max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
Heapsort/Heapsort.py
CrypticCalamari/Algorithms
0
12795451
#!/usr/bin/python import random class Heapsort: """Heapsort""" @staticmethod def bubble_down(a, begin, end): root = begin child = root * 2 + 1 while (child <= end): if ((child + 1 <= end) and (a[child] < a[child + 1])): child += 1 if (a[root] < a[child]): a[root], a[child] = a[child], a[root] root = child child = root * 2 + 1 else: return @staticmethod def heapify_max(a): end = len(a) - 1 begin = (end - 1) // 2 while (begin >= 0): Heapsort.bubble_down(a, begin, end) begin -= 1 @staticmethod def sort(a): end = len(a) - 1 Heapsort.heapify_max(a) while (end > 0): a[0], a[end] = a[end], a[0] end -= 1 Heapsort.bubble_down(a, 0, end) @staticmethod def verify(a): prev = a[0] for item in range(1, len(a)): if prev > a[i]: print "FAIL: Array not sorted properly" print "--SUCCESS: Sorted!--" if __name__ == "__main__": test = [] random.seed() for i in range(20): test.append(random.randint(0, 100)) print test Heapsort.sort(test) print test Heapsort.verify(test)
4.09375
4
tests/unit/pipelines.py
ethanjli/phylline
0
12795452
<reponame>ethanjli/phylline """Test the pipelines module.""" # Builtins # Packages from phylline.links.clocked import DelayedEventLink from phylline.links.events import EventLink from phylline.links.links import ChunkedStreamLink from phylline.links.loopback import TopLoopbackLink from phylline.links.streams import StreamLink from phylline.pipelines import AutomaticPipeline, ManualPipeline, PipelineBottomCoupler from phylline.pipes import AutomaticPipe import pytest from tests.unit.links.links import HIGHER_CHUNKED_STREAM, LOWER_CHUNKED_STREAM from tests.unit.pipes import ( assert_bottom_events, write_bottom_chunked_buffers, write_top_events ) def make_pipeline_singular(pipeline_type): """Make a singular pipeline.""" pipeline = pipeline_type( ChunkedStreamLink() ) assert isinstance(pipeline.bottom, ChunkedStreamLink) assert isinstance(pipeline.top, ChunkedStreamLink) return pipeline def make_pipeline_short(pipeline_type): """Make a short pipeline.""" pipeline = pipeline_type( ChunkedStreamLink(), EventLink(), ) assert isinstance(pipeline.bottom, ChunkedStreamLink) assert isinstance(pipeline.top, EventLink) return pipeline def make_pipeline_long(pipeline_type): """Make a long pipeline.""" pipeline = pipeline_type( StreamLink(), StreamLink(), StreamLink(), ChunkedStreamLink(), EventLink(), EventLink(), EventLink() ) assert isinstance(pipeline.bottom, StreamLink) assert isinstance(pipeline.top, EventLink) return pipeline def make_pipeline_delayed(pipeline_type): """Make a short pipeline.""" pipeline = pipeline_type( StreamLink(), ChunkedStreamLink(), DelayedEventLink(), EventLink(), EventLink() ) assert isinstance(pipeline.bottom, StreamLink) assert isinstance(pipeline.top, EventLink) return pipeline def make_pipeline_events(pipeline_type): """Make a events-only pipeline.""" pipeline = pipeline_type( EventLink(), EventLink(), EventLink(), EventLink() ) assert isinstance(pipeline.bottom, EventLink) assert isinstance(pipeline.top, EventLink) return pipeline def make_pipeline_nested(pipeline_type): """Make a nested pipeline.""" pipeline = pipeline_type( make_pipeline_singular(pipeline_type), make_pipeline_events(pipeline_type), EventLink(), AutomaticPipe(EventLink(), EventLink()), make_pipeline_events(pipeline_type) ) return pipeline @pytest.mark.parametrize('pipeline_factory', [ make_pipeline_singular, make_pipeline_short, make_pipeline_long, make_pipeline_nested ]) def test_manual_pipeline(pipeline_factory): """Exercise ManualPipeline's interface.""" print('Testing Manual Pipeline with factory {}:'.format(pipeline_factory.__name__)) pipeline = pipeline_factory(ManualPipeline) print(pipeline) # Read/write on links with directional sync write_bottom_chunked_buffers(pipeline.bottom) assert pipeline.sync_up() is None assert_bottom_events(pipeline.top) write_top_events(pipeline.top) assert pipeline.sync_down() is None result = pipeline.bottom.to_write() print('Pipeline bottom wrote to stream: {}'.format(result)) assert result == HIGHER_CHUNKED_STREAM # Read/write on links with bidirectional sync write_bottom_chunked_buffers(pipeline.bottom) assert pipeline.sync() is None assert_bottom_events(pipeline.top) write_top_events(pipeline.top) assert pipeline.sync() is None result = pipeline.bottom.to_write() print('Pipeline bottom wrote to stream: {}'.format(result)) assert result == HIGHER_CHUNKED_STREAM # Read/write on pipe with bidirectionl sync write_bottom_chunked_buffers(pipeline) assert pipeline.sync() is None assert_bottom_events(pipeline) write_top_events(pipeline) assert pipeline.sync() is None result = pipeline.to_write() print('Pipeline bottom wrote to stream: {}'.format(result)) assert result == HIGHER_CHUNKED_STREAM def test_manual_pipeline_clocked(): """Exercise ManualPipeline's clock functionality.""" print('Testing Manual Pipeline with factory make_pipeline_delayed:') pipeline = make_pipeline_delayed(ManualPipeline) print(pipeline) assert pipeline.update_clock(0) is None write_bottom_chunked_buffers(pipeline.bottom) assert pipeline.sync() == 1.0 assert not pipeline.top.has_receive() assert pipeline.update_clock(0.5) == 1.0 assert not pipeline.top.has_receive() assert pipeline.update_clock(0.99) == 1.0 assert not pipeline.top.has_receive() assert pipeline.update_clock(1.0) is None assert_bottom_events(pipeline.top) print('Resetting clock...') assert pipeline.update_clock(0) is None write_top_events(pipeline.top) assert pipeline.sync() == 1.0 assert pipeline.update_clock(0.5) == 1.0 assert not pipeline.bottom.to_write() assert pipeline.update_clock(0.75) == 1.0 assert not pipeline.bottom.to_write() assert pipeline.update_clock(1.5) is None result = pipeline.bottom.to_write() assert result == HIGHER_CHUNKED_STREAM @pytest.mark.parametrize('pipeline_factory', [ make_pipeline_singular, make_pipeline_short, make_pipeline_long, make_pipeline_nested ]) def test_automatic_pipeline(pipeline_factory): """Exercise AutomaticPipeline's interface.""" print('Testing Automatic Pipeline with factory {}:'.format(pipeline_factory.__name__)) automatic_pipeline = pipeline_factory(AutomaticPipeline) print(automatic_pipeline) # Read/write on links write_bottom_chunked_buffers(automatic_pipeline.bottom) assert_bottom_events(automatic_pipeline.top) write_top_events(automatic_pipeline.top) result = automatic_pipeline.bottom.to_write() print('Pipeline bottom wrote to stream: {}'.format(result)) assert result == HIGHER_CHUNKED_STREAM # Read/write on pipeline write_bottom_chunked_buffers(automatic_pipeline) assert_bottom_events(automatic_pipeline) write_top_events(automatic_pipeline) result = automatic_pipeline.to_write() print('Pipeline bottom wrote to stream: {}'.format(result)) assert result == HIGHER_CHUNKED_STREAM def test_automatic_pipeline_clocked(): """Exercise AutomaticPipeline's clock functionality.""" print('Testing Automatic Pipeline with factory make_pipeline_delayed:') pipeline = make_pipeline_delayed(AutomaticPipeline) print(pipeline) assert pipeline.update_clock(0) is None write_bottom_chunked_buffers(pipeline.bottom) assert pipeline.update_clock(0) == 1.0 assert not pipeline.top.has_receive() assert pipeline.update_clock(0.5) == 1.0 assert not pipeline.top.has_receive() assert pipeline.update_clock(0.99) == 1.0 assert not pipeline.top.has_receive() assert pipeline.update_clock(1.0) is None assert_bottom_events(pipeline.top) print('Resetting clock...') assert pipeline.update_clock(0) is None write_top_events(pipeline.top) assert pipeline.update_clock(0) == 1.0 assert pipeline.update_clock(0.5) == 1.0 assert not pipeline.bottom.to_write() assert pipeline.update_clock(0.75) == 1.0 assert not pipeline.bottom.to_write() assert pipeline.update_clock(1.5) is None result = pipeline.bottom.to_write() assert result == HIGHER_CHUNKED_STREAM def make_pipeline_loopback(pipeline_factory): """Make a long pipeline with a loopback at the top.""" manual_pipeline = pipeline_factory( StreamLink(), StreamLink(), StreamLink(), ChunkedStreamLink(), EventLink(), EventLink(), EventLink(), TopLoopbackLink() ) assert isinstance(manual_pipeline.bottom, StreamLink) assert isinstance(manual_pipeline.top, TopLoopbackLink) return manual_pipeline def test_manual_pipeline_loopback(): """Exercise ManualPipeline's interface.""" print('Testing Manual Pipeline with factory make_pipeline_loopback:') manual_pipeline = make_pipeline_loopback(ManualPipeline) print(manual_pipeline) write_bottom_chunked_buffers(manual_pipeline.bottom) assert manual_pipeline.sync() is None result = manual_pipeline.bottom.to_write() print('Pipeline bottom wrote to stream: {}'.format(result)) assert result == LOWER_CHUNKED_STREAM def test_automatic_pipeline_loopback(): """Exercise ManualPipeline's interface.""" print('Testing Automatic Pipeline with factory make_pipeline_loopback:') automatic_pipeline = make_pipeline_loopback(AutomaticPipeline) print(automatic_pipeline) write_bottom_chunked_buffers(automatic_pipeline.bottom) result = automatic_pipeline.bottom.to_write() print('Pipeline bottom wrote to stream: {}'.format(result)) assert result == LOWER_CHUNKED_STREAM def assert_loopback_below(stack, payload): """Asset that the stack has correct below-loopback behavior.""" stack.send(payload) assert stack.has_receive() result = stack.receive() print('Loopback received: {}'.format(result)) assert result.data == payload def test_loopback_pipeline_bottom_coupler_stream(): """Test for pipeline bottom coupling on streams.""" print('Testing byte buffer loopback with PipelineBottomCoupler...') pipeline_one = make_pipeline_nested(AutomaticPipeline) pipeline_two = make_pipeline_loopback(AutomaticPipeline) coupler = PipelineBottomCoupler(pipeline_one, pipeline_two) print(coupler) payload = b'\1\2\3\4' assert_loopback_below(pipeline_one.top, payload) assert_loopback_below(pipeline_one, payload) assert_loopback_below(coupler.pipeline_one, payload) def test_loopback_pipeline_bottom_coupler_event(): """Test for pipeline bottom coupling on events.""" print('Testing byte buffer loopback with PipelineBottomCoupler...') pipeline_one = make_pipeline_events(AutomaticPipeline) pipeline_two = AutomaticPipeline( make_pipeline_events(AutomaticPipeline), TopLoopbackLink() ) coupler = PipelineBottomCoupler(pipeline_one, pipeline_two) print(coupler) payload = b'\1\2\3\4' assert_loopback_below(pipeline_one.top, payload) assert_loopback_below(pipeline_one, payload) assert_loopback_below(coupler.pipeline_one, payload)
2.28125
2
fullcyclepy/tests/test_utils.py
dfoderick/fullcyclemining
26
12795453
<filename>fullcyclepy/tests/test_utils.py<gh_stars>10-100 import unittest import datetime import backend.fcmutils as utils import messaging.schema as schema class TestUtilityFunctions(unittest.TestCase): def test_safe_string_null(self): nullstring = utils.safestring(None) self.assertFalse(nullstring) def test_safe_string_other(self): astring = utils.safestring(b'test') self.assertTrue(astring) def test_formattime(self): dtnow = utils.formattime(datetime.datetime.now()) self.assertTrue(dtnow) def test_deserializelist(self): thelist = ['{"miner_type":"test", "minerid":"test"}'] los = utils.deserializelist_withschema(schema.MinerInfoSchema(), thelist) self.assertTrue(len(los) > 0) def test_deserializelist_string(self): thelist = ['{"miner_type":"test", "minerid":"test"}'] los = utils.deserializelistofstrings(thelist, schema.MinerInfoSchema()) self.assertTrue(len(los) > 0)
2.265625
2
src/oci/apm_traces/models/query_result_metadata_summary.py
Manny27nyc/oci-python-sdk
249
12795454
<gh_stars>100-1000 # coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class QueryResultMetadataSummary(object): """ Summary containing the metadata about the query result set. """ def __init__(self, **kwargs): """ Initializes a new QueryResultMetadataSummary object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param query_result_row_type_summaries: The value to assign to the query_result_row_type_summaries property of this QueryResultMetadataSummary. :type query_result_row_type_summaries: list[oci.apm_traces.models.QueryResultRowTypeSummary] :param source_name: The value to assign to the source_name property of this QueryResultMetadataSummary. :type source_name: str :param query_results_grouped_by: The value to assign to the query_results_grouped_by property of this QueryResultMetadataSummary. :type query_results_grouped_by: list[oci.apm_traces.models.QueryResultsGroupedBySummary] :param query_results_ordered_by: The value to assign to the query_results_ordered_by property of this QueryResultMetadataSummary. :type query_results_ordered_by: list[oci.apm_traces.models.QueryResultsOrderedBySummary] :param time_series_interval_in_mins: The value to assign to the time_series_interval_in_mins property of this QueryResultMetadataSummary. :type time_series_interval_in_mins: int """ self.swagger_types = { 'query_result_row_type_summaries': 'list[QueryResultRowTypeSummary]', 'source_name': 'str', 'query_results_grouped_by': 'list[QueryResultsGroupedBySummary]', 'query_results_ordered_by': 'list[QueryResultsOrderedBySummary]', 'time_series_interval_in_mins': 'int' } self.attribute_map = { 'query_result_row_type_summaries': 'queryResultRowTypeSummaries', 'source_name': 'sourceName', 'query_results_grouped_by': 'queryResultsGroupedBy', 'query_results_ordered_by': 'queryResultsOrderedBy', 'time_series_interval_in_mins': 'timeSeriesIntervalInMins' } self._query_result_row_type_summaries = None self._source_name = None self._query_results_grouped_by = None self._query_results_ordered_by = None self._time_series_interval_in_mins = None @property def query_result_row_type_summaries(self): """ Gets the query_result_row_type_summaries of this QueryResultMetadataSummary. A collection of QueryResultRowTypeSummary objects that describe the type and properties of the individual row elements of the query rows being returned. The ith element in this list contains the QueryResultRowTypeSummary of the ith key value pair in the QueryResultRowData map. :return: The query_result_row_type_summaries of this QueryResultMetadataSummary. :rtype: list[oci.apm_traces.models.QueryResultRowTypeSummary] """ return self._query_result_row_type_summaries @query_result_row_type_summaries.setter def query_result_row_type_summaries(self, query_result_row_type_summaries): """ Sets the query_result_row_type_summaries of this QueryResultMetadataSummary. A collection of QueryResultRowTypeSummary objects that describe the type and properties of the individual row elements of the query rows being returned. The ith element in this list contains the QueryResultRowTypeSummary of the ith key value pair in the QueryResultRowData map. :param query_result_row_type_summaries: The query_result_row_type_summaries of this QueryResultMetadataSummary. :type: list[oci.apm_traces.models.QueryResultRowTypeSummary] """ self._query_result_row_type_summaries = query_result_row_type_summaries @property def source_name(self): """ Gets the source_name of this QueryResultMetadataSummary. Source of the query result set (traces, spans, etc). :return: The source_name of this QueryResultMetadataSummary. :rtype: str """ return self._source_name @source_name.setter def source_name(self, source_name): """ Sets the source_name of this QueryResultMetadataSummary. Source of the query result set (traces, spans, etc). :param source_name: The source_name of this QueryResultMetadataSummary. :type: str """ self._source_name = source_name @property def query_results_grouped_by(self): """ Gets the query_results_grouped_by of this QueryResultMetadataSummary. Columns or attributes of the query rows which are group by values. This is a list of ResultsGroupedBy summary objects, and the list will contain as many elements as the attributes and aggregate functions in the group by clause in the select query. :return: The query_results_grouped_by of this QueryResultMetadataSummary. :rtype: list[oci.apm_traces.models.QueryResultsGroupedBySummary] """ return self._query_results_grouped_by @query_results_grouped_by.setter def query_results_grouped_by(self, query_results_grouped_by): """ Sets the query_results_grouped_by of this QueryResultMetadataSummary. Columns or attributes of the query rows which are group by values. This is a list of ResultsGroupedBy summary objects, and the list will contain as many elements as the attributes and aggregate functions in the group by clause in the select query. :param query_results_grouped_by: The query_results_grouped_by of this QueryResultMetadataSummary. :type: list[oci.apm_traces.models.QueryResultsGroupedBySummary] """ self._query_results_grouped_by = query_results_grouped_by @property def query_results_ordered_by(self): """ Gets the query_results_ordered_by of this QueryResultMetadataSummary. Order by which the query results are organized. This is a list of queryResultsOrderedBy summary objects, and the list will contain more than one OrderedBy summary object, if the sort was multidimensional. :return: The query_results_ordered_by of this QueryResultMetadataSummary. :rtype: list[oci.apm_traces.models.QueryResultsOrderedBySummary] """ return self._query_results_ordered_by @query_results_ordered_by.setter def query_results_ordered_by(self, query_results_ordered_by): """ Sets the query_results_ordered_by of this QueryResultMetadataSummary. Order by which the query results are organized. This is a list of queryResultsOrderedBy summary objects, and the list will contain more than one OrderedBy summary object, if the sort was multidimensional. :param query_results_ordered_by: The query_results_ordered_by of this QueryResultMetadataSummary. :type: list[oci.apm_traces.models.QueryResultsOrderedBySummary] """ self._query_results_ordered_by = query_results_ordered_by @property def time_series_interval_in_mins(self): """ Gets the time_series_interval_in_mins of this QueryResultMetadataSummary. Interval for the time series function in minutes. :return: The time_series_interval_in_mins of this QueryResultMetadataSummary. :rtype: int """ return self._time_series_interval_in_mins @time_series_interval_in_mins.setter def time_series_interval_in_mins(self, time_series_interval_in_mins): """ Sets the time_series_interval_in_mins of this QueryResultMetadataSummary. Interval for the time series function in minutes. :param time_series_interval_in_mins: The time_series_interval_in_mins of this QueryResultMetadataSummary. :type: int """ self._time_series_interval_in_mins = time_series_interval_in_mins def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
2.03125
2
signal_interpreter_server/tests/unit_tests/test_json_parser.py
mtormane/signal-interpreter-server
0
12795455
import json import os from unittest.mock import patch, mock_open import pytest from signal_interpreter_server.json_parser import JsonParser from signal_interpreter_server.exceptions import SignalError @pytest.mark.parametrize("identifier, expected_result", [ ("11", "ECU Reset"), ("99", "Not existing"), ]) def test_get_signal_title(identifier, expected_result): jason_parser = JsonParser() jason_parser.data = {"services": [{"title": "ECU Reset", "id": "11"}]} if identifier != '99': assert jason_parser.get_signal_title(identifier) == expected_result else: with pytest.raises(SignalError): jason_parser.get_signal_title(identifier) @pytest.fixture(scope="session") def test_load_file_with_fixure(tmpdir): tmp_db = {"services": [{"title": "ECU Reset", "id": "11"}]} filepath = os.path.join(tmpdir, "tmp_json.json") with open(filepath, 'w') as jfile: json.dump(tmp_db, jfile) jason_parser = JsonParser() jason_parser.load_file(filepath) assert isinstance(jason_parser.data, dict) assert jason_parser.data == tmp_db def test_load_file_simple(): with patch("builtins.open", mock_open(read_data='{"services": [{"title": "ECU Reset", "id": "11"}]}')): json_parser = JsonParser() json_parser.load_file("path/to/json/file") assert json_parser.data == {"services": [{"title": "ECU Reset", "id": "11"}]} def test_load_file_wrong_type(): with patch("builtins.open", mock_open(read_data="This is wrong data!")): with pytest.raises(ValueError): json_parser = JsonParser() json_parser.load_file("path/to/json/file")
2.375
2
test/test_gpu.py
tranlethaison/learnRL
0
12795456
<reponame>tranlethaison/learnRL if __name__ == "__main__": print("> Test tensorflow-gpu") import tensorflow as tf is_gpu_available = tf.test.is_gpu_available() print(">> __version__: ", tf.__version__) print(">> is_gpu_available:", is_gpu_available)
2.3125
2
examples/with_signals.py
vBLFTePebWNi6c/Flask-Shell2HTTP
0
12795457
# web imports from flask import Flask from blinker import Namespace # or from flask.signals import Namespace from flask_executor import Executor from flask_executor.futures import Future from flask_shell2http import Shell2HTTP # Flask application instance app = Flask(__name__) # application factory executor = Executor(app) shell2http = Shell2HTTP(app, executor, base_url_prefix="/cmd/") ENDPOINT = "echo" CMD = "echo" # Signal Handling signal_handler = Namespace() my_signal = signal_handler.signal(f"on_{CMD}_complete") # ..or any other name of your choice @my_signal.connect def my_callback_fn(extra_callback_context, future: Future): """ Will be invoked on every process completion """ print("Process completed ?:", future.done()) print("Result: ", future.result()) shell2http.register_command( endpoint=ENDPOINT, command_name=CMD, callback_fn=my_signal.send ) # Test Runner if __name__ == "__main__": app.testing = True c = app.test_client() # request new process data = {"args": ["Hello", "Friend!"]} c.post(f"cmd/{ENDPOINT}", json=data) # request new process data = {"args": ["Bye", "Friend!"]} c.post(f"cmd/{ENDPOINT}", json=data)
2.578125
3
synergy/db/dao/unit_of_work_dao.py
eggsandbeer/scheduler
0
12795458
__author__ = '<NAME>' from threading import RLock from bson.objectid import ObjectId from pymongo import ASCENDING from pymongo.errors import DuplicateKeyError as MongoDuplicateKeyError from synergy.system import time_helper from synergy.system.time_qualifier import * from synergy.system.decorator import thread_safe from synergy.scheduler.scheduler_constants import COLLECTION_UNIT_OF_WORK, TYPE_MANAGED from synergy.conf import context from synergy.db.error import DuplicateKeyError from synergy.db.model import unit_of_work from synergy.db.model.unit_of_work import UnitOfWork from synergy.db.manager import ds_manager QUERY_GET_FREERUN_SINCE = lambda timeperiod, unprocessed_only: { unit_of_work.TIMEPERIOD: {'$gte': timeperiod}, unit_of_work.UNIT_OF_WORK_TYPE: unit_of_work.TYPE_FREERUN, unit_of_work.STATE: {'$ne': unit_of_work.STATE_PROCESSED if unprocessed_only else None} } class UnitOfWorkDao(object): """ Thread-safe Data Access Object from units_of_work table/collection """ def __init__(self, logger): super(UnitOfWorkDao, self).__init__() self.logger = logger self.lock = RLock() self.ds = ds_manager.ds_factory(logger) @thread_safe def get_one(self, key): """ method finds unit_of_work record and returns it to the caller""" if not isinstance(key, ObjectId): # cast key to ObjectId key = ObjectId(key) query = {'_id': key} collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) document = collection.find_one(query) if document is None: msg = 'Unit_of_work with ID=%s was not found' % str(key) self.logger.warn(msg) raise LookupError(msg) return UnitOfWork.from_json(document) @thread_safe def get_reprocessing_candidates(self, since=None): """ method queries Unit Of Work whose <start_timeperiod> is younger than <since> and who could be candidates for re-processing """ collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) query = {unit_of_work.STATE: {'$in': [unit_of_work.STATE_IN_PROGRESS, unit_of_work.STATE_INVALID, unit_of_work.STATE_REQUESTED]}, unit_of_work.UNIT_OF_WORK_TYPE: TYPE_MANAGED} if since is None: cursor = collection.find(query).sort('_id', ASCENDING) candidates = [UnitOfWork.from_json(document) for document in cursor] else: candidates = [] yearly_timeperiod = time_helper.cast_to_time_qualifier(QUALIFIER_YEARLY, since) query[unit_of_work.START_TIMEPERIOD] = {'$gte': yearly_timeperiod} cursor = collection.find(query).sort('_id', ASCENDING) for document in cursor: uow = UnitOfWork.from_json(document) if uow.process_name not in context.process_context: # this is a decommissioned process continue time_qualifier = context.process_context[uow.process_name].time_qualifier if time_qualifier == QUALIFIER_REAL_TIME: time_qualifier = QUALIFIER_HOURLY process_specific_since = time_helper.cast_to_time_qualifier(time_qualifier, since) if process_specific_since <= uow.start_timeperiod: candidates.append(uow) if len(candidates) == 0: raise LookupError('MongoDB has no reprocessing candidates units of work') return candidates @thread_safe def get_by_params(self, process_name, timeperiod, start_obj_id, end_obj_id): """ method finds unit_of_work record and returns it to the caller""" query = {unit_of_work.PROCESS_NAME: process_name, unit_of_work.TIMEPERIOD: timeperiod, unit_of_work.START_OBJ_ID: start_obj_id, unit_of_work.END_OBJ_ID: end_obj_id} collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) document = collection.find_one(query) if document is None: raise LookupError('Unit_of_work satisfying query %r was not found' % query) return UnitOfWork.from_json(document) @thread_safe def update(self, instance): """ method finds unit_of_work record and change its status""" assert isinstance(instance, UnitOfWork) collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) document = instance.document if instance.db_id: document['_id'] = ObjectId(instance.db_id) instance.db_id = collection.save(document, safe=True) return instance.db_id @thread_safe def insert(self, instance): """ inserts a unit of work into MongoDB. :raises DuplicateKeyError: if such record already exist """ assert isinstance(instance, UnitOfWork) collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) try: return collection.insert(instance.document, safe=True) except MongoDuplicateKeyError as e: exc = DuplicateKeyError(instance.process_name, instance.start_timeperiod, instance.start_id, instance.end_id, e) raise exc @thread_safe def remove(self, uow_id): assert isinstance(uow_id, (str, ObjectId)) collection = self.ds.connection(COLLECTION_UNIT_OF_WORK) return collection.remove(uow_id, safe=True) @thread_safe def run_query(self, query): """ method runs the query and returns a list of filtered UnitOfWork records """ cursor = self.ds.filter(COLLECTION_UNIT_OF_WORK, query) return [UnitOfWork.from_json(document) for document in cursor] def recover_from_duplicatekeyerror(self, e): """ method tries to recover from DuplicateKeyError """ if isinstance(e, DuplicateKeyError): try: return self.get_by_params(e.process_name, e.timeperiod, e.start_id, e.end_id) except LookupError as e: self.logger.error('Unable to recover from DuplicateKeyError error due to %s' % e.message, exc_info=True) else: msg = 'Unable to recover from DuplicateKeyError due to unspecified unit_of_work primary key' self.logger.error(msg)
2.0625
2
c_translator/formative/m_ifelse.py
mahudu97/ANSI-C_Compiler
0
12795459
def main(): a=0 b=0 if(1<2): a = 1 else: a = 2 if(1>2): b = 1 else: b = 2 return a + b # Boilerplate if __name__ == "__main__": import sys ret=main() sys.exit(ret)
3.375
3
models/Stereo/PSMNetDown.py
pidan1231239/SR-Stereo
2
12795460
import os import time import torch.optim as optim import torch import torch.nn.functional as F import torch.nn as nn from evaluation import evalFcn from utils import myUtils from .RawPSMNet import stackhourglass as rawPSMNet from .RawPSMNet_TieCheng import stackhourglass as rawPSMNet_TieCheng from ..Model import Model from .. import SR import collections import torch.nn.parallel as P from .PSMNet import * class RawPSMNetDown(RawPSMNetScale): def __init__(self, maxdisp, dispScale, multiple): super(RawPSMNetDown, self).__init__(maxdisp, dispScale, multiple) self.pool = nn.AvgPool2d((2, 2)) # input: RGB value range 0~1 # outputs: disparity range 0~self.maxdisp * self.dispScale / 2 def forward(self, left, right): outDispHighs = super(RawPSMNetDown, self).forward(left, right) outDispLows = myUtils.forNestingList(outDispHighs, lambda disp: self.pool(disp) / 2) return outDispHighs, outDispLows class PSMNetDown(PSMNet): # dataset: only used for suffix of saveFolderName def __init__(self, maxdisp=192, dispScale=1, cuda=True, half=False, stage='unnamed', dataset=None, saveFolderSuffix=''): super(PSMNetDown, self).__init__(maxdisp, dispScale, cuda, half, stage, dataset, saveFolderSuffix) self.outputMaxDisp = self.outputMaxDisp // 2 self.getModel = RawPSMNetDown def loss(self, outputs, gts, kitti=False, outputMaxDisp=None): if outputMaxDisp is not None: raise Exception('Error: outputMaxDisp of PSMNetDown has no use!') losses = [] for output, gt, outputMaxDisp in zip(outputs, gts, (self.outputMaxDisp * 2, self.outputMaxDisp)): losses.append(super(PSMNetDown, self).loss( output, gt, kitti=kitti, outputMaxDisp=outputMaxDisp ) if gt is not None else None) return losses def trainOneSide(self, imgL, imgR, gts, returnOutputs=False, kitti=False, weights=(1, 0)): self.optimizer.zero_grad() outDispHighs, outDispLows = self.model.forward(imgL, imgR) losses = self.loss((outDispHighs, outDispLows), gts, kitti=kitti) loss = sum([weight * loss for weight, loss in zip(weights, losses) if loss is not None]) with self.amp_handle.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() self.optimizer.step() dispOuts = [] if returnOutputs: with torch.no_grad(): dispOuts.append(outDispHighs[2].detach() / (self.outputMaxDisp * 2)) dispOuts.append(outDispLows[2].detach() / self.outputMaxDisp) losses = [loss] + losses return [loss.data.item() for loss in losses], dispOuts def train(self, batch, returnOutputs=False, kitti=False, weights=(1, 0), progress=0): myUtils.assertBatchLen(batch, 8) self.trainPrepare() losses = myUtils.NameValues() outputs = collections.OrderedDict() imgL, imgR = batch.highResRGBs() for inputL, inputR, gts, process, side in zip( (imgL, imgR), (imgR, imgL), zip(batch.highResDisps(), batch.lowResDisps()), (lambda im: im, myUtils.flipLR), ('L', 'R') ): if not all([gt is None for gt in gts]): lossesList, outputsList = self.trainOneSide( *process((inputL, inputR, gts)), returnOutputs=returnOutputs, kitti=kitti, weights=weights ) for suffix, loss in zip(('', 'DispHigh', 'Disp'), lossesList): if loss is not None: losses['loss' + suffix + side] = loss if returnOutputs: for suffix, output in zip(('High', 'Low'), outputsList): outputs['outputDisp' + suffix + side] = process(output) return losses, outputs def test(self, batch, evalType='l1', returnOutputs=False, kitti=False): myUtils.assertBatchLen(batch, 8) batch = myUtils.Batch(batch.highResRGBs() + batch.lowestResDisps(), cuda=batch.cuda, half=batch.half) scores, outputs, rawOutputs = super(PSMNetDown, self).test(batch, evalType, returnOutputs, kitti) for rawOutputsSide, side in zip(rawOutputs, ('L', 'R')): if rawOutputsSide is not None: (outDispHigh, outDispLow) = rawOutputsSide if returnOutputs: if outDispHigh is not None: outputs['outputDispHigh' + side] = outDispHigh / (self.outputMaxDisp * 2) return scores, outputs, rawOutputs
2.125
2
learned_optimization/population/examples/simple_cnn/common.py
Sohl-Dickstein/learned_optimization
70
12795461
# coding=utf-8 # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common code for the simple cnn example.""" import functools import os from absl import logging from flax import serialization import haiku as hk import jax import jax.numpy as jnp from learned_optimization import filesystem import numpy as onp import optax import tensorflow_datasets as tfds HKTree = hk.data_structures.to_immutable_dict({}).__class__ # We use flax for serialization but haiku's data struct is not registered. def _ty_to_state_dict(v): return serialization.to_state_dict( {k: v for k, v in hk.data_structures.to_mutable_dict(v).items()}) def _ty_from_state_dict(target, d): return HKTree( ** {k: serialization.from_state_dict(target[k], v) for (k, v) in d.items()}) serialization.register_serialization_state( HKTree, _ty_to_state_dict, _ty_from_state_dict, override=True) def hk_forward_fn(batch): """Forward function for haiku.""" x = batch["image"].astype(jnp.float32) / 255. mlp = hk.Sequential([ hk.Conv2D(64, (3, 3), stride=2), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=1), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=2), jax.nn.relu, hk.Conv2D(64, (3, 3), stride=1), jax.nn.relu, functools.partial(jnp.mean, axis=(1, 2)), hk.Linear(10), ]) return mlp(x) @jax.jit def loss(params, key, batch): net = hk.transform(hk_forward_fn) logits = net.apply(params, key, batch) labels = jax.nn.one_hot(batch["label"], 10) softmax_xent = -jnp.sum(labels * jax.nn.log_softmax(logits)) softmax_xent /= labels.shape[0] return softmax_xent @jax.jit def update(params, key, state, batch, meta_params): opt = optax.adam(meta_params["learning_rate"]) l, grad = jax.value_and_grad(loss)(params, key, batch) updates, new_state = opt.update(grad, state, params) new_params = optax.apply_updates(params, updates) return new_params, new_state, l def save_state(path, state): filesystem.make_dirs(os.path.dirname(path)) with filesystem.file_open(path, "wb") as fp: fp.write(serialization.to_bytes(state)) def load_state(path, state): logging.info("Restoring state %s:", path) with filesystem.file_open(path, "rb") as fp: state_new = serialization.from_bytes(state, fp.read()) tree = jax.tree_structure(state) leaves_new = jax.tree_leaves(state_new) return jax.tree_unflatten(tree, leaves_new) def get_data_iterators(fake_data=False): """Get training and test data iterators.""" batch_size = 128 if not fake_data: remap_label = lambda x: {"image": x["image"], "label": x["label"]} def data(split): dataset = tfds.load("cifar10", split=split) iterator = iter( tfds.as_numpy( dataset.repeat(-1).shuffle( batch_size * 10).batch(batch_size).map(remap_label))) return iterator return data("train"), data("test") else: def data(): while True: yield { "image": onp.zeros([batch_size, 32, 32, 3]), "label": onp.zeros([batch_size], dtype=onp.int32) } return data(), data()
2.109375
2
performance/zero_copy_prc1.py
lukasdean/robust_python
0
12795462
<gh_stars>0 #!/user/bin/env python # -*-coding:utf-8 -*- # @CreateTime : 2021/10/25 22:52 # @Author : xujiahui # @Project : robust_python # @File : zero_copy_prc1.py # @Version : V0.0.1 # @Desc : ? # 借助于 memoryview 来实现零拷贝 import timeit data = b"shave and a haircut, two bits" view = memoryview(data) chunk = view[12:19] print(chunk) print("Size: ", chunk.nbytes) print("Data in view: ", chunk.tobytes()) print("Underlying data: ", chunk.obj) # bytes有个限制,就是只能读取不能修改,我们不能单独更新其中某个位置上的字节,而 bytearray 则相当于可修改的bytes, # 它允许我们修改任意位置上面的内容,bytearray采用整数表示其中的内容,而不像 bytes 那样,采用b开头的字面值 my_array = bytearray(b'hello') my_array[0] = 0x79 print(my_array) """ bytearray 与 bytes 一样,也可以用 memoryview 封装,在这种 memoryview 上面切割出来的对象,其内容可以用另一份数据替换, 这样做,替换的实际上是 memoryview 背后那个底层缓冲区里面的相应部分。这使得我们可以通过 memoryview 来修改它所封装的 bytearray, 而不像 bytes 那样,必须先将 bytes 拆散再拼起来 """ my_array = bytearray(b'row, row, row your boat') my_view = memoryview(my_array) write_view = my_view[3:13] write_view[:] = b'-10 bytes-' print(my_array) """ Python 里面很多库之中的方法,例如 socket.recv_into 与 RawIOBase.readinto,都使用缓冲协议来迅速接受或读取数据。 这种方法的好处是不用分配内存,也不用给原数据制作副本,它们会把收到的内容直接写入现有的缓冲区。 """
2.59375
3
test/ursina/test.py
rahul38888/opworld
0
12795463
from ursina import * class Inventory(Entity): def __init__(self, capacity): super(Inventory, self).__init__( parent=camera.ui, model='quad', origin=(-0.5, 0.5), texture="white_cube", color=color.dark_gray ) self.capacity = capacity self.scale=(capacity/10, 0.1) self.position=(-capacity/20, -0.35) self.texture_scale= (capacity, 1) self.item_parent = Entity(parent=self, scale=(1/capacity, 1)) self.spots = [None for i in range(capacity)] def next_slot(self) -> int: for i in range(self.capacity): if self.spots[i] is None: return i return -1 def append(self, index: int=-1): spot = index if index>=0 else self.next_slot() if spot >= 0: item = Button(parent=self.item_parent, model = "quad", color=color.random_color(), position=(spot, 0), origin=(-0.5, 0.5)) self.spots[spot] = item def input(key): if key == input_handler.Keys.escape: application.quit() if __name__ == '__main__': app = Ursina() window.fullscreen = True inventory = Inventory(8) inventory.append(0) inventory.append(1) app.run()
2.46875
2
p575e/distribute_candies.py
l33tdaima/l33tdaima
1
12795464
<reponame>l33tdaima/l33tdaima<gh_stars>1-10 from typing import List class Solution: def distributeCandies(self, candyType: List[int]) -> int: return min(len(candyType) // 2, len(set(candyType))) # TESTS for candyType, expected in [ ([1, 1, 2, 2, 3, 3], 3), ([1, 1, 2, 3], 2), ([6, 6, 6, 6], 1), ]: sol = Solution() actual = sol.distributeCandies(candyType) print("The maximum number of different types in", candyType, "->", actual) assert actual == expected
3.65625
4
04Cuarto/Redes_MultiServicio_RMS/01_Lector_de_etiquetas_MPLS/src/controller/controllers/Main.py
elsudano/Facultad
2
12795465
<gh_stars>1-10 #!/usr/bin/python # -*- coding: UTF-8 -*- """Lista de controladores del programa. En este fichero podemos encontrarnos todos los controladores, de todas las vistas de nuestro programa. """ from src.controller.Controller import Controller from src.model import models from src.controller import controllers from src.view_app import views class MainController(Controller): def back(self, event): # FIXME: implementar esta función para regresar al menu anterior pass def open_pcapng(self, event): pass def captura_mpls(self, event): """Cambia la vista de la ventana. Creamos todos los componentes necesarios para realizar la captura de los paquetes MPLS y mostrarlos en pantalla """ model = models.MplsModel() controller = controllers.MplsController(self._window, model) view = views.MplsView(self._window, controller) # Ponemos el tirulo a la nueva vista self._window.set_title("Lector cabecera MPLS") controller.set_view(view) view.init_view() def captura_rtp(self, event): """Cambia la vista de la ventana. pasamos a crear todos los componentes para la primera practica """ model = models.RtpModel() controller = controllers.RtpController(self._window, model) view = views.RtpView(self._window, controller) # Ponemos el tirulo a la nueva vista self._window.set_title("Lector de RTP") controller.set_view(view) view.init_view()
2.703125
3
examples/petting_zoo/waterworld.py
LuisFMCuriel/ai-traineree
22
12795466
""" This example is for demonstartion purpose only. No agent learns here anything useful, yet. Well, maybe they do but it might take a long time to check. Ain't nobody got time for that. """ from pettingzoo.sisl import waterworld_v3 from ai_traineree.agents.ppo import PPOAgent from ai_traineree.multi_agents.independent import IndependentAgents from ai_traineree.runners.multiagent_env_runner import MultiAgentCycleEnvRunner from ai_traineree.tasks import PettingZooTask env = waterworld_v3.env() task = PettingZooTask(env=env) task.reset() # Needs to be reset to access env.agents() agents = [] for actor_name in task.agents: obs_space = task.observation_spaces[actor_name] action_space = task.action_spaces[actor_name] agents.append(PPOAgent(obs_space, action_space)) multi_agent = IndependentAgents(agents, agent_names=task.agents) runner = MultiAgentCycleEnvRunner(task, multi_agent=multi_agent) runner.run(max_episodes=3)
2.5
2
queue/queue.py
Sherlock-dev/algos
1,126
12795467
class Queue(object): def __init__(self): self._list = [] def count(self): return len(self._list) def is_empty(self): return self.count() == 0 def enqueue(self, item): self._list.append(item) def dequeue(self): try: return self._list.pop(0) except IndexError: raise IndexError('pop from empty stack') def main(): queue = Queue() n = 100 print('Empty queue: {0}'.format(queue.is_empty())) while queue.count() < 5: print('pushing elements: {0}'.format(n)) queue.enqueue(n) n = n + 100 print('Number of items: {0}'.format(queue.count())) print('Empty queue: {0}'.format(queue.is_empty())) while True: try: print('Removing element: {0}'.format(queue.dequeue())) except Exception as e: print('Exception: {0}'.format(e)) break print('Number of items: {0}'.format(queue.count())) print('Empty queue: {0}'.format(queue.is_empty())) if __name__ == '__main__': main()
4.03125
4
anagrams/anagrams.py
learnalgorithms/problems
0
12795468
<gh_stars>0 def isAnagram(s: str, t: str) -> bool: if len(s) == len(t): s_map = {} t_map = {} for l in s: if l in s_map: s_map[l] += 1 else: s_map[l] = 0 for l in t: if l in t_map: t_map[l] += 1 else: t_map[l] = 0 for l in s_map: if l not in t_map or s_map[l] != t_map[l]: return False else: return False return True
3.25
3
imgtoxl.py
findsarfaraz/ImageToXL
0
12795469
<filename>imgtoxl.py # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'imgtoxl.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName(_fromUtf8("MainWindow")) MainWindow.resize(590, 96) MainWindow.setMaximumSize(QtCore.QSize(590, 96)) font = QtGui.QFont() font.setFamily(_fromUtf8("Calibri")) font.setPointSize(11) MainWindow.setFont(font) MainWindow.setTabShape(QtGui.QTabWidget.Rounded) self.centralwidget = QtGui.QWidget(MainWindow) self.centralwidget.setObjectName(_fromUtf8("centralwidget")) self.lineEdit = QtGui.QLineEdit(self.centralwidget) self.lineEdit.setGeometry(QtCore.QRect(90, 10, 411, 21)) self.lineEdit.setObjectName(_fromUtf8("lineEdit")) self.label = QtGui.QLabel(self.centralwidget) self.label.setGeometry(QtCore.QRect(10, 10, 71, 16)) self.label.setObjectName(_fromUtf8("label")) self.progressBar = QtGui.QProgressBar(self.centralwidget) self.progressBar.setGeometry(QtCore.QRect(2, 70, 583, 23)) self.progressBar.setProperty("value", 24) self.progressBar.setObjectName(_fromUtf8("progressBar")) self.btn_Open_File = QtGui.QPushButton(self.centralwidget) self.btn_Open_File.setGeometry(QtCore.QRect(500, 10, 75, 23)) self.btn_Open_File.setObjectName(_fromUtf8("btn_Open_File")) self.btn_Save_File = QtGui.QPushButton(self.centralwidget) self.btn_Save_File.setGeometry(QtCore.QRect(500, 40, 75, 23)) self.btn_Save_File.setObjectName(_fromUtf8("btn_Save_File")) MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.progressBar.setVisible(0) QtGui.QApplication.setStyle(QtGui.QStyleFactory.create("Plastique")) def retranslateUi(self, MainWindow): MainWindow.setWindowTitle(_translate("MainWindow", "ImgToXL", None)) self.label.setText(_translate("MainWindow", "Image File", None)) self.btn_Open_File.setText(_translate("MainWindow", "Select File", None)) self.btn_Save_File.setText(_translate("MainWindow", "Save File", None)) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) MainWindow = QtGui.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
1.84375
2
tests/SharedDataFrameTest.py
pywash/pywash
7
12795470
from unittest import TestCase from src.PyWash import SharedDataFrame from src.Exceptions import * import pandas as pd verbose = False class TestDecorators(TestCase): """ TestClass for SharedDataFrame methods """ def test_is_mergeable_column_names(self): if verbose: print("Testing: is_mergeable_columns") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) self.assertTrue(test1.is_mergeable(test2)) def test_is_mergeable_common_values(self): if verbose: print("Testing: is_mergeable_values") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) self.assertTrue(test1.is_mergeable(test2)) def test_is_mergeable_false(self): if verbose: print("Testing: is_mergeable_false") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date': [2004, 2008, 2012, 2014, 2019]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) self.assertFalse(test1.is_mergeable(test2)) def test_merge_on_column_names(self): if verbose: print("Testing: merge_on_columns") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'employee': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) target = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR'], 'hire_date': [2008, 2012, 2004, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) test1.merge_into(test2) self.assertTrue(test1.get_dataframe().equals(target), "Successfully merged the 2 DataFrames") def test_merge_on_common_values(self): if verbose: print("Testing: merge_on_values") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue'], 'hire_date': [2004, 2008, 2012, 2014]}) target = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR'], 'names': ['Bob', 'Jake', 'Lisa', 'Sue'], 'hire_date': [2008, 2012, 2004, 2014]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) test1.merge_into(test2) if verbose: print(test1.get_dataframe()) print(target) self.assertTrue(test1.get_dataframe().equals(target), "Successfully merged the 2 DataFrames") def test_merge_on_false(self): if verbose: print("Testing: merge_false") df1 = pd.DataFrame({'employee': ['Bob', 'Jake', 'Lisa', 'Sue'], 'group': ['Accounting', 'Engineering', 'Engineering', 'HR']}) df2 = pd.DataFrame({'names': ['Lisa', 'Bob', 'Jake', 'Sue', 'Bobby'], 'hire_date': [2004, 2008, 2012, 2014, 2019]}) test1 = SharedDataFrame(df=df1, verbose=verbose) test2 = SharedDataFrame(df=df2, verbose=verbose) if verbose: print(test1.get_dataframe()) with self.assertRaises(NotMergableError): test1.merge_into(test2) if verbose: print(test1.get_dataframe())
2.953125
3
assessment_03/gameplay/PlayerAction.py
DominicSchiller/osmi-module-datascience
0
12795471
from enum import Enum from . import PlayerAction __author__ = '<NAME>' __email__ = '<EMAIL>' __version__ = '1.0' __license__ = 'MIT' class PlayerAction(Enum): """ Enumeration of possible player actions. """ HIT = 0 STAND = 1 YES = 2 NO = 3 @staticmethod def get_action(action_name: str) -> PlayerAction: """ Get player action for it's string representation. :param action_name: The action's string representation :return: The corresponding player action. """ action_name = action_name.lower() if action_name == "hit": return PlayerAction.HIT elif action_name == "stand": return PlayerAction.STAND elif action_name == "yes": return PlayerAction.YES elif action_name == "no": return PlayerAction.NO else: return None
3.4375
3
src/config/settings.py
kents00/Django
1
12795472
import os import logging import environ from pathlib import Path SUPPORTED_NONLOCALES = ['media', 'admin', 'static'] # Build paths inside the project like this: BASE_DIR / 'subdir'. PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__) + "../../../") env = environ.Env() # reading .env file environ.Env.read_env() env = environ.Env( # set casting, default value DEBUG=(bool, True) ) # Build paths inside the project like this: BASE_DIR / 'subdir'. PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__) + "../../../") # Take environment variables from .env file environ.Env.read_env(os.path.join(PROJECT_ROOT, '.env')) # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = env("SECRET_KEY", default="unsafe-secret-key") # SECURITY WARNING: don't run with debug turned on in production! # Debugging displays nice error messages, but leaks memory. Set this to False # on all server instances and True only for development. DEBUG = env('DEBUG') ALLOWED_HOSTS = ["localhost", "127.0.0.1"] # Application definition INSTALLED_APPS = [ #Django default apps 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', #Third party apps 'compressor', 'django_nose', 'django_extensions', 'debug_toolbar', #Local apps #Application base 'Application', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', # third party middleware 'whitenoise.middleware.WhiteNoiseMiddleware', 'debug_toolbar.middleware.DebugToolbarMiddleware', ] DEBUG_TOOLBAR_PANELS = [ 'debug_toolbar.panels.history.HistoryPanel', 'debug_toolbar.panels.versions.VersionsPanel', 'debug_toolbar.panels.timer.TimerPanel', 'debug_toolbar.panels.settings.SettingsPanel', 'debug_toolbar.panels.headers.HeadersPanel', 'debug_toolbar.panels.request.RequestPanel', 'debug_toolbar.panels.sql.SQLPanel', 'debug_toolbar.panels.staticfiles.StaticFilesPanel', 'debug_toolbar.panels.templates.TemplatesPanel', 'debug_toolbar.panels.cache.CachePanel', 'debug_toolbar.panels.signals.SignalsPanel', 'debug_toolbar.panels.logging.LoggingPanel', 'debug_toolbar.panels.redirects.RedirectsPanel', 'debug_toolbar.panels.profiling.ProfilingPanel', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ # insert your TEMPLATE_DIRS here os.path.join(PROJECT_ROOT, 'templates'), os.path.join(PROJECT_ROOT, 'templates/.base'), os.path.join(PROJECT_ROOT, 'templates/layout'), ], 'APP_DIRS': True, 'OPTIONS': { 'debug': DEBUG, 'context_processors': [ # Default context processors 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', # Custom context processors here #'config.context_processors.custom_context_processor', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # By default, be at least somewhat secure with our session cookies. SESSION_COOKIE_HTTPONLY = True # Set this to true if you are using https SESSION_COOKIE_SECURE = False # Absolute filesystem path to the directory that will hold user-uploaded files. MEDIA_ROOT = os.path.join(PROJECT_ROOT, 'media') # URL that handles the media served from MEDIA_ROOT. Make sure to use a MEDIA_URL = '/media/' # Absolute path to the directory static files should be collected to. STATIC_ROOT = 'static/' # URL prefix for static files. STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = [ # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ] DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' # Memorycached SESSIONS_ENGINE='django.contrib.sessions.backends.cache' CACHES = { 'default': { 'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache', 'LOCATION': '127.0.0.1:11211', } } # Argon2 password hashing PASSWORD_HASHERS = [ 'django.contrib.auth.hashers.Argon2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2PasswordHasher', 'django.contrib.auth.hashers.PBKDF2SHA1PasswordHasher', 'django.contrib.auth.hashers.BCryptSHA256PasswordHasher', # Custom hasher 'Application.hashers.PBKDF2WrappedSHA1PasswordHasher', ] # cacheable files and compression support STATICFILES_STORAGE = 'whitenoise.storage.CompressedManifestStaticFilesStorage' STATICFILES_FINDERS = ( # django contrib default finders 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # third party finders 'compressor.finders.CompressorFinder', ) TEST_RUNNER = 'django_nose.NoseTestSuiteRunner' INTERNAL_IPS = ['127.0.0.1']
2
2
opencv_project_python-master/opencv_project_python-master/05.geometric_transform/remap_barrel.py
dongrami0425/Python_OpenCV-Study
0
12795473
<reponame>dongrami0425/Python_OpenCV-Study import cv2 import numpy as np # 왜곡 계수 설정 ---① k1, k2, k3 = 0.5, 0.2, 0.0 # 배럴 왜곡 #k1, k2, k3 = -0.3, 0, 0 # 핀큐션 왜곡 img = cv2.imread('../img/girl.jpg') rows, cols = img.shape[:2] # 매핑 배열 생성 ---② mapy, mapx = np.indices((rows, cols),dtype=np.float32) # 중앙점 좌표로 -1~1 정규화 및 극좌표 변환 ---③ mapx = 2*mapx/(cols-1)-1 mapy = 2*mapy/(rows-1)-1 r, theta = cv2.cartToPolar(mapx, mapy) # 방사 왜곡 변영 연산 ---④ ru = r*(1+k1*(r**2) + k2*(r**4) + k3*(r**6)) # 직교좌표 및 좌상단 기준으로 복원 ---⑤ mapx, mapy = cv2.polarToCart(ru, theta) mapx = ((mapx + 1)*cols-1)/2 mapy = ((mapy + 1)*rows-1)/2 # 리매핑 ---⑥ distored = cv2.remap(img,mapx,mapy,cv2.INTER_LINEAR) cv2.imshow('original', img) cv2.imshow('distorted', distored) cv2.waitKey() cv2.destroyAllWindows()
2.75
3
computer_network/UDPclient.py
WhiteHyun/Network
1
12795474
from socket import * serverName = 'localhost' serverPort = 12000 clientSocket = socket(AF_INET, SOCK_DGRAM) message = input('Input lowercase sentence:') clientSocket.sendto(message.encode(), (serverName, serverPort)) modifiedMessage, serverAddress = clientSocket.recvfrom(2048) print(modifiedMessage.decode()) clientSocket.close()
2.84375
3
test_proj/data/data_tcA009.py
leeltib/vizsgamunka_ref
0
12795475
# A009 - enter users for scrolling function test # test with randomly generated users (arbitrary number of users, default is 2) import random import string title = 'Hello, én egy A009 test User vagyok!.' class MyRND(): chars_lo = string.ascii_lowercase chars_int = string.digits chars_up = string.ascii_uppercase chars = string.punctuation # *'[{&| etc @classmethod def uname(cls): return "".join([random.choice(cls.chars_lo) for _ in range(8)]) @classmethod def ppass(cls): pp_lo = "".join([random.choice(cls.chars_lo) for _ in range(8)]) pp_int = "".join([random.choice(cls.chars_int) for _ in range(8)]) pp_up = "".join([random.choice(cls.chars_up) for _ in range(8)]) pchars = pp_lo[4] + pp_int[0] + pp_up[7] + pp_lo[1:3] + pp_int[3] + pp_up[4] + pp_lo[6] return pchars @classmethod def email(cls): mail_lo = "".join([random.choice(cls.chars_lo) for _ in range(7)]) mail_fix = "@gmail.com" email = mail_lo + mail_fix return email class TestData: def __init__(self, rn): self.data = [] for i in range(rn): d = {} d["username"] = MyRND.uname() d["email"] = MyRND.email() d["password"] = <PASSWORD>() self.data.append(d) # set number of randomly generated users td = TestData(2) td_list = td.data print(td_list) users = [] for user in td_list: user_data = [] for value in user.values(): user_data.append(value) users.append(user_data) print(users)
3.5
4
notebooks/MS_Functions.py
malwinasanjose/anomaly_detection
0
12795476
<filename>notebooks/MS_Functions.py import pandas as pd import numpy as np import seaborn as sns from matplotlib import pyplot as plt def clean_df(df): # drop columns containing only NAs df_clean = df.dropna(how='all', axis=1) print(f'dropped {df.shape[1] - df_clean.shape[1]} columns') # drop rows with NA values df_clean = df_clean.dropna(how='any', axis=0) print(f'dropped {df.shape[0] - df_clean.shape[0]} rows') return df_clean def plot_time_series(df, columns, index_is_timestamp=False, start_date=None, end_date=None, ma_nr=[], groupby=[], width=10, height=5, anomaly_columns=[], anomaly_values=[]): assert isinstance(ma_nr, list) , 'ma_nr should be a list' assert isinstance(groupby, list), 'gropuby should be a list' assert isinstance(columns, list), 'columns should be a list' if index_is_timestamp: plot_df = df.loc[start_date:end_date] else: plot_df = df.set_index('INSDATE').loc[start_date:end_date] # filter specific machine number if ma_nr: plot_df = plot_df.loc[plot_df['MA_NR'].isin(ma_nr)] else: pass # group by columns if groupby: plot_df = plot_df.groupby(groupby) else: pass n = len(columns) if anomaly_columns: assert len(anomaly_values) == len(anomaly_columns), 'please provide anomaly value for each anomaly column indicator' m = len(anomaly_columns) fig, axs = plt.subplots(n, m, figsize=(width*m, height*n)) # reformat axs so it can be subset in the event that there's only one row or only one column if n==1: axs=[axs] if m==1: axs=[[i] for i in axs] for col, anomaly in enumerate(anomaly_columns): for row, column in enumerate(columns): plot_df[column].plot(legend=True, ax=axs[row][col], xlabel='', ylabel=column, alpha=0.5) sns.scatterplot(x=plot_df.index[plot_df[anomaly]==anomaly_values[col]], y=plot_df[column].loc[plot_df[anomaly]==anomaly_values[col]], color="red", s=10, ax=axs[row][col], label=f'anomaly: {anomaly}', alpha=1) else: fig, axs = plt.subplots(n, 1, figsize=(width, height*n)) if n == 1: axs = [axs] for row, column in enumerate(columns): plot_df[column].plot(legend=True, ax=axs[row], xlabel='', ylabel=column, alpha=0.5) axs[n-1].set_xlabel(df.index.name) def nio_labels(nio_series): nio_df = pd.DataFrame(nio_series.astype(str).str.rjust(10,'0').apply(lambda x: [i for i in x] if len(x)==10 else None).apply(pd.Series)) nio_df.columns = ['1,000,000,000', '100,000,000', '10,000,000', '1,000,000', '100,000', '10,000', '1,000', '100', '10', '1'] return nio_df
2.890625
3
src/steampunk_scanner/cli.py
xlab-steampunk/steampunk-scanner-cli
3
12795477
<gh_stars>1-10 import argparse import inspect import sys from steampunk_scanner import commands class ArgParser(argparse.ArgumentParser): """An argument parser that displays help on error""" def error(self, message: str): """ Overridden the original error method :param message: Error message """ sys.stderr.write("error: {}\n".format(message)) self.print_help() sys.exit(2) def add_subparsers(self, **kwargs) -> argparse._SubParsersAction: """ Overridden the original add_subparsers method (workaround for http://bugs.python.org/issue9253) """ subparsers = super(ArgParser, self).add_subparsers() subparsers.required = True subparsers.dest = "command" return subparsers def create_parser() -> ArgParser: """ Create argument parser for CLI :return: Parser as argparse.ArgumentParser object """ parser = ArgParser(description="Steampunk Scanner - a quality scanner for Ansible Playbooks") subparsers = parser.add_subparsers() cmds = inspect.getmembers(commands, inspect.ismodule) for _, module in sorted(cmds, key=lambda x: x[0]): module.add_parser(subparsers) return parser def main() -> ArgParser: """ Main CLI method to be called """ parser = create_parser() args = parser.parse_args() return args.func(args)
2.96875
3
lambda_function.py
cesarbruschetta/ses-receive-email-forward
0
12795478
<gh_stars>0 import sys import os import json import logging from typing import Dict sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from forward_recieved_email.utils import logger as c_logger from forward_recieved_email.config import settings from forward_recieved_email import processing # SET LOGGER c_logger.configure_logger() logger = logging.getLogger(__name__) def lambda_handler(event: Dict, context: Dict) -> None: """ AWS lambda start """ # CHANGE LOGGER logger = logging.getLogger() logger.setLevel(settings.LOGGER_LEVEL) logger.debug(json.dumps(event, indent=4)) result = processing.main_handler(event) return result
1.953125
2
orm/db/migrations/0001_initial.py
madelinkind/twitter_crawler
0
12795479
# Generated by Django 3.1.2 on 2021-01-25 08:11 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='TwitterUser', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('screen_name', models.CharField(max_length=15)), ], options={ 'db_table': 'twitter_users', }, ), migrations.CreateModel( name='Tweet', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('tweet_text', models.CharField(max_length=280)), ('tweet_date', models.DateTimeField()), ('tweet_lang', models.CharField(max_length=3, null=True)), ('tweet_id', models.CharField(db_index=True, max_length=20, null=True)), ('tweet_info', models.JSONField()), ('is_retweet', models.BooleanField(default=True)), ('retweet_count', models.IntegerField(null=True)), ('twitter_user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='db.twitteruser')), ], options={ 'db_table': 'tweets', }, ), ]
1.929688
2
sagas/api/info_mod.py
samlet/stack
3
12795480
from sanic import Blueprint from sanic.response import json info = Blueprint('info', url_prefix='/info') @info.route("/ping") async def ping(request): """ $ curl localhost:1700/info/ping :param request: :return: """ return json({ "hello": "world" }) @info.route('/env/<tag>') async def env_handler(request, tag): """ $ curl localhost:1700/info/env/PATH :param request: :param tag: :return: """ import os return json({tag: os.environ.get(tag)}) @info.post('/echo/<tag>') async def echo(request, tag): """ $ curl -d '{"key1":"value1", "key2":"value2"}' \ -H "Content-Type: application/json" -X POST \ localhost:1700/info/echo/hi | json :param request: :param tag: :return: """ data=request.json print("..", data) return json({tag:'POST request - {}'.format(request.json), 'keys': list(data.keys()), })
2.4375
2
chatbot/views.py
G-sharp/ChatBot
3
12795481
from django.shortcuts import render # Create your views here. # -*- coding: utf-8 -*- import json import datetime from DataBase import DBOPs from django.http import HttpResponse from chatbot import aimlKernel def chat(request): """ Function: 对话接口 Args: request: 请求 Returns: 返回Http报文 """ dic = {} if request.method == 'GET': dic['botResponse'] = aimlKernel.k.respond(request.GET.get('ask', '无语'), request.GET.get('sessionid','test')).\ replace(' ', '') DBOPs.InsertDB(request.GET.get('sessionid', 'test'), request.GET.get('ask', '无语'), dic['botResponse']) dic['time'] = datetime.datetime.now().strftime(('%Y-%m-%d %H:%M:%S')) dic['sessionid'] = request.GET.get('sessionid','test') return HttpResponse(json.dumps(dic, ensure_ascii=False)) else: dic['message'] = u'方法错误' return HttpResponse(json.dumps(dic, ensure_ascii=False))
2.109375
2
test_palindrome.py
zhonchik/python_examples
0
12795482
<gh_stars>0 from palindrome import is_palindrome def test_is_palindrome_1(): assert is_palindrome('a') def test_is_palindrome_2(): assert is_palindrome('aa') assert not is_palindrome('ab') def test_is_palindrome_3(): assert is_palindrome('aba') assert not is_palindrome('abc') def test_is_palindrome_4(): assert is_palindrome('abba') assert not is_palindrome('abcd') def test_is_palindrome_5(): assert is_palindrome('abcba') assert not is_palindrome('abcde')
2.453125
2
The_Codes/Problem_1/XML.py
MertYILDIZ19/ADM-HW1
0
12795483
############### XML 1 - Find the Score ################ import sys import xml.etree.ElementTree as etree def get_attr_number(node): # your code goes here count = 0 for i in root.iter(): count += len(i.attrib) return count if __name__ == '__main__': sys.stdin.readline() xml = sys.stdin.read() tree = etree.ElementTree(etree.fromstring(xml)) root = tree.getroot() print(get_attr_number(root)) ############### XML2 - Find the Maximum Depth ################ import xml.etree.ElementTree as etree maxdepth = 0 def depth(elem, level): global maxdepth # your code goes here level += 1 if level >= maxdepth: maxdepth = level for i in elem: depth(i, level) if __name__ == '__main__': n = int(input()) xml = "" for i in range(n): xml = xml + input() + "\n" tree = etree.ElementTree(etree.fromstring(xml)) depth(tree.getroot(), -1) print(maxdepth)
3.9375
4
pipelines/voc-2007/sched.py
fenwuyaoji/approx-vision
61
12795484
#! /usr/bin/env python from __future__ import unicode_literals from PIL import Image from subprocess import check_call from concurrent import futures import subprocess import os import io import subprocess import sys from os import listdir from os.path import isfile, join import psutil import time vers_to_run = [ 3, 4, 5, 7, 8, 9,10,11,12,58,59,60,61,62,63,64] in_vers = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 6, 6, 6, 6] num_threads = 14 # The directory to convert datasetpath = '/datasets/voc-2007/' def convert_img(file_name,in_img_dir,out_img_dir): # Make temp directory temp_dir = 'temp_'+str(os.getpid()) subprocess.call('mkdir -p '+temp_dir,shell=True) # Convert to png # im = Image.open(in_img_dir+file_name) im.save(temp_dir+'/'+file_name+'_temp.png') # Run the given pipeline on the png subprocess.call('../common/pipeline_V'+str(version) + '.o ' + temp_dir + '/' + file_name + '_temp.png ' + temp_dir + '/', shell=True) # Convert back to jpeg and save im = Image.open(temp_dir+'/'+'output.png') im.save(out_img_dir+'/'+file_name) # Delete temp directory subprocess.call('rm -rf '+temp_dir,shell=True) for i, version in enumerate(vers_to_run): in_version = in_vers[i] subprocess.call('make --directory ../common/ version='+str(version),shell=True) # Copy all but the JPEG images subprocess.call('rsync -av '+ datasetpath+'/v'+str(in_version)+'/ '+ datasetpath+'/v'+str(version)+' '+ '--exclude VOC2007/JPEGImages', shell=True) in_img_dir = datasetpath+'v'+str(in_version)+'/VOC2007/JPEGImages/' out_img_dir = datasetpath+'v'+str(version)+'/VOC2007/JPEGImages/' # Make the directory for this section subprocess.call('mkdir -p '+out_img_dir,shell=True) # Get list of files in directory file_list = [f for f in listdir(in_img_dir) if isfile(join(in_img_dir, f))] file_list.sort() with futures.ProcessPoolExecutor(max_workers=num_threads) as executor: fs = [executor.submit(convert_img,file_name,in_img_dir,out_img_dir) for file_name in file_list] for i, f in enumerate(futures.as_completed(fs)): # Write progress to error so that it can be seen sys.stderr.write( \ "Converted Image: {} / {} \r".format(i, len(file_list)))
2.375
2
parser.py
rougier/shadergraph
3
12795485
<gh_stars>1-10 # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2015, <NAME> # Distributed under the (new) BSD License. See LICENSE.txt for more info. # ----------------------------------------------------------------------------- from pyparsing import * keywords = ("attribute const uniform varying break continue do for while" "if else" "in out inout" "float int void bool true false" "lowp mediump highp precision invariant" "discard return" "mat2 mat3 mat4" "vec2 vec3 vec4 ivec2 ivec3 ivec4 bvec2 bvec3 bvec4 sampler2D samplerCube" "struct") reserved = ("asm" "class union enum typedef template this packed" "goto switch default" "inline noinline volatile public static extern external" "interface flat long short double half fixed unsigned superp" "input output" "hvec2 hvec3 hvec4 dvec2 dvec3 dvec4 fvec2 fvec3 fvec4 sampler1D sampler3D" "sampler1DShadow sampler2DShadow" "sampler2DRect sampler3DRect sampler2DRectShadow" "sizeof cast" "namespace using") IDENTIFIER = Regex('[a-zA-Z_][a-zA-Z_0-9]*') INT_DECIMAL = Regex('([+-]?(([1-9][0-9]*)|0+))') INT_OCTAL = Regex('(0[0-7]*)') INT_HEXADECIMAL = Regex('(0[xX][0-9a-fA-F]*)') INTEGER = INT_HEXADECIMAL | INT_OCTAL | INT_DECIMAL FLOAT = Regex('[+-]?(((\d+\.\d*)|(\d*\.\d+))([eE][-+]?\d+)?)|(\d*[eE][+-]?\d+)') LPAREN, RPAREN = Literal("(").suppress(), Literal(")").suppress() LBRACK, RBRACK = Literal("[").suppress(), Literal("]").suppress() LBRACE, RBRACE = Literal("{").suppress(), Literal("}").suppress() SEMICOLON, COMMA = Literal(";").suppress(), Literal(",").suppress() EQUAL = Literal("=").suppress() SIZE = INTEGER | IDENTIFIER OPERATOR = oneOf("+ - * / [ ] . & ^ ! { }") STORAGE_QUALIFIER = Regex("const|varying|uniform|attribute") CONST_QUALIFIER = Literal("const") INVARIANT_QUALIFIER = Literal("invariant") PRECISION_QUALIFIER = Regex("lowp|mediump|highp") PARAMETER_QUALIFIER = Regex("(in|out|inout)[ \t\n]") # Variable declarations # --------------------- PART = nestedExpr() | nestedExpr('{','}') | IDENTIFIER | INTEGER | FLOAT | OPERATOR EXPR = delimitedList(PART, delim=Empty()).setParseAction(keepOriginalText) VARIABLE = (IDENTIFIER("name") + Optional(LBRACK + SIZE + RBRACK)("size") + Optional(EQUAL + EXPR)("value")) VARIABLES = delimitedList(VARIABLE.setResultsName("variables",listAllMatches=True)) DECLARATION = (STORAGE_QUALIFIER("storage") + Optional(PRECISION_QUALIFIER)("precision") + IDENTIFIER("type") + VARIABLES + SEMICOLON) DECLARATION.ignore(cStyleComment) # Function parameter # ------------------ PARAMETER = Group(Optional(STORAGE_QUALIFIER)("storage") + Optional(PRECISION_QUALIFIER)("precision") + Optional(PARAMETER_QUALIFIER)("inout") + IDENTIFIER("type") + Optional(IDENTIFIER("name")) + Optional(LBRACK + SIZE + RBRACK)("size")) # Function prototypes # ------------------- FUNCTION = (Optional(STORAGE_QUALIFIER)("storage") + Optional(PRECISION_QUALIFIER)("precision") + IDENTIFIER("type") + IDENTIFIER("name") + LPAREN + Optional(delimitedList(PARAMETER))("parameters") + RPAREN + ((nestedExpr("{", "}").setParseAction(keepOriginalText)("code")) | SEMICOLON)) FUNCTION.ignore(cStyleComment) # Struct definitions & declarations # --------------------------------- STRUCT = ( Literal("struct").suppress() + IDENTIFIER("type") + nestedExpr("{", "}").setParseAction(keepOriginalText)("content") + Optional(VARIABLES) + SEMICOLON) STRUCT.ignore(cStyleComment) # Constants # --------- CONSTANT = (Literal("#").suppress() + Literal("define").suppress() + IDENTIFIER("name") + restOfLine("value")) class Type(object): def __init__(self, base=None, storage=None, precision=None, size=None): if isinstance(base, Type): other = base self.base = other.base self.size = other.size self.storage = other.storage self.precision = other.precision else: self.base = base.strip() self.size = size.strip() self.storage = storage.strip() self.precision = precision.strip() def __str__(self): s = "" if self.storage: s += "%s " % self.storage if self.precision: s += "%s " % self.precision s += "%s" % self.base return s def __eq__(self, other): return (self.base == other.base and self.size == other.size and self.precision == other.precision) class Parameter(object): def __init__(self, type, name=None, inout="in"): self.type = Type(type) self.name = name.strip() self.alias = name.strip() self.inout = inout.strip() def __str__(self): s = "" if self.inout: s += "%s " % self.inout s += str(self.type) + " " if self.name: s += "%s" % self.name if self.type.size: s += "[%s]" % self.size return s class Variable(object): def __init__(self, type, name, value=None): self.type = Type(type) self.name = name.strip() self.alias = name.strip() self.value = value.strip() def __str__(self): s = str(self.type) + " " + self.alias if self.type.size: s += "[%s]" % self.type.size if self.value: s += " = %s" % self.value s += ";" return s class Prototype(object): def __init__(self, type, name, parameters): self.type = Type(type) self.name = name.strip() self.alias = name.strip() self.parameters = parameters def __str__(self): s = str(self.type) + " %s (" % self.alias for i, parameter in enumerate(self.parameters): s += str(parameter) if i < len(self.parameters)-1: s+= ", " s += ");" return s class Function(object): def __init__(self, type, name, parameters, code): self.type = Type(type) self.name = name.strip() self.alias = name.strip() self.parameters = parameters self.code = code.strip() def __str__(self): s = str(self.type) + " %s (" % self.alias for i, parameter in enumerate(self.parameters): s += str(parameter) if i < len(self.parameters)-1: s+= ", " s += ") " s += self.code return s class Constant(object): def __init__(self, name, value): self.name = name.strip() self.alias = name.strip() self.value = value.strip() def __str__(self): s = "#define %s %s" % (self.alias, self.value) return s def __eq__(self, other): return self.value == other.value class Struct(object): def __init__(self, name, content): self.name = name.strip() self.content = content.strip() def __str__(self): s = "struct %s %s;" % (self.name, self.content) return s def parse(code): """ Parse a GLSL source code into an abstract syntax list """ constants = [] structs = [] variables = [] prototypes= [] functions = [] # Constants for (token, start, end) in CONSTANT.scanString(code): C = Constant(name = token.name, value = token.value) constants.append(C) # Variables for (token, start, end) in DECLARATION.scanString(code): for variable in token.variables: size = '' if not variable.size else variable.size[0] value = '' if not variable.value else variable.value[0] V = Variable(Type(base = token.type, storage = token.storage, precision = token.precision, size = size), name = variable.name, value = value) variables.append(V) # Struct definitions & declarations for (token, start, end) in STRUCT.scanString(code): S = Struct(name = token.type, content = token.content[0]) structs.append(S) for variable in token.variables: size = '' if not variable.size else variable.size[0] value = '' if not variable.value else variable.value[0] V = Variable(Type(base = token.type, size = size), name = variable.name, value = value) variables.append(V) # Functions prototype and definitions for (token, start, end) in FUNCTION.scanString(code): parameters = [] for parameter in token.parameters: size = '' if not parameter.size else parameter.size[0] P = Parameter(type = Type(base = parameter.type, storage = parameter.storage, precision = parameter.precision, size = parameter.size), name = parameter.name, inout = parameter.inout) parameters.append(P) T = Type(base = token.type, storage = token.storage, precision = token.precision, size = token.size) if token.code: F = Function( type = T, name = token.name, parameters = parameters, code = token.code[0]) functions.append(F) for parameter in parameters: parameter.function = F else: P = Prototype(type = T, name = token.name, parameters = parameters) prototypes.append(P) for parameter in parameters: parameter.function = None return constants, structs, variables, prototypes, functions
2.015625
2
src/AtmNu_Recoildistribution.py
cajohare/AtmNuFloor
1
12795486
<gh_stars>1-10 import os import sys sys.path.append('../src') from numpy import * from numpy import random from Params import * from NeutrinoFuncs import * from LabFuncs import * # This file doesn't save all its recoils because we need a large number to # make a nice plot of energy/phi/costh distribution. So everytime this file # is run the new distribution is merged with a previous one to make it smoother # each time. # I needed to run this file (both Xe131 and Ar40) around 10 times to get # a nice distribution, but the recoil file ends up being huge (which is why # it's not in the git repository) #==============================================================================# # Input Nuc = eval(sys.argv[1]) print('Nucleus = ',Nuc.Name) if Nuc.Name=='Xe': E_min = 2.0 E_max = 200.0 elif Nuc.Name=='Ar': E_min = 20.0 E_max = 400.0 #==============================================================================# ngen = 1000000 fname = 'AtmNu_GranSasso_SolarMin.d' ne = 20 #### Load high energy data Phi_tot,E_high,cosZ,phi_Az = GetAtmNuFluxes(fname) Phi_high = squeeze(sum(sum(Phi_tot,0),0)) ###### Load low energy FLUKA data dat1 = loadtxt(nufile_dir+'/atmospheric/FLUKA/AtmNu_mubar.txt',delimiter=',') dat2 = loadtxt(nufile_dir+'/atmospheric/FLUKA/AtmNu_mu.txt',delimiter=',') dat3 = loadtxt(nufile_dir+'/atmospheric/FLUKA/AtmNu_e.txt',delimiter=',') dat4 = loadtxt(nufile_dir+'/atmospheric/FLUKA/AtmNu_ebar.txt',delimiter=',') E_low = dat1[:,0] Phi_low = dat1[:,1]+dat2[:,1]+dat3[:,1]+dat4[:,1] ###### Join the two E_join = append(E_low[0:260],E_high[9:]) Phi_join = append(Phi_low[0:260],Phi_high[9:]) ##### Interpolate to create new array nfine = 1000 E_nu_max = 1.0e4 E_fine = linspace(E_join[0],E_nu_max,nfine) Phi_fine = interp(E_fine,E_join,Phi_join) # Generate ngen initial energies and directions E_gen,phi_nu_gen,costh_nu_gen,E_r_gen =\ GenerateAtmNuDirections(ngen,E_fine,Phi_fine,E_high,Phi_tot,cosZ,phi_Az,Nuc) # Scatter each neutrino E_r_gen,phi_r_gen,costh_r_gen =\ ScatterNeutrinos(Nuc,E_gen,phi_nu_gen,costh_nu_gen,E_r_gen) # Window and get angles mask_window = (E_r_gen<=E_max)*(E_r_gen>=E_min) E_r_gen = E_r_gen[mask_window] phi_r_gen = phi_r_gen[mask_window] costh_r_gen = costh_r_gen[mask_window] nleft = size(costh_r_gen) print('nleft=',size(costh_r_gen)) print('Generating Cygnus angles') costh_r_gen_2 = zeros(shape=nleft) t_gen = random.uniform(size=nleft) for i in range(0,nleft): v_lab = LabVelocity(Jan1+67+t_gen[i]) v_lab = v_lab/sqrt(sum(v_lab**2.0)) x_rec = array([cos(phi_r_gen[i])*sqrt(1-costh_r_gen[i]**2.0), sin(phi_r_gen[i])*sqrt(1-costh_r_gen[i]**2.0), costh_r_gen[i]]) costh_r_gen_2[i] = sum(v_lab*x_rec) # Binning costhmin = 0.0 costh_edges = sqrt(linspace(0.0,1.0,ne+1)) costh_centers = (costh_edges[1:]+costh_edges[0:-1])/2.0 E_r_edges = logspace(log10(E_min),log10(E_max),ne+1) E_r_centers = (E_r_edges[1:]+E_r_edges[0:-1])/2.0 [E,C] = meshgrid(E_r_centers,costh_centers) eff2 = efficiency(Nuc,E) # Atmospheric neutrino rate R_Atm = R_AtmNu(E_min,E_max,Nuc=Nuc,eff_on=False) R1,ce,ee = histogram2d(abs(costh_r_gen),log10(E_r_gen),bins=(ne,ne),\ range=[[0.0,1.0],[log10(E_min),log10(E_max)]]) R1 = R_Atm*R1/sum(sum(R1)) R2,ce,ee = histogram2d(abs(costh_r_gen_2),log10(E_r_gen),bins=(ne,ne),\ range=[[0.0,1.0],[log10(E_min),log10(E_max)]]) R2 = R_Atm*R2/sum(sum(R2)) DAT1 = vstack((costh_centers,E_r_centers,R1)) DAT2 = vstack((costh_centers,E_r_centers,R2)) recoildat_fname1 = recoil_dir+'AtmNu_Ecosth_'+Nuc.Name+'_Stationary.txt' recoildat_fname2 = recoil_dir+'AtmNu_Ecosth_'+Nuc.Name+'_CygnusTracking.txt' file_exists = os.path.exists(recoildat_fname1) if file_exists: DAT_prev1 = loadtxt(recoildat_fname1) DAT_prev2 = loadtxt(recoildat_fname2) if (shape(DAT_prev1)[0]==shape(DAT1)[0])&(shape(DAT_prev1)[1]==shape(DAT1)[1]): DAT1[2:,:] = (DAT_prev1[2:,:]+DAT1[2:,:])/2.0 DAT2[2:,:] = (DAT_prev2[2:,:]+DAT2[2:,:])/2.0 savetxt(recoildat_fname1,DAT1) savetxt(recoildat_fname2,DAT2) print('merged') else: savetxt(recoildat_fname1,DAT1) savetxt(recoildat_fname2,DAT2) print('overwritten') else: savetxt(recoildat_fname1,DAT1) savetxt(recoildat_fname2,DAT2) print('first write')
2.234375
2
coinnews/pipelines.py
jlparadox/coinnews
0
12795487
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo from scrapy.conf import settings from scrapy.exceptions import DropItem from scrapy import log class CoinnewsPipeline(object): collection_name = 'coin_articles' def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db @classmethod def from_crawler(cls, crawler): return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DATABASE', 'items') ) def open_spider(self, spider): self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def close_spider(self, spider): self.client.close() def process_item(self, item, spider): for data in item: if not data: raise DropItem("Missing data!") self.db[self.collection_name].insert_one(dict(item)) log.msg("Question added to MongoDB database!", level=log.DEBUG, spider=spider) return item
2.578125
3
tests/shunit/data/bad_i18n_newline_4.py
saloniig/TWLight
67
12795488
<filename>tests/shunit/data/bad_i18n_newline_4.py # Single-quoted string is preceded by newline. # Translators: This is a helpful comment. _( '4')
0.863281
1
ticketNumber.py
brocchirodrigo/ValidadorBoletosSantanderPython
0
12795489
def verifyTicket(ticket): ticket = ticket[::-1] t01 = int(ticket[0]) * 2 t02 = int(ticket[1]) * 3 t03 = int(ticket[2]) * 4 t04 = int(ticket[3]) * 5 t05 = int(ticket[4]) * 6 t06 = int(ticket[5]) * 7 t07 = int(ticket[6]) * 8 t08 = int(ticket[7]) * 9 t09 = int(ticket[8]) * 2 t10 = int(ticket[9]) * 3 t11 = int(ticket[10]) * 4 t12 = int(ticket[11]) * 5 sumTicket = (t01 + t02 + t03 + t04 + t05 + t06 + t07 + t08 + t09 + t10 + t11 + t12) resTicket = sumTicket % 11 verifyDig = 0 if resTicket == 10: verifyDig = 1 elif resTicket == 1: verifyDig = 0 elif resTicket == 0: verifyDig = 0 else: verifyDig = (11 - resTicket) return verifyDig
3.265625
3
matchengine/internals/utilities/update_match_utils.py
AveraSD/matchengine-V2
18
12795490
from __future__ import annotations import asyncio import datetime import logging from typing import TYPE_CHECKING from pymongo import UpdateMany, InsertOne from matchengine.internals.typing.matchengine_types import RunLogUpdateTask, UpdateTask, MongoQuery from matchengine.internals.utilities.list_utils import chunk_list from matchengine.internals.utilities.utilities import perform_db_call logging.basicConfig(level=logging.INFO) log = logging.getLogger('matchengine') if TYPE_CHECKING: from matchengine.internals.engine import MatchEngine async def async_update_matches_by_protocol_no(matchengine: MatchEngine, protocol_no: str): """ Update trial matches by diff'ing the newly created trial matches against existing matches in the db. Delete matches by adding {is_disabled: true} and insert all new matches. """ matches_by_sample_id = matchengine.matches.get(protocol_no, dict()) updated_time = datetime.datetime.now() for matches in matches_by_sample_id.values(): for match in matches: match['_updated'] = updated_time if protocol_no not in matchengine.matches or protocol_no not in matchengine._trials_to_match_on: log.info(f"{matchengine.match_criteria_transform.trial_collection} {protocol_no} was not matched on, not updating {matchengine.match_criteria_transform.trial_collection} matches") if not matchengine.skip_run_log_entry: matchengine.task_q.put_nowait(RunLogUpdateTask(protocol_no)) await matchengine.task_q.join() return log.info(f"Updating matches for {protocol_no}") if not matchengine.drop: # If no matches are found, disable all match records by sample id if not matchengine.matches[protocol_no]: for chunk in chunk_list(list(matchengine.clinical_ids_for_protocol_cache[protocol_no]), matchengine.chunk_size): matchengine.task_q.put_nowait( UpdateTask( [UpdateMany(filter={matchengine.match_criteria_transform.match_trial_link_id: protocol_no, 'clinical_id': {'$in': chunk}}, update={'$set': {"is_disabled": True, '_updated': updated_time}})], protocol_no ) ) else: # Get matches to disable and issue queries matches_to_disable = await get_all_except(matchengine, protocol_no, matches_by_sample_id) delete_ops = await get_delete_ops(matches_to_disable, matchengine) matchengine.task_q.put_nowait(UpdateTask(delete_ops, protocol_no)) for sample_id in matches_by_sample_id.keys(): if not matchengine.drop: new_matches_hashes = [match['hash'] for match in matches_by_sample_id[sample_id]] # get existing matches in db with identical hashes to newly found matches existing = await get_existing_matches(matchengine, new_matches_hashes) existing_hashes = {result['hash'] for result in existing} disabled = {result['hash'] for result in existing if result['is_disabled']} # insert new matches if they don't already exist. disable everything else matches_to_insert = get_matches_to_insert(matches_by_sample_id, existing_hashes, sample_id) matches_to_disable = await get_matches_to_disable(matchengine, new_matches_hashes, protocol_no, sample_id) # flip is_disabled flag if a new match generated during run matches hash of an existing matches_to_mark_available = [m for m in matches_by_sample_id[sample_id] if m['hash'] in disabled] ops = get_update_operations(matches_to_disable, matches_to_insert, matches_to_mark_available, matchengine) else: ops = [InsertOne(document=trial_match) for trial_match in matches_by_sample_id[sample_id]] matchengine.task_q.put_nowait(UpdateTask(ops, protocol_no)) if not matchengine.skip_run_log_entry: matchengine.task_q.put_nowait(RunLogUpdateTask(protocol_no)) await matchengine.task_q.join() async def get_all_except(matchengine: MatchEngine, protocol_no: str, trial_matches_by_sample_id: dict) -> list: """Return all matches except ones matching current protocol_no""" # get clinical ids with matches clinical_ids = {matchengine.sample_mapping[sample_id] for sample_id in trial_matches_by_sample_id.keys()} # if protocol has been run previously, subtract clinical ids from current run from # previously run clinical ids for a specific protocol. The remainder are ids # which were run previously, but not in the current run. if protocol_no in matchengine.clinical_run_log_entries: clinical_ids = matchengine.clinical_run_log_entries[protocol_no] - clinical_ids query = { matchengine.match_criteria_transform.match_trial_link_id: protocol_no, "clinical_id": { '$in': [clinical_id for clinical_id in clinical_ids] } } projection = { '_id': 1, 'hash': 1, 'clinical_id': 1 } results = await perform_db_call(matchengine, collection=matchengine.trial_match_collection, query=MongoQuery(query), projection=projection) return [result for result in results] async def get_delete_ops(matches_to_disable: list, matchengine: MatchEngine) -> list: updated_time = datetime.datetime.now() hashes = [result['hash'] for result in matches_to_disable] ops = list() for chunk in chunk_list(hashes, matchengine.chunk_size): ops.append(UpdateMany(filter={'hash': {'$in': chunk}}, update={'$set': {"is_disabled": True, '_updated': updated_time}})) return ops async def get_existing_matches(matchengine: MatchEngine, new_matches_hashes: list) -> list: """ Get matches in db which have the same hashes as newly found matches. :param matchengine: :param new_matches_hashes: :return: """ matches_to_not_change_query = MongoQuery({'hash': {'$in': new_matches_hashes}}) projection = {"hash": 1, "is_disabled": 1} matches = await asyncio.gather( perform_db_call(matchengine, matchengine.trial_match_collection, matches_to_not_change_query, projection) ) return matches[0] async def get_matches_to_disable(matchengine: MatchEngine, new_matches_hashes: list, protocol_no: str, sample_id: str) -> list: """ Get matches to disable by looking for existing, enabled matches whose hashes are not present in newly generated matches during current run. Done for every sample_id :param matchengine: :param new_matches_hashes: :param protocol_no: :param sample_id: :return: """ query = { matchengine.match_criteria_transform.match_trial_link_id: protocol_no, 'sample_id': sample_id, 'is_disabled': False, 'hash': { '$nin': new_matches_hashes } } matches_to_disable_query = MongoQuery(query) projection = {"hash": 1, "is_disabled": 1} matches = await asyncio.gather( perform_db_call(matchengine, matchengine.trial_match_collection, matches_to_disable_query, projection) ) return matches[0] def get_update_operations(matches_to_disable: list, matches_to_insert: list, matches_to_mark_available: list, matchengine: MatchEngine) -> list: ops = list() updated_time = datetime.datetime.now() disable_hashes = [trial_match['hash'] for trial_match in matches_to_disable] for chunk in chunk_list(disable_hashes, matchengine.chunk_size): ops.append(UpdateMany(filter={'hash': {'$in': chunk}}, update={'$set': {'is_disabled': True, '_updated': updated_time}})) for to_insert in matches_to_insert: ops.append(InsertOne(document=to_insert)) available_hashes = [trial_match['hash'] for trial_match in matches_to_mark_available] for chunk in chunk_list(available_hashes, matchengine.chunk_size): ops.append(UpdateMany(filter={'hash': {'$in': chunk}}, update={'$set': {'is_disabled': False, '_updated': updated_time}})) return ops def get_matches_to_insert(matches_by_sample_id: list, existing_hashes: set, sample_id: str) -> list: return [m for m in matches_by_sample_id[sample_id] if m['hash'] not in existing_hashes]
2.09375
2
tests/test_makeload.py
hansroh/aquests
8
12795491
import aquests CONCURRENT = 50 MAX_REQ = 1000 _ID = 0 def makeload (response): global _ID print (response.meta ['_id'], response.code, response.msg, response.version) if aquests.countreq () < MAX_REQ: aquests.get ("http://127.0.0.1:5000/", meta = {'_id': _ID}) _ID += 1 def test_makeload (): aquests.configure (CONCURRENT, callback = makeload) # cioncurrent for i in range (CONCURRENT): aquests.get ("http://127.0.0.1:5000/", meta = {'_id': _ID}) _ID += 1 aquests.fetchall ()
2.453125
2
aids/strings/reverse_string.py
ueg1990/aids
0
12795492
''' Reverse a string ''' def reverse_string_iterative(string): result = '' for char in range(len(string) - 1, -1 , -1): result += char return result def reverse_string_recursive(string): if string: return reverse_string_recursive(string[1:]) + string[0] return '' def reverse_string_pythonic(string): return string[::-1]
4.34375
4
nuke_stubs/nuke/nuke_classes/Undo.py
sisoe24/Nuke-Python-Stubs
1
12795493
<gh_stars>1-10 from numbers import Number from typing import * import nuke from . import * class Undo(object): """ Undo """ def __hash__(self, ): """ Return hash(self). """ return None def __new__(self,*args, **kwargs): """ Create and return a new object. See help(type) for accurate signature. """ return None def begin(self,*args, **kwargs): """ Begin a new user-visible group of undo actions. """ return None def name(self,*args, **kwargs): """ Name current undo set. """ return None def end(self,*args, **kwargs): """ Complete current undo set and add it to the undo list. """ return None def new(self,*args, **kwargs): """ Same as end();begin(). """ return None def cancel(self,*args, **kwargs): """ Undoes any actions recorded in the current set and throws it away. """ return None def undoSize(self,*args, **kwargs): """ Number of undo's that can be done. """ return None def redoSize(self,*args, **kwargs): """ Number of redo's that can be done. """ return None def undoTruncate(self,*args, **kwargs): """ Destroy any undo's greater or equal to n. """ return None def redoTruncate(self,*args, **kwargs): """ Destroy any redo's greater or equal to n. """ return None def undoDescribe(self,*args, **kwargs): """ Return short description of undo n. """ return None def redoDescribe(self,*args, **kwargs): """ Return short description of redo n. """ return None def undoDescribeFully(self,*args, **kwargs): """ Return long description of undo n. """ return None def redoDescribeFully(self,*args, **kwargs): """ Return long description of redo n. """ return None def undo(self,*args, **kwargs): """ Undoes 0'th undo. """ return None def redo(self,*args, **kwargs): """ Redoes 0'th redo. """ return None def disable(self,*args, **kwargs): """ Prevent recording undos until matching enable() """ return None def enable(self,*args, **kwargs): """ Undoes the previous disable() """ return None def disabled(self,*args, **kwargs): """ True if disable() has been called """ return None def __enter__(self,*args, **kwargs): """ """ return None def __exit__(self,*args, **kwargs): """ """ return None def __init__(self, *args, **kwargs): """ Initialize self. See help(type(self)) for accurate signature. """ return None
3.109375
3
get_events.py
malcolmvr/o365_linux_meeting_alerts
0
12795494
<filename>get_events.py from datetime import datetime from os import getenv from os.path import isfile from dotenv import load_dotenv from O365 import Account load_dotenv() credentials = (getenv('APPLICATION_ID'), getenv('CLIENT_SECRET')) print(credentials) account = Account(credentials, auth_flow_type='authorization', tenant_id=getenv('TENANT_ID')) if not isfile("./o365_token.txt"): if account.authenticate(scopes=['https://graph.microsoft.com/.default', 'offline_access']): print('Authenticated!') else: account.connection.refresh_token() schedule = account.schedule() calendar = schedule.get_default_calendar() now = datetime.now() date_query = calendar \ .new_query('start') \ .greater_equal(datetime(now.year, now.month, now.day, 0, 0, 0)) \ .chain('and') \ .on_attribute('end') \ .less_equal(datetime(now.year, now.month, now.day, 23, 59, 59)) events = list(calendar.get_events(query=date_query, include_recurring=True)) with open("events.txt", "w") as f: f.write("\n".join([event.start.isoformat() for event in events]))
2.59375
3
python_basics/5.data_conversion/string_to_integer.py
edilsonmatola/Python_Master
2
12795495
string_number = '15' # converting to integer # integer_number will contain 15 integer_number = int(string_number) print(integer_number) # Output: 15
3.703125
4
get_next_person.py
jbarry1506/python_unittest
0
12795496
def get_next_person(user): person = get_random_person() while person in user['people_seen']: person = get_random_person() return person
2.890625
3
copycat/codelet_methods.py
jalanb/co.py.cat
27
12795497
import logging import random from . import formulas from . import temperature from .bond import Bond from .bond import possible_group_bonds from .coderack import coderack from .correspondence import Correspondence from .group import Group from .letter import Letter from .replacement import Replacement from .slipnet import slipnet from .workspace_formulas import choose_bond_facet from .workspace_formulas import choose_directed_neighbor from .workspace_formulas import choose_neighbour from .workspace_formulas import choose_unmodified_object from .workspace_formulas import workspace from .workspace_object import WorkspaceObject # some methods common to the codelets def __show_which_string_object_is_from(structure): if not structure: return "unstructured" if isinstance(structure, WorkspaceObject): return "target" if structure.string == workspace.initial: return "initial" return "other" def __get_scout_source(slipnode, relevance_method, type_name): initial_relevance = relevance_method(workspace.initial, slipnode) target_relevance = relevance_method(workspace.target, slipnode) initial_unhappiness = workspace.initial.intra_string_unhappiness target_unhappiness = workspace.target.intra_string_unhappiness logging.info( f"initial : relevance = {initial_relevance}, " f"unhappiness = {int(initial_unhappiness)}" ) logging.info( f"target : relevance = {target_relevance}, " f"unhappiness = {int(target_unhappiness)}" ) string = workspace.initial relevances = initial_relevance + target_relevance unhappinesses = initial_unhappiness + target_unhappiness randomized = random.random() * (relevances + unhappinesses) initials = initial_relevance + initial_unhappiness if randomized > initials: string = workspace.target logging.info(f"target string selected: {workspace.target} for {type_name}") else: logging.info(f"initial string selected: {workspace.initial} for {type_name}") source = choose_unmodified_object("intra_string_salience", string.objects) return source def __get_bond_facet(source, destination): bond_facet = choose_bond_facet(source, destination) assert bond_facet return bond_facet def __get_descriptors(bond_facet, source, destination): source_descriptor = source.get_descriptor(bond_facet) destination_descriptor = destination.get_descriptor(bond_facet) assert source_descriptor assert destination_descriptor return source_descriptor, destination_descriptor def __all_opposite_mappings(mappings): return len([m for m in mappings if m.label != slipnet.opposite]) == 0 def __structure_versus_structure(structure1, weight1, structure2, weight2): structure1.update_strength() structure2.update_strength() weighted_strength1 = formulas.temperature_adjusted_value( structure1.total_strength * weight1 ) weighted_strength2 = formulas.temperature_adjusted_value( structure2.total_strength * weight2 ) rhs = (weighted_strength1 + weighted_strength2) * random.random() logging.info(f"{weighted_strength1} > {rhs}: {weighted_strength1 > rhs}") return weighted_strength1 > rhs def __fight(structure, structure_weight, incompatibles, incompatible_weight): if not (incompatibles and len(incompatibles)): return True for incompatible in incompatibles: if not __structure_versus_structure( structure, structure_weight, incompatible, incompatible_weight ): logging.info(f"lost fight with {incompatible}") return False logging.info(f"won fight with {incompatible}") return True def __fight_incompatibles( incompatibles, structure, name, structure_weight, incompatible_weight ): if len(incompatibles): if __fight(structure, structure_weight, incompatibles, incompatible_weight): logging.info(f"broke the {name}") return True logging.info(f"failed to break {name}: Fizzle") return False logging.info(f"no incompatible {name}") return True def __slippability(concept_mappings): for mapping in concept_mappings: slippiness = mapping.slippability() / 100.0 probability_of_slippage = formulas.temperature_adjusted_probability(slippiness) if formulas.coin_flip(probability_of_slippage): return True return False # start the actual codelets def breaker(): probability_of_fizzle = (100.0 - formulas.Temperature) / 100.0 assert not formulas.coin_flip(probability_of_fizzle) # choose a structure at random structures = [ s for s in workspace.structures if isinstance(s, (Group, Bond, Correspondence)) ] assert structures structure = random.choice(structures) __show_which_string_object_is_from(structure) break_objects = [structure] if isinstance(structure, Bond): if structure.source.group: if structure.source.group == structure.destination.group: break_objects += [structure.source.group] # try to break all objects for structure in break_objects: break_probability = formulas.temperature_adjusted_probability( structure.total_strength / 100.0 ) if formulas.coin_flip(break_probability): return for structure in break_objects: structure.break_the_structure() def bottom_up_description_scout(codelet): chosen_object = choose_unmodified_object("total_salience", workspace.objects) assert chosen_object __show_which_string_object_is_from(chosen_object) description = formulas.choose_relevant_description_by_activation(chosen_object) assert description sliplinks = formulas.similar_property_links(description.descriptor) assert sliplinks values = [ sliplink.degree_of_association() * sliplink.destination.activation for sliplink in sliplinks ] i = formulas.select_list_position(values) chosen = sliplinks[i] chosen_property = chosen.destination coderack.propose_description( chosen_object, chosen_property.category(), chosen_property, codelet ) def top_down_description_scout(codelet): description_type = codelet.arguments[0] chosen_object = choose_unmodified_object("total_salience", workspace.objects) assert chosen_object __show_which_string_object_is_from(chosen_object) descriptions = chosen_object.get_possible_descriptions(description_type) assert descriptions values = [n.activation for n in descriptions] i = formulas.select_list_position(values) chosen_property = descriptions[i] coderack.propose_description( chosen_object, chosen_property.category(), chosen_property, codelet ) def description_strength_tester(codelet): description = codelet.arguments[0] description.descriptor.buffer = 100.0 description.update_strength() strength = description.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) assert formulas.coin_flip(probability) coderack.new_codelet("description-builder", codelet, strength) def description_builder(codelet): description = codelet.arguments[0] assert description.object in workspace.objects if description.object.described(description.descriptor): description.description_type.buffer = 100.0 description.descriptor.buffer = 100.0 else: description.build() def bottom_up_bond_scout(codelet): source = choose_unmodified_object("intra_string_salience", workspace.objects) __show_which_string_object_is_from(source) destination = choose_neighbour(source) assert destination logging.info(f"destination: {destination}") bond_facet = __get_bond_facet(source, destination) logging.info(f"chosen bond facet: {bond_facet.get_name()}") logging.info(f"Source: {source}, destination: {destination}") bond_descriptors = __get_descriptors(bond_facet, source, destination) source_descriptor, destination_descriptor = bond_descriptors logging.info(f"source descriptor: {source_descriptor.name.upper()}") logging.info(f"destination descriptor: {destination_descriptor.name.upper()}") category = source_descriptor.get_bond_category(destination_descriptor) assert category if category == slipnet.identity: category = slipnet.sameness logging.info(f"proposing {category.name} bond ") coderack.propose_bond( source, destination, category, bond_facet, source_descriptor, destination_descriptor, codelet, ) def rule_scout(codelet): assert workspace.number_of_unreplaced_objects() == 0 changed_objects = [o for o in workspace.initial.objects if o.changed] # assert len(changed_objects) < 2 # if there are no changed objects, propose a rule with no changes if not changed_objects: return coderack.propose_rule(None, None, None, None, codelet) changed = changed_objects[-1] # generate a list of distinguishing descriptions for the first object # ie. string-position (left-,right-most,middle or whole) or letter category # if it is the only one of its type in the string object_list = [] position = changed.get_descriptor(slipnet.string_position_category) if position: object_list += [position] letter = changed.get_descriptor(slipnet.letter_category) other_objects_of_same_letter = [ o for o in workspace.initial.objects if not o != changed and o.get_description_type(letter) ] if not len(other_objects_of_same_letter): object_list += [letter] # if this object corresponds to another object in the workspace # object_list = the union of this and the distingushing descriptors if changed.correspondence: target_object = changed.correspondence.object_from_target new_list = [] slippages = workspace.slippages() for node in object_list: node = node.apply_slippages(slippages) if target_object.described(node): if target_object.distinguishing_descriptor(node): new_list += [node] object_list = new_list # should this be += ?? assert object_list # use conceptual depth to choose a description value_list = [] for node in object_list: depth = node.conceptual_depth value = formulas.temperature_adjusted_value(depth) value_list += [value] i = formulas.select_list_position(value_list) descriptor = object_list[i] # choose the relation (change the letmost object to "successor" or "d" object_list = [] if changed.replacement.relation: object_list += [changed.replacement.relation] object_list += [ changed.replacement.object_from_modified.get_descriptor(slipnet.letter_category) ] # use conceptual depth to choose a relation value_list = [] for node in object_list: depth = node.conceptual_depth value = formulas.temperature_adjusted_value(depth) value_list += [value] i = formulas.select_list_position(value_list) relation = object_list[i] coderack.propose_rule( slipnet.letter_category, descriptor, slipnet.letter, relation, codelet ) def rule_strength_tester(codelet): rule = codelet.arguments[0] rule.update_strength() probability = formulas.temperature_adjusted_probability(rule.total_strength / 100.0) assert random.random() <= probability coderack.new_codelet("rule-builder", codelet, rule.total_strength, rule) def replacement_finder(): # choose random letter in initial string letters = [o for o in workspace.initial.objects if isinstance(o, Letter)] letter_of_initial_string = random.choice(letters) logging.info(f"selected letter in initial string = {letter_of_initial_string}") if letter_of_initial_string.replacement: logging.info( f"Replacement already found for {letter_of_initial_string}, so fizzling" ) return position = letter_of_initial_string.left_index more_letters = [ o for o in workspace.modified.objects if isinstance(o, Letter) and o.left_index == position ] letter_of_modified_string = more_letters and more_letters[0] or None assert letter_of_modified_string position -= 1 initial_ascii = ord(workspace.initial_string[position]) modified_ascii = ord(workspace.modified_string[position]) diff = initial_ascii - modified_ascii if abs(diff) < 2: relations = {0: slipnet.sameness, -1: slipnet.successor, 1: slipnet.predecessor} relation = relations[diff] logging.info(f"Relation found: {relation.name}") else: relation = None logging.info("no relation found") letter_of_initial_string.replacement = Replacement( letter_of_initial_string, letter_of_modified_string, relation ) if relation != slipnet.sameness: letter_of_initial_string.changed = True workspace.changed_object = letter_of_initial_string logging.info("building replacement") def top_down_bond_scout__category(codelet): logging.info("top_down_bond_scout__category") category = codelet.arguments[0] source = __get_scout_source( category, formulas.local_bond_category_relevance, "bond" ) destination = choose_neighbour(source) logging.info(f"source: {source}, destination: {destination}") assert destination bond_facet = __get_bond_facet(source, destination) source_descriptor, destination_descriptor = __get_descriptors( bond_facet, source, destination ) forward_bond = source_descriptor.get_bond_category(destination_descriptor) if forward_bond == slipnet.identity: forward_bond = slipnet.sameness backward_bond = slipnet.sameness else: backward_bond = destination_descriptor.get_bond_category(source_descriptor) assert category in [forward_bond, backward_bond] if category == forward_bond: coderack.propose_bond( source, destination, category, bond_facet, source_descriptor, destination_descriptor, codelet, ) else: coderack.propose_bond( destination, source, category, bond_facet, destination_descriptor, source_descriptor, codelet, ) def top_down_bond_scout__direction(codelet): direction = codelet.arguments[0] source = __get_scout_source( direction, formulas.local_direction_category_relevance, "bond" ) destination = choose_directed_neighbor(source, direction) assert destination logging.info(f"to object: {destination}") bond_facet = __get_bond_facet(source, destination) source_descriptor, destination_descriptor = __get_descriptors( bond_facet, source, destination ) category = source_descriptor.get_bond_category(destination_descriptor) assert category if category == slipnet.identity: category = slipnet.sameness coderack.propose_bond( source, destination, category, bond_facet, source_descriptor, destination_descriptor, codelet, ) def bond_strength_tester(codelet): bond = codelet.arguments[0] __show_which_string_object_is_from(bond) bond.update_strength() strength = bond.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) logging.info(f"bond strength = {strength} for {bond}") assert formulas.coin_flip(probability) bond.facet.buffer = 100.0 bond.source_descriptor.buffer = 100.0 bond.destination_descriptor.buffer = 100.0 logging.info("succeeded: posting bond-builder") coderack.new_codelet("bond-builder", codelet, strength) def bond_builder(codelet): bond = codelet.arguments[0] __show_which_string_object_is_from(bond) bond.update_strength() assert bond.source in workspace.objects or bond.destination in workspace.objects for string_bond in bond.string.bonds: if bond.same_neighbours(string_bond) and bond.same_categories(string_bond): if bond.direction_category: bond.direction_category.buffer = 100.0 bond.category.buffer = 100.0 logging.info("already exists: activate descriptors & Fizzle") return incompatible_bonds = bond.get_incompatible_bonds() logging.info(f"number of incompatible_bonds: {len(incompatible_bonds)}") if len(incompatible_bonds): logging.info(str(incompatible_bonds[0])) assert __fight_incompatibles(incompatible_bonds, bond, "bonds", 1.0, 1.0) incompatible_groups = bond.source.get_common_groups(bond.destination) assert __fight_incompatibles(incompatible_groups, bond, "groups", 1.0, 1.0) # fight all incompatible correspondences incompatible_correspondences = [] if bond.left_object.leftmost or bond.right_object.rightmost: if bond.direction_category: incompatible_correspondences = bond.get_incompatible_correspondences() if incompatible_correspondences: logging.info("trying to break incompatible correspondences") assert __fight(bond, 2.0, incompatible_correspondences, 3.0) for incompatible in incompatible_bonds: incompatible.break_the_structure() for incompatible in incompatible_groups: incompatible.break_the_structure() for incompatible in incompatible_correspondences: incompatible.break_the_structure() logging.info(f"building bond {bond}") bond.build_bond() # pylint: disable=too-many-branches # pylint: disable=too-many-statements def top_down_group_scout__category(codelet): group_category = codelet.arguments[0] category = group_category.get_related_node(slipnet.bond_category) assert category source = __get_scout_source( category, formulas.local_bond_category_relevance, "group" ) assert source assert not source.spans_string() if source.leftmost: direction = slipnet.right elif source.rightmost: direction = slipnet.left else: activations = [slipnet.left.activation] activations += [slipnet.right.activation] if not formulas.select_list_position(activations): direction = slipnet.left else: direction = slipnet.right if direction == slipnet.left: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond or first_bond.category != category: # check the other side of object if direction == slipnet.right: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond or first_bond.category != category: if category == slipnet.sameness and isinstance(source, Letter): group = Group( source.string, slipnet.sameness_group, None, slipnet.letter_category, [source], [], ) probability = group.single_letter_group_probability() assert random.random() >= probability coderack.propose_single_letter_group(source, codelet) return direction = first_bond.direction_category search = True bond_facet = None # find leftmost object in group with these bonds while search: search = False if not source.left_bond: continue if source.left_bond.category != category: continue if source.left_bond.direction_category != direction: if source.left_bond.direction_category: continue if not bond_facet or bond_facet == source.left_bond.facet: bond_facet = source.left_bond.facet direction = source.left_bond.direction_category source = source.left_bond.left_object search = True # find rightmost object in group with these bonds search = True destination = source while search: search = False if not destination.right_bond: continue if destination.right_bond.category != category: continue if destination.right_bond.direction_category != direction: if destination.right_bond.direction_category: continue if not bond_facet or bond_facet == destination.right_bond.facet: bond_facet = destination.right_bond.facet direction = source.right_bond.direction_category destination = destination.right_bond.right_object search = True assert destination != source objects = [source] bonds = [] while source != destination: bonds += [source.right_bond] objects += [source.right_bond.right_object] source = source.right_bond.right_object coderack.propose_group( objects, bonds, group_category, direction, bond_facet, codelet ) def top_down_group_scout__direction(codelet): direction = codelet.arguments[0] source = __get_scout_source( direction, formulas.local_direction_category_relevance, "direction" ) logging.info(f"source chosen = {source}") assert not source.spans_string() if source.leftmost: mydirection = slipnet.right elif source.rightmost: mydirection = slipnet.left else: activations = [slipnet.left.activation] activations += [slipnet.right.activation] if not formulas.select_list_position(activations): mydirection = slipnet.left else: mydirection = slipnet.right if mydirection == slipnet.left: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond: logging.info("no first_bond") else: logging.info(f"first_bond: {first_bond}") if first_bond and not first_bond.direction_category: direction = None if not first_bond or first_bond.direction_category != direction: if mydirection == slipnet.right: first_bond = source.left_bond else: first_bond = source.right_bond if not first_bond: logging.info("no first_bond2") else: logging.info(f"first_bond2: {first_bond}") if first_bond and not first_bond.direction_category: direction = None assert first_bond assert first_bond.direction_category == direction logging.info(f"possible group: {first_bond}") category = first_bond.category assert category group_category = category.get_related_node(slipnet.group_category) logging.info(f"trying from {source} to {category.name}") bond_facet = None # find leftmost object in group with these bonds search = True while search: search = False if not source.left_bond: continue if source.left_bond.category != category: continue if source.left_bond.direction_category != direction: if source.left_bond.direction_category: continue if not bond_facet or bond_facet == source.left_bond.facet: bond_facet = source.left_bond.facet direction = source.left_bond.direction_category source = source.left_bond.left_object search = True destination = source search = True while search: search = False if not destination.right_bond: continue if destination.right_bond.category != category: continue if destination.right_bond.direction_category != direction: if destination.right_bond.direction_category: continue if not bond_facet or bond_facet == destination.right_bond.facet: bond_facet = destination.right_bond.facet direction = source.right_bond.direction_category destination = destination.right_bond.right_object search = True assert destination != source logging.info(f"proposing group from {source} to {destination}") objects = [source] bonds = [] while source != destination: bonds += [source.right_bond] objects += [source.right_bond.right_object] source = source.right_bond.right_object coderack.propose_group( objects, bonds, group_category, direction, bond_facet, codelet ) # noinspection PyStringFormat def group_scout__whole_string(codelet): string = workspace.initial if random.random() > 0.5: string = workspace.target logging.info(f"target string selected: {workspace.target}") else: logging.info(f"initial string selected: {workspace.initial}") # find leftmost object & the highest group to which it belongs leftmost = None for objekt in string.objects: if objekt.leftmost: leftmost = objekt while leftmost.group and leftmost.group.bond_category == slipnet.sameness: leftmost = leftmost.group if leftmost.spans_string(): # the object already spans the string - propose this object group = leftmost coderack.propose_group( group.object_list, group.bond_list, group.group_category, group.direction_category, group.facet, codelet, ) return bonds = [] objects = [leftmost] while leftmost.right_bond: bonds += [leftmost.right_bond] leftmost = leftmost.right_bond.right_object objects += [leftmost] assert leftmost.rightmost # choose a random bond from list chosen_bond = random.choice(bonds) category = chosen_bond.category direction_category = chosen_bond.direction_category bond_facet = chosen_bond.facet bonds = possible_group_bonds(category, direction_category, bond_facet, bonds) assert bonds group_category = category.get_related_node(slipnet.group_category) coderack.propose_group( objects, bonds, group_category, direction_category, bond_facet, codelet ) def group_strength_tester(codelet): # update strength value of the group group = codelet.arguments[0] __show_which_string_object_is_from(group) group.update_strength() strength = group.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) assert random.random() <= probability # it is strong enough - post builder & activate nodes group.group_category.get_related_node(slipnet.bond_category).buffer = 100.0 if group.direction_category: group.direction_category.buffer = 100.0 coderack.new_codelet("group-builder", codelet, strength) def group_builder(codelet): # update strength value of the group group = codelet.arguments[0] __show_which_string_object_is_from(group) equivalent = group.string.equivalent_group(group) if equivalent: logging.info("already exists...activate descriptors & fizzle") group.activate_descriptions() equivalent.add_descriptions(group.descriptions) return # check to see if all objects are still there for o in group.object_list: assert o in workspace.objects # check to see if bonds are there of the same direction incompatible_bonds = [] # incompatible bond list if len(group.object_list) > 1: previous = group.object_list[0] for objekt in group.object_list[1:]: left_bond = objekt.left_bond if left_bond: if left_bond.left_object == previous: continue if left_bond.direction_category == group.direction_category: continue incompatible_bonds += [left_bond] previous = objekt next_object = group.object_list[-1] for objekt in reversed(group.object_list[:-1]): right_bond = objekt.right_bond if right_bond: if right_bond.right_object == next_object: continue if right_bond.direction_category == group.direction_category: continue incompatible_bonds += [right_bond] next_object = objekt # if incompatible bonds exist - fight group.update_strength() assert __fight_incompatibles(incompatible_bonds, group, "bonds", 1.0, 1.0) # fight incompatible groups # fight all groups containing these objects incompatible_groups = group.get_incompatible_groups() assert __fight_incompatibles(incompatible_groups, group, "Groups", 1.0, 1.0) for incompatible in incompatible_bonds: incompatible.break_the_structure() # create new bonds group.bond_list = [] for i in range(1, len(group.object_list)): object1 = group.object_list[i - 1] object2 = group.object_list[i] if not object1.right_bond: if group.direction_category == slipnet.right: source = object1 destination = object2 else: source = object2 destination = object1 category = group.group_category.get_related_node(slipnet.bond_category) facet = group.facet new_bond = Bond( source, destination, category, facet, source.get_descriptor(facet), destination.get_descriptor(facet), ) new_bond.build_bond() group.bond_list += [object1.right_bond] for incompatible in incompatible_groups: incompatible.break_the_structure() group.build_group() group.activate_descriptions() logging.info("building group") def rule_builder(codelet): rule = codelet.arguments[0] if rule.rule_equal(workspace.rule): rule.activate_rule_descriptions() return rule.update_strength() assert rule.total_strength # fight against other rules if workspace.rule: assert __structure_versus_structure(rule, 1.0, workspace.rule, 1.0) workspace.build_rule(rule) def __get_cut_off(density): if density > 0.8: distribution = [5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] elif density > 0.6: distribution = [2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0] elif density > 0.4: distribution = [1.0, 2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0, 1.0] elif density > 0.2: distribution = [1.0, 1.0, 2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0, 1.0] else: distribution = [1.0, 1.0, 1.0, 2.0, 5.0, 150.0, 5.0, 2.0, 1.0, 1.0] stop = sum(distribution) * random.random() total = 0.0 for i in range(0, len(distribution)): total += distribution[i] if total >= stop: return i + 1 return len(distribution) def rule_translator(): assert workspace.rule if len(workspace.initial) == 1 and len(workspace.target) == 1: bond_density = 1.0 else: number_of_bonds = len(workspace.initial.bonds) + len(workspace.target.bonds) nearly_total_length = len(workspace.initial) + len(workspace.target) - 2 bond_density = number_of_bonds / nearly_total_length if bond_density > 1.0: bond_density = 1.0 cutoff = __get_cut_off(bond_density) * 10.0 assert cutoff >= formulas.actual_temperature if workspace.rule.build_translated_rule(): workspace.found_answer = True else: temperature.clamp_time = coderack.codelets_run + 100 temperature.clamped = True formulas.Temperature = 100.0 def bottom_up_correspondence_scout(codelet): object_from_initial = choose_unmodified_object( "inter_string_salience", workspace.initial.objects ) object_from_target = choose_unmodified_object( "inter_string_salience", workspace.target.objects ) assert object_from_initial.spans_string() == object_from_target.spans_string() # get the posible concept mappings concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) assert concept_mappings assert __slippability(concept_mappings) # find out if any are distinguishing distinguishing_mappings = [m for m in concept_mappings if m.distinguishing()] assert distinguishing_mappings # if both objects span the strings, check to see if the # string description needs to be flipped opposites = [ m for m in distinguishing_mappings if m.initial_description_type == slipnet.string_position_category and m.initial_description_type != slipnet.bond_facet ] initial_description_types = [m.initial_description_type for m in opposites] flip_target_object = False if ( object_from_initial.spans_string() and object_from_target.spans_string() and slipnet.direction_category in initial_description_types and __all_opposite_mappings(formulas.opposite_mappings) and slipnet.opposite.activation != 100.0 ): object_from_target = object_from_target.flipped_version() concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) flip_target_object = True coderack.propose_correspondence( object_from_initial, object_from_target, concept_mappings, flip_target_object, codelet, ) def important_object_correspondence_scout(codelet): object_from_initial = choose_unmodified_object( "relative_importance", workspace.initial.objects ) descriptors = object_from_initial.relevant_distinguishing_descriptors() slipnode = formulas.choose_slipnode_by_conceptual_depth(descriptors) assert slipnode initial_descriptor = slipnode for mapping in workspace.slippages(): if mapping.initial_descriptor == slipnode: initial_descriptor = mapping.target_descriptor target_candidates = [] for objekt in workspace.target.objects: for description in objekt.relevant_descriptions(): if description.descriptor == initial_descriptor: target_candidates += [objekt] assert target_candidates object_from_target = choose_unmodified_object( "inter_string_salience", target_candidates ) assert object_from_initial.spans_string() == object_from_target.spans_string() # get the posible concept mappings concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) assert concept_mappings assert __slippability(concept_mappings) # find out if any are distinguishing distinguishing_mappings = [m for m in concept_mappings if m.distinguishing()] assert distinguishing_mappings # if both objects span the strings, check to see if the # string description needs to be flipped opposites = [ m for m in distinguishing_mappings if m.initial_description_type == slipnet.string_position_category and m.initial_description_type != slipnet.bond_facet ] initial_description_types = [m.initial_description_type for m in opposites] flip_target_object = False if ( object_from_initial.spans_string() and object_from_target.spans_string() and slipnet.direction_category in initial_description_types and __all_opposite_mappings(formulas.opposite_mappings) and slipnet.opposite.activation != 100.0 ): object_from_target = object_from_target.flipped_version() concept_mappings = formulas.get_mappings( object_from_initial, object_from_target, object_from_initial.relevant_descriptions(), object_from_target.relevant_descriptions(), ) flip_target_object = True coderack.propose_correspondence( object_from_initial, object_from_target, concept_mappings, flip_target_object, codelet, ) def correspondence_strength_tester(codelet): correspondence = codelet.arguments[0] object_from_initial = correspondence.object_from_initial object_from_target = correspondence.object_from_target assert object_from_initial in workspace.objects assert ( object_from_target in workspace.objects or correspondence.flip_target_object and not workspace.target.equivalent_group(object_from_target.flipped_version()) ) correspondence.update_strength() strength = correspondence.total_strength probability = formulas.temperature_adjusted_probability(strength / 100.0) assert random.random() <= probability # activate some concepts for mapping in correspondence.concept_mappings: mapping.initial_description_type.buffer = 100.0 mapping.initial_descriptor.buffer = 100.0 mapping.target_description_type.buffer = 100.0 mapping.target_descriptor.buffer = 100.0 coderack.new_codelet("correspondence-builder", codelet, strength, correspondence) def correspondence_builder(codelet): correspondence = codelet.arguments[0] object_from_initial = correspondence.object_from_initial object_from_target = correspondence.object_from_target want_flip = correspondence.flip_target_object if want_flip: flipper = object_from_target.flipped_version() target_not_flipped = not workspace.target.equivalent_group(flipper) else: target_not_flipped = False initial_in_objects = object_from_initial in workspace.objects target_in_objects = object_from_target in workspace.objects assert initial_in_objects or ( not target_in_objects and (not (want_flip and target_not_flipped)) ) if correspondence.reflexive(): # if the correspondence exists, activate concept mappings # and add new ones to the existing corr. existing = correspondence.object_from_initial.correspondence for mapping in correspondence.concept_mappings: if mapping.label: mapping.label.buffer = 100.0 if not mapping.is_contained_by(existing.concept_mappings): existing.concept_mappings += [mapping] return incompatibles = correspondence.get_incompatible_correspondences() # fight against all correspondences if incompatibles: correspondence_spans = ( correspondence.object_from_initial.letter_span() + correspondence.object_from_target.letter_span() ) for incompatible in incompatibles: incompatible_spans = ( incompatible.object_from_initial.letter_span() + incompatible.object_from_target.letter_span() ) assert __structure_versus_structure( correspondence, correspondence_spans, incompatible, incompatible_spans ) incompatible_bond = None incompatible_group = None # if there is an incompatible bond then fight against it initial = correspondence.object_from_initial target = correspondence.object_from_target if initial.leftmost or initial.rightmost and target.leftmost or target.rightmost: # search for the incompatible bond incompatible_bond = correspondence.get_incompatible_bond() if incompatible_bond: # bond found - fight against it assert __structure_versus_structure( correspondence, 3.0, incompatible_bond, 2.0 ) # won against incompatible bond incompatible_group = target.group if incompatible_group: assert __structure_versus_structure( correspondence, 1.0, incompatible_group, 1.0 ) # if there is an incompatible rule, fight against it incompatible_rule = None if workspace.rule: if workspace.rule.incompatible_rule_correspondence(correspondence): incompatible_rule = workspace.rule assert __structure_versus_structure( correspondence, 1.0, incompatible_rule, 1.0 ) for incompatible in incompatibles: incompatible.break_the_structure() # break incompatible group and bond if they exist if incompatible_bond: incompatible_bond.break_the_structure() if incompatible_group: incompatible_group.break_the_structure() if incompatible_rule: workspace.break_rule() correspondence.build_correspondence()
2.34375
2
src/grpc_infer.py
huyhoang17/kuzushiji_recognition
16
12795498
import os import math import time import functools import random from tqdm import tqdm import cv2 import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageDraw from pylab import rcParams rcParams['figure.figsize'] = 20, 20 # noqa from consts import FONT_SIZE from utils import ( make_contours, get_centers, get_labels, vis_pred_bbox, filter_polygons_points_intersection, vis_pred_bbox_polygon, vis_pred_center, font ) from grpc_utils import ( KuzuSegment, KuzuClassify ) if __name__ == '__main__': img_dir = "./images" img_fp = os.path.join(img_dir, random.choice(os.listdir(img_dir))) print(img_fp) filter_polygon = True kuzu_seg = KuzuSegment() kuzu_cls = KuzuClassify() img, origin_image, origin_h, origin_w = kuzu_seg.load_image(img_fp) pred_bbox, pred_center = kuzu_seg.predict(img) # get all polygon area in image polygon_contours = make_contours(pred_bbox) # get all center points by contour method center_coords = get_centers(pred_center.astype(np.uint8)) no_center_points = len(center_coords) final_center = vis_pred_center(center_coords, rad=2) # filter polygon if filter_polygon: filtered_contours = filter_polygons_points_intersection(polygon_contours, center_coords) # noqa pred_bbox = vis_pred_bbox_polygon(pred_bbox, filtered_contours) final_bbox = vis_pred_bbox(pred_bbox, center_coords, width=2) y_ratio = origin_h / 512 x_ratio = origin_w / 512 pil_img = Image.fromarray(origin_image).convert('RGBA') char_canvas = Image.new('RGBA', pil_img.size) char_draw = ImageDraw.Draw(char_canvas) print(">>> {}".format(no_center_points)) if no_center_points > 0: bbox_cluster = get_labels(center_coords, pred_bbox) # ignore background hex color (=0) for cluster_index in tqdm(range(len(center_coords))[1:]): char_pixel = (bbox_cluster == cluster_index).astype(np.float32) try: horizontal_indicies = np.where(np.any(char_pixel, axis=0))[0] vertical_indicies = np.where(np.any(char_pixel, axis=1))[0] x_min, x_max = horizontal_indicies[[0, -1]] y_min, y_max = vertical_indicies[[0, -1]] except IndexError: continue x = x_min y = y_min w = x_max - x_min h = y_max - y_min # convert to original coordinates x = int(x * x_ratio) w = int(w * x_ratio) y = int(y * y_ratio) h = int(h * y_ratio) # set offset to crop character offset = 5 # percentage y_diff = math.ceil(h * offset / 100) x_diff = math.ceil(w * offset / 100) # expand area y_from = y - y_diff y_to = y + h + y_diff x_from = x - x_diff x_to = x + w + x_diff # tune y_from, y_to, x_from, x_to = \ list(map(functools.partial(np.maximum, 0), [y_from, y_to, x_from, x_to])) try: char_img = origin_image[y_from:y_to, x_from:x_to] char_img = kuzu_cls.load_image(char_img) pred_label = kuzu_cls.predict(char_img) # print(pred_label) char_draw.text( (x + w + FONT_SIZE / 4, y + h / 2 - FONT_SIZE), pred_label, fill=(0, 0, 255, 255), font=font ) except Exception as e: print(e) continue char_img = Image.alpha_composite(pil_img, char_canvas) char_img = char_img.convert("RGB") char_img = np.asarray(char_img) final_bbox = cv2.resize(final_bbox, (origin_w, origin_h)) final_center = cv2.resize(final_center, (origin_w, origin_h)) plt.imshow(char_img) plt.imshow(final_bbox, cmap="jet", alpha=0.50) plt.savefig("./assets/{}.jpg".format(time.time()), bbox_inches='tight')
2.0625
2
mpire/signal.py
synapticarbors/mpire
505
12795499
from inspect import Traceback from signal import getsignal, SIG_IGN, SIGINT, signal as signal_, Signals from types import FrameType from typing import Type class DelayedKeyboardInterrupt: def __init__(self, in_thread: bool = False) -> None: """ :param in_thread: Whether or not we're living in a thread or not """ self.in_thread = in_thread self.signal_received = None def __enter__(self) -> None: # When we're in a thread we can't use signal handling if not self.in_thread: self.signal_received = False self.old_handler = signal_(SIGINT, self.handler) def handler(self, sig: Signals, frame: FrameType) -> None: self.signal_received = (sig, frame) def __exit__(self, exc_type: Type, exc_val: Exception, exc_tb: Traceback) -> None: if not self.in_thread: signal_(SIGINT, self.old_handler) if self.signal_received: self.old_handler(*self.signal_received) class DisableKeyboardInterruptSignal: def __enter__(self) -> None: # Prevent signal from propagating to child process self._handler = getsignal(SIGINT) ignore_keyboard_interrupt() def __exit__(self, exc_type: Type, exc_val: Exception, exc_tb: Traceback) -> None: # Restore signal signal_(SIGINT, self._handler) def ignore_keyboard_interrupt(): signal_(SIGINT, SIG_IGN)
2.375
2
scripts/create_shell_link.py
DatGuy1/Windows-Toasts
1
12795500
#!/usr/bin/env python import argparse import os import sys from pathlib import Path from typing import Any, Optional try: import pythoncom from win32com.propsys import propsys from win32com.shell import shell except ImportError: raise ImportError( "pywin32 is required to run create_shell_link.py.To install, execute 'pip install pywin32' in a terminal" ) class IconFileAction(argparse.Action): # pragma: no cover def __call__(self, parser_container, namespace, values: Any, option_string=None): if values.suffix != ".ico": raise ValueError("The supplied icon file is not of type .ico.") setattr(namespace, self.dest, values) # noinspection PyUnresolvedReferences def create_shell_link( appId: str, appName: str, iconPath: Optional[Path] = None, overwrite: bool = False, appDataPath: str = os.getenv("APPDATA"), ): # See https://github.com/mohabouje/WinToast/blob/master/src/wintoastlib.cpp#L594 if appDataPath is None: # pragma: no cover raise RuntimeError("Couldn't find APPDATA path. Please rerun this script with the --appdata argument") programsPath = Path(appDataPath) / "Microsoft" / "Windows" / "Start Menu" / "Programs" shellLinkPath = programsPath / f"{appName}.lnk" linkExists = shellLinkPath.exists() if linkExists: # pragma: no cover if overwrite: print("Script run with --overwrite, overwriting existing link...") else: sys.exit( f"Link '{shellLinkPath}' already exists. To overwrite, rerun this script with the --overwrite argument" ) # Adapted from https://github.com/mhammond/pywin32/blob/main/com/win32comext/shell/demos/create_link.py # noinspection PyTypeChecker shellLink = pythoncom.CoCreateInstance( shell.CLSID_ShellLink, None, pythoncom.CLSCTX_INPROC_SERVER, shell.IID_IShellLink ) # Set shell link arguments shellLink.SetPath("") shellLink.SetArguments("") shellLink.SetWorkingDirectory("") if iconPath is not None: shellLink.SetIconLocation(str(iconPath.resolve()), 0) # Set AUMI to supplied argument propertyStore = shellLink.QueryInterface(propsys.IID_IPropertyStore) propertyKey = propsys.PSGetPropertyKeyFromName("System.AppUserModel.ID") propertyStore.SetValue(propertyKey, propsys.PROPVARIANTType(appId)) propertyStore.Commit() # Save file # noinspection PyUnresolvedReferences propertyStore.QueryInterface(pythoncom.IID_IPersistFile).Save(str(shellLinkPath), True) print(f"Successfully {'modified' if linkExists else 'created'} shell link with the AUMI '{appId}'") if __name__ == "__main__": # pragma: no cover parser = argparse.ArgumentParser(description="Create shell link for use in toast notifications") parser.add_argument("--appdata", "-ad", type=str, required=False, help="AppData path if script fails to find it") parser.add_argument("--app_id", "-a", type=str, required=True, help="Application User Model ID for identification") parser.add_argument("--name", "-n", type=str, required=True, help="Display name on notification") parser.add_argument( "--icon", "-i", type=Path, required=False, action=IconFileAction, help="Path to image file for desired icon" ) if sys.version_info >= (3, 9): parser.add_argument( "--overwrite", "-o", action=argparse.BooleanOptionalAction, help="Overwrite if a link already exists" ) else: parser.add_argument( "--overwrite", "-o", default=False, action="store_true", help="Overwrite if a link already exists" ) args = parser.parse_args() create_shell_link( appId=args.app_id, appName=args.name, iconPath=args.icon, overwrite=args.overwrite, appDataPath=args.appdata )
2.40625
2
oteltrace/contrib/mysql/__init__.py
ocelotl/opentelemetry-auto-instr-python-1
2
12795501
# Copyright 2019, OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Instrument mysql to report MySQL queries. ``patch_all`` will automatically patch your mysql connection to make it work. :: # Make sure to import mysql.connector and not the 'connect' function, # otherwise you won't have access to the patched version from oteltrace import Pin, patch import mysql.connector # If not patched yet, you can patch mysql specifically patch(mysql=True) # This will report a span with the default settings conn = mysql.connector.connect(user="alice", password="<PASSWORD>", host="localhost", port=3306, database="test") cursor = conn.cursor() cursor.execute("SELECT 6*7 AS the_answer;") # Use a pin to specify metadata related to this connection Pin.override(conn, service='mysql-users') Only the default full-Python integration works. The binary C connector, provided by _mysql_connector, is not supported yet. Help on mysql.connector can be found on: https://dev.mysql.com/doc/connector-python/en/ """ from ...utils.importlib import require_modules # check `mysql-connector` availability required_modules = ['mysql.connector'] with require_modules(required_modules) as missing_modules: if not missing_modules: from .patch import patch from .tracers import get_traced_mysql_connection __all__ = ['get_traced_mysql_connection', 'patch']
1.648438
2
src/smartystreets/__init__.py
bennylope/smartystreets.py
12
12795502
# -*- coding: utf-8 -*- __author__ = "<NAME>" __email__ = "<EMAIL>" __version__ = "1.0.0" from smartystreets.client import Client # noqa __all__ = ["Client"]
1.304688
1
api/system/node/events.py
klebed/esdc-ce
97
12795503
from api.event import Event from que import TT_DUMMY, TG_DC_UNBOUND from que.utils import DEFAULT_DC, task_id_from_string class NodeSystemRestarted(Event): """ Called from node_sysinfo_cb after erigonesd:fast is restarted on a compute node. """ _name_ = 'node_system_restarted' def __init__(self, node, **kwargs): # Create such a task_id that info is send to SuperAdmins and node owner task_id = task_id_from_string(node.owner.id, dummy=True, dc_id=DEFAULT_DC, tt=TT_DUMMY, tg=TG_DC_UNBOUND) kwargs['node_hostname'] = node.hostname super(NodeSystemRestarted, self).__init__(task_id, **kwargs)
2.0625
2
lib/proxies/aws_long.py
jhong93/aws-lambda-proxy
7
12795504
<reponame>jhong93/aws-lambda-proxy import boto3 import json import logging from base64 import b64decode from random import SystemRandom from concurrent.futures import ThreadPoolExecutor from lib.proxy import AbstractRequestProxy, ProxyResponse from lib.stats import LambdaStatsModel, S3StatsModel from lib.workers import LambdaSqsTaskConfig, LambdaSqsTask, WorkerManager logger = logging.getLogger(__name__) random = SystemRandom() class LongLivedLambdaProxy(AbstractRequestProxy): """Return a function that queues requests in SQS""" def __init__(self, functions, maxLambdas, s3Bucket, stats, verbose): # Supporting this across regions is not a priority since that would # incur costs for SQS and S3, and be error prone. if len(functions) > 1 and 'arn:' in functions[0]: raise NotImplementedError( 'Only a single function may be specified by name for a ' 'long lived proxy') self.__verbose = verbose self.__s3Bucket = s3Bucket if 'lambda' not in stats.models: stats.register_model('lambda', LambdaStatsModel()) self.__lambdaStats = stats.get_model('lambda') if s3Bucket is not None: if 's3' not in stats.models: stats.register_model('s3', S3StatsModel()) self.__s3Stats = stats.get_model('s3') self.__s3 = boto3.client('s3') self.__s3DeletePool = ThreadPoolExecutor(1) class ProxyTask(LambdaSqsTaskConfig): @property def queue_prefix(self): return 'lambda-proxy' @property def lambda_function(self): return random.choice(functions) @property def max_workers(self): return maxLambdas @property def load_factor(self): return 4 def pre_invoke_callback(self, workerId, workerArgs): logger.info('Starting worker: %d', workerId) workerArgs['longLived'] = True if s3Bucket: workerArgs['s3Bucket'] = s3Bucket def post_return_callback(self, workerId, workerResponse): if workerResponse is not None: logger.info('Worker %d ran for %dms and proxied %d ' 'requests: Exit reason: %s', workerId, workerResponse['workerLifetime'], workerResponse['numRequestsProxied'], workerResponse['exitReason']) self.workerManager = WorkerManager(ProxyTask(), stats) def __delete_object_from_s3(self, key): self.__s3.delete_object(Bucket=self.__s3Bucket, Key=key) def __load_object_from_s3(self, key): result = self.__s3.get_object(Bucket=self.__s3Bucket, Key=key) ret = result['Body'].read() self.__s3DeletePool.submit(self.__delete_object_from_s3, key) self.__s3Stats.record_get(len(ret)) return ret def request(self, method, url, headers, data): task = LambdaSqsTask() if data: task.add_binary_attribute('data', data) task.set_body(json.dumps({ 'method': method, 'url': url, 'headers': headers })) result = self.workerManager.execute(task, timeout=10) if result is None: return ProxyResponse(statusCode=500, headers={}, content='') if type(result) is list: # Fragmented response payload = {} dataChunks = [] for part in result: if part.has_attribute('data'): dataChunks.append(part.get_binary_attribute('data')) if len(part.body) > 1: # We use a hack to send practically empty bodies decodedBody = b64decode(part.body).decode('zlib') payload.update(json.loads(decodedBody)) content = b''.join(dataChunks) else: # Single message payload = json.loads(b64decode(result.body).decode('zlib')) if result.has_attribute('s3'): key = result.get_string_attribute('s3') content = self.__load_object_from_s3(key) elif result.has_attribute('data'): content = result.get_binary_attribute('data') else: content = b'' statusCode = payload['statusCode'] responseHeaders = payload['headers'] return ProxyResponse(statusCode=statusCode, headers=responseHeaders, content=content)
2.09375
2
TS3GatherBot.py
ikinz/TS3GatherBot
0
12795505
<reponame>ikinz/TS3GatherBot #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created by <NAME> This bot will make it easier to set up gathers, all from your teamspeak 3 server. The bot requires access to the Teamspeak 3 server query! """ __author__ = '<NAME>' __copyright__ = 'Copyright 2015, TS3GatherBot' __credits__ = ['<NAME>'] __licence__ = 'MIT' __version__ = '1.0.0' __maintainer__ = '<NAME>' __status__ = 'Production' import threading import telnetlib from Config import config, maps, admins, vetoprocesses from queue import Queue from Player import Player # Amount of players needed to start gather (even number please :)) PLAYERS_NEEDED = config["players"] """ Bot Thread """ class BotThread(threading.Thread): def __init__(self, name, password, channel, index): super(BotThread, self).__init__() self.commands = { # User commands "!start": self.cmd_start, "!stop": self.cmd_stop, "!maps": self.cmd_maps, "!ready": self.cmd_ready, "!r": self.cmd_ready, "!gaben": self.cmd_ready, "!unready": self.cmd_unready, "!notready": self.cmd_unready, "!nr": self.cmd_unready, "!ur": self.cmd_unready, "!help": self.cmd_help, "!h": self.cmd_help, # Admin commands "!activate": self.cmd_activate } self.name = name self.password = password self.telnet = None self.botId = None self.channel = channel self.ti = index def run(self): self.telnet = self.initBot() self.botId = self.getPlayerId(self.name) self.channel = self.moveToChannel(self.getChannelId(self.channel)) # Print Welcome message self.sendChannelMessage( "\\n[b]The GatherBot is currently running[/b]\\n\\n" "[color=green]!start[/color] : [i]Starts a gather[/i]\\n" "[color=green]!stop[/color] : [i]Stops the gather[/i]\\n\\n" "[color=green]!maps[/color] : [i]Set the amount of maps to play (default=bo3)[/i]\\n" "[color=green]!ready[/color] : [i]Sets you as ready[/i]\\n" "[color=green]!unready[/color] : [i]Sets you as unready[/i]\\n\\n" "[color=red]Please type !help for a full list of commands[/color]" ) # While an exit command has not been issued ex = False while not ex: # Print queue'd messages while not cmdToThread[self.ti].empty(): self.sendChannelMessage(cmdToThread[self.ti].get()) # Read commands from user and execute them self.telnet.write(self.getenc("servernotifyregister event=textchannel id=%s\n" % self.channel)) msg = str(self.telnet.read_until(self.getenc("msg=ok"))) if msg.__contains__("notifytextmessage"): self.execCommand(msg) # When the bot is closed, close all connections # before exiting thread self.closeBot() """ Connects to the teamspeak server via telnet and returns the telnet client """ def initBot(self): # Connect and log in to server telnet = telnetlib.Telnet(config["host"], config["port"]) telnet.open(telnet.host, telnet.port) telnet.write(self.getenc("login %s %s\n" % (self.name, self.password))) telnet.read_until(self.getenc("msg=ok")) # Select virtual server id telnet.write(self.getenc("use sid=%s\n" % (config["sid"]))) telnet.read_until(self.getenc("msg=ok")) # Set bot nickname telnet.write(self.getenc("clientupdate client_nickname=%s\n" % (self.name))) telnet.read_until(self.getenc("msg=ok")) return telnet """ Log out from telnet and close the client """ def closeBot(self): self.telnet.write(self.getenc("logout\n")) self.telnet.close() print("Bot closed") """ Get the client ID for this bot """ def getPlayerId(self, name): self.telnet.write(self.getenc("clientfind pattern=%s\n" % name)) botstr = str(self.telnet.read_until(self.getenc("msg=ok"))) botstr = botstr.split()[0] return int(botstr.split("=")[1]) """ Get the channel ID from the name of the channel """ def getChannelId(self, channel): channelLobby = channel.replace(" ", "\s") self.telnet.write(self.getenc("channelfind pattern=%s\n" % (channelLobby))) channelLobby = str(self.telnet.read_until(self.getenc("msg=ok"))) channelLobby = channelLobby.split("\\n")[1] channelLobby = channelLobby.split()[0] return int(channelLobby.split("=")[1]) """ Move user to channel """ def moveToChannel(self, channel): self.telnet.write(self.getenc("clientmove clid=%s cid=%s\n" % (self.botId, channel))) self.telnet.read_until(self.getenc("msg=ok")) return channel """ Print out a server message """ def sendServerMessage(self, msg): msg = msg.replace(" ", "\s") self.telnet.write(self.getenc("sendtextmessage targetmode=3 target=1 msg=%s\n" % (msg))) self.telnet.read_until(self.getenc("msg=ok")) """ Print a message to a specific channel """ def sendChannelMessage(self, msg): msg = msg.replace(" ", "\s") self.telnet.write(self.getenc("sendtextmessage targetmode=2 msg=%s\n" % (msg))) self.telnet.read_until(self.getenc("msg=ok")) """ Parse and execute commands sent by users """ def execCommand(self, cmd): i1 = cmd.index("invokeruid") i1 = cmd.index("=", i1) i2 = cmd.index("\\n", i1) userid = cmd[i1 + 1:i2] cmd = [x.split("=") for x in cmd.split() if len(x.split("=")) > 1 and not x.__contains__("msg=ok")] d = {} for it in cmd: d[it[0]] = it[1] global active cmdsp = d['msg'].split("\\\\s") if (cmdsp[0] in self.commands and active) or d['msg'] == '!activate': self.commands[cmdsp[0]](userid, d['invokername'], d['msg']) """ Start gather and set mod (the one who started the gather) """ def cmd_start(self, userid, user, data): global gatherRunning if not gatherRunning: gatherRunning = True global players players.append(Player(user, userid, True)) broadcastMessage("[color=green]A gather has been started by %s![/color]" % user) else: self.sendChannelMessage("[color=red]A gather is already running![/color]") """ Stop the gather and move all players to lobby """ def cmd_stop(self, userid, user, data): global gatherRunning global players p = None for x in players: if x.uid == userid: p = x if gatherRunning and p.isMod: gatherRunning = False global vetoSystem vetoSystem = "bo3" # Move all players to Lobby plrs = ["clid=" + str(self.getPlayerId(x.name)) for x in players] plrs = "|".join(plrs) self.telnet.write(self.getenc("clientmove %s cid=%s\n" % (plrs, self.getChannelId(config['gl'])))) self.telnet.read_until(self.getenc("msg=ok"), 3) players = [] broadcastMessage("[color=red]Gather has been stopped![/color]") else: self.sendChannelMessage("[color=red]No gather currently running![/color]") """ Change the amount of maps that will be played Only available to game mods! """ def cmd_maps(self, userid, user, data): global gatherRunning if gatherRunning: data = data.split("\\\\s") global players p = None for x in players: if x.uid == userid: p = x if len(data) > 1 and p.isMod: data = data[1].lower() if data in vetoprocesses: global vetoSystem vetoSystem = data broadcastMessage("[color=green]Game changed to %s![/color]" % data) else: self.sendChannelMessage("[color=red]%s not supported![/color]" % data) else: self.sendChannelMessage("[color=red]You didn't enter a value or you're not the game mod![/color]" % data) else: self.sendChannelMessage("[color=red]No gather currently running![/color]") """ Sets a user as ready """ def cmd_ready(self, userid, user, data): global gatherRunning if gatherRunning: global players alreadyReady = False for p in players: if p.uid == userid: alreadyReady = True if not alreadyReady: players.append(Player(user, userid)) broadcastMessage("[color=green]%s is ready![/color]" % user) self.start_gather() else: self.sendChannelMessage("[color=red]You're already ready![/color]") else: self.sendChannelMessage("[color=red]No gather currently running![/color]") """ Set up teams, move players to correct channel and start veto process """ def start_gather(self): global players if len(players) == PLAYERS_NEEDED: broadcastMessage("[color=green]%s players are ready! Setting up teams![/color]" % PLAYERS_NEEDED) l = players[:] import random random.shuffle(l) team1 = l[:int(PLAYERS_NEEDED/2)] team2 = l[int(PLAYERS_NEEDED/2):] plrs = ["clid=" + str(self.getPlayerId(x.name)) for x in team1] plrs = "|".join(plrs) self.telnet.write(self.getenc("clientmove %s cid=%s\n" % (plrs, self.getChannelId(config['g1'])))) self.telnet.read_until(self.getenc("msg=ok")) plrs = ["clid=" + str(self.getPlayerId(x.name)) for x in team2] plrs = "|".join(plrs) self.telnet.write(self.getenc("clientmove %s cid=%s\n" % (plrs, self.getChannelId(config['g2'])))) self.telnet.read_until(self.getenc("msg=ok")) """ Sets a player as not ready """ def cmd_unready(self, userid, user, data): global gatherRunning if gatherRunning: global players for p in players: if p.uid == userid: if p.isMod: self.sendChannelMessage("[color=red]You can't leave your own gather. Use !stop to cancel it instead![/color]") else: players.remove(p) else: self.sendChannelMessage("[color=red]No gather currently running![/color]") """ Print help text to channel """ def cmd_help(self, userid, user, data): string = "\\n[b]Available commands are:[/b]\\n" \ "[color=grey]!<cmd> (<aliases>) : [i]<Description>[/i][/color]\\n\\n" \ "[color=green]!start[/color] : [i]Starts a gather[/i]\\n" \ "[color=green]!stop[/color] : [i]Stops the gather[/i]\\n\\n" \ "[color=green]!maps[/color] : [i]Set the amount of maps to play (default=bo3)[/i]\\n" \ "[color=green]!ready (!r, !gaben)[/color] : [i]Sets you as ready[/i]\\n" \ "[color=green]!unready (!notready, !nr, !ur)[/color] : [i]Sets you as unready[/i]\\n\\n" \ "[color=green]!help (!h)[/color] : [i]List all available commands[/i]\\n" if userid in admins.keys(): string += "\\n\\n" \ "[b]Admin Commands:[/b]\\n" \ "[color=grey]!<cmd> (<aliases>) : [i]<Description>[/i][/color]\\n\\n" \ "[color=green]!activate[/color] : [i]Toggle this bot[/i]\\n" self.sendChannelMessage(string) """ Toggle whether the bot is activated Only available to admins! """ def cmd_activate(self, userid, user, data): if userid in admins: global active active = not active if active: broadcastMessage("[color=green]GatherBot has been activated[/color]") else: broadcastMessage("[color=red]GatherBot has been deactivated[/color]") else: self.sendChannelMessage("[color=red]You're not an admin, GTFO![/color]") """ Fix encoding of strings """ def getenc(self, str): return str.encode('ascii') """ Broadcast message to all bots """ def broadcastMessage(msg): for q in cmdToThread: q.put(msg) """ Init the app """ active = True players = [] gatherRunning = False vetoSystem = "bo3" # Create lists with all the bots and their Queues cmdToThread = [ Queue(), Queue(), Queue() ] bots = [ BotThread(config["user"], config["pass"], config["gl"], 0), BotThread(config["user1"], config["pass1"], config["g1"], 1), BotThread(config["user2"], config["pass2"], config["g2"], 2) ] for b in bots: b.start()
2.203125
2
learningPygame/McKinley/00-MovingSmile/04-Drawing.py
Rosebotics/catapult2019
0
12795506
# TODO: In this module we'll start drawing a simple smiley face # Yellow circle for the head # Two black circle eyes # Red rectangle (rect) mouth # Red circle nose. import pygame import sys pygame.init() screen = pygame.display.set_mode((600, 600)) while True: for event in pygame.event.get(): if event.type == pygame.MOUSEBUTTONDOWN: print(event.pos) if event.type == pygame.QUIT: sys.exit() screen.fill((0, 200, 200)) # Draws the yellow head pygame.draw.circle(screen, (255,255,0), (300,300), 250) pygame.draw.circle(screen, (0, 0, 0), (300, 300), 250, 5) # draws the eyes pygame.draw.circle(screen, (0, 0, 0), (205, 200), 20) pygame.draw.circle(screen, (0, 0, 0), (400, 200), 20) # draws the nose pygame.draw.circle(screen, (255, 0, 0), (300, 300), 35) pygame.draw.circle(screen, (0, 0, 0), (300, 300), 35, 2) # draws the mouth pygame.draw.rect(screen, (127, 0, 0), (200, 400, 200, 25)) # pygame.draw.rect(screen, color, (x, y, width, height), thickness) # pygame.draw.rect(screen, (100, 0, 0), (240, 350, 160, 30)) pygame.display.update()
3.921875
4
airbyte-integrations/bases/source-acceptance-test/source_acceptance_test/tests/test_full_refresh.py
koji-m/airbyte
6,215
12795507
<filename>airbyte-integrations/bases/source-acceptance-test/source_acceptance_test/tests/test_full_refresh.py # # Copyright (c) 2021 Airbyte, Inc., all rights reserved. # import pytest from airbyte_cdk.models import Type from source_acceptance_test.base import BaseTest from source_acceptance_test.utils import ConnectorRunner, full_refresh_only_catalog, serialize @pytest.mark.default_timeout(20 * 60) class TestFullRefresh(BaseTest): def test_sequential_reads(self, connector_config, configured_catalog, docker_runner: ConnectorRunner, detailed_logger): configured_catalog = full_refresh_only_catalog(configured_catalog) output = docker_runner.call_read(connector_config, configured_catalog) records_1 = [message.record.data for message in output if message.type == Type.RECORD] output = docker_runner.call_read(connector_config, configured_catalog) records_2 = [message.record.data for message in output if message.type == Type.RECORD] output_diff = set(map(serialize, records_1)) - set(map(serialize, records_2)) if output_diff: msg = "The two sequential reads should produce either equal set of records or one of them is a strict subset of the other" detailed_logger.info(msg) detailed_logger.log_json_list(output_diff) pytest.fail(msg)
1.976563
2
medical_prescription/user/test/test_forms_patient.py
thiagonf/Sprint-3-GPP
0
12795508
from django.test import TestCase from user.forms import PatientForm from user.models import User class TestPatientForm(TestCase): def setUp(self): self.name_valid = '<NAME>' self.name_invalid = 'a12' self.name_invalid_TYPE = 'a@hjasgdjasd1al' self.name_invalid_MAX = 'aasdkgasghdhjadjasvdashdjavcdbnmhasdvbdmmasbdnmhamsjdhgegdhjgsavdhabvdbnasd' self.name_invalid_MIN = 'a' self.phone_valid = '1234567890' self.phone_invalid = '456' self.phone_invalid_MIN = '456' self.phone_invalid_TYPE = 'asdaaaaaads' self.phone_invalid_MAX = '456134564898761' self.email_valid = '<EMAIL>' self.email_invalid = 'admin.com' self.email_invalid_TYPE = 'admin.com' self.email_invalid_MIN = '[email protected]' self.email_invalid_MAX = '<EMAIL>' self.email_invalid_BASE = '<EMAIL>' self.password_valid = '<PASSWORD>' self.password_invalid = '<PASSWORD>' self.password_invalid_MAX = '<PASSWORD>' self.password_invalid_MIN = '<PASSWORD>' self.password_invalid_TYPE = '<PASSWORD>!' self.date_of_birth_valid = '10/12/1990' self.date_of_birth_invalid = '18' self.date_of_birth_invalid_FORMAT = '18' self.date_of_birth_invalid_MIN = '10/12/2020' self.sex_valid = 'M' self.sex_invalid = 'A' self.CPF_document_valid = '61367541000' self.CPF_document_invalid = '11111111111' self.CPF_document_invalid_MIN = '111111111' self.CPF_document_invalid_MAX = '11111111111' self.CPF_document_invalid_TYPE = '252627282930asdf' self.CEP_valid = 72850735 self.CEP_invalid = '7285073A' self.CEP_invalid_MIN = 42 self.CEP_invalid_MAX = 728507351 self.UF_valid = 'DF' self.UF_invalid = '' self.UF_invalid_MIN = 'A' self.UF_invalid_MAX = 'AAA' self.city_valid = 'Bras lia' self.city_invalid = '' self.city_invalid_MAX = 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' self.neighborhood_valid = 'Setor Leste' self.neighborhood_invalid = '' self.neighborhood_invalid_MAX = 'aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa' self.complement_valid = 'Rua 01, Quadra 10, Lote 15' self.complement_invalid = '' self.complement_invalid_MAX = '''aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa''' user = User() user.email = "<EMAIL>" user.save() def test_forms_patient_is_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertTrue(form.is_valid()) def test_forms_patient_name_is_not_valid_TYPE(self): form_data = {'name': self.name_invalid_TYPE, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_name_is_not_valid_MAX(self): form_data = {'name': self.name_invalid_MAX, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_name_is_not_valid_MIN(self): form_data = {'name': self.name_invalid_MIN, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': self.<PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_phone_is_not_valid_TYPE(self): form_data = {'name': self.name_valid, 'phone': self.phone_invalid_TYPE, 'email': self.email_valid, 'password': <PASSWORD>, 'password_confirmation': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_phone_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_invalid_MAX, 'email': self.email_valid, 'password': <PASSWORD>, 'password_confirmation': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_phone_is_not_valid_MIN(self): form_data = {'name': self.name_valid, 'phone': self.phone_invalid_MIN, 'email': self.email_valid, 'password': <PASSWORD>, 'password_confirmation': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_email_is_not_valid_TYPE(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_invalid_TYPE, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_email_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_invalid_MAX, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_email_is_not_valid_MIN(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_invalid_MIN, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_email_is_not_valid_BASE(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_invalid_BASE, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_password_is_not_valid_TYPE(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': self.<PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_password_is_not_valid_MIN(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_password_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_password_confirmation_is_not_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_CPF_document_is_not_valid_TYPE(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_invalid_TYPE, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_CPF_document_is_not_valid_MIN(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_invalid_MIN, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_CPF_document_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_invalid_MAX, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_date_of_birth_is_not_valid_FORMAT(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_invalid_FORMAT, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_date_of_birth_is_not_valid_MIN(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_invalid_MIN, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_sex_is_not_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_invalid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_CEP_is_not_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': self.password_valid, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_invalid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_invalid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_CEP_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_invalid_MAX, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_UF_is_not_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_invalid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_UF_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_invalid_MAX, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_city_is_not_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_invalid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_city_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_invalid_MAX, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_neighborhood_is_not_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_invalid, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_neighborhood_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_invalid_MAX, 'complement': self.complement_valid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_complement_is_not_valid(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_invalid} form = PatientForm(data=form_data) self.assertFalse(form.is_valid()) def test_forms_patient_complement_is_not_valid_MAX(self): form_data = {'name': self.name_valid, 'phone': self.phone_valid, 'email': self.email_valid, 'password': <PASSWORD>, 'confirm_password': <PASSWORD>, 'CPF_document': self.CPF_document_valid, 'sex': self.sex_valid, 'date_of_birth': self.date_of_birth_valid, 'CEP': self.CEP_valid, 'UF': self.UF_valid, 'city': self.city_valid, 'neighborhood': self.neighborhood_valid, 'complement': self.complement_invalid_MAX} form = PatientForm(data=form_data) self.assertFalse(form.is_valid())
2.3125
2
PassGen.py
CoderMP/PythonPassGen
0
12795509
<reponame>CoderMP/PythonPassGen<gh_stars>0 ####### REQUIRED IMPORTS ####### import os import sys import click import random import string from time import sleep ####### FUNCTIONS ###### def displayHeader(): """ () -> () Function that is responsible for printing the application header and menu """ # Clear the console window os.system('cls') # Print the application header & menu print("\033[94m------------------------------\n" + "|| \033[92mPassword Generator \033[94m||\n" + "------------------------------\n\n" + "\033[0mWelcome to Password Generator v1.0\n" + "\033[92mSource Code By: \033[0m\033[1m<NAME> (CoderMP)\n" + "\033[91mLicense: \033[0m\033[1mMIT\n\n" + "\033[0m\033[1m[1] Generate Password(s)\n" + "[2] Exit Program\n") def generator(len, num): """ (int, int) -> list Function that is repsonsible for generating a random alphanumeric password based off the iser request parameters """ # Initialize the list that will hold the generated passwords passList = [] # Initialize a counter variable to assist with generation i = 0 while i < num: # Assemble the password temp = ''.join(random.choices(string.ascii_lowercase + string.digits, k = len)) # Append the temp variable value to the passList passList.append(temp) # Increment the counter i += 1 # Return the password list return passList def passParams(): """ () -> () Function that is responsible for retrieving the desired password generation paramters of the user. """ # Prompt the user for their desired pass length and how many to generate len = click.prompt('How long would you like your password(s) to be? >>', type=int) num = click.prompt('How many password(s) would you like to generate? >>', type=int) print('\n') # Assemble the password list passwordList = generator(len, num) # Print the password list to the console print(*passwordList, sep='\n') def genLogic(): """ () -> () Function that is responsible for executing the application logic based on the user's choice """ # Prompt the user for input op = click.prompt('Enter choice >>', type=int) if (op == 1): print('\n') # Call method that retrieves the password generation parameters passParams() while(True): # Prompt the user as to whether or not they'd like to generate another set choice = click.prompt('\n\nWould you like to generate another set? (y/n) >>', type=str) # Execute accordingly if (choice == 'Y' or choice == 'y'): print('\n') # Call the function that retrieves the password generation parameters passParams() if (choice == 'N' or choice == 'n'): # Notify the user of navigation back to the main menu print('Returning you to the main menu....') sleep(1.3) os.system('cls') break # Display the main menu and prompt the user for input displayHeader() genLogic() if (op == 2): # Notify the user of the termination sequence print('\nTerminating program...') sleep(2) # Terminate sys.exit() else: # Notify the user of their command error and re-prompt them for input print('\033[91mInvalid command, please try again!\033[0m') genLogic() ####### MAIN PROGRAM ####### if __name__ == '__main__': displayHeader() genLogic()
3.109375
3
device.py
JCLemme/letterbox
0
12795510
<filename>device.py #!/usr/bin/env python3 import os import sys import time import zmq def main(): frontend = None backend = None context = None try: context = zmq.Context(1) # Socket facing clients frontend = context.socket(zmq.SUB) frontend.bind("tcp://*:5559") frontend.setsockopt(zmq.SUBSCRIBE, b"") # Socket facing services backend = context.socket(zmq.PUB) backend.bind("tcp://*:5560") zmq.device(zmq.FORWARDER, frontend, backend) except Exception as e: print(e) print("bringing down zmq device") finally: pass if frontend != None: frontend.close() if backend != None: backend.close() if context != None: context.term() if __name__ == "__main__": main()
2.40625
2
src/__init__.py
Nardri/rbac-service
0
12795511
<reponame>Nardri/rbac-service """Blueprint module""" from flask import Blueprint # instantiating the blue print rbac_blueprint = Blueprint('rbac-service', __name__, url_prefix='/v1')
1.578125
2
myGym/generate_dataset.py
incognite-lab/myGym
18
12795512
<filename>myGym/generate_dataset.py<gh_stars>10-100 ## script to generate train/test sets from the simulator in COCO or DOPE format. Used for vision training. import gym from myGym import envs from matplotlib.pyplot import imshow, show import cv2 import numpy as np import os import glob import json import commentjson import sys import random from pycocotools.cocostuffhelper import segmentationToCocoMask, segmentationToCocoResult from pycocotools import mask import pybullet as p from bbox import BBox3D from myGym.envs.wrappers import RandomizedEnvWrapper import pkg_resources # config, specify here or pass as an input argument CONFIG_DEFAULT = pkg_resources.resource_filename("myGym", 'configs/dataset_coco.json') # helper functions: def color_names_to_rgb(): """ Assign RGB colors to objects by name as specified in the training config file """ with open(pkg_resources.resource_filename("myGym", 'configs/rgbcolors.json'), "r") as read_file: clr = json.load(read_file) #json file with suggested colors new_dict = {} for key, value in config['object_colors'].items(): new_value = [] for item in value: new_value.append(clr[item]) new_dict[key] = new_value config['color_dict'] = new_dict def _category_coco_format(): #COCO """ Create list of dictionaries with category id-name pairs in MSCOCO format Returns: :return categories: (list) Categories in MSCOCO format """ categories = [] for value, key in config['used_class_names'].items(): categories.append({"id": int(key), "name": str(value)}) return categories def _segmentationToPoly(mask, ): """ Convert segmentation from RLE to polynoms ([[x1 y1 x2 x2 y2 ...]]). Code from https://github.com/facebookresearch/Detectron/issues/100#issuecomment-362882830. Parameters: :param mask: (array) Bitmap mask :return segmentationPoly: (list) Segmentation converted to polynoms """ contours, _ = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) segmentationPoly = [] for contour in contours: contour = contour.flatten().tolist() if len(contour) > 4: segmentationPoly.append(contour) return segmentationPoly def create_coco_json(): #COCO """ Create COCO json data structure Returns: :return data_train: (dict) Data structure for training data :return data_test: (dist) Data structure for testing data """ data_train = dict( images=[# file_name, height, width, id ], type='instances', annotations=[# segmentation, area, iscrowd, image_id, bbox, category_id, id ], categories = _category_coco_format(), ) data_test = dict( images=[# file_name, height, width, id ], type='instances', annotations=[# segmentation, area, iscrowd, image_id, bbox, category_id, id ], categories = _category_coco_format(), ) return data_train, data_test def create_3D_box(env_object,objdim): #DOPE objpos = env_object.get_position() objorient = env_object.get_orientation() #objdim = env_object.get_cuboid_dimensions() box= BBox3D(objpos[0],objpos[1],objpos[2],objdim[0],objdim[1],objdim[2],objorient[3],objorient[0],objorient[1],objorient[2]) return box.p,box.center class GeneratorCoco: #COCO """ Generator class for COCO image dataset for YOLACT vision model training """ def __init__(self): pass def get_env(self): #COCO """ Create environment for COCO dataset generation according to dataset config file Returns: :return env: (object) Environment for dataset generation """ env = RandomizedEnvWrapper(env=gym.make(config['env_name'], robot = config['robot'], render_on = True, gui_on = config['gui_on'], show_bounding_boxes_gui = config['show_bounding_boxes_gui'], changing_light_gui = config['changing_light_gui'], shadows_on = config['shadows_on'], color_dict = config['color_dict'], object_sampling_area = config['object_sampling_area'], num_objects_range = config['num_objects_range'], used_objects = used_objects, active_cameras = config['active_cameras'], camera_resolution = config['camera_resolution'], renderer=p.ER_BULLET_HARDWARE_OPENGL, dataset = True, ), config_path = config['output_folder']+'/config_dataset.json') p.setGravity(0, 0, -9.81) return env def episode_zero(self): """ Initial espisode set-up """ self.id_unique = 0 #image_id*x for paralel dataset generation, otherwise 0 def init_data(self): #COCO """ Initialize data structures for COCO dataset annotations Returns: :return data_train: (dict) Data structure for training data :return data_test: (dist) Data structure for testing data """ data_train, data_test = create_coco_json() return data_train, data_test def resume(self): #COCO """ Resume COCO dataset generation Returns: :return data_train: (dict) Training data from preceding dataset generation in COCO data structure :return data_test: (dist) Testing data from preceding dataset generation in COCO data structure :return image_id: (int) ID of last generated image in preceding dataset generation """ try: with open(os.path.join(config['output_test_folder'],'annotations.json'), 'r') as f: data_test = json.load(f) except: pass #happens when test JSON is empty, which can happen for small numbers try: with open(os.path.join(config['output_train_folder'],'annotations.json'), 'r') as f: data_train = json.load(f) # get the ID of last image img_ids = [img["id"] for img in data_train['images']] image_id = max(img_ids) +1 # +1 if last sample were test (thus not in here). it's safe to have holes in the ids, just need to monothically increase self.id_unique = len(data_test['annotations']) + len(data_train['annotations']) print("Resuming from image_id {} for episodes: {}".format(image_id, config['num_episodes'])) except FileNotFoundError: image_id = 0 return data_test, data_train, image_id def data_struct_image(self): #COCO """ Assign name to COCO dataset image and train of test status Returns: :param data: (dict) Corresponding data dictionary :param name: (string) Name of image file for saving """ data = data_test if isTestSample == True else data_train name = 'img_{}_cam{}.jpg'.format(image_id,camera_id) return data, name def store_image_info(self): #COCO """ Append COCO dataset image info to corresponding data dict """ data['images'].append(dict( file_name=name, height=im.shape[0], width=im.shape[1], id=image_id,)) def get_append_annotations(self): #COCO """ Make and append COCO annotations for each object in the scene """ seg = segmentationToCocoMask(img_mask,object_uid) area = float(mask.area(seg)) bbox = mask.toBbox(seg).flatten().tolist() #1 run length encoding RLE segmentation format seg['counts'] = str(seg['counts'], "utf-8") #utf-8 format in str #2 or poly segmentation format bitmap = mask.decode(seg) seg = _segmentationToPoly(bitmap) self.too_small_obj = False try: #notify and skip the object with too small visible representation assert(area > config['min_obj_area']) assert(len(seg)>0 and len(seg[0])>0) except: #make inverse map id->name (just to pretty print) inv_map = dict(zip(config['used_class_names'].values(), config['used_class_names'].keys())) self.too_small_obj = inv_map[class_id] self.data_dict = dict( id=self.id_unique, image_id=image_id, category_id=class_id, segmentation=seg, area=area, bbox=bbox, iscrowd=0, ) if self.too_small_obj == False: #area ok data['annotations'].append(self.data_dict) #append annotations self.id_unique +=1 else: #area too small to be realistically seen print('Too small object of class {} with area={} in img {}'.format(self.too_small_obj, self.data_dict['area'], name)) def visualize(self): #COCO """ Visualize mask and bounding box coordinates for COCO annotated object """ mask = img_mask==object_uid mask = np.expand_dims(mask, axis=2) mask = 255*mask.astype('uint8') cv2.imshow('image',im) cv2.waitKey(1) print(class_name) if self.too_small_obj: cv2.imshow('Too small object', mask) else: cv2.imshow('Labeled object', mask) cv2.waitKey(1000) print(self.data_dict['bbox']) def write_json_end(self): #COCO """ Write json file with COCO annotations to output directory """ if config['make_dataset'] in ["new", "resume"]: print("Storing annotations.json at episode {} of {}.".format(episode, config['num_episodes'])) for flag in ['test','train']: if flag == 'train': folder = config['output_train_folder'] data = data_train else: folder = config['output_test_folder'] data = data_test json_name = 'img_{}_cam{}.json'.format(image_id, camera_id) json_dict = {"images": data["images"], "type":'instances',"annotations": data["annotations"], "categories":_category_coco_format()} if len(data["images"]) > 0: with open(os.path.join(folder,json_name), 'w') as f: json.dump(json_dict, f, indent=4) # clear data and continue data["images"].clear() data["annotations"].clear() class GeneratorDope: #DOPE def __init__(self): self.object_settings = {"exported_object_classes": [], "exported_objects": []} def get_env(self): #DOPE env = RandomizedEnvWrapper(env=gym.make(config['env_name'], robot = config['robot'], render_on = True, gui_on = config['gui_on'], show_bounding_boxes_gui = config['show_bounding_boxes_gui'], changing_light_gui = config['changing_light_gui'], shadows_on = config['shadows_on'], color_dict = config['color_dict'], object_sampling_area = config['object_sampling_area'], num_objects_range = config['num_objects_range'], used_objects = used_objects, active_cameras = config['active_cameras'], camera_resolution = config['camera_resolution'], dataset = True, ), config_path = config['output_folder']+'/config_dataset.json') p.setGravity(0, 0, -9.81) return env def episode_zero(self): self.objdim = {} while len(self.objdim.keys()) < len(config['used_class_names'].keys()): env.reset(random_robot=config['random_arm_movement'], random_pos=False) observation = env.get_observation() env_objects = observation["objects"] for obj in env_objects: if obj.name not in self.objdim.keys(): self.objdim[obj.name] = obj.get_cuboid_dimensions() def init_data(self): #DOPE data_train = {"objects":[]} data_test = {"objects":[]} return data_train, data_test def resume(self): #DOPE try: files_test = [int(x.replace('.jpg','')) for x in os.listdir(config['output_test_folder']) if x.endswith(".jpg")] files_train = [int(x.replace('.jpg','')) for x in os.listdir(config['output_train_folder']) if x.endswith(".jpg")] image_id = max(max(files_test),max(files_train)) print("Resuming from image_id {} for episodes: {}".format(image_id, config['num_episodes'])) self.episode_zero() except FileNotFoundError: image_id = 0 return self.init_data()[0],self.init_data()[1],image_id def data_struct_image(self): #DOPE data_train, data_test = self.init_data() data = data_test if isTestSample == True else data_train name = '{}.jpg'.format(image_id) return data, name def store_image_info(self): #DOPE #write dataset image info filename = str(image_id) + '.json' if config['make_dataset'] in ["new", "resume"]: print("Storing {} and {} at episode {} of {}.".format(filename, name, episode, config['num_episodes'])) with open(os.path.join(path, filename), 'w') as f: json.dump(data, f, indent=4) def get_append_annotations(self): #DOPE cuboid_with_centroid = env_object.get_bounding_box() cuboid_centroid=cuboid_with_centroid[8] cuboid=cuboid_with_centroid[:8] seg = segmentationToCocoMask(img_mask, object_uid) seg['counts'] = str(seg['counts'], "utf-8") #utf-8 format in str bbox = mask.toBbox(seg).flatten().tolist() bounding_box = {'top_left': bbox[:2], 'bottom_right': [bbox[0]+bbox[2], bbox[1]+bbox[3]]} boxp,boxc = create_3D_box(env_object,self.objdim[class_name]) box3D = [] for x in range(boxp.shape[0]): box3D.append(tuple(boxp[x])) boxc = list(boxc) projected_cuboid_centroid = list(env.project_point_to_camera_image(cuboid_centroid, camera_id)) projected_cuboid = [list(env.project_point_to_camera_image(point, camera_id)) for point in cuboid] projected_3DBB_centroid = list(env.project_point_to_camera_image(boxc, camera_id)) projected_3DBB = [list(env.project_point_to_camera_image(point, camera_id)) for point in box3D] if class_name not in self.object_settings["exported_object_classes"]: self.object_settings["exported_object_classes"].append(class_name) self.object_settings['exported_objects'].append({ "class": class_name, "segmentation_class_id": class_id, "cuboid_dimensions": self.objdim[class_name] }) self.data_dict = { "class": class_name, "class_id": class_id, "location":env_object.get_position(), "quaternion_xyzw": env_object.get_orientation(), "cuboid_centroid": cuboid_centroid, "projected_cuboid_centroid": projected_cuboid_centroid, "bounding_box": bounding_box, "cuboid": cuboid, "projected_cuboid": projected_cuboid, "box3D": box3D, "projected_3DBB": projected_3DBB, "projected_3DBB_centroid": projected_3DBB_centroid, } data["objects"].append(self.data_dict) def visualize(self): #DOPE image = im for projected_cuboid_point in data["objects"][-1]["projected_cuboid"]: image = cv2.circle(cv2.UMat(image), tuple(map(int, projected_cuboid_point)), 4, [0,255,0], -1) for projected_cuboid_point in data["objects"][-1]["projected_3DBB"]: image = cv2.circle(cv2.UMat(image), tuple(map(int, projected_cuboid_point)), 4, [255,0,0], -1) image = cv2.circle(cv2.UMat(image), tuple(map(int, [data["objects"][-1]["projected_cuboid_centroid"][0],data["objects"][-1]["projected_cuboid_centroid"][1]])), 4, [0,255,0], -1) image = cv2.circle(cv2.UMat(image), tuple(map(int, [data["objects"][-1]["projected_3DBB_centroid"][0],data["objects"][-1]["projected_3DBB_centroid"][1]])), 4, [255,0,0], -1) image = cv2.circle(cv2.UMat(image), tuple(map(int, [data["objects"][-1]["bounding_box"]["top_left"][0],data["objects"][-1]["bounding_box"]["top_left"][1]])), 4, [255,255,0], -1) image = cv2.circle(cv2.UMat(image), tuple(map(int, [data["objects"][-1]["bounding_box"]["bottom_right"][0],data["objects"][-1]["bounding_box"]["bottom_right"][1]])), 4, [255,255,0], -1) print(class_name) cv2.imshow('image',image) cv2.waitKey(1000) self.draw_bounding_box_3D() def draw_bounding_box_3D(self): #DOPE for points in range(7): #p.addUserDebugLine([0,0,0], [1,2,3], lineColorRGB=(0.31, 0.78, 0.47), lineWidth = 10) #points2=(points[0]+0.001,points[1]+0.001,points[2]+0.001) p.addUserDebugLine(data["objects"][-1]["box3D"][points],data["objects"][-1]["box3D"][points+1], lineColorRGB=(0.0, 0.0, 0.99), lineWidth = 4, lifeTime = 1) def write_json_end(self): #DOPE self.camera = {"camera_settings": []} for c in range(np.count_nonzero(config['active_cameras'])): #loop through active cameras camera_id=np.nonzero(config['active_cameras'])[0][c] intrinsic_settings = env.get_camera_opencv_matrix_values(camera_id) captured_image_size = {"width": config['camera_resolution'][0], "height": config['camera_resolution'][1]} self.camera["camera_settings"].append(dict( name="camera" + str(camera_id), intrinsic_settings=intrinsic_settings, captured_image_size=captured_image_size, )) if config['make_dataset'] in ["new", "resume"]: filename = "_camera_settings" + '.json' print("Storing {}.".format(filename)) with open(os.path.join(config['output_test_folder'], filename), 'w') as f: json.dump(self.camera, f, indent=4) with open(os.path.join(config['output_train_folder'], filename), 'w') as f: json.dump(self.camera, f, indent=4) filename = "_object_settings" + '.json' with open(os.path.join(config['output_test_folder'], filename), 'w') as f: json.dump(self.object_settings, f, indent=4) with open(os.path.join(config['output_train_folder'], filename), 'w') as f: json.dump(self.object_settings, f, indent=4) class GeneratorVae: """ Generator class for image dataset for VAE vision model training """ def __init__(self): self.object_settings = {"exported_object_classes": [], "exported_objects": []} self.env = None self.imsize = config["imsize"] # only supported format at the moment def get_env(self): """ Create environment for VAE dataset generation according to dataset config file """ self.env = RandomizedEnvWrapper(env=gym.make(config['env_name'], robot = config['robot'], render_on = True, gui_on = config['gui_on'], show_bounding_boxes_gui = config['show_bounding_boxes_gui'], changing_light_gui = config['changing_light_gui'], shadows_on = config['shadows_on'], color_dict = config['color_dict'], object_sampling_area = config['object_sampling_area'], num_objects_range = config['num_objects_range'], used_objects = used_objects, active_cameras = config['active_cameras'], camera_resolution = config['camera_resolution'], dataset = True, ), config_path = config['output_folder']+'/config_dataset.json') p.setGravity(0, 0, -9.81) def collect_data(self, steps): """ Collect data for VAE dataset Parameters: :param steps: (int) Number of episodes initiated during dataset generation """ data = np.zeros((steps, self.imsize, self.imsize, 3), dtype='f') for t in range(steps): self.env.reset(random_pos=True) self.env.render() action = [random.uniform(1,2) for x in range(6)] #action = [2,2,2,2,2,2] self.env.robot.reset_random(action) # send the Kuka arms up observation, reward, done, info = self.env.step(action) img = observation['camera_data'][6]['image'] imgs = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) img = cv2.resize(imgs[0:450,100:500], (self.imsize, self.imsize)) cv2.imshow("image", img) cv2.waitKey(1) padding = 6 - len(str(t+7999)) name = padding * "0" + str(t+7999) cv2.imwrite(os.path.join(dataset_pth, "img_{}.png".format(name)), img) data[t] = img print("Image {}/{}".format(t, steps)) self.env.close() # main if __name__ == "__main__": if len(sys.argv) <= 1: config_path = CONFIG_DEFAULT print('No config.json passed in argument. Loading default config: {}'.format(CONFIG_DEFAULT)) else: config_path = pkg_resources.resource_filename("myGym", sys.argv[1]) with open(config_path) as file: config = commentjson.load(file) # initialize dataset generator if config['dataset_type'] == 'coco': generator = GeneratorCoco() elif config['dataset_type'] == 'dope': generator = GeneratorDope() elif config['dataset_type'] == 'vae': generator = GeneratorVae() else: raise Exception("dataset_type in config: use one of 'coco', 'dope', 'vae'!") #prepare directories config['output_test_folder'] = config['output_folder'] + '/test' config['output_train_folder'] = config['output_folder'] + '/train' os.makedirs(config["output_test_folder"], exist_ok=True) os.makedirs(config["output_train_folder"], exist_ok=True) #define objects to appear in the env, add colors config['used_class_names'] = dict([x[1:3] for x in config['used_class_names_quantity']]) used_objects = [] for x in config['used_class_names_quantity']: for _ in range(x[0]): used_objects.append(x[1]) if config['color_dict'] == 'object_colors': color_names_to_rgb() config['texture_randomizer']['exclude'].append("objects") config['color_randomizer']['exclude'].append("objects") #write config.json to output_folder with open(config['output_folder']+'/config_dataset.json', 'w') as f: commentjson.dump(config, f) if config['dataset_type'] == 'vae': generator.get_env() dataset_pth = config['output_folder'] + '/train' generator.collect_data(config['num_episodes']) print("Dataset finished. Ready to train!") raise SystemExit(0) # initialize pybullet env env = generator.get_env() first_link_uid = env.robot.robot_uid robot_uids = np.array([((x + 1) << 24) + first_link_uid for x in range(-1, env.robot.gripper_index)],dtype=np.int32) gripper_uids = np.array([((x + 1) << 24) + first_link_uid for x in range(env.robot.gripper_index, env.robot.num_joints + 1)]) # check mode of writing files image_id = 0 #for paralel dataset generation >0, otherwise 0 if config['make_dataset'] == "new": #cleanup files files = glob.glob(os.path.join(config['output_test_folder'],'./*')) for f in files: os.remove(f) files = glob.glob(os.path.join(config['output_train_folder'],'./*')) for f in files: os.remove(f) data_train, data_test = generator.init_data() generator.episode_zero() elif config['make_dataset'] == 'resume': #resume print("Restoring dataset generation") data_test, data_train, image_id = generator.resume() elif (config['make_dataset'] == "display"): data_train, data_test = generator.init_data() generator.episode_zero() # the main loop for episode in range(int(image_id/(config['num_steps']*np.count_nonzero(config['active_cameras']))), config['num_episodes']): #loop through episodes print("episode: {}/{}".format(episode, config['num_episodes'])) #env reset #random_robot randomizes the init position of robots #random_pos randomizes the init positions of objects # if episode == 0: # generator.episode_zero() if episode % config['num_episodes_hard_reset'] == 0: #to prevent objects vanishing when GUI is on print("Hard reset!!!") env.reset(hard=True) env.reset(random_robot=config['random_arm_movement'], random_pos=True, hard=False) observation = env.get_observation() env_objects = observation["objects"] for t in range(config['num_steps']): #loop through steps # randomize the movements of robots (using joint control) action = env.action_space.sample() observation, reward, done, info = env.step(action) if t == config['num_steps']-1 or t%config['make_shot_every_frame'] == 0: # we only use frames from some steps env.render() #only render at the steps/frames we use for dataset for c in range(np.count_nonzero(config['active_cameras'])): #loop through active cameras camera_id=np.nonzero(config['active_cameras'])[0][c] image_id = image_id + 1 #unique isTestSample = np.random.random_sample() < config['train_test_split_pct'] # bool, test/train data? path = config['output_test_folder'] if isTestSample == True else config['output_train_folder'] #get dataset image and its mask im = observation["camera_data"][camera_id]["image"] im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR) #fix colors img_mask = observation["camera_data"][camera_id]["segmentation_mask"] obj_ids = [x for x in np.unique(img_mask)] #identify objects(links) in the camera view (in the image) img_mask = np.where(np.isin(img_mask,gripper_uids), gripper_uids[0], img_mask) #merge gripper links img_mask = np.where(np.isin(img_mask,robot_uids), robot_uids[0], img_mask) #merge robot links obj_ids = [x for x in np.unique(img_mask)] #identify merged objects in the camera view (in the image) #prepare data strucuture data, name = generator.data_struct_image() for object_uid in obj_ids: #loop through kuka and used objects in the image (in the camera view) if object_uid == robot_uids[0]: class_name = config['robot'] elif object_uid == gripper_uids[0]: class_name = env.robot.get_name() else: env_object_list = list(filter(lambda object: object.uid == object_uid, env_objects)) if len(env_object_list) > 0: env_object = env_object_list[0] class_name = env_object.get_name() else: continue if class_name in config['used_class_names']: class_id = config['used_class_names'][class_name] generator.get_append_annotations() #annotate and append annotations if config['visualize']: #visualize generator.visualize() #store dataset image and info generator.store_image_info() if config['make_dataset'] in ["new", "resume"]: cv2.imwrite(os.path.join(path, name), im, [int(cv2.IMWRITE_JPEG_QUALITY), 70]) if done: print("Episode finished after {} timesteps".format(t+1)) break # write JSON annotations every n periods or at the end if episode % config['autosafe_episode'] == 0 or episode == config['num_episodes']-1: generator.write_json_end() data_train, data_test = generator.init_data() # end print('DATASET FINISHED')
2.75
3
assetoolz/assets.py
aspyatkin/assetoolz
0
12795513
import os from .cache import Cache from .models import CacheEntry from .utils import get_file_hash, save_file, load_file import shutil import io from .compiler import ExpressionProcessor from .expressions import stylesheets, scripts, html import subprocess import tempfile class AssetCollection(object): def __init__(self, file_list, settings): self._assets = [] self._settings = settings for path in file_list: res = get_asset_objects(path, settings) if type(res) is list: for asset in res: self._assets.append(asset) self._assets[-1]._collection = self self._assets[-1]._settings = settings else: if res is None: continue self._assets.append(res) self._assets[-1]._collection = self self._assets[-1]._settings = settings def find_asset(self, path, lang): for asset in self._assets: if asset._path == path and asset._lang == lang: return asset return None def pick_dependencies(self): print('Found {count:d} assets'.format(count=len(self._assets))) if self._settings.verbose: print("Picking dependencies...") for asset in self._assets: asset.parse() if self._settings.verbose: print(asset) print('Dependencies {dependencies}\n'.format( dependencies=asset._dependencies)) self._assets = DependencyResolver.topological_sort(self._assets) if self._settings.verbose: print('Build order:\n{collection}\n'.format( collection=self._assets)) def build(self): print('Building assets...') for asset in self._assets: asset.compile(force=self._settings.force) print('Build done.') class DependencyResolver(object): @staticmethod def topological_sort(assets_unsorted): assets_sorted = [] while len(assets_unsorted) > 0: acyclic = False for asset in assets_unsorted: for dependency in asset._dependencies: if dependency in assets_unsorted: break else: acyclic = True assets_unsorted.remove(asset) assets_sorted.append(asset) if not acyclic: raise RuntimeError('A cyclic dependency occurred') return assets_sorted class Asset(object): FILE = 0 STRING = 1 def __init__(self, resource_type, path, lang): self._resource_type = resource_type self._path = path self._lang = lang self._collection = None self._settings = None self._dependencies = [] self._tool_cache = Cache() self._flag_modified = False def is_partial(self, path): return os.path.basename(path).startswith("_") def get_target_path(self, **opts): common_prefix = os.path.commonprefix([ self._path, self._get_source_dir()]) path_part = self._path[len(common_prefix)+1:] if 'hash' in opts: parts = os.path.splitext(path_part) new_filename = '%s-%s' % (parts[0], opts['hash']) path_part = '%s%s' % (new_filename, parts[1]) if 'change_extension' in opts: new_ext = opts['change_extension'] parts = os.path.splitext(path_part) path_part = '%s%s' % (parts[0], new_ext) if 'lang' in opts and not(opts['lang'] is None): lang = opts['lang'] parts = os.path.splitext(path_part) path_part = '%s-%s%s' % (parts[0], lang, parts[1]) if self.is_partial(path_part): target_path = os.path.join(self._get_partials_dir(), path_part) else: target_path = os.path.join(self._get_target_dir(), path_part) return target_path def __repr__(self): if self._lang is None: t = '{path}' else: t = '{path} ({lang})' common_prefix = os.path.commonprefix([ self._path, self._get_source_dir()]) return t.format(path=self._path[len(common_prefix) + 1:], lang=self._lang) def add_dependency(self, path, lang=None): dependency = self._collection.find_asset(path, lang) if dependency: if dependency not in self._dependencies: self._dependencies.append(dependency) else: print("Couldn't find dependency with path %s" % path) def __eq__(self, other): return self._path == other._path and self._lang == other._lang def __ne__(self, other): return self._path != other._path and self._lang != other._lang def parse(self): self._parse() def dependencies_modified(self): for dep_asset in self._dependencies: if dep_asset._flag_modified: return True return False def compile(self, force=False): if self._resource_type == Asset.FILE: cache_entry = self._tool_cache.find_entry(self._path, self._lang) file_modified = True if cache_entry is None\ else cache_entry.file_modified() or self.dependencies_modified() if file_modified or force: if cache_entry: if os.path.exists(cache_entry.target): os.remove(cache_entry.target) target_path = self._get_target_path() self._compile(target_path) if cache_entry: cache_entry.target = target_path self._tool_cache.update(cache_entry) print('Updated {asset}'.format(asset=self)) else: cache_entry = CacheEntry(self._path, target_path, self._lang) self._tool_cache.add(cache_entry) print('Created {asset}'.format(asset=self)) self._flag_modified = True else: if self._settings.verbose: print('Cached {asset}'.format(asset=self)) else: print("String asset") class TextAsset(Asset): def __init__(self, path, lang=None): super(TextAsset, self).__init__(Asset.FILE, path, lang) self._data = None split = os.path.splitext(path) self._basename = split[0] self._extension = split[1] def load(self): with io.open(self._path, 'r', encoding='utf-8') as f: self._data = f.read() def save(self, path): if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) save_file(path, self._data) class StylesheetAsset(TextAsset): @staticmethod def supported_extensions(): return ['.css', '.scss'] @staticmethod def get_languages(settings): return settings.stylesheets.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'stylesheets') def _get_source_dir(self): return self._settings.stylesheets.source def _get_target_dir(self): return self._settings.stylesheets.target def _get_target_path(self): return self.get_target_path(hash=get_file_hash(self._path, unique=True)) def _parse(self): self.load() self._processor = ExpressionProcessor(self, [ stylesheets.ImageUrlExpression, stylesheets.IncludeExpression, stylesheets.FontUrlExpression ]) self._processor.parse() def minify(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.css") save_file(source_file, self._data) target_file = os.path.join(temp_path, "target.css") proc = subprocess.Popen( [ "java", "-Xss100m", "-jar", self._settings.yuicompressor_file, "--type", "css", "-o", target_file, source_file ], stdout=subprocess.PIPE, stdin=subprocess.PIPE, ) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def _compile(self, target_path): self._processor.compile(self._settings, target_path) if self._settings.minify and not self.is_partial(target_path): if self._settings.verbose: print('Minifying {asset}'.format(asset=self)) self.minify() self.save(target_path) class ScriptAsset(TextAsset): @staticmethod def supported_extensions(): return ['.js', '.coffee'] @staticmethod def get_languages(settings): return settings.scripts.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'scripts') def _get_source_dir(self): return self._settings.scripts.source def _get_target_dir(self): return self._settings.scripts.target def _get_target_path(self): return self.get_target_path( hash=get_file_hash(self._path, unique=True), change_extension='.js' ) def _parse(self): self.load() self._processor = ExpressionProcessor(self, [ scripts.IncludeExpression, scripts.ScriptUrlExpression, scripts.AppConfExpression, scripts.ResourceUrlExpression ]) self._processor.parse() def minify(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.js") save_file(source_file, self._data) target_file = os.path.join(temp_path, "target.js") proc = subprocess.Popen( [ "java", "-jar", self._settings.yuicompressor_file, "--type", "js", "-o", target_file, source_file ], stdout=subprocess.PIPE, stdin=subprocess.PIPE, ) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def compile_coffee(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.coffee") save_file(source_file, self._data) target_file = os.path.join(temp_path, "source.js") proc = subprocess.Popen( [ self._settings.coffee_bin, "-c", source_file ], stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def _compile(self, target_path): self._processor.compile(self._settings, target_path) if self._extension == '.coffee': if self._settings.verbose: print('Using CoffeeScript Compiler for {asset}'.format(asset=self)) self.compile_coffee() if self._settings.minify and not self.is_partial(target_path): if self._settings.verbose: print('Minifying {asset}'.format(asset=self)) self.minify() self.save(target_path) class HtmlAsset(TextAsset): @staticmethod def supported_extensions(): return ['.html'] @staticmethod def get_languages(settings): return settings.html.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'html') def _get_source_dir(self): return self._settings.html.source def _get_target_dir(self): return self._settings.html.target def _get_target_path(self): return self.get_target_path(lang=self._lang) def _parse(self): self.load() self._processor = ExpressionProcessor(self, [ html.IncludeExpression, html.StylesheetUrlExpression, html.ScriptUrlExpression, html.ImageUrlExpression, html.AppConfExpression, html.I18nExpression, html.I18nTemplateExpression, html.ResourceUrlExpression ]) self._processor.parse() def minify(self): temp_path = tempfile.mkdtemp() source_file = os.path.join(temp_path, "source.html") save_file(source_file, self._data) target_file = os.path.join(temp_path, "target.html") proc = subprocess.Popen( [ "java", "-jar", self._settings.htmlcompressor_file, "--type", "html", "--mask", "*.html", "-o", target_file, source_file, "--remove-intertag-spaces" ], stdout=subprocess.PIPE, stdin=subprocess.PIPE ) out, err = proc.communicate() self._data = load_file(target_file) shutil.rmtree(temp_path) def _compile(self, target_path): self._processor.compile(self._settings, target_path) if self._settings.minify and not self.is_partial(target_path): if self._settings.verbose: print('Minifying {asset}'.format(asset=self)) self.minify() self.save(target_path) class BinaryAsset(Asset): def __init__(self, path, lang=None): super(BinaryAsset, self).__init__(Asset.FILE, path, lang) def _get_target_path(self): return self.get_target_path(hash=get_file_hash(self._path, unique=True)) def _parse(self): pass def _compile(self, target_path): if not os.path.exists(os.path.dirname(target_path)): os.makedirs(os.path.dirname(target_path)) shutil.copy(self._path, target_path) class ImageAsset(BinaryAsset): def __init__(self, path, lang=None): super(ImageAsset, self).__init__(path, lang) @staticmethod def supported_extensions(): return ['.png', '.jpg', '.gif'] @staticmethod def get_languages(settings): return settings.images.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'images') def _get_source_dir(self): return self._settings.images.source def _get_target_dir(self): return self._settings.images.target class FontAsset(BinaryAsset): def __init__(self, path, lang=None): super(FontAsset, self).__init__(path, lang) @staticmethod def supported_extensions(): return ['.eot', '.svg', '.ttf', '.woff'] @staticmethod def get_languages(settings): return settings.fonts.languages def _get_partials_dir(self): return os.path.join(self._settings.partials, 'fonts') def _get_source_dir(self): return self._settings.fonts.source def _get_target_dir(self): return self._settings.fonts.target def get_asset_objects(path, settings): asset_classes = [ ImageAsset, FontAsset, StylesheetAsset, HtmlAsset, ScriptAsset ] file_ext = os.path.splitext(path)[1] for asset_class in asset_classes: if file_ext in asset_class.supported_extensions(): langs = asset_class.get_languages(settings) if langs is None: return asset_class(path, None) else: return [asset_class(path, lang) for lang in langs] return None
2.265625
2
PIP/Class Program/ClassQuestion1.py
ankitrajbiswal/SEM_5
10
12795514
def rectangle(breadth,length): return breadth*length,2*(length+breadth) x,y=rectangle(float(input("Enter breatdh ")),float(input("Enter length "))) print("Area ",x,"Perimeter ",y)
4.09375
4
data_mgmt/data_prep/gen_motif.py
theandyb/smaug-redux
0
12795515
from itertools import product alpha = ['A', 'T', 'C', 'G'] motifs = [a+b+c+d+e+f+g for a,b,c,d,e,f,g in product(alpha, repeat=7)] with open('motifs7.txt', 'w') as f: for item in motifs: f.write("%s\n" % item)
2.875
3
bak/extract/misc.py
ashlinrichardson/bcstats_ohcs_craigslist
2
12795516
<filename>bak/extract/misc.py import os import sys import csv import time args = sys.argv def err(msg): print("Error:", msg) sys.exit(1) # parallel for loop def parfor(my_function, my_inputs): # evaluate function in parallel, and collect the results import multiprocessing as mp pool = mp.Pool(mp.cpu_count()) result = pool.map(my_function, my_inputs) return(result)
2.59375
3
TPP_RL.py
SudoMishra/mtech_thesis
0
12795517
import networkx as nx graph = nx.DiGraph() nodes = [f"{i}" for i in range(1, 13)] nodes.extend([chr(i) for i in range(1, 13)]) graph.add_nodes_from([]) class Node: def __init__(self, name, direct, sig): self.name = name self.direct = direct self.sig = sig class Edge: def __init__(self, prev, to, tp, direct): self.prev = prev self.to = to self.tp = tp self.direct = direct
3.28125
3
djangoflutterwave/tests/test_template_tags.py
bdelate/django-flutterwave
9
12795518
<reponame>bdelate/django-flutterwave # stdlib imports from unittest.mock import patch # django imports from django.test import TestCase # 3rd party imports # project imports from djangoflutterwave.tests.factories import FlwPlanModelFactory, UserFactory from djangoflutterwave.templatetags.djangoflutterwave_tags import pay_button_params class TestTemplateTags(TestCase): """Test suite for template tags""" @patch( "djangoflutterwave.templatetags.djangoflutterwave_tags.create_transaction_ref" ) @patch("djangoflutterwave.templatetags.djangoflutterwave_tags.settings") @patch("djangoflutterwave.templatetags.djangoflutterwave_tags.reverse") def test_pay_button_params( self, mock_reverse, mock_settings, mock_create_transaction_ref ): """Ensure a json string is returned containing the correct tx_ref, public_key and redirect_url""" mock_reverse.return_value = "test" mock_settings.FLW_PUBLIC_KEY = "test" mock_create_transaction_ref.return_value = "txref" plan = FlwPlanModelFactory() user = UserFactory() expected_response = ( '{"tx_ref": "txref"' ', "redirect_url": "test", "public_key": "test"}' ) actual_response = pay_button_params(user_pk=user.pk, plan_pk=plan.pk) mock_reverse.assert_called() self.assertEqual(expected_response, actual_response)
2.515625
3
torchnet/containers/models/__init__.py
a5chin/torchnet
0
12795519
<reponame>a5chin/torchnet from .classification import Classifier
0.976563
1
datastructure/practice/c7/r_7_1.py
stoneyangxu/python-kata
0
12795520
import unittest from datastructure.links.Node import Node def from_second(head): if head is None: raise ValueError("Linked list is empty") return head._next class MyTestCase(unittest.TestCase): def test_something(self): head = Node(0, None) current = head for i in range(1, 6): new_node = Node(i, None) current._next = new_node current = new_node second = from_second(head) result = [] node = second while node is not None: result.append(node._element) node = node._next self.assertEqual([1, 2, 3, 4, 5], result) if __name__ == '__main__': unittest.main()
3.515625
4
backend/project/dica/migrations/0001_initial.py
rafaelsanches123/megahack-segunda-edicao-2020
1
12795521
<gh_stars>1-10 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='DicaModel', fields=[ ('descricao', models.CharField(max_length=200, primary_key=True)), ], options={ 'db_table': 'dica', }, ), ]
1.828125
2
Project1-MinNE-python/src/layer/net.py
MrCaiDev/uestc-CNTProject
1
12795522
<gh_stars>1-10 from time import sleep from utils.coding import * from utils.frame import * from utils.params import * from layer._abstract import AbstractLayer class NetLayer(AbstractLayer): """主机网络层。 实现了主机应用层 <-> 主机网络层 <-> 主机物理层的消息收发。 """ def __init__(self, device_id: str) -> None: """初始化主机网络层。 Args: device_id: 该主机的设备号。 """ self.__device_id = device_id self.__app = f"1{device_id}300" self.__port = f"1{device_id}200" self.__phy = f"1{device_id}100" super().__init__(self.__port) self.__normal_builder = FrameBuilder() self.__normal_builder.build( src=self.__app, reply_state=ReplyState.ACK, ) self.__reply_builder = FrameBuilder() self.__reply_builder.build( src=self.__app, session_state=SessionState.NORMAL, data="", ) self.__parser = FrameParser() def __str__(self) -> str: """打印设备号与端口号。""" return f"[Device {self.__device_id}] <Net Layer @{self.__port}>\n{'-'*30}" def receive_all(self) -> tuple[str, bool]: """接收来自本机应用层与本机物理层的消息。 Returns: - [0] 接收到的消息。 - [1] 本机应用层发来为 `True`,本机物理层发来为 `False`。 """ while True: message, port, _ = self._receive(bufsize=Network.IN_NE_BUFSIZE) if port == self.__app: return message, True elif port == self.__phy: return bits_to_string(message), False else: continue def receive_from_app(self) -> str: """接收来自本机应用层的消息。 Returns: 接收到的消息。 """ port = "" while port != self.__app: message, port, _ = self._receive(bufsize=Network.IN_NE_BUFSIZE) return message def receive_from_phy(self, timeout: int = Network.RECV_TIMEOUT) -> tuple[str, bool]: """接收来自本机物理层的消息。 Args: timeout: 可选,接收超时时间,单位为秒,默认为 `RECV_TIMEOUT`。 Returns: - [0] 接收到的消息。 - [1] 接收成功为 `True`,接收超时为 `False`。 """ binary, _, success = self._receive(timeout=timeout) binary = bits_to_string(binary) if success else binary return binary, success def send_to_app(self, message: str) -> int: """向本机应用层发送消息。 Args: message: 要发送的消息。 Returns: 总共发送的字节数。 """ return self._send(message, self.__app) def send_to_phy(self, binary: str) -> int: """向本机物理层发送消息。 Args: binary: 要发送的消息。 Returns: 总共发送的字节数。 """ # 流量控制。 sleep(Network.FLOW_INTERVAL) return self._send(string_to_bits(binary), self.__phy) def should_receive(self, port: str) -> bool: """判断本层是否应该接收某帧。 Args: 发来的帧的目的端口号。 Returns: 应该接收为 `True`,不应该接收为 `False`。 """ return port in (self.__app, Topology.BROADCAST_PORT) def build_pool(self, app_data: dict) -> list[Frame]: """将消息打包为帧。 Args: app_data: 本机应用层传来的消息数据。 Returns: 打包的帧列表。 """ message = app_data["message"] frame_num = Frame.calc_num(message) # 第一帧是请求帧。 request_frame = self.__normal_builder.build( session_state=SessionState.REQ_TXT if app_data["msgtype"] == MessageType.TEXT else SessionState.REQ_IMG, dst=app_data["dst"], ) frame_pool = [request_frame] # 中间的帧是常规帧。 frame_pool.extend( [ self.__normal_builder.build( session_state=SessionState.NORMAL, data=message[ i * FrameParam.DATA_LEN : (i + 1) * FrameParam.DATA_LEN ], ) for i in range(frame_num - 1) ] ) # 最后一帧是结束帧。 final_frame = self.__normal_builder.build( session_state=SessionState.FIN, data=message[(frame_num - 1) * FrameParam.DATA_LEN :], ) frame_pool.append(final_frame) return frame_pool def build_ack(self, dst: str) -> Frame: """生成 ACK 帧。 Args: dst: ACK 的目的地,即原消息的源。 Returns: 生成的 ACK 帧。 """ return self.__reply_builder.build(reply_state=ReplyState.ACK, dst=dst) def build_nak(self, dst: str) -> Frame: """生成 NAK 帧。 Args: dst: NAK 的目的地,即原消息的源。 Returns: 生成的 NAK 帧。 """ return self.__reply_builder.build(reply_state=ReplyState.NAK, dst=dst) def parse_reply(self, binary: str) -> bool: """解析回复。 Args: binary: 含有回复的 01 字符串。 Returns: ACK 为 `True`,NAK 为 `False`。 """ response = self.__parser.parse(binary) return True if response.reply_state == ReplyState.ACK else False def parse_message(self, binary: str) -> Frame: """解析消息。 Args: binary: 含有消息的 01 字符串。 Returns: 收到的消息帧。 """ return self.__parser.parse(binary)
2.4375
2
gammapy/astro/population/tests/test_simulate.py
Rishank2610/gammapy
155
12795523
# Licensed under a 3-clause BSD style license - see LICENSE.rst from numpy.testing import assert_allclose, assert_equal import astropy.units as u from astropy.table import Table from gammapy.astro.population import ( add_observed_parameters, add_pulsar_parameters, add_pwn_parameters, add_snr_parameters, make_base_catalog_galactic, make_catalog_random_positions_cube, make_catalog_random_positions_sphere, ) def test_make_catalog_random_positions_cube(): table = make_catalog_random_positions_cube(random_state=0) d = table[0] assert len(table) == 100 assert len(table.colnames) == 3 assert table["x"].unit == "pc" assert_allclose(d["x"], 0.0976270078546495) assert table["y"].unit == "pc" assert_allclose(d["y"], 0.3556330735924602) assert table["z"].unit == "pc" assert_allclose(d["z"], -0.37640823601179485) table = make_catalog_random_positions_cube(dimension=2, random_state=0) assert_equal(table["z"], 0) table = make_catalog_random_positions_cube(dimension=1, random_state=0) assert_equal(table["y"], 0) assert_equal(table["z"], 0) def test_make_catalog_random_positions_sphere(): table = make_catalog_random_positions_sphere(random_state=0) d = table[0] assert len(table) == 100 assert len(table.colnames) == 3 assert table["lon"].unit == "rad" assert_allclose(d["lon"], 3.4482969442579128) assert table["lat"].unit == "rad" assert_allclose(d["lat"], 0.36359133530192267) assert table["distance"].unit == "pc" assert_allclose(d["distance"], 0.6780943487897606) def test_make_base_catalog_galactic(): table = make_base_catalog_galactic(n_sources=10, random_state=0) d = table[0] assert len(table) == 10 assert len(table.colnames) == 13 assert table["age"].unit == "yr" assert_allclose(d["age"], 548813.50392732478) assert table["n_ISM"].unit == "cm-3" assert_allclose(d["n_ISM"], 1.0) assert table["spiralarm"].unit is None assert d["spiralarm"] == "Crux Scutum" assert table["x_birth"].unit == "kpc" assert_allclose(d["x_birth"], -5.856461, atol=1e-5) assert table["y_birth"].unit == "kpc" assert_allclose(d["y_birth"], 3.017292, atol=1e-5) assert table["z_birth"].unit == "kpc" assert_allclose(d["z_birth"], 0.049088, atol=1e-5) assert table["x"].unit == "kpc" assert_allclose(d["x"], -5.941061, atol=1e-5) assert table["y"].unit == "kpc" assert_allclose(d["y"], 3.081642, atol=1e-5) assert table["z"].unit == "kpc" assert_allclose(d["z"], 0.023161, atol=1e-5) assert table["vx"].unit == "km/s" assert_allclose(d["vx"], -150.727104, atol=1e-5) assert table["vy"].unit == "km/s" assert_allclose(d["vy"], 114.648494, atol=1e-5) assert table["vz"].unit == "km/s" assert_allclose(d["vz"], -46.193814, atol=1e-5) assert table["v_abs"].unit == "km/s" assert_allclose(d["v_abs"], 194.927693, atol=1e-5) def test_add_snr_parameters(): table = Table() table["age"] = [100, 1000] * u.yr table["n_ISM"] = u.Quantity(1, "cm-3") table = add_snr_parameters(table) assert len(table) == 2 assert table.colnames == ["age", "n_ISM", "E_SN", "r_out", "r_in", "L_SNR"] assert table["E_SN"].unit == "erg" assert_allclose(table["E_SN"], 1e51) assert table["r_out"].unit == "pc" assert_allclose(table["r_out"], [1, 3.80730787743]) assert table["r_in"].unit == "pc" assert_allclose(table["r_in"], [0.9086, 3.45931993743]) assert table["L_SNR"].unit == "1 / s" assert_allclose(table["L_SNR"], [0, 1.0768e33]) def test_add_pulsar_parameters(): table = Table() table["age"] = [100, 1000] * u.yr table = add_pulsar_parameters(table, random_state=0) assert len(table) == 2 assert len(table.colnames) == 10 assert table["age"].unit == "yr" assert_allclose(table["age"], [100, 1000]) assert table["P0"].unit == "s" assert_allclose(table["P0"], [0.214478, 0.246349], atol=1e-5) assert table["P1"].unit == "" assert_allclose(table["P1"], [6.310423e-13, 4.198294e-16], atol=1e-5) assert table["P0_birth"].unit == "s" assert_allclose(table["P0_birth"], [0.212418, 0.246336], atol=1e-5) assert table["P1_birth"].unit == "" assert_allclose(table["P1_birth"], [6.558773e-13, 4.199198e-16], atol=1e-5) assert table["CharAge"].unit == "yr" assert_allclose(table["CharAge"], [2.207394e-21, 1.638930e-24], atol=1e-5) assert table["Tau0"].unit == "yr" assert_allclose(table["Tau0"], [5.131385e03, 9.294538e06], atol=1e-5) assert table["L_PSR"].unit == "erg / s" assert_allclose(table["L_PSR"], [2.599229e36, 1.108788e33], rtol=1e-5) assert table["L0_PSR"].unit == "erg / s" assert_allclose(table["L0_PSR"], [2.701524e36, 1.109026e33], rtol=1e-5) assert table["B_PSR"].unit == "G" assert_allclose(table["B_PSR"], [1.194420e13, 3.254597e11], rtol=1e-5) def test_add_pwn_parameters(): table = make_base_catalog_galactic(n_sources=10, random_state=0) # To compute PWN parameters we need PSR and SNR parameters first table = add_snr_parameters(table) table = add_pulsar_parameters(table, random_state=0) table = add_pwn_parameters(table) d = table[0] assert len(table) == 10 assert len(table.colnames) == 27 assert table["r_out_PWN"].unit == "pc" assert_allclose(d["r_out_PWN"], 1.378224, atol=1e-4) def test_add_observed_parameters(): table = make_base_catalog_galactic(n_sources=10, random_state=0) table = add_observed_parameters(table) d = table[0] assert len(table) == 10 assert len(table.colnames) == 20 assert table["distance"].unit == "pc" assert_allclose(d["distance"], 13016.572756, atol=1e-5) assert table["GLON"].unit == "deg" assert_allclose(d["GLON"], -27.156565, atol=1e-5) assert table["GLAT"].unit == "deg" assert_allclose(d["GLAT"], 0.101948, atol=1e-5) assert table["VGLON"].unit == "deg / Myr" assert_allclose(d["VGLON"], 0.368166, atol=1e-5) assert table["VGLAT"].unit == "deg / Myr" assert_allclose(d["VGLAT"], -0.209514, atol=1e-5) assert table["RA"].unit == "deg" assert_allclose(d["RA"], 244.347149, atol=1e-5) assert table["DEC"].unit == "deg" assert_allclose(d["DEC"], -50.410142, atol=1e-5) def test_chain_all(): # Test that running the simulation functions in chain works table = make_base_catalog_galactic(n_sources=10, random_state=0) table = add_snr_parameters(table) table = add_pulsar_parameters(table, random_state=0) table = add_pwn_parameters(table) table = add_observed_parameters(table) d = table[0] # Note: the individual functions are tested above. # Here we just run them in a chain and do very basic asserts # on the output so that we make sure we notice changes. assert len(table) == 10 assert len(table.colnames) == 34 assert table["r_out_PWN"].unit == "pc" assert_allclose(d["r_out_PWN"], 1.378224, atol=1e-4) assert table["RA"].unit == "deg" assert_allclose(d["RA"], 244.347149, atol=1e-5)
1.953125
2
SRD-onef.py
sankeyad/strongly-regular-designs
0
12795524
<reponame>sankeyad/strongly-regular-designs<gh_stars>0 # SRD-onef.py # Reads a single text file of strongly regular graph parameters. # Output is feasible parameter sets for strongly regular designs admitting # strongly regular decomposition, in which two graphs from the input file are # the SRGs on the two fibres of the SRD. # Usage: python3.7 SRD-onef.py <infile> <outfile> # The infile should be a tab-separated text file with one SRG parameter set in the form 'n k lambda mu' per line, e.g.: # 204 63 22 18 # 204 28 2 4 # 205 96 50 40 # 205 68 15 26 # 208 75 30 25 # 208 81 24 36 #import time #begin_time = time.perf_counter() from sys import argv script, infile, outfile = argv from tabulate import tabulate import math def is_integer_num(n): if isinstance(n, int): return True if isinstance(n, float): return n.is_integer() return False def check_4_srd(graph1, graph2): # checks a given pair of srgs n1 = graph1[0] k1 = graph1[1] lam1 = graph1[2] mu1 = graph1[3] # compute r1, s1 c = lam1 - mu1 delta = c**2 + 4*(k1 - mu1) d = math.sqrt(delta) r1 = ( c + d )/2 s1 = ( c - d )/2 n2 = graph2[0] k2 = graph2[1] lam2 = graph2[2] mu2 = graph2[3] # compute r2, s2 c = lam2 - mu2 delta = c**2 + 4*(k2 - mu2) d = math.sqrt(delta) r2 = ( c + d )/2 s2 = ( c - d )/2 table = [] if k2 < k1: S1 = 2 + k1 - k2 else: S1 = 2 n = n1 + n2 while S1 < n1: S2 = k2 + S1 - k1 k0 = k1 + S2 for a1 in range(0, S1): a2 = a1 + lam2 - lam1 lam0 = a1 + lam2 if a2 >= 0 and lam0 < k0: # then carry on if a1 < S1*S2/n2: bot = a1+1 top = S1 else: bot = 0 top = a1 for b1 in range(bot, top): # b1 < a1 in DGH but need to allow b1 < S1. b2 = b1 + mu2 - mu1 mu0 = b1 + mu2 c = lam0 - mu0 delta = c**2 + 4*(k0 - mu0) d = math.sqrt(delta) r = ( c + d )/2 s = ( c - d )/2 f = (( n-1 )*(-s) - k0)/(r-s) # check these parameters first if b2 == a2 or b2 < 0 or n-2*k0+mu0-2 < 0 or n-2*k0+lam0 < 0: continue #any of those would be invalid elif (n-k0-1)*mu0 != k0*(k0-lam0-1): continue elif r*s*s - 2*r*r*s - r*r - k0*r + k0*s*s + 2*k0*s < 0 or r*r*s - 2*r*s*s - s*s - k0*s + k0*r*r + 2*k0*r < 0: # above checks Krein parameters on gamma0 continue elif not is_integer_num(f): # checks integrality of eigenvalue multiplicities continue else: # carry on N1 = a2*k1/S2 N2 = a1*k2/S1 if is_integer_num(N1) and is_integer_num(N2) and n1 != S1 and n2 !=S2: # then good P1 = ( (k1-N1)*S1 )/(n1-S1) # check it's an integer P2 = ( (k2-N2)*S2 )/(n2-S2) if is_integer_num(P1) and is_integer_num(P2): rho1 = N1-P1 rho2 = N2-P2 sig1 = -(S2-b2)/(a2-b2) sig2 = -(S1-b1)/(a1-b1) if (rho1 == r1 and sig1 == s1) or (rho1 == s1 and sig1 == r1): # then all is good, keep going if (rho2 == r2 and sig2 == s2) or (rho2 == s2 and sig2 == r2): # print out parameters table.append([n1,k1,lam1,mu1,rho1,sig1,n,k0,lam0,mu0,r,s,S1,a1, b1, N1, P1]) table.append([n2,k2,lam2,mu2,rho2,sig2," "," "," "," "," "," ",S2,a2, b2, N2, P2]) else: continue # print(S1, "failed at eigenvalue stage") else: continue # print(S1, "failed at eigenvalue stage") else: continue #print("P1 or P2 not integer") else: continue #print("N1 or N2 not integer") else: continue #print("a2 or lam0 problem") S1 += 1 return(table) # end of function check_4_srd #___________________________________ # start of main graphs = open(infile) params = open(outfile, 'w') results = [] # will be table of feasible parameters for srds arising from a pair of srgs g1 = [0,0,0,0] g2 = [0,0,0,0] lines = [] # first, extract a pair of lines from the text file of srgs i = 1 j = 1 count = 0 lines.append(graphs.readline().split('\t')) while lines[ len(lines)-1 ] != ['']: lines.append(graphs.readline().split('\t') ) count = len(lines)-1 # this is because last item in list is now '' for i in range(0,count): for j in range(i, count): line1 = lines[i] # reads the text, separated by spaces, into list line2 = lines[j] for entry in range(0,4): # converting text to integer g1[entry] = int( line1[entry] ) g2[entry] = int( line2[entry] ) newones = check_4_srd(g1,g2) # new sets are then appended to the results table results += newones # Loops through the input file to compare all pairs, including g2=g1. # Uses tabulate to write results with a header row. params.write(tabulate(results, headers = ["n_i", "k_i", "lam_i", "mu_i","rho_i", "sig_i", "n", "k", "lam", "mu", "r", "s", "S_i", "a_i", "b_i", "N_i", "P_i"])) params.close() graphs.close() # print( time.perf_counter() - begin_time )
2.90625
3
foreshadow/smart/intent_resolving/core/data_set_parsers/base_data_set_parser.py
adithyabsk/foreshadow
25
12795525
"""Class definition for the DataSetParser ABC and FeaturizerMixin.""" from abc import ABC, abstractmethod from pathlib import Path from typing import Callable, Generator, List, Tuple, Type import numpy as np import pandas as pd from sklearn.preprocessing import RobustScaler class FeaturizerMixin: """Mixin to provide secondary featurization functionality.""" def featurize_secondary(self): """ Perform secondary featurization. Sequentially trigger each featurizer to extract secondary features. The extracted secondary metafeatures are stored in each featurizer's `sec_metafeatures` and `sec_test_metafeatures` attributes. These extracted metafeatures will then be collected and appended column-wise to the `metafeature` and `test_metafeature` attributes of the DataSetParser subclass instance. """ for featurizer in self.featurizers: if type(featurizer).__name__ == "RawDataSetFeaturizerViaLambda": featurizer.featurize( self._create_raw_generator(), keys=self.metafeatures, test_keys=self.test_metafeatures, multiprocess=self._multiprocess_raw_secondary, ) else: featurizer.featurize( meta_df=self.metafeatures, test_meta_df=self.test_metafeatures, ) self.__add_secondary_metafeatures() def __add_secondary_metafeatures(self): """Add secondary features to the training and test metafeature attributes.""" # Get secondary feature names if self.metafeatures is not None: sec_feature_names = list(self.metafeatures) + [ name for featurizer in self.featurizers for name in featurizer.sec_feature_names ] elif self.test_metafeatures is not None: sec_feature_names = list(self.test_metafeatures) + [ name for featurizer in self.featurizers for name in featurizer.sec_feature_names ] if self.metafeatures is not None: sec_metafeatures = [x.sec_metafeatures for x in self.featurizers] self.metafeatures = pd.concat( [self.metafeatures, *sec_metafeatures], axis=1, ignore_index=True, ) self.metafeatures.columns = sec_feature_names if self.test_metafeatures is not None: sec_test_metafeatures = [ x.sec_test_metafeatures for x in self.featurizers ] self.test_metafeatures = pd.concat( [self.test_metafeatures, *sec_test_metafeatures], axis=1, ignore_index=True, ) self.test_metafeatures.columns = sec_feature_names class DataSetParser(ABC, FeaturizerMixin): """ Abstract base class to load and extract metafeatures from raw data sets. FeaturizerMixin provides the `.featurize` method. Instance attributes: src {Path} -- Path to data set file on disk. metafeatures {pd.DataFrame} -- Metafeatures extracted from the raw data set. Each metafeature row corresponds to a feature column in the raw data set. labels {pd.Series} -- Label corresponding to each metafeature. test_src {Path} -- Optional path to test raw data set file on disk. This attribute applies more to the subclasses of MetaDataSetParser. test_metafeatures {pd.DataFrame} -- Optional metafeatures extracted from the test raw data set. test_labels {pd.Series} -- Optional labels corresponding to each test metafeature row. scaler {RobustScaler} -- A scaler to handle normalize metafeatures before serving them for training. featurizers: {List} -- A list of featurizers that performs secondary metafeaturizations. Class attributes: NUM_BASE_METAFEATURES {int} -- Number of base metafeatures. Used to separate base and secondary metafeatures. Abstract methods: load_data_set -- Load the data set and perform necessarily cleaning and parsing. featurize_base -- Featurize base metafeatures. normalize_features -- Performs normalization on the metafeatures and test metafeatures (if provided). _create_raw_generator -- Returns a generator of raw data sets. This supports the MetaDataSetFeaturizerViaLambda class functionality. """ NUM_BASE_METAFEATURES = ( 7 ) # Includes (total_val, min, max, mean, std, num_nans, num_distincts) def __init__(self): """Init function.""" self.src: Path = None self.labels: pd.Series = None self.metafeatures: pd.DataFrame = None self.test_src: Path = None self.test_labels: pd.Series = None self.test_metafeatures: pd.DataFrame = None self.scaler: Type[RobustScaler] = None self.featurizers: List = [] self._multiprocess_raw_secondary: bool = False # Multiprocessing of raw dataframe(s) @abstractmethod def load_data_set(self): """Load data set from source.""" raise NotImplementedError @abstractmethod def featurize_base(self): """Featurize base metafeatures.""" raise NotImplementedError @abstractmethod def normalize_features(self): """Normalize metafeatures for training.""" raise NotImplementedError @abstractmethod def _create_raw_generator( self ) -> Generator[Tuple[str, Callable[[], pd.DataFrame]], None, None]: raise NotImplementedError def _select_metafeatures( self, df: pd.DataFrame, mark: str = "*" ) -> Tuple[pd.DataFrame, pd.DataFrame]: """ Select metafeatures to normalize and to retain for training. The following criteria is used. Metafeatures to: - normalize: Numerical columns - not normalize but retain for training: Features whose title ends with `mark`. Remainder metafeatures are dropped. Note: Columns are tracked by indices instead of names to avoid problems when there are duplicated columnn names. Arguments: df {pd.DataFrame} -- Metafeatures dataframe. mark {str} -- Character to append to names of columns that should not be normlized but retained for training. Returns: Tuple[pd.DataFrame, pd.DataFrame] -- (metafeatures_to_normalize, metafeatures_to_retain) """ idx_to_normalize: List[int] = [] idx_to_retain: List[int] = [] IGNORE_COLS = ( "attribute_name", # Already represented as ngrams "sample", # Ignore sample columns which may be of type int "total_val", # Intent prediction should not be based on # data points "num_distincts", # Use `normalized_distinct_rate` instead "num_nans", # Captured in `nan_rate` ) for i, col in enumerate(df.columns): if col in IGNORE_COLS: continue # Save columns that are either numeric or that have been marked # into appropriate groups if col[-1] == "*": idx_to_retain.append(i) elif self._is_numeric(df.iloc[:, i]): idx_to_normalize.append(i) features_to_normalize = df.iloc[:, idx_to_normalize] features_to_retain = df.iloc[:, idx_to_retain] return features_to_normalize, features_to_retain def _is_numeric(self, series: pd.Series) -> bool: return pd.api.types.is_numeric_dtype(series) @staticmethod def _split_features_and_labels( mds: pd.DataFrame, label_col: str ) -> Tuple[pd.DataFrame, pd.Series]: """ Split features and labels. Arguments: mds {pd.DataFrame} -- MetaDataSet. label_col {str} -- Column containing labels in the MetaDataSet. Returns: Tuple[pd.DataFrame, pd.Series] -- (features, labels) tuple. """ return mds.drop(label_col, axis=1), mds[label_col]
2.984375
3
DIN/model.py
daxixi/Context-Aware-Compilation-of-DNN-Training-Pipelines-across-Edge-and-Cloud
0
12795526
import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class MLP(nn.Module): def __init__(self, MLPInfo, activation='PReLU', PReLuInit=0.25, isUseBN=True, dropoutRate=0.0, initStd=0.0001): super(MLP, self).__init__() self.multiLayerPerceptron = nn.ModuleList() # MLP for i in range(len(MLPInfo)-1): self.multiLayerPerceptron.append(nn.Linear(MLPInfo[i], MLPInfo[i + 1])) if isUseBN: self.multiLayerPerceptron.append(nn.BatchNorm1d(MLPInfo[i + 1])) actiFun = nn.PReLU(1, init=PReLuInit) if activation == 'PReLU' else Dice() self.multiLayerPerceptron.append(actiFun) self.multiLayerPerceptron.append(nn.Dropout(dropoutRate)) def forward(self, x): for layer in self.multiLayerPerceptron: x = layer(x) return x class Bottom(nn.Module): def __init__(self, embeddingGroupInfo, MLPInfo, attMLPInfo, activation='PReLU', PReLuInit=0.25, isUseBN=True, l2RegEmbedding=1e-6, dropoutRate=0.0, initStd=0.0001, device=torch.device('cpu')): super(Bottom, self).__init__() self.dev = device self.embeddingGroups = nn.ModuleDict() # embedding group for key, value in embeddingGroupInfo.items(): if key == 'MovieId' or key == 'Genre': self.embeddingGroups[key] = nn.Embedding(value[0], value[1], padding_idx=0) else: self.embeddingGroups[key] = nn.Embedding(value[0], value[1]) self.sequenceMeanPooling = SequencePoolingLayer(mod='mean', device=self.dev) # sequence pooling layer self.attentionActivationUnit = AttentionActivationUnit(attMLPInfo, activation, PReLuInit, initStd) # attention activation unit self.sequenceAttentionPooling = SequencePoolingLayer(mod='attention', device=self.dev) # sequence pooling layer self.to(self.dev) def forward(self, movieIdSequence,ads, movieFeature): movieFeatSequence = movieFeature[movieIdSequence] adsFeat = movieFeature[ads] movieIdFeat = self.embeddingGroups['MovieId'](movieFeatSequence[:, :, 0]) # (B, SeqLen, 16) movieGenreFeat = self.embeddingGroups['Genre'](movieFeatSequence[:, :, 1:]) # (B, SeqLen, 6, 8) movieGenreFeat = self.sequenceMeanPooling(movieGenreFeat, movieFeatSequence[:, :, 1:] > 0) # (B, SeqLen, 8) #print(movieGenreFeat) #input() adsIdFeat = self.embeddingGroups['MovieId'](adsFeat[:, 0]) # (B, 16) adsGenreFeat = self.embeddingGroups['Genre'](adsFeat[:, 1:]) # (B, 6, 8) adsGenreFeat = self.sequenceMeanPooling(adsGenreFeat, adsFeat[:, 1:] > 0) # (B, 8) adsEmbedding = torch.cat((adsIdFeat, adsGenreFeat), dim=-1) # (B, 24) movieEmbedding = torch.cat((movieIdFeat, movieGenreFeat), dim=-1) # (B, SeqLen, 24) attentionWeights = self.attentionActivationUnit(movieEmbedding, adsEmbedding) # (B, SeqLen, 1) movieSequenceEmbedding = self.sequenceAttentionPooling(movieEmbedding, attentionWeights) # (B, 24) return movieSequenceEmbedding,adsEmbedding def forward_FR(self, movieIdSequence,ads, movieFeature): movieSequenceEmbedding,adsEmbedding=self.forward(movieIdSequence,ads, movieFeature) out=torch.cat((movieSequenceEmbedding,adsEmbedding),dim=0) return out class DIN(nn.Module): def __init__(self, embeddingGroupInfo, MLPInfo, attMLPInfo, activation='PReLU', PReLuInit=0.25, isUseBN=True, l2RegEmbedding=1e-6, dropoutRate=0.0, initStd=0.0001, device=torch.device('cpu')): super(DIN, self).__init__() self.l2RegEmbeddding = l2RegEmbedding self.dev = device self.MLP = MLP(MLPInfo, activation, PReLuInit, isUseBN, dropoutRate) # MLP self.output = nn.Linear(MLPInfo[-1], 2) # output layer self.to(self.dev) def forward(self, m1,m2,a1,a2): #interactive movieSequenceEmbedding=m1+m2 adsEmbedding=a1+a2 # MLP inputs x = torch.cat((movieSequenceEmbedding, adsEmbedding), dim=-1) x = self.MLP(x) x = F.softmax(self.output(x), dim=1) return x # (B, 2) def regLoss(self): totalRegLoss = torch.zeros(size=(1,), device=self.dev) for name, param in self.named_parameters(): if 'embedding' in name and 'MovieId' in name and 'weight' in name: totalRegLoss += torch.sum(self.l2RegEmbeddding * param*param) return totalRegLoss def loss(self, m1,m2,a1,a2,label, lossFunc): preds = self.forward(m1,m2,a1,a2) loss = lossFunc(preds[:, 1], label.float(), reduction='mean') + self.regLoss() return loss def predict(self, m1,m2,a1,a2): preds = self.forward(m1,m2,a1,a2)[:, 1] return preds.cpu().detach().numpy() class SequencePoolingLayer(nn.Module): def __init__(self, mod='mean', device=torch.device('cpu')): super(SequencePoolingLayer, self).__init__() self.mod = mod self.dev = device self.eps = torch.FloatTensor([1e-8]).to(self.dev) def forward(self, x, mask): if self.mod == 'mean': length = torch.sum(mask.type(torch.float32), dim=-1, keepdim=True) # (..., dim, 6) -> (...,dim, 1) x = torch.sum(x, dim=-2, keepdim=False) # (..., dim, 6, 8) -> (..., dim, 8) x = torch.div(x, length.type(torch.float32) + self.eps) # (..., dim, 8) elif self.mod == 'attention': attentionWeights = torch.repeat_interleave(mask, x.shape[-1], dim=-1) # (..., dim, 1) -> (.... dim, E) x = torch.mul(x, attentionWeights) # (..., dim, E) x = torch.sum(x, dim=-2, keepdim=False) # (..., dim, E) -> (..., E) else: pass return x class AttentionActivationUnit(nn.Module): def __init__(self, attMLPInfo, activation='PReLu', PReLuInit=0.25, initStd=0.0001): super(AttentionActivationUnit, self).__init__() self.MLP = MLP(attMLPInfo, activation, PReLuInit, isUseBN=False, dropoutRate=0.0, initStd=initStd) self.output = nn.Linear(attMLPInfo[-1], 1) def forward(self, x, target): target = torch.unsqueeze(target, dim=1) # (B, 1, 24) target = torch.repeat_interleave(target, x.shape[-2], dim=1) # (B, SeqLen, 24) product = torch.mul(x, target) # (B, SeqLen, 24) # product = torch.sum(product, dim=-1, keepdim=True) # (B, SeqLen, 1) x = torch.cat((x, target, product), dim=2) # (B, SeqLen, 72) x = self.MLP(x) x = self.output(x) # product = torch.sum(product, dim=-1, keepdim=True) # product = F.softmax(product, dim=1) return x # (B, SeqLen, 1) class Dice(nn.Module): def __init__(self): super(Dice, self).__init__() pass
2.65625
3
mmflow/__init__.py
gaotongxiao/mmflow
1
12795527
<reponame>gaotongxiao/mmflow from .version import __version__, parse_version_info, version_info __all__ = ['__version__', 'version_info', 'parse_version_info']
0.976563
1
py/probe/runtime_probe/probe_config_types_unittest.py
arccode/factory
3
12795528
#!/usr/bin/env python3 # Copyright 2020 The Chromium OS Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import re import unittest from cros.factory.probe.runtime_probe import probe_config_types from cros.factory.utils import json_utils class ProbeStatementDefinitionBuilderTest(unittest.TestCase): def testBuildProbeStatementDefinition(self): builder = probe_config_types.ProbeStatementDefinitionBuilder('category_x') builder.AddProbeFunction('func_1', 'This is func 1.') builder.AddProbeFunction('func2', 'This is func 2.') builder.AddIntOutputField('field1', 'This is field1') builder.AddStrOutputField('field2', 'This is field2') builder.AddHexOutputField('field3', 'This is field3') builder.AddIntOutputField('field_only_func1', 'This is field ?', probe_function_names=['func_1']) d = builder.Build() self.assertEqual(d.category_name, 'category_x') self.assertCountEqual(list(d.expected_fields.keys()), ['field1', 'field2', 'field3', 'field_only_func1']) self.assertCountEqual(list(d.probe_functions.keys()), ['func_1', 'func2']) self.assertCountEqual( [f.name for f in d.probe_functions['func_1'].output_fields], ['field1', 'field2', 'field3', 'field_only_func1']) self.assertCountEqual( [f.name for f in d.probe_functions['func2'].output_fields], ['field1', 'field2', 'field3']) class ConcreteProbeStatementDefinitionTestBase(unittest.TestCase): def setUp(self): builder = probe_config_types.ProbeStatementDefinitionBuilder('category_x') builder.AddProbeFunction('func_1', 'This is func 1.') builder.AddProbeFunction('func2', 'This is func 2.') builder.AddIntOutputField('int_field', '') builder.AddStrOutputField('str_field', '') builder.AddStrOutputField('str_field_started_with_a', '', value_pattern=re.compile('a.*')) builder.AddHexOutputField('hex_field', '') builder.AddHexOutputField('hex_field_three_digits', '', num_value_digits=3) self.probe_statement_definition = builder.Build() class ProbeStatementDefinitionTest(ConcreteProbeStatementDefinitionTestBase): def _GenerateExpectResult(self, comp_name, func_name, expect_field, func_arg=None, information=None): statement = { 'eval': { func_name: func_arg or {} }, 'expect': expect_field } if information is not None: statement['information'] = information return probe_config_types.ComponentProbeStatement('category_x', comp_name, statement) def testGenerateProbeStatementNoField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {}) self.assertEqual(result, self._GenerateExpectResult('comp_1', 'func_1', {})) def testGenerateProbeStatementIntField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'int_field': None}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'int_field': [False, 'int']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'int_field': 3}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'int_field': [True, 'int', '!eq 3']})) def testGenerateProbeStatementStrField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field': None}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'str_field': [False, 'str']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field': 'sss'}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'str_field': [True, 'str', '!eq sss']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field_started_with_a': 'a_value'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', {'str_field_started_with_a': [True, 'str', '!eq a_value']})) with self.assertRaises(ValueError): # format error self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field_started_with_a': 'b_value'}) # Ignore the regular expression check if the given expected value is also # an regular expression pattern. result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'str_field_started_with_a': re.compile('x.*')}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', { 'str_field_started_with_a': [True, 'str', '!re x.*'] })) def testGenerateProbeStatementHexField(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field': '0AAAA'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', {'hex_field': [True, 'hex', '!eq 0x0AAAA']})) with self.assertRaises(ValueError): self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field': 'xyz'}) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field_three_digits': None}) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'hex_field_three_digits': [False, 'hex']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field_three_digits': 'B3F'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', {'hex_field_three_digits': [True, 'hex', '!eq 0xB3F']})) with self.assertRaises(ValueError): self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'hex_field_three_digits': 'B3FF'}) def testGenerateProbeStatementList(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', [{ 'hex_field': '0AAAA' }]) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', {'hex_field': [True, 'hex', '!eq 0x0AAAA']})) result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', [{ 'hex_field': '0AAAA' }, { 'str_field': 'sss' }]) self.assertEqual( result, self._GenerateExpectResult('comp_1', 'func_1', [{ 'hex_field': [True, 'hex', '!eq 0x0AAAA'] }, { 'str_field': [True, 'str', '!eq sss'] }])) def testGenerateProbeStatementExtraInformation(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', { 'str_field': 'sss', 'int_field': 3, 'hex_field': '0BAD'}, information={'comp_group': 'other_name'}) self.assertEqual( result, self._GenerateExpectResult( 'comp_1', 'func_1', { 'str_field': [True, 'str', '!eq sss'], 'int_field': [True, 'int', '!eq 3'], 'hex_field': [True, 'hex', '!eq 0x0BAD']}, information={ 'comp_group': 'other_name'})) def testGenerateProbeStatementWithArgument(self): result = self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {}, probe_function_argument={'arg_1': 'aaa'}) self.assertEqual(result, self._GenerateExpectResult('comp_1', 'func_1', {}, func_arg={'arg_1': 'aaa'})) class ProbeConfigPayloadTest(ConcreteProbeStatementDefinitionTestBase): def testAll(self): p = probe_config_types.ProbeConfigPayload() p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_1', 'func_1', {'int_field': 1})) p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_2', 'func_1', {'int_field': 2})) p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_3', 'func_2', {'int_field': 3})) with self.assertRaises(ValueError): # component name confliction p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_2', 'func_1', {'int_field': 4})) with self.assertRaises(ValueError): # probe statement confliction. p.AddComponentProbeStatement( self.probe_statement_definition.GenerateProbeStatement( 'comp_4', 'func_1', {'int_field': 2})) result = p.DumpToString() self.assertEqual( json_utils.LoadStr(result), { 'category_x': { 'comp_1': { 'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 1']} }, 'comp_2': { 'eval': {'func_1': {}}, 'expect': {'int_field': [True, 'int', '!eq 2']} }, 'comp_3': { 'eval': {'func_2': {}}, 'expect': {'int_field': [True, 'int', '!eq 3']} }, } }) class ComponentProbeStatementTest(unittest.TestCase): def testIdenticalStatements(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertEqual(cps1.statement_hash, cps2.statement_hash) self.assertEqual(cps1, cps2) def testHashCompNamesDiffer(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category1', 'comp2', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertEqual(cps1.statement_hash, cps2.statement_hash) self.assertNotEqual(cps1, cps2) def testHashCategoryNamesDiffer(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category2', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertNotEqual(cps1.statement_hash, cps2.statement_hash) self.assertNotEqual(cps1, cps2) def testHashFunctionNamesDiffer(self): cps1 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) cps2 = probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_2': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }) self.assertNotEqual(cps1.statement_hash, cps2.statement_hash) self.assertNotEqual(cps1, cps2) def testFromDictSucceed(self): self.assertEqual( probe_config_types.ComponentProbeStatement('category1', 'comp1', { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }), probe_config_types.ComponentProbeStatement.FromDict({ 'category1': { 'comp1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } })) def testFromDictValueHashMultipleCategories(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 'category1': { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } }, 'category2': { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } }, }) def testFromDictCategoryNotString(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 123: { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } }) def testFromDictMultipleComponents(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 'category1': { 'comp_name1': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } }, 'comp_name2': { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } }) def testFromDictComponentNameNotString(self): self.assertRaises( ValueError, probe_config_types.ComponentProbeStatement.FromDict, { 'category1': { 3.1415926: { 'eval': { 'func_1': {} }, 'expect': { 'int_field': [True, 'int', '!eq 1'] } } } }) def testFromDictMiscErrors(self): self.assertRaises(ValueError, probe_config_types.ComponentProbeStatement.FromDict, {'category1': 100}) if __name__ == '__main__': unittest.main()
2.09375
2
backend/submissions/migrations/0007_auto_20191119_2132.py
marcoacierno/pycon
56
12795529
# Generated by Django 2.2.7 on 2019-11-19 21:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('submissions', '0006_merge_20191113_0542'), ] operations = [ migrations.CreateModel( name='SubmissionTag', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100, unique=True)), ], ), migrations.AddField( model_name='submission', name='tags', field=models.ManyToManyField(to='submissions.SubmissionTag', verbose_name='tags'), ), ]
1.5625
2
_static/src/python/SignalProcessing/Digital/Basic/Interpolation/demo_SincInterpolation0.py
metai/aitrace
1
12795530
import numpy as np import matplotlib.pyplot as plt PI = np.pi # =========================define sinc # ---------------normalized def sinc1(x): PI = np.pi x = np.array(x) y = np.where(np.abs(PI * x) < 1e-38, 1.0, np.sin(PI * x) / (PI * x)) return y def sinc_interpolation(x, t, T): ns = np.arange(x.size) print(ns, "============") y = [] for tt in t: y.append(np.sum(x * sinc1((tt - ns * T) / T))) return np.array(y) # =========================test sinc definition f0 = 100 Ns = 2000 Tp = 20.0 / Ns t = np.linspace(-10, 10, Ns) t2 = np.linspace(-10, 10, Ns * 2) y1 = sinc1(t / Tp) x = np.sin(2 * PI * f0 * t) print(x.shape) y = sinc_interpolation(x, t2, Tp) print(y.shape, "===") yfft = np.fft.fftshift(np.fft.fft(y)) plt.figure() plt.subplot(131) plt.plot(t, x, '^b') plt.plot(t2, y, '+r') plt.legend(['original', 'sinc interpolated']) plt.title('sinc(t/Tp), ' + "Tp=" + str(Tp)) plt.xlabel('Time/s') plt.ylabel('Amplitude') plt.grid() plt.show()
3.0625
3
parsec/commands/workflows/import_workflow_dict.py
abretaud/parsec
0
12795531
<gh_stars>0 import click from parsec.cli import pass_context, json_loads from parsec.decorators import custom_exception, dict_output, _arg_split @click.command('import_workflow_dict') @click.argument("workflow_dict", type=str) @pass_context @custom_exception @dict_output def cli(ctx, workflow_dict): """Imports a new workflow given a dictionary representing a previously exported workflow. Output: """ return ctx.gi.workflows.import_workflow_dict(json_loads(workflow_dict))
2.203125
2
RWL.py
MarcinAman/Python-AGH
0
12795532
from string import ascii_lowercase import functools from itertools import combinations def generate_binary(n): """ Function returns generator with binary sequences of a set length :param n: length of a binary sequence :return: generator with binary sequence """ if n == 0: yield "" else: for c in generate_binary(n - 1): yield "0" + c yield "1" + c def find_value(zipped_list, x): for a, b in zipped_list: if a == x: return b return -1 def replace_mapping(zipped_list, x): if x == 'T': return 1 elif x == 'F': return 0 elif x in (ascii_lowercase + 'TF'): return find_value(zipped_list, x) else: return x def get_variables(expression): """ Functions filters the expression for variables and returns them As a variable we mean any lower case character :param expression: expression to search in :return: list with variables from expression """ variables = [] for variable in expression: if variable in ascii_lowercase and variable not in variables: variables.append(variable) return variables def calculate_onp(expression, values): """ Function calculates a value of an expression in reverse polish notation :param expression: Expression in RPN given as a string. :param values: binary sequence with values to be put in coresponding positions. Also string :return: Bool value of an expression Warning: function will only work on correct RNP expression and will not return any warnings in case of errors """ zipped_list = list(zip(get_variables(expression), list(values))) expression = list(map(lambda x: replace_mapping(zipped_list, x), expression)) operators = {'^': lambda x, y: bool(x) ^ bool(y), '&': lambda x, y: bool(x) and bool(y), '|': lambda x, y: bool(x) or bool(y), '/': lambda x, y: not (bool(x) and bool(y)), '>': lambda x, y: not bool(x) or bool(y)} stack = [] while len(expression) > 0: if expression[0] in ['0', '1']: stack.append(int(expression[0])) else: if expression[0] == '~': top = not bool(stack.pop()) stack.append(top) else: e1 = int(stack.pop()) e2 = int(stack.pop()) stack.append(operators[expression[0]](e2, e1)) del expression[0] return stack[0] def is_associative(tkn, associativity_type): if tkn == '>' and associativity_type == 'r': # because only in case of > it matters. return False return True def concat(s1, s2): """ Helper function to reduce expressions :param s1: Sthing we can iterate over with binary sequence and '_' :param s2: Sthing we can iterate over with binary sequence and '_' :return: Merged version of input, when certain bits are different this place is being replaced by '_' """ w = "" lz = 0 for z1, z2 in zip(s1, s2): if z1 == z2: w += z1 else: lz += 1 w += "_" if lz == 1: return w return False def reduce_(s): """ Main reduce function :param s: Set with values :return: reduced set """ result = set() b2 = False for e1 in s: b1 = False for e2 in s: v = concat(e1, e2) if v: result.add(v) b1 = b2 = True if not b1: result.add(e1) if b2: return reduce_(result) return result def expression_to_string(s): """ Helper function to change a reduced set to human-readable form :param s: Set with values :return: String made from input in pattern: (expression)|(expression)|(expression) or T (if expression is tautology) """ result2 = "" for e1 in s: result = "" for i in range(0, len(e1)): if e1[i] == '_': continue if e1[i] == '0': result += '~' result += ascii_lowercase[i] + "&" result2 += '(' + result[:-1] + ')|' if result2 == '()|': return 'T' return result2[:-1] def trim_expression(expression): """ Basic expression trimming :param expression: takes an expression which in most cases matches a pattern: (expression) and trims brackets :return: expression with trimmed brackets """ e = Expression('') while len(expression) > 2 and expression[0] == '(' and expression[-1] == ')' and e.check_expression(expression): expression = expression[1:-1] return expression def reduce_tuple(expression): """ Function reduces a tuple of string expressions :param expression: tuple containing expressions. We assume that they do not contain '|' since in this case they are a product of QuineMcCluskey algorithm :return: String containing reduced expression or the input one if further reduction was not successful """ expression_list = list(expression) variables = get_variables(str.join('|', expression_list)) binary_generator = generate_binary(len(variables)) incorrect_binaries = [] some_expression = Expression('') onp_expression = some_expression.convert_to_onp(str.join('|', expression_list)) onp_xor = some_expression.convert_to_onp(functools.reduce(lambda x, y: x + '^' + y, variables)) while True: try: x = binary_generator.__next__() if calculate_onp(onp_expression, x) != calculate_onp(onp_xor, x): incorrect_binaries.append(x) except: break if len(incorrect_binaries) > 0: return str.join('|', expression_list) return '(' + functools.reduce(lambda x, y: x + '^' + y, variables) + ')' def reduce_xor(expression): """ Specific function to reduce xor expressions. It generates combinations of k elements in len(variables) where k is in range from 2 to len(variables). It checks whether it is not the same as var1 xor var2 xor var3 etc :param expression: String expression to be reduced. We assume that it matches a pattern: (expr1)|(expr2)|(expr3) ... :return: reduced expression in string form or input one if further reduction was not possible """ expressions_list = expression.split('|') n = len(expressions_list) for a in range(2, n + 1): for expr in combinations(expressions_list, a): # i feel really bad for this reduced_sub_expression = reduce_tuple(expr) prev_expression = str.join('|', expr) if len(reduced_sub_expression) < len(prev_expression): for var in list(expr): del expressions_list[expressions_list.index(var)] expressions_list.append(reduced_sub_expression) return reduce_xor(functools.reduce(lambda x, y: '|' + x + y + '|', expressions_list)) return expression def reduce_brackets(expression): """ Function that reduces unessesary brackets. It eliminates situations where between two | there is a expression that doesnt need them example: (expr1)|(a)|(expr2) will be evaluated to: (expr1)|a|(expr2) :param expression: string expression in form (expr1)|(expr2)|(expr3) :return: reduced expression """ expression_list = expression.split('|') if len(expression_list) == 1: return trim_expression(expression_list[0]) reduced_expressions = [] for some in expression_list: if len(some) <= 4: # we are sure that there will be 2 brackets + we want 1 variable (or variable + negation) reduced_expressions.append(trim_expression(some)) else: reduced_expressions.append(some) return str.join('|', reduced_expressions) def reduce_logical_expression(expression): """ Main function that is responsible for driving program. It calls functions to check if expression is correct and then reduces expression :param expression: String expression to be reduced :return: reduced expression or ERROR if it is not correct """ expression_object = Expression(expression) if not expression_object.check_expression(): return 'ERROR' expression_in_general_form = expression_object.generate_general_form() expression_with_xor = reduce_brackets(reduce_xor(expression_in_general_form)) if len(expression_with_xor) < len(expression): return expression_with_xor e = reduce_brackets(expression_in_general_form) if len(e) < len(expression): return e return reduce_brackets(expression) class Expression: """ Class designed to handle most of expression operations. It contains map with bindings: <operator> -> (priority,arguments_number) Also string with correct signs and expression itself """ def __init__(self, expression): self.general_form = '' self.correctSigns = '~^&|/>()TF' + ascii_lowercase self.expression = expression.replace(' ', '') self.operators = {'~': (4, 1), '^': (3, 2), '&': (2, 2), '|': (2, 2), '/': (2, 2), '>': (1, 2)} # <operator> -> (priority,arguments_number) def check_if_brackets_are_correct(self, expression=''): """ Helper function to determine whether brackets are placed correctly :param expression: expression in String form :return: Bool result of brackets checking """ if not expression: expression = self.expression brackets = 0 for a in expression: if a == '(': brackets += 1 elif a == ')': brackets -= 1 if brackets < 0: return False if brackets == 0: return True return False def check_if_signs_are_correct(self, expression=''): """ Simple filter function that checks if expression contains correct signs and is semantically correct :param expression: String expression to be checked :return: Bool result """ if not expression: expression = self.expression if not expression: return True if [x for x in expression if x not in self.correctSigns]: return False state = True for single in expression: if state: if single in self.operators and self.operators[single][1] == 1 or single in ['(', ')']: # we want ~ # we ignore brackets since they are already checked continue elif single in (ascii_lowercase + 'TF'): state = False else: return False else: if single in self.operators and self.operators[single][1] == 2: # everything else than ~ state = True elif single in ['(', ')']: continue else: return False return not state def check_expression(self, expression=''): """ Higher level interface for checking expression It calls methods to determine whether expression is correct semantically, in terms of brackets and signs :param expression: String expression to check :return: Bool result """ if not expression: expression = self.expression return self.check_if_signs_are_correct(expression) and self.check_if_brackets_are_correct(expression) def convert_to_onp(self, expression=''): """ Function converts an infix expression to RPN Warning: it doesnt check whether this expression is correct :param expression: Infix expression :return: RPN expression """ if not expression: expression = self.expression stack = [] onp = [] for tkn in expression: if tkn in self.operators: while len(stack) > 0 and stack[-1] in self.operators: if (is_associative(tkn, 'l') and (self.operators[tkn][0] - self.operators[stack[-1]][0]) <= 0) \ or ( is_associative(tkn, 'r') and (self.operators[tkn][0] - self.operators[stack[-1]][0]) < 0): onp.append(stack.pop()) continue break stack.append(tkn) elif tkn == '(': stack.append(tkn) elif tkn == ')': while len(stack) > 0 and stack[-1] != '(': onp.append(stack.pop()) stack.pop() else: onp.append(tkn) while len(stack) > 0: onp.append(stack.pop()) return functools.reduce(lambda x, y: x + y, onp) def generate_general_form(self, expression=''): """ Function generates general form from infix expression It uses QuineMcCluskey algorithm Result matches a pattern: (expression1)|(expression2)|(expression3)... :param expression: Infix expression as a String :return: String infix expression evaluated using QuineMcCluskey """ if not expression: expression = self.expression n = len(get_variables(expression)) correct_binaries = [] generator = generate_binary(n) current_expression = self.convert_to_onp(expression) while True: try: x = generator.__next__() if calculate_onp(current_expression, x): correct_binaries.append(x) except: break set2 = reduce_(correct_binaries) self.general_form = expression_to_string(set2) return self.general_form if __name__ == '__main__': x = None while not x: x = input('') if x: print(reduce_logical_expression(x)) else: break
4.21875
4
python-ca/bjorn/migrations/0010_alter_certificate_revocation_reason.py
AS207960/bjorn
4
12795533
# Generated by Django 3.2.6 on 2021-09-08 14:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bjorn', '0009_auto_20210908_1427'), ] operations = [ migrations.AlterField( model_name='certificate', name='revocation_reason', field=models.PositiveSmallIntegerField(blank=True, choices=[(1, 'Unspecified'), (2, 'Key compromise'), (3, 'CA compromise'), (4, 'Affiliation changed'), (5, 'Superseded'), (6, 'Cessation of operation'), (7, 'Certificate hold'), (8, 'Remove from CRL'), (9, 'Privilege withdrawn'), (10, 'AA compromise')], null=True), ), ]
1.53125
2
codershq/users/migrations/0004_auto_20210805_1832.py
Buhannad/CodersHQ
45
12795534
<filename>codershq/users/migrations/0004_auto_20210805_1832.py<gh_stars>10-100 # Generated by Django 3.0.11 on 2021-08-05 14:32 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('users', '0003_auto_20210805_1818'), ] operations = [ migrations.RemoveField( model_name='user', name='cv', ), migrations.AlterField( model_name='user', name='bio', field=models.TextField(blank=True, max_length=500, verbose_name='Bio'), ), migrations.AlterField( model_name='user', name='name', field=models.CharField(blank=True, max_length=255, verbose_name='Enter your name'), ), ]
1.679688
2
pypkgcreator/__init__.py
somtud/create-python-package
1
12795535
<reponame>somtud/create-python-package<filename>pypkgcreator/__init__.py<gh_stars>1-10 #!/usr/bin/env python __version__ = 'v0.0.1'
1.273438
1
tables/wikipedia-scripts/weblib/web.py
yash-srivastava19/sempre
812
12795536
<gh_stars>100-1000 #!/usr/bin/env python # -*- coding: utf-8 -*- import urllib, urllib2, urlparse, socket import json, sys, os, hashlib, subprocess, time from blacklist import BLACKLIST BASEDIR = os.path.dirname(os.path.realpath(os.path.join(__file__, '..'))) class WebpageCache(object): def __init__(self, basedir=BASEDIR, dirname='web.cache', log=True, timeout=15): self.cachePath = os.path.join(basedir, dirname) if not os.path.exists(self.cachePath): os.mkdir(self.cachePath) self.log = log self.cache_miss = False self.timeout = timeout def get_hashcode(self, url): return hashlib.sha1(url).hexdigest() def get_path(self, url, already_hashed=False): if not already_hashed: url = self.get_hashcode(url) return os.path.join(self.cachePath, url) def get_current_datetime(self): return time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime()) def open_in_browser(self, hashcode, browser="firefox"): path = os.path.join(self.cachePath, hashcode) subprocess.call([browser, path]) def comment(self, url): return ' '.join(('<!--', urllib.quote(url), self.get_current_datetime(), '-->\n')) def read(self, url, already_hashed=False): path = self.get_path(url, already_hashed) if os.path.exists(path): with open(path) as fin: error = False check_url = fin.readline().strip() if check_url == 'ERROR': error = True error_message = fin.readline().strip() check_url = fin.readline() if not already_hashed: tokens = check_url.split() assert len(tokens) > 2 and tokens[1] == urllib.quote(url), path if error: return WebLoadingError(error_message) else: return fin.read() def write(self, url, content, already_hashed=False): path = self.get_path(url, already_hashed) with open(path, 'w') as fout: fout.write(self.comment(url)) fout.write(content) def write_error(self, url, error, already_hashed=False): path = self.get_path(url, already_hashed) with open(path, 'w') as fout: fout.write('ERROR\n') fout.write(error.replace('\n', ' ') + '\n') fout.write(self.comment(url)) def get_page(self, url, force=False, check_html=True): result = self.read(url) if result and not force: self.cache_miss = False if isinstance(result, WebLoadingError): if self.log: print >> sys.stderr, '[ERROR]', result result = None else: self.cache_miss = True try: if self.log: print >> sys.stderr, 'Downloading from', url, '...' # Check blacklist parsed_url = urlparse.urlparse(url) if parsed_url.netloc in BLACKLIST: raise WebLoadingError('URL %s in blacklist' % url) # Open web page opener = urllib2.build_opener() opener.addheaders = [ ('User-agent', 'Mozilla/5.0 (compatible; MSIE 7.0; Windows NT 6.0)')] response = opener.open(url, timeout=self.timeout) # Check content type to prevent non-HTML content_type = response.info().type if check_html and content_type != 'text/html': raise WebLoadingError("Non-HTML response: %s" % content_type) result = response.read() self.write(url, result) except Exception, e: if self.log: print >> sys.stderr, '[ERROR] ', e if isinstance(e, (WebLoadingError, urllib2.URLError, socket.error)): self.write_error(url, str(e.message)) result = None if self.log: if self.cache_miss: print >> sys.stderr, 'Retrieved "%s"' % url else: print >> sys.stderr, ('Loaded "%s" from cache (%s)' % (url, self.get_path(url))) return result ################################################################ # GOOGLE SUGGEST GOOGLE_SUGGEST_URL = 'http://suggestqueries.google.com/complete/search?client=firefox&q=' def get_google_suggest_url(self, before, after=''): answer = self.GOOGLE_SUGGEST_URL + urllib.quote(before) + urllib.quote(after) if after: answer += '&cp=' + str(len(before)) return answer def get_from_google_suggest(self, before, after=''): url = self.get_google_suggest_url(before, after) return json.loads(self.get_page(url, check_html=False))[1] ################################################################ # GOOGLE SEARCH -- old API # The important fields of each result are # - url (+ unescapedUrl, visibleUrl, cacheUrl) # - titleNoFormatting (+ title) # - content GOOGLE_SEARCH_URL = 'http://ajax.googleapis.com/ajax/services/search/web?v=1.0&rsz=large&q=' def get_google_search_url(self, keyword): answer = self.GOOGLE_SEARCH_URL + urllib.quote(keyword) return answer def get_from_google_search(self, keyword, raw=False): url = self.get_google_search_url(keyword) result = self.get_page(url, check_html=False) if raw: return result return json.loads(result) def get_urls_from_google_search(self, keyword): results = self.get_from_google_search(keyword)['responseData']['results'] return [(x['unescapedUrl'], x['titleNoFormatting']) for x in results] GOOGLE_PAUSE = 30 def get_from_google_search_with_backoff(self, keyword): url = self.get_google_search_url(keyword) result = self.get_page(url, check_html=False) while True: try: return json.loads(result)['responseData']['results'] except: # Google nailed me! Exponential backoff! print >> sys.stderr, ('Hide from Google for %d seconds ...' % WebpageCache.GOOGLE_PAUSE) time.sleep(WebpageCache.GOOGLE_PAUSE) WebpageCache.GOOGLE_PAUSE *= 2 result = self.get_page(url, check_html=False, force=True) def get_urls_from_google_search_with_backoff(self, keyword): results = self.get_from_google_search_with_backoff(keyword) return [(x['unescapedUrl'], x['titleNoFormatting']) for x in results] ################################################################ # GOOGLE SEARCH -- Custom Search CUSTOM_GOOGLE_SEARCH_URL = 'https://www.googleapis.com/customsearch/'\ 'v1?key=%s&cx=%s&alt=json&safe=high&q=%s' def set_google_custom_search_keys(self, api_key, cx): self.api_key = api_key self.cx = cx def get_google_custom_search_url(self, keyword): answer = self.CUSTOM_GOOGLE_SEARCH_URL % \ (self.api_key, self.cx, urllib.quote(keyword)) return answer def get_from_google_custom_search(self, keyword, raw=False): url = self.get_google_custom_search_url(keyword) answer = self.get_page(url, check_html=False) if raw: return answer return json.loads(answer) def get_urls_from_google_custom_search(self, keyword): results = self.get_from_google_custom_search(keyword)['items'] return [(x['link'], x.get('title', '')) for x in results] def get_urls_from_google_hybrid_search(self, keyword): '''Return (cache_path, results)''' old_url = self.get_google_search_url(keyword) result = self.read(old_url) if result and not isinstance(result, WebLoadingError): # Found result in cache try: results = json.loads(result)['responseData']['results'] return (self.get_path(old_url), [(x['unescapedUrl'], x['titleNoFormatting']) for x in results]) except: # Stale bad cache ... pass # Use Custom search return (self.get_path(self.get_google_custom_search_url(keyword)), self.get_urls_from_google_custom_search(keyword)) class WebLoadingError(Exception): def __init__(self, msg): self.args = (msg,) self.msg = msg self.message = msg
2.359375
2
Toonland-2013-master/toonland/security/HackerCrypt.py
BarcodeALT/Toonland-2003
0
12795537
########################## THE TOON LAND PROJECT ########################## # Filename: HackerCrypt.py # Created by: Cody/Fd Green Cat Fd (January 31st, 2013) #### # Description: # # Encryption method written by Team FD in 2011 for their personal releases. # The script has been modified to meet Toon Land's coding standards. #### from base64 import b64encode, b64decode from binascii import hexlify, unhexlify from random import randrange from __main__ import __dict__ as __main__ from bz2 import compress as c_bz2 from bz2 import decompress as d_bz2 from zlib import compress as c_zlib from zlib import decompress as d_zlib from sha import sha as sha1 class HackerCrypt: __version__ = 'v1.2.0.2' def __init__(self): self.MAGIC = sha1('[TL]').digest() self.KEY = sha1('TL-Cookies').digest() def makeIV(self): iv = '' for i in range(4): iv += chr(randrange(256)) return iv def rc4(self, data, key): j = 0 s = range(256) for i in range(256): j = (j + s[i] + ord(key[i % len(key)])) % 256 s[i], s[j] = s[j], s[i] j = i = 0 results = [] for c in data: j = (j + 1) % 256 i = (i + s[j]) % 256 s[j], s[i] = s[i], s[j] results.append(chr(ord(c) ^ s[(s[j] + s[i]) % 256])) return ''.join(results) def encode(self, data): b64 = b64encode(data) hex = hexlify(b64) encoded = list(hexlify(hex)) for x in range(len(encoded)): alpha = int(encoded[x]) + 2 encoded[x] = chr(alpha) return ''.join(encoded) def decode(self, encoded): encoded = list(encoded) for x in range(len(encoded)): alpha = str(encoded[x]) encoded[x] = str(ord(alpha) - 2) encoded = unhexlify(''.join(encoded)) unhexed = unhexlify(encoded) return b64decode(unhexed) def compress(self, data): bz2 = b64encode(c_bz2(data)) return c_zlib(hexlify(bz2)) def decompress(self, compressed): unhexed = unhexlify(d_zlib(compressed)) return d_bz2(b64decode(unhexed)) def encrypt(self, data): compressed = self.compress(data) encoded = self.encode(compressed) data = self.MAGIC + encoded iv = self.makeIV() key = self.KEY + iv return iv + self.rc4(data, key) def decrypt(self, encrypted): if len(encrypted) < 4: return None iv = encrypted[:4] data = encrypted[4:] key = self.KEY + iv data = self.rc4(data, key) if not data.startswith(self.MAGIC): return None decoded = self.decode(data[len(self.MAGIC):]) return self.decompress(decoded)
2.546875
3
core/management/commands/advance_turn.py
johnpooch/diplomacy
1
12795538
<filename>core/management/commands/advance_turn.py import json from django.core.management.base import BaseCommand, CommandError from core import models from core.game import process_turn from core.models.base import GameStatus from . import DiplomacyManagementCommandMixin class Command(BaseCommand, DiplomacyManagementCommandMixin): @property def help(self): return 'Restore a game to a previous turn' def add_arguments(self, parser): parser.add_argument( 'game', type=str, help='Slug of the game to advance', ) parser.add_argument( '--no_input', action='store_true', help='Skip prompt.', ) parser.add_argument( '--dry_run', action='store_true', help='Do not advance turn - show outcome of adjudicator.', ) def handle(self, *args, **options): slug = options['game'] self.noinput = options['no_input'] dry_run = options['dry_run'] try: game = models.Game.objects.get(slug=slug) except models.Game.DoesNotExist: raise CommandError( 'Could not find a game with the slug "{}"'.format(slug) ) if game.status != GameStatus.ACTIVE: raise CommandError( 'Cannot advance turn on an inactive game' ) turn = game.get_current_turn() if turn.game.status != GameStatus.ACTIVE: raise CommandError('Cannot restore turn if game is not active.') if not turn.ready_to_process: self.stdout.write('Not all nations have finalized their orders\n') self.prompt() result = process_turn(turn, dry_run) if dry_run: pretty_output = json.dumps(result, sort_keys=True, indent=4) self.stdout.write(pretty_output)
2.140625
2
dominant_colour.py
tawilkinson/dominant-colour
0
12795539
<reponame>tawilkinson/dominant-colour import numpy as np import time from cv2 import cv2 from sklearn.cluster import KMeans from skimage import io from skimage.transform import rescale def cv2_dominant_colour(img_url, colours=10, timing=False): ''' Dominant Colour method using open cv, based on https://stackoverflow.com/a/43111221/2523885 ''' if timing: start = time.perf_counter() tic = time.perf_counter() img = io.imread(img_url) pixels = np.float32(img.reshape(-1, 3)) if timing: toc = time.perf_counter() print(f"Loaded the image in {toc - tic:0.2f}s") if timing: tic = time.perf_counter() n_colours = colours criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 200, .1) flags = cv2.KMEANS_RANDOM_CENTERS _, labels, centroid = cv2.kmeans( pixels, n_colours, None, criteria, 10, flags) labels = labels.flatten().tolist() _, counts = np.unique(labels, return_counts=True) if timing: toc = time.perf_counter() print(f"KMeans calculation in {toc - tic:0.2f}s") if timing: tic = time.perf_counter() dominant = centroid[np.argmax(counts)] if timing: toc = time.perf_counter() print(f"Dominant selection in {toc - tic:0.2f}s") if timing: end = time.perf_counter() total_time = end - start print(f"cv2_dominant_colour execution in {total_time:0.2f}s") return dominant, labels, centroid, total_time def sklearn_dominant_colour(img_url, colours=10, timing=False): ''' Dominant Colour method using sklearn, based on: https://medium.com/analytics-vidhya/colour-separation-in-an-image-using-kmeans-clustering-using-python-f994fa398454 ''' if timing: start = time.perf_counter() tic = time.perf_counter() img = io.imread(img_url) img = img.reshape((-1, 3)) if timing: toc = time.perf_counter() print(f"Loaded the image in {toc - tic:0.2f}s") if timing: tic = time.perf_counter() cluster = KMeans(n_clusters=colours) cluster.fit(img) if timing: toc = time.perf_counter() print(f"KMeans calculation in {toc - tic:0.2f}s") labels = cluster.labels_ labels = list(labels) centroid = cluster.cluster_centers_ if timing: tic = time.perf_counter() percent = [] for i in range(len(centroid)): j = labels.count(i) j = j/(len(labels)) percent.append(j) if timing: toc = time.perf_counter() print(f"Percentage calculation in {toc - tic:0.2f}s") indices = np.argsort(percent)[::-1] dominant = centroid[indices[0]] if timing: end = time.perf_counter() total_time = end - start print( f"sklearn_dominant_colour execution in {total_time:0.2f}s") return dominant, labels, centroid, total_time def fast_dominant_colour(img_url, colours=10, timing=False, scale=1.0): ''' Faster method for web use that speeds up the sklearn variant. Also can use a scaling factor to improve the speed at cost of accuracy ''' if timing: start = time.perf_counter() tic = time.perf_counter() img = io.imread(img_url) if scale != 1.0: img = rescale(img, scale, multichannel=True) img = img * 255 img = img.reshape((-1, 3)) if timing: toc = time.perf_counter() print(f"Loaded the image in {toc - tic:0.2f}s") if timing: tic = time.perf_counter() cluster = KMeans(n_clusters=colours, n_init=3, max_iter=10, tol=0.001) cluster.fit(img) if timing: toc = time.perf_counter() print(f"KMeans calculation in {toc - tic:0.2f}s") labels = cluster.labels_ centroid = cluster.cluster_centers_ if timing: tic = time.perf_counter() percent = [] _, counts = np.unique(labels, return_counts=True) for i in range(len(centroid)): j = counts[i] j = j/(len(labels)) percent.append(j) if timing: toc = time.perf_counter() print(f"Percentage calculation in {toc - tic:0.2f}s") indices = np.argsort(percent)[::-1] dominant = centroid[indices[0]] if timing: end = time.perf_counter() total_time = end - start print(f"fast_dominant_colour execution in {total_time:0.2f}s") return dominant, labels, centroid, total_time def visualise_colours(labels, centroids): ''' Generate a visualisation of the colours in an image ''' # Get the number of different clusters, create histogram, and normalise sorted_labels = np.arange(0, len(np.unique(labels)) + 1) (hist, _) = np.histogram(labels, bins=sorted_labels) hist = hist.astype("float") hist /= hist.sum() # Create frequency rect and iterate through each cluster's colour # and percentage rect = np.zeros((50, 300, 3), dtype=np.uint8) colours = sorted(zip(hist, centroids)) start = 0 for (percent, colour) in colours: print(f"[{clamp(colour[0])}, {clamp(colour[0])}, {clamp(colour[0])}] ", "{:0.2f}%".format(percent * 100)) end = start + (percent * 300) cv2.rectangle(rect, (int(start), 0), (int(end), 50), colour.astype("uint8").tolist(), -1) start = end return rect def clamp(x): ''' Utility function to return ints from 0-255 ''' return int(max(0, min(x, 255))) def get_rgb_colour(img_url, debug=False): ''' Method to print hex sting and return an rgb tuple of the dominant colour in an image ''' dominant_colour = fast_dominant_colour(img_url, scale=0.1) r = dominant_colour[0] g = dominant_colour[1] b = dominant_colour[2] if debug: hex_str = "#{0:02x}{1:02x}{2:02x}".format(clamp(r), clamp(g), clamp(b)) print(f'{hex_str}') rgb_colour = (clamp(r), clamp(g), clamp(b)) return rgb_colour
3
3
ingest/tools/cb.py
ivmfnal/striped
1
12795540
<filename>ingest/tools/cb.py import json, getopt, sys import numpy as np from striped.client import CouchBaseBackend Usage = """ python cb.py get [-j] [-o <file>|-d <dtype>] <bucket> <key> -n means show data as numpy array of given dtype and shape python cb.py put [-j] [-f <file>|-d <data>] <bucket> <key> """ if not sys.argv[1:]: print(Usage) sys.exit(1) cmd = sys.argv[1] args = sys.argv[2:] if cmd == "get": show_as_np = False opts, args = getopt.getopt(args, "d:jo:") opts = dict(opts) dtype = opts.get("-d") out_file = opts.get("-o") json_data = "-j" in opts Bucket, Key = args cb = CouchBaseBackend(Bucket) if json_data: data = cb[Key].json out = json.dumps(data, indent=4, sort_keys=True, separators=(',', ': ')) out_file = open(out_file, "w") if out_file else sys.stdout out_file.write(out) else: data = cb[Key].data if out_file: open(out_file, "wb").write(data) elif dtype: data = np.frombuffer(data, dtype=dtype) print(data.shape, data.dtype, data) else: print(len(data), repr(data[:100])) elif cmd == "put": opts, args = getopt.getopt(args, "jf:d:") opts = dict(opts) Bucket, Key = args json_in = "-j" in opts data = None if "-d" in opts: data = opts["-d"] else: data = open(opts["-f"], "rb").read() if json_in: data = json.loads(data) cb = CouchBaseBackend(Bucket) if json_in: cb[Key].json = data else: cb[Key].data = data
2.4375
2
rules/private/phases/phase_coda.bzl
hmemcpy/rules_scala-1
0
12795541
# # PHASE: coda # # Creates the final rule return structure # def phase_coda(ctx, g): return struct( java = g.ijinfo.intellij_info, providers = g.out.providers, )
1.804688
2
scrapli_cfg/platform/core/arista_eos/base_platform.py
m1009d/scrapli_cfg
15
12795542
"""scrapli_cfg.platform.core.arista_eos.base""" import json import re from datetime import datetime from logging import LoggerAdapter from typing import Iterable, List, Tuple, Union from scrapli.driver import AsyncNetworkDriver, NetworkDriver from scrapli.response import Response from scrapli_cfg.exceptions import ScrapliCfgException from scrapli_cfg.platform.core.arista_eos.patterns import ( BANNER_PATTERN, END_PATTERN, GLOBAL_COMMENT_LINE_PATTERN, VERSION_PATTERN, ) from scrapli_cfg.response import ScrapliCfgResponse CONFIG_SOURCES = [ "running", "startup", ] class ScrapliCfgEOSBase: conn: Union[NetworkDriver, AsyncNetworkDriver] logger: LoggerAdapter config_sources: List[str] config_session_name: str candidate_config: str @staticmethod def _parse_version(device_output: str) -> str: """ Parse version string out of device output Args: device_output: output from show version command Returns: str: device version string Raises: N/A """ version_string_search = re.search(pattern=VERSION_PATTERN, string=device_output) if not version_string_search: return "" version_string = version_string_search.group(0) or "" return version_string @staticmethod def _parse_config_sessions(device_output: str) -> List[str]: """ Parse config session names out of device output Args: device_output: output from show version command Returns: list[str]: config session names Raises: N/A """ try: config_session_dict = json.loads(device_output) except json.JSONDecodeError: return [] sessions = list(config_session_dict.get("sessions", {})) return sessions @staticmethod def _get_config_command(source: str) -> str: """ Return command to use to get config based on the provided source Args: source: name of the config source, generally running|startup Returns: str: command to use to fetch the requested config Raises: N/A """ if source == "running": return "show running-config" return "show startup-config" @staticmethod def _prepare_config_payloads(config: str) -> Tuple[str, str]: """ Prepare a configuration so it can be nicely sent to the device via scrapli Args: config: configuration to prep Returns: tuple: tuple of "normal" config lines and "eager" config lines Raises: N/A """ # remove comment lines config = re.sub(pattern=GLOBAL_COMMENT_LINE_PATTERN, repl="!", string=config) # remove "end" at the end of config if present - if its present it will drop scrapli out # of the config session which we do not want config = re.sub(pattern=END_PATTERN, repl="!", string=config) # find all sections that need to be "eagerly" sent eager_config = re.findall(pattern=BANNER_PATTERN, string=config) for eager_section in eager_config: config = config.replace(eager_section, "!") joined_eager_config = "\n".join(captured_section for captured_section in eager_config) return config, joined_eager_config def _prepare_load_config_session_and_payload(self, config: str) -> Tuple[str, str, bool]: """ Prepare the normal and eager payloads and decide if we need to register a config session Args: config: candidate config to load Returns: tuple: tuple containing "normal" config elements to send to the device and "eager" mode config elements to send to the device (things like banners/macro that require scrapli "eager=True"), and lastly a bool indicating if the config session needs to be registered on the device Raises: N/A """ config, eager_config = self._prepare_config_payloads(config=config) register_config_session = False if not self.config_session_name: self.config_session_name = f"scrapli_cfg_{round(datetime.now().timestamp())}" self.logger.debug(f"configuration session name will be '{self.config_session_name}'") register_config_session = True return config, eager_config, register_config_session def _reset_config_session(self) -> None: """ Reset config session info Resets the candidate config and config session name attributes -- when these are "empty" we know there is no current config session Args: N/A Returns: None Raises: N/A """ self.logger.debug("resetting candidate config and config session name") self.candidate_config = "" self.config_session_name = "" def _normalize_source_candidate_configs(self, source_config: str) -> Tuple[str, str]: """ Normalize candidate config and source config so that we can easily diff them Args: source_config: current config of the source config store Returns: ScrapliCfgDiff: scrapli cfg diff object Raises: N/A """ self.logger.debug("normalizing source and candidate configs for diff object") # Remove all comment lines from both the source and candidate configs -- this is only done # here pre-diff, so we dont modify the user provided candidate config which can totally have # those comment lines - we only remove "global" (top level) comments though... user comments # attached to interfaces and the stuff will remain source_config = re.sub(pattern=GLOBAL_COMMENT_LINE_PATTERN, string=source_config, repl="") source_config = "\n".join(line for line in source_config.splitlines() if line) candidate_config = re.sub( pattern=GLOBAL_COMMENT_LINE_PATTERN, string=self.candidate_config, repl="" ) candidate_config = "\n".join(line for line in candidate_config.splitlines() if line) return source_config, candidate_config def _pre_clear_config_sessions(self) -> ScrapliCfgResponse: """ Handle pre "clear_config_sessions" operations for parity between sync and async Args: N/A Returns: ScrapliCfgResponse: new response object to update w/ get results Raises: N/A """ self.logger.info("clear_config_sessions requested") response = ScrapliCfgResponse( host=self.conn.host, raise_for_status_exception=ScrapliCfgException ) return response def _post_clear_config_sessions( self, response: ScrapliCfgResponse, scrapli_responses: Iterable[Response], ) -> ScrapliCfgResponse: """ Handle post "clear_config_sessions" operations for parity between sync and async Args: response: response object to update scrapli_responses: list of scrapli response objects from fetching the version Returns: ScrapliCfgResponse: response object containing string of the version as the `result` attribute Raises: N/A """ response.record_response(scrapli_responses=scrapli_responses) if response.failed: msg = "failed to clear device configuration session(s)" self.logger.critical(msg) response.result = msg else: response.result = "configuration session(s) cleared" return response
1.859375
2
backend/lib/google/cloud/grpc/datastore/v1/datastore_pb2_grpc.py
isaiah-solo/Droptalk
0
12795543
<reponame>isaiah-solo/Droptalk<gh_stars>0 import grpc from grpc.framework.common import cardinality from grpc.framework.interfaces.face import utilities as face_utilities import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 import google.cloud.grpc.datastore.v1.datastore_pb2 as google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2 class DatastoreStub(object): """Each RPC normalizes the partition IDs of the keys in its input entities, and always returns entities with keys with normalized partition IDs. This applies to all keys and entities, including those in values, except keys with both an empty path and an empty or unset partition ID. Normalization of input keys sets the project ID (if not already set) to the project ID from the request. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Lookup = channel.unary_unary( '/google.datastore.v1.Datastore/Lookup', request_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.LookupRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.LookupResponse.FromString, ) self.RunQuery = channel.unary_unary( '/google.datastore.v1.Datastore/RunQuery', request_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RunQueryRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RunQueryResponse.FromString, ) self.BeginTransaction = channel.unary_unary( '/google.datastore.v1.Datastore/BeginTransaction', request_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.BeginTransactionRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.BeginTransactionResponse.FromString, ) self.Commit = channel.unary_unary( '/google.datastore.v1.Datastore/Commit', request_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.CommitRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.CommitResponse.FromString, ) self.Rollback = channel.unary_unary( '/google.datastore.v1.Datastore/Rollback', request_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RollbackRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RollbackResponse.FromString, ) self.AllocateIds = channel.unary_unary( '/google.datastore.v1.Datastore/AllocateIds', request_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.AllocateIdsRequest.SerializeToString, response_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.AllocateIdsResponse.FromString, ) class DatastoreServicer(object): """Each RPC normalizes the partition IDs of the keys in its input entities, and always returns entities with keys with normalized partition IDs. This applies to all keys and entities, including those in values, except keys with both an empty path and an empty or unset partition ID. Normalization of input keys sets the project ID (if not already set) to the project ID from the request. """ def Lookup(self, request, context): """Looks up entities by key. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def RunQuery(self, request, context): """Queries for entities. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def BeginTransaction(self, request, context): """Begins a new transaction. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Commit(self, request, context): """Commits a transaction, optionally creating, deleting or modifying some entities. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Rollback(self, request, context): """Rolls back a transaction. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def AllocateIds(self, request, context): """Allocates IDs for the given keys, which is useful for referencing an entity before it is inserted. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_DatastoreServicer_to_server(servicer, server): rpc_method_handlers = { 'Lookup': grpc.unary_unary_rpc_method_handler( servicer.Lookup, request_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.LookupRequest.FromString, response_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.LookupResponse.SerializeToString, ), 'RunQuery': grpc.unary_unary_rpc_method_handler( servicer.RunQuery, request_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RunQueryRequest.FromString, response_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RunQueryResponse.SerializeToString, ), 'BeginTransaction': grpc.unary_unary_rpc_method_handler( servicer.BeginTransaction, request_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.BeginTransactionRequest.FromString, response_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.BeginTransactionResponse.SerializeToString, ), 'Commit': grpc.unary_unary_rpc_method_handler( servicer.Commit, request_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.CommitRequest.FromString, response_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.CommitResponse.SerializeToString, ), 'Rollback': grpc.unary_unary_rpc_method_handler( servicer.Rollback, request_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RollbackRequest.FromString, response_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.RollbackResponse.SerializeToString, ), 'AllocateIds': grpc.unary_unary_rpc_method_handler( servicer.AllocateIds, request_deserializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.AllocateIdsRequest.FromString, response_serializer=google_dot_cloud_dot_grpc_dot_datastore_dot_v1_dot_datastore__pb2.AllocateIdsResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'google.datastore.v1.Datastore', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
1.203125
1
nikolaBase/conf_base.py
diSimplex/nikolaBase
0
12795544
# -*- coding: utf-8 -*- import time # !! This is the configuration of Nikola. !! # # !! You should edit it to your liking. !! # # Data about this site BLOG_AUTHOR = "<NAME>" # (translatable) BLOG_TITLE = "My Nikola Site" # (translatable) # This is the main URL for your site. It will be used # in a prominent link. Don't forget the protocol (http/https)! SITE_URL = "https://example.com/" # This is the URL where Nikola's output will be deployed. # If not set, defaults to SITE_URL # BASE_URL = "https://example.com/" BLOG_EMAIL = "<EMAIL>" BLOG_DESCRIPTION = "This is a demo site for Nikola." # (translatable) # What is the default language? DEFAULT_LANG = "en" # What other languages do you have? # The format is {"translationcode" : "path/to/translation" } # the path will be used as a prefix for the generated pages location TRANSLATIONS = { DEFAULT_LANG: "", # Example for another language: # "es": "./es", } # What will translated input files be named like? TRANSLATIONS_PATTERN = '{path}.{lang}.{ext}' # Links for the sidebar / navigation bar. (translatable) # This is a dict. The keys are languages, and values are tuples. NAVIGATION_LINKS = { DEFAULT_LANG: ( ("/archive.html", "Archive"), ("/categories/", "Tags"), ("/rss.xml", "RSS feed"), ), } # Alternative navigation links. Works the same way NAVIGATION_LINKS does, # although themes may not always support them. (translatable) # (Bootstrap 4: right-side of navbar, Bootblog 4: right side of title) NAVIGATION_ALT_LINKS = { DEFAULT_LANG: () } # Name of the theme to use. #THEME = "bootblog4" THEME = "disimplex" # A theme color. In default themes, it might be displayed by some browsers as # the browser UI color (eg. Chrome on Android). Other themes might also use it # as an accent color (the default ones don’t). Must be a HEX value. THEME_COLOR = '#5670d4' # Theme configuration. Fully theme-dependent. (translatable) # Samples for bootblog4 (enabled) and bootstrap4 (commented) follow. # bootblog4 supports: featured_large featured_small featured_on_mobile # featured_large_image_on_mobile featured_strip_html sidebar # bootstrap4 supports: navbar_light (defaults to False) # navbar_custom_bg (defaults to '') # Config for bootblog4: THEME_CONFIG = { DEFAULT_LANG: { # Show the latest featured post in a large box, with the previewimage as its background. 'featured_large': False, # Show the first (remaining) two featured posts in small boxes. 'featured_small': False, # Show featured posts on mobile. 'featured_on_mobile': True, # Show image in `featured_large` on mobile. # `featured_small` displays them only on desktop. 'featured_large_image_on_mobile': True, # Strip HTML from featured post text. 'featured_strip_html': False, # Contents of the sidebar, If empty, the sidebar is not displayed. 'sidebar': '' } } # POSTS and PAGES contains (wildcard, destination, template) tuples. # (translatable) # POSTS = ( ("posts/*.rst", "posts", "post.tmpl"), ("posts/*.md", "posts", "post.tmpl"), ("posts/*.txt", "posts", "post.tmpl"), ("posts/*.html", "posts", "post.tmpl"), ) PAGES = ( ("pages/*.rst", "", "page.tmpl"), ("pages/*.md", "", "page.tmpl"), ("pages/*.txt", "", "page.tmpl"), ("pages/*.html", "", "page.tmpl"), ) # Below this point, everything is optional # Post's dates are considered in UTC by default, if you want to use # another time zone, please set TIMEZONE to match. Check the available # list from Wikipedia: TIMEZONE = "Europe/London" # Date format used to display post dates. (translatable) # Used by babel.dates, CLDR style: http://cldr.unicode.org/translation/date-time-1/date-time # You can also use 'full', 'long', 'medium', or 'short' # DATE_FORMAT = 'yyyy-MM-dd HH:mm' # Date format used to display post dates, if local dates are used. (translatable) # Used by Luxon: https://moment.github.io/luxon/docs/manual/formatting # Example for presets: {'preset': True, 'format': 'DATE_FULL'} # LUXON_DATE_FORMAT = { # DEFAULT_LANG: {'preset': False, 'format': 'yyyy-MM-dd HH:mm'}, # } # Date fanciness. # # 0 = using DATE_FORMAT and TIMEZONE (without JS) # 1 = using LUXON_DATE_FORMAT and local user time (JS, using Luxon) # 2 = using a string like “2 days ago” (JS, using Luxon) # # Your theme must support it, Bootstrap already does. # DATE_FANCINESS = 0 # Customize the locale/region used for a language. # For example, to use British instead of US English: LOCALES = {'en': 'en_GB'} # LOCALES = {} # One or more folders containing files to be copied as-is into the output. # The format is a dictionary of {source: relative destination}. # Default is: # FILES_FOLDERS = {'files': ''} # Which means copy 'files' into 'output' # One or more folders containing code listings to be processed and published on # the site. The format is a dictionary of {source: relative destination}. # Default is: # LISTINGS_FOLDERS = {'listings': 'listings'} # Which means process listings from 'listings' into 'output/listings' # A mapping of languages to file-extensions that represent that language. # Feel free to add or delete extensions to any list, but don't add any new # compilers unless you write the interface for it yourself. # # The default compiler for `new_post` is the first entry in the POSTS tuple. # # 'rest' is reStructuredText # 'markdown' is Markdown # 'html' assumes the file is HTML and just copies it COMPILERS = { "rest": ['.rst', '.txt'], "markdown": ['.md', '.mdown', '.markdown'], "textile": ['.textile'], "txt2tags": ['.t2t'], "bbcode": ['.bb'], "wiki": ['.wiki'], "ipynb": ['.ipynb'], "html": ['.html', '.htm'], # PHP files are rendered the usual way (i.e. with the full templates). # The resulting files have .php extensions, making it possible to run # them without reconfiguring your server to recognize them. "php": ['.php'], # Pandoc detects the input from the source filename # but is disabled by default as it would conflict # with many of the others. # "pandoc": ['.rst', '.md', '.txt'], } # Preferred metadata format for new posts # "YAML": YAML wrapped in "---" METADATA_FORMAT = "YAML" # If you do not want to display a tag publicly, you can mark it as hidden. # The tag will not be displayed on the tag list page and posts. # Tag pages will still be generated. HIDDEN_TAGS = ['mathjax'] # If CATEGORY_ALLOW_HIERARCHIES is set to True, categories can be organized in # hierarchies. For a post, the whole path in the hierarchy must be specified, # using a forward slash ('/') to separate paths. Use a backslash ('\') to escape # a forward slash or a backslash (i.e. '\//\\' is a path specifying the # subcategory called '\' of the top-level category called '/'). CATEGORY_ALLOW_HIERARCHIES = False # If CATEGORY_OUTPUT_FLAT_HIERARCHY is set to True, the output written to output # contains only the name of the leaf category and not the whole path. CATEGORY_OUTPUT_FLAT_HIERARCHY = False # If you do not want to display a category publicly, you can mark it as hidden. # The category will not be displayed on the category list page. # Category pages will still be generated. HIDDEN_CATEGORIES = [] # If ENABLE_AUTHOR_PAGES is set to True and there is more than one # author, author pages are generated. ENABLE_AUTHOR_PAGES = False # If you do not want to display an author publicly, you can mark it as hidden. # The author will not be displayed on the author list page and posts. # Tag pages will still be generated. HIDDEN_AUTHORS = ['Guest'] # Optional HTML that displayed on “main” blog index.html files. # May be used for a greeting. (translatable) FRONT_INDEX_HEADER = { DEFAULT_LANG: '' } # URLs to other posts/pages can take 3 forms: # rel_path: a relative URL to the current page/post (default) # full_path: a URL with the full path from the root # absolute: a complete URL (that includes the SITE_URL) # URL_TYPE = 'rel_path' # # Note that our use of "server side includes" / partials # REQUIRES the use of 'full_path' # URL_TYPE = 'full_path' # Extension for RSS feed files # RSS_EXTENSION = ".xml" # RSS filename base (without extension); used for indexes and galleries. # (translatable) # RSS_FILENAME_BASE = "rss" # Atom filename base (without extension); used for indexes. # (translatable) ATOM_FILENAME_BASE = "feed" # Extension for Atom feed files # ATOM_EXTENSION = ".atom" # A list of redirection tuples, [("foo/from.html", "/bar/to.html")]. # # A HTML file will be created in output/foo/from.html that redirects # to the "/bar/to.html" URL. notice that the "from" side MUST be a # relative URL. # # If you don't need any of these, just set to [] REDIRECTIONS = [] # Presets of commands to execute to deploy. Can be anything, for # example, you may use rsync: # "rsync -rav --delete output/ [email protected]:/srv/www/site" # And then do a backup, or run `nikola ping` from the `ping` # plugin (`nikola plugin -i ping`). Or run `nikola check -l`. # You may also want to use github_deploy (see below). # You can define multiple presets and specify them as arguments # to `nikola deploy`. If no arguments are specified, a preset # named `default` will be executed. You can use as many presets # in a `nikola deploy` command as you like. # DEPLOY_COMMANDS = { # 'default': [ # "rsync -rav --delete output/ [email protected]:/srv/www/site", # ] # } # github_deploy configuration # For more details, read the manual: # https://getnikola.com/handbook.html#deploying-to-github # You will need to configure the deployment branch on GitHub. GITHUB_SOURCE_BRANCH = 'src' GITHUB_DEPLOY_BRANCH = 'master' # The name of the remote where you wish to push to, using github_deploy. GITHUB_REMOTE_NAME = 'origin' # Whether or not github_deploy should commit to the source branch automatically # before deploying. GITHUB_COMMIT_SOURCE = True # Where the output site should be located # If you don't use an absolute path, it will be considered as relative # to the location of conf.py # OUTPUT_FOLDER = 'output' # where the "cache" of partial generated content should be located # default: 'cache' # CACHE_FOLDER = 'cache' # ############################################################################# # Image Gallery Options # ############################################################################# # Use a thumbnail (defined by ".. previewimage:" in the gallery's index) in # list of galleries for each gallery GALLERIES_USE_THUMBNAIL = False # Image to use as thumbnail for those galleries that don't have one # None: show a grey square # '/url/to/file': show the image in that url GALLERIES_DEFAULT_THUMBNAIL = None # Images will be scaled down according to IMAGE_THUMBNAIL_SIZE and MAX_IMAGE_SIZE # options, but will have to be referenced manually to be visible on the site # (the thumbnail has ``.thumbnail`` added before the file extension by default, # but a different naming template can be configured with IMAGE_THUMBNAIL_FORMAT). IMAGE_FOLDERS = {'images': 'images'} # IMAGE_THUMBNAIL_SIZE = 400 # IMAGE_THUMBNAIL_FORMAT = '{name}.thumbnail{ext}' # ############################################################################# # HTML fragments and diverse things that are used by the templates # ############################################################################# # 'Read more...' for the index page, if INDEX_TEASERS is True (translatable) INDEX_READ_MORE_LINK = '<p class="more"><a href="{link}">{read_more}…</a></p>' # 'Read more...' for the feeds, if FEED_TEASERS is True (translatable) FEED_READ_MORE_LINK = '<p><a href="{link}">{read_more}…</a> ({min_remaining_read})</p>' # Append a URL query to the FEED_READ_MORE_LINK in Atom and RSS feeds. Advanced # option used for traffic source tracking. FEED_LINKS_APPEND_QUERY = False # A HTML fragment describing the license, for the sidebar. # (translatable) LICENSE = "" # I recommend using the Creative Commons' wizard: # https://creativecommons.org/choose/ # LICENSE = """ # <a rel="license" href="https://creativecommons.org/licenses/by-nc-sa/4.0/"> # <img alt="Creative Commons License BY-NC-SA" # style="border-width:0; margin-bottom:12px;" # src="https://i.creativecommons.org/l/by-nc-sa/4.0/88x31.png"></a>""" # A small copyright notice for the page footer (in HTML). # (translatable) CONTENT_FOOTER = 'Contents &copy; {date} <a href="mailto:{email}">{author}</a> - Powered by <a href="https://getnikola.com" rel="nofollow">Nikola</a> {license}' # Things that will be passed to CONTENT_FOOTER.format(). This is done CONTENT_FOOTER_FORMATS = { DEFAULT_LANG: ( (), { "email": BLOG_EMAIL, "author": BLOG_AUTHOR, "date": time.gmtime().tm_year, "license": LICENSE } ) } # A simple copyright tag for inclusion in RSS feeds that works just # like CONTENT_FOOTER and CONTENT_FOOTER_FORMATS RSS_COPYRIGHT = 'Contents © {date} <a href="mailto:{email}">{author}</a> {license}' RSS_COPYRIGHT_PLAIN = 'Contents © {date} {author} {license}' RSS_COPYRIGHT_FORMATS = CONTENT_FOOTER_FORMATS # To use comments, you can choose between different third party comment # systems. The following comment systems are supported by Nikola: # disqus, facebook, intensedebate, isso, muut, commento, utterances # You can leave this option blank to disable comments. COMMENT_SYSTEM = "" # And you also need to add your COMMENT_SYSTEM_ID which # depends on what comment system you use. The default is # "nikolademo" which is a test account for Disqus. More information # is in the manual. COMMENT_SYSTEM_ID = "" # Create index.html for page folders? # WARNING: if a page would conflict with the index file (usually # caused by setting slug to `index`), the PAGE_INDEX # will not be generated for that directory. # PAGE_INDEX = False # Enable comments on pages (i.e. not posts)? # COMMENTS_IN_PAGES = False # Enable comments on picture gallery pages? # COMMENTS_IN_GALLERIES = False # What file should be used for directory indexes? # Defaults to index.html # Common other alternatives: default.html for IIS, index.php # INDEX_FILE = "index.html" # If a link ends in /index.html, drop the index.html part. # http://mysite/foo/bar/index.html => http://mysite/foo/bar/ # (Uses the INDEX_FILE setting, so if that is, say, default.html, # it will instead /foo/default.html => /foo) STRIP_INDEXES = False # List of files relative to the server root (!) that will be asked to be excluded # from indexing and other robotic spidering. * is supported. Will only be effective # if SITE_URL points to server root. The list is used to exclude resources from # /robots.txt and /sitemap.xml, and to inform search engines about /sitemapindex.xml. # ROBOTS_EXCLUSIONS = ["/archive.html", "/category/*.html"] # Instead of putting files in <slug>.html, put them in <slug>/index.html. # No web server configuration is required. Also enables STRIP_INDEXES. # This can be disabled on a per-page/post basis by adding # .. pretty_url: False # to the metadata. PRETTY_URLS = False # If True, publish future dated posts right away instead of scheduling them. # Defaults to False. # FUTURE_IS_NOW = False # If True, future dated posts are allowed in deployed output # Only the individual posts are published/deployed; not in indexes/sitemap # Generally, you want FUTURE_IS_NOW and DEPLOY_FUTURE to be the same value. # DEPLOY_FUTURE = False # If False, draft posts will not be deployed # DEPLOY_DRAFTS = True # Allows scheduling of posts using the rule specified here (new_post -s) # Specify an iCal Recurrence Rule: https://www.kanzaki.com/docs/ical/rrule.html # SCHEDULE_RULE = '' # If True, use the scheduling rule to all posts (not pages!) by default # SCHEDULE_ALL = False # Do you want to add a Mathjax config file? # MATHJAX_CONFIG = "" # If you want support for the $.$ syntax (which may conflict with running # text!), just use this config: # MATHJAX_CONFIG = """ # <script type="text/x-mathjax-config"> # MathJax.Hub.Config({ # tex2jax: { # inlineMath: [ ['$','$'], ["\\\(","\\\)"] ], # displayMath: [ ['$$','$$'], ["\\\[","\\\]"] ], # processEscapes: true # }, # displayAlign: 'center', // Change this to 'left' if you want left-aligned equations. # "HTML-CSS": { # styles: {'.MathJax_Display': {"margin": 0}} # } # }); # </script> # """ # Want to use KaTeX instead of MathJax? While KaTeX may not support every # feature yet, it's faster and the output looks better. # USE_KATEX = False # KaTeX auto-render settings. If you want support for the $.$ syntax (which may # conflict with running text!), just use this config: # KATEX_AUTO_RENDER = """ # delimiters: [ # {left: "$$", right: "$$", display: true}, # {left: "\\\\[", right: "\\\\]", display: true}, # {left: "\\\\begin{equation*}", right: "\\\\end{equation*}", display: true}, # {left: "$", right: "$", display: false}, # {left: "\\\\(", right: "\\\\)", display: false} # ] # """ # What Markdown extensions to enable? # You will also get gist, nikola and podcast because those are # done in the code, hope you don't mind ;-) # Note: most Nikola-specific extensions are done via the Nikola plugin system, # with the MarkdownExtension class and should not be added here. # Defaults are markdown.extensions.(fenced_code|codehilite|extra) # markdown.extensions.meta is required for Markdown metadata. MARKDOWN_EXTENSIONS = ['markdown.extensions.fenced_code', 'markdown.extensions.codehilite', 'markdown.extensions.extra', 'markdown.extensions.toc'] # Options to be passed to markdown extensions (See https://python-markdown.github.io/reference/) # Default is {} (no config at all) # MARKDOWN_EXTENSION_CONFIGS = {} # Social buttons. This is sample code for AddThis (which was the default for a # long time). Insert anything you want here, or even make it empty (which is # the default right now) # (translatable) # SOCIAL_BUTTONS_CODE = """ # <!-- Social buttons --> # <div id="addthisbox" class="addthis_toolbox addthis_peekaboo_style addthis_default_style addthis_label_style addthis_32x32_style"> # <a class="addthis_button_more">Share</a> # <ul><li><a class="addthis_button_facebook"></a> # <li><a class="addthis_button_google_plusone_share"></a> # <li><a class="addthis_button_linkedin"></a> # <li><a class="addthis_button_twitter"></a> # </ul> # </div> # <script src="https://s7.addthis.com/js/300/addthis_widget.js#pubid=ra-4f7088a56bb93798"></script> # <!-- End of social buttons --> # """ # Show link to source for the posts? SHOW_SOURCELINK = False # Copy the source files for your pages? # Setting it to False implies SHOW_SOURCELINK = False COPY_SOURCES = False # Modify the number of Post per Index Page # Defaults to 10 # INDEX_DISPLAY_POST_COUNT = 10 # Extra things you want in the pages HEAD tag. This will be added right # before </head> # (translatable) # EXTRA_HEAD_DATA = "" # Google Analytics or whatever else you use. Added to the bottom of <body> # in the default template (base.tmpl). # (translatable) # BODY_END = "" # Bundle JS and CSS into single files to make site loading faster in a HTTP/1.1 # environment but is not recommended for HTTP/2.0 when caching is used. # Defaults to True. # USE_BUNDLES = True USE_BUNDLES = False # Plugins you don't want to use. Be careful :-) # DISABLED_PLUGINS = ["render_galleries"] # Special settings to disable only parts of the indexes plugin. # Use with care. # DISABLE_INDEXES = False # DISABLE_MAIN_ATOM_FEED = False # DISABLE_MAIN_RSS_FEED = False # Add the absolute paths to directories containing plugins to use them. # For example, the `plugins` directory of your clone of the Nikola plugins # repository. # EXTRA_PLUGINS_DIRS = [] # Add the absolute paths to directories containing themes to use them. # For example, the `v7` directory of your clone of the Nikola themes # repository. # EXTRA_THEMES_DIRS = [] # List of regular expressions, links matching them will always be considered # valid by "nikola check -l" # LINK_CHECK_WHITELIST = [] # The <hN> tags in HTML generated by certain compilers (reST/Markdown) # will be demoted by that much (1 → h1 will become h2 and so on) # This was a hidden feature of the Markdown and reST compilers in the # past. Useful especially if your post titles are in <h1> tags too, for # example. # (defaults to 1.) # DEMOTE_HEADERS = 1 # If set to True, the tags 'draft', 'mathjax' and 'private' have special # meaning. If set to False, these tags are handled like regular tags. USE_TAG_METADATA = False # If set to True, a warning is issued if one of the 'draft', 'mathjax' # and 'private' tags are found in a post. Useful for checking that # migration was successful. WARN_ABOUT_TAG_METADATA = False # Templates will use those filters, along with the defaults. # Consult your engine's documentation on filters if you need help defining # those. # TEMPLATE_FILTERS = {} # Put in global_context things you want available on all your templates. # It can be anything, data, functions, modules, etc. GLOBAL_CONTEXT = {} # Add functions here and they will be called with template # GLOBAL_CONTEXT as parameter when the template is about to be # rendered GLOBAL_CONTEXT_FILLER = [] # Settings for the (boot)Reveal theme must be added to the global context. # subtheme selection: beige/serif/simple/sky/night/default # transition selection: cube/page/concave/linear/none/default GLOBAL_CONTEXT.update({ 'subtheme': 'simple', 'transition': 'none' })
1.9375
2
Programinhas_python/busca/Fetch_words.py
xDanielz/python_exercicios_pessoais
0
12795545
while True: search = str(input('Informe a palavra que gostaria de procurar: ')) try: with open(f'acounts.txt', 'r') as file: for lines in file.readlines(): if search in lines: print(lines) break else: print('Não encontrado') except FileNotFoundError: print('Arquivo não encontrado') stop = str(input('Gostaria de procurar outra palavra?[S/N]: '))[0].upper() if stop == 'N': break
3.828125
4
tests/data_sources/gsp/test_gsp_data_source.py
openclimatefix/nowcasting_dataset
15
12795546
""" Tests for GSPDataSource """ import os from datetime import datetime import pandas as pd import nowcasting_dataset from nowcasting_dataset.data_sources.gsp.gsp_data_source import ( GSPDataSource, drop_gsp_north_of_boundary, ) from nowcasting_dataset.geospatial import osgb_to_lat_lon def test_gsp_pv_data_source_init(): """Test GSP init""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." _ = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) def test_gsp_pv_data_source_get_locations(): """Test GSP locations""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) locations_x, locations_y = gsp.get_locations(t0_datetimes_utc=gsp.gsp_power.index[0:10]) assert len(locations_x) == len(locations_y) # This makes sure it is not in lat/lon. # Note that OSGB could be <= than 90, but that would mean a location in the middle of the sea, # which is impossible for GSP data assert locations_x[0] > 90 assert locations_y[0] > 90 lat, lon = osgb_to_lat_lon(locations_x, locations_y) assert 0 < lat[0] < 90 # this makes sure it is in lat/lon assert -90 < lon[0] < 90 # this makes sure it is in lat/lon def test_gsp_pv_data_source_get_all_locations(): """Test GSP example""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) N_gsps = len(gsp.metadata) t0_datetimes_utc = gsp.gsp_power.index[0:10] x_locations = gsp.metadata.location_x ( t0_datetimes_utc_all_gsps, x_centers_osgb_all_gsps, y_centers_osgb_all_gsps, ) = gsp.get_all_locations(t0_datetimes_utc=t0_datetimes_utc) assert len(t0_datetimes_utc_all_gsps) == len(x_centers_osgb_all_gsps) assert len(t0_datetimes_utc_all_gsps) == len(y_centers_osgb_all_gsps) assert len(t0_datetimes_utc_all_gsps) == len(x_locations) * len(t0_datetimes_utc) # check first few are the same datetime assert (x_centers_osgb_all_gsps[0:N_gsps] == x_locations.values).all() assert (t0_datetimes_utc_all_gsps[0:N_gsps] == t0_datetimes_utc[0]).all() # check second set of datetimes assert (x_centers_osgb_all_gsps[N_gsps : 2 * N_gsps] == x_locations.values).all() assert (t0_datetimes_utc_all_gsps[N_gsps : 2 * N_gsps] == t0_datetimes_utc[1]).all() # check all datetimes t0_datetimes_utc_all_gsps_overlap = t0_datetimes_utc_all_gsps.union(t0_datetimes_utc) assert len(t0_datetimes_utc_all_gsps_overlap) == len(t0_datetimes_utc_all_gsps) def test_gsp_pv_data_source_get_example(): """Test GSP example""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." start_dt = datetime(2020, 4, 1) end_dt = datetime(2020, 4, 1) gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) x_locations, y_locations = gsp.get_locations(t0_datetimes_utc=gsp.gsp_power.index[0:10]) example = gsp.get_example( t0_datetime_utc=gsp.gsp_power.index[0], x_center_osgb=x_locations[0], y_center_osgb=y_locations[0], ) assert len(example.id) == len(example.power_mw[0]) assert len(example.x_osgb) == len(example.y_osgb) assert len(example.x_osgb) > 0 assert pd.Timestamp(example.time[0].values) <= end_dt assert pd.Timestamp(example.time[0].values) >= start_dt def test_gsp_pv_data_source_get_batch(): """Test GSP batch""" local_path = os.path.dirname(nowcasting_dataset.__file__) + "/.." gsp = GSPDataSource( zarr_path=f"{local_path}/tests/data/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, ) batch_size = 10 x_locations, y_locations = gsp.get_locations(t0_datetimes_utc=gsp.gsp_power.index[0:batch_size]) batch = gsp.get_batch( t0_datetimes_utc=gsp.gsp_power.index[batch_size : 2 * batch_size], x_centers_osgb=x_locations[0:batch_size], y_centers_osgb=y_locations[0:batch_size], ) assert len(batch.power_mw[0]) == 4 assert len(batch.id[0]) == len(batch.x_osgb[0]) assert len(batch.x_osgb[1]) == len(batch.y_osgb[1]) assert len(batch.x_osgb[2]) > 0 # assert T0_DT in batch[3].keys() def test_drop_gsp_north_of_boundary(test_data_folder): """Test that dropping GSP north of a boundary works""" gsp = GSPDataSource( zarr_path=f"{test_data_folder}/gsp/test.zarr", start_datetime=datetime(2020, 4, 1), end_datetime=datetime(2020, 4, 2), history_minutes=30, forecast_minutes=60, image_size_pixels=64, meters_per_pixel=2000, northern_boundary_osgb=None, ) # remove all gsp systems gsp_power, metadata = drop_gsp_north_of_boundary( gsp.gsp_power, gsp.metadata, northern_boundary_osgb=0 ) assert len(gsp_power.columns) == 0 assert len(metadata) == 0 # remove half the systems north_osgb_median = int(gsp.metadata.location_y.median()) gsp_power, metadata = drop_gsp_north_of_boundary( gsp.gsp_power, gsp.metadata, northern_boundary_osgb=north_osgb_median ) assert len(gsp_power.columns) == len(gsp.gsp_power.columns) / 2 assert len(metadata) == len(gsp.metadata) / 2
2.34375
2
S4/S4 Library/simulation/services/__init__.py
NeonOcean/Environment
1
12795547
<gh_stars>1-10 import argparse import functools import gc import time from services.tuning_managers import InstanceTuningManagers from sims4.resources import INSTANCE_TUNING_DEFINITIONS from sims4.tuning.instance_manager import TuningInstanceManager from sims4.tuning.tunable import Tunable, TunableReference import game_services import paths import sims4.reload import sims4.service_manager try: import _zone except ImportError: class _zone: @staticmethod def invite_sims_to_zone(*_, **__): pass @staticmethod def get_house_description_id(*_, **__): pass @staticmethod def get_building_type(*_, **__): return 0 @staticmethod def get_eco_footprint_value(*_, **__): return 0 @staticmethod def get_rent(*_, **__): return 0 @staticmethod def get_lot_description_id(*_, **__): pass @staticmethod def get_world_description_id(*_, **__): pass @staticmethod def get_world_id(*_, **__): pass @staticmethod def get_world_and_lot_description_id_from_zone_id(*_, **__): pass @staticmethod def get_is_eco_footprint_compatible_for_world_description(*_, **__): return False @staticmethod def get_hide_from_lot_picker(*_, **__): pass @staticmethod def is_event_enabled(*_, **__): pass invite_sims_to_zone = _zone.invite_sims_to_zone get_house_description_id = _zone.get_house_description_id is_event_enabled = _zone.is_event_enabled get_building_type = _zone.get_building_type get_eco_footprint_value = _zone.get_eco_footprint_value get_rent = _zone.get_rent get_lot_description_id = _zone.get_lot_description_id get_world_description_id = _zone.get_world_description_id get_world_id = _zone.get_world_id get_world_and_lot_description_id_from_zone_id = _zone.get_world_and_lot_description_id_from_zone_id get_is_eco_footprint_compatible_for_world_description = _zone.get_is_eco_footprint_compatible_for_world_description get_hide_from_lot_picker = _zone.get_hide_from_lot_picker with sims4.reload.protected(globals()): tuning_managers = InstanceTuningManagers() get_instance_manager = tuning_managers.__getitem__ _account_service = None _zone_manager = None _server_clock_service = None _persistence_service = None _distributor_service = None _intern_service = None _terrain_service = None definition_manager = None snippet_manager = None _terrain_object = None _object_leak_tracker = None for definition in INSTANCE_TUNING_DEFINITIONS: accessor_name = definition.manager_name accessor = functools.partial(tuning_managers.__getitem__, definition.TYPE_ENUM_VALUE) globals()[accessor_name] = accessor production_logger = sims4.log.ProductionLogger('Services') logger = sims4.log.Logger('Services') time_delta = None gc_collection_enable = True class TimeStampService(sims4.service_manager.Service): def start(self): global gc_collection_enable, time_delta if gc_collection_enable: gc.disable() production_logger.info('GC disabled') gc_collection_enable = False else: gc.enable() production_logger.info('GC enabled') gc_collection_enable = True time_stamp = time.time() production_logger.info('TimeStampService start at {}'.format(time_stamp)) logger.info('TimeStampService start at {}'.format(time_stamp)) if time_delta is None: time_delta = time_stamp else: time_delta = time_stamp - time_delta production_logger.info('Time delta from loading start is {}'.format(time_delta)) logger.info('Time delta from loading start is {}'.format(time_delta)) return True def start_global_services(initial_ticks): global _account_service, _zone_manager, _distributor_service, _intern_service create_server_clock(initial_ticks) from distributor.distributor_service import DistributorService from intern_service import InternService from server.account_service import AccountService from services.persistence_service import PersistenceService from services.terrain_service import TerrainService from sims4.tuning.serialization import FinalizeTuningService from zone_manager import ZoneManager parser = argparse.ArgumentParser() parser.add_argument('--python_autoleak', default=False, action='store_true') (args, unused_args) = parser.parse_known_args() if args.python_autoleak: create_object_leak_tracker() _account_service = AccountService() _zone_manager = ZoneManager() _distributor_service = DistributorService() _intern_service = InternService() init_critical_services = [server_clock_service(), get_persistence_service()] services = [_distributor_service, _intern_service, _intern_service.get_start_interning(), TimeStampService] instantiated_tuning_managers = [] for definition in INSTANCE_TUNING_DEFINITIONS: instantiated_tuning_managers.append(tuning_managers[definition.TYPE_ENUM_VALUE]) services.append(TuningInstanceManager(instantiated_tuning_managers)) services.extend([FinalizeTuningService, TimeStampService, _intern_service.get_stop_interning(), get_terrain_service(), _zone_manager, _account_service]) sims4.core_services.start_services(init_critical_services, services) def stop_global_services(): global _zone_manager, _account_service, _event_manager, _server_clock_service, _persistence_service, _terrain_service, _distributor_service, _intern_service, _object_leak_tracker _zone_manager.shutdown() _zone_manager = None tuning_managers.clear() _account_service = None _event_manager = None _server_clock_service = None _persistence_service = None _terrain_service = None _distributor_service = None _intern_service = None if _object_leak_tracker is not None: _object_leak_tracker = None def create_object_leak_tracker(start=False): global _object_leak_tracker from performance.object_leak_tracker import ObjectLeakTracker if _object_leak_tracker is None: _object_leak_tracker = ObjectLeakTracker() if start: _object_leak_tracker.start_tracking() return True return False def get_object_leak_tracker(): return _object_leak_tracker def get_zone_manager(): return _zone_manager def current_zone(): if _zone_manager is not None: return _zone_manager.current_zone def current_zone_id(): if _zone_manager is not None: return sims4.zone_utils.zone_id def current_zone_info(): zone = current_zone() return zone.get_zone_info() def current_region(): zone = current_zone() if zone is not None: return zone.region def current_street(): zone = current_zone() if zone is not None: return zone.street def get_zone(zone_id, allow_uninstantiated_zones=False): if _zone_manager is not None: return _zone_manager.get(zone_id, allow_uninstantiated_zones=allow_uninstantiated_zones) def active_lot(): zone = current_zone() if zone is not None: return zone.lot def active_lot_id(): lot = active_lot() if lot is not None: return lot.lot_id def client_object_managers(): if game_services.service_manager is not None: return game_services.service_manager.client_object_managers return () def sim_info_manager(): return game_services.service_manager.sim_info_manager def posture_graph_service(zone_id=None): if zone_id is None: zone = current_zone() if zone is not None: return zone.posture_graph_service return return _zone_manager.get(zone_id).posture_graph_service def sim_spawner_service(zone_id=None): if zone_id is None: return current_zone().sim_spawner_service return _zone_manager.get(zone_id).sim_spawner_service def locator_manager(): return current_zone().locator_manager def object_manager(zone_id=None): if zone_id is None: zone = current_zone() else: zone = _zone_manager.get(zone_id) if zone is not None: return zone.object_manager def inventory_manager(zone_id=None): if zone_id is None: zone = current_zone() if zone is not None: return zone.inventory_manager return return _zone_manager.get(zone_id).inventory_manager def prop_manager(zone_id=None): if zone_id is None: zone = current_zone() else: zone = _zone_manager.get(zone_id) if zone is not None: return zone.prop_manager def social_group_manager(): return current_zone().social_group_manager def client_manager(): return game_services.service_manager.client_manager def get_first_client(): return client_manager().get_first_client() def get_selectable_sims(): return get_first_client().selectable_sims def owning_household_id_of_active_lot(): zone = current_zone() if zone is not None: return zone.lot.owner_household_id def owning_household_of_active_lot(): zone = current_zone() if zone is not None: return household_manager().get(zone.lot.owner_household_id) def object_preference_tracker(require_active_household=False): zone = current_zone() if zone is not None: household = household_manager().get(zone.lot.owner_household_id) if household is not None: if require_active_household and not household.is_active_household: return return household.object_preference_tracker travel_group = travel_group_manager().get_travel_group_by_zone_id(zone.id) if travel_group is not None: if require_active_household and not travel_group.is_active_sim_in_travel_group: return else: return travel_group.object_preference_tracker def get_active_sim(): client = client_manager().get_first_client() if client is not None: return client.active_sim def active_sim_info(): client = client_manager().get_first_client() if client is not None: return client.active_sim_info def active_household(): client = client_manager().get_first_client() if client is not None: return client.household def active_household_id(): client = client_manager().get_first_client() if client is not None: return client.household_id def active_household_lot_id(): household = active_household() if household is not None: home_zone = get_zone(household.home_zone_id) if home_zone is not None: lot = home_zone.lot if lot is not None: return lot.lot_id def privacy_service(): return current_zone().privacy_service def autonomy_service(): return current_zone().autonomy_service def get_aging_service(): return game_services.service_manager.aging_service def get_cheat_service(): return game_services.service_manager.cheat_service def neighborhood_population_service(): return current_zone().neighborhood_population_service def get_reset_and_delete_service(): return current_zone().reset_and_delete_service def venue_service(): return current_zone().venue_service def venue_game_service(): return getattr(game_services.service_manager, 'venue_game_service', None) def zone_spin_up_service(): return current_zone().zone_spin_up_service def household_manager(): return game_services.service_manager.household_manager def travel_group_manager(zone_id=None): if zone_id is None: zone = current_zone() if zone is not None: return zone.travel_group_manager return return _zone_manager.get(zone_id).travel_group_manager def utilities_manager(household_id=None): if household_id: return get_utilities_manager_by_household_id(household_id) return get_utilities_manager_by_zone_id(current_zone_id()) def get_utilities_manager_by_household_id(household_id): return game_services.service_manager.utilities_manager.get_manager_for_household(household_id) def get_utilities_manager_by_zone_id(zone_id): return game_services.service_manager.utilities_manager.get_manager_for_zone(zone_id) def ui_dialog_service(): return current_zone().ui_dialog_service def config_service(): return game_services.service_manager.config_service def travel_service(): return current_zone().travel_service def sim_quadtree(): return current_zone().sim_quadtree def single_part_condition_list(): return current_zone().single_part_condition_list def multi_part_condition_list(): return current_zone().multi_part_condition_list def get_event_manager(): return game_services.service_manager.event_manager_service def get_current_venue(): service = venue_service() if service is not None: return service.active_venue def get_intern_service(): return _intern_service def get_zone_situation_manager(zone_id=None): if zone_id is None: return current_zone().situation_manager return _zone_manager.get(zone_id).situation_manager def npc_hosted_situation_service(): return current_zone().n_p_c_hosted_situation_service def ensemble_service(): return current_zone().ensemble_service def sim_filter_service(zone_id=None): if zone_id is None: return current_zone().sim_filter_service return _zone_manager.get(zone_id).sim_filter_service def get_photography_service(): return current_zone().photography_service def social_group_cluster_service(): return current_zone().social_group_cluster_service def on_client_connect(client): sims4.core_services.service_manager.on_client_connect(client) game_services.service_manager.on_client_connect(client) current_zone().service_manager.on_client_connect(client) def on_client_disconnect(client): sims4.core_services.service_manager.on_client_disconnect(client) if game_services.service_manager.allow_shutdown: game_services.service_manager.on_client_disconnect(client) current_zone().service_manager.on_client_disconnect(client) def on_enter_main_menu(): pass def account_service(): return _account_service def business_service(): bs = game_services.service_manager.business_service return bs def get_terrain_service(): global _terrain_service if _terrain_service is None: from services.terrain_service import TerrainService _terrain_service = TerrainService() return _terrain_service def call_to_action_service(): return game_services.service_manager.call_to_action_service def trend_service(): return game_services.service_manager.trend_service def time_service(): return game_services.service_manager.time_service def game_clock_service(): return game_services.service_manager.game_clock def server_clock_service(): if _server_clock_service is None: return return _server_clock_service def create_server_clock(initial_ticks): global _server_clock_service import clock _server_clock_service = clock.ServerClock(ticks=initial_ticks) def get_master_controller(): return current_zone().master_controller def get_persistence_service(): global _persistence_service if _persistence_service is None: from services.persistence_service import PersistenceService _persistence_service = PersistenceService() return _persistence_service def get_distributor_service(): return _distributor_service def get_fire_service(): return current_zone().fire_service def get_career_service(): return current_zone().career_service def get_story_progression_service(): return current_zone().story_progression_service def daycare_service(): zone = current_zone() if zone is not None: return zone.daycare_service def get_adoption_service(): return current_zone().adoption_service def get_laundry_service(): zone = current_zone() if zone is not None and hasattr(zone, 'laundry_service'): return zone.laundry_service def get_object_routing_service(): zone = current_zone() if zone is not None and hasattr(zone, 'object_routing_service'): return zone.object_routing_service def get_landlord_service(): return getattr(game_services.service_manager, 'landlord_service', None) def get_roommate_service(): return getattr(game_services.service_manager, 'roommate_service', None) def get_club_service(): return getattr(game_services.service_manager, 'club_service', None) def get_culling_service(): return current_zone().culling_service def get_gardening_service(): return current_zone().gardening_service def drama_scheduler_service(): return current_zone().drama_schedule_service def get_plex_service(): return current_zone().plex_service def get_door_service(): return current_zone().door_service def get_zone_modifier_service(): return current_zone().zone_modifier_service def get_demographics_service(): return current_zone().demographics_service def get_service_npc_service(): return current_zone().service_npc_service def conditional_layer_service(): return current_zone().conditional_layer_service def get_sickness_service(): return game_services.service_manager.sickness_service def get_curfew_service(): return game_services.service_manager.curfew_service def get_locale(): client = get_first_client() return client.account.locale def relationship_service(): return game_services.service_manager.relationship_service def hidden_sim_service(): return game_services.service_manager.hidden_sim_service def weather_service(): return getattr(game_services.service_manager, 'weather_service', None) def season_service(): return getattr(game_services.service_manager, 'season_service', None) def lot_decoration_service(): return getattr(game_services.service_manager, 'lot_decoration_service', None) def get_style_service(): return game_services.service_manager.style_service def get_tutorial_service(): return game_services.service_manager.tutorial_service def calendar_service(): return current_zone().calendar_service def get_rabbit_hole_service(): return game_services.service_manager.rabbit_hole_service def holiday_service(): return getattr(game_services.service_manager, 'holiday_service', None) def global_policy_service(): return getattr(game_services.service_manager, 'global_policy_service', None) def narrative_service(): return getattr(game_services.service_manager, 'narrative_service', None) def organization_service(): return getattr(game_services.service_manager, 'organization_service', None) def get_object_lost_and_found_service(): return game_services.service_manager.object_lost_and_found_service def street_service(): return getattr(game_services.service_manager, 'street_service', None) def c_api_gsi_dump(): import server_commands.developer_commands server_commands.developer_commands.gsi_dump()
1.960938
2
src/modules/encoder.py
Neptune1201/ASIM
3
12795548
# coding=utf-8 # Copyright (C) 2019 Alibaba Group Holding Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # add BiLSTM as encoder import torch.nn as nn import torch.nn.functional as f import torch from . import Conv1d class Encoder(nn.Module): def __init__(self, args, input_size): super().__init__() self.dropout = args.dropout self.encoders = nn.ModuleList([Conv1d( in_channels=input_size if i == 0 else args.hidden_size, out_channels=args.hidden_size, kernel_sizes=args.kernel_sizes) for i in range(args.enc_layers)]) def forward(self, x, mask): x = x.transpose(1, 2) # B x C x L mask = mask.transpose(1, 2) for i, encoder in enumerate(self.encoders): x.masked_fill_(~mask, 0.) if i > 0: x = f.dropout(x, self.dropout, self.training) x = encoder(x) x = f.dropout(x, self.dropout, self.training) return x.transpose(1, 2) # B x L x C def sort_by_seq_lens(batch, sequences_lengths, descending=True): sorted_seq_lens, sorting_index =\ sequences_lengths.sort(0, descending=descending) sorted_batch = batch.index_select(0, sorting_index) idx_range = torch.arange(0, len(sequences_lengths)).to(sequences_lengths.device) _, reverse_mapping = sorting_index.sort(0, descending=False) restoration_index = idx_range.index_select(0, reverse_mapping) return sorted_batch, sorted_seq_lens, sorting_index, restoration_index class Seq2SeqEncoder(nn.Module): def __init__(self, rnn_type, input_size, hidden_size, num_layers=1, bias=True, dropout=0.2, bidirectional=False): assert issubclass(rnn_type, nn.RNNBase),\ "rnn_type must be a class inheriting from torch.nn.RNNBase" super(Seq2SeqEncoder, self).__init__() self.rnn_type = rnn_type self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.bias = bias self.dropout = dropout self.bidirectional = bidirectional self._encoder = rnn_type(input_size, hidden_size, num_layers=num_layers, bias=bias, batch_first=True, dropout=dropout, bidirectional=bidirectional) def forward(self, sequences_batch, sequences_lengths): outputs, _ = self._encoder(sequences_batch, None) return outputs
2.1875
2
EXERCICIOS/exercicios_curso_linkedin/Cap. 1 - Linguagem/01_codingstyle_resposta.py
raphael-d-cordeiro/Python_Public
0
12795549
# cada import deve ter a sua própria linha import sys import os # duas linhas em branco separam classes de outras funções class MinhaClasse(): def __init__(self): self.descricao = "Minha Classe" # dentro de uma classe, usamos uma linha em branco entre métodos def meu_metodo(self, arg1): pass def main(): # comentários que usam mais de uma linha, devem ser limitados a 72 # caracteres por linha instancia = MinhaClasse() print(instancia.descricao) instancia.descricao = "Classe da Jess" print(instancia.descricao) if __name__ == "__main__": main()
3.78125
4
tests/unit/custom/test_table.py
matthewgdv/sqlhandler
0
12795550
<filename>tests/unit/custom/test_table.py # import pytest class TestTable: def test___new__(self): # synced assert True
1.867188
2