. """ # check API correctness if not callable(fcompute): raise APIError("The construction rule must be callable") # prepare the iteration variables args = [] # list of arguments' names nargs = 0 # number of arguments if isinstance(fcompute, Module): args = fcompute.arg_names nargs = len(args) else: args = list(fcompute.__code__.co_varnames) nargs = fcompute.__code__.co_argcount # automatically create argument names if nargs < len(shape): for i in range(nargs, len(shape)): args.append("args" + str(i)) elif nargs > len(shape): raise APIError("The number of arguments exceeds the number of dimensions") return args, len(shape) def compute_body(name, lambda_ivs, fcompute, shape=(), dtype=None, tensor=None, attrs=OrderedDict()): """Create a stage and perform the computation. If `tensor` is `None`, no tensor is returned. Parameters ---------- name : str The name of the stage lambda_ivs : list of IterVar A list contains the iteration variables in the lambda function if exists fcompute : callable The computation rule shape : tuple, optional The output shape or the iteration domain dtype : Type, optional The data type of the output/updated tensor tensor : Tensor, optional The tensor to be updated. Create a new one if it is `None` Returns ------- Tensor or None """ var_list = [i.var for i in lambda_ivs] return_tensor = True if tensor is None else False with Stage(name, dtype, shape) as stage: if not return_tensor: stage.input_stages.add(tensor.last_update) else: tensor = Tensor(shape, stage._dtype, name, stage._buf) buffer_var = tensor._buf.data dtype = tensor.dtype shape = tensor.shape stage.stmt_stack.append([]) ret = fcompute(*var_list) print(dir(ret)) print(dir(ret.a)) print(dir(ret.b)) stage.lhs_tensors.add(tensor) for t in stage.lhs_tensors: t.last_update = stage stmt = None if ret is None: # replace all hcl.return_ with Store stmt indices = lambda_ivs index, _, _ = get_index(shape, indices, 0) stmt = stage.pop_stmt() stmt = ReplaceReturn(buffer_var, dtype, index).mutate(stmt) stmt = make_for(indices, stmt, 0) elif isinstance(ret, (TensorSlice, Scalar, _expr.Expr, numbers.Number)): indices = lambda_ivs index, _, _ = get_index(shape, indices, 0) stage.emit(_make.Store(buffer_var, _make.Cast(dtype, ret), index)) stmt = make_for(indices, stage.pop_stmt(), 0) elif isinstance(ret, Tensor): # reduction ret_ivs = [_IterVar((0, ret.shape[i]), ret.name+"_i" + str(i), 0) for i in range(0, len(ret.shape))] non_reduce_ivs = [] indices = [] rid = 0 for iv in lambda_ivs: if iv.var.name[0] == "_": indices.append(ret_ivs[rid]) rid += 1 else: indices.append(iv) non_reduce_ivs.append(iv) if rid != len(ret.shape): raise APIError("Incorrect number of reduction axes in lambda arguments") index, _, _ = get_index(shape, indices, 0) st = _make.Store(buffer_var, _make.Cast(dtype, ret[tuple(ret_ivs)]), index) stage.emit(make_for(ret_ivs, st, 0)) stmt = stage.pop_stmt() stage.input_stages.remove(stage) if non_reduce_ivs: stmt = make_for(non_reduce_ivs, stmt, 0) else: raise APIError("Unknown return type of the computation rule") # add attributes to the loop if isinstance(stmt, _stmt.For): stmt = _make.For(stmt.loop_var, stmt.min, stmt.extent, 0, 0, stmt.body, list(attrs.keys()), list(attrs.values())) stage.emit(stmt) stage.axis_list = indices + stage.axis_list if return_tensor: tensor._tensor = stage._op return tensor return None ############################################################################## # APIs exposed to users ############################################################################## def compute(shape, fcompute, name=None, dtype=None, attrs=OrderedDict()): """Construct a new tensor based on the shape and the compute function. The API **returns a new tensor**. The shape must be a tuple. The number of elements in the tuple decides the dimension of the returned tensor. The second field `fcompute` defines the construction rule of the returned tensor, which must be callable. The number of arguments should match the dimension defined by `shape`, which *we do not check*. This, however, provides users more programming flexibility. The compute function specifies how we calculate each element of the returned tensor. It can contain other HeteroCL APIs, even imperative DSL. Parameters ---------- shape : tuple The shape of the returned tensor fcompute : callable The construction rule for the returned tensor name : str, optional The name of the returned tensor dtype : Type, optional The data type of the placeholder Returns ------- Tensor Examples -------- .. code-block:: python # example 1.1 - anonymous lambda function A = hcl.compute((10, 10), lambda x, y: x+y) # equivalent code for x in range(0, 10): for y in range(0, 10): A[x][y] = x + y # example 1.2 - explicit function def addition(x, y): return x+y A = hcl.compute((10, 10), addition) # example 1.3 - imperative function definition @hcl.def_([(), ()]) def addition(x, y): hcl.return_(x+y) A = hcl.compute((10, 10), addition) # example 2 - undetermined arguments def compute_tanh(X): return hcl.compute(X.shape, lambda *args: hcl.tanh(X[args])) A = hcl.placeholder((10, 10)) B = hcl.placeholder((10, 10, 10)) tA = compute_tanh(A) tB = compute_tanh(B) # example 3 - mixed-paradigm programming def return_max(x, y): with hcl.if_(x > y): hcl.return_(x) with hcl.else_: hcl.return_(y) A = hcl.compute((10, 10), return_max) """ # check API correctness if not isinstance(shape, tuple): raise APIError("The shape of compute API must be a tuple") # properties for the returned tensor shape = CastRemover().mutate(shape) name = get_name("compute", name) # prepare the iteration variables args, nargs = process_fcompute(fcompute, shape) lambda_ivs = [_IterVar((0, shape[n]), args[n], 0) for n in range(0, nargs)] # call the helper function that returns a new tensor tensor = compute_body(name, lambda_ivs, fcompute, shape, dtype, attrs=attrs) return tensor
2.1875
2
build/lib/Kronos_heureka_code/Zeit/Uhrzeit/Stunde/Stunde.py
heureka-code/Kronos-heureka-code
0
12797163
from Kronos_heureka_code.__VergleichsStamm import VergleichsStammZahl from Kronos_heureka_code.Zeit.Uhrzeit.Stunde.StundeException import * class Stunde(VergleichsStammZahl): def __init__(self, stunde: int): self.__stunde: [int, None] = None self.stunde = stunde pass def __repr__(self): return f"<Stunde {self.__str__()}>" def __str__(self): return str(self.stunde).zfill(2) if self.stunde else "00" def __int__(self): return self.stunde @property def stunde(self): return self.__stunde @stunde.setter def stunde(self, stunde: int): if type(stunde) != int: raise StundeKeineGanzeZahl(stunde) if stunde < 0: raise StundeZuKlein(stunde) if stunde > 60: raise StundeZuGross(stunde) self.__stunde = stunde pass pass
2.453125
2
toolcall/auth_backend.py
thebjorn/toolcall
0
12797164
<gh_stars>0 # -*- coding: utf-8 -*- from django.contrib.auth.backends import ModelBackend from django.contrib.auth.models import User class DKSSOBlindTrustAuthenticator(ModelBackend): def authenticate(self, username=None, password=<PASSWORD>, **kw): if not kw.get('sso_login'): return None return User.objects.get(username=username)
2.140625
2
src/modules/single.py
szachovy/MLstats
1
12797165
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import scipy from statsmodels import robust class Singular_description(object): ''' Display statistics from every numerical column in data set. Base class for Mutual description instance. Outcomes are represented from the beggining (after hoover), in each histogram plot in the page. Class covers the most general feature statistics used in data analysis. ''' def __init__(self): # Handled by cursor in common.py file in `Mutual_description` self.column = "" def histogram(self, plot_number): # Generate histogram and save as a static file # size and ticks are adjusted with accordance to display size sns.set_style("whitegrid") fig, ax = plt.subplots() fig.set_size_inches(12, 12) ax=sns.distplot(self.dataset.iloc[:, [plot_number]], rug=True, color='k') fig.patch.set_alpha(0.0) plt.xticks(fontsize=25) plt.yticks(fontsize=25) fig.savefig('static/plot{}.png'.format(plot_number + 1), dpi=fig.dpi) # return fig # plt.show() def measurement(self): # call for measurement category of the feature # possible outcomes are: # -- quantitive continous # -- quantitive discrete categorical # -- quantitive discrete numerical if self.dataset[self.column].dtypes == 'float64': for value in self.dataset[self.column].values: if float(value) != int(value): return 'quantitive continous' if len(pd.unique(self.dataset[self.column])) == 2: return 'quantitive discrete categorical' else: return 'quantitive discrete numerical' def average(self): # TODO: remove return np.average(self.dataset[self.column]) def expected_value(self): # call for expected value from feature distribution return np.mean(self.dataset[self.column]) def median(self): # call for median from feature distribution return np.median(self.dataset[self.column]) def mode(self): # call for mode from feature distribution return scipy.stats.mode(self.dataset[self.column]) def standard_deviation(self): # call for standard deviation from feature distribution return np.std(self.dataset[self.column]) def absolute_deviation_from_mean(self): # call for absolute deviation from mean from feature distribution return np.mean(np.absolute(self.dataset[self.column] - np.mean(self.dataset[self.column]))) def absolute_deviation_from_median(self): # call for mode from feature distribution return scipy.stats.median_absolute_deviation(self.dataset[self.column]) def quarter_deviation(self): # call for quarter devaition from feature distribution q75, q25 = np.percentile(self.dataset[self.column], [75 ,25]) return (q75 - q25) def coefficient_of_variation(self): # call for coefficient of variation from feature distribution return scipy.stats.variation(self.dataset[self.column]) def gini_coefficient(self): # call for gini coefficient from feature distribution # TODO: refactorize mad = np.abs(np.subtract.outer(self.dataset[self.column], self.dataset[self.column])).mean() rmad = mad/np.mean(self.dataset[self.column]) return 0.5 * rmad def asymmetry_factor(self): # call for asymmetry factor from feature distribution return scipy.stats.skew(self.dataset[self.column]) def entropy(self): # call for entropy from feature distribution return scipy.stats.entropy(self.dataset[self.column])
3.078125
3
paragraph_encoder/train_para_encoder.py
rajarshd/Multi-Step-Reasoning
122
12797166
<filename>paragraph_encoder/train_para_encoder.py import torch import numpy as np import json import os import pickle import sys import logging import shutil from tqdm import tqdm from torch.autograd import Variable import torch.optim as optim import torch.nn.functional as F from torch.utils.data.sampler import RandomSampler import config from model import utils, data, vector from model.retriever import LSTMRetriever from multi_corpus import MultiCorpus from torch.utils.data.sampler import SequentialSampler, RandomSampler import math logger = logging.getLogger() global_timer = utils.Timer() stats = {'timer': global_timer, 'epoch': 0, 'best_valid': 0, 'best_verified_valid': 0, 'best_acc': 0, 'best_verified_acc': 0} def make_data_loader(args, corpus, train_time=False): dataset = data.MultiCorpusDataset( args, corpus, args.word_dict, args.feature_dict, single_answer=False, para_mode=args.para_mode, train_time=train_time ) sampler = SequentialSampler(dataset) if not train_time else RandomSampler(dataset) loader = torch.utils.data.DataLoader( dataset, batch_size=args.batch_size, sampler=sampler, num_workers=args.data_workers, collate_fn=vector.batchify(args, args.para_mode, train_time=train_time), pin_memory=True ) return loader def init_from_checkpoint(args): logger.info('Loading model from saved checkpoint {}'.format(args.pretrained)) model = torch.load(args.pretrained) word_dict = model['word_dict'] feature_dict = model['feature_dict'] args.vocab_size = len(word_dict) args.embedding_dim_orig = args.embedding_dim args.word_dict = word_dict args.feature_dict = feature_dict ret = LSTMRetriever(args, word_dict, feature_dict) # load saved param values ret.model.load_state_dict(model['state_dict']['para_clf']) optimizer = None parameters = ret.get_trainable_params() if args.optimizer == 'sgd': optimizer = optim.SGD(parameters, args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optimizer == 'adamax': optimizer = optim.Adamax(parameters, weight_decay=args.weight_decay) elif args.optimizer == 'nag': optimizer = NAG(parameters, args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) else: raise RuntimeError('Unsupported optimizer: %s' % args.optimizer) optimizer.load_state_dict(model['state_dict']['optimizer']) logger.info('Model loaded...') return ret, optimizer, word_dict, feature_dict def init_from_scratch(args, train_exs): logger.info('Initializing model from scratch') word_dict = feature_dict = None # create or get vocab word_dict = utils.build_word_dict(args, train_exs) if word_dict is not None: args.vocab_size = len(word_dict) args.embedding_dim_orig = args.embedding_dim args.word_dict = word_dict args.feature_dict = feature_dict ret = LSTMRetriever(args, word_dict, feature_dict) # -------------------------------------------------------------------------- # TRAIN/VALID LOOP # -------------------------------------------------------------------------- # train parameters = ret.get_trainable_params() optimizer = None if parameters is not None and len(parameters) > 0: if args.optimizer == 'sgd': optimizer = optim.SGD(parameters, args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) elif args.optimizer == 'adamax': optimizer = optim.Adamax(parameters, weight_decay=args.weight_decay) elif args.optimizer == 'nag': optimizer = NAG(parameters, args.learning_rate, momentum=args.momentum, weight_decay=args.weight_decay) else: raise RuntimeError('Unsupported optimizer: %s' % args.optimizer) else: pass return ret, optimizer, word_dict, feature_dict def train_binary_classification(args, ret_model, optimizer, train_loader, verified_dev_loader=None): args.train_time = True para_loss = utils.AverageMeter() ret_model.model.train() for idx, ex in enumerate(train_loader): if ex is None: continue inputs = [e if e is None or type(e) != type(ex[0]) else Variable(e.cuda(async=True)) for e in ex[:]] ret_input = [*inputs[:4]] scores, _, _ = ret_model.score_paras(*ret_input) y_num_occurrences = Variable(ex[-2]) labels = (y_num_occurrences > 0).float() labels = labels.cuda() # BCE logits loss batch_para_loss = F.binary_cross_entropy_with_logits(scores.squeeze(1), labels) optimizer.zero_grad() batch_para_loss.backward() torch.nn.utils.clip_grad_norm(ret_model.get_trainable_params(), 2.0) optimizer.step() para_loss.update(batch_para_loss.data.item()) if math.isnan(para_loss.avg): import pdb pdb.set_trace() if idx % 25 == 0 and idx > 0: logger.info('Epoch = {} | iter={}/{} | para loss = {:2.4f}'.format( stats['epoch'], idx, len(train_loader), para_loss.avg)) para_loss.reset() def eval_binary_classification(args, ret_model, corpus, dev_loader, verified_dev_loader=None, save_scores = True): total_exs = 0 args.train_time = False ret_model.model.eval() accuracy = 0.0 for idx, ex in enumerate(tqdm(dev_loader)): if ex is None: raise BrokenPipeError inputs = [e if e is None or type(e) != type(ex[0]) else Variable(e.cuda(async=True)) for e in ex[:]] ret_input = [*inputs[:4]] total_exs += ex[0].size(0) scores, _, _ = ret_model.score_paras(*ret_input) scores = F.sigmoid(scores) y_num_occurrences = Variable(ex[-2]) labels = (y_num_occurrences > 0).float() labels = labels.data.numpy() scores = scores.cpu().data.numpy() scores = scores.reshape((-1)) if save_scores: for i, pid in enumerate(ex[-1]): corpus.paragraphs[pid].model_score = scores[i] scores = scores > 0.5 a = scores == labels accuracy += a.sum() logger.info('Eval accuracy = {} '.format(accuracy/total_exs)) top1 = get_topk(corpus) return top1 def print_vectors(args, para_vectors, question_vectors, corpus, train=False, test=False): all_question_vectors = [] all_para_vectors = [] qid2idx = {} cum_num_lens = [] all_correct_ans = {} cum_num_len = 0 for question_i, qid in enumerate(corpus.questions): labels = [] all_question_vectors.append(question_vectors[qid]) qid2idx[qid] = question_i cum_num_len += len(corpus.questions[qid].pids) cum_num_lens.append(cum_num_len) for para_i, pid in enumerate(corpus.questions[qid].pids): if corpus.paragraphs[pid].ans_occurance > 0: labels.append(para_i) all_para_vectors.append(para_vectors[pid]) all_correct_ans[qid] = labels all_para_vectors = np.stack(all_para_vectors) all_question_vectors = np.stack(all_question_vectors) assert all_para_vectors.shape[0] == cum_num_lens[-1] assert all_question_vectors.shape[0] == len(cum_num_lens) assert all_question_vectors.shape[0] == len(qid2idx) assert all_question_vectors.shape[0] == len(all_correct_ans) ## saving code if train: OUT_DIR = os.path.join(args.save_dir, args.src, args.domain, "train/") else: if args.is_test == 0: OUT_DIR = os.path.join(args.save_dir, args.src, args.domain, "dev/") else: OUT_DIR = os.path.join(args.save_dir, args.src, args.domain, "test/") logger.info("Printing vectors at {}".format(OUT_DIR)) if not os.path.exists(OUT_DIR): os.makedirs(OUT_DIR) else: shutil.rmtree(OUT_DIR, ignore_errors=True) os.makedirs(OUT_DIR) json.dump(qid2idx, open(OUT_DIR + 'map.json', 'w')) json.dump(all_correct_ans, open(OUT_DIR + 'correct_paras.json', 'w')) all_cumlen = np.array(cum_num_lens) np.save(OUT_DIR + "document", all_para_vectors) np.save(OUT_DIR + "question", all_question_vectors) np.save(OUT_DIR + "all_cumlen", cum_num_lens) def save_vectors(args, ret_model, corpus, data_loader, verified_dev_loader=None, save_scores = True, train=False, test=False): total_exs = 0 args.train_time = False ret_model.model.eval() para_vectors = {} question_vectors = {} for idx, ex in enumerate(tqdm(data_loader)): if ex is None: raise BrokenPipeError inputs = [e if e is None or type(e) != type(ex[0]) else Variable(e.cuda(async=True)) for e in ex[:]] ret_input = [*inputs[:4]] total_exs += ex[0].size(0) scores, doc, ques = ret_model.score_paras(*ret_input) scores = scores.cpu().data.numpy() scores = scores.reshape((-1)) if save_scores: for i, pid in enumerate(ex[-1]): para_vectors[pid] = doc[i] for i, qid in enumerate([corpus.paragraphs[pid].qid for pid in ex[-1]]): if qid not in question_vectors: question_vectors[qid] = ques[i] for i, pid in enumerate(ex[-1]): corpus.paragraphs[pid].model_score = scores[i] get_topk(corpus) print_vectors(args, para_vectors, question_vectors, corpus, train, test) def get_topk(corpus): top1 = 0 top3 = 0 top5 = 0 for qid in corpus.questions: para_scores = [(corpus.paragraphs[pid].model_score,corpus.paragraphs[pid].ans_occurance ) for pid in corpus.questions[qid].pids] sorted_para_scores = sorted(para_scores, key=lambda x: x[0], reverse=True) if sorted_para_scores[0][1] > 0: top1 += 1 if sum([ans[1] for ans in sorted_para_scores[:3]]) > 0: top3 += 1 if sum([ans[1] for ans in sorted_para_scores[:5]]) > 0: top5 += 1 top1 = top1/len(corpus.questions) top3 = top3/len(corpus.questions) top5 = top5/len(corpus.questions) logger.info('top1 = {}, top3 = {}, top5 = {} '.format(top1, top3 ,top5 )) return top1 def get_topk_tfidf(corpus): top1 = 0 top3 = 0 top5 = 0 for qid in corpus.questions: para_scores = [(corpus.paragraphs[pid].tfidf_score, corpus.paragraphs[pid].ans_occurance) for pid in corpus.questions[qid].pids] sorted_para_scores = sorted(para_scores, key=lambda x: x[0]) # import pdb # pdb.set_trace() if sorted_para_scores[0][1] > 0: top1 += 1 if sum([ans[1] for ans in sorted_para_scores[:3]]) > 0: top3 += 1 if sum([ans[1] for ans in sorted_para_scores[:5]]) > 0: top5 += 1 logger.info( 'top1 = {}, top3 = {}, top5 = {} '.format(top1 / len(corpus.questions), top3 / len(corpus.questions), top5 / len(corpus.questions))) def run_predictions(args, data_loader, model, eval_on_train_set=False): args.train_time = False top_1 = 0 top_3 = 0 top_5 = 0 total_num_questions = 0 map_counter = 0 cum_num_lens = [] qid2idx = {} sum_num_paras = 0 all_correct_answers = {} for ex_counter, ex in tqdm(enumerate(data_loader)): ret_input = [*ex] y_num_occurrences = ex[3] labels = (y_num_occurrences > 0) try: topk_paras, docs, ques = model.return_topk(5,*ret_input) except RuntimeError: import pdb pdb.set_trace() num_paras = ex[1] qids = ex[-1] if args.save_para_clf_output: docs = docs.cpu().data.numpy() ques = ques.cpu().data.numpy() if ex_counter == 0: documents = docs questions = ques else: documents = np.concatenate([documents, docs]) questions = np.concatenate([questions, ques]) ### create map and cum_num_lens for i, qid in enumerate(qids): qid2idx[qid] = map_counter sum_num_paras += num_paras[i] cum_num_lens.append(sum_num_paras) all_correct_answers[map_counter] = [] st = sum(num_paras[:i]) for j in range(num_paras[i]): if labels[st+j] == 1: all_correct_answers[map_counter].append(j) ### Test case: assert len(all_correct_answers[map_counter]) == sum(labels.data.numpy()[st: st + num_paras[i]]) map_counter += 1 counter = 0 for q_counter, ranked_para_ids in enumerate(topk_paras): total_num_questions += 1 for i, no_paras in enumerate(ranked_para_ids): if labels[counter + no_paras ] ==1: if i <= 4: top_5 += 1 if i <= 2: top_3 += 1 if i <= 0: top_1 += 1 break counter += num_paras[q_counter] logger.info('Accuracy of para classifier when evaluated on the annotated dev set.') logger.info('top-1: {:2.4f}, top-3: {:2.4f}, top-5: {:2.4f}'.format( (top_1 * 1.0 / total_num_questions), (top_3 * 1.0 / total_num_questions), (top_5 * 1.0 / total_num_questions))) ## saving code if args.save_para_clf_output: if eval_on_train_set: OUT_DIR = "/iesl/canvas/sdhuliawala/vectors_web/train/" else: OUT_DIR = "/iesl/canvas/sdhuliawala/vectors_web/dev/" if not os.path.exists(OUT_DIR): os.mkdir(OUT_DIR) else: shutil.rmtree(OUT_DIR, ignore_errors=True) os.mkdir(OUT_DIR) #Test cases assert cum_num_lens[-1] == documents.shape[0] assert questions.shape[0] == documents.shape[0] assert len(cum_num_lens) == len(qid2idx) assert len(cum_num_lens) == len(all_correct_answers) json.dump(qid2idx, open(OUT_DIR + 'map.json', 'w')) json.dump(all_correct_answers, open(OUT_DIR + 'correct_paras.json', 'w')) all_cumlen = np.array(cum_num_lens) np.save(OUT_DIR + "document", documents) np.save(OUT_DIR + "question", questions) np.save(OUT_DIR + "all_cumlen", all_cumlen) return (top_1 * 1.0 / total_num_questions), (top_3 * 1.0 / total_num_questions), (top_5 * 1.0 / total_num_questions) def save(args, model, optimizer, filename, epoch=None): params = { 'state_dict': { 'para_clf': model.state_dict(), 'optimizer': optimizer.state_dict() }, 'word_dict': args.word_dict, 'feature_dict': args.feature_dict } args.word_dict = None args.feature_dict = None params['config'] = vars(args) if epoch: params['epoch'] = epoch try: torch.save(params, filename) # bad hack for not saving dictionary twice args.word_dict = params['word_dict'] args.feature_dict = params['feature_dict'] except BaseException: logger.warn('[ WARN: Saving failed... continuing anyway. ]') # ------------------------------------------------------------------------------ # Main. # ------------------------------------------------------------------------------ def main(args): # PRINT CONFIG logger.info('-' * 100) logger.info('CONFIG:\n%s' % json.dumps(vars(args), indent=4, sort_keys=True)) # small can't test if args.small == 1: args.test = 0 if args.small == 1: args.train_file_name = args.train_file_name + "_small" args.dev_file_name = args.dev_file_name + "_small" if args.test == 1: args.test_file_name = args.test_file_name + "_small" args.train_file_name = args.train_file_name + ".pkl" args.dev_file_name = args.dev_file_name + ".pkl" if args.test == 1: args.test_file_name = args.test_file_name + ".pkl" logger.info("Loading pickle files") fin = open(os.path.join(args.data_dir, args.src, "data", args.domain, args.train_file_name), "rb") all_train_exs = pickle.load(fin) fin.close() fin = open(os.path.join(args.data_dir, args.src, "data", args.domain, args.dev_file_name), "rb") all_dev_exs = pickle.load(fin) fin.close() if args.test == 1: fin = open(os.path.join(args.data_dir, args.src, "data", args.domain, args.test_file_name), "rb") all_test_exs = pickle.load(fin) fin.close() logger.info("Loading done!") logger.info("Num train examples {}".format(len(all_train_exs.paragraphs))) logger.info("Num dev examples {}".format(len(all_dev_exs.paragraphs))) if args.test == 1: logger.info("Num test examples {}".format(len(all_test_exs.paragraphs))) if args.pretrained is None: ret_model, optimizer, word_dict, feature_dict = init_from_scratch(args, all_train_exs) else: ret_model, optimizer, word_dict, feature_dict = init_from_checkpoint(args) # make data loader logger.info("Making data loaders...") if word_dict == None: args.word_dict = utils.build_word_dict(args, (all_train_exs, all_dev_exs)) word_dict = args.word_dict train_loader = make_data_loader(args, all_train_exs, train_time=False) if args.eval_only else make_data_loader(args, all_train_exs, train_time=True) dev_loader = make_data_loader(args, all_dev_exs) if args.test: test_loader = make_data_loader(args, all_test_exs) if args.eval_only: logger.info("Saving dev paragraph vectors") save_vectors(args, ret_model, all_dev_exs, dev_loader, verified_dev_loader=None) logger.info("Saving train paragraph vectors") save_vectors(args, ret_model, all_train_exs, train_loader, verified_dev_loader=None, train=True) if args.test: args.is_test = 1 logger.info("Saving test paragraph vectors") save_vectors(args, ret_model, all_test_exs, test_loader, verified_dev_loader=None) else: get_topk_tfidf(all_dev_exs) for epoch in range(args.num_epochs): stats['epoch'] = epoch train_binary_classification(args, ret_model, optimizer, train_loader, verified_dev_loader=None) logger.info('checkpointing model at {}'.format(args.model_file)) ## check pointing## save(args, ret_model.model, optimizer, args.model_file+".ckpt", epoch=stats['epoch']) logger.info("Evaluating on the full dev set....") top1 = eval_binary_classification(args, ret_model, all_dev_exs, dev_loader, verified_dev_loader=None) if stats['best_acc'] < top1: stats['best_acc'] = top1 logger.info('Best accuracy {}'.format(stats['best_acc'])) logger.info('Saving model at {}'.format(args.model_file)) logger.info("Logs saved at {}".format(args.log_file)) save(args, ret_model.model, optimizer, args.model_file, epoch=stats['epoch']) if __name__ == '__main__': # MODEL logger.info('-' * 100) # Parse cmdline args and setup environment args = config.get_args() # Set cuda args.cuda = not args.no_cuda and torch.cuda.is_available() if args.cuda: torch.cuda.set_device(args.gpu) # Set random state np.random.seed(args.random_seed) torch.manual_seed(args.random_seed) if args.cuda: torch.cuda.manual_seed(args.random_seed) # Set logging logger.setLevel(logging.INFO) fmt = logging.Formatter('%(asctime)s: %(message)s', '%m/%d/%Y %I:%M:%S %p') console = logging.StreamHandler() console.setFormatter(fmt) logger.addHandler(console) if args.log_file: if args.checkpoint: logfile = logging.FileHandler(args.log_file, 'a') else: logfile = logging.FileHandler(args.log_file, 'w') logfile.setFormatter(fmt) logger.addHandler(logfile) logger.info('[ COMMAND: %s ]' % ' '.join(sys.argv)) # Run! main(args)
2.375
2
PRS/PRS_extract_phenotypes.py
yochaiedlitz/T2DM_UKB_predictions
1
12797167
<reponame>yochaiedlitz/T2DM_UKB_predictions import pandas import os import numpy as np import sys from pysnptools.snpreader.bed import Bed import subprocess cleanDataPath='/net/mraid08/export/jafar/Microbiome/Analyses/PNPChip/cleanData/' rawDataPath='/net/mraid08/export/jafar/Microbiome/Analyses/PNPChip/rawData' pheno_fn_bac =os.path.join(cleanDataPath,'noMissingKakiPhenotypesWithCovariates_nodfukim.phenotypes') #pheno_fn_bac =os.path.join(cleanDataPath,'allChipPhenotypes_nodfukimWith5PCair.phenotypes') pheno_fn_bacDic=os.path.join(cleanDataPath,'dicNoMissingKakiPhenotypesWithCovariates_nodfukim.phenotypes') pheno_fn_bacAllPNP=os.path.join(rawDataPath,'allPNPPhenotypes.phenotypes') iidsNoSharedEnv='/net/mraid08/export/genie/Microbiome/Analyses/PNPChip/cleanData/PNP_autosomal_clean2_nodfukim_NoCouples.txt' PNP_16S_DIR = '/net/mraid08/export/jafar/Microbiome/Analyses/PNPChip/16S' glycemicStatusPath='/net/mraid08/export/jafar/Microbiome/Analyses/PNPChip/glycemic_status.csv' def extract(*args,**kwargs): known_args = ['dic', 'all_bac', 's', 'g','f','o','c','p','otu', 'all_non_bac', 'covars', 'blood', 'glucose', 'ffq', 'antropo', 's_stats_pheno', 'fid', 'keep_household', 'no_log', 'keep_related', 'keep_sterile', '16s', '-9', 'covars_noPCs', 'PCs', 'lactose','include_allPNP','IsGenotek','permute','meals','other','drugs', 'calories','bloodType','questionnaires','keep_missingCovars','activity','activityTypesFreq','cereals', 'delivery','dressSweetners','drinks','fruits','hunger', 'legumes','meatProducts','pastry','qualityOfLiving', 'smoking','sweets','vegetables','womenOnlyQuestions', 'genotek_only', 'swab_only'] ffq_args = ['activity','activityTypesFreq','cereals', 'delivery','dressSweetners','drinks','fruits','hunger', 'legumes','meatProducts','pastry','qualityOfLiving', 'smoking','sweets','vegetables','womenOnlyQuestions'] drug_args=['D.lipid', 'D.All', 'D.Psychiatric', 'D.pain', 'D.CVD', 'D.GI','D.Thyroid', 'D.NSAID','D.Contraception'] meals=['Vodka or Arak', 'Avocado', 'Parsley', 'Coated peanuts', 'Sugar', 'Smoked Salmon', 'Melon', 'Roll', 'Whipped cream', 'Coconut milk', 'Pretzels', 'Kohlrabi', 'Eggplant Salad', 'Cooked green beans', 'Cooked mushrooms', 'Watermelon', 'Grilled cheese', 'Bissli', 'Pullet', 'Hummus', 'Chinese Chicken Noodles', 'Shakshouka', 'Tahini', 'Chicken breast', 'Steak', 'Light Bread', 'Wholemeal Crackers', 'Sugar Free Gum', 'Hamburger', 'Dark Beer', 'Cooked beets', 'Almonds', 'Falafel', 'Noodles', 'Jachnun', 'Turkey', 'Sushi', 'Brazil nuts', 'Orange', 'Rice', 'Diet Fruit Drink', 'Corn schnitzel', 'Cappuccino', 'Low fat Milk', 'Pickled cucumber', 'Soymilk', 'Dates', 'Croissant', 'Biscuit', 'Potato chips', 'White Cheese', 'French fries', 'Wholemeal Bread', 'Tuna Salad', 'Chocolate spread', 'Kebab', 'Rice crackers', 'Wafers', 'Lettuce', 'Rice Noodles', 'Lentils', 'Mutton', 'Wholemeal Noodles', 'Green Tea', 'Schnitzel', 'Brown Sugar', 'Peanuts', 'Mayonnaise', 'Persimmon', 'Apple juice', 'Stuffed Peppers', 'Egg', 'Pear', 'Peas', 'Pecan', 'Cooked cauliflower', 'Cooked Sweet potato', 'Butter', 'Omelette', 'Coated Wafers', 'Boiled corn', 'Chicken drumstick', 'Pita', 'Pasta Bolognese', 'Chicken Meatballs', 'Burekas', 'Carrots', 'Tofu', 'Wholemeal Pita', 'Sunflower seeds', 'Coriander', 'Ciabatta', 'Tomato sauce', 'Heavy cream', 'Banana', 'Kif Kef', 'Mustard', 'Coke', 'Vegetable Soup', 'Sausages', 'Pancake', 'Pasta', 'Sauteed vegetables', 'Plum', 'Goat Milk Yogurt', 'Orange juice', 'Potatoes', 'Halva', 'Yellow pepper', 'Mango', 'Lasagna', 'Popcorn', 'Hummus Salad', 'Tilapia', 'Pizza', 'Fried cauliflower', 'Roasted eggplant', 'Baguette', 'Lentil Soup', 'Tzfatit Cheese', 'Nectarine', 'Chicken legs', 'Nuts', 'Goat Cheese', 'Jam', 'Feta Cheese', 'Mandarin', 'Pesto', 'Sugar substitute', 'Cheesecake', 'Raisins', 'Chocolate', 'Quinoa', 'Cooked broccoli', 'Beef Cholent', 'Cracker', 'Chocolate Cookies', 'White beans', 'Cooked zucchini', 'Sweet potato', 'Wine', 'Cookies', 'Challah', 'Spelled', 'Honey', 'Green beans', 'Milk', 'Peanut Butter', 'Cooked carrots', 'Lemon', 'Salty Cookies', 'Beef', 'Meatballs', 'Hamburger sandwich', 'Chicken thighs', 'Granola', 'Beet', 'Couscous', 'Beet Salad', 'Chocolate Mousse Cake', 'Sweet Roll', 'Danish', 'Coffee', 'Pasta Salad', 'Cuba', 'Chicken Liver', 'Sweet Challah', 'Minced meat', 'Chocolate cake', 'Diet Coke', 'Dried dates', 'Carrot Cake', 'Doritos', 'Israeli couscous', 'Pistachio', 'Date honey', 'Vinaigrette', 'Bamba', 'Dark Chocolate', 'Turkey Shawarma', 'Olive oil', #u'Parmesan\xc2\xa0cheese', 'Guacamole', 'Coleslaw', 'Americano', 'Pesek Zman snack', 'Green onions', 'Mushrooms', 'Lemon juice', 'Canned Tuna Fish', 'Vegetable Salad', 'Fried eggplant', 'Salmon', 'Cashew', 'Jewish donut', 'Rugelach', 'Cake', 'Ravioli', 'Tomatoes', 'Wholemeal Light Bread', 'Marble Cake', 'Brown Rice', 'Cold cut', 'Gilthead Bream', 'Garlic', 'Grapes', 'Chocolate Chip Cookies', 'Cucumber', 'Mung Bean', 'Ketchup', 'Sweet Yogurt', 'Bread', 'Onion', 'Cream Cheese', 'Chicken soup', 'Wholemeal Roll', 'Canned corn', 'Salty Cheese', 'Melawach', 'White cake', 'Apple', 'Lettuce Salad', 'Cereals', 'Yellow Cheese', 'Tea', 'Beer', 'Mozzarella Cheese', 'Fried onions', 'Ice cream', 'Cream Cake', 'Green cabbage', 'Olives', 'Balsamic vinegar', 'Peach', 'Light Yellow Cheese', 'Red pepper', 'Bagel', 'Entrecote', 'Cottage cheese', 'Oil', 'Natural Yogurt', 'Walnuts', 'Edamame', 'Majadra', 'Oatmeal', 'Soy sauce', 'Strawberry', 'Pastrami', 'Lemonade', 'Pasta with tomato sauce', 'Chicken']#removed: u'Soda water',u'Water', u'Salt', known_args+= ffq_args known_args+= drug_args known_kwargs = ['ratio', 'threshold','taxa'] for arg in args: assert arg in known_args, 'unkown arg: %s'%(arg) for kwarg in list(kwargs.keys()): assert kwarg in known_kwargs, 'unkown kwarg: %s'%(kwarg) if ('16s' in args): assert 'dic' not in args, '16s and dic are mutually exclusive' if ('taxa' in list(kwargs.keys())): assert len(set(['all_bac','s', 'g','f','o','c','p','otu']).intersection(set(args)))==0, \ 'taxa is mutual exclusive with all_bac,s,g,f,o,c,p,otu' if 'include_allPNP' in args: assert 'dic' not in args, 'include_allPNP does not support dicotomize bacteria' if 'IsGenotek' in args: assert 'covars' not in args, 'IsGenotek and covars are mutually exclusive' if 'otu' in args: assert '16s' in args if 'dic' in args: pheno =pandas.read_csv(pheno_fn_bacDic,sep='\t') pheno.set_index('IID', inplace=True, drop=True) pheno_nodic =pandas.read_csv(pheno_fn_bac,sep='\t') pheno_nodic.set_index('IID', inplace=True, drop=True) pheno_s = pheno_nodic[[c for c in pheno_nodic.columns if c[:2]=='s_']] pheno_g = pheno_nodic[[c for c in pheno_nodic.columns if c[:2]=='g_']] else: if 'include_allPNP' in args: pheno =pandas.read_csv(pheno_fn_bacAllPNP,sep='\t') else: pheno =pandas.read_csv(pheno_fn_bac,sep='\t') pheno.set_index('IID', inplace=True, drop=True) if 'include_allPNP'in args: status, output = subprocess.getstatusoutput("cut -f 1 %s -d ' ' | cut -f 1 -d '_'"%os.path.join(rawDataPath,'tmp','dfukim.txt')) pheno =pheno[~pheno.index.isin([int(dafook) for dafook in output.split('\n')])] if ('16s' in args): pheno = pheno[[c for c in pheno if c[:2] not in ('s_', 'g_', 'f_', 'o_', 'c_', 'p_')]] for taxa_level in ['otu', 'species', 'genus', 'family', 'order', 'class', 'phylum']: df_taxa = pandas.read_csv(os.path.join(PNP_16S_DIR, taxa_level+'.txt'), sep='\t', index_col=0) df_taxa[df_taxa<1e-3] = 1e-4 df_taxa = np.log10(df_taxa) pheno = pheno.merge(df_taxa, left_index=True, right_index=True) pheno_s = pheno[[c for c in pheno.columns if c[:2]=='s_']] pheno_g = pheno[[c for c in pheno.columns if c[:2]=='g_']] ### for c in pheno: ### if (c[:2] not in ['c_', 'g_', 'o_', 's_', 'k_', 'p_', 'f_']): print c alpha_diversity_s = (pheno_s>pheno_s.min().min()).sum(axis=1) alpha_diversity_g = (pheno_g>pheno_g.min().min()).sum(axis=1) pheno.loc[pheno.Hips==-9, 'WHR'] = np.nan pheno.loc[pheno.Waist==-9, 'WHR'] = np.nan pheno['LDLCholesterol'] = pheno['Cholesterol,total'] - pheno['HDLCholesterol'] - 2*pheno['Triglycerides'] if 'genotek_only' in args: pheno = pheno.loc[pheno['IsGenotek']==1] if 'swab_only' in args: pheno = pheno.loc[pheno['IsGenotek']==0] mb_columns = [] if 'taxa' in kwargs: if kwargs['taxa'][0]=='*': kwargs['taxa']=[initial+kwargs['taxa'][1:] for initial in ('s_', 'g_', 'f_', 'o_', 'c_', 'p_')] elif kwargs['taxa'][1]=='_': kwargs['taxa']=[kwargs['taxa']] for taxa in kwargs['taxa']: taxadf=pheno.filter(regex=(taxa)) mb_columns += taxadf.columns.values.tolist() if 'all_bac' in args: args=list(args)+['s','g','f','o','c','p'] if 's' in args: mb_columns += [c for c in pheno.columns if c[:2]=='s_' ] if 'g' in args: mb_columns += [c for c in pheno.columns if c[:2]=='g_' ] if 'f' in args: mb_columns += [c for c in pheno.columns if c[:2]=='f_' ] if 'o' in args: mb_columns += [c for c in pheno.columns if c[:2]=='o_' ] if 'c' in args: mb_columns += [c for c in pheno.columns if c[:2]=='c_' ] if 'p' in args: mb_columns += [c for c in pheno.columns if c[:2]=='p_' ] if 'otu' in args: mb_columns += [c for c in pheno.columns if c[:4]=='OTU_' ] if 'no_log' in args: assert 'dic' not in args, 'dic and no_log are mutually exclusive' pheno[mb_columns] = 10**pheno[mb_columns] if 'all_non_bac' in args: args=list(args)+['covars','blood','glucose','ffq','antropo'] mb_columns += ['Age','Gender','Calories_kcal','Carbs_g','Fat_g','Protain_g','IsGenotek'] if 'include_allPNP' not in args or ('PCs') in args: mb_columns += [c for c in pheno.columns if c[:2]=='PC'] if 'lactose' in args: mb_columns += ['lactose'] if 'blood' in args: # mb_columns += ['ALT','Albumin','AST','Basophils%','Calcium','Chloride','Cholesterol,total','Creatinine', # 'CRP(WIDERANGE)','CRPhs','Eosinophils%','HCT','HDLCholesterol','Hemoglobin','HbA1C%','Lymphocytes%', # 'MCH','MCHC','MCV','MPV','Monocytes%','Neutrophils%','Phosphorus','Platelets','Potassium','RBC', # 'RDW','Sodium','TSH','WBC','AlkalinePhosphatase','GGT','LDH','Iron','LDLCholesterol','Magnesium', # 'Triglycerides','TotalProtein','TotalBilirubin','Urea'] mb_columns += ['ALT','Albumin','AST','Basophils%','Calcium','Chloride','Cholesterol,total','Creatinine', 'CRP(WIDERANGE)','CRPhs','Eosinophils%','HCT','HDLCholesterol','Hemoglobin','HbA1C%','Lymphocytes%', 'MCH','MCHC','MCV','MPV','Monocytes%','Neutrophils%','Phosphorus','Platelets','Potassium','RBC', 'RDW','Sodium','TSH','WBC','LDLCholesterol'] if 'glucose' in args: mb_columns += ['95P_Glucose','Glucose_Noise','Max_Glucose','Median_Glucose','WakeupGlucose', 'MeanGlucoseResponse','MeanBreadResponse','MeanBreadButterResponse'] if 'ffq' in args: mb_columns += ['Alcoholic_Drinks_Freq','Cigarretes_per_day','Coffee_Freq','Start_smoking_age'] if 'antropo' in args: mb_columns += ['BMI','BPdia','BPsys','HeartRate','Height','Hips','WHR','Waist'] if 's_stats_pheno' in args: s_stats=['BMI','Cholesterol,total','WakeupGlucose','Albumin','Creatinine','HbA1C%','Height','Hips','Waist','WHR','HDLCholesterol'] #, 'Triglycerides', 'LDLCholesterol'] mb_columns+=s_stats mb_columns=list(set(mb_columns)) if 'fid' in args: mb_columns = ['FID']+mb_columns ########################FFQ START##################### if 'questionnaires' in args: args=list(args)+ffq_args mb_columns_extra=[] if 'activity' in args: mb_columns_extra += ['Work activity','Physical activity - mins','Physical activity - freq'] if 'activityTypesFreq' in args: mb_columns_extra += ['T1Activity kind','Type 1 activity - freq','T2Activity kind', 'Type 2 activity - freq','T3Activity kind','Type 3 activity - freq'] if 'bloodType' in args: mb_columns_extra += ['Blood A','Blood B','Blood RH-'] if 'cereals' in args: mb_columns_extra += ['Cornflakes Freq','Granola or Bernflaks Freq','Cooked Cereal such as Oatmeal Porridge Freq', 'Rice Freq','Couscous, Burgul, Mamaliga, Groats Freq', 'Potatoes Boiled, Baked, Mashed, Potatoes Salad Freq', 'Fries Freq', 'Pasta or Flakes Freq'] if 'delivery' in args: mb_columns_extra += ['C-Section','Home delivery','Was breastfed'] if 'dressSweetners' in args: mb_columns_extra += ['Oil as an addition for Salads or Stews Freq','Mayonnaise Including Light Freq', 'Thousand Island Dressing, Garlic Dressing Freq', 'Honey, Jam, fruit syrup, Maple syrup Freq', 'White or Brown Sugar Freq', 'Artificial Sweeteners Freq',] if 'drinks' in args: mb_columns_extra += ['Nectar, Cider Freq', 'Diet Juice Freq', 'Juice Freq', 'Diet Soda Freq', 'Regular Sodas with Sugar Freq', 'Decaffeinated Coffee Freq', 'Coffee Freq', 'Herbal Tea Freq', 'Green Tea Freq', 'Regular Tea Freq', 'Beer Freq', 'Sweet Dry Wine, Cocktails Freq', 'Alcoholic Drinks Freq'] if 'fruits' in args: mb_columns_extra += ['Mandarin or Clementine Freq', 'Orange or Grapefruit Freq', 'Orange or Grapefruit Juice Freq', 'Apple Freq', 'Apricot Fresh or Dry, or Loquat Freq', 'Grapes or Raisins Freq', 'Banana Freq', 'Melon Freq', 'Kiwi or Strawberries Freq', 'Mango Freq', 'Peach, Nectarine, Plum Freq', 'Pear Fresh, Cooked or Canned Freq','Persimmon Freq', 'Watermelon Freq', 'Dried Fruits Freq', 'Fruit Salad Freq'] if 'hunger' in args: mb_columns_extra += ['General Hunger','Morning Hunger', 'Midday Hunger', 'Evening Hunger'] if 'legumes' in args: mb_columns_extra += ['Falafel in Pita Bread Freq', 'Cooked Legumes Freq', 'Processed Meat Free Products Freq'] if 'meatProducts' in args: mb_columns_extra += ['Egg Recipes Freq', 'Egg, Hard Boiled or Soft Freq', 'Schnitzel Turkey or Chicken Freq', 'Chicken or Turkey With Skin Freq', 'Chicken or Turkey Without Skin Freq', 'Sausages Freq', 'Sausages such as Salami Freq', 'Pastrami or Smoked Turkey Breast Freq', 'Turkey Meatballs, Beef, Chicken Freq', 'Shish Kebab in Pita Bread Freq', 'Falafel in Pita version 2 Freq','Processed Meat Products Freq','Beef, Veal, Lamb, Pork, Steak, Golash Freq', 'Mixed Meat Dishes as Moussaka, Hamin, Cuba Freq', 'Mixed Chicken or Turkey Dishes Freq', 'Beef or Chicken Soup Freq', 'Internal Organs Freq', 'Fish Cooked, Baked or Grilled Freq', 'Fried Fish Freq', 'Canned Tuna or Tuna Salad Freq', 'Fish (not Tuna) Pickled, Dried, Smoked, Canned Freq'] if 'pastry' in args: mb_columns_extra += ['Ordinary Bread or Challah Freq', 'Light Bread Freq', 'Wholemeal or Rye Bread Freq', 'Baguette Freq', 'Roll or Bageles Freq', 'Pita Freq', 'Saltine Crackers or Matzah Freq', 'Wholemeal Crackers Freq', 'Small Burekas Freq', 'Jachnun, Mlawah, Kubana, Cigars Freq', 'Pizza Freq'] if 'qualityOfLiving' in args: mb_columns_extra += ['Stress','Sleep quality'] if 'smoking' in args: mb_columns_extra += ['Currently smokes','Ever smoked'] if 'sweets' in args: mb_columns_extra += ['Milk or Dark Chocolate Freq', 'Salty Snacks Freq', 'Cheese Cakes or Cream Cakes Freq', 'Yeast Cakes and Cookies as Rogallach, Croissant or Donut Freq', 'Cake, Torte Cakes, Chocolate Cake Freq', 'Fruit Pie or Cake Freq', 'Coated or Stuffed Cookies, Waffles or Biscuits Freq', 'Simple Cookies or Biscuits Freq', 'Ice Cream or Popsicle which contains Dairy Freq', 'Popsicle Without Dairy Freq', 'Black or White Grains, Watermelon Seeds Freq', 'Nuts, almonds, pistachios Freq','Peanuts Freq'] if 'vegetables' in args: mb_columns_extra += ['Tomato Freq','Cooked Tomatoes, Tomato Sauce, Tomato Soup Freq', 'Red Pepper Freq', 'Green Pepper Freq', 'Cucumber Freq', 'Zucchini or Eggplant Freq','Peas, Green Beans or Okra Cooked Freq', 'Cauliflower or Broccoli Freq','Sweet Potato Freq', 'Brussels Sprouts, Green or Red Cabbage Freq', 'Lettuce Freq','Carrots, Fresh or Cooked, Carrot Juice Freq', 'Corn Freq', 'Parsley, Celery, Fennel, Dill, Cilantro, Green Onion Freq', 'Fresh Vegetable Salad Without Dressing or Oil Freq', 'Fresh Vegetable Salad With Dressing or Oil Freq', 'Avocado Freq','Lemon Freq', 'Onion Freq', 'Garlic Freq', 'Vegetable Soup Freq', 'Hummus Salad Freq', 'Tahini Salad Freq', 'Cooked Vegetable Salads Freq', 'Pickled Vegetables Freq', 'Olives Freq'] if 'womenOnlyQuestions' in args: mb_columns_extra += ['Is pregnant','Is breastfeeding','Is after birth', 'Taking contraceptives', 'Regular period', 'Irregular period', 'No period','Hormonal replacment', 'Past breastfeeding'] if 'other' in args: #AddingIrisGlucose df_glucose = pandas.read_csv(glycemicStatusPath).set_index('RegNum') pheno = df_glucose.merge(pheno, left_index=True, right_index=True,how='right') mb_columns +=['median_Without_BMI_ALT_Overall','WakeupGlucose','BMI','VegeterianScale'] pheno.loc[pheno['VegeterianScale']<0, 'VegeterianScale']=np.nan if 'drugs' in args: mb_columns+=drug_args else: for arg in drug_args: if arg in args: mb_columns += [arg] mb_columns_extra=[val.replace(' ','_') for val in mb_columns_extra] mb_columns+=mb_columns_extra if 'meals' in args: mealsColumns=[val.replace(' ','_') for val in meals] #Correct by total calories pheno.loc[:,mealsColumns]=pheno[mealsColumns][pheno[mealsColumns]!=-9].div(pheno['Calories_kcal_Total'].values,axis=0) pheno.replace(np.nan, 0,inplace=True) mb_columns += mealsColumns ########################FFQ END##################### #for c in pheno: print c mb_columns=list(set(mb_columns)) pheno= pheno[mb_columns] if 'threshold' not in kwargs: threshold = -4 else: threshold=kwargs['threshold'] if 'ratio' in kwargs: ratio=kwargs['ratio'] mb_columns = [c for c in pheno.columns if c[:2] in ['s_','g_','f_','o_','c_','p_']] other_columns = [c for c in pheno.columns if c[:2] not in ['s_','g_','f_','o_','c_','p_']] if 'dic' in args: presence=((pheno[mb_columns]>threshold +1e-5)&(pheno[mb_columns]!=0)).astype(int).sum() else: presence=(pheno[mb_columns]>threshold +1e-5).astype(int).sum() presence=presence[presence > len(presence)*ratio].index.values.tolist() pheno=pheno[other_columns+presence] if ('keep_related' not in args): #bed = Bed(os.path.join(cleanDataPath, 'PNP_autosomal_clean2_nodfukim_norelated'), count_A1=True)#.read() df_fam_no_related = pandas.read_csv(os.path.join(cleanDataPath, 'PNP_autosomal_clean2_nodfukim_norelated.fam'), delim_whitespace=True, index_col=0, header=None) df_fam = pandas.read_csv(os.path.join(cleanDataPath, 'PNP_autosomal_clean2_nodfukim.fam'), delim_whitespace=True, index_col=0, header=None) df_related=df_fam[~df_fam.index.isin(df_fam_no_related.index)] pheno=pheno[(~pheno.index.isin(df_related.index))] if ('keep_sterile') not in args: if '16s' in args: sterile_individuals = alpha_diversity_g[alpha_diversity_g < 4].index else: sterile_individuals = alpha_diversity_s[alpha_diversity_s < 15].index pheno=pheno[~pheno.index.isin(sterile_individuals)] if 'keep_household' not in args: #noSharedEnvIID=pandas.read_csv(iidsNoSharedEnv,usecols=[0],header=None,sep='\t') #pheno=pheno[pheno.index.isin(noSharedEnvIID[0].astype(int).values)] #new code that decides which individuals to remove on the fly import ForPaper.VertexCut as vc df_household = pandas.read_csv(os.path.join(cleanDataPath, 'EnvironmentBlock.txt'), delim_whitespace=True) df_household = df_household[[c for c in df_household.columns if int(c) in pheno.index]] df_household = df_household[df_household.index.isin(pheno.index)] remove_inds = df_household.index[vc.VertexCut().work(df_household.values, 0.5)] pheno=pheno[~pheno.index.isin(remove_inds)] if 'keep_missingCovars' not in args: #One participant 244624 has no 'Calories_kcal','Carbs_g','Fat_g','Protain_g' #3 participant 86356,762339,805175 have no 'Age','Gender' # if set(['Age','Gender','Calories_kcal','Carbs_g','Fat_g','Protain_g','IsGenotek'])<=set(pheno.columns.values): keep_inds=pheno.loc[:,['Age','Gender','Calories_kcal','Carbs_g','Fat_g','Protain_g','IsGenotek']].replace(-9, np.nan).dropna().index.values beforeNumParticpants=pheno.shape[0] pheno=pheno.loc[keep_inds] afterNumParticpants=pheno.shape[0] if beforeNumParticpants-afterNumParticpants>0: pass #print "Removing participants with missing covars!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" #print beforeNumParticpants-afterNumParticpants #print "805175 has no FFQ!!!!! that is why we remove him" features_to_drop=[] if ('IsGenotek' not in args) and ('covars' not in args) and ('covars_noPCs' not in args): features_to_drop += ['IsGenotek'] if ('covars' not in args) and ('covars_noPCs' not in args) and ('other' not in args): if 'calories' not in args: features_to_drop +=['Age','Gender','Calories_kcal','Carbs_g','Fat_g','Protain_g','IsGenotek'] else: features_to_drop +=['Age','Gender'] if ('include_allPNP' not in args) and ('PCs' not in args): features_to_drop+=['PC1','PC2','PC3','PC4','PC5'] pheno=pheno.drop(features_to_drop,axis=1) if ('-9' not in args): pheno.replace(-9, np.nan, inplace=True) if 'permute' in args: pheno=pandas.DataFrame(pheno.values[np.random.permutation(pheno.shape[0])],index=pheno.index,columns=pheno.columns) return pheno if __name__=="__main__": # pheno=extract('dic','covars','keep_household',"pastry",ratio=0.2)#'all_bac' phenoAll = extract('s','include_allPNP','covars')#'include_allPNP','keep_household','ffq','keep_related')#'include_allPNP', print(phenoAll.shape) print(phenoAll.columns) phenoAll = extract('s','include_allPNP') print(phenoAll.shape) print(phenoAll.columns) phenoChip = extract('keep_household','s','keep_related') print(phenoChip.shape) print(phenoChip.columns) # print "Only in chip:" # print set(phenoChip.index.values)-set(phenoAll.index.values) # print len(set(phenoChip.index)-set(phenoAll.index)) print(pheno.columns.values.tolist()) print(pheno.shape) sum=0 for participant in pheno[['Age','Gender']].index.values: # if np.isnan(pheno.loc[participant,'Calories_kcal']) or \ # np.isnan(pheno.loc[participant,'Carbs_g']) or \ # np.isnan(pheno.loc[participant,'Fat_g']) or \ # np.isnan(pheno.loc[participant,'Protain_g']): # sum+=1 # print participant # print pheno.loc[participant,['Calories_kcal','Carbs_g','Fat_g','Protain_g','Protain_g']] # print sum if np.isnan(pheno.loc[participant,'Age']) or np.isnan(pheno.loc[participant,'Gender']) : print("Participant %s, age %s, gender %s" %(participant,pheno.loc[participant,'Age'],pheno.loc[participant,'Gender'])) # print pheno[['median_Without_BMI_ALT_Overall']]
2.015625
2
ebel/validate.py
e-bel/ebel
1
12797168
<filename>ebel/validate.py """Collect of methods used for validating a BEL file.""" import os import re import csv import difflib import logging from typing import Iterable, Union, Optional from textwrap import fill import numpy as np import pandas as pd import ebel.database from ebel.parser import check_bel_script_line_by_line, check_bel_script, bel_to_json logger = logging.getLogger(__name__) def validate_bel_file(bel_script_path: str, force_new_db: bool = False, line_by_line: bool = False, reports: Union[Iterable[str], str] = None, bel_version: str = '2_1', tree: bool = False, sqlalchemy_connection_str: str = None, json_file: bool = True, force_json: bool = False,): """Validate BEL script for correct syntax following eBNF grammar. Parameters ---------- bel_script_path: str Path to BEL file or directory contaiing BEL files. force_new_db: bool Delete current database of namespaces/values and generate a new one. Defaults to False. line_by_line: bool TODO: Write this. reports: Iterable[str] or str List of file paths to write reports to. Multiple formats of the report can be generated at once. Acceptable formats include: CSV, TSV, TXT, XLS, XLSX, JSON, HTML, MD bel_version: {'1', '2', '2_1'} Which BEL grammar version should be used for validating the BEL file. Current available are 1.0, 2.0, and 2.1. Defaults to the most recent version. tree: bool Generates a tree of relationships derived from the BEL file. Defaults to False. sqlalchemy_connection_str: str Path to SQLLite database to be used for storing/looking up used namespaces and values. If None given, it uses the generated e(BE:L) database (default). json_file: bool If True, generates a JSON file that can be used for importing BEL relationships into an e(BE:L) generated OrientDB database. Only creates the JSON file when there are no grammar or syntax errors. Defaults to True. force_json: bool If True, will create an importable JSON file even if there are namespace/value errors. Defaults to False. Returns ------- dict Dictionary of file paths and results for each BEL file processed. Examples -------- Task: Validate BEL script `my.bel` for BEL syntax 2.0, create error reports in Markdown and JSON format. In case of no errors create a JSON file for the import of BEL network into Cytoscape: > ebel validate my.bel -v 2 -r error_report.md,error_report.json """ validation_results = dict() if bel_script_path.startswith('"') and bel_script_path.endswith('"'): bel_script_path = bel_script_path[1:-1] if reports and reports.startswith('"') and reports.endswith('"'): reports = reports[1:-1] if line_by_line: # TODO: This is perhaps not working result = check_bel_script_line_by_line(bel_script_path, error_report_file_path=reports, bel_version=bel_version) if reports: logger.info("Wrote report to %s\n" % reports) else: logger.info("\n".join([x.to_string() for x in result]) + "\n") else: if sqlalchemy_connection_str: ebel.database.set_connection(sqlalchemy_connection_str) bel_files = _create_list_bel_files(bel_path=bel_script_path) validation_results['bel_files_checked'] = bel_files for bel_file in bel_files: # Create dict to be filled for individual BEL files. validation_results[bel_file] = dict() logger.info(f"Processing {bel_file}") result = check_bel_script( bel_script_path=bel_file, force_new_db=force_new_db, bel_version=bel_version, ) if json_file: if not result['errors'] or force_json: json_file = _write_odb_json(bel_path=bel_file, results=result, bel_version=bel_version) validation_results[bel_file]['json'] = json_file if tree: if result['errors']: logger.error("Tree can not be printed because errors still exists\n") else: logger.debug(result['tree']) validation_results[bel_file]['tree'] = result['tree'] if result['warnings'] and reports: report_paths = _write_report(reports, result, report_type='warnings') validation_results[bel_file]['reports'] = report_paths elif result['errors']: if not reports: logger.info('\n'.join([x.to_string() for x in result['errors']]) + "\n") else: _write_report(reports, result, report_type='errors') def repair_bel_file(bel_script_path: str, new_file_path: Optional[str] = None): """Repair a BEL document. Parameters ---------- bel_script_path : str Path to the BEL file. new_file_path : str (optional) Export repaired version of file to new path. """ # if evidence: # regular expression for missing continuous line (\ at the end of line) with open(bel_script_path, "r", encoding="utf-8") as belfile: content = belfile.read() new_content = content for regex_pattern in re.findall(r'\n((SET\s+(DOCUMENT\s+Description|Evidence|SupportingText)' r'\s*=\s*)"(((?<=\\)"|[^"])+)"\s*\n*)', content): if regex_pattern[2].startswith("DOCUMENT"): new_prefix = "SET DOCUMENT Description = " else: new_prefix = "SET Support = " new_evidence_text = re.sub(r"(\\?[\r\n]+)|\\ ", " ", regex_pattern[3].strip()) new_evidence_text = re.sub(r"\s{2,}", " ", new_evidence_text) new_evidence_text = re.sub(r'(\\)(\w)', r'\g<2>', new_evidence_text) new_evidence_text = fill(new_evidence_text, break_long_words=False).replace("\n", " \\\n") new_evidence = new_prefix + '"' + new_evidence_text + '"\n\n' new_content = new_content.replace(regex_pattern[0], new_evidence) if content != new_content: if new_file_path: with open(new_file_path + ".diff2repaired", "w") as new_file: new_file.write('\n'.join(list(difflib.ndiff(content.split("\n"), new_content.split("\n"))))) else: with open(bel_script_path, "w") as output_file: output_file.write(new_content) def _write_odb_json(bel_path: str, results: dict, bel_version: str) -> str: json_path = bel_path + ".json" if int(bel_version[0]) > 1: json_tree = bel_to_json(results['tree']) open(json_path, "w").write(json_tree) return json_path def _create_list_bel_files(bel_path: str) -> list: """Export all BEL files in directory as list. If single file is passed, returns a list with that path.""" if os.path.isdir(bel_path): bel_files = [] for file in os.listdir(bel_path): if file.endswith(".bel"): bel_file_path = os.path.join(bel_path, file) bel_files.append(bel_file_path) else: bel_files = [bel_path] return bel_files def _write_report(reports: Union[Iterable[str], str], result: dict, report_type: str) -> list: """Write report in different types depending on the file name suffix in reports. Parameters ---------- reports : Iterable[str] or str List of report formats or comma separated list of report file names. result : dict return value of check_bel_script methode. report_type : str `report_type` could be 'warnings' or 'errors'. Returns ------- list List of file paths for the reports written. """ # TODO: report_type options should be constants errors_or_warns_as_list_of_dicts = [x.to_dict() for x in result[report_type]] columns = [report_type[:-1] + "_class", "url", "keyword", "entry", "line_number", "column", "hint"] df = pd.DataFrame(data=errors_or_warns_as_list_of_dicts, columns=columns) df.index += 1 if isinstance(reports, str): reports = reports.split(",") for report in reports: if report.endswith('.csv'): df.to_csv(report) if report.endswith('.xls'): df.to_excel(report) if report.endswith('.xlsx'): df.to_excel(report, engine='xlsxwriter') if report.endswith('.tsv'): df.to_csv(report, sep='\t') if report.endswith('.json'): df.to_json(report) if report.endswith('.txt'): open(report, "w").write(df.to_string()) if report.endswith('.html'): df.to_html(report) if report.endswith('.md'): cols = df.columns df2 = pd.DataFrame([['---', ] * len(cols)], columns=cols) if df.hint.dtype == np.str: df.hint = df.hint.str.replace(r'\|', '&#124;') if df.entry.dtype == np.str: df.entry = df.entry.str.replace(r'\|', '&#124;') df.url = [("[url](" + str(x) + ")" if not pd.isna(x) else '') for x in df.url] url_template = "[%s](" + report.split(".bel.")[0] + ".bel?expanded=true&viewer=simple#L%s)" df.line_number = [url_template % (x, x) for x in df.line_number] df3 = pd.concat([df2, df]) df3.to_csv(report, sep="|", index=False, quoting=csv.QUOTE_NONE, escapechar="\\") return reports
2.796875
3
pipestat/const.py
pepkit/pipestat
1
12797169
import os from sqlalchemy.dialects.postgresql.json import JSONB from sqlalchemy.types import ARRAY, JSON, Boolean, Float, Integer, String PKG_NAME = "pipestat" LOCK_PREFIX = "lock." REPORT_CMD = "report" INSPECT_CMD = "inspect" REMOVE_CMD = "remove" RETRIEVE_CMD = "retrieve" STATUS_CMD = "status" SUBPARSER_MSGS = { REPORT_CMD: "Report a result.", INSPECT_CMD: "Inspect a database.", REMOVE_CMD: "Remove a result.", RETRIEVE_CMD: "Retrieve a result.", STATUS_CMD: "Manage pipeline status.", } STATUS_GET_CMD = "get" STATUS_SET_CMD = "set" STATUS_SUBPARSER_MESSAGES = { STATUS_SET_CMD: "Set status.", STATUS_GET_CMD: "Get status.", } DOC_URL = "http://pipestat.databio.org/en/latest/db_config/" # DB config keys CFG_DATABASE_KEY = "database" CFG_NAME_KEY = "name" CFG_HOST_KEY = "host" CFG_PORT_KEY = "port" CFG_PASSWORD_KEY = "password" CFG_USER_KEY = "user" CFG_DIALECT_KEY = "dialect" # sqlite, mysql, postgresql, oracle, or mssql CFG_DRIVER_KEY = "driver" DB_CREDENTIALS = [ CFG_HOST_KEY, CFG_PORT_KEY, CFG_PASSWORD_KEY, CFG_USER_KEY, CFG_NAME_KEY, CFG_DIALECT_KEY, CFG_DRIVER_KEY, ] # object attribute names DB_ONLY_KEY = "_database_only" CONFIG_KEY = "_config" SCHEMA_KEY = "_schema" STATUS_KEY = "_status" STATUS_SCHEMA_KEY = "_status_schema" STATUS_SCHEMA_SOURCE_KEY = "_status_schema_source" STATUS_FILE_DIR = "_status_file_dir" RES_SCHEMAS_KEY = "_result_schemas" DB_BASE_KEY = "_declarative_base" DB_ORMS_KEY = "_orms" DATA_KEY = "_data" NAME_KEY = "_name" FILE_KEY = "_file" RECORD_ID_KEY = "_record_id" DB_SESSION_KEY = "_db_session" DB_SCOPED_SESSION_KEY = "_db_scoped_session" DB_ENGINE_KEY = "_db_engine" HIGHLIGHTED_KEY = "_highlighted" DB_COLUMN_KEY = "db_column" DB_RELATIONSHIP_KEY = "relationship" DB_RELATIONSHIP_NAME_KEY = "name" DB_RELATIONSHIP_TABLE_KEY = "table" DB_RELATIONSHIP_COL_KEY = "column" DB_RELATIONSHIP_BACKREF_KEY = "backref" DB_RELATIONSHIP_ELEMENTS = [ DB_RELATIONSHIP_BACKREF_KEY, DB_RELATIONSHIP_COL_KEY, DB_RELATIONSHIP_NAME_KEY, DB_RELATIONSHIP_TABLE_KEY, ] # schema keys SCHEMA_PROP_KEY = "properties" SCHEMA_TYPE_KEY = "type" SCHEMA_DESC_KEY = "description" # DB column names ID = "id" RECORD_ID = "record_identifier" STATUS = "status" RESERVED_COLNAMES = [ID, RECORD_ID] CANONICAL_TYPES = { "image": { "type": "object", "properties": { "path": {"type": "string"}, "thumbnail_path": {"type": "string"}, "title": {"type": "string"}, }, "required": ["path", "thumbnail_path", "title"], }, "file": { "type": "object", "properties": { "path": {"type": "string"}, "title": {"type": "string"}, }, "required": ["path", "title"], }, } ENV_VARS = { "namespace": "PIPESTAT_NAMESPACE", "config": "PIPESTAT_CONFIG", "results_file": "PIPESTAT_RESULTS_FILE", "schema": "PIPESTAT_RESULTS_SCHEMA", "status_schema": "PIPESTAT_SATUS_SCHEMA", "record_identifier": "PIPESTAT_RECORD_ID", } CLASSES_BY_TYPE = { "number": float, "integer": int, "object": dict, "image": dict, "file": dict, "string": str, "array": list, "boolean": bool, } SQL_CLASSES_BY_TYPE = { "number": Float, "integer": Integer, "object": JSONB, "image": JSONB, "file": JSONB, "string": String(500), "array": JSONB, "boolean": Boolean, } CFG_SCHEMA = os.path.join( os.path.dirname(os.path.abspath(__file__)), "schemas", "pipestat_config_schema.yaml" ) STATUS_SCHEMA = os.path.join( os.path.dirname(os.path.abspath(__file__)), "schemas", "status_schema.yaml" ) STATUS_TABLE_SCHEMA = os.path.join( os.path.dirname(os.path.abspath(__file__)), "schemas", "status_table_schema.yaml" )
2.359375
2
src/server/endpoints/__init__.py
lee14257/delphi-epidata
0
12797170
from . import ( afhsb, cdc, covid_hosp_facility_lookup, covid_hosp_facility, covid_hosp_state_timeseries, covidcast_nowcast, covidcast_meta, covidcast, delphi, dengue_nowcast, dengue_sensors, ecdc_ili, flusurv, fluview_clinicial, fluview_meta, fluview, gft, ght, ilinet, kcdc_ili, meta_afhsb, meta_norostat, meta, nidss_dengue, nidss_flu, norostat, nowcast, paho_dengue, quidel, sensors, twitter, wiki, signal_dashboard_status, signal_dashboard_coverage, ) endpoints = [ afhsb, cdc, covid_hosp_facility_lookup, covid_hosp_facility, covid_hosp_state_timeseries, covidcast_nowcast, covidcast_meta, covidcast, delphi, dengue_nowcast, dengue_sensors, ecdc_ili, flusurv, fluview_clinicial, fluview_meta, fluview, gft, ght, ilinet, kcdc_ili, meta_afhsb, meta_norostat, meta, nidss_dengue, nidss_flu, norostat, nowcast, paho_dengue, quidel, sensors, twitter, wiki, signal_dashboard_status, signal_dashboard_coverage, ] __all__ = ["endpoints"]
1.070313
1
fwla-center-folder.py
FWLA/fwla-center-folder
0
12797171
import logging import random import requests import board import neopixel import smbus2 from apscheduler.schedulers.blocking import BlockingScheduler class LedController: def reset(self): pass def set(self, id): pass class LoggingLedController(LedController): def reset(self): logging.info('Reset') def set(self, id): logging.info('set {}'.format(id)) # Controller for I2C connected LEDs class I2CLedController(LoggingLedController): def __init__(self): self.bus = smbus2.SMBus(1) self.bus.write_byte_data(0x20, 0x00, 0x00) self.bus.write_byte_data(0x20, 0x01, 0x00) def reset(self): super(I2CLedController, self).reset() self.bus.write_byte_data(0x20, 0x14, 0x00) self.bus.write_byte_data(0x20, 0x15, 0x00) def set(self, id): super(I2CLedController, self).set(id) register = 0x14 if id / 8 > 0: register = 0x15 bitmask = id % 8 self.bus.write_byte_data(0x20, register, bitmask) # Controller for WS2812 connected LEDs class WS2812LedController(LedController): def __init__(self, color): self._color = color self._pixels = neopixel.NeoPixel(board.D18, 144, auto_write=False) self._pixels.fill((0, 0, 0)) self._pixels.show() def reset(self): super(WS2812LedController, self).reset() self._pixels.fill((0, 0, 0)) self._pixels.show() def set(self, id): super(WS2812LedController, self).set(id) self._pixels.fill((0, 0, 0)) self._pixels[id] = self._color self._pixels.show() # BASIC OPTIONS logging.basicConfig(level=logging.INFO) TEST_ENV = 'http://192.168.0.199:8080/v1/display' PROD_ENV = 'http://10.24.6.35/api/v1/display' url = TEST_ENV color = (0, 0, 255) controller = WS2812LedController(color) def job(): address = get_active_address() if address < 0: controller.reset() else: controller.set(address) def get_mock_address(): return random.randint(-1, 100) def get_active_address(): try: r = requests.get(url, timeout=2) data = r.json() if (data['state'] != 'OPERATION'): logging.debug('Not operation state.') return -1 if 'operation' not in data: logging.debug('No operation.') return -1 operation = data['operation'] if 'realEstate' not in operation: logging.debug('No realEstate.') return -1 realEstate = operation['realEstate'] if 'folderAddress' not in realEstate: logging.debug('No folderAddress.') return -1 folderAddress = int(realEstate['folderAddress']) return folderAddress except Exception as e: logging.warn('Exception when getting data.') logging.warn(e) return -1 def init(): logging.info('Starting process.') scheduler = BlockingScheduler() scheduler.add_job(job, 'interval', seconds=5) try: scheduler.start() except (KeyboardInterrupt): controller.reset() logging.info('Stopping process.') if __name__ == "__main__": init()
2.640625
3
dolfyn/test/test_read_adp.py
aidanbharath/dolfyn
0
12797172
<reponame>aidanbharath/dolfyn from dolfyn.main import read_example as read import dolfyn.test.base as tb import sys load = tb.load_tdata save = tb.save_tdata dat_rdi = load('RDI_test01.h5') dat_rdi_i = load('RDI_test01_rotate_beam2inst.h5') dat_awac = load('AWAC_test01.h5') dat_awac_ud = load('AWAC_test01_ud.h5') dat_sig = load('BenchFile01.h5') dat_sigi = load('Sig1000_IMU.h5') dat_sigi_ud = load('Sig1000_IMU_ud.h5') dat_wr1 = load('winriver01.h5') dat_wr2 = load('winriver02.h5') def test_read(make_data=False): td_rdi = read('RDI_test01.000') # This uses the built-in declination! td_sig = read('BenchFile01.ad2cp') td_sigi = read('Sig1000_IMU.ad2cp', userdata=False) td_sigi_ud = read('Sig1000_IMU.ad2cp') td_awac = read('AWAC_test01.wpr', userdata=False) td_awac_ud = read('AWAC_test01.wpr') td_wr1 = read('winriver01.PD0') td_wr2 = read('winriver02.PD0') if make_data: save(td_rdi, 'RDI_test01.h5') save(td_sig, 'BenchFile01.h5') save(td_sigi, 'Sig1000_IMU.h5') save(td_sigi_ud, 'Sig1000_IMU_ud.h5') save(td_awac, 'AWAC_test01.h5') save(td_awac_ud, 'AWAC_test01_ud.h5') save(td_wr1, 'winriver01.h5') save(td_wr2, 'winriver02.h5') return if sys.version_info.major == 2: # This is a HACK for Py2 # for some reason a very small numer of the values in temp_mag # are not the same for py2? # !CLEANUP! # BUG that's loading different data??! td_sigi.pop('sys.temp_mag') dat_sigi_tmp = dat_sigi.copy() dat_sigi_tmp.pop('sys.temp_mag') td_sigi_ud.pop('sys.temp_mag') dat_sigi_ud_tmp = dat_sigi_ud.copy() dat_sigi_ud_tmp.pop('sys.temp_mag') else: dat_sigi_tmp = dat_sigi dat_sigi_ud_tmp = dat_sigi_ud def msg(infile): testfile = infile.split('.')[0] + '.h5' return ("The output of read('{}') does not match '{}'." .format(infile, testfile)) for dat1, dat2, msg in [ (td_rdi, dat_rdi, msg('RDI_test01.000')), (td_sig, dat_sig, msg('BenchFile01.ad2cp')), (td_sigi, dat_sigi_tmp, msg('Sig1000_IMU.ad2cp')), (td_sigi_ud, dat_sigi_ud_tmp, msg('Sig1000_IMU_ud.ad2cp')), (td_awac, dat_awac, msg('AWAC_test01.wpr')), (td_awac_ud, dat_awac_ud, msg('AWAC_test01.wpr+userdata')), (td_wr1, dat_wr1, msg('winriver01.PD0')), (td_wr2, dat_wr2, msg('winriver02.PD0')), ]: yield tb.data_equiv, dat1, dat2, msg if __name__ == '__main__': for func, dat1, dat2, msg in test_read(): func(dat1, dat2, msg)
2.265625
2
api/hpcpm/api/resources/endpoints/nodes/computation_node/SoftLimit.py
tomix86/hpcpm
2
12797173
from flask_restful import Resource, request, abort from flask_restful_swagger import swagger from hpcpm.api import log from hpcpm.api.helpers.database import database from hpcpm.api.helpers.utils import abort_when_not_int, abort_when_node_not_found from hpcpm.api.helpers.constants import COMPUTATION_NODE_PARAM_NAME, COMPUTATION_NODE_NOT_FOUND_RESPONSE, \ COMPUTATION_NODE_FETCHED_RESPONSE, DEVICE_IDENTIFIER_PARAM, DEVICE_SOFT_LIMIT_PARAM, \ DEVICE_SOFT_LIMIT_SET_RESPONSE, DEVICE_NOT_FOUND_RESPONSE, \ NODE_AND_DEVICE_PARAMS, DEVICE_SOFT_LIMIT_SET_RESPONSE_FAILURE class SoftLimit(Resource): @swagger.operation( notes='This endpoint is used for setting soft limit for given device.', nickname='/nodes/computation_node/<string:name>/<string:device_id>/soft_limit', parameters=[ COMPUTATION_NODE_PARAM_NAME, DEVICE_IDENTIFIER_PARAM, DEVICE_SOFT_LIMIT_PARAM ], responseMessages=[ DEVICE_SOFT_LIMIT_SET_RESPONSE, DEVICE_SOFT_LIMIT_SET_RESPONSE_FAILURE, COMPUTATION_NODE_NOT_FOUND_RESPONSE ] ) def put(self, name, device_id): soft_limit = request.args.get('soft_limit') abort_when_not_int(soft_limit) computation_node = abort_when_node_not_found(name) if int(soft_limit) < 0: log.error(str.format('Number is not positive: {}', soft_limit)) abort(400) if not any(d['id'] == device_id for d in computation_node['backend_info']['devices']): log.error('There is no such device: %s', device_id) abort(404) limit_info = { 'name': name, 'device_id': device_id, 'soft_limit': soft_limit } upsert_result = database.replace_soft_limit_for_device(name, device_id, limit_info) if upsert_result.modified_count: log.info('Power limit for device %s:%s was already set in a database to %s', name, device_id, soft_limit) log.info('Stored power limit info %s', limit_info) else: log.info('Stored power limit info %s on id %s', limit_info, upsert_result.upserted_id) return 'Soft limit successfully set', 201 @swagger.operation( notes='This endpoint is used for getting soft limit information from database', nickname='/nodes/computation_node/<string:name>/<string:device_id>/soft_limit', parameters=NODE_AND_DEVICE_PARAMS, responseMessages=[ COMPUTATION_NODE_FETCHED_RESPONSE, DEVICE_NOT_FOUND_RESPONSE ] ) def get(self, name, device_id): result = database.get_soft_limit_for_device(name, device_id) if not result: log.info('No such device %s:%s', name, device_id) abort(404) log.info('Successfully get device %s:%s soft limit info: %s', name, device_id, result) return result, 200 @swagger.operation( notes='This endpoint is used for removing soft limit information from database and device', nickname='/nodes/computation_node/<string:name>/<string:device_id>/soft_limit', parameters=NODE_AND_DEVICE_PARAMS, responseMessages=[ COMPUTATION_NODE_FETCHED_RESPONSE, DEVICE_NOT_FOUND_RESPONSE, ] ) def delete(self, name, device_id): result = database.delete_soft_limit_info(name, device_id) if not result: log.info('No such device %s:%s', name, device_id) abort(404) log.info('Successfully removed soft limit for device %s:%s soft limit info: %s', name, device_id, result) return result, 200
2.328125
2
orchestra/tests/workflows/test_dir/load_sample_data.py
code-review-doctor/orchestra
444
12797174
<reponame>code-review-doctor/orchestra def load(workflow_version): """ Dummy loading function. """ pass
1.039063
1
deepfake_multiple.py
andyboyad/first-order-model
0
12797175
import imageio import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from skimage.transform import resize from IPython.display import HTML import warnings import sys import os from demo import load_checkpoints from demo import make_animation from skimage import img_as_ubyte warnings.filterwarnings("ignore") if len(sys.argv) < 6: print("Usage: deepfake_multiple.py <source name> <template name> <final_vid_name> <rows> <columns> <no shuffle arg>") sys.exit() source_folder = os.path.join(os.curdir, "resources", "combos", sys.argv[1]) image_folder = os.path.join(os.curdir, "resources", "combos", sys.argv[1], "images") template_video = os.path.join(os.curdir, "resources", "combos", sys.argv[1], sys.argv[2]) template_video_name = sys.argv[2] gen_vid_folder = os.path.join(os.curdir, "resources", "combos", sys.argv[1], "gen") final_vid = os.path.join(os.curdir, "resources", "combos", sys.argv[1], sys.argv[3]) final_vid_name = sys.argv[3] x = int(sys.argv[4]) y = int(sys.argv[5]) shuffle = "" if len(sys.argv) > 6: print("SHOULD NOT CREATE SHUFFLE") shuffle="noshuffle" list_images = os.listdir(image_folder) driving_video = imageio.mimread(template_video) driving_video = [resize(frame, (256, 256))[..., :3] for frame in driving_video] generator, kp_detector = load_checkpoints(config_path='config/vox-256.yaml', checkpoint_path='vox-cpk.pth.tar') for image in list_images: image_path = os.path.join(image_folder, image) source_image = imageio.imread(image_path) source_image = resize(source_image, (256, 256))[..., :3] gen_vid_name = image.split(".")[0] gen_vid_name = f"{gen_vid_name}_gen.mp4" gen_vid = os.path.join(gen_vid_folder, gen_vid_name) if not os.path.exists(gen_vid): predictions = make_animation(source_image, driving_video, generator, kp_detector, relative=True) imageio.mimsave(gen_vid, [img_as_ubyte(frame) for frame in predictions]) combiner = os.path.join(os.curdir, "resources", "combos", "createcombo.py") os.system(f"python3 {combiner} {source_folder} {template_video_name} {final_vid_name} {x} {y} {shuffle}") sys.exit() #Resize image and video to 256x256 #save resulting video #predictions2 = make_animation(source_image, driving_video, generator, kp_detector, relative=False, adapt_movement_scale=True) #imageio.mimsave("testing.mp4", [img_as_ubyte(frame) for frame in predictions2]) #os.system(f"python3 {createvid} {template_video} {gen_vid} {final_vid}") #print(f"VIDEO GENERATED: {final_vid}")
2.28125
2
integreat_cms/api/v3/events.py
Integreat/cms-v2
21
12797176
<reponame>Integreat/cms-v2 """ This module includes functions related to the event API endpoint. """ from copy import deepcopy from datetime import timedelta from django.conf import settings from django.http import JsonResponse from django.utils import timezone from django.utils.html import strip_tags from ...cms.models.events.event_translation import EventTranslation from ...cms.utils.slug_utils import generate_unique_slug from ..decorators import json_response from .locations import transform_poi def transform_event(event): """ Function to create a JSON from a single event object. :param event: The event which should be converted :type event: ~integreat_cms.cms.models.events.event.Event :return: data necessary for API :rtype: dict """ return { "id": event.id, "start_date": event.start_date, "end_date": event.end_date, "all_day": event.is_all_day, "start_time": event.start_time, "end_time": event.end_time, "recurrence_id": event.recurrence_rule.id if event.recurrence_rule else None, "timezone": settings.CURRENT_TIME_ZONE, } def transform_event_translation(event_translation): """ Function to create a JSON from a single event_translation object. :param event_translation: The event translation object which should be converted :type event_translation: ~integreat_cms.cms.models.events.event_translation.EventTranslation :return: data necessary for API :rtype: dict """ event = event_translation.event if event.location: location_translation = ( event.location.get_public_translation(event_translation.language.slug) or event.location.best_translation ) else: location_translation = None absolute_url = event_translation.get_absolute_url() return { "id": event_translation.id, "url": settings.BASE_URL + absolute_url, "path": absolute_url, "title": event_translation.title, "modified_gmt": event_translation.last_updated.strftime("%Y-%m-%d %H:%M:%S"), "excerpt": strip_tags(event_translation.content), "content": event_translation.content, "available_languages": event_translation.available_languages, "thumbnail": event.icon.url if event.icon else None, "location": transform_poi(event.location, location_translation), "event": transform_event(event), "hash": None, } def transform_event_recurrences(event_translation, today): """ Yield all future recurrences of the event. :param event_translation: The event translation object which should be converted :type event_translation: ~integreat_cms.cms.models.events.event_translation.EventTranslation :param today: The first date at which event may be yielded :type today: ~datetime.date :return: An iterator over all future recurrences up to ``settings.API_EVENTS_MAX_TIME_SPAN_DAYS`` :rtype: Iterator[:class:`~datetime.date`] """ event = event_translation.event recurrence_rule = event.recurrence_rule if not recurrence_rule: return # In order to avoid unnecessary computations, check if any future event # may be valid and return early if that is not the case if ( recurrence_rule.recurrence_end_date and recurrence_rule.recurrence_end_date < today ): return event_length = event.end_date - event.start_date start_date = event.start_date event_translation.id = None # Store language and slug for usage in loop current_language = event_translation.language current_slug = event_translation.slug # Calculate all recurrences of this event for recurrence_date in recurrence_rule.iter_after(start_date): if recurrence_date - max(start_date, today) > timedelta( days=settings.API_EVENTS_MAX_TIME_SPAN_DAYS ): break if recurrence_date < today or recurrence_date == start_date: continue # Create all temporary translations of this recurrence recurrence_translations = {} if event.region.fallback_translations_enabled: languages = event.region.active_languages else: languages = event.public_languages for language in languages: # Create copy in memory to make sure original translation is not affected by changes event_translation = deepcopy(event_translation) # Fake the requested language event_translation.language = language event_translation.slug = generate_unique_slug( **{ "slug": f"{current_slug}-{recurrence_date}", "manager": EventTranslation.objects, "object_instance": event_translation, "foreign_model": "event", "region": event.region, "language": language, } ) # Reset id to make sure id does not conflict with existing event translation event_translation.event.id = None # Set date to recurrence date event_translation.event.start_date = recurrence_date event_translation.event.end_date = recurrence_date + event_length # Clear cached property in case url with different language was already calculated before try: del event_translation.url_prefix except AttributeError: pass recurrence_translations[language.slug] = event_translation # Set the prefetched public translations to make sure the recurrence translations are correctly listed in available languages for recurrence_translation in recurrence_translations.values(): recurrence_translation.event.prefetched_public_translations_by_language_slug = ( recurrence_translations ) # Update translation object with the one with prefetched temporary translations event_translation = recurrence_translations[current_language.slug] # Clear cached property in case available languages with different recurrence was already calculated before try: del event_translation.available_languages except AttributeError: pass yield transform_event_translation(event_translation) @json_response # pylint: disable=unused-argument def events(request, region_slug, language_slug): """ List all events of the region and transform result into JSON :param request: The current request :type request: ~django.http.HttpRequest :param region_slug: The slug of the requested region :type region_slug: str :param language_slug: The slug of the requested language :type language_slug: str :return: JSON object according to APIv3 events endpoint definition :rtype: ~django.http.JsonResponse """ region = request.region # Throw a 404 error when the language does not exist or is disabled region.get_language_or_404(language_slug, only_active=True) result = [] now = timezone.now().date() for event in region.events.prefetch_public_translations().filter(archived=False): event_translation = event.get_public_translation(language_slug) if event_translation: if event.end_date >= now: result.append(transform_event_translation(event_translation)) for future_event in transform_event_recurrences(event_translation, now): result.append(future_event) return JsonResponse( result, safe=False ) # Turn off Safe-Mode to allow serializing arrays
2.34375
2
groupon_data.py
AndrewSLowe/yipitdata
1
12797177
import pandas as pd file_name = r'/Users/andrewlowe/yipitdata/Q4_2013_Groupon_North_America_Data_XLSX.xlsx' df = pd.read_excel(file_name) # Q4_13_NA dataframe Q4_13_NA = df # (138534, 7) There are 138534 items in the dataframe. Q4_13_NA.shape Q4_13_NA.describe() Q4_13_NA.describe(exclude='number') Q4_13_NA[] segment_local = Q4_13_NA[(Q4_13_NA['Segment'] == 'Local')] segment.shape segment = Q4_13_NA[(Q4_13_NA['Segment'] == 'Local')]
2.78125
3
codes/synthetic.py
facebookresearch/metamulti
1
12797178
<reponame>facebookresearch/metamulti #!/usr/bin/env python3 """ Plot the subpopulation deviations for a range of synthetic toy examples. Copyright (c) Meta Platforms, Inc. and affiliates. This script creates a directory, "unweighted", in the working directory if the directory does not already exist, then creates many files there. The filenames are "synth####.pdf", "synth####.txt", "reverse####.pdf", "reverse####.jpg", "randwalk####.pdf", and "randwalk####.txt", where "####" ranges through the powers of 2 from 0002 to 4096. Each pdf file plots the cumulative differences between the subpopulation and the full population, controlling for the specified number of covariates. The corresponding txt files report metrics about the plots. The files named "reverse####.pdf" and "reverse####.txt" condition on the covariates in the reverse order from those named "synth####.pdf" and "synth####.txt". The files named "randwalk####.pdf" and "randwalk####.txt" use the same distribution of responses for the subpopulation as for the full population. The data consists of a full population of 1,000 individual members and a subpopulation of 100 subselected uniformly at random from the full population. Each member of the full population consists of p independent and identically distributed draws from the uniform distribution over the interval (0, 1), where p is the number of covariates. We condition on all the covariates. We generate the responses via the following procedure, which consists of only a single stage for the files whose names begin "randwalk...", but consists of two separate stages for the files whose names begin "synth..." or "reverse..."): we collect together the covariates for all the members into a 1000 x p matrix x, construct the p x 1 vector v whose entries are independent and identically distributed draws from the standard normal distribution, and finally then apply the Heaviside function to every entry of "centered" (= x-0.5) applied to v (the Heaviside function is also known as the unit step function, and takes the value 0 for negative arguments and the value 1 for positive arguments). The result is a 1000 x 1 vector of 0s and 1s whose entries are the responses for the corresponding members of the full population. That concludes the first stage of the procedure. For the files whose names begin "synth..." or begin "reverse...", we set the responses for all members of the subpopulation to 1, as the second stage of the procedure. This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. """ import math import numpy as np from numpy.random import default_rng import os from hilbertcurve.hilbertcurve import HilbertCurve from subpop import cumulative # Set the number of examples. m = 1000 # Set the size of the subpopulation. n = 100 # Set the number of bits in the discretization (mantissa). precision = 64 # Determine the data type from precision. if precision == 8: dtype = np.uint8 elif precision == 16: dtype = np.uint16 elif precision == 32: dtype = np.uint32 elif precision == 64: dtype = np.uint64 else: raise TypeError(f'There is no support for precision = {precision}.') # Create a directory as needed. dir = 'unweighted' try: os.mkdir(dir) except FileExistsError: pass dir += '/' # Consider both the original ordering of covariates and the reverse ordering, # as well as a complete lack of significant deviation in the responses # for the subpopulation. for (reverse, diff) in [(False, True), (True, True), (False, False)]: print(f'reverse = {reverse}') print(f'diff = {diff}') pmax = 12 # Set the number (p) of covariates. for p in [2**k for k in range(1, pmax + 1)]: print(f'p = {p}') # Set up the random number generator. rng = default_rng(seed=543216789) # Generate a random permutation for the indices of the subpopulation. inds = rng.permutation((m))[:n] # Generate data at random. x = rng.integers(2**precision - 1, size=(m, p), dtype=dtype) if reverse: x = x[:, ::-1] # Perform the Hilbert mapping from p dimensions to one dimension. hc = HilbertCurve(precision, p) ints = hc.distances_from_points(x) assert np.unique(ints).size == x.shape[0] # Sort according to the scores. perm = np.argsort(ints) x = x[perm, :] invperm = np.arange(len(perm)) invperm[perm] = np.arange(len(perm)) inds = invperm[inds] inds = np.sort(inds) # Construct scores for plotting. imin = np.min(ints) imax = np.max(ints) s = (np.sort(ints) - imin) / (imax - imin) # Ensure uniqueness even after roundoff errors. eps = np.finfo(np.float64).eps s = s + np.arange(0, s.size * eps, eps) s = s.astype(np.float64) # Form a random direction. w = rng.standard_normal(size=(p)) w /= np.linalg.norm(w, ord=2) if reverse: w = w[::-1] # Generate responses based on the random direction and membership # in the subpopulation. centered = x.astype(np.float64) - 2**(precision - 1) r = (np.sign(centered @ w) + 1) / 2 if diff: r[inds] = 1 # Pad with zeros the number in the filename so that every filename # has the same number of characters for its length. max_digits = math.ceil(pmax * math.log(2) / math.log(10)) if reverse and diff: name = 'reverse' elif diff: name = 'synth' else: name = 'randwalk' filename = dir + name + str(p).zfill(max_digits) + '.pdf' # Construct the graph of cumulative differences. majorticks = 10 minorticks = 100 kuiper, kolmogorov_smirnov, lenscale = cumulative( r, s, inds, majorticks, minorticks, filename=filename) # Save metrics in a text file. filename = filename[:-4] + '.txt' with open(filename, 'w') as f: f.write('m:\n') f.write(f'{len(s)}\n') f.write('n:\n') f.write(f'{len(inds)}\n') f.write('lenscale:\n') f.write(f'{lenscale}\n') f.write('Kuiper:\n') f.write(f'{kuiper:.4}\n') f.write('Kolmogorov-Smirnov:\n') f.write(f'{kolmogorov_smirnov:.4}\n') f.write('Kuiper / lenscale:\n') f.write(f'{(kuiper / lenscale):.4}\n') f.write('Kolmogorov-Smirnov / lenscale:\n') f.write(f'{(kolmogorov_smirnov / lenscale):.4}\n')
2.9375
3
tests/unit/agent/test_remote_agent.py
DEX-Company/ocean-py
0
12797179
<filename>tests/unit/agent/test_remote_agent.py """ Test RemoteAgent Unit """ import pytest import requests import secrets from starfish.agent.remote_agent import RemoteAgent from starfish.exceptions import StarfishConnectionError from starfish.middleware.agent.remote_agent_adapter import RemoteAgentAdapter from starfish.network.ddo import DDO def test_remote_agent_set_http_client(): ddo = DDO.create('http://localhost:3030') agent = RemoteAgent(ddo) assert(agent.http_client) new_client = object() agent.http_client = new_client assert(agent.http_client) assert(isinstance(agent.http_client, object)) def test_remote_agent_get_adapter(): ddo = DDO.create('http://localhost:3030') agent = RemoteAgent(ddo) assert(agent.adapter) assert(isinstance(agent.adapter, RemoteAgentAdapter)) def test_remote_agent_get_meta_list(): ddo = DDO.create('http://localhost') agent = RemoteAgent(ddo) with pytest.raises(StarfishConnectionError): result = agent.get_metadata_list() def test_remote_agent_is_metadata_match(): filter = { 'name': 'test' } metadata = { 'name': 'test', 'more_data': 'test_data' } assert(RemoteAgent.is_metadata_match(filter, metadata)) metadata = {} for index in range(0, 100): name = f'name_{index}' metadata[name] = secrets.token_hex(64) filter = {} for index in range(10, secrets.randbelow(60)): name = f'name_{index}' filter[name] = metadata[name] assert(RemoteAgent.is_metadata_match(filter, metadata)) filter['new_value'] = 'cannot match' assert(not RemoteAgent.is_metadata_match(filter, metadata))
2.296875
2
examples/typical_script.py
Zulko/pompei
46
12797180
<reponame>Zulko/pompei """ This is a typical script to reconstruct one frame of a movie using a mosaic of other frames with the Python package Pompei. It generates this picture of general Maximus in Gladiator using 1100+ frames of the movie. http://i.imgur.com/Eoglcof.jpg This script goes in five steps: 1. Extract one frame every 5 second of the movie. Compute their 'signatures' 2. Extract one special frame (the one to be reconstructed) from the movie. 3. Split this frame into subregions and compute the signature of each region. 4. Run an algorithm to find (using the signatures) wich frames of the movie match best with the different regions of the picture to reconstruct. The algorithm also ensures that many different frames are used. 5. Assemble the selected best-matching frames into one big picture and save. The code is well commented to paliate for the lack of documentation. For more, see the functions doctrings. """ from pompei import (movie_to_folder, get_image_signatures_from_folder, compute_signatures_in_image, find_best_matches, best_matches_to_image) # When comparing the frames of the movie to the regions of the picture to # reconstruct, each frame and each region will be reduced to Nh x Nw # zones from which the mean colors are computed. Here we choose 3 x 3. # The resulting set of 9 colors is called the signature of the region/frame. signatures_nh=3 signatures_nw=3 ### STEP 1 - EXTRACTING THE FRAMES OF THE MOVIE # For this example we treat gladiator. The result is this mosaic # http://i.imgur.com/Eoglcof.jpg foldername = "gladiator" # name of the folder for the frame pictures filename = 'gladiator.flv' # the video file, from a legally-baught DVD # The next call extracts the frames from the movie. At the same time it computes # the signatures of the frames and store them in file gladiator/signatures.txt # It's pretty long (5 minutes) and should only be done once, then you can # comment it out if you want to fine-tune the parameters in the next lines. image_folder_signatures = movie_to_folder(filename, foldername, fps=1.0/5, # take one frame every 5 seconds resize_factor=0.2, # downsize all frames of a factor 1/5 signatures_nh=signatures_nh, signatures_nw=signatures_nw, subclip=(5*60,-10*60)) # cut 5-10 minutes to avoid credits. # Get the signatures of each frame, already computed at the previous step. image_folder_signatures = get_image_signatures_from_folder(foldername) ### STEP 2 - READING THE IMAGE TO BE RECONSTRUCTED # Now we load the image to reconstruct. This could be any image but out of # simplicity we choose one frame frame of the movie, so that it will have the # same dimensions as the frames that will compose it. # We take the scene just before "My name is Maximus...". import moviepy.editor as mpy image = mpy.VideoFileClip(filename).get_frame('01:26:43.00') # a numpy array. ### STEP 3 - SPLIT THE IMAGE AND COMPUTE THE SIGNATURES OF THE REGIONS nh = nw = 60 image_signatures = compute_signatures_in_image(image, signatures_nh, signatures_nw, nh, nw) ### STEP 4 - FIND THE BEST-MATCHING FRAMES. OPTIMIZE. # This step is quite quick because we work with signatures (i.e. reduced # version of the images. # The algorithm first attributes to each region of the final picture the movie # frame that matches best. Some frames will be used more than once. # Then, goal=5 means that the algorithm will iteratively diversify the frames # used until the most used frames is used 5 times or less. # npasses=3000 tells the algorithm to give up after 3000 iterations if it # cannot reach its goal of 5. Choosing a lower npasses (like npasses=100) can be # good sometimes to avoid over-diversification. best_matches = find_best_matches(image_signatures, image_folder_signatures, npasses=3000,goal=5) ### STEP 5 - ASSEMBLE THE FRAMES INTO ONE BIG PNG FILE # This produces the final picture: gladiator.png # This will take long and produce a heavy PNG (50Mo) which can then be # downsized by converting it to JPEG. best_matches_to_image("%s.png"%foldername, best_matches, foldername)
3.359375
3
DataGrooming/maf2vcf.py
rschenck/DPhilRotation1Part2
1
12797181
''' Script to convert a MAF to a vcf4.2 file using python >=3.6. Created by <NAME> 8 March 2018 ''' import os import sys from optparse import OptionParser import subprocess from functools import wraps import datetime import time import numpy as np def OptionParsing(): usage = 'usage: %prog -i <*.maf> -o <directory> -r <ref.fa>' parser = OptionParser(usage) parser.add_option('-i', '--input_maf', dest="maf", default=None, help=".maf file to be converted.") parser.add_option('-o', '--output_dir', dest="outDir", default=None, help="Output directory for .vcf file") parser.add_option('-r', '--ref_genome', dest="refGenome", default="/Users/schencro/Desktop/Bioinformatics_Tools/Ref_Genomes/Ensembl/GRCh37.75/GRCh37.75.fa", help="Reference genome to be used for maf2vcf conversion.") parser.add_option('-s', '--spotCheckMaf', dest='spotcheck', default=False, action='store_true', help="Use this flag to verify reference matching to maf file. Default=False") parser.add_option('-v', '--verbose', dest='verbose', default=False, action='store_true', help="Use this flag to turn on verbose mode. Default=False") (options, args) = parser.parse_args() if options.maf is None or options.outDir is None or options.refGenome is None: print("ERROR: Please include arguments for maf file, output directory, and reference genome (single fasta file).") sys.exit() else: pass return (options, parser) def fn_timer(function): ''' Use this as a wrapper at the top of any function you want to get run time information about. :param function: Function of interest. :return: A function to wrap around a function. ''' @wraps(function) def function_timer(*args, **kwargs): t0 = time.time() result = function(*args, **kwargs) t1 = time.time() print ("INFO: Total time running %s: %s minutes" % (function.__name__, str(round((t1-t0)/60.,2))) ) return result return function_timer def UpdateProgressGetN(fileName): if fileName[len(fileName)-1]=="z": cmd = "gzip -cd %s | wc -l" % (fileName) pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout else: cmd = "wc -l %s" % (fileName) pipe = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout return(int(pipe.read().decode("utf-8").lstrip(" ").split(" ")[0])) def UpdateProgress(i, n, DisplayText): ''' Prints a progress bar where appropriate. :param i: Current Step :param n: Total number of steps. :param DisplayText: A string that you want to print out that is informative. :return: None ''' sys.stdout.write('\r') j = (i + 1) / n sys.stdout.write("[%-20s] %d%%\t INFO: %s" % ('=' * int(20 * j), 100 * j, DisplayText)) sys.stdout.flush() def SamtoolsFaidx(refGenome, genomicPos, ref='', check=True): ''' Obtain reference sequence and perform check if needed. :param check: Whether or not to throw error if the provided reference matches :param refGenome: Reference Fasta file :param genomicPos: Genomic Position of interest. :param ref: Reference sequence to compare to fetched sequence. :return: Fetched reference sequence. ''' proc = subprocess.Popen(['samtools','faidx',refGenome, genomicPos], stdout=subprocess.PIPE) proc.wait() outInfo = proc.stdout.readlines() refSeq = ''.join([line.decode('utf-8').rstrip('\n') for line in outInfo[1:]]) if check: if refSeq == ref: return(True) else: print('ERROR: May not be proper reference genome') print('ERROR: Improper reference. Found %s at %s. Reference genome shows %s' % (ref, genomicPos, refSeq)) sys.exit() return(None) else: return(refSeq) def SpotCheckProperReference(mafFile, Options, fileLength): ''' Randomly samples the file to ensure proper reference file is used. Random sampling is employed to ensure proper reference is used. Will spot check 2% of a file of more than 200 variants. :param mafFile: Input mafFile object (opened) :param Options: Parser Options :param fileLength: Length of the file being read :return: None ''' print("INFO: Verifying maf file.") if fileLength > 200: n=0.02 else: n=1. a = np.arange(fileLength) np.random.shuffle(a) a = list(a[:int(fileLength*n)]) i = 0 count = 0 for line in mafFile: if i != 0 and line.startswith('Hugo_Symbol Chromosome Start_position') == False: # checkIt = len([k for k in a if k==i]) # if checkIt==1: UpdateProgress(count, len(a), "INFO: Verifying maf file") count+=1 line = line.rstrip('\n').split('\t') genomicPos = line[1] + ":" + line[2] + "-" + line[3] ref = line[7] mutType = line[5] variantClass = line[6] if variantClass != "INS" and variantClass != "TNP" and variantClass !="ONP": toContinue = SamtoolsFaidx(Options.refGenome, genomicPos, ref) if count == len(a): print('') return(toContinue) # else: # print(checkIt) # print(line) # print([k for k in a]) # sys.exit("Problem here") elif i != 0 and line.startswith('Hugo_Symbol Chromosome Start_position') == False: print("") print("ERROR: No header found in maf file.") elif line.startswith('Hugo_Symbol Chromosome Start_position') == True: toContinue = True else: sys.exit("What the fuck") i+=1 print('') return(toContinue) def processSNP(line, chrom, pos, rsid, mutType, variantType, strand, errorFile, Options): ref = line[7] tAllele1 = line[8] # Normal Allele tAllele2 = line[9] # Alt Allele QUAL = line[42] if QUAL == 'None' or QUAL == 'NA' or QUAL == '': QUAL = '.' if ref == tAllele1: altAllele = tAllele1 refAllele = tAllele2 else: altAllele = tAllele2 refAllele = tAllele1 ref_reads = line[39] alt_reads = line[38] reportedVAF = line[28] # Get phasing information and determine reads for vaf==1 if ref_reads == 'NA' or alt_reads == 'NA' and reportedVAF == '1': GT = "1/1" # Appears to be homozygous for alternative allele (germline unlikely since it is called w.r.t normal?) vaf = reportedVAF # Sets VAF equal to 1 if ref_reads == 'NA': ref_reads = '.' total_reads = alt_reads else: alt_reads = '.' total_reads = ref_reads sampleField = ':'.join([GT, ','.join([ref_reads, alt_reads]), total_reads, vaf]) # Tossing these very strange mutations within the MAF file. elif ref_reads == 'NA' or alt_reads == 'NA' and reportedVAF == 'NA': with open(errorFile, 'a') as errerOut: errerOut.write('\t'.join(line)+'\n') if Options.verbose: print("WARNING: %s" % '\t'.join(line)) return(None) # Simple SNV cases else: total_reads = str(int(ref_reads) + int(alt_reads)) vaf = repr(round(int(alt_reads) / float(total_reads), 4)) if vaf != '1.' and strand=="+" or strand=="-": GT="0|1" else: GT="0/1" sampleField = ':'.join([GT, ','.join([ref_reads, alt_reads]), total_reads, vaf]) # Last check for interesting but unresolved MAF line if (ref != tAllele1 and ref != tAllele2) or (strand != '+' and strand != '-'): with open(errorFile, 'a') as errerOut: errerOut.write('\t'.join(line)+'\n') if Options.verbose: print("WARNING: %s" % '\t'.join(line)) return(None) # Create INFO field INFO = "MAF_Hugo_Symbol=" + line[0] + ";MAF_ref_context=" + line[15].upper() + ";MAF_Genome_Change=" + line[14] + ";MAF_Variant_Type=" + variantType + ";MAF_Variant_Classification=" + mutType +";DCC_Project_Code=" + line[44] # Normal variant field if anything if line[41]=="NA": normalGenotype = ".:.,.:.:." else: normalGenotype = ".:.,.:.:%s"%(line[41]) # Final vcf line out lineOut = [chrom, pos, rsid, refAllele, altAllele, QUAL, '.', INFO, "GT:AD:DP:VF", normalGenotype, sampleField] return(lineOut) def processDEL(line, chrom, pos, rsid, mutType, variantType, strand, errorFile, Options): ref = line[7] tAllele1 = line[8] # Normal Allele Typically tAllele2 = line[9] # Alt Allele Typically QUAL = line[42] if QUAL == 'None' or QUAL == 'NA' or QUAL == '': QUAL = '.' if ref == tAllele1: altAllele = tAllele1 refAllele = tAllele2 else: altAllele = tAllele2 refAllele = tAllele1 # Obtain the reference sequence + 1 preceding base for the DEL refAnchorPos = str(int(pos)-1) # Fetch the base that precedes the deletion. refSeq = SamtoolsFaidx(Options.refGenome, chrom + ":" + refAnchorPos + "-" + line[3], check=False) if refSeq[1:] != altAllele: print("ERROR: Deletion alternative allele does not match reference sequence. %s" % ('\t'.join(line))) sys.exit() # VCF reference is the preceding base plus the reported deletion in the MAF file. vcfRef = refSeq # VCF has base directly preceding the deletion as the alternative base and the variant pos vcfAlt=refSeq[0] vcfPos=refAnchorPos # Get read information iref_reads = line[37] ialt_reads = line[36] ref_reads = line[39] alt_reads = line[38] reportedVAF = line[28] i_t_vaf = line[43] # Get phasing information and determine reads for vaf==1 if (ref_reads != 'NA' or iref_reads!='NA') and (alt_reads != 'NA' or ialt_reads!='NA'): GT="0/1" ref_reads = [read for read in [ref_reads, iref_reads] if read != "NA"][0] alt_reads = [read for read in [alt_reads, ialt_reads] if read != "NA"][0] total_reads = str(int(ref_reads) + int(alt_reads)) vaf = str(int(alt_reads)/float(total_reads)) elif i_t_vaf!="" and i_t_vaf!="NA" and ref_reads == 'NA' and iref_reads=='NA' and alt_reads == 'NA' and ialt_reads=='NA': vaf=i_t_vaf GT="./." ref_reads = '.' alt_reads = '.' total_reads = '.' elif (i_t_vaf=="" or i_t_vaf=="NA") and ref_reads == 'NA' and iref_reads=='NA' and alt_reads == 'NA' and ialt_reads=='NA': GT='./.' ref_reads='.' alt_reads='.' total_reads='.' vaf='.' else: sys.exit("ERROR: Problem processing DEL %s"%('\t'.join(line))) sampleField = ':'.join([GT, ','.join([ref_reads, alt_reads]), total_reads, vaf]) # Create INFO field INFO = "MAF_Hugo_Symbol=" + line[0] + ";MAF_ref_context=" + line[15].upper() + ";MAF_Genome_Change=" + line[ 14] + ";MAF_Variant_Type=" + variantType + ";MAF_Variant_Classification=" + mutType + ";DCC_Project_Code=" + \ line[44] # Normal variant field if anything if line[41] == "NA": normalGenotype = ".:.,.:.:." else: normalGenotype = ".:.,.:.:%s" % (line[41]) lineOut = [chrom, vcfPos, rsid, vcfRef, vcfAlt, QUAL, '.', INFO, "GT:AD:DP:VF", normalGenotype, sampleField] return(lineOut) def processINS(line, chrom, pos, rsid, mutType, variantType, strand, errorFile, Options): ref = line[7] tAllele1 = line[8] # Normal Allele Typically tAllele2 = line[9] # Alt Allele Typically QUAL = line[42] if QUAL == 'None' or QUAL == 'NA' or QUAL == '': QUAL = '.' if tAllele1 == '-': altAllele = tAllele2 else: altAllele = tAllele1 # Obtain the reference sequence + 1 preceding base for the DEL refAnchorPos = str(int(pos) - 1) # Fetch the base that precedes the deletion. refSeq = SamtoolsFaidx(Options.refGenome, chrom + ":" + refAnchorPos + "-" + line[3], check=False) # VCF reference is the preceding base in the insertion in MAF vcfRef = refSeq[0] # VCF has base directly preceding the deletion as the alternative base and the variant pos vcfAlt = refSeq[0]+altAllele vcfPos = refAnchorPos # Get read information iref_reads = line[37] ialt_reads = line[36] ref_reads = line[39] alt_reads = line[38] reportedVAF = line[28] i_t_vaf = line[43] # Get phasing information and determine reads for vaf==1 if (ref_reads != 'NA' or iref_reads != 'NA') and (alt_reads != 'NA' or ialt_reads != 'NA'): GT = "0/1" ref_reads = [read for read in [ref_reads, iref_reads] if read != "NA"][0] alt_reads = [read for read in [alt_reads, ialt_reads] if read != "NA"][0] total_reads = str(int(ref_reads) + int(alt_reads)) vaf = str(int(alt_reads) / float(total_reads)) elif i_t_vaf != "" and i_t_vaf != "NA" and ref_reads == 'NA' and iref_reads == 'NA' and alt_reads == 'NA' and ialt_reads == 'NA': vaf = i_t_vaf GT = "./." ref_reads = '.' alt_reads = '.' total_reads = '.' elif ( i_t_vaf == "" or i_t_vaf == "NA") and ref_reads == 'NA' and iref_reads == 'NA' and alt_reads == 'NA' and ialt_reads == 'NA': GT = './.' ref_reads = '.' alt_reads = '.' total_reads = '.' vaf = '.' else: sys.exit("ERROR: Problem processing INS %s" % ('\t'.join(line))) sampleField = ':'.join([GT, ','.join([ref_reads, alt_reads]), total_reads, vaf]) # Create INFO field INFO = "MAF_Hugo_Symbol=" + line[0] + ";MAF_ref_context=" + line[15].upper() + ";MAF_Genome_Change=" + line[ 14] + ";MAF_Variant_Type=" + variantType + ";MAF_Variant_Classification=" + mutType + ";DCC_Project_Code=" + \ line[44] # Normal variant field if anything if line[41] == "NA": normalGenotype = ".:.,.:.:." else: normalGenotype = ".:.,.:.:%s" % (line[41]) lineOut = [chrom, vcfPos, rsid, vcfRef, vcfAlt, QUAL, '.', INFO, "GT:AD:DP:VF", normalGenotype, sampleField] return (lineOut) def CreateVCFLine(line, errorFile, Options): line = line.rstrip('\n').split('\t') # Genomic Position chrom, pos, id = line[1], line[2], line[10] # Get rs ID rsid = line[10] if rsid == '': rsid = '.' elif rsid.startswith("rs") == False: if Options.verbose: print("ERROR: %s"%(line)) sys.exit("ERROR: Problem in id column") # Strand Information strand = line[4] # Variant Classification/Type (Type is SNP, INS, DEL, etc.) mutType = line[5] variantType = line[6] # Create proper vcf formatted information if mutType == '': mutType = '.' if variantType == '': variantType = '.' # Determine type of variant to continue processing. linetowrite = None if variantType=="SNP": linetowrite = processSNP(line, chrom, pos, rsid, mutType, variantType, strand, errorFile, Options) elif variantType=="DEL": linetowrite = processDEL(line, chrom, pos, rsid, mutType, variantType, strand, errorFile, Options) elif variantType=="INS": linetowrite = processINS(line, chrom, pos, rsid, mutType, variantType, strand, errorFile, Options) elif variantType=="TNP" or variantType=="ONP": with open(errorFile, 'a') as errerOut: errerOut.write('\t'.join(line)+'\n') else: # This may seem duplicitious, but I explicityly want to know as much of what I'm choosing to filter out as possible... if Options.verbose: print("WARNING: Malformed MAF entry. %s"%('\t'.join(line))) print('') with open(errorFile, 'a') as errerOut: errerOut.write('\t'.join(line)+'\n') # print(line) # sys.exit("ERROR: Malformed MAF entry.") return(linetowrite) def CreateHeader(ioObject, Options, tumorID, normalID): now = datetime.datetime.now() ioObject.write("##fileformat=VCFv4.2\n") ioObject.write("##fileDate=%s\n"%(now.date())) ioObject.write("##source=maf2vcf.py\n") ioObject.write("##reference=%s\n"%(Options.refGenome)) ioObject.write("##sampleColumns=Normal.Tumor\n") ioObject.write("##INFO=<ID=MAF_Hugo_Symbol,Number=1,Type=String,Description=\"HUGO Symbol in original MAF file.\">\n") ioObject.write("##INFO=<ID=MAF_ref_context,Number=1,Type=String,Description=\"Reference context in original MAF file.\">\n") ioObject.write("##INFO=<ID=MAF_Genome_Change,Number=1,Type=String,Description=\"Genome change in original MAF file.\">\n") ioObject.write("##INFO=<ID=MAF_Variant_Type,Number=1,Type=String,Description=\"Variant type (SNP,INS,DEL) in original MAF file.\">\n") ioObject.write("##INFO=<ID=MAF_Variant_Classification,Number=1,Type=String,Description=\"Variant Classification (if SNP) in original MAF file.\">\n") ioObject.write("##INFO=<ID=DCC_Project_Code,Number=1,Type=String,Description=\"DCC Project Code in original MAF file.\">\n") ioObject.write("##FORMAT=<ID=GT,Number=1,Type=String,Description=\"Genotype\">\n") ioObject.write("##FORMAT=<ID=AD,Number=2,Type=Integer,Description=\"Allelic depths of REF and ALT(s) in the order listed\">\n") ioObject.write("##FORMAT=<ID=DP,Number=1,Type=Integer,Description=\"Total read depth across this site\">\n") ioObject.write("##FORMAT=<ID=VF,Number=1,Type=Float,Description=\"Variant Allele Frequency.\">\n") ioObject.write("#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t%s\t%s\n"%(normalID,tumorID)) @fn_timer def ProcessFile(Options): n = UpdateProgressGetN(Options.maf) if Options.spotcheck: with open(Options.maf, 'r') as inFile: SpotCheckProperReference(inFile, Options, n) with open(Options.maf,'r') as inFile: i = 0 for line in inFile: if i == 1: toPullIDs = line.rstrip('\n').split('\t') break else: header = line i+=1 tumorID = toPullIDs[12] normalID = toPullIDs[13] count = 0 i = 0 with open(Options.maf, 'r') as inFile: with open(Options.outDir + Options.maf.split('/')[len(Options.maf.split('/'))-1].replace('.maf','.vcf'), 'w') as outVCF: errorFile = Options.outDir + Options.maf.split('/')[len(Options.maf.split('/')) - 1].replace('.maf', '.ignoredSNVs.maf') with open(errorFile, 'w') as errorOut: errorOut.write(header) CreateHeader(outVCF, Options, tumorID, normalID) for line in inFile: UpdateProgress(i, n, "Processing Maf File") if line.startswith('Hugo_Symbol Chromosome Start_position'): count+=1 i += 1 else: i += 1 linetoWrite = CreateVCFLine(line, errorFile, Options) if linetoWrite is not None: outVCF.write('\t'.join(linetoWrite)+'\n') print('') print("INFO: Sorting vcf file.") vcfFile = Options.outDir + Options.maf.split('/')[len(Options.maf.split('/'))-1].replace('.maf','.vcf') vcfFileSorted = Options.outDir + Options.maf.split('/')[len(Options.maf.split('/'))-1].replace('.head.maf','.sorted.vcf.gz') os.system("cat %s | awk '$1 ~ /^#/ {print $0;next} {print $0 | \"LC_ALL=C sort -k1,1 -k2,2n\"}' | gzip > %s"%(vcfFile, vcfFileSorted)) os.system("rm %s"%(vcfFile)) os.system("gzip %s"%(errorFile)) def main(): print("INFO: Processing MAF file.") FilePath = os.path.dirname(os.path.abspath(__file__)) (Options, Parser) = OptionParsing() ProcessFile(Options) if __name__=="__main__": main()
2.75
3
make_cfg.py
kangwonlee/reposetman
0
12797182
<gh_stars>0 cfg_template = r"""[18pfd_{i:02d}] list = 18pfd_wk{i:02d}.txt folder = repository\wk{i:02d} count_commits = True run_all = True pound_count = True after = 2018-08-27 12:52 """ for i in range(5, 10+1): if 8 != i: print(cfg_template.format(**{'i': i}))
2.1875
2
test/test_finalize.py
sbacchio/tuneit
0
12797183
from tuneit.graph import visualize from tuneit.tunable import * from tuneit.variable import * from tuneit.tunable import Tunable from tuneit.finalize import finalize from pytest import raises def test_finalize(): with raises(TypeError): finalize(1) a = variable(range(10), default=2) assert finalize(a)[finalize(a).value] == finalize(a).value c = variable(range(10)) b = finalize(a * a + c) assert set(b.variables) == set([finalize(a).key, finalize(c).key]) assert b.tunable_variables == b.variables assert b.compute() == 4 assert b.fixed_variables == b.variables assert not b.tunable_variables assert len(b.functions) == 2 assert not b.depends_on(1) assert b.depends_on(a) assert b.depends_on(finalize(a).value) b = b.copy(reset=True) assert b.tunable_variables == b.variables assert finalize(a).value.fixed d = b.copy() assert d.compute() == 4 assert b.tunable_variables == b.variables assert d.fixed_variables == b.variables b.fix("a") b.fix(finalize(c).value, 1) assert b.compute() == 5 assert b.fixed_variables == b.variables with raises(KeyError): b.fix("foo") a = variable(range(10), uid=True) with raises(KeyError): finalize(a * b).fix("a")
2.234375
2
etoLib/etoLib/Attic/s3_func.py
tonybutzer/eto-draft
0
12797184
<gh_stars>0 def s3_hello(person_name): print('Hello There Person:', person_name) def s3_push_delete_local(local_file, bucket, bucket_filepath): print('def s3_push_delete_local(local_file, bucket, bucket_filepath):')
2.078125
2
openmdao/utils/tests/test_options_dictionary_feature.py
hwangjt/blue
0
12797185
<filename>openmdao/utils/tests/test_options_dictionary_feature.py from openmdao.api import OptionsDictionary, ExplicitComponent import unittest from six import PY3, assertRegex import numpy as np from openmdao.devtools.testutil import assert_rel_error class VectorDoublingComp(ExplicitComponent): def initialize(self): self.metadata.declare('size', type_=int) def setup(self): size = self.metadata['size'] self.add_input('x', shape=size) self.add_output('y', shape=size) self.declare_partials('y', 'x', val=2., rows=np.arange(size), cols=np.arange(size)) def compute(self, inputs, outputs): outputs['y'] = 2 * inputs['x'] class LinearCombinationComp(ExplicitComponent): def initialize(self): self.metadata.declare('a', default=1., type_=(int, float)) self.metadata.declare('b', default=1., type_=(int, float)) def setup(self): self.add_input('x') self.add_output('y') self.declare_partials('y', 'x', val=self.metadata['a']) def compute(self, inputs, outputs): outputs['y'] = self.metadata['a'] * inputs['x'] + self.metadata['b'] class UnitaryFunctionComp(ExplicitComponent): def initialize(self): from types import FunctionType self.metadata.declare('func', values=('exp', 'cos', 'sin'), type_=FunctionType) def setup(self): self.add_input('x') self.add_output('y') self.declare_partials('y', 'x', method='fd') def compute(self, inputs, outputs): func = self.metadata['func'] if func == 'exp': outputs['y'] = np.exp(inputs['x']) elif func == 'cos': outputs['y'] = np.cos(inputs['x']) elif func == 'sin': outputs['y'] = np.sin(inputs['x']) else: outputs['y'] = func(inputs['x']) class TestOptionsDictionaryFeature(unittest.TestCase): def test_simple(self): from openmdao.api import Problem prob = Problem() prob.model = VectorDoublingComp(size=3) prob.setup() prob['x'] = [1., 2., 3.] prob.run_model() assert_rel_error(self, prob['y'], [2., 4., 6.]) def test_with_default(self): from openmdao.api import Problem prob = Problem() prob.model = LinearCombinationComp(a=2.) prob.setup() prob['x'] = 3 prob.run_model() self.assertEqual(prob['y'], 7.) def test_values_and_types(self): from openmdao.api import Problem prob = Problem() prob.model = UnitaryFunctionComp(func='cos') prob.setup() prob['x'] = 0. prob.run_model() self.assertEqual(prob['y'], 1.) def myfunc(x): return x ** 2 + 2 prob = Problem() prob.model = UnitaryFunctionComp(func=myfunc) prob.setup() prob['x'] = 2. prob.run_model() self.assertEqual(prob['y'], 6.) if __name__ == "__main__": unittest.main()
2.265625
2
azure_monitor/examples/metrics/standard.py
yao-cqc/opentelemetry-azure-monitor-python
13
12797186
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. # pylint: disable=import-error # pylint: disable=no-member # pylint: disable=no-name-in-module import time import requests from opentelemetry import metrics from opentelemetry.instrumentation.requests import RequestsInstrumentor from opentelemetry.sdk.metrics import MeterProvider from azure_monitor import AzureMonitorMetricsExporter # Use the default sdk implementation metrics.set_meter_provider(MeterProvider(stateful=False)) # Track telemetry from the requests library RequestsInstrumentor().instrument() meter = RequestsInstrumentor().meter exporter = AzureMonitorMetricsExporter( connection_string="InstrumentationKey=<INSTRUMENTATION KEY HERE>" ) # Export standard metrics from requests library to Azure Monitor metrics.get_meter_provider().start_pipeline(meter, exporter, 5) for x in range(10): for y in range(10): requests.get("http://example.com") time.sleep(2) time.sleep(5) input("Press any key to exit...")
2.296875
2
python/fabric/fabfile.py
cuongnb14/cookbook
0
12797187
""" Fabfile template for python3 """ # -*- coding: utf-8 -*- from __future__ import print_function from slackclient import SlackClient from fabric.api import cd, env, task, run, settings, local from fabfile_config import * import traceback from fabric.contrib.files import exists LAST_CID_FILE = "last_commit_id.txt" class Singleton(type): _instances = {} def __call__(cls, *args, **kwargs): if cls not in cls._instances: cls._instances[cls] = super(Singleton, cls).__call__(*args, **kwargs) return cls._instances[cls] class FabSlack(metaclass=Singleton): sc = SlackClient(SLACK_API_KEY) def send(self, **kargs): try: self.sc.api_call( "chat.postMessage", channel="#log-info", username='Deployment', # as_user=True, icon_emoji=":gear:", **kargs ) except Exception: traceback.print_exc() sc = FabSlack() @task def test(target_host): pass @task def set_host(target_host='dev'): """Set host before deploy, NOTE: plz configure ssh config file on your local machine first. Eg use: `fab set_host:dev deploy` :param: target_host string """ env.use_ssh_config = True env.hosts = [target_host] @task def deploy(): try: target_host = env.hosts[0] except IndexError: target_host = 'dev' with cd(HOST_API[target_host]['dir']): do_deploy() def run_cmd(cmd, target_host=None, local_capture=True): """ Run cmd base on local or remote host and return output or print output to terminal screen :param string cmd: Command to run :param string target_host: local or remote host name :param bool local_capture: If true then return output and not print anything to terminal, if false then print output to terminal :return: Output string if capture=True or return nothing if capture=false """ result = '' with settings(warn_only=True): fn = "local" if target_host == 'local' else "run" if fn == 'local': result = local(cmd, local_capture) # Do not print to terminal and get the output else: result = run(cmd, warn_only=True, pty=False) if result.failed: print(result.stdout) attachments = [{ "title": 'Command: {}'.format(result.command), "color": "danger", "pretext": 'Detail: {}'.format(result), "mrkdwn_in": ["text", "pretext"] }] sc.send(attachments=attachments, text="Deploy to *{}* error".format(env.hosts[0])) raise SystemExit() else: return result def do_deploy(): if not exists("{}/{}".format(HOST_API[env.hosts[0]]['dir'], LAST_CID_FILE)): save_last_commit() run_cmd("git pull") run_testing() restart_api() send_commit_applied() save_last_commit() def run_testing(): pass def restart_api(): pass def get_current_commit(): return run_cmd("git rev-parse HEAD") def save_last_commit(): run_cmd("git rev-parse HEAD > {}".format(LAST_CID_FILE)) def get_last_commit(): return run_cmd("cat {}".format(LAST_CID_FILE)) def get_git_logs(last_commit_id, current_commit_id): return run_cmd("git log {}...{} --oneline --pretty=format:'%s'".format(last_commit_id, current_commit_id)) def send_commit_applied(): last_commit_id = get_last_commit() current_commit_id = get_current_commit() commit_applied = get_git_logs(last_commit_id, current_commit_id) if commit_applied: commit_applied = "••• " + commit_applied commit_applied = commit_applied.replace("\n", "\n••• ") attachments = [ { "color": "good", "title": "Commit applied:", "text": commit_applied, }, ] sc.send(attachments=attachments, text="Deploy to *{}* success".format(env.hosts[0]))
2.109375
2
worker/ttypes.py
apioo/fusio-worker-python
0
12797188
<filename>worker/ttypes.py # # Autogenerated by Thrift Compiler (0.14.2) # # DO NOT EDIT UNLESS YOU ARE SURE THAT YOU KNOW WHAT YOU ARE DOING # # options string: py # from thrift.Thrift import TType, TMessageType, TFrozenDict, TException, TApplicationException from thrift.protocol.TProtocol import TProtocolException from thrift.TRecursive import fix_spec import sys from thrift.transport import TTransport all_structs = [] class Message(object): """ Attributes: - success - message """ def __init__(self, success=None, message=None,): self.success = success self.message = message def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.BOOL: self.success = iprot.readBool() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.message = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Message') if self.success is not None: oprot.writeFieldBegin('success', TType.BOOL, 1) oprot.writeBool(self.success) oprot.writeFieldEnd() if self.message is not None: oprot.writeFieldBegin('message', TType.STRING, 2) oprot.writeString(self.message.encode('utf-8') if sys.version_info[0] == 2 else self.message) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Connection(object): """ Attributes: - name - type - config """ def __init__(self, name=None, type=None, config=None,): self.name = name self.type = type self.config = config def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.type = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.MAP: self.config = {} (_ktype1, _vtype2, _size0) = iprot.readMapBegin() for _i4 in range(_size0): _key5 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() _val6 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.config[_key5] = _val6 iprot.readMapEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Connection') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.type is not None: oprot.writeFieldBegin('type', TType.STRING, 2) oprot.writeString(self.type.encode('utf-8') if sys.version_info[0] == 2 else self.type) oprot.writeFieldEnd() if self.config is not None: oprot.writeFieldBegin('config', TType.MAP, 3) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.config)) for kiter7, viter8 in self.config.items(): oprot.writeString(kiter7.encode('utf-8') if sys.version_info[0] == 2 else kiter7) oprot.writeString(viter8.encode('utf-8') if sys.version_info[0] == 2 else viter8) oprot.writeMapEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Action(object): """ Attributes: - name - code """ def __init__(self, name=None, code=None,): self.name = name self.code = code def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.code = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Action') if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 1) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.code is not None: oprot.writeFieldBegin('code', TType.STRING, 2) oprot.writeString(self.code.encode('utf-8') if sys.version_info[0] == 2 else self.code) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Execute(object): """ Attributes: - action - request - context """ def __init__(self, action=None, request=None, context=None,): self.action = action self.request = request self.context = context def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.action = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.request = Request() self.request.read(iprot) else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: self.context = Context() self.context.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Execute') if self.action is not None: oprot.writeFieldBegin('action', TType.STRING, 1) oprot.writeString(self.action.encode('utf-8') if sys.version_info[0] == 2 else self.action) oprot.writeFieldEnd() if self.request is not None: oprot.writeFieldBegin('request', TType.STRUCT, 2) self.request.write(oprot) oprot.writeFieldEnd() if self.context is not None: oprot.writeFieldBegin('context', TType.STRUCT, 3) self.context.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Request(object): """ Attributes: - http - rpc """ def __init__(self, http=None, rpc=None,): self.http = http self.rpc = rpc def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.http = HttpRequest() self.http.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRUCT: self.rpc = RpcRequest() self.rpc.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Request') if self.http is not None: oprot.writeFieldBegin('http', TType.STRUCT, 1) self.http.write(oprot) oprot.writeFieldEnd() if self.rpc is not None: oprot.writeFieldBegin('rpc', TType.STRUCT, 2) self.rpc.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class HttpRequest(object): """ Attributes: - method - headers - uriFragments - parameters - body """ def __init__(self, method=None, headers=None, uriFragments=None, parameters=None, body=None,): self.method = method self.headers = headers self.uriFragments = uriFragments self.parameters = parameters self.body = body def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.method = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.MAP: self.headers = {} (_ktype10, _vtype11, _size9) = iprot.readMapBegin() for _i13 in range(_size9): _key14 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() _val15 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.headers[_key14] = _val15 iprot.readMapEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.MAP: self.uriFragments = {} (_ktype17, _vtype18, _size16) = iprot.readMapBegin() for _i20 in range(_size16): _key21 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() _val22 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.uriFragments[_key21] = _val22 iprot.readMapEnd() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.MAP: self.parameters = {} (_ktype24, _vtype25, _size23) = iprot.readMapBegin() for _i27 in range(_size23): _key28 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() _val29 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.parameters[_key28] = _val29 iprot.readMapEnd() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.body = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('HttpRequest') if self.method is not None: oprot.writeFieldBegin('method', TType.STRING, 1) oprot.writeString(self.method.encode('utf-8') if sys.version_info[0] == 2 else self.method) oprot.writeFieldEnd() if self.headers is not None: oprot.writeFieldBegin('headers', TType.MAP, 2) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.headers)) for kiter30, viter31 in self.headers.items(): oprot.writeString(kiter30.encode('utf-8') if sys.version_info[0] == 2 else kiter30) oprot.writeString(viter31.encode('utf-8') if sys.version_info[0] == 2 else viter31) oprot.writeMapEnd() oprot.writeFieldEnd() if self.uriFragments is not None: oprot.writeFieldBegin('uriFragments', TType.MAP, 3) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.uriFragments)) for kiter32, viter33 in self.uriFragments.items(): oprot.writeString(kiter32.encode('utf-8') if sys.version_info[0] == 2 else kiter32) oprot.writeString(viter33.encode('utf-8') if sys.version_info[0] == 2 else viter33) oprot.writeMapEnd() oprot.writeFieldEnd() if self.parameters is not None: oprot.writeFieldBegin('parameters', TType.MAP, 4) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.parameters)) for kiter34, viter35 in self.parameters.items(): oprot.writeString(kiter34.encode('utf-8') if sys.version_info[0] == 2 else kiter34) oprot.writeString(viter35.encode('utf-8') if sys.version_info[0] == 2 else viter35) oprot.writeMapEnd() oprot.writeFieldEnd() if self.body is not None: oprot.writeFieldBegin('body', TType.STRING, 5) oprot.writeString(self.body.encode('utf-8') if sys.version_info[0] == 2 else self.body) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class RpcRequest(object): """ Attributes: - arguments """ def __init__(self, arguments=None,): self.arguments = arguments def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.arguments = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('RpcRequest') if self.arguments is not None: oprot.writeFieldBegin('arguments', TType.STRING, 1) oprot.writeString(self.arguments.encode('utf-8') if sys.version_info[0] == 2 else self.arguments) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Context(object): """ Attributes: - routeId - baseUrl - app - user """ def __init__(self, routeId=None, baseUrl=None, app=None, user=None,): self.routeId = routeId self.baseUrl = baseUrl self.app = app self.user = user def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.routeId = iprot.readI64() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.baseUrl = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRUCT: self.app = App() self.app.read(iprot) else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRUCT: self.user = User() self.user.read(iprot) else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Context') if self.routeId is not None: oprot.writeFieldBegin('routeId', TType.I64, 1) oprot.writeI64(self.routeId) oprot.writeFieldEnd() if self.baseUrl is not None: oprot.writeFieldBegin('baseUrl', TType.STRING, 2) oprot.writeString(self.baseUrl.encode('utf-8') if sys.version_info[0] == 2 else self.baseUrl) oprot.writeFieldEnd() if self.app is not None: oprot.writeFieldBegin('app', TType.STRUCT, 3) self.app.write(oprot) oprot.writeFieldEnd() if self.user is not None: oprot.writeFieldBegin('user', TType.STRUCT, 4) self.user.write(oprot) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class App(object): """ Attributes: - id - userId - status - name - url - appKey - scopes - parameters """ def __init__(self, id=None, userId=None, status=None, name=None, url=None, appKey=None, scopes=None, parameters=None,): self.id = id self.userId = userId self.status = status self.name = name self.url = url self.appKey = appKey self.scopes = scopes self.parameters = parameters def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.id = iprot.readI64() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I64: self.userId = iprot.readI64() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I32: self.status = iprot.readI32() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.url = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRING: self.appKey = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.LIST: self.scopes = [] (_etype39, _size36) = iprot.readListBegin() for _i40 in range(_size36): _elem41 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.scopes.append(_elem41) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 8: if ftype == TType.LIST: self.parameters = [] (_etype45, _size42) = iprot.readListBegin() for _i46 in range(_size42): _elem47 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.parameters.append(_elem47) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('App') if self.id is not None: oprot.writeFieldBegin('id', TType.I64, 1) oprot.writeI64(self.id) oprot.writeFieldEnd() if self.userId is not None: oprot.writeFieldBegin('userId', TType.I64, 2) oprot.writeI64(self.userId) oprot.writeFieldEnd() if self.status is not None: oprot.writeFieldBegin('status', TType.I32, 3) oprot.writeI32(self.status) oprot.writeFieldEnd() if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 4) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.url is not None: oprot.writeFieldBegin('url', TType.STRING, 5) oprot.writeString(self.url.encode('utf-8') if sys.version_info[0] == 2 else self.url) oprot.writeFieldEnd() if self.appKey is not None: oprot.writeFieldBegin('appKey', TType.STRING, 6) oprot.writeString(self.appKey.encode('utf-8') if sys.version_info[0] == 2 else self.appKey) oprot.writeFieldEnd() if self.scopes is not None: oprot.writeFieldBegin('scopes', TType.LIST, 7) oprot.writeListBegin(TType.STRING, len(self.scopes)) for iter48 in self.scopes: oprot.writeString(iter48.encode('utf-8') if sys.version_info[0] == 2 else iter48) oprot.writeListEnd() oprot.writeFieldEnd() if self.parameters is not None: oprot.writeFieldBegin('parameters', TType.LIST, 8) oprot.writeListBegin(TType.STRING, len(self.parameters)) for iter49 in self.parameters: oprot.writeString(iter49.encode('utf-8') if sys.version_info[0] == 2 else iter49) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class User(object): """ Attributes: - id - roleId - categoryId - status - name - email - points """ def __init__(self, id=None, roleId=None, categoryId=None, status=None, name=None, email=None, points=None,): self.id = id self.roleId = roleId self.categoryId = categoryId self.status = status self.name = name self.email = email self.points = points def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I64: self.id = iprot.readI64() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.I64: self.roleId = iprot.readI64() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.I64: self.categoryId = iprot.readI64() else: iprot.skip(ftype) elif fid == 4: if ftype == TType.I32: self.status = iprot.readI32() else: iprot.skip(ftype) elif fid == 5: if ftype == TType.STRING: self.name = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 6: if ftype == TType.STRING: self.email = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 7: if ftype == TType.I32: self.points = iprot.readI32() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('User') if self.id is not None: oprot.writeFieldBegin('id', TType.I64, 1) oprot.writeI64(self.id) oprot.writeFieldEnd() if self.roleId is not None: oprot.writeFieldBegin('roleId', TType.I64, 2) oprot.writeI64(self.roleId) oprot.writeFieldEnd() if self.categoryId is not None: oprot.writeFieldBegin('categoryId', TType.I64, 3) oprot.writeI64(self.categoryId) oprot.writeFieldEnd() if self.status is not None: oprot.writeFieldBegin('status', TType.I32, 4) oprot.writeI32(self.status) oprot.writeFieldEnd() if self.name is not None: oprot.writeFieldBegin('name', TType.STRING, 5) oprot.writeString(self.name.encode('utf-8') if sys.version_info[0] == 2 else self.name) oprot.writeFieldEnd() if self.email is not None: oprot.writeFieldBegin('email', TType.STRING, 6) oprot.writeString(self.email.encode('utf-8') if sys.version_info[0] == 2 else self.email) oprot.writeFieldEnd() if self.points is not None: oprot.writeFieldBegin('points', TType.I32, 7) oprot.writeI32(self.points) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Result(object): """ Attributes: - response - events - logs """ def __init__(self, response=None, events=None, logs=None,): self.response = response self.events = events self.logs = logs def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRUCT: self.response = Response() self.response.read(iprot) else: iprot.skip(ftype) elif fid == 2: if ftype == TType.LIST: self.events = [] (_etype53, _size50) = iprot.readListBegin() for _i54 in range(_size50): _elem55 = Event() _elem55.read(iprot) self.events.append(_elem55) iprot.readListEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.LIST: self.logs = [] (_etype59, _size56) = iprot.readListBegin() for _i60 in range(_size56): _elem61 = Log() _elem61.read(iprot) self.logs.append(_elem61) iprot.readListEnd() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Result') if self.response is not None: oprot.writeFieldBegin('response', TType.STRUCT, 1) self.response.write(oprot) oprot.writeFieldEnd() if self.events is not None: oprot.writeFieldBegin('events', TType.LIST, 2) oprot.writeListBegin(TType.STRUCT, len(self.events)) for iter62 in self.events: iter62.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() if self.logs is not None: oprot.writeFieldBegin('logs', TType.LIST, 3) oprot.writeListBegin(TType.STRUCT, len(self.logs)) for iter63 in self.logs: iter63.write(oprot) oprot.writeListEnd() oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Response(object): """ Attributes: - statusCode - headers - body """ def __init__(self, statusCode=None, headers=None, body=None,): self.statusCode = statusCode self.headers = headers self.body = body def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.I32: self.statusCode = iprot.readI32() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.MAP: self.headers = {} (_ktype65, _vtype66, _size64) = iprot.readMapBegin() for _i68 in range(_size64): _key69 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() _val70 = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() self.headers[_key69] = _val70 iprot.readMapEnd() else: iprot.skip(ftype) elif fid == 3: if ftype == TType.STRING: self.body = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Response') if self.statusCode is not None: oprot.writeFieldBegin('statusCode', TType.I32, 1) oprot.writeI32(self.statusCode) oprot.writeFieldEnd() if self.headers is not None: oprot.writeFieldBegin('headers', TType.MAP, 2) oprot.writeMapBegin(TType.STRING, TType.STRING, len(self.headers)) for kiter71, viter72 in self.headers.items(): oprot.writeString(kiter71.encode('utf-8') if sys.version_info[0] == 2 else kiter71) oprot.writeString(viter72.encode('utf-8') if sys.version_info[0] == 2 else viter72) oprot.writeMapEnd() oprot.writeFieldEnd() if self.body is not None: oprot.writeFieldBegin('body', TType.STRING, 3) oprot.writeString(self.body.encode('utf-8') if sys.version_info[0] == 2 else self.body) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Event(object): """ Attributes: - eventName - data """ def __init__(self, eventName=None, data=None,): self.eventName = eventName self.data = data def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.eventName = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.data = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Event') if self.eventName is not None: oprot.writeFieldBegin('eventName', TType.STRING, 1) oprot.writeString(self.eventName.encode('utf-8') if sys.version_info[0] == 2 else self.eventName) oprot.writeFieldEnd() if self.data is not None: oprot.writeFieldBegin('data', TType.STRING, 2) oprot.writeString(self.data.encode('utf-8') if sys.version_info[0] == 2 else self.data) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) class Log(object): """ Attributes: - level - message """ def __init__(self, level=None, message=None,): self.level = level self.message = message def read(self, iprot): if iprot._fast_decode is not None and isinstance(iprot.trans, TTransport.CReadableTransport) and self.thrift_spec is not None: iprot._fast_decode(self, iprot, [self.__class__, self.thrift_spec]) return iprot.readStructBegin() while True: (fname, ftype, fid) = iprot.readFieldBegin() if ftype == TType.STOP: break if fid == 1: if ftype == TType.STRING: self.level = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) elif fid == 2: if ftype == TType.STRING: self.message = iprot.readString().decode('utf-8', errors='replace') if sys.version_info[0] == 2 else iprot.readString() else: iprot.skip(ftype) else: iprot.skip(ftype) iprot.readFieldEnd() iprot.readStructEnd() def write(self, oprot): if oprot._fast_encode is not None and self.thrift_spec is not None: oprot.trans.write(oprot._fast_encode(self, [self.__class__, self.thrift_spec])) return oprot.writeStructBegin('Log') if self.level is not None: oprot.writeFieldBegin('level', TType.STRING, 1) oprot.writeString(self.level.encode('utf-8') if sys.version_info[0] == 2 else self.level) oprot.writeFieldEnd() if self.message is not None: oprot.writeFieldBegin('message', TType.STRING, 2) oprot.writeString(self.message.encode('utf-8') if sys.version_info[0] == 2 else self.message) oprot.writeFieldEnd() oprot.writeFieldStop() oprot.writeStructEnd() def validate(self): return def __repr__(self): L = ['%s=%r' % (key, value) for key, value in self.__dict__.items()] return '%s(%s)' % (self.__class__.__name__, ', '.join(L)) def __eq__(self, other): return isinstance(other, self.__class__) and self.__dict__ == other.__dict__ def __ne__(self, other): return not (self == other) all_structs.append(Message) Message.thrift_spec = ( None, # 0 (1, TType.BOOL, 'success', None, None, ), # 1 (2, TType.STRING, 'message', 'UTF8', None, ), # 2 ) all_structs.append(Connection) Connection.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', 'UTF8', None, ), # 1 (2, TType.STRING, 'type', 'UTF8', None, ), # 2 (3, TType.MAP, 'config', (TType.STRING, 'UTF8', TType.STRING, 'UTF8', False), None, ), # 3 ) all_structs.append(Action) Action.thrift_spec = ( None, # 0 (1, TType.STRING, 'name', 'UTF8', None, ), # 1 (2, TType.STRING, 'code', 'UTF8', None, ), # 2 ) all_structs.append(Execute) Execute.thrift_spec = ( None, # 0 (1, TType.STRING, 'action', 'UTF8', None, ), # 1 (2, TType.STRUCT, 'request', [Request, None], None, ), # 2 (3, TType.STRUCT, 'context', [Context, None], None, ), # 3 ) all_structs.append(Request) Request.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'http', [HttpRequest, None], None, ), # 1 (2, TType.STRUCT, 'rpc', [RpcRequest, None], None, ), # 2 ) all_structs.append(HttpRequest) HttpRequest.thrift_spec = ( None, # 0 (1, TType.STRING, 'method', 'UTF8', None, ), # 1 (2, TType.MAP, 'headers', (TType.STRING, 'UTF8', TType.STRING, 'UTF8', False), None, ), # 2 (3, TType.MAP, 'uriFragments', (TType.STRING, 'UTF8', TType.STRING, 'UTF8', False), None, ), # 3 (4, TType.MAP, 'parameters', (TType.STRING, 'UTF8', TType.STRING, 'UTF8', False), None, ), # 4 (5, TType.STRING, 'body', 'UTF8', None, ), # 5 ) all_structs.append(RpcRequest) RpcRequest.thrift_spec = ( None, # 0 (1, TType.STRING, 'arguments', 'UTF8', None, ), # 1 ) all_structs.append(Context) Context.thrift_spec = ( None, # 0 (1, TType.I64, 'routeId', None, None, ), # 1 (2, TType.STRING, 'baseUrl', 'UTF8', None, ), # 2 (3, TType.STRUCT, 'app', [App, None], None, ), # 3 (4, TType.STRUCT, 'user', [User, None], None, ), # 4 ) all_structs.append(App) App.thrift_spec = ( None, # 0 (1, TType.I64, 'id', None, None, ), # 1 (2, TType.I64, 'userId', None, None, ), # 2 (3, TType.I32, 'status', None, None, ), # 3 (4, TType.STRING, 'name', 'UTF8', None, ), # 4 (5, TType.STRING, 'url', 'UTF8', None, ), # 5 (6, TType.STRING, 'appKey', 'UTF8', None, ), # 6 (7, TType.LIST, 'scopes', (TType.STRING, 'UTF8', False), None, ), # 7 (8, TType.LIST, 'parameters', (TType.STRING, 'UTF8', False), None, ), # 8 ) all_structs.append(User) User.thrift_spec = ( None, # 0 (1, TType.I64, 'id', None, None, ), # 1 (2, TType.I64, 'roleId', None, None, ), # 2 (3, TType.I64, 'categoryId', None, None, ), # 3 (4, TType.I32, 'status', None, None, ), # 4 (5, TType.STRING, 'name', 'UTF8', None, ), # 5 (6, TType.STRING, 'email', 'UTF8', None, ), # 6 (7, TType.I32, 'points', None, None, ), # 7 ) all_structs.append(Result) Result.thrift_spec = ( None, # 0 (1, TType.STRUCT, 'response', [Response, None], None, ), # 1 (2, TType.LIST, 'events', (TType.STRUCT, [Event, None], False), None, ), # 2 (3, TType.LIST, 'logs', (TType.STRUCT, [Log, None], False), None, ), # 3 ) all_structs.append(Response) Response.thrift_spec = ( None, # 0 (1, TType.I32, 'statusCode', None, None, ), # 1 (2, TType.MAP, 'headers', (TType.STRING, 'UTF8', TType.STRING, 'UTF8', False), None, ), # 2 (3, TType.STRING, 'body', 'UTF8', None, ), # 3 ) all_structs.append(Event) Event.thrift_spec = ( None, # 0 (1, TType.STRING, 'eventName', 'UTF8', None, ), # 1 (2, TType.STRING, 'data', 'UTF8', None, ), # 2 ) all_structs.append(Log) Log.thrift_spec = ( None, # 0 (1, TType.STRING, 'level', 'UTF8', None, ), # 1 (2, TType.STRING, 'message', 'UTF8', None, ), # 2 ) fix_spec(all_structs) del all_structs
2.046875
2
monotonic_gru.py
arghosh/MNSS
1
12797189
import torch import torch.nn as nn import math device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class MonotonicGruCell(nn.Module): def __init__(self, input_size, hidden_size, bias=True): super().__init__() """ For each element in the input sequence, each layer computes the following function: MonotonicGru Math \begin{array}{ll} r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\ z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\ n_t = \tanh(W_{in} x_t + b_{in} + (W_{hn}(r_t* h_{(t-1)})+ b_{hn})) \\ h_t = (1 - z_t) * n_t + h_{(t-1)} \end{array} """ self.input_size = input_size self.hidden_size = hidden_size self.i2h = nn.Linear(input_size, 3 * hidden_size, bias=bias) self.h2h = nn.Linear(hidden_size, 3 * hidden_size, bias=bias) self.reset_parameters() def reset_parameters(self): std = 1.0 / math.sqrt(self.hidden_size) for w in self.parameters(): w.data.uniform_(-std, std) def forward(self, x, hidden=None): # x is B, input_size if hidden is None: hidden = torch.zeros(x.size(0), self.hidden_size).to(device) gi = self.i2h(x) # B, 3H gh = self.h2h(hidden) # B, 3H i_r, i_i, i_n = gi.chunk(3, 1) h_r, h_i, h_n = gh.chunk(3, 1) resetgate_tmp = i_r + h_r inputgate_tmp = i_i + h_i sigmoid = nn.Sigmoid() resetgate = sigmoid(resetgate_tmp) inputgate = sigmoid(inputgate_tmp) hr = self.h2h(hidden * resetgate) _, _, h_n = hr.chunk(3, 1) newgate = sigmoid(i_n + h_n) hy = hidden + (1.-hidden) * inputgate * newgate return hy class MonotonicGru(nn.Module): def __init__(self, input_size, hidden_size, bias=True, num_layers=1, batch_first=False, dropout=0.0): super().__init__() self.cell = MonotonicGruCell( input_size=input_size, hidden_size=hidden_size, bias=True) self.batch_first = batch_first def forward(self, input_, lengths, hidden=None): # input_ is of dimensionalty (T, B, input_size, ...) # lenghths is B, dim = 1 if self.batch_first else 0 outputs = [] for x in torch.unbind(input_, dim=dim): # x dim is B, I hidden = self.cell(x, hidden) outputs.append(hidden.clone()) hidden_states = torch.stack(outputs) # T, B, H last_states = [] for idx, l in enumerate(lengths): last_states.append(hidden_states[l-1, idx, :]) last_states = torch.stack(last_states) return hidden_states, last_states
2.875
3
tests/app/signals.py
systemallica/django-snitch
16
12797190
<gh_stars>10-100 import datetime from django.db.models.signals import post_save from django.dispatch import receiver from django_celery_beat.models import DAYS from snitch.schedules.models import Schedule from tests.app.events import DUMMY_EVENT, EVERY_HOUR from tests.app.models import OtherStuff @receiver(post_save, sender=OtherStuff) def post_save_other_stuff(sender, instance, created, **kwargs): """Creates the schedules for other stuff.""" if created: # sent a dummy event in 2 days schedule = Schedule( actor=instance, verb=DUMMY_EVENT, limit=1, every=2, period=DAYS, start_time=instance.created + datetime.timedelta(days=2), ) schedule.save() # sent a dummy event evert hour, but with cron schedule = Schedule( actor=instance, verb=EVERY_HOUR, minute=instance.created.minute, hour="*/1" ) schedule.save()
2.234375
2
Editor/Noriter/Noriter/UI/SideWindow.py
RangHo/pini-engine
0
12797191
<filename>Editor/Noriter/Noriter/UI/SideWindow.py from PySide import QtCore,QtGui from Noriter.UI.Layout import * from Noriter.UI import NoriterWindow as nWin class SideWindow (nWin.NoriterWindow, QtGui.QWidget): def __init__(self): super(SideWindow, self).__init__() self.setContextMenuPolicy(QtCore.Qt.CustomContextMenu) @LayoutGUI def GUI(self): pass
1.78125
2
addons/mrp_byproduct/wizard/change_production_qty.py
jjiege/odoo
0
12797192
# -*- coding: utf-8 -*- # Part of Odoo. See LICENSE file for full copyright and licensing details. from odoo import api, models class ChangeProductionQty(models.TransientModel): _inherit = 'change.production.qty' @api.model def _update_product_to_produce(self, prod, qty, old_qty): modification = super(ChangeProductionQty, self)._update_product_to_produce(prod, qty, old_qty) for sub_product_line in prod.bom_id.sub_products: move = prod.move_finished_ids.filtered(lambda x: x.subproduct_id == sub_product_line and x.state not in ('done', 'cancel')) if move: product_uom_factor = prod.product_uom_id._compute_quantity(prod.product_qty - prod.qty_produced, prod.bom_id.product_uom_id) qty1 = sub_product_line.product_qty qty1 *= product_uom_factor / prod.bom_id.product_qty modification[move[0]] = (qty1, move[0].product_uom_qty) move[0].write({'product_uom_qty': qty1}) else: move = prod._create_byproduct_move(sub_product_line) modification[move] = (move.product_uom_qty, 0) return modification
2.03125
2
ife/features/tests/test_colourfulness.py
Collonville/ImageFeatureExtractor
2
12797193
<filename>ife/features/tests/test_colourfulness.py import unittest class TestColoufulness(unittest.TestCase): def test_colourfulness(self) -> None: pass
1.40625
1
src/data_utils.py
lrgr/sigma
14
12797194
import numpy as np from pomegranate import * import json ################################################################################ # LOGGING ################################################################################ import logging # Logging format FORMAT = '%(asctime)s SigMa %(levelname)-10s: %(message)s' logging.basicConfig(format=FORMAT) def get_logger(verbosity=logging.INFO): ''' Returns logger object ''' logger = logging.getLogger(__name__) logger.setLevel(verbosity) return logger ################################################################################ # UTILS ################################################################################ def sample_and_noise(model, noise_dist, n_seqs, seqs_len): noise_change_dist = DiscreteDistribution(dict(zip(range(96), [1.0 / 96] * 96))) seqs = [] noised_seqs = [] for i in range(n_seqs): seq = np.array(model.sample(seqs_len)) seqs.append(seq) noised_seq = seq.copy() hits = noise_dist.sample(seqs_len) for j, hit in enumerate(hits): if hit == 0: noised_seq[j] = noise_change_dist.sample() noised_seqs.append(noised_seq) return seqs, noised_seqs def get_emissions(file='data\emissions_for_breast_cancer'): return np.load(file + '.npy') def sample_uniform_between_a_b(n_states, a=0.0, b=1.0): return (b - a) * np.random.sample(n_states) + a def random_seqs_from_json(file_name, n_seqs=10): seqs = [] seqs_names = [] json_file = json.load(open(file_name)) samples = json_file[u'samples'] samples_to_seq = json_file[u'sampleToSequence'] samples = np.random.permutation(samples) for i in range(n_seqs): seqs.append(samples_to_seq[samples[i]]) seqs_names.append(samples[i]) return seqs, seqs_names def to_json(file_name, dict_to_save): with open(file_name + '.json', 'w') as fp: json.dump(dict_to_save, fp) def full_sample_to_chromosomes_seqs(sample, dists_sample): np_sample = np.array(sample) starting_chromosome_idxs = np.where(np.array(dists_sample) >= 1e100)[0] return np.split(np_sample, starting_chromosome_idxs)[1:] def load_json(file_name): return json.load(open(file_name)) def get_split_sequences(file_name, sample_numbers=None): json_file = json.load(open(file_name)) samples = json_file[u'samples'] samples_to_seq = json_file[u'sampleToSequence'] samples_dists = json_file[u'sampleToPrevMutDists'] out_seqs = [] out_names = [] if sample_numbers is None: sample_numbers = range(len(samples)) for i in sample_numbers: n = samples[i] out_names.append(n) out_seqs.append(full_sample_to_chromosomes_seqs(samples_to_seq[n], samples_dists[n])) return zip(out_names, out_seqs) def get_full_sequences(file_name='data/nik-zainal2016-wgs-brca-mutations-for-hmm.json'): json_file = json.load(open(file_name)) samples = json_file[u'samples'] samples_to_seq = json_file[u'sampleToSequence'] out_seqs = [] out_names = [] for n in samples: out_names.append(n) out_seqs.append(samples_to_seq[n]) return zip(out_names, out_seqs) def get_count_sequences_as_mat(file_name='data/nik-zainal2016-wgs-brca-mutations-for-hmm.json'): json_file = json.load(open(file_name)) samples = json_file[u'samples'] samples_to_seq = json_file[u'sampleToSequence'] # finding num_object + counting num_objects = 0 samples_objects = [] samples_counts = [] for sample in samples: objects, counts = np.unique(samples_to_seq[sample], return_counts=True) samples_objects.append(objects) samples_counts.append(counts) num_objects = max(num_objects, np.max(objects)) num_objects += 1 count_mat = np.zeros((len(samples), num_objects)) for i in range(len(samples)): count_mat[i, samples_objects[i]] = samples_counts[i] return count_mat def get_samples_names(file_name='data/nik-zainal2016-wgs-brca-mutations-for-hmm.json'): json_file = json.load(open(file_name)) samples = json_file[u'samples'] return samples def get_split_sequences_by_threshold(file_name, threshold, sample_numbers=None): json_file = json.load(open(file_name)) samples = json_file[u'samples'] samples_to_seq = json_file[u'sampleToSequence'] samples_dists = json_file[u'sampleToPrevMutDists'] out_seqs = [] out_names = [] if sample_numbers is None: sample_numbers = range(len(samples)) for i in sample_numbers: n = samples[i] out_names.append(n) out_seqs.append(full_sample_to_chromosomes_seqs_by_threshold(samples_to_seq[n], samples_dists[n], threshold)) return zip(out_names, out_seqs) def full_sample_to_chromosomes_seqs_by_threshold(sample, dists_sample, threshold): np_sample = np.array(sample) np_dists = np.array(dists_sample) starting_chromosome_idxs = np.where(np_dists >= 1e100)[0] chromosomes = np.split(np_sample, starting_chromosome_idxs)[1:] chromosomes_dists = np.split(np_dists, starting_chromosome_idxs)[1:] out = [] for i in range(len(chromosomes)): chromosome = chromosomes[i] chromosome_dists = chromosomes_dists[i] starting_seqs_idxs = np.where(chromosome_dists >= threshold)[0] seqs = np.split(chromosome, starting_seqs_idxs)[1:] out.append(seqs) return out def seqs_to_seq(seqs): out = [] for seq in seqs: out.extend(seq) return np.array(out) def seqs_to_seq_of_prefix(seqs): out = [] for seq in seqs: out.append(seq[0]) return np.array(out) def sample_indices_not_in_dir(dir_path): import os samples_in_dir = [f[:-5] for f in os.listdir(dir_path)] samples = get_samples_names() missing_indices = [] for i in range(len(samples)): if samples[i] not in samples_in_dir: missing_indices.append(i) return missing_indices
2.171875
2
a.py
kavindu23110/groupproject
0
12797195
import serial import time import sys,ast message=''; c=' '.join(sys.argv[1:]) num=c.replace("[","").replace("]","").split(",") message=num.pop() class TextMessage: # def __init__(self): # self.recipient = recipient # self.content = message def connectPhone(self): self.ser = serial.Serial('COM7', 9600, timeout=5, xonxoff = False, rtscts = False, bytesize = serial.EIGHTBITS, parity = serial.PARITY_NONE, stopbits = serial.STOPBITS_ONE) time.sleep(1) def sendMessage(self,recipient, message): self.ser.write('ATZ\r'.encode()) time.sleep(0.5) self.ser.write('AT+CMGF=1\r'.encode()) time.sleep(0.5) self.ser.write(('''AT+CMGS="''' + recipient + '''"\r''').encode()) time.sleep(0.5) self.ser.write((message + "\r").encode()) time.sleep(0.5) self.ser.write(chr(26).encode()) time.sleep(0.5) def disconnectPhone(self): self.ser.close() sms = TextMessage() sms.connectPhone() for numbers in num: print(numbers) sms.sendMessage(numbers,message) #time.sleep(0.5) sms.disconnectPhone() print ("1")
2.78125
3
service.py
ramrathi/baritone
3
12797196
from flask import Flask import baritone import json app = Flask(__name__) @app.route('/') def hello(): print("Hello from terminal") return "Hello world" @app.route('/youtube/<link>') def youtube(link): print("ENTERED") url = 'https://www.youtube.com/watch?v='+link print(url) result,status = (baritone.pipeline(url,'youtube')) convert = { 'url': url, 'text': result, 'converted':status } return json.dumps(convert) if __name__ == '__main__': print("Starting server") app.run(host='0.0.0.0')
2.5625
3
test/unit/models/rulesets.py
sumanshil/pagerduty-api-python-client
0
12797197
<gh_stars>0 # Copyright (c) PagerDuty. # See LICENSE for details. import json import unittest import os.path import requests_mock from pypd import Rulesets class IntegrationTestCase(unittest.TestCase): def setUp(self): self.base_url = 'https://api.pagerduty.com' self.api_key = 'FAUX_API_KEY' self.limit = 25 base_path = os.path.join( os.path.dirname(os.path.dirname(os.path.dirname(__file__))), 'data') path = os.path.join(base_path, 'sample_rulesets.json') with open(path) as f: self.rulesets_data = json.load(f) self.rulesetid = "0e84de00-9511-4380-9f4f-a7b568bb49a0" self.rulesets = list(filter( lambda s: s['id'] == self.rulesetid, self.rulesets_data["rulesets"], ))[0] self.ruleset_data = { 'ruleset': self.rulesets, } path = os.path.join(base_path, 'sample_rules.json') with open(path) as f: self.rules_data = json.load(f) @requests_mock.Mocker() def test_fetch_a_ruleset(self, m): # setup mocked request uris service_url = '{0}/rulesets/{1}'.format( self.base_url, self.rulesetid, ) m.register_uri( 'GET', service_url, json=self.ruleset_data, complete_qs=False ) rulesets = Rulesets.fetch(self.rulesetid, api_key=self.api_key) data = rulesets.get_ruleset(self.rulesetid) self.assertEqual(len(data["routing_keys"]), 1) self.assertEqual(data["routing_keys"][0], "<KEY>") @requests_mock.Mocker() def test_fetch_all_rulesets(self, m): # setup mocked request uris service_url = '{0}/rulesets'.format( self.base_url ) m.register_uri( 'GET', service_url, json=self.rulesets_data, complete_qs=False ) rulesets = Rulesets._fetch_all(api_key=self.api_key) data = rulesets[0].get_rulesets() self.assertEqual(len(data[0]["routing_keys"]), 1) self.assertEqual(data[0]["routing_keys"][0], "<KEY>")
2.25
2
ievv_auth/ievv_api_key/apps.py
appressoas/ievv_auth
0
12797198
<reponame>appressoas/ievv_auth from django.apps import AppConfig class IevvApiKeyConfig(AppConfig): name = 'ievv_auth.ievv_api_key'
1.242188
1
pylon/aws/_bases.py
ch41rmn/pylon-oss
3
12797199
<reponame>ch41rmn/pylon-oss """Some base classes for AWS""" class BaseMixin: def __init__(self, name: str): self.name = name def __repr__(self): return '<{module}.{cls} {name}>'.format( module=self.__class__.__module__, cls=self.__class__.__name__, name=self.name )
2.03125
2
03-DataWranglingWithMongoDB/P02-WrangleOpenStreetMapData/handler.py
ccampguilhem/Udacity-DataAnalyst
1
12797200
<gh_stars>1-10 import xml.sax from collections import Counter, defaultdict """ Custom handler for parsing OpenStreetMap XML files. While parsing the XML file, handler keeps trace of: - tags count - tags ancestors It is possible to register callback functions for start or end events. The callbacks for start event will be called passing the following arguments: - stack - locator The callbacks for end event will be called passing the following arguments: - element name - element children - locator Return value of callbacks is ignored by the handler class. This enables to enhance the parser with 'on the fly' data quality audit or export. """ class OpenStreetMapXmlHandler(xml.sax.ContentHandler): def __init__(self): """ Constructor. This class is intended to be used as a context manager. The state of object keeps a trace of stack while parsing. This enables to collect information from children. The stack is destroyed when end event occured. This enables to limit memory usage while parsing. The _stack internal variable stores tuples - element unique identifier - element name (as provided by start event) - element attributes (as provided by start event) """ xml.sax.ContentHandler.__init__(self) #super not working here ??? def __enter__(self): """ Context manager entry point. """ self._id = 0 #unique identifier incremented at self._stack = [ ] #current stack of element being read self._element_tags = Counter() #counter of element tags self._element_ancestors = defaultdict(set) #collection of ancestors per tag self._start_callbacks = [ ] #start event callbacks self._end_callbacks = [ ] #end event callbacks self._children = { } #children elements of elements being read return self def __exit__(self, *args): """ Context manager exit point. """ pass def startElement(self, name, attrs): """ Method invoked when starting to read an element in XML dataset. This method is part of of xml.sax.ContentHandler interface and is overloaded here. - name: tag of element being read - attrs: element attributes """ #Get identifier for current element identifier = self._requestUniqueIdentifier() #Has element a parent? If yes get the id. try: parent_tuple = self._stack[-1] if parent_tuple[1] == 'osm': #We ignore osm element as it has too many children parent = None else: parent = parent_tuple[0] except IndexError: parent = None #Exploit current stack to get ancestor ancestor = ".".join([s[1] for s in self._stack]) self._element_ancestors[name].add(ancestor) #Update tag counter self._element_tags[name] += 1 #Update parent children (if any) if parent is not None: self._children[parent].append((name, attrs)) #Initialisation of own children self._children[identifier] = [ ] #Update stack self._stack.append((identifier, name, attrs)) #Use registered callbacks for callback in self._start_callbacks: callback(self._stack, self._locator) def endElement(self, name): """ Method invoked when ending to read an element in XML dataset. This method is part of of xml.sax.ContentHandler interface and is overloaded here. - name: tag of element being read """ #Get identifier identifier = self._stack[-1][0] #Use registered callbacks before element is cleaned for callback in self._end_callbacks: callback(name, self._children[identifier], self._locator) #Cleaning identifier, name, attrs = self._stack.pop(-1) del self._children[identifier] def getTagsCount(self): """ Get a dictionnary with tags count. - return: dictionnary where keys are tags and values are count """ return dict(self._element_tags) def getTagsAncestors(self): """ Get a dictionnary with tags ancestors. - return: dictionnary where keys are tags and values are a sequence of all different ancestors path """ return dict(self._element_ancestors) def registerStartEventCallback(self, func): """ Register a callback for start event. Note that return value of callback is ignored. Any exception raised by callback is not catched by handler, so you should take care of catching all exceptions within the callback itself. - func: a callable object taking stack and locator as arguments. """ self._start_callbacks.append(func) def registerEndEventCallback(self, func): """ Register a callback for end event. Note that return value of callback is ignored. Any exception raised by callback is not catched by handler, so you should take care of catching all exceptions within the callback itself. - func: a callable object taking element name, element children and locator as arguments. """ self._end_callbacks.append(func) def clearCallbacks(self): """ Remove all registered callbacks. """ self._end_callbacks = [ ] self._start_callbacks = [ ] def _requestUniqueIdentifier(self): """ Return a unique identifier used at parsing time. - return: identifier """ self._id += 1 return self._id
3.15625
3
da-assistant/stack_build.py
nc6/daml
0
12797201
#!/usr/bin/env python3 # Copyright (c) 2019 Digital Asset (Switzerland) GmbH and/or its affiliates. All rights reserved. # SPDX-License-Identifier: Apache-2.0 from subprocess import call, STDOUT from shutil import copyfile import sys import os import fileinput ORIGINAL_FIX_VERSION_HS = "gen-source/Version.hs.template" GENERATED_VERSION_HS = "DA/Sdk/Cli/Version.hs" ORIGINAL_MOCKSERVER_HS = "gen-source/Mockserver.hs.template" GENERATED_MOCKSERVER_HS = "Mockserver.hs" def main(version=None): if version is None: version = "HEAD" print("Stack Builder started...") try: basedir = os.path.dirname(os.path.realpath(__file__)) gen_vsn_hs = "%s/%s" % (basedir, GENERATED_VERSION_HS) print("Generating %s..." % GENERATED_VERSION_HS) copyfile("%s/%s" % (basedir, ORIGINAL_FIX_VERSION_HS), gen_vsn_hs) replace_template_var(gen_vsn_hs, "<VERSION-VAR>", version) print("Generating %s..." % GENERATED_MOCKSERVER_HS) copyfile("%s/%s" % (basedir, ORIGINAL_MOCKSERVER_HS), "%s/%s" % (basedir, GENERATED_MOCKSERVER_HS)) print("Running stack build...") call(["stack", "build"], stderr=sys.stderr, stdout=sys.stdout) finally: try: print("Removing generated files...") os.remove(GENERATED_VERSION_HS) os.remove(GENERATED_MOCKSERVER_HS) except OSError: pass def replace_template_var(template_file, var, value): with fileinput.FileInput(template_file, inplace=True, backup='.bak') as file: for line in file: print(line.replace(var, value), end='') if __name__== "__main__": if len(sys.argv) > 1: version = sys.argv[1] else: version = None main(version)
1.960938
2
carrus.py
caos21/Grodi
2
12797202
<reponame>caos21/Grodi # Copyright 2019 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # -*- coding: utf-8 -*- """ This module contains the classes functions and helpers to compute the plasma. """ __author__ = "<NAME>" __copyright__ = "Copyright 2019" __credits__ = ["<NAME>"] __license__ = "Apache 2.0" __version__ = "0.0.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Beta" import numpy as np import scipy.constants as const from scipy.integrate import solve_ivp PI = const.pi KE = 1.0/(4.0*PI*const.epsilon_0) INVKE = 1.0/KE KB = const.Boltzmann QE = const.elementary_charge ME = const.electron_mass def coulomb_floatpotential(qcharge, radius): """ Floating potential """ return KE*qcharge/radius def particle_potenergy(radius, zcharge): """ Nanoparticle potential energy """ return -(KE*zcharge*QE**2)/radius def tunnel(rtaff, radius, zcharge): """ Tunneling probability """ prefac1 = -2./const.hbar prefac2 = np.sqrt(2.*ME*particle_potenergy(rtaff, zcharge)) return np.exp(prefac1*prefac2*(rtaff*np.arccos(np.sqrt(radius/rtaff)) -np.sqrt(radius*(rtaff-radius)))) class TunnelFrequency: """ Computes electron tunnel frequency """ def __init__(self, plasmasystem): self.psys = plasmasystem self.eaffinity = 4.05*const.elementary_charge def __call__(self, zcharge, radius): return self.ptunnel(zcharge, radius) def rt_affinity(self, radius, zcharge): """ Computes rt_affinity to particle to escape """ ainfinity = self.eaffinity ainf = ainfinity * INVKE/QE**2 rtaff = zcharge/(zcharge/radius + ainf - (5.0/(8.0*radius))) if np.isscalar(rtaff): if rtaff < 0: return 1000000.0 else: rtaff[rtaff < 0] = 1000000.0 return rtaff def ptunnel(self, zcharge, radius): """ Tunnel frequency """ prefac1 = (-zcharge)*np.sqrt(2.*const.Boltzmann*self.psys.temperature/ME)*(0.5/radius) rtaff = self.rt_affinity(radius, zcharge) return prefac1*tunnel(rtaff, radius, zcharge) class CollisionFrequency: """ Stores and computes collision frequencies """ def __init__(self, plasmasystem, grid_data): self.psys = plasmasystem self.gdata = grid_data self.tfrequency = TunnelFrequency(self.psys) self.rmesh, self.qmesh = np.meshgrid(self.gdata.dpivots*0.5e-9, self.gdata.qpivots*QE, indexing='ij') self.rmesh, self.zmesh = np.meshgrid(self.gdata.dpivots*0.5e-9, self.gdata.qpivots, indexing='ij') self.rmesh2 = self.rmesh**2 self.phid = coulomb_floatpotential(self.qmesh, self.rmesh) self.ion_velocity = 0.0 def compute_collisionfreq(self, energy, edensity, idensity, efreq, ifreq, tfreq): """ Compute collision frequencies OML theory and Tunnel frequency """ kte = (2.0/3.0)*energy*QE efreqfactor = 4.0 * PI * edensity * np.sqrt(kte/(2.0*PI*ME)) ion_energy_from_temperature = (3.0/2.0) * KB * self.psys.ion_temperature ion_energy = (ion_energy_from_temperature + 0.5*self.psys.armass*self.ion_velocity*self.ion_velocity) kti = (2.0/3.0)*ion_energy ifreqfactor = 4.0 * PI * idensity * np.sqrt(kti/(2.0*PI*self.psys.armass)) efreq.fill(0) ifreq.fill(0) tfreq.fill(0) gdata = self.gdata rmesh2 = self.rmesh2 phid = self.phid efreq[:, gdata.qpivots < 0] = (efreqfactor * rmesh2[:, gdata.qpivots < 0] * np.exp(QE*phid[:, gdata.qpivots < 0]/kte)) efreq[:, gdata.qpivots >= 0] = (efreqfactor * rmesh2[:, gdata.qpivots >= 0] * (1.0 + QE*phid[:, gdata.qpivots >= 0]/kte)) ifreq[:, gdata.qpivots <= 0] = (ifreqfactor * rmesh2[:, gdata.qpivots <= 0] * (1.0 - QE*phid[:, gdata.qpivots <= 0]/kti)) ifreq[:, gdata.qpivots > 0] = (ifreqfactor * rmesh2[:, gdata.qpivots > 0] * np.exp(-QE*phid[:, gdata.qpivots > 0]/kti)) for i, diam in enumerate(gdata.dpivots): for j, zcharge in enumerate(gdata.qpivots[gdata.qpivots < 0]): tfreq[i][j] = self.tfrequency(zcharge, 0.5e-9*diam) for i, diam in enumerate(gdata.dpivots): for j, zcharge in enumerate(gdata.qpivots[gdata.qpivots < 0]): if (tfreq[i][j] > 1e6*ifreq[i][j]) and (ifreq[i][j] > efreq[i][j]): tfreq[i][j] = 1e6*ifreq[i][j] class Charging: """ Compute nanoparticle charging rate """ def __init__(self, collision_frequency, grid_data): """ """ self.coll = collision_frequency self.grid_data = grid_data self.nvols = self.grid_data.nvols self.nchrgs = self.grid_data.nchrgs self.efreq = np.zeros((self.nvols, self.nchrgs)) self.ifreq = np.zeros((self.nvols, self.nchrgs)) self.tfreq = np.zeros((self.nvols, self.nchrgs)) def compute_freqs(self, energy, edensity, idensity): """ Compute frequencies """ self.coll.compute_collisionfreq(energy, edensity, idensity, self.efreq, self.ifreq, self.tfreq) def compute_plasmacharging(time, delta_t, grid_data, pchem, growth_data, charging, plasma_sys): """ Solve the plasma densities """ with_tunnel = plasma_sys.with_tunnel nel = pchem.past_plasmadensity[0] nar = pchem.past_plasmadensity[1] npdensity = growth_data.next_density ion_loss = np.sum(npdensity*charging.ifreq)/nar electron_loss = np.sum(npdensity*charging.efreq)/nel energy_loss = np.sum(charging.coll.phid*npdensity*charging.efreq)/nel tunnel_gain = with_tunnel*np.sum(npdensity*charging.tfreq) energy_gain = with_tunnel*np.sum(charging.coll.phid*npdensity*charging.tfreq) pchem.density_sourcedrain = np.array([electron_loss, ion_loss, 0.0, 0.0, tunnel_gain, energy_gain, energy_loss]) nano_qdens = np.sum(npdensity*grid_data.qpivots) pchem.nano_qdens = nano_qdens nano_qdens_rate = np.sum(growth_data.qrate2d*grid_data.qpivots) pchem.nano_qdens_rate = nano_qdens_rate plasma_sys = pchem.get_system() sol = solve_ivp(plasma_sys, [time, time+delta_t], pchem.past_plasmadensity, method='BDF', dense_output=False, t_eval=[time, time+delta_t]) pchem.next_plasmadensity = np.nan_to_num(sol.y.T[-1]) # quasineutrality pchem.next_plasmadensity[3] = (pchem.next_plasmadensity[0]-pchem.nano_qdens -pchem.next_plasmadensity[1])
1.757813
2
doc/helloworld/src/helloworld/app.py
ukris/typhoonae.buildout
0
12797203
<gh_stars>0 # -*- coding: utf-8 -*- # # Copyright 2009 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Simple hello world application.""" import google.appengine.api.xmpp import google.appengine.ext.webapp import google.appengine.ext.webapp.template import logging import wsgiref.handlers class HelloWorldRequestHandler(google.appengine.ext.webapp.RequestHandler): """Simple request handler.""" def get(self): """Handles get.""" index = google.appengine.ext.webapp.template.render('index.html', {}) self.response.out.write(index) class XMPPHandler(google.appengine.ext.webapp.RequestHandler): """Handles XMPP messages.""" def post(self): """Handles post.""" message = google.appengine.api.xmpp.Message(self.request.POST) logging.info("Received XMPP message: %s" % message.body) if message.body[0:5].lower() == 'hello': message.reply("Hi, %s!" % message.sender) class InviteHandler(google.appengine.ext.webapp.RequestHandler): """Invites one to a XMPP chat.""" def post(self): """Handles post.""" jid = self.request.get('jid') if google.appengine.api.xmpp.get_presence(jid): google.appengine.api.xmpp.send_invite(jid) self.redirect('/') app = google.appengine.ext.webapp.WSGIApplication([ ('/_ah/xmpp/message/chat/', XMPPHandler), ('/invite', InviteHandler), ('/.*', HelloWorldRequestHandler), ], debug=True) def main(): """The main function.""" wsgiref.handlers.CGIHandler().run(app) if __name__ == '__main__': main()
2.40625
2
pygipo/management/commands/__init__.py
felixhummel/pygipo
0
12797204
# vim: set fileencoding=utf-8 filetype=python : import logging log = logging.getLogger(__name__)
1.382813
1
__init__.py
halibot-extra/mastermind
0
12797205
<gh_stars>0 from .mastermind import MastermindModule Default = MastermindModule
1.148438
1
0557_reverse_words_in_a_string_III.py
hotternative/leetcode
0
12797206
""" Given a string s, reverse the order of characters in each word within a sentence while still preserving whitespace and initial word order. 1 <= s.length <= 5 * 10**4 s contains printable ASCII characters. s does not contain any leading or trailing spaces. There is at least one word in s. All the words in s are separated by a single space. """ import unittest class Solution: def reverseWords(self, s: str) -> str: # Runtime: 36 ms, Memory Usage: 14.7 MB return ' '.join(w[::-1] for w in s.split(' ')) def reverseWords_two_pointers(self, s: str) -> str: # Runtime: 148 ms, Memory Usage: 15.2 MB s = list(s) i = j = k = 0 # i: start of a word, j: current head location, k: end of a word while j < len(s): if s[j] == ' ': k -= 1 while i < k: s[k], s[i] = s[i], s[k] i += 1 k -= 1 i = k = j + 1 elif j == len(s) - 1: k = j while i < k: s[k], s[i] = s[i], s[k] i += 1 k -= 1 else: k = j + 1 j += 1 return ''.join(s) class TestSolution(unittest.TestCase): methods_to_test = [ func for func in dir(Solution) if callable(getattr(Solution, func)) and not func.startswith('__')] def test1(self): s = "Let's take LeetCode contest" sol = Solution() expected_output = "s'teL ekat edoCteeL tsetnoc" for method in TestSolution.methods_to_test: method_to_test = getattr(sol, method) actual_output = method_to_test(s) assert actual_output == expected_output def test2(self): s = "<NAME>" sol = Solution() expected_output = "doG gniD" for method in TestSolution.methods_to_test: method_to_test = getattr(sol, method) actual_output = method_to_test(s) assert actual_output == expected_output
3.84375
4
stelspec/core.py
behrouzz/stelspec
0
12797207
<filename>stelspec/core.py """ Module core =========== This module retrieves data from ELODIE/SOPHIE archive. It has two classes, Elodie and Sophie, both could be constructed by passing an object name. Help on Elodie FITS files: http://atlas.obs-hp.fr/elodie/500/download.html Help on Sophie FITS files: http://atlas.obs-hp.fr/sophie/spec_help.html """ import numpy as np import pandas as pd import requests from urllib.request import urlretrieve from .columns import desc_el_ccf, desc_el_spec, desc_so_ccf, desc_so_spec def _get_df(url_, col_dc, int_cols, float_cols): url = url_ + str(list(col_dc.keys())).replace("'", "").replace(" ", "")[1:-1] req = requests.request('GET', url) r = req.content.decode('utf-8') lines = r.splitlines() valid_lines = [i for i in lines if i[0]!='#'] cols = valid_lines[0].split(' ') data_lines = [i.split('\t') for i in valid_lines[1:]] df = pd.DataFrame(data_lines, columns=cols) for i in df.columns: df.loc[df[i]=='', i] = np.nan df[float_cols] = df[float_cols].astype(float) df[int_cols] = df[int_cols].astype(int) return url, df class Elodie: def __init__(self, obj): """ Elodie class Parameters ---------- obj (str) : object name Methods ------- ccf : return Cross-Correlation Functions table spect : Spectra table """ self.obj = obj self.BASE = 'http://atlas.obs-hp.fr/elodie/fE.cgi?' def ccf(self): """ Elodie Cross-Correlation Functions table """ url_ = self.BASE + f'n=e501&o={self.obj}&ob=jdb&a=csv&&d=' int_cols = ['datenuit'] float_cols = ['jdb','exptim','sn','vfit','sigfit','ampfit','ctefit'] url, df = _get_df(url_, desc_el_ccf, int_cols, float_cols) print(url.replace('a=csv', 'a=htab')) return df def spec(self): """ Elodie Spectra table """ url_ = self.BASE + f'o={self.obj}&a=csv&d=' int_cols = ['dataset'] float_cols = ['exptime','sn','vfit','sigfit','ampfit'] url, df = _get_df(url_, desc_el_spec, int_cols, float_cols) print(url.replace('a=csv', 'a=htab')) return df def get_spec(self, dataset, imanum, path=None, s1d=True): BASE = 'http://atlas.obs-hp.fr/elodie/E.cgi?' s1 = '&z=s1d' if s1d else '' PAR1 = f'&c=i&o=elodie:{dataset}/{imanum}' PAR2 = s1 + '&a=mime:application/x-fits' url = BASE + PAR1+ PAR2 sp_typ = 's1d_' if s1d else 's2d_' filename = sp_typ + f'elodie_{dataset}_{imanum}.fits' path = '' if path is None else path urlretrieve(url, path+filename) class Sophie: def __init__(self, obj): """ Sophie class Parameters ---------- obj (str) : object name Methods ------- ccf : return Cross-Correlation Functions table spect : Spectra table """ self.obj = obj self.BASE = 'http://atlas.obs-hp.fr/sophie/sophie.cgi?' def ccf(self): """ Sophie Cross-Correlation Functions table """ url_ = self.BASE + f'n=sophiecc&ob=bjd&a=csv&o={self.obj}&d=' int_cols = ['seq','sseq','slen','nexp','expno','ccf_offline','maxcpp','lines'] float_cols = ['bjd','rv','err','dvrms','fwhm','span','contrast','sn26'] url, df = _get_df(url_, desc_so_ccf, int_cols, float_cols) print(url.replace('a=csv', 'a=htab')) return df def spec(self): """ Sophie Spectra table """ url_ = self.BASE + f'n=sophie&a=csv&ob=bjd&c=o&o={self.obj}&d=' int_cols = ['seq','sseq','slen','nexp','expno'] float_cols = ['bjd','sn26','exptime'] url, df = _get_df(url_, desc_so_spec, int_cols, float_cols) print(url.replace('a=csv', 'a=htab')) return df def get_spec(self, seq, path=None, s1d=True): s1d = 's1d' if s1d==True else 'e2ds' url = self.BASE + f'c=i&a=mime:application/fits&o=sophie:[{s1d},{seq}]' filename = f'sophie_[{s1d},{seq}].fits' path = '' if path is None else path urlretrieve(url, path+filename)
2.734375
3
ondewo/survey/survey_pb2_grpc.py
ondewo/ondewo-survey-client-python
0
12797208
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 from ondewo.survey import survey_pb2 as ondewo_dot_survey_dot_survey__pb2 class SurveysStub(object): """///// Services /////// """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.CreateSurvey = channel.unary_unary( '/ondewo.survey.Surveys/CreateSurvey', request_serializer=ondewo_dot_survey_dot_survey__pb2.CreateSurveyRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.Survey.FromString, ) self.GetSurvey = channel.unary_unary( '/ondewo.survey.Surveys/GetSurvey', request_serializer=ondewo_dot_survey_dot_survey__pb2.GetSurveyRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.Survey.FromString, ) self.UpdateSurvey = channel.unary_unary( '/ondewo.survey.Surveys/UpdateSurvey', request_serializer=ondewo_dot_survey_dot_survey__pb2.UpdateSurveyRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.Survey.FromString, ) self.DeleteSurvey = channel.unary_unary( '/ondewo.survey.Surveys/DeleteSurvey', request_serializer=ondewo_dot_survey_dot_survey__pb2.DeleteSurveyRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.ListSurveys = channel.unary_unary( '/ondewo.survey.Surveys/ListSurveys', request_serializer=ondewo_dot_survey_dot_survey__pb2.ListSurveysRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.ListSurveysResponse.FromString, ) self.GetSurveyAnswers = channel.unary_unary( '/ondewo.survey.Surveys/GetSurveyAnswers', request_serializer=ondewo_dot_survey_dot_survey__pb2.GetSurveyAnswersRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.SurveyAnswersResponse.FromString, ) self.GetAllSurveyAnswers = channel.unary_unary( '/ondewo.survey.Surveys/GetAllSurveyAnswers', request_serializer=ondewo_dot_survey_dot_survey__pb2.GetAllSurveyAnswersRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.SurveyAnswersResponse.FromString, ) self.CreateAgentSurvey = channel.unary_unary( '/ondewo.survey.Surveys/CreateAgentSurvey', request_serializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyResponse.FromString, ) self.UpdateAgentSurvey = channel.unary_unary( '/ondewo.survey.Surveys/UpdateAgentSurvey', request_serializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.SerializeToString, response_deserializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyResponse.FromString, ) self.DeleteAgentSurvey = channel.unary_unary( '/ondewo.survey.Surveys/DeleteAgentSurvey', request_serializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) class SurveysServicer(object): """///// Services /////// """ def CreateSurvey(self, request, context): """Create a Survey and an empty NLU Agent for it """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetSurvey(self, request, context): """Retrieve a Survey message from the Database and return it """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateSurvey(self, request, context): """Update an existing Survey message from the Database and return it """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeleteSurvey(self, request, context): """Delete a survey and its associated agent (if existent) """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListSurveys(self, request, context): """Returns the list of all surveys in the server """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetSurveyAnswers(self, request, context): """Retrieve answers to survey questions collected in interactions with a survey agent for a specific session """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetAllSurveyAnswers(self, request, context): """Retrieve all answers to survey questions collected in interactions with a survey agent in any session """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateAgentSurvey(self, request, context): """Populate and configures an NLU Agent from a Survey """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateAgentSurvey(self, request, context): """Update an NLU agent from a survey """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DeleteAgentSurvey(self, request, context): """Deletes all data of an NLU agent associated to a survey """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_SurveysServicer_to_server(servicer, server): rpc_method_handlers = { 'CreateSurvey': grpc.unary_unary_rpc_method_handler( servicer.CreateSurvey, request_deserializer=ondewo_dot_survey_dot_survey__pb2.CreateSurveyRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.Survey.SerializeToString, ), 'GetSurvey': grpc.unary_unary_rpc_method_handler( servicer.GetSurvey, request_deserializer=ondewo_dot_survey_dot_survey__pb2.GetSurveyRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.Survey.SerializeToString, ), 'UpdateSurvey': grpc.unary_unary_rpc_method_handler( servicer.UpdateSurvey, request_deserializer=ondewo_dot_survey_dot_survey__pb2.UpdateSurveyRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.Survey.SerializeToString, ), 'DeleteSurvey': grpc.unary_unary_rpc_method_handler( servicer.DeleteSurvey, request_deserializer=ondewo_dot_survey_dot_survey__pb2.DeleteSurveyRequest.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), 'ListSurveys': grpc.unary_unary_rpc_method_handler( servicer.ListSurveys, request_deserializer=ondewo_dot_survey_dot_survey__pb2.ListSurveysRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.ListSurveysResponse.SerializeToString, ), 'GetSurveyAnswers': grpc.unary_unary_rpc_method_handler( servicer.GetSurveyAnswers, request_deserializer=ondewo_dot_survey_dot_survey__pb2.GetSurveyAnswersRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.SurveyAnswersResponse.SerializeToString, ), 'GetAllSurveyAnswers': grpc.unary_unary_rpc_method_handler( servicer.GetAllSurveyAnswers, request_deserializer=ondewo_dot_survey_dot_survey__pb2.GetAllSurveyAnswersRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.SurveyAnswersResponse.SerializeToString, ), 'CreateAgentSurvey': grpc.unary_unary_rpc_method_handler( servicer.CreateAgentSurvey, request_deserializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyResponse.SerializeToString, ), 'UpdateAgentSurvey': grpc.unary_unary_rpc_method_handler( servicer.UpdateAgentSurvey, request_deserializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.FromString, response_serializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyResponse.SerializeToString, ), 'DeleteAgentSurvey': grpc.unary_unary_rpc_method_handler( servicer.DeleteAgentSurvey, request_deserializer=ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'ondewo.survey.Surveys', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Surveys(object): """///// Services /////// """ @staticmethod def CreateSurvey(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/CreateSurvey', ondewo_dot_survey_dot_survey__pb2.CreateSurveyRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.Survey.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetSurvey(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/GetSurvey', ondewo_dot_survey_dot_survey__pb2.GetSurveyRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.Survey.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateSurvey(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/UpdateSurvey', ondewo_dot_survey_dot_survey__pb2.UpdateSurveyRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.Survey.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DeleteSurvey(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/DeleteSurvey', ondewo_dot_survey_dot_survey__pb2.DeleteSurveyRequest.SerializeToString, google_dot_protobuf_dot_empty__pb2.Empty.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def ListSurveys(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/ListSurveys', ondewo_dot_survey_dot_survey__pb2.ListSurveysRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.ListSurveysResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetSurveyAnswers(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/GetSurveyAnswers', ondewo_dot_survey_dot_survey__pb2.GetSurveyAnswersRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.SurveyAnswersResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def GetAllSurveyAnswers(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/GetAllSurveyAnswers', ondewo_dot_survey_dot_survey__pb2.GetAllSurveyAnswersRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.SurveyAnswersResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def CreateAgentSurvey(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/CreateAgentSurvey', ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.AgentSurveyResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def UpdateAgentSurvey(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/UpdateAgentSurvey', ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.SerializeToString, ondewo_dot_survey_dot_survey__pb2.AgentSurveyResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def DeleteAgentSurvey(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/ondewo.survey.Surveys/DeleteAgentSurvey', ondewo_dot_survey_dot_survey__pb2.AgentSurveyRequest.SerializeToString, google_dot_protobuf_dot_empty__pb2.Empty.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
1.859375
2
sqpyte/opcode.py
hpi-swa-lab/SQPyte
3
12797209
from rpython.rlib.unroll import unrolling_iterable dual_implementation_opcodes = [ 'Add_Subtract_Multiply_Divide_Remainder', 'AggFinal', 'AggStep', 'Affinity', 'Cast', 'CollSeq', 'Compare', 'Copy', 'EndCoroutine', 'Function', 'Gosub', 'Goto', 'IdxLE_IdxGT_IdxLT_IdxGE', 'IdxRowid', 'IfPos', 'IfZero', 'If_IfNot', 'InitCoroutine', 'Integer', 'IsNull', 'Jump', 'MakeRecord', 'Move', 'MustBeInt', 'Ne_Eq_Gt_Le_Lt_Ge', 'Next', 'NextIfOpen', 'NotExists', 'NotNull', 'Null', 'Once', 'OpenRead_OpenWrite', 'Real', 'RealAffinity', 'ResultRow', 'Return', 'SCopy', 'Seek', 'SeekLT_SeekLE_SeekGE_SeekGT', 'Sequence', 'Variable', 'Yield', ] unrolling_dual_implementation_opcodes = unrolling_iterable(dual_implementation_opcodes) class OpcodeDefaults(object): OpenRead_OpenWrite = False Cast = False OpcodeDefaults = OpcodeDefaults() for op in dual_implementation_opcodes: if not hasattr(OpcodeDefaults, op): setattr(OpcodeDefaults, op, True) class OpcodeStatus(object): _immutable_fields_ = ["frozen", "use_flag_cache"] + dual_implementation_opcodes def __init__(self, use_flag_cache): self.use_flag_cache = use_flag_cache self.frozen = False for op in unrolling_dual_implementation_opcodes: setattr(self, op, getattr(OpcodeDefaults, op)) def set_use_translated(self, op, value): if self.frozen: raise TypeError("too late to change") if self.use_flag_cache: raise TypeError("can't change if flag cache is used") for whichop in unrolling_dual_implementation_opcodes: if whichop == op: setattr(self, whichop, value) if whichop == "Compare": self.Jump = value elif whichop == "Jump": self.Compare = value elif whichop == "AggStep": self.AggFinal = value elif whichop == "AggFinal": self.AggStep = value def freeze(self): if not self.frozen: self.frozen = True def disable_from_cmdline(self, s): if s == "all": for op in unrolling_dual_implementation_opcodes: setattr(self, op, False) return specs = s.split(":") for spec in specs: if spec: self.set_use_translated(spec, False)
2.25
2
src/cities.py
codefortallahassee/TEMP_REST_API_Cities
0
12797210
<filename>src/cities.py # requires # pip install airtable # pip install airtable-python-wrapper import json import airtable from airtable import Airtable key_File = open("../resources/key") BASE_ID = keyFile.readline().rstrip() # found in url of API documentation for table CITIES_TABLE = "USCities" def create_cities_object(): return Airtable(BASE_ID, CITIES_TABLE) def airtable_call(): airtable_object = Airtable(BASE_ID, CITIES_TABLE) records = airtable_object.get_all() cities_list = [] for record in records: od = {'Id': []} # Original Dictionary try: od['Id'] = record['Cities']['GEO.id'] except KeyError: continue # every record needs an ID, skip if there is not one try: od['Name'] = record['Cities']['GEO.display-label'] except KeyError: pass cities_list.append(od) with open("output.json", "w") as f: json.dump(service_list, f, indent=2) return cities_list
3.171875
3
newsdb_report/newsdb.py
stricklandrw/udacity-ipnd
0
12797211
<gh_stars>0 #!/usr/bin/env python """Database article and errors report generator.""" import datetime import psycopg2 import bleach DBNAME = "news" TOP_ARTICLES = "3" def get_article_counts(parameters): """Return all posts from the 'database', most recent first.""" """Open PostGRES database session and returns a new connection instance""" db = psycopg2.connect(database=DBNAME) """Sets up interaction with the database to perform operations""" c = db.cursor() """Pull article titles and hit counts from article_hits database view""" """Example - ('Candidate is jerk, alleges rival', 338647L)""" sql = '''SELECT * FROM article_hits limit (%s);''' data = (bleach.clean(parameters),) """Execute sends command to the database""" c.execute(sql, data) """Returns all information from executed command""" print """\r\nWhat are the most popular three articles of all time?\r\n""" for row in c.fetchall(): title = row[0] count = row[1] print '''"''' + str(title) + '''" - ''' + str(count) + """ views""" """Closes database connection""" db.close() def popular_authors(): """Return all posts from the 'database', most recent first.""" """Open PostGRES database session and returns a new connection instance""" db = psycopg2.connect(database=DBNAME) """Sets up interaction with the database to perform operations""" c = db.cursor() """Pull correlated data of authors and the sums of hits against all their articles from article_hits database view""" """Example - ('<NAME>', Decimal('507594'))""" sql = """SELECT authors.name, SUM( article_hits.hits ) FROM authors, articles, article_hits WHERE article_hits.article_title = articles.title AND authors.id = articles.author GROUP BY authors.name ORDER BY sum desc;""" """Execute sends command to the database""" c.execute(sql) """Return all info from executed command & formats for report view""" print """\r\nWho are the most popular article authors of all time?\r\n""" for row in c.fetchall(): author = row[0] count = row[1] print str(author) + """ - """ + str(count) + """ views""" """Closes database connection""" db.close() def error_report(): """Return all posts from the 'database', most recent first.""" """Open PostGRES database session and returns a new connection instance""" db = psycopg2.connect(database=DBNAME) """Sets up interaction with the database to perform operations""" c = db.cursor() """Pull days from errors view of database with more than 1% error""" """Ex. - ('July 17, 2016', Decimal('97.7'))""" sql = """SELECT to_char(date, 'FMMonth FMDD, FMYYYY') as day, percent_good FROM errors WHERE percent_good < '99' ORDER BY date;""" """Execute sends command to the database""" c.execute(sql) """Returns all info from executed command and formats for report viewing""" print "\r\nOn which days did more than 1% of requests lead to errors?\r\n" for row in c.fetchall(): date = row[0] error_percent = 100 - row[1] print str(date) + """ - """ + str(error_percent) + """% errors""" """Closes database connection""" db.close() def report(): """Generate a report of the most popular 3 articles of all time.""" get_article_counts(TOP_ARTICLES) """Generate a report of the most popular authors of all time.""" popular_authors() """Generate a report of the day(s) with more than 1% errors requests.""" error_report() report()
3.21875
3
control/init.py
KentStateRobotics/Robot_Control
0
12797212
<filename>control/init.py #Kent State Univeristy - RMC team #<NAME> 2018 # #Starts program import control SOCK_PORT = 4242 HTTP_PORT = 80 robotContoler = control.control(HTTP_PORT, SOCK_PORT)
1.796875
2
herokuexample/run_glm.py
baogorek/HerokuExample
0
12797213
import os import datetime import psycopg2 import numpy as np import pandas as pd #import statsmodels.api as sm from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod.families import Binomial from statsmodels.genmod.families.links import probit DATABASE_URL = os.environ['DATABASE_URL'] conn = psycopg2.connect(DATABASE_URL, sslmode='require') cur = conn.cursor() # cursor needed to perform db ops cur.execute("SELECT * FROM Iris;") iris_df = pd.DataFrame(cur.fetchall()) X = np.array(iris_df.iloc[:, 0:4]) y = np.array(iris_df.iloc[:, 4] == 'virginica', dtype=int) weight = np.ones(150) probit_link = probit() bin_family = Binomial(probit_link) my_glm = GLM(y, X, freq_weights = weight, family = bin_family) my_glm_fit = my_glm.fit() theta = my_glm_fit.params current_dt = datetime.datetime.now() cur.execute("INSERT INTO scores VALUES (%s, %s, %s, %s, %s)", (str(current_dt), theta[0], theta[1], theta[2], theta[3])) conn.commit() cur.close() conn.close()
2.453125
2
quadpy/e3r/_stroud_secrest.py
whzup/quadpy
0
12797214
import numpy from sympy import Rational as frac from sympy import pi, sqrt from ..helpers import article, fsd, pm, pm_roll, untangle from ._helpers import E3rScheme citation = article( authors=["<NAME>", "<NAME>"], title="Approximate integration formulas for certain spherically symmetric regions", journal="Math. Comp.", volume="17", year="1963", pages="105-135", url="https://doi.org/10.1090/S0025-5718-1963-0161473-0", ) def stroud_secrest_07(): nu, xi = [sqrt(15 - p_m * 3 * sqrt(5)) for p_m in [+1, -1]] A = frac(3, 5) B = frac(1, 30) data = [(A, numpy.array([[0, 0, 0]])), (B, pm_roll(3, [xi, nu]))] points, weights = untangle(data) weights *= 8 * pi return E3rScheme("Stroud-Secrest VII", weights, points, 5, citation) def stroud_secrest_08(): nu = sqrt(30) eta = sqrt(10) A = frac(3, 5) B = frac(2, 75) C = frac(3, 100) data = [(A, numpy.array([[0, 0, 0]])), (B, fsd(3, (nu, 1))), (C, pm(3, eta))] points, weights = untangle(data) weights *= 8 * pi return E3rScheme("Stroud-Secrest VIII", weights, points, 5, citation) def stroud_secrest_09(): eta = sqrt(10) xi, nu = [sqrt(15 - p_m * 5 * sqrt(5)) for p_m in [+1, -1]] A = frac(3, 5) B = frac(1, 50) data = [(A, numpy.array([[0, 0, 0]])), (B, pm(3, eta)), (B, pm_roll(3, [xi, nu]))] points, weights = untangle(data) weights *= 8 * pi return E3rScheme("Stroud-Secrest IX", weights, points, 5, citation) def stroud_secrest_10(): sqrt130 = sqrt(130) nu = sqrt((720 - 24 * sqrt130) / 11) xi = sqrt(288 + 24 * sqrt130) eta = sqrt((-216 + 24 * sqrt130) / 7) A = (5175 - 13 * sqrt130) / 8820 B = (3870 + 283 * sqrt130) / 493920 C = (3204 - 281 * sqrt130) / 197568 # ERR in Stroud's book: 917568 vs. 197568 D = (4239 + 373 * sqrt130) / 197568 data = [ (A, numpy.array([[0, 0, 0]])), (B, fsd(3, (nu, 1))), (C, fsd(3, (xi, 2))), (D, pm(3, eta)), ] points, weights = untangle(data) weights *= 8 * pi return E3rScheme("Stroud-Secrest X", weights, points, 7, citation) def stroud_secrest_11(): sqrt5 = sqrt(5) sqrt39 = sqrt(39) sqrt195 = sqrt(195) nu, xi = [ sqrt(-50 + p_m * 10 * sqrt5 + 10 * sqrt39 - p_m * 2 * sqrt195) for p_m in [+1, -1] ] eta = sqrt(36 + 4 * sqrt39) mu, lmbda = [ sqrt(54 + p_m * 18 * sqrt5 + 6 * sqrt39 + p_m * 2 * sqrt195) for p_m in [+1, -1] ] A = (1725 - 26 * sqrt39) / 2940 B = (1065 + 171 * sqrt39) / 54880 C = (297 - 47 * sqrt39) / 32928 data = [ (A, numpy.array([[0, 0, 0]])), (B, pm_roll(3, [xi, nu])), (C, pm(3, eta)), (C, pm_roll(3, [lmbda, mu])), ] points, weights = untangle(data) weights *= 8 * pi return E3rScheme("Stroud-Secrest XI", weights, points, 7, citation)
2.4375
2
src/filter_structs.py
mimirblockchainsolutions/w3aio
3
12797215
<gh_stars>1-10 from .types import Types import logging log = logging.getLogger(__name__) """ { "addressFilter":<address> OPTIONAL, "bnFilter":<uint256> OPTIONAL, "abiFilters": OPTIONAL [ { name STRING REQUIRED rvalue HEXSTR OR INT REQUIRED type STRING REQUIRED op STRING REQUIRED } ] } """ #all and logic mapped class EventFilter(object): __slots__=["_abiFilters","_bnFilter","_addressFilter","_callback"] def __init__(self,fltr,callback): self._callback = callback bf = fltr.get("bnFilter",None) self._bnFilter = BNFilter(bf) if bf else None af = fltr.get("addressFilter",None) self._addressFilter = AddressFilter(af) if af else None self._abiFilters = [ABIFilter(f) for f in fltr.get("abiFilters",[])] @property def topic(self): return self._topic async def test(self, event_log, event): if self._abiFilters: abitest = all([filtr.test(event) for filtr in self._abiFilters]) else: abitest = True addrtest = self._addressFilter.test(event_log.address) if self._addressFilter else True bntest = self._bnFilter.test(event_log.blockNumber) if self._bnFilter else True return all([abitest,addrtest,bntest]) @property def callback(self): return self._callback class AddressFilter(object): __slots__=["_value"] def __init__(self,value): self._value = value def test(self,rvalue): return self._value == rvalue class BNFilter(object): __slots__=["_rvalue","_op"] def __init__(self,rvalue,op): self._rvalue = rvalue Types.checkUint256(self._rvalue) self._op = op assert SafeOP.ops(self._op) def test(self,event_log): test = getattr(SafeOP,self._op)(event_log.blockNumber, self._rvalue) assert type(test) is bool return test class ABIFilter(object): __slots__=["_rvalue","_op","_name","_type"] def __init__(self,fltr): self._name = fltr["name"] type_factory = getattr(Types,fltr["type"]) self._rvalue = type_factory(fltr["rvalue"]) self._type_factory = type_factory self._op = fltr["op"] assert SafeOP.ops(self._op) def test(self,event): lvalue = event[self._name] lvalue = self._type_factory(lvalue) result = getattr(SafeOP,self._op)(event[self._name],self._rvalue) return result class SafeOP(object): slots = ['_ops'] @staticmethod def ops(op): return op in ['eq','gt','lt','ge','le','ne',] @staticmethod def eq(a,b): return a == b @staticmethod def gt(a,b): return a > b @staticmethod def lt(a,b): return not SafeOP.gt(a,b) @staticmethod def ge(a,b): return SafeOP.gt(a,b) or SafeOP.eq(a,b) @staticmethod def le(a,b): return SafeOP.lt(a,b) or SafeOP.eq(a,b) @staticmethod def ne(a,b): return not SafeOP.eq(a,b)
2.46875
2
update_dd.py
alanmitchell/update-degree-days
0
12797216
<reponame>alanmitchell/update-degree-days<gh_stars>0 #!/usr/local/bin/python3.6 """Script that adds monthly heating degree day values to a pickled Pandas DataFrame with the path 'data/degree_days.pkl' (compression = 'bz2'). It also saves the DataFrame as a CSV file at 'data/degree_days.csv'. The new degree-day information comes from the AHFC BMON site, https://bms.ahfc.us . This script is typically run from a Cron job that schedules the script to run on the first day of the month so that the prior month's degree days will be available. Dont' run the script late in the month or a partial month may be prematurely added to the DataFrame because it satisfies the MIN_COVERAGE check described below. This script assumes the pickled DataFrame already exists and has the following format: month hdd60 hdd65 station PAED 2018-02-01 1257.648675 1397.648675 PAED 2018-03-01 1028.027773 1183.027773 The index is the National Weather Service 4-letter station code. The 'month' column is a first-of-the-month date identifying the month whose degree-days are shown. 'hdd60' and 'hdd65' are the heating degree-day values: the first is base 60 degree F values and the second is base 65 deg F values. This script will acquire temperature data from the AHFC BMON site in order to calculate the degree-days for the most recent months not already present in the DataFrame. All stations found in the index of the DataFrame will be updated. The script assumes that the BMON sensor ID for a weather station's temperature data is the 4-letter station code with '_temp' appended, e.g. 'PAMR_temp'. The MIN_COVERAGE constant in the script controls the minimum amount of data coverage a month must have before being included. Missing data is filled in with the average value for the rest of the hours that do have data. ----------------------------------- NOTES ON UTILIZING THE DATA To read this DataFrame back into a Python script, you can excecute the following if the DataFrame is available on a local drive: import pandas as pd df = pd.read_pickle('degree_days.pkl', compression='bz2') If the file is located on a web server, you can read it with the following code: import pandas as pd import requests from io import BytesIO b = requests.get('http://ahfc.webfactional.com/data/degree_days.pkl').content d = pd.read_pickle(BytesIO(b), compression='bz2') Once you have a DataFrame, you can extract that portion of the DataFrame that applies to one site by: df_one_site = df.loc['PAMR'] or df_one_site = df.query("station == 'PAMR'") (slower than above technique) To extract one site with a subset of the months: df_one_site = df.query("station == 'PAMR' and month >= '2018-01-01'") """ from os.path import dirname, join, realpath import sys from datetime import datetime, timedelta import pandas as pd import requests # Minimum fraction of the hours in a month that must have data in order # to include the month. MIN_COVERAGE = 0.7 print('\nScript Start: {}'.format(datetime.now().ctime())) # path to this directory APP_PATH = dirname(realpath(__file__)) # URL to the AHFC BMON site API BMON_URL = 'https://bms.ahfc.us/api/v1/readings/{}/' def dd_for_site(stn, start_date): """Returns a Pandas Dataframe of monthly heating degree-day values for 'stn' (a NWS weather site code). Degree days start in the month that 'start_date' (Python date/time object) falls in and continue through the end of available data. In the returned DataFrame, the index has a timestamp for each month returned, that being the first day of the month. The columns of the DataFrame are "hdd65" and "hdd60" to designate base 65 F degree-days and base 60 F degree-days. Temperature data used to calculate degree-days comes from the AHFC BMON site. Missing hours are assumed to not deviate from the average of the data present. The column 'coverage' indicates the fraction of the months hours that actually have data. """ # get beginning of month st_dt_1 = start_date.replace(day=1, hour=0, minute=0, second=0, microsecond=0) params = { 'start_ts': st_dt_1.strftime('%Y-%m-%d'), 'averaging': '1H' } sensor_id = '{}_temp'.format(stn) resp = requests.get(BMON_URL.format(sensor_id), params=params).json() if resp['status']=='success': df = pd.DataFrame(resp['data']['readings'], columns=['ts', 'temp']) df.set_index('ts', inplace=True) df.index = pd.to_datetime(df.index) # calculate the percentage of each month that has data dfc = df.resample('1M').count() dfc['total_hours'] = [i.day * 24 for i in dfc.index] # index is last day of the month dfc['coverage'] = dfc.temp / dfc.total_hours # Now back to the main dataframe to calc degree-days df['hdd60'] = [(60.0 - x)/24.0 if x<60.0 else 0.0 for x in df.temp] df['hdd65'] = [(65.0 - x)/24.0 if x<65.0 else 0.0 for x in df.temp] df.drop(['temp'], axis=1, inplace=True) dfm = df.resample('1M').mean() dfm['coverage'] = dfc.coverage dfm['hdd60'] = dfm.hdd60 * dfc.total_hours dfm['hdd65'] = dfm.hdd65 * dfc.total_hours # Convert index timestamps to beginning of the month mos = [datetime(d.year, d.month, 1) for d in dfm.index] dfm.index = mos dfm.index.name = 'month' else: raise ValueError(str(resp['data'])) return dfm if __name__ == '__main__': df_exist = pd.read_pickle(join(APP_PATH, 'data/degree_days.pkl'), compression='bz2') # list of new DataFrames to add to the existing one new_dfs = [] for stn in df_exist.index.unique(): print('Processing {}: '.format(stn), end='') try: # get last month present for this station last_mo = df_exist.loc[stn].month.max() # get a date in the following month next_mo = last_mo + timedelta(days=32) # could be a DST change in there; add 32 days to be safe # get degree days for missing months df_new = dd_for_site(stn, next_mo).query('coverage > @MIN_COVERAGE').copy() if len(df_new): # put this DataFrame in a form that can be concatenated to the existing one df_new.reset_index(inplace=True) df_new.index = [stn] * len(df_new) df_new.index.name = 'station' df_new.drop(columns=['coverage'], inplace=True) # add it to the list of new DataFrames to eventually add to the # degree-day DataFrame new_dfs.append(df_new) print('{} new months'.format(len(df_new))) else: print() except: print('{}: {}'.format(*sys.exc_info()[:2])) # Create a new DataFrame that combines the existing data with the new. df_final = pd.concat([df_exist] + new_dfs) # get it sorted by station and month df_final.reset_index(inplace=True) df_final.sort_values(['station', 'month'], inplace=True) df_final.set_index('station', inplace=True) # Save the DataFrame as a compressed pickle and a CSV file. df_final.to_pickle(join(APP_PATH, 'data/degree_days.pkl'), compression='bz2', protocol=4) df_final.to_csv(join(APP_PATH, 'data/degree_days.csv'))
3.359375
3
src/Negamax.py
jrinder42/Checkers-AI
0
12797217
<filename>src/Negamax.py from copy import deepcopy import cPickle from Board import Actions class Negamax_AB(Actions): BEST_MOVE = None def __init__(self): Actions.__init__(self) def __deepcopy__(self, memodict={}): # faster than built-in g = cPickle.loads(cPickle.dumps(self, -1)) return g def game_over(self, board): white_pieces = self.get_white_pieces(board) black_pieces = self.get_black_pieces(board) if not white_pieces: print "Black has won" return True elif not black_pieces: print "White has won" return True return False def negamax(self, board, depth, alpha, beta, color): if depth <= 0 or self.game_over(board): return color * self.evaluate(board) moves = self.generate_black_moves(board) for move in moves: child = deepcopy(board) self.move_black(child, *move) score = -self.negamax(child, depth - 1, -beta, -alpha, -color) if score >= alpha: alpha = score self.BEST_MOVE = move if alpha >= beta: break return alpha def evaluate(self, board): # for AI # sum(my pieces) - sum(oponent pieces) return len(self.get_black_pieces(board)) - len(self.get_white_pieces(board)) class Negamax(Actions): BEST_MOVE = None def __init__(self): Actions.__init__(self) def __deepcopy__(self, memodict={}): # faster than built-in g = cPickle.loads(cPickle.dumps(self, -1)) return g def game_over(self, board): white_pieces = self.get_white_pieces(board) black_pieces = self.get_black_pieces(board) if not white_pieces: print "Black has won" return True elif not black_pieces: print "White has won" return True return False def negamax(self, board, depth, color): if depth == 0 or self.game_over(board): return color * self.evaluate(board) v = float('-inf') moves = self.generate_black_moves(board) self.BEST_MOVE = moves[0] for move in moves: child = deepcopy(board) self.move_black(child, *move) v = max(v, -self.negamax(child, depth - 1, -color)) self.BEST_MOVE = move return v def evaluate(self, board): # for AI # sum(my pieces) - sum(oponent pieces) return len(self.get_black_pieces(board)) - len(self.get_white_pieces(board))
2.9375
3
leetcode_python/Heap/ugly-number-ii.py
yennanliu/CS_basics
18
12797218
# V0 # V1 # https://blog.csdn.net/coder_orz/article/details/51317748 # IDEA : "unly number" : a number is an ugly number # if all its prime factors are within [2, 3, 5]. # e.g. 6, 8 are ugly number ; while 14 is not # please note that 1 is ugly number as well # IDEA : ITERATION class Solution(object): def isUgly(self, num): """ :type num: int :rtype: bool """ if num <= 0: return False for i in [2, 3, 5]: while num%i == 0: num = num / i return True if num == 1 else False # V1' # https://blog.csdn.net/coder_orz/article/details/51317748 # IDEA : RECURSION class Solution(object): def isUgly(self, num): """ :type num: int :rtype: bool """ if num <= 0: return False if num == 1: return True if num % 2 == 0: return self.isUgly(num/2) elif num % 3 == 0: return self.isUgly(num/3) elif num % 5 == 0: return self.isUgly(num/5) else: return False # V1'' # https://blog.csdn.net/coder_orz/article/details/51317748 class Solution(object): def isUgly(self, num): """ :type num: int :rtype: bool """ return num > 0 == 30**30 % num # V2 # Time: O(n) # Space: O(1) import heapq class Solution(object): # @param {integer} n # @return {integer} def nthUglyNumber(self, n): ugly_number = 0 heap = [] heapq.heappush(heap, 1) for _ in range(n): ugly_number = heapq.heappop(heap) if ugly_number % 2 == 0: heapq.heappush(heap, ugly_number * 2) elif ugly_number % 3 == 0: heapq.heappush(heap, ugly_number * 2) heapq.heappush(heap, ugly_number * 3) else: heapq.heappush(heap, ugly_number * 2) heapq.heappush(heap, ugly_number * 3) heapq.heappush(heap, ugly_number * 5) return ugly_number def nthUglyNumber2(self, n): ugly = [1] i2 = i3 = i5 = 0 while len(ugly) < n: while ugly[i2] * 2 <= ugly[-1]: i2 += 1 while ugly[i3] * 3 <= ugly[-1]: i3 += 1 while ugly[i5] * 5 <= ugly[-1]: i5 += 1 ugly.append(min(ugly[i2] * 2, ugly[i3] * 3, ugly[i5] * 5)) return ugly[-1] def nthUglyNumber3(self, n): q2, q3, q5 = [2], [3], [5] ugly = 1 for u in heapq.merge(q2, q3, q5): if n == 1: return ugly if u > ugly: ugly = u n -= 1 q2 += 2 * u, q3 += 3 * u, q5 += 5 * u, class Solution2(object): ugly = sorted(2**a * 3**b * 5**c for a in range(32) for b in range(20) for c in range(14)) def nthUglyNumber(self, n): return self.ugly[n-1]
4
4
bin/reverse-geocode.py
straup/buildingequalsyes
1
12797219
#!/usr/bin/env python import sys import shapely import sqlite3 import urllib2 import json import time import reverse_geoplanet from shapely.geometry import Polygon from shapely.geometry import LineString def munge(path, reversegeo_endpoint) : # rg = reverse_geoplanet.reverse_geoplanet(reversegeo_endpoint) dbconn = sqlite3.connect(path) dbcurs = dbconn.cursor() dbcurs.execute("SELECT COUNT(id) AS count FROM ways") row = dbcurs.fetchone() count = row[0] offset = 0 limit = 5000 while offset < count : sql = "SELECT * FROM ways LIMIT %s, %s" % (offset, limit) print "%s (%s)" % (sql, count) dbcurs.execute(sql) for row in dbcurs.fetchall(): way_id, lat, lon, woeid, nodes, tags = row if lat and lon: pass # continue if woeid > 0: continue nodes = nodes.split(',') points = [] for node_id in nodes: dbcurs.execute("SELECT * FROM nodes WHERE id=?", (node_id, )) node = dbcurs.fetchone() points.append((node[2], node[1])) center = None if len(points) == 2: line = LineString(points) center = line.centroid else : points.append(points[0]) poly = Polygon(points) center = poly.centroid if not center: print "no centroid for way %s" % way_id print poly continue lat = center.y lon = center.x woeid = 0 geo = rg.reverse_geocode(lat, lon) if geo: woeid = geo['woeid'] print "[%s] update %s lat: %s, lon: %s, woeid: %s" % (offset, way_id, lat, lon, woeid) dbcurs.execute("UPDATE ways SET lat=?, lon=?, woeid=? WHERE id=?", (lat, lon, woeid, way_id)) dbconn.commit() time.sleep(2) offset += limit return if __name__ == '__main__' : path = sys.argv[1] reversegeo = sys.argv[2] munge(path, reversegeo)
2.71875
3
workflow/src/crawler.py
showyou/docker-chatbot-niko
0
12797220
<filename>workflow/src/crawler.py #!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import json import datetime from sqlalchemy import and_ import random # /home/*/hama_dbとかが返ってくる #exec_path = os.path.abspath(os.path.dirname(__file__)).rsplit("/",1)[0] exec_path = "." conf_path = exec_path+"/common/config.json" ng_char_path = exec_path+"/common/ng_char.json" sys.path.insert(0,exec_path) from common import auth_api, model import tweepy # 格納しないテキストのリスト g_ngTrend = [ "オフパコ", "フルチン" ] # ファイルから読み出すので空に変更 g_ng_char = [] dbSession = None def read_json(fileName): file = open(fileName,'r') a = json.loads(file.read()) file.close() return a # NGな単語かNGな語句が入っていたらTrue そうでないならFalse def is_ng_trend(trend): if trend in g_ngTrend: return True for ng_char in g_ng_char: if ng_char in trend: return True return False """ テキストが適合している = True 重複してたり、RTだったり = False """ def check_text(text, dbSession): if( is_ng_trend(text) ): return False #jTime = created_at + datetime.timedelta(hours = 9) query = dbSession.query(model.Trend).filter( model.Trend.text == text ) if( query.count() > 0 ): return False #ここに品詞判定辺り入れる t = model.Trend() t.text = text #t.datetime = jTime dbSession.add(t) return True def main(): # twitterから発言を取ってきてDBに格納する userdata = read_json(conf_path) g_ng_char = read_json(ng_char_path) tw = auth_api.connect(userdata["consumer_token"], userdata["consumer_secret"], exec_path+"/common/") #print tw.rate_limit_status() dbSession = model.startSession(userdata) page_number = 0 update_flag = True while update_flag: update_flag = False page_number += 1 if page_number > 1: break #l = tw.home_timeline(page = page_number, count=10) #Toyko座標ベタ打ち woeid = tw.trends_closest(35.652832, 139.839478)[0]['woeid'] trends_place = tw.trends_place(woeid) l = trends_place[0]['trends'] for s in l: trend = s['name'] if trend.startswith("#"): trend = trend[1:] #print(trend) update_flag = check_text(trend, dbSession) if(not(update_flag)): continue if(random.randint(0,1)): text = "な、なによ……! ニコだって" + trend +\ "くらいできるんだから!!" else: text = trend + "と言えば?\nニコニー♪\nかわいい" +\ trend +"と言えば?\nニコニー♪" try: tw.update_status(text) print("trend "+trend) except tweepy.TweepError: pass #print("flag: ", update_flag) if update_flag: break dbSession.commit() if __name__ == "__main__": main()
2.421875
2
scripts/upload_questions.py
thecrux4020/telegram-bot
9
12797221
import boto3 from boto3.dynamodb.types import TypeDeserializer, TypeSerializer import json import logging DYNAMODB_TABLE_NAME = "quizzes_questions" def setup_logging(): """ Basic logging setup """ logging.basicConfig(format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', level=logging.INFO) return logging def load_questions(): with open("questions.json", "r") as f: questions = json.loads(f.read()) return questions def check_limitations(question): if not "explanation" in question: raise KeyError(f"explanation key not found in question id: {question['question_id']}") elif not "question" in question: raise KeyError(f"question key not found in question id: {question['question_id']}") elif not "options" in question: raise KeyError(f"options key not found in question id: {question['question_id']}") elif not "correct_option" in question: raise KeyError(f"correct_option key not found in question id: {question['question_id']}") if len(question["explanation"]) > 200: raise ValueError("explanation value is greater than 200 chars") if len(question["question"]) > 255: raise ValueError("question value is greater than 255 chars") if len(question["options"]) > 10: raise ValueError("options array is greater than 10") for option in question["options"]: if len(option) > 100: raise ValueError(f"option: {option} is grater than 100 chars") def serialize(question, type_serializer = TypeSerializer()): question = {k: type_serializer.serialize(v) for k,v in question.items()} return question def upload_to_dynamo(client, question): raw_question = serialize(question) client.put_item( TableName=DYNAMODB_TABLE_NAME, Item=raw_question ) def main(): client_dynamo = boto3.client('dynamodb') logger = setup_logging() logger.info("loadding questions from questions.json") questions = load_questions() logger.info("start processing questions") for question in questions: logger.info(f"check limitations for question id: {question['question_id']} ") check_limitations(question) logger.info(f"Limitation check pass, start uploading to dynamodb") upload_to_dynamo(client_dynamo, question) if __name__ == "__main__": main()
2.453125
2
assignment1/cs231n/classifiers/linear_svm.py
ivanistheone/cs231n
1
12797222
<gh_stars>1-10 from builtins import range import numpy as np from random import shuffle from past.builtins import xrange def svm_loss_naive(W, X, y, reg): """ Structured SVM loss function, naive implementation (with loops). Inputs have dimension D, there are C classes, and we operate on minibatches of N examples. Inputs: - W: A numpy array of shape (D, C) containing weights. - X: A numpy array of shape (N, D) containing a minibatch of data. - y: A numpy array of shape (N,) containing training labels; y[i] = c means that X[i] has label c, where 0 <= c < C. - reg: (float) regularization strength Returns a tuple of: - loss as single float - gradient with respect to weights W; an array of same shape as W """ dW = np.zeros(W.shape) # 3073 x 10 zeros # compute the loss and the gradient num_classes = W.shape[1] num_train = X.shape[0] loss = 0.0 for i in range(num_train): scores = X[i].dot(W) correct_class_score = scores[y[i]] for j in range(num_classes): if j == y[i]: continue margin = scores[j] - correct_class_score + 1 # note delta = 1 if margin > 0: loss += margin dW[:,j] += 1*X[i] dW[:,y[i]] += -1*X[i] # Right now the loss is a sum over all training examples, but we want it # to be an average instead so we divide by num_train. loss /= num_train # 1/N factor in front dW /= num_train # Add regularization to the loss. loss += reg * np.sum(W * W) ############################################################################# # TODO: # # Compute the gradient of the loss function and store it dW. # # Rather than first computing the loss and then computing the derivative, # # it may be simpler to compute the derivative at the same time that the # # loss is being computed. As a result you may need to modify some of the # # code above to compute the gradient. # ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** dW += 2*W # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, dW def svm_loss_vectorized(W, X, y, reg): """ Structured SVM loss function, vectorized implementation. Inputs and outputs are the same as svm_loss_naive. """ num_train = X.shape[0] ############################################################################# # TODO: # # Implement a vectorized version of the structured SVM loss, storing the # # result in loss. # ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** S = X.dot(W) # scores (N,C) # build mask selecting only the correct classes (one-hot encodig of y_i) mask = np.eye(W.shape[1], dtype=bool)[y] # correct scores which we'll be subtracting from all other correct_scores_vec = np.sum(np.where(mask, S, 0), axis=1) correct_scores = correct_scores_vec[:,np.newaxis] # broadcasting-ready vec # compute margins M = S - correct_scores + 1 # margins (N,C) M[mask] = 0 pM = np.where(M>0, M, 0) # positive marings # compute loss loss = 1.0/num_train * np.sum(pM) + reg * np.sum(W * W) # maring conributions + regularization # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** ############################################################################# # TODO: # # Implement a vectorized version of the gradient for the structured SVM # # loss, storing the result in dW. # # # # Hint: Instead of computing the gradient from scratch, it may be easier # # to reuse some of the intermediate values that you used to compute the # # loss. # ############################################################################# # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** # We'll use dpM to store two contributions that tells us which rows of X we # should to include in the calculation of dW = X.T.dot(dpM) dpM = np.zeros((X.shape[0], W.shape[1])) # N x C zeros # first contributoin (all active margins for others) pMactive = np.where(M>0, 1, 0) dpM += pMactive # second contributoin subtract fro self self sum of others active dpM[mask] = -1*np.sum(pMactive, axis=1) # gadiaent dW = 1.0/num_train * X.T.dot(dpM) + 2*W # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)***** return loss, dW
3.140625
3
turq/examples.py
XiaoboHe/turq
45
12797223
import pkgutil import xml.etree.ElementTree import docutils.core def load_pairs(): # Load pairs of "example ID, rules code" for the test suite. rst_code = _load_rst() xml_code = docutils.core.publish_string(rst_code, writer_name='xml') tree = xml.etree.ElementTree.fromstring(xml_code) parsed = [] for section in tree.findall('./section'): slug = section.get('ids').replace('-', '_') for i, block in enumerate(section.findall('./literal_block'), start=1): parsed.append(('%s_%d' % (slug, i), block.text)) return parsed def load_html(initial_header_level): # Render an HTML fragment ready for inclusion into a page. rst_code = _load_rst() parts = docutils.core.publish_parts( rst_code, writer_name='html', settings_overrides={'initial_header_level': initial_header_level}) return parts['fragment'] def _load_rst(): return pkgutil.get_data('turq', 'examples.rst')
2.3125
2
easy/python3/c0050_204_count-primes/00_leetcode_0050.py
drunkwater/leetcode
0
12797224
<gh_stars>0 # DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #204. Count Primes #Description: #Count the number of prime numbers less than a non-negative number, n. #Credits: #Special thanks to @mithmatt for adding this problem and creating all test cases. #class Solution: # def countPrimes(self, n): # """ # :type n: int # :rtype: int # """ # Time Is Money
3.09375
3
forum/migrations/0001_initial.py
ghcis/forum
0
12797225
# Generated by Django 3.2.7 on 2021-09-11 13:54 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Thread', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=128, verbose_name='标题')), ('pub_date', models.DateTimeField(auto_now_add=True, verbose_name='发布日期')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, verbose_name='用户')), ], ), migrations.CreateModel( name='Post', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('pub_date', models.DateTimeField(auto_now_add=True, verbose_name='发布日期')), ('content', models.TextField(verbose_name='内容')), ('upvotes', models.IntegerField(default=0)), ('downvotes', models.IntegerField(default=0)), ('relpy_to', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='forum.post', verbose_name='回复')), ('thread', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='forum.thread')), ('user', models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to=settings.AUTH_USER_MODEL, verbose_name='用户')), ], ), ]
1.828125
2
src/EcmsApi/tables/_base.py
Poseidon-Dev/ecms-api
0
12797226
<reponame>Poseidon-Dev/ecms-api<filename>src/EcmsApi/tables/_base.py import os __all__ = ['TableMixin'] class TableMixin: """ Table Mixin class to get quick properties from the table """ NAMESPACE = os.getenv('ECMS_HOST') FORIEGN_KEYS = {} def __init__(self): self.TABLE = self.__class__ self.TABLE_NAME = self.__class__.__name__ @property def namespace(self): return self.NAMESPACE @property def table(self): return self.TABLE.__class__.__name__ @property def id(self): return f'{self.TABLE_NAME}ID' @property def cols(self): return [{k: v} for k, v in self.TABLE.__dict__.items() if '__' not in k] @property def column_names(self): return [col for cols in self.cols for col, _ in cols.items()]
2.1875
2
Hashtable/1124. Longest Well-Performing Interval.py
viewv/leetcode
2
12797227
class Solution: def longestWPI(self, hours: List[int]) -> int: res = dict() s = 0 ans = 0 for i, c in enumerate(hours): s += 1 if c > 8 else -1 if s > 0: ans = i + 1 if s not in res: res[s] = i if s - 1 in res: ans = max(ans, i-res[s-1]) return ans
2.875
3
pymyenergi/ct.py
CJNE/pymyenergi
5
12797228
<reponame>CJNE/pymyenergi class CT: def __init__(self, name, value) -> None: self._name = name self._value = value @property def name(self): """Name of CT clamp""" return self._name @property def power(self): """Power reading of CT clamp in W""" return self._value
2.59375
3
ch5/exercises/ans5_6.py
chunhua2017/pythonprogrammingdemo
4
12797229
# 先确认在VSCode的Settings中,勾选“Terminal:Excute In File Dir” # 在当前文件夹下将hello_world.txt文件复制为hello_world_bak.txt src = r'hello_world.txt' dst = r'hello_world_bak.txt' import shutil shutil.copyfile(src, dst)
1.929688
2
apps/vehicle_counting/worker/worker.py
microsoft/nxs
5
12797230
<filename>apps/vehicle_counting/worker/worker.py import os import cv2 from nxs_libs.db import NxsDbFactory, NxsDbType from apps.vehicle_counting.app_types.app_request import ( InDbTrackingAppRequest, RequestStatus, ) from apps.vehicle_counting.worker.utils import * DB_TASKS_COLLECTION_NAME = "tasks" DB_COUNTS_COLLECTION_NAME = "counts" DB_LOGS_COLLECTION_NAME = "logs" STORAGE_LOGS_DIR_PATH = "logs" def main(): import argparse parser = argparse.ArgumentParser(description="Vehicle Counting App") parser.add_argument("--video_uuid", type=str) parser.add_argument("--nxs_url", type=str) parser.add_argument("--nxs_api_key", type=str) parser.add_argument( "--object_detector_uuid", type=str, default="bbff897256c9431eb19a2ad311749b39", ) parser.add_argument( "--tracker_uuid", type=str, default="451ffc2ee1594fe2a6ace17fca5117ab", ) parser.add_argument("--blobstore_conn_str", type=str) parser.add_argument("--blobstore_container", type=str) parser.add_argument("--cosmosdb_conn_str", type=str) parser.add_argument("--cosmosdb_db_name", type=str) parser.add_argument( "--debug", default=False, type=lambda x: (str(x).lower() == "true") ) args = parser.parse_args() args.video_uuid = os.environ["VIDEO_UUID"] args.nxs_url = os.environ["NXS_URL"] args.nxs_api_key = os.environ["NXS_API_KEY"] args.blobstore_conn_str = os.environ["BLOBSTORE_CONN_STR"] args.blobstore_container = os.environ["BLOBSTORE_CONTAINER"] args.cosmosdb_conn_str = os.environ["COSMOSDB_URL"] args.cosmosdb_db_name = os.environ["COSMOSDB_NAME"] try: db_client = NxsDbFactory.create_db( NxsDbType.MONGODB, uri=args.cosmosdb_conn_str, db_name=args.cosmosdb_db_name, ) db_client.update( DB_TASKS_COLLECTION_NAME, { "video_uuid": args.video_uuid, "zone": "global", }, {"status": RequestStatus.RUNNING}, ) video_info = InDbTrackingAppRequest( **db_client.query( DB_TASKS_COLLECTION_NAME, {"video_uuid": args.video_uuid} )[0] ) if video_info.skip_frames is None: video_info.skip_frames = 3 if video_info.count_interval_secs is None: video_info.count_interval_secs = 900 # 15 mins INFER_URL = f"{args.nxs_url}/api/v2/tasks/tensors/infer" OBJECT_DETECTOR_UUID = args.object_detector_uuid TRACKER_UUID = args.tracker_uuid cap = cv2.VideoCapture(video_info.video_url) frame_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH) frame_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT) frame_rate = int(round(cap.get(cv2.CAP_PROP_FPS))) cap.release() rois = [] lines = [] for region in video_info.regions: points = [] for p in region.roi.points: points.append( NxsPoint( int(p.x * frame_width), int(p.y * frame_height), ) ) rois.append(NxsRoi(points=points)) line = region.line lines.append( NxsLine( p0=NxsPoint( x=int(line.p0.x * frame_width), y=int(line.p0.y * frame_height), ), p1=NxsPoint( x=int(line.p1.x * frame_width), y=int(line.p1.y * frame_height), ), ) ) if ".m3u8" not in video_info.video_url: from apps.vehicle_counting.worker.online_worker import ( OnlineVehicleTrackingApp, ) app = OnlineVehicleTrackingApp( video_uuid=video_info.video_uuid, frame_width=frame_width, frame_height=frame_height, frame_rate=frame_rate, nxs_infer_url=INFER_URL, nxs_api_key=args.nxs_api_key, detector_uuid=OBJECT_DETECTOR_UUID, tracker_uuid=TRACKER_UUID, video_url=video_info.video_url, rois=rois, lines=lines, tracking_classes=video_info.tracking_classes, visualize=False, collect_logs=args.debug, skip_frame=video_info.skip_frames, blobstore_conn_str=args.blobstore_conn_str, blobstore_container_name=args.blobstore_container, cosmosdb_conn_str=args.cosmosdb_conn_str, cosmosdb_db_name=args.cosmosdb_db_name, counting_report_interval_secs=video_info.count_interval_secs, job_duration=video_info.job_duration, ) else: from apps.vehicle_counting.worker.offline_worker import ( OfflineVehicleTrackingApp, ) app = OfflineVehicleTrackingApp( video_uuid=video_info.video_uuid, frame_width=frame_width, frame_height=frame_height, frame_rate=frame_rate, nxs_infer_url=INFER_URL, nxs_api_key=args.nxs_api_key, detector_uuid=OBJECT_DETECTOR_UUID, tracker_uuid=TRACKER_UUID, video_url=video_info.video_url, rois=rois, lines=lines, tracking_classes=video_info.tracking_classes, visualize=False, collect_logs=args.debug, skip_frame=video_info.skip_frames, blobstore_conn_str=args.blobstore_conn_str, blobstore_container_name=args.blobstore_container, cosmosdb_conn_str=args.cosmosdb_conn_str, cosmosdb_db_name=args.cosmosdb_db_name, counting_report_interval_secs=video_info.count_interval_secs, job_duration=video_info.job_duration, ) app.run_tracking() db_client = NxsDbFactory.create_db( NxsDbType.MONGODB, uri=args.cosmosdb_conn_str, db_name=args.cosmosdb_db_name, ) if app.job_completed: db_client.update( DB_TASKS_COLLECTION_NAME, { "video_uuid": args.video_uuid, "zone": "global", }, {"status": RequestStatus.COMPLETED, "error": ""}, ) else: db_client.update( DB_TASKS_COLLECTION_NAME, { "video_uuid": args.video_uuid, "zone": "global", }, {"status": RequestStatus.FAILED, "error": "stream ended"}, ) except Exception as e: print(e) db_client = NxsDbFactory.create_db( NxsDbType.MONGODB, uri=args.cosmosdb_conn_str, db_name=args.cosmosdb_db_name, ) db_client.update( DB_TASKS_COLLECTION_NAME, { "video_uuid": args.video_uuid, "zone": "global", }, {"status": RequestStatus.FAILED, "error": str(e)}, ) if __name__ == "__main__": main()
2.28125
2
pyadlml/plot/feature_importance.py
tcsvn/pyadlml
4
12797231
class FeatureImportance(object): def __init__(self, md, test_x, test_z): self._skater_model, self._skater_interpreter = _create_skater_stuff(md, test_x, test_z) def save_plot_feature_importance(self, file_path): fig, ax = self._skater_interpreter.feature_importance.plot_feature_importance( self._skater_model, ascending=True, ax=None, progressbar=False, # model-scoring: difference in log_loss or MAE of training_labels # given perturbations. Note this vary rarely makes any significant # differences method='model-scoring') # corss entropy or f1 ('f1', 'cross_entropy') #scorer_type='cross_entropy') # type: Figure, axes #scorer_type='f1') # type: Figure, axes import matplotlib.pyplot as plt plt.tight_layout() fig.savefig(file_path, dpi=fig.dpi) plt.close(fig) def _create_skater_stuff(mdl, test_x, test_z): from skater.model import InMemoryModel from skater.core.explanations import Interpretation from hassbrain_algorithm.benchmark.interpretation import ModelWrapper from hassbrain_algorithm.benchmark.interpretation import _boolean2str wrapped_model = ModelWrapper(mdl) class_names = mdl.get_state_lbl_lst() feature_names = mdl.get_obs_lbl_lst() # this has to be done in order for skater to recognize the values as categorical and not numerical test_x = _boolean2str(test_x) # create interpretation interpreter = Interpretation(test_x, #class_names=class_names, feature_names=feature_names) # create model # supports classifiers with or without probability scores examples = test_x[:10] skater_model = InMemoryModel(wrapped_model.predict, #target_names=class_names, feature_names=feature_names, model_type='classifier', unique_values=class_names, probability=False, examples=examples) interpreter.load_data(test_x, training_labels=test_z, feature_names=feature_names) # todo flag for deletion (3lines below) # if this can savely be deleted tmp = interpreter.data_set.feature_info for key, val in tmp.items(): val['numeric'] = False return skater_model, interpreter
2.640625
3
app/search.py
S4G4R/tv-tracker
0
12797232
<gh_stars>0 import tmdbsimple as tmdb def search_movie(title): """ Connects to API to search for a specific movie by title. """ search = tmdb.Search() response = search.movie(query=title) return search.results def search_tv(title): """ Connects to API to search for a specific tv show by title. """ search = tmdb.Search() response = search.tv(query=title) return search.results def search_by_id(id, type): """ Connects to API to search for a specific movie or show by id. """ if type == 'tv': result = tmdb.TV(id) else : result = tmdb.Movies(id) return result.info()
2.703125
3
setup.py
JakobHavtorn/scholarscrape
0
12797233
<filename>setup.py from setuptools import find_packages, setup # Read requirements files requirements_file = "requirements.txt" with open(requirements_file) as buffer: requirements = buffer.read().splitlines() requirements = list(set(requirements)) requirements_string = "\n ".join(requirements) print(f"Found the following requirements to be installed from {requirements_file}:\n {requirements_string}") # Collect packages packages = find_packages(exclude=("tests", "experiments")) print("Found the following packages to be created:\n {}".format("\n ".join(packages))) # Get long description from README with open("README.md", "r") as readme: long_description = readme.read() setup( name="scholarscrape", version="1.0.0", packages=packages, python_requires=">=3.10.0", install_requires=requirements, setup_requires=[], ext_modules=[], url="https://github.com/JakobHavtorn/scholarscrape", author="<NAME>", description="Interfacing with Semanticscholar API for greatness", long_description=long_description, long_description_content_type="text/markdown", )
1.992188
2
delivery_addresses/tests/test_delivery_address.py
stanwood/traidoo-api
3
12797234
<reponame>stanwood/traidoo-api<filename>delivery_addresses/tests/test_delivery_address.py import random import pytest from model_bakery import baker from delivery_addresses.models import DeliveryAddress pytestmark = pytest.mark.django_db def test_get_own_delivery_addresses(client_seller, seller, buyer): baker.make_recipe("delivery_addresses.delivery_address", user=buyer) address_1, address_2 = baker.make_recipe( "delivery_addresses.delivery_address", user=seller, _quantity=2 ) response = client_seller.get("/delivery_addresses") assert response.json() == [ { "city": address_1.city, "companyName": address_1.company_name, "id": address_1.id, "street": address_1.street, "zip": address_1.zip, }, { "city": address_2.city, "companyName": address_2.company_name, "id": address_2.id, "street": address_2.street, "zip": address_2.zip, }, ] def test_get_own_delivery_address(client_seller, seller): address = baker.make_recipe("delivery_addresses.delivery_address", user=seller) response = client_seller.get(f"/delivery_addresses/{address.id}") assert response.json() == { "city": address.city, "companyName": address.company_name, "id": address.id, "street": address.street, "zip": address.zip, } def test_get_someone_else_delivery_address(client_seller, buyer): address = baker.make_recipe("delivery_addresses.delivery_address", user=buyer) response = client_seller.get(f"/delivery_addresses/{address.id}") assert response.status_code == 404 def test_add_delivery_address(client_seller, seller, faker): data = { "city": faker.city(), "companyName": faker.company(), "street": faker.street_address(), "zip": faker.zipcode(), } response = client_seller.post("/delivery_addresses", data) assert response.json() == { "id": DeliveryAddress.objects.first().id, "companyName": data["companyName"], "street": data["street"], "zip": data["zip"], "city": data["city"], } def test_edit_delivery_address(client_seller, seller, faker): address = baker.make_recipe("delivery_addresses.delivery_address", user=seller) data = { "city": faker.city(), "companyName": faker.company(), "street": faker.street_address(), "zip": faker.zipcode(), } response = client_seller.put(f"/delivery_addresses/{address.id}", data) assert response.json() == { "id": address.id, "companyName": data["companyName"], "street": data["street"], "zip": data["zip"], "city": data["city"], } address.refresh_from_db() assert address.city == data["city"] assert address.company_name == data["companyName"] assert address.street == data["street"] assert address.zip == data["zip"] def test_edit_someone_else_delivery_address(client_buyer, seller, buyer, faker): address = baker.make_recipe("delivery_addresses.delivery_address", user=seller) data = { "city": faker.city(), "companyName": faker.company(), "street": faker.street_address(), "zip": faker.zipcode(), } response = client_buyer.put(f"/delivery_addresses/{address.id}", data) assert response.status_code == 404 def test_partially_edit_delivery_address(client_seller, seller, faker): address = baker.make_recipe("delivery_addresses.delivery_address", user=seller) data = { "city": faker.city(), "companyName": faker.company(), "street": faker.street_address(), "zip": faker.zipcode(), } for key, value in data.items(): response = client_seller.patch(f"/delivery_addresses/{address.id}", data) assert response.json()[key] == value def test_partially_edit_someone_else_delivery_address( client_buyer, seller, buyer, faker ): address = baker.make_recipe("delivery_addresses.delivery_address", user=seller) response = client_buyer.patch( f"/delivery_addresses/{address.id}", {"city": faker.city()} ) assert response.status_code == 404 def test_delete_delivery_address(client_seller, seller, faker): address = baker.make_recipe("delivery_addresses.delivery_address", user=seller) response = client_seller.delete(f"/delivery_addresses/{address.id}") with pytest.raises(DeliveryAddress.DoesNotExist): address.refresh_from_db() def test_delete_delivery_address_when_in_use(client_seller, seller, faker): address = baker.make_recipe("delivery_addresses.delivery_address", user=seller) cart = baker.make_recipe("carts.cart", delivery_address=address, user=seller) response = client_seller.delete(f"/delivery_addresses/{address.id}") assert response.status_code == 400 assert response.json() == { "message": "Cannot be deleted due to protected related entities.", "code": "protected_error", } def test_delete_someone_else_delivery_address(client_seller, buyer, faker): address = baker.make_recipe("delivery_addresses.delivery_address", user=buyer) response = client_seller.delete(f"/delivery_addresses/{address.id}") assert response.status_code == 404 assert not address.refresh_from_db()
2.265625
2
frame/noneatable/non_eatable.py
Rosikobu/snake-reloaded
0
12797235
import pygame import random from pygame.math import Vector2 #from .config import xSize, ySize, cell_size, cell_number from .loc_conf import xSize, ySize, cell_number, cell_size class NonEatable(): def __init__(self, screen, ip1,ip2,ip3,ip4): # Lade Textur self._load_texture(ip1,ip2,ip3,ip4) # Zufällige Koordinaten für Futter xPos1 = random.randint(0,cell_number - 2) yPos1 = random.randint(0,cell_number - 2) while(not self.is_start_pos_ok(xPos1,yPos1)): xPos1 = random.randint(0,cell_number - 2) yPos1 = random.randint(0,cell_number - 2) xPos2 = xPos1 yPos2 = yPos1 + 1 xPos3 = xPos1 + 1 yPos3 = yPos1 xPos4 = xPos1 + 1 yPos4 = yPos1 + 1 self.lis = [Vector2(xPos1,yPos1),Vector2(xPos2,yPos2),Vector2(xPos3,yPos3),Vector2(xPos4,yPos4)] self.pyScreen = screen def is_start_pos_ok(self,xPos1,yPos1): if(xPos1 == 6 and yPos1 == 10): return False if(xPos1 == 7 and yPos1 == 10): return False if(xPos1 == 8 and yPos1 == 10): return False return True def _load_texture(self, ip1,ip2,ip3,ip4): ''' Laden der Texutren ''' self.ft1 = pygame.image.load(ip1).convert_alpha() self.ft2 = pygame.image.load(ip2).convert_alpha() self.ft3 = pygame.image.load(ip3).convert_alpha() self.ft4 = pygame.image.load(ip4).convert_alpha() def draw_barrier(self): food_obj1 = pygame.Rect(int(self.lis[0].x*cell_size),int(self.lis[0].y*cell_size),cell_size,cell_size) food_obj2 = pygame.Rect(int(self.lis[1].x*cell_size),int(self.lis[1].y*cell_size),cell_size,cell_size) food_obj3 = pygame.Rect(int(self.lis[2].x*cell_size),int(self.lis[2].y*cell_size),cell_size,cell_size) food_obj4 = pygame.Rect(int(self.lis[3].x*cell_size),int(self.lis[3].y*cell_size),cell_size,cell_size) self.pyScreen.blit(self.ft1, food_obj1) self.pyScreen.blit(self.ft2, food_obj2) self.pyScreen.blit(self.ft3, food_obj3) self.pyScreen.blit(self.ft4, food_obj4) def change_position(self): xPos1 = random.randint(0,cell_number - 2) yPos1 = random.randint(0,cell_number - 2) self.lis = [Vector2(xPos1,yPos1),Vector2(xPos1,yPos1+1),Vector2(xPos1+1,yPos1),Vector2(xPos1+1,yPos1+1)]
2.640625
3
main.py
aaryanDhakal22/scamn-t
0
12797236
import pyautogui from time import sleep from random import choice sleep(3) names = open("names.txt","r").readlines() names = [i[:-1] for i in names] passwords = open("pass.txt",'r').readlines() passwords = [i[:-1] for i in passwords if passwords.index(i) % 2 == 0] for i in range(100): print("hehe :) ") pyautogui.click() nametotake = names[i+100] passtotake = choice(passwords) if len(passtotake) < 8: passtotake = nametotake[:nametotake.index('.')] +passtotake pyautogui.write(nametotake) pyautogui.press("TAB") pyautogui.write(passtotake) pyautogui.press("ENTER") sleep(1) with pyautogui.hold('alt'): pyautogui.press('left') print(nametotake) print(passtotake) print("Done\n\n") sleep(6)
3.203125
3
roster/client.py
trustedhousesitters/roster-python
1
12797237
<filename>roster/client.py<gh_stars>1-10 import time import sys import os import signal import random import threading from urlparse import urlparse from datetime import datetime, timedelta from registry import NewRegistry from boto.dynamodb2.layer1 import DynamoDBConnection from boto.dynamodb2 import connect_to_region from boto.dynamodb2.items import Item from boto.dynamodb2.exceptions import ItemNotFound HEARTBEAT_INTERVAL = 1 # 1second TTL = 5 class Service(object): def __init__(self, Name, Endpoint, Expiry=None, stopHeartbeat=False, *args, **kwargs): self.Name = Name.get('S') if isinstance(Name, dict) else Name self.Endpoint = Endpoint.get('S') if isinstance(Endpoint, dict) else Endpoint self.Expiry = int(Expiry.get('N')) if isinstance(Expiry, dict) else Expiry # unix timestamp self.stopHeartbeat = int(stopHeartbeat.get('N')) if isinstance(stopHeartbeat, dict) else stopHeartbeat # Unregister the service def Unregister(self): self.stopHeartbeat = True class ClientConfig(object): def __init__(self, registry_name='', *args, **kwargs): self.registry_name = registry_name self.region = '' endpoint = os.getenv('DYNAMODB_ENDPOINT', '') if endpoint != '': self.endpoint = endpoint self.endpoint_data = urlparse(self.endpoint) def SetRegion(self, region): """ Set region """ self.region = region def GetRegistryName(self): """ Get registry table name """ return self.registry_name or 'roster' def GetHashKey(self): return self.name def GetRangeKey(self): return self.endpoint def GetConnection(self): # Environment var if self.region == '': self.region = os.getenv('AWS_REGION', '') # Default if self.region == '': self.region = "us-west-2" aws_access_key_id=os.getenv('AWS_ACCESS_KEY_ID', '') aws_secret_access_key=os.getenv('AWS_SECRET_ACCESS_KEY', '') if self.endpoint: return DynamoDBConnection( host=self.endpoint_data.hostname, port=self.endpoint_data.port, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, is_secure=False ) else: return connect_to_region(self.region, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key ) class CleanExit(object): def __enter__(self): return self def __exit__(self, exc_type, exc_value, exc_tb): if exc_type is KeyboardInterrupt: return True return exc_type is None class Client(object): def __init__(self, svc, config, registry): self.svc = svc self.config = config self.registry = registry @classmethod def new(cls, *args, **kwargs): config = ClientConfig(*args, **kwargs) svc = config.GetConnection() registry = NewRegistry(svc, config.GetRegistryName()) return Client(svc=svc, config=config, registry=registry) # Register the service in the registry def Register(self, name, endpoint): # Check whether the registry has been previously created. If not create before registration. if not self.registry.Exists(): table, err = self.registry.Create() if err: return None, err # Create Service self.service = Service(Name=name, Endpoint=endpoint) # Ensure call heartbeat at least once self.heartbeat() # Start heartbeat check t = threading.Thread(target=heartbeat_check, args=(self,)) t.daemon = True # causes the thread to terminate when the main process ends. t.start() return self.service, None # Heartbeat function - updates expiry def heartbeat(self, terminate=False): # if self.service.stopHeartbeat: # return # Update service Expiry based on TTL and current time self.service.Expiry = int(time.mktime(datetime.now().timetuple())) if not terminate: self.service.Expiry += TTL table = self.registry.Table() item_info = { 'Name': self.service.Name, 'Endpoint': self.service.Endpoint } if table.has_item(**item_info): item = table.get_item(**item_info) else: item = Item(table, self.service.__dict__) item['Expiry'] = self.service.Expiry item.save() # Query the registry for named service def Discover(self, name): now = int(time.mktime(datetime.now().timetuple())) items = self.svc.scan( self.registry.name, filter_expression = 'Expiry > :ExpiryVal AND #N = :NameVal', expression_attribute_names = { '#N': 'Name' }, expression_attribute_values = { ':NameVal': { 'S': name }, ':ExpiryVal': { 'N': str(now) } } ) # Randomly select one of the available endpoints (in effect load balancing between available endpoints) count = items.get('Count') if count == 0: return None, Exception('roster: No matching service found') else: return Service(**items['Items'][random.randint(0, count - 1)]), None # Returns the non loopback local IP of the host the client is running on def get_local_ip(self): import socket try: for ip in socket.gethostbyname_ex(socket.gethostname())[2]: if not ip.startswith("127."): return ip, '' except Exception: pass return '', Exception("roster: No non loopback local IP address could be found") # Heartbeat function - updates expiry def heartbeat_check(client): # with CleanExit(): while True: if client.service.stopHeartbeat: client.heartbeat(terminate=True) break time.sleep(HEARTBEAT_INTERVAL) client.heartbeat()
2.234375
2
nvflare/private/fed/client/admin_msg_sender.py
ArnovanHilten/NVFlare
2
12797238
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is the FLAdmin Client to send the request message to the admin server.""" import threading from multiprocessing.dummy import Pool as ThreadPool import grpc import nvflare.private.fed.protos.admin_pb2 as admin_msg import nvflare.private.fed.protos.admin_pb2_grpc as admin_service from nvflare.private.admin_defs import Message from nvflare.private.fed.utils.messageproto import message_to_proto, proto_to_message from .admin import Sender lock = threading.Lock() class AdminMessageSender(Sender): """AdminMessageSender to send the request message to the admin server.""" def __init__( self, client_name, root_cert=None, ssl_cert=None, private_key=None, server_args=None, secure=False, is_multi_gpu=False, rank=0, ): """To init the AdminMessageSender. Args: client_name: client name root_cert: root certificate ssl_cert: SSL certificate private_key: private key server_args: server args secure: True/False is_multi_gpu: True/False rank: local process rank """ self.client_name = client_name self.root_cert = root_cert self.ssl_cert = ssl_cert self.private_key = private_key self.secure = secure self.servers = server_args self.multi_gpu = is_multi_gpu self.rank = rank self.pool = ThreadPool(len(self.servers)) def send_reply(self, message: Message): """Call to send the request message. Args: message: request message """ if self.rank == 0: # self.send_client_reply(message) for taskname in tuple(self.servers): self._send_client_reply(message, taskname) def _send_client_reply(self, message, taskname): try: with self._set_up_channel(self.servers[taskname]) as channel: stub = admin_service.AdminCommunicatingStub(channel) reply = admin_msg.Reply() reply.client_name = self.client_name reply.message.CopyFrom(message_to_proto(message)) # reply.message = message_to_proto(message) stub.SendReply(reply) except BaseException: pass def retrieve_requests(self) -> [Message]: """Send the message to retrieve pending requests from the Server. Returns: list of messages. """ messages = [] if self.rank == 0: items = self.pool.map(self._retrieve_client_requests, tuple(self.servers)) for item in items: messages.extend(item) return messages def _retrieve_client_requests(self, taskname): try: message_list = [] with self._set_up_channel(self.servers[taskname]) as channel: stub = admin_service.AdminCommunicatingStub(channel) client = admin_msg.Client() client.client_name = self.client_name messages = stub.Retrieve(client) for i in messages.message: message_list.append(proto_to_message(i)) except Exception as e: messages = None return message_list def send_result(self, message: Message): """Send the processor results to server. Args: message: message """ if self.rank == 0: for taskname in tuple(self.servers): try: with self._set_up_channel(self.servers[taskname]) as channel: stub = admin_service.AdminCommunicatingStub(channel) reply = admin_msg.Reply() reply.client_name = self.client_name reply.message.CopyFrom(message_to_proto(message)) stub.SendResult(reply) except BaseException: pass def _set_up_channel(self, channel_dict): """Connect client to the server. Args: channel_dict: grpc channel parameters Returns: an initialised grpc channel """ if self.secure: with open(self.root_cert, "rb") as f: trusted_certs = f.read() with open(self.private_key, "rb") as f: private_key = f.read() with open(self.ssl_cert, "rb") as f: certificate_chain = f.read() call_credentials = grpc.metadata_call_credentials( lambda context, callback: callback((("x-custom-token", self.client_name),), None) ) credentials = grpc.ssl_channel_credentials( certificate_chain=certificate_chain, private_key=private_key, root_certificates=trusted_certs ) composite_credentials = grpc.composite_channel_credentials(credentials, call_credentials) channel = grpc.secure_channel(**channel_dict, credentials=composite_credentials) else: channel = grpc.insecure_channel(**channel_dict) return channel
2.015625
2
src/pandalchemy/generate_code.py
Dogeek/pandalchemy
3
12797239
<filename>src/pandalchemy/generate_code.py from io import StringIO from sqlalchemy import create_engine from sqlalchemy import MetaData from sqlacodegen.codegen import CodeGenerator from importlib import import_module def main(): connection_string = 'sqlite:///chinook.db' engine = create_engine(connection_string) code_name = 'chinook_models_nojoined.py' generate_code_file(code_name, engine, nojoined=True) import_code(code_name) def generate_code(engine, **kwargs): """ CodeGenerator.__init__(self, metadata, noindexes=False, noconstraints=False, nojoined=False, noinflect=False, nobackrefs=False, flask=False, ignore_cols=None, noclasses=False, nocomments=False) """ metadata = MetaData() metadata.reflect(bind=engine) codegen = CodeGenerator(metadata, **kwargs) sio = StringIO() codegen.render(sio) return sio.getvalue() def generate_file(file_name, text): with open(file_name, 'w') as text_file: text_file.write(text) def generate_code_file(file_name, engine, **kwargs): generate_file(file_name, generate_code(engine, **kwargs)) def import_code(file_name): import_module(file_name) if __name__ == '__main__': main()
2.734375
3
benchmarks/launch_benchmark.py
s1113950/models
0
12797240
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # SPDX-License-Identifier: EPL-2.0 # from __future__ import absolute_import from __future__ import division from __future__ import print_function import glob import os import signal import subprocess import sys from argparse import ArgumentParser from common import base_benchmark_util class LaunchBenchmark(base_benchmark_util.BaseBenchmarkUtil): """Launches benchmarking job based on the specified args """ def main(self): args, unknown = self.parse_args(sys.argv[1:]) try: self.validate_args(args) except (IOError, ValueError) as e: print("\nError: {}".format(e)) sys.exit(1) self.run_docker_container(args) def parse_args(self, args): super(LaunchBenchmark, self).define_args() # Additional args that are only used with the launch script arg_parser = ArgumentParser( parents=[self._common_arg_parser], description="Parse args for benchmark interface") arg_parser.add_argument( "--docker-image", help="Specify the docker image/tag to use", dest="docker_image", default=None, required=True) arg_parser.add_argument( "--debug", help="Launches debug mode which doesn't execute " "start.sh", action="store_true") return arg_parser.parse_known_args(args) def validate_args(self, args): """validate the args""" # validate the shared args first super(LaunchBenchmark, self).validate_args(args) # Check for spaces in docker image if ' ' in args.docker_image: raise ValueError("docker image string " "should not have whitespace(s)") # validate that we support this framework by checking folder names benchmark_dir = os.path.dirname(os.path.realpath(__file__)) if glob.glob("{}/*/{}".format(benchmark_dir, args.framework)) == []: raise ValueError("The specified framework is not supported: {}". format(args.framework)) # if neither benchmark_only or accuracy_only are specified, then enable # benchmark_only as the default if not args.benchmark_only and not args.accuracy_only: args.benchmark_only = True def run_docker_container(self, args): """ Runs a docker container with the specified image and environment variables to start running the benchmarking job. """ benchmark_scripts = os.path.dirname(os.path.realpath(__file__)) intelai_models = os.path.join(benchmark_scripts, os.pardir, "models") if args.model_name: # find the path to the model's benchmarks folder search_path = os.path.join( benchmark_scripts, "*", args.framework, args.model_name, args.mode, args.precision) matches = glob.glob(search_path) if len(matches) > 1: # we should never get more than one match raise ValueError("Found multiple model locations for {} {} {}" .format(args.framework, args.model_name, args.precision)) elif len(matches) == 0: raise ValueError("No model was found for {} {} {}" .format(args.framework, args.model_name, args.precision)) # use the benchmarks directory path to find the use case dir_list = matches[0].split("/") # find the last occurrence of framework in the list framework_index = len(dir_list) - 1 - dir_list[::-1].index( args.framework) # grab the use case name from the path use_case = str(dir_list[framework_index - 1]) # find the intelai_optimized model directory optimized_model_dir = os.path.join( benchmark_scripts, os.pardir, "models", use_case, args.framework, args.model_name) # if we find an optimized model, then we will use that path if os.path.isdir(intelai_models): intelai_models = optimized_model_dir mount_benchmark = "/workspace/benchmarks" mount_external_models_source = "/workspace/models" mount_intelai_models = "/workspace/intelai_models" workspace = os.path.join(mount_benchmark, "common", args.framework) mount_output_dir = False output_dir = os.path.join(workspace, 'logs') if args.output_dir != "/models/benchmarks/common/tensorflow/logs": # we don't need to mount log dir otherwise since default is workspace folder mount_output_dir = True output_dir = args.output_dir in_graph_dir = os.path.dirname(args.input_graph) if args.input_graph \ else "" in_graph_filename = os.path.basename(args.input_graph) if \ args.input_graph else "" env_vars = ["--env", "DATASET_LOCATION_VOL={}".format(args.data_location), "--env", "CHECKPOINT_DIRECTORY_VOL={}".format(args.checkpoint), "--env", "EXTERNAL_MODELS_SOURCE_DIRECTORY={}".format(args.model_source_dir), "--env", "INTELAI_MODELS={}".format(intelai_models), "--env", "BENCHMARK_SCRIPTS={}".format(benchmark_scripts), "--env", "SOCKET_ID={}".format(args.socket_id), "--env", "MODEL_NAME={}".format(args.model_name), "--env", "MODE={}".format(args.mode), "--env", "PRECISION={}".format(args.precision), "--env", "VERBOSE={}".format(args.verbose), "--env", "BATCH_SIZE={}".format(args.batch_size), "--env", "WORKSPACE={}".format(workspace), "--env", "IN_GRAPH=/in_graph/{}".format(in_graph_filename), "--env", "MOUNT_BENCHMARK={}".format(mount_benchmark), "--env", "MOUNT_EXTERNAL_MODELS_SOURCE={}".format(mount_external_models_source), "--env", "MOUNT_INTELAI_MODELS_SOURCE={}".format(mount_intelai_models), "--env", "USE_CASE={}".format(use_case), "--env", "FRAMEWORK={}".format(args.framework), "--env", "NUM_CORES={}".format(args.num_cores), "--env", "NUM_INTER_THREADS={}".format(args.num_inter_threads), "--env", "NUM_INTRA_THREADS={}".format(args.num_intra_threads), "--env", "DATASET_LOCATION=/dataset", "--env", "CHECKPOINT_DIRECTORY=/checkpoints", "--env", "BENCHMARK_ONLY={}".format(args.benchmark_only), "--env", "ACCURACY_ONLY={}".format(args.accuracy_only), "--env", "OUTPUT_RESULTS={}".format(args.output_results), "--env", "NOINSTALL=False", "--env", "OUTPUT_DIR={}".format(output_dir)] # by default we will install, user needs to set NOINSTALL=True # manually after they get into `--debug` mode # since they need to run one time without this flag # to get stuff installed # Add custom model args as env vars for custom_arg in args.model_args: if "=" not in custom_arg: raise ValueError("Expected model args in the format " "`name=value` but received: {}". format(custom_arg)) env_vars.append("--env") env_vars.append("{}".format(custom_arg)) # Add proxy to env variables if any set on host for environment_proxy_setting in [ "http_proxy", "ftp_proxy", "https_proxy", "no_proxy", ]: if not os.environ.get(environment_proxy_setting): continue env_vars.append("--env") env_vars.append("{}={}".format( environment_proxy_setting, os.environ.get(environment_proxy_setting) )) volume_mounts = ["--volume", "{}:{}".format(benchmark_scripts, mount_benchmark), "--volume", "{}:{}".format(args.model_source_dir, mount_external_models_source), "--volume", "{}:{}".format(intelai_models, mount_intelai_models), "--volume", "{}:/dataset".format(args.data_location), "--volume", "{}:/checkpoints".format(args.checkpoint), "--volume", "{}:/in_graph".format(in_graph_dir)] if mount_output_dir: volume_mounts.extend([ "--volume", "{}:{}".format(output_dir, output_dir)]) docker_run_cmd = ["docker", "run"] # only use -it when debugging, otherwise we might get TTY error if args.debug: docker_run_cmd.append("-it") docker_run_cmd = docker_run_cmd + env_vars + volume_mounts + [ "--privileged", "-u", "root:root", "-w", workspace, args.docker_image, "/bin/bash"] if not args.debug: docker_run_cmd.append("start.sh") if args.verbose: print("Docker run command:\n{}".format(docker_run_cmd)) self._run_docker_cmd(docker_run_cmd) def _run_docker_cmd(self, docker_run_cmd): """runs docker proc and exits on ctrl c""" p = subprocess.Popen(docker_run_cmd, preexec_fn=os.setsid) try: p.communicate() except KeyboardInterrupt: os.killpg(os.getpgid(p.pid), signal.SIGKILL) if __name__ == "__main__": util = LaunchBenchmark() util.main()
2.25
2
apps/api/tests/test_segmenting.py
IT2901-24-2018/orm
2
12797241
import unittest from apps.api.segmenter.road_segmenter import geometry_to_list from apps.data.road_segmenting.road_fetcher import vegnet_to_geojson from apps.data.road_segmenting.road_filter import filter_road from vapi.constants import MAX_SEGMENT_LENGTH, MIN_COORDINATES_LENGTH from api.segmenter.calculate_distance import calculate_road_length_simple from api.segmenter.road_segmenter import segment_network, split_segment def convert(road): road = filter_road(road) road["the_geom"] = geometry_to_list(road["the_geom"]) return road class TestSegmenting(unittest.TestCase): @classmethod def setUpClass(cls): cls.kommune = 5001 cls.vegref = "kg" cls.max_segment_distance = MAX_SEGMENT_LENGTH cls.min_coordinates_length = MIN_COORDINATES_LENGTH network = vegnet_to_geojson(cls.kommune, cls.vegref) cls.count, cls.road_net = network[0], network[1]["features"] # Apparently the setUpClass is a bit funky and the road_net does not stay filtered after setUpClass is run, # so instead it is done in each test function it is needed instead of here. road_net_list = [] for road in cls.road_net: road_net_list.append(filter_road(road)) cls.road_net_segmented = segment_network(road_net_list, cls.max_segment_distance, cls.min_coordinates_length) def setUp(self): """ Needs to be here for the tests to run """ pass def test_road_segmenter_list(self): """ The road_segmenter function should return a list :return: Nothing """ self.assertIsInstance(self.road_net_segmented, list, "The road segmenter did not return a list") def test_road_segmenter_list_elements(self): """ Every element in the split segments should be a dict :return: Nothing """ error_message = "Not all elements in the split list are of type dict \n" for segment in self.road_net_segmented: self.assertIsInstance(segment, dict, error_message) def test_split_segment_geometry_len(self): """ Given a list of roads segments, the split segments should always have a length of 2 or more :return: Nothing """ error_message = "Segment has less than " + str(self.min_coordinates_length) + " GPS coordinates" for segment in self.road_net_segmented: # coordinates are split by commas, so the count of commas+1 should be the same as the count of coordinates coordinates_amount = segment["the_geom"].count(",") self.assertGreaterEqual(coordinates_amount+1, self.min_coordinates_length, error_message) def test_road_filter(self): """ The road_filter function should return a string, otherwise segmentation will crash in later stages :return: Nothing """ for road in self.road_net: road = filter_road(road) self.assertIsInstance(road["the_geom"], str, "road_filter should turn geometry into a string") def test_geometry_conversion(self): """ The geometry_to_list function should return a dictionary containing coordinates as a list, otherwise the segmenter can't split segments :return: Nothing """ for road in self.road_net: road = convert(road) self.assertIsInstance(road["the_geom"], dict, "geometry_to_list should return a " "dictionary") self.assertIsInstance(road["the_geom"]["coordinates"], list, "geometry_to_list should return a turn the " "coordinates into a list") def test_calculate_road_length(self): """ The total distance of the segmented road should be similar to the length before segmentation, within a margin given by the variable "margin" :return: Nothing """ margin = 3 for road in self.road_net: road = convert(road) length_before = calculate_road_length_simple(road["the_geom"]["coordinates"]) road_segmented = split_segment(road, self.max_segment_distance, [], self.min_coordinates_length) length_after = 0 for segment in road_segmented: length_after += calculate_road_length_simple(segment["the_geom"]["coordinates"]) self.assertLess(abs(length_after - length_before), margin, "The difference between the original " "length and the segmented length is " "too large") def test_split_segment_chaining(self): """ Every connected segment should start with the end gps point of the previous segment :return: Nothing """ for road in self.road_net: road = convert(road) road_segmented = split_segment(road, self.max_segment_distance, [], self.min_coordinates_length) for i in range(1, len(road_segmented)): curr_segment = road_segmented[i] prev_segment = road_segmented[i-1] end_coordinate = len(prev_segment["the_geom"]["coordinates"])-1 self.assertEqual(curr_segment["the_geom"]["coordinates"][0], prev_segment["the_geom"]["coordinates"][end_coordinate], "Segments are not correctly chained") def test_split_segment_negative_length(self): """ No road segments should have a negative road length :return: Nothing """ for segment in self.road_net_segmented: self.assertGreater(segment["stretchdistance"], 0, "Stretchdistance must be of at least 1 meter") def test_duplicate_segments(self): """ Test if there are multiple segments with the same coordinates """ length = len(self.road_net_segmented)-1 for i in range(length): road = self.road_net_segmented[i]["the_geom"] for x in range(i+1, length): other_road = self.road_net_segmented[x]["the_geom"] self.assertNotEqual(road, other_road, "Duplicate segment geometry coordinates") def test_missing_coordinates(self): """ All original coordinates should still be present after segmenting road network :return: Nothing """ for road in self.road_net: road = convert(road) coordinates_original = road["the_geom"]["coordinates"] road_segmented = split_segment(road, self.max_segment_distance, [], self.min_coordinates_length) coordinates_segmented = [] for segment in road_segmented: coordinates_segmented.extend(segment["the_geom"]["coordinates"]) for coordinate in coordinates_original: self.assertTrue(coordinate in coordinates_segmented, "Missing coordinate after segmenting") def test_over_and_undersegmenting(self): """ The segmenter should only run on segments that are over the limit in length, it should never segment something shorter than that. In other words the segmented road should still be only one segment :return: Nothing """ i = 0 for road in self.road_net: i += 1 converted_road = convert(road) road_coords_length = len(converted_road["the_geom"]["coordinates"]) road_distance = calculate_road_length_simple(converted_road["the_geom"]["coordinates"]) road_segmented = segment_network([filter_road(road)], self.max_segment_distance, self.min_coordinates_length) road_segmented_length = len(road_segmented) if road_distance < self.max_segment_distance: self.assertTrue(road_segmented_length == 1, "This road was segmented, but should not have been.") elif road_coords_length >= 2*self.min_coordinates_length and road_distance > self.max_segment_distance: self.assertTrue(road_segmented_length > 1, ("This road should have been segmented, but was not. " "Stretchdistance:", road_distance, "Coordinates:", converted_road["the_geom"]["coordinates"], i)) if __name__ == "__main__": unittest.main()
2.90625
3
python/trinsic/proto/services/trustregistry/v1/__init__.py
musaib072/sdk
6
12797242
<reponame>musaib072/sdk # Generated by the protocol buffer compiler. DO NOT EDIT! # sources: services/trust-registry/v1/trust-registry.proto # plugin: python-betterproto from dataclasses import dataclass from typing import AsyncIterator, Dict import betterproto from betterproto.grpc.grpclib_server import ServiceBase import grpclib class RegistrationStatus(betterproto.Enum): CURRENT = 0 EXPIRED = 1 TERMINATED = 2 REVOKED = 3 NOT_FOUND = 10 @dataclass(eq=False, repr=False) class AddFrameworkRequest(betterproto.Message): governance_framework: "GovernanceFramework" = betterproto.message_field(1) @dataclass(eq=False, repr=False) class AddFrameworkResponse(betterproto.Message): status: "__common_v1__.ResponseStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class RemoveFrameworkRequest(betterproto.Message): governance_framework: "GovernanceFramework" = betterproto.message_field(1) @dataclass(eq=False, repr=False) class RemoveFrameworkResponse(betterproto.Message): status: "__common_v1__.ResponseStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class SearchRegistryRequest(betterproto.Message): query: str = betterproto.string_field(1) continuation_token: str = betterproto.string_field(2) options: "__common_v1__.RequestOptions" = betterproto.message_field(5) @dataclass(eq=False, repr=False) class SearchRegistryResponse(betterproto.Message): items_json: str = betterproto.string_field(1) has_more: bool = betterproto.bool_field(2) count: int = betterproto.int32_field(3) continuation_token: str = betterproto.string_field(4) @dataclass(eq=False, repr=False) class GovernanceFramework(betterproto.Message): governance_framework_uri: str = betterproto.string_field(1) trust_registry_uri: str = betterproto.string_field(2) description: str = betterproto.string_field(3) @dataclass(eq=False, repr=False) class RegisterIssuerRequest(betterproto.Message): did_uri: str = betterproto.string_field(1, group="authority") x509_cert: str = betterproto.string_field(2, group="authority") credential_type_uri: str = betterproto.string_field(10) valid_from_utc: int = betterproto.uint64_field(11) valid_until_utc: int = betterproto.uint64_field(12) governance_framework_uri: str = betterproto.string_field(20) @dataclass(eq=False, repr=False) class RegisterIssuerResponse(betterproto.Message): status: "__common_v1__.ResponseStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class RegisterVerifierRequest(betterproto.Message): did_uri: str = betterproto.string_field(1, group="authority") x509_cert: str = betterproto.string_field(2, group="authority") presentation_type_uri: str = betterproto.string_field(10) valid_from_utc: int = betterproto.uint64_field(11) valid_until_utc: int = betterproto.uint64_field(12) governance_framework_uri: str = betterproto.string_field(20) @dataclass(eq=False, repr=False) class RegisterVerifierResponse(betterproto.Message): status: "__common_v1__.ResponseStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class UnregisterIssuerRequest(betterproto.Message): did_uri: str = betterproto.string_field(1, group="authority") x509_cert: str = betterproto.string_field(2, group="authority") credential_type_uri: str = betterproto.string_field(10) governance_framework_uri: str = betterproto.string_field(20) @dataclass(eq=False, repr=False) class UnregisterIssuerResponse(betterproto.Message): status: "__common_v1__.ResponseStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class UnregisterVerifierRequest(betterproto.Message): did_uri: str = betterproto.string_field(1, group="authority") x509_cert: str = betterproto.string_field(2, group="authority") presentation_type_uri: str = betterproto.string_field(10) governance_framework_uri: str = betterproto.string_field(20) @dataclass(eq=False, repr=False) class UnregisterVerifierResponse(betterproto.Message): status: "__common_v1__.ResponseStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class CheckIssuerStatusRequest(betterproto.Message): governance_framework_uri: str = betterproto.string_field(1) did_uri: str = betterproto.string_field(2, group="member") x509_cert: str = betterproto.string_field(3, group="member") credential_type_uri: str = betterproto.string_field(4) @dataclass(eq=False, repr=False) class CheckIssuerStatusResponse(betterproto.Message): status: "RegistrationStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class CheckVerifierStatusRequest(betterproto.Message): governance_framework_uri: str = betterproto.string_field(1) did_uri: str = betterproto.string_field(2, group="member") x509_cert: str = betterproto.string_field(3, group="member") presentation_type_uri: str = betterproto.string_field(4) @dataclass(eq=False, repr=False) class CheckVerifierStatusResponse(betterproto.Message): status: "RegistrationStatus" = betterproto.enum_field(1) @dataclass(eq=False, repr=False) class FetchDataRequest(betterproto.Message): governance_framework_uri: str = betterproto.string_field(1) query: str = betterproto.string_field(2) @dataclass(eq=False, repr=False) class FetchDataResponse(betterproto.Message): response_json: str = betterproto.string_field(1) has_more_results: bool = betterproto.bool_field(2) continuation_token: str = betterproto.string_field(3) class TrustRegistryStub(betterproto.ServiceStub): async def add_framework( self, *, governance_framework: "GovernanceFramework" = None ) -> "AddFrameworkResponse": request = AddFrameworkRequest() if governance_framework is not None: request.governance_framework = governance_framework return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/AddFramework", request, AddFrameworkResponse, ) async def remove_framework( self, *, governance_framework: "GovernanceFramework" = None ) -> "RemoveFrameworkResponse": request = RemoveFrameworkRequest() if governance_framework is not None: request.governance_framework = governance_framework return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/RemoveFramework", request, RemoveFrameworkResponse, ) async def search_registry( self, *, query: str = "", continuation_token: str = "", options: "__common_v1__.RequestOptions" = None, ) -> "SearchRegistryResponse": request = SearchRegistryRequest() request.query = query request.continuation_token = continuation_token if options is not None: request.options = options return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/SearchRegistry", request, SearchRegistryResponse, ) async def register_issuer( self, *, did_uri: str = "", x509_cert: str = "", credential_type_uri: str = "", valid_from_utc: int = 0, valid_until_utc: int = 0, governance_framework_uri: str = "", ) -> "RegisterIssuerResponse": request = RegisterIssuerRequest() if did_uri: request.did_uri = did_uri if x509_cert: request.x509_cert = x509_cert request.credential_type_uri = credential_type_uri request.valid_from_utc = valid_from_utc request.valid_until_utc = valid_until_utc request.governance_framework_uri = governance_framework_uri return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/RegisterIssuer", request, RegisterIssuerResponse, ) async def register_verifier( self, *, did_uri: str = "", x509_cert: str = "", presentation_type_uri: str = "", valid_from_utc: int = 0, valid_until_utc: int = 0, governance_framework_uri: str = "", ) -> "RegisterVerifierResponse": request = RegisterVerifierRequest() if did_uri: request.did_uri = did_uri if x509_cert: request.x509_cert = x509_cert request.presentation_type_uri = presentation_type_uri request.valid_from_utc = valid_from_utc request.valid_until_utc = valid_until_utc request.governance_framework_uri = governance_framework_uri return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/RegisterVerifier", request, RegisterVerifierResponse, ) async def unregister_issuer( self, *, did_uri: str = "", x509_cert: str = "", credential_type_uri: str = "", governance_framework_uri: str = "", ) -> "UnregisterIssuerResponse": request = UnregisterIssuerRequest() if did_uri: request.did_uri = did_uri if x509_cert: request.x509_cert = x509_cert request.credential_type_uri = credential_type_uri request.governance_framework_uri = governance_framework_uri return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/UnregisterIssuer", request, UnregisterIssuerResponse, ) async def unregister_verifier( self, *, did_uri: str = "", x509_cert: str = "", presentation_type_uri: str = "", governance_framework_uri: str = "", ) -> "UnregisterVerifierResponse": request = UnregisterVerifierRequest() if did_uri: request.did_uri = did_uri if x509_cert: request.x509_cert = x509_cert request.presentation_type_uri = presentation_type_uri request.governance_framework_uri = governance_framework_uri return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/UnregisterVerifier", request, UnregisterVerifierResponse, ) async def check_issuer_status( self, *, governance_framework_uri: str = "", did_uri: str = "", x509_cert: str = "", credential_type_uri: str = "", ) -> "CheckIssuerStatusResponse": request = CheckIssuerStatusRequest() request.governance_framework_uri = governance_framework_uri if did_uri: request.did_uri = did_uri if x509_cert: request.x509_cert = x509_cert request.credential_type_uri = credential_type_uri return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/CheckIssuerStatus", request, CheckIssuerStatusResponse, ) async def check_verifier_status( self, *, governance_framework_uri: str = "", did_uri: str = "", x509_cert: str = "", presentation_type_uri: str = "", ) -> "CheckVerifierStatusResponse": request = CheckVerifierStatusRequest() request.governance_framework_uri = governance_framework_uri if did_uri: request.did_uri = did_uri if x509_cert: request.x509_cert = x509_cert request.presentation_type_uri = presentation_type_uri return await self._unary_unary( "/services.trustregistry.v1.TrustRegistry/CheckVerifierStatus", request, CheckVerifierStatusResponse, ) async def fetch_data( self, *, governance_framework_uri: str = "", query: str = "" ) -> AsyncIterator["FetchDataResponse"]: request = FetchDataRequest() request.governance_framework_uri = governance_framework_uri request.query = query async for response in self._unary_stream( "/services.trustregistry.v1.TrustRegistry/FetchData", request, FetchDataResponse, ): yield response class TrustRegistryBase(ServiceBase): async def add_framework( self, governance_framework: "GovernanceFramework" ) -> "AddFrameworkResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def remove_framework( self, governance_framework: "GovernanceFramework" ) -> "RemoveFrameworkResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def search_registry( self, query: str, continuation_token: str, options: "__common_v1__.RequestOptions", ) -> "SearchRegistryResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def register_issuer( self, did_uri: str, x509_cert: str, credential_type_uri: str, valid_from_utc: int, valid_until_utc: int, governance_framework_uri: str, ) -> "RegisterIssuerResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def register_verifier( self, did_uri: str, x509_cert: str, presentation_type_uri: str, valid_from_utc: int, valid_until_utc: int, governance_framework_uri: str, ) -> "RegisterVerifierResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def unregister_issuer( self, did_uri: str, x509_cert: str, credential_type_uri: str, governance_framework_uri: str, ) -> "UnregisterIssuerResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def unregister_verifier( self, did_uri: str, x509_cert: str, presentation_type_uri: str, governance_framework_uri: str, ) -> "UnregisterVerifierResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def check_issuer_status( self, governance_framework_uri: str, did_uri: str, x509_cert: str, credential_type_uri: str, ) -> "CheckIssuerStatusResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def check_verifier_status( self, governance_framework_uri: str, did_uri: str, x509_cert: str, presentation_type_uri: str, ) -> "CheckVerifierStatusResponse": raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def fetch_data( self, governance_framework_uri: str, query: str ) -> AsyncIterator["FetchDataResponse"]: raise grpclib.GRPCError(grpclib.const.Status.UNIMPLEMENTED) async def __rpc_add_framework(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "governance_framework": request.governance_framework, } response = await self.add_framework(**request_kwargs) await stream.send_message(response) async def __rpc_remove_framework(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "governance_framework": request.governance_framework, } response = await self.remove_framework(**request_kwargs) await stream.send_message(response) async def __rpc_search_registry(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "query": request.query, "continuation_token": request.continuation_token, "options": request.options, } response = await self.search_registry(**request_kwargs) await stream.send_message(response) async def __rpc_register_issuer(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "did_uri": request.did_uri, "x509_cert": request.x509_cert, "credential_type_uri": request.credential_type_uri, "valid_from_utc": request.valid_from_utc, "valid_until_utc": request.valid_until_utc, "governance_framework_uri": request.governance_framework_uri, } response = await self.register_issuer(**request_kwargs) await stream.send_message(response) async def __rpc_register_verifier(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "did_uri": request.did_uri, "x509_cert": request.x509_cert, "presentation_type_uri": request.presentation_type_uri, "valid_from_utc": request.valid_from_utc, "valid_until_utc": request.valid_until_utc, "governance_framework_uri": request.governance_framework_uri, } response = await self.register_verifier(**request_kwargs) await stream.send_message(response) async def __rpc_unregister_issuer(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "did_uri": request.did_uri, "x509_cert": request.x509_cert, "credential_type_uri": request.credential_type_uri, "governance_framework_uri": request.governance_framework_uri, } response = await self.unregister_issuer(**request_kwargs) await stream.send_message(response) async def __rpc_unregister_verifier(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "did_uri": request.did_uri, "x509_cert": request.x509_cert, "presentation_type_uri": request.presentation_type_uri, "governance_framework_uri": request.governance_framework_uri, } response = await self.unregister_verifier(**request_kwargs) await stream.send_message(response) async def __rpc_check_issuer_status(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "governance_framework_uri": request.governance_framework_uri, "did_uri": request.did_uri, "x509_cert": request.x509_cert, "credential_type_uri": request.credential_type_uri, } response = await self.check_issuer_status(**request_kwargs) await stream.send_message(response) async def __rpc_check_verifier_status(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "governance_framework_uri": request.governance_framework_uri, "did_uri": request.did_uri, "x509_cert": request.x509_cert, "presentation_type_uri": request.presentation_type_uri, } response = await self.check_verifier_status(**request_kwargs) await stream.send_message(response) async def __rpc_fetch_data(self, stream: grpclib.server.Stream) -> None: request = await stream.recv_message() request_kwargs = { "governance_framework_uri": request.governance_framework_uri, "query": request.query, } await self._call_rpc_handler_server_stream( self.fetch_data, stream, request_kwargs, ) def __mapping__(self) -> Dict[str, grpclib.const.Handler]: return { "/services.trustregistry.v1.TrustRegistry/AddFramework": grpclib.const.Handler( self.__rpc_add_framework, grpclib.const.Cardinality.UNARY_UNARY, AddFrameworkRequest, AddFrameworkResponse, ), "/services.trustregistry.v1.TrustRegistry/RemoveFramework": grpclib.const.Handler( self.__rpc_remove_framework, grpclib.const.Cardinality.UNARY_UNARY, RemoveFrameworkRequest, RemoveFrameworkResponse, ), "/services.trustregistry.v1.TrustRegistry/SearchRegistry": grpclib.const.Handler( self.__rpc_search_registry, grpclib.const.Cardinality.UNARY_UNARY, SearchRegistryRequest, SearchRegistryResponse, ), "/services.trustregistry.v1.TrustRegistry/RegisterIssuer": grpclib.const.Handler( self.__rpc_register_issuer, grpclib.const.Cardinality.UNARY_UNARY, RegisterIssuerRequest, RegisterIssuerResponse, ), "/services.trustregistry.v1.TrustRegistry/RegisterVerifier": grpclib.const.Handler( self.__rpc_register_verifier, grpclib.const.Cardinality.UNARY_UNARY, RegisterVerifierRequest, RegisterVerifierResponse, ), "/services.trustregistry.v1.TrustRegistry/UnregisterIssuer": grpclib.const.Handler( self.__rpc_unregister_issuer, grpclib.const.Cardinality.UNARY_UNARY, UnregisterIssuerRequest, UnregisterIssuerResponse, ), "/services.trustregistry.v1.TrustRegistry/UnregisterVerifier": grpclib.const.Handler( self.__rpc_unregister_verifier, grpclib.const.Cardinality.UNARY_UNARY, UnregisterVerifierRequest, UnregisterVerifierResponse, ), "/services.trustregistry.v1.TrustRegistry/CheckIssuerStatus": grpclib.const.Handler( self.__rpc_check_issuer_status, grpclib.const.Cardinality.UNARY_UNARY, CheckIssuerStatusRequest, CheckIssuerStatusResponse, ), "/services.trustregistry.v1.TrustRegistry/CheckVerifierStatus": grpclib.const.Handler( self.__rpc_check_verifier_status, grpclib.const.Cardinality.UNARY_UNARY, CheckVerifierStatusRequest, CheckVerifierStatusResponse, ), "/services.trustregistry.v1.TrustRegistry/FetchData": grpclib.const.Handler( self.__rpc_fetch_data, grpclib.const.Cardinality.UNARY_STREAM, FetchDataRequest, FetchDataResponse, ), } from ...common import v1 as __common_v1__
1.585938
2
modes.py
GreensCH/PYNQ-HLS-ImageProcessPlatform
0
12797243
<filename>modes.py #mvt模式 #模型层 class User(object): def __init__(self,uname,pwd): self.uname=uname self.pwd=<PASSWORD>
2.375
2
metrics/compute.py
XinyiYS/CML-RewardDistribution
1
12797244
import numpy as np import pickle import os from pathlib import Path from metrics.class_imbalance import get_classes, class_proportion from metrics.phi_div import average_dkl from metrics.wasserstein import wasserstein_2 def compute_metrics(ds, split, inv_temp, num_parties, num_classes, alpha, lengthscale, party_datasets, party_labels, reference_dataset, candidate_datasets, candidate_labels, rewards, deltas, mus): print("Computing metrics") party_datasets_with_rewards = [] for i in range(num_parties): party_datasets_with_rewards.append(np.concatenate([party_datasets[i], rewards[i]], axis=0)) print("Length of rewards: {}".format([len(r) for r in rewards])) print("alpha:\n{}".format(alpha)) print("Calculating average DKLs before") dkls_before = average_dkl(party_datasets, reference_dataset) print(dkls_before) print("Calculating average DKLs after") dkls_after = average_dkl(party_datasets_with_rewards, reference_dataset) print(dkls_after) print("Correlation coefficient with alpha: \n{}".format(np.corrcoef(alpha, dkls_after)[0, 1])) class_props = [] for result in rewards: class_props.append( class_proportion(get_classes(np.array(result), candidate_datasets[0], candidate_labels), num_classes)) print("Class proportions and class imbalance of rewards: {}".format(class_props)) print("Calculating Wasserstein-2 before") wass_before = [wasserstein_2(party_datasets[i], reference_dataset) for i in range(num_parties)] wass_after = [wasserstein_2(np.concatenate([party_datasets[i], np.array(rewards[i])], axis=0), reference_dataset) for i in range(num_parties)] print("Wasserstein-2 before: \n{}".format(wass_before)) print("Wasserstein-2 after: \n{}".format(wass_after)) print("Correlation coefficient with alpha: \n{}".format(np.corrcoef(alpha, wass_after)[0, 1])) #Save metrics Path(os.getcwd() + '/data/metrics').mkdir(parents=True, exist_ok=True) pickle.dump((party_datasets, party_labels, reference_dataset, candidate_datasets, candidate_labels, rewards, deltas, mus, alpha, lengthscale, class_props, wass_before, wass_after, dkls_before, dkls_after), open("data/metrics/metrics-{}-{}-{}.p".format(ds, split, inv_temp), 'wb'))
2.640625
3
self_supervised/loss/loss_intrin_selfsup.py
fgitmichael/SelfSupevisedSkillDiscovery
0
12797245
<filename>self_supervised/loss/loss_intrin_selfsup.py import torch import torch.nn.functional as F from self_supervised.network.mode_latent_model import ModeLatentNetworkWithEncoder import rlkit.torch.pytorch_util as ptu def reconstruction_based_rewards( mode_latent_model: ModeLatentNetworkWithEncoder, obs_seq: torch.Tensor, action_seq: torch.Tensor, skill_seq: torch.Tensor, )->torch.Tensor: """ Args: mode_latent_model : latent variable model obs_seq : (N, S, obs_dim) tensor action_seq : (N, S, action_dim) tensor skill_seq : (N, S, skill_dim) tensor Return: Loss : tensor Overall goal for the SAC-Agent is a high reconstruction error for the mode latent model. Hence ll should be low. Changing transitions, that have a high gradient, should have high influence on the reconstruction error. Transition that have a high gradient on ll should be changed further and therefore given a low reward. """ batch_dim = 0 seq_dim = -2 data_dim = -1 batch_size = obs_seq.size(batch_dim) seq_len = obs_seq.size(seq_dim) obs_seq.requires_grad = True posterior, features_seq = mode_latent_model.sample_mode_posterior_with_features( obs_seq=obs_seq ) action_recon = mode_latent_model.reconstruct_action( features_seq=features_seq, mode_sample=posterior['samples'] ) ll = action_recon['dists'].log_prob(action_seq).mean(dim=0).sum() mse = F.mse_loss(action_recon['samples'], action_seq) ll.backward() gradients_per_transition = obs_seq.grad.sum(dim=data_dim, keepdim=True) assert gradients_per_transition.shape == torch.Size((batch_size, seq_len, 1)) return -torch.abs(gradients_per_transition)
2.046875
2
django_request_user/__init__.py
aiakos/aiakos
4
12797246
<filename>django_request_user/__init__.py default_app_config = 'django_request_user.apps.DjangoRequestUserConfig'
1.171875
1
src/orders/migrations/0003_auto_20200207_1825.py
saurabhsuryawanshi/ecommerce
0
12797247
# Generated by Django 2.0 on 2020-02-07 12:55 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('addresses', '0001_initial'), ('orders', '0002_auto_20200204_1253'), ] operations = [ migrations.AddField( model_name='order', name='billing_address', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='addresses.Address'), ), migrations.AddField( model_name='order', name='shipping_address', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='shipping_address', to='addresses.Address'), ), ]
1.664063
2
GUI/printer/Pillow-2.7.0/Tests/test_file_libtiff.py
y-gupta/rfid-auth-system
5
12797248
from helper import unittest, PillowTestCase, hopper, py3 import os import io from PIL import Image, TiffImagePlugin class LibTiffTestCase(PillowTestCase): def setUp(self): codecs = dir(Image.core) if "libtiff_encoder" not in codecs or "libtiff_decoder" not in codecs: self.skipTest("tiff support not available") def _assert_noerr(self, im): """Helper tests that assert basic sanity about the g4 tiff reading""" # 1 bit self.assertEqual(im.mode, "1") # Does the data actually load im.load() im.getdata() try: self.assertEqual(im._compression, 'group4') except: print("No _compression") print (dir(im)) # can we write it back out, in a different form. out = self.tempfile("temp.png") im.save(out) class TestFileLibTiff(LibTiffTestCase): def test_g4_tiff(self): """Test the ordinary file path load path""" file = "Tests/images/hopper_g4_500.tif" im = Image.open(file) self.assertEqual(im.size, (500, 500)) self._assert_noerr(im) def test_g4_large(self): file = "Tests/images/pport_g4.tif" im = Image.open(file) self._assert_noerr(im) def test_g4_tiff_file(self): """Testing the string load path""" file = "Tests/images/hopper_g4_500.tif" with open(file, 'rb') as f: im = Image.open(f) self.assertEqual(im.size, (500, 500)) self._assert_noerr(im) def test_g4_tiff_bytesio(self): """Testing the stringio loading code path""" file = "Tests/images/hopper_g4_500.tif" s = io.BytesIO() with open(file, 'rb') as f: s.write(f.read()) s.seek(0) im = Image.open(s) self.assertEqual(im.size, (500, 500)) self._assert_noerr(im) def test_g4_eq_png(self): """ Checking that we're actually getting the data that we expect""" png = Image.open('Tests/images/hopper_bw_500.png') g4 = Image.open('Tests/images/hopper_g4_500.tif') self.assert_image_equal(g4, png) # see https://github.com/python-pillow/Pillow/issues/279 def test_g4_fillorder_eq_png(self): """ Checking that we're actually getting the data that we expect""" png = Image.open('Tests/images/g4-fillorder-test.png') g4 = Image.open('Tests/images/g4-fillorder-test.tif') self.assert_image_equal(g4, png) def test_g4_write(self): """Checking to see that the saved image is the same as what we wrote""" file = "Tests/images/hopper_g4_500.tif" orig = Image.open(file) out = self.tempfile("temp.tif") rot = orig.transpose(Image.ROTATE_90) self.assertEqual(rot.size, (500, 500)) rot.save(out) reread = Image.open(out) self.assertEqual(reread.size, (500, 500)) self._assert_noerr(reread) self.assert_image_equal(reread, rot) self.assertEqual(reread.info['compression'], 'group4') self.assertEqual(reread.info['compression'], orig.info['compression']) self.assertNotEqual(orig.tobytes(), reread.tobytes()) def test_adobe_deflate_tiff(self): file = "Tests/images/tiff_adobe_deflate.tif" im = Image.open(file) self.assertEqual(im.mode, "RGB") self.assertEqual(im.size, (278, 374)) self.assertEqual( im.tile[0][:3], ('tiff_adobe_deflate', (0, 0, 278, 374), 0)) im.load() def test_write_metadata(self): """ Test metadata writing through libtiff """ img = Image.open('Tests/images/hopper_g4.tif') f = self.tempfile('temp.tiff') img.save(f, tiffinfo=img.tag) loaded = Image.open(f) original = img.tag.named() reloaded = loaded.tag.named() # PhotometricInterpretation is set from SAVE_INFO, # not the original image. ignored = [ 'StripByteCounts', 'RowsPerStrip', 'PageNumber', 'PhotometricInterpretation'] for tag, value in reloaded.items(): if tag not in ignored: if tag.endswith('Resolution'): val = original[tag] self.assert_almost_equal( val[0][0]/val[0][1], value[0][0]/value[0][1], msg="%s didn't roundtrip" % tag) else: self.assertEqual( original[tag], value, "%s didn't roundtrip" % tag) for tag, value in original.items(): if tag not in ignored: if tag.endswith('Resolution'): val = reloaded[tag] self.assert_almost_equal( val[0][0]/val[0][1], value[0][0]/value[0][1], msg="%s didn't roundtrip" % tag) else: self.assertEqual( value, reloaded[tag], "%s didn't roundtrip" % tag) def test_g3_compression(self): i = Image.open('Tests/images/hopper_g4_500.tif') out = self.tempfile("temp.tif") i.save(out, compression='group3') reread = Image.open(out) self.assertEqual(reread.info['compression'], 'group3') self.assert_image_equal(reread, i) def test_little_endian(self): im = Image.open('Tests/images/16bit.deflate.tif') self.assertEqual(im.getpixel((0, 0)), 480) self.assertEqual(im.mode, 'I;16') b = im.tobytes() # Bytes are in image native order (little endian) if py3: self.assertEqual(b[0], ord(b'\xe0')) self.assertEqual(b[1], ord(b'\x01')) else: self.assertEqual(b[0], b'\xe0') self.assertEqual(b[1], b'\x01') out = self.tempfile("temp.tif") # out = "temp.le.tif" im.save(out) reread = Image.open(out) self.assertEqual(reread.info['compression'], im.info['compression']) self.assertEqual(reread.getpixel((0, 0)), 480) # UNDONE - libtiff defaults to writing in native endian, so # on big endian, we'll get back mode = 'I;16B' here. def test_big_endian(self): im = Image.open('Tests/images/16bit.MM.deflate.tif') self.assertEqual(im.getpixel((0, 0)), 480) self.assertEqual(im.mode, 'I;16B') b = im.tobytes() # Bytes are in image native order (big endian) if py3: self.assertEqual(b[0], ord(b'\x01')) self.assertEqual(b[1], ord(b'\xe0')) else: self.assertEqual(b[0], b'\x01') self.assertEqual(b[1], b'\xe0') out = self.tempfile("temp.tif") im.save(out) reread = Image.open(out) self.assertEqual(reread.info['compression'], im.info['compression']) self.assertEqual(reread.getpixel((0, 0)), 480) def test_g4_string_info(self): """Tests String data in info directory""" file = "Tests/images/hopper_g4_500.tif" orig = Image.open(file) out = self.tempfile("temp.tif") orig.tag[269] = 'temp.tif' orig.save(out) reread = Image.open(out) self.assertEqual('temp.tif', reread.tag[269]) def test_12bit_rawmode(self): """ Are we generating the same interpretation of the image as Imagemagick is? """ TiffImagePlugin.READ_LIBTIFF = True # Image.DEBUG = True im = Image.open('Tests/images/12bit.cropped.tif') im.load() TiffImagePlugin.READ_LIBTIFF = False # to make the target -- # convert 12bit.cropped.tif -depth 16 tmp.tif # convert tmp.tif -evaluate RightShift 4 12in16bit2.tif # imagemagick will auto scale so that a 12bit FFF is 16bit FFF0, # so we need to unshift so that the integer values are the same. im2 = Image.open('Tests/images/12in16bit.tif') if Image.DEBUG: print (im.getpixel((0, 0))) print (im.getpixel((0, 1))) print (im.getpixel((0, 2))) print (im2.getpixel((0, 0))) print (im2.getpixel((0, 1))) print (im2.getpixel((0, 2))) self.assert_image_equal(im, im2) def test_blur(self): # test case from irc, how to do blur on b/w image # and save to compressed tif. from PIL import ImageFilter out = self.tempfile('temp.tif') im = Image.open('Tests/images/pport_g4.tif') im = im.convert('L') im = im.filter(ImageFilter.GaussianBlur(4)) im.save(out, compression='tiff_adobe_deflate') im2 = Image.open(out) im2.load() self.assert_image_equal(im, im2) def test_compressions(self): im = hopper('RGB') out = self.tempfile('temp.tif') for compression in ('packbits', 'tiff_lzw'): im.save(out, compression=compression) im2 = Image.open(out) self.assert_image_equal(im, im2) im.save(out, compression='jpeg') im2 = Image.open(out) self.assert_image_similar(im, im2, 30) def test_cmyk_save(self): im = hopper('CMYK') out = self.tempfile('temp.tif') im.save(out, compression='tiff_adobe_deflate') im2 = Image.open(out) self.assert_image_equal(im, im2) def xtest_bw_compression_w_rgb(self): """ This test passes, but when running all tests causes a failure due to output on stderr from the error thrown by libtiff. We need to capture that but not now""" im = hopper('RGB') out = self.tempfile('temp.tif') self.assertRaises( IOError, lambda: im.save(out, compression='tiff_ccitt')) self.assertRaises(IOError, lambda: im.save(out, compression='group3')) self.assertRaises(IOError, lambda: im.save(out, compression='group4')) def test_fp_leak(self): im = Image.open("Tests/images/hopper_g4_500.tif") fn = im.fp.fileno() os.fstat(fn) im.load() # this should close it. self.assertRaises(OSError, lambda: os.fstat(fn)) im = None # this should force even more closed. self.assertRaises(OSError, lambda: os.fstat(fn)) self.assertRaises(OSError, lambda: os.close(fn)) def test_multipage(self): # issue #862 TiffImagePlugin.READ_LIBTIFF = True im = Image.open('Tests/images/multipage.tiff') # file is a multipage tiff, 10x10 green, 10x10 red, 20x20 blue im.seek(0) self.assertEqual(im.size, (10, 10)) self.assertEqual(im.convert('RGB').getpixel((0, 0)), (0, 128, 0)) self.assertTrue(im.tag.next) im.seek(1) self.assertEqual(im.size, (10, 10)) self.assertEqual(im.convert('RGB').getpixel((0, 0)), (255, 0, 0)) self.assertTrue(im.tag.next) im.seek(2) self.assertFalse(im.tag.next) self.assertEqual(im.size, (20, 20)) self.assertEqual(im.convert('RGB').getpixel((0, 0)), (0, 0, 255)) TiffImagePlugin.READ_LIBTIFF = False def test__next(self): TiffImagePlugin.READ_LIBTIFF = True im = Image.open('Tests/images/hopper.tif') self.assertFalse(im.tag.next) im.load() self.assertFalse(im.tag.next) def test_4bit(self): # Arrange test_file = "Tests/images/hopper_gray_4bpp.tif" original = hopper("L") # Act TiffImagePlugin.READ_LIBTIFF = True im = Image.open(test_file) TiffImagePlugin.READ_LIBTIFF = False # Assert self.assertEqual(im.size, (128, 128)) self.assertEqual(im.mode, "L") self.assert_image_similar(im, original, 7.3) def test_save_bytesio(self): # PR 1011 # Test TIFF saving to io.BytesIO() object. TiffImagePlugin.WRITE_LIBTIFF = True TiffImagePlugin.READ_LIBTIFF = True # Generate test image pilim = hopper() def save_bytesio(compression=None): buffer_io = io.BytesIO() pilim.save(buffer_io, format="tiff", compression=compression) buffer_io.seek(0) pilim_load = Image.open(buffer_io) self.assert_image_similar(pilim, pilim_load, 0) # save_bytesio() save_bytesio('raw') save_bytesio("packbits") save_bytesio("tiff_lzw") TiffImagePlugin.WRITE_LIBTIFF = False TiffImagePlugin.READ_LIBTIFF = False if __name__ == '__main__': unittest.main() # End of file
2.28125
2
tests/test_pyspark_hb_app_processor.py
ChinmaySKulkarni/hb-data
0
12797249
<filename>tests/test_pyspark_hb_app_processor.py<gh_stars>0 import unittest from unittest.mock import Mock from app_processor.pyspark_hb_app_processor import parse_configs, get_or_generate_spark_session class TestAppProcessor(unittest.TestCase): def test_parse_configs(self): conf = parse_configs("test-conf.yml") self.assertEqual('value1', conf['key1']) self.assertEqual('value2', conf['key2']) self.assertEqual(2, len(conf)) def test_get_or_generate_spark_session(self): test_map = {'key1': 'val1', 'key2': 'val2'} test_master_url = "TEST1" test_app_name = "TEST_APP" mock_spark_session_builder = Mock() # we have to do this since we use the builder pattern when creating the SparkSession attrs = {'master.return_value': mock_spark_session_builder, 'appName.return_value': mock_spark_session_builder} mock_spark_session_builder.configure_mock(**attrs) get_or_generate_spark_session(mock_spark_session_builder, test_map, test_master_url, test_app_name) mock_spark_session_builder.master.assert_called_with(test_master_url) mock_spark_session_builder.appName.assert_called_with(test_app_name) self.assertEqual(len(test_map), mock_spark_session_builder.config.call_count) mock_spark_session_builder.getOrCreate.assert_called_once() if __name__ == '__main__': unittest.main()
2.59375
3
main.py
saber-khakbiz/DataScrapting-IR-Post
0
12797250
from stdiomask import getpass from cowsay import daemon, ghostbusters, kitty from check_validation_ID_Post import check_validation from driver_chrome import * from DataScrapting import * tracking_ID = getpass("Enter Your Post Id(24 digit): ") check_validation(tracking_ID) URL = f"https://tracking.post.ir/?id={tracking_ID}&client=app" driver = driverChomre(URL) page_source = PageSource(driver) soup = mining(page_source) warning = soup.warning() security = soup.security() if warning == None and security == None : dst_lst = soup.FindAll() new_lst = [(i.text, j.text) for i,j in zip( [i for i in dst_lst if not dst_lst.index(i)%2], [i for i in dst_lst if dst_lst.index(i)%2] ) ] new_lst.reverse() print("\n*******************************************************************") for i,dst in enumerate(new_lst): print(f"\t\t\t{i+1}\n") print(f"{dst[0]}\n") print(f"{dst[1]}") print("========================================================================") elif warning != None : ghostbusters(f"\n {warning.text}") else: daemon("از سمت شما ترافیک بالایی سمت سرویس های ما ارسال می شود! لطفا چند دقیقه دیگر امتحان کنید.")
2.34375
2