max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
core/migrations/0003_auto_20190805_1144.py
ArthurGorgonio/suggestclasses
0
12795351
<filename>core/migrations/0003_auto_20190805_1144.py # Generated by Django 2.1.5 on 2019-08-05 14:44 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0002_auto_20190509_1508'), ] operations = [ migrations.CreateModel( name='Horario', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('ordem', models.CharField(choices=[('1', 'Primeiro Horário'), ('2', 'Segundo Horário'), ('3', 'Terceiro Horário'), ('4', 'Quarto Horário'), ('5', 'Quinto Horário'), ('6', 'Sexto Horário')], max_length=1)), ('turno', models.CharField(choices=[('M', 'Manhã'), ('T', 'Tarde'), ('N', 'Noite')], max_length=10)), ('hora_inicio', models.TimeField()), ('hora_fim', models.TimeField()), ], ), migrations.AlterUniqueTogether( name='horario', unique_together={('ordem', 'turno')}, ), ]
1.742188
2
rawdisk/scheme/__init__.py
dariusbakunas/rawdisk
3
12795352
<reponame>dariusbakunas/rawdisk # -*- coding: utf-8 -*- __all__ = ['mbr', 'gpt', 'common'] from . import common from . import mbr from . import gpt
1.023438
1
sewer/dns_providers/__init__.py
dnet/sewer
0
12795353
from .common import BaseDns # noqa: F401 from .auroradns import AuroraDns # noqa: F401 from .cloudflare import CloudFlareDns # noqa: F401
1.046875
1
expanse_su_estimator/sbatch_parser.py
alex-wenzel/expanse-su-estimator
0
12795354
<reponame>alex-wenzel/expanse-su-estimator """ This file defines a class that parses and represents an SBATCH submission script """ class SBATCHScript: def __init__(self, path): self.path = path self.args = {} def __getitem__(self, key): if type(key) == list: return self.multiple_key_query(key) else: return self.args[key] def __str__(self): return '\n'.join([ f"{key}: {value}" for key, value in self.args.items() ]) def parse(self): for line in open(self.path, 'r').readlines(): if not line.startswith("#SBATCH"): continue tokens = line.split()[1:] arg, val = None, None ## parse args with '--' and '=' if len(tokens) == 1: arg, val = tokens[0].split('=') ## parse args with '-' else: arg, val = tokens arg = arg.strip("-") self.args[arg] = val def multiple_key_query(self, keys): """ A function to allow for querying of parameters that can have multiple names, .e.g., -N, --nodes """ for key in keys: try: return self.args[key] except KeyError: continue raise KeyError(f"None of {keys} in sbatch arguments") if __name__ == "__main__": s = SBATCHScript("test_examples/expanse_shared_example.sh") s.parse()
2.75
3
bolinette/blnt/commands/__init__.py
bolinette/bolinette
4
12795355
from bolinette.blnt.commands.argument import Argument from bolinette.blnt.commands.command import Command from bolinette.blnt.commands.parser import Parser
1.289063
1
src/doc/overrides/.icons/convert.py
alexanderpann/mps-gotchas
4
12795356
<filename>src/doc/overrides/.icons/convert.py import base64 import glob, os def write_svg_file(svg_path, encoded_str): with open(svg_path, "w") as text_file: content = """ <svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" width="32" height="32" viewBox="0 0 32 32"> <image width="32" height="32" xlink:href="{0}" /> </svg> """ text_file.write(content.format(encoded_str)) def image_to_data_url(filename): ext = filename.split('.')[-1] prefix = f'data:image/{ext};base64,' with open(filename, 'rb') as f: img = f.read() return prefix + base64.b64encode(img).decode('utf-8') basePath = "" # set path to icons here for file in glob.glob(basePath+"/**/**/*.png"): png_file = file svg_file = file[0:-4]+ ".svg" image_data = image_to_data_url(png_file) write_svg_file(svg_file,image_data) os.remove(png_file)
3.09375
3
docker_host/views.py
DisMosGit/Dodja
0
12795357
<gh_stars>0 from rest_framework.exceptions import PermissionDenied from rest_framework.viewsets import ModelViewSet, ReadOnlyModelViewSet from rest_framework.response import Response from rest_framework.permissions import IsAuthenticated from rest_framework.decorators import action from django.db.models import Q from .models import Host, Access, Job from .serializer import AccessCreateSerializer, AccessReadSerializer, HostSerializer, ActionSerializer, JobSerializer, UserAccessSerializer from .drivers import DockerConnectionPool from .permissions import IsHostOperationAllowed, HostOperationMixin class HostViewSet(ModelViewSet, HostOperationMixin): queryset = Host.objects serializer_class = HostSerializer permission_classes = [IsHostOperationAllowed] permission_kind = "dh" host_pk = "pk" ignored_suffixes = ("List", ) def get_queryset(self): return super().get_queryset().filter( Q(creator=self.request.user) | Q(accesses__user=self.request.user)).distinct().order_by('title') def perform_create(self, serializer): serializer.save(creator=self.request.user) @action(detail=True, methods=['POST'], url_path="execute", serializer_class=ActionSerializer) def execute(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) if not IsHostOperationAllowed.check_host_permissions( request.user, IsHostOperationAllowed.get_docker_operation( serializer.data["command"]), host__pk=self.kwargs.get(self.host_pk), kind=self.permission_kind, ): raise PermissionDenied() instance = self.get_object() result = DockerConnectionPool(str(instance.id), instance).execute( command=serializer.data.get('command'), **serializer.data.get("args"), ) status = 200 if bool(result.get("error")): status = 400 return Response(result, status=status) @action(detail=True, methods=['get'], url_path="my_access", serializer_class=UserAccessSerializer) def my_access(self, request, pk, **kwargs): permissions = {} access: Access = Access.objects.filter(host__pk=pk, user=request.user).first() if access is None: permissions = {"full": True} else: for kind in access.permissions_kind: permissions[access.permissions_dictionary.get( kind, kind, )] = access.able_operations(kind) serializer = self.get_serializer({ "permissions": permissions, "user": request.user.pk, "host": pk }) return Response(serializer.data) class AccessViewSet(ModelViewSet, HostOperationMixin): queryset = Access.objects serializer_class = AccessReadSerializer permission_classes = [IsHostOperationAllowed] lookup_field = 'id' permission_kind = "dp" host_pk = "host__pk" def get_serializer_class(self): if self.action in ("update", "create", "partial_update"): return AccessCreateSerializer else: return AccessReadSerializer def get_queryset(self): return super().get_queryset().prefetch_related('user').filter( host__pk=self.kwargs.get("host__pk")).order_by('permissions') def perform_create(self, serializer): serializer.save(host_id=self.kwargs.get("host__pk")) class JobViewSet(ReadOnlyModelViewSet, HostOperationMixin): queryset = Job.objects serializer_class = JobSerializer permission_classes = [IsHostOperationAllowed] lookup_field = 'id' permission_kind = "dh" host_pk = "host__pk" def get_queryset(self): return super().get_queryset().filter( host__pk=self.kwargs.get("host__pk")) # TODO: # @action(detail=True, # methods=['GET'], # url_path="job", # serializer_class=ActionSerializer) # def job(self, request, *args, **kwargs): # instance = self.get_object() # result = DockerConnectionPool(str(instance.id), # instance).get_job_result( # request.query_params.get("key")) # return Response(result)
2
2
shared/management/__init__.py
Saevon/webdnd
4
12795358
from django.db.models.signals import post_syncdb from django.conf import settings from django.core import management import os import re FIXTURE_RE = re.compile(r'^[^.]*.json$') def load_data(sender, **kwargs): """ Loads fixture data after loading the last installed app """ if kwargs['app'].__name__ == settings.INSTALLED_APPS[-1] + ".models": fixture_files = [] for loc in settings.INITIAL_FIXTURE_DIRS: loc = os.path.abspath(loc) if os.path.exists(loc): fixture_files += os.listdir(loc) fixture_files = filter(lambda v: FIXTURE_RE.match(v), fixture_files) fixture_files = [os.path.join(loc, f) for f in fixture_files] if len(fixture_files) > 0: print "Initializing Fixtures:" for fixture in fixture_files: print " >> %s" % (fixture) management.call_command('loaddata', fixture, verbosity=0) # Update the index print 'Generating Index' management.call_command('index', 'all', flush=True, verbosity=1) post_syncdb.connect(load_data)
2.09375
2
windpyutils/args.py
windionleaf/windPyUtils
0
12795359
<gh_stars>0 # -*- coding: UTF-8 -*- """" Created on 30.06.20 Module with wrapper that makes arguments parsers raising exceptions. :author: <NAME> """ from argparse import ArgumentParser class ArgumentParserError(Exception): """ Exceptions for argument parsing. """ pass class ExceptionsArgumentParser(ArgumentParser): """ Argument parser that uses exceptions for error handling. """ def error(self, message): raise ArgumentParserError(message)
2.5625
3
asyncClient/__main__.py
harveyspec1245/tcpClient
0
12795360
<reponame>harveyspec1245/tcpClient<gh_stars>0 from asyncClient import Clients import sys import getopt if __name__ == '__main__': _clients = 2 _data = 'Hello' try: opts, args = getopt.getopt(sys.argv[1:], "hd:c:", ["data=", "clients="]) except getopt.GetoptError as e: print(e) print('Usage: python -m client -d <data_to_send> -c <num of clients>') sys.exit(2) for opt, arg in opts: if opt == '-h': print('Usage: python -m client -d <data_to_send> -c <num of clients>') sys.exit() elif opt in ("-d", "--data"): _data = arg elif opt in ("-c", "--clients"): _clients = int(arg) Clients(_clients, _data)
2.59375
3
Max/Max_0160_20200409.py
Morek999/OMSCS_Taiwan_Leetcode
1
12795361
<filename>Max/Max_0160_20200409.py """ 160. Intersection of Two Linked Lists https://leetcode.com/problems/intersection-of-two-linked-lists/ Time complexity: O() Space complexity: O() """ from typing import List # Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def getIntersectionNode(self, headA: ListNode, headB: ListNode) -> ListNode: if headA is None or headB is None: return None ptA = headA ptB = headB while ptA is not ptB: ptA = headB if ptA is None else ptA.next ptB = headA if ptB is None else ptB.next return ptA
3.515625
4
django/reviewApp/admin.py
Akasiek/scorethatlp
5
12795362
from django.contrib import admin from . import models @admin.register(models.Reviewer) class ReviewerAdmin(admin.ModelAdmin): autocomplete_fields = ["user"] list_display = ["username", "email"] search_fields = ["username__istartswith"] @admin.register(models.Album) class AlbumAdmin(admin.ModelAdmin): list_display = ["title", "artist_id", "created_at", "created_by"] ordering = ["title"] list_per_page = 30 prepopulated_fields = { "slug": ["title"] } list_select_related = ["artist_id", "created_by"] autocomplete_fields = ["artist_id"] search_fields = ["title"] @admin.register(models.Artist) class ArtistAdmin(admin.ModelAdmin): list_display = ["name", "created_at", "created_by"] ordering = ["name"] list_per_page = 30 prepopulated_fields = { "slug": ["name"] } search_fields = ['name__istartswith'] @admin.register(models.Genre) class GenreAdmin(admin.ModelAdmin): search_fields = ['name__istartswith'] @admin.register(models.AlbumGenre) class AlbumGenreAdmin(admin.ModelAdmin): list_display = ["__str__", "album_id", "genre_id"] autocomplete_fields = ["album_id", "genre_id"] @admin.register(models.AlbumLink) class AlbumLinkAdmin(admin.ModelAdmin): list_display = ["__str__", "album_id"] autocomplete_fields = ["album_id"] @admin.register(models.AlbumOfTheYear) class AlbumOfTheYear(admin.ModelAdmin): list_display = ["__str__", "album_id"] autocomplete_fields = ["album_id"] @admin.register(models.Track) class TrackAdmin(admin.ModelAdmin): list_display = ["__str__", "album_id"] @admin.register(models.Review) class ReviewAdmin(admin.ModelAdmin): autocomplete_fields = ["album_id", "reviewer_id"] list_display = ["__str__", "album_id", "reviewer_id"] @admin.register(models.FavoriteReviewerArtist) class FavoriteReviewerArtistAdmin(admin.ModelAdmin): autocomplete_fields = ["artist_id", "reviewer_id"] list_display = ["artist_id", "reviewer_id"] @admin.register(models.ReviewerLink) class ReviewerLinkAdmin(admin.ModelAdmin): autocomplete_fields = ["reviewer_id"] list_display = ["reviewer_id", "service_name"]
2.046875
2
data_shift.py
zackchase/label_shift
14
12795363
import mxnet as mx from mxnet import nd, autograd import numpy as np ##################################3 # X, y - training data # n - number of data points in dataset # Py - desired label distribution ################################### def tweak_dist(X, y, num_labels, n, Py): shape = (n, *X.shape[1:]) Xshift = np.zeros(shape) yshift = np.zeros(n, dtype=np.int8) # get indices for each label indices_by_label = [(y==k).nonzero()[0] for k in range(10)] labels = np.argmax( np.random.multinomial(1, Py, n), axis=1) for i in range(n): # sample an example from X with replacement idx = np.random.choice(indices_by_label[labels[i]]) Xshift[i] = X[idx] yshift[i] = y[idx] return Xshift, yshift def tweak_one(X, y, num_labels, n, knockout_label, p): # create Py # call down to tweak_dist Py = np.full(num_labels, (1.-p)/(num_labels-1)) Py[knockout_label] = p print(Py) return tweak_dist(X, y, num_labels, n, Py)
3.015625
3
v1.0.0.test/toontown/hood/AnimatedProp.py
TTOFFLINE-LEAK/ttoffline
4
12795364
<filename>v1.0.0.test/toontown/hood/AnimatedProp.py from direct.showbase import DirectObject from direct.directnotify import DirectNotifyGlobal class AnimatedProp(DirectObject.DirectObject): notify = DirectNotifyGlobal.directNotify.newCategory('AnimatedProp') def __init__(self, node): self.node = node def delete(self): pass def uniqueName(self, name): return name + '-' + str(self.node.this) def enter(self): self.notify.debug('enter') def exit(self): self.notify.debug('exit')
2.0625
2
tests/test_microsoft_trans.py
nidhaloff/deep_translator
118
12795365
<filename>tests/test_microsoft_trans.py #!/usr/bin/env python """Tests for `deep_translator` package.""" from unittest.mock import patch import pytest import requests from deep_translator import MicrosoftTranslator, exceptions # mocked request.post @patch.object(requests, "post") def test_microsoft_successful_post_mock(mock_request_post): returned_json = [{"translations": [{"text": "See you later!", "to": "en"}]}] def res(): r = requests.Response() def json_func(): return returned_json r.json = json_func return r mock_request_post.return_value = res() assert ( MicrosoftTranslator(api_key="an_api_key", source="de", target="en").translate( "auf wiedersehen!" ) == "See you later!" ) def test_MicrosoftAPIerror(): with pytest.raises(exceptions.MicrosoftAPIerror): MicrosoftTranslator(api_key="empty", source="de", target="en").translate("text") # the remaining tests are actual requests to Microsoft API and use an api key # if APIkey variable is None, they are skipped APIkey = None @pytest.mark.skipif(APIkey is None, reason="api_key is not provided") def test_microsoft_successful_post_onetarget(): posted = MicrosoftTranslator(api_key=APIkey, target="en").translate( "auf wiedersehen!" ) assert isinstance(posted, str) @pytest.mark.skipif(APIkey is None, reason="api_key is not provided") def test_microsoft_successful_post_twotargets(): posted = MicrosoftTranslator(api_key=APIkey, target=["en", "ru"]).translate( "auf wiedersehen!" ) assert isinstance(posted, str) @pytest.mark.skipif(APIkey is None, reason="api_key is not provided") def test_incorrect_target_attributes(): with pytest.raises(exceptions.ServerException): MicrosoftTranslator(api_key=APIkey, target="") with pytest.raises(exceptions.ServerException): MicrosoftTranslator(api_key="", target="nothing") @pytest.mark.skipif(APIkey is None, reason="api_key is not provided") def test_abbreviations(): m1 = MicrosoftTranslator(api_key=APIkey, source="en", target="fr") m2 = MicrosoftTranslator(api_key=APIkey, source="English", target="French") assert "".join(m1._source) == "".join(m2._source) assert "".join(m1._target) == "".join(m2._target)
2.546875
3
build_newlib.py
codyd51/axle
453
12795366
<reponame>codyd51/axle<filename>build_newlib.py #!/usr/bin/python3 import os import tempfile from pathlib import Path from typing import Tuple from build_utils import download_and_unpack_archive, run_and_check def clone_tool_and_prepare_build_dir(build_dir: Path, url: str) -> Tuple[Path, Path]: tool_src_dir = download_and_unpack_archive(build_dir, url) tool_name = url.split("/")[-1].removesuffix(".tar.gz") tool_build_dir = build_dir / f"build-{tool_name}" tool_build_dir.mkdir(exist_ok=True) return tool_src_dir, tool_build_dir def build() -> None: axle_dir = Path(__file__).parent sysroot_dir = axle_dir / "axle-sysroot" arch_target = "i686-elf" toolchain_dir = axle_dir / "i686-toolchain" binaries_dir = toolchain_dir / "bin" with tempfile.TemporaryDirectory() as build_dir_raw: build_dir = Path(build_dir_raw) build_products_dir = Path(__file__).parent / "newlib-build-products" if False: automake_src_dir, automake_build_dir = clone_tool_and_prepare_build_dir( build_dir, "https://ftp.gnu.org/gnu/automake/automake-1.11.tar.gz" ) automake_configure_path = automake_src_dir / "configure" run_and_check( [automake_configure_path.as_posix(), f"--prefix={build_products_dir}"], cwd=automake_build_dir ) run_and_check(["make"], cwd=automake_build_dir) run_and_check(["make", "install"], cwd=automake_build_dir) autoconf_src_dir, autoconf_build_dir = clone_tool_and_prepare_build_dir( build_dir, "https://ftp.gnu.org/gnu/autoconf/autoconf-2.65.tar.gz" ) autoconf_configure_path = autoconf_src_dir / "configure" run_and_check( [autoconf_configure_path.as_posix(), f"--prefix={build_products_dir}"], cwd=autoconf_build_dir ) run_and_check(["make"], cwd=autoconf_build_dir) run_and_check(["make", "install"], cwd=autoconf_build_dir) newlib_src_dir = axle_dir / "ports" / "newlib" / "newlib-2.5.0.20171222" newlib_build_dir = build_dir / "build-newlib" newlib_build_dir.mkdir() os.symlink((binaries_dir / "i686-elf-ar").as_posix(), (newlib_build_dir / "i686-axle-ar").as_posix()) os.symlink((binaries_dir / "i686-elf-as").as_posix(), (newlib_build_dir / "i686-axle-as").as_posix()) os.symlink((binaries_dir / "i686-elf-gcc").as_posix(), (newlib_build_dir / "i686-axle-gcc").as_posix()) os.symlink((binaries_dir / "i686-elf-cc").as_posix(), (newlib_build_dir / "i686-axle-cc").as_posix()) os.symlink((binaries_dir / "i686-elf-ranlib").as_posix(), (newlib_build_dir / "i686-axle-ranlib").as_posix()) env = {"PATH": f'{newlib_build_dir}:{os.environ["PATH"]}'} newlib_configure_path = newlib_src_dir / "configure" run_and_check( [newlib_configure_path.as_posix(), "--prefix=/usr", "--target=i686-axle"], cwd=newlib_build_dir, env_additions=env, ) run_and_check(["make", "all"], cwd=newlib_build_dir, env_additions=env) run_and_check(["make", f"DESTDIR={sysroot_dir.as_posix()}", "install"], cwd=newlib_build_dir, env_additions=env) # If you make some kind of config change to the axle target, such as adding new files within the newlib port, # you may have to run this command # You may see an error like the following while running this script: # /bin/sh: /Users/philliptennen/Documents/develop/axle/ports/newlib/newlib-2.5.0.20171222/etc/configure: No such file or directory # ../newlib-2.5.0.20171222/configure --prefix=/usr --target=i686-axle # Fail when newlib doesn't compile # set -e # make all if __name__ == "__main__": build()
2.171875
2
bread/protocols/__init__.py
systocrat/bread
11
12795367
__all__ = [ 'flash', 'http', 'irc', 'ssh2' ]
1.078125
1
sdk/python/pulumiverse_unifi/get_network.py
pulumiverse/pulumi-unifi
1
12795368
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities __all__ = [ 'GetNetworkResult', 'AwaitableGetNetworkResult', 'get_network', 'get_network_output', ] @pulumi.output_type class GetNetworkResult: """ A collection of values returned by getNetwork. """ def __init__(__self__, dhcp_dns=None, dhcp_enabled=None, dhcp_lease=None, dhcp_start=None, dhcp_stop=None, dhcpd_boot_enabled=None, dhcpd_boot_filename=None, dhcpd_boot_server=None, domain_name=None, id=None, igmp_snooping=None, ipv6_interface_type=None, ipv6_pd_interface=None, ipv6_pd_prefixid=None, ipv6_ra_enable=None, ipv6_static_subnet=None, name=None, network_group=None, purpose=None, site=None, subnet=None, vlan_id=None, wan_dns=None, wan_egress_qos=None, wan_gateway=None, wan_ip=None, wan_netmask=None, wan_networkgroup=None, wan_type=None, wan_username=None, x_wan_password=<PASSWORD>): if dhcp_dns and not isinstance(dhcp_dns, list): raise TypeError("Expected argument 'dhcp_dns' to be a list") pulumi.set(__self__, "dhcp_dns", dhcp_dns) if dhcp_enabled and not isinstance(dhcp_enabled, bool): raise TypeError("Expected argument 'dhcp_enabled' to be a bool") pulumi.set(__self__, "dhcp_enabled", dhcp_enabled) if dhcp_lease and not isinstance(dhcp_lease, int): raise TypeError("Expected argument 'dhcp_lease' to be a int") pulumi.set(__self__, "dhcp_lease", dhcp_lease) if dhcp_start and not isinstance(dhcp_start, str): raise TypeError("Expected argument 'dhcp_start' to be a str") pulumi.set(__self__, "dhcp_start", dhcp_start) if dhcp_stop and not isinstance(dhcp_stop, str): raise TypeError("Expected argument 'dhcp_stop' to be a str") pulumi.set(__self__, "dhcp_stop", dhcp_stop) if dhcpd_boot_enabled and not isinstance(dhcpd_boot_enabled, bool): raise TypeError("Expected argument 'dhcpd_boot_enabled' to be a bool") pulumi.set(__self__, "dhcpd_boot_enabled", dhcpd_boot_enabled) if dhcpd_boot_filename and not isinstance(dhcpd_boot_filename, str): raise TypeError("Expected argument 'dhcpd_boot_filename' to be a str") pulumi.set(__self__, "dhcpd_boot_filename", dhcpd_boot_filename) if dhcpd_boot_server and not isinstance(dhcpd_boot_server, str): raise TypeError("Expected argument 'dhcpd_boot_server' to be a str") pulumi.set(__self__, "dhcpd_boot_server", dhcpd_boot_server) if domain_name and not isinstance(domain_name, str): raise TypeError("Expected argument 'domain_name' to be a str") pulumi.set(__self__, "domain_name", domain_name) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if igmp_snooping and not isinstance(igmp_snooping, bool): raise TypeError("Expected argument 'igmp_snooping' to be a bool") pulumi.set(__self__, "igmp_snooping", igmp_snooping) if ipv6_interface_type and not isinstance(ipv6_interface_type, str): raise TypeError("Expected argument 'ipv6_interface_type' to be a str") pulumi.set(__self__, "ipv6_interface_type", ipv6_interface_type) if ipv6_pd_interface and not isinstance(ipv6_pd_interface, str): raise TypeError("Expected argument 'ipv6_pd_interface' to be a str") pulumi.set(__self__, "ipv6_pd_interface", ipv6_pd_interface) if ipv6_pd_prefixid and not isinstance(ipv6_pd_prefixid, str): raise TypeError("Expected argument 'ipv6_pd_prefixid' to be a str") pulumi.set(__self__, "ipv6_pd_prefixid", ipv6_pd_prefixid) if ipv6_ra_enable and not isinstance(ipv6_ra_enable, bool): raise TypeError("Expected argument 'ipv6_ra_enable' to be a bool") pulumi.set(__self__, "ipv6_ra_enable", ipv6_ra_enable) if ipv6_static_subnet and not isinstance(ipv6_static_subnet, str): raise TypeError("Expected argument 'ipv6_static_subnet' to be a str") pulumi.set(__self__, "ipv6_static_subnet", ipv6_static_subnet) if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") pulumi.set(__self__, "name", name) if network_group and not isinstance(network_group, str): raise TypeError("Expected argument 'network_group' to be a str") pulumi.set(__self__, "network_group", network_group) if purpose and not isinstance(purpose, str): raise TypeError("Expected argument 'purpose' to be a str") pulumi.set(__self__, "purpose", purpose) if site and not isinstance(site, str): raise TypeError("Expected argument 'site' to be a str") pulumi.set(__self__, "site", site) if subnet and not isinstance(subnet, str): raise TypeError("Expected argument 'subnet' to be a str") pulumi.set(__self__, "subnet", subnet) if vlan_id and not isinstance(vlan_id, int): raise TypeError("Expected argument 'vlan_id' to be a int") pulumi.set(__self__, "vlan_id", vlan_id) if wan_dns and not isinstance(wan_dns, list): raise TypeError("Expected argument 'wan_dns' to be a list") pulumi.set(__self__, "wan_dns", wan_dns) if wan_egress_qos and not isinstance(wan_egress_qos, int): raise TypeError("Expected argument 'wan_egress_qos' to be a int") pulumi.set(__self__, "wan_egress_qos", wan_egress_qos) if wan_gateway and not isinstance(wan_gateway, str): raise TypeError("Expected argument 'wan_gateway' to be a str") pulumi.set(__self__, "wan_gateway", wan_gateway) if wan_ip and not isinstance(wan_ip, str): raise TypeError("Expected argument 'wan_ip' to be a str") pulumi.set(__self__, "wan_ip", wan_ip) if wan_netmask and not isinstance(wan_netmask, str): raise TypeError("Expected argument 'wan_netmask' to be a str") pulumi.set(__self__, "wan_netmask", wan_netmask) if wan_networkgroup and not isinstance(wan_networkgroup, str): raise TypeError("Expected argument 'wan_networkgroup' to be a str") pulumi.set(__self__, "wan_networkgroup", wan_networkgroup) if wan_type and not isinstance(wan_type, str): raise TypeError("Expected argument 'wan_type' to be a str") pulumi.set(__self__, "wan_type", wan_type) if wan_username and not isinstance(wan_username, str): raise TypeError("Expected argument 'wan_username' to be a str") pulumi.set(__self__, "wan_username", wan_username) if x_wan_password and not isinstance(x_wan_password, str): raise TypeError("Expected argument 'x_wan_password' to be a str") pulumi.set(__self__, "x_wan_password", x_wan_password) @property @pulumi.getter(name="dhcpDns") def dhcp_dns(self) -> Sequence[str]: """ IPv4 addresses for the DNS server to be returned from the DHCP server. """ return pulumi.get(self, "dhcp_dns") @property @pulumi.getter(name="dhcpEnabled") def dhcp_enabled(self) -> bool: """ whether DHCP is enabled or not on this network. """ return pulumi.get(self, "dhcp_enabled") @property @pulumi.getter(name="dhcpLease") def dhcp_lease(self) -> int: """ lease time for DHCP addresses. """ return pulumi.get(self, "dhcp_lease") @property @pulumi.getter(name="dhcpStart") def dhcp_start(self) -> str: """ The IPv4 address where the DHCP range of addresses starts. """ return pulumi.get(self, "dhcp_start") @property @pulumi.getter(name="dhcpStop") def dhcp_stop(self) -> str: """ The IPv4 address where the DHCP range of addresses stops. """ return pulumi.get(self, "dhcp_stop") @property @pulumi.getter(name="dhcpdBootEnabled") def dhcpd_boot_enabled(self) -> bool: """ Toggles on the DHCP boot options. will be set to true if you have dhcpd*boot*filename, and dhcpd*boot*server set. """ return pulumi.get(self, "dhcpd_boot_enabled") @property @pulumi.getter(name="dhcpdBootFilename") def dhcpd_boot_filename(self) -> str: """ the file to PXE boot from on the dhcpd*boot*server. """ return pulumi.get(self, "dhcpd_boot_filename") @property @pulumi.getter(name="dhcpdBootServer") def dhcpd_boot_server(self) -> str: """ IPv4 address of a TFTP server to network boot from. """ return pulumi.get(self, "dhcpd_boot_server") @property @pulumi.getter(name="domainName") def domain_name(self) -> str: """ The domain name of this network. """ return pulumi.get(self, "domain_name") @property @pulumi.getter def id(self) -> str: """ The ID of the network. """ return pulumi.get(self, "id") @property @pulumi.getter(name="igmpSnooping") def igmp_snooping(self) -> bool: """ Specifies whether IGMP snooping is enabled or not. """ return pulumi.get(self, "igmp_snooping") @property @pulumi.getter(name="ipv6InterfaceType") def ipv6_interface_type(self) -> str: """ Specifies which type of IPv6 connection to use. """ return pulumi.get(self, "ipv6_interface_type") @property @pulumi.getter(name="ipv6PdInterface") def ipv6_pd_interface(self) -> str: """ Specifies which WAN interface is used for IPv6 Prefix Delegation. """ return pulumi.get(self, "ipv6_pd_interface") @property @pulumi.getter(name="ipv6PdPrefixid") def ipv6_pd_prefixid(self) -> str: """ Specifies the IPv6 Prefix ID. """ return pulumi.get(self, "ipv6_pd_prefixid") @property @pulumi.getter(name="ipv6RaEnable") def ipv6_ra_enable(self) -> bool: """ Specifies whether to enable router advertisements or not. """ return pulumi.get(self, "ipv6_ra_enable") @property @pulumi.getter(name="ipv6StaticSubnet") def ipv6_static_subnet(self) -> str: """ Specifies the static IPv6 subnet (when ipv6*interface*type is 'static'). """ return pulumi.get(self, "ipv6_static_subnet") @property @pulumi.getter def name(self) -> str: """ The name of the network. """ return pulumi.get(self, "name") @property @pulumi.getter(name="networkGroup") def network_group(self) -> str: """ The group of the network. """ return pulumi.get(self, "network_group") @property @pulumi.getter def purpose(self) -> str: """ The purpose of the network. One of `corporate`, `guest`, `wan`, or `vlan-only`. """ return pulumi.get(self, "purpose") @property @pulumi.getter def site(self) -> str: """ The name of the site to associate the network with. """ return pulumi.get(self, "site") @property @pulumi.getter def subnet(self) -> str: """ The subnet of the network (CIDR address). """ return pulumi.get(self, "subnet") @property @pulumi.getter(name="vlanId") def vlan_id(self) -> int: """ The VLAN ID of the network. """ return pulumi.get(self, "vlan_id") @property @pulumi.getter(name="wanDns") def wan_dns(self) -> Sequence[str]: """ DNS servers IPs of the WAN. """ return pulumi.get(self, "wan_dns") @property @pulumi.getter(name="wanEgressQos") def wan_egress_qos(self) -> int: """ Specifies the WAN egress quality of service. """ return pulumi.get(self, "wan_egress_qos") @property @pulumi.getter(name="wanGateway") def wan_gateway(self) -> str: """ The IPv4 gateway of the WAN. """ return pulumi.get(self, "wan_gateway") @property @pulumi.getter(name="wanIp") def wan_ip(self) -> str: """ The IPv4 address of the WAN. """ return pulumi.get(self, "wan_ip") @property @pulumi.getter(name="wanNetmask") def wan_netmask(self) -> str: """ The IPv4 netmask of the WAN. """ return pulumi.get(self, "wan_netmask") @property @pulumi.getter(name="wanNetworkgroup") def wan_networkgroup(self) -> str: """ Specifies the WAN network group. One of either `WAN`, `WAN2` or `WAN_LTE_FAILOVER`. """ return pulumi.get(self, "wan_networkgroup") @property @pulumi.getter(name="wanType") def wan_type(self) -> str: """ Specifies the IPV4 WAN connection type. One of either `disabled`, `static`, `dhcp`, or `pppoe`. """ return pulumi.get(self, "wan_type") @property @pulumi.getter(name="wanUsername") def wan_username(self) -> str: """ Specifies the IPV4 WAN username. """ return pulumi.get(self, "wan_username") @property @pulumi.getter(name="xWanPassword") def x_wan_password(self) -> str: """ Specifies the IPV4 WAN password. """ return pulumi.get(self, "x_wan_password") class AwaitableGetNetworkResult(GetNetworkResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetNetworkResult( dhcp_dns=self.dhcp_dns, dhcp_enabled=self.dhcp_enabled, dhcp_lease=self.dhcp_lease, dhcp_start=self.dhcp_start, dhcp_stop=self.dhcp_stop, dhcpd_boot_enabled=self.dhcpd_boot_enabled, dhcpd_boot_filename=self.dhcpd_boot_filename, dhcpd_boot_server=self.dhcpd_boot_server, domain_name=self.domain_name, id=self.id, igmp_snooping=self.igmp_snooping, ipv6_interface_type=self.ipv6_interface_type, ipv6_pd_interface=self.ipv6_pd_interface, ipv6_pd_prefixid=self.ipv6_pd_prefixid, ipv6_ra_enable=self.ipv6_ra_enable, ipv6_static_subnet=self.ipv6_static_subnet, name=self.name, network_group=self.network_group, purpose=self.purpose, site=self.site, subnet=self.subnet, vlan_id=self.vlan_id, wan_dns=self.wan_dns, wan_egress_qos=self.wan_egress_qos, wan_gateway=self.wan_gateway, wan_ip=self.wan_ip, wan_netmask=self.wan_netmask, wan_networkgroup=self.wan_networkgroup, wan_type=self.wan_type, wan_username=self.wan_username, x_wan_password=self.x_wan_password) def get_network(id: Optional[str] = None, name: Optional[str] = None, site: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetNetworkResult: """ `Network` data source can be used to retrieve settings for a network by name or ID. ## Example Usage ```python import pulumi import pulumi_unifi as unifi lan_network = unifi.get_network(name="LAN") my_device = unifi.get_user(mac="01:23:45:67:89:ab") my_network = unifi.get_network(id=my_device.network_id) ``` :param str id: The ID of the network. :param str name: The name of the network. :param str site: The name of the site to associate the network with. """ __args__ = dict() __args__['id'] = id __args__['name'] = name __args__['site'] = site if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() if opts.plugin_download_url is None: opts.plugin_download_url = _utilities.get_plugin_download_url() __ret__ = pulumi.runtime.invoke('unifi:index/getNetwork:getNetwork', __args__, opts=opts, typ=GetNetworkResult).value return AwaitableGetNetworkResult( dhcp_dns=__ret__.dhcp_dns, dhcp_enabled=__ret__.dhcp_enabled, dhcp_lease=__ret__.dhcp_lease, dhcp_start=__ret__.dhcp_start, dhcp_stop=__ret__.dhcp_stop, dhcpd_boot_enabled=__ret__.dhcpd_boot_enabled, dhcpd_boot_filename=__ret__.dhcpd_boot_filename, dhcpd_boot_server=__ret__.dhcpd_boot_server, domain_name=__ret__.domain_name, id=__ret__.id, igmp_snooping=__ret__.igmp_snooping, ipv6_interface_type=__ret__.ipv6_interface_type, ipv6_pd_interface=__ret__.ipv6_pd_interface, ipv6_pd_prefixid=__ret__.ipv6_pd_prefixid, ipv6_ra_enable=__ret__.ipv6_ra_enable, ipv6_static_subnet=__ret__.ipv6_static_subnet, name=__ret__.name, network_group=__ret__.network_group, purpose=__ret__.purpose, site=__ret__.site, subnet=__ret__.subnet, vlan_id=__ret__.vlan_id, wan_dns=__ret__.wan_dns, wan_egress_qos=__ret__.wan_egress_qos, wan_gateway=__ret__.wan_gateway, wan_ip=__ret__.wan_ip, wan_netmask=__ret__.wan_netmask, wan_networkgroup=__ret__.wan_networkgroup, wan_type=__ret__.wan_type, wan_username=__ret__.wan_username, x_wan_password=__ret__.x_wan_password) @_utilities.lift_output_func(get_network) def get_network_output(id: Optional[pulumi.Input[Optional[str]]] = None, name: Optional[pulumi.Input[Optional[str]]] = None, site: Optional[pulumi.Input[Optional[str]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetNetworkResult]: """ `Network` data source can be used to retrieve settings for a network by name or ID. ## Example Usage ```python import pulumi import pulumi_unifi as unifi lan_network = unifi.get_network(name="LAN") my_device = unifi.get_user(mac="01:23:45:67:89:ab") my_network = unifi.get_network(id=my_device.network_id) ``` :param str id: The ID of the network. :param str name: The name of the network. :param str site: The name of the site to associate the network with. """ ...
1.921875
2
radinput/create_npy_files.py
ropewe56/simpleco2
0
12795369
<filename>radinput/create_npy_files.py import os import numpy as np import os, sys from timeit import default_timer as timer import platform script_root = os.path.abspath(os.path.dirname(__file__)) def interpolate(x0, y0, n): """Interpolate data onto a equidistant grid with n grid points Arguments: x0 {numpy float} -- [description] y0 {numpy float} -- [description] n {int} -- [description] Returns: (numpy, numpy) -- [description] """ x0 = np.array(x0) y0 = np.array(y0) n0 = x0.shape[0] x = np.mgrid[x0[0]:x0[-1]:n*1j] y = np.zeros(n) j = 0 for i in range(n): xx = x[i] while not (x0[j] <= xx and x[i] <= x0[j+1]): j += 1 if (j > n0-2): break j = min(j, n0-2) v = (x[i] - x0[j]) / (x0[j+1] - x0[j]) y[i] = (1.0 - v) * y0[j] + v * y0[j+1] return x, y def make_lookup_for_Q(CO2_Q_dir, Tmax=300.0): """Create lokup tables for the CO2 partition function https://hitran.org/docs/iso-meta/ global ID local ID Formula AFGL code Abundance Molar Mass /g·mol-1 Q(296 K) Q (full range) gi 7 1 12C16O2 626 0.984204 43.98983 286.09 q7.txt 1 Arguments: CO2_Q_file {str} -- file with T, Q values (HITRAN data) n {int} -- number of T,Q pairs Returns: T, Q -- [description] """ with open(os.path.join(CO2_Q_dir, "q7-q122-description.txt"), 'r') as ein: lines = ein.read().splitlines()[2:] paths = [] isotope_id = [] isotope_c = [] isotope_m = [] gis = [] # mass[kg] => g/mol * mass_factor mass_factor = 1.0e-3/6.02214076e23 # read the dexription file for i, line in enumerate(lines): ls = line.split() global_id = int(ls[0]) isotope_id.append(int(ls[1])) isotope_c.append(float(ls[4])) paths.append(ls[7]) gis.append(int(ls[8])) mass = float(ls[5]) * mass_factor isotope_m.append(mass) T = [] Q = [] # read the partition function files for path in paths: with open(os.path.join(CO2_Q_dir, path), 'r') as ein: lines = ein.read().splitlines() TQ = np.array([[float(x) for x in line.split()] for line in lines]) TT = np.array(TQ[:,0]) dT = TT[1:]-TT[:-1] #if np.amax(dT) > 1.0 or np.amin(dT) < 1.0: # print(TT) QQ = np.array(TQ[:,1]) index = np.where(TT < Tmax, True, False) T.append(TT[index]) Q.append(QQ[index]) n = T[0].shape[0] m = len(T) TQ = np.zeros((n, m + 1), np.double) TQ[:,0] = T[0] for i in range(m): #if np.abs(np.sum(T[0] - T[i])) > 1.0e-3: # print(np.abs(np.sum(T[0] - T[i]))) TQ[:,i+1] = Q[i] return TQ, paths, isotope_id, isotope_c, isotope_m, gis def make_T_p_over_height(data_dir): """Create Arguments: Returns: [type] -- [description] """ h1 = [ 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0] p1 = [1013.0, 902.0, 802.0, 710.0, 628.0, 554.0, 487.0, 426.0, 372.0, 324.0, 281.0, 243.0, 209.0] h2 = [ 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 70.0] p2 = [179.0, 153.0, 130.0, 111.0, 95.0, 81.2, 69.5, 59.5, 51.0, 43.4, 27.7, 13.2, 6.52, 3.33, 1.76, 0.951, 0.067] n = 100 h_p = np.array(h1 + h2) * 1.0e3 p_p = np.array(p1 + p2) * 1.0e2 h_p, p_p = interpolate(h_p, p_p, n) h_T = np.array([0.0, 13.0, 17.0, 25.0, 30.0, 45.0, 50.0, 70.0])*1.0e3 T_T = np.array([288.0, 215.8, 215.7, 225.1, 233.7, 269.9, 275.7, 218.1]) h_T, T_T = interpolate(h_T, T_T, n) T = np.zeros((h_T.shape[0], 2), np.double) p = np.zeros((h_p.shape[0], 2), np.double) h_T_path = os.path.join(data_dir, "h_T.npy") h_p_path = os.path.join(data_dir, "h_p.npy") T[:,0] = h_T T[:,1] = T_T p[:,0] = h_p p[:,1] = p_p np.save(h_T_path, T) np.save(h_p_path, p) def make_spectrum(hitran_file, data_dir, lmin, lmax, lids, abus, masss, gis): h = 6.62607004e-34 c0 = 2.99792458e8 with open(os.path.join(data_dir, hitran_file + ".out"), 'r') as ein: lines = ein.read().splitlines()[1:] m = np.array([[float(x) for x in line.split(',')] for line in lines]) mid = m[:, 0] iid = m[:, 1] ν = m[:, 2] ν = ν / 1.0e-2 λ = 1.0 / ν index1 = np.where(λ >= lmin, True, False) index2 = np.where(λ <= lmax, True, False) index = index1*index2 λ = λ[index] iid = iid[index] S = m[index, 3] A = m[index, 4] γ_a = m[index, 5] γ_s = m[index, 6] ν_l = m[index, 7] n_a = m[index, 8] δ_a = m[index, 9] g_u = m[index, 10] g_l = m[index, 11] ν_l = ν_l / 1.0e-2 # cm => m, bar => pascal γ_a = γ_a / 1.0e-2 * 1.0e-5 # cm => m, bar => pascal γ_s = γ_s / 1.0e-2 * 1.0e-5 # cm => m, bar => pascal δ_a = δ_a / 1.0e-2 * 1.0e-5 # cm => m, bar => pascal ΔE_ul = h * c0 / λ E_l = h * c0 * ν_l E_u = E_l + ΔE_ul n = A.shape[0] c = np.zeros((n, 14)) c[:, 0] = λ c[:, 1] = E_l c[:, 2] = E_u c[:, 3] = S c[:, 4] = A c[:, 5] = γ_a c[:, 6] = γ_s c[:, 7] = n_a c[:, 8] = δ_a c[:, 9] = g_u c[:, 10] = g_l i = np.argmax(c[:,3]) #print(i, c[i,:]) # 0 1 2 3 4 5 6 7 8 9 10 11 # 1 2 3 4 5 6 7 8 9 0 11 12 itoj = [9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 10, 11] for i in range(n): ii = int(iid[i]) j = itoj[ii] c[i, 11] = j c[i, 12] = masss[j] c[i, 13] = abus[j] np.save(os.path.join(data_dir, hitran_file + ".npy"), c) for j in range(30,50): s = [] for i in range(14): s.append("%12.6e" % c[j, i]) #print(" ".join(s)) def create_npy_data_files(data_dir): make_T_p_over_height(data_dir) CO2_Q_dir = os.path.join(data_dir, "CO2_Q") TQ, paths, isotope_id, isotope_c, isotope_m, gis = make_lookup_for_Q(CO2_Q_dir, Tmax = 300.0) TQ_path = os.path.join(data_dir, "T_Q.npy") np.save(TQ_path, TQ) lmin, lmax = 1.19e-5, 1.81e-5 hitran_file = os.path.join(data_dir, "CO2_rwfmt_ISO-0-12_wl-12-18-mum") make_spectrum(hitran_file, data_dir, lmin, lmax, isotope_id, isotope_c, isotope_m, gis)
2.625
3
debug-app-qt/gen_linalgd.py
blaind/ttf2mesh
63
12795370
#!/usr/bin/env python import sys import os #---------------------------------------------- file = open("linalgf.h", "r") s = file.read() file.close() s = s.replace("LINALGF_H", "LINALGD_H"); s = s.replace("float", "double"); s = s.replace("mat2f", "mat2d"); s = s.replace("mat3f", "mat3d"); s = s.replace("mat4f", "mat4d"); s = s.replace("vec2f", "vec2d"); s = s.replace("vec3f", "vec3d"); s = s.replace("vec4f", "vec4d"); s = s.replace("cpxf", "cpxd"); s = s.replace("v2f_", "v2d_"); s = s.replace("v3f_", "v3d_"); s = s.replace("v4f_", "v4d_"); s = s.replace("_v2f", "_v2d"); s = s.replace("_v3f", "_v3d"); s = s.replace("_v4f", "_v4d"); s = s.replace("m2f_", "m2d_"); s = s.replace("m3f_", "m3d_"); s = s.replace("m4f_", "m4d_"); s = s.replace("_m2f", "_m2d"); s = s.replace("_m3f", "_m3d"); s = s.replace("_m4f", "_m4d"); s = s.replace("Vec2f", "Vec2d"); s = s.replace("Vec3f", "Vec3d"); s = s.replace("Mat2f", "Mat2d"); s = s.replace("Mat3f", "Mat3d"); s = s.replace("Mat4f", "Mat4d"); s = s.replace("linalgf_", "linalgd_"); s = s.replace("linsolverf", "linsolverd"); file = open("linalgd.h", "w") file.write(s) file.close() #---------------------------------------------- file = open("linalgf.c", "r") s = file.read() file.close() s = s.replace("linalgf.h", "linalgd.h"); s = s.replace("float", "double"); s = s.replace("mat2f", "mat2d"); s = s.replace("mat3f", "mat3d"); s = s.replace("mat4f", "mat4d"); s = s.replace("vec2f", "vec2d"); s = s.replace("vec3f", "vec3d"); s = s.replace("vec4f", "vec4d"); s = s.replace("cpxf", "cpxd"); s = s.replace("v2f_", "v2d_"); s = s.replace("v3f_", "v3d_"); s = s.replace("v4f_", "v4d_"); s = s.replace("_v2f", "_v2d"); s = s.replace("_v3f", "_v3d"); s = s.replace("_v4f", "_v4d"); s = s.replace("m2f_", "m2d_"); s = s.replace("m3f_", "m3d_"); s = s.replace("m4f_", "m4d_"); s = s.replace("_m2f", "_m2d"); s = s.replace("_m3f", "_m3d"); s = s.replace("_m4f", "_m4d"); s = s.replace("linalgf_", "linalgd_"); s = s.replace("linsolverf", "linsolverd"); s = s.replace("find_leading_order_f", "find_leading_order_d"); s = s.replace("linear_solver_base_f", "linear_solver_base_d"); s = s.replace("det2f", "det2d"); s = s.replace("det3f", "det3d"); file = open("linalgd.c", "w") file.write(s) file.close() #---------------------------------------------- file = open("linalgf.h", "r") linalgfh = file.read() file.close() file = open("linalgd.h", "r") linalgdh = file.read() file.close() file = open("linalgf.c", "r") linalgfc = file.read() file.close() file = open("linalgd.c", "r") linalgdc = file.read() file.close() linalgh = linalgfh + linalgdh linalgc = linalgfc + linalgdc linalgc = linalgc.replace("#include \"linalgf.h\"\n", "") linalgc = linalgc.replace("#include \"linalgd.h\"\n", "") linalgc = linalgc.replace("#include <assert.h>\n", "") linalgc = "#include \"linalg.h\"\n#include <assert.h>\n" + linalgc file = open("linalg.h", "w") file.write(linalgh) file.close() file = open("linalg.c", "w") file.write(linalgc) file.close()
2.640625
3
aoc2020/day3.py
rfrazier716/aoc_2020
0
12795371
<reponame>rfrazier716/aoc_2020 from pathlib import Path import numpy as np def tree_in_path(map_line,map_x_coord): """ Checks if a tree is in the x-cord of the map line, looping if x is > len(map_line) returns: True if a tree is in the path, False otherwise rtype: Bool """ offset = map_x_coord % len(map_line) # module operater for rollover return map_line[offset]=='#' def traverse_map(map, x_step, y_step): """ iterates over a "map" (array of strings) starting at the top left until reaching the bottom of the map. every iteration advances position by <x_step,y_step> and checks if a tree is hit returns: the total number of Trees hit rtype: int """ trees_hit = 0 map_depth = len(map) y_steps = range(0,map_depth,y_step) for j,step in enumerate(y_steps): trees_hit += 1 if tree_in_path(map[step],j*x_step) else 0 return trees_hit if __name__ == "__main__": # Load the puzzle import to a map input_file = Path(__file__).resolve().parents[2] / "inputs" / "day3.txt" with open(input_file) as fii: map = [line.rstrip('\n') for line in fii] # Strip newline characters # Part one of the puzzle, traverse the map with a 3-1 slope and count trees # encountered print(f"Part One Solution: {traverse_map(map,3,1)}") # part two of the puzzle - try the 5 given slopes and spit out the total product slopes_to_test = [[1,1],[3,1],[5,1],[7,1],[1,2]] trees_hit_per_slope = [traverse_map(map,*slope) for slope in slopes_to_test] product_of_trees = np.prod(trees_hit_per_slope) # print the results for part 2 print() # print a newline for slope,hit_count in zip(slopes_to_test,trees_hit_per_slope): print(f"Slope of {slope} results in {hit_count} trees hit") print(f"Part Two Solution: {product_of_trees}")
3.953125
4
test_scrapy/test_scrapy/test.py
lijie28/python_demo
0
12795372
#coding=utf-8 import requests from lxml import etree url = 'http://weibo.cn/fishli28' #此处请修改为微博地址 url_login = 'https://login.weibo.cn/login/' html = requests.get(url_login).content selector = etree.HTML(html) password = selector.xpath('//input[@type="password"]/@name')[0] vk = selector.xpath('//input[@name="vk"]/@value')[0] action = selector.xpath('//form[@method="post"]/@action')[0] imgsrc = selector.xpath('/html/body/div[2]/form/div/img[1]/@src')[0] index = imgsrc.find('cpt=') capId = imgsrc[index + 4:] print imgsrc ### 验证码 code = raw_input("plz input code:") print action print password print vk new_url = url_login + action data = { 'mobile' : '<EMAIL>',#你的微博帐号 password : '<PASSWORD>', #你的微博密码 'remember' : 'on', 'backURL' : 'https://weibo.cn/fishli28', #此处请填写微博地址 'backTitle' : u'微博', 'tryCount' : '', 'vk' : vk, 'capId':capId, 'code':code, 'submit' : u'登录' } newhtml = requests.post(new_url,data=data).content new_selector = etree.HTML(newhtml) content = new_selector.xpath('//span[@class="ctt"]') for each in content: text = each.xpath('string(.)') print text
2.75
3
gradeit/visualization.py
NREL/gradeit
0
12795373
<reponame>NREL/gradeit<gh_stars>0 import numpy as np import matplotlib.pyplot as plt def plot_data(df, general_filter, plot_param): if plot_param[0]: # visualization of elevation data if general_filter: plt.plot(df['cumulative_uniform_distance_ft'], df['elevation_ft_filtered'], df['cumulative_original_distance_ft'], df['elevation_ft']) plt.ylabel('Elevation [ft]') plt.xlabel('Distance [ft]') plt.grid() plt.legend(['filtered', 'unfiltered']) plt.title('Elevation vs. Distance') plt.show() else: plt.plot(df['cumulative_original_distance_ft'], df['elevation_ft']) plt.ylabel('Elevation [ft]') plt.xlabel('Distance [ft]') plt.grid() plt.title('Elevation vs. Distance') plt.show() if plot_param[1]: # visulalization of grade data if general_filter: plt.plot(df['cumulative_uniform_distance_ft'], df['grade_dec_filtered'], df['cumulative_original_distance_ft'], df['grade_dec_unfiltered']) plt.ylabel('Grade]') plt.xlabel('Distance [ft]') plt.grid() plt.legend(['filtered', 'unfiltered']) plt.title('Grade vs. Distance') plt.show() else: plt.plot(df_filtered['cumulative_uniform_distance_ft'], df_filtered['grade_dec_unfiltered']) plt.ylabel('Grade]') plt.xlabel('Distance [ft]') plt.grid() plt.title('Grade vs. Distance') plt.show() if not plot_param[0] and not plot_param[0]: print('No visualization selected.')
2.921875
3
src/main.py
UAws/dear-gitlab-workhorse-ee
0
12795374
from selenium_controller.github import Github from selenium_controller.gitlab import Gitlab from utils.shell_executor.executor import execute_now def main(): github = Github() gitlab = Gitlab() new_tags = list() execute_now('git fetch --all') gitlab_versions = gitlab.fetch_gitlab_map_versions() github_tags = github.fetch_github_available_docker_versions() github_tags = [t.replace('v', '').replace('.m1', '') for t in github_tags] # match the gitlab version which not inside GitHub tags, the github tags contains gitlab version for gitlab_version in gitlab_versions: if gitlab_version not in github_tags and int(gitlab_version.split('.')[0]) > 12: new_tags.append(gitlab_version) for tag in new_tags: github.create_new_branch(tag) if __name__ == "__main__": main()
2.765625
3
examples/ecs/v1/tag.py
wangrui1121/huaweicloud-sdk-python
43
12795375
# -*-coding:utf-8 -*- from openstack import connection # create connection username = "xxxxxx" password = "<PASSWORD>" projectId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx" # tenant ID userDomainId = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx" # user account ID auth_url = "xxxxxxxxxxxxxxxxxxxxxxxxxxxx" # endpoint url conn = connection.Connection(auth_url=auth_url, user_domain_id=userDomainId, project_id=projectId, username=username, password=password) def create_server_tags(server_id): data = { "tags": [ { "key": "key1", "value": "value1" }, { "key": "key2", "value": "value3" } ] } conn.ecs.create_server_tags(server_id, **data) def delete_server_tags(server_id): data = { "tags": [ { "key": "key1", "value": "value1" } ] } conn.ecs.delete_server_tags(server_id, **data) def get_server_tags(server_id): tags = conn.ecs.get_server_tags(server_id) for tag in tags: print(tag.key, tag.value) def get_project_tags(): tags = conn.ecs.get_project_tags() for tag in tags: print(tag.key, tag.values) if __name__ == "__main__": server_id = "b0a9d2b4-2cae-4b66-a6ba-6af70f3bd7f8" create_server_tags(server_id) get_server_tags(server_id) delete_server_tags(server_id) get_project_tags()
2.34375
2
.github/workflows/set_env.py
kaleido-public/django-client-framework-typescript
0
12795376
#!/usr/bin/env python3 import os from subprocess import CalledProcessError, run from typing import Dict, List, Union import json from pathlib import Path import click __dir__ = Path(__file__).parent.absolute() def github_repo_name() -> str: if repo_full := os.environ.get("GITHUB_REPOSITORY"): return repo_full.split("/")[1] else: return "" def git_list_changes() -> List[str]: return run( ["git", "log", "-1", "--name-only", "--pretty="], check=True, capture_output=True, text=True, ).stdout.splitlines() def git_branch_name() -> str: if fullref := os.environ.get("GITHUB_REF", ""): return fullref[len("refs/heads/") :] else: return "" def target_branch() -> str: if git_branch_name() == "staging": return "release" else: return "staging" def git_commit_title() -> str: return run( ["git", "log", "-1", r"--pretty=format:%s"], check=True, capture_output=True, text=True, ).stdout.splitlines()[0] def git_short_sha() -> str: if fullsha := os.environ.get("GITHUB_SHA", ""): return fullsha[:7] else: return "" def is_dev_branch() -> bool: return git_branch_name() not in ["release", "staging"] def ci_yaml_changed() -> bool: return ".github/workflows/ci.yml" in git_list_changes() def docker_tag() -> str: return f"{git_branch_name()}-{git_short_sha()}" def docker_stack_name() -> str: return f"{github_repo_name()}-{git_branch_name()}-{git_short_sha()}" def should_upload_package() -> bool: return git_branch_name() == "release" def should_upload_image() -> bool: return git_branch_name() in ["release", "staging"] def package_version() -> str: with open("package.json", "rb") as content: package = json.load(content) return package["version"] def pr_body() -> str: if target_branch() == "staging": return 'To merge into the staging branch, please use "Rebase and merge", or "Squash and merge".' elif target_branch == "release": return 'To merge into the release branch, please use "Create a merge commit".' return "" def overwrite_path() -> str: return ":".join( [ str(__dir__), os.environ["PATH"], ] ) def get_env() -> Dict[str, Union[str, bool]]: return { "PROJECT_NAME": github_repo_name(), "DOCKER_TAG": docker_tag(), "CI_YAML_CHANGED": ci_yaml_changed(), "IS_DEV_BRANCH": is_dev_branch(), "BRANCH_NAME": git_branch_name(), "TARGET_BRANCH": target_branch(), "COMMIT_TITLE": git_commit_title(), "SHOULD_UPLOAD_PACKAGE": should_upload_package(), "SHOULD_UPLOAD_IMAGE": should_upload_image(), "PACKAGE_VERSION": package_version(), "PATH": overwrite_path(), "PR_BODY": pr_body(), } @click.command() @click.option("-w", "--write", is_flag=True) def main(write): content = "" for key, val in get_env().items(): if write: content += f"{key}={val}\n" else: content += f"{key}={val.__repr__()}\n" if write: with open(os.environ["GITHUB_ENV"], "a") as env_file: env_file.write(content) else: print(content, end="") if __name__ == "__main__": try: main() except CalledProcessError as err: exit(err.stdout + err.stderr)
2.21875
2
tests.py
MoritzS/licht
2
12795377
<reponame>MoritzS/licht<gh_stars>1-10 #!/usr/bin/env python import struct import unittest from licht.base import LightColor from licht.utils import RESERVED, Bitfield, Field, FieldType class BitFieldTest(unittest.TestCase): def assertFieldsEqual(self, field, field_dict): for key, val in field_dict.items(): self.assertEqual(field[key], val) @classmethod def setUpClass(cls): class SimpleBitfield(Bitfield): fields = [ Field('foo', 16, FieldType.int), Field('bar', 6 * 8, FieldType.bytes), Field('baz', 64, FieldType.float), ] class FullBitfield(Bitfield): fields = [ Field('foo', 1, FieldType.bool), Field('bar', 30, FieldType.uint), Field('baz', 33, FieldType.uint), Field('fiz', 32, FieldType.float), ] class ReservedSimpleBitfield(Bitfield): fields = [ Field(RESERVED, 16), Field('foo', 16, FieldType.bytes), Field(RESERVED, 8), Field('bar', 16, FieldType.bytes), ] class ReservedFullBitfield(Bitfield): fields = [ Field(RESERVED, 4), Field('foo', 12, FieldType.uint), Field(RESERVED, 5), Field('bar', 3, FieldType.uint), ] cls.SimpleBitfield = SimpleBitfield cls.FullBitfield = FullBitfield cls.ReservedSimpleBitfield = ReservedSimpleBitfield cls.ReservedFullBitfield = ReservedFullBitfield def test_to_bytes_simple(self): f = self.SimpleBitfield(foo=1234, bar=b'hello!', baz=3.14) expected = (1234).to_bytes(2, 'little') + b'hello!' + struct.pack('<d', 3.14) self.assertEqual(f.to_bytes(), expected) def test_to_bytes_full(self): f = self.FullBitfield(foo=True, bar=123456, baz=987654, fiz=1.55) expected = (((1 << 30) | 123456) << 33) | 987654 expected = expected.to_bytes(8, 'little') + struct.pack('<f', 1.55) self.assertEqual(f.to_bytes(), expected) def test_from_bytes_simple(self): value = (-1234).to_bytes(2, 'little', signed=True) + b'foobar' + struct.pack('<d', 5.25) f = self.SimpleBitfield.from_bytes(value) expected = {'foo': -1234, 'bar': b'foobar', 'baz': 5.25} self.assertFieldsEqual(f, expected) def test_from_bytes_full(self): val1 = (((1 << 30) | 9999) << 33) | 123123 value = val1.to_bytes(8, 'little') + struct.pack('<f', 6.125) f = self.FullBitfield.from_bytes(value) expected = {'foo': True, 'bar': 9999, 'baz': 123123, 'fiz': 6.125} self.assertFieldsEqual(f, expected) def test_reserved_simple(self): f = self.ReservedSimpleBitfield(foo=b'qq', bar=b'aa') self.assertEqual(f.to_bytes(), b'\x00\x00qq\x00aa') data = b'zzqqzaa' f = self.ReservedSimpleBitfield.from_bytes(data) self.assertFieldsEqual(f, {'foo': b'qq', 'bar': b'aa'}) def test_reserved_full(self): f = self.ReservedFullBitfield(foo=3456, bar=3) self.assertEqual(f.to_bytes(), b'\x80\x0d\x03') data = b'\x80\x9d\xab' f = self.ReservedFullBitfield.from_bytes(data) self.assertFieldsEqual(f, {'foo': 3456, 'bar': 3}) class ColorsTest(unittest.TestCase): test_colors = [ ((255, 0, 0), ( 0, 1.0, 1.0)), ((255, 255, 0), ( 60, 1.0, 1.0)), (( 0, 255, 0), (120, 1.0, 1.0)), (( 0, 255, 255), (180, 1.0, 1.0)), (( 0, 0, 255), (240, 1.0, 1.0)), ((255, 0, 255), (300, 1.0, 1.0)), ] def test_from_rgb(self): for rgb, hsb in self.test_colors: self.assertEqual(LightColor.from_rgb(rgb), hsb) def test_to_rgb(self): for rgb, hsb in self.test_colors: self.assertEqual(LightColor(*hsb).rgb, rgb) if __name__ == '__main__': unittest.main()
2.6875
3
example.py
ebs-universe/cefkivy
0
12795378
<reponame>ebs-universe/cefkivy<gh_stars>0 from kivy.config import Config Config.set('kivy', 'log_level', 'debug') Config.set('kivy', 'keyboard_mode', 'systemandmulti') from kivy_garden.ebs.cefkivy.browser import CefBrowser, cefpython from kivy.app import App class CefBrowserApp(App): def build(self): return CefBrowser(start_url='https://india.gov.in/') def run(): CefBrowserApp().run() cefpython.Shutdown() if __name__ == '__main__': run()
1.882813
2
twitter_scraper/models.py
debianitram/simple-twitter-scraper
0
12795379
from django.db import models from django.db.models.signals import post_save from . import tasks ### Define Querysets class TwitterProfileQuerySet(models.QuerySet): def search(self, query): return self.filter(name__icontains=query) class TaskQuerySet(models.QuerySet): def search(self, query): return self.filter(query__icontains=query) def pending(self): return self.filter(status='PD') def done(self): return self.filter(status='DN') ### Define Models class TwitterProfile(models.Model): class Meta: ordering = ('popularity', 'name') tw_id = models.PositiveIntegerField(unique=True) name = models.CharField(max_length=200) description = models.TextField(blank=True, null=True) image = models.URLField(blank=True, null=True) popularity = models.PositiveIntegerField(blank=True, default=0) objects = models.Manager() custom = TwitterProfileQuerySet.as_manager() __str__ = lambda self: self.name def update_(self, tw_user): update_fields = [] if self.name != tw_user.name: self.name = tw_user.name update_fields.append('name') if self.description != tw_user.description: self.description = tw_user.description update_fields.append('description') if self.image != tw_user.profile_image_url: self.image = tw_user.profile_image_url update_fields.append('image') if self.popularity != tw_user.followers_count: self.popularity = tw_user.followers_count update_fields.append('popularity') if update_fields: self.save(update_fields=update_fields) class Task(models.Model): class Meta: ordering = ('query', ) PENDING = 'PD' DONE = 'DN' STATUS = ( (PENDING, 'Pending'), (DONE, 'Done') ) query = models.CharField(max_length=100) status = models.CharField(max_length=2, choices=STATUS, default=PENDING) objects = models.Manager() custom = TaskQuerySet.as_manager() def __str__(self): return "%s -> Status: %s" % (self.query, self.get_status_display()) def update_to_done(self): if self.status is not self.DONE: self.status = self.DONE self.save() @staticmethod def run(**kwargs): if kwargs.get('created', False) or 'from_view' in kwargs: tasks.twitter_scraper.delay(kwargs['instance'].id) # Signals post_save.connect(Task.run, Task)
2.15625
2
7th.py
writtik/Hactober-Fest-2020
0
12795380
largest = -1 smallest = None while True: num = input("Enter a number: ") if num == "done" : break try: inum=int(num) except: print("Invalid Number") if inum > largest: largest=inum if smallest is None: smallest=inum elif inum<smallest: smallest=inum print("Maximum is", largest) print("Minimum is", smallest)
4.09375
4
CondCore/ESSources/test/python/load_from_globaltag_cfg.py
PKUfudawei/cmssw
1
12795381
from __future__ import print_function import FWCore.ParameterSet.Config as cms from Configuration.AlCa.autoCond import autoCond process = cms.Process("TEST") process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(100) ) process.source = cms.Source("EmptyIOVSource", lastValue = cms.uint64(3), timetype = cms.string('runnumber'), firstValue = cms.uint64(1), interval = cms.uint64(1) ) from CondCore.ESSources.GlobalTag import GlobalTag # Prepare the list of globalTags process.load("Configuration.StandardSequences.FrontierConditions_GlobalTag_cff") globalTag = GlobalTag(autoCond['run2_data'],"frontier://FrontierProd/CMS_CONDITIONS") process.GlobalTag.connect = cms.string(globalTag.connect()) process.GlobalTag.globaltag = globalTag.gt() print("Final connection string =", process.GlobalTag.connect) print("Final globalTag =", process.GlobalTag.globaltag) process.path = cms.Path()
1.710938
2
test/test_dataToCode/test_to_python/test_system/test_system.py
CoffeeOverflow/drawtocode
9
12795382
<filename>test/test_dataToCode/test_to_python/test_system/test_system.py import pytest import os import filecmp import subprocess from src.dataToCode.dataClasses.attribute import Attribute from src.dataToCode.dataClasses.classData import ClassData from src.dataToCode.dataClasses.interface import Interface from src.dataToCode.dataClasses.method import Method from src.dataToCode.write_files import write_files from src.dataToCode.dataClasses.visibility import Visibility from src.dataToCode.dataClasses.modifier import Modifier def test_strategy_example(tmpdir): def create_do_algorithm(): attribute = Attribute("data", "str") method = Method("doAlgorithm", parameters=[attribute]) return method def create_strategy(): method = create_do_algorithm() strategy = Interface("Strategy", methods=[method]) return strategy def create_context(): attribute = Attribute("strategy", "Strategy", visibility=Visibility.public) method = Method("doSomeBusinessLogic") context = ClassData("Context", methods=[method], fields=[attribute]) return context def create_concrete_a(): method = create_do_algorithm() strategy = create_strategy() concrete_a = ClassData("ConcreteStrategyA", methods=[method], implementations=[strategy]) return concrete_a def create_concrete_b(): method = create_do_algorithm() strategy = create_strategy() concrete_b = ClassData("ConcreteStrategyB", methods=[method], implementations=[strategy]) return concrete_b objects = [create_strategy(), create_context(), create_concrete_a(), create_concrete_b()] write_files(objects, tmpdir, "python") files_path = ["strategy.py", "context.py", "concrete_strategy_a.py", "concrete_strategy_b.py"] strategy_path = os.path.abspath(os.path.join(__file__, "../strategy_example")) generated_path = [os.path.join(tmpdir, x) for x in files_path] truth_path = [os.path.join(strategy_path, x) for x in files_path] for truth_file_path, generated_file_path in zip(truth_path, generated_path): assert filecmp.cmp(truth_file_path, generated_file_path) def test_strategy_xml(tmpdir): main_path = os.path.abspath(os.path.join(__file__,"../../../../../main.py")) xml_path = os.path.abspath(os.path.join(__file__,"../../../../strategy.xml")) subprocess.run(["python3", main_path, f"--xml_file={xml_path}", f"--code_path={tmpdir}", "--language=python"]) files_path = ["strategy.py", "context.py", "concrete_strategy_a.py", "concrete_strategy_b.py"] strategy_path = os.path.abspath(os.path.join(__file__, "../strategy_example")) generated_path = [os.path.join(tmpdir, x) for x in files_path] truth_path = [os.path.join(strategy_path, x) for x in files_path] for truth_file_path, generated_file_path in zip(truth_path, generated_path): assert filecmp.cmp(truth_file_path, generated_file_path) def test_ultimate_example(tmpdir): def create_spell(): method = Method("doEffect") interface = Interface("ISpell", methods=[method]) return interface def create_food(): method = Method("getNutrients", return_type="str") interface = Interface("IFood", methods=[method]) return interface def create_weapon(): name = Attribute("name", "str", visibility=Visibility.public) age = Attribute("age", "int", visibility=Visibility.private) attribute = Attribute("attribute", "Attribute", visibility=Visibility.protected) getAttribute = Method("getAttribute", return_type="Attribute") setAttribute = Method("setAttribute", return_type="void", parameters=[attribute]) weapon = ClassData("Weapon", methods=[getAttribute, setAttribute], fields=[name, age, attribute]) return weapon def create_attribute(): method = Method("method") field = Attribute("field", "Type", visibility=Visibility.public) attribute = ClassData("Attribute", methods=[method], fields=[field]) return attribute def create_walk(): method = Method("walk") interface = Interface("IWalk", methods=[method]) return interface def create_attack(): damage = Attribute("damage", "int", visibility=Visibility.public) method = Method("attack", parameters=[damage]) interface = Interface("IAttack", methods=[method]) return interface def create_orc(): name = Attribute("name", "str", visibility=Visibility.public) age = Attribute("age", "int", visibility=Visibility.private) damage = Attribute("damage", "int", visibility=Visibility.public) hours = Attribute("hours", "int", visibility=Visibility.public) walk = create_walk() attack_interface = create_attack() attack_method = Method("attack", parameters=[damage]) sleep = Method("sleep", parameters=[hours], visibility=Visibility.private) orc = ClassData("Orc", methods=[attack_method, sleep], fields=[name, age], implementations=[attack_interface, walk]) return orc def create_high_orc(): damage = Attribute("damage", "int", visibility=Visibility.public) hours = Attribute("hours", "int", visibility=Visibility.public) spell = Attribute("spell", "ISpell", visibility=Visibility.public) attack = Method("attack", parameters=[damage], modifier=Modifier.override) sleep = Method("sleep", parameters=[hours], visibility=Visibility.private, modifier=Modifier.override) orc = create_orc() high_orc = ClassData("HighOrc", methods=[attack, sleep], fields=[spell], inheritances=[orc]) return high_orc def create_fat_orc(): food = Attribute("food", "IFood", visibility=Visibility.public) eat = Method("eat", parameters=[food]) orc = create_orc() fat_orc = ClassData("FatOrc", methods=[eat], inheritances=[orc]) return fat_orc def create_obese_orc(): food = Attribute("food", "IFood", visibility=Visibility.public) heart_attack = Attribute("heartAttackChance", "int", visibility=Visibility.public) eat = Method("eat", parameters=[food], modifier=Modifier.override) fat_orc = create_fat_orc() obese_orc = ClassData("ObeseOrc", methods=[eat], fields=[heart_attack], inheritances=[fat_orc]) return obese_orc objects = [create_spell(), create_food(), create_weapon(), create_attribute(), create_attack(), create_walk(), create_orc(), create_high_orc(), create_fat_orc(), create_obese_orc()] write_files(objects, tmpdir, "python") ultimate_path = os.path.abspath(os.path.join(__file__, "../ultimate_example")) all_files_path = os.listdir(ultimate_path) files_path = [] for file_path in all_files_path: if file_path.endswith(".py"): files_path.append(file_path) generated_path = [os.path.join(tmpdir, x) for x in files_path] truth_path = [os.path.join(ultimate_path, x) for x in files_path] for truth_file_path, generated_file_path in zip(truth_path, generated_path): assert filecmp.cmp(truth_file_path, generated_file_path)
2.390625
2
__init__.py
Sleemanmunk/approximate-randomization
5
12795383
from .approximate_randomization import meandiff, meanlt, meangt, chanceByChance
0.921875
1
BurstCube/NoahSim/GRBgenerator.py
BurstCube/Simulation
0
12795384
<gh_stars>0 from healpy import nside2npix, pix2ang class Sky(): """ Generates an array of GRB's given certains strength at different sky positions. Output should be an array. """ def __init__(self, NSIDE, strength): # depending on NSIDE, there will be anywhere # from 12 to infinite spots on the sky w/ GRBs self.Ao = strength self.pixels = nside2npix(NSIDE) # want to convert these pixels into theta phi coords. self.sourceangs = [] for i in range(self.pixels): self.sourceangs.append(pix2ang(NSIDE, i))
2.71875
3
chapter_6/catnapping.py
aaronmccollum/automate-the-boring-stuff-with-python
0
12795385
# Using triple-quote marks to create a multiline string in Python print('''Dear Alice, Eve's cat has been arrested for catnapping, cat burglary, and extortion. Sincerely, Bob''')
3.671875
4
app/staff/views.py
swelanauguste/treasury_seo_system_1
0
12795386
from django.contrib.messages.views import SuccessMessageMixin from django.db.models import Q from django.shortcuts import render from django.views.generic import DetailView, ListView, UpdateView from .forms import StaffUpdateForm from .models import Staff class SearchSearchView(ListView): model = Staff paginate_by = 10 queryset = Staff.objects.all() def get_queryset(self): query = self.request.GET.get("q") if query: return Staff.objects.filter( Q(supplier_name__icontains=query) | Q(tags__icontains=query) | Q(email__icontains=query) | Q(phone__icontains=query) | Q(description__icontains=query) | Q(address__icontains=query) | Q(district__icontains=query) ) else: return Staff.objects.all() class StaffListView(ListView): model = Staff class StaffDetailView(DetailView): model = Staff class StaffUpdateView(UpdateView): model = Staff form_class = StaffUpdateForm template_name_suffix = "_update_form"
1.882813
2
core/pythonAction/pythonaction.py
samuelteixeiras/openwhisk
0
12795387
# # Copyright 2015-2016 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import os import json import subprocess import codecs import traceback import flask from gevent.wsgi import WSGIServer proxy = flask.Flask(__name__) proxy.debug = False @proxy.route("/init", methods=['POST']) def init(): flask.g = None payload = flask.request.get_json(force=True,silent=True) if not payload or not isinstance(payload, dict): flask.abort(403) message = payload.get("value", {}) if "code" in message: # store the code flask.g = message["code"] return ('OK', 200) else: flask.abort(403) @proxy.route("/run", methods=['POST']) def run(): message = flask.request.get_json(force=True,silent=True) if not message or not isinstance(message, dict): flask.abort(403) if not "value" in message: flask.abort(403) value = message["value"] if not isinstance(value, dict): flask.abort(403) # initialize the namespace for the execution namespace = {} result = None try: exec(flask.g, namespace) exec("param = " + json.dumps(value), namespace) exec("fun = main(param)", namespace) result = namespace['fun'] except Exception: traceback.print_exc(file = sys.stderr) sys.stdout.flush() sys.stderr.flush() if result and isinstance(result, dict): response = flask.jsonify(result) response.status_code = 200 return response else: response = flask.jsonify({ "error": "the action did not return a dictionary", "action_output": result }) response.status_code = 502 return response # start server in a forever loop if __name__ == "__main__": PORT = int(os.getenv("FLASK_PROXY_PORT", 8080)) server = WSGIServer(('', PORT), proxy, log=None) server.serve_forever()
2.109375
2
datasets/ttf_utils.py
derwind/mxfont
0
12795388
<filename>datasets/ttf_utils.py<gh_stars>0 """ MX-Font Copyright (c) 2021-present NAVER Corp. MIT license """ from fontTools.ttLib import TTFont from fontTools.pens.basePen import BasePen from PIL import Image, ImageFont, ImageDraw import numpy as np class StopDraw(Exception): pass class SpaceOrNotPen(BasePen): def __init__(self, glyphSet=None): super().__init__(glyphSet) self.is_space = True def _moveTo(self, pt): pass def _lineTo(self, pt): self.is_space = False raise StopDraw def _curveToOne(self, pt1, pt2, pt3): self.is_space = False raise StopDraw def get_defined_chars(fontfile): ttf = TTFont(fontfile) chars = [chr(y) for y in ttf["cmap"].tables[0].cmap.keys()] return chars def is_space_char(char, ttFont): cmap = ttFont.getBestCmap() gs = ttFont.getGlyphSet() uni = ord(char) gname = cmap[uni] g = gs[gname] pen = SpaceOrNotPen(gs) try: g.draw(pen) except StopDraw: pass return pen.is_space def get_filtered_chars(fontpath): # ttf = read_font(fontpath) defined_chars = get_defined_chars(fontpath) avail_chars = [] ttFont = TTFont(fontpath) for char in defined_chars: # img = np.array(render(ttf, char)) # if img.mean() == 255.: # pass is_space = is_space_char(char, ttFont) if is_space: pass else: avail_chars.append(char.encode('utf-16', 'surrogatepass').decode('utf-16')) return avail_chars def read_font(fontfile, size=150): font = ImageFont.truetype(str(fontfile), size=size) return font def render(font, char, size=(128, 128), pad=20): width, height = font.getsize(char) max_size = max(width, height) if width < height: start_w = (height - width) // 2 + pad start_h = pad else: start_w = pad start_h = (width - height) // 2 + pad img = Image.new("L", (max_size+(pad*2), max_size+(pad*2)), 255) draw = ImageDraw.Draw(img) draw.text((start_w, start_h), char, font=font) img = img.resize(size, 2) return img
2.265625
2
codes/edsr/model/srresnet.py
dnap512/SROD
5
12795389
# + from model import common import torch.nn as nn import torch from torch.autograd import Variable import numpy.random as npr import numpy as np import torch.nn.functional as F import random import math def make_model(args, parent=False): return SRResNet(args) class SRResNet(nn.Module): def __init__(self, args, conv=common.default_conv): super(SRResNet, self).__init__() n_resblocks = 5 n_feats = 64 kernel_size = 3 scale = args.scale[0] act = nn.PReLU() self.sub_mean = common.MeanShift(args.rgb_range) self.add_mean = common.MeanShift(args.rgb_range, sign=1) # define head module m_head = [ nn.Conv2d(3, 64, kernel_size=9, padding=4), act ] # define body module m_body = [ common.ResBlock( conv, n_feats, kernel_size, bn=True, act=act, res_scale=args.res_scale ) for _ in range(n_resblocks) ] m_body.append(conv(n_feats, n_feats, kernel_size)) m_body.append(nn.BatchNorm2d(n_feats)) # define tail module m_tail = [ common.Upsampler(conv, scale, n_feats, act='prelu'), nn.Conv2d(n_feats, 3, kernel_size=9, padding=4) ] self.head = nn.Sequential(*m_head) self.body = nn.Sequential(*m_body) self.tail = nn.Sequential(*m_tail) def forward(self, x, flag=False, hr=None): x = self.sub_mean(x) x = self.head(x) res = self.body(x) res += x x = self.tail[0](res) if flag: self.eval() x_new = x.clone().detach() x_new = Variable(x_new.data, requires_grad=True).cuda() num_batch, num_channel, H, W = x_new.shape HW = H*W sr = self.tail[-1](x_new) criterion = nn.L1Loss() loss = criterion(sr, hr) self.zero_grad() loss.backward() grads_val = x_new.grad.clone().detach() grad_channel_mean = torch.mean(grads_val.view(num_batch, num_channel, -1), dim=2) channel_mean = grad_channel_mean grad_channel_mean = grad_channel_mean.view(num_batch, num_channel, 1, 1) spatial_mean = torch.sum(x_new * grad_channel_mean, 1) spatial_mean = spatial_mean.view(num_batch, HW) self.zero_grad() choose_one = random.randint(0,9) if choose_one <= 4: # ---------------------------- spatial ----------------------- spatial_drop_num = math.ceil(HW * 1 / 3.0) th18_mask_value = torch.sort(spatial_mean, dim=1, descending=True)[0][:, spatial_drop_num] th18_mask_value = th18_mask_value.view(num_batch, 1).expand(num_batch, 36864) mask_all_cuda = torch.where(spatial_mean > th18_mask_value, torch.zeros(spatial_mean.shape).cuda(), torch.ones(spatial_mean.shape).cuda()) mask_all = mask_all_cuda.reshape(num_batch, H, H).view(num_batch, 1, H, H) else: # -------------------------- channel ---------------------------- vector_thresh_percent = math.ceil(num_channel * 1 / 3.2) vector_thresh_value = torch.sort(channel_mean, dim=1, descending=True)[0][:, vector_thresh_percent] vector_thresh_value = vector_thresh_value.view(num_batch, 1).expand(num_batch, num_channel) vector = torch.where(channel_mean > vector_thresh_value, torch.zeros(channel_mean.shape).cuda(), torch.ones(channel_mean.shape).cuda()) mask_all = vector.view(num_batch, num_channel, 1, 1) mask_all[int(num_batch/3):,:,:,:] = 1 self.train() mask_all = Variable(mask_all, requires_grad=True) x = x * mask_all x = self.tail[-1](x) x = self.add_mean(x) return x def load_state_dict(self, state_dict, strict=True): own_state = self.state_dict() for name, param in state_dict.items(): if name in own_state: if isinstance(param, nn.Parameter): param = param.data try: own_state[name].copy_(param) except Exception: if name.find('tail') == -1: raise RuntimeError('While copying the parameter named {}, ' 'whose dimensions in the model are {} and ' 'whose dimensions in the checkpoint are {}.' .format(name, own_state[name].size(), param.size())) elif strict: if name.find('tail') == -1: raise KeyError('unexpected key "{}" in state_dict' .format(name))
2.328125
2
kopen_of_huren.py
basnijholt/kopen-of-huren
4
12795390
<gh_stars>1-10 from collections import defaultdict from functools import partial from itertools import product from numbers import Number from typing import Any, Dict, Literal, Union import matplotlib import matplotlib.colors import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.optimize from loky import get_reusable_executor from tqdm.notebook import tqdm from maandlasten import maandlasten from mortgage import Mortgage, dollar matplotlib.rc("font", size=15) def load_sp500() -> pd.Series: # Daily data to need to resample it to quarterly like the huizenprijzen df_stock = pd.read_csv("sp500.csv") df_stock.Date = pd.to_datetime(df_stock.Date) df_stock.set_index("Date", inplace=True) # *Close price adjusted for splits # **Adjusted close price adjusted for both dividends and splits. stock_price = df_stock["Close*"].str.replace(",", "").astype(float) # Create data points for each day stock_price = stock_price.resample("D").interpolate() return stock_price def plot_sp500() -> None: stock_price = load_sp500() stock_price.plot( xlabel="Datum", ylabel="S&P500 prijs ($)", title="S&P500 index vs. tijd, bron: Yahoo! Finance", figsize=(7, 7), ) plt.show() def get_groei(regio="Nederland") -> pd.DataFrame: stock_price = load_sp500() stock_price = stock_price[ stock_price.index.day == 1 ] # Keep only first of the month first_year = stock_price.index.min().year start = f"{first_year+1}-02-01" stock_relative = {} for date, value in stock_price[stock_price.index >= start].items(): date_prev = date.replace(date.year - 1) prev = stock_price[date_prev] stock_relative[date] = (value - prev) / prev * 100 stock_relative = pd.Series(stock_relative) # Select at same dates as huis prijzen huis_prijsindex = load_huizen_prijsindex_per_regio()[regio] stock_relative = stock_relative[huis_prijsindex.index] groei = pd.concat( [huis_prijsindex, stock_relative], axis=1, keys=["huis", "aandelen"] ) return groei def plot_aandelen(groei: pd.DataFrame) -> None: fig, ax = plt.subplots(figsize=(7, 7)) groei.aandelen.plot( ax=ax, xlabel="Datum", ylabel="S&P500 prijs stijging/daling per jaar (%)", title="S&P500 index vs. tijd, bron: Yahoo! Finance", color="k", ) fill_area(groei.aandelen, ax) plt.show() def load_huizen_prijsindex_per_regio(): # Gedownload van https://opendata.cbs.nl/statline/#/CBS/nl/dataset/83913NED/table?ts=1617045165965 # Col: "Prijsindex bestaande koopwoningen Ontwikkeling t.o.v. een jaar eerder" # met alle kwartaal data sinds 1996. df = pd.read_csv("huizen_prijsindex_per_regio.csv") df.Perioden = pd.to_datetime( df.Perioden.str.replace("e kwartaal", "").str.replace(" ", "-Q") ) df.set_index("Perioden", inplace=True) for col in df.columns: df[col] = df[col].str.replace(",", ".").astype(float) df = df.resample("D").interpolate() df = df[df.index.day == 1] return df def plot_huizenprijzen(groei: pd.DataFrame) -> None: fig, ax = plt.subplots(figsize=(7, 7)) groei.huis.plot( ax=ax, legend=False, xlabel="Datum", ylabel="Huizenprijs stijging/daling per jaar (%)", title="Huizenprijs verschil vs. tijd, bron: CBS", figsize=(8, 8), color="k", ) fill_area(groei.huis, ax) plt.show() def plot_aandelen_en_huis(groei: pd.DataFrame) -> None: fig, ax = plt.subplots(figsize=(8, 8)) groei.aandelen[groei.huis.index].plot(ax=ax, label="Aandelen", legend=True) groei.huis.plot(ax=ax, label="Huizenprijs", legend=True) ax.set_title("Huizenprijs en aandelenprijs stijging/daling per jaar in %") ax.set_xlabel("Datum") ax.set_ylabel("Prijs stijging/daling per jaar (%)") fill_area(groei.aandelen, ax, alpha=0.3) fill_area(groei.huis, ax, alpha=0.3) plt.show() def vergelijkings_tabel(groei: pd.DataFrame): example_periods = [ dict(van="2014-Q2", tot="2020-Q4", notities="de recente 'goede' jaren"), dict( van="2009-Q2", tot="2014-Q1", notities="slechtste jaren na de 2008 crisis" ), dict(van="2009-Q2", tot="2020-Q4", notities="van 2008 crisis tot en met nu"), dict( van="1996-Q1", tot="2020-Q4", notities="alle data sinds 1996 tot en met nu" ), ] for dct in example_periods: mean = lambda x: x[(x.index >= dct["van"]) & (x.index <= dct["tot"])].mean() dct["huis"] = f"{mean(groei.huis):.2f}%" dct["aandelen"] = f"{mean(groei.aandelen):.2f}%" winner = "huis" if mean(groei.huis) > mean(groei.aandelen) else "aandelen" dct[winner] += " 🏆" dct["verschil (🏠 - 📈)"] = f"{mean(groei.huis) - mean(groei.aandelen):.2f}%" dt = (pd.to_datetime(dct["tot"]) - pd.to_datetime(dct["van"])).total_seconds() dct["lengte periode"] = f"{round(dt / 86400 / 365)} jaar" table = pd.DataFrame(example_periods)[ [ "van", "tot", "lengte periode", "huis", "aandelen", "verschil (🏠 - 📈)", "notities", ] ] return table def fill_area(x: pd.Series, ax, alpha: float = 1.0) -> None: ax.fill_between( x.index, x.values, where=x.values > 0, color="green", alpha=alpha, zorder=-1, ) ax.fill_between( x.index, x.values, where=x.values < 0, color="red", alpha=alpha, zorder=-1, ) ax.hlines(0, x.index.min(), x.index.max(), ls="--", color="k") def maandelijke_groei( date: pd.Timestamp, groei: pd.DataFrame, which: Literal["huis", "aandelen"] = "huis" ) -> float: pct = groei[which][groei.index == date].iloc[0] / 100 return (1 + pct) ** (1 / 12) def bepaal_woz(huidige_prijs: float, date: pd.Timestamp, groei: pd.DataFrame): """WOZ waarde is bepaald aan de hand van de prijs van vorig jaar.""" vorig_jaar = date.year - 1 dates = groei.index[groei.index.year == vorig_jaar] prijs = huidige_prijs for _date in dates[::-1]: # We rekenen terug naar de prijs van vorig jaar prijs /= maandelijke_groei(_date, groei, "huis") return prijs def aantal_jaar(dates: pd.DatetimeIndex): dt = dates.max() - dates.min() return dt.total_seconds() / 86400 / 365.25 def maandelijks_onderhoud(huis_waarde: float, onderhoud_pct: float = 2): return huis_waarde * onderhoud_pct / 100 / 12 def vermogensbelasting( vermogen: float, schulden: float = 0, met_fiscaal_partner: bool = True ): """Vermogensbelasting vanaf 2021. https://www.rijksoverheid.nl/onderwerpen/belastingplan/belastingwijzigingen-voor-ons-allemaal/box-3 """ heffingvrij = 100_000 if met_fiscaal_partner else 50_000 vermogen -= heffingvrij vermogen -= schulden if vermogen < 0: return 0 # De rest is in box 3 schijf_1 = 100_000 - 50_000 belastbaar_1 = min(vermogen, schijf_1) vermogen -= belastbaar_1 inkomen_1 = belastbaar_1 * 1.90 / 100 schijf_2 = 1_000_000 - 100_000 belastbaar_2 = min(vermogen, schijf_2) vermogen -= belastbaar_2 inkomen_2 = belastbaar_2 * 4.50 / 100 schijf_3 = float("inf") belastbaar_3 = min(vermogen, schijf_3) vermogen -= belastbaar_3 inkomen_3 = belastbaar_3 * 5.69 / 100 inkomen = inkomen_1 + inkomen_2 + inkomen_3 return inkomen * 31 / 100 def koop_huis_of_beleg( aankoop_datum: Union[str, pd.Timestamp], jaar_tot_verkoop: Number, geleend: Number, groei: pd.DataFrame, huur: Number = 1000, hypotheekrente: Number = 2.04, hyptotheek_looptijd: int = 30 * 12, jaarinkomen: Number = 90_000, schulden: Number = 20_000, onderhoud_pct: Number = 1, met_fiscaal_partner: bool = True, verbose: bool = True, ): dates = groei.index[groei.index >= aankoop_datum][ : round(jaar_tot_verkoop * 12) + 1 ] if len(dates) < jaar_tot_verkoop * 12: raise ValueError( f"Een duur van {jaar_tot_verkoop} jaar is niet mogelijk als " f"we starten op {aankoop_datum}. " f"Een duur van {aantal_jaar(dates):.2f} is mogelijk." ) persoon = maandlasten.Persoon(jaarinkomen) onderhoud = partial(maandelijks_onderhoud, onderhoud_pct=onderhoud_pct) hypotheek = Mortgage(hypotheekrente / 100, hyptotheek_looptijd, geleend) betaalschema = hypotheek.monthly_payment_schedule() rente_betaald: Dict[int, float] = defaultdict(float) start_year = dates[0].year betaald = 0 afgelost = 0 belegging = 0 huis_waarde = geleend for date in dates: huis_waarde *= maandelijke_groei(date, groei, "huis") belegging *= maandelijke_groei(date, groei, "aandelen") betaald += onderhoud(huis_waarde) afbetaling, rente = next(betaalschema) hypotheek_kosten = float(afbetaling) + float(rente) rente_betaald[date.year] += float(rente) betaald += hypotheek_kosten belegging += hypotheek_kosten - huur afgelost += float(afbetaling) if date.month == 1 and date.year > start_year: # Betaal vermogensbelasting over vorig jaar belegging -= vermogensbelasting(belegging, schulden, met_fiscaal_partner) # Krijg hypotheekrenteaftrek terug van vorig jaar! woz_waarde = bepaal_woz(huis_waarde, date, groei) hypotheek_aftrek = maandlasten.hypotheek_aftrek( rente_betaald[date.year - 1], woz_waarde ) persoon_met_aftrek = maandlasten.Persoon(persoon.bruto_jaarloon) persoon_met_aftrek.aftrek = hypotheek_aftrek teruggave = persoon_met_aftrek.netto_loon - persoon.netto_loon betaald -= teruggave af_te_lossen = geleend - afgelost overdrachts_belasting = huis_waarde * 0.02 huis_winst = huis_waarde - af_te_lossen - betaald - overdrachts_belasting if verbose: winst_of_verlies = "winst" if huis_winst > 0 else "verlies" print( f"We hebben op {aankoop_datum} een huis van €{geleend/1000:.0f}k gekocht. " f"Op {date.date()} (na {aantal_jaar(dates):.1f} jaar) hebben we €{betaald/1000:.0f}k betaald, " f"€{afgelost/1000:.0f}k afgelost, een huiswaarde van €{huis_waarde/1000:.0f}k, " f"en na een verkoop €{abs(huis_winst)/1000:.0f}k {winst_of_verlies}. " f"Hadden we een huis gehuurd voor €{huur} per maand en belegd, dan hadden we €{belegging/1000:.0f}k. " f"Dat is dus €{(belegging - huis_winst)/1000:.0f}k verschil." ) return dict( aankoop_datum=aankoop_datum, verkoop_datum=dates[-1], aantal_jaar=aantal_jaar(dates), betaald=betaald, afgelost=afgelost, af_te_lossen=af_te_lossen, huis_waarde=huis_waarde, huis_winst=huis_winst, belegging=belegging, ) def run_monte_carlo(groei: pd.DataFrame, parameters: Dict[str, Any]) -> pd.DataFrame: start_jaar = groei.index.year.min() + 1 eind_jaar = groei.index.year.max() n_jaar = eind_jaar - start_jaar + 1 results = {} iterator = list( product(groei.index[groei.index.year >= start_jaar], range(1, n_jaar)) ) def try_run_simulation(datum_jaar, parameters): aankoop_datum, jaar_tot_verkoop = datum_jaar try: return koop_huis_of_beleg( aankoop_datum, jaar_tot_verkoop, groei=groei, verbose=False, **parameters, ) except ValueError: # 'jaar' is niet mogelijk want we kunnen niet in de toekomst kijken return with get_reusable_executor() as executor: results = list( tqdm( executor.map( partial(try_run_simulation, parameters=parameters), iterator ), "Monte Carlo simulatie", total=len(iterator), ) ) df = pd.DataFrame([r for r in results if r is not None]) df.aankoop_datum = pd.to_datetime(df.aankoop_datum) df["verschil"] = (df.huis_winst - df.belegging) / 1000 df.aantal_jaar = df.aantal_jaar.round() return df def plot_result_scatter(df: pd.DataFrame) -> None: fig, ax = plt.subplots() df.plot.scatter( ax=ax, x="aankoop_datum", y="aantal_jaar", c="verschil", s=100, alpha=1, norm=matplotlib.colors.TwoSlopeNorm(0), cmap="seismic", title="Kopen of huren?", xlabel="Aankoop datum", ylabel="verkopen na (jaar)", figsize=(8, 8), ) ax, cax = plt.gcf().get_axes() cax.set_ylabel("verschil (x€1000)") ax.text( 0.95, 0.95, "rood is huis is beter\nblauw is belegging is beter", horizontalalignment="right", verticalalignment="top", transform=ax.transAxes, fontsize=14, ) plt.show() def plot_result_contour(df: pd.DataFrame) -> None: ds = df.set_index(["aantal_jaar", "aankoop_datum"]).to_xarray() fig, axs = plt.subplots(ncols=2, nrows=2, figsize=(12, 8), sharex=True, sharey=True) levels = 15 ds.verschil.plot.contourf( ax=axs[0, 0], norm=matplotlib.colors.TwoSlopeNorm( 0, vmin=ds.verschil.min(), vmax=ds.verschil.max() ), add_colorbar=True, levels=levels, cbar_kwargs={"label": "Verschil (x€1000)"}, ) (ds.belegging / 1000).plot.contourf( ax=axs[0, 1], add_colorbar=True, levels=levels, cbar_kwargs={"label": "Waarde belegging (x€1000)"}, ) (ds.huis_winst / 1000).plot.contourf( ax=axs[1, 0], add_colorbar=True, levels=levels, norm=matplotlib.colors.TwoSlopeNorm( 0, vmin=ds.huis_winst.min() / 1000, vmax=ds.huis_winst.max() / 1000 ), cbar_kwargs={"label": "Winst vrkp huis (x€1000)"}, ) (ds.huis_waarde / 1000).plot.contourf( ax=axs[1, 1], add_colorbar=True, cbar_kwargs={"label": "Huis waarde (x€1000)"}, cmap="magma", levels=levels, ) axs[0, 0].text( 0.95, 0.95, "rood is huis is beter\nblauw is belegging is beter", horizontalalignment="right", verticalalignment="top", transform=axs[0, 0].transAxes, fontsize=12, ) axs[1, 0].set_xlabel("Aankoop datum") axs[1, 1].set_xlabel("Aankoop datum") axs[0, 0].set_ylabel("Verkoop na (jaar)") axs[1, 0].set_ylabel("Verkoop na (jaar)") axs[0, 0].set_xlabel("") axs[0, 1].set_xlabel("") axs[0, 1].set_ylabel("") axs[1, 1].set_ylabel("") plt.show() def plot_result_lines(df: pd.DataFrame) -> None: jaren = df.aantal_jaar.unique()[1::2] cmap = matplotlib.cm.get_cmap("tab20", len(jaren)) color_map = dict(zip(sorted(jaren), cmap.colors)) fig, ax = plt.subplots(figsize=(8, 8)) for jaar in jaren: df[df.aantal_jaar == jaar].plot( x="aankoop_datum", y="verschil", ax=ax, color=color_map[jaar], legend=False ) cbar = fig.colorbar( matplotlib.cm.ScalarMappable(cmap=cmap), ax=ax, ) cbar.set_ticks(np.linspace(0, 1, len(jaren))) cbar.set_ticklabels([int(j) for j in color_map.keys()]) cbar.set_label("Verkoop na (jaar)") ax.hlines( 0, df.aankoop_datum.min(), df.aankoop_datum.max(), ls="--", color="k", zorder=-1 ) ax.set_xlabel("Aankoop datum") ax.set_ylabel("Winst kopen huis t.o.v. beleggen") ax.set_title("Winst kopen huis t.o.v. beleggen") plt.show() def hyptotheek_van_huur( huur: Number = 1000, hypotheekrente: Number = 2.04, hyptotheek_looptijd: int = 360, onderhoud_pct: Number = 1, ) -> float: def hyptotheek_kosten(huis_prijs): hyptotheek_maandelijks = Mortgage( hypotheekrente / 100, hyptotheek_looptijd, dollar(float(huis_prijs)) ).monthly_payment() onderhoud = onderhoud_pct / 100 * huis_prijs / 12 kosten = float(hyptotheek_maandelijks) + onderhoud return kosten res = scipy.optimize.minimize( lambda huis_prijs: abs(hyptotheek_kosten(huis_prijs) - huur), x0=100_000, method="Nelder-Mead", tol=1e-2, ) return round(float(res.x), 2) def hyptotheek_maandlasten_df() -> pd.DataFrame: bedragen = list(range(400, 2000, 100)) hyptoheek_hoogstes = [ hyptotheek_van_huur( huur=huur, hypotheekrente=2.04, hyptotheek_looptijd=360, onderhoud_pct=1, ) for huur in bedragen ] hyptoheek_hoogstes = (np.array(hyptoheek_hoogstes) / 1000).round(1) df = pd.DataFrame([bedragen, hyptoheek_hoogstes]).T df.columns = ["maandlasten (€)", "hypotheek (x€1000)"] return df def analyseer_data(df: pd.DataFrame) -> None: pct_blauw = 100 * (df.verschil < 0).sum() / len(df.verschil) print( f"In {pct_blauw:.1f}% van alle gevallen is het beter om aandelen " f"te kopen en in {100-pct_rood:.1f}% is het beter om een huis te kopen." ) mean_beleggen = df.belegging[df.verschil < 0].mean() / 1000 mean_huis = df.huis_winst[df.verschil > 0].mean() / 1000 print( f"In het geval dat aandelen beter waren, dan is de verwachte winst €{mean_beleggen:.1f}k." ) print(f"Als een huis kopen beter was, dan is de verwachte winst €{mean_huis:.1f}k.")
2.75
3
P5-Intro Machine Learning/exercises/text_learning/vectorize_text.py
lucasosouza/udacity-data-analysis
0
12795391
<reponame>lucasosouza/udacity-data-analysis #!/usr/bin/python import os import pickle import re import sys sys.path.append( "../tools/" ) from parse_out_email_text import parseOutText """ Starter code to process the emails from Sara and Chris to extract the features and get the documents ready for classification. The list of all the emails from Sara are in the from_sara list likewise for emails from Chris (from_chris) The actual documents are in the Enron email dataset, which you downloaded/unpacked in Part 0 of the first mini-project. If you have not obtained the Enron email corpus, run startup.py in the tools folder. The data is stored in lists and packed away in pickle files at the end. """ from_sara = open("from_sara.txt", "r") from_chris = open("from_chris.txt", "r") from_data = [] word_data = [] ### temp_counter is a way to speed up the development--there are ### thousands of emails from Sara and Chris, so running over all of them ### can take a long time ### temp_counter helps you only look at the first 200 emails in the list so you ### can iterate your modifications quicker #temp_counter = 0 for name, from_person in [("sara", from_sara), ("chris", from_chris)]: for path in from_person: ### only look at first 200 emails when developing ### once everything is working, remove this line to run over full dataset #temp_counter += 1 #if temp_counter < 200: try: path = os.path.join('..', path[:-1]) print name, ': ', path email = open(path, "r") ### use parseOutText to extract the text from the opened email words = parseOutText(email) ### use str.replace() to remove any instances of the words ### ["sara", "shackleton", "chris", "germani"] patt = 'sara|shackleton|chris|germani|sshacklensf|cgermannsf' words = re.sub(patt,'',words) #words is a string, not an iterator. wrong usage of plural here has misleaded the programmer. ### append the text to word_data word_data.append(words) ### append a 0 to from_data if email is from Sara, and 1 if email is from Chris from_data.append(1) if name == 'chris' else from_data.append(0) email.close() except: pass print "emails processed" print word_data[152] from_sara.close() from_chris.close() pickle.dump( word_data, open("your_word_data.pkl", "w") ) pickle.dump( from_data, open("your_email_authors.pkl", "w") ) ### in Part 4, do TfIdf vectorization here """ #Remove english stopwords from nltk.corpus import stopwords sw = stopwords.words('english') def remove_stopwords(text): text = text.split(' ') text = [word for word in text if word.lower() not in sw] return ' '.join(text) word_data2 = map(remove_stopwords, word_data) """ # Transform the word_data into a tf-idf matrix using the sklearn TfIdf transformation. from sklearn.feature_extraction import text word_matrix = text.TfidfVectorizer(stop_words='english') word_matrix.fit(word_data) # You can access the mapping between words and feature numbers using get_feature_names(), which returns a list of all the words in the vocabulary. How many different words are there? print len(word_matrix.get_feature_names()) #import pdb;pdb.set_trace()
2.796875
3
authentication/decorators.py
felix781/market-access-python-frontend
1
12795392
<reponame>felix781/market-access-python-frontend def public_view(func): """ Decorator for public views that do not require authentication """ orig_func = func orig_func._public_view = True return func
1.96875
2
berts_of_a_feather/files_for_replication/process_test_results.py
tommccoy1/hans
109
12795393
import sys prefix = sys.argv[1] fi = open(prefix + "/" + "test_results.tsv", "r") fo = open(prefix + "/" + "preds.txt", "w") fo.write("pairID,gold_label\n") counter = 0 labels = ["contradiction", "entailment", "neutral"] for line in fi: parts = [float(x) for x in line.strip().split("\t")] max_ind = 0 max_val = parts[0] for ind, part in enumerate(parts): if part > max_val: max_val = part max_ind = ind fo.write("ex" + str(counter) + "," + labels[max_ind] + "\n") counter += 1
2.546875
3
rosters/tests/test_views.py
Drazerr/roster-wizard
0
12795394
from django.http import HttpRequest from django.test import SimpleTestCase from django.urls import reverse from .. import views class HomePageTests(SimpleTestCase): def test_home_page_status_code(self): response = self.client.get("/") self.assertEqual(response.status_code, 200) def test_view_url_by_name(self): response = self.client.get(reverse("home")) self.assertEqual(response.status_code, 200) def test_view_uses_correct_template(self): response = self.client.get(reverse("home")) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, "home.html") def test_home_page_contains_correct_html(self): response = self.client.get("/") self.assertContains( response, '<h1 class="display-4">Roster Wizard</h1>' ) def test_home_page_does_not_contain_incorrect_html(self): response = self.client.get("/") self.assertNotContains( response, "Hi there! I should not be on the page." )
2.53125
3
SROMPy/target/UniformRandomVariable.py
datree-demo/SROMPy
0
12795395
<gh_stars>0 # Copyright 2018 United States Government as represented by the Administrator of # the National Aeronautics and Space Administration. No copyright is claimed in # the United States under Title 17, U.S. Code. All Other Rights Reserved. # The Stochastic Reduced Order Models with Python (SROMPy) platform is licensed # under the Apache License, Version 2.0 (the "License"); you may not use this # file except in compliance with the License. You may obtain a copy of the # License at http://www.apache.org/licenses/LICENSE-2.0. # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. ''' Class for defining a uniform random variable ''' import numpy as np from scipy.stats import uniform as scipyuniform from SROMPy.target.RandomVariable import RandomVariable class UniformRandomVariable(RandomVariable): ''' Class for defining a uniform random variable ''' def __init__(self, min_val=0., max_val=0., max_moment=10): ''' Initialize the uniform (gaussian) random variable with provided minimum/maximum values. Implementation wraps scipy.stats.uniform to get statistics/samples. Caches moments up to max_moment for speedup. ''' if min_val >= max_val: raise ValueError("Minimum value must be less than maximum value") self._minimum_value = min_val self._range_size = max_val - min_val #set dimension (scalar), min/max to equal mean +/- 4stds self._dim = 1 self._mins = [min_val] self._maxs = [max_val] #cache moments self.generate_moments(max_moment) self._max_moment = max_moment def get_dim(self): return self._dim def get_variance(self): ''' Returns variance of uniform random variable ''' return self._std**2.0 def compute_moments(self, max_order): ''' Returns moments up to order 'max_order' in numpy array. ''' #TODO - calculate moments above max_moment on the fly & append to stored if max_order <= self._max_moment: moments = self._moments[:max_order] else: raise NotImplementedError("Moment above max_moment not handled yet") return moments def compute_CDF(self, x_grid): ''' Returns numpy array of uniform CDF values at the points contained in x_grid ''' return scipyuniform.cdf(x_grid, self._minimum_value, self._range_size) def compute_inv_CDF(self, x_grid): ''' Returns np array of inverse uniform CDF values at pts in x_grid ''' return scipyuniform.ppf(x_grid, self._minimum_value, self._range_size) def compute_pdf(self, x_grid): ''' Returns numpy array of uniform pdf values at the points contained in x_grid ''' return scipyuniform.pdf(x_grid, self._minimum_value, self._range_size) def draw_random_sample(self, sample_size): ''' Draws random samples from the uniform random variable. Returns numpy array of length 'sample_size' containing these samples ''' #Use scipy uniform rv to return shifted/scaled samples automatically return scipyuniform.rvs(self._minimum_value, self._range_size, sample_size) def generate_moments(self, max_moment): ''' Calculate & store moments to retrieve more efficiently later ''' self._moments = np.zeros((max_moment, 1)) #Rely on scipy.stats to return non-central moment for i in range(max_moment): self._moments[i] = scipyuniform.moment(i+1, self._minimum_value, self._range_size)
2.28125
2
statsmodels/genmod/tests/test_gee.py
saedsaleh/statsmodels
0
12795396
""" Test functions for GEE External comparisons are to R. The statmodels GEE implementation should generally agree with the R GEE implementation for the independence and exchangeable correlation structures. For other correlation structures, the details of the correlation estimation differ among implementations and the results will not agree exactly. """ from __future__ import print_function from statsmodels.compat import lrange import numpy as np import os from numpy.testing import assert_almost_equal from statsmodels.genmod.generalized_estimating_equations import (GEE, GEEMargins, Multinomial) from statsmodels.genmod.families import Gaussian, Binomial, Poisson from statsmodels.genmod.dependence_structures import (Exchangeable, Independence, GlobalOddsRatio, Autoregressive, Nested) import pandas as pd import statsmodels.formula.api as sm def load_data(fname, icept=True): """ Load a data set from the results directory. The data set should be a CSV file with the following format: Column 0: Group indicator Column 1: endog variable Columns 2-end: exog variables If `icept` is True, an intercept is prepended to the exog variables. """ cur_dir = os.path.dirname(os.path.abspath(__file__)) Z = np.genfromtxt(os.path.join(cur_dir, 'results', fname), delimiter=",") group = Z[:,0] endog = Z[:,1] exog = Z[:,2:] if icept: exog = np.concatenate((np.ones((exog.shape[0],1)), exog), axis=1) return endog,exog,group class TestGEE(object): def test_margins(self): n = 300 exog = np.random.normal(size=(n, 4)) exog[:,0] = 1 exog[:,1] = 1*(exog[:,2] < 0) group = np.kron(np.arange(n/4), np.ones(4)) time = np.zeros((n, 1)) beta = np.r_[0, 1, -1, 0.5] lpr = np.dot(exog, beta) prob = 1 / (1 + np.exp(-lpr)) endog = 1*(np.random.uniform(size=n) < prob) fa = Binomial() ex = Exchangeable() md = GEE(endog, exog, group, time, fa, ex) mdf = md.fit() marg = GEEMargins(mdf, ()) marg.summary() # This is in the release announcement for version 0.6. def test_poisson_epil(self): cur_dir = os.path.dirname(os.path.abspath(__file__)) fname = os.path.join(cur_dir, "results", "epil.csv") data = pd.read_csv(fname) fam = Poisson() ind = Independence() md1 = GEE.from_formula("y ~ age + trt + base", data, groups=data["subject"], cov_struct=ind, family=fam) mdf1 = md1.fit() # Coefficients should agree with GLM from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families md2 = GLM.from_formula("y ~ age + trt + base", data, family=families.Poisson()) mdf2 = md2.fit(scale="X2") assert_almost_equal(mdf1.params, mdf2.params, decimal=6) assert_almost_equal(mdf1.scale, mdf2.scale, decimal=6) # TODO: why does this test fail? def t_est_missing(self): Y = np.random.normal(size=100) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.kron(lrange(20), np.ones(5)) Y[0] = np.nan Y[5:7] = np.nan X2[10:12] = np.nan D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3, "groups": groups}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D["groups"], missing='drop') mdf = md.fit() assert(len(md.endog) == 95) assert(md.exog.shape) == (95,4) def test_default_time(self): """ Check that the time defaults work correctly. """ endog,exog,group = load_data("gee_logistic_1.csv") # Time values for the autoregressive model T = np.zeros(len(endog)) idx = set(group) for ii in idx: jj = np.flatnonzero(group == ii) T[jj] = lrange(len(jj)) family = Binomial() va = Autoregressive() md1 = GEE(endog, exog, group, family=family, cov_struct=va) mdf1 = md1.fit() md2 = GEE(endog, exog, group, time=T, family=family, cov_struct=va) mdf2 = md2.fit() assert_almost_equal(mdf1.params, mdf2.params, decimal=6) assert_almost_equal(mdf1.standard_errors(), mdf2.standard_errors(), decimal=6) def test_logistic(self): """ R code for comparing results: library(gee) Z = read.csv("results/gee_logistic_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] mi = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="independence") smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="exchangeable") sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") ma = gee(Y ~ X1 + X2 + X3, id=Id, family=binomial, corstr="AR-M") sma = summary(ma) u = coefficients(sma) cfa = paste(u[,1], collapse=",") sea = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s],[%s]]", cfi, cfe, cfa) sprintf("se = [[%s],[%s],[%s]]", sei, see, sea) """ endog,exog,group = load_data("gee_logistic_1.csv") # Time values for the autoregressive model T = np.zeros(len(endog)) idx = set(group) for ii in idx: jj = np.flatnonzero(group == ii) T[jj] = lrange(len(jj)) family = Binomial() ve = Exchangeable() vi = Independence() va = Autoregressive() # From R gee cf = [[0.0167272965285882,1.13038654425893, -1.86896345082962,1.09397608331333], [0.0178982283915449,1.13118798191788, -1.86133518416017,1.08944256230299], [0.0109621937947958,1.13226505028438, -1.88278757333046,1.09954623769449]] se = [[0.127291720283049,0.166725808326067, 0.192430061340865,0.173141068839597], [0.127045031730155,0.165470678232842, 0.192052750030501,0.173174779369249], [0.127240302296444,0.170554083928117, 0.191045527104503,0.169776150974586]] for j,v in enumerate((vi,ve,va)): md = GEE(endog, exog, group, T, family, v) mdf = md.fit() if id(v) != id(va): assert_almost_equal(mdf.params, cf[j], decimal=6) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Test with formulas D = np.concatenate((endog[:,None], group[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=6) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Check for run-time exceptions in summary # print(mdf.summary()) def test_autoregressive(self): dep_params_true = [0, 0.589208623896, 0.559823804948] params_true = [[1.08043787, 1.12709319, 0.90133927], [0.9613677, 1.05826987, 0.90832055], [1.05370439, 0.96084864, 0.93923374]] np.random.seed(342837482) num_group = 100 ar_param = 0.5 k = 3 ga = Gaussian() for gsize in 1,2,3: ix = np.arange(gsize)[:,None] - np.arange(gsize)[None,:] ix = np.abs(ix) cmat = ar_param ** ix cmat_r = np.linalg.cholesky(cmat) endog = [] exog = [] groups = [] for i in range(num_group): x = np.random.normal(size=(gsize,k)) exog.append(x) expval = x.sum(1) errors = np.dot(cmat_r, np.random.normal(size=gsize)) endog.append(expval + errors) groups.append(i*np.ones(gsize)) endog = np.concatenate(endog) groups = np.concatenate(groups) exog = np.concatenate(exog, axis=0) ar = Autoregressive() md = GEE(endog, exog, groups, family=ga, cov_struct = ar) mdf = md.fit() assert_almost_equal(ar.dep_params, dep_params_true[gsize-1]) assert_almost_equal(mdf.params, params_true[gsize-1]) def test_post_estimation(self): family = Gaussian() endog,exog,group = load_data("gee_linear_1.csv") ve = Exchangeable() md = GEE(endog, exog, group, None, family, ve) mdf = md.fit() assert_almost_equal(np.dot(exog, mdf.params), mdf.fittedvalues) assert_almost_equal(endog - np.dot(exog, mdf.params), mdf.resid) def test_linear(self): """ library(gee) Z = read.csv("results/gee_linear_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] mi = gee(Y ~ X1 + X2 + X3, id=Id, family=gaussian, corstr="independence", tol=1e-8, maxit=100) smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3, id=Id, family=gaussian, corstr="exchangeable", tol=1e-8, maxit=100) sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s]]", cfi, cfe) sprintf("se = [[%s],[%s]]", sei, see) """ family = Gaussian() endog,exog,group = load_data("gee_linear_1.csv") vi = Independence() ve = Exchangeable() # From R gee cf = [[-0.01850226507491,0.81436304278962, -1.56167635393184,0.794239361055003], [-0.0182920577154767,0.814898414022467, -1.56194040106201,0.793499517527478]] se = [[0.0440733554189401,0.0479993639119261, 0.0496045952071308,0.0479467597161284], [0.0440369906460754,0.0480069787567662, 0.049519758758187,0.0479760443027526]] for j,v in enumerate((vi, ve)): md = GEE(endog, exog, group, None, family, v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=10) assert_almost_equal(mdf.standard_errors(), se[j], decimal=10) # Test with formulas D = np.concatenate((endog[:,None], group[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=10) assert_almost_equal(mdf.standard_errors(), se[j], decimal=10) def test_linear_constrained(self): family = Gaussian() exog = np.random.normal(size=(300,4)) exog[:,0] = 1 endog = np.dot(exog, np.r_[1, 1, 0, 0.2]) +\ np.random.normal(size=300) group = np.kron(np.arange(100), np.r_[1,1,1]) vi = Independence() ve = Exchangeable() L = np.r_[[[0, 0, 0, 1]]] R = np.r_[0,] for j,v in enumerate((vi,ve)): md = GEE(endog, exog, group, None, family, v, constraint=(L,R)) mdf = md.fit() assert_almost_equal(mdf.params[3], 0, decimal=10) def test_nested_linear(self): family = Gaussian() endog,exog,group = load_data("gee_nested_linear_1.csv") group_n = [] for i in range(endog.shape[0]//10): group_n.extend([0,]*5) group_n.extend([1,]*5) group_n = np.array(group_n)[:,None] dp = Independence() md = GEE(endog, exog, group, None, family, dp) mdf1 = md.fit() # From statsmodels.GEE (not an independent test) cf = np.r_[-0.1671073 , 1.00467426, -2.01723004, 0.97297106] se = np.r_[0.08629606, 0.04058653, 0.04067038, 0.03777989] assert_almost_equal(mdf1.params, cf, decimal=6) assert_almost_equal(mdf1.standard_errors(), se, decimal=6) ne = Nested() md = GEE(endog, exog, group, None, family, ne, dep_data=group_n) mdf2 = md.fit(start_params=mdf1.params) # From statsmodels.GEE (not an independent test) cf = np.r_[-0.16655319, 1.02183688, -2.00858719, 1.00101969] se = np.r_[0.08632616, 0.02913582, 0.03114428, 0.02893991] assert_almost_equal(mdf2.params, cf, decimal=6) assert_almost_equal(mdf2.standard_errors(), se, decimal=6) def test_ordinal(self): family = Binomial() endog, exog, groups = load_data("gee_ordinal_1.csv", icept=False) v = GlobalOddsRatio("ordinal") md = GEE(endog, exog, groups, None, family, v) md.setup_ordinal() mdf = md.fit() cf = np.r_[1.09238131, 0.02148193, -0.39879146, -0.01855666, 0.02983409, 1.18123172, 0.01845318, -1.10233886] se = np.r_[0.10878752, 0.10326078, 0.11171241, 0.05488705, 0.05995019, 0.0916574, 0.05951445, 0.08539281] assert_almost_equal(mdf.params, cf, decimal=5) assert_almost_equal(mdf.bse, se, decimal=5) def test_nominal(self): family = Multinomial(3) endog, exog, groups = load_data("gee_nominal_1.csv", icept=False) # Test with independence correlation v = Independence() md = GEE(endog, exog, groups, None, family, v) md.setup_nominal() mdf1 = md.fit() # From statsmodels.GEE (not an independent test) cf1 = np.r_[0.44944752, 0.45569985, -0.92007064, -0.46766728] se1 = np.r_[0.09801821, 0.07718842, 0.13229421, 0.08544553] assert_almost_equal(mdf1.params, cf1, decimal=5) assert_almost_equal(mdf1.standard_errors(), se1, decimal=5) # Test with global odds ratio dependence v = GlobalOddsRatio("nominal") md = GEE(endog, exog, groups, None, family, v) md.setup_nominal() mdf2 = md.fit(start_params=mdf1.params) # From statsmodels.GEE (not an independent test) cf2 = np.r_[0.45397549, 0.42278345, -0.91997131, -0.50115943] se2 = np.r_[0.09646057, 0.07405713, 0.1324629 , 0.09025019] assert_almost_equal(mdf2.params, cf2, decimal=5) assert_almost_equal(mdf2.standard_errors(), se2, decimal=5) def test_poisson(self): """ library(gee) Z = read.csv("results/gee_poisson_1.csv", header=FALSE) Y = Z[,2] Id = Z[,1] X1 = Z[,3] X2 = Z[,4] X3 = Z[,5] X4 = Z[,6] X5 = Z[,7] mi = gee(Y ~ X1 + X2 + X3 + X4 + X5, id=Id, family=poisson, corstr="independence", scale.fix=TRUE) smi = summary(mi) u = coefficients(smi) cfi = paste(u[,1], collapse=",") sei = paste(u[,4], collapse=",") me = gee(Y ~ X1 + X2 + X3 + X4 + X5, id=Id, family=poisson, corstr="exchangeable", scale.fix=TRUE) sme = summary(me) u = coefficients(sme) cfe = paste(u[,1], collapse=",") see = paste(u[,4], collapse=",") sprintf("cf = [[%s],[%s]]", cfi, cfe) sprintf("se = [[%s],[%s]]", sei, see) """ family = Poisson() endog,exog,group_n = load_data("gee_poisson_1.csv") vi = Independence() ve = Exchangeable() # From R gee cf = [[-0.0364450410793481,-0.0543209391301178, 0.0156642711741052,0.57628591338724, -0.00465659951186211,-0.477093153099256], [-0.0315615554826533,-0.0562589480840004, 0.0178419412298561,0.571512795340481, -0.00363255566297332,-0.475971696727736]] se = [[0.0611309237214186,0.0390680524493108, 0.0334234174505518,0.0366860768962715, 0.0304758505008105,0.0316348058881079], [0.0610840153582275,0.0376887268649102, 0.0325168379415177,0.0369786751362213, 0.0296141014225009,0.0306115470200955]] for j,v in enumerate((vi,ve)): md = GEE(endog, exog, group_n, None, family, v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=5) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # Test with formulas D = np.concatenate((endog[:,None], group_n[:,None], exog[:,1:]), axis=1) D = pd.DataFrame(D) D.columns = ["Y","Id",] + ["X%d" % (k+1) for k in range(exog.shape[1]-1)] for j,v in enumerate((vi,ve)): md = GEE.from_formula("Y ~ X1 + X2 + X3 + X4 + X5", D, None, groups=D.loc[:,"Id"], family=family, cov_struct=v) mdf = md.fit() assert_almost_equal(mdf.params, cf[j], decimal=5) assert_almost_equal(mdf.standard_errors(), se[j], decimal=6) # print(mdf.params) def test_compare_OLS(self): """ Gaussian GEE with independence correlation should agree exactly with OLS for parameter estimates and standard errors derived from the naive covariance estimate. """ vs = Independence() family = Gaussian() Y = np.random.normal(size=100) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.kron(lrange(20), np.ones(5)) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs) mdf = md.fit() ols = sm.ols("Y ~ X1 + X2 + X3", data=D).fit() assert_almost_equal(ols.params.values, mdf.params, decimal=10) se = mdf.standard_errors(covariance_type="naive") assert_almost_equal(ols.bse, se, decimal=10) naive_tvalues = mdf.params / \ np.sqrt(np.diag(mdf.naive_covariance)) assert_almost_equal(naive_tvalues, ols.tvalues, decimal=10) def test_compare_logit(self): vs = Independence() family = Binomial() Y = 1*(np.random.normal(size=100) < 0) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.random.randint(0, 4, size=100) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs).fit() sml = sm.logit("Y ~ X1 + X2 + X3", data=D).fit(disp=False) assert_almost_equal(sml.params.values, md.params, decimal=10) def test_compare_poisson(self): vs = Independence() family = Poisson() Y = np.ceil(-np.log(np.random.uniform(size=100))) X1 = np.random.normal(size=100) X2 = np.random.normal(size=100) X3 = np.random.normal(size=100) groups = np.random.randint(0, 4, size=100) D = pd.DataFrame({"Y": Y, "X1": X1, "X2": X2, "X3": X3}) md = GEE.from_formula("Y ~ X1 + X2 + X3", D, None, groups=groups, family=family, cov_struct=vs).fit() sml = sm.poisson("Y ~ X1 + X2 + X3", data=D).fit(disp=False) assert_almost_equal(sml.params.values, md.params, decimal=10) if __name__=="__main__": import nose nose.runmodule(argv=[__file__,'-vvs','-x','--pdb', '--pdb-failure'], exit=False)
2.46875
2
tools/write_clinrecconv.py
s-mackay/combinato
34
12795397
<reponame>s-mackay/combinato # -*- coding: utf-8 -*- # JN 2014-10-21 # script creates a clinRecConv.py from ncs files import os import numpy as np from combinato import NcsFile from matplotlib.dates import date2num if __name__ == "__main__": if os.path.exists('clinRecConv.py'): print('File exists, doing nothing') else: fid = NcsFile('CSC1.ncs') d = fid.header['opened'] n = date2num(d) ts = fid.read(0, 1, 'timestep') np.save('clinRecConv', np.array((ts, d)))
2.5625
3
company/migrations/0020_auto_20210729_1526.py
uktrade/dnb-service
4
12795398
# Generated by Django 2.2.20 on 2021-07-29 15:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('company', '0019_auto_20210512_1114'), ] operations = [ migrations.AlterField( model_name='company', name='address_area_abbrev_name', field=models.CharField(blank=True, max_length=255, verbose_name='State (Abbreviated)'), ), migrations.AlterField( model_name='company', name='registered_address_area_abbrev_name', field=models.CharField(blank=True, max_length=255, verbose_name='State (Abbreviated)'), ), ]
1.554688
2
comparison_with_benchmark.py
KGkiotsalitis/bus-holding-model-under-capacity-limitations
3
12795399
<reponame>KGkiotsalitis/bus-holding-model-under-capacity-limitations<gh_stars>1-10 import numpy as np import matplotlib.pyplot as plt import random zeta=300 M_2=100000000000 M_1=100000000000000 a_n_plus_1s=2500 ta=1.5 tb=4 l_n_1=50 beta_n_1=10 c_n_plus_1=60 c_n=60 lambda_s=0.02 Hs=600 phi_n=62 t=1500 di_1_s=1000 k=1+tb*lambda_s h=(1+tb*lambda_s)*tb theta=a_n_plus_1s+beta_n_1*ta+(beta_n_1*ta*lambda_s+(a_n_plus_1s-t)*lambda_s)*k*tb-t-Hs x_analytic_solution=max(0,min(zeta,(c_n-phi_n)/lambda_s,((lambda_s*h+1)*theta-(t-di_1_s-Hs))/(1+(lambda_s*h+1)**2))) ''' if t<di_1_s+Hs: if 0.5*((a_n_plus_1s+lambda_s*(a_n_plus_1s-t)*tb+beta_n_1*ta)-di_1_s)<Hs: x_analytic_solution=di_1_s+Hs-t else: x_analytic_solution=di_1_s+(0.5*((a_n_plus_1s+lambda_s*(a_n_plus_1s-t)*tb+beta_n_1*ta)-di_1_s)+Hs)*0.5-t else: x_analytic_solution=0 print(x_analytic_solution) ''' n_analytic_v_1=max(0,phi_n+x_analytic_solution*lambda_s-c_n) n_analytic_v_2=max(0,l_n_1-beta_n_1-c_n_plus_1+(beta_n_1*ta*lambda_s+max(0,n_analytic_v_1)+(a_n_plus_1s-t-x_analytic_solution)*lambda_s)*k) d_n_plus_1_s=a_n_plus_1s+beta_n_1*ta+(beta_n_1*ta*lambda_s+n_analytic_v_1+(a_n_plus_1s-t-x_analytic_solution)*lambda_s)*(1+tb*lambda_s)*tb-n_analytic_v_2*tb Bigterm = ((lambda_s*h+1)*theta-(t-di_1_s-Hs))/(1+(lambda_s*h+1)**2) busload_n_plus_1=l_n_1-beta_n_1+\ (beta_n_1*ta*lambda_s+max(0,phi_n+x_analytic_solution*lambda_s-c_n)+(a_n_plus_1s-(t+x_analytic_solution))*lambda_s)*(1+tb*lambda_s) print(x_analytic_solution,n_analytic_v_1,n_analytic_v_2) #print(d_n_plus_1_s) print((t+x_analytic_solution-di_1_s-Hs)**2+\ (d_n_plus_1_s-t-x_analytic_solution-Hs)**2) print((t+x_analytic_solution-di_1_s-Hs)**2+(a_n_plus_1s+beta_n_1*ta+(beta_n_1*ta*lambda_s+n_analytic_v_1+(a_n_plus_1s-t-x_analytic_solution)*lambda_s)*(1+tb*lambda_s)*tb-n_analytic_v_2*tb-t-x_analytic_solution-Hs)**2+M_1*n_analytic_v_1+M_2*n_analytic_v_2) print('busload',l_n_1-beta_n_1,(a_n_plus_1s-(t+x_analytic_solution))*lambda_s*(1+tb*lambda_s),busload_n_plus_1,phi_n+x_analytic_solution*lambda_s) print(d_n_plus_1_s-t-x_analytic_solution,t+x_analytic_solution-di_1_s)
2.09375
2
HarvardX/CS50W/flask/variables0/application.py
mohammedelzanaty/myRoad2BeFullStack
2
12795400
from flask import Flask, render_template app = Flask(__name__) @app.route("/") def index(): headline = "Hello World" return render_template("index.html", headline=headline) @app.route("/<string:name>") def say_name(name): return render_template("index.html", name=name) if __name__ == "__main__": app.run(debug=True)
2.8125
3
src/reddit_bot.py
ooknosi/finite_dino_bot
0
12795401
#!/usr/bin/env python3 """Reddit Bot Common Routines Contains common Reddit bot functions such as keyword comment retrieval, processed comment caching, and comment posting. Allows bot authors to concentrate on writing their custom bot functions. """ from collections import deque from os import mkdir import re import signal import sys from time import sleep import praw from config import ( CACHE_FILE, CACHE_SIZE, KEYWORD, RETRIEVAL_LIMIT, SITE_NAME, SUBREDDITS, ) class RedditBot: """Superclass for Reddit bots which adds common bot routines. Parameters ---------- site_name : str, optional Initializes praw under site_name within praw.ini. Defaults to config.SITE_NAME. See: https://praw.readthedocs.io/en/latest/getting_started /configuration/prawini.html#choosing-a-site keyword : str, optional Comment trigger word. Defaults to config.KEYWORD. retrieval_limit : int, optional Maximum number of comments to retrieve at a time. Defaults to config.RETRIEVAL_LIMIT. See: https://praw.readthedocs.io/en/latest/code_overview/models /subreddit.html#praw.models.Subreddit.comments subreddits : str, optional Subreddits to retrieve comments from. Defaults to config.SUBREDDITS. See: https://praw.readthedocs.io/en/latest/code_overview/models /subreddit.html#subreddit """ def __init__(self, site_name=SITE_NAME, keyword=KEYWORD, retrieval_limit=RETRIEVAL_LIMIT, subreddits=SUBREDDITS, ): print("Initializing bot...") self.keyword = re.compile(keyword+r' ([ \w]+)', re.I) self.reddit = None self.retrieval_limit = retrieval_limit self.site_name = site_name self.subreddits = subreddits self.username = site_name self.processed_comments = self.read_cache(CACHE_FILE) signal.signal(signal.SIGINT, self.bot_exit) def authenticate(self, max_attempts=-1, seconds_between_attempts=60): """Authenticates SITE_NAME with Reddit. Sets self.reddit and self.username on success. Parameters ---------- max_attempts : int, optional Maximum number of authentication attempts before failure. Defaults to -1 (infinite attempts). seconds_between_attempts : int, optional Seconds to wait between authentication attempts. Defaults to 60. """ attempt = 0 while attempt != max_attempts: try: print("Authenticating as {}...".format(self.site_name)) self.reddit = praw.Reddit(self.site_name) self.username = self.reddit.user.me() print("Successfully authenticated as {}".format(self.username)) return except praw.exceptions.APIException as error: print("Unable to authenticate:", error) print("Retrying in {} " "seconds".format(seconds_between_attempts)) sleep(seconds_between_attempts) attempt += 1 raise RuntimeError('Failed to authenticate after {} ' 'attempts'.format(max_attempts)) def retrieve_comments(self): """Retrieves comments from subreddits, filters for keyword trigger, and excludes processed comments. Returns ------- generator Dict of reddit.Comment and query. """ try: print("Retrieving {} comments...".format(self.retrieval_limit)) comments = self.reddit.subreddit(self.subreddits).comments( limit=self.retrieval_limit ) for comment in comments: if (comment.author != self.username and comment not in self.processed_comments #and not self.has_already_replied(comment) #and not self.is_summon_chain(comment) ): query = self.keyword.search(comment.body.lower()) if query: self.processed_comments.append(comment.id) yield {'comment': comment, 'query' : query.group(1)} except praw.exceptions.APIException as error: print("API Error:", error) raise except AttributeError as error: print(error) print("Unable to retrieve comments.") raise def submit_comment(self, target, comment): """Submit comment to target submission or comment. Parameters ---------- target : reddit.submission object or reddit.comment object Target Reddit submission or comment. comment : str Comment to post. Returns ------- object reddit.comment of newly created comment. """ try: if target.author != self.username: print("Posting reply...") return target.reply(comment) except praw.exceptions.APIException as error: print("API Error:", error) raise @staticmethod def read_cache(file): """Opens and reads file, converting contents to \n separated list. Creates cache file if does not exist. Parameters ---------- file : str Location of cache file. Returns ------- collections.deque Contents of cache file, limited to config.CACHE_SIZE """ try: print("Loading cache file into memory...") with open(file, 'r') as data: cache = data.read() mem_cache = deque(cache.split('\n'), CACHE_SIZE) print("Cache loaded.") except FileNotFoundError: print("Cache file not found.") print("Creating cache directory...") try: path = '' for subdirectory in file.split('/')[:-1]: path += subdirectory + '/' mkdir(path) print("Cache directory created.") except IOError as error: print(error) print("Unable to create cache file") mem_cache = deque([], CACHE_SIZE) return mem_cache @staticmethod def write_cache(file, mem_cache): """Writes list into file, converting list to \n separated contents. Overwrites original cache file. Creates cache file if does not exist. Parameters ---------- file : str Location of cache file. mem_cache : list or deque Items in memory cache """ try: print("Saving memory into cache file...") with open(file, 'w') as cache_file: try: cache_file.write(mem_cache.popleft()) for entry in mem_cache: cache_file.write('\n'+entry) # avoid adding \n to end of file so that we don't get empty # entries in deque when next loaded print("Cache saved") except IndexError: print("No items in cache") except IOError as error: print(error) print("Unable to create cache file") def bot_exit(self, *args, **kwargs): """Saves self.processed_comments into cache file before exiting.""" # pylint: disable=unused-argument print("\nStopping bot...") self.write_cache(CACHE_FILE, self.processed_comments) print("Bot stopped") sys.exit() def is_summon_chain(self, target): """Checks if parent comment of target is from self. Used to prevent infinite reply loop caused by another bot. Parameters ---------- target : reddit.comment object Target Reddit comment. Returns ------- bool True if parent comment of target is from bot. False otherwise. """ return True if ( not target.is_root and target.parent().author == self.username ) else False def has_already_replied(self, target): """Checks if target comment has already been replied by bot. Used to prevent multiple replies to the same request. Parameters ---------- target : reddit.comment object Target Reddit comment. Returns ------- bool True if parent comment of target is from bot. False otherwise. """ try: # implement replace_more()? target.refresh() for reply in target.replies.list(): if reply.author == self.username: print("Comment already processed.") return True print("Processing comment...") return False except praw.exceptions.APIException as error: print("API Error:", error) # Failsafe return True
2.8125
3
autotweet/logger_factory.py
Kjwon15/autotweet
5
12795402
from __future__ import unicode_literals import logging root_logger = logging.getLogger('autotweet') logging.basicConfig( format='%(asctime)s {%(module)s:%(levelname)s}: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') def set_level(level): root_logger.setLevel(level) get_logger = root_logger.getChild
2.234375
2
temp-snn/snn/var_th.py
Tab-ct/Spiking-Neural-Network
1
12795403
############################################## README ################################################# # This calculates threshold for an image depending upon its spiking activity. ######################################################################################################## import numpy as np from snn.neuron import neuron import random from matplotlib import pyplot as plt from snn.recep_field import rf from snn.spike_train import encode from snn.rl import rl from snn.rl import update from snn.reconstruct import reconst_weights from snn.parameters import param as par import os def threshold(train): tu = np.shape(train[0])[0] thresh = 0 for i in range(tu): simul_active = sum(train[:,i]) if simul_active>thresh: thresh = simul_active return (thresh/3)*par.scale if __name__ == '__main__': # img = cv2.imread("mnist1/" + str(1) + ".png", 0) img = np.array(Image.open("mnist1/" + str(1) + ".png", 0)) print(img) # pot = rf(img) # train = np.array(encode(pot)) # print threshold(train)
3.03125
3
configs/_base_/models/attnet_swin.py
404479768/Swin-ATT
1
12795404
<reponame>404479768/Swin-ATT norm_cfg = dict(type='SyncBN', requires_grad=True) backbone_norm_cfg = dict(type='LN', requires_grad=True) model = dict( type='EncoderDecoder', pretrained=None, backbone=dict( type='SwinTransformer', pretrain_img_size=384, embed_dims=128, patch_size=4, window_size=12, mlp_ratio=4, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], strides=(4, 2, 2, 2), out_indices=(0, 1, 2, 3), qkv_bias=True, qk_scale=None, patch_norm=True, drop_rate=0.2, attn_drop_rate=0.2, drop_path_rate=0.2, use_abs_pos_embed=False, act_cfg=dict(type='GELU'), norm_cfg=dict(type='LN', requires_grad=True)), decode_head=dict( type='AttHead', in_channels=[128, 256, 512, 1024], in_index=[0, 1, 2, 3], pool_scales=(1, 2, 3, 6), channels=128, dropout_ratio=0.1, num_classes=3, norm_cfg=dict(type='SyncBN', requires_grad=True), align_corners=False, loss_decode=dict(type='LovaszLoss', reduction='none', loss_weight=1.0)), train_cfg=dict(), test_cfg=dict(mode='whole'))
1.414063
1
accounts/migrations/0002_auto_20201110_0811.py
Landgate/Staff-Calibration
1
12795405
# Generated by Django 3.1 on 2020-11-10 00:11 from __future__ import unicode_literals from django.db import migrations, models import csv from datetime import datetime def load_initial_data(apps, schema_editor): Authority = apps.get_model("accounts", "Authority") with open("assets/authority/authority_names.csv", 'r') as f: reader = csv.reader(f) header = next(reader) authoritys = [] for row in reader: authority = Authority.objects.create(authority_abbrev = row[0], authority_name = row[1]) #print(authority) def reverse_func(apps, schema_editor): Authority = apps.get_model("accounts", Authority) Authority.objects.all().delete() class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.RunPython(load_initial_data, reverse_func), ]
2.203125
2
main_onnx.py
qzc438/pythonProject
1
12795406
# all the data from train data set, k-fold validation import numpy as np import onnxruntime import torch from pandas import read_csv from tensorflow.python.keras.utils.np_utils import to_categorical from sklearn.metrics import f1_score, recall_score, precision_score, accuracy_score # load a single file as a numpy array def load_file(filepath): dataframe = read_csv(filepath, header=None, delim_whitespace=True) return dataframe.values # load a list of files into a 3D array of [samples, timesteps, features] def load_group(filenames, prefix=''): loaded = list() for name in filenames: data = load_file(prefix + name) loaded.append(data) # stack group so that features are the 3rd dimension loaded = np.dstack(loaded) return loaded # load a dataset group, such as train or test def load_dataset_group(group, prefix=''): filepath = prefix + group + '/Inertial Signals/' # load all 9 files as a single array filenames = list() # total acceleration filenames += ['total_acc_x_' + group + '.txt', 'total_acc_y_' + group + '.txt', 'total_acc_z_' + group + '.txt'] # body acceleration filenames += ['body_acc_x_' + group + '.txt', 'body_acc_y_' + group + '.txt', 'body_acc_z_' + group + '.txt'] # body gyroscope filenames += ['body_gyro_x_' + group + '.txt', 'body_gyro_y_' + group + '.txt', 'body_gyro_z_' + group + '.txt'] # load input data X = load_group(filenames, filepath) # load class output y = load_file(prefix + group + '/y_' + group + '.txt') return X, y # load the dataset, returns train and test X and y elements def load_dataset(prefix=''): # load all train trainX, trainy = load_dataset_group('train', prefix + 'UCI HAR Dataset/') # print(trainX.shape, trainy.shape) # load all test testX, testy = load_dataset_group('test', prefix + 'UCI HAR Dataset/') # print(testX.shape, testy.shape) # zero-offset class values trainy = trainy - 1 testy = testy - 1 # one hot encode y trainy = to_categorical(trainy) testy = to_categorical(testy) print(trainX.shape, trainy.shape, testX.shape, testy.shape) return trainX, trainy, testX, testy # summarize scores def summarize_results(scores): print('scores:', scores) mean, std = np.mean(scores), np.std(scores) return [mean, std] # run an experiment def run_experiment(repeats=10): # load data trainX, trainy, testX, testy = load_dataset() # sess = onnxruntime.InferenceSession('./models/model1.onnx') sess = onnxruntime.InferenceSession('./cnn-pytorch.onnx') for i in sess.get_inputs(): print(i.name) print(i.shape) for i in sess.get_outputs(): print(i.name) print(i.shape) # y_predict = sess.run(None, {sess.get_inputs()[0].name: testX.astype(np.float32)}) testX = np.transpose(testX, (0, 2, 1)) testX = torch.utils.data.DataLoader(testX, batch_size=32, shuffle=True, num_workers=0) testy = torch.utils.data.DataLoader(testy, batch_size=32, shuffle=True, num_workers=0) for features, labels in zip(testX, testy): y_predict = sess.run(None, {sess.get_inputs()[0].name: features.float().numpy()}) print('y_predict', y_predict) # y_predict = np.array(y_predict) # y_predict = np.argmax(y_predict, axis=2) # testy = labels # y_true = np.reshape(testy, [-1]) # y_pred = np.reshape(y_predict, [-1]) # accuracy = accuracy_score(y_true, y_pred) # precision = precision_score(y_true, y_pred, average='macro') # recall = recall_score(y_true, y_pred, average='macro') # f1score = f1_score(y_true, y_pred, average='macro') # print(accuracy, precision, recall, f1score) run_experiment()
2.671875
3
ProjectApplication/project_core/forms/person.py
code-review-doctor/project-application
5
12795407
from crispy_forms.helper import FormHelper from crispy_forms.layout import Layout, Div from django import forms from django.core.exceptions import ObjectDoesNotExist from django.core.validators import RegexValidator, ValidationError from django.forms import Form from phonenumber_field.formfields import PhoneNumberField from project_core.models import PersonTitle, Gender, PhysicalPerson, PersonPosition, Contact, CareerStage from project_core.utils.orcid import orcid_div, field_set_read_only from .utils import organisations_name_autocomplete, get_field_information from ..utils.utils import create_person_position from ..widgets import XDSoftYearMonthPickerInput HELP_TEXTS_HEAD_OF_YOUR_RESEARCH = {'orcid': 'Enter the ORCID iD (e.g.: 0000-0002-1825-0097).<br>' 'Please ask head of research unit if unknown', 'first_name': 'Populated from ORCID iD', 'surname': 'Populated from ORCID iD', 'academic_title': 'Mandatory if ORCID iD is entered'} class PersonForm(Form): def __init__(self, *args, **kwargs): self.person_position = kwargs.pop('person_position', None) self._only_basic_fields = kwargs.pop('only_basic_fields', False) self._all_fields_are_optional = kwargs.pop('all_fields_are_optional', False) help_texts = kwargs.pop('help_texts', {}) career_stage_queryset = kwargs.pop('career_stages_queryset', None) super().__init__(*args, **kwargs) orcid_initial = first_name_initial = surname_initial = organisations_initial = group_initial = \ academic_title_initial = email_initial = phone_initial = gender_initial = career_stage_initial = phd_date_initial = None if self.person_position: orcid_initial = self.person_position.person.orcid first_name_initial = self.person_position.person.first_name surname_initial = self.person_position.person.surname organisations_initial = self.person_position.organisation_names.all() group_initial = self.person_position.group academic_title_initial = self.person_position.academic_title career_stage_initial = self.person_position.career_stage gender_initial = self.person_position.person.gender email_initial = self.person_position.main_email() phone_initial = self.person_position.main_phone() if self.person_position.person.phd_date: # In the database is always saved as yyyy-mm (validator in the model) but it's visualized as mm-yyyy phd_date_parts = self.person_position.person.phd_date.split('-') phd_date_initial = f'{phd_date_parts[1]}-{phd_date_parts[0]}' self.fields['orcid'] = forms.CharField(initial=orcid_initial, **get_field_information(PhysicalPerson, 'orcid', label='ORCID iD', required=True, help_text='Enter your ORCID iD (e.g.: 0000-0002-1825-0097).<br>' 'Please create an <a href="https://orcid.org">ORCID iD</a> if you do not already have one')) self.fields['academic_title'] = forms.ModelChoiceField(queryset=PersonTitle.objects.all(), initial=academic_title_initial, required=not self._only_basic_fields) self.fields['first_name'] = forms.CharField(initial=first_name_initial, label='First name(s)', help_text='Your name is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>') self.fields['surname'] = forms.CharField(initial=surname_initial, label='Surname(s)', help_text='Your surname is populated from your ORCID record. If you would like to change it please amend it in <a href="https://orcid.org/login">ORCID</a>') field_set_read_only([self.fields['first_name'], self.fields['surname']]) if self._only_basic_fields == False: self.fields['gender'] = forms.ModelChoiceField(queryset=Gender.objects.all(), initial=gender_initial) if career_stage_queryset is None: career_stage_queryset = CareerStage.objects.all().order_by('list_order', 'name') self.fields['career_stage'] = forms.ModelChoiceField( queryset=career_stage_queryset, initial=career_stage_initial) self.fields['email'] = forms.EmailField(initial=email_initial, help_text='Please write a valid email address. You will receive a confirmation email when saving and submitting your application form. This email address will also be used for communication purposes') self.fields['phone'] = PhoneNumberField(initial=phone_initial, help_text='Phone number e.g.: +41222222222 . Extension can be added with xNN at the end') self.fields['phd_date'] = forms.CharField(initial=phd_date_initial, label='Date of PhD', help_text='Where applicable, please enter the date on which you were awarded, or expect to be awarded your PhD (use the format mm-yyyy)', required=False, widget=XDSoftYearMonthPickerInput, validators=[RegexValidator(regex='^[0-9]{2}-[0-9]{4}$', message='Format is mm-yyyy', code='Invalid format')]) self.fields['organisation_names'] = organisations_name_autocomplete(initial=organisations_initial, help_text='Please select the organisation(s) to which you are affiliated for the purposes of this proposal.') self.fields['group'] = forms.CharField(initial=group_initial, help_text='Please type the names of the group(s) or laboratories to which you are affiliated for the purposes of this proposal', label='Group / lab', required=False) # If adding fields here: see below to remove them from the self.helper.layout used_help_texts = [] for field_str, field in self.fields.items(): if self._all_fields_are_optional: field.required = False if field_str in help_texts: self.fields[field_str].help_text = help_texts[field_str] used_help_texts.append(field_str) if len(used_help_texts) != len(help_texts): print('Unused help texts:', help_texts.keys() - used_help_texts) self.helper = FormHelper(self) self.helper.form_tag = False self.helper.layout = Layout( orcid_div('orcid'), Div( Div('first_name', css_class='col-4'), Div('surname', css_class='col-4'), Div('academic_title', css_class='col-2'), Div('gender', css_class='col-2'), css_class='row' ), Div( Div('career_stage', css_class='col-8'), Div('phd_date', css_class='col-4'), css_class='row' ), Div( Div('email', css_class='col-6'), Div('phone', css_class='col-6'), css_class='row' ), Div( Div('organisation_names', css_class='col-12'), css_class='row' ), Div( Div('group', css_class='col-12'), css_class='row' ), ) if self._only_basic_fields: # The Layout always includes all the fields. Now it's better to remove the fields that don't exist # to avoid django-crispy-forms warnings (not fatal) PersonForm._delete_field_from_layout(self.helper.layout.fields, 'gender') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'career_stage') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'email') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'phone') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'phd_date') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'organisation_names') PersonForm._delete_field_from_layout(self.helper.layout.fields, 'group') @staticmethod def _delete_field_from_layout(container, field_str): for item in container: if type(item) == Div: PersonForm._delete_field_from_layout(item, field_str) elif type(item) == str and item == field_str: container.remove(field_str) def get_person_positions(self): """ Matches and returns the person_position from the database. """ try: physical_person = PhysicalPerson.objects.get( orcid=self.cleaned_data['orcid'] ) except ObjectDoesNotExist: # Non-existing PHysicalPerson so it doesn't have any PersonPositions associated return [] person_positions = PersonPosition.objects.filter( person=physical_person, academic_title=self.cleaned_data['academic_title'], group=self.cleaned_data['group'], career_stage=self.cleaned_data['career_stage'] ) return person_positions def clean_phd_date(self): if 'phd_date' not in self.cleaned_data: return None if self.cleaned_data['phd_date'] == '': return None # It has the correct format mm-yyyy because the field has a validator # In the DB it's always yyyy-mm because the model has this validator (consistent with general mysql date format) month, year = self.cleaned_data['phd_date'].split('-') month_int = int(month) if month_int < 1 or month_int > 12: raise ValidationError(f'Invalid month: {month}', code='invalid', params={'value': month}) return f'{year}-{month}' def clean(self): cd = super().clean() if self.errors: # If there are errors they might be related to orcid (e.g. using the example # ORCID iD, so cd['orcid'] doesn't exist. At this point we don't do further cleaning: # the user needs to fix the errors in the form before further cleaning is done. return cd # If ORCID iD is filled in: other fields are mandatory if self._all_fields_are_optional and cd['orcid']: for field_str, field in self.fields.items(): if field_str not in cd or not cd[field_str]: # It needs to be in cd and have a value self.add_error(field_str, 'Mandatory field if ORCiD iD is filled in') if self._all_fields_are_optional and not cd['orcid']: for field_str, field in self.fields.items(): if field_str in cd and cd[field_str]: self.add_error(field_str, 'It cannot contain any information if ORCiD ID is empty') return cd def save_person(self): cd = self.cleaned_data person_position = create_person_position(cd['orcid'], cd['first_name'], cd['surname'], gender=cd.get('gender', None), phd_date=cd.get('phd_date', None), academic_title=cd.get('academic_title'), group=cd.get('group'), career_stage=cd.get('career_stage'), organisation_names=cd.get('organisation_names', [])) if cd.get('email', None): # Should this be in the model? # TODO: discuss how to replace emails email_contact = person_position.main_email_model() if email_contact is None: email_contact = Contact() email_contact.method = Contact.EMAIL email_contact.person_position = person_position email_contact.entry = cd.get('email') email_contact.save() if cd.get('phone', None): # Like before, should this be in the model and consolidated? # TODO: discuss how to replace phones and handling of multiple phones phone_contact = person_position.main_phone_model() if phone_contact is None: phone_contact = Contact() phone_contact.method = Contact.PHONE phone_contact.person_position = person_position phone_contact.entry = cd.get('phone').as_international phone_contact.save() return person_position
2.265625
2
whole_cell_patch/paramWidget.py
11uc/whole_cell_patch
2
12795408
# class derived from a GridLayout with a bunch of widgets from PyQt5.QtWidgets import QLabel, QGridLayout, QLineEdit, \ QVBoxLayout, QHBoxLayout, QComboBox, QPushButton, QCheckBox import numpy as np import pandas as pd class ParamWidget(QGridLayout): ''' Collecting all the input boxes and labels to assign data. ''' def __init__(self, paramTyp, param, projMan = None, parent = None): ''' Build the boxes. Parameters ---------- paramTyp: dictionary Defining types of parameters in the set. param: dictionary The parameters in the set read from paramMan. projMan: Project Project management class, used for access raw data. Attributes ---------- param: dictionary Parameter set managed by this grid widget. err: bool Whether there's an error in the parameters. senderList: ''' super().__init__(parent) self.err = False self.param = param self.paramTyp = paramTyp self.projMan = projMan self.senderList = [] for i, (k, v) in enumerate(paramTyp.items()): self.addWidget(QLabel(k), i, 0) val = self.param[k] if v == "protocol" and projMan != None: cb = QComboBox() cb.currentTextChanged.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) self.addWidget(cb, i, 1) self.senderList.append(cb) elif v == "int" or v == "float": le = QLineEdit() le.textEdited.connect(lambda x, ind = k, typ = v: self.updateParam(ind, typ, x)) self.addWidget(le, i, 1) self.senderList.append(le) elif v == "intr" or v == "floatr": le0 = QLineEdit() le1 = QLineEdit() le0.textEdited.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x, begin = True)) le1.textEdited.connect(lambda x, ind = k, typ = v: self.updateParam(ind, typ, x, begin = False)) twoHB = QHBoxLayout() twoHB.addWidget(le0) twoHB.addWidget(QLabel("to")) twoHB.addWidget(le1) self.addLayout(twoHB, i, 1) self.senderList.append([le0, le1]) elif v == "intl" or v == "floatl" or v == "strl": le = QLineEdit() le.textEdited.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) btn = QPushButton("...") lstHB = QHBoxLayout() lstHB.addWidget(le) lstHB.addWidget(btn) self.addLayout(lstHB, i, 1) self.senderList.append(le) elif v == "bool": cb = QCheckBox() cb.stateChanged.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) self.addWidget(cb, i, 1) self.senderList.append(cb) elif "combo" in v: options = v.split(',')[1:] cb = QComboBox() for j in options: cb.addItem(j) cb.currentTextChanged.connect(lambda x, ind = k, typ = v: \ self.updateParam(ind, typ, x)) cb.setCurrentIndex(0) self.addWidget(cb, i, 1) self.senderList.append(cb) else: print("Unknown parameter type.") self.updateDisp() self.updateDisp(param) def updateDisp(self, param = None): ''' After parameter changes due to importing or change of protocols, update display of parameters. Parameters ---------- param: dictionary, optional New parameters. Default is None, only tend to update protocols. ''' if param == None: for i, (k, v) in enumerate(self.paramTyp.items()): if v == "protocol" and self.projMan != None: cb = self.senderList[i] cb.clear() pt = self.projMan.getProtocols() for j in pt: cb.addItem(j) if len(pt): cb.setCurrentIndex(0) else: self.err = True else: self.param = param for i, (k, v) in enumerate(self.paramTyp.items()): val = param[k] if v == "protocol" and self.projMan != None: cb = self.senderList[i] cb.clear() pt = self.projMan.getProtocols() for j in pt: cb.addItem(j) if len(pt): cb.setCurrentIndex(0) else: self.err = True elif v == "int" or v == "float": if v == "int" or (1e-3 < abs(val) and abs(val) < 1e3): ds = str(val) else: ds = "{:.3e}".format(val) le = self.senderList[i] le.setText(ds) elif v == "intr" or v == "floatr": le0, le1 = self.senderList[i] if v == "intr" or (1e-3 < abs(val[0]) and abs(val[0]) < 1e3): ds = str(val[0]) else: ds = "{:.3e}".format(val[0]) le0.setText(ds) if v == "intr" or (1e-3 < abs(val[1]) and abs(val[1]) < 1e3): ds = str(val[1]) else: ds = "{:.3e}".format(val[1]) le1.setText(ds) elif v == "intl" or v == "floatl": if len(val): if v == "intl" or (1e-3 < min(map(abs, val)) and \ max(map(abs, val)) < 1e3): ds = ", ".join(map(str, val)) else: ds = ", ".join(["{:.3e}".format(d) for d in val]) else: ds = '' le = self.senderList[i] le.setText(ds) elif v == "strl": if len(val): ds = ", ".join(val) else: ds = '' le = self.senderList[i] le.setText(ds) elif v == "bool": cb = self.senderList[i] cb.setChecked(val) elif "combo" in v: cb = self.senderList[i] cb.setCurrentText(val) else: print("Unknown parameter type") print(v, val) self.update() def updateParam(self, ind, typ, val, **kargs): ''' Update individual parameters in profile using values get from input widgets. Parameters ---------- ind: string Key of the individual parameter to be set. typ: string Type of the individual parameter. val: string Text out of the input widget with the value. **kargs: Arguments come with some special types of parameters. - begin: bool Whether it's the first one of the two value range parameters. ''' try: self.err = False self.sender().setStyleSheet("background:#FFFFFF;") if typ == "int": self.param[ind] = int(val) elif typ == "float": self.param[ind] = float(val) elif typ == "intr": if kargs["begin"]: self.param[ind][0] = int(val) else: self.param[ind][1] = int(val) elif typ == "floatr": if kargs["begin"]: self.param[ind][0] = float(val) else: self.param[ind][1] = float(val) elif typ == "intl": if len(val): self.param[ind] = list(map(int, val.split(','))) else: self.param[ind] = [] elif typ == "floatl": if len(val): self.param[ind] = list(map(float, val.split(','))) else: self.param[ind] = [] elif typ == "strl": if len(val): self.param[ind] = [d.strip() for d in val.split(',')] else: self.param[ind] = [] elif typ == "protocol": self.param[ind] = val elif typ == "bool": self.param[ind] = bool(val) elif "combo" in typ: self.param[ind] = val else: print("Unknown parameter type") except ValueError: self.sender().setStyleSheet("background:#FF0000;") self.err = True def getParam(self): ''' Get parameters managed in this widget. ''' if not self.err: return self.param else: return None
2.625
3
bioprocs/scripts/imtherapy/pTopiary.py
pwwang/biopipen
2
12795409
<reponame>pwwang/biopipen<gh_stars>1-10 """ ./topiary \ --vcf somatic.vcf \ --mhc-predictor netmhcpan \ --mhc-alleles HLA-A*02:01,HLA-B*07:02 \ --ic50-cutoff 500 \ --percentile-cutoff 2.0 \ --mhc-epitope-lengths 8-11 \ --rna-gene-fpkm-tracking-file genes.fpkm_tracking \ --rna-min-gene-expression 4.0 \ --rna-transcript-fpkm-tracking-file isoforms.fpkm_tracking \ --rna-min-transcript-expression 1.5 \ --output-csv epitopes.csv """ import re from os import environ from pathlib import Path from cyvcf2 import VCF from gff import Gff from diot import Diot from cmdy import CmdyReturnCodeException from bioprocs.utils import shell2 as shell, logger from bioprocs.utils.tsvio2 import TsvReader, TsvWriter, TsvRecord {% from os import path%} infile = {{i.infile | quote}} afile = {{i.afile | ?path.isfile | =readlines | !alwaysList | repr}} outfile = Path({{o.outfile | quote}}) outdir = Path({{o.outdir | quote}}) topiary = {{args.topiary | quote}} netmhc = {{args.netmhc | quote}} netmhcpan = {{args.netmhcpan | quote}} netmhciipan = {{args.netmhciipan | quote}} netmhccons = {{args.netmhccons | quote}} smm = {{args.smm | quote}} smm_pmbec = {{args.smm_pmbec | quote}} mhc_predictor = {{args.mhc_predictor | quote}} genome = {{args.genome | quote}} params = {{args.params | repr}} refall = {{args.refall | quote}} tmpdir = Path({{args.tmpdir | quote}}) / '.'.join([ {{proc.id | quote}}, {{proc.tag | quote}}, {{proc.suffix | quote}}, {{job.index | quote}}]) tmpdir.mkdir(exist_ok = True, parents = True) # check if we have downloaded annotation data for the genome # topiary will use it to annotate the data gmaps = {'hg19': 'GRCh37', 'hg38': 'GRCh38'} datadir = Path.home().joinpath('.cache', 'pyensembl') if not datadir.joinpath(genome).is_dir() and not datadir.joinpath(gmaps.get(genome, genome)).is_dir(): raise RuntimeError("You don't have annotation data for genome {}{} installed. " "Either you run 'pyensembl install' first or " "specify 'params.download_reference_genome_data = True'. " "If you have it installed somewhere else, make a symbolic link to {}".format(genome, ('/' + gmaps[genome]) if genome in gmaps else '', datadir)) # if not datadir.joinpath(genome).is_dir() and datadir.joinpath(gmaps.get(genome, genome)).is_dir(): # genome = gmaps[genome] # extract expression from VCF file vcf = VCF(infile) gxfile = txfile = False features = set() if vcf.contains('GX'): if not vcf.contains('CSQ'): raise ValueError('VCF file has to be annotated with by VEP') # tracking_id class_code nearest_ref_id gene_id gene_short_name tss_id locus length coverage FPKM FPKM_conf_lo FPKM_conf_hi FPKM_status # ENSG00000240361 - - ENSG00000240361 OR4G11P - chr1:62947-63887 - - 0 0 0 OK # ENSG00000268020 - - ENSG00000268020 AL627309.1 - chr1:53048-54936 - - 0 0 0 OK gxfile = outfile.with_suffix('.gx_nopos') writer = TsvWriter(gxfile) writer.cnames = ['tracking_id', 'class_code', 'nearest_ref_id', 'gene_id', 'gene_short_name', 'tss_id', 'locus', 'length', 'coverage', 'FPKM', 'FPKM_conf_lo', 'FPKM_conf_hi', 'FPKM_status'] writer.writeHead() for variant in vcf: # try..except try: gx = variant.format('GX')[0] except (KeyError, TypeError): continue csqs = variant.INFO['CSQ'].split(',') gxs = gx.split(',') for gx in gxs: gene, expr = gx.split('|', 1) csq = [csq for csq in csqs if f'|{gene}|' in csq][0].split('|') r = TsvRecord() r.tracking_id = csq[4] r.class_code = '-' r.nearest_ref_id = '-' r.gene_id = csq[4] r.gene_short_name = csq[3] r.tss_id = '-' r.locus = '<pos>' r.length = '-' r.coverage = '-' r.FPKM = expr r.FPKM_conf_lo = 0 r.FPKM_conf_hi = 1000 r.FPKM_status = 'OK' writer.write(r) features.add(r.tracking_id) writer.close() if vcf.contains('TX'): if not vcf.contains('CSQ'): raise ValueError('VCF file has to be annotated with by VEP') # tracking_id class_code nearest_ref_id gene_id gene_short_name tss_id locus length coverage FPKM FPKM_conf_lo FPKM_conf_hi FPKM_status # ENSG00000240361 - - ENSG00000240361 OR4G11P - chr1:62947-63887 - - 0 0 0 OK # ENSG00000268020 - - ENSG00000268020 AL627309.1 - chr1:53048-54936 - - 0 0 0 OK txfile = outfile.with_suffix('.tx_nopos') writer = TsvWriter(txfile) writer.cnames = ['tracking_id', 'class_code', 'nearest_ref_id', 'gene_id', 'gene_short_name', 'tss_id', 'locus', 'length', 'coverage', 'FPKM', 'FPKM_conf_lo', 'FPKM_conf_hi', 'FPKM_status'] writer.writeHead() for variant in vcf: # try..except try: tx = variant.format('TX')[0] except (KeyError, TypeError): continue csqs = variant.INFO['CSQ'].split('|') txs = tx.split(',') for tx in txs: transcript, expr = tx.split('|', 1) csq = [csq for csq in csqs if f'|{transcript}|' in csq][0].split('|') r = TsvRecord() r.tracking_id = csq[6] r.class_code = '-' r.nearest_ref_id = '-' r.gene_id = csq[4] r.gene_short_name = csq[3] r.tss_id = '-' r.locus = '<pos>' r.length = '-' r.coverage = '-' r.FPKM = expr r.FPKM_conf_lo = 0 r.FPKM_conf_hi = 1000 r.FPKM_status = 'OK' writer.write(r) features.add(r.tracking_id) writer.close() if gxfile or txfile: allpos = {} for gff in Gff(refall): if gff['type'] == 'gene': feature = gff['attributes']['gene_id'] elif gff['type'] == 'transcript': feature = gff['attributes']['transcript_id'] else: continue if feature not in features: continue allpos[feature] ='{}:{}-{}'.format(gff['seqid'], gff['start'], gff['end']) if gxfile: gxfile2 = outfile.with_suffix('.gx') with open(gxfile) as fin, open(gxfile2, 'w') as fout: for line in fin: if '<pos>' not in line: fout.write(line) else: feature_id = line.split('\t', 1)[0] if feature_id not in allpos: logger.warning('Cannot find position information for: %s, skipping', feature_id) else: fout.write(line.replace('<pos>', allpos[feature_id])) gxfile = gxfile2 if txfile: txfile2 = outfile.with_suffix('.tx') with open(txfile) as fin, open(txfile2, 'w') as fout: for line in fin: if '<pos>' not in line: fout.write(line) else: feature_id = line.split('\t', 1)[0] if feature_id not in allpos: logger.warning('Cannot find position information for: %s, skipping', feature_id) else: fout.write(line.replace('<pos>', allpos[feature_id])) txfile = txfile2 params['rna-gene-fpkm-tracking-file'] = gxfile params['rna-transcript-fpkm-tracking-file'] = txfile shell.load_config(topiary = topiary) if infile.endswith('.vcf') or infile.endswith('.vcf.gz'): params.vcf = infile else: params.maf = infile alleles = [allele.replace('*', '') for allele in afile] params['mhc-alleles'] = ','.join(alleles) params.genome = genome params['output-csv'] = outfile.with_suffix('.nowt') params['mhc-predictor'] = mhc_predictor # make sure those mhc-predictors are in PATH PATHs = set() for mhcpred in (netmhc, netmhcpan, netmhciipan, netmhccons, smm, smm_pmbec): try: PATHs.add(str(Path(shell.which(mhcpred)).parent)) except CmdyReturnCodeException: continue params._env = Diot(PATH = environ['PATH'] + ':' + ':'.join(PATHs)) shell.fg.topiary(**params) # add wildtype binding # #,variant,peptide_offset,peptide,allele,affinity,percentile_rank,prediction_method_name,peptide_length,gene,gene_id,transcript_id,transcript_name,effect,effect_type,contains_mutant_residues,mutation_start_in_peptide,mutation_end_in_peptide,gene_expression # 0,chr6 g.31237146C>A,353,AACSNSAHG,HLA-A*02:01,35651.3,65.0,netMHC,9,HLA-C,ENSG00000204525,ENST00000383329,HLA-C-002,p.Q361H,Substitution,True,7,8,0.0 # 1,chr6 g.33037619G>T,40,AAFVQTHRT,HLA-A*02:01,22758.73,32.0,netMHC,9,HLA-DPA1,ENSG00000231389,ENST00000419277,HLA-DPA1-001,p.P49T,Substitution,True,8,9,0.0 if mhc_predictor in ('netmhc', 'netmhcpan', 'netmhciipan', 'netmhccons', 'smm', 'smm_pmbec'): wildpeps = set() mutpeps = {} tpreader = TsvReader(outfile.with_suffix('.nowt'), comment = '###', delimit = ',') for r in tpreader: if r.effect_type != 'Substitution': # I don't know how to get the wildtype peptides if it is not a substitution continue # parse effect: p.N84S m = re.match(r'^p\.([A-Z])\d+([A-Z])$', r.effect) if not m: continue wildpep = r.peptide index = int(r.mutation_start_in_peptide) if wildpep[index] != m.group(2): continue wildpep = wildpep[:index] + m.group(1) + wildpep[(index+1):] mutpeps[r.peptide + '\t' + r.allele] = wildpep wildpeps.add(wildpep) def run_netmhc(): shell.load_config(netmhc = netmhc) mhcallele2 = params['mhc-alleles'].replace(':', '').replace('*', '') wildfile = outfile.parent / 'wildtype.peptides.txt' wildfile.write_text('\n'.join(wildpeps)) nparams = Diot( a = mhcallele2, v = True, inptype = 1, f = wildfile, _prefix = '-', _iter = True, _debug = True) res = shell.netmhc(**nparams) pos_hit = False wildbindings = {allele: {} for allele in mhcallele2.split(',')} for line in res: if 'PEPLIST' not in line or line.startswith('Protein'): continue parts = line.split() wildbindings[parts[1]][parts[2]] = parts[12] writer = TsvWriter(outfile) writer.cnames = ['HLA_allele', 'Peptide', 'Affinity', 'Gene', 'ENSG', 'ENST', 'Ref_peptide', 'Ref_affinity', 'Mutation', 'AAChange'] writer.writeHead() writerall = TsvWriter(outfile.with_suffix('.all.txt')) writerall.cnames = writer.cnames writerall.writeHead() tpreader.rewind() for r in tpreader: out = TsvRecord() out.HLA_allele = r.allele out.Peptide = r.peptide out.Affinity = r.affinity out.Gene = r.gene out.ENSG = r.gene_id out.ENST = r.transcript_id wtpep = mutpeps.get(r.peptide + '\t' + r.allele, '-') out.Ref_peptide = wtpep out.Ref_affinity = wildbindings[r.allele.replace(':', '').replace('*', '')].get(wtpep, '>500') out.Mutation = r.variant out.AAChange = r.effect writerall.write(out) if float(out.Affinity) < 500 and ('>' in out.Ref_affinity or float(out.Ref_affinity) >= 2000): writer.write(out) def run_netmhcpan(): shell.load_config(netmhcpan = netmhcpan) mhcallele2 = params['mhc-alleles'] if 'mhc-alleles' in params else ','.join( allele for allele in Path(params['mhc-alleles-file']).read_text().splitlines() if allele ) wildfile = outfile.parent / 'wildtype.peptides.txt' wildfile.write_text('\n'.join(wildpeps)) xlsfile = outfile.parent / 'wildtype.binding.txt' nparams = Diot( a = mhcallele2, v = True, BA = True, inptype = 1, f = wildfile, _prefix = '-', xls = True, xlsfile = xlsfile) shell.fg.netmhcpan(**nparams) if not xlsfile.is_file(): raise RuntimeError("Failed to run netmhcpan, output file not generated.") # read the output """ HLA-A24:02 HLA-A29:02 Pos Peptide ID core icore 1-log50k nM Rank core icore 1-log50k nM Rank 0 LYLPALWFH PEPLIST LYLPALWFH LYLPALWFH 0.1353 11560.5488 6.1138 LYLPALWFH LYLPALWFH 0.4137 568.6087 1.1231 0 RRQRRQRRW PEPLIST RRQRRQRRW RRQRRQRRW 0.0788 21311.8301 12.3392 RRQRRQRRW RRQRRQRRW 0.0308 35829.9805 47.6206 """ with xlsfile.open('r') as f: alleles = [allele.replace('HLA-A', 'HLA-A*').replace('HLA-B', 'HLA-B*').replace('HLA-C', 'HLA-C*') for allele in f.readline().strip().split('\t') if allele] reader = TsvReader(xlsfile, comment = '\t\t\t') wildbindings = {} for r in reader: peptide = r[1] for i, hla in enumerate(alleles): wildbindings[peptide + '\t' + hla] = float(r[7 + i*5]) writer = TsvWriter(outfile) writer.cnames = tpreader.cnames + ['wildpeptide', 'wildaffinity', 'deltaaffinity'] writer.writeHead() nwriter = TsvWriter(neatfile) nwriter.cnames = ['HLA_allele', 'mt_peptide', 'mt_affinity', 'wt_peptide', 'wt_affinity', 'delta_affinity', 'gene'] nwriter.writeHead() tpreader.rewind() for r in tpreader: r.wildpeptide = mutpeps.get(r.peptide + '\t' + r.allele, '-') r.wildaffinity = wildbindings.get(r.wildpeptide + '\t' + r.allele, '-') if r.wildaffinity != '-': r.deltaaffinity = float(r.affinity) - r.wildaffinity else: r.deltaaffinity = '-' nwriter.write([ r.allele, r.peptide, r.affinity, r.wildpeptide, r.wildaffinity, r.deltaaffinity, r.gene]) writer.write(r) def run_netmhciipan(): pass def run_netmhccons(): pass def run_smm(): pass def run_smm_pmbec(): pass runner = { 'netmhc' : run_netmhc, 'netmhcpan' : run_netmhcpan, 'netmhciipan' : run_netmhciipan, 'netmhccons' : run_netmhccons, 'smm' : run_smm, 'smm-pmbec' : run_smm_pmbec, } runner.get(mhc_predictor)()
1.53125
2
auth_api/auth_api/urls.py
rwreynolds/auth-api
0
12795410
from django.conf.urls import url, include from django.contrib import admin from rest_framework.documentation import include_docs_urls from auth_api import views urlpatterns = [ url(r'^admin/', admin.site.urls), url(r'^docs/', include_docs_urls(title='Todo API', description='RESTful API for Todo')), url(r'^$', views.api_root), url(r'^', include('users.urls', namespace='users')), url(r'^', include('todos.urls', namespace='todos')), ]
1.78125
2
hot_crawler/utils.py
wf1314/hot-crawler
1
12795411
<filename>hot_crawler/utils.py import redis from werkzeug.routing import BaseConverter class RegexConverter(BaseConverter): """ 正则匹配路由 """ def __init__(self, url_map, *args): super().__init__(url_map) self.regex = args[0] def get_redis(host='localhost', port=6379): """ 获取redis操作对象 :param host: :param port: :return: """ pool = redis.ConnectionPool(host=host, port=port, decode_responses=True) redis_con = redis.Redis(connection_pool=pool) return redis_con
2.59375
3
app/tests/intergrations/test_opsgenie.py
cds-snc/sre-bot
0
12795412
<filename>app/tests/intergrations/test_opsgenie.py<gh_stars>0 from integrations import opsgenie from unittest.mock import patch @patch("integrations.opsgenie.api_get_request") @patch("integrations.opsgenie.OPSGENIE_KEY", "OPSGENIE_KEY") def test_get_on_call_users(api_get_request_mock): api_get_request_mock.return_value = ( '{"data": {"onCallParticipants": [{"name": "test_user"}]}}' ) assert opsgenie.get_on_call_users("test_schedule") == ["test_user"] api_get_request_mock.assert_called_once_with( "https://api.opsgenie.com/v2/schedules/test_schedule/on-calls", {"name": "GenieKey", "token": "OPSGENIE_KEY"}, ) @patch("integrations.opsgenie.api_get_request") def test_get_on_call_users_with_exception(api_get_request_mock): api_get_request_mock.return_value = "{]" assert opsgenie.get_on_call_users("test_schedule") == [] @patch("integrations.opsgenie.Request") @patch("integrations.opsgenie.urlopen") def test_api_get_request(urlopen_mock, request_mock): urlopen_mock.return_value.read.return_value.decode.return_value = ( '{"data": {"onCallParticipants": [{"name": "test_user"}]}}' ) assert ( opsgenie.api_get_request( "test_url", {"name": "GenieKey", "token": "OPSGENIE_KEY"} ) == '{"data": {"onCallParticipants": [{"name": "test_user"}]}}' ) request_mock.assert_called_once_with("test_url") request_mock.return_value.add_header.assert_called_once_with( "Authorization", "GenieKey OPSGENIE_KEY" ) urlopen_mock.assert_called_once_with(request_mock.return_value)
2.25
2
japanese2phoneme/exceptions.py
iory/japanese2phoneme
0
12795413
<reponame>iory/japanese2phoneme<filename>japanese2phoneme/exceptions.py<gh_stars>0 class UnidentifiedJapaneseText(Exception): def __init__(self, sentence, word): super(UnidentifiedJapaneseText, self).__init__() self.sentence = sentence self.word = word def __str__(self): return (u"No match in dictionary for word '%s' in sentence: \n'%s'" % (self.word, self.sentence)) class ChunkingError(Exception): """Raised when a katakana string cannot be parsed correctly """ def __init__(self, txt): super(ChunkingError, self).__init__() self.textStr = txt def __str__(self): return u"Chunking error for string: \n %s" % self.textStr class EmptyStrError(Exception): def __str__(self): return "Empty string passed in" class NonKatakanaError(Exception): def __init__(self, char, utterance): super(NonKatakanaError, self).__init__() self.char = char self.utterance = utterance def __str__(self): return (u"Wrongly interpreted character '%s' as kana in utterance:\n%s" % (self.char, self.utterance))
3.03125
3
N10189/main.py
carmocca/UVA
3
12795414
<gh_stars>1-10 import sys def get_neighbours(row, col, rows, cols): neighbours = [] for i in range(-1, 2): for j in range(-1, 2): if i == 0 and j == 0: continue elif -1 < row + i < rows and -1 < col + j < cols: neighbours.append((row + i, col + j)) return neighbours def solve(field, rows, cols): res = [] for row in range(rows): line = '' for col in range(cols): if field[row][col] == 1: line += '*' continue neighbours = get_neighbours(row, col, rows, cols) mines = sum(field[r][c] for r, c in neighbours) line += str(mines) res.append(line + '\n') return res def main(file): res = [] field_num = 1 while True: rows, cols = [int(x) for x in file.readline().split()] if rows == cols == 0: break field = [[0 for _ in range(cols)] for _ in range(rows)] for row in range(rows): for col, char in enumerate(file.readline()): if char == '*': field[row][col] = 1 res.append('Field #{}:\n'.format(field_num)) res.extend(solve(field, rows, cols)) res.append('\n') field_num += 1 return res[0: -1] if __name__ == '__main__': print(''.join(main(sys.stdin)), end='')
3.21875
3
src/python/track_ic/corner_detection.py
SJungert/computer_gaze_tracking
0
12795415
<reponame>SJungert/computer_gaze_tracking import cv2 import numpy as np #filename = 'chessboard2.jpg' #img = cv2.imread(filename) #gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) def corner_detect(gray_input, img_input, row, col): height, width = gray_input.shape #print(height, width) gray = gray_input img = img_input #crop_img = img[y:y+h, x:x+w] #gray = gray_input[col+col:h, row+row:w] #img = img_input[col:col+70, row:row+70] # find Harris corners gray = np.float32(gray) dst = cv2.cornerHarris(gray,2,3,0.004) #0.04 dst = cv2.dilate(dst,None) ret, dst = cv2.threshold(dst,0.01*dst.max(),255,0) #0.01*dst.max() was original value dst = np.uint8(dst) # find centroids ret, labels, stats, centroids = cv2.connectedComponentsWithStats(dst) # define the criteria to stop and refine the corners criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.001) corners = cv2.cornerSubPix(gray,np.float32(centroids),(5,5),(-1,-1),criteria) # Now draw them res = np.hstack((centroids,corners)) res = np.int0(res) img[res[:,1],res[:,0]]=[0,0,255] img[res[:,3],res[:,2]] = [0,255,0] print(corners) corners = np.array(corners).astype(int) centroids = np.array(centroids).astype(int) for corner in corners: row = corner[0] col = corner[1] cv2.rectangle(img,(col, row),(col + 2,row + 2),(0,0,255),2) for corner in centroids: row = corner[0] col = corner[1] cv2.rectangle(img,(col, row),(col + 2,row + 2),(0,255,0),2) cv2.imwrite('subpixel5.png',img) return img
2.984375
3
code.py
kaushik0033/manipulating-data-with-numpy-code-along-practice
0
12795416
<filename>code.py # -------------- import numpy as np # Not every data format will be in csv there are other file formats also. # This exercise will help you deal with other file formats and how toa read it. from numpy import genfromtxt my_data = genfromtxt(path, delimiter=',',skip_header=1) # Number of unique matches unique_team = np.unique(my_data[:,0],axis=0) print("Uniue no of mataches=", unique_team.shape[0]) print("Set of unique_team which played match=", unique_team[:-1]) print("Sum of all extras in all delivery=",np.sum(my_data[:,17].astype(int), axis = 0)) print("Get all deliveries which given player is out,tell wickettype=",my_data[my_data[:,22]!=np.nan][:,11]) toss_won_by_mum=len(my_data[my_data[:,5]=='Mumbai Indians']) print("Toss won by Mumbai indians=",toss_won_by_mum) print("Batsman who scored 6 runs",my_data[my_data[:,16].astype(int)>=6].shape[0]) # How many matches were held in total we need to know so that we can analyze further statistics keeping that in mind. # Number of unique teams # this exercise deals with you getting to know that which are all those six teams that played in the tournament. # Sum of all extras # An exercise to make you familiar with indexing and slicing up within data. # Delivery number when a given player got out # Get the array of all delivery numbers when a given player got out. Also mention the wicket type. # Number of times Mumbai Indians won the toss # this exercise will help you get the statistics on one particular team # Filter record where batsman scored six and player with most number of sixex # An exercise to know who is the most aggresive player or maybe the scoring player
3.8125
4
sdk/ml/azure-ai-ml/azure/ai/ml/_restclient/_azure_machine_learning_workspaces.py
dubiety/azure-sdk-for-python
1
12795417
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from azure.profiles import KnownProfiles, ProfileDefinition from azure.profiles.multiapiclient import MultiApiClientMixin from msrest import Deserializer, Serializer from ._configuration import AzureMachineLearningWorkspacesConfiguration if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential class _SDKClient(object): def __init__(self, *args, **kwargs): """This is a fake class to support current implemetation of MultiApiClientMixin." Will be removed in final version of multiapi azure-core based client """ pass class AzureMachineLearningWorkspaces(MultiApiClientMixin, _SDKClient): """These APIs allow end users to operate on Azure Machine Learning Workspace resources. This ready contains multiple API versions, to help you deal with all of the Azure clouds (Azure Stack, Azure Government, Azure China, etc.). By default, it uses the latest API version available on public Azure. For production, you should stick to a particular api-version and/or profile. The profile sets a mapping between an operation group and its API version. The api-version parameter sets the default API version if the operation group is not described in the profile. :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param subscription_id: The ID of the target subscription. :type subscription_id: str :param api_version: API version to use if no profile is provided, or if missing in profile. :type api_version: str :param base_url: Service URL :type base_url: str :param profile: A profile definition, from KnownProfiles to dict. :type profile: azure.profiles.KnownProfiles :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. """ DEFAULT_API_VERSION = '2022-05-01' _PROFILE_TAG = "azure.mgmt.machinelearningservices.AzureMachineLearningWorkspaces" LATEST_PROFILE = ProfileDefinition({ _PROFILE_TAG: { None: DEFAULT_API_VERSION, 'assets': '1.0.0', 'async_operations': 'v1.0', 'batch_job_deployment': '2020-09-01-dataplanepreview', 'batch_job_endpoint': '2020-09-01-dataplanepreview', 'data_call': '1.5.0', 'data_container': '1.5.0', 'data_version': '1.5.0', 'dataset_containers': '2021-10-01', 'dataset_controller_v2': '1.5.0', 'dataset_v2': '1.5.0', 'dataset_versions': '2021-10-01', 'datasets_v1': '1.5.0', 'delete': 'v1.0', 'events': 'v1.0', 'experiments': 'v1.0', 'extensive_model': '1.0.0', 'get_operation_status': '1.5.0', 'metric': 'v1.0', 'migration': '1.0.0', 'models': '1.0.0', 'registry_management_non_workspace': 'v1.0', 'run': 'v1.0', 'run_artifacts': 'v1.0', 'runs': 'v1.0', 'spans': 'v1.0', 'temporary_data_references': '2021-10-01-dataplanepreview', }}, _PROFILE_TAG + " latest" ) def __init__( self, credential, # type: "TokenCredential" subscription_id, # type: str api_version=None, # type: Optional[str] base_url="https://management.azure.com", # type: str profile=KnownProfiles.default, # type: KnownProfiles **kwargs # type: Any ): self._config = AzureMachineLearningWorkspacesConfiguration(credential, subscription_id, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) super(AzureMachineLearningWorkspaces, self).__init__( api_version=api_version, profile=profile ) @classmethod def _models_dict(cls, api_version): return {k: v for k, v in cls.models(api_version).__dict__.items() if isinstance(v, type)} @classmethod def models(cls, api_version=DEFAULT_API_VERSION): """Module depends on the API version: * 1.5.0: :mod:`dataset_dataplane.models<azure.mgmt.machinelearningservices.dataset_dataplane.models>` * 1.0.0: :mod:`model_dataplane.models<azure.mgmt.machinelearningservices.model_dataplane.models>` * v1.0: :mod:`registry_discovery.models<azure.mgmt.machinelearningservices.registry_discovery.models>` * v1.0: :mod:`runhistory.models<azure.mgmt.machinelearningservices.runhistory.models>` * 2020-09-01-dataplanepreview: :mod:`v2020_09_01_dataplanepreview.models<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.models>` * 2021-10-01: :mod:`v2021_10_01.models<azure.mgmt.machinelearningservices.v2021_10_01.models>` * 2021-10-01-dataplanepreview: :mod:`v2021_10_01_dataplanepreview.models<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.models>` * 2022-01-01-preview: :mod:`v2022_01_01_preview.models<azure.mgmt.machinelearningservices.v2022_01_01_preview.models>` * 2022-02-01-preview: :mod:`v2022_02_01_preview.models<azure.mgmt.machinelearningservices.v2022_02_01_preview.models>` * 2022-05-01: :mod:`v2022_05_01.models<azure.mgmt.machinelearningservices.v2022_05_01.models>` """ if api_version == '1.5.0': from .dataset_dataplane import models return models elif api_version == '1.0.0': from .model_dataplane import models return models elif api_version == 'v1.0': from .registry_discovery import models return models elif api_version == 'v1.0': from .runhistory import models return models elif api_version == '2020-09-01-dataplanepreview': from .v2020_09_01_dataplanepreview import models return models elif api_version == '2021-10-01': from .v2021_10_01 import models return models elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview import models return models elif api_version == '2022-01-01-preview': from .v2022_01_01_preview import models return models elif api_version == '2022-02-01-preview': from .v2022_02_01_preview import models return models elif api_version == '2022-05-01': from .v2022_05_01 import models return models raise ValueError("API version {} is not available".format(api_version)) @property def assets(self): """Instance depends on the API version: * 1.0.0: :class:`AssetsOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.AssetsOperations>` """ api_version = self._get_api_version('assets') if api_version == '1.0.0': from .model_dataplane.operations import AssetsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'assets'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def async_operations(self): """Instance depends on the API version: * v1.0: :class:`AsyncOperationsOperations<azure.mgmt.machinelearningservices.registry_discovery.operations.AsyncOperationsOperations>` """ api_version = self._get_api_version('async_operations') if api_version == 'v1.0': from .registry_discovery.operations import AsyncOperationsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'async_operations'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_deployments(self): """Instance depends on the API version: * 2021-10-01: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.BatchDeploymentsOperations>` * 2022-02-01-preview: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.BatchDeploymentsOperations>` * 2022-05-01: :class:`BatchDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.BatchDeploymentsOperations>` """ api_version = self._get_api_version('batch_deployments') if api_version == '2021-10-01': from .v2021_10_01.operations import BatchDeploymentsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import BatchDeploymentsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import BatchDeploymentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_deployments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_endpoints(self): """Instance depends on the API version: * 2021-10-01: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.BatchEndpointsOperations>` * 2022-02-01-preview: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.BatchEndpointsOperations>` * 2022-05-01: :class:`BatchEndpointsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.BatchEndpointsOperations>` """ api_version = self._get_api_version('batch_endpoints') if api_version == '2021-10-01': from .v2021_10_01.operations import BatchEndpointsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import BatchEndpointsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import BatchEndpointsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_endpoints'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_job_deployment(self): """Instance depends on the API version: * 2020-09-01-dataplanepreview: :class:`BatchJobDeploymentOperations<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.operations.BatchJobDeploymentOperations>` """ api_version = self._get_api_version('batch_job_deployment') if api_version == '2020-09-01-dataplanepreview': from .v2020_09_01_dataplanepreview.operations import BatchJobDeploymentOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_job_deployment'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def batch_job_endpoint(self): """Instance depends on the API version: * 2020-09-01-dataplanepreview: :class:`BatchJobEndpointOperations<azure.mgmt.machinelearningservices.v2020_09_01_dataplanepreview.operations.BatchJobEndpointOperations>` """ api_version = self._get_api_version('batch_job_endpoint') if api_version == '2020-09-01-dataplanepreview': from .v2020_09_01_dataplanepreview.operations import BatchJobEndpointOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'batch_job_endpoint'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def code_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.CodeContainersOperations>` * 2021-10-01-dataplanepreview: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.CodeContainersOperations>` * 2022-02-01-preview: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.CodeContainersOperations>` * 2022-05-01: :class:`CodeContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.CodeContainersOperations>` """ api_version = self._get_api_version('code_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import CodeContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import CodeContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import CodeContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import CodeContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'code_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def code_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.CodeVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.CodeVersionsOperations>` * 2022-02-01-preview: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.CodeVersionsOperations>` * 2022-05-01: :class:`CodeVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.CodeVersionsOperations>` """ api_version = self._get_api_version('code_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import CodeVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import CodeVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import CodeVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import CodeVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'code_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def component_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ComponentContainersOperations>` * 2021-10-01-dataplanepreview: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ComponentContainersOperations>` * 2022-02-01-preview: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ComponentContainersOperations>` * 2022-05-01: :class:`ComponentContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ComponentContainersOperations>` """ api_version = self._get_api_version('component_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import ComponentContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ComponentContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ComponentContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ComponentContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'component_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def component_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ComponentVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ComponentVersionsOperations>` * 2022-02-01-preview: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ComponentVersionsOperations>` * 2022-05-01: :class:`ComponentVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ComponentVersionsOperations>` """ api_version = self._get_api_version('component_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import ComponentVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ComponentVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ComponentVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ComponentVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'component_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def compute(self): """Instance depends on the API version: * 2021-10-01: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ComputeOperations>` * 2022-01-01-preview: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.ComputeOperations>` * 2022-05-01: :class:`ComputeOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ComputeOperations>` """ api_version = self._get_api_version('compute') if api_version == '2021-10-01': from .v2021_10_01.operations import ComputeOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import ComputeOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ComputeOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'compute'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_call(self): """Instance depends on the API version: * 1.5.0: :class:`DataCallOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DataCallOperations>` """ api_version = self._get_api_version('data_call') if api_version == '1.5.0': from .dataset_dataplane.operations import DataCallOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_call'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_container(self): """Instance depends on the API version: * 1.5.0: :class:`DataContainerOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DataContainerOperations>` """ api_version = self._get_api_version('data_container') if api_version == '1.5.0': from .dataset_dataplane.operations import DataContainerOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_container'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_containers(self): """Instance depends on the API version: * 2022-02-01-preview: :class:`DataContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.DataContainersOperations>` * 2022-05-01: :class:`DataContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.DataContainersOperations>` """ api_version = self._get_api_version('data_containers') if api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import DataContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import DataContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_version(self): """Instance depends on the API version: * 1.5.0: :class:`DataVersionOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DataVersionOperations>` """ api_version = self._get_api_version('data_version') if api_version == '1.5.0': from .dataset_dataplane.operations import DataVersionOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_version'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def data_versions(self): """Instance depends on the API version: * 2022-02-01-preview: :class:`DataVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.DataVersionsOperations>` * 2022-05-01: :class:`DataVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.DataVersionsOperations>` """ api_version = self._get_api_version('data_versions') if api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import DataVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import DataVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'data_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`DatasetContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.DatasetContainersOperations>` """ api_version = self._get_api_version('dataset_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import DatasetContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_controller_v2(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetControllerV2Operations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DatasetControllerV2Operations>` """ api_version = self._get_api_version('dataset_controller_v2') if api_version == '1.5.0': from .dataset_dataplane.operations import DatasetControllerV2Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_controller_v2'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_v2(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetV2Operations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DatasetV2Operations>` """ api_version = self._get_api_version('dataset_v2') if api_version == '1.5.0': from .dataset_dataplane.operations import DatasetV2Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_v2'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def dataset_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`DatasetVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.DatasetVersionsOperations>` """ api_version = self._get_api_version('dataset_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import DatasetVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'dataset_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def datasets_v1(self): """Instance depends on the API version: * 1.5.0: :class:`DatasetsV1Operations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DatasetsV1Operations>` """ api_version = self._get_api_version('datasets_v1') if api_version == '1.5.0': from .dataset_dataplane.operations import DatasetsV1Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'datasets_v1'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def datastores(self): """Instance depends on the API version: * 2021-10-01: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.DatastoresOperations>` * 2022-02-01-preview: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.DatastoresOperations>` * 2022-05-01: :class:`DatastoresOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.DatastoresOperations>` """ api_version = self._get_api_version('datastores') if api_version == '2021-10-01': from .v2021_10_01.operations import DatastoresOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import DatastoresOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import DatastoresOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'datastores'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def delete(self): """Instance depends on the API version: * 1.5.0: :class:`DeleteOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.DeleteOperations>` * v1.0: :class:`DeleteOperations<azure.mgmt.machinelearningservices.runhistory.operations.DeleteOperations>` """ api_version = self._get_api_version('delete') if api_version == '1.5.0': from .dataset_dataplane.operations import DeleteOperations as OperationClass elif api_version == 'v1.0': from .runhistory.operations import DeleteOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'delete'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def environment_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.EnvironmentContainersOperations>` * 2021-10-01-dataplanepreview: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.EnvironmentContainersOperations>` * 2022-02-01-preview: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.EnvironmentContainersOperations>` * 2022-05-01: :class:`EnvironmentContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.EnvironmentContainersOperations>` """ api_version = self._get_api_version('environment_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import EnvironmentContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import EnvironmentContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'environment_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def environment_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.EnvironmentVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.EnvironmentVersionsOperations>` * 2022-02-01-preview: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.EnvironmentVersionsOperations>` * 2022-05-01: :class:`EnvironmentVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.EnvironmentVersionsOperations>` """ api_version = self._get_api_version('environment_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import EnvironmentVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import EnvironmentVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'environment_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def events(self): """Instance depends on the API version: * v1.0: :class:`EventsOperations<azure.mgmt.machinelearningservices.runhistory.operations.EventsOperations>` """ api_version = self._get_api_version('events') if api_version == 'v1.0': from .runhistory.operations import EventsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'events'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def experiments(self): """Instance depends on the API version: * v1.0: :class:`ExperimentsOperations<azure.mgmt.machinelearningservices.runhistory.operations.ExperimentsOperations>` """ api_version = self._get_api_version('experiments') if api_version == 'v1.0': from .runhistory.operations import ExperimentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'experiments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def extensive_model(self): """Instance depends on the API version: * 1.0.0: :class:`ExtensiveModelOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.ExtensiveModelOperations>` """ api_version = self._get_api_version('extensive_model') if api_version == '1.0.0': from .model_dataplane.operations import ExtensiveModelOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'extensive_model'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def get_operation_status(self): """Instance depends on the API version: * 1.5.0: :class:`GetOperationStatusOperations<azure.mgmt.machinelearningservices.dataset_dataplane.operations.GetOperationStatusOperations>` """ api_version = self._get_api_version('get_operation_status') if api_version == '1.5.0': from .dataset_dataplane.operations import GetOperationStatusOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'get_operation_status'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def jobs(self): """Instance depends on the API version: * 2021-10-01: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.JobsOperations>` * 2022-02-01-preview: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.JobsOperations>` * 2022-05-01: :class:`JobsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.JobsOperations>` """ api_version = self._get_api_version('jobs') if api_version == '2021-10-01': from .v2021_10_01.operations import JobsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import JobsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import JobsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'jobs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def metric(self): """Instance depends on the API version: * v1.0: :class:`MetricOperations<azure.mgmt.machinelearningservices.runhistory.operations.MetricOperations>` """ api_version = self._get_api_version('metric') if api_version == 'v1.0': from .runhistory.operations import MetricOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'metric'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def migration(self): """Instance depends on the API version: * 1.0.0: :class:`MigrationOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.MigrationOperations>` """ api_version = self._get_api_version('migration') if api_version == '1.0.0': from .model_dataplane.operations import MigrationOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'migration'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def model_containers(self): """Instance depends on the API version: * 2021-10-01: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ModelContainersOperations>` * 2021-10-01-dataplanepreview: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ModelContainersOperations>` * 2022-02-01-preview: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ModelContainersOperations>` * 2022-05-01: :class:`ModelContainersOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ModelContainersOperations>` """ api_version = self._get_api_version('model_containers') if api_version == '2021-10-01': from .v2021_10_01.operations import ModelContainersOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ModelContainersOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ModelContainersOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ModelContainersOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'model_containers'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def model_versions(self): """Instance depends on the API version: * 2021-10-01: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.ModelVersionsOperations>` * 2021-10-01-dataplanepreview: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.ModelVersionsOperations>` * 2022-02-01-preview: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.ModelVersionsOperations>` * 2022-05-01: :class:`ModelVersionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.ModelVersionsOperations>` """ api_version = self._get_api_version('model_versions') if api_version == '2021-10-01': from .v2021_10_01.operations import ModelVersionsOperations as OperationClass elif api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import ModelVersionsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import ModelVersionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import ModelVersionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'model_versions'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def models(self): """Instance depends on the API version: * 1.0.0: :class:`ModelsOperations<azure.mgmt.machinelearningservices.model_dataplane.operations.ModelsOperations>` """ api_version = self._get_api_version('models') if api_version == '1.0.0': from .model_dataplane.operations import ModelsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'models'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def online_deployments(self): """Instance depends on the API version: * 2021-10-01: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.OnlineDeploymentsOperations>` * 2022-02-01-preview: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.OnlineDeploymentsOperations>` * 2022-05-01: :class:`OnlineDeploymentsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.OnlineDeploymentsOperations>` """ api_version = self._get_api_version('online_deployments') if api_version == '2021-10-01': from .v2021_10_01.operations import OnlineDeploymentsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import OnlineDeploymentsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import OnlineDeploymentsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'online_deployments'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def online_endpoints(self): """Instance depends on the API version: * 2021-10-01: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.OnlineEndpointsOperations>` * 2022-02-01-preview: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2022_02_01_preview.operations.OnlineEndpointsOperations>` * 2022-05-01: :class:`OnlineEndpointsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.OnlineEndpointsOperations>` """ api_version = self._get_api_version('online_endpoints') if api_version == '2021-10-01': from .v2021_10_01.operations import OnlineEndpointsOperations as OperationClass elif api_version == '2022-02-01-preview': from .v2022_02_01_preview.operations import OnlineEndpointsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import OnlineEndpointsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'online_endpoints'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def operations(self): """Instance depends on the API version: * 2021-10-01: :class:`Operations<azure.mgmt.machinelearningservices.v2021_10_01.operations.Operations>` * 2022-01-01-preview: :class:`Operations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.Operations>` * 2022-05-01: :class:`Operations<azure.mgmt.machinelearningservices.v2022_05_01.operations.Operations>` """ api_version = self._get_api_version('operations') if api_version == '2021-10-01': from .v2021_10_01.operations import Operations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import Operations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import Operations as OperationClass else: raise ValueError("API version {} does not have operation group 'operations'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def private_endpoint_connections(self): """Instance depends on the API version: * 2021-10-01: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.PrivateEndpointConnectionsOperations>` * 2022-01-01-preview: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.PrivateEndpointConnectionsOperations>` * 2022-05-01: :class:`PrivateEndpointConnectionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.PrivateEndpointConnectionsOperations>` """ api_version = self._get_api_version('private_endpoint_connections') if api_version == '2021-10-01': from .v2021_10_01.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import PrivateEndpointConnectionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import PrivateEndpointConnectionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'private_endpoint_connections'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def private_link_resources(self): """Instance depends on the API version: * 2021-10-01: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.PrivateLinkResourcesOperations>` * 2022-01-01-preview: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.PrivateLinkResourcesOperations>` * 2022-05-01: :class:`PrivateLinkResourcesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.PrivateLinkResourcesOperations>` """ api_version = self._get_api_version('private_link_resources') if api_version == '2021-10-01': from .v2021_10_01.operations import PrivateLinkResourcesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import PrivateLinkResourcesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import PrivateLinkResourcesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'private_link_resources'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def quotas(self): """Instance depends on the API version: * 2021-10-01: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.QuotasOperations>` * 2022-01-01-preview: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.QuotasOperations>` * 2022-05-01: :class:`QuotasOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.QuotasOperations>` """ api_version = self._get_api_version('quotas') if api_version == '2021-10-01': from .v2021_10_01.operations import QuotasOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import QuotasOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import QuotasOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'quotas'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def registry_management_non_workspace(self): """Instance depends on the API version: * v1.0: :class:`RegistryManagementNonWorkspaceOperations<azure.mgmt.machinelearningservices.registry_discovery.operations.RegistryManagementNonWorkspaceOperations>` """ api_version = self._get_api_version('registry_management_non_workspace') if api_version == 'v1.0': from .registry_discovery.operations import RegistryManagementNonWorkspaceOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'registry_management_non_workspace'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def run(self): """Instance depends on the API version: * v1.0: :class:`RunOperations<azure.mgmt.machinelearningservices.runhistory.operations.RunOperations>` """ api_version = self._get_api_version('run') if api_version == 'v1.0': from .runhistory.operations import RunOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'run'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def run_artifacts(self): """Instance depends on the API version: * v1.0: :class:`RunArtifactsOperations<azure.mgmt.machinelearningservices.runhistory.operations.RunArtifactsOperations>` """ api_version = self._get_api_version('run_artifacts') if api_version == 'v1.0': from .runhistory.operations import RunArtifactsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'run_artifacts'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def runs(self): """Instance depends on the API version: * v1.0: :class:`RunsOperations<azure.mgmt.machinelearningservices.runhistory.operations.RunsOperations>` """ api_version = self._get_api_version('runs') if api_version == 'v1.0': from .runhistory.operations import RunsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'runs'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def spans(self): """Instance depends on the API version: * v1.0: :class:`SpansOperations<azure.mgmt.machinelearningservices.runhistory.operations.SpansOperations>` """ api_version = self._get_api_version('spans') if api_version == 'v1.0': from .runhistory.operations import SpansOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'spans'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def temporary_data_references(self): """Instance depends on the API version: * 2021-10-01-dataplanepreview: :class:`TemporaryDataReferencesOperations<azure.mgmt.machinelearningservices.v2021_10_01_dataplanepreview.operations.TemporaryDataReferencesOperations>` """ api_version = self._get_api_version('temporary_data_references') if api_version == '2021-10-01-dataplanepreview': from .v2021_10_01_dataplanepreview.operations import TemporaryDataReferencesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'temporary_data_references'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def usages(self): """Instance depends on the API version: * 2021-10-01: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.UsagesOperations>` * 2022-01-01-preview: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.UsagesOperations>` * 2022-05-01: :class:`UsagesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.UsagesOperations>` """ api_version = self._get_api_version('usages') if api_version == '2021-10-01': from .v2021_10_01.operations import UsagesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import UsagesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import UsagesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'usages'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def virtual_machine_sizes(self): """Instance depends on the API version: * 2021-10-01: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.VirtualMachineSizesOperations>` * 2022-01-01-preview: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.VirtualMachineSizesOperations>` * 2022-05-01: :class:`VirtualMachineSizesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.VirtualMachineSizesOperations>` """ api_version = self._get_api_version('virtual_machine_sizes') if api_version == '2021-10-01': from .v2021_10_01.operations import VirtualMachineSizesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import VirtualMachineSizesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import VirtualMachineSizesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'virtual_machine_sizes'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspace_connections(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.WorkspaceConnectionsOperations>` * 2022-01-01-preview: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.WorkspaceConnectionsOperations>` * 2022-05-01: :class:`WorkspaceConnectionsOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.WorkspaceConnectionsOperations>` """ api_version = self._get_api_version('workspace_connections') if api_version == '2021-10-01': from .v2021_10_01.operations import WorkspaceConnectionsOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import WorkspaceConnectionsOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import WorkspaceConnectionsOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspace_connections'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspace_features(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.WorkspaceFeaturesOperations>` * 2022-01-01-preview: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.WorkspaceFeaturesOperations>` * 2022-05-01: :class:`WorkspaceFeaturesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.WorkspaceFeaturesOperations>` """ api_version = self._get_api_version('workspace_features') if api_version == '2021-10-01': from .v2021_10_01.operations import WorkspaceFeaturesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import WorkspaceFeaturesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import WorkspaceFeaturesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspace_features'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) @property def workspaces(self): """Instance depends on the API version: * 2021-10-01: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2021_10_01.operations.WorkspacesOperations>` * 2022-01-01-preview: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2022_01_01_preview.operations.WorkspacesOperations>` * 2022-05-01: :class:`WorkspacesOperations<azure.mgmt.machinelearningservices.v2022_05_01.operations.WorkspacesOperations>` """ api_version = self._get_api_version('workspaces') if api_version == '2021-10-01': from .v2021_10_01.operations import WorkspacesOperations as OperationClass elif api_version == '2022-01-01-preview': from .v2022_01_01_preview.operations import WorkspacesOperations as OperationClass elif api_version == '2022-05-01': from .v2022_05_01.operations import WorkspacesOperations as OperationClass else: raise ValueError("API version {} does not have operation group 'workspaces'".format(api_version)) return OperationClass(self._client, self._config, Serializer(self._models_dict(api_version)), Deserializer(self._models_dict(api_version))) def close(self): self._client.close() def __enter__(self): self._client.__enter__() return self def __exit__(self, *exc_details): self._client.__exit__(*exc_details)
1.609375
2
test.py
olivetree123/Winney
0
12795418
<filename>test.py from winney.winney import Address from winney import Winney, retry from winney.mock import Mock class UserMock(Mock): data = {"name": "olivetree"} class UserCenter(object): def __init__(self): addr = Address(host="localhost", port=5000) self.winney = Winney(host="localhost", port=5000, addrs=[addr]) self.init_functions() def init_functions(self): self.winney.register(method="post", name="login", uri="/api/login", mock=False, mock_data=None) self.winney.register(method="get", name="get_user", uri="/api/user", mock=True, mock_data=UserMock()) @retry def login(self, account, password): r = self.winney.login(json={"account": account, "password": password}) return r.json() @retry def get_user(self, user_id): r = self.winney.get_user(data={"user_id": user_id}) return r.json() if __name__ == "__main__": uc = UserCenter() uc.login("hello", "123456")
2.84375
3
AWSteria/src_Testbench_AWS/Top/Gen_Bytevec/Gen_Bytevec_Mux.py
zwadood/BESSPIN-CloudGFE
0
12795419
#!/usr/bin/python3 -B # Copyright (c) 2020 <NAME> # See README for details # ================================================================ import sys import os import stat import importlib import pprint from Gen_Bytevec_Mux_BSV import * from Gen_Bytevec_Mux_C import * pp = pprint.PrettyPrinter() # ================================================================ def mkHelp_text (argv): return "Usage: " + argv [0] + " <spec_file.py>" + ''' <spec_file.py> should be a Python source file defining three variables: C_to_BSV_structs BSV_to_C_structs package_name The first two are lists of 'struct specs', each of which has the following form: { 'struct_name': "Foo", 'fields' : [ { 'field_name' : 'fieldfoo', 'width_bits': width }, ... { 'field_name' : 'fieldfoo', 'width_bits': width } ]} Struct names should be globally unique. Field names should be unique within a struct. It is ok for a field-width to be 0 (e.g., unused 'user' field in an AXI channel). Generates three output files: package_name.bsv package_name.h package_name.c The C/BSV code contains: Struct defs for each struct, where each field has type: BSV: Bit #(w) where w is the specified bit-width C: uint8_t, uint16_t, uint32_t or uint64_t, as appropriate, if width <= 64 bits, uint8_t [..] if wider A 'state' struct containing queues and communication 'credits' for each struct type, Functions for C application code to enqueue each type of send-struct into a pending queue Functions for C application code to dequeue each type of receive-struct from a pending queue A function for the C application code to encode an already queued send-struct into a bytevec ready for transmission A function for the C application code to decode a received bytevec into a queued receive-struct ''' # ================================================================ def main (argv = None): if ((len (argv) != 2) or (argv [1] == "-h") or (argv [1] == "--help")): sys.stdout.write (mkHelp_text (argv)) return 0 spec_filename = argv [1] if spec_filename.endswith (".py"): spec_filename = spec_filename [:-3] try: # Warning: # This dynamic import of the spec_filename spec file is fragile (only works if both # this Python executable and spec_filename.py are in the current dir. # Study importlib examples where there is some notion of 'finding' from a path etc. spec = importlib.import_module (spec_filename) # ("type_specs") except: sys.stdout.write ("ERROR: unable to import module '{:s}'\n".format (spec_filename)) sys.exit (1) sys.stdout.write ("Spec file imported: '{:s}'\n".format (spec_filename)) package_name = spec.package_name sys.stdout.write ("Package name: '{:s}'\n".format (package_name)) # Compute all necessary byte-widths for transmission and C structs # Each of the 'field' structs extends with 'width_bytes' and 'dimension' sys.stdout.write ("Computing all necessary byte-widths for packet formats and C structs.\n") C_to_BSV_structs = [compute_width_bytes (s) for s in spec.C_to_BSV_structs] BSV_to_C_structs = [compute_width_bytes (s) for s in spec.BSV_to_C_structs] # Data structure for different parts of a packet: C to BSV max_C_to_BSV_struct_bytes = max ([ s ['size_bytes'] for s in C_to_BSV_structs ]) C_to_BSV_packet_bytes = { 'packet_len' : 1, 'num_credits' : len (BSV_to_C_structs), 'channel_id' : 1, 'payload' : max_C_to_BSV_struct_bytes } # Data structure for different parts of a packet: BSV to C max_BSV_to_C_struct_bytes = max ([ s ['size_bytes'] for s in BSV_to_C_structs ]) BSV_to_C_packet_bytes = { 'packet_len' : 1, 'num_credits' : len (C_to_BSV_structs), 'channel_id' : 1, 'payload' : max_BSV_to_C_struct_bytes } # Generate the .bsv file Gen_BSV (spec_filename, package_name, C_to_BSV_structs, C_to_BSV_packet_bytes, BSV_to_C_structs, BSV_to_C_packet_bytes) # Generate .h and .c files Gen_C (spec_filename, package_name, C_to_BSV_structs, C_to_BSV_packet_bytes, BSV_to_C_structs, BSV_to_C_packet_bytes) return 0 # ================================================================ # This is a struct spec -> struct spec function # In struct_spec_in, each field spec has attributes 'field_name' and 'width_bits' # In struct_spec_out, we add attributes 'width_bytes' and 'dimension' # and we add struct attribute 'size_bytes' for total # of bytes # Fields <= 64b wide, fit in C scalars (uint8_t/uint16_t/uint32_t/uint64_t) # have dimension 1 and width_bytes of 1,2,4 or 8 # Larger fields are represented in C as uint8_t [N] # have dimension N and width_bytes 1 def compute_width_bytes (struct_spec_in): fields_out = [] size_bytes = 0 for f in struct_spec_in ['fields']: field_name = f ['field_name'] width_bits = f ['width_bits'] width_bytes = 0 dimension = 1; if (width_bits == 0): width_bytes = 0 elif (width_bits <= 8): width_bytes = 1 elif (width_bits <= 16): width_bytes = 2 elif (width_bits <= 32): width_bytes = 4 elif (width_bits <= 64): width_bytes = 8 else: width_bytes = 1 dimension = (width_bits + 7) // 8 field_out = {'field_name' : field_name, 'width_bits' : width_bits, 'width_bytes': width_bytes, 'dimension' : dimension} fields_out.append (field_out) size_bytes += width_bytes * dimension struct_spec_out = {'struct_name': struct_spec_in ['struct_name'], 'fields' : fields_out, 'size_bytes' : size_bytes} return struct_spec_out # ================================================================ # For non-interactive invocations, call main() and use its return value # as the exit code. if __name__ == '__main__': sys.exit (main (sys.argv))
2.234375
2
worker/statistics/StatisticsPrinter.py
Larcius/gta5-modder-utils
3
12795420
<reponame>Larcius/gta5-modder-utils import os import re from natsort import natsorted from common.ymap.LodLevel import LodLevel from common.ytyp.YtypItem import YtypItem from common.ytyp.YtypParser import YtypParser class StatisticsPrinter: countProps: dict[str, dict[str, int]] inputDir: str ytypItems: dict[str, YtypItem] def __init__(self, inputDir: str): self.inputDir = inputDir def run(self): self.readYtypItems() self.countProps = {} self.processFiles() def readYtypItems(self): self.ytypItems = YtypParser.readYtypDirectory(os.path.join(os.path.dirname(__file__), "..", "..", "resources", "ytyp")) def processFiles(self): for filename in natsorted(os.listdir(self.inputDir)): if not filename.endswith(".ymap.xml") or filename.endswith("_lod.ymap.xml"): continue f = open(os.path.join(self.inputDir, filename), 'r') content = f.read() expression = '<Item type="CEntityDef">' + \ '\\s*<archetypeName>([^<]+)</archetypeName>' + \ '(?:\\s*<[^/].*>)*?' + \ '\\s*<lodLevel>(?:' + LodLevel.HD + "|" + LodLevel.ORPHAN_HD + ')</lodLevel>' + \ '(?:\\s*<[^/].*>)*?' + \ '\\s*</Item>' for match in re.finditer(expression, content): archetypeName = match.group(1).lower() if archetypeName in self.ytypItems: ytypName = self.ytypItems[archetypeName].parent else: ytypName = "others" # if not tree.startswith("prop_s_pine_") and not tree.startswith("prop_tree_") and not tree.startswith("prop_w_r_cedar_") and not tree.startswith("test_tree_"): # continue if ytypName not in self.countProps: self.countProps[ytypName] = {} if archetypeName not in self.countProps[ytypName]: self.countProps[ytypName][archetypeName] = 0 self.countProps[ytypName][archetypeName] += 1 totalCount = 0 ytypCounts = {} for ytyp in natsorted(list(self.countProps.keys())): ytypCounts[ytyp] = 0 print(ytyp + ":") for prop in natsorted(list(self.countProps[ytyp])): num = self.countProps[ytyp][prop] ytypCounts[ytyp] += num print("\t" + prop + ":\t\t" + str(num)) totalCount += ytypCounts[ytyp] print("\t----------------------------------------------") print("\t" + ytyp + " total:\t\t" + str(ytypCounts[ytyp]) + "\n") print("\nsummary:") for ytyp in natsorted(list(ytypCounts.keys())): print(ytyp + ":\t\t" + str(ytypCounts[ytyp])) print("----------------------------------------------") print("total:\t\t" + str(totalCount))
2.171875
2
data.py
ilyakava/tfST
0
12795421
<gh_stars>0 import os import numpy as np import scipy.io as sio def get_dataset(opt): if opt.dataset == 'IP': mat_contents = sio.loadmat(os.path.join(opt.data_root, 'Indian_pines_corrected.mat')) data = mat_contents['indian_pines_corrected'].astype(np.float32) data /= np.max(np.abs(data)) mat_contents = sio.loadmat(os.path.join(opt.data_root, 'Indian_pines_gt.mat')) labels = mat_contents['indian_pines_gt'] else: raise NotImplementedError('dataset: %s' % opt.dataset) return data, labels
2.5
2
callflow/modules/histogram_rank.py
jarusified/CallFlow
2
12795422
# Copyright 2017-2020 Lawrence Livermore National Security, LLC and other # CallFlow Project Developers. See the top-level LICENSE file for details. # # SPDX-License-Identifier: MIT import pandas as pd class RankHistogram: def __init__(self, state, name): self.graph = state.new_gf.graph self.df = state.new_gf.df self.entire_df = state.new_entire_gf.df self.name = name self.entry_funcs = {} self.result = self.run() def run(self): ret = [] module = self.name.split("=")[0] func_in_module = self.df[self.df.module == module]["name"].unique().tolist() for idx, func in enumerate(func_in_module): ret.append( { "name": func, "time (inc)": self.df.loc[self.df["name"] == func][ "time (inc)" ].tolist(), "time": self.df.loc[self.df["name"] == func]["time"].tolist(), "rank": self.df.loc[self.df["name"] == func]["rank"].tolist(), "dataset": self.df.loc[self.df["name"] == func]["dataset"].tolist(), } ) ret_df = pd.DataFrame(ret) return ret_df.to_json(orient="columns")
2.40625
2
test_loader.py
hasancaslan/CountingBeautifulStrings
0
12795423
import os def read_test_case(file_path): """ reads one test case from file. returns contents of test case Parameters ---------- file_path : str the path of the test case file to read. Returns ------- list a list of contents of the test case. """ file = open(file_path, "r") number = int(file.readline().strip()) case = list() for i in range(number): case.append(file.readline().strip()) file.close() return case def load_test_cases(dir, file_name): """ loads one test case from file. returns a map contents of all test cases. Parameters ---------- dir : str directory of the files to load. file_name : str the name of the file that contains all test case files name to read. Returns ------- dict a dict of contents of all test cases. """ path = os.path.join(dir, file_name) test_cases_files = open(path, "r") test_cases = dict() for file_name in test_cases_files.readlines(): case_name = file_name.strip().split(".")[0] file_path = os.path.join(dir, file_name.strip()) test_cases[case_name] = read_test_case(file_path) test_cases_files.close() return test_cases
3.65625
4
Q/questionnaire/views/views_errors.py
trubliphone/esdoc-test
0
12795424
<filename>Q/questionnaire/views/views_errors.py #################### # ES-DOC CIM Questionnaire # Copyright (c) 2017 ES-DOC. All rights reserved. # # University of Colorado, Boulder # http://cires.colorado.edu/ # # This project is distributed according to the terms of the MIT license [http://www.opensource.org/licenses/MIT]. #################### from django.shortcuts import render from Q.questionnaire import q_logger def q_error(request, error_msg="", status_code=400): # print error_msg... q_logger.error(error_msg) # gather all the extra information required by the template... context = { "error_msg": error_msg, "status_code": status_code, } return render(request, "questionnaire/q_error.html", context=context, status=status_code) # def q_400(request): # context = { # "error_msg": "bad request", # } # return render(request, "questionnaire/q_error.html", context=context, status=400) # # # def q_403(request): # context = { # "error_msg": "permission_denied", # } # return render(request, "questionnaire/q_error.html", context=context, status=403) def q_404(request): context = {} return render(request, "questionnaire/q_404.html", context=context, status=404) def q_500(request): context = {} return render(request, "questionnaire/q_500.html", context=context, status=404)
2.03125
2
python/lusol.py
Rioghasarig/sr-cur
0
12795425
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Feb 8 12:18:32 2022 @author: oekenta """ from ctypes import c_ulonglong, c_double, cdll, byref import numpy as np class lusol: liblusol = 0 @classmethod def loadlibrary(cls): cls.liblusol = cdll.LoadLibrary('/home/grad/oekenta/sr-cur/src/libclusol.so') def __init__(self, A : np.array ): # LUSOL input parameters self.rank = 0 self.maxcol = 0 self.pivot = 0 self.keepLU = 0 self.Ltol1 = 0 self.Ltol2 = 0 self.small = 0 self.Utol1 = 0 self.Utol2 = 0 self.Uspace = 0 self.dens1 = 0 self.dens2 = 0 #LU1FAC Inputs self.m = c_ulonglong(A.shape[0]) self.n = c_ulonglong(A.shape[1]) self.nelem = c_ulonglong(np.count_nonzero(A)) self.lena = c_ulonglong(10000) self.ap = c_ulonglong*A.shape[0] self.aq = c_ulonglong*A.shape[1] def factorize(): A = np.array([[1,2],[3,4]]) l = lusol(A) l.loadlibrary()
2.1875
2
reboot_required/tests/test_reboot_required.py
divyamamgai/integrations-extras
158
12795426
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under Simplified BSD License (see LICENSE) from os.path import isfile def test_ok(aggregator, check, instance_ok): assert isfile(instance_ok['created_at_file']) check.check(instance_ok) aggregator.assert_service_check('system.reboot_required', status=check.OK) def test_not_present_ok(aggregator, check, instance_not_present): assert not isfile(instance_not_present['created_at_file']) check.check(instance_not_present) aggregator.assert_service_check('system.reboot_required', status=check.OK) def test_warning(aggregator, check, instance_warning): check.check(instance_warning) aggregator.assert_service_check('system.reboot_required', status=check.WARNING) def test_critical(aggregator, check, instance_critical): check.check(instance_critical) aggregator.assert_service_check('system.reboot_required', status=check.CRITICAL)
2.0625
2
src/network/assemble.py
BeholdersEye/PyBitmessage
1,583
12795427
<gh_stars>1000+ """ Create bitmessage protocol command packets """ import struct import addresses from network.constants import MAX_ADDR_COUNT from network.node import Peer from protocol import CreatePacket, encodeHost def assemble_addr(peerList): """Create address command""" if isinstance(peerList, Peer): peerList = [peerList] if not peerList: return b'' retval = b'' for i in range(0, len(peerList), MAX_ADDR_COUNT): payload = addresses.encodeVarint(len(peerList[i:i + MAX_ADDR_COUNT])) for stream, peer, timestamp in peerList[i:i + MAX_ADDR_COUNT]: # 64-bit time payload += struct.pack('>Q', timestamp) payload += struct.pack('>I', stream) # service bit flags offered by this node payload += struct.pack('>q', 1) payload += encodeHost(peer.host) # remote port payload += struct.pack('>H', peer.port) retval += CreatePacket('addr', payload) return retval
2.53125
3
Swin-Transformer/Model.py
HzcIrving/DLRL_PlayGround
27
12795428
#! /usr/bin/enc python # -*- coding: utf-8 -*- # author: <NAME> # email: <EMAIL> """ Swin Transformer 1. 类似CNN的层次化构建方法(Hierarchical Feature Maps),特征图尺寸中有对图像下采样4倍、8倍、以及16倍; 这样的Backbone有助于再此基础上构建目标检测、实例分割等任务。 2. 使用Windows Multi-Head Self-Attention (W-MSA)概念。减少计算量。计算复杂度从指数级降到线性级,Multi-head Self-Attention只在每个Windows内部进行。相对于ViT直接对整个Global进行MSA,计算复杂度更低;但是会隔绝不同 窗口之间的信息传递,通过Shifted Windows Multi-head Self-Atten来让信息在相邻窗口进行传递。 A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - https://arxiv.org/pdf/2103.14030 Code/weights from https://github.com/microsoft/Swin-Transformer """ import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint import numpy as np from typing import Optional from BasicModule import PatchMerging, DropPath, PatchEmbed from BasicModule import Mlp from BasicModule import window_partition, window_reverse """SwinT window_size = 7 img_size = 224 Trained ImageNet-1k depths->2,2,6,2 """ def swin_tiny_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), num_classes=num_classes, **kwargs) return model """Swin-S depths->2,2,18,2 """ def swin_small_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=96, depths=(2, 2, 18, 2), num_heads=(3, 6, 12, 24), num_classes=num_classes, **kwargs) return model """Swin-B""" def swin_base_patch4_window7_224(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window12_384(num_classes: int = 1000, **kwargs): # trained ImageNet-1K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window7_224_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model def swin_base_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=128, depths=(2, 2, 18, 2), num_heads=(4, 8, 16, 32), num_classes=num_classes, **kwargs) return model """Swin-Large""" def swin_large_patch4_window7_224_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window7_224_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=7, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), num_classes=num_classes, **kwargs) return model def swin_large_patch4_window12_384_in22k(num_classes: int = 21841, **kwargs): # trained ImageNet-22K # https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth model = SwinTransformer(in_chans=3, patch_size=4, window_size=12, embed_dim=192, depths=(2, 2, 18, 2), num_heads=(6, 12, 24, 48), num_classes=num_classes, **kwargs) return model """Swin Transformer""" class SwinTransformer(nn.Module): """Swin Transformer结构 这里有个不同之处,就是每个Stage Layer中, """ def __init__(self, patch_size=4, in_chans=3, num_classes=1000, embed_dim=96, depths=(2, 2, 6, 2), num_heads=(3, 6, 12, 24), window_size=7, mlp_ratio=4., qkv_bias=True, drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1, norm_layer=nn.LayerNorm, patch_norm=True, use_checkpoint=False, **kwargs): super().__init__() self.num_classes = num_classes self.num_layers = len(depths) self.embed_dim = embed_dim self.patch_norm = patch_norm # 输出特征矩阵的Channels (C) # H/4 x W/4 x 48 -> H/4 x W/4 x C(Stage1) -> H/8 x W/8 x 2C(Stage2) -> H/16 x W/16 x 4C(stage3) ... self.num_features = int(embed_dim * 2 ** (self.num_layers - 1)) self.mlp_ratio = mlp_ratio # 将image切分为不重合的Patches # input: (Bs, 224, 224, 3) # output: (e.g patch_size=4: Bs, 56x56, 4x4x3) self.patch_embed = PatchEmbed( patch_size=patch_size, in_c=in_chans, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth # Drop Path dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule # bulid layers self.layers = nn.ModuleList() for i_layer in range(self.num_layers): # 注意这里构建的stage和论文图中有些差异 # 这里的stage不包含该stage的patch_merging层,包含的是下个stage的 layers = BasicLayer(dim=int(embed_dim * 2 ** i_layer), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], norm_layer=norm_layer, downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, use_checkpoint=use_checkpoint) self.layers.append(layers) self.norm = norm_layer(self.num_features) self.avgpool = nn.AdaptiveAvgPool1d(1) self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): nn.init.trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward(self,x): # x:[B, L, C] x,H,W = self.patch_embed(x) x = self.pos_drop(x) # 多尺度分层Multi-Stage for layer in self.layers: x,H,W = layer(x,H,W) x = self.norm(x) # [B, L, C] x = self.avgpool(x.transpose(1, 2)) # [B, C, 1] x = torch.flatten(x, 1) x = self.head(x) # 分类头 return x """一个Stage内的基本SwinTransformer模块""" class BasicLayer(nn.Module): """ One Stage SwinTransformer Layer包括: """ def __init__(self, dim, depth, num_heads, window_size, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False): """ Args: dim (int): Number of input channels. depth (int): Number of blocks. block数量 num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ super(BasicLayer, self).__init__() self.dim = dim self.depth = depth self.window_size = window_size self.use_checkpoint = use_checkpoint # pre-trained self.shift_size = window_size // 2 # 构建SwinTransformer Block self.blocks = nn.ModuleList([ SwinTransformerBlock( dim=dim, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else self.shift_size, #当i为偶,就是W-MSA,i为奇,就是SW-MSA,与论文一致, 保证窗口之间通信 mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer) for i in range(depth)]) # Patch Merging Layer 类似于Pooling下采样 if downsample is not None: self.downsample = downsample(dim=dim, norm_layer=norm_layer) else: self.downsample = None def create_mask(self,x,H,W): """ SW-MSA后,对于移位后左上角的窗口(也就是移位前最中间的窗口)来说,里面的元素都是互相紧挨着的, 他们之间可以互相两两做自注意力,但是对于剩下几个窗口来说,它们里面的元素是从别的很远的地方搬过来的, 所以他们之间,按道理来说是不应该去做自注意力,也就是说他们之间不应该有什么太大的联系 以14x14个patch为例进行 H: Feature Map Height W: Feature Map Width x: Feature Map """ # 为SW-MSA计算Attention Mask. # 保证Hp和Wp是window_size的整数倍 Hp = int(np.ceil(H / self.window_size)) * self.window_size Wp = int(np.ceil(W / self.window_size)) * self.window_size # 拥有和feature map一样的通道排列顺序,方便后续window_partition img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # [1, Hp, Wp, 1] # 准备进行区域生成,方便生成Mask h_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None)) # 区域编码 cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 # Shift Window 混合区域的窗口分割 mask_windows = window_partition(img_mask, self.window_size) # [nW, Mh, Mw, 1] mask_windows = mask_windows.view(-1, self.window_size * self.window_size) # [nW, Mh*Mw] # 掩码生成 attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) # [nW, 1, Mh*Mw] - [nW, Mh*Mw, 1] # [nW, Mh*Mw, Mh*Mw] attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) return attn_mask def forward(self,x,H,W): # [nW, Mh*Mw, Mh*Mw] nW:窗口数 attn_mask = self.create_mask(x,H,W) for blk in self.blocks: blk.H, blk.W = H, W # self.H = H, self.W = W if not torch.jit.is_scripting() and self.use_checkpoint: x = checkpoint.checkpoint(blk, x, attn_mask) else: x = blk(x, attn_mask) if self.downsample is not None: x = self.downsample(x, H, W) H, W = (H + 1) // 2, (W + 1) // 2 # DownSample之后,H,W应该减半 return x, H, W """一个基本的SwinTransformerBlock的构成Model""" class SwinTransformerBlock(nn.Module): """ Swin Transformer Block包括: Feature Map Input -> LayerNorm -> SW-MSA/W-MSA -> LayerNorm-> MLP --------> |--------------------------------------||----------------------| """ def __init__(self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): """ Args参数定义: dim (int): Number of input channels. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ super(SwinTransformerBlock, self).__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio # shift_size必须小于windows_size assert 0 <= self.shift_size < self.window_size, "shift_size must in 0~window_size" # LN1 self.norm1 = norm_layer(dim) # Windows_Multi-head Self Attention self.attn = WindowsAttention( dim, window_size=(self.window_size, self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() # LN2 self.norm2 = norm_layer(dim) # MLP Layer mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x, attn_mask): # feature map的Height & Width H, W = self.H, self.W # Batch, length, channel B, L, C = x.shape assert L == H * W, "input feature has wrong size" # Skip Connect shortcut = x x = self.norm1(x) # reshape feature map x = x.view(B, H, W, C) # 对feature map进行pad,pad到windows size的整数倍 pad_l = 0 pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x,(0,0,pad_l,pad_r,pad_t,pad_b)) # Hp, Wp代表pad后的feature map的Height和Width _, Hp, Wp, _ = x.shape # 是W-MSA 还是 SW-MSA ? # cyclic shift if self.shift_size > 0: shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) else: shifted_x = x attn_mask = None # 窗口划分 # Windows Partition x_windows = window_partition(shifted_x,self.window_size) #[nW*B, Mh, Mw, C] x_windows = x_windows.view(-1, self.window_size*self.window_size,C) # [nW*B, Mh*Mw, C] # W-MSA / SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # [nW*B, Mh*Mw, C] # 将分割的Windows进行还原 attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) # [nW*B, Mh, Mw, C] shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # [B, H', W', C] # 如果是SW-MSA,需要逆shift过程 # reverse cyclic shift if self.shift_size > 0: x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) else: x = shifted_x # 移除Pad数据 if pad_r > 0 or pad_b > 0: # 把前面pad的数据移除掉 x = x[:, :H, :W, :].contiguous() x = x.view(B,H*W,C) # FFN # 两个Skip Connect x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class WindowsAttention(nn.Module): """ Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. VIT中注意力是全局的,复杂度随着图片尺寸的增加指数增加,样当去做视觉里的下游任务,尤其是密集 预测型的任务,或者说遇到非常大尺寸的图片时候,这种全局算自注意力的计算复杂度就非常贵了 SwinTransformer中,采用Windows-based Attention来将计算复杂度与图片尺寸的关系变为线性关系。 General Model: W-MSA / SW-MSA Shift 操作但如果加上 shift 的操作,每个 patch 原来只能跟它所在的窗口里的别的 patch 进行 交互,但是 shift 之后,这个 patch就可以跟新的窗口里的别的 patch就进行交互了,而这个新的窗 口里所有的 patch 其实来自于上一层别的窗口里的 patch,这也就是作者说的能起到 cross-window connection,就是窗口和窗口之间可以交互了 上述过程配合之后的Patch Merging,合并到Transformer最后几层的时候,每一个patch本身的感受 野就已经很大了。 """ def __init__(self, dim, window_size, num_heads, qkv_bias=True, attn_drop=0., proj_drop=0.): """ Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ # Mh: Windows Size Height # Mw: Windows Size Width # nH: num_heads super(WindowsAttention, self).__init__() self.dim = dim self.window_size = window_size # [Mh, Mw] self.num_heads = num_heads head_dim = dim // num_heads # 每个head的dim self.scale = head_dim ** -0.5 # scale # 定义一个parameter table来存放relative position bias self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # [2*Mh-1 * 2*Mw-1, nH] # 相对位置索引获得方法 # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing="ij")) # [2, Mh, Mw] coords_flatten = torch.flatten(coords, 1) # [2, Mh*Mw] # [2, Mh*Mw, 1] - [2, 1, Mh*Mw] relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # [2, Mh*Mw, Mh*Mw] relative_coords = relative_coords.permute(1, 2, 0).contiguous() # [Mh*Mw, Mh*Mw, 2] relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # [Mh*Mw, Mh*Mw] # Register_buffer: 应该就是在内存中定一个常量,同时,模型保存和加载的时候可以写入和读出。 # 不需要学习,但是可以灵活读写 self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) nn.init.trunc_normal_(self.relative_position_bias_table, std=.02) self.softmax = nn.Softmax(dim=-1) def forward(self,x,mask=None): """ Args: x: input features with shape of (num_windows*B, Mh*Mw, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None x的输入维度是(num_windows窗口数*Batch Size) 在窗口内进行Attention Op """ # [batch_size*num_windows, Mh*Mw, total_embed_dim] B_, N, C = x.shape # qkv(): -> [batch_size*num_windows, Mh*Mw, 3 * total_embed_dim] # reshape: -> [batch_size*num_windows, Mh*Mw, 3, num_heads, embed_dim_per_head] # permute: -> [3, batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) # [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] q,k,v = qkv.unbind(0) # QK^T/sqrt(d) # transpose: -> [batch_size*num_windows, num_heads, embed_dim_per_head, Mh*Mw] # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, Mh*Mw] q = q * self.scale attn = (q @ k.transpose(-2, -1)) # QK^T/sqrt(d) + B # B: # relative_position_bias_table.view: [Mh*Mw*Mh*Mw,nH] -> [Mh*Mw,Mh*Mw,nH] relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # [nH, Mh*Mw, Mh*Mw] # [Bs*nW, nH, Mh*Mw, Mh*Mw] attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] # SW-MSA 需要做attention Mask # mask: [nW, Mh*Mw, Mh*Mw] # attn.view: [batch_size, num_windows, num_heads, Mh*Mw, Mh*Mw] # # mask.unsqueeze: [1, nW, 1, Mh*Mw, Mh*Mw] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) # @: multiply -> [batch_size*num_windows, num_heads, Mh*Mw, embed_dim_per_head] # transpose: -> [batch_size*num_windows, Mh*Mw, num_heads, embed_dim_per_head] # reshape: -> [batch_size*num_windows, Mh*Mw, total_embed_dim] x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x if __name__ == "__main__": pass
2.328125
2
day04/test12.py
jaywoong/python
0
12795429
<reponame>jaywoong/python st1 = '<EMAIL>' print(len(st1)) print(st1.find('.')) print(st1.rfind('.')) print(st1.count('.')) id = st1[:st1.find('@')] print(id) domain = st1[st1.find('@')+1:st1.find('.')] print(domain)
3.234375
3
src/python/reeborg_en.py
aroberge/reeborg-docs
2
12795430
"""This module contains functions, classes and exceptions that can be included in a Python program for Reeborg's World. """ # When generating documentation using sphinx, these modules are both # unavailable and not needed try: from browser import window RUR = window.RUR except: print("\n --> Skipping importing from browser for sphinx.\n") # All functions from Javascript used below should have names of the form # RUR._xyz_ and be defined in commands.js and methods should have names of # the form RUR._UR.xyz_; functions and methods should appear # alphabetically in this English version, with the exception of Python-specific # functions or classes that should appear near the end. def at_goal(): #py:at_goal """Indicate if Reeborg has reached the desired location. Returns: True if Reeborg has reached its goal, False otherwise. """ return RUR._at_goal_() def build_wall(): #py:build_wall """Instructs Reeborg to build a wall at the location in front of itself.""" RUR._build_wall_() def carries_object(obj=None): #py:carries_object """Indicates whether Reeborg carries an object or not. Args: obj: optional parameter which is the name of an object as a string. Returns: a list of the type of objects carried by Reeborg. If Reeborg carries no object, or not the specified one, the result is an empty list. Examples: >>> carries_object() ["token", "apple"] >>> carries_object("token") ["token"] >>> carries_object("banana") [] """ if obj is not None: ans = RUR._carries_object_(obj) else: ans = RUR._carries_object_() return list(ans) def clear_print(): #py:clear_print """Erase all the text previously written using a call to print().""" RUR._clear_print_() def color_here(): #py:color_here return RUR._color_here_() def default_robot(): #py:default_robot """Returns a recreated version of the default robot.""" class Robot(UsedRobot): def __init__(self): self.body = RUR._default_robot_body_() return Robot() def dir_js(obj): #py:dir_js """Lists attributes and methods of a Javascript object.""" # do not translate the name of this function RUR._dir_js_(obj) def done(): #py:done """Causes a program's execution to end.""" RUR._done_() def front_is_clear(): #py:front_is_clear """Indicates if an obstacle (wall, fence, water, etc.) blocks the path. Returns: True if the path is clear (not blocked), False otherwise. """ return RUR._front_is_clear_() def is_facing_north(): #py:is_facing_north """Indicates if Reeborg is facing North (top of the screen) or not.""" return RUR._is_facing_north_() def in_the_bag(): #py:in_the_bag return dict(RUR._in_the_bag_()) def move(): #py:move """Move forward, by one grid position.""" RUR._move_() def new_robot_images(images): #py:new_robot_images """Allow to replace the images used for the robot. More details will be provided soon. """ RUR._new_robot_images_(images) def no_highlight(): #py:no_highlight """Prevents code highlighting from occurring. This function has a similar effect to clicking the corresponding button in Reeborg's World. Code highlighting occurs thanks to some extra code inserted in a user's program prior to execution. When disabling highlighting using this function, the extra instructions are still present, but they will not be if the program is run a second time. """ RUR._no_highlight_() def object_here(obj=None): #py:object_here """Indicates whether any type of objects are present at Reeborg's location. Args: obj: optional parameter which is the name of an object as a string. Returns: a list of the type of objects found. If no object is present, or if the specified object is not found, the result is an empty list. Examples: >>> object_here() ["token", "apple"] >>> object_here("token") ["token"] >>> object_here("banana") [] """ if obj is not None: ans = RUR._object_here_(obj) else: ans = RUR._object_here_() return list(ans) # convert from JS list-like object to proper Python list def paint_square(color): #py:paint_square RUR._paint_square_(color) def pause(ms=None): #py:pause """Pauses a program's execution (playback). If an argument (time in milliseconds) is given, the execution automatically resumes after this time has elapsed. """ if ms is None: RUR._pause_() else: RUR._pause_(ms) def print_html(html, append=False): #py:print_html """Intended primarily for world creators, this function is similar to print() except it can make use of html input. """ RUR._print_html_(html, append) window['print_html'] = print_html # No translation needed def put(obj=None): #py:put """Puts down an object. If Reeborg carries more than one type of objects, the type must be specified as an argument, otherwise an exception will be raised. """ if obj is None: RUR._put_() else: RUR._put_(obj) def recording(bool): #py:recording """Stops or starts recording changes occuring in the world. Args: bool: True if recording is desired, False otherwise. """ RUR._recording_(bool) def remove_robots(): #py:remove_robots """Remove all robots found in the world.""" RUR._remove_robots_() def right_is_clear(): #py:right_is_clear """Indicates if an obstacle (wall, fence, water, etc.) is on the immediate right of Reeborg. Returns: True if an obstacle is on Reeborg's right, False otherwise. """ return RUR._right_is_clear_() def set_max_nb_instructions(nb): #py:set_max_nb_instructions """Intended primarily for world creators, this function allows to change the default maximum number of instructions executed in a program (1000) by a different value. """ RUR._set_max_nb_instructions_(nb) def set_max_nb_robots(nb): #py:set_max_nb_robots """Intended primarily for world creators, this function allows to set the maximum number of robots allowed in a given world. """ RUR._set_max_nb_robots_(nb) def set_trace_color(color): #py:set_trace_color """Change the color of the trace (oil leak). Args: color (string): four formats are possible: named color, rgb and rgba, and hexadecimal notation. Examples:: >>> set_trace_color("red") >>> set_trace_color("rgb(125, 0, 0)") >>> set_trace_color("rgba(125, 0, 0, 0.5)") >>> set_trace_color("#FF00FF") """ RUR._set_trace_color_(color) def set_trace_style(style="default"): #py:set_trace_style """Change the trace style of the robot. Args: style: "thick", "invisible" and "default" are the three possible arguments. "invisible" is equivalent to set_trace_color("rgba(0, 0, 0, 0)"), that is it sets the colour to a completely transparent value. The "thick" style is centered on the path followed, so that it is impossible to distinguish between motion to the left or to the right, and right handed turns appear to be done all at once, if one only looks at the trace. """ if style not in ["thick", "default", "invisible"]: raise ReeborgError("Unrecognized style in set_trace_style().") RUR._set_trace_style_(style) def sound(bool): #py:sound """Activate or deactivate sound effects.""" RUR._sound_(bool) def take(obj=None): #py:take """Takes an object. If more than one type of objects is at Reeborg's location, the type must be specified as an argument, otherwise an exception will be raised. """ if obj is None: RUR._take_() else: RUR._take_(obj) def think(ms): #py:think """Set a time delay (in milliseconds) between Reeborg's actions played back. """ RUR._think_(ms) def turn_left(): #py:turn_left """Reeborg turns to its left.""" RUR._turn_left_() def view_source_js(fn): #py:view_source_js """Shows the source code of a Javascript function.""" RUR._view_source_js_(fn) def wall_in_front(): #py:wall_in_front """Indicates if a wall blocks the way. Returns: True if the path blocked by a wall, False otherwise. """ return RUR._wall_in_front_() def wall_on_right(): #py:wall_on_right """Indicates if an wall is on the immediate right of Reeborg. Returns: True if a wall is on Reeborg's right, False otherwise. """ return RUR._wall_on_right_() def MakeCustomMenu(content): #py:MakeCustomMenu """Designed for use by educators. Makes it possible to create custom world menus. See the documentation for more details. """ RUR._MakeCustomMenu_(content) def World(url, shortname=None): #py:World """Allow to select a specific world within a program. If the world currently shown is different than the one selected by using this function, the result of running the program will simply be to change the world - the rest of the program will be ignored. If the desired world is already selected, this command is ignored and the rest of the program is executed. If the world is not already present in the html selector, it will be added. Args: url: two possible choices: either a name appearing in the html selector, or a URL ("link") to a world defined on some website. shortname: Optional parameter; if specified, this will be the name shown in the html selector. Examples: >>> World("Home 1") # world included by default >>> World("http://reeborg.ca/my_world") # fictitious example # the name http://reeborg.ca/my_world will be added to the selector >>> World("http://reeborg.ca/my_world", "Hello") # The name "Hello" will be shown in the selector instead # of the full url """ if shortname is None: RUR._World_(url) else: RUR._World_(url, shortname) class UsedRobot(object): #py:UR def __init__(self, x=1, y=1, orientation='e', tokens=None): #py:UR.__init__ """Creates a UsedRobot. Args: x: horizontal coordinate; an integer greater or equal to 1. y: vertical coordinate; an integer greater or equal to 1. orientation (string):, one of "e" or "east", "w" or "west", "n" or "north", "s" or "south". tokens: Initial number of tokens to give to the robot; its value must be a positive integer, or the string "inf" to indicate an infinite quantity. """ if tokens is None: robot = RUR.robot.create_robot(x, y, orientation) else: robot = RUR.robot.create_robot(x, y, orientation, tokens) self.body = robot RUR.world.add_robot(self.body) def __str__(self): #py:UR.__str__ location = "({}, {})".format(self.body.x, self.body.y) if self.body._orientation == RUR.EAST: facing = "facing East" elif self.body._orientation == RUR.WEST: facing = "facing West" elif self.body._orientation == RUR.NORTH: facing = "facing North" elif self.body._orientation == RUR.SOUTH: facing = "facing South" if 'token' in self.body.objects: if self.body.objects['token'] == 'inf': carries = "carries an infinite number of tokens." else: carries = 'carries %s tokens' % self.body.objects['token'] else: carries = 'carries no tokens' return "UsedRobot at {} {} {}.".format(location, facing, carries) def at_goal(self): #py:UR.at_goal """Indicate if Reeborg has reached the desired location. Returns: True if Reeborg has reached its goal, False otherwise. """ return RUR._UR.at_goal_(self.body) def build_wall(self): #py:UR.build_wall """Instructs Reeborg to build a wall at the location in front of itself. """ RUR._UR.build_wall_(self.body) def carries_object(self, obj=''): #py:UR.carries_object """Indicates whether Reeborg carries an object or not. Args: obj: optional parameter which is the name of an object as a string. Returns: a list of the type of objects carried by Reeborg. If Reeborg carries no object, or not the specified one, the result is an empty list. Examples: >>> reeborg = UsedRobot() >>> reeborg.carries_object() ["token", "apple"] >>> reeborg.carries_object("token") ["token"] >>> reeborg.carries_object("banana") [] """ if obj is not None: return list(RUR._UR.carries_object_(self.body, obj)) else: return list(RUR._UR.carries_object_(self.body)) def front_is_clear(self): #py:UR.front_is_clear """Indicates if an obstacle (wall, fence, water, etc.) blocks the path. Returns: True if the path is clear (not blocked), False otherwise. """ return RUR._UR.front_is_clear_(self.body) def in_the_bag(self): #py:UR.in_the_bag return dict(RUR._UR.in_the_bag_(self.body)) def is_facing_north(self): #py:UR.is_facing_north """Indicates if Reeborg is facing North (top of the screen) or not.""" return RUR._UR.is_facing_north_(self.body) def move(self): #py:UR.move """Move forward, by one grid position.""" RUR._UR.move_(self.body) def object_here(self, obj=None): #py:UR.object_here """Indicates whether any type of objects are present at Reeborg's location. Args: obj: optional parameter which is the name of an object as a string. Returns: a list of the type of objects found. If no object is present, or if the specified object is not found, the result is an empty list. Examples: >>> reeborg = UsedRobot() >>> reeborg.object_here() ["token", "apple"] >>> reeborg.object_here("token") ["token"] >>> reeborg.object_here("banana") [] """ if obj is not None: return list(RUR._UR.object_here_(self.body, obj)) else: return list(RUR._UR.object_here_(self.body)) def put(self, obj=None): #py:UR.put """Puts down an object. If Reeborg carries more than one type of objects, the type must be specified as an argument, otherwise an exception will be raised. """ if obj is None: RUR._UR.put_(self.body) else: RUR._UR.put_(self.body, obj) def right_is_clear(self): #py:UR.right_is_clear """Indicates if an obstacle (wall, fence, water, etc.) is on the immediate right of Reeborg. Returns: True if an obstacle is on Reeborg's right, False otherwise. """ return RUR._UR.right_is_clear_(self.body) def set_model(self, model): #py:UR.set_model """Select the model (images) for the robot. Args: model: a number between 0 and 3. """ RUR._UR.set_model_(self.body, model) def set_trace_color(self, color): #py:UR.set_trace_color """Change the color of the trace (oil leak). Args: color (string): four formats are possible: named color, rgb and rgba, and hexadecimal notation. Examples:: >>> reeborg = UsedRobot() >>> reeborg.set_trace_color("red") >>> reeborg.set_trace_color("rgb(125, 0, 0)") >>> reeborg.set_trace_color("rgba(125, 0, 0, 0.5)") >>> reeborg.set_trace_color("#FF00FF") """ RUR._UR.set_trace_color_(self.body, color) def set_trace_style(self, style): #py:UR.set_trace_style """Change the trace style of the robot. Args: style: "thick", "invisible" and "default" are the three possible arguments. "invisible" is equivalent to set_trace_color("rgba(0, 0, 0, 0)"), that is it sets the colour to a completely transparent value. The "thick" style is centered on the path followed, so that it is impossible to distinguish between motion to the left or to the right, and right handed turns appear to be done all at once, if one only looks at the trace. """ if style not in ["thick", "default", "invisible"]: raise ReeborgError("Unrecognized style in set_trace_style().") RUR._UR.set_trace_style_(self.body, style) def take(self, obj=None): #py:UR.take """Takes an object. If more than one type of objects is at Reeborg's location, the type must be specified as an argument, otherwise an exception will be raised. """ if obj is None: RUR._UR.take_(self.body) else: RUR._UR.take_(self.body, obj) def turn_left(self): #py:UR.turn_left """Reeborg turns to its left.""" RUR._UR.turn_left_(self.body) def wall_in_front(self): #py:UR.wall_in_front """Indicates if a wall blocks the way. Returns: True if the path blocked by a wall, False otherwise. """ return RUR._UR.wall_in_front_(self.body) def wall_on_right(self): #py:UR.wall_on_right """Indicates if an wall is on the immediate right of Reeborg. Returns: True if a wall is on Reeborg's right, False otherwise. """ return RUR._UR.wall_on_right_(self.body) #py:python_specific def add_watch(expr): #py:add_watch """Adds a valid Python expression (given as a string) to the watch list. """ RUR.add_watch(expr) def dir_py(obj): #py:dir_py """Lists attributes and methods of a Python object, excluding those whose name start with a double underscore and are considered to be private. """ # do not translate the name of this function attrs = [] for attr in dir(obj): if attr.startswith("__"): continue if callable(getattr(obj, attr)): attr += "()" attrs.append(attr) print_html(str("\n".join(attrs)).replace("&", "&amp").replace("<", "&lt;" ).replace(">", "&gt;").replace("\n", "<br>")) class ReeborgError(Exception): #py:RE """Exceptions specific to Reeborg's World. Examples:: def done(): #py: message = "You can not use done() for this task." raise ReeborgError(message) #---- or ------ try: move() except ReeborgError: # ignore a collision turn_left() """ def __init__(self, message): #py:RE.__init__ self.reeborg_shouts = message def __str__(self): #py:RE.__str__ return repr(self.reeborg_shouts) try: window['ReeborgError'] = ReeborgError except: pass class WallCollisionError(ReeborgError): #py:WCE """Exceptions specific to Reeborg's World. Is raised when Reeborg hits a wall. """ pass try: window['WallCollisionError'] = WallCollisionError except: pass class SatelliteInfo(): #py:SI @property def world_map(self): #py:SI.world_map '''Returns a dict containing information about world. ''' import json return json.loads(RUR.control.get_world_map()) def print_world_map(self): #py:SI.print_world_map '''Prints a formatted copy of the world''' print(RUR.control.get_world_map()) #py:obsolete # Do not tranlate the following def narration(html): raise ReeborgError("narration is obsolete; use print_html().") def say(): raise ReeborgError("say() is no longer supported; use print() instead.")
3.078125
3
beluga/continuation/ContinuationSolution.py
Rapid-Design-of-Systems-Laboratory/beluga-legacy
1
12795431
class ContinuationSolution(list): pass
0.960938
1
Dataset/Leetcode/valid/110/1057.py
kkcookies99/UAST
0
12795432
class Solution: def XXX(self, root: 'TreeNode') -> 'bool': if not root: return True if abs(self.maxDepth(root.left)-self.maxDepth(root.right))<=1: # 这一点原本想错了 return self.XXX(root.left) and self.XXX(root.right) return False def maxDepth(self, p): if not p: return 0 else: return max(self.maxDepth(p.left),self.maxDepth(p.right))+1
3.203125
3
src/data_structure/queue/queue.py
sujeek/python_base
0
12795433
<reponame>sujeek/python_base class Queue: def __init__(self): self.queue = [] def insert(self, data): if data is not None: self.queue.insert(0,data) return True return False def size(self): return len(self.queue) def pop(self): if len(self.queue) <=0: return "No element in the Queue!" return self.queue.pop()
3.59375
4
tests/test_pp_inbox.py
KonnexionsGmbH/dcr
2
12795434
<reponame>KonnexionsGmbH/dcr<gh_stars>1-10 # pylint: disable=unused-argument """Testing Module pp.inbox.""" import os.path import pathlib import shutil import cfg.cls_setup import cfg.glob import db.cls_db_core import db.cls_run import pytest import utils import dcr # ----------------------------------------------------------------------------- # Constants & Globals. # ----------------------------------------------------------------------------- # pylint: disable=W0212 # @pytest.mark.issue # ----------------------------------------------------------------------------- # Test RUN_ACTION_PROCESS_INBOX - accepted - duplicate. # ----------------------------------------------------------------------------- def test_run_action_process_inbox_accepted_duplicate(fxtr_setup_empty_db_and_inbox): """Test RUN_ACTION_PROCESS_INBOX - accepted duplicate.""" cfg.glob.logger.debug(cfg.glob.LOGGER_START) # ------------------------------------------------------------------------- stem_name_1: str = "pdf_text_ok" file_ext: str = "pdf" pytest.helpers.copy_files_4_pytest_2_dir( source_files=[ (stem_name_1, file_ext), ], target_path=cfg.glob.setup.directory_inbox, ) stem_name_2: str = "pdf_text_ok_1" pytest.helpers.copy_files_4_pytest_2_dir( source_files=[(stem_name_1, file_ext)], target_path=cfg.glob.setup.directory_inbox_accepted ) os.rename( utils.get_full_name(cfg.glob.setup.directory_inbox_accepted, stem_name_1 + "." + file_ext), utils.get_full_name(cfg.glob.setup.directory_inbox_accepted, stem_name_2 + "." + file_ext), ) # ------------------------------------------------------------------------- dcr.main([dcr.DCR_ARGV_0, db.cls_run.Run.ACTION_CODE_INBOX]) # ------------------------------------------------------------------------- cfg.glob.logger.info("=========> test_run_action_process_inbox_accepted_duplicate <=========") pytest.helpers.verify_content_of_inboxes( inbox=( [], [ stem_name_1 + "." + file_ext, ], ), inbox_accepted=( [], [ stem_name_2 + "." + file_ext, ], ), ) # ------------------------------------------------------------------------- cfg.glob.logger.debug(cfg.glob.LOGGER_END) # ----------------------------------------------------------------------------- # Test RUN_ACTION_PROCESS_INBOX - french. # ----------------------------------------------------------------------------- def test_run_action_process_inbox_french(fxtr_setup_empty_inbox): """Test RUN_ACTION_PROCESS_INBOX - French.""" cfg.glob.logger.debug(cfg.glob.LOGGER_START) # ------------------------------------------------------------------------- initial_database_data_path = pathlib.Path(cfg.glob.setup.initial_database_data) initial_database_data_path_directory = os.path.dirname(initial_database_data_path) initial_database_data_path_file_name = os.path.basename(initial_database_data_path) initial_database_data_path_file_name_test = "initial_database_data_french.json" # copy test file shutil.copy( utils.get_full_name(pytest.helpers.get_test_inbox_directory_name(), initial_database_data_path_file_name_test), utils.get_full_name(initial_database_data_path_directory, initial_database_data_path_file_name), ) cfg.glob.db_core = db.cls_db_core.DBCore(is_admin=True) cfg.glob.db_core.create_database() # ------------------------------------------------------------------------- # Copy language subdirectory pytest.helpers.copy_directories_4_pytest_2_dir( source_directories=["french"], target_dir=str(cfg.glob.setup.directory_inbox) ) # ------------------------------------------------------------------------- values_original = pytest.helpers.backup_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, [ (cfg.cls_setup.Setup._DCR_CFG_VERBOSE, "false"), ], ) dcr.main([dcr.DCR_ARGV_0, db.cls_run.Run.ACTION_CODE_INBOX]) pytest.helpers.restore_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, values_original, ) # ------------------------------------------------------------------------- cfg.glob.logger.info("=========> test_run_action_process_inbox_french <=========") pytest.helpers.verify_content_of_inboxes( inbox=( ["french"], [], ), inbox_accepted=( [], [ "docx_french_ok_1.docx", "pdf_french_ok_2.jpg", "pdf_french_ok_3.pdf", "pdf_french_scanned_4.pdf", ], ), ) # ------------------------------------------------------------------------- base_directory = str(cfg.glob.setup.directory_inbox) language_directory_name = str(utils.get_full_name(base_directory, pathlib.Path("french"))) assert os.path.isdir(utils.get_os_independent_name(base_directory)), ( "base directory '" + base_directory + "' after processing missing" ) assert os.path.isdir(utils.get_os_independent_name(language_directory_name)), ( "language directory '" + language_directory_name + "' after processing missing" ) assert 0 == len(os.listdir(language_directory_name)), ( str(len(os.listdir(language_directory_name))) + " files still found after processing" ) # ------------------------------------------------------------------------- # Check empty language subdirectory # TBD # ------------------------------------------------------------------------- # Test not language English in document # TBD # ------------------------------------------------------------------------- cfg.glob.logger.debug(cfg.glob.LOGGER_END) # ----------------------------------------------------------------------------- # Test RUN_ACTION_PROCESS_INBOX - ignore duplicates. # ----------------------------------------------------------------------------- def test_run_action_process_inbox_ignore_duplicates(fxtr_setup_empty_db_and_inbox): """Test RUN_ACTION_PROCESS_INBOX - ignore duplicates.""" cfg.glob.logger.debug(cfg.glob.LOGGER_START) # ------------------------------------------------------------------------- pytest.helpers.copy_files_4_pytest_2_dir( source_files=[ ("pdf_text_ok", "pdf"), ("pdf_text_ok_protected", "pdf"), ], target_path=cfg.glob.setup.directory_inbox, ) # ------------------------------------------------------------------------- values_original = pytest.helpers.backup_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, [ (cfg.cls_setup.Setup._DCR_CFG_IGNORE_DUPLICATES, "true"), ], ) dcr.main([dcr.DCR_ARGV_0, db.cls_run.Run.ACTION_CODE_INBOX]) pytest.helpers.restore_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, values_original, ) # ------------------------------------------------------------------------- cfg.glob.logger.info("=========> test_run_action_process_inbox_ignore_duplicates <=========") pytest.helpers.verify_content_of_inboxes( inbox_accepted=( [], [ "pdf_text_ok_1.pdf", "pdf_text_ok_protected_2.pdf", ], ), ) # ------------------------------------------------------------------------- cfg.glob.logger.debug(cfg.glob.LOGGER_END) # ----------------------------------------------------------------------------- # Test RUN_ACTION_PROCESS_INBOX - rejected. # ----------------------------------------------------------------------------- def test_run_action_process_inbox_rejected(fxtr_rmdir_opt, fxtr_setup_empty_db_and_inbox): """Test RUN_ACTION_PROCESS_INBOX - rejected.""" cfg.glob.logger.debug(cfg.glob.LOGGER_START) # ------------------------------------------------------------------------- fxtr_rmdir_opt(cfg.glob.setup.directory_inbox_accepted) fxtr_rmdir_opt(cfg.glob.setup.directory_inbox_rejected) pytest.helpers.copy_files_4_pytest_2_dir( source_files=[ ("pdf_text_ok", "pdf"), ("pdf_text_ok_protected", "pdf"), ("pdf_wrong_format", "pdf"), ], target_path=cfg.glob.setup.directory_inbox, ) # ------------------------------------------------------------------------- values_original = pytest.helpers.backup_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, [ (cfg.cls_setup.Setup._DCR_CFG_IGNORE_DUPLICATES, "false"), ], ) dcr.main([dcr.DCR_ARGV_0, db.cls_run.Run.ACTION_CODE_INBOX]) pytest.helpers.restore_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, values_original, ) # ------------------------------------------------------------------------- cfg.glob.logger.info("=========> test_run_action_process_inbox_rejected <=========") pytest.helpers.verify_content_of_inboxes( inbox=( [], [], ), inbox_accepted=( [], [ "pdf_text_ok_1.pdf", ], ), inbox_rejected=( [], [ "pdf_text_ok_protected_2.pdf", "pdf_wrong_format_3.pdf", ], ), ) # ------------------------------------------------------------------------- cfg.glob.logger.debug(cfg.glob.LOGGER_END) # ------------------------------------------------------------------------- cfg.glob.logger.debug(cfg.glob.LOGGER_END) # ----------------------------------------------------------------------------- # Test RUN_ACTION_PROCESS_INBOX - rejected - duplicate. # ----------------------------------------------------------------------------- def test_run_action_process_inbox_rejected_duplicate(fxtr_setup_empty_db_and_inbox): """Test RUN_ACTION_PROCESS_INBOX - rejected duplicate.""" cfg.glob.logger.debug(cfg.glob.LOGGER_START) # ------------------------------------------------------------------------- stem_name_1: str = "pdf_wrong_format" file_ext: str = "pdf" pytest.helpers.copy_files_4_pytest_2_dir( source_files=[(stem_name_1, file_ext)], target_path=cfg.glob.setup.directory_inbox ) stem_name_2: str = "pdf_wrong_format_1" pytest.helpers.copy_files_4_pytest_2_dir( source_files=[(stem_name_1, file_ext)], target_path=cfg.glob.setup.directory_inbox_rejected ) os.rename( utils.get_full_name(cfg.glob.setup.directory_inbox_rejected, stem_name_1 + "." + file_ext), utils.get_full_name(cfg.glob.setup.directory_inbox_rejected, stem_name_2 + "." + file_ext), ) # ------------------------------------------------------------------------- dcr.main([dcr.DCR_ARGV_0, db.cls_run.Run.ACTION_CODE_INBOX]) # ------------------------------------------------------------------------- cfg.glob.logger.info("=========> test_run_action_process_inbox_rejected_duplicate <=========") pytest.helpers.verify_content_of_inboxes( inbox=( [], [ stem_name_1 + "." + file_ext, ], ), inbox_rejected=( [], [ stem_name_2 + "." + file_ext, ], ), ) # ------------------------------------------------------------------------- cfg.glob.logger.debug(cfg.glob.LOGGER_END) # ----------------------------------------------------------------------------- # Test RUN_ACTION_PROCESS_INBOX - rejected - 901. # ----------------------------------------------------------------------------- def test_run_action_process_inbox_rejected_901(fxtr_rmdir_opt, fxtr_setup_empty_db_and_inbox): """Test RUN_ACTION_PROCESS_INBOX - rejected - 901.""" cfg.glob.logger.debug(cfg.glob.LOGGER_START) # ------------------------------------------------------------------------- fxtr_rmdir_opt(cfg.glob.setup.directory_inbox_accepted) fxtr_rmdir_opt(cfg.glob.setup.directory_inbox_rejected) pytest.helpers.copy_files_4_pytest_2_dir( source_files=[ ("unknown_file_extension", "xxx"), ("unknown_file_extension_protected", "xxx"), ], target_path=cfg.glob.setup.directory_inbox, ) # ------------------------------------------------------------------------- values_original = pytest.helpers.backup_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, [ (cfg.cls_setup.Setup._DCR_CFG_IGNORE_DUPLICATES, "false"), ], ) dcr.main([dcr.DCR_ARGV_0, db.cls_run.Run.ACTION_CODE_INBOX]) pytest.helpers.restore_config_params( cfg.cls_setup.Setup._DCR_CFG_SECTION_ENV_TEST, values_original, ) # ------------------------------------------------------------------------- cfg.glob.logger.info("=========> test_run_action_process_inbox_rejected <=========") pytest.helpers.verify_content_of_inboxes( inbox=( [], [], ), inbox_accepted=( [], [], ), inbox_rejected=( [], [ "unknown_file_extension_1.xxx", "unknown_file_extension_protected_2.xxx", ], ), )
1.5625
2
smarkets/tests/streaming_api/utils.py
smarkets/smk_python_sdk
20
12795435
<reponame>smarkets/smk_python_sdk from __future__ import absolute_import, division, print_function, unicode_literals from nose.tools import eq_ from smarkets.streaming_api.seto import OrderCreate, Payload, PAYLOAD_ORDER_CREATE from smarkets.streaming_api.utils import set_payload_message def test_set_payload_message(): payload = Payload() assert payload.type != PAYLOAD_ORDER_CREATE oc = OrderCreate(quantity=123456) set_payload_message(payload, oc) eq_(payload.type, PAYLOAD_ORDER_CREATE) eq_(payload.order_create, oc)
2.0625
2
financial/calc_engines/factor_per_share_indicators_cal.py
wangjiehui11235/panther
0
12795436
# -*- coding: utf-8 -*- import pdb, importlib, inspect, time, datetime, json # from PyFin.api import advanceDateByCalendar # from data.polymerize import DBPolymerize from data.storage_engine import StorageEngine import time import pandas as pd import numpy as np from datetime import timedelta, datetime from financial import factor_per_share_indicators from data.model import BalanceMRQ, BalanceTTM, BalanceReport from data.model import CashFlowTTM, CashFlowReport from data.model import IndicatorReport from data.model import IncomeReport, IncomeTTM from vision.table.valuation import Valuation from vision.db.signletion_engine import * from data.sqlengine import sqlEngine # pd.set_option('display.max_columns', None) # pd.set_option('display.max_rows', None) # from ultron.cluster.invoke.cache_data import cache_data class CalcEngine(object): def __init__(self, name, url, methods=[{'packet': 'financial.factor_pre_share_indicators', 'class': 'FactorPerShareIndicators'}, ]): self._name = name self._methods = methods self._url = url def get_trade_date(self, trade_date, n, days=365): """ 获取当前时间前n年的时间点,且为交易日,如果非交易日,则往前提取最近的一天。 :param days: :param trade_date: 当前交易日 :param n: :return: """ syn_util = SyncUtil() trade_date_sets = syn_util.get_all_trades('001002', '19900101', trade_date) trade_date_sets = trade_date_sets['TRADEDATE'].values time_array = datetime.strptime(str(trade_date), "%Y%m%d") time_array = time_array - timedelta(days=days) * n date_time = int(datetime.strftime(time_array, "%Y%m%d")) if str(date_time) < min(trade_date_sets): # print('date_time %s is out of trade_date_sets' % date_time) return str(date_time) else: while str(date_time) not in trade_date_sets: date_time = date_time - 1 # print('trade_date pre %s year %s' % (n, date_time)) return str(date_time) def _func_sets(self, method): # 私有函数和保护函数过滤 return list(filter(lambda x: not x.startswith('_') and callable(getattr(method, x)), dir(method))) def loading_data(self, trade_date): """ 获取基础数据 按天获取当天交易日所有股票的基础数据 :param trade_date: 交易日 :return: """ # 转换时间格式 time_array = datetime.strptime(trade_date, "%Y-%m-%d") trade_date = datetime.strftime(time_array, '%Y%m%d') # 读取目前涉及到的因子 engine = sqlEngine() columns = ['COMPCODE', 'PUBLISHDATE', 'ENDDATE', 'symbol', 'company_id', 'trade_date'] # Report data cash_flow_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowReport, [CashFlowReport.FINALCASHBALA, # 期末现金及现金等价物余额 ], dates=[trade_date]) for col in columns: if col in list(cash_flow_sets.keys()): cash_flow_sets = cash_flow_sets.drop(col, axis=1) cash_flow_sets = cash_flow_sets.rename(columns={'FINALCASHBALA': 'cash_and_equivalents_at_end', # 期末现金及现金等价物余额 }) income_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeReport, [IncomeReport.BIZINCO, # 营业收入 IncomeReport.BIZTOTINCO, # 营业总收入 IncomeReport.PERPROFIT, # 营业利润 IncomeReport.DILUTEDEPS, # 稀释每股收益 ], dates=[trade_date]) for col in columns: if col in list(income_sets.keys()): income_sets = income_sets.drop(col, axis=1) income_sets = income_sets.rename(columns={'BIZINCO': 'operating_revenue', # 营业收入 'BIZTOTINCO': 'total_operating_revenue', # 营业总收入 'PERPROFIT': 'operating_profit', # 营业利润 'DILUTEDEPS': 'diluted_eps', # 稀释每股收益 }) balance_sets = engine.fetch_fundamentals_pit_extend_company_id(BalanceReport, [BalanceReport.PARESHARRIGH, # 归属于母公司的所有者权益 BalanceReport.CAPISURP, BalanceReport.RESE, BalanceReport.UNDIPROF, ], dates=[trade_date]) for col in columns: if col in list(balance_sets.keys()): balance_sets = balance_sets.drop(col, axis=1) balance_sets = balance_sets.rename(columns={'PARESHARRIGH': 'total_owner_equities', # 归属于母公司的所有者权益 'CAPISURP': 'capital_reserve_fund', # 资本公积 'RESE': 'surplus_reserve_fund', # 盈余公积 'UNDIPROF': 'retained_profit', # 未分配利润 }) indicator_sets = engine.fetch_fundamentals_pit_extend_company_id(IndicatorReport, [IndicatorReport.FCFE, # 股东自由现金流量 IndicatorReport.FCFF, # 企业自由现金流量 IndicatorReport.EPSBASIC, # 基本每股收益 IndicatorReport.DPS, # 每股股利(税前) ], dates=[trade_date]) for col in columns: if col in list(indicator_sets.keys()): indicator_sets = indicator_sets.drop(col, axis=1) indicator_sets = indicator_sets.rename(columns={'FCFE': 'shareholder_fcfps', # 股东自由现金流量 'FCFF': 'enterprise_fcfps', # 企业自由现金流量 'EPSBASIC': 'basic_eps', # 基本每股收益 'DPS': 'dividend_receivable', # 每股股利(税前) }) # TTM data cash_flow_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(CashFlowTTM, [CashFlowTTM.CASHNETI, # 现金及现金等价物净增加额 CashFlowTTM.MANANETR, # 经营活动现金流量净额 ], dates=[trade_date]) for col in columns: if col in list(cash_flow_ttm_sets.keys()): cash_flow_ttm_sets = cash_flow_ttm_sets.drop(col, axis=1) cash_flow_ttm_sets = cash_flow_ttm_sets.rename( columns={'CASHNETI': 'cash_equivalent_increase_ttm', # 现金及现金等价物净增加额 'MANANETR': 'net_operate_cash_flow_ttm', # 经营活动现金流量净额 }) income_ttm_sets = engine.fetch_fundamentals_pit_extend_company_id(IncomeTTM, [IncomeTTM.PARENETP, # 归属于母公司所有者的净利润 IncomeTTM.PERPROFIT, # 营业利润 IncomeTTM.BIZINCO, # 营业收入 IncomeTTM.BIZTOTINCO, # 营业总收入 ], dates=[trade_date]) for col in columns: if col in list(income_ttm_sets.keys()): income_ttm_sets = income_ttm_sets.drop(col, axis=1) income_ttm_sets = income_ttm_sets.rename(columns={'PARENETP': 'np_parent_company_owners_ttm', # 归属于母公司所有者的净利润 'PERPROFIT': 'operating_profit_ttm', # 营业利润 'BIZINCO': 'operating_revenue_ttm', # 营业收入 'BIZTOTINCO': 'total_operating_revenue_ttm', # 营业总收入 }) column = ['trade_date'] valuation_data = get_fundamentals(query(Valuation.security_code, Valuation.trade_date, Valuation.capitalization, ).filter(Valuation.trade_date.in_([trade_date]))) for col in column: if col in list(valuation_data.keys()): valuation_data = valuation_data.drop(col, axis=1) valuation_sets = pd.merge(cash_flow_sets, income_sets, on='security_code').reindex() valuation_sets = pd.merge(balance_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(indicator_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(cash_flow_ttm_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(income_ttm_sets, valuation_sets, on='security_code').reindex() valuation_sets = pd.merge(valuation_data, valuation_sets, on='security_code').reindex() return valuation_sets def process_calc_factor(self, trade_date, valuation_sets): per_share = factor_per_share_indicators.FactorPerShareIndicators() factor_share_indicators = pd.DataFrame() factor_share_indicators['security_code'] = valuation_sets['security_code'] valuation_sets = valuation_sets.set_index('security_code') factor_share_indicators = factor_share_indicators.set_index('security_code') factor_share_indicators = per_share.EPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.DilutedEPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.CashEquPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.DivPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.EPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.NetAssetPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.TotalRevPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.TotalRevPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptRevPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptRevPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptProfitPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.OptProfitPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.CapticalSurplusPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.SurplusReservePS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.UndividedProfitPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.RetainedEarningsPS(factor_share_indicators, factor_share_indicators) factor_share_indicators = per_share.OptCFPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.CFPSTTM(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.EnterpriseFCFPS(valuation_sets, factor_share_indicators) factor_share_indicators = per_share.ShareholderFCFPS(valuation_sets, factor_share_indicators) factor_share_indicators = factor_share_indicators.reset_index() factor_share_indicators['trade_date'] = str(trade_date) factor_share_indicators.replace([-np.inf, np.inf, None], np.nan, inplace=True) return factor_share_indicators def local_run(self, trade_date): print('当前交易日: %s' % trade_date) tic = time.time() valuation_sets = self.loading_data(trade_date) print('data load time %s' % (time.time() - tic)) storage_engine = StorageEngine(self._url) result = self.process_calc_factor(trade_date, valuation_sets) print('cal_time %s' % (time.time() - tic)) storage_engine.update_destdb(str(self._methods[-1]['packet'].split('.')[-1]), trade_date, result) # storage_engine.update_destdb('factor_pre_share_indicators', trade_date, result) # def remote_run(self, trade_date): # total_data = self.loading_data(trade_date) # #存储数据 # session = str(int(time.time() * 1000000 + datetime.datetime.now().microsecond)) # cache_data.set_cache(session, 'alphax', total_data.to_json(orient='records')) # distributed_factor.delay(session, json.dumps(self._methods), self._name) # # def distributed_factor(self, total_data): # mkt_df = self.calc_factor_by_date(total_data,trade_date) # result = self.calc_factor('alphax.alpha191','Alpha191',mkt_df,trade_date) # @app.task # def distributed_factor(session, trade_date, packet_sets, name): # calc_engines = CalcEngine(name, packet_sets) # content = cache_data.get_cache(session, factor_name) # total_data = json_normalize(json.loads(content)) # calc_engines.distributed_factor(total_data) # # # @app.task() # def factor_calculate(**kwargs): # print("per_share_kwargs: {}".format(kwargs)) # date_index = kwargs['date_index'] # session = kwargs['session'] # content = cache_data.get_cache(session + str(date_index), date_index) # total_pre_share_data = json_normalize(json.loads(str(content, encoding='utf8'))) # print("len_total_per_share_data {}".format(len(total_pre_share_data))) # calculate(date_index, total_pre_share_data)
2.25
2
wack/scenes.py
tjusticelee/textytextgame
0
12795437
<gh_stars>0 from flask import ( Blueprint, flash, g, redirect, render_template, request, session, url_for ) from werkzeug.exceptions import abort bp = Blueprint('scenes', __name__) @bp.route('/') def index(): return render_template('scenes/index.html') @bp.route('/home', methods=('GET', 'POST')) def home(): sceneboi = { 'scenario': """Your alarm wakes you up. You lay in bed and decide whether or not to skip class. \n 1. Stay in and sleep \n 2. Get ready for class""" } if request.method == 'POST': choice = request.form['action'] if choice == "1": return redirect(url_for('scenes.bus')) if choice == "2": return redirect(url_for('scenes.walk')) return render_template('scenes/play.html', scene=sceneboi) @bp.route('/bus', methods=('GET', 'POST')) def bus(): sceneboi = { 'scenario': """You lay in bed and close your eyes. Your mom comes through your air vent and yells at you to get up you yell at her \"You don't understand me mom!\" She dropkicks you into the bus from your room. You land in the driver's seat of the bus and realize you have to drive the bus. do you? 1. Drift dat boi 2. Drive like a civilized person""" } if request.method == 'POST': choice = request.form['action'] return render_template('scenes/play.html', scene=sceneboi)
2.53125
3
app/mysqltojson.py
imosudi/graphql
1
12795438
<filename>app/mysqltojson.py from sqlalchemy import create_engine, inspect import os, json #import requests import decimal, datetime from .dbconnect import engine, alchemyencoder #from .dbconnect import engine, alchemyencoder pwd = os.path.dirname(os.path.abspath(__file__)) class flatToCascadedJson(object): def __init__(self, dbtable, *args): super(flatToCascadedJson, self).__init__(*args) self.dbtable =dbtable if not os.path.exists(f'{pwd}/table_json/'): os.makedirs(f'{pwd}/table_json/') def reformatjson(self): dbtable = self.dbtable if dbtable not in ['patients', 'labtests', 'transactions', 'user']: return {'response':'Not available in database'}, inspect(engine) dbtableData = engine.execute('SELECT * FROM {dbtable}' .format(dbtable=dbtable)) #engine.dispose() dataList = json.dumps([dict(row) for row in dbtableData], default=alchemyencoder, indent=4) with open(f'{pwd}/table_json/{dbtable}.json', 'w+') as file: file.write(dataList) file.close() if dbtable == 'patients': patientList = json.loads(dataList) with open(f'{pwd}/table_json/{dbtable}_casded.json', 'w+') as file: for i in range(0, len(patientList)) : data2 = json.dumps( { 'patient_row_id' : patientList[i]['patient_id'], 'patient_unique_ID': patientList[i]['patientID'], 'labsessioncount' : '', 'PatientPersonalDetails' :[ { 'patientSex': patientList[i]['patientSex'], 'patientStatus': patientList[i]['patientStatus'], 'patientType': patientList[i]['patientType'], 'ageGrade': patientList[i]['ageGrade'], 'patientDateofBirth': patientList[i]['patientDateofBirth'], 'patientTitle': patientList[i]['patientTitle'], 'patientFirstname': patientList[i]['patientFirstname'], 'patientLastname': patientList[i]['patientLastname'], 'patientMiddlename': patientList[i]['patientMiddlename'], 'patientEmail': patientList[i]['patientEmail'], 'patientAltEmail': patientList[i]['patientAltEmail'], 'patientPhonenumber': patientList[i]['patientPhonenumber'], 'patientAltPhonenumber': patientList[i]['patientAltPhonenumber'], 'patientwhatsappnumber': patientList[i]['patientwhatsappnumber'], 'patientAddress': patientList[i]['patientAddress'], 'patientCity': patientList[i]['patientCity'], 'patientState': patientList[i]['patientState'], 'patientCountry': patientList[i]['patientCountry'], 'patientpersonalEnroledby': patientList[i]['patientpersonalEnroledby'] } ], 'PatientCorporateDetails' :[ { 'patientCompanyname': patientList[i]['patientCompanyname'], 'patientCorporateContactperson': patientList[i]['patientCorporateContactperson'], 'patientCorporateEmail': patientList[i]['patientCorporateEmail'], 'patientCorporatePhone': patientList[i]['patientCorporatePhone'], 'patientCorporatewhatsappnumber': patientList[i]['patientCorporatewhatsappnumber'], 'patientCorporateAddress': patientList[i]['patientCorporateAddress'], 'patientCorporateCity': patientList[i]['patientCorporateCity'], 'patientCorporateState': patientList[i]['patientCorporateState'], 'patientCorporateCountry': patientList[i]['patientCorporateCountry'], 'patientCorporateEnroledby': patientList[i]['patientCorporateEnroledby'], 'enrolment_Time': patientList[i]['enrolment_Time'] } ] }, indent=2 ) #print(data2) file.write(data2) file.close() #print(patientList) return data2, dataList elif dbtable == 'labtests' : testList = json.loads(dataList) with open(f'{pwd}/table_json/{dbtable}_casded.json', 'w+') as file: for i in range(0, len(testList)) : data2 = json.dumps( { 'test_id': testList[i]['test_id'], 'testType': testList[i]['testType'], 'testBottleType': testList[i]['testBottleType'], 'testName': testList[i]['testName'], 'testmnemonics': testList[i]['testmnemonics'], 'testDetails': testList[i]['testDetails'], 'testTAT': testList[i]['testTAT'], 'testPrice': testList[i]['testPrice'] }, indent=2 ) #print(data2) file.write(data2) file.close() return data2, dataList elif dbtable == 'transactions' : transactionList = json.loads(dataList) with open(f'{pwd}/table_json/{dbtable}_casded.json', 'w+') as file: for i in range(0, len(transactionList)) : data2 = json.dumps( { 'transaction_id': 1, 'transactTime': transactionList[i]['transactTime'], 'labSessionTestDetails' : [ { 'invoicemnemonics': transactionList[i]['invoicemnemonics'], 'invoicetestname': transactionList[i]['invoicetestname'], 'invoiceprice': transactionList[i]['invoiceprice'], 'invoicetat': transactionList[i]['invoicetat'] } ], 'PatientDetails' : [ { 'CurrentpatientID': transactionList[i]['CurrentpatientID'], 'fullName': transactionList[i]['fullName'], 'sex': transactionList[i]['sex'], 'billto': transactionList[i]['billto'], 'testspriority': transactionList[i]['testspriority'], 'testscheduletype': transactionList[i]['testscheduletype'] } ], 'Payment_Reference' : [ { 'subtotal': transactionList[i]['subtotal'], 'discount': transactionList[i]['discount'], 'equalltax': transactionList[i]['equalltax'], 'total': transactionList[i]['total'], 'paymentmethod': transactionList[i]['paymentmethod'], 'payment': transactionList[i]['payment'], 'referenceOrchange': transactionList[i]['referenceOrchange'], 'sessionconfirm': transactionList[i]['sessionconfirm'], 'paymentconfirm': transactionList[i]['paymentconfirm'], 'barcode': transactionList[i]['barcode'], 'phlebotomy_processed': transactionList[i]['phlebotomy_processed'] } ], 'PaymentPtocessor' : [ { 'regtype': transactionList[i]['regtype'], 'cashier': transactionList[i]['cashier'], 'paymentupdateamount': transactionList[i][ 'paymentupdateamount'], 'paymentupdateby': transactionList[i]['paymentupdateby'], 'paymentupdateTime': transactionList[i]['paymentupdateTime'] } ] }, indent=2 ) #print(data2) file.write(data2) file.close() #print(transactionList[0]) return data2, dataList elif dbtable == 'user' : userList = json.loads(dataList) with open(f'{pwd}/table_json/{dbtable}_casded.json', 'w+') as file: for i in range(0, len(userList)) : data2 =json.dumps( { 'userID': userList[i]['id'], 'loginDetails' :[{ 'username': userList[i]['email'], 'password': userList[i]['password'] }], 'designation': userList[i]['designation'], 'userDetails' :[{ 'firstname' : userList[i]['firstname'], 'lastname': userList[i]['lastname'], 'email': userList[i]['email'], 'phonenumber': userList[i]['phonenumber'], 'AlternatePhonenumber' : userList[i]['altnumber'], 'location' :[{ 'location': userList[i]['location'], 'city' : userList[i]['city'], 'state': userList[i]['state'], 'country': userList[i]['country'] }], 'zip_code' : userList[i]['zip_code'] }], 'Analytics' :[{ 'last_login_at': userList[i]['last_login_at'], 'current_login_at': userList[i]['current_login_at'], 'last_login_ip': userList[i]['last_login_ip'], 'current_login_ip': userList[i]['current_login_ip'], 'login_count': userList[i]['login_count'], 'confirmed_at': userList[i]['confirmed_at'], 'active': userList[i]['active'] }] }, indent=2 ) #print(data2) file.write(data2) file.close() # End for statement' return data2, dataList #print(userList[0])
2.515625
3
bfs/0261_graph_valid_tree.py
adwardlee/leetcode_solutions
0
12795439
''' Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree. 样例 Example 1: Input: n = 5 edges = [[0, 1], [0, 2], [0, 3], [1, 4]] Output: true. Example 2: Input: n = 5 edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]] Output: false. 注意事项 You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges. ''' from collections import defaultdict,deque class Solution: """ @param n: An integer @param edges: a list of undirected edges @return: true if it's a valid tree, or false """ def validTree(self, n, edges): # write your code here if len(edges) != n - 1: return False if len(edges) == 0: return n == 1 neighbor = defaultdict() for edge in edges: if edge[0] not in neighbor: neighbor[edge[0]] = 1 else: neighbor[edge[0]] += 1 if edge[1] not in neighbor: neighbor[edge[1]] = 1 else: neighbor[edge[1]] += 1 queue = deque() for x in range(n): if x not in neighbor: return False elif neighbor[x] == 1: neighbor[x] -= 1 queue.append(x) count = 0 while queue: node = queue.popleft() count += 1 for edge in edges: if node in edge: neighbor[edge[0]] -= 1 neighbor[edge[1]] -= 1 if len(queue) == 0: for key in neighbor: if neighbor[key] == 1 or neighbor[key] == 0: queue.append(key) if count < n: return False return True
4.15625
4
flask_mailing/__init__.py
jfkinslow/flask-mailing
0
12795440
<reponame>jfkinslow/flask-mailing from .mail import Mail from .config import ConnectionConfig from .schemas import ( Message as Message, MultipartSubtypeEnum as MultipartSubtypeEnum ) from . import utils version_info = (0, 0, 6) __version__ = ".".join([str(v) for v in version_info]) __author__ = "<EMAIL>" __all__ = [ "Mail", "ConnectionConfig", "Message", "utils", "MultipartSubtypeEnum" ]
1.96875
2
books/books.py
rossgk2/cs257
0
12795441
''' books.py Written by <NAME> and <NAME> for cs257 Revised by <NAME> A command line interface for searching the 'books.csv' file. ''' import csv import argparse def get_parsed_arguments(): # Set up command line arguments. with open("prolog.txt", "r") as prolog, open("epilog.txt", "r") as epilog: parser = argparse.ArgumentParser(description = prolog.read(), epilog = epilog.read()) parser.add_argument("-b", "--books", nargs="+", help="One or more substrings to search for in the titles of books. " "If one of the substrings contains a space, surround that substring" " with quotes \"\".") parser.add_argument("-a", "--authors", nargs="+", help="One or more substrings to search for in the names of authors. If one of the substrings contains " "a space, surround that substring with quotes \"\".") # may need to fix, see python3 books.py books.csv -b 'the' 1800 1899 for example parser.add_argument("year1", nargs = "?", help="One of the years in the time " "interval [min(year1, year2), max(year1, year2)] " "within which to search for books.") parser.add_argument("year2", nargs = "?", help="One of the years in the time " "interval [min(year1, year2), max(year1, year2)] " "within which to search for books.") # Parse the command line. parsed_arguments = parser.parse_args() # Handle the years. year1 = parsed_arguments.year1 if parsed_arguments.year2 is None: parsed_arguments.year2 = year1 # Note that year1 or year2 might still be None, which is fine. return parsed_arguments def filterBooks(filtered, books) -> list: return list(filter(lambda p: any(sub.lower() in p[0].lower() for sub in books), filtered)) def filterAuthors(filtered, authors) -> list: return list(filter(lambda p: any(sub.lower() in p[2].lower() for sub in authors), filtered)) def filterYears(filtered, year1, year2) -> list: return list(filter(lambda p: year1 <= p[1] and year2 >= p[1], filtered)) def getAuthorSet(filtered, authors) -> set: authorSet = set() if authors: for row in filtered: authorSet.add(row[2]) return authorSet def main(): # Get arguments from the command line. arguments = get_parsed_arguments() filtered = csv.reader(open('books.csv', 'r')) # Filter by years, books, or authors. if arguments.year1: filtered = filterYears(filtered, arguments.year1, arguments.year2) if arguments.books: filtered = filterBooks(filtered, arguments.books) if arguments.authors: filtered = filterAuthors(filtered, arguments.authors) authorSet = getAuthorSet(filtered, arguments.authors) # If authorSet is nonempty, print authors and their books. if authorSet != set(): tab = " " * 4 for auth in authorSet: print(auth) for row in list(filtered): if row[2] == auth: print(tab + row[0] + ", " + row[1]) # Otherwise, print all book/author/year information in "filtered". else: for row in filtered: print(row[0] + ", " + row[1] + ", " + row[2]) if __name__ == "__main__": main()
3.28125
3
crosspm/contracts/contract.py
devopshq/crosspm2
3
12795442
<reponame>devopshq/crosspm2 class Contract: def __init__(self, name, values): self.name = name self.values = values def __hash__(self): return hash((self.name, self.values)) def __str__(self): return "{}{}".format(self.name, self.values) def __repr__(self): return str(self) def __eq__(self, other): return self.name == other.name and (set(self.values) & set(other.values)) def __ne__(self, other): return not (self == other) class PackageContracts: def __init__(self, contracts): self._contracts = contracts def __getitem__(self, key): for c in self._contracts: if c.name == key.name: return c return None def is_lower(self, contract): c = self[contract] return c and c.value < contract.value def is_equal(self, contract): c = self[contract] return c and c.value == contract.value
2.859375
3
grid_utils/gridder.py
claydodo/grid_utils
0
12795443
# -*- coding:utf-8 -*- import six import numpy as np from pyproj import Proj import operator from .exceptions import * class NullProj(object): """ Similar to pyproj.Proj, but NullProj does not do actual conversion. """ @property def srs(self): return '' def __call__(self, x, y, **kwargs): return x, y class GridderBase(object): """Gridder is a helper for i, j <-> x, y conversion, etc.""" def i2x(self, *args): """Convert i, j, ... -> x, y, ...""" raise NotImplementedError def x2i(self, *args, **kwargs): """Convert x, y, ... -> i, j, ...""" raise NotImplementedError def copy(self, **kwargs): kws = self.dump() kws.update(kwargs) new_gridder = self.__class__(**kws) return new_gridder def calibrate(self, x0, y0, x1=None, y1=None): return def dump(self): return {} class XYGridderBase(GridderBase): """ Requires self.X & self.Y. """ @property def bbox(self): return (np.min(self.X), np.min(self.Y), np.max(self.X), np.max(self.Y)) def get_bounding_ij(self, x1, y1, x2, y2, **kwargs): bbox = self.bbox if x1 is None: x1 = bbox[0] if y1 is None: y1 = bbox[1] if x2 is None: x2 = bbox[2] if y2 is None: y2 = bbox[3] bad = ~((self.X >= x1) & (self.X <= x2) & (self.Y >= y1) & (self.Y <= y2)) x_bad = np.alltrue(bad, axis=0) y_bad = np.alltrue(bad, axis=1) x_points = np.argwhere(np.diff(np.r_[True, x_bad, True])).reshape(-1, 2) y_points = np.argwhere(np.diff(np.r_[True, y_bad, True])).reshape(-1, 2) i1, i2 = (-1, -1) if x_points.shape[0] == 0 else x_points[0] j1, j2 = (-1, -1) if y_points.shape[0] == 0 else y_points[0] return i1, j1, i2, j2 def check_bound(self, i, j, int_index=True): start = -0.5 subtracted = 1 if int_index: start = 0 if int_index in ('lowerleft', 'll'): subtracted = 2 if np.isscalar(i): if (i >= start and i <= self.nx-subtracted) and (j >= start and j <= self.ny-subtracted): return i, j else: raise OutOfGridBound("i: {}, j: {} is out of bound!".format(i, j)) else: i = np.where((i >= start) & (i <= self.nx - subtracted), i, np.nan) j = np.where((j >= start) & (j <= self.ny - subtracted), j, np.nan) return i, j class XYProjGridder(XYGridderBase): def __init__(self, proj=None, x=None, y=None, nx=None, ny=None, dx=None, dy=None, x_orig=0.0, y_orig=0.0, **kwargs): self.proj = proj self._reset_raw_xy() if x is not None and y is not None: self.set_xy(x, y) else: self._init_with_para(nx, ny, dx, dy, x_orig, y_orig) @property def proj(self): return self._proj @proj.setter def proj(self, p): if p is None: self._proj = NullProj() elif isinstance(p, (Proj, NullProj)): self._proj = p elif isinstance(p, dict): self._proj = Proj(**p) else: # Treat as proj_string self._proj = Proj(str(p)) # TODO: check PY3 compatibility. self._reset_raw_xy() if all([hasattr(self, attr) for attr in ('_nx', '_ny', '_dx', '_dy', '_x_orig', '_y_orig')]): self._updateXY() @property def X(self): return self._X @X.setter def X(self, x): if self._raw_y is None: raise ValueError("Cannot set x alone when no raw y presents.") ndim_x = np.ndim(x) if ndim_x == 1 and np.ndim(self._raw_y) == 1: self.set_xy(x, self._raw_y) elif ndim_x == 2 and np.shape(x) == np.shape(self.Y): self.set_xy(x, self.Y) else: self._raise_invalid_shape(x, self.Y) @property def Y(self): return self._Y @Y.setter def Y(self, y): if self._raw_x is None: raise ValueError("Cannot set y alone when no raw x presents.") ndim_y = np.ndim(y) if ndim_y == 1 and np.ndim(self._raw_x) == 1: self.set_xy(self._raw_x, y) elif ndim_y == 2 and np.shape(y) == np.shape(self.X): self.set_xy(self.X, y) else: self._raise_invalid_shape(self.X, y) @property def CX(self): return self._CX @property def CY(self): return self._CY @property def x(self): return self._raw_x if self._raw_x is not None else self._X @property def y(self): return self._raw_y if self._raw_y is not None else self._Y @property def cx(self): return self._raw_cx if self._raw_cx is not None else self._CX @property def cy(self): return self._raw_cy if self._raw_cy is not None else self._CY @property def nx(self): return self._nx @nx.setter def nx(self, value): self._nx = value self._reset_raw_xy() self._updateXY() @property def ny(self): return self._ny @ny.setter def ny(self, value): self._ny = value self._reset_raw_xy() self._updateXY() @property def dx(self): return self._dx @dx.setter def dx(self, value): self._dx = value self._reset_raw_xy() self._updateXY() @property def dy(self): return self._dy @dy.setter def dy(self, value): self._dy = value self._reset_raw_xy() self._updateXY() @property def x_orig(self): return self._x_orig @x_orig.setter def x_orig(self, value): self._x_orig = value self._reset_raw_xy() self._updateXY() @property def y_orig(self): return self._y_orig @y_orig.setter def y_orig(self, value): self._y_orig = value self._reset_raw_xy() self._updateXY() @property def bbox(self): return self._bbox @property def cbox(self): """corner box""" return self._cbox def _init_with_para(self, nx, ny, dx, dy, x_orig, y_orig): self._nx = nx self._ny = ny self._dx = dx self._dy = dy self._x_orig = x_orig self._y_orig = y_orig self._updateXY() @property def has_null_proj(self): return isinstance(self.proj, NullProj) def set_xy(self, x, y): ndim_x, ndim_y = np.ndim(x), np.ndim(y) if ndim_x == 1 and ndim_y == 1: self._nx, self._ny = len(x), len(y) elif ndim_x == 2 and ndim_y == 2: self._ny, self._nx = np.shape(x) else: self._raise_invalid_shape(x, y) self._raw_x, self._raw_y = np.asarray(x), np.asarray(y) self.calibrate(x, y) def _raise_invalid_shape(self, x, y): raise ValueError("Invalid x, y shape: {}, {}".format(np.shape(x), np.shape(y))) def _reset_raw_xy(self): self._raw_x, self._raw_y = None, None def _updateXY(self): jj, ii = np.mgrid[0:self.ny, 0:self.nx] cjj, cii = np.mgrid[-0.5:self.ny, -0.5:self.nx] xx, yy = self.i2x(ii, jj) cxx, cyy = self.i2x(cii, cjj) self._X, self._Y = xx, yy self._CX, self._CY = cxx, cyy if self._raw_x is not None and self._raw_x.ndim == 1: self._raw_cx = self._CX[0] else: self._raw_cx = None if self._raw_y is not None and self._raw_y.ndim == 1: self._raw_cy = self._CY[:, 0] else: self._raw_cy = None self._bbox = (np.min(self._X), np.min(self._Y), np.max(self._X), np.max(self._Y)) self._cbox = (np.min(self._CX), np.min(self._CY), np.max(self._CX), np.max(self._CY)) return xx, yy def i2x(self, i, j): px = i * self.dx + self.x_orig py = j * self.dy + self.y_orig return self.proj(px, py, inverse=True) def x2i(self, x, y, int_index=True, check_bound=None): px, py = self.proj(x, y) i = (px - self.x_orig) / self.dx j = (py - self.y_orig) / self.dy if int_index: if int_index in ('lowerleft', 'll'): i = np.floor(i) j = np.floor(j) else: i = np.round(i) j = np.round(j) if np.isscalar(i): i = int(i) j = int(j) else: i = i.astype('i') j = j.astype('i') if check_bound: return self.check_bound(i, j, int_index=int_index) else: return i, j def calibrate(self, x, y, x1=None, y1=None): ndim_x, ndim_y = np.ndim(x), np.ndim(y) if ndim_x == 0 and ndim_y == 0: x0, y0 = x, y if ndim_x == 1 and ndim_y == 1: x0, x1 = x[0], x[1] y0, y1 = y[0], y[1] elif ndim_x == 2 and ndim_y == 2: x0, x1 = x[0, 0], x[1, 1] y0, y1 = y[0, 0], y[1, 1] else: self._raise_invalid_shape(x, y) px0, py0 = self.proj(x0, y0) self._x_orig = px0 self._y_orig = py0 if x1 is not None and y1 is not None: px1, py1 = self.proj(x1, y1) self._dx = px1 - px0 self._dy = py1 - py0 self._updateXY() def dump(self): return { "proj": self.proj.srs, "nx": self.nx, "ny": self.ny, "dx": self.dx, "dy": self.dy, "x_orig": self.x_orig, "y_orig": self.y_orig } class LonLatSurroundingGridder(XYGridderBase): def __init__(self, lon0, lat0, rmin, rmax, nr, ntheta, theta0=0.0, r_earth=6371): self.lon0 = lon0 self.lat0 = lat0 self.rmin = rmin self.rmax = rmax self.nr = nr self.ntheta = ntheta self.theta0 = theta0 self.r_earth = r_earth self.dtheta = np.pi * 2 / self.ntheta self.dr = (self.rmax - self.rmin) / (self.nr - 1) self._updateXY() def _updateXY(self): r = np.linspace(self.rmin, self.rmax, self.nr) theta = np.arange(self.ntheta) * self.dtheta + self.theta0 THETA, R = np.meshgrid(theta, r) LON, LAT = self.r_theta_to_lon_lat(R, THETA) self._X = LON self._Y = LAT return self._X, self._Y def r_theta_to_lon_lat(self, r, theta): r_ = r / self.r_earth sin_r = np.sin(r_) cos_r = np.cos(r_) lat0_ = np.deg2rad(self.lat0) lon0_ = np.deg2rad(self.lon0) sin_lat0 = np.sin(lat0_) cos_lat0 = np.cos(lat0_) sin_lat = sin_lat0 * cos_r + cos_lat0 * sin_r * np.cos(theta) lat_ = np.arcsin(sin_lat) lon_ = lon0_ + np.arctan2(np.sin(theta) * sin_r * cos_lat0, cos_r - sin_lat0 * sin_lat) lon = np.rad2deg(lon_) lat = np.rad2deg(lat_) return lon, lat @property def nx(self): return self.ntheta @property def ny(self): return self.nr @property def X(self): return self._X @property def Y(self): return self._Y @property def x(self): return self._X @property def y(self): return self._Y def i2x(self, i, j): theta = self.theta0 + i * self.dtheta r = self.rmin + j * self.dr lon, lat = self.r_theta_to_lon_lat(r, theta) return lon, lat def x2i(self, x, y, int_index=True, check_bound=None): lon2, lat2 = np.deg2rad(x), np.deg2rad(y) lon1, lat1 = np.deg2rad(self.lon0), np.deg2rad(self.lat0) dlon = lon2 - lon1 dlat = lat2 - lat1 sin_dlon = np.sin(dlon) cos_dlon = np.cos(dlon) sin_lat1 = np.sin(lat1) cos_lat1 = np.cos(lat1) sin_lat2 = np.sin(lat2) cos_lat2 = np.cos(lat2) a = cos_lat2 * sin_dlon b = cos_lat1 * sin_lat2 - sin_lat1 * cos_lat2 * cos_dlon theta = np.arctan2(a, b) c = np.sin(dlat / 2) ** 2 + cos_lat1 * cos_lat2 * np.sin(dlon / 2) ** 2 d = 2 * np.arcsin(np.sqrt(c)) r = d * self.r_earth i = (theta - self.theta0) / self.dtheta % self.ntheta j = (r - self.rmin) / self.dr if int_index: i = np.round(i) j = np.round(j) if np.isscalar(i): i = int(i) j = int(j) else: i = i.astype('i') j = j.astype('i') if check_bound: return self.check_bound(i, j, int_index=int_index) else: return i, j class XYIrregularGridder(XYGridderBase): # TODO: use kdtree. def __init__(self, X, Y): X = np.array(X) Y = np.array(Y) if X.ndim == 1: self.X, self.Y = np.meshgrid(X, Y) else: self.X, self.Y = X, Y self.ny, self.nx = X.shape def i2x(self, i, j, *args, **kwargs): return self.X[j, i], self.Y[j, i] def x2i(self, x, y, *args, **kwargs): distances = np.hypot(self.X-x, self.Y-y) flat_i = np.argmin(distances) nx = self.X.shape[1] return flat_i / self.nx, flat_i % self.nx def dump(self): return { "X": self.X, "Y": self.Y, "nx": self.nx, "ny": self.ny, }
2.484375
2
unitvelo/__init__.py
StatBiomed/UniTVelo
0
12795444
<filename>unitvelo/__init__.py #%% import os from time import gmtime, strftime os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' try: from setuptools_scm import get_version __version__ = get_version(root="..", relative_to=__file__) del get_version except (LookupError, ImportError): try: from importlib_metadata import version except: from importlib.metadata import version __version__ = version(__name__) del version print (f'(Running UniTVelo {__version__})') print (strftime("%Y-%m-%d %H:%M:%S", gmtime())) from .main import run_model from .config import Configuration from .eval_utils import evaluate from .gene_influence import influence
1.84375
2
mfgp/task1_new/utils/has_duplicates.py
kunalghosh/Multi_Fidelity_Prediction_GP
0
12795445
<reponame>kunalghosh/Multi_Fidelity_Prediction_GP<gh_stars>0 def has_duplicates(seq): return len(seq) != len(set(seq))
1.789063
2
scan_service/tests/hardware_config_tests.py
kkkkv/tgnms
12
12795446
#!/usr/bin/env python3 # Copyright 2004-present Facebook. All Rights Reserved. import json import unittest from typing import List from bidict import bidict from scan_service.utils.hardware_config import HardwareConfig class HardwareConfigTests(unittest.TestCase): def setUp(self) -> None: with open("tests/hardware_config.json") as f: hardware_config = json.load(f) HardwareConfig.set_config(hardware_config) def test_class_variables(self) -> None: self.assertDictEqual( HardwareConfig.BEAM_ORDER, { "0": { "-18": [0, 1, 2, 3, 4, 5, 6, 7], "18": [8, 9, 10, 11, 12, 13, 14, 15], }, "1": { "0": [30, 29, 28, 27, 26, 25, 24, 16, 17, 18, 19, 20, 21, 22, 23] }, }, ) self.assertDictEqual( HardwareConfig.TXPOWERIDX_TO_TXPOWER, { "2": { "10": {0: 19, 1: 20, 2: 21, 3: 22, 4: 23, 5: 24, 6: 25, 7: 26}, "6": {0: 10, 1: 11, 2: 12, 3: 13, 4: 14, 5: 15, 6: 16, 7: 17}, }, "3": {"5": {0: 11, 1: 12, 2: 13, 3: 14, 4: 15, 5: 16, 6: 17, 7: 18}}, "default_channel": { "default_mcs": { 0: 16, 1: 17, 2: 18, 3: 19, 4: 20, 5: 21, 6: 22, 7: 23, } }, }, ) self.assertEqual(HardwareConfig.BORESIDE_BW_IDX, 10) self.assertEqual(HardwareConfig.MINIMUM_SNR_DB, -10) self.assertEqual(HardwareConfig.SNR_SATURATE_THRESH_DB, 25) self.assertEqual(HardwareConfig.BEAM_SEPERATE_IDX, 3) self.assertEqual(HardwareConfig.MAX_SIDELOBE_LEVEL_DB, 12) self.assertEqual(HardwareConfig.MAX_POWER, 23) def test_get_adjacent_beam_index(self) -> None: self.assertEqual(HardwareConfig.get_adjacent_beam_index(0, 1), 1) self.assertEqual(HardwareConfig.get_adjacent_beam_index(0, -1), 0) self.assertEqual(HardwareConfig.get_adjacent_beam_index(8, 1), 9) self.assertEqual(HardwareConfig.get_adjacent_beam_index(8, -1), 8) self.assertEqual(HardwareConfig.get_adjacent_beam_index(15, 1), 15) self.assertEqual(HardwareConfig.get_adjacent_beam_index(15, -1), 14) self.assertEqual(HardwareConfig.get_adjacent_beam_index(16, 1), 17) self.assertEqual(HardwareConfig.get_adjacent_beam_index(16, -1), 24) self.assertEqual(HardwareConfig.get_adjacent_beam_index(23, 1), 23) self.assertEqual(HardwareConfig.get_adjacent_beam_index(23, -1), 22) self.assertEqual(HardwareConfig.get_adjacent_beam_index(30, 1), 29) self.assertEqual(HardwareConfig.get_adjacent_beam_index(30, -1), 30) self.assertEqual(HardwareConfig.get_adjacent_beam_index(60, 1), 60) self.assertEqual(HardwareConfig.get_adjacent_beam_index(60, -1), 60) def test_get_pwr_offset(self) -> None: self.assertEqual(HardwareConfig.get_pwr_offset(channel="2", mcs="6"), 0) self.assertEqual( HardwareConfig.get_pwr_offset(target_pwr_idx=4, channel="2", mcs="6"), -9 ) self.assertEqual( HardwareConfig.get_pwr_offset(ref_pwr_idx=4, channel="2", mcs="6"), 9 ) self.assertEqual( HardwareConfig.get_pwr_offset(ref_pwr_idx=5, channel="3", mcs="5"), 7 ) self.assertEqual( HardwareConfig.get_pwr_offset(ref_pwr_idx=7, channel="2", mcs="10"), -3 ) self.assertEqual(HardwareConfig.get_pwr_offset(target_pwr_idx=5), -2)
2.609375
3
task-library/efficientip/EipGetSubnetName.py
mlavi/blueprints
60
12795447
<reponame>mlavi/blueprints #region headers # * authors: <EMAIL> # * date: 30/03/2020 # task_name: EipGetSubnets # description: Get available networks attached to a site on EfficientIP # input vars: eip_site_name, eip_min_free_ip # output vars: subnet_lists #endregion # this script is used to retreive a list of available subnets on EIP # this list is provided during at the application launch using dynaminy variable # all print are commented #region capture Calm variables username = "@@{eip_username}@@" password = <PASSWORD>}@@" api_server = "@@{eip_endpoint}@@" site_name = "@@{eip_site_name}@@" min_free_ip = "@@{eip_min_free_ip}@@" is_terminal = "1" #means that the subnet cannot contains others subnets as children #endregion # region prepare api call api_server_port = "443" api_server_endpoint = "/rest" method = "GET" base_url = "https://{}:{}{}".format(api_server, api_server_port, api_server_endpoint) headers = {'Content-Type': 'application/json', 'Accept': 'application/json'} # endregion #region API call function def process_request(url, method, headers, payload=None): if (payload is not None): payload = json.dumps(payload) r = urlreq(url, verb=method, auth='BASIC', user=username, passwd=password, params=payload, verify=False, headers=headers) if not r.ok: print("Request failed") exit(1) return r #endregion #region main processing # make the api call url = "{0}/ip_block_subnet_list?WHERE={1}='{2}'&WHERE={3}='{4}'".format(base_url, "is_terminal", is_terminal, "parent_site_name", site_name) #print("Making a {} API call to {}".format(method, url)) resp = process_request(url, method, headers) # parsing the response subnets_list = [] subnets = json.loads(resp.content) for subnet in subnets: if subnet['subnet_ip_free_size'] != int(min_free_ip): subnets_list.append(format(subnet['subnet_name'])) # return array use for dynamic variable input print(", ".join(subnets_list)) #endregion
2.328125
2
lib_client/src/d1_client/tests/test_session.py
DataONEorg/d1_python
15
12795448
<filename>lib_client/src/d1_client/tests/test_session.py<gh_stars>10-100 #!/usr/bin/env python # This work was created by participants in the DataONE project, and is # jointly copyrighted by participating institutions in DataONE. For # more information on DataONE, see our web site at http://dataone.org. # # Copyright 2009-2019 DataONE # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import hashlib import logging import freezegun import pytest import requests import requests.exceptions import responses import d1_common.logging_context import d1_client.session import d1_test.d1_test_case import d1_test.mock_api.get import d1_test.mock_api.post import d1_test.sample logger = logging.getLogger(__name__) @d1_test.d1_test_case.reproducible_random_decorator("TestSession") @freezegun.freeze_time("1945-01-02") class TestSession(d1_test.d1_test_case.D1TestCase): def _get_hash(self, pid): d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) s = d1_client.session.Session(d1_test.d1_test_case.MOCK_MN_BASE_URL) response = s.GET(["object", pid]) return hashlib.sha1(response.content).hexdigest() def _get_response(self, pid, header_dict=None): d1_test.mock_api.get.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) s = d1_client.session.Session(d1_test.d1_test_case.MOCK_MN_BASE_URL) return s.GET(["object", pid], headers=header_dict or {}) def _post(self, query_dict, header_dict, body): d1_test.mock_api.post.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) s = d1_client.session.Session( d1_test.d1_test_case.MOCK_MN_BASE_URL, query={"default_query": "test"} ) return s.POST(["post"], query=query_dict, headers=header_dict, data=body) def _post_fields(self, fields_dict): d1_test.mock_api.post.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) s = d1_client.session.Session(d1_test.d1_test_case.MOCK_MN_BASE_URL) return s.POST(["post"], fields=fields_dict) @responses.activate def test_1000(self): """HTTP GET is successful. Mocked GET returns object bytes uniquely tied to given PID.""" a_pid = "pid_hy7tf83453y498" b_pid = "pid_09y68gh73n60" c_pid = "pid_987i075058679589060" a_hash = self._get_hash(a_pid) b_hash = self._get_hash(b_pid) c_hash = self._get_hash(c_pid) assert a_hash != b_hash assert b_hash != c_hash assert a_hash != c_hash a1_hash = self._get_hash(a_pid) c1_hash = self._get_hash(c_pid) c2_hash = self._get_hash(c_pid) a2_hash = self._get_hash(a_pid) assert a_hash == a1_hash assert a_hash == a2_hash assert c_hash == c1_hash assert c_hash == c2_hash @responses.activate def test_1010(self): """Successful HTTP GET returns 200 OK.""" response = self._get_response("pid1") assert response.status_code == 200 @responses.activate def test_1020(self): """HTTP GET 404.""" response = self._get_response("valid_pid", header_dict={"trigger": "404"}) assert response.status_code == 404 self.sample.assert_equals(response.text, "get_404") @responses.activate def test_1030(self): """HTTP GET against http://some.bogus.address/ raises ConnectionError.""" s = d1_client.session.Session("http://some.bogus.address") with d1_common.logging_context.LoggingContext(logger): logger.setLevel(logging.ERROR) with pytest.raises(requests.exceptions.ConnectionError): s.GET("/") @responses.activate def test_1040(self): """HTTP POST is successful Roundtrip for body, headers and query params.""" body_bytes = b"test_body" header_dict = {"ijkl": "9876", "mnop": "5432"} response = self._post({}, header_dict, body_bytes) r_dict = response.json() d1_test.sample.assert_equals(r_dict, "post_roundtrip") @responses.activate def test_1050(self): """Query params passed to Session() and individual POST are correctly combined.""" d1_test.mock_api.post.add_callback(d1_test.d1_test_case.MOCK_MN_BASE_URL) body_bytes = b"test_body" query_dict = {"abcd": "1234", "efgh": "5678"} header_dict = {"ijkl": "9876", "mnop": "5432"} response = self._post(query_dict, header_dict, body_bytes) r_dict = response.json() d1_test.sample.assert_equals(r_dict, "post_roundtrip_query") @responses.activate def test_1060(self): """Roundtrip for HTML Form fields.""" field_dict = {"post_data_1": "1234", "post_data_2": "5678"} response = self._post_fields(field_dict) r_dict = response.json() d1_test.sample.assert_equals(r_dict, "post_roundtrip_form_fields") @responses.activate def test_1070(self): """cURL command line retains query parameters and headers.""" query_dict = {"abcd": "1234", "efgh": "5678"} header_dict = {"ijkl": "9876", "mnop": "5432"} s = d1_client.session.Session(d1_test.d1_test_case.MOCK_MN_BASE_URL) curl_str = s.get_curl_command_line( "POST", "http://some.bogus.address", query=query_dict, headers=header_dict ) d1_test.sample.assert_equals(curl_str, "curl_command_line")
1.875
2
src/myrl/environments/environment.py
erwanlecarpentier/myrl
0
12795449
""" Abstract environment class """ class Environment(object): def __init__(self, name, actions, gamma): self.name = name self.actions = actions self.gamma = gamma def get_state_dimension(self): return None def get_state_dtype(self): return None def get_state_magnitude(self): return None def get_initial_state(self): return None def step(self, s, a): """ :param s: state :param a: actionSmall :return: r, s_p, is_terminal(s_p) """ return 0.0, None, False def get_info(self): """ Get general information to be saved on disk. """ return { 'name': self.name, 'actions': self.actions, 'gamma': self.gamma }
3.171875
3
backend/common/routes.py
dogzz9445/TAWeb
0
12795450
<filename>backend/common/routes.py from common.api.views.base import RestViewSet from common.api.views.analyzed import AnalyzedRestViewSet routes = [ {'regex': r'rest', 'viewset': RestViewSet, 'basename': 'Rest'}, {'regex': r'analyzed', 'viewset': AnalyzedRestViewSet, 'basename': 'Analyzed'} ]
1.625
2