max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
grocery/products/migrations/0006_auto_20210426_1320.py
DeepakDk04/bigbasketClone
0
12786851
<reponame>DeepakDk04/bigbasketClone<filename>grocery/products/migrations/0006_auto_20210426_1320.py # Generated by Django 3.1.7 on 2021-04-26 07:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('products', '0005_auto_20210426_1318'), ] operations = [ migrations.AlterField( model_name='category', name='description', field=models.CharField(default='', max_length=200), ), migrations.AlterField( model_name='product', name='price', field=models.IntegerField(default=0), ), migrations.AlterField( model_name='product', name='stockCount', field=models.IntegerField(default=0), ), ]
1.65625
2
main.py
Praveendwivedi/Recento
0
12786852
import discord import os import requests,json import tweepy consumer_key=os.getenv('C_K') consumer_secret=os.getenv('C_S') access_token=os.getenv('A_T') access_token_secret=os.getenv('A_S') auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) r = requests.get('https://api.github.com/user', auth=('user', 'pass')) print(r.json()) print(r.status_code) client = discord.Client() @client.event async def on_ready(): print('hello, I\'m {0.user}'.format(client)) @client.event async def on_message(msg): if msg.author==client.user: return if msg: print(msg) await msg.channel.send('hey {}'.format(msg.author.name)) tweets = api.search(msg.content,lang='en',result_type='recent',include_entities="mashable") for tweet in tweets: if not tweet.text.startswith('RT'): await msg.channel.send(tweet.user.screen_name+' : \n'+tweet.text) client.run(os.getenv('TOKEN'))
2.796875
3
back-end/RawFishSheep/app_warehouse/migrations/0002_auto_20190508_2022.py
Coldarra/RawFishSheep
0
12786853
# Generated by Django 2.0.7 on 2019-05-08 12:22 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('app_warehouse', '0001_initial'), ] operations = [ migrations.AddField( model_name='cargoin', name='reason', field=models.CharField(default='default', max_length=20, verbose_name='入库原因'), ), migrations.AddField( model_name='cargoin', name='shelflife', field=models.IntegerField(blank=True, default=72, null=True, verbose_name='保质期'), ), migrations.AddField( model_name='cargoout', name='reason', field=models.CharField(default='default', max_length=20, verbose_name='出库原因'), ), migrations.AlterField( model_name='cargoin', name='goods', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='cargoin_by_goods', to='app_goods.Goods'), ), migrations.AlterField( model_name='cargoin', name='staletime', field=models.DateTimeField(blank=True, null=True, verbose_name='过期时间'), ), migrations.AlterField( model_name='cargoin', name='warehouse', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='cargoin_by_warehouse', to='app_warehouse.Warehouse'), ), migrations.AlterField( model_name='cargoout', name='goods', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='cargoout_by_goods', to='app_goods.Goods'), ), migrations.AlterField( model_name='cargoout', name='order', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='cargoout_by_order', to='app_order.Order'), ), migrations.AlterField( model_name='cargoout', name='warehouse', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='cargoout_by_warehouse', to='app_warehouse.Warehouse'), ), ]
1.609375
2
dock/cccp/__init__.py
Plane-walker/Okeanos
6
12786854
from .cccp import *
1.09375
1
_pkg_KuFunc/mod_ViewerShortcuts.py
tianlunjiang/_NukeStudio_v2
6
12786855
<reponame>tianlunjiang/_NukeStudio_v2 ''' Based on QuckCreate by <NAME> ''' #------------------------------------------------------------------------------ #-Module Import #------------------------------------------------------------------------------ import platform import os from Qt import QtWidgets, QtGui, QtCore import nuke, nukescripts #------------------------------------------------------------------------------ #-Header #------------------------------------------------------------------------------ __VERSION__ = '1.0' __OS__ = platform.system() __AUTHOR__ = "<NAME>" __WEBSITE__ = "jiangovfx.com" __COPYRIGHT__ = "copyright (c) %s - %s" % (__AUTHOR__, __WEBSITE__) __TITLE__ = "ViewerShortcuts v%s" % __VERSION__ def _version_(): ver=''' version 1.0 - List of convient viewer short cuts - Minor edit to fit kupipeline ''' return ver # ------------------------------------------------------------------------------ # Main Functions # ------------------------------------------------------------------------------ #Base Gridwarp Struct. #Dear Foundry... could setValue() support? gridWarpBaseStruct = ''' 1 5 5 4 1 0 {default } { { {2 _x0 _y0} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x1 _y0} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x2 _y0} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x3 _y0} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x4 _y0} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x0 _y1} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x1 _y1} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x2 _y1} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x3 _y1} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x4 _y1} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x0 _y2} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x1 _y2} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x2 _y2} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x3 _y2} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x4 _y2} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x0 _y3} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x1 _y3} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x2 _y3} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x3 _y3} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x4 _y3} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x0 _y4} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x1 _y4} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x2 _y4} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x3 _y4} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } { {2 _x4 _y4} { {2 0 _ty0} {2 0 -_ty0} {2 _tx0 0} {2 -_tx0 0} } } } ''' def CreateOnSelection(_kind): #If the viewer is connected to a node we will use input 0 for ref. Else we just use the viewer itself. if nuke.activeViewer().node().input(0): myNode = nuke.activeViewer().node().input(0) if not nuke.selectedNodes(): #Trying to be smart by assuming that you don't want to add a node to nothing. myNode.setSelected(1) else: myNode = nuke.activeViewer().node() bboxinfo = nuke.activeViewer().node()['colour_sample_bbox'].value() #Get the position info from the colour sample bbox aspect = float(myNode.width()*myNode.pixelAspect())/float(myNode.height()) #Calcualte the aspect (thanks <NAME> for notifying and <NAME> for the correction!) cornerA = [(bboxinfo[0]*0.5+0.5)*myNode.width(),(((bboxinfo[1]*0.5)+(0.5/aspect))*aspect)*myNode.height()] #Get the button left corner cornerB = [(bboxinfo[2]*0.5+0.5)*myNode.width(),(((bboxinfo[3]*0.5)+(0.5/aspect))*aspect)*myNode.height()] #Get the top right corner area_WH = [cornerB[0]-cornerA[0],cornerB[1]-cornerA[1]] #Get the width and height of the bbox area_Mid = [cornerA[0]+(area_WH[0]/2),cornerA[1]+(area_WH[1]/2)] #Get the center of the bbox if _kind == 'Crop': #-----Crop Node----- newNode = nuke.Node("Crop") newNode['box'].setValue([cornerA[0],cornerA[1],cornerB[0],cornerB[1]]) elif _kind == 'ROI': #-----ROI----- nuke.activeViewer().node()["roi"].setValue(bboxinfo) elif _kind == 'Transform': #-----Tranform Node----- newNode = nuke.Node("Transform") newNode['center'].setValue([area_Mid[0],area_Mid[1]]) elif _kind == 'GridWarp': #-----GridWarp Node----- newNode = nuke.Node("GridWarp3") gridwarpLayout = gridWarpBaseStruct for x in range(0,5): #Remap placeholder values to x and y coordinates split up to 5 subdevisions gridwarpLayout=gridwarpLayout.replace("_x%s"%x,"%.0f" % (cornerA[0]+((area_WH[0]/4)*x))) gridwarpLayout=gridwarpLayout.replace("_y%s"%x,"%.0f" % (cornerA[1]+((area_WH[1]/4)*x))) gridwarpLayout=gridwarpLayout.replace("_tx0","%.3f" % (area_WH[0]/12)) #Remap tangent's gridwarpLayout=gridwarpLayout.replace("_ty0","%.3f" % (area_WH[1]/12)) #Remap tangent's newNode['source_grid_col'].fromScript(gridwarpLayout) #Set Source Grid newNode['destination_grid_col'].fromScript(gridwarpLayout) #Set Destination Grid if _kind == 'Text': newNode = nuke.Node("Text2") newNode['box'].setValue([cornerA[0],cornerA[1],cornerB[0],cornerB[1]]) elif _kind == 'Radial': newNode = nuke.Node("Radial") newNode['area'].setValue([cornerA[0],cornerA[1],cornerB[0],cornerB[1]]) elif _kind == 'Keylight': newNode = nuke.Node("OFXuk.co.thefoundry.keylight.keylight_v201") ColorR = myNode.sample(1,area_Mid[0],area_Mid[1],area_WH[0],area_WH[1]) ColorG = myNode.sample(2,area_Mid[0],area_Mid[1],area_WH[0],area_WH[1]) ColorB = myNode.sample(3,area_Mid[0],area_Mid[1],area_WH[0],area_WH[1]) newNode['screenColour'].setValue([ColorR,ColorG,ColorB]) elif _kind == 'Tracker': #If we allready have a tracker selexted then append tracks to exsisting tracker node. if myNode.Class()=="Tracker4": newNode = myNode nuke.show(newNode) else: #Creat a new tracker node newNode = nuke.Node("Tracker4") numColumns = 31 colTrackX = 2 colTrackY = 3 colRelTrack = 12 trackIdx = int(newNode["tracks"].toScript().split(" ")[3]) newNode['add_track'].execute() newNode.knob("tracks").setValue(area_Mid[0],numColumns*trackIdx + colTrackX) newNode.knob("tracks").setValue(area_Mid[1],numColumns*trackIdx + colTrackY) newNode.knob("tracks").setValue(-area_WH[0]/2,numColumns*trackIdx + colRelTrack) newNode.knob("tracks").setValue(-area_WH[1]/2,numColumns*trackIdx + colRelTrack+1) newNode.knob("tracks").setValue(area_WH[0]/2,numColumns*trackIdx + colRelTrack+2) newNode.knob("tracks").setValue(area_WH[1]/2,numColumns*trackIdx + colRelTrack+3) elif _kind == 'CornerpinFrom': newNode = nuke.Node("CornerPin2D") newNode['from1'].setValue([cornerA[0],cornerA[1]]) newNode['from2'].setValue([cornerB[0],cornerA[1]]) newNode['from3'].setValue([cornerB[0],cornerB[1]]) newNode['from4'].setValue([cornerA[0],cornerB[1]]) elif _kind == 'CornerpinTo': newNode = nuke.Node("CornerPin2D") newNode['to1'].setValue([cornerA[0],cornerA[1]]) newNode['to2'].setValue([cornerB[0],cornerA[1]]) newNode['to3'].setValue([cornerB[0],cornerB[1]]) newNode['to4'].setValue([cornerA[0],cornerB[1]]) elif _kind == 'CornerpinFromTo': newNode = nuke.Node("CornerPin2D") newNode['to1'].setValue([cornerA[0],cornerA[1]]) newNode['to2'].setValue([cornerB[0],cornerA[1]]) newNode['to3'].setValue([cornerB[0],cornerB[1]]) newNode['to4'].setValue([cornerA[0],cornerB[1]]) newNode['from1'].setValue([cornerA[0],cornerA[1]]) newNode['from2'].setValue([cornerB[0],cornerA[1]]) newNode['from3'].setValue([cornerB[0],cornerB[1]]) newNode['from4'].setValue([cornerA[0],cornerB[1]]) elif _kind == 'Constant': newNode = nuke.Node("Constant", inpanel=False) ColorR = myNode.sample(1,area_Mid[0],area_Mid[1],area_WH[0],area_WH[1]) ColorG = myNode.sample(2,area_Mid[0],area_Mid[1],area_WH[0],area_WH[1]) ColorB = myNode.sample(3,area_Mid[0],area_Mid[1],area_WH[0],area_WH[1]) newNode['color'].setValue([ColorR,ColorG,ColorB,1])
1.59375
2
amp/broker/exchange.py
rgozi/amp
0
12786856
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2021-10-21 # @Author : iamwm from amp.broker.store import Store class Exchange: """ exchange of broker """ def __init__(self, name: str) -> None: self.name = name self.topic_manager = Store(Topic) def bind_topic(self, topic_name: str): self.topic_manager.get(topic_name) EManager = Store(Exchange) class Topic: """ topic of exchange """ def __init__(self, name: str) -> None: self.name = name
2.359375
2
ImageCaptioning/model.py
darkmatter18/Caption-AI
1
12786857
# Copyright 2020 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import torch.nn as nn import torchvision.models as models device = torch.device("cuda" if torch.cuda.is_available() else "cpu") #device = torch.device("cpu") class EncoderCNN(nn.Module): def __init__(self, embed_size): super(EncoderCNN, self).__init__() resnet = models.resnet50(pretrained=True) for param in resnet.parameters(): param.requires_grad_(False) modules = list(resnet.children())[:-1] self.resnet = nn.Sequential(*modules) self.embed = nn.Linear(resnet.fc.in_features, embed_size) def forward(self, images): features = self.resnet(images) features = features.view(features.size(0), -1) features = self.embed(features) return features class DecoderRNN(nn.Module): def __init__(self, embed_size, hidden_size, vocab_size, num_layers=1, drop=0.5): super(DecoderRNN, self).__init__() # Set the hidden size for init_hidden self.hidden_size = hidden_size self.num_layers = num_layers # Set the device self.device = device # Embedded layer self.embed = nn.Embedding(vocab_size, embed_size) # LSTM layer self.lstm = nn.LSTM(input_size=embed_size, hidden_size=hidden_size, num_layers=num_layers, batch_first= True, dropout = drop) # Dropout Layer self.drop = nn.Dropout(p=drop) # Fully Connected layer self.fc = nn.Linear(hidden_size, vocab_size) def init_hidden(self, batch_size): return (torch.zeros(self.num_layers, batch_size, self.hidden_size, device = device), torch.zeros(self.num_layers, batch_size, self.hidden_size, device = device)) def forward(self, features, hidden): # LSTM lstm_out, hidden = self.lstm(features, hidden) # Functional component out = self.fc(lstm_out) out = out.squeeze(1) out = out.argmax(dim=1) features = self.embed(out.unsqueeze(0)) # # Embedding the captions # embedded = self.embed(captions) # # print(embedded.shape) # # print(features.unsqueeze(1).shape) # # print(embedded.shape) # embedded = torch.cat((features.unsqueeze(1), embedded), dim=1) # # LSTM # lstm_out, hidden = self.lstm(features, hidden) # # Functional component # out = self.fc(lstm_out) return out, features, hidden def sample(self, inputs, states=None, max_len=20): " accepts pre-processed image tensor (inputs) and returns predicted sentence (list of tensor ids of length max_len) " # Initialize the hidden state hidden = self.init_hidden(inputs.shape[0])# features is of shape (batch_size, embed_size) out_list = list() word_len = 0 with torch.no_grad(): while word_len < max_len: lstm_out, hidden = self.lstm(inputs, hidden) out = self.fc(lstm_out) #print(out.shape) out = out.squeeze(1) out = out.argmax(dim=1) out_list.append(out.item()) inputs = self.embed(out.unsqueeze(0)) word_len += 1 if out == 1: break return out_list
2.15625
2
tests/__init__.py
grikbi/coreapi-async-worker
0
12786858
"""The unit test code for f8a-server-backbone."""
0.910156
1
PU_Bayesian_classifiers/PSTAN.py
chengning-zhang/Bayesian-Classifers-for-PU_learning
4
12786859
class PSTAN(Bayes_net_PU): name = "PSTAN" def __init__(self, alpha = 1,starting_node = 0): self.starting_node = starting_node self.alpha = alpha def Findparent(self, M): M = M.copy() # to avoid change global M np.fill_diagonal(M,0) p = int(M.shape[0]) V = range(p) # set of all nodes st = self.starting_node Vnew = [st] # vertex that already found their parent. intitiate it with starting node. TAN randomly choose one parent = {st:None} # use a dict to show nodes' interdepedency while set(Vnew) != set(V): # when their are still nodes whose parents are unknown. index_i = [] # after for loop, has same length as Vnew, shows the closest node that not in Vnew with Vnew. max_inf = [] # corresponding distance for i in range(len(Vnew)): # can be paralelled vnew = Vnew[i] ListToSorted = [e for e in M[:,vnew]] # does not need int(e) index = sorted(range(len(ListToSorted)),key = lambda k: ListToSorted[k],reverse = True) index_i.append([ele for ele in index if ele not in Vnew][0]) max_inf.append(M[index_i[-1],vnew]) index1 = sorted(range(len(max_inf)),key = lambda k: max_inf[k],reverse = True)[0] ## relative position, Vnew[v1,v2] index_i[v4,v5] max_inf[s1,s2] index1 is the position in those 3 list Vnew.append(index_i[index1]) # add in that node parent[index_i[index1]] = Vnew[index1] # add direction, it has to be that the new added node is child, otherwise some nodes has 2 parents which is wrong. return parent def fit(self,X_L, X_u, pri, M, case_control = True): # this is based on trainning data !!! X_L = check_array(X_L) X_u = check_array(X_u) if X_L.shape[1] != X_u.shape[1]: raise ValueError('labeled data and unlabeled data have different number of features ') n_L,p = X_L.shape # n_u,p = X_u.shape if case_control: X_U_or_UL = X_u else: X_U_or_UL = np.concatenate((X_L,X_u),axis = 0) # n_U_or_UL = X_U_or_UL.shape[0] parent = self.Findparent(M) # part 1: proba that can be estimated from labeled examples. 1 P(xij|1,xkl), 2 p(x_root|1) = N_L(x_root)/N_L, P(xij|1,xkl) = N_L(xi=j,xk=l)/N_L(xkl) # part 2: learn from U, N_U(xij,xkl), and N_U(xkl) # part 3: p(xij|0,xkl),p(x_root|0) from previous list # List_prob_1 = {} # 1 P(xij|1,xkl), 2 p(x_root|1) List_count_1 = {} # N_L(xij,xpal) and N_L(xij) # List_count_U_or_UL = {} # N_U(xij,xkl) and N_U(xij) # List_prob_0 = {} # p(xij|0,xkl),p(x_root|0) K = {} # for root node root_i = self.starting_node x_i_L = X_L[:,root_i] x_i_L_counter = Counter(x_i_L) x_i_U_or_UL = X_U_or_UL[:,root_i] x_i_U_or_UL_counter = Counter(x_i_U_or_UL) x_i_values = list(set(x_i_L_counter.keys()).union(x_i_U_or_UL_counter.keys())) K[root_i] = len(list(x_i_values)) # part 1 x_i_L_prob = {key: (x_i_L_counter[key]+self.alpha)/(K[root_i]*self.alpha + n_L ) for key in x_i_values} List_prob_1[root_i] = x_i_L_prob List_count_1[root_i] = x_i_L_counter # part 2 List_count_U_or_UL[root_i] = x_i_U_or_UL_counter # part 3 x_i_0_prob = {key: max([0,x_i_U_or_UL_counter[key] - x_i_L_prob[key] * pri * n_U_or_UL]) for key in x_i_values} # N_U(xi =j) - N_u*p(xij, y =1) = N_U(xij,y=0) numeritor, can be negative, make it >=0 x_i_0_prob = {key:(self.alpha + value)/ (K[root_i]*self.alpha + n_U_or_UL * (1-pri) ) for key,value in x_i_0_prob.items()} # add psudo count and divied by dem x_i_0_prob = {key: value/(sum(np.array(list(x_i_0_prob.values())))) for key,value in x_i_0_prob.items() } # normalize prob sum to 1, however, due to computation problem, it is not sum to 1 List_prob_0[root_i] = x_i_0_prob # for i in [e for e in range(0,p) if e != root_i]: x_i_values = list(set(X_L[:,i]).union(X_U_or_UL[:,i])) x_i_parent_Value = list(set(X_L[:,parent[i]]).union(X_U_or_UL[:,parent[i] ] ) ) K[i] = len(x_i_values) # part 1, P(xij|1,xkl) = N_L(xi=j,xk=l)/N_L(xkl) List_count_1[i] = {v2: {v1:X_L[(X_L[:,i] == v1) & (X_L[:,parent[i]] == v2)].shape[0] for v1 in x_i_values} for v2 in x_i_parent_Value} # {pva1: {'1': , '2':, '3': }, pval2:{}} List_prob_1[i] = {v2: {v1:(X_L[(X_L[:,i] == v1) & (X_L[:,parent[i]] == v2)].shape[0] + self.alpha)/ (X_L[(X_L[:,parent[i]] == v2)].shape[0] + self.alpha*K[i]) for v1 in x_i_values} for v2 in x_i_parent_Value} # part 2 List_count_U_or_UL[i] = {v2: {v1:X_U_or_UL[(X_U_or_UL[:,i] == v1) & (X_U_or_UL[:,parent[i]] == v2)].shape[0] for v1 in x_i_values} for v2 in x_i_parent_Value} # part 3 x_i_0_prob = {v2: {v1: List_count_U_or_UL[i][v2][v1] - List_prob_1[i][v2][v1]*pri* sum(list(List_count_U_or_UL[i][v2].values())) for v1 in x_i_values} for v2 in x_i_parent_Value} x_i_0_prob = {v2: {v1: max([0,x_i_0_prob[v2][v1] ]) for v1 in x_i_values} for v2 in x_i_parent_Value} x_i_0_prob = {v2: {v1:(x_i_0_prob[v2][v1] + self.alpha)/(self.alpha*K[i] + (1-pri)*sum(list(List_count_U_or_UL[i][v2].values())) ) for v1 in x_i_values} for v2 in x_i_parent_Value} x_i_0_prob = {v2: {v1:x_i_0_prob[v2][v1]/sum(list(x_i_0_prob[v2].values())) for v1 in x_i_values} for v2 in x_i_parent_Value} # normalize List_prob_0[i] = x_i_0_prob self.case_control_ = case_control self.is_fitted_ = True self.parent_ = parent self.n_features_, self.K_, self.List_count_1_,self.List_prob_1_, self.List_count_U_, self.List_prob_0_, self.prevalence_ = p, K, List_count_1,List_prob_1,List_count_U_or_UL,List_prob_0, pri return self def predict_proba(self,X): check_is_fitted(self) X = check_array(X) Prob_1 = [] root_i = self.starting_node for ins in X: P1 = self.prevalence_ P0 = 1 - P1 # root_i P1 = P1 * (self.List_prob_1_[root_i][ins[root_i]]) P0 = P0 * (self.List_prob_0_[root_i][ins[root_i]]) for i in [e for e in range(0,self.n_features_) if e != root_i]: pValue = ins[self.parent_[i]] P1 = P1 * (self.List_prob_1_[i][pValue][ins[i]]) P0 = P0 * (self.List_prob_0_[i][pValue][ins[i]]) P = P1 + P0 P1 = P1/P; P0 = P0/P Prob_1.append(P1) # Prob_1 = np.array(Prob_1) return Prob_1
2.65625
3
learn/tests/tests_services/tests_signal.py
Aigrefin/py3learn
0
12786860
<gh_stars>0 import smtplib from unittest.mock import call, Mock, MagicMock, patch from django.contrib.auth.models import User from django.test import TestCase from learn.models import Translation, Dictionary from learn.services import signals class SignalsTests(TestCase): def test_shouldSendMailContaining_DictionaryLanguage_KnownWord_WordToLearn(self): # Given false_send_mail = Mock() false_objects = MagicMock() false_objects.filter.return_value = [User(email='<EMAIL>',is_staff=False,is_superuser=False)] false_users_db = MagicMock() false_users_db.objects = false_objects dictionary = Dictionary(language='Vietnamese') translation = Translation(known_word='Bien mangé, plein', word_to_learn='No', dictionary=dictionary) # When signals.send_mail_on_new_word(Translation, instance=translation, send=false_send_mail, user_objects=false_users_db) # Then args_list = false_send_mail.call_args_list[0][0] self.assertEqual(args_list[0], 'New word : Bien mangé, plein') self.assertEqual(args_list[1], 'Hi !\n\n' 'A new word has been added to the Vietnamese dictionary.\n\n' 'Known word : Bien mangé, plein' '\nWord to learn : No\n\n' 'Seen you soon !') self.assertEqual(args_list[2], ['<EMAIL>']) @patch("logging.getLogger") def test_shouldLogAndNotFail_whenCannotLoginToSMTP(self, get_logger_mock): # Given false_logger = Mock() get_logger_mock.return_value = false_logger false_send_mail = Mock() false_send_mail.side_effect = smtplib.SMTPAuthenticationError(534, b'5.7.14 <https://accounts.google.com/signin/continue> Please log in via your web browser and\n5.7.14 then try again.\n5.7.14 Learn more at\n5.7.14 https://support.google.com/mail/answer/78754 - gsmtp'); false_objects = MagicMock() false_objects.filter.return_value = [] false_users_db = MagicMock() false_users_db.objects = false_objects # When signals.send_mail_on_new_word(Translation, instance=Mock(), send=false_send_mail, user_objects=false_users_db) # Then self.assertEqual(get_logger_mock.call_args_list[0], call('learn.services.signals')) self.assertEqual(false_logger.exception.call_args_list[0], call('smtp login failed'))
2.515625
3
Greedy/045. Jump Game II.py
beckswu/Leetcode
138
12786861
class Solution: def jump(self, nums): """ :type nums: List[int] :rtype: int """ n = len(nums) if n<2: return 0 step, reach, next = 0, 0, 0 for i, v in enumerate(nums): if i == reach: reach = max(next, i+v) step += 1 if reach >= n-1: break next = nums[reach] + reach else: next = max(next, i+v) return step class Solution: def jump(self, nums): n = len(nums) step, end, next = 0, 0, 0 for i, v in enumerate(nums[:-1]): next = max(next, i + v) if i == end: step += 1 end = next return step class Solution: # @param {integer[]} nums # @return {integer} def jump(self, nums): n, start, end, step = len(nums), 0, 0, 0 while end < n - 1: step += 1 maxend = end + 1 for i in range(start, end + 1): if i + nums[i] >= n - 1: return step maxend = max(maxend, i + nums[i]) start, end = end + 1, maxend return step class Solution: # @param {integer[]} nums # @return {integer} def jump(self, nums): n, cur_max, next_max, steps = len(nums), 0, 0, 0 for i in range(n): if i>cur_max: steps+=1 cur_max=next_max if cur_max>=n:break next_max=max(next_max,nums[i]+i) return steps class Solution: def jump(self, nums: List[int]) -> int: if len(nums) <= 1: return 0 l, r = 0, nums[0] times = 1 while r < len(nums) - 1: times += 1 nxt = max(i + nums[i] for i in range(l, r + 1)) l, r = r, nxt return times
3.390625
3
tests/sampling/test_sampler.py
leopoldavezac/BayesianMMM
18
12786862
from _pytest.mark import param import pytest import numpy as np from bayesian_mmm.sampling.stan_model_generator import StanModelGenerator from bayesian_mmm.sampling.sampler import Sampler from bayesian_mmm.sampling.stan_model_wrapper import StanModelWrapper MAX_LAG = 4 SPENDS = np.array([[10, 20], [0, 8], [1, 30], [5, 40]]) LAGGED_SPENDS = np.array([ [[10, 0, 0, 0], [20, 0, 0, 0]], [[ 0, 10, 0, 0], [ 8, 20, 0, 0]], [[ 1, 0, 10, 0], [30, 8, 20, 0]], [[ 5, 1, 0, 10], [40, 30, 8, 20]] ]) CTRL_VARS = np.array([ [2, 4], [5, 2], [6, 4], [7, 2] ]) REVENUE = np.array([1, 2, 3, 4]) N = 4 NUM_MEDIA = 2 NUM_CTRL = 2 STAN_MODEL = StanModelWrapper @pytest.mark.parametrize( "ctrl_vars", [CTRL_VARS, None] ) def test_create_sampler_input(ctrl_vars): if type(ctrl_vars) == np.ndarray: expected_args = { "N":N, "Y":REVENUE, "max_lag":MAX_LAG, "num_media":NUM_MEDIA, "X_media":LAGGED_SPENDS, "num_ctrl":NUM_CTRL, "X_ctrl":CTRL_VARS } else: expected_args = { "N":N, "Y":REVENUE, "max_lag":MAX_LAG, "num_media":NUM_MEDIA, "X_media":LAGGED_SPENDS } sampler = Sampler(STAN_MODEL, MAX_LAG) sampler.create_stan_input( SPENDS, ctrl_vars, REVENUE ) obtained_args = sampler._Sampler__args expected_args_keys = list(expected_args.keys()) expected_args_keys.sort() obtained_args_keys = list(obtained_args.keys()) obtained_args_keys.sort() assert obtained_args_keys == expected_args_keys for key, val in expected_args.items(): if type(val) == np.ndarray: assert (val == obtained_args[key]).all() else: assert val == obtained_args[key] # slow to run (stan compilation + sampling) @pytest.mark.parametrize( "carryover_transfo_nm,diminushing_returns_transfo_nm,with_ctrl_vars", [ ("adstock","hill",True), ("adstock","hill",False), ("adstock","reach",True), ("adstock","reach",False), ("geo_decay","hill",True), ("geo_decay","hill",False), ("geo_decay","reach",True), ("geo_decay","reach",False) ] ) def test_run_sampling( carryover_transfo_nm, diminushing_returns_transfo_nm, with_ctrl_vars ): CARRYOVER_TRANSFO_NM_TO_PARAM_NM = { "geo_decay":["retain_rate"], "adstock":["retain_rate", "delay"] } DIMINUSHING_RETURNS_TRANSFO_NM_TO_PARAM_NM = { "hill":["ec", "slope"], "reach":["half_saturation"] } WITH_CTRL_VARS_TO_PARAM_NM = { True:["gamma_ctrl"], False:[] } stan_model_generator = StanModelGenerator( carryover_transfo_nm, diminushing_returns_transfo_nm, with_ctrl_vars ) stan_model_generator.create_model() stan_model = stan_model_generator.get_model() sampler = Sampler(stan_model, MAX_LAG) if with_ctrl_vars: ctrl_vars = CTRL_VARS else: ctrl_vars = None sampler.create_stan_input( SPENDS, ctrl_vars, REVENUE ) obtained_results = sampler.run_sampling(100, 3) expected_param_nms = ( CARRYOVER_TRANSFO_NM_TO_PARAM_NM[carryover_transfo_nm] + DIMINUSHING_RETURNS_TRANSFO_NM_TO_PARAM_NM[diminushing_returns_transfo_nm] + WITH_CTRL_VARS_TO_PARAM_NM[with_ctrl_vars] + ["beta_medias", "tau"] ) expected_param_nms.sort() obtained_params_nms = list(obtained_results.keys()) obtained_params_nms.sort() assert expected_param_nms == obtained_params_nms for param_nm, values in obtained_results.items(): if param_nm != "tau": assert values.shape == (100,2) else: assert values.shape == (100,)
1.953125
2
examples/eventTester.py
tgolsson/appJar
666
12786863
<filename>examples/eventTester.py import sys sys.path.append("../") from appJar import gui def press(btn): print("default:", btn) if btn == "writing": app.setTextArea("t1", "some writing") elif btn == "writing2": app.setTextArea("t2", "some writing") elif btn == "get": print(app.getTextArea("t1")) elif btn == "get2": print(app.getTextArea("t2")) elif btn == "log": app.logTextArea("t1") elif btn == "log2": app.logTextArea("t2") elif btn == "check": print(app.textAreaChanged("t1")) elif btn == "check2": print(app.textAreaChanged("t2")) def sub(btn): print("submit ", btn) def chng(btn): print("change ", btn) if btn in ["t1", "t2"]: print(app.getTextArea(btn)) app=gui("Event Tester") app.addLabel("l1", "click me", 0, 0) app.setLabelChangeFunction("l1", press) app.addLabel("l2", "click me", 0, 1) app.setLabelSubmitFunction("l2", press) app.addEntry("e1", 1, 0, 2) app.setEntrySubmitFunction("e1", sub) app.setEntryChangeFunction("e1", chng) app.addTextArea("t1", 2, 0) app.setTextAreaSubmitFunction("t1", sub) app.setTextAreaChangeFunction("t1", chng) app.addScrolledTextArea("t2", 2, 1) app.setTextAreaSubmitFunction("t2", sub) app.setTextAreaChangeFunction("t2", chng) app.addButton("writing", press, 3, 0) app.addButton("writing2", press, 3, 1) app.addButton("get", press, 4, 0) app.addButton("get2", press, 4, 1) app.addButton("log", press, 5, 0) app.addButton("log2", press, 5, 1) app.addButton("check", press, 6, 0) app.addButton("check2", press, 6, 1) app.go()
2.71875
3
doxieautomator/doxie.py
ninapavlich/doxie-automator
4
12786864
import os import sys import time import json import cStringIO import logging import requests from requests.auth import HTTPBasicAuth from PIL import Image from base import SingleInstance import settings class DoxieAutomator(SingleInstance): scanner_online = False DELETE_ON_CORRUPTED = True #If true, delete a file that has an IO error. This happens when the file on the doxie is corrupted. LOCK_PATH = os.path.join(os.path.abspath(os.path.dirname(sys.argv[0])), "DoxieAutomator-lock") _observers = [] def initialize(self): self.log(u"Looking for Doxie on %s"%(settings.DOXIE_SERVER)) self._observers = [] self.loop() def loop(self): files = self._get_latest_images() status = self._prepare_and_store_images(files) def bind_to(self, callback): self._observers.append(callback) def _get_all_scans_url(self): return u'%s/scans.json'%(settings.DOXIE_SERVER) def _get_latest_images(self): try: if settings.DOXIE_USERNAME and settings.DOXIE_PASSWORD: r = requests.get(self._get_all_scans_url(), auth=(settings.DOXIE_USERNAME, settings.DOXIE_PASSWORD)) else: r = requests.get(self._get_all_scans_url()) except requests.exceptions.Timeout: # Maybe set up for a retry, or continue in a retry loop self.log(u'Timeout trying to connect to %s'%(self._get_all_scans_url())) return [] except requests.exceptions.TooManyRedirects: # Tell the user their URL was bad and try a different one self.log(u'Too many redirect when trying to connect to %s'%(self._get_all_scans_url())) return [] except requests.exceptions.RequestException as e: # catastrophic error. bail. self.log(u'Error when trying to connect to %s: %s'%(self._get_all_scans_url(), str(e))) return [] try: scans_json = json.loads( r.text ) if self.scanner_online == False: self.log(u"Doxie online") self.scanner_online = True if len(scans_json) > 0: self.log(u"Detected %s new scans"%(len(scans_json))) except ValueError, e: scans_json = None if self.scanner_online == True: self.log("Doxie offline") self.scanner_online = False if scans_json: return [ u'%s/scans%s'%(settings.DOXIE_SERVER, scan["name"]) for scan in scans_json] return [] def _prepare_and_store_images(self, files): counter = 1 for file in files: filename = self._process_filename(file, 'pdf', counter, len(files)) image = self._retrieve_image(file) retrieve_successful = False try: retrieve_successful, local_filename = self._store_file(filename, image) except IOError as e: self.log(u"I/O error({0}) on {1}: {2}".format(e.errno, filename, e.strerror)) if retrieve_successful == True or DoxieAutomator.DELETE_ON_CORRUPTED: self._delete_original(file) else: self.log(u"Skipping deleting file %s since retrieval was not successful"%(filename)) if retrieve_successful: for callback in self._observers: callback(local_filename) counter += 1 def _retrieve_image(self, url): self.log('Retrieving %s from Doxie'%(url)) if settings.DOXIE_USERNAME and settings.DOXIE_PASSWORD: r = requests.get(url, auth=(settings.DOXIE_USERNAME, settings.DOXIE_PASSWORD), stream=True) else: r = requests.get(url, stream=True) r.raw.decode_content = True #If the image file on Doxie is .PDF, PIL doesn't process it properly. #A workaround is to dump the http request content into a cStriongIO, #the advantage is that it can be reused without having to make #another requests to Doxie. This way if errors are thrown we can try #again with a different method. csi = cStringIO.StringIO() csi.write(r.raw.read()) csi.seek(0)#rewind try: im = Image.open(csi) except IOError: self.log('%s not a .jpg file. Probably a .pdf file.'%(url)) csi.seek(0)#rewind return csi return im def _process_filename(self, filename, filetype, counter, total): timestr = time.strftime("%Y-%m-%d_%H-%M-%S") if total > 1: return u'%s-%s.%s'%(timestr, counter, filetype) return u'%s.%s'%(timestr, filetype) def _store_file(self, filename, image): timestr = time.strftime("%Y-%m-%d") doxie_file_folder = u'%s/%s'%(settings.DOXIE_FOLDER, timestr) if not os.path.exists(doxie_file_folder): os.makedirs(doxie_file_folder) image_path = u'%s/%s'%(doxie_file_folder, filename) self.log('Saving new scan to %s'%(image_path)) # At this point image is either a PIL.Image, or just a raw # IO object try: image.convert('RGB').save(image_path, "PDF", Quality = 100) except AttributeError: image.seek(0)#rewind with open(image_path,'w') as destination: destination.write(image.read()) return (True, image_path) def _delete_original(self, original): self.log('Clearing %s from Doxie.'%(original)) r = requests.delete(original)
2.46875
2
isi_mip/core/migrations/0009_auto_20180221_1017.py
ISI-MIP/isimip
4
12786865
<filename>isi_mip/core/migrations/0009_auto_20180221_1017.py # -*- coding: utf-8 -*- # Generated by Django 1.10.8 on 2018-02-21 09:17 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0008_auto_20180215_1138'), ] operations = [ migrations.AlterField( model_name='confirmdatapublication', name='body', field=models.TextField(default='Dear {model_contact_person},\n\nwe have completed the basic quality check for the {simulation_round} simulation data you uploaded recently. You can find the quality-checked data, which is now visible to all ISIMIP participants, in the relevant directory on the DKRZ server:\n/work/bb0820/ISIMIP/ISIMIP2b/OutputData/{sector}/{impact_model}/… The data cover the experiments:\n\n{custom_text}\n\nWe are now ready to copy this data to the ISIMIP node of the ESGF server at esg.pik-potsdam.de, as stated in the terms of use by following the instructions on the data confirmation page:\n\n{data_confirm_page}\n\nBest wishes from the ISIMIP management team.\n\n', help_text='You can use the following tokens in the email template: {model_contact_person}, {simulation_round}, {sector}. {impact_model}'), ), migrations.AlterField( model_name='confirmdatapublication', name='subject', field=models.CharField(default='[ISIMIP] Data confirmation request', help_text='Invitation subject', max_length=500), ), ]
1.625
2
src/model/pretrained_wordvec.py
Sakchhi/yelp_analysis
2
12786866
<filename>src/model/pretrained_wordvec.py<gh_stars>1-10 import config, run_config import os import pickle import csv import numpy as np from sklearn.model_selection import train_test_split import pandas as pd import spacy from sklearn import metrics from sklearn.linear_model import LogisticRegression nlp = spacy.load('en') def get_vectors(row): doc = nlp(row) full_w2v = np.array([w.vector for w in doc]) return pd.Series(full_w2v.mean(axis=0)) def get_predictions(train_data, train_labels, test_data): log_reg_model = LogisticRegression() log_reg_model.fit(train_data, train_labels) predictions = log_reg_model.predict(test_data) pickle_file_name = os.path.join(config.MODEL_DIR, 'classifier_model/{}_logreg_pretrained_spacy96_v{}.pickle'.format( run_config.model_date_to_read, run_config.model_version_to_read)) pickle.dump(log_reg_model, open(pickle_file_name, 'wb')) return predictions if __name__ == '__main__': df_raw = pd.read_csv(os.path.join(config.CLEANED_REVIEWS_ROOT, "20200125_yelp_restaurant_reviews_cleaned_gr1000_10k_v1.3.csv")) # .format( # run_config.model_date_to_read, run_config.model_version_to_read))) df_raw.full_text_cleaned_text.fillna('', inplace=True) print(df_raw.columns.tolist()) df_feature = pd.DataFrame(df_raw.full_text_cleaned_text.values, columns=['text']) df_feature['label_rating'] = df_raw.stars_x.apply(lambda r: int(r > 3)) print(df_feature.label_rating.value_counts()) df_wordvec = df_raw.full_text_cleaned_text.apply(lambda r: get_vectors(r)) print(df_wordvec.shape) X_train, X_val, y_train, y_val = train_test_split(df_wordvec, df_feature.label_rating, test_size=0.2, random_state=42) y_pred = get_predictions(X_train, y_train, X_val) accuracy_score = metrics.accuracy_score(y_val, y_pred) print(accuracy_score) cm = metrics.confusion_matrix(y_val, y_pred) tp, fn, fp, tn = cm[0][0], cm[0][1], cm[1][0], cm[1][1] fpr = fp / (fp + tn) print("FPR = {}".format(fpr)) print("TPR = {}".format(tp / (tp + fn))) f1 = metrics.f1_score(y_val, y_pred) print("F1 Score = {}".format(f1)) columns = ['Run', 'Accuracy', 'FPR', 'F1 Score', 'Preprocessing', 'Feature', 'Model', 'Notes'] preprocessing_notes = "NO STEMMER, wordninja, Custom stopwords" feature_notes = "Pretrained Spacy Word2Vec -- 96 avg" model_notes = "Logistic Regression" misc_notes = "" fields = [run_config.model_version_to_write, accuracy_score, fpr, f1, preprocessing_notes, feature_notes, model_notes, misc_notes] with open(os.path.join(config.LOGS_DIR, r'results_summary.csv'), 'a', newline='') as f: writer = csv.writer(f) writer.writerow(fields) df_predictions = pd.DataFrame({"Predictions": y_pred, "Labels": y_val}, index=df_raw.loc[X_val.index]['review_id']) df_predictions.to_excel(os.path.join(config.OUTPUTS_DIR, '{}_LogisticRegression_pretrained_spacy96_v{}.xlsx'.format( run_config.model_date_to_write, run_config.model_version_to_write)))
2.625
3
third_party/NW Script Tools/Miscellaneous Tools/NW Go To Frame.py
n1ckfg/C4DToolbox
9
12786867
<filename>third_party/NW Script Tools/Miscellaneous Tools/NW Go To Frame.py import c4d # reference Cinema4D's existing library of code, called a "module" def main(): # Define the main function of the script # - - - - - - COPY THE FOLLOWING INTO YOUR SCRIPT, ABOVE THE MAIN FUNCTION - - - - - - - def gotoframe(GoToFrame): # Define a function called "gotoframe", which will act as a container for the script to be implemented in other scripts. FPS = doc[c4d.DOCUMENT_FPS] # Define FPS to look at the current document's fps setting Time = c4d.BaseTime(GoToFrame,FPS) # Define Time to find the new frame location based on the combination of the current frame, the number of frames to advance, and the fps setting of the document doc.SetTime(Time) # Move the playhead to the newly referenced location in the timeline c4d.EventAdd() # Refresh the scene to update the change # - - - - - - COPY THE ABOVE INTO YOUR SCRIPT, ABOVE THE MAIN FUNCTION - - - - - - - - # Once you have this copied into your script, you can simply call up the function and insert your value in the parentheses. # Example: gotoframe(20) will move your playhead to frame 20 if the above is in place. You don't have to copy/paste the whole thing each time you want to use it that way. if __name__=='__main__': # These two lines close out the main function. This is usually what will be used to end your script. main()
3.28125
3
bmsapp/__init__.py
alanmitchell/bmon
11
12786868
<reponame>alanmitchell/bmon from . import logging_setup # causes logging setup code to run.
0.984375
1
sqlint/parser/__init__.py
moriaki3193/sqlint
1
12786869
<filename>sqlint/parser/__init__.py # -*- coding: utf-8 -*- from sqlint.parser import config from sqlint.parser import parser from sqlint.parser import pattern from sqlint.parser import token __all__ = [ 'config', 'parser', 'pattern', 'token' ]
1.742188
2
mdcorpus/examples/parse_character.py
sosuke-k/cornel-movie-dialogs-corpus-storm
1
12786870
#! /usr/bin/env python # -*- coding: utf-8 -*- from storm.locals import * from mdcorpus.orm import * from mdcorpus.parser import * parser = Parser() f = open("sample_movie_characters_metadata.txt") line = f.readline() while line: print "=== parse this line ===" print line list = parser.movie_characters_metadata(line) character = MovieCharactersMetadata(list[0], list[1], list[-2], list[-1]) print character.name.encode("utf-8") + " (" + character.gender() + ") appears in '" + list[-3] + "'" print "" line = f.readline() f.close
2.859375
3
one_fm/patches/v1_0/change_title_in_grd.py
askmetoo/One-FM
16
12786871
from __future__ import unicode_literals import frappe from frappe.desk.doctype.notification_log.notification_log import enqueue_create_notification,\ get_title, get_title_html def execute(): set_title_wp_as_civil_id() set_title_mi_as_civil_id() set_title_moi_as_civil_id() set_title_fp_as_civil_id() def set_title_wp_as_civil_id(): for doc in frappe.get_all('Work Permit'): wp_doc = frappe.get_doc('Work Permit',doc.name) wp_doc.title = wp_doc.civil_id print(doc.name) print(wp_doc.title) print("===========") def set_title_mi_as_civil_id(): for doc in frappe.get_all('Medical Insurance'): mi_doc = frappe.get_doc('Medical Insurance',doc.name) mi_doc.title = mi_doc.civil_id print(doc.name) print(mi_doc.title) print("===========") def set_title_moi_as_civil_id(): for doc in frappe.get_all('MOI Residency Jawazat'): moi_doc = frappe.get_doc('MOI Residency Jawazat',doc.name) moi_doc.title = moi_doc.one_fm_civil_id print(doc.name) print(moi_doc.title) print("===========") def set_title_fp_as_civil_id(): for doc in frappe.get_all('Fingerprint Appointment'): fp_doc = frappe.get_doc('Fingerprint Appointment',doc.name) fp_doc.title = fp_doc.civil_id print(doc.name) print(fp_doc.title) print("===========")
1.890625
2
personal/Ervin/tf_collaborative_user.py
edervishaj/spotify-recsys-challenge
3
12786872
<reponame>edervishaj/spotify-recsys-challenge<filename>personal/Ervin/tf_collaborative_user.py """ @author <NAME> @email <EMAIL> """ from recommenders.recommender import Recommender from recommenders.similarity.s_plus import * from utils.datareader import Datareader from utils.evaluator import Evaluator from utils.post_processing import eurm_to_recommendation_list import time import numpy as np from scipy import sparse as sps from sklearn.preprocessing import normalize class TF_collaborative_user(Recommender): def __init__(self): super() def compute_model(self, knn=100, power=1.0, verbose=False, save_model=False, target_items=None): if verbose: print("[ Creating model with user TF-IDF similarity ]") start_time = time.time() # Calculate DF[t] & IDF[t] dft = self.urm.sum(axis=0).A1 idft = np.log(self.urm.shape[0] / (dft + 1e-8)) # Multiply each listened track with its respective idf URM_enhanced = self.urm.multiply(idft).tocsr() # Get the user similarity matrix self.model = dot_product(URM_enhanced, self.urm.T, k=knn, verbose=verbose, target_items=target_items) self.model = self.model.tolil() self.model.setdiag(np.zeros(self.model.shape[0])) self.model = self.model.tocsr() self.model.eliminate_zeros() self.model.data = np.power(self.model.data, power) if save_model: if verbose: print('[ Saving the model ]') sps.save_npz('tf_idf_user_sim_'+str(knn), self.model) if verbose: print("time: " + str(int(time.time() - start_time) / 60)) return self.model def compute_rating(self, top_k=500, verbose=False, small=False): if small: self.model = sps.csr_matrix(self.model.tocsr()[self.pid]) self.urm = sps.csr_matrix(self.urm) self.model = sps.csr_matrix(self.model) if verbose: print("[ Compute ratings ]") start_time = time.time() # Normalize the original URM to get cv for each track listened by the users user_pen = normalize(self.urm, axis=1, norm='l1') # Calculate DF[t] & IDF[t] dft = self.urm.sum(axis=0).A1 idft = np.log(self.urm.shape[0] / (dft + 1e-8)) # Multiply each listened track with its respective idf URM_enhanced = self.urm.multiply(idft).tocsr() # Computer the eURM self.eurm = dot_product(self.model, user_pen, k=top_k, verbose=verbose, target_items=self.pid) if verbose: print("time: " + str(int(time.time() - start_time) / 60)) return self.eurm if __name__ == '__main__': dr = Datareader(verbose=True, mode='offline', only_load=True) urm = dr.get_urm(binary=True) pid = dr.get_test_pids() ev = Evaluator(dr) topk = 750 configs = [ {'cat': 10, 'knn': 100, 'power': 2.4}, {'cat': 9, 'knn': 200, 'power': 0.4}, {'cat': 8, 'knn': 100, 'power': 2}, {'cat': 7, 'knn': 300, 'power': 1}, {'cat': 6, 'knn': 300, 'power': 2}, {'cat': 5, 'knn': 500, 'power': 2.4}, {'cat': 4, 'knn': 300, 'power': 1.8}, {'cat': 3, 'knn': 200, 'power': 2.2}, {'cat': 2, 'knn': 500, 'power': 1} ] eurm = sp.csr_matrix(urm.shape) rec = TF_collaborative_user() for c in configs: pid = dr.get_test_pids(cat=c['cat']) rec.fit(urm, pid) rec.compute_model(verbose=True, knn=c['knn'], save_model=False, power=c['power'], target_items=pid) rec.compute_rating(top_k=topk, verbose=True, small=False) eurm = eurm + rec.eurm del rec.eurm del rec.model pids = dr.get_test_pids() eurm = eurm[pids] ev.evaluate(recommendation_list=eurm_to_recommendation_list(eurm, datareader=dr, remove_seed=True), name="tfidf_collaborative_user", old_mode=False)
2.421875
2
tenable_light.py
andrewspearson/tenable_light
1
12786873
<reponame>andrewspearson/tenable_light<filename>tenable_light.py<gh_stars>1-10 import configparser import urllib.request from urllib.error import HTTPError import ssl import json config = configparser.ConfigParser() config.read('tenable.ini') def request(method, host, endpoint, url=None, headers=None, data=None, proxy=None, verify=True): # url should only be used by the Downloads class if url is None: request_ = urllib.request.Request('https://' + host + endpoint) else: request_ = urllib.request.Request(url) request_.method = method request_.add_header('accept', 'application/json') request_.add_header('content-type', 'application/json') context = '' if headers: for key, value in headers.items(): request_.add_header(key, value) if data: request_.data = json.dumps(data).encode() if proxy: request_.set_proxy(proxy, 'https') if verify is False: # https://www.python.org/dev/peps/pep-0476 context = ssl._create_unverified_context() try: response = urllib.request.urlopen(request_, context=context) return response except HTTPError as error: print('\nERROR: HTTP ' + str(error.code)) print(error.reason) def auth_error(msg='ERROR: Invalid authentication data'): print(msg) quit() class Downloads: def __init__(self, bearer_token=None, proxy=None, verify=True): # Set connection data in order of preference self.host = 'www.tenable.com' self.bearer_token = bearer_token self.proxy = proxy self.verify = verify if self.bearer_token: pass elif config.has_option('downloads', 'bearer_token'): self.bearer_token = config.get('downloads', 'bearer_token') if config.has_option('downloads', 'proxy'): self.proxy = config.get('downloads', 'proxy') else: self.proxy = None if config.has_option('downloads', 'verify'): self.verify = config.getboolean('downloads', 'verify') else: self.verify = True else: auth_error() # Create authentication headers self.headers = { "Host": "www.tenable.com", "User-agent": "Mozilla/5.0", "Authorization": "Bearer " + self.bearer_token } def request(self, url): # url is used for Downloads in order to easily work with the files_index_url, and file_url values response = request('GET', None, None, url, self.headers, None, self.proxy, self.verify) return response class TenableIO: def __init__(self, access_key=None, secret_key=None, username=None, password=<PASSWORD>, proxy=None, verify=True): # Set connection data in order of preference self.host = 'cloud.tenable.com' self.access_key = access_key self.secret_key = secret_key self.username = username self.password = password self.proxy = proxy self.verify = verify if self.access_key and self.secret_key: pass elif self.username and self.password: pass elif config.has_option('tenable_io', 'access_key') and config.has_option('tenable_io', 'secret_key'): self.access_key = config.get('tenable_io', 'access_key') self.secret_key = config.get('tenable_io', 'secret_key') if config.has_option('tenable_io', 'proxy'): self.proxy = config.get('tenable_io', 'proxy') else: self.proxy = None if config.has_option('tenable_io', 'verify'): self.verify = config.getboolean('tenable_io', 'verify') else: self.verify = True else: auth_error() # Create authentication headers if self.access_key and self.secret_key: self.headers = {"x-apikeys": "accessKey=" + self.access_key + ';secretKey=' + self.secret_key} else: auth = self._login() self.headers = {"x-cookie": "token=" + auth['token']} def request(self, method, endpoint, data=None): response = request(method, self.host, endpoint, None, self.headers, data, self.proxy, self.verify) return response def _login(self): response = request('POST', self.host, '/session', data={"username": self.username, "password": self.password}, proxy=self.proxy, verify=self.verify) return json.load(response) def logout(self): response = self.request('DELETE', '/session') return response class TenableSC: def __init__(self, host=None, access_key=None, secret_key=None, username=None, password=<PASSWORD>, proxy=None, verify=True): # Set connection data in order of preference self.host = host self.access_key = access_key self.secret_key = secret_key self.username = username self.password = password self.proxy = proxy self.verify = verify if self.host and self.access_key and self.secret_key: pass elif self.host and self.username and self.password: pass elif (config.has_option('tenable_sc', 'host') and config.has_option('tenable_sc', 'access_key') and config.has_option('tenable_sc', 'secret_key')): self.host = config.get('tenable_sc', 'host') self.access_key = config.get('tenable_sc', 'access_key') self.secret_key = config.get('tenable_sc', 'secret_key') if config.has_option('tenable_sc', 'proxy'): self.proxy = config.get('tenable_sc', 'proxy') else: self.proxy = None if config.has_option('tenable_sc', 'verify'): self.verify = config.getboolean('tenable_sc', 'verify') else: self.verify = True else: auth_error() # Create authentication headers if self.access_key and self.secret_key: self.headers = {"x-apikey": "accesskey=" + self.access_key + "; secretkey=" + self.secret_key} else: auth = self._login() self.headers = {"X-SecurityCenter": auth['token'], 'Cookie': auth['cookie']} def request(self, method, endpoint, data=None): endpoint = '/rest' + endpoint response = request(method, self.host, endpoint, None, self.headers, data, self.proxy, self.verify) return response def _login(self): response = request('GET', self.host, '/rest/system', proxy=self.proxy, verify=self.verify) cookie = response.headers['Set-Cookie'].split(';', 1)[0] response = request('POST', self.host, '/rest/token', headers={"Cookie": cookie}, data={"username": self.username, "password": <PASSWORD>}, proxy=self.proxy, verify=self.verify) token = json.load(response)['response']['token'] cookie = response.headers['Set-Cookie'].split(';', 1)[0] return {'token': token, 'cookie': cookie} def logout(self): response = self.request('DELETE', '/token') return response
2.625
3
app/db/models/bigintkey.py
sp0x/orion
0
12786874
<filename>app/db/models/bigintkey.py import peewee as pw class BigIntPrimaryKey(pw.PrimaryKeyField): field_type = 'BIGAUTO'
1.851563
2
experiments.py
kafluette/ffnnet
4
12786875
<reponame>kafluette/ffnnet<gh_stars>1-10 import theano import theano.tensor as T k = T.iscalar("k") A = T.vector("A") y = T.ivector("y") # Symbolic description of the result result, updates = theano.scan(fn=lambda n: (1-y[n]) * T.log(T.nnet.sigmoid(1)),sequences=[T.arange(10)]) # We only care about A**k, but scan has provided us with A**1 through A**k. # Discard the values that we don't care about. Scan is smart enough to # notice this and not waste memory saving them. final_result = result.sum() # compiled function that returns A**k power = theano.function(inputs=[y], outputs=final_result, updates=updates) print power(range(10)) print power(range(10))
2.375
2
Matlab/PLNet/python_tensorflow/plnet_tf_demo.py
disc5/DyraLib
0
12786876
<gh_stars>0 # -*- coding: utf-8 -*- """ PLNet for fixed sized input rankings. Version: M fixed but generic Idea: Working with M networks in parallel that permanently remain in memory. Testbed - label ranking / housing dataset @author: dirk """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np import dypy as dp import dypy.tf_plnet_utils as plnetutils #%% import os os.chdir('.') #%% X,R = dp.io.read_xxl_file_as_matrices('data/housing_dense_tr.txt') #%% Orderings = dp.utils.convert_rankingmat_to_orderingmat(R).tolist() M = len(Orderings[0]) Y = np.eye(M, dtype=np.int32).tolist() #%% Z = dp.utils.create_contextualized_concat_orderings(X.tolist(), Y, Orderings) #%% input_dim = len(Z[0][0]) #%% tf.set_random_seed(1) #%% # Parameters learn_rate = 0.01 n_epochs = 10 # Network parameters num_input_neurons = input_dim num_hidden_neurons = 5 # Network input net_inputs = [] for i0 in range(M): net_inputs.append(tf.placeholder(tf.float32, shape = (num_input_neurons,1), name='input_net'+str(i0+1))) #%% Helper functions def sigma(x): return tf.div(tf.constant(1.0), tf.add(tf.constant(1.0), tf.exp(tf.negative(x)))) def sigmaprime(x): return tf.multiply(sigma(x), tf.subtract(tf.constant(1.0), sigma(x))) #%% # Create graph procedure def create_graph(inp, name="fc"): with tf.name_scope(name): weights_h1 = tf.Variable(tf.truncated_normal([num_input_neurons, num_hidden_neurons], seed=1), name="w1", trainable=True) biases_b1 = tf.Variable(tf.truncated_normal([1, num_hidden_neurons], seed=2), name="bias1", trainable=True) weights_out = tf.Variable(tf.truncated_normal([num_hidden_neurons, 1], seed=3), name="w2", trainable=True) tf.summary.histogram("weights_h1", weights_h1) tf.summary.histogram("biases_b1", biases_b1) tf.summary.histogram("weights_out", weights_out) z1 = tf.add(tf.matmul(inp, weights_h1, transpose_a=True), biases_b1, name="z1_element") a1 = tf.sigmoid(z1, name='a1_element') z2 = tf.matmul(a1, weights_out) #z2 = tf.add(tf.matmul(a1, weights_out), biases_b2) u = tf.identity(z2, name="output") # this corresponds to utility u return (u, [a1,z1]) #%% net_outputs = [] net_elements = [] for i0 in range(M): u, inner_parts = create_graph(net_inputs[i0], 'net'+str(i0+1)) net_outputs.append(u) net_elements.append(inner_parts) #%% Network ranking losses net_ranking_losses = [] for i0 in range(M): net_ranking_losses.append(plnetutils.tf_calculate_derivative((i0+1), net_outputs)) #%% Trainable network variables trainable_network_vars = [] for i0 in range(M): trainable_network_vars.append(tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='net'+str(i0+1))) #%% get_gradients func def get_gradients(delta, tvs, inner_parts, input_element, name): ''' Preliminary custom gradients function. It calculates gradients for a single-hidden layer feedforward neural network SLFN only. It expects the tvs to be the sequence (w1, b1, w2). ''' #g=tf.get_default_graph() #g.get_operations()[41].name # todo filter operations to recieve a1 ... a1 = inner_parts[0] z1 = inner_parts[1] w2 = tvs[2] with tf.name_scope(name): d_w_2 = tf.transpose(tf.matmul(delta, a1), name="dw2") #d_b_2 = tf.constant(0.0) sp = sigmaprime(z1) delta2 = tf.multiply(tf.transpose(tf.multiply(w2,delta)),sp) d_b_1 = delta2 d_w_1 = tf.transpose(tf.matmul(tf.transpose(delta2), tf.transpose(input_element)), name="dw1") return [d_w_1, d_b_1, d_w_2] #%% Net gradients (v2: with grad_ys info) #net_gradients_orig = [] #for i0 in range(M): # net_gradients_orig.append(tf.gradients(net_ranking_losses[i0], trainable_network_vars[i0], name = 'grad'+str(i0+1))) #%% net_gradients = [] for i0 in range(M): net_gradients.append(get_gradients(net_ranking_losses[i0], trainable_network_vars[i0], net_elements[i0], net_inputs[i0], 'net'+str(i0+1))) #%% Accumulation operation v2 acc_ops = [] num_layers = len(net_gradients[0]) for i0 in range(num_layers): layer_list = [] for i1 in range(M): layer_list.append(net_gradients[i1][i0]) acc_ops.append(tf.add_n(layer_list, name='acc_weights_layer'+str(i0+1))) #%% Accumulation operation #net_gradients_accumulation = net_gradients[0] #for i1 in range(1,M): # net_gradients_accumulation = net_gradients_accumulation + net_gradients[i1] #%% Optimization operations opt = tf.train.GradientDescentOptimizer(learn_rate) training_ops = [] for i0 in range(M): training_ops.append(opt.apply_gradients(zip(acc_ops, trainable_network_vars[i0]))) #%% Begin Session sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter("/tmp/plnet_tf/2") writer.add_graph(sess.graph) #%% Training N_tr = len(Z) for epoch in range(n_epochs): RP = np.random.permutation(N_tr) for i1 in range(N_tr): ct_observation = Z[RP[i1]] current_dict = {} for i0 in range(M): current_dict[net_inputs[i0].name] = np.asarray(ct_observation[i0]).reshape((input_dim,1)) sess.run([net_gradients, training_ops], feed_dict=current_dict) nll_data = plnetutils.get_NLL_dataset(sess, net_inputs[0], net_outputs[0], Z) print("Epoch %i: NLL(tr) : %3.4f" %(epoch,nll_data)) #%% Close Session sess.close()
2.46875
2
etreebrowser/sparql.py
CameronJRAllan/eTree-Browser
1
12786877
<gh_stars>1-10 from SPARQLWrapper import SPARQLWrapper, JSON, POSTDIRECTLY import datetime import urllib from PyQt5 import QtWidgets import calma import graph class SPARQL(): def __init__(self): """ Initializes an instance of the SPARQL class. The SPARQL class is used for all interfacing with the SPARQL end-point provided from <NAME>'s research and work. """ self.sparql = SPARQLWrapper("https://etree.linkedmusic.org/sparql") self.sparql.setReturnFormat(JSON) self.sparql.setMethod("POST") def get_calma_reference_release(self, releaseName): queryString = """ PREFIX etree:<http://etree.linkedmusic.org/vocab/> PREFIX mo:<http://purl.org/ontology/mo/> PREFIX event:<http://purl.org/NET/c4dm/event.owl#> PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX calma: <http://calma.linkedmusic.org/vocab/> SELECT DISTINCT ?label ?calma {{ ?perf event:hasSubEvent ?tracklist. ?tracklist skos:prefLabel ?label. ?tracklist etree:number ?num. ?perf rdf:type mo:Performance. ?perf skos:prefLabel "{0}". ?tracklist calma:data ?calma. }} ORDER BY ?num """.format(releaseName) self.sparql.setQuery(queryString) return self.sparql.query().convert() def get_release_properties(self, releaseName): """ Retrieves the properties of a given release. Parameters ---------- releaseName : string Name of the release. Returns ------- properties : dict The properties found. """ try: queryGetURI = """ SELECT * {{ ?s ?p "{0}". }} """.format(releaseName) self.sparql.setQuery(queryGetURI) queryResults = self.sparql.query().convert() queryGetProperties = """ SELECT * {{ <{0}> ?p ?o. }} """.format(str(queryResults['results']['bindings'][0]['s']['value'])) self.sparql.setQuery(queryGetProperties) return self.sparql.query().convert() except urllib.error.URLError as e: return e def get_release_subproperties(self, subject): """ Retrieves the sub-properties of a given release. Parameters ---------- subject : string The release for which we want to retrieve the sub-properties of. Returns ------- results : dictionary A JSON dictionary of the properties returned. """ queryGetProperties = """ SELECT * {{ <{0}> ?p ?o. }} """.format(str(subject)) self.sparql.setQuery(queryGetProperties) try: return self.sparql.query().convert() except Exception as e: print(e) pass def get_tracklist(self, label): """ Retrieves a track-list for a given recording. Parameters ---------- label : string The label of the released used to identify the tracks which belong to it. Returns ------- results : dict A JSON representation of the results returned by the end-point. """ queryString = """ PREFIX etree:<http://etree.linkedmusic.org/vocab/> PREFIX mo:<http://purl.org/ontology/mo/> PREFIX event:<http://purl.org/NET/c4dm/event.owl#> PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT DISTINCT ?audio ?label ?num ?tracklist ?name {{ ?perf event:hasSubEvent ?tracklist. ?tracklist skos:prefLabel ?label. ?tracklist etree:number ?num. ?tracklist etree:audio ?audio. ?perf rdf:type mo:Performance. ?perf skos:prefLabel "{0}". ?perf mo:performer ?performer. ?performer foaf:name ?name. }} GROUP BY ?label ?audio ?num ORDER BY ?num """.format(label) self.sparql.setQuery(queryString) return self.sparql.query().convert() def get_tracklist_grouped(self, label): queryString = """ PREFIX etree:<http://etree.linkedmusic.org/vocab/> PREFIX mo:<http://purl.org/ontology/mo/> PREFIX event:<http://purl.org/NET/c4dm/event.owl#> PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX calma: <http://calma.linkedmusic.org/vocab/> SELECT DISTINCT (group_concat(distinct ?audio; separator = "\\n") AS ?audio) (group_concat(distinct ?calma; separator = "\\n") AS ?calma) ?label ?num ?tracklist {{ ?perf event:hasSubEvent ?tracklist. ?tracklist skos:prefLabel ?label. ?tracklist etree:number ?num. ?tracklist etree:audio ?audio. ?perf rdf:type mo:Performance. ?perf skos:prefLabel "{0}". OPTIONAL {{?tracklist calma:data ?calma}}. }} ORDER BY ?num """.format(label) self.sparql.setQuery(queryString) return self.sparql.query().convert() def get_artist_releases(self, filterField, filterStr, sparqlField, sparqlTriple): """ Retrieves all the releases by a particular artist. Parameters ---------- filterField : string The filter field. filterStr : string The filter string. sparqlField : string If a custom field is required (e.g genre), this is the field value required. sparqlTriple : string If a custom field is required (e.g genre), this is the triple required. Returns ------- results : dictionary A JSON representation of the results returned by the end-point. """ sparql = SPARQLWrapper("http://etree.linkedmusic.org/sparql") sparql.setReturnFormat(JSON) queryString = """ PREFIX etree:<http://etree.linkedmusic.org/vocab/> PREFIX mo:<http://purl.org/ontology/mo/> PREFIX event:<http://purl.org/NET/c4dm/event.owl#> PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT DISTINCT ?performer ?name ?prefLabel ?place ?date {0} WHERE {{ ?art skos:prefLabel ?prefLabel. ?art event:place ?location. ?location etree:location ?place. ?performer foaf:name ?name. ?art etree:date ?date. ?art mo:performer ?performer. ?art event:hasSubEvent ?tracklist. {1} """.format(sparqlField, sparqlTriple) # If we have multiple filters (hence type LIST) if type(filterStr) == list: # Add prefix queryString +='\nFILTER(' # Add each filter statement for item in filterStr: queryString += """?{0}="{1}" ||\n""".format(filterField, item.strip()) # Add suffix to be syntactically correct queryString = queryString[:-3] queryString += ')' # If we have a singlular filter (hence type STRING) else: if len(filterField) > 0: queryString += """FILTER(?{0}="{1}")""".format(filterField, filterStr) # Add ending line of query queryString += "\n} GROUP BY (?name)" # Set and run query self.sparql.setQuery(queryString) return self.sparql.query().convert() def execute_string(self, queryString): """ Executes a string representing a SPARQL query. Having a general purpose "execute whatever this query is" is quite useful. Parameters ---------- queryString : string The SPARQL query string to be executed. Returns ------- results : dictionary A JSON representation of the results returned by the end-point. """ self.sparql.setReturnFormat(JSON) try: self.sparql.setQuery(queryString) return self.sparql.query().convert() except Exception as e: return e def date_range(self, start, end): """ Creates a filter for a given range of dates. SPARQL supports filtering, and this may be used to provide more specific results for a given date range. Parameters ---------- start : string The start date. end : string The end date. Returns ------- dateRange : string A structured string that is inserted into the query to provide date filtering. """ # Normalize dates startDate = datetime.datetime.strptime(start, "%d-%m-%Y").date() endDate = datetime.datetime.strptime(end, "%d-%m-%Y").date() delta = endDate - startDate # If there are days to be filtered if (delta.days > 0 and delta.days < 10000): dateRange = 'FILTER (' # Calculate date difference between start + end delta = endDate - startDate # If there are days to be filtered if (delta.days > 0): # Generate filter string for i in range(delta.days + 1): dateRange = dateRange + """ str(?date) = '""" + str( startDate + datetime.timedelta(days=i)) + """' \n ||""" # Add suffix dateRange = dateRange[:-2] dateRange = dateRange + ')' return dateRange else: return '' def perform_search(self, dateFrom, dateTo, artists, genres, locations, limit, trackName, countries, customSearchString, venue, orderBy, onlyCalma): """ Executes a basic search on the SPARQL end-point. Parameters ---------- dateFrom : string Start date for our date range filter. dateTo : string End date for our date range filter. artists : string A list of artists, comma seperated. genres : string A list of genres, comma seperated. locations : string A list of locations, comma seperated. lineage : string A list of lineage steps, comma seperated. limit : int Number of results to be returned. distinct : boolean Represents whether or not results should be distinct (i.e. no duplicates). fields : string A list of fields, comma seperated. Returns ------- q : string A string which may be executed as a SPARQL query. """ artists = artists.split(',') genres = genres.split(',') artists = [a.strip() for a in artists] genres = [g.strip() for g in genres] fields = " ?label ?performer ?description ?location ?place ?date ?genre" whereString = """ ?art skos:prefLabel ?label. ?art mo:performer ?performer. ?art etree:description ?description. ?performer foaf:name ?name. ?art event:place ?location. ?art etree:date ?date. ?location etree:location ?place. ?art event:hasSubEvent ?subEvent OPTIONAL {?performer etree:mbTag ?genre}. """ if onlyCalma: whereString += "\n ?subEvent calma:data ?calma." else: whereString += "\n OPTIONAL {?subEvent calma:data ?calma}." # if customConditionType == 'AND': if isinstance(customSearchString, list): customSearchString = "\n".join(item for item in customSearchString) # elif customConditionType == 'OR': # customSearchString = "\n ||".join(item for item in customSearchString) # else: # customSearchString = '' # print(customSearchString) # Calculate date filters dateString = self.date_range(dateFrom, dateTo) # If limit is 0 if (limit == 0): limit = '' # If custom limit entered else: limit = 'LIMIT ' + str(limit) # Generate filters for artists, genres, locations artistString = self.text_parse(artists, 1) genreString = self.text_parse(genres, 2) locationString = self.text_parse(locations, 3) trackString = self.text_parse(trackName, 4) venueString = self.text_parse(venue, 5) countriesString = self.text_parse(countries, 3) orderByString = self.parse_order_by(orderBy) # Add extra triples if required #if len(genreString) > 2: #fields += ' ?genre' #whereString += '?performer etree:mbTag ?genre.' if len(trackString) > 2: fields += ' ?trackname' whereString += '?track skos:prefLabel ?trackname.' if len(venueString) > 2: fields += ' ?venue' whereString += '?location etree:name ?venue.' q = """ PREFIX etree:<http://etree.linkedmusic.org/vocab/> PREFIX mo:<http://purl.org/ontology/mo/> PREFIX event:<http://purl.org/NET/c4dm/event.owl#> PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX calma: <http://calma.linkedmusic.org/vocab/> SELECT DISTINCT ?label ?name ?place ?location ?date (group_concat(distinct ?calma; separator = "\\n") AS ?calma) WHERE {{ {0} {1} {2} {3} {4} {5} {6} {7} {8} }} {9} {10} """.format(whereString, artistString, genreString, locationString, venueString, dateString, trackString, customSearchString, countriesString, orderByString, limit) print(q) return q def get_venue_information(self, label): """ Retrieves venue information for a particular release. Parameters ---------- label : string The release for which we want to retrieve the venue info of. Returns ------- resultsDict : dict A dictionary of a mixture of the GeoNames and LastFM data """ self.sparql.setQuery(""" PREFIX etree:<http://etree.linkedmusic.org/vocab/> PREFIX mo:<http://purl.org/ontology/mo/> PREFIX event:<http://purl.org/NET/c4dm/event.owl#> PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> PREFIX sim: <http://purl.org/ontology/similarity/> SELECT DISTINCT ?place ?location ?obj WHERE {{ ?art skos:prefLabel "{0}". ?art event:place ?location. ?location sim:subjectOf ?external. ?external sim:object ?obj. ?location etree:location ?place. }} GROUP BY ?place ?location ?obj """.format(label)) results = self.sparql.query().convert() resultsDict = {'geoname' : None, 'lastfm' : None} for result in results['results']['bindings']: if 'geoname' in result['obj']['value']: resultsDict['geoname'] = result['obj']['value'] elif 'last.fm' in result['obj']['value']: resultsDict['lastfm'] = result['obj']['value'] return resultsDict def parse_order_by(self, orderBy): """ Generates a filter string for ordering by a give field. Parameters ---------- orderBy : str The input field. Returns ------- filterString : string An ORDER-BY string relative to the input field. """ translate = {'Artist' : '?name', 'Label' : '?label', 'Date' : '?date', 'Genre' : '?genre', 'Location' : '?place' } return "ORDER BY {0}".format(translate[orderBy]) def text_parse(self, inputList, intType): """ Generates filter string for a given list, and type. A complex query may have several seperate filters applied, in which case it makes sense to move this into it's own class. The type is used to identify the attribute being filtered. Parameters ---------- inputList : string[] A list of filter conditions type : int The attribute to be filtered Returns ------- filterString : string A appropriate filter string for the inputs """ # If no data to process, return if inputList == None : return '' # Determine correct field if intType == 1: fieldType = """?name=\"""" elif intType == 2: fieldType = """?genre=\"""" elif intType == 3: fieldType = """?place=\"""" elif intType == 4: fieldType = """?trackname=\"""" elif intType == 5: fieldType = """?venue=\"""" else: raise ('No matching field type') if isinstance(inputList, str): inputList = [inputList] # Join all possible filter clauses temp = " ".join(str(x) for x in inputList) if len(temp.rstrip()) < 3: return '' # If matches requirement for filter string else: # Create filter string filterString = 'FILTER(' for entry in list(set(inputList)): filterString = """ {0}{1}{2}" ||\n""".format(filterString, fieldType, entry.replace('"', '').replace("'",'').rstrip()) filterString = filterString[:-3].strip() filterString += ')\n' return filterString def get_artist_from_tracklist(self, tracklistURL): """ Retrieves the artist from a particular track-list. Parameters ---------- tracklistURL : string A URL in the tracklist, for which we want to find the performer. Returns ------- artistName : str The name of the artist found. """ name = self.execute_string(""" PREFIX etree:<http://etree.linkedmusic.org/vocab/> PREFIX mo:<http://purl.org/ontology/mo/> PREFIX event:<http://purl.org/NET/c4dm/event.owl#> PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#> SELECT DISTINCT ?name WHERE {{ <{0}> mo:performer ?performer. ?performer foaf:name ?name. }} LIMIT 1 """.format(tracklistURL)) return name['results']['bindings'][0]['name']['value'] def get_label_tracklist(self, eventurl): label = self.execute_string(""" PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX etree:<http://etree.linkedmusic.org/vocab/> SELECT DISTINCT ?label WHERE {{ <{0}> etree:isSubEventOf ?event. ?event skos:prefLabel ?label. }} LIMIT 1 """.format(eventurl)) return label['results']['bindings'][0]['label']['value'] def get_audio_track(self, trackURI): label = self.execute_string(""" PREFIX skos:<http://www.w3.org/2004/02/skos/core#> PREFIX etree:<http://etree.linkedmusic.org/vocab/> SELECT DISTINCT ?url ?num ?label WHERE {{ <{0}> etree:audio ?url. <{0}> etree:number ?num. <{0}> skos:prefLabel ?label. }} """.format(trackURI)) return label['results']['bindings']
2.609375
3
pymagnitude/third_party/allennlp/tests/data/token_indexers/dep_label_indexer_test.py
tpeng/magnitude
1,520
12786878
<gh_stars>1000+ # pylint: disable=no-self-use,invalid-name from __future__ import absolute_import from collections import defaultdict from allennlp.common.testing import AllenNlpTestCase from allennlp.data import Token, Vocabulary from allennlp.data.token_indexers import DepLabelIndexer from allennlp.data.tokenizers.word_splitter import SpacyWordSplitter class TestDepLabelIndexer(AllenNlpTestCase): def setUp(self): super(TestDepLabelIndexer, self).setUp() self.tokenizer = SpacyWordSplitter(parse=True) def test_count_vocab_items_uses_pos_tags(self): tokens = self.tokenizer.split_words(u"This is a sentence.") tokens = [Token(u"<S>")] + [t for t in tokens] + [Token(u"</S>")] indexer = DepLabelIndexer() counter = defaultdict(lambda: defaultdict(int)) for token in tokens: indexer.count_vocab_items(token, counter) assert counter[u"dep_labels"] == {u"ROOT": 1, u"nsubj": 1, u"det": 1, u"NONE": 2, u"attr": 1, u"punct": 1} def test_tokens_to_indices_uses_pos_tags(self): tokens = self.tokenizer.split_words(u"This is a sentence.") tokens = [t for t in tokens] + [Token(u"</S>")] vocab = Vocabulary() root_index = vocab.add_token_to_namespace(u'ROOT', namespace=u'dep_labels') none_index = vocab.add_token_to_namespace(u'NONE', namespace=u'dep_labels') indexer = DepLabelIndexer() assert indexer.tokens_to_indices([tokens[1]], vocab, u"tokens1") == {u"tokens1": [root_index]} assert indexer.tokens_to_indices([tokens[-1]], vocab, u"tokens-1") == {u"tokens-1": [none_index]} def test_padding_functions(self): indexer = DepLabelIndexer() assert indexer.get_padding_token() == 0 assert indexer.get_padding_lengths(0) == {} def test_as_array_produces_token_sequence(self): indexer = DepLabelIndexer() padded_tokens = indexer.pad_token_sequence({u'key': [1, 2, 3, 4, 5]}, {u'key': 10}, {}) assert padded_tokens == {u'key': [1, 2, 3, 4, 5, 0, 0, 0, 0, 0]}
2.453125
2
dragonhacks2019/config.py
jcarrete5/dragonhacks2019
0
12786879
import json class Config: def __init__(self, file=None): with open(file) as cfg_file: self._cfg = json.load(cfg_file) self._scopes = [scope for scope in self._cfg['scopes']] self._scope_index = 0 self._current_scope: dict = self._scopes[0] def next_scope(self) -> bool: """ Increments the current scope. Returns `True` if successful, otherwise `False`. """ if self._scope_index + 1 >= len(self._scopes): return False self._scope_index += 1 self._current_scope = self._scopes[self._scope_index] return True def prev_scope(self) -> bool: """ Decrements the current scope. Returns `True` if successful, otherwise `False`. """ if self._scope_index - 1 < 0: return False self._scope_index -= 1 self._current_scope = self._scopes[self._scope_index] return True def actions(self, phrase: str) -> list: """ Returns the actions to be executed when the `phrase` is said or an empty list if the `phrase` isn't recognized. """ return self._current_scope.get(phrase, []) def phrases(self) -> set: """ Return the possible phrases that can be said in the current scope. """ return set(phrase for phrase in self._current_scope.keys()) def __repr__(self): return str(self._scopes) if __name__ == '__main__': cfg = Config('test_format.json') assert cfg.next_scope() assert not cfg.next_scope() assert cfg.prev_scope() assert not cfg.prev_scope() assert {'forward', 'back', 'next set'} == cfg.phrases() assert ['right'] == cfg.actions('forward') print("Passed")
3.21875
3
solutions/234.palindrome-linked-list/palindrome-linked-list.py
wangsongiam/leetcode
3
12786880
# Definition for singly-linked list. # class ListNode: # def __init__(self, x): # self.val = x # self.next = None class Solution: def isPalindrome(self, head): """ :type head: ListNode :rtype: bool 1 2 3 4 5 1 2 3 4 | | """ slow = head fast = head while fast and fast.next: slow = slow.next fast = fast.next.next if fast and fast.next is None: slow = slow.next def reverse(prev, head): if not head: return prev next = head.next head.next = prev return reverse(head, next) ref = reverse(None, slow) while ref: if ref.val != head.val: return False ref = ref.next head = head.next return True
3.71875
4
request_examples/get_request.py
ParthSareen/Intro-to-APIs
0
12786881
import requests import pprint pp = pprint.PrettyPrinter(indent=4) # Example for making a GET requests link = 'http://localhost:5000/example-get-static' response = requests.get(link) responseDict = response.json() pp.pprint(responseDict) # access the dict print(responseDict['num-example']) # your name goes here name = "name" link2 = 'http://localhost:5000/example-get-dynamic?name={name}'.format(name=name) response = requests.get(link2) responseDict = response.json() pp.pprint(responseDict)
3.203125
3
app/views.py
verowangari/pitch-post
0
12786882
from re import U from flask import Blueprint, render_template,request,flash,redirect,url_for from flask_login import login_required, current_user from .models import Pitch,User,Comment,Like from . import db views = Blueprint("views", __name__) @views.route("/") @views.route("/home") @login_required def home(): pitches=Pitch.query.all() return render_template("home.html", user=current_user,pitches=pitches) @views.route("/create-pitch", methods=['GET', 'POST']) @login_required def create_pitch(): if request.method =="POST": text = request.form.get('text') if not text: flash('This cannot be empty',category='error') else: pitch=Pitch(text=text,author=current_user.id) db.session.add(pitch) db.session.commit() flash('Pitch Created!!',category='success') return redirect(url_for('views.home')) return render_template('create_pitch.html', user=current_user) @views.route("/delete-pitch/<id>") @login_required def delete_pitch(id): pitch = Pitch.query.filter_by(id=id).first() if not pitch: flash("Post does not exist.", category='error') elif current_user.id != pitch.id: flash('You do not have permission to delete this post.', category='error') else: db.session.delete(pitch) db.session.commit() flash('Pitch deleted.', category='success') return redirect(url_for('views.home')) @views.route("/pitches/<username>") @login_required def pitches(username): user = User.query.filter_by(username=username).first() if not user: flash('No user with that username exists.', category='error') return redirect(url_for('views.home')) pitches=user.pitches return render_template("pitch.html", user=current_user, pitches=pitches, username=username) @views.route("/create-comment/<pitch_id>", methods=['POST']) @login_required def create_comment(pitch_id): text = request.form.get('text') if not text: flash('Comment cannot be empty.', category='error') else: pitch = Pitch.query.filter_by(id=pitch_id) if pitch: comment = Comment( text=text, author=current_user.id, pitch_id=pitch_id) db.session.add(comment) db.session.commit() else: flash('Post does not exist.', category='error') return redirect(url_for('views.home')) @views.route("/delete-comment/<comment_id>") @login_required def delete_comment(comment_id): comment = Comment.query.filter_by(id=comment_id).first() if not comment: flash('Comment does not exist.', category='error') elif current_user.id != comment.author and current_user.id != comment.pitch.author: flash('You do not have permission to delete this comment.', category='error') else: db.session.delete(comment) db.session.commit() return redirect(url_for('views.home'))
2.5
2
torchlatent/semiring.py
speedcell4/torchlatent
7
12786883
<reponame>speedcell4/torchlatent<gh_stars>1-10 import torch from torch import Tensor from torch.types import Device from torchrua.scatter import scatter_add, scatter_max, scatter_mul, scatter_logsumexp from torchrua.tree_reduction import tree_reduce_sequence, TreeReduceIndices from torchlatent.functional import logsumexp, logaddexp __all__ = [ 'Semiring', 'Std', 'Log', 'Max', ] class Semiring(object): zero: float one: float @classmethod def eye_like(cls, tensor: Tensor, dtype: torch.dtype = None, device: Device = None) -> Tensor: if dtype is None: dtype = tensor.dtype if device is None: device = tensor.device *_, n = tensor.size() eye = torch.full((n, n), fill_value=cls.zero, dtype=dtype, device=device) idx = torch.arange(n, dtype=torch.long, device=device) eye[idx, idx] = cls.one return eye @classmethod def add(cls, x: Tensor, y: Tensor) -> Tensor: raise NotImplementedError @classmethod def mul(cls, x: Tensor, y: Tensor) -> Tensor: raise NotImplementedError @classmethod def sum(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: raise NotImplementedError @classmethod def prod(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: raise NotImplementedError @classmethod def scatter_add(cls, tensor: Tensor, index: Tensor) -> Tensor: raise NotImplementedError @classmethod def scatter_mul(cls, tensor: Tensor, index: Tensor) -> Tensor: raise NotImplementedError @classmethod def bmm(cls, x: Tensor, y: Tensor) -> Tensor: return cls.sum(cls.mul(x[..., :, :, None], y[..., None, :, :]), dim=-2, keepdim=False) @classmethod def reduce(cls, tensor: Tensor, indices: TreeReduceIndices) -> Tensor: return tree_reduce_sequence(cls.bmm)(tensor=tensor, indices=indices) class Std(Semiring): zero = 0. one = 1. @classmethod def add(cls, x: Tensor, y: Tensor) -> Tensor: return x + y @classmethod def mul(cls, x: Tensor, y: Tensor) -> Tensor: return x * y @classmethod def sum(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: return torch.sum(tensor, dim=dim, keepdim=keepdim) @classmethod def prod(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: return torch.prod(tensor, dim=dim, keepdim=keepdim) @classmethod def scatter_add(cls, tensor: Tensor, index: Tensor) -> Tensor: return scatter_add(tensor=tensor, index=index) @classmethod def scatter_mul(cls, tensor: Tensor, index: Tensor) -> Tensor: return scatter_mul(tensor=tensor, index=index) class Log(Semiring): zero = -float('inf') one = 0. @classmethod def add(cls, x: Tensor, y: Tensor) -> Tensor: return logaddexp(x, y) @classmethod def mul(cls, x: Tensor, y: Tensor) -> Tensor: return x + y @classmethod def sum(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: return logsumexp(tensor, dim=dim, keepdim=keepdim) @classmethod def prod(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: return torch.sum(tensor, dim=dim, keepdim=keepdim) @classmethod def scatter_add(cls, tensor: Tensor, index: Tensor) -> Tensor: return scatter_logsumexp(tensor=tensor, index=index) @classmethod def scatter_mul(cls, tensor: Tensor, index: Tensor) -> Tensor: return scatter_add(tensor=tensor, index=index) class Max(Semiring): zero = -float('inf') one = 0. @classmethod def add(cls, x: Tensor, y: Tensor) -> Tensor: return torch.maximum(x, y) @classmethod def mul(cls, x: Tensor, y: Tensor) -> Tensor: return x + y @classmethod def sum(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: return torch.max(tensor, dim=dim, keepdim=keepdim).values @classmethod def prod(cls, tensor: Tensor, dim: int, keepdim: bool = False) -> Tensor: return torch.sum(tensor, dim=dim, keepdim=keepdim) @classmethod def scatter_add(cls, tensor: Tensor, index: Tensor) -> Tensor: return scatter_max(tensor=tensor, index=index) @classmethod def scatter_mul(cls, tensor: Tensor, index: Tensor) -> Tensor: return scatter_add(tensor=tensor, index=index)
1.984375
2
train/coders/coder.py
mukkachaitanya/parity-models
0
12786884
<reponame>mukkachaitanya/parity-models<gh_stars>0 import torch import torch.nn as nn class Coder(nn.Module): """ Base class for implementing encoders and decoders. All new encoders and decoders should derive from this class. """ def __init__(self, num_in, num_out, in_dim): """ Parameters ---------- num_in: int Number of input units for a forward pass of the coder. num_out: int Number of output units from a forward pass of the coder. in_dim: in_dim Dimension of flattened inputs to the coder. """ super().__init__() self.num_in = num_in self.num_out = num_out def forward(self, in_data): """ Parameters ---------- in_data: ``torch.autograd.Variable`` Input data for a forward pass of the coder. """ pass class Decoder(Coder): """ Class for implementing decoders. All new decoders should derive from this class. """ def __init__(self, num_in, num_out, in_dim): super().__init__(num_in, num_out, in_dim) def forward(self, in_data): pass def combine_labels(self, in_data): """ Parameters ---------- in_data: ``torch.autograd.Variable`` Input labels that are to be combined together. Returns ------- Combination over in_data that can be used directly for the label in calculating loss for a parity model. """ pass
2.765625
3
servizi/spese/migrations/0002_auto_20161126_1756.py
l-dfa/django-spese
0
12786885
<filename>servizi/spese/migrations/0002_auto_20161126_1756.py<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.9.8 on 2016-11-26 16:56 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('spese', '0001_initial'), ] operations = [ migrations.CreateModel( name='TransferFund', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ], options={ 'verbose_name_plural': 'transfer funds', 'verbose_name': 'transfer fund', }, ), migrations.AlterModelOptions( name='percentdeduction', options={'ordering': ['wc_type__name', '-valid_from'], 'verbose_name': 'percent deduction', 'verbose_name_plural': 'percent deductions'}, ), migrations.AlterField( model_name='expense', name='work_cost_type', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='work_cost_type', to='spese.WCType'), ), migrations.AddField( model_name='transferfund', name='destination', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='destination', to='spese.Expense'), ), migrations.AddField( model_name='transferfund', name='source', field=models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='source', to='spese.Expense'), ), ]
1.453125
1
user_manage/views.py
FXuZ/colock-server
0
12786886
from django.shortcuts import render, render_to_response from django import forms from django.http import HttpResponse from django.forms import ModelForm from user_manage.models import User from django.views.decorators.csrf import csrf_exempt from django.utils import timezone import requests from colock.key_generator import * from colock.utils import hook import json import colock.Error class RegisterForm(ModelForm): class Meta: model = User fields = ['cid', 'phone_num', 'region_num', 'nickname', 'user_name', 'user_logo'] verify_code = forms.IntegerField() class RegisterReturnForm(forms.Form): uid = forms.IntegerField() ukey = forms.CharField(max_length=32) class MobSMS: def __init__(self, appkey): self.appkey = appkey self.verify_url = 'https://api.sms.mob.com/sms/verify' def verify_sms_code(self, zone, phone, code, debug=False): if debug: return 200 data = {'appkey': self.appkey, 'phone': phone, 'zone': zone, 'code': code} req = requests.post(self.verify_url, data=data, verify=False) if req.status_code == 200: j = req.json() return j return json.dumps({'status': 500}) # this is not safe!!! @csrf_exempt def register(request): def register_verify(user, vcode): res = mobsms.verify_sms_code(user.region_num, user.phone_num, vcode) if (json.loads(res))['status'] == 200: return True else: return False if request.method == "POST": reg_form = RegisterForm(request.POST) if reg_form.is_valid(): new_user = reg_form.save(commit=False) new_user.reg_time = timezone.now() new_user.ukey = user_key_gen(new_user.id, new_user.region_num, new_user.phone_num, new_user.reg_time) new_user.phone_hash = phone_hash_gen(new_user.region_num, new_user.phone_num) new_user.user_logo = request.FILES['user_logo'] verify_code = request.POST['verify_code'] if register_verify(new_user.region_num, new_user.phone_num, verify_code): new_user.save() return_value = {'uid': new_user.id, 'ukey': new_user.ukey} # ensure_ascii=False to handle Chinese return HttpResponse(json.dumps(return_value, ensure_ascii=False)) # success and created new user else: return HttpResponse('Authen Error', status=500) else: uf = RegisterForm() return render_to_response('register.html', {'uf': uf}) mobsms = MobSMS("5fc5a301e100") ### add real keys here!!! @hook("verify") def verify(meta, data): uid = meta['uid'] vcode = data['code'] user = User.objects.get(id=uid) user.verify_code = vcode user.verified = False res = mobsms.verify_sms_code(user.region_num, user.phone_num, vcode) if ( (json.loads(res))['status'] == 200 ): user.verified = True user.save() return '', '', res
1.976563
2
accounts/i18n.py
j3ygh/ctdb
1
12786887
""" This file contains strings which need i18n but doesn't have a place in any files. They maybe appear in DB only, so they can't be detected without being writed explicitly. """ from django.utils.translation import gettext_lazy as _ I18N_NEEDED = [ _('T00 member'), _('T01 member'), _('T02 member'), _('T11 member'), _('T12 member'), _('T21 member'), _('T22 member'), _('T31 member'), _('T32 member'), _('T00 supervisor'), _('T01 supervisor'), _('T02 supervisor'), _('T11 supervisor'), _('T12 supervisor'), _('T21 supervisor'), _('T22 supervisor'), _('T31 supervisor'), _('T32 supervisor'), ]
1.992188
2
src/predict.py
Kosuke-Yamada/yans2021hackathon_teamd
3
12786888
#-*-coding:utf-8-*- import os import re import json import time import glob import random import argparse import numpy as np import pandas as pd from tqdm import tqdm import torch from torch.utils.data import DataLoader from transformers import AutoTokenizer, AutoModel from shiba import Shiba, CodepointTokenizer, get_pretrained_state_dict from datasets import CharbertDataset, ShibaDataset, collate_fn from models import CharbertForSequenceLabeling, ShibaForSequenceLabeling from utils import epoch_time, decode_attr_bio, operate_bio, set_seed def parse_arg(): parser = argparse.ArgumentParser() parser.add_argument("--input_plain_path", type=str) parser.add_argument("--input_annotation_path", type=str) parser.add_argument("--output_path", type=str) parser.add_argument("--category", type=str) parser.add_argument("--block", type=str) parser.add_argument("--model", type=str) parser.add_argument("--batch_size", type=int) parser.add_argument("--cuda", type=int) return parser.parse_args() if __name__ == "__main__": args = parse_arg() INPUT_PLAIN_PATH = args.input_plain_path INPUT_ANNOTATION_PATH = args.input_annotation_path OUTPUT_PATH = args.output_path CATEGORY = args.category BLOCK = args.block MODEL = args.model BATCH_SIZE = args.batch_size CUDA = args.cuda OUTPUT_PATH = OUTPUT_PATH+CATEGORY.lower()+'_'+MODEL.lower()+'_'+BLOCK.lower()+'/' with open(OUTPUT_PATH+'params.json', 'r') as f: params = dict(json.load(f)) SEED = params['seed'] MAX_LENGTH = params['max_length'] set_seed(SEED) device = torch.device("cuda:"+str(CUDA) if torch.cuda.is_available() else "cpu") print('read annotation files') df = pd.read_json(INPUT_ANNOTATION_PATH+CATEGORY+'_dist.json', orient='records', lines=True) attr2idx = {attr:i for i, attr in enumerate(sorted(set(df['attribute'])))} idx2attr = {v:k for k, v in attr2idx.items()} bio2idx = {'B':0, 'I':1, 'O':2} idx2bio = {v:k for k, v in bio2idx.items()} page_id_list = [int(path.split('/')[-1][:-4]) for path in sorted(glob.glob(INPUT_PLAIN_PATH+CATEGORY+'/*'))] print('read plain files') pred_page2plain = {} for page_id in page_id_list: with open(INPUT_PLAIN_PATH+CATEGORY+'/'+str(page_id)+'.txt', 'r') as f: pred_page2plain[page_id] = f.readlines() print('load models') if MODEL == 'charbert': pretrained_model = 'cl-tohoku/bert-base-japanese-char-whole-word-masking' tokenizer = AutoTokenizer.from_pretrained(pretrained_model) bert = AutoModel.from_pretrained(pretrained_model) model = CharbertForSequenceLabeling(bert, attr_size=len(attr2idx), label_size=len(bio2idx)) else: tokenizer = CodepointTokenizer() shiba = Shiba() shiba.load_state_dict(get_pretrained_state_dict()) model = ShibaForSequenceLabeling(shiba, attr_size=len(attr2idx), label_size=len(bio2idx)) model.load_state_dict(torch.load(OUTPUT_PATH+'best_model.pt')) bar = tqdm(total=len(pred_page2plain)) result_list = [] for idx, page_id in enumerate(list(pred_page2plain.keys())): page2plain = {page_id:pred_page2plain[page_id]} if MODEL == 'charbert': ds = CharbertDataset(page2plain, tokenizer, attr2idx, bio2idx, MAX_LENGTH, BLOCK, None) else: ds = ShibaDataset(page2plain, tokenizer, attr2idx, bio2idx, MAX_LENGTH, BLOCK, None) dl = DataLoader(ds, batch_size=BATCH_SIZE, collate_fn=collate_fn) _total_labels, _total_preds = torch.LongTensor(), torch.LongTensor() for inputs, attention_masks, labels in dl: with torch.no_grad(): model.to(device).eval() output = model(inputs.to(device), attention_masks.to(device), labels.to(device)) probs = torch.stack(output[1]).transpose(0, 1).cpu() preds = probs.argmax(axis=-1) _total_labels = torch.cat([_total_labels, labels.transpose(0, 1).reshape(labels.shape[1], -1)], axis=1) _total_preds = torch.cat([_total_preds, preds.transpose(0, 1).reshape(preds.shape[1], -1)], axis=1) total_preds = _total_preds[(_total_labels != -1).nonzero(as_tuple=True)].reshape(_total_preds.shape[0], -1) bio_preds = decode_attr_bio(total_preds.tolist(), idx2attr, idx2bio) new_char_idx_dict = {page_dict['new_char_idx']:page_dict \ for page_dict in ds.df_new[page_id].to_dict('records')} for attr_idx, bios in enumerate(bio_preds): pre_bio = 'O' result = {'page_id':page_id, 'title':ds.page2title[page_id], \ 'attribute':idx2attr[attr_idx], 'text_offset':{}} for idx, bio in enumerate(bios): bio = bio.split('-')[0] ope = operate_bio(pre_bio, bio) if ope['insert'] == True: result_list.append(result) result = {'page_id':page_id, 'title':ds.page2title[page_id], \ 'attribute':idx2attr[attr_idx], 'text_offset':{}} if ope['start'] == True: result['text_offset']['start'] = { 'line_id': new_char_idx_dict[idx]['line_id'], 'offset': new_char_idx_dict[idx]['offset'] } result['text_offset']['text'] = new_char_idx_dict[idx]['char'] if ope['end'] == True: result['text_offset']['end'] = { 'line_id': new_char_idx_dict[idx]['line_id'], 'offset': new_char_idx_dict[idx]['offset']+1 } if ope['start'] == False: result['text_offset']['text'] += new_char_idx_dict[idx]['char'] pre_bio = bio if bio in ['B', 'I']: result_list.append(result) bar.update(1) df_result = pd.DataFrame(result_list) df_result.to_json(OUTPUT_PATH+'predict.json', orient='records', force_ascii=False, lines=True)
1.875
2
test/transform/test_base.py
marrow/schema
3
12786889
<filename>test/transform/test_base.py from io import StringIO from marrow.schema.exc import Concern from marrow.schema.testing import TransformTest from marrow.schema.transform.base import BaseTransform, Transform, IngressTransform, EgressTransform, SplitTransform PASSTHROUGH = (None, False, True, "", "Foo", 27, 42.0, [], {}) ST = SplitTransform( reader = IngressTransform(ingress=int), writer = EgressTransform(egress=str) ) class TestForeignPassthrough(TransformTest): transform = BaseTransform().foreign valid = PASSTHROUGH def test_loads_none(self): assert BaseTransform().loads('') is None def test_load(self): assert BaseTransform().load(StringIO(str("bar"))) == "bar" class TestNativePassthrough(TransformTest): transform = BaseTransform().native valid = PASSTHROUGH def test_dumps_none(self): assert BaseTransform().dumps(None) == '' def test_dump(self): fh = StringIO() assert BaseTransform().dump(fh, "baz") == 3 assert fh.getvalue() == "baz" class TestTransform(TransformTest): transform = Transform().native valid = PASSTHROUGH + ((' foo ', 'foo'), ) def test_decoding(self): result = self.transform('Zoë'.encode('utf8')) assert isinstance(result, str) assert result == 'Zoë' class TestIngress(TransformTest): transform = IngressTransform(ingress=int).native valid = (27, ("42", 42), (2.15, 2)) invalid = ('x', '', [], {}) direction = 'incoming' def test_concern(self): try: self.transform('x') except Concern as e: assert self.direction in str(e) assert 'invalid literal' in str(e) class TestEgress(TestIngress): transform = EgressTransform(egress=int).foreign direction = 'outgoing' class TestSplitTransform(object): def test_construction(self): try: SplitTransform() except Concern as e: pass else: assert False, "Failed to raise a concern." class TestSplitTransformReader(TransformTest): transform = ST.native valid = (('27', 27), (3.14159, 3), (0.5, 0)) invalid = TestIngress.invalid + (float('inf'), ) def test_loads_none(self): assert ST.loads('') is None def test_load(self): assert ST.load(StringIO(str("42"))) == 42 class TestSplitTransformWriter(TransformTest): transform = ST.foreign valid = ((27, '27'), (42, '42'), (3.14, "3.14")) def test_dumps_none(self): assert ST.dumps(None) == '' def test_dump(self): fh = StringIO() assert ST.dump(fh, 2.15) == 4 assert fh.getvalue() == "2.15"
2.15625
2
Outils/IHM/TRUST_PLOT2D/src/trust_plot2d/MenuTRUSTWidget.py
cea-trust-platform/trust-code
12
12786890
<reponame>cea-trust-platform/trust-code from pyqtside.QtCore import Qt, QTimer, QDir, Slot from pyqtside.QtWidgets import QMainWindow,QMenu, QFileDialog, QDockWidget from pyqtside.uic import loadUiGen from .utils import completeResPath from .FileManager import FileManager import os import curveplot class MenuTRUSTWidget(QDockWidget): def __init__(self,fv): QDockWidget.__init__( self) loadUiGen(completeResPath("MenuTRUSTWidget.ui"), self) # self._timer = QTimer() # self.connect(self._timer, SIGNAL("timeout()"), self.onTimerTrigger) # self._timer.start(self.refreshWidget.value()*1000) # self._fileManager = FileManager() self._showFileView = fv def _getLongCaseName(self): cutn=self._showFileView._caseName.split(".data")[0] return os.path.join(self._showFileView._currDir,cutn) def execute(self,cmd): import subprocess print("Starting ",cmd) cmd=cmd.split() subprocess.Popen(cmd) @Slot() def onTerminalButton(self): """ Start the run """ case= self._getLongCaseName() if case == "": return exterm=os.environ.get("Xterm") if exterm == "": exterm="xterm" self.execute(exterm) def EditFile(self,extension): case= self._getLongCaseName() if case == "": return case+=extension # cmd="xemacs "+case editor=os.environ.get("TRUST_EDITOR") if editor == "": editor="xemacs" cmd=editor+" "+case self.execute(cmd) @Slot() def onEditOutButton(self): self.EditFile(".out") @Slot() def onEditErrButton(self): self.EditFile(".err") @Slot() def onEditButton(self): """ Start the run """ self.EditFile(".data") @Slot() def onVisuButton(self): """ Start the run """ case= self._getLongCaseName() if case == "": return case+=".lata" cmd="visit -o "+case #cmd="paraview "+case self.execute(cmd)
2.015625
2
mapclientplugins/scaffoldfiniteelementmeshfitterstep/view/scaffoldmeshfitterwidget.py
mahyar-osn/mapclientplugins.scaffoldfiniteelementmeshfitterstep
0
12786891
from PySide import QtGui, QtCore from opencmiss.zinchandlers.scenemanipulation import SceneManipulation from mapclientplugins.scaffoldfiniteelementmeshfitterstep.handlers.datapointadder import DataPointAdder from mapclientplugins.scaffoldfiniteelementmeshfitterstep.handlers.datapointadder import DataPointAdder from mapclientplugins.scaffoldfiniteelementmeshfitterstep.handlers.datapointadder import DataPointAdder from .ui_scaffoldmeshfitterwidget import Ui_ScaffoldfitterWidget class ScaffoldMeshFitterWidget(QtGui.QWidget): def __init__(self, model, parent=None): super(ScaffoldMeshFitterWidget, self).__init__(parent) self._ui = Ui_ScaffoldfitterWidget() self._ui.setupUi(model.get_shareable_open_gl_widget(), self) self._ui.sceneviewer_widget.set_context(model.get_context()) self._settings = {'view-parameters': {}} self._model = model self._model.reset() self._model.register_time_value_update_callback(self._update_time_value)
1.84375
2
PP4E-Examples-1.4/Examples/PP4E/Lang/summer3.py
AngelLiang/PP4E
0
12786892
sums = {} for line in open('table4.txt'): cols = [float(col) for col in line.split()] for pos, val in enumerate(cols): sums[pos] = sums.get(pos, 0.0) + val for key in sorted(sums): print(key, '=', sums[key])
2.640625
3
working/bin/forms/mainMenu.py
grinchios/college_project-commented
0
12786893
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # theme and sys for linking signals import sys # other forms import managerMenu as managermenu import staffForm as staffform import stockForm as stockform import treatmentsForm as treatmentsform import appointmentForm as appointmentform import chartForm as chartform import customerForm as customerform # GUI libraries from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import QMainWindow from PyQt5.QtCore import pyqtSignal, QObject # Theme import qdarkstyle class Ui_MainMenu(QMainWindow, QObject): valueChange = pyqtSignal(int) def setupUi(self, MainMenu): # 'global' information MainMenu.setObjectName("MainMenu") MainMenu.resize(1280, 720) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainMenu.sizePolicy().hasHeightForWidth()) MainMenu.setSizePolicy(sizePolicy) self.centralWidget = QtWidgets.QWidget(MainMenu) self.centralWidget.setObjectName("centralWidget") # True is manager # False is staff if sys.argv[2] == 'True': self.accessLevel = True else: self.accessLevel = False self.userLoggedIn = sys.argv[1] # creating navigation buttons def navButtons(self): self.navManagerMenu = QtWidgets.QPushButton(self.centralWidget) self.navManagerMenu.setGeometry(QtCore.QRect(11, 40, 121, 29)) font = QtGui.QFont() font.setFamily("Arial") self.navManagerMenu.setFont(font) self.navManagerMenu.setObjectName("navManagerMenu") self.navManagerMenu.setEnabled(self.accessLevel) self.navCharts = QtWidgets.QPushButton(self.centralWidget) self.navCharts.setGeometry(QtCore.QRect(10, 240, 121, 29)) font = QtGui.QFont() font.setFamily("Arial") self.navCharts.setFont(font) self.navCharts.setObjectName("navCharts") self.navAppointments = QtWidgets.QPushButton(self.centralWidget) self.navAppointments.setGeometry(QtCore.QRect(10, 160, 121, 29)) font = QtGui.QFont() font.setFamily("Arial") self.navAppointments.setFont(font) self.navAppointments.setObjectName("navAppointments") self.navCustomers = QtWidgets.QPushButton(self.centralWidget) self.navCustomers.setGeometry(QtCore.QRect(10, 120, 121, 29)) font = QtGui.QFont() font.setFamily("Arial") self.navCustomers.setFont(font) self.navCustomers.setObjectName("navCustomers") self.navStaff = QtWidgets.QPushButton(self.centralWidget) self.navStaff.setGeometry(QtCore.QRect(10, 80, 121, 29)) font = QtGui.QFont() font.setFamily("Arial") self.navStaff.setFont(font) self.navStaff.setObjectName("navStaff") self.navStaff.setEnabled(self.accessLevel) self.navStock = QtWidgets.QPushButton(self.centralWidget) self.navStock.setGeometry(QtCore.QRect(10, 200, 121, 29)) font = QtGui.QFont() font.setFamily("Arial") self.navStock.setFont(font) self.navStock.setObjectName("navStock") self.navTreatments = QtWidgets.QPushButton(self.centralWidget) self.navTreatments.setGeometry(QtCore.QRect(10, 280, 121, 29)) font = QtGui.QFont() font.setFamily("Arial") self.navTreatments.setFont(font) self.navTreatments.setObjectName("navTreatments") # whos logged in self.user = QtWidgets.QLabel(self.centralWidget) self.user.setGeometry(QtCore.QRect(10, 320, 121, 29)) font = QtGui.QFont() font.setFamily("Arial Black") self.user.setFont(font) self.user.setObjectName("user") self.label = QtWidgets.QLabel(self.centralWidget) self.label.setGeometry(QtCore.QRect(10, 11, 101, 17)) font = QtGui.QFont() font.setFamily("Arial Black") self.label.setFont(font) self.label.setObjectName("label") self.stackedWidget = QtWidgets.QStackedWidget(self.centralWidget) self.stackedWidget.setGeometry(QtCore.QRect(140, 10, 1141, 691)) font = QtGui.QFont() font.setFamily("Arial") self.stackedWidget.setFont(font) self.stackedWidget.setObjectName("stackedWidget") # creation code navButtons(self) managermenu.createManagerMenu(self) chartform.createChartForm(self) staffform.createStaffForm(self) customerform.createCustomerForm(self) appointmentform.createAppointmentForm(self) stockform.createStockForm(self) treatmentsform.createTreatmentsForm(self) # main window config MainMenu.setCentralWidget(self.centralWidget) self.mainToolBar = QtWidgets.QToolBar(MainMenu) self.mainToolBar.setObjectName("mainToolBar") MainMenu.addToolBar(QtCore.Qt.TopToolBarArea, self.mainToolBar) self.statusBar = QtWidgets.QStatusBar(MainMenu) self.statusBar.setObjectName("statusBar") MainMenu.setStatusBar(self.statusBar) self.retranslateUi(MainMenu) if self.accessLevel is True: self.stackedWidget.setCurrentIndex(0) else: self.stackedWidget.setCurrentIndex(4) QtCore.QMetaObject.connectSlotsByName(MainMenu) def navigation(self): # connecting the navigation buttons to the stacked widget self.navManagerMenu.clicked.connect(lambda : self.stackedWidget.setCurrentIndex(0)) self.navCharts.clicked.connect(lambda : self.stackedWidget.setCurrentIndex(1)) self.navStaff.clicked.connect(lambda : self.stackedWidget.setCurrentIndex(2)) self.navCustomers.clicked.connect(lambda : self.stackedWidget.setCurrentIndex(3)) self.navAppointments.clicked.connect(lambda : self.stackedWidget.setCurrentIndex(4)) self.navStock.clicked.connect(lambda : self.stackedWidget.setCurrentIndex(5)) self.navTreatments.clicked.connect(lambda : self.stackedWidget.setCurrentIndex(6)) def retranslateUi(self, MainMenu): # adding text to all the labels _translate = QtCore.QCoreApplication.translate MainMenu.setWindowTitle(_translate("MainMenu", "MainMenu")) self.navManagerMenu.setText(_translate("MainMenu", "ManagerMenu")) self.navCharts.setText(_translate("MainMenu", "Charts")) self.navAppointments.setText(_translate("MainMenu", "Appointments")) self.navCustomers.setText(_translate("MainMenu", "Customers")) self.navStaff.setText(_translate("MainMenu", "Staff")) self.navStock.setText(_translate("MainMenu", "Stock")) self.navTreatments.setText(_translate("MainMenu", "Treatments")) self.label.setText(_translate("MainMenu", "Navigation")) self.label_5.setText(_translate("MainMenu", "Manager Menu")) self.label_notifications.setText(_translate("MainMenu", "Notifications")) self.label_7.setText(_translate("MainMenu", "Backup")) self.btnBackup.setText(_translate("MainMenu", "Backup")) self.user.setText(_translate("MainMenu", sys.argv[1])) self.user.setAlignment(QtCore.Qt.AlignCenter) self.label_4.setText(_translate("MainMenu", "To")) self.label_2.setText(_translate("MainMenu", "Chart Type")) self.cmbChartType.setItemText(0, _translate("MainMenu", "Most popular treatment")) self.cmbChartType.setItemText(1, _translate("MainMenu", "Income")) self.cmbChartType.setItemText(2, _translate("MainMenu", "Outgoing per stock type")) self.label_3.setText(_translate("MainMenu", "From")) self.btnChartCreate.setText(_translate("MainMenu", "Create")) self.label_31.setText(_translate("MainMenu", "Charts")) self.label_8.setText(_translate("MainMenu", "Staff Menu")) self.label_9.setText(_translate("MainMenu", "Add new staff member")) self.label_10.setText(_translate("MainMenu", "First name")) self.label_staffsex.setText(_translate("MainMenu", "Staff sex")) self.label_11.setText(_translate("MainMenu", "Surname")) self.label_12.setText(_translate("MainMenu", "Username")) self.label_13.setText(_translate("MainMenu", "Password")) self.label_14.setText(_translate("MainMenu", "Is this user a manager?")) self.checkBoxAdmin.setText(_translate("MainMenu", "Yes")) self.label_15.setText(_translate("MainMenu", "Date of birth")) self.label_16.setText(_translate("MainMenu", "StaffID")) self.btnSaveStaff.setText(_translate("MainMenu", "Save")) self.label_17.setText(_translate("MainMenu", "Search")) self.btnStaffCancel.setText(_translate("MainMenu", "Cancel")) self.label_18.setText(_translate("MainMenu", "Add new Customer")) self.label_19.setText(_translate("MainMenu", "Email")) self.label_20.setText(_translate("MainMenu", "Surname")) self.label_21.setText(_translate("MainMenu", "Search")) self.label_22.setText(_translate("MainMenu", "CustomerID")) self.btnSaveCustomer.setText(_translate("MainMenu", "Save")) self.label_23.setText(_translate("MainMenu", "Date of birth")) self.label_24.setText(_translate("MainMenu", "Primary Contact info")) self.label_25.setText(_translate("MainMenu", "Phone Number")) self.label_26.setText(_translate("MainMenu", "First name")) self.cmbCustomerContact.setItemText(0, _translate("MainMenu", "Phone number")) self.cmbCustomerContact.setItemText(1, _translate("MainMenu", "Email address")) self.label_27.setText(_translate("MainMenu", "Address")) self.label_28.setText(_translate("MainMenu", "Postcode")) self.label_29.setText(_translate("MainMenu", "Allergies")) self.label_30.setText(_translate("MainMenu", "Customers")) self.cmbCustomerSex.setItemText(0, _translate("MainMenu", "Male")) self.cmbCustomerSex.setItemText(1, _translate("MainMenu", "Female")) self.label_75.setText(_translate("MainMenu", "Sex")) self.btnCustomerCancel.setText(_translate("MainMenu", "Cancel")) self.label_62.setText(_translate("MainMenu", "Search")) self.label_63.setText(_translate("MainMenu", "Date")) self.label_65.setText(_translate("MainMenu", "AppointmentID")) self.label_66.setText(_translate("MainMenu", "Customer")) self.label_67.setText(_translate("MainMenu", "Add new Appointment")) self.label_68.setText(_translate("MainMenu", "Amount Paid")) self.label_70.setText(_translate("MainMenu", "Time")) self.btnSaveAppointment.setText(_translate("MainMenu", "Save")) self.label_72.setText(_translate("MainMenu", "Treatment")) self.label_73.setText(_translate("MainMenu", "Staff")) self.label_74.setText(_translate("MainMenu", "Appointments")) self.label_64.setText(_translate("MainMenu", "£")) self.label_69.setText(_translate("MainMenu", "£")) self.label_71.setText(_translate("MainMenu", "Amount Due")) self.btnAppointmentCancel.setText(_translate("MainMenu", "Cancel")) self.label_76.setText(_translate("MainMenu", "Comment")) self.label_77.setText(_translate("MainMenu", "Stock alert level")) self.label_78.setText(_translate("MainMenu", "Add new Stock")) self.label_81.setText(_translate("MainMenu", "StockID")) self.btnSaveStock.setText(_translate("MainMenu", "Save")) self.label_83.setText(_translate("MainMenu", "Amount left")) self.label_84.setText(_translate("MainMenu", "Name")) self.label_86.setText(_translate("MainMenu", "Search")) self.btnStockCancel.setText(_translate("MainMenu", "Cancel")) self.label_87.setText(_translate("MainMenu", "£")) self.label_88.setText(_translate("MainMenu", "Price")) self.label_89.setText(_translate("MainMenu", "Stock")) # labels for treatmentsform self.label_90.setText(_translate("MainMenu", "£")) self.label_91.setText(_translate("MainMenu", "Search")) self.label_92.setText(_translate("MainMenu", "Price")) self.label_79.setText(_translate("MainMenu", "Stock amount to use")) self.label_80.setText(_translate("MainMenu", "Add new Treatments")) self.label_85.setText(_translate("MainMenu", "Name")) self.label_82.setText(_translate("MainMenu", "TreatmentID")) self.label_93.setText(_translate("MainMenu", "Stock name")) self.btnTreatmentCancel.setText(_translate("MainMenu", "Cancel")) self.btnSaveTreatment.setText(_translate("MainMenu", "Save")) self.btnTreatmentAddStock.setText(_translate("MainMenu", "Add")) self.label_94.setText(_translate("MainMenu", "Stock to use")) self.label_95.setText(_translate("MainMenu", "Treatments")) if __name__ == "__main__": app = QtWidgets.QApplication(sys.argv) app.setStyleSheet(qdarkstyle.load_stylesheet_pyqt5()) MainMenu = QtWidgets.QMainWindow() ui = Ui_MainMenu() ui.setupUi(MainMenu) ui.navigation() icon = QtGui.QIcon('database/company.png') MainMenu.setWindowIcon(QtGui.QIcon(icon)) MainMenu.show() sys.exit(app.exec_())
1.984375
2
SentimentAnalysis/pickleMe.py
sazlin/reTOracle
0
12786894
import cPickle def load_pickle(filename): pickled = open(filename, 'rb') data = cPickle.load(pickled) return data def export_pickle(filename, the_object): pickle_file = open(filename, 'w') cPickle.dump(the_object, pickle_file) pickle_file.close()
2.875
3
turbustat/tests/test_stat_moments.py
keflavich/TurbuStat
0
12786895
# Licensed under an MIT open source license - see LICENSE ''' Test functions for Kurtosis ''' from unittest import TestCase import numpy as np import numpy.testing as npt from ..statistics import StatMoments, StatMomentsDistance from ._testing_data import \ dataset1, dataset2, computed_data, computed_distances class TestMoments(TestCase): def setUp(self): self.dataset1 = dataset1 self.dataset2 = dataset2 def test_moments(self): self.tester = StatMoments(dataset1["integrated_intensity"][0], 5) self.tester.run() assert np.allclose(self.tester.kurtosis_hist[1], computed_data['kurtosis_val']) assert np.allclose(self.tester.skewness_hist[1], computed_data['skewness_val']) def test_moment_distance(self): self.tester_dist = \ StatMomentsDistance(dataset1["integrated_intensity"][0], dataset2["integrated_intensity"][0], 5) self.tester_dist.distance_metric() npt.assert_almost_equal(self.tester_dist.kurtosis_distance, computed_distances['kurtosis_distance']) npt.assert_almost_equal(self.tester_dist.skewness_distance, computed_distances['skewness_distance'])
2.8125
3
sdcclient/secure/_policy_events_v1.py
DaveCanHaz/sysdig-sdk-python
0
12786896
import datetime import requests from sdcclient._common import _SdcCommon class PolicyEventsClientV1(_SdcCommon): def __init__(self, token="", sdc_url='https://secure.sysdig.com', ssl_verify=True, custom_headers=None): super(PolicyEventsClientV1, self).__init__(token, sdc_url, ssl_verify, custom_headers) self.customer_id = None self.product = "SDS" self._policy_v2 = None def _get_policy_events_int(self, ctx): limit = ctx.get("limit", 50) policy_events_url = self.url + '/api/v1/secureEvents?limit={limit}{frm}{to}{filter}{cursor}'.format( limit=limit, frm=f"&from={int(ctx['from']):d}" if "from" in ctx else "", to=f"&to={int(ctx['to']):d}" if "to" in ctx else "", filter=f'&filter={ctx["filter"]}' if "filter" in ctx else "", cursor=f'&cursor={ctx["cursor"]}' if "cursor" in ctx else "") res = requests.get(policy_events_url, headers=self.hdrs, verify=self.ssl_verify) if not self._checkResponse(res): return [False, self.lasterr] ctx = { "limit": limit, "cursor": res.json()["page"].get("prev", None) } return [True, {"ctx": ctx, "data": res.json()["data"]}] def get_policy_events_range(self, from_sec, to_sec, filter=None): '''**Description** Fetch all policy events that occurred in the time range [from_sec:to_sec]. This method is used in conjunction with :func:`~sdcclient.SdSecureClient.get_more_policy_events` to provide paginated access to policy events. **Arguments** - from_sec: the start of the timerange for which to get events - end_sec: the end of the timerange for which to get events - filter: this is a SysdigMonitor-like filter (e.g. filter: 'severity in ("4","5") and freeText in ("Suspicious")') **Success Return Value** An array containing: - A context object that should be passed to later calls to get_more_policy_events. - An array of policy events, in JSON format. See :func:`~sdcclient.SdSecureClient.get_more_policy_events` for details on the contents of policy events. **Example** `examples/get_secure_policy_events.py <https://github.com/draios/python-sdc-client/blob/master/examples/get_secure_policy_events.py>`_ ''' options = {"from": int(from_sec) * 1_000_000_000, "to": int(to_sec) * 1_000_000_000, "limit": 50, "filter": filter} ctx = {k: v for k, v in options.items() if v is not None} return self._get_policy_events_int(ctx) def get_policy_events_duration(self, duration_sec, filter=None): '''**Description** Fetch all policy events that occurred in the last duration_sec seconds. This method is used in conjunction with :func:`~sdcclient.SdSecureClient.get_more_policy_events` to provide paginated access to policy events. **Arguments** - duration_sec: Fetch all policy events that have occurred in the last *duration_sec* seconds. - filter: this is a SysdigMonitor-like filter (e.g. filter: 'severity in ("4","5") and freeText in ("Suspicious")') **Success Return Value** An array containing: - A context object that should be passed to later calls to get_more_policy_events. - An array of policy events, in JSON format. See :func:`~sdcclient.SdSecureClient.get_more_policy_events` for details on the contents of policy events. **Example** `examples/get_secure_policy_events.py <https://github.com/draios/python-sdc-client/blob/master/examples/get_secure_policy_events.py>`_ ''' to_sec = int((datetime.datetime.utcnow() - datetime.datetime.utcfromtimestamp(0)).total_seconds()) from_sec = to_sec - (int(duration_sec)) return self.get_policy_events_range(from_sec, to_sec, filter) def get_more_policy_events(self, ctx): '''**Description** Fetch additional policy events after an initial call to :func:`~sdcclient.SdSecureClient.get_policy_events_range` / :func:`~sdcclient.SdSecureClient.get_policy_events_duration` or a prior call to get_more_policy_events. **Arguments** - ctx: a context object returned from an initial call to :func:`~sdcclient.SdSecureClient.get_policy_events_range` / :func:`~sdcclient.SdSecureClient.get_policy_events_duration` or a prior call to get_more_policy_events. **Success Return Value** An array containing: - A context object that should be passed to later calls to get_more_policy_events() - An array of policy events, in JSON format. Each policy event contains the following: - id: a unique identifier for this policy event - cursor: unique ID that can be used with get_more_policy_events context to retrieve paginated policy events - timestamp: when the event occurred (ns since the epoch) - source: the source of the policy event. It can be "syscall" or "k8s_audit" - description: the description of the event - severity: a severity level from 1-7 - agentId: the agent that reported this event - machineId: the MAC of the machine that reported this event - content: More information about what triggered the event - falsePositive: if the event is considered a false-positive - fields: raw information from the rule that fired this event - output: Output from the rule that fired this event - policyId: the ID of the policy that fired this event - ruleName: name of the rule that fired this event - ruleTags: tags from the rule that fired this event - labels: more information from the scope of this event When the number of policy events returned is 0, there are no remaining events and you can stop calling get_more_policy_events(). **Example** `examples/get_secure_policy_events.py <https://github.com/draios/python-sdc-client/blob/master/examples/get_secure_policy_events.py>`_ ''' return self._get_policy_events_int(ctx)
2.28125
2
logwriter/logwriter.py
mbukatov/ocs-workload
5
12786897
<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf8 -*- from datetime import datetime import argparse import hashlib import logging import os import sys import time import uuid def main(): ap = argparse.ArgumentParser(description="logwriter") ap.add_argument( "directory", help="directory where to create a log file") ap.add_argument( "-p", type=int, help="pause between 2 consequent writes in seconds") ap.add_argument( "--fsync", action="store_true", help="run fsync after each write") ap.add_argument( "-d", "--debug", action="store_true", help="set log level to DEBUG") args = ap.parse_args() if args.debug: logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) # name of a target log file is unique for each run log_name = str(uuid.uuid4()) + ".log" # TODO: limit size of the log file, rotate log file # TODO: check given log file with open(log_name, "w") as log_file: logging.info("log file %s created", log_name) timestamp = datetime.now() log_line = f"{timestamp.isoformat()} started\n" log_file.write(log_line) while True: try: data = hashlib.sha256(log_line.encode('utf8')).hexdigest() timestamp = datetime.now() log_line = f"{timestamp.isoformat()} {data}\n" log_file.write(log_line) log_file.flush() if args.fsync: os.fsync(log_file.fileno()) time.sleep(args.p) except KeyboardInterrupt: logging.info("stopped") break if __name__ == '__main__': sys.exit(main())
2.890625
3
shepherding/util/plot_ss.py
argyili/shepherding-public
0
12786898
<gh_stars>0 import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.animation as anim import time ''' Recorded simulation data into csv files ''' ''' Initiliaze plot line by csv ''' def init_plot_line_csv(ax, param, sheeps_color, sheeps_pos, shepherds_color, shepherds_pos): # Sheep for i in range(len(sheeps_color)): ax.plot(sheeps_pos[i][0], sheeps_pos[i][1], sheeps_color[i] + 'o', alpha=0.5) # Shepherd for i in range(len(shepherds_color)): # shepherd_color = shepherds[i][0] # shepherd_pos = shepherds[i][1] ax.plot(shepherds_pos[i][0], shepherds_pos[i][1], shepherds_color[i] + 'o', alpha=0.5) # Goal goal_zone = patches.Circle(param["goal"], param["goal_radius"], ec="k", fc='white', alpha=1) ax.add_patch(goal_zone) # x,y axis range xy_range = param["sheep_initial_pos_radius"] + 40 ax.set_xlim(-xy_range, xy_range) ax.set_ylim(-xy_range, xy_range) ax.set_aspect('equal') ''' Initiliaze plot line by csv, more obvious ''' def init_plot_line_csv_spec(ax, param, sheeps_color, sheeps_pos, shepherds_color, shepherds_pos): # Sheep for i in range(len(sheeps_color)): ax.plot(sheeps_pos[i][0], sheeps_pos[i][1], sheeps_color[i] + 'o', alpha=0.5) # Shepherd for i in range(len(shepherds_color)): # shepherd_color = shepherds[i][0] # shepherd_pos = shepherds[i][1] ax.plot(shepherds_pos[i][0], shepherds_pos[i][1], shepherds_color[i] + 'o', alpha=0.9, markersize=10) # Goal goal_zone = patches.Circle(param["goal"], param["goal_radius"], ec="k", fc='white', alpha=1) ax.add_patch(goal_zone) # x,y axis range xy_range = param["sheep_initial_pos_radius"] + 40 ax.set_xlim(-xy_range, xy_range) ax.set_xticks([-100, 100]) ax.set_ylim(-xy_range, xy_range) ax.set_yticks([-100, 100]) ax.tick_params(axis='both', which='major', labelsize=14) ax.set_aspect('equal') ''' Initiliaze trace by csv ''' def init_trace_csv(ax, param, sheeps_color, sheeps_pos, shepherds_color, shepherds_pos): # Sheep for i in range(len(sheeps_color)): # Only k, not sheeps_color[i] ax.plot(sheeps_pos[i][0], sheeps_pos[i][1], 'k' + 'o', alpha=0.1, markersize='1') # Shepherd for i in range(len(shepherds_color)): # shepherd_color = shepherds[i][0] # shepherd_pos = shepherds[i][1] ax.plot(shepherds_pos[i][0], shepherds_pos[i][1], shepherds_color[i] + 'o', alpha=0.4, markersize='4') # Goal goal_zone = patches.Circle(param["goal"], param["goal_radius"], ec="k", fc='white', alpha=1) ax.add_patch(goal_zone) # x,y axis range xy_range = param["sheep_initial_pos_radius"] + 40 ax.set_xlim(-xy_range, xy_range) ax.set_xticks([-100, 100]) ax.set_ylim(-xy_range, xy_range) ax.set_yticks([-100, 100]) ax.tick_params(axis='both', which='major', labelsize=14) ax.set_aspect('equal') ''' Figure out which sheep is target sheep ''' def check_target(sheeps, target_sheep): for i in range(len(sheeps)): # 2D space with x,y attribute if sheeps[i].position[0] == target_sheep.position[0] and sheeps[i].position[1] == target_sheep.position[1]: return i return 0 ''' Write a line into csv in each step ''' def write_line_csv(writer, sheeps, shepherds): # k for sheep, r for alive shepherds, c for fault shepherds s = ["k " + str(sheeps[i].position) for i in range(len(sheeps))] for i in range(len(shepherds)): # Plot special color dot at target sheep if shepherds[i].target_sheep and shepherds[i].target_sheep != []: target = check_target(sheeps, shepherds[i].target_sheep) s[target] = s[target].replace('k', 'y') writer.writerow(s) ''' Write last line into csv with a result ''' def write_last_line_csv(writer, result): writer.writerow(result)
2.6875
3
serial_scripts/llgr/base.py
atsgen/tf-test
5
12786899
<filename>serial_scripts/llgr/base.py # # To run tests, you can do 'python -m testtools.run tests'. To run specific tests, # You can do 'python -m testtools.run -l tests' # Set the env variable PARAMS_FILE to point to your ini file. Else it will try to pick params.ini in PWD # from common.neutron.base import BaseNeutronTest from tcutils.wrappers import preposttest_wrapper from tcutils.util import * import test_v1 from common import isolated_creds from common.connections import ContrailConnections from tcutils.control.cn_introspect_utils import ControlNodeInspect from common.device_connection import NetconfConnection from control_node import CNFixture import time class TestLlgrBase(BaseNeutronTest): @classmethod def setUpClass(cls): ''' It will set up a topology where agent is connected to only one of the control node This way we make sure that the route is learned from a different agent via bgp ''' super(TestLlgrBase, cls).setUpClass() cls.cn_introspect = ControlNodeInspect(cls.inputs.bgp_ips[0]) cls.host_list = cls.connections.orch.get_hosts() if len(cls.host_list) > 1 and len(cls.inputs.bgp_ips) > 1 : cls.set_xmpp_peering(compute_ip=cls.inputs.host_data[cls.host_list[0]]['host_control_ip'] , ctrl_node=cls.inputs.bgp_ips[0],mode='disable') cls.set_xmpp_peering(compute_ip=cls.inputs.host_data[cls.host_list[1]]['host_control_ip'] , ctrl_node=cls.inputs.bgp_ips[1],mode='disable') if cls.inputs.ext_routers: cls.mx1_ip = cls.inputs.ext_routers[0][1] # TODO remove the hard coding once we get this parameters populated from testbed cls.mx_user = 'root' cls.mx_password = '<PASSWORD>' cls.mx1_handle = NetconfConnection(host = cls.mx1_ip,username=cls.mx_user,password=<PASSWORD>) cls.mx1_handle.connect() time.sleep(20) # end setUp @classmethod def tearDownClass(cls): ''' It will remove topology where agent is connected to only one of the control node ''' cls.set_bgp_peering(mode='enable') cls.set_gr_llgr(mode='disable') cls.set_xmpp_peering(compute_ip=cls.inputs.host_data[cls.host_list[0]]['host_control_ip'] , mode='enable') cls.set_xmpp_peering(compute_ip=cls.inputs.host_data[cls.host_list[1]]['host_control_ip'] , mode='enable') super(TestLlgrBase, cls).tearDownClass() # end cleanUp @classmethod def set_gr_llgr(self, **kwargs): ''' Enable/Disable GR / LLGR configuration with gr/llgr timeout values as parameters ''' gr_timeout = kwargs['gr'] llgr_timeout = kwargs['llgr'] gr_enable = True if kwargs['mode'] == 'enable' else False eor_timeout = '60' router_asn = '64512' if gr_enable == True else self.inputs.router_asn cntrl_fix = self.useFixture(CNFixture( connections=self.connections, router_name=self.inputs.ext_routers[0][0], router_ip=self.mx1_ip, router_type='mx', inputs=self.inputs)) cntrl_fix.set_graceful_restart(gr_restart_time=gr_timeout, llgr_restart_time = llgr_timeout, eor_timeout = eor_timeout, gr_enable = gr_enable, router_asn = router_asn, bgp_helper_enable = True, xmpp_helper_enable = False) return True @classmethod def set_bgp_peering(self,**kwargs): ''' Stop and start of BGP peer communication so that GR/LLGR timers are triggered ''' mode = kwargs['mode'] if mode == 'disable': cmd = 'iptables -A OUTPUT -p tcp --destination-port 179 -j DROP; \ iptables -A INPUT -p tcp --destination-port 179 -j DROP' else: cmd = 'iptables -D OUTPUT -p tcp --destination-port 179 -j DROP; \ iptables -D INPUT -p tcp --destination-port 179 -j DROP' self.logger.debug('%s bgp peering : %s' %(mode,cmd)) self.inputs.run_cmd_on_server(self.inputs.bgp_ips[0],cmd) return True def verify_traffic_loss(self,**kwargs): vm1_fixture = kwargs['vm_fixture'] result_file = kwargs['result_file'] pkts_trans = '0' pkts_recv = '0' ret = False cmd = 'cat %s | grep loss'% result_file res = vm1_fixture.run_cmd_on_vm(cmds=[cmd]) self.logger.debug('results %s' %(res)) if not res[cmd]: self.logger.error("Not able to get the log file %s"%res) return (ret,pkts_trans,pkts_recv) pattern = '''(\S+) packets transmitted, (\S+) received, (\S+)% packet loss''' res = re.search(pattern,res[cmd]) if res: pkts_trans = res.group(1) pkts_recv = res.group(2) loss = res.group(3) ret = True return (ret,pkts_trans,pkts_recv) def verify_gr_llgr_flags(self,**kwargs): ''' Validate Stale / LLgrStale flags after GR/LLGR timer is triggered ''' flags = kwargs['flags'] vn_fix = kwargs['vn_fix'] prefix = kwargs['prefix'] ri = vn_fix.vn_fq_name+":"+vn_fix.vn_name rtbl_entry = self.cn_introspect.get_cn_route_table_entry(prefix,ri) if not rtbl_entry: self.logger.error("Not able to find route table entry %s"%prefix) return False rtbl = self.cn_introspect.get_cn_route_table_entry(prefix,ri)[0] if not rtbl : self.logger.error("Not able to find route table for prefix %s"%prefix) return False self.logger.debug('prefix flags %s' %(rtbl['flags'])) if flags != rtbl['flags'] : self.logger.error("Not able to find route flags for prefix %s:%s"%flags,rtbl['flags']) return False return True @classmethod def set_xmpp_peering(self,**kwargs): ''' Enabling / Disabling XMPP peer communication ''' compute_ip = kwargs['compute_ip'] mode = kwargs['mode'] control_ips = [] if mode == 'disable': ctrl_host = kwargs['ctrl_node'] ctrl_ip = self.inputs.host_data[ctrl_host]['host_data_ip'] ctrl_ip = ctrl_ip + ":"+'5269' self.configure_server_list(compute_ip, 'contrail-vrouter-agent', 'CONTROL-NODE', 'servers' , [ctrl_ip], container = "agent") else : control_ips = [self.inputs.host_data[x]['host_data_ip']+":"+'5269' for x in self.inputs.bgp_ips] self.configure_server_list(compute_ip, 'contrail-vrouter-agent', 'CONTROL-NODE', 'servers' , control_ips , container = "agent") return True @classmethod def set_headless_mode(self,**kwargs): ''' Enabling/Disabling headless mode in agent ''' mode = kwargs['mode'] if mode == 'enable': cmd = '/usr/bin/openstack-config --set /etc/contrail/contrail-vrouter-agent.conf DEFAULT headless_mode true' else: cmd = '/usr/bin/openstack-config --del /etc/contrail/contrail-vrouter-agent.conf DEFAULT headless_mode' for host in self.host_list: self.logger.debug('enable headless mode %s : %s' %(host,cmd)) self.inputs.run_cmd_on_server(host,cmd,container='agent') self.inputs.restart_service('contrail-vrouter-agent',self.host_list) return True def verify_gr_bgp_flags(self,**kwargs): ''' Check for Notification bit,GR timeout,Forwarding state are sent properly during BGP Open message. ''' pcap_file = kwargs['pcap_file'] host = kwargs['host'] control_ip = self.inputs.host_data[host]['control-ip'] # Graceful Restart (64), length: 18 # Restart Flags: [none], Restart Time 35s # AFI IPv4 (1), SAFI labeled VPN Unicast (128), Forwarding state preserved: yes # AFI VPLS (25), SAFI Unknown (70), Forwarding state preserved: yes # AFI IPv4 (1), SAFI Route Target Routing Information (132), Forwarding state preserved: yes # AFI IPv6 (2), SAFI labeled VPN Unicast (128), Forwarding state preserved: yes # 0x0000: 4023 0001 8080 0019 4680 0001 8480 0002 (Check for 4023) , where 4 is notification bit # 4023 notification bit is set # 8080 forwarding state is set # 23 is 35 sec of gr time cmd = 'tcpdump -r %s -vvv -n | grep Open -A28 | grep %s -A28 | grep \'Restart Flags\' -A5 | grep 0x0000'%(pcap_file,control_ip) res = self.inputs.run_cmd_on_server(host,cmd) self.logger.debug('results %s' %(res)) res = res.split(':') flags = res[1].split(' ') if not flags: self.logger.error("not able to get flags %s"%flags) return False flags = [x for x in flags if x != ''] self.logger.info("flags set properly %s"%flags[0]) if flags[0] != '4023' and flags[2] != 8080: self.logger.error("flags not set properly %s"%flags[0]) return False return True def verify_llgr_bgp_flags(self,**kwargs): ''' Check for Notification bit, LLGR timeout,Forwarding state are sent properly during BGP Open message. ''' pcap_file = kwargs['pcap_file'] host = kwargs['host'] control_ip = self.inputs.host_data[host]['control-ip'] # Unknown (71), length: 28 # no decoder for Capability 71 # 0x0000: 0001 8080 0000 3c00 1946 8000 003c 0001 # 8080 forwarding state is set # c0 is 65 sec of llgr time cmd = 'tcpdump -r %s -vvv -n | grep Open -A28 | grep %s -A28 | grep \'Unknown (71)\' -A3 | grep 0x0000'%(pcap_file,control_ip) res = self.inputs.run_cmd_on_server(host,cmd) self.logger.debug('results %s' %(res)) res = res.split(':') flags = res[1].split(' ') if not flags: self.logger.error("not able to get flags %s"%flags) return False flags = [x for x in flags if x != ''] self.logger.info("flags set properly %s"%flags[0]) if flags[3] != '3c00' and flags[1] != '8080': self.logger.error("flags not set properly %s"%flags[0]) return False return True @classmethod def configure_server_list(self, client_ip, client_process, section, option, server_list, container): ''' This function configures the .conf file with new server_list and then send a sighup to the client so that configuration change is effective. ''' client_conf_file = client_process + ".conf" server_string = " ".join(server_list) cmd_set = "openstack-config --set /etc/contrail/" + client_conf_file cmd = cmd_set + " " + section + " " + option + ' "%s"' % server_string self.inputs.run_cmd_on_server(client_ip, cmd, self.inputs.host_data[client_ip]['username']\ , self.inputs.host_data[client_ip]['password'], container = container) if "nodemgr" in client_process: nodetype = client_process.rstrip("-nodemgr") client_process = "contrail-nodemgr --nodetype=%s" % nodetype else: client_process = "/usr/bin/" + client_process pid_cmd = 'pgrep -f -o "%s"' % client_process pid = int(self.inputs.run_cmd_on_server(client_ip, pid_cmd, self.inputs.host_data[client_ip]['username']\ , self.inputs.host_data[client_ip]['password'], container = container)) sighup_cmd = "kill -SIGHUP %d " % pid self.inputs.run_cmd_on_server(client_ip, sighup_cmd, self.inputs.host_data[client_ip]['username']\ , self.inputs.host_data[client_ip]['password'], container = container) def is_test_applicable(self): # check for atleast 2 compute nodes if len(self.host_list) < 2 : return (False ,"compute nodes are not sufficient") # check for atleast 2 control nodes if len(self.inputs.bgp_ips) < 2 : return (False, "compute nodes are not sufficient") # check for 1 mx if len(self.inputs.ext_routers) < 1: self.logger.error("MX routers are not sufficient : %s"%len(self.inputs.ext_routers)) return (False ,"MX routers are not sufficient") return (True,None)
1.976563
2
sorts/bucket_sort.py
coderpower0/Python
2
12786900
<filename>sorts/bucket_sort.py<gh_stars>1-10 #!/usr/bin/env python # Author: <NAME> # This program will illustrate how to implement bucket sort algorithm # Wikipedia says: Bucket sort, or bin sort, is a sorting algorithm that works by distributing the # elements of an array into a number of buckets. Each bucket is then sorted individually, either using # a different sorting algorithm, or by recursively applying the bucket sorting algorithm. It is a # distribution sort, and is a cousin of radix sort in the most to least significant digit flavour. # Bucket sort is a generalization of pigeonhole sort. Bucket sort can be implemented with comparisons # and therefore can also be considered a comparison sort algorithm. The computational complexity estimates # involve the number of buckets. # Time Complexity of Solution: # Best Case O(n); Average Case O(n); Worst Case O(n) DEFAULT_BUCKET_SIZE=5 def bucket_sort(my_list,bucket_size=DEFAULT_BUCKET_SIZE): if(my_list==0): print("you don't have any elements in array!") min_value=min(my_list) max_value=max(my_list) bucket_count=(max_value-min_value)//bucket_size+1 buckets=[] for i in range(bucket_count): buckets.append([]) for i in range(len(my_list)): buckets[(my_list[i]-min_value)//bucket_size].append(my_list[i]) sorted_array=[] for i in range(len(buckets)): buckets[i].sort() for j in range(len(buckets[i])): sorted_array.append(buckets[i][j]) return sorted_array #test #besd on python 3.7.3 user_input =input('Enter numbers separated by a comma:').strip() unsorted =[int(item) for item in user_input.split(',')] print(bucket_sort(unsorted))
4.5
4
python/src/heapa.py
tankersleyj/algorithms
0
12786901
# MIT (c) jtankersley 2019-06-04 from enum import Enum """ Array based Heap. left_child_index = index * 2 + 1 right_child_index = index * 2 + 2 parentIndex = (index - 1) // 2 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 """ class HeapType(Enum): MINIMUM = 1 MAXIMUM = 2 """ Min or Max array based Heap.""" class Heap(): def __init__(self, type, list=[]): self.heap = [] self.type = type if len(list) > 0: for index, value in enumerate(list): self.push(value) def __str__(self): """Print value in-order.""" if self.type == HeapType.MINIMUM: return str(self.get_sorted_list()) else: return str(self.get_sorted_list(True)) def is_empty(self): return True if len(self.heap) == 0 else False def _swap(self, index1, index2): self.heap[index1], self.heap[index2] = self.heap[index2], self.heap[index1] def _parent_index(self, index): return (index - 1) // 2 def _child_left_index(self, index): return index * 2 + 1 def _child_right_index(self, index): return index * 2 + 2 def _balance_up(self, index): if index > 0: value = self.heap[index] parent_index = self._parent_index(index) parent_value = self.heap[parent_index] if self.type == HeapType.MAXIMUM and value > parent_value: self._swap(index, parent_index) self._balance_up(parent_index) if self.type == HeapType.MINIMUM and value < parent_value: self._swap(index, parent_index) self._balance_up(parent_index) def push(self, value): self.heap.append(value) last_index = len(self.heap) - 1 self._balance_up(last_index) def _balance_down(self, index): max_index = len(self.heap) - 1 left_child_index = self._child_left_index(index) right_child_index = self._child_right_index(index) if left_child_index <= max_index: self._balance_up(left_child_index) self._balance_down(left_child_index) if right_child_index <= max_index: self._balance_up(right_child_index) self._balance_down(right_child_index) def pop(self): last_index = len(self.heap) - 1 if last_index >= 0: value = self.heap[0] if last_index > 0: self.heap[0] = self.heap.pop() self._balance_down(0) else: self.heap.pop() return value def get_sorted_list(self, reverse=False): copy_list = self.heap.copy() copy_list.sort(reverse=reverse) return copy_list
3.8125
4
scripts/db_tools/init_db.py
Chaoyingz/paper_trading
0
12786902
import click from motor.motor_asyncio import AsyncIOMotorClient from pymongo.errors import CollectionInvalid from app import settings from scripts.utils import coro async def create_collection(db: AsyncIOMotorClient, collection_name: str): """创建表.""" try: await db[settings.MONGO_DB].create_collection(collection_name) except CollectionInvalid as e: click.echo(e) else: click.echo(f"创建{collection_name}成功\n") @click.command("initdb") @coro async def init_db(): """初始化数据库.""" if click.confirm("初始化数据库可能会导致原数据丢失,确认要继续吗?"): client = AsyncIOMotorClient(settings.db.url) await create_collection(client, settings.db.collections.user) await create_collection(client, settings.db.collections.order) await client[settings.MONGO_DB][settings.db.collections.order].create_index( "entrust_id" ) await create_collection(client, settings.db.collections.position) await client[settings.MONGO_DB][settings.db.collections.position].create_index( "user" ) await client[settings.MONGO_DB][settings.db.collections.position].create_index( "symbol" ) await client[settings.MONGO_DB][settings.db.collections.position].create_index( "exchange" ) await create_collection(client, settings.db.collections.user_assets_record) await create_collection(client, settings.db.collections.statement) click.echo("初始化数据库完成.") else: click.echo("初始化数据库失败,用户操作中止.")
2.328125
2
nb4/run_policy_simulation.py
Agoric/testnet-notes
2
12786903
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Block Scheduling Policy Simulation # # context: [build model of computron\-to\-wallclock relationship · Issue \#3459 · Agoric/agoric\-sdk](https://github.com/Agoric/agoric-sdk/issues/3459) # ## Preface: PyData import pandas as pd import numpy as np dict(pandas=pd.__version__, numpy=np.__version__) # ## MySql Access TOP = __name__ == '__main__' # + import logging from sys import stderr logging.basicConfig(level=logging.INFO, stream=stderr, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') log = logging.getLogger(__name__) if TOP: log.info('notebook start') # + from slogdata import mysql_socket, show_times def _slog4db(database='slog4'): from sqlalchemy import create_engine return create_engine(mysql_socket(database, create_engine)) _db4 = _slog4db() _db4.execute('show tables').fetchall() # - # ## Global compute results for agorictest-16 # # Based on one validator, **Provalidator**. show_times(pd.read_sql(''' select * from slog_run where parent = 'Provalidator' limit 10 ''', _db4), ['time_lo', 'time_hi', 'blockTime_lo', 'blockTime_hi']).iloc[0] # + # _db4.execute('''drop table if exists delivery_compute_16'''); # + def build_consensus_compute(theValidator, db, table='delivery_compute_16'): """We include duration from 1 validator as well. """ log.info('creating %s', table) db.execute(f''' create table if not exists {table} as with slog1 as ( select file_id from file_info where parent = %(theValidator)s ) select blockHeight, blockTime, crankNum, vatID, deliveryNum, compute, dur from j_delivery r cross join slog1 where r.file_id = slog1.file_id order by crankNum ''', dict(theValidator=theValidator)) agg = pd.read_sql(f'select count(*) from {table}', db) log.info('done:\n%s', agg) return pd.read_sql(f'select * from {table} limit 5', db) build_consensus_compute('Provalidator', _db4) # - _dc16 = pd.read_sql('select * from delivery_compute_16 order by crankNum', _db4, index_col='crankNum') _dc16.tail() # `crankNum` goes from 31 to 34; 32 and 33 are missing. Perhaps `create-vat` cranks? # + def simulate_run_policy(df, threshold=8e6): # does 10e6 help with bank update latency? # only a little: max ~50 rather than ~70 meter = 0 # t_in = t_out = df.blockTime[0] block_in = block_out = df.blockHeight.values[0] for crankNum, d in df.iterrows(): if d.blockHeight > block_in: block_in = d.blockHeight if block_in > block_out: block_out = block_in meter = 0 yield block_out # do the work meter += d.compute if meter > threshold: meter = 0 block_out += 1 df = _dc16[_dc16.blockHeight > _dc16.blockHeight.min()] _sim16 = df.assign(bkSim=list(simulate_run_policy(df))) _sim16 # - _sim16[_sim16.bkSim < _sim16.blockHeight] # + def sim_aux_stats(df): df = _sim16 original = df.groupby('blockHeight') df = original.apply(lambda g: g.assign( computeInBlock=g.compute.cumsum(), durationInBlock=g.dur.cumsum())) df = df.reset_index(level=0, drop=True) simulated = df.groupby('bkSim') df = simulated.apply(lambda g: g.assign( computeInSimBlk=g.compute.cumsum(), durationInSimBlk=g.dur.cumsum())) df = df.reset_index(level=0, drop=True) return df df = sim_aux_stats(_sim16) # - df[['vatID', 'deliveryNum', 'blockHeight', 'compute', 'computeInBlock', 'computeInSimBlk']].describe() df[['computeInBlock', 'computeInSimBlk']].plot(figsize=(12, 4)); df[['vatID', 'deliveryNum', 'blockHeight', 'dur', 'durationInBlock', 'durationInSimBlk']].describe() df[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 6)); # ## Computrons go 3.7x faster early in agorictest-16 sim_lo = df[(df.index >= 20000) & (df.index <= 70000)] sim_lo = sim_lo.reset_index().set_index(['blockHeight', 'crankNum']) sim_lo = sim_lo.assign(rate=sim_lo.compute / sim_lo.dur) sim_lo[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4)); sim_lo[['compute', 'computeInBlock', 'computeInSimBlk', 'dur','durationInBlock', 'durationInSimBlk', 'rate']].describe() sim_hi = df[df.index >= 250000] sim_hi = sim_hi.reset_index().set_index(['blockHeight', 'crankNum']) sim_hi = sim_hi.assign(rate=sim_hi.compute / sim_hi.dur) sim_hi[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4)); sim_hi[['compute', 'computeInBlock', 'computeInSimBlk', 'dur','durationInBlock', 'durationInSimBlk', 'rate']].describe() # + rate_lo_median = 1.738564e+06 rate_hi_median = 4.711452e+05 round(rate_lo_median / rate_hi_median, 1) # - # ## Latency df['delay'] = df.bkSim - df.blockHeight df[['delay']].describe() df[['durationInBlock', 'durationInSimBlk', 'delay']].plot(figsize=(12, 4)) df.sort_values('delay', ascending=False).head(50) # ## Zoom in on the X axis 103200 and 105500 # + _zoom = df.loc[103200:105500] _zoom = _zoom.reset_index().set_index(['blockHeight', 'crankNum']) _zoom[['computeInBlock', 'computeInSimBlk']].plot(figsize=(12, 4), rot=-75); # - x = _zoom.reset_index() g = x.groupby('bkSim') x = pd.concat([ g[['blockHeight']].min(), g[['compute']].sum(), g[['dur']].sum() ]) x = x.assign(delay=x.index - x.blockHeight) x x[['compute', 'dur', 'delay']].plot(subplots=True, figsize=(15, 9)) _zoom[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4), rot=-75); (df.bkSim - df.blockHeight).describe() (df.bkSim - df.blockHeight).hist(figsize=(10, 5), bins=72, log=True) # ## Elapsed time* on the X axis # # *estimated as cumulative crank duration _zoom = df.loc[103273:104400].copy() # _zoom = df _zoom['t'] = _zoom.dur.cumsum() _zoom.set_index('t')[['durationInBlock', 'durationInSimBlk']].plot(figsize=(12, 4), rot=-75); # ### Detailed Data _zoom.groupby('bkSim').apply(lambda g: g.head(10))[50:100][[ 'dur', 't', 'durationInSimBlk', 'durationInBlock', 'compute', 'computeInSimBlk', 'computeInBlock', 'blockHeight', 'delay' ]] df.loc[103200:105500][['delay']].plot() x = pd.read_sql(''' select * from j_delivery where crankNum between 103200 and 105500 and file_id = 3288529541296525 ''', _db4) x show_times(x[x.index.isin([x.index.min(), x.index.max()])])[['crankNum', 'blockHeight', 'blockTime']] x.blockHeight.max() - x.blockHeight.min() x.blockHeight.describe() x[x.compute > 1000000].groupby('method')[['compute', 'dur']].aggregate(['count', 'median', 'mean']) x = pd.read_sql(''' select * from t_delivery where method = 'fromBridge' and blockHeight between 68817 and 69707 and file_id = 3288529541296525 ''', _db4) x _db4.execute(''' create index if not exists slog_entry_bk_ix on slog_entry(blockHeight) '''); _db4.execute('drop index if exists slog_entry_ty_ix on slog_entry'); # + def bank_trace(db, limit=250, file_id=3288529541296525, bk_lo=68817, bk_hi=69707): df = pd.read_sql( ''' with d as ( select file_id, run_line_lo , line , blockHeight , blockTime , time , crankNum , cast(substr(json_unquote(json_extract(record, '$.vatID')), 2) as int) vatID , coalesce(cast(json_extract(record, '$.deliveryNum') as int), -1) deliveryNum , json_extract(record, '$.kd') kd from slog_entry e where blockHeight between %(bk_lo)s and %(bk_hi)s and file_id = %(file_id)s and type = 'deliver' limit %(limit)s ), detail as ( select d.* , json_unquote(json_extract(d.kd, '$[0]')) tag , json_unquote(json_extract(d.kd, '$[1]')) target , json_unquote(json_extract(d.kd, '$[2].method')) method , json_length(json_unquote(json_extract(d.kd, '$[2].args.body')), '$[1].updated') updated from d ) select blockHeight, blockTime, crankNum, vatID, deliveryNum , tag , case when tag = 'message' then target else null end target , method, updated , time -- validator-specific: file_id, run_line_lo, line, time from detail -- where method = 'fromBridge' order by blockHeight, crankNum ''', db, params=dict(limit=limit, file_id=file_id, bk_lo=bk_lo, bk_hi=bk_hi)) return df # x1 = bank_trace(_db4, bk_hi=68817 + 100) # x2 = bank_trace(_db4, bk_lo=69707 - 100) # x = pd.concat([x1, x2]) x = bank_trace(_db4, limit=1000) show_times(x) # - x.updated.describe() x1 = x[~x.updated.isnull()] color = np.where(x1.vatID == 1, 'blue', 'red') show_times(x1).plot.scatter(x='time', y='updated', color=color, figsize=(10, 4), alpha=0.45, title='Accounts Updated per delivery'); # + import json def notifer_traffic(df): kd = df.record.apply(lambda txt: json.loads(txt)['kd']) dt = kd.apply(lambda k: k[0]) method = kd.apply(lambda k: k[2].get('method') if k[0] == 'message' else None) body = kd.apply(lambda k: k[2].get('args', {}).get('body') if k[0] == 'message' else None) body = body.apply(lambda v: json.loads(v) if v else None) updated = body.apply(lambda b: len(b[1].get('updated')) if b else None) # time = pd.as_datetime(df.time.dt.time) df = df.assign(dt=dt, method=method, body=body, updated=updated) dur = df.time.diff() return df.assign(dur=dur) notifer_traffic(show_times(x2)).drop(columns=['file_id', 'run_line_lo', 'line', 'record', 'body']) # - show_times(x2) x2.record[0] len(x2.record[0]) # + import json r = json.loads(x2.record[0]) body = r['kd'][2]['args']['body'] x = json.loads(body) # print(json.dumps(r, indent=2)) len(x[1]['updated']) # - x2.record[1] x2.record[2]
1.9375
2
sections/contributor.py
codeine-coding/APA-References
1
12786904
<gh_stars>1-10 from tkinter import Entry, W, StringVar, Listbox, BOTH from utils.apa_widgets import * class ContributorSection(Section): def __init__(self, master, **options): Section.__init__(self, master, **options) self.contributor_first_name = StringVar() self.contributor_middle_name = StringVar() self.contributor_last_name = StringVar() contributors_frame = Section(self.master) PrimaryLabel(contributors_frame, text='Contributors:', font=('', 11, 'bold')).grid(row=0, columnspan=3, sticky=W) # first name PrimaryLabel(contributors_frame, text='First Name').grid(row=1, sticky=W) self.contributor_first_name_entry = Entry(contributors_frame, width=20, textvariable=self.contributor_first_name) self.contributor_first_name_entry.grid(row=2, column=0, sticky=W) # middle name PrimaryLabel(contributors_frame, text='MI').grid(row=1, column=1, sticky=W) Entry(contributors_frame, width=5, textvariable=self.contributor_middle_name).grid(row=2, column=1, sticky=W) # last name PrimaryLabel(contributors_frame, text='Last Name').grid(row=1, column=2, sticky=W) Entry(contributors_frame, width=20, textvariable=self.contributor_last_name).grid(row=2, column=2, sticky=W) contributors_frame.pack(anchor=W) class ContributorListBox(Section): def __init__(self, master, **options): Section.__init__(self, master, **options) PrimaryLabel(self.master, text='Current Article Contributors').pack() self.contributor_listbox = Listbox(self.master) self.contributor_listbox.pack(fill=BOTH)
3.0625
3
track_people_py/scripts/track_sort_3d_people.py
kufusha/cabot
0
12786905
<filename>track_people_py/scripts/track_sort_3d_people.py #!/usr/bin/env python3 # Copyright (c) 2021 IBM Corporation # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import os import sys import cv2 from cv_bridge import CvBridge, CvBridgeError from matplotlib import pyplot as plt import numpy as np import rospy import time from track_abstract_people import AbsTrackPeople from track_utils.tracker_sort_3d import TrackerSort3D from track_people_py.msg import BoundingBox, TrackedBox, TrackedBoxes class TrackSort3dPeople(AbsTrackPeople): def __init__(self, device, minimum_valid_track_time_length, iou_threshold, iou_circle_size, n_frames_inactive_to_remove): AbsTrackPeople.__init__(self, device, minimum_valid_track_time_length) # set tracker self.tracker = TrackerSort3D(iou_threshold=iou_threshold, iou_circle_size=iou_circle_size, n_frames_min_valid_track_length=minimum_valid_track_time_length, n_frames_inactive_to_remove=n_frames_inactive_to_remove) self.combined_detected_boxes_pub = rospy.Publisher('track_people_py/combined_detected_boxes', TrackedBoxes, queue_size=10) self.buffer = {} def detected_boxes_cb(self, detected_boxes_msg): # check if tracker is initialized if not hasattr(self, 'tracker'): return # 2022.01.12: remove time check for multiple detection # check if image is received in correct time order # cur_detect_time_sec = detected_boxes_msg.header.stamp.to_sec() # if cur_detect_time_sec<self.prev_detect_time_sec: # return if detected_boxes_msg.camera_id not in self.buffer: self.buffer[detected_boxes_msg.camera_id] = detected_boxes_msg return # make sure if only one camera is processed if self.processing_detected_boxes: return self.processing_detected_boxes = True combined_msg = None for key in self.buffer: msg = self.buffer[key] if not combined_msg: combined_msg = msg else: combined_msg.tracked_boxes.extend(msg.tracked_boxes) self.buffer = {detected_boxes_msg.camera_id: detected_boxes_msg} detect_results, center_bird_eye_global_list = self.preprocess_msg(combined_msg) self.combined_detected_boxes_pub.publish(combined_msg) start_time = time.time() try: _, id_list, color_list, tracked_length = self.tracker.track(detect_results, center_bird_eye_global_list, self.frame_id) except: rospy.logerror("tracking error") self.processing_detected_boxes = False return elapsed_time = time.time() - start_time # rospy.loginfo("time for tracking :{0}".format(elapsed_time) + "[sec]") self.pub_result(combined_msg, id_list, color_list, tracked_length) self.vis_result(combined_msg, id_list, color_list, tracked_length) self.frame_id += 1 # self.prev_detect_time_sec = cur_detect_time_sec self.processing_detected_boxes = False def main(): device = "cuda" # minimum valid track length should be always 0 for multi camera #minimum_valid_track_time_length = 3 # Minimum time length to consider track is valid minimum_valid_track_time_length = 0 # Minimum time length to consider track is valid iou_threshold = 0.01 # IOU threshold to consider detection between frames as same person iou_circle_size = 1.0 # radius of circle in bird-eye view to calculate IOU n_frames_inactive_to_remove = 30 # number of frames for a track to be inactive before removal track_people = TrackSort3dPeople(device, minimum_valid_track_time_length, iou_threshold, iou_circle_size, n_frames_inactive_to_remove) try: plt.ion() plt.show() rospy.spin() except KeyboardInterrupt: rospy.loginfo("Shutting down") if __name__=='__main__': main()
1.390625
1
redmine_shell/shell/input.py
shlomo90/redmine_shell
1
12786906
<gh_stars>1-10 """ Input for Redmine shell. """ import sys import os import termios import contextlib from enum import Enum from .command import Command from redmine_shell.command.system.commands import History, HistoryMove class State(Enum): ''' Character Key Event State. ''' CONTINUE = -1 BREAK = -2 @contextlib.contextmanager def _raw_mode(file): """ Make terminal raw mode for getting an event pressing a key. """ old_attrs = termios.tcgetattr(file.fileno()) new_attrs = old_attrs[:] new_attrs[3] = new_attrs[3] & ~(termios.ECHO | termios.ICANON) try: termios.tcsetattr(file.fileno(), termios.TCSADRAIN, new_attrs) yield finally: termios.tcsetattr(file.fileno(), termios.TCSADRAIN, old_attrs) def redmine_input(prompt='', complete_command=None, history=False): """ Customized input function for redmine shell. """ if complete_command is None: complete_command = [] # TODO: inline sys.stdout.write(prompt) sys.stdout.flush() with _raw_mode(sys.stdin): def rewrite(new, old): origin_len = len(old) sys.stdout.write('\r{}\r'.format(' ' * (origin_len + len(prompt)))) sys.stdout.write(prompt + ''.join(new)) sys.stdout.flush() def complete(buf): target = ''.join(buf).strip() if not target: sys.stdout.write('\r{}\r'.format(' ' * (len(buf) + len(prompt)))) for command in complete_command: print(command) sys.stdout.write(prompt) sys.stdout.flush() return [] str_len = len(target) filtered = [x for x in complete_command if len(x) >= str_len] filtered = [x for x in filtered if x.startswith(target) is True] if filtered: min_cmd = sorted(filtered)[0] if min_cmd == target: return list(target) i = start = len(target) until = len(min_cmd) while start <= i < until: compare = filtered[0][i] is_diff = False for cmd in filtered: if compare != cmd[i]: is_diff = True break if is_diff is True: break i += 1 return list(min_cmd[:i]) else: return buf def finder(buf): target = ''.join(buf) lookup = [] for cmd in complete_command: if cmd.startswith(target) is True: lookup.append(cmd) if lookup: sys.stdout.write('\r{}\r'.format(' ' * (len(buf) + len(prompt)))) print("---------- CMDS ---------") for cmd in lookup: print(cmd) sys.stdout.write(prompt + ''.join(target)) sys.stdout.flush() def ctrl_d(keyword): raise EOFError def ctrl_p(keyword): # chr(16) # history up if keyword['history'] is True: old = keyword['type_buf'] cmd = keyword['history_move'].move_up() if cmd is None: pass else: new = list(cmd) rewrite(new, old) keyword['type_buf'] = new return State.CONTINUE def ctrl_j(keyword): # char(14) # Ctrl + j # history down if keyword['history'] is True: old = keyword['type_buf'] cmd = keyword['history_move'].move_down() if cmd is None: new = [''] else: new = list(cmd) rewrite(new, old) keyword['type_buf'] = new return State.CONTINUE def ctrl_l(keyword): # chr(12) # Ctrl + l return State.CONTINUE def ctrl_h(keyword): # chr(8) # Ctrl + h old = keyword['type_buf'] new = keyword['type_buf'][:-1] rewrite(new, old) keyword['type_buf'] = new return State.CONTINUE def tab(keyword): # chr(9) # Tab old = keyword['type_buf'] new = complete(old) if new: if ''.join(new) == ''.join(old): finder(new) else: rewrite(new, old) keyword['type_buf'] = new return State.CONTINUE def newline(keyword): # chr(10) # Newline print("") return ''.join(keyword['type_buf']) def backspace(keyword): # chr(127) # Backspace old = keyword['type_buf'] new = keyword['type_buf'][:-1] rewrite(new, old) keyword['type_buf'] = new return State.CONTINUE def normal(keyword): keyword['type_buf'].append(keyword['char']) rewrite(keyword['type_buf'], keyword['type_buf']) return State.CONTINUE def other(keyword): return State.CONTINUE keyword = {'prompt': prompt, 'complete_command': complete_command, 'history': history,} keyword['type_buf'] = [] keyword['history_move'] = HistoryMove( History.instance().load()) special_key_handlers = {chr(4): ctrl_d, chr(16): ctrl_p, chr(14): ctrl_j, # MacOS uses 13 as ctrl-j chr(13): ctrl_j, chr(12): ctrl_l, chr(8): ctrl_h, chr(9): tab, chr(10): newline, chr(127): backspace, } while True: char = sys.stdin.read(1) if not char: break if char in special_key_handlers: handler = special_key_handlers[char] elif 41 <= ord(char) <= 176 or ord(char) == 32: handler = normal else: handler = other keyword['char'] = char ret = handler(keyword) if ret == State.CONTINUE: continue elif ret == State.BREAK: break else: return ret
2.375
2
newBoCodeCodingChallenge.py
RobbieNesmith/Code-Challenge
0
12786907
def odometer(arr, change): pos = len(arr) - 1 while pos >= 0 and change != 0: sum = arr[pos] + change if sum < 0: change = sum else: change = sum // 10 arr[pos] = sum % 10 pos = pos - 1 if change == 1: arr[0] = 1 tests = [{"input": [4,3,9,5], "output": [4,3,9,6]}, {"input": [4,3,4,9], "output": [4,3,5,0]}, {"input": [9,9,9,9], "output": [1,0,0,0]}] for test in tests: testArr = [] for i in range(len(test["input"])): testArr.append(test["input"][i]) odometer(testArr, 1) valid = True for i in range(len(testArr)): if testArr[i] != test["output"][i]: valid = False if valid: print(f"Test succeeded! {test['input']} => {test['output']}") else: print(f"Test failed! Expected {test['output']}, got {testArr}")
3.640625
4
src/118.pascals-triangle/118.pascals-triangle.py
AnestLarry/LeetCodeAnswer
0
12786908
# # @lc app=leetcode id=118 lang=python3 # # [118] Pascal's Triangle # # Given a non-negative integer numRows, generate the first numRows of Pascal's triangle. # In Pascal's triangle, each number is the sum of the two numbers directly above it. # Example: # Input: 5 # Output: # [ # [1], # [1,1], # [1,2,1], # [1,3,3,1], # [1,4,6,4,1] # ] class Solution: def generate1(self, numRows: int) -> List[List[int]]: # Accepted # 15/15 cases passed (28 ms) # Your runtime beats 90.21 % of python3 submissions # Your memory usage beats 32.78 % of python3 submissions (13.5 MB) base = [[1]] if numRows < 1: return [] elif numRows == 1: return base numRows -= 1 while numRows > 0: base.append( [1] + [base[-1][x]+base[-1][x+1] for x in range(len(base[-1]) - 1)] + [1] ) numRows -= 1 return base def generate(self, numRows): # Accepted # 15/15 cases passed (28 ms) # Your runtime beats 90.21 % of python3 submissions # Your memory usage beats 32.88 % of python3 submissions (13.1 MB) pascal = [[1]*(i+1) for i in range(numRows)] pascal = [[1]*(i+1) for i in range(numRows)] for i in range(numRows): for j in range(1, i): pascal[i][j] = pascal[i-1][j-1] + pascal[i-1][j] return pascal
3.625
4
Snake Game/snake.py
zYxDevs/Python_Scripts
14
12786909
<reponame>zYxDevs/Python_Scripts<gh_stars>10-100 from turtle import Turtle MOVE=20 TURTLE_POS=[(0,0),(-20,0),(-40,0)] UP=90 DOWN=270 LEFT=180 RIGHT=0 class Snake: """Creates snakes objects and stores them in a list""" def __init__(self): self.all_segment=[] self.create_snake() self.head=self.all_segment[0] def create_snake(self): for coordinate in TURTLE_POS: self.add_segment(coordinate) def add_segment(self,coordinate): new_segment=Turtle(shape="square") new_segment.color("yellow") new_segment.penup() new_segment.goto(coordinate) self.all_segment.append(new_segment) def extend(self): self.add_segment(self.all_segment[-1].position()) def move(self): for pos in range(len(self.all_segment)-1,0,-1): x_value=self.all_segment[pos-1].xcor() y_value=self.all_segment[pos-1].ycor() self.all_segment[pos].goto(x_value,y_value) self.head.forward(MOVE) def up(self): if self.head.heading()!=DOWN: self.head.setheading(UP) def down(self): if self.head.heading()!=UP: self.head.setheading(DOWN) def left(self): if self.head.heading()!=RIGHT: self.head.setheading(LEFT) def right(self): if self.head.heading()!=LEFT: self.head.setheading(RIGHT)
3.640625
4
gravity_wave/solver.py
thomasgibson/firedrake-hybridization
0
12786910
<reponame>thomasgibson/firedrake-hybridization from firedrake import * from firedrake.assemble import create_assembly_callable from firedrake.parloops import par_loop, READ, INC from firedrake.utils import cached_property from pyop2.profiling import timed_stage, timed_region from ksp_monitor import KSPMonitorDummy from p1_hybrid_mg import P1HMultiGrid import numpy as np class GravityWaveSolver(object): """Solver for the linearized compressible Boussinesq equations (includes Coriolis term). The equations are solved in three stages: (1) First analytically eliminate the buoyancy perturbation term from the discrete equations. This is possible since there is currently no orography. Note that it is indeed possible to eliminate buoyancy when orography is present, however this must be done at the continuous level first. (2) Eliminating buoyancy produces a saddle-point system for the velocity and pressure perturbations. The resulting system is solved using either an approximate full Schur-complement procedure or a hybridized mixed method. (3) Once the velocity and perturbation fields are computed from the previous step, the buoyancy term is reconstructed. """ def __init__(self, W2, W3, Wb, dt, c, N, Omega, R, rtol=1.0E-6, solver_type="gamg", hybridization=False, local_invert_method=None, local_solve_method=None, monitor=False): """The constructor for the GravityWaveSolver. :arg W2: The HDiv velocity space. :arg W3: The L2 pressure space. :arg Wb: The "Charney-Phillips" space for the buoyancy field. :arg dt: A positive real number denoting the time-step size. :arg c: A positive real number denoting the speed of sound waves in dry air. :arg N: A positive real number describing the Brunt–Väisälä frequency. :arg Omega: A positive real number; the angular rotation rate of the Earth. :arg R: A positive real number denoting the radius of the spherical mesh (Earth-size). :arg rtol: The relative tolerance for the solver. :solver_type: A string describing which inner-most solver to use on the pressure space (approximate Schur-complement) or the trace space (hybridization). Currently, only the parameter "AMG" is supported, which uses smoothed aggregation algebraic multigrid (GAMG). :arg hybridization: A boolean switch between using a hybridized mixed method (True) on the velocity-pressure system, or GMRES with an approximate Schur- complement preconditioner (False). :arg local_invert_method: Optional argument detailing what kind of factorization to perform in Eigen when computing local inverses. :arg local_solve_method: Optional argument detailing what kind of factorization to perform in Eigen when computing the local solves in the hybridized solver. :arg monitor: A boolean switch with turns on/off KSP monitoring of the problem residuals (primarily for debugging and checking convergence of the solver). When profiling, keep this set to `False`. """ self.hybridization = hybridization self._local_solve_method = local_solve_method self._local_invert_method = local_invert_method self.monitor = monitor self.rtol = rtol self.hybrid_mg = False if solver_type == "gamg": self.params = self.gamg_paramters elif solver_type == "preonly-gamg": self.params = self.preonly_gamg_parameters elif solver_type == "hypre": self.params = self.hypre_parameters elif solver_type == "direct": self.params = self.direct_parameters elif solver_type == "hybrid_mg": self.params = {"ksp_type": "cg", "ksp_rtol": self.rtol} self.hybrid_mg = True else: raise ValueError("Unknown inner solver type") # Timestepping parameters and physical constants self._dt = dt self._c = c self._N = N self._dt_half = Constant(0.5*dt) self._dt_half_N2 = Constant(0.5*dt*N**2) self._dt_half_c2 = Constant(0.5*dt*c**2) self._omega_N2 = Constant((0.5*dt*N)**2) self._omega_c2 = Constant((0.5*dt*c)**2) # Compatible finite element spaces self._Wmixed = W2 * W3 self._W2 = self._Wmixed.sub(0) self._W3 = self._Wmixed.sub(1) self._Wb = Wb mesh = self._W3.mesh() # Hybridized finite element spaces broken_W2 = BrokenElement(self._W2.ufl_element()) self._W2disc = FunctionSpace(mesh, broken_W2) h_deg, v_deg = self._W2.ufl_element().degree() tdegree = (h_deg - 1, v_deg - 1) self._WT = FunctionSpace(mesh, "HDiv Trace", tdegree) self._Whybrid = self._W2disc * self._W3 * self._WT self._hybrid_update = Function(self._Whybrid) self._facet_normal = FacetNormal(mesh) shapes = (self._W2.finat_element.space_dimension(), np.prod(self._W2.shape)) weight_kernel = """ for (int i=0; i<%d; ++i) { for (int j=0; j<%d; ++j) { w[i][j] += 1.0; }}""" % shapes self.weight = Function(self._W2) par_loop(weight_kernel, dx, {"w": (self.weight, INC)}) self.average_kernel = """ for (int i=0; i<%d; ++i) { for (int j=0; j<%d; ++j) { vec_out[i][j] += vec_in[i][j]/w[i][j]; }}""" % shapes # Functions for state solutions self._up = Function(self._Wmixed) self._b = Function(self._Wb) self._btmp = Function(self._Wb) self._state = Function(self._W2 * self._W3 * self._Wb, name="State") # Outward normal vector x = SpatialCoordinate(mesh) R = sqrt(inner(x, x)) self._khat = interpolate(x/R, mesh.coordinates.function_space()) # Coriolis term fexpr = 2*Omega*x[2]/R Vcg = FunctionSpace(mesh, "CG", 1) self._f = interpolate(fexpr, Vcg) # Construct linear solvers if self.hybridization: self._build_hybridized_solver() else: self._build_up_solver() self._build_b_solver() self._ksp_monitor = KSPMonitorDummy() self.up_residual_reductions = [] @property def direct_parameters(self): """Solver parameters using a direct method (LU)""" inner_params = {'ksp_type': 'gmres', 'pc_type': 'lu', 'pc_factor_mat_solver_package': 'mumps'} if self.hybridization: params = inner_params else: params = {'ksp_type': 'preonly', 'pc_type': 'fieldsplit', 'pc_fieldsplit_type': 'schur', 'pc_fieldsplit_schur_fact_type': 'FULL', 'fieldsplit_0': inner_params, 'fieldsplit_1': inner_params} return params @property def hypre_parameters(self): """Solver parameters using hypre's boomeramg implementation of AMG. """ inner_params = {'ksp_type': 'cg', 'ksp_rtol': self.rtol, 'pc_type': 'hypre', 'pc_hypre_type': 'boomeramg', 'pc_hypre_boomeramg_no_CF': False, 'pc_hypre_boomeramg_coarsen_type': 'HMIS', 'pc_hypre_boomeramg_interp_type': 'ext+i', 'pc_hypre_boomeramg_P_max': 0, 'pc_hypre_boomeramg_agg_nl': 0, 'pc_hypre_boomeramg_max_level': 5, 'pc_hypre_boomeramg_strong_threshold': 0.25} if self.monitor: inner_params['ksp_monitor_true_residual'] = True if self.hybridization: params = inner_params else: params = {'ksp_type': 'gmres', 'ksp_rtol': self.rtol, 'pc_type': 'fieldsplit', 'pc_fieldsplit_type': 'schur', 'ksp_max_it': 100, 'ksp_gmres_restart': 50, 'pc_fieldsplit_schur_fact_type': 'FULL', 'pc_fieldsplit_schur_precondition': 'selfp', 'fieldsplit_0': {'ksp_type': 'preonly', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'}, 'fieldsplit_1': inner_params} if self.monitor: params['ksp_monitor_true_residual'] = True return params @property def gamg_paramters(self): """Solver parameters for the velocity-pressure system using algebraic multigrid. """ inner_params = {'ksp_type': 'cg', 'pc_type': 'gamg', 'ksp_rtol': self.rtol, 'mg_levels': {'ksp_type': 'chebyshev', 'ksp_max_it': 2, 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'}} if self.monitor: inner_params['ksp_monitor_true_residual'] = True if self.hybridization: params = inner_params else: params = {'ksp_type': 'gmres', 'ksp_rtol': self.rtol, 'pc_type': 'fieldsplit', 'pc_fieldsplit_type': 'schur', 'ksp_max_it': 100, 'ksp_gmres_restart': 50, 'pc_fieldsplit_schur_fact_type': 'FULL', 'pc_fieldsplit_schur_precondition': 'selfp', 'fieldsplit_0': {'ksp_type': 'preonly', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'}, 'fieldsplit_1': inner_params} if self.monitor: params['ksp_monitor_true_residual'] = True return params @property def preonly_gamg_parameters(self): inner_params = {'ksp_type': 'preonly', 'pc_type': 'gamg', 'mg_levels': {'ksp_type': 'chebyshev', 'ksp_chebyshev_esteig': True, 'ksp_max_it': 1, 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'}} if self.hybridization: # We need an iterative method for the trace system params = self.gamg_paramters else: params = {'ksp_type': 'gmres', 'ksp_rtol': self.rtol, 'pc_type': 'fieldsplit', 'pc_fieldsplit_type': 'schur', 'ksp_max_it': 100, 'ksp_gmres_restart': 50, 'pc_fieldsplit_schur_fact_type': 'FULL', 'pc_fieldsplit_schur_precondition': 'selfp', 'fieldsplit_0': {'ksp_type': 'preonly', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'}, 'fieldsplit_1': inner_params} if self.monitor: params['ksp_monitor_true_residual'] = True return params @cached_property def _build_up_bilinear_form(self): """Bilinear form for the gravity wave velocity-pressure subsystem. """ utest, ptest = TestFunctions(self._Wmixed) u, p = TrialFunctions(self._Wmixed) def outward(u): return cross(self._khat, u) # Linear gravity wave system for the velocity and pressure # increments (buoyancy has been eliminated in the discrete # equations since there is no orography) a_up = (ptest*p + self._dt_half_c2*ptest*div(u) - self._dt_half*div(utest)*p + (dot(utest, u) + self._dt_half*dot(utest, self._f*outward(u)) + self._omega_N2 * dot(utest, self._khat) * dot(u, self._khat))) * dx return a_up @cached_property def _build_hybridized_bilinear_form(self): """Bilinear form for the hybrid-mixed velocity-pressure subsystem. """ utest, ptest, lambdatest = TestFunctions(self._Whybrid) u, p, lambdar = TrialFunctions(self._Whybrid) def outward(u): return cross(self._khat, u) n = self._facet_normal # Hybridized linear gravity wave system for the velocity, # pressure, and trace subsystem (buoyancy has been eliminated # in the discrete equations since there is no orography). # NOTE: The no-slip boundary conditions are applied weakly # in the hybridized problem. a_uplambdar = ((ptest*p + self._dt_half_c2*ptest*div(u) - self._dt_half*div(utest)*p + (dot(utest, u) + self._dt_half*dot(utest, self._f*outward(u)) + self._omega_N2 * dot(utest, self._khat) * dot(u, self._khat))) * dx + lambdar * jump(utest, n=n) * (dS_v + dS_h) + lambdar * dot(utest, n) * ds_tb + lambdatest * jump(u, n=n) * (dS_v + dS_h) + lambdatest * dot(u, n) * ds_tb) return a_uplambdar def _build_up_rhs(self, u0, p0, b0): """Right-hand side for the gravity wave velocity-pressure subsystem. """ def outward(u): return cross(self._khat, u) utest, ptest = TestFunctions(self._Wmixed) L_up = (dot(utest, u0) + self._dt_half*dot(utest, self._f*outward(u0)) + self._dt_half*dot(utest, self._khat*b0) + ptest*p0) * dx return L_up def _build_hybridized_rhs(self, u0, p0, b0): """Right-hand side for the hybridized gravity wave velocity-pressure-trace subsystem. """ def outward(u): return cross(self._khat, u) # No residual for the traces; they only enforce continuity # of the discontinuous velocity normals utest, ptest, _ = TestFunctions(self._Whybrid) L_uplambdar = (dot(utest, u0) + self._dt_half*dot(utest, self._f*outward(u0)) + self._dt_half*dot(utest, self._khat*b0) + ptest*p0) * dx return L_uplambdar def up_residual(self, old_state, new_up): """Returns the residual of the velocity-pressure system.""" u0, p0, b0 = old_state.split() res = self._build_up_rhs(u0, p0, b0) L = self._build_up_bilinear_form res -= action(L, new_up) return res def _build_up_solver(self): """Constructs the solver for the velocity-pressure increments.""" # strong no-slip boundary conditions on the top # and bottom of the atmospheric domain) bcs = [DirichletBC(self._Wmixed.sub(0), 0.0, "bottom"), DirichletBC(self._Wmixed.sub(0), 0.0, "top")] # Mixed operator A = assemble(self._build_up_bilinear_form, bcs=bcs) # Set up linear solver linear_solver = LinearSolver(A, solver_parameters=self.params) self.linear_solver = linear_solver # Function to store RHS for the linear solver u0, p0, b0 = self._state.split() self._up_rhs = Function(self._Wmixed) self._assemble_up_rhs = create_assembly_callable( self._build_up_rhs(u0, p0, b0), tensor=self._up_rhs) def _build_hybridized_solver(self): """Constructs the Schur-complement system for the hybridized problem. In addition, all reconstruction calls are generated for recovering velocity and pressure. """ # Matrix operator has the form: # | A00 A01 A02 | # | A10 A11 0 | # | A20 0 0 | # for the U-Phi-Lambda system. # Create Slate tensors for the 3x3 block operator: A = Tensor(self._build_hybridized_bilinear_form) # Define the 2x2 mixed block: # | A00 A01 | # | A10 A11 | # which couples the potential and momentum. Atilde = A.block(((0, 1), (0, 1))) # and the off-diagonal blocks: # |A20 0| & |A02 0|^T: Q = A.block((2, (0, 1))) Qt = A.block(((0, 1), 2)) # Schur complement operator: S = assemble(Q * Atilde.inv(self._local_invert_method) * Qt) # Set up linear solver linear_solver = LinearSolver(S, solver_parameters=self.params) self.linear_solver = linear_solver if self.hybrid_mg: pc = self.linear_solver.ksp.pc pc.setType(pc.Type.PYTHON) self._mgpc = P1HMultiGrid(S, Function(self._WT), omega_c2=self._omega_c2) pc.setPythonContext(self._mgpc) # Tensor for the residual u0, p0, b0 = self._state.split() R = Tensor(self._build_hybridized_rhs(u0, p0, b0)) R01 = R.block(((0, 1),)) # Function to store the rhs for the trace system self._S_rhs = Function(self._WT) self._assemble_Srhs = create_assembly_callable( Q * Atilde.inv(self._local_invert_method) * R01, tensor=self._S_rhs) # Individual blocks: 0 indices correspond to u coupling; # 1 corresponds to p coupling; and 2 is trace coupling. A00 = A.block((0, 0)) A01 = A.block((0, 1)) A10 = A.block((1, 0)) A11 = A.block((1, 1)) A02 = A.block((0, 2)) R0 = R.block((0,)) R1 = R.block((1,)) # Local coefficient vectors Lambda = AssembledVector(self._hybrid_update.sub(2)) P = AssembledVector(self._hybrid_update.sub(1)) Sp = A11 - A10 * A00.inv(self._local_invert_method) * A01 p_problem = Sp.solve(R1 - A10 * A00.inv(self._local_invert_method) * (R0 - A02 * Lambda), method=self._local_solve_method) u_problem = A00.solve(R0 - A01 * P - A02 * Lambda, method=self._local_solve_method) # Two-stage reconstruction self._assemble_pressure = create_assembly_callable( p_problem, tensor=self._hybrid_update.sub(1)) self._assemble_velocity = create_assembly_callable( u_problem, tensor=self._hybrid_update.sub(0)) @property def ksp_monitor(self): """Returns the KSP monitor attached to this solver. Note that the monitor is for the velocity-pressure system. """ return self._ksp_monitor @ksp_monitor.setter def ksp_monitor(self, kspmonitor): """Set the monitor for the velocity-pressure or trace system. :arg kspmonitor: a monitor to use. """ self._ksp_monitor = kspmonitor ksp = self.linear_solver.ksp ksp.setMonitor(self._ksp_monitor) def _build_b_solver(self): """Constructs the solver for the buoyancy update.""" # Computed velocity perturbation u0, _, _ = self._state.split() # Expression for buoyancy reconstruction btest = TestFunction(self._Wb) L_b = dot(btest*self._khat, u0) * dx a_b = btest*TrialFunction(self._Wb) * dx b_problem = LinearVariationalProblem(a_b, L_b, self._btmp) b_params = {'ksp_type': 'cg', 'pc_type': 'bjacobi', 'sub_pc_type': 'ilu'} if self.monitor: b_params['ksp_monitor_true_residual'] = True # Solver for buoyancy update b_solver = LinearVariationalSolver(b_problem, solver_parameters=b_params) self.b_solver = b_solver def initialize(self, u, p, b): """Initialized the solver state with initial conditions for the velocity, pressure, and buoyancy fields. :arg u: An initial condition (`firedrake.Function`) for the velocity field. :arg p: An initial condition for the pressure field. :arg b: And finally an function describing the initial state of the buoyancy field. """ u0, p0, b0 = self._state.split() u0.assign(u) p0.assign(p) b0.assign(b) def solve(self): """Solves the linear gravity wave problem at a particular time-step in two-stages. First, the velocity and pressure solutions are computed, then buoyancy is reconstructed from the computed fields. The solver state is then updated. """ # Previous state un, pn, bn = self._state.split() # Initial residual self._hybrid_update.assign(0.0) self._up.assign(0.0) self._b.assign(0.0) r0 = assemble(self.up_residual(self._state, self._up)) # Main solver stage with timed_stage("Velocity-Pressure-Solve"): if self.hybridization: # Solve for the Lagrange multipliers with timed_region("Trace-Solver"): self._assemble_Srhs() self.linear_solver.solve(self._hybrid_update.sub(2), self._S_rhs) # Recover pressure, then velocity with timed_region("Hybrid-Reconstruct"): self._assemble_pressure() self._assemble_velocity() # Transfer hybridized solutions to the conforming spaces self._up.sub(1).assign(self._hybrid_update.sub(1)) par_loop(self.average_kernel, dx, {"w": (self.weight, READ), "vec_in": (self._hybrid_update.sub(0), READ), "vec_out": (self._up.sub(0), INC)}) else: self._assemble_up_rhs() self.linear_solver.solve(self._up, self._up_rhs) # Residual after solving rn = assemble(self.up_residual(self._state, self._up)) self.up_residual_reductions.append(rn.dat.norm/r0.dat.norm) # Update state un.assign(self._up.sub(0)) pn.assign(self._up.sub(1)) # Reconstruct b self._btmp.assign(0.0) with timed_stage("Buoyancy-Solve"): self.b_solver.solve() bn.assign(assemble(bn - self._dt_half_N2*self._btmp))
2.171875
2
observers.py
rnowling/integrator-experiments
0
12786911
<filename>observers.py import numpy as np class TotalEnergyObserver(object): def __init__(self, period): self.period = period self.energies = [] self.eps = 1e-5 def observe(self, state): if state.simulated_time % self.period < self.eps: self.energies.append(state.total_energy) def stats(self): return np.mean(self.energies), np.std(self.energies)
2.984375
3
tests/apps/pages/component_as_trigger.py
T4rk1n/dazzler
15
12786912
<reponame>T4rk1n/dazzler """ Page component_as_trigger of dazzler Created 2019-06-16 """ import json from dazzler.components import core from dazzler.system import Page, Trigger, BindingContext, State page = Page( __name__, core.Container([ core.Container(core.Container('from children'), identity='component'), core.Container(identity='output'), core.Container([ core.Container(str(x)) for x in range(0, 10) ], identity='array-components'), core.Container(identity='array-output'), core.Container(core.Container(core.Container([ core.Html( 'div', core.Container('inside html div'), identity='inside-html' ), core.Html( 'div', attributes={'children': core.Html('span', 'attribute')} ), ])), identity='nested-components'), core.Container(identity='nested-output'), core.Button('get-aspect-click', identity='get-aspect-trigger'), core.Container( core.Input(value='input-value'), identity='input' ), core.Container(core.Input(value=4747), identity='as-state'), core.Container(identity='get-aspect-output'), core.Container(identity='as-state-output') ]) ) @page.bind(Trigger('component', 'children')) async def trigger(ctx: BindingContext): await ctx.set_aspect( 'output', children=f'From component: {ctx.trigger.value.children}' ) @page.bind(Trigger('array-components', 'children')) async def trigger_array_components(ctx: BindingContext): # The value is an array of container. value = sum(int(x.children) for x in ctx.trigger.value) await ctx.set_aspect( 'array-output', children=f'Sum: {value}' ) @page.bind(Trigger('nested-components', 'children')) async def trigger_nested_components(ctx: BindingContext): children = ctx.trigger.value.children.children output = { 'len': len(children), 'insider': children[0].children.children, # This one in the attributes, not the children as per the # original component, the children prop is a different aspect. 'as_prop': children[1].attributes['children'].children, } await ctx.set_aspect('nested-output', children=json.dumps(output)) @page.bind( Trigger('get-aspect-trigger', 'clicks'), State('as-state', 'children') ) async def get_aspect_component_with_state(ctx: BindingContext): component = await ctx.get_aspect('input', 'children') await ctx.set_aspect( 'get-aspect-output', children=json.dumps({ 'get-aspect': component.value, 'state': ctx.states['as-state']['children'].value }) )
2.0625
2
examples/layout_form.py
pzahemszky/guizero
320
12786913
from guizero import App, Text, TextBox, Combo, PushButton, Box app = App() Text(app, text="My form") form = Box(app, width="fill", layout="grid") form.border = True Text(form, text="Title", grid=[0,0], align="right") TextBox(form, grid=[1,0]) Text(form, text="Name", grid=[0,1], align="right") TextBox(form, grid=[1,1]) Text(form, text="Age", grid=[0,2], align="right") TextBox(form, grid=[1,2]) buttons = Box(app, width="fill", align="bottom") PushButton(buttons, text="Ok", align="left") PushButton(buttons, text="Cancel", align="left") app.display()
2.96875
3
Unsupervised_Clustering/Variational_Autoencoders/Vol_VAE_Utils.py
DavidBMcCoy/ZSFG-UCSF_Machine_Learning
1
12786914
<filename>Unsupervised_Clustering/Variational_Autoencoders/Vol_VAE_Utils.py import numpy as np def convert_to_one_hot(Y, C): """ make the label a 1x2 array for each image """ Y = np.eye(C)[Y.reshape(-1)].T return Y
2.296875
2
resources/mgltools_x86_64Linux2_1.5.6/MGLToolsPckgs/Volume/VisionInterface/ContourSpectrum.py
J-E-J-S/aaRS-Pipeline
8
12786915
## Automatically adapted for numpy.oldnumeric Jul 23, 2007 by ######################################################################## # # Date: Mars 2006 Authors: <NAME>, <NAME> # # <EMAIL> # <EMAIL> # # The Scripps Research Institute (TSRI) # Molecular Graphics Lab # La Jolla, CA 92037, USA # # Copyright: <NAME>, <NAME> and TSRI # ######################################################################### # # $Header$ # # $Id$ # # third party packages import types import Tkinter import numpy.oldnumeric as Numeric import numpy #import Pmw #import os #import types #import string #import warnings # TSRI MGL packages from NetworkEditor.items import NetworkNode from NetworkEditor.widgets import PortWidget from mglutil.util.callback import CallbackManager from mglutil.gui.BasicWidgets.Tk.optionsPanel import OptionsPanel from mglutil.util.misc import ensureFontCase # current package class ContourSpectrumNE(NetworkNode): """ Input Ports contourspectrum: (bound to contourspectrum widget) mini: minimum value (optional) maxi: maximum value (optional) Output Ports value: value is of type int or float, depending on the contourspectrum settings """ def __init__(self, name='contourspectrum', **kw): #import pdb;pdb.set_trace() kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) self.inNodeWidgetsVisibleByDefault = True self.widgetDescr['contourspectrum'] = { 'class':'NEContourSpectrum', 'master':'node', 'size':50, 'oneTurn':1, 'type':'float', 'lockedOnPort':True, 'initialValue':0.0, 'labelCfg':{'text':''}} self.inputPortsDescr.append(datatype='float', name='contourspectrum') self.inputPortsDescr.append(datatype='float', name='mini', required=False) self.inputPortsDescr.append(datatype='float', name='maxi', required=False) self.inputPortsDescr.append(datatype='Grid3D', name='grid', required=False) self.outputPortsDescr.append(datatype='float', name='value') code = """def doit(self, contourspectrum, mini, maxi, grid): if contourspectrum is not None: w = self.inputPortByName['contourspectrum'].widget if w: if grid is not None and self.inputPortByName['grid'].hasNewValidData(): data = grid.data origin = Numeric.array(grid.origin).astype('f') stepsize = Numeric.array(grid.stepSize).astype('f') self.newgrid3D = Numeric.reshape( Numeric.transpose(grid.data), (1, 1)+tuple(grid.data.shape) ) from UTpackages.UTisocontour import isocontour gridData = isocontour.newDatasetRegFloat3D( self.newgrid3D, origin, stepsize) sig = [gridData.getSignature(0, 0, 0), gridData.getSignature(0, 0, 1), gridData.getSignature(0, 0, 2), gridData.getSignature(0, 0, 3)] w.widget.setSignatures(sig) if mini is not None and self.inputPortByName['mini'].hasNewValidData(): w.configure(min=mini) if maxi is not None and self.inputPortByName['maxi'].hasNewValidData(): w.configure(max=maxi) self.outputData(value=contourspectrum) """ self.setFunction(code) def afterAddingToNetwork(self): NetworkNode.afterAddingToNetwork(self) # run this node so the value is output self.run() self.inputPorts[0].widget.configure = self.configure_NEContourSpectrum self.inputPorts[0].widget.widget.setType = self.setType_NEContourSpectrum def configure_NEContourSpectrum(self, rebuild=True, **kw): """specialized configure method for contourspectrum widget""" # overwrite the contourspectrum widget's configure method to set the outputPort # data type when the contourspectrum is configured w = self.inputPorts[0].widget apply( NEContourSpectrum.configure, (w, rebuild), kw) dtype = kw.pop('type', None) if dtype: self.updateDataType(dtype) def setType_NEContourSpectrum(self, dtype): """specialized setTyp method for mglutil contourspectrum object""" # overwrite the Dial's setType method to catch type changes through # the optionsPanel from mglutil.gui.BasicWidgets.Tk.Dial import ContourSpectrum contourspectrum = self.inputPorts[0].widget.widget apply( ContourSpectrum.setType, (contourspectrum, dtype), {}) if type(dtype) == types.TypeType: dtype = dtype.__name__ self.updateDataType(dtype) self.inputPorts[1].setDataType(dtype, makeOriginal= True) self.inputPorts[2].setDataType(dtype, makeOriginal= True) def updateDataType(self, dtype): port = self.outputPorts[0] port.setDataType(dtype, tagModified=False) if port.data is not None: if type(dtype) == types.TypeType: port.data = dtype(port.data) else: port.data = eval("%s(port.data)"%dtype) class NEContourSpectrum(PortWidget): """NetworkEditor wrapper for ContourSpectrum widget. Handles all PortWidget arguments and all ContourSpectrum arguments except for value. Name: default: callback None continuous 1 lockContinuous 0 lockBMin 0 lockBMax 0 lockMin 0 lockMax 0 lockPrecision 0 lockShowLabel 0 lockType 0 lockValue 0 min None max None precision 2 showLabel 1 size 50 type 'float' """ configOpts = PortWidget.configOpts.copy() configOpts['initialValue'] = { 'defaultValue':0.0, 'type':'float', } ownConfigOpts = { 'callback': { 'defaultValue':None, 'type': 'None', 'description':"???", }, 'continuous': { 'defaultValue':True, 'type':'boolean', 'description':"", }, 'lockContinuous': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockBMin': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockBMax': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockMin': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockMax': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockOneTurn': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockPrecision': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockShowLabel': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockType': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'lockValue': { 'defaultValue':False, 'type':'boolean', 'description':"", }, 'min': { 'defaultValue':None, 'type':'float', 'description':"", }, 'max': { 'defaultValue':None, 'type':'float', 'description':"", }, 'oneTurn': { 'defaultValue':360., 'type':'float', 'description':"", }, 'precision': { 'defaultValue':2, 'type':'int', 'description':"number of decimals used in label", }, 'showLabel': { 'defaultValue':True, 'type':'boolean', 'description':"", }, 'size':{ 'defaultValue': 50, 'min':20, 'max':500, 'type':'int' }, 'type': { 'defaultValue':'float', 'type':'string', 'validValues': ['float', 'int'], 'description':"", }, } configOpts.update( ownConfigOpts ) def __init__(self, port, **kw): ## # create all attributes that will not be created by configure because ## # they do not appear on kw ## for key in self.ownConfigOpts.keys(): ## v = kw.get(key, None) ## if v is None: # self.configure will not do anyting for this key ## setattr(self, key, self.ownConfigOpts[key]['defaultValue']) # get all arguments handled by NEThumbweel and not by PortWidget widgetcfg = {} for k in self.ownConfigOpts.keys(): if k in kw: widgetcfg[k] = kw.pop(k) # call base class constructor apply( PortWidget.__init__, ( self, port), kw) # create the Dial widget #from NetworkEditor.spectrum import ContourSpectrumGUI self.widget = apply( ContourSpectrum, (self.widgetFrame,), widgetcfg) self.widget.callbacks.AddCallback(self.newValueCallback) # rename Options Panel to port name self.widget.opPanel.setTitle("%s : %s"%(port.node.name, port.name) ) # overwrite right mouse button click self.widget.canvas.bind("<Button-3>", self.postWidgetMenu) self.widget.canvas.configure(cursor='cross') # add menu entry to open configuration panel self.menu.insert_command(0, label='Option Panel', underline=0, command=self.toggleOptionsPanel) # register new callback for widget's optionsPanel Apply button # NOTE: idf.entryByName is at this time not built for k in self.widget.opPanel.idf: name = k.get('name', None) if name and name == 'ApplyButton': k['command'] = self.optionsPanelApply_cb elif name and name == 'OKButton': k['command'] = self.optionsPanelOK_cb # first set default value, in case we have a min or max, else the # node would run if self.initialValue is not None: self.set(self.widget.type(self.initialValue), run=0) # configure without rebuilding to avoid enless loop apply( self.configure, (False,), widgetcfg) self._setModified(False) # will be set to True by configure method def configure(self, rebuild=True, **kw): # call base class configure with rebuild=Flase. If rebuilt is needed # rebuildDescr will contain w=='rebuild' and rebuildDescr contains # modified descr action, rebuildDescr = apply( PortWidget.configure, (self, False), kw) # handle ownConfigOpts entries if self.widget is not None: widgetOpts = {} for k, v in kw.items(): if k in self.ownConfigOpts: if k =='size': action = 'rebuild' rebuildDescr[k] = v else: widgetOpts[k] = v if len(widgetOpts): apply( self.widget.configure, (), widgetOpts) if action=='rebuild' and rebuild: action, rebuildDescr = self.rebuild(rebuildDescr) elif action=='resize' and rebuild: if self.widget and rebuild: # if widget exists action = None return action, rebuildDescr def set(self, value, run=1): #print "set NEContourSpectrum" self._setModified(True) self.widget.setValue(value) self._newdata = True if run: self.scheduleNode() def get(self): return self.widget.get() def optionsPanelOK_cb(self, event=None): # register this widget to be modified when opPanel is used self.widget.opPanel.OK_cb() self._setModified(True) def optionsPanelApply_cb(self, event=None): # register this widget to be modified when opPanel is used self.widget.opPanel.Apply_cb() self._setModified(True) def toggleOptionsPanel(self, event=None): # rename the options panel title if the node name or port name has # changed. self.widget.opPanel.setTitle( "%s : %s"%(self.port.node.name, self.port.name) ) self.widget.toggleOptPanel() def getDescr(self): cfg = PortWidget.getDescr(self) for k in self.ownConfigOpts.keys(): if k == 'type': # type has to be handled separately _type = self.widget.type if _type == int: _type = 'int' else: _type = 'float' if _type != self.ownConfigOpts[k]['defaultValue']: cfg[k] = _type continue val = getattr(self.widget, k) if val != self.ownConfigOpts[k]['defaultValue']: cfg[k] = val return cfg class ContourSpectrum(Tkinter.Frame): """This class implements a ContourSpectrum widget. it is fully a copy/paste from Dial """ def __init__(self, master=None, type='float', labCfg={'fg':'black','side':'left', 'text':None}, min=None, max=None, showLabel=1, value=0.0, continuous=1, precision=2, callback=None, lockMin=0, lockBMin=0, lockMax=0, lockBMax=0, lockPrecision=0,lockShowLabel=0, lockValue=0, lockType=0, lockContinuous=0, signatures=None, **kw): Tkinter.Frame.__init__(self, master) Tkinter.Pack.config(self) self.callbacks = CallbackManager() # object to manage callback # functions. They get called with the # current value as an argument # initialize various attributes with default values self.height = 100 # widget height self.width = 256 # widget height self.widthMinusOne = self.width - 1 self.min = 0 # minimum value self.max = 1 # maximum value self.range = self.max - self.min self.precision = 2 # decimal places self.minOld = 0. # used to store old values self.maxOld = 0. self.size = 50 # defines widget size self.offsetValue = 0. # used to set increment correctly self.lab = None # label self.callback = None # user specified callback self.opPanel = None # option panel widget self.value = 0.0 # current value of widget self.oldValue = 0.0 # old value of widget self.showLabel = 1 # turn on to display label on self.continuous = 1 # set to 1 to call callbacks at # each value change, else gets called # on button release event self.labCfg = labCfg # Tkinter Label options self.labelFont = ( ensureFontCase('helvetica'), 14, 'bold') # label font self.labelColor = 'yellow' # label color self.canvas = None # the canvas to create the widget in self.lockMin = lockMin # lock<X> vars are used in self.lock() self.lockMax = lockMax # to lock/unlock entries in optionpanel self.lockBMin = lockBMin self.lockBMax = lockBMax self.lockPrecision = 0 self.lockShowLabel = lockShowLabel self.lockValue = lockValue self.lockType = lockType self.lockContinuous = lockContinuous # configure with user-defined values self.setCallback(callback) self.setContinuous(continuous) self.setType(type) self.setPrecision(precision) self.setMin(min) self.setMax(max) self.setShowLabel(showLabel) self.setValue(value) self.setLabel(self.labCfg) if master is None: master = Tkinter.Toplevel() self.master = master # widget master self.createCanvas(master) Tkinter.Widget.bind(self.canvas, "<ButtonPress-1>", self.mouseDown) Tkinter.Widget.bind(self.canvas, "<B1-Motion>", self.mouseMove) Tkinter.Widget.bind(self.canvas, "<ButtonRelease-1>", self.mouseUp) # create cursor self.cursorTk = self.canvas.create_line( 0, 0, 0, 0, tags=['cursor']) self.increment = 0.0 self.incrementOld = 0. self.lockIncrement = 0 self.lockBIncrement = 0 self.oneTurn = 360. self.lockOneTurn = 0 self.opPanel = OptionsPanel(master = self, title="Slider graph Options") self.signatures = None # Signature objects fro isocontouring lib self.sigData = [] # list of (x,y) values arrays for each signature self.maxFun = [] # max Y value in each signature self.minFun = [] # min Y value in each signature self.yratios = [] # normalization factors self.colors = ['red', 'green', 'blue', 'orange'] self.tkLines = [] # list of Tkids for lines if signatures: self.setSignatures(signatures) def setCallback(self, cb): """Set widget callback. Must be callable function. Callback is called every time the widget value is set/modified""" assert cb is None or callable(cb) or type(cb) is types.ListType,\ "Illegal callback: must be either None or callable, or list. Got %s"%cb if cb is None: return elif type(cb) is types.ListType: for func in cb: assert callable(func), "Illegal callback must be callable. Got %s"%func self.callbacks.AddCallback(func) else: self.callbacks.AddCallback(cb) self.callback = cb def toggleOptPanel(self, event=None): if self.opPanel.flag: self.opPanel.Dismiss_cb() else: if not hasattr(self.opPanel, 'optionsForm'): self.opPanel.displayPanel(create=1) else: self.opPanel.displayPanel(create=0) def mouseDown(self, event): # remember where the mouse went down #self.lastx = event.x #self.lasty = event.y self.setXcursor(event.x) def mouseUp(self, event): # call callbacks if not in continuous mode if not self.continuous: self.callbacks.CallCallbacks(self.opPanel.valInput.get()) if self.showLabel == 2: # no widget labels on mouse release self.canvas.itemconfigure(self.labelId2, text='') self.canvas.itemconfigure(self.labelId, text='') def mouseMove(self, event): # move the cursor self.setXcursor(event.x) #self.lastx = event.x def printLabel(self): if self.canvas is None: return self.canvas.itemconfigure(self.labelId2, text=self.labelFormat%self.value)#newVal) self.canvas.itemconfigure(self.labelId, text=self.labelFormat%self.value)#newVal) def drawCursor(self, x): if self.canvas: self.canvas.coords(self.cursorTk, x, 0, x, self.height) def get(self): return self.type(self.value) def setXcursor(self, x, update=1, force=0): """ x is a cursor position in pixel between 1 and self.width """ if x < 1: x = 1 if x > self.width: x = self.width self.drawCursor(x) # the mouse return position from 1 to self.width (x=0 is not drawn) # we need cursor position from 0 (so last x is self.width-1) x = x - 1 if self.range is not None: self.value = self.min + x * self.range / float(self.widthMinusOne) newVal = self.get() if self.continuous or force: if update and self.oldValue != newVal or force: self.oldValue = newVal self.callbacks.CallCallbacks(newVal) if self.showLabel==2: self.printLabel() else: if self.showLabel==2: self.printLabel() if self.showLabel==1: self.printLabel() if self.opPanel: self.opPanel.valInput.set(self.labelFormat%newVal) def set(self, x, update=1, force=0): """ x is a value between self.min and self.max """ #print "set ContourSpectrum" if self.range is not None: xcursor = (x - self.min) * float(self.widthMinusOne) / self.range xcursor = xcursor + 1 self.drawCursor(xcursor) self.setXcursor(xcursor,update,force) def createCanvas(self, master): self.frame = Tkinter.Frame(self, borderwidth=3, relief='sunken') self.canvas = Tkinter.Canvas(self.frame, width=self.width, height=self.height) self.xm = 25 self.ym = 25 self.labelId2 = self.canvas.create_text(self.xm+2, self.ym+2, fill='black', justify='center', text='', font = self.labelFont) self.labelId = self.canvas.create_text(self.xm, self.ym, fill=self.labelColor, justify='center', text='', font = self.labelFont) # pack em up self.canvas.pack(side=Tkinter.TOP) self.frame.pack(expand=1, fill='x') self.toggleWidgetLabel(self.showLabel) def toggleWidgetLabel(self, val): if val == 0: # no widget labels self.showLabel=0 self.canvas.itemconfigure(self.labelId2, text='') self.canvas.itemconfigure(self.labelId, text='') if val == 1: # show always widget labels self.showLabel=1 self.printLabel() if val == 2: # show widget labels only when mouse moves self.showLabel=2 self.canvas.itemconfigure(self.labelId2, text='') self.canvas.itemconfigure(self.labelId, text='') def setValue(self, val): #print "setValue" assert type(val) in [types.IntType, types.FloatType],\ "Illegal type for value: expected %s or %s, got %s"%( type(1), type(1.0), type(val) ) # setValue does NOT call a callback! if self.min is not None and val < self.min: val = self.min if self.max is not None and val > self.max: val = self.max self.value = self.type(val) self.offsetValue=self.value self.oldValue = self.value #print "setValue ContourSpectrum" if self.range is not None: xcursor = (val - self.min) * float(self.widthMinusOne) / self.range xcursor = xcursor + 1 self.drawCursor(xcursor) if self.showLabel == 1: self.printLabel() if self.opPanel: self.opPanel.valInput.set(self.labelFormat%self.value) def setLabel(self, labCfg): self.labCfg = labCfg text = labCfg.get('text', None) if text is None or text=='': return d={} for k, w in self.labCfg.items(): if k == 'side': continue else: d[k] = w if not 'side' in self.labCfg.keys(): self.labCfg['side'] = 'left' if not self.lab: self.lab = Tkinter.Label(self, d) self.lab.pack(side=self.labCfg['side']) self.lab.bind("<Button-3>", self.toggleOptPanel) else: self.lab.configure(text) ##################################################################### # the 'configure' methods: ##################################################################### def configure(self, **kw): for key,value in kw.items(): # the 'set' parameter callbacks if key=='labCfg': self.setLabel(value) elif key=='type': self.setType(value) elif key=='min': self.setMin(value) elif key=='max': self.setMax(value) elif key=='precision': self.setPrecision(value) elif key=='showLabel': self.setShowLabel(value) elif key=='continuous': self.setContinuous(value) # the 'lock' entries callbacks elif key=='lockType': self.lockTypeCB(value) elif key=='lockMin': self.lockMinCB(value) elif key=='lockBMin': self.lockBMinCB(value) elif key=='lockMax': self.lockMaxCB(value) elif key=='lockBMax': self.lockBMaxCB(value) elif key=='lockPrecision': self.lockPrecisionCB(value) elif key=='lockShowLabel': self.lockShowLabelCB(value) elif key=='lockValue': self.lockValueCB(value) elif key=='lockContinuous': self.lockContinuousCB(value) def setType(self, Type): assert type(Type) in [types.StringType, types.TypeType],\ "Illegal type for datatype. Expected %s or %s, got %s"%( type('a'), type(type), type(Type) ) if type(Type) == type(""): # type str assert Type in ('int','float'),\ "Illegal type descriptor. Expected 'int' or 'float', got '%s'"%Type self.type = eval(Type) else: self.type = Type if self.type == int: self.labelFormat = "%d" self.int_value = self.value else: self.labelFormat = "%."+str(self.precision)+"f" if hasattr(self.opPanel, 'optionsForm'): w = self.opPanel.idf.entryByName['togIntFloat']['widget'] if self.type == int: w.setvalue('int') elif self.type == 'float': w.setvalue('float') if self.opPanel: self.opPanel.updateDisplay() # and update the printed label if self.canvas and self.showLabel == 1: self.printLabel() def setMin(self, min): if min is not None: assert type(min) in [types.IntType, types.FloatType, numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64, numpy.uint, numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64, numpy.float, numpy.float32, numpy.float64],\ "Illegal type for minimum. Expected type %s or %s, got %s"%( type(0), type(0.0), type(min) ) if self.max and min > self.max: min = self.max self.min = self.type(min) if self.showLabel == 1: self.printLabel() if self.value < self.min: self.set(self.min) if hasattr(self.opPanel, 'optionsForm'): self.opPanel.minInput.set(self.labelFormat%self.min) self.opPanel.toggleMin.set(1) self.opPanel.min_entry.configure(state='normal', fg='gray0') self.minOld = self.min else: self.min = None if hasattr(self.opPanel, 'optionsForm'): self.opPanel.toggleMin.set(0) self.opPanel.min_entry.configure(state='disabled', fg='gray40') if self.min is not None and self.max is not None: self.range = float(self.max - self.min) else: self.range = None def setMax(self, max): if max is not None: assert type(max) in [types.IntType, types.FloatType, numpy.int, numpy.int8, numpy.int16, numpy.int32, numpy.int64, numpy.uint, numpy.uint8, numpy.uint16, numpy.uint32, numpy.uint64, numpy.float, numpy.float32, numpy.float64],\ "Illegal type for maximum. Expected type %s or %s, got %s"%( type(0), type(0.0), type(max) ) if self.min and max < self.min: max = self.min self.max = self.type(max) if self.showLabel == 1: self.printLabel() if self.value > self.max: self.set(self.max) if hasattr(self.opPanel, 'optionsForm'): self.opPanel.maxInput.set(self.labelFormat%self.max) self.opPanel.toggleMax.set(1) self.opPanel.max_entry.configure(state='normal', fg='gray0') self.maxOld = self.max else: self.max = None if hasattr(self.opPanel, 'optionsForm'): self.opPanel.toggleMax.set(0) self.opPanel.max_entry.configure(state='disabled', fg='gray40') if self.min is not None and self.max is not None: self.range = float(self.max - self.min) else: self.range = None def setPrecision(self, val): assert type(val) in [types.IntType, types.FloatType, numpy.int, numpy.float32],\ "Illegal type for precision. Expected type %s or %s, got %s"%( type(0), type(0.0), type(val) ) val = int(val) if val > 10: val = 10 if val < 1: val = 1 self.precision = val if self.type == float: self.labelFormat = "%."+str(self.precision)+"f" else: self.labelFormat = "%d" if hasattr(self.opPanel, 'optionsForm'): w = self.opPanel.idf.entryByName['selPrec']['widget'] w.setvalue(val) if self.opPanel: self.opPanel.updateDisplay() # and update the printed label if self.canvas and self.showLabel == 1: self.printLabel() def setContinuous(self, cont): """ cont can be None, 0 or 1 """ assert cont in [None, 0, 1],\ "Illegal value for continuous: expected None, 0 or 1, got %s"%cont if cont != 1: cont = None self.continuous = cont if hasattr(self.opPanel, 'optionsForm'): w = self.opPanel.idf.entryByName['togCont']['widget'] if cont: w.setvalue('on')#i=1 else: w.setvalue('off')#i=0 if self.opPanel: self.opPanel.updateDisplay() def setShowLabel(self, val): """Show label can be 0, 1 or 2 0: no label 1: label is always shown 2: show label only when value changes""" assert val in [0,1,2],\ "Illegal value for showLabel. Expected 0, 1 or 2, got %s"%val if val != 0 and val != 1 and val != 2: print "Illegal value. Must be 0, 1 or 2" return self.showLabel = val self.toggleWidgetLabel(val) if hasattr(self.opPanel, 'optionsForm'): w = self.opPanel.idf.entryByName['togLabel']['widget'] if self.showLabel == 0: label = 'never' elif self.showLabel == 1: label = 'always' elif self.showLabel == 2: label = 'move' w.setvalue(label) if self.opPanel: self.opPanel.updateDisplay() ##################################################################### # the 'lock' methods: ##################################################################### def lockTypeCB(self, mode): if mode != 0: mode = 1 self.lockType = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockMinCB(self, mode): #min entry field if mode != 0: mode = 1 self.lockMin = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockBMinCB(self, mode): # min checkbutton if mode != 0: mode = 1 self.lockBMin = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockMaxCB(self, mode): # max entry field if mode != 0: mode = 1 self.lockMax = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockBMaxCB(self, mode): # max checkbutton if mode != 0: mode = 1 self.lockBMax = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockPrecisionCB(self, mode): if mode != 0: mode = 1 self.lockPrecision = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockShowLabelCB(self, mode): if mode != 0: mode = 1 self.lockShowLabel = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockValueCB(self, mode): if mode != 0: mode = 1 self.lockValue = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def lockContinuousCB(self, mode): if mode != 0: mode = 1 self.lockContinuous = mode if hasattr(self.opPanel, 'optionsForm'): self.opPanel.lockUnlockDisplay() def setSignatures(self, signatures): self.signatures = signatures self.sigData = [] # get the values self.maxFun = [] self.minFun = [] for s in self.signatures: x = Numeric.zeros( (s.nval,), 'f') s.getFx(x) self.minix = mini = min(x) if (isinstance(mini, Numeric.ArrayType)) and (mini.shape == () ): mini = mini[0] maxi = max(x) if (isinstance(maxi, Numeric.ArrayType)) and (maxi.shape == () ): maxi = maxi[0] self.rangex = range = maxi-mini if range != 0: x = (((x-mini)/range)*self.widthMinusOne).astype('i') y = Numeric.zeros( (s.nval,), 'f') s.getFy(y) self.sigData.append( (x,y) ) self.maxFun.append(max(y)) self.minFun.append(min(y)) self.setMin(mini) self.setMax(maxi) # iso value with hightest value in first function if len(self.sigData): ind = list(self.sigData[0][1]).index(max(self.sigData[0][1])) self.setXcursor(ind) else: self.setXcursor(0.0) self.drawSignatures() def drawSignatures(self): # compute normalization factors self.yratios = [] maxi = max(self.maxFun) for i in range(4): h = self.height-1. if maxi != 0 and self.maxFun[i] != 0: self.yratios.append( (h/maxi)*(maxi/self.maxFun[i]) ) else: self.yratios.append( 0 ) for l in self.tkLines: self.canvas.delete(l) for i, f in enumerate(self.sigData): coords = [] for x,y in zip (f[0], f[1]): coords.append(x) coords.append(self.height-y*self.yratios[i]) self.tkLines.append( apply( self.canvas.create_line, coords, {'fill':self.colors[i]}) )
2.25
2
resources/lib/ttml2srt.py
dhoffend/plugin.video.mediathekview
0
12786916
# -*- coding: utf-8 -*- # Copyright 2017 <NAME> # See https://github.com/codingcatgirl/ttml2srt # # MIT License # # Copyright (c) 2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re import io from datetime import timedelta from defusedxml import ElementTree as ET def ttml2srt( infile, outfile ): tree = ET.parse( infile ) root = tree.getroot() # strip namespaces for elem in root.getiterator(): elem.tag = elem.tag.split('}', 1)[-1] elem.attrib = {name.split('}', 1) [-1]: value for name, value in elem.attrib.items()} # get styles styles = {} for elem in root.findall('./head/styling/style'): style = {} if 'color' in elem.attrib: color = elem.attrib['color'] if color not in ('#FFFFFF', '#000000'): style['color'] = color if 'fontStyle' in elem.attrib: fontstyle = elem.attrib['fontStyle'] if fontstyle in ('italic', ): style['fontstyle'] = fontstyle styles[elem.attrib['id']] = style body = root.find('./body') # parse correct start and end times def parse_time_expression(expression, default_offset=timedelta(0)): offset_time = re.match(r'^([0-9]+(\.[0-9]+)?)(h|m|s|ms|f|t)$', expression) if offset_time: time_value, _, metric = offset_time.groups() time_value = float(time_value) if metric == 'h': return default_offset + timedelta(hours=time_value) elif metric == 'm': return default_offset + timedelta(minutes=time_value) elif metric == 's': return default_offset + timedelta(seconds=time_value) elif metric == 'ms': return default_offset + timedelta(milliseconds=time_value) elif metric == 'f': raise NotImplementedError( 'Parsing time expressions by frame is not supported!') elif metric == 't': raise NotImplementedError( 'Parsing time expressions by ticks is not supported!') clock_time = re.match( r'^([0-9]{2,}):([0-9]{2,}):([0-9]{2,}(\.[0-9]+)?)$', expression) if clock_time: hours, minutes, seconds, _ = clock_time.groups() return timedelta(hours=int(hours), minutes=int(minutes), seconds=float(seconds)) clock_time_frames = re.match( r'^([0-9]{2,}):([0-9]{2,}):([0-9]{2,}):([0-9]{2,}(\.[0-9]+)?)$', expression) if clock_time_frames: raise NotImplementedError( 'Parsing time expressions by frame is not supported!') raise ValueError('unknown time expression: %s' % expression) def parse_times(elem, default_begin=timedelta(0)): if 'begin' in elem.attrib: begin = parse_time_expression( elem.attrib['begin'], default_offset=default_begin) else: begin = default_begin elem.attrib['{abs}begin'] = begin end = None if 'end' in elem.attrib: end = parse_time_expression( elem.attrib['end'], default_offset=default_begin) dur = None if 'dur' in elem.attrib: dur = parse_time_expression(elem.attrib['dur']) if dur is not None: if end is None: end = begin + dur else: end = min(end, begin + dur) elem.attrib['{abs}end'] = end for child in elem: parse_times(child, default_begin=begin) parse_times(body) timestamps = set() for elem in body.findall('.//*[@{abs}begin]'): timestamps.add(elem.attrib['{abs}begin']) for elem in body.findall('.//*[@{abs}end]'): timestamps.add(elem.attrib['{abs}end']) timestamps.discard(None) # render subtitles on each timestamp def render_subtitles(elem, timestamp, parent_style=None): if timestamp < elem.attrib['{abs}begin']: return '' if elem.attrib['{abs}end'] is not None and timestamp >= elem.attrib['{abs}end']: return '' result = '' style = parent_style.copy() if parent_style is not None else {} if 'style' in elem.attrib: style.update(styles[elem.attrib['style']]) if 'color' in style: result += '<font color="%s">' % style['color'] if style.get('fontstyle') == 'italic': result += '<i>' if elem.text: result += elem.text.strip() if len(elem): for child in elem: result += render_subtitles(child, timestamp) if child.tail: result += child.tail.strip() if 'color' in style: result += '</font>' if style.get('fontstyle') == 'italic': result += '</i>' if elem.tag in ('div', 'p', 'br'): result += '\n' return result rendered = [] for timestamp in sorted(timestamps): rendered.append((timestamp, re.sub(r'\n\n\n+', '\n\n', render_subtitles(body, timestamp)).strip())) if not rendered: exit(0) # group timestamps together if nothing changes rendered_grouped = [] last_text = None for timestamp, content in rendered: if content != last_text: rendered_grouped.append((timestamp, content)) last_text = content # output srt rendered_grouped.append((rendered_grouped[-1][0] + timedelta(hours=24), '')) def format_timestamp(timestamp): return ('%02d:%02d:%02.3f' % (timestamp.total_seconds() // 3600, timestamp.total_seconds() // 60 % 60, timestamp.total_seconds() % 60)).replace('.', ',') if isinstance( outfile, str ) or isinstance( outfile, unicode ): file = io.open( outfile, 'w', encoding='utf-8' ) else: file = outfile srt_i = 1 for i, (timestamp, content) in enumerate(rendered_grouped[:-1]): if content == '': continue file.write( bytearray( '%d\n' % srt_i, 'utf-8' ) ) file.write( bytearray( format_timestamp( timestamp ) + ' --> ' + format_timestamp( rendered_grouped[i + 1][0] ) + '\n' ) ) file.write( bytearray( content + '\n\n', 'utf-8' ) ) srt_i += 1 file.close()
1.9375
2
gw_full_latest/loraWAN.py
cuongdodinh/LowCostLoRaGw
0
12786917
#------------------------------------------------------------ # Copyright 2016 <NAME>, University of Pau, France. # # <EMAIL> # # This file is part of the low-cost LoRa gateway developped at University of Pau # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the program. If not, see <http://www.gnu.org/licenses/>. #------------------------------------------------------------ import sys import re import string import base64 import LoRaWAN from LoRaWAN.MHDR import MHDR AppSKey = '<KEY>' NwkSKey = '<KEY>' PKT_TYPE_DATA=0x10 #to display non printable characters replchars = re.compile(r'[\x00-\x1f]') def replchars_to_hex(match): return r'\x{0:02x}'.format(ord(match.group())) def loraWAN_process_pkt(lorapkt): appskey=bytearray.fromhex(AppSKey) appskeylist=[] for i in range (0,len(appskey)): appskeylist.append(appskey[i]) nwkskey=bytearray.fromhex(NwkSKey) nwkskeylist=[] for i in range (0,len(nwkskey)): nwkskeylist.append(nwkskey[i]) lorawan = LoRaWAN.new(nwkskeylist) lorawan.read(lorapkt) lorawan.compute_mic() if lorawan.valid_mic(): print "?loraWAN: valid MIC" lorawan = LoRaWAN.new(appskeylist) lorawan.read(lorapkt) plain_payload = ''.join(chr(x) for x in lorawan.get_payload()) print "?loraWAN: plain payload is "+replchars.sub(replchars_to_hex, plain_payload) return plain_payload else: return "###BADMIC###" if __name__ == "__main__": argc=len(sys.argv) if argc>1: #we assume that the input frame is given in base64 format lorapktstr_b64=sys.argv[1] else: sys.exit("loraWAN.py needs at least a base64 encoded string argument") if argc>2: pdata=sys.argv[2] arr = map(int,pdata.split(',')) dst=arr[0] ptype=arr[1] ptype=PKT_TYPE_DATA src=arr[2] seq=arr[3] datalen=arr[4] SNR=arr[5] RSSI=arr[6] if argc>3: rdata=sys.argv[3] lorapktstr=base64.b64decode(lorapktstr_b64) lorapkt=[] for i in range (0,len(lorapktstr)): lorapkt.append(ord(lorapktstr[i])) plain_payload=loraWAN_process_pkt(lorapkt) if plain_payload=="###BADMIC###": print '?'+plain_payload else: print "?plain payload is : "+plain_payload if argc>2: print "^p%d,%d,%d,%d,%d,%d,%d" % (dst,ptype,src,seq,len(plain_payload),SNR,RSSI) if argc>3: print "^r"+rdata print "\xFF\xFE"+plain_payload
2.28125
2
binding.gyp
codyrigney92/node-rpi-si4703
0
12786918
<reponame>codyrigney92/node-rpi-si4703 { "targets": [ { "target_name": "node-rpi-si4703", "cflags!": ['-fno-exceptions -std=c++11'], "cflags_cc!": ['-fno-exceptions -std=c++11'], "sources": ["src/node-rpi-si4703.cpp", "src/FMTuner.cpp", "src/FMTuner.h", "src/rpi-si4703/Si4703_Breakout.cpp", "src/rpi-si4703/Si4703_Breakout.h"], "libraries": ["-lwiringPi"] }, { "target_name": "action_after_build", "type": "none", "dependencies": ["node-rpi-si4703"], "copies": [ { "files": ["<(PRODUCT_DIR)/node-rpi-si4703.node"], "destination": "node-rpi-si4703" } ] } ] }
1.109375
1
timer_decor.py
romchegue/Python
0
12786919
# file: timer_decor.py import time class timer: def __init__(self, func): self.func = func self.alltime = 0 def __call__(self, *args, **kwargs): start = time.time() result = self.func(*args, **kwargs) elapsed = time.time() - start self.alltime += elapsed # print('%s: %.5f, %.5f' % (self.func.__name__, elapsed, self.alltime)) print('{0}: {1:.5f}, {2:.5f}'.format(self.func.__name__, elapsed, self.alltime)) return result @timer def listcomp(N): return [x * 2 for x in range(N)] @timer def mapcall(N): return map((lambda x: x * 2), range(N)) result = listcomp(5) listcomp(50000) listcomp(500000) listcomp(1000000) print(result) print('allTime = {0}'.format(listcomp.alltime)) print('') result = mapcall(5) mapcall(50000) mapcall(500000) mapcall(1000000) print(result) print('allTime = {0}'.format(mapcall.alltime)) print('map/comp = {0}'.format(round(mapcall.alltime / listcomp.alltime, 3)))
3.765625
4
keras_dgl/__init__.py
michael-cowan/keras-deep-graph-learning
0
12786920
from keras_dgl._version import __version__
1.023438
1
src/app/models.py
510908220/heartbeats
23
12786921
<reponame>510908220/heartbeats # -*- coding:utf-8 -*- from django.db import models from django.conf import settings # Create your models here. class Tag(models.Model): class Meta: db_table = "tag" name = models.CharField(max_length=200, unique=True, blank=False, null=False) created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return self.name class Service(models.Model): class Meta: db_table = "service" STATUS = ( ('running', 'running'), ('stoped', 'stoped'), ) TYPES = ( ('at', 'at'), ('every', 'every'), ) name = models.CharField(max_length=200, unique=True, blank=False, null=False) status = models.CharField(choices=STATUS, default=STATUS[0][0], max_length=20) tp = models.CharField(choices=TYPES, default=TYPES[0][0], max_length=20) value = models.CharField(max_length=200, default='') notify_to = models.TextField(default="") grace = models.IntegerField(default=0) short_url = models.CharField(max_length=200, unique=True, blank=True, null=True) tags = models.ManyToManyField(Tag, related_name='services') created = models.DateTimeField(auto_now_add=True) updated = models.DateTimeField(auto_now=True) def __str__(self): return self.name class Ping(models.Model): class Meta: db_table = "ping" service = models.ForeignKey(Service, related_name='pings', on_delete=models.CASCADE) remote_addr = models.GenericIPAddressField(blank=True, null=True) ua = models.CharField(max_length=200, blank=True) data = models.TextField(blank=True) created = models.DateTimeField(auto_now_add=True) def __str__(self): return "{}-{}".format(self.service.name, self.id)
2.09375
2
bkt.py
JonathanSilver/pyKT
1
12786922
<gh_stars>1-10 import torch import torch.nn as nn import torch.optim as optim import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_auc_score, mean_squared_error, mean_absolute_error from math import sqrt import os import json from pprint import pprint import argparse parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-p', '--problems', type=str, help='file path to problems.json') parser.add_argument('-s', '--submissions', type=str, help='file path to user_submissions.json') parser.add_argument('-d', '--dir', type=str, help='dir to models') parser.add_argument('-e', '--epochs', type=int, default=10, help='number of epochs to train for each BKT') parser.add_argument('-f', '--fits', type=int, default=10, help='number of BKTs to train for each skill') parser.add_argument('--forget', action='store_true', default=False, help='enable BKT to forget') parser.add_argument('--restore', action='store_true', default=False, help='restore models from the dir') parser.add_argument('--alpha', type=float, default=.05, help='adam-alpha') parser.add_argument('--betas', type=float, nargs=2, default=[.9, .999], help='adam-betas') parser.add_argument('-k', type=int, default=1, help='k-fold cross validation') parser.add_argument('--seed', type=int, default=1, help='random seed') args = parser.parse_args() torch.manual_seed(args.seed) np.random.seed(args.seed) class BKT(nn.Module): def __init__(self, forgetting=True): super(BKT, self).__init__() self.forgetting = forgetting self.L0 = nn.Parameter(torch.tensor(np.random.randn()), requires_grad=True) self.T = nn.Parameter(torch.tensor(np.random.randn()), requires_grad=True) if forgetting: self.F = nn.Parameter(torch.tensor(np.random.randn()), requires_grad=True) self.G = nn.Parameter(torch.tensor(np.random.randn()), requires_grad=True) self.S = nn.Parameter(torch.tensor(np.random.randn()), requires_grad=True) def forward(self, x): """ :param x: (num_action, batch_size) :return: (num_pred, batch_size) """ trans = torch.sigmoid(self.T) if self.forgetting: forget = torch.sigmoid(self.F) else: forget = torch.tensor(0.) guess = torch.sigmoid(self.G) slip = torch.sigmoid(self.S) one = torch.ones(x.size(1)) learn = one * torch.sigmoid(self.L0) y = torch.zeros(x.size()) for t in range(x.size(0)): # P(correct(t)) = P(L(t)) * (1 - P(S)) + (1 - P(L(t))) * P(G) correct = learn * (one - slip) + (one - learn) * guess y[t] = correct # action = correct: # P(L(t)|correct(t)) = (P(L(t)) * (1 - P(S))) / P(correct(t)) # action = incorrect # P(L(t)|incorrect(t)) = (P(L(t)) * P(S)) / P(incorrect(t)) conditional_probability = x[t] * (learn * (one - slip) / correct) \ + (one - x[t]) * (learn * slip / (one - correct)) # P(L(t+1)) = P(L(t)|action(t)) + (1 - P(L(t)|action(t))) * P(T) learn = conditional_probability * (one - forget) + (one - conditional_probability) * trans return y def fit(x, mask, num_epochs=args.epochs, lr=args.alpha, betas=args.betas, num_fit=args.fits, forgetting=args.forget, restore_model=args.restore, test_x=None, test_mask=None, title=None): """ randomly initialize num_fit BKT models, use Adam to optimize the MSE loss function, the training set is used to estimate the parameters, the best estimation is the one with the highest ROC AUC score on the training set, the prediction for the test set and the best estimated parameters are returned. :param x: training set, sized (num_action, batch) :param mask: training set mask, sized (num_action, batch) :param num_epochs: for each BKT, the number of epochs used to train the model :param lr: learning rate for optimizer :param num_fit: number of random initialized BKTs to estimate parameters :param forgetting: whether to enable forgetting in BKT :param restore_model: whether to restore model if model exists :param test_x: test set, sized (num_action, batch) :param test_mask: test set mask, sized (num_action, batch) :param title: the name of the model (a.k.a. the chart title) :return: the prediction for the test set, along with the model parameters """ counter = 0 best_bkt = None best_score = 0 best_loss = None if title: model_path = os.path.join(args.dir, 'bkt - ' + title + (' - f' if forgetting else '') + '.pth') else: model_path = None if model_path and restore_model and os.path.exists(model_path): best_bkt = BKT(forgetting=forgetting) best_bkt.load_state_dict(torch.load(model_path)) else: while counter != num_fit: counter += 1 bkt = BKT(forgetting=forgetting) loss_fn = nn.MSELoss() optimizer = optim.Adam(bkt.parameters(), lr=lr, betas=betas) epoch = 0 loss_list = [] while epoch != num_epochs: epoch += 1 bkt.train() with torch.enable_grad(): optimizer.zero_grad() y = bkt(x) loss = loss_fn(y * mask, x) loss.backward() nn.utils.clip_grad_norm_(bkt.parameters(), max_norm=2.) optimizer.step() loss_list.append(loss.item()) print(counter, epoch, loss_list[-1]) bkt.eval() with torch.no_grad(): y = bkt(x) * mask y_true = x.masked_select(mask != 0).numpy() y_pred = y.masked_select(mask != 0).numpy() try: score = roc_auc_score(y_true, y_pred) if score > best_score: best_bkt = bkt best_score = score best_loss = loss_list except ValueError as e: print('during fitting model %d:' % counter) print(e) print('refitting...') counter -= 1 if model_path: torch.save(best_bkt.state_dict(), model_path) best_bkt.eval() with torch.no_grad(): if test_x is not None and test_mask is not None: y = best_bkt(test_x) else: y = best_bkt(x) # if best_loss: # plt.plot(best_loss) # if title: # plt.title(title) # plt.show() return y * test_mask if test_x is not None and test_mask is not None else y * mask, { 'prior': torch.sigmoid(best_bkt.L0).item(), 'learn': torch.sigmoid(best_bkt.T).item(), 'forget': torch.sigmoid(best_bkt.F).item() if forgetting else 0., 'guess': torch.sigmoid(best_bkt.G).item(), 'slip': torch.sigmoid(best_bkt.S).item() } with open(args.problems, 'r') as file: problems = json.load(file) problem_id_2_tag_ids = {problem['id']: problem['tags'] for problem in problems} tags = set() for problem in problems: tags |= set(problem['tags']) tags = list(sorted(list(tags))) with open(args.submissions, 'r') as file: user_submissions = json.load(file) def prepare_data(tag, training, group): ret_data = [] ret_max_length = 0 for user_data in user_submissions: user_group = user_data['group'] if training and user_group == group \ or not training and user_group != group: continue submissions = user_data['submissions'] record = [] for sub in submissions: if tag in problem_id_2_tag_ids[sub['problem']]: record.append(sub['verdict']) if len(record): ret_data.append(record) ret_max_length = max(ret_max_length, len(record)) return ret_data, ret_max_length def convert(data, data_max_length): batch_size = len(data) ret_x = np.zeros((data_max_length, batch_size)) ret_mask = np.zeros((data_max_length, batch_size)) for idx in range(batch_size): for i in range(len(data[idx])): ret_x[i][idx] = data[idx][i] ret_mask[i][idx] = 1 return torch.tensor(ret_x), torch.tensor(ret_mask) def run(group): y_true = np.zeros(0) y_pred = np.zeros(0) for tag in tags: train, train_max_length = prepare_data(tag, training=True, group=group) test, test_max_length = prepare_data(tag, training=False, group=group) if train_max_length and test_max_length: print("data set for '%d' has been prepared" % tag) train_x, train_mask = convert(train, train_max_length) test_x, test_mask = convert(test, test_max_length) print(train_x.shape, test_x.shape) print('fitting') test_y, params = fit(x=train_x, mask=train_mask, test_x=test_x, test_mask=test_mask, title=str(tag) + ' - ' + str(group)) # pprint(params) y_true_part = test_x.masked_select(test_mask != 0).numpy() y_pred_part = test_y.masked_select(test_mask != 0).numpy() y_true = np.concatenate([y_true, y_true_part]) y_pred = np.concatenate([y_pred, y_pred_part]) print("ROC AUC on '%d': %.10f" % (tag, roc_auc_score(y_true_part, y_pred_part))) auc = roc_auc_score(y_true, y_pred) rmse = sqrt(mean_squared_error(y_true, y_pred)) mae = mean_absolute_error(y_true, y_pred) print('ROC AUC: {}'.format(auc)) print('RMSE: {}'.format(rmse)) print('MAE: {}'.format(mae)) return auc, rmse, mae def main(): k = args.k auc = np.zeros(k) rmse = np.zeros(k) mae = np.zeros(k) for i in range(k): print('group %d:' % i) auc[i], rmse[i], mae[i] = run(i) print('-' * 30) print('ROC AUC: {} (+/- {})'.format(auc.mean(), auc.std())) print('RMSE: {} (+/- {})'.format(rmse.mean(), rmse.std())) print('MAE: {} (+/- {})'.format(mae.mean(), mae.std())) if __name__ == '__main__': main()
2.125
2
pynepsys/__init__.py
jpelzer/pynepsys
0
12786923
<reponame>jpelzer/pynepsys<filename>pynepsys/__init__.py from pynepsys.pynepsys import Apex, Probe, Outlet __version__ = "1.2.0"
1
1
backend/messages/serializers.py
HillalRoy/Studenthut
1
12786924
from .models import ClassMessage, Message from rest_framework import serializers from django.contrib.auth.models import User class UserUserNameSerializer(serializers.ModelSerializer): class Meta: model = User fields = ['username'] class MessageSerializers(serializers.ModelSerializer): sender = UserUserNameSerializer(read_only=True) class Meta: model = Message fields = ['body', 'sender', 'parent_msg', 'sent_at'] read_only_fields = ['sent_at', 'sender'] class ClassMessegeSerializers(serializers.ModelSerializer): msg = MessageSerializers() class Meta: model = ClassMessage fields = ['msg', 'classes'] def create(self, validated_data): # order = Order.objects.get(pk=validated_data.pop('event')) # instance = Equipment.objects.create(**validated_data) # Assignment.objects.create(Order=order, Equipment=instance)read_only=True) msg_data = validated_data.pop('msg') sender = validated_data.pop('msg__sender') msg = Message.objects.create( **msg_data, sender=sender) msg.save() instance = ClassMessage.objects.create(**validated_data, msg=msg) return instance
2.1875
2
moyu_engine/config/main.py
MoYuStudio/MYSG01
0
12786925
import sys import pygame from pygame.locals import * import moyu_engine.config.data.constants as C import moyu_engine.config.system.assets_system import moyu_engine.config.system.tilemap_system import moyu_engine.config.system.move_system import moyu_engine.config.window.main_window def init(): pygame.init() pygame.mixer.init() SCREEN = pygame.display.set_mode(C.window['size'],pygame.RESIZABLE) SCREEN_TITLE = pygame.display.set_caption(C.window['title']) #pygame.display.set_icon(G.tl16) CLOCK = pygame.time.Clock() pygame.display.flip() moyu_engine.config.system.assets_system.AssetsSystem.loader() moyu_engine.config.system.tilemap_system.TilemapSystem.builder() while True: moyu_engine.config.system.move_system.MoveSystem.move() moyu_engine.config.window.main_window.MainWindow.blit() for event in pygame.event.get(): if event.type == QUIT: pygame.quit() sys.exit() pygame.display.update() CLOCK.tick(C.window['fps']) def run(): init() if __name__ == "__main__": pass
2.34375
2
knn.py
AlparslanErol/KNN
0
12786926
<filename>knn.py from csv import reader from math import sqrt import matplotlib.pyplot as plt # Load a CSV file def load_csv(filename): dataset = list() with open(filename, 'r') as file: csv_reader = reader(file) for row in csv_reader: if not row: continue dataset.append(row) return dataset # Edit test and train dataset def edit_data(dataset): del dataset[0] for val in dataset: del val[0] for i in range(len(dataset[0])-1): str_column_to_float(dataset, i) str_column_to_int(dataset, len(dataset[0])-1) # Convert string column to float def str_column_to_float(dataset, column): for row in dataset: row[column] = float(row[column].strip()) # Convert string column to integer def str_column_to_int(dataset, column): class_values = [row[column] for row in dataset] unique = set(class_values) lookup = dict() for i, value in enumerate(unique): lookup[value] = i print('[%s] => %d' % (value, i)) for row in dataset: row[column] = lookup[row[column]] return lookup # Calculate accuracy percentage def accuracy_metric(actual, predicted): correct = 0 for i in range(len(actual)): if actual[i] == predicted[i]: correct += 1 return correct / float(len(actual)) * 100.0 # Evaluate an algorithm using a cross validation split def evaluate_algorithm(train_set, test_set, algorithm, k_list): scores = list() for k in k_list: actual = list() predicted = algorithm(train_set, test_set, k) for val in test_set: actual.append(val[-1]) accuracy = accuracy_metric(actual, predicted) scores.append(accuracy) return scores # Calculate the Euclidean distance between two vectors def euclidean_distance(row1, row2): distance = 0.0 for i in range(len(row1)-1): distance += (row1[i] - row2[i])**2 return sqrt(distance) # Locate the most similar neighbors def get_neighbors(train, test_row, num_neighbors): distances = list() for train_row in train: dist = euclidean_distance(test_row, train_row) distances.append((train_row, dist)) distances.sort(key=lambda tup: tup[1]) neighbors = list() for i in range(num_neighbors): neighbors.append(distances[i][0]) return neighbors # Make a prediction with neighbors def predict_classification(train, test_row, num_neighbors): neighbors = get_neighbors(train, test_row, num_neighbors) output_values = [row[-1] for row in neighbors] prediction = max(set(output_values), key=output_values.count) return prediction # kNN Algorithm def k_nearest_neighbors(train, test, num_neighbors): predictions = list() for row in test: output = predict_classification(train, row, num_neighbors) predictions.append(output) return(predictions) train_set = load_csv('iristrain.csv') test_set = load_csv('iristest.csv') edit_data(train_set) edit_data(test_set) #k_list = list() #number = int(input("how many value you want in a list: ")) #for i in range(0,number): # numbers = int(input("enter your choice number:")) # k_list.append(numbers) # k_list = list(range(1,50,2)) for num, val in enumerate(k_list): print("K-Value {}..: ".format(num+1),val) # evaluate algorithm scores = evaluate_algorithm(train_set, test_set, k_nearest_neighbors, k_list) print('Scores: %s' % scores) print('Mean Accuracy: %.3f%%' % (sum(scores)/float(len(scores)))) ## define a new record #row = [5.7,2.9,4.2,1.3] #num_neighbors = 5 ## predict the label #label = predict_classification(train_set, row, num_neighbors) #print('Data=%s, Predicted: %s' % (row, label)) # PLOT # ============================================================================= plt.figure() plt.bar(k_list,scores, label = "Scores for K-Values") plt.ylim(90,100) plt.ylabel('Accuracy Scores') plt.xlabel('K-Values') plt.title('KNN') plt.legend() plt.show() # =============================================================================
3.734375
4
src/roughml/shared/decorators.py
billsioros/RoughML
0
12786927
import inspect import logging import time from functools import wraps logger = logging.getLogger(__name__) def benchmark(method): """The following decorator aims at calculating the decorated function's execution time and is used to benchmark our various approaches and assist us in coming up with a comprehensive comparison of their efficiency. """ @wraps(method) def wrapper(*args, **kwargs): beg = time.time() rv = method(*args, **kwargs) end = time.time() logger.info("%s returned after %7.3f seconds", method.__name__, end - beg) return rv return wrapper def debug(method): """The following decorator serves at emitting details regarding the decorated function's calls. In more detai, the information emitted is: - The function's name. - Its positional and keyword arguements for the function call at hand. - Any exception that the function `raises`. In addition to that, the `debug` decorator passes a special boolean keyword arguement by the name `debug`, if and only if it is included in the function signature. You can then utilize this arguement inside the decorated function and emit additional information. """ signature = inspect.signature(method) defaults = { k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty } @wraps(method) def wrapper(*args, **kwargs): called_with = "" if args: called_with += ", ".join(str(x) for x in args) called_with += ", " called_with += ", ".join( f"{x}={kwargs.get(x, defaults[x])}" for x in defaults.keys() ) try: rv = method(*args, **kwargs) except Exception as e: logger.debug(f"%s(%s) raised %s", method.__name__, called_with, e) raise logger.debug(f"%s(%s) returned %s", method.__name__, called_with, rv) return rv return wrapper
3.8125
4
icfs/cloudapi/cloud.py
bhanupratapjain/icfs
0
12786928
<gh_stars>0 from icfs.cloudapi.google import GDrive # @class_decorator(logger) class Cloud: def __init__(self, gdrive_settings, tmp, creds): self.gdrive_settings = gdrive_settings self.clients = {} self.creds = creds self.tmp = tmp def restore_gdrive(self, client_id): g_drive = GDrive(self.tmp, self.creds, self.gdrive_settings) g_drive.restore(client_id) self.clients[client_id] = g_drive def add_gdrive(self): g_drive = GDrive(self.tmp, self.creds, self.gdrive_settings) client_id = g_drive.init_auth() self.clients[client_id] = g_drive return client_id # Raises CloudIOError def pull(self, filename, client_id): self.clients[client_id].pull(filename) # Raises CloudIOError def push(self, filename, client_id): self.clients[client_id].push(filename) # Raises CloudIOError def push_all(self, file_list, client_id): self.clients[client_id].push_all(file_list) # Raises CloudIOError def remove(self, filename, client_id): self.clients[client_id].remove(filename) # Removes everything from the cloud def remove_all(self, client_id): self.clients[client_id].remove_all() def about(self, client_id): about = self.clients[client_id].about() return { "current_user_name": about['name'], "root_folder_id": about['rootFolderId'], "total_quota": about['quotaBytesTotal'], "used_quota": about['quotaBytesUsed'] }
2.296875
2
analyze_stats.py
JPEWdev/oe-icecream-demo
4
12786929
#! /usr/bin/env python3 # # Copyright 2019 Garmin Ltd. or its subsidiaries # # SPDX-License-Identifier: Apache-2.0 import os import sys import glob import re from scipy import stats import numpy THIS_DIR = os.path.dirname(os.path.realpath(__file__)) sys.path.append(os.path.join(THIS_DIR, 'poky', 'scripts', 'lib')) from buildstats import BuildStats, diff_buildstats, taskdiff_fields, BSVerDiff ICECREAM_TASKS = ('do_compile', 'do_compile_kernelmodules', 'do_configure', 'do_install') VALUES = ('cputime', 'walltime') def sum_task_totals(bs): d = {} for recipe_data in bs.values(): for name, bs_task in recipe_data.tasks.items(): for val_type in VALUES: val = getattr(bs_task, val_type) key = (name, val_type) if name not in ICECREAM_TASKS: key = ('other', val_type) d.setdefault(key, 0) d[key] += val key = ('overall', val_type) d.setdefault(key, 0) d[key] += val return d def get_elapsed(p): elapsed = None cpu = None with open(os.path.join(p, 'build_stats'), 'r') as f: for l in f: m = re.match(r'Elapsed time: (?P<elapsed>[\d.]+) ', l) if m is not None: elapsed = float(m.group('elapsed')) continue m = re.match(r'CPU usage: (?P<cpu>[\d.]+)%', l) if m is not None: cpu = float(m.group('cpu')) / 100 if elapsed is None: raise Exception('Elapsed time not found for %s' % p) if cpu is None: raise Exception('CPU usage not found for %s' % p) return (elapsed, cpu) def pooled_stdev(a_std_dev, b_std_dev): return numpy.sqrt((a_std_dev**2 + b_std_dev**2)/2) def write_elapsed(): with open(os.path.join(THIS_DIR, 'stats', 'elapsed.csv'), 'w') as f: f.write('Build,Elapsed without Icecream,Elapsed with Icecream,CPU usage without Icecream,CPU usage with Icecream\n') elapsed_combined_without = [] elapsed_combined_with = [] cpu_combined_without = [] cpu_combined_with = [] for p in glob.glob(os.path.join(THIS_DIR, 'stats', 'build*')): without_elapsed, without_cpu = get_elapsed(os.path.join(p, 'without-icecream')) with_elapsed, with_cpu = get_elapsed(os.path.join(p, 'with-icecream')) elapsed_combined_without.append(without_elapsed) elapsed_combined_with.append(with_elapsed) cpu_combined_without.append(without_cpu) cpu_combined_with.append(with_cpu) f.write('%s,%f,%f,%f,%f\n' % (os.path.basename(p), without_elapsed, with_elapsed, without_cpu, with_cpu)) f.write('\n') f.write(',Average without Icecream (s),Without Icecream std dev,Average with Icecream (s),With Icecream std dev,p-value,Percent Change,Percent Change std dev\n') average_without = numpy.average(elapsed_combined_without) average_with = numpy.average(elapsed_combined_with) without_std_dev = numpy.std(elapsed_combined_without) with_std_dev = numpy.std(elapsed_combined_with) change = (average_with - average_without) / average_without pooled_std_dev = pooled_stdev(without_std_dev, with_std_dev) / average_without _, p = stats.ttest_rel(elapsed_combined_without, elapsed_combined_with) f.write('Elapsed Time,%f,%f,%f,%f,%e,%.2f,%f\n' % ( average_without, without_std_dev, average_with, with_std_dev, p, change, pooled_std_dev)) f.write('\n') f.write(',Average without Icecream,Without Icecream std dev,Average with Icecream,With Icecream std dev,p-value,Delta\n') average_without = numpy.average(cpu_combined_without) average_with = numpy.average(cpu_combined_with) without_std_dev = numpy.std(cpu_combined_without) with_std_dev = numpy.std(cpu_combined_with) delta = average_with - average_without _, p = stats.ttest_rel(cpu_combined_without, cpu_combined_with) f.write('CPU Usage,%f,%f,%f,%f,%e,%.2f\n' % ( average_without, without_std_dev, average_with, with_std_dev, p, delta)) def write_tasks(): with open(os.path.join(THIS_DIR, 'stats', 'raw.csv'), 'w') as f: combined_with = {} combined_without = {} f.write('Task,Attribute,Build,Without Icecream,With Icecream\n') for p in glob.glob(os.path.join(THIS_DIR, 'stats', 'build*')): without_stats = BuildStats.from_dir(os.path.join(p, 'without-icecream')) with_stats = BuildStats.from_dir(os.path.join(p, 'with-icecream')) without_d = sum_task_totals(without_stats) with_d = sum_task_totals(with_stats) for k in without_d.keys(): without_val = without_d[k] with_val = with_d[k] f.write("%s,%s,%s,%f,%f\n" % (k[0], k[1], os.path.basename(p), without_val, with_val)) combined_with.setdefault(k, []).append(with_val) combined_without.setdefault(k, []).append(without_val) with open(os.path.join(THIS_DIR, 'stats', 'totals.csv'), 'w') as f: f.write('Task,Attribute,Without Icecream,Without Std dev,With Icecream,With Std dev,p-value,Percent Change,Percent Change Std Dev\n') for k in combined_without.keys(): without_avg = numpy.average(combined_without[k]) with_avg = numpy.average(combined_with[k]) without_std_dev = numpy.std(combined_without[k]) with_std_dev = numpy.std(combined_with[k]) change = (with_avg - without_avg) / without_avg pooled_std_dev = pooled_stdev(without_std_dev, with_std_dev) / without_avg _, p = stats.ttest_rel(combined_without[k], combined_with[k]) f.write("%s,%s,%f,%f,%f,%f,%e,%.2f,%f\n" % (k[0], k[1], without_avg, without_std_dev, with_avg, with_std_dev, p, change, pooled_std_dev)) def main(): write_tasks() write_elapsed() if __name__ == "__main__": main() # exit on any error and unset variables #set -u -e -o pipefail #THIS_DIR="$(readlink -f $(dirname $0))" # #TASKS="do_configure do_compile do_install do_package_write_rpm" #ATTRS="cputime walltime" # #echo "Task,Attribute,Build,Without Icecream,With Icecream" > $THIS_DIR/stats/stat.csv # #for d in $THIS_DIR/stats/build*; do # for task in $TASKS; do # for attr in $ATTRS; do # VAL="$($THIS_DIR/poky/scripts/buildstats-diff --only-task $task --diff-attr $attr $d/without-icecream $d/with-icecream | tail -1)" # echo "$task,$attr,$d,$(echo $VAL | sed 's/.*(\([0-9.]\+\)s).*(\([0-9.]\+\)s).*/\1,\2/g')" >> $THIS_DIR/stats/stat.csv # done # done #done
2.078125
2
app.py
SlashNephy/chinachu-epgs-proxy
1
12786930
<filename>app.py import os import string import requests from flask import Flask, jsonify HTTP_HOST = os.getenv("HTTP_HOST", "0.0.0.0") HTTP_PORT = int(os.getenv("HTTP_PORT", "3000")) EPGSTATION_HOST = os.getenv("EPGSTATION_HOST", "epgstation") EPGSTATION_PORT = int(os.getenv("EPGSTATION_PORT", "8888")) USE_HALF_WIDTH = int(os.getenv("USE_HALF_WIDTH", "0")) == 1 app = Flask(__name__) def call_epgstation_api(path): return requests.get(f"http://{EPGSTATION_HOST}:{EPGSTATION_PORT}/api{path}").json() @app.route("/schedule.json", methods=["GET"]) def get_schedule(): # 扱いやすいように id をキーとして辞書を作る channels = { x["id"]: x for x in call_epgstation_api("/channels") } return jsonify([ { "type": channels[x["channel"]["id"]]["channelType"], "channel": channels[x["channel"]["id"]]["channel"], "name": channels[x["channel"]["id"]]["halfWidthName" if USE_HALF_WIDTH else "name"], "id": to_base_36(x["channel"]["id"]), "sid": channels[x["channel"]["id"]]["serviceId"], "nid": channels[x["channel"]["id"]]["networkId"], "hasLogoData": channels[x["channel"]["id"]]["hasLogoData"], "n": channels[x["channel"]["id"]]["remoteControlKeyId"], "programs": [ { "id": to_base_36(y["id"]), "category": { 0x0: "news", 0x1: "sports", 0x2: "information", 0x3: "drama", 0x4: "music", 0x5: "variety", 0x6: "cinema", 0x7: "anime", 0x8: "documentary", 0x9: "theater", 0xA: "hobby", 0xB: "welfare", 0xC: "etc", 0xD: "etc", 0xE: "etc", 0xF: "etc" }[y.get("genre1", 0xF)], "title": y["name"], "fullTitle": y["name"], # TODO: Support flags such as [字] "detail": y.get("description", ""), "start": y["startAt"], "end": y["endAt"], "seconds": (y["endAt"] - y["startAt"]) / 1000, "description": y.get("description", ""), "extra": { "_": y["extended"] # TODO } if "extended" in y else {}, "channel": { "type": channels[y["channelId"]]["channelType"], "channel": channels[y["channelId"]]["channel"], "name": channels[y["channelId"]]["halfWidthName" if USE_HALF_WIDTH else "name"], "id": to_base_36(y["channelId"]), "sid": channels[y["channelId"]]["serviceId"], "nid": channels[y["channelId"]]["networkId"], "hasLogoData": channels[y["channelId"]]["hasLogoData"], "n": channels[y["channelId"]]["remoteControlKeyId"] }, "subTitle": "", # Unsupported "episode": None, # Unsupported "flags": [] # Unsupported } for y in x["programs"] ] } for x in call_epgstation_api(f"/schedules?startAt=0&endAt=100000000000000&isHalfWidth={USE_HALF_WIDTH}&GR=true&BS=true&CS=true&SKY=true") ]) @app.route("/recording.json", methods=["GET"]) def get_recording(): # 扱いやすいように id をキーとして辞書を作る channels = { x["id"]: x for x in call_epgstation_api("/channels") } return jsonify([ { "id": to_base_36(x["programId"]), "category": { 0x0: "news", 0x1: "sports", 0x2: "information", 0x3: "drama", 0x4: "music", 0x5: "variety", 0x6: "cinema", 0x7: "anime", 0x8: "documentary", 0x9: "theater", 0xA: "hobby", 0xB: "welfare", 0xC: "etc", 0xD: "etc", 0xE: "etc", 0xF: "etc" }[x["genre1"]], "title": x["name"], "fullTitle": x["name"], # TODO: Support flags such as [字] "detail": x.get("description", ""), "start": x["startAt"], "end": x["endAt"], "seconds": (x["endAt"] - x["startAt"]) / 1000, "description": x.get("description", ""), "extra": { "_": x["extended"] # TODO } if "extended" in x else {}, "channel": { "type": channels[x["channelId"]]["channelType"], "channel": channels[x["channelId"]]["channel"], "name": channels[x["channelId"]]["halfWidthName" if USE_HALF_WIDTH else "name"], "id": to_base_36(x["channelId"]), "sid": channels[x["channelId"]]["serviceId"], "nid": channels[x["channelId"]]["networkId"], "hasLogoData": channels[x["channelId"]]["hasLogoData"], "n": channels[x["channelId"]]["remoteControlKeyId"] }, "subTitle": "", # Unsupported "episode": None, # Unsupported "flags": [], # Unsupported "isManualReserved": "ruleId" not in x, "priority": 0, # Unsupported "tuner": { "name": "EPGStation", "command": "", "isScrambling": False }, # Unsupported "command": "", # Unsupported "pid": 0, # Unsupported "recorded": x["videoFiles"][0]["filename"] } for x in call_epgstation_api(f"/recording?offset=0&limit=10000&isHalfWidth={USE_HALF_WIDTH}")["records"] ]) @app.route("/reserves.json", methods=["GET"]) def get_reserves(): # 扱いやすいように id をキーとして辞書を作る channels = { x["id"]: x for x in call_epgstation_api("/channels") } return jsonify([ { "id": to_base_36(x["programId"]), "category": { 0x0: "news", 0x1: "sports", 0x2: "information", 0x3: "drama", 0x4: "music", 0x5: "variety", 0x6: "cinema", 0x7: "anime", 0x8: "documentary", 0x9: "theater", 0xA: "hobby", 0xB: "welfare", 0xC: "etc", 0xD: "etc", 0xE: "etc", 0xF: "etc" }[x["genre1"]], "title": x["name"], "fullTitle": x["name"], # TODO: Support flags such as [字] "detail": x.get("description", ""), "start": x["startAt"], "end": x["endAt"], "seconds": (x["endAt"] - x["startAt"]) / 1000, "description": x.get("description", ""), "extra": { " ": x["extended"] # TODO } if "extended" in x else {}, "channel": { "type": channels[x["channelId"]]["channelType"], "channel": channels[x["channelId"]]["channel"], "name": channels[x["channelId"]]["halfWidthName" if USE_HALF_WIDTH else "name"], "id": to_base_36(x["channelId"]), "sid": channels[x["channelId"]]["serviceId"], "nid": channels[x["channelId"]]["networkId"], "hasLogoData": channels[x["channelId"]]["hasLogoData"], "n": channels[x["channelId"]]["remoteControlKeyId"] }, "subTitle": "", # Unsupported "episode": None, # Unsupported "flags": [], # Unsupported "isConflict": x["isConflict"], "recordedFormat": "" # Unsupported } for x in call_epgstation_api(f"/reserves?offset=0&limit=10000&isHalfWidth={USE_HALF_WIDTH}")["reserves"] ]) def to_base_36(value): n = 36 characters = string.digits + string.ascii_lowercase result = "" tmp = value while tmp >= n: idx = tmp%n result = characters[idx] + result tmp = int(tmp / n) idx = tmp%n result = characters[idx] + result return result if __name__ == "__main__": app.run(host=HTTP_HOST, port=HTTP_PORT)
2.859375
3
inject.py
LouisRoss/spiking-datasets
0
12786931
<reponame>LouisRoss/spiking-datasets import sys import json from support.realtime_manager import RealtimeManager,BufferManager def parse_args(): filename = '' repeats = 250 period = 250 # microseconds multiples = 1 step = 0 if len(sys.argv) < 2: print(f'Usage: {sys.argv[0]} <filename> [repeats] [period(ms)] [multiples] [step(indexes)]') return False, filename, repeats, period, multiples, step if len(sys.argv) > 1: filename = sys.argv[1] if len(sys.argv) > 2: repeats = int(sys.argv[2]) if len(sys.argv) > 3: period = int(sys.argv[3]) if len(sys.argv) > 4: multiples = int(sys.argv[4]) if len(sys.argv) > 5: step = int(sys.argv[5]) print(f'Expanding file {filename} {multiples:d} times at offsets of {step:d}. Sending the resulting expansion {repeats:d} times, repeating every {period:d} milliseconds') return True, filename, repeats, period, multiples, step def load_pattern(filename): # A return variable spikepattern = [] # Load the specified json file. f = open(filename) settings = json.load(f) # Get the spike pattern array from the file if present. if 'spikepattern' in settings: spikepattern = settings['spikepattern'] # If a neuron assignments dictionary exists, use it to translate neuron symbols to indexes. if 'neuronassignments' in settings: neuronassignments = settings['neuronassignments'] for spike in spikepattern: if spike[1] in neuronassignments: spike[1] = neuronassignments[spike[1]] print(spikepattern) return spikepattern def step_multiple(singleSpikePattern, step, multiple): """ Given a single instance of the spike pattern, plus the step distance between patterns and a multiple count, copy the pattern to the 'multple' number of places, separated by 'step' indices. """ fullSpikePattern = [] for i in range(multiple): offset = i * step for spikePattern in singleSpikePattern: fullSpikePattern.append([spikePattern[0], spikePattern[1] + offset]) print(fullSpikePattern) return fullSpikePattern if __name__ == "__main__": success, filename, repeats, period, multiple, step = parse_args() if not success: sys.exit() spikepattern = load_pattern(filename) fullSpikePattern = step_multiple(spikepattern, step, multiple) with RealtimeManager('Research1') as realtime: realtime.send_spikes_repeat(fullSpikePattern, period / 1000, repeats)
2.78125
3
calcloudML/tests/test_example.py
alphasentaurii/calcloud-ai
1
12786932
<gh_stars>1-10 import pytest import os from calcloudML.makefigs import load_data from calcloudML.makefigs import predictor def test_data_import(): print(os.getcwd()) assert True # df = load_data.get_single_dataset("data/hst_data.csv") # instruments = list(df["instr_key"].unique()) # assert len(instruments) == 4 def test_model_import(): assert True # clf = predictor.get_model("models/mem_clf") # assert len(clf.layers) > 0 # def test_primes(): # assert primes(10) == [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] # def test_imax_too_big(): # with pytest.raises(ValueError): # primes(10001) # def test_no_cython(): # with pytest.raises(NotImplementedError): # do_primes(2, usecython=True) # def test_cli(capsys): # main(args=['-tp', '2']) # captured = capsys.readouterr() # assert captured.out.startswith('Found 2 prime numbers') # assert len(captured.err) == 0
2.234375
2
midprice_profit_label/label_by_profit/jump_label_new_algo.py
anakinanakin/neural-network-on-finance-data
1
12786933
# use python3 import pandas as pd import matplotlib.pyplot as plt plt.rcParams.update({'figure.max_open_warning': 0}) from matplotlib import patches from matplotlib.pyplot import figure from datetime import timedelta, date def date_range(start_date, end_date): for n in range(int((end_date - start_date).days)): yield start_date + timedelta(n) def time2int(time_str: str) -> int: """Transform '01:57:00' to (int)157""" return int(time_str[:2] + time_str[3:5]) def time2str(time_int: int) -> str: """Transform 157 to '01:57:00'""" padded_str = str(time_int).zfill(4) # 157 becomes "0157" return padded_str[:2] + ":" + padded_str[2:4] + ":00" def narrow_adjust(closing_prices, leftmost_min_index, leftmost_max_index, curr_min, curr_max, window_lborder, window_rborder): best_min_index = leftmost_min_index best_max_index = leftmost_max_index if leftmost_min_index < leftmost_max_index: while (closing_prices[best_min_index + 1] == curr_min): best_min_index += 1 while (closing_prices[best_max_index - 1] == curr_max): best_max_index -= 1 else: while (closing_prices[best_min_index - 1] == curr_min): best_min_index -= 1 while (closing_prices[best_max_index + 1] == curr_max): best_max_index += 1 return best_min_index, best_max_index def plot_graph(single_date, closing_prices, min_max_pairs, min_close_price, max_close_price, hyperparams, dark_mode=False): if dark_mode: plt.style.use('dark_background') figure(figsize=(48, 10), dpi=100) ax = plt.subplot(1, 1, 1) for pair in min_max_pairs: # print(pair) # Green when price surges, red when price drops if dark_mode: curr_color = (.2, .45, .2) if pair[0] < pair[1] else (.4, .2, .2) else: curr_color = (.7, 1, .7) if pair[0] < pair[1] else (1, .7, .7) ax.add_patch( patches.Rectangle((min(pair[0], pair[1]), min_close_price), abs(pair[0] - pair[1]), max_close_price - min_close_price + 3, color=curr_color)) if dark_mode: plt.plot(closing_prices, color="#99ccff") else: plt.plot(closing_prices) plt.legend(['Closing price'], fontsize=20) plt.title(f'New Algorithm ({single_date.strftime("%Y-%m-%d")})\n' + f'No. of green/red stripes: {len(min_max_pairs)}, ' + f'Window size: {hyperparams[0]}, ' + f'Slope threshold: {hyperparams[1]}, ' + f'Jump size threshold: {hyperparams[2]}', fontsize=30) plt.xlabel('Minutes since 00:00:00', fontsize=25) plt.xticks(fontsize=18) plt.ylabel('Closing price', fontsize=25) plt.yticks(fontsize=18) plt.savefig("figures_new_algo/" + single_date.strftime("%Y-%m-%d") + f'_{hyperparams[0]}__{hyperparams[1]}__{hyperparams[2]}_' + ('_(dark)' if dark_mode else '_(light)') + '.png') plt.clf() def main(window_size, slope_threshold, jump_size_threshold): # window_size = 5 # hyperparameter window size # slope_threshold = 0.1 # hyperparameter slope threshold # jump_size_threshold = 1.0 # hyperparameter jump size threshold hyperparams = (window_size, slope_threshold, jump_size_threshold) start_date = date(2010, 3, 24) end_date = date(2010, 3, 27) for single_date in date_range(start_date, end_date): df = pd.read_csv(single_date.strftime("%Y-%m-%d") + '.csv') df.sort_values(by='dt') # don't need? times = df['tm'].values.tolist() # the time (hr:min:sec) column closing_prices = df['close'].values.tolist() # the closing price column max_close_price = max(closing_prices) min_close_price = min(closing_prices) start_time: int = time2int(times[0]) end_time: int = time2int(times[-1]) window_lborder: int = start_time window_rborder: int = start_time + window_size # upperbound to be excluded min_max_pairs = [] # list of start-end index pairs whose area between should be colored red/green while window_lborder < end_time: window_rborder = min(window_rborder, end_time) curr_slice = closing_prices[window_lborder:window_rborder] if len(curr_slice) == 0: break curr_min: float = min(curr_slice) curr_max: float = max(curr_slice) if curr_min == curr_max: window_lborder = window_rborder window_rborder += window_size continue leftmost_min_index: int = closing_prices.index(curr_min, window_lborder, window_rborder) leftmost_max_index: int = closing_prices.index(curr_max, window_lborder, window_rborder) best_min_index, best_max_index = narrow_adjust(closing_prices, leftmost_min_index, leftmost_max_index, curr_min, curr_max, window_lborder, window_rborder) if ((curr_max - curr_min) / abs(best_min_index - best_max_index) > slope_threshold) and ( (curr_max - curr_min) >= jump_size_threshold): min_max_pairs.append([best_min_index, best_max_index]) window_lborder = max(best_min_index, best_max_index) window_rborder = window_lborder + window_size else: window_lborder = window_rborder window_rborder += window_size plot_graph(single_date, closing_prices, min_max_pairs, min_close_price, max_close_price, hyperparams, dark_mode=True) if __name__ == '__main__': count = 0 for i in range(1, 16): # slope for j in range(8, 26): # jump size main(5, i / 10, j / 10) count += 1 print(f">>>>>>{count*100/(15*18):.2f}% Done...\n")
2.953125
3
strip_visibility.py
lingochamp/tensorflow
0
12786934
<gh_stars>0 """This script replaces any internal visibility with //visibility:public.""" from subprocess import call import glob import os import os.path import re def _build_files(workspace_dir): """Return all BUILD files under the workspace dir. This excludes symbolic links. """ build_files = [] for file in glob.glob(workspace_dir + "/**/BUILD", recursive=True): # Glob will follow symbolic links, which creates a lot of trouble. # Exclude files that are not within the current workspace dir. if not file.startswith(workspace_dir): continue if file.startswith(os.path.join(workspace_dir, "bazel-")): continue build_files.append(file) return build_files if __name__ == "__main__": workspace_dir = os.getcwd() while not os.path.exists(os.path.join(workspace_dir, "WORKSPACE")): workspace_dir = os.path.dirname(workspace_dir) if workspace_dir == "/": print("Script must be called within Bazel workspace.") exit(1) print("Workspace is ", os.path.join(workspace_dir, "WORKSPACE")) build_files = _build_files(workspace_dir) reg = re.compile("visibility = \[.*?\]", re.DOTALL) # Call buildifier on all BUILD files. # REQUIRES: /usr/local/bin/buildifier presents. for file in build_files: print("check", file) # Read in the file with open(file, "r") as f : data = f.read() # Replace the target string data = reg.sub("visibility = [\"//visibility:public\"]", data) # Write the file out again with open(file, "w") as f: f.write(data) call(["/usr/local/bin/buildifier", "-v", "--mode=fix", file])
2.765625
3
seisflow/scripts/xsede/xsede_perform_psf_test.py
ziyixi/seisflow
2
12786935
""" xsede_perform_psf_test.py: get the preconditioned summed kernel for doing the PSF test. It's just the copy of xsede_perform_structure_inversion.py, but not submit the job3, and part of the job2 is contained into job1. useless flags may be possible to exist. """ import sys from os.path import join import click import sh from ...slurm.submit_job import submit_job from ...tasks.xsede.forward import forward_task from ..shared.build_structure import Build_structure from .xsede_perform_source_inversion import (calculate_misfit_windows, calculate_stations_adjoint, change_simulation_type, collect_sync_files, cp_stations_adjoint2structure, ln_adjoint_source_to_structure) from .xsede_process_kernel import \ construct_structure as construct_process_kernel_structure from .xsede_process_kernel import do_preconditioned_summation @click.command() @click.option('--base_directory', required=True, type=str, help="the base inversion directory") @click.option('--cmts_directory', required=True, type=str, help="the cmts directory") @click.option('--ref_directory', required=True, type=str, help="the reference specfem directory") @click.option('--windows_directory', required=True, type=str, help="the windows directory") @click.option('--data_asdf_directory', required=True, type=str, help="the processed data directory") @click.option('--data_info_directory', required=True, type=str, help="the data info directory") @click.option('--last_step_model_update_directory', required=True, type=str, help="the last step smoothed kernel directory") @click.option('--stations_path', required=True, type=str, help="the stations path") @click.option('--sem_utils_directory', required=True, type=str, help="the sem_utils directory") @click.option('--source_mask_directory', required=False, default="", type=str, help="the source mask directory") @click.option('--n_total', required=True, type=int, help="the total number of events") @click.option('--n_each', required=True, type=int, help="number of events to run in each iteration") @click.option('--n_iter', required=True, type=int, help="the number of iterations to run") @click.option('--nproc', required=True, type=int, help="the number of processes used for each event") @click.option('--n_node', required=True, type=int, help="the number of nodes used in simulation") @click.option('--partition', required=True, type=str, help="the partion name, eg: skx-normal") @click.option('--time_forward', required=True, type=str, help="the time used in step 1") @click.option('--account', required=True, type=str, help="the stampede2 account") @click.option('--periods', required=True, type=str, help="periods in filtering: minp1,maxp1/minp2,maxp2/...") @click.option('--waveform_length', required=True, type=int, help="the length of the waveform to cut") @click.option('--sampling_rate', required=True, type=int, help="the sampling rate to use") @click.option('--taper_tmin_tmaxs', required=True, type=str, help="the taper time bands: minp1,maxp1/minp2,maxp2/...") def main(base_directory, cmts_directory, ref_directory, windows_directory, data_asdf_directory, data_info_directory, last_step_model_update_directory, stations_path, sem_utils_directory, source_mask_directory, n_total, n_each, n_iter, nproc, n_node, partition, time_forward, account, periods, waveform_length, sampling_rate, taper_tmin_tmaxs): """ perform the structure inversion for the second iteration and later. """ time = time_forward # * we have to build the structure to perform the structure inversion. build_inversion_structure(base_directory, cmts_directory, ref_directory) # * ====================================================================================================================== # * here we have to init the slurm script, no need to load modules here result = "date; \n" pyexec = sys.executable current_path = str(sh.pwd())[:-1] # pylint: disable=not-callable # * change the flags to -F result += change_simulation_type(pyexec, join(base_directory, 'simulation'), "forward_save") # * submit the forward simulation job forward_simulation_command = forward_task(base=join(base_directory, "simulation"), N_total=n_total, N_each=n_each, N_iter=n_iter, nproc=nproc, run_mesh=True) result += forward_simulation_command result += f"cd {current_path}; \n" # * collect the sync from the forward simulation result += collect_sync_files( pyexec, join(base_directory, 'output'), join(base_directory, 'raw_sync')) # * process the sync n_cores_each_event = nproc*n_each//n_total # ! note here mvapich2 may have the problem of "time out". No better solution, try to use 24 cores here. if(n_cores_each_event > 24): n_cores_each_event = 24 result += process_sync(pyexec, n_total, join(base_directory, "raw_sync"), join(base_directory, "processed_sync"), periods, waveform_length, sampling_rate, taper_tmin_tmaxs) result += f"cd {current_path}; \n" # * calculate the misfit windows body_periods, surface_periods = periods.split("/") body_periods_splitter = body_periods.split(",") surface_periods_splitter = surface_periods.split(",") min_periods = f"{body_periods_splitter[0]},{surface_periods_splitter[0]}" max_periods = f"{body_periods_splitter[1]},{surface_periods_splitter[1]}" result += calculate_misfit_windows(pyexec, n_total, windows_directory, join( base_directory, "misfit_windows"), min_periods, max_periods, data_asdf_directory, join(base_directory, "processed_sync"), data_info_directory) # * calculate the adjoint source, and ln it to the sem directory result += calculate_adjoint_source(pyexec, n_total, join(base_directory, "misfit_windows"), stations_path, join( base_directory, "raw_sync"), join( base_directory, "processed_sync"), data_asdf_directory, join(base_directory, "adjoint_source"), body_periods, surface_periods) result += ln_adjoint_source_to_structure(pyexec, join(base_directory, "adjoint_source"), join(base_directory, "simulation")) # * generate STATIONS_ADJOINT and cp it to the simulation directory result += calculate_stations_adjoint(pyexec, stations_path, join(base_directory, "misfit_windows"), join(base_directory, "stations_adjoint")) result += cp_stations_adjoint2structure(pyexec, join(base_directory, "stations_adjoint"), join(base_directory, "simulation")) # * change the simulation type to the type 3 result += change_simulation_type(pyexec, join(base_directory, 'simulation'), "structure") # * do the adjoint simulation adjoint_simulation_command = forward_task(base=join(base_directory, "simulation"), N_total=n_total, N_each=n_each, N_iter=n_iter, nproc=nproc, run_mesh=False) result += adjoint_simulation_command result += f"cd {current_path}; \n" # * construct the processing kernel directory kernel_process_directory = join(base_directory, "process_kernel") input_model_directory = join(ref_directory, "DATA", "GLL") construct_process_kernel_structure( join(base_directory, "database"), ref_directory, sem_utils_directory, kernel_process_directory, input_model_directory, last_step_model_update=last_step_model_update_directory) # * replace the source mask result += replace_source_mask(pyexec, join(base_directory, 'simulation'), source_mask_directory) # * do the summation result += do_preconditioned_summation(kernel_process_directory) # * here we submit the first job submit_job("psf_test", result, n_node, n_each * nproc, partition, time, account, "stampede2") def build_inversion_structure(base_directory, cmts_directory, ref_directory): """ build_inversion_structure: build the structure to contain all the essencial directories used in the inversion and the simulation directory. """ sh.mkdir("-p", base_directory) # * copy cmts_directory sh.cp("-r", cmts_directory, join(base_directory, "cmts")) # * init the simulation directory output_path = join(base_directory, "output") sh.mkdir("-p", output_path) database_path = join(base_directory, "database") sh.mkdir("-p", database_path) simulation_path = join(base_directory, "simulation") sh.mkdir("-p", simulation_path) run_script = Build_structure( base=simulation_path, cmtfiles=join(base_directory, "cmts"), ref=ref_directory, output=output_path, database=database_path) run_script.run() # * make the directory for the sync of the forward simulation sh.mkdir("-p", join(base_directory, "raw_sync")) sh.mkdir("-p", join(base_directory, "processed_sync")) # * mkdir for misfit windows sh.mkdir("-p", join(base_directory, "misfit_windows")) # * mkdir for adjoint source sh.mkdir("-p", join(base_directory, "adjoint_source")) sh.mkdir("-p", join(base_directory, "stations_adjoint")) # * mkdir for kernel processing sh.mkdir("-p", join(base_directory, "process_kernel")) # * mkdir to collect the perturbed sync sh.mkdir("-p", join(base_directory, "perturbed_sync")) sh.mkdir("-p", join(base_directory, "processed_perturbed_sync")) def calculate_adjoint_source(py, nproc, misfit_windows_directory, stations_path, raw_sync_directory, sync_directory, data_directory, output_directory, body_band, surface_band): """ Calculatet the adjoint source for the structure inversion. """ script = f"ibrun -n {nproc} {py} -m seisflow.scripts.structure_inversion.mpi_calculate_adjoint_source_zerolagcc_multiple_events --misfit_windows_directory {misfit_windows_directory} --stations_path {stations_path} --raw_sync_directory {raw_sync_directory} --sync_directory {sync_directory} --data_directory {data_directory} --output_directory {output_directory} --body_band {body_band} --surface_band {surface_band}; \n" return script def replace_gll_link(py, simulation_directory, new_gll_directory): """ replace all gll links. """ script = f"{py} -m seisflow.scripts.structure_inversion.replace_gll_link --simulation_directory {simulation_directory} --new_gll_directory {new_gll_directory}; \n" return script def replace_source_mask(py, base_directory, source_mask_directory): """ replace source masks. """ script = f"{py} -m seisflow.scripts.structure_inversion.replace_source_mask --base_directory {base_directory} --source_mask_directory {source_mask_directory}; \n" return script def process_sync(py, nproc, sync_directory, output_directory, periods, waveform_length, sampling_rate, taper_tmin_tmaxs): """ process the sync. """ script = f"ibrun -n {nproc} {py} -m seisflow.scripts.asdf.mpi_process_sync_series --sync_directory {sync_directory} --output_directory {output_directory} --periods {periods} --waveform_length {waveform_length} --sampling_rate {sampling_rate} --taper_tmin_tmaxs {taper_tmin_tmaxs}; \n" return script if __name__ == "__main__": main() # pylint: disable=no-value-for-parameter
2.046875
2
instrument/output/__init__.py
wearpants/instrument
7
12786936
import sys def _do_print(name, count, elapsed, file): if name is not None: print("%s: %d items in %.2f seconds"%(name, count, elapsed), file=file) else: print("%d items in %.2f seconds"%(count, elapsed), file=file) def print_metric(name, count, elapsed): """A metric function that prints to standard output :arg str name: name of the metric :arg int count: number of items :arg float elapsed: time in seconds """ _do_print(name, count, elapsed, file=sys.stdout) def stderr_metric(name, count, elapsed): """A metric function that prints to standard error :arg str name: name of the metric :arg int count: number of items :arg float elapsed: time in seconds """ _do_print(name, count, elapsed, file=sys.stderr) def make_multi_metric(*metrics): """Make a new metric function that calls the supplied metrics :arg functions metrics: metric functions :rtype: function """ def multi_metric(name, count, elapsed): """Calls multiple metrics (closure)""" for m in metrics: m(name, count, elapsed) return multi_metric
3.609375
4
api/tests/unit/telemetry/test_unit_telemetry_serializers.py
mevinbabuc/flagsmith
1,259
12786937
<reponame>mevinbabuc/flagsmith<filename>api/tests/unit/telemetry/test_unit_telemetry_serializers.py from unittest import mock from django.test import override_settings from telemetry.serializers import TelemetrySerializer from tests.unit.telemetry.helpers import get_example_telemetry_data @override_settings(INFLUXDB_TOKEN="<PASSWORD>") @mock.patch("telemetry.serializers.get_ip_address_from_request") @mock.patch("telemetry.serializers.InfluxDBWrapper") def test_telemetry_serializer_save(MockInfluxDBWrapper, mock_get_ip_address): # Given data = get_example_telemetry_data() serializer = TelemetrySerializer(data=data, context={"request": mock.MagicMock()}) mock_wrapper = mock.MagicMock() MockInfluxDBWrapper.return_value = mock_wrapper ip_address = "127.0.0.1" mock_get_ip_address.return_value = ip_address # When serializer.is_valid() # must be called to access validated data serializer.save() # Then mock_wrapper.add_data_point.assert_called_once_with( "heartbeat", 1, tags={**data, "ip_address": ip_address} ) mock_wrapper.write.assert_called_once()
2.1875
2
fetch_cord/computer/gpu/Gpu_interface.py
TabulateJarl8/FetchCord
286
12786938
# from __future__ import annotations from abc import ABCMeta, abstractmethod from typing import List, TypeVar, Dict from ..Peripheral_interface import Peripherical_interface class Gpu_interface(Peripherical_interface, metaclass=ABCMeta): _vendor: str _model: str @property def vendor(self) -> str: return self._vendor @vendor.setter def vendor(self, value: str): self._vendor = value @property def model(self) -> str: return self._model @model.setter @abstractmethod def model(self, value: str): raise NotImplementedError @property def temp(self) -> float: try: self._temp = self.get_temp() except NotImplementedError as e: try: raise e finally: e = None del e else: return self._temp @temp.setter def temp(self, value: float): self._temp = value def __init__(self, os, vendor, model): super().__init__(os) self.vendor = vendor self.model = model @abstractmethod def get_temp(self) -> float: raise NotImplementedError GpuType = TypeVar("GpuType", bound="Gpu_interface") def get_gpuid(gpu_ids: Dict[str, str], gpus: List[GpuType]): vendors = [] for i in range(len(gpus)): if gpus[i].vendor not in vendors: vendors.append(gpus[i].vendor) gpuvendor = "".join(vendors).lower() if gpuvendor in gpu_ids: return gpu_ids[gpuvendor] else: print("Unknown GPU, contact us on github to resolve this.") return "unknown"
2.84375
3
sublime_codec.py
furikake/sublime-codec
16
12786939
# -*- coding: utf-8 -*- import base64 import hashlib import sublime, sublime_plugin import sys PYTHON = sys.version_info[0] if 3 == PYTHON: # Python 3 and ST3 from urllib import parse from . import codec_base62 from . import codec_base64 from . import codec_xml from . import codec_json from . import codec_quopri from . import codec_hex from . import codec_idn else: # Python 2 and ST2 import urllib import codec_base62 import codec_base64 import codec_xml import codec_json import codec_quopri import codec_hex import codec_idn SETTINGS_FILE = "Codec.sublime-settings" """ Pick up all the selections which are not empty. If no selection, make all the text in return selection. """ def selected_regions(view): sels = [sel for sel in view.sel() if not sel.empty()] if not sels: sels = [sublime.Region(0, view.size())] else: sels = view.sel() return sels """ Sublime Text 3 Base64 Codec Assumes UTF-8 encoding 日本語 encodes to base64 as 5pel5pys6Kqe subjects?abcd encodes to url safe base64 as c3ViamVjdHM_YWJjZA== >>> view.run_command('base64_encode', {'encode_type': 'b64encode'}) """ class Base64EncodeCommand(sublime_plugin.TextCommand): ENCODE_TYPE = { 'b64decode': codec_base64.b64decode, 'urlsafe_b64decode': base64.urlsafe_b64decode, } def run(self, edit, encode_type='b64encode'): fix_base32_padding = sublime.load_settings(SETTINGS_FILE).get("base32_fix_padding", False) print("Codec: fix base32 padding? %s" % str(fix_base32_padding)) fix_base64_padding = sublime.load_settings(SETTINGS_FILE).get("base64_fix_padding", False) print("Codec: fix base64 padding? %s" % str(fix_base64_padding)) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) # print("string: " + original_string) if 'b64encode' == encode_type: encoded_string = base64.b64encode(original_string.encode("UTF-8")) elif 'b64decode' == encode_type: encoded_string = codec_base64.b64decode(original_string.encode("UTF-8"), add_padding=fix_base64_padding) elif 'urlsafe_b64encode' == encode_type: encoded_string = base64.urlsafe_b64encode(original_string.encode("UTF-8")) elif 'urlsafe_b64decode' == encode_type: encoded_string = codec_base64.urlsafe_b64decode(original_string.encode("UTF-8"), add_padding=fix_base64_padding) elif 'b32encode' == encode_type: encoded_string = base64.b32encode(original_string.encode("UTF-8")) elif 'b32decode' == encode_type: encoded_string = codec_base64.b32decode(original_string.encode("UTF-8"), add_padding=fix_base32_padding) elif 'b16encode' == encode_type: encoded_string = base64.b16encode(original_string.encode("UTF-8")) elif 'b16decode' == encode_type: encoded_string = base64.b16decode(original_string.encode("UTF-8")) else: print("unsupported operation %s" % (encode_type,)) break # print("string encoded: " + str(encoded_string.decode("UTF-8"))) self.view.replace(edit, region, encoded_string.decode("UTF-8")) """ Sublime Text 3 URL Encoding (Percentage Encoding) Codec 日本語 encodes to %E6%97%A5%E6%9C%AC%E8%AA%9E "something with a space" encodes to "something%20with%20a%20space" >>> view.run_command('url_encode', {'encode_type': 'quote'}) """ class UrlEncodeCommand(sublime_plugin.TextCommand): if 2 == PYTHON: ENCODE_TYPE = { 'quote': urllib.quote, 'unquote': urllib.unquote, 'quote_plus': urllib.quote_plus, 'unquote_plus': urllib.unquote_plus } else: ENCODE_TYPE = { 'quote': parse.quote, 'unquote': parse.unquote, 'quote_plus': parse.quote_plus, 'unquote_plus': parse.unquote_plus } def run(self, edit, encode_type='quote'): safe_characters = str(sublime.load_settings(SETTINGS_FILE).get("url_encoding_safe", "/")) print("Codec: safe url characters? %s" % str(safe_characters)) urlencode_method = UrlEncodeCommand.ENCODE_TYPE[encode_type] # print("using url encode method: " + str(urlencode_method)) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) # print("string: " + original_string.encode("UTF-8")) # print("string encoded: " + encoded_string) if 2 == PYTHON: try: encoded_string = urlencode_method(original_string.encode("UTF-8"), safe=safe_characters) except TypeError: # FIXME - time to separate quote and unquote to avoid this kind of errors. encoded_string = urlencode_method(original_string.encode("UTF-8")) self.view.replace(edit, region, encoded_string.decode("UTF-8")) else: try: encoded_string = urlencode_method(original_string, safe=safe_characters) except TypeError: # FIXME - time to separate quote and unquote to avoid this kind of errors. encoded_string = urlencode_method(original_string) self.view.replace(edit, region, encoded_string) """ Sublime Text 3 Secure Hash Codec 日本語 hashes to SHA-256 as 77710aedc74ecfa33685e33a6c7df5cc83004da1bdcef7fb280f5c2b2e97e0a5 >>> view.run_command('secure_hash', {'secure_hash_type': 'sha256'}) """ class SecureHashCommand(sublime_plugin.TextCommand): SECURE_HASH_TYPE = { 'md5': 'md5', 'sha1': 'sha1', 'sha224': 'sha224', 'sha256': 'sha256', 'sha384': 'sha384', 'sha512': 'sha512' } def run(self, edit, secure_hash_type='sha256'): secure_hash_type = SecureHashCommand.SECURE_HASH_TYPE[secure_hash_type] # print("using secure hash algorithm: " + secure_hash_type) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) # print("string: " + original_string) hash_obj = hashlib.new(secure_hash_type) hash_obj.update(original_string.encode("UTF-8")) encoded_string = hash_obj.hexdigest() # print("string encoded: " + str(encoded_string)) self.view.replace(edit, region, str(encoded_string)) """ Sublime Text 3 Secure Hash Codec doSomething(); hashes to SHA-256 as RFWPLDbv2BY+rCkDzsE+0fr8ylGr2R2faWMhq4lfEQc= >>> view.run_command('binary_secure_hash', {'secure_hash_type': 'sha256'}) """ class BinarySecureHashCommand(sublime_plugin.TextCommand): SECURE_HASH_TYPE = { 'sha256': 'sha256', 'sha384': 'sha384', 'sha512': 'sha512' } def run(self, edit, secure_hash_type='sha256'): secure_hash_type = SecureHashCommand.SECURE_HASH_TYPE[secure_hash_type] # print("using secure hash algorithm: " + secure_hash_type) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) # print("string: " + original_string) hash_obj = hashlib.new(secure_hash_type) hash_obj.update(original_string.encode("UTF-8")) encoded_string = base64.b64encode(hash_obj.digest()).decode('UTF-8') # print("string encoded: " + str(encoded_string)) self.view.replace(edit, region, str(encoded_string)) """ Escapes and unescapes the 5 standard XML predefined entities <hello>T'was a dark & "stormy" night</hello> escapes to &lt;hello&gt;T&apos;was a dark &amp; &quot;stormy&quot; night&lt;/hello&gt; >>> view.run_command('xml', {'encode_type': 'escape'}) """ class XmlCommand(sublime_plugin.TextCommand): def run(self, edit, encode_type='escape'): method = self.get_method(encode_type) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) new_string = method(original_string) self.view.replace(edit, region, new_string) def get_method(self, encode_type): if 'escape' == encode_type: return codec_xml.escape elif 'unescape' == encode_type: return codec_xml.unescape else: raise NotImplementedError("unknown encoding type %s" % (str(encode_type),)) """ Encodes and decodes Quoted-Printable strings This is a really long line to test whether "quoted-printable" works correctly when using 日本語 and 英語 encodes to This is a really long line to test whether "quoted-printable" works correct= ly when using =E6=97=A5=E6=9C=AC=E8=AA=9E and =E8=8B=B1=E8=AA=9E >>> view.run_command('quoted_printable', {'encode_type': 'encode'}) """ class QuotedPrintableCommand(sublime_plugin.TextCommand): def run(self, edit, encode_type='encode'): method = self.get_method(encode_type) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) encoded_string = method(original_string.encode("UTF-8")) self.view.replace(edit, region, encoded_string.decode("UTF-8")) def get_method(self, encode_type): if 'encode' == encode_type: return codec_quopri.encodestring elif 'decode' == encode_type: return codec_quopri.decodestring else: raise NotImplementedError("unknown encoding type %s" % (str(encode_type),)) """ Encodes and decodes JSON T'was a dark & "stormy" night in 日本 encodes to "T'was a dark & \"stormy\" night in 日本" >>> view.run_command('json', {'encode_type': 'encode'}) """ class JsonCommand(sublime_plugin.TextCommand): def run(self, edit, encode_type='encode'): method = self.get_method(encode_type) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) new_string = method(original_string) self.view.replace(edit, region, new_string) def get_method(self, encode_type): if 'encode' == encode_type: return codec_json.encode elif 'encode_ensure_ascii' == encode_type: return codec_json.encode_ensure_ascii elif 'decode' == encode_type: return codec_json.decode else: raise NotImplementedError("unknown encoding type %s" % (str(encode_type),)) """ Encodes and decodes C-style hex representations of bytes Hello, my good friend encodes to \\x48\\x65\\x6c\\x6c\\x6f\\x2c\\x20\\x6d\\x79\\x20\\x67\\x6f\\x6f\\x64\\x20\\x66\\x72\\x69\\x65\\x6e\\x64\\x21 >>> view.run_command('c_hex', {'encode_type': 'encode'}) """ class HexCommand(sublime_plugin.TextCommand): def run(self, edit, encode_type='encode'): method = self.get_method(encode_type) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) new_string = method(original_string) self.view.replace(edit, region, new_string) def get_method(self, encode_type): if 'encode' == encode_type: return codec_hex.encode_hex elif 'decode' == encode_type: return codec_hex.decode_hex else: raise NotImplementedError("unknown encoding type %s" % (str(encode_type),)) class IdnCommand(sublime_plugin.TextCommand): def run(self, edit, encode_type='punycode_encode'): method = self.get_method(encode_type) for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) new_string = method(original_string) self.view.replace(edit, region, new_string) def get_method(self, encode_type): if 'punycode_encode' == encode_type: return codec_idn.punycode_encode elif 'punycode_decode' == encode_type: return codec_idn.punycode_decode elif 'idna_encode' == encode_type: return codec_idn.idna_encode elif 'idna_decode' == encode_type: return codec_idn.idna_decode elif 'idna2008_encode' == encode_type: return codec_idn.idna2008_encode elif 'idna2008_decode' == encode_type: return codec_idn.idna2008_decode elif 'idna2008uts46_encode' == encode_type: return codec_idn.idna2008uts46_encode elif 'idna2008uts46_decode' == encode_type: return codec_idn.idna2008uts46_decode elif 'idna2008transitional_encode' == encode_type: return codec_idn.idna2008transitional_encode elif 'idna2008transitional_decode' == encode_type: return codec_idn.idna2008transitional_decode else: raise NotImplementedError("unknown encoding type %s" % (str(encode_type),)) """ Sublime Text 3 Base62 Codec """ class Base62EncodeCommand(sublime_plugin.TextCommand): def run(self, edit, encode_type='b62encode'): for region in selected_regions(self.view): if not region.empty(): original_string = self.view.substr(region) if 'b62encode_int' == encode_type: encoded_string = codec_base62.b62encode_int(original_string.encode("UTF-8")) elif 'b62decode_int' == encode_type: encoded_string = codec_base62.b62decode_int(original_string.encode("UTF-8")) elif 'b62encode_inv_int' == encode_type: encoded_string = codec_base62.b62encode_inv_int(original_string.encode("UTF-8")) elif 'b62decode_inv_int' == encode_type: encoded_string = codec_base62.b62decode_inv_int(original_string.encode("UTF-8")) elif 'b62encode_hex' == encode_type: encoded_string = codec_base62.b62encode_hex(original_string.encode("UTF-8")) elif 'b62decode_hex' == encode_type: encoded_string = codec_base62.b62decode_hex(original_string.encode("UTF-8")) elif 'b62encode_inv_hex' == encode_type: encoded_string = codec_base62.b62encode_inv_hex(original_string.encode("UTF-8")) elif 'b62decode_inv_hex' == encode_type: encoded_string = codec_base62.b62decode_inv_hex(original_string.encode("UTF-8")) else: print("unsupported operation %s" % (encode_type,)) break self.view.replace(edit, region, encoded_string.decode("UTF-8"))
2.546875
3
WebMirror/management/rss_parser_funcs/feed_parse_extractCgtranslationsMe.py
fake-name/ReadableWebProxy
193
12786940
<filename>WebMirror/management/rss_parser_funcs/feed_parse_extractCgtranslationsMe.py def extractCgtranslationsMe(item): ''' Parser for 'cgtranslations.me' ''' if 'Manga' in item['tags']: return None vol, chp, frag, postfix = extractVolChapterFragmentPostfix(item['title']) if not (chp or vol) or "preview" in item['title'].lower(): return None if ('Gifting (Fanfic)' in item['tags'] and 'LN Chapters' in item['tags']) or \ item['tags'] == ['Gifting (Fanfic)']: return buildReleaseMessageWithType(item, 'Gifting this World with Wonderful Blessings!', vol, chp, frag=frag, postfix=postfix) if 'Gifting (Fanfic)' in item['tags'] and 'explosion' in item['tags']: return buildReleaseMessageWithType(item, 'Kono Subarashii Sekai ni Bakuen wo!', vol, chp, frag=frag, postfix=postfix) if ('KonoSuba' in item['tags'] and 'LN Chapters' in item['tags']): return buildReleaseMessageWithType(item, 'KonoSuba', vol, chp, frag=frag, postfix=postfix) return False
2.390625
2
engine/op_math.py
ludius0/mercury_engine
0
12786941
<filename>engine/op_math.py # libs import math # scripts from .func_base import Func, setattr_value class Add(Func): """ >>> Value(1).add(1) >>> Value(2) """ @staticmethod def forward(ctx, x, y): return x + y @staticmethod def backward(ctx, grad_output): return grad_output, grad_output setattr_value(Add) class Mul(Func): """ >>> Value(1).mul(2) >>> Value(2) """ @staticmethod def forward(ctx, x, y): ctx.saved_values.extend([x, y]) return x * y @staticmethod def backward(ctx, grad_output): x, y = ctx.saved_values return y * grad_output, x * grad_output setattr_value(Mul) class Pow(Func): """ >>> Value(2).pow(0) >>> Value(1) """ @staticmethod def forward(ctx, x, y): ctx.saved_values.extend([x, y]) return x ** y @staticmethod def backward(ctx, grad_output): x, y = ctx.saved_values grad1 = y * (x**(y - 1.0)) * grad_output grad2 = (x**y) * math.log(x) * grad_output if x > 0 else grad_output return grad1, grad2 setattr_value(Pow) class Exp(Func): """ >>> Value(1).exp() >>> Value(2.71828182846) """ @staticmethod def forward(ctx, x): out = math.exp(x) ctx.saved_values.extend([out]) return out @staticmethod def backward(ctx, grad_output): out, = ctx.saved_values return grad_output * out setattr_value(Exp)
2.9375
3
sesion7.py
organizacion-sesion-3-anabel-palasi/sesion7-tarea-individual
0
12786942
from __future__ import print_function import sys # Calcula la suma def suma(num1, num2): pass # Calcula la resta def resta(num1, num2): pass # Calcula la multiplicacion def multiplicacion(num1, num2): pass # Calcula la raiz cuadrada def raizcuadrada(numero): pass # Calcula el módulo def modulo(num1,num2): pass # Calcula x elevado a y def elevado(num1, num2): pass
2.40625
2
ebl/tests/fragmentarium/test_genre_route.py
BuildJet/ebl-api
4
12786943
import falcon from ebl.fragmentarium.domain.genres import genres def test_get_genre(client): get_result = client.simulate_get("/genres") assert get_result.status == falcon.HTTP_OK assert get_result.headers["Access-Control-Allow-Origin"] == "*" assert get_result.json == list(map(list, genres))
1.773438
2
probe/modules/antivirus/eset/eset_file_security.py
krisshol/bach-kmno
248
12786944
<filename>probe/modules/antivirus/eset/eset_file_security.py # # Copyright (c) 2013-2018 Quarkslab. # This file is part of IRMA project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License in the top-level directory # of this distribution and at: # # http://www.apache.org/licenses/LICENSE-2.0 # # No part of the project, including this file, may be copied, # modified, propagated, or distributed except according to the # terms contained in the LICENSE file. import logging import re from pathlib import Path from datetime import datetime from modules.antivirus.base import AntivirusUnix log = logging.getLogger(__name__) class EsetFileSecurity(AntivirusUnix): name = "ESET File Security (Linux)" # ================================== # Constructor and destructor stuff # ================================== def __init__(self, *args, **kwargs): # class super class constructor super().__init__(*args, **kwargs) # Modify retun codes (see --help for details) self._scan_retcodes[self.ScanResult.INFECTED] = lambda x: x in [1, 50] self._scan_retcodes[self.ScanResult.ERROR] = lambda x: x in [100] # scan tool variables self.scan_args = ( "--clean-mode=NONE", # do not remove infected files "--no-log-all" # do not log clean files ) self.scan_patterns = [ re.compile('name="(?P<file>.*)", threat="(?P<name>.*)", ' 'action=.*', re.IGNORECASE), ] self.scan_path = Path("/opt/eset/esets/sbin/esets_scan") # ========================================== # Antivirus methods (need to be overriden) # ========================================== def get_version(self): """return the version of the antivirus""" return self._run_and_parse( '--version', regexp='(?P<version>\d+(\.\d+)+)', group='version') def get_database(self): """return list of files in the database""" search_paths = [ Path('/var/opt/eset/esets/lib/'), ] database_patterns = [ '*.dat', # determined using strace on linux ] return self.locate(database_patterns, search_paths, syspath=False) def get_virus_database_version(self): """Return the Virus Database version""" fdata = Path("/var/opt/eset/esets/lib/data/data.txt") data = fdata.read_text() matches = re.search('VerFileETAG_update\.eset\.com=(?P<version>.*)', data, re.IGNORECASE) if not matches: raise RuntimeError( "Cannot read dbversion in {}".format(fdata.absolute())) version = matches.group('version').strip() matches = re.search('LastUpdate=(?P<date>\d*)', data, re.IGNORECASE) if not matches: raise RuntimeError( "Cannot read db date in {}".format(fdata.absolute())) date = matches.group('date').strip() date = datetime.fromtimestamp(int(date)).strftime('%Y-%m-%d') return version + ' (' + date + ')'
2.09375
2
sovrin_client/__metadata__.py
evernym/sovrin-client
1
12786945
""" sovrin-client package metadata """ __version_info__ = (0, 2) __version__ = '.'.join(map(str, __version_info__)) __author__ = "<NAME>." __license__ = "Apache 2.0" __all__ = ['__version_info__', '__version__', '__author__', '__license__'] # TODO: Shouldn't we update these dependencies? __dependencies__ = { "anoncreds": ">=0.1.11", "sovrin_common": ">=0.0.4" }
1.421875
1
indexers/AnnoyIndexer.py
Nashrah31/SimDB
2
12786946
from interfaces.ANNIndexer import ANNIndexer import annoy # Usage : indexer = AnnoyIndexer(vector_length=100, n_trees=1000) class AnnoyIndexer(ANNIndexer): def __init__(self, content_vectors, vector_length=100, n_trees=10): print("initializing annoy wrapper") self.vector_length = vector_length self.n_trees = n_trees self.index = annoy.AnnoyIndex(vector_length) self.content_vectors = content_vectors def build_index(self, path=None): print("building index") print("len of docvecs", self.content_vectors.size()) vectors_map = self.content_vectors.get_vectors_map() for key in vectors_map: try: self.index.add_item(key, vectors_map[key]) except Exception as e: print("problem adding to index for id : " + str(key), e) # vectors.apply(lambda df_item: self.index.add_item(df_item.name, df_item['vector'])) print(self.index.build(self.n_trees)) print("items in index - ", self.index.get_n_items()) def save(self, path): self.index.save(path) def load(self, path): self.index.load(path) def find_NN_by_id(self, query_id, n=10): return self.index.get_nns_by_item(query_id, n) def find_NN_by_vector(self, query_vector, n=10): return self.index.get_nns_by_vector(query_vector, n)
2.796875
3
examples/car_crash_analysis/crash_analysis_with_explicit_contact.py
jdlaubrie/florence
65
12786947
<filename>examples/car_crash_analysis/crash_analysis_with_explicit_contact.py import os import numpy as np from Florence import * def crash_analysis(): """ Car crash analysis in a simplified 2D car geometry with hyperelastic explicit dynamics solver using explicit penalty contact formulation """ mesh = Mesh() mesh.ReadGmsh(os.path.join(PWD(__file__),"Car2D.msh"),element_type="quad") mesh.points /=1000. mu = 1.0e6 mu1 = mu mu2 = 0. v = 0.495 lamb = 2.*mu*v/(1-2.*v) material = MooneyRivlin(2, mu1=mu1, mu2=mu2, lamb=lamb, rho=8000.) def DirichletFunc(mesh, time_step): boundary_data = np.zeros((mesh.points.shape[0],2, time_step))+np.NAN X_0 = np.isclose(mesh.points[:,0],0.) boundary_data[:,1,:] = 0. return boundary_data def NeumannFuncDyn(mesh, time_step): boundary_data = np.zeros((mesh.points.shape[0],2, time_step))+np.NAN mag = 5e5 n = 3000 stage0 = np.ones(n)*mag stage1 = np.zeros(time_step-n) full_stage = np.concatenate((stage0,stage1)) boundary_data[:,0,:] = full_stage return boundary_data time_step = 6000 boundary_condition = BoundaryCondition() boundary_condition.SetDirichletCriteria(DirichletFunc, mesh, time_step) boundary_condition.SetNeumannCriteria(NeumannFuncDyn, mesh, time_step) formulation = DisplacementFormulation(mesh) contact_formulation = ExplicitPenaltyContactFormulation(mesh, np.array([-1.,0.]), # unit vector specifying the direction of normal contact 180., # normal gap [distance of rigid body from the deformable object] 1e7 # penalty parameter kappa ) fem_solver = FEMSolver(total_time=9, number_of_load_increments=time_step, analysis_type="dynamic", analysis_subtype="explicit", mass_type="lumped", analysis_nature="nonlinear", optimise=True, memory_store_frequency=20) solution = fem_solver.Solve(formulation=formulation, material=material, mesh=mesh, boundary_condition=boundary_condition, contact_formulation=contact_formulation) # check validity solution_vectors = solution.GetSolutionVectors() assert np.linalg.norm(solution_vectors) > 21610 assert np.linalg.norm(solution_vectors) < 21630 # Write results to vtk file # solution.WriteVTK("crash_analysis_results", quantity=0) if __name__ == "__main__": crash_analysis()
2.8125
3
AIoT/Vitis-AI/VART/example/adas_detection_py/threads/yolov3_thread.py
kaka-lin/ML-Notes
0
12786948
import time import threading import numpy as np from common import preprocess_one_image_fn, draw_outputs, load_classes, generate_colors from yolo_utils import yolo_eval from priority_queue import PriorityQueue class YOLOv3Thread(threading.Thread): def __init__(self, runner: "Runner", deque_input, lock_input, deque_output, lock_output, thread_name): super(YOLOv3Thread, self).__init__(name=thread_name) self.runner = runner self.deque_input = deque_input self.lock_input = lock_input self.deque_output = deque_output self.lock_output = lock_output self.class_names = load_classes('./model_data/adas_classes.txt') self.colors = generate_colors(self.class_names) def set_input_image(self, input_run, frame, size): w, h = size img = preprocess_one_image_fn(frame, w, h) input_run[0, ...] = img.reshape((h, w, 3)) def run(self): # Get input/output tensors and dims inputTensors = self.runner.get_input_tensors() outputTensors = self.runner.get_output_tensors() input_ndim = tuple(inputTensors[0].dims) # (1, 256, 512, 3) result0_ndim = tuple(outputTensors[0].dims) # (1, 8, 16, 40) result1_ndim = tuple(outputTensors[1].dims) # (1, 16, 32, 40) result2_ndim = tuple(outputTensors[2].dims) # (1, 32, 64, 40) result3_ndim = tuple(outputTensors[3].dims) # (1, 64, 126, 40) # input/output data define input_data = [np.empty(input_ndim, dtype=np.float32, order="C")] result0 = np.empty(result0_ndim, dtype=np.float32, order="C") result1 = np.empty(result1_ndim, dtype=np.float32, order="C") result2 = np.empty(result2_ndim, dtype=np.float32, order="C") result3 = np.empty(result3_ndim, dtype=np.float32, order="C") results = [result0, result1, result2, result3] # get input width, height for preprocess input_shape = (input_ndim[2], input_ndim[1]) while True: self.lock_input.acquire() # empy if not self.deque_input: self.lock_input.release() continue else: # get input frame from input frames queue data_from_deque = self.deque_input[0] self.deque_input.popleft() self.lock_input.release() # Init input image to input buffers img = data_from_deque['img'] idx = data_from_deque['idx'] start_time = data_from_deque['time'] self.set_input_image(input_data[0], img, input_shape) # invoke the running of DPU for yolov3 """Benchmark DPU FPS performance over Vitis AI APIs `execute_async()` and `wait()`""" # (self: vart.Runner, arg0: List[buffer], arg1: List[buffer]) -> Tuple[int, int] job_id = self.runner.execute_async(input_data, results) self.runner.wait(job_id) self.post_process(img, results, input_shape) self.lock_output.acquire() img_info = PriorityQueue(idx, img, start_time) self.deque_output.append(img_info) self.deque_output.sort() self.lock_output.release() def post_process(self, image, results, input_ndim): """Xilinx ADAS detction model: YOLOv3 Name: yolov3_adas_pruned_0_9 Input shape: (256, 512, 3) Classe: 3 Anchor: 5, for detail please see `yolo_utils.py` Outputs: 4 outputs_node: { "layer81_conv", "layer93_conv", "layer105_conv", "layer117_conv", } """ image_shape = (image.shape[1], image.shape[0]) # (w, h) scores, boxes, classes = yolo_eval( results, image_shape=image_shape, input_ndim=input_ndim, classes=3, score_threshold=0.5, iou_threshold=0.7) # print("detection:") # for i in range(scores.shape[0]): # print("\t{}, {}, {}".format( # self.class_names[int(classes[i])], scores[i], boxes[i] # )) image = draw_outputs(image, (scores, boxes, classes), self.class_names, self.colors)
2.578125
3
app/module/spotify_to_youtube/__init__.py
MisakaMikoto0502/zeroday
0
12786949
<reponame>MisakaMikoto0502/zeroday from .convert import SpotifyConverter
0.96875
1
application/app.py
Miseq/python_text_image_webscrapper
1
12786950
<gh_stars>1-10 from flask import Flask, make_response, jsonify import validators from flask import request from flask.views import MethodView from file_manager import FileManager app = Flask(__name__) downloader = FileManager() class GettingAll(MethodView): @staticmethod def get(): answer = "This app dosen't have a Frontend. In order tu communicate with it you can use REST API " \ "through comand line, like 'curl', or by third party programs like free 'Postman'. You can also use " \ "simple build-in command line user interface, just run 'user_interface.py' while this app is working."\ "\nFor manual REST request you need to specify two fields in json body:" \ "\nFirst - 'url': '<url_from_which_you_want_to_download>'" \ "\nSecond - 'option': 'all' OR 'text' OR 'images', which tells app what you want to download" return make_response(jsonify(answer), 200) @staticmethod def post(): r = request.get_json() downloader.scraper.url = r.get('url') if validators.url(downloader.scraper.url): download_option = r.get('option') if download_option == "all": output = downloader.save_to_zip(download_images=True, download_text=True) elif download_option == "text": output = downloader.save_to_zip(download_text=True) elif download_option == "images": output = downloader.save_to_zip(download_images=True) else: output = "Nie podano rodzaju pobiernaia, wpisz jedno: 'option': 'all'/'text'/'images'" else: output = "URL jest bledny!" return make_response(jsonify(output), 200) def put(self): # takie jak post return self.post() app.add_url_rule("/", view_func=GettingAll.as_view("GettingAll")) if __name__ == '__main__': app.run('0.0.0.0', 5000, debug=False)
3.140625
3