max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
setup.py
fartbagxp/certspotter-api
1
12786751
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import sys from setuptools import setup from setuptools.command.install import install VERSION = "1.0.12" def readme(): """print long description""" with open('README.md') as f: return f.read() setup(name='certspotter', version=VERSION, description='sslmate CertSpotter API', long_description=readme(), long_description_content_type="text/markdown", url="https://github.com/fartbagxp/certspotter-api", author='<NAME>', author_email='<EMAIL>', py_modules=['certspotter'], packages=['certspotter'], package_dir={'certspotter': 'src/certspotter'}, license='MIT')
1.65625
2
services/schema.py
antti-mikael/open-city-profile
0
12786752
<reponame>antti-mikael/open-city-profile import graphene from django.db.utils import IntegrityError from django.utils.translation import ugettext_lazy as _ from graphene_django.types import DjangoObjectType from graphql import GraphQLError from graphql_jwt.decorators import login_required from .consts import SERVICE_TYPES from .models import Service class ServiceType(DjangoObjectType): type = graphene.Field(graphene.String, source="service_type") class Meta: model = Service fields = ("created_at",) AllowedServiceType = graphene.Enum( "type", [(st[0].upper(), st[0]) for st in SERVICE_TYPES] ) class ServiceInput(graphene.InputObjectType): type = AllowedServiceType() class AddService(graphene.Mutation): class Arguments: service = ServiceInput(required=True) service = graphene.Field(ServiceType) @login_required def mutate(self, info, **kwargs): service_data = kwargs.pop("service") service_type = service_data.get("type") try: service = Service.objects.create( profile=info.context.user.profile, service_type=service_type ) return AddService(service=service) except IntegrityError: raise GraphQLError(_("Service already exists for this profile!")) class Mutation(graphene.ObjectType): add_service = AddService.Field()
2.234375
2
search/views.py
isi-metaphor/propstore-gui
0
12786753
<filename>search/views.py # coding: utf-8 # Copyright (C) University of Southern California (http://usc.edu) # Author: <NAME> <<EMAIL>> # URL: <http://nlg.isi.edu/> # For more information, see README.md # For license information, see LICENSE import json import logging import microidx import traceback from microidx import MicroIndex from django.http import HttpResponse from django.shortcuts import render_to_response logger = logging.getLogger(__name__) def load_index(path): try: index = MicroIndex(path) return index except Exception: return None indexes = { "eng": (load_index("index_eng.ldb"), "English"), "eng_gen": (load_index("index_eng_gen.ldb"), "English (generalized)"), "rus": (load_index("index_rus.ldb"), "Russian"), "rus_gen": (load_index("index_rus_gen.ldb"), "Russian (generalized)"), "spa": (load_index("index_spa.ldb"), "Spanish"), "spa_gen": (load_index("index_spa_gen.ldb"), "Spanish (generalized)"), } def json_response(json_dict): return HttpResponse(json.dumps(json_dict), status=200, content_type="application/json") def home(request): return render_to_response("index.html", {}) def about(request): return render_to_response("about.html", {}) W_NONE = {"v": "<NONE>", "p":None, "w":[], "t":0} W_EMPY = {"v": "<->", "p":None, "w":[], "t":0} def format_arg(query_words, arg, max_len=16): if arg == "<NONE>": return W_NONE if arg == "<->": return W_EMPY words = arg.split("||") lastw_pos = words[-1].split("-") if len(lastw_pos) > 2: lastw = "-".join(lastw_pos[:-1]) pos = lastw_pos[-1] else: lastw, pos = lastw_pos words[-1] = lastw trimed = 0 if len(words) == 1: visible = words[0] else: filtered = list(filter(lambda w: w in query_words, words)) if len(filtered) == 0: filtered = words elif len(filtered) != len(words): trimed = 1 visible = filtered[0] for w in filtered[1:]: if len(visible) >= max_len: trimed = 1 break visible += ", " visible += w return { "v": visible, "p": pos, "w": words, "t": trimed, } def format_triples(query_words, triples): result = [] for rel_type, a1, a2, a3, a4, a5, tr_fr, tr_no in triples: result.append({ "t": rel_type, "n": tr_no, "f": tr_fr, "a1": format_arg(query_words, a1), "a2": format_arg(query_words, a2), "a3": format_arg(query_words, a3), "a4": format_arg(query_words, a4), "a5": format_arg(query_words, a5), }) return result def find(request): query = request.GET.get("query", "").encode("utf-8") index = request.GET.get("index", None) mfreq = request.GET.get("mfreq", "0") rtype = request.GET.get("rtype", None) rpage = request.GET.get("rpage", "1") page_size = 256 freq = MicroIndex.parse_frequency(mfreq) rpage = int(rpage) logging.info("%r\t%r\t%r\t%r\t%r" % (query, index, mfreq, rtype, rpage)) if index is None or index not in indexes: result = { "error": True, "error_code": 1, "error_msg": "Index key '%r' not found." % index, "found_triples": [], "total_triples": 0, "page_size": page_size, "pages": 0, "page": 0, "index": index, "mfreq": str(freq), "rtype": rtype, "query": str(query), "query_words": [], "url": request.build_absolute_uri(), } logging.error("Index key '%r' not found." % index) return json_response(result) mi_index = indexes[index][0] try: query = mi_index.parse_query(query) except microidx.MicroIndexQueryParsingError: error_msg = traceback.format_exc() result = { "error": True, "error_code": 2, "error_msg": "Error while parsing query: %r" % error_msg, "found_triples": [], "total_triples": 0, "page_size": page_size, "pages": 0, "page": 0, "index": index, "mfreq": str(freq), "rtype": rtype, "query": str(query), "query_words": [], "url": request.build_absolute_uri(), } logging.error("Error while parsing query: %r" % error_msg) return json_response(result) query_words = [sq[0] for sq in query] try: page = int(rpage) - 1 if page < 0: page = 0 offset = page * page_size result_page, result_size, offset = mi_index.find(query, limit=page_size, offset=offset, rel_type=rtype, freq=freq, ) for i, t in enumerate(result_page): t[-1] = int(t[-1]) t.append(i + offset + 1) pages = result_size / page_size + 1 result = { "error": False, "error_code": None, "error_msg": None, "found_triples": format_triples(query_words, result_page), "total_triples": result_size, "page_size": page_size, "pages": pages, "page": rpage, "index": index, "mfreq": str(freq), "rtype": rtype, "query": str(query), "query_words": query_words, "url": request.build_absolute_uri(), } except microidx.MicroIndexQueryExecutionError: error_msg = traceback.format_exc() result = { "error": True, "error_code": 3, "error_msg": "Error while executing query: %r" % error_msg, "found_triples": [], "total_triples": 0, "page_size": page_size, "pages": 0, "page": 0, "index": index, "mfreq": str(freq), "rtype": rtype, "query": query, "query_words": query_words, "url": request.build_absolute_uri(), } logging.error("Error while executing query: %r" % error_msg) return json_response(result) logging.info("Found %d results. Returned %d starting from %d." % (result_size, page_size, offset)) return json_response(result)
1.914063
2
coursera/course1-diving-in-python/week5/examples/socket_client.py
akrisanov/python_notebook
3
12786754
<filename>coursera/course1-diving-in-python/week5/examples/socket_client.py import socket sock = socket.socket() sock.connect(("127.0.0.1", 9000)) # ^ one-liner: sock = socket.create_connection(("127.0.0.1", 9000)) sock.sendall("ping".encode("utf8")) sock.close()
3.703125
4
airflow/upgrade/rules/chain_between_dag_and_operator_not_allowed_rule.py
shrutimantri/airflow
0
12786755
<reponame>shrutimantri/airflow # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import absolute_import import re from airflow import conf from airflow.upgrade.rules.base_rule import BaseRule from airflow.utils.dag_processing import list_py_file_paths class ChainBetweenDAGAndOperatorNotAllowedRule(BaseRule): title = "Chain between DAG and operator not allowed." description = "Assigning task to a DAG using bitwise shift (bit-shift) operators are no longer supported." def _change_info(self, file_path, line_number): return "{} Affected file: {} (line {})".format( self.title, file_path, line_number ) def _check_file(self, file_path): problems = [] with open(file_path, "r") as file_pointer: lines = file_pointer.readlines() python_space = r"\s*\\?\s*\n?\s*" # Find all the dag variable names. dag_vars = re.findall(r"([A-Za-z0-9_]+){}={}DAG\(".format(python_space, python_space), "".join(lines)) history = "" for line_number, line in enumerate(lines, 1): # Someone could have put the bitshift operator on a different line than the dag they # were using it on, so search for dag >> or << dag in all previous lines that did # not contain a logged issue. history += line matches = [ re.search(r"DAG\([^\)]+\){}>>".format(python_space), history), re.search(r"<<{}DAG\(".format(python_space), history) ] for dag_var in dag_vars: matches.extend([ re.search(r"(\s|^){}{}>>".format(dag_var, python_space), history), re.search(r"<<\s*{}{}".format(python_space, dag_var), history), ]) if any(matches): problems.append(self._change_info(file_path, line_number)) # If we found a problem, clear our history so we don't re-log the problem # on the next line. history = "" return problems def check(self): dag_folder = conf.get("core", "dags_folder") file_paths = list_py_file_paths(directory=dag_folder, include_examples=False) problems = [] for file_path in file_paths: problems.extend(self._check_file(file_path)) return problems
1.976563
2
pdfs_evolution_graphs.py
aherrera3/thesis
0
12786756
""" Script for the evolution gif of the pdfs obtained with qcdnum. The pdfs obtained by the DGLAP evolution equations, using qcdnum, are stored in files, containing each one a fixed q2 energy scale. The output files with the pdfs and x values are stored in the directory named output, inside qcdnum. Those output files follows the following convention: nameCxxFile_q2_energyscale.csv """ import matplotlib.pyplot as plt import numpy as np import seaborn as sns import pandas as pd import glob from PIL import Image import os # to delete the old images os.system("rm imgs/*.png imgs/*.gif") # url of the directory where the output files of qcdnum script are stored. output_directory_url = "/opt/qcdnum-17-01-14/output/" save_imgs_url = "imgs/" names = [] plt.rcParams.update({"font.size":13}) sns.set_style("darkgrid") # for each .csv output file for csv in glob.glob(output_directory_url + "*.csv"): print(csv) array = csv.split("_") q = float(array[2][:-4]) dataset = pd.read_csv(csv, delimiter=" ") dataset = dataset.set_index("x") names.append(int(q*100)) plt.figure() lp = sns.scatterplot(data=dataset.iloc[:,:]) #, palette=['orange'] lp.set(xscale="log") lp.text(0.78, 1.2, r'$Q^2 = 2.56$GeV$^2$', fontsize=10) plt.ylabel("$x$pdf") plt.xlabel("$x$") plt.title(f"$Q^2$ = {q:.2e} $GeV^2$") plt.ylim((0.0, 1.0)) plt.xlim((10e-3, 1)) plt.savefig(save_imgs_url + str(int(q*100)) + ".png", dpi=300) names.sort() # Create the frames frames = [] imgs = [save_imgs_url + str(x) + ".png" for x in names] for i in imgs: new_frame = Image.open(i) frames.append(new_frame) # Save into a GIF file that loops forever frames[0].save(save_imgs_url+'pdfs_evolution_gif.gif', format='GIF', append_images=frames[1:], save_all=True, duration=10, loop=0)
2.703125
3
WindmillProject/models/K-means.py
Nienkedn/Nieuwsanalyse8
0
12786757
<filename>WindmillProject/models/K-means.py<gh_stars>0 from sklearn.feature_extraction.text import TfidfVectorizer from stop_words import get_stop_words from sklearn.cluster import KMeans import pandas as pd import matplotlib.pyplot as plt from sklearn.metrics import adjusted_rand_score from collections import Counter # These are the csv files, we are going to use for our script omroepzeeland = open("../Data/omroep_zeeland.csv", mode="r", encoding="utf-16") nu = list(open("../Data/nu_nl.csv", mode="r", encoding="utf-16"))[1:] tweets = open("../Data/tweets.csv", mode="r", encoding="utf-16") # The csv files will be passed through and if the texts contains stopwords, all of them will be removed from the resulting tokens. It will be converted to a matrix of TF-IDF features. stop_words = get_stop_words('dutch') my_stop_words = (["null", "http", "bit", "www", "https", "html", "ly", "nl", "com", "origin", "Timestamp", "Content", "Title", "Comment_count", "Retweet_count", "twitter", "000", "10", "11", "12", "13", "14", "17", "rtvu"]) vectorizer = TfidfVectorizer(stop_words = stop_words + my_stop_words) # X = vectorizer.fit_transform(omroepzeeland) Y = vectorizer.fit_transform(nu) # Z = vectorizer.fit_transform(tweets) terms = vectorizer.get_feature_names() # Clusters the data in groups of equal variance, minimizing a criterion known as the inertia or within-cluster sum-of-squares true_k = 5 model = KMeans(n_clusters=true_k, init='k-means++', max_iter=1000, n_init=10, random_state=5) # model.fit(X) model.fit(Y) # model.fit(Z) # Print the results print("Top terms per cluster:") order_centroids = model.cluster_centers_.argsort()[:, ::-1] for i in range(true_k): print("\n""Cluster %d:" % i), for ind in order_centroids[i, :10]: print(' %s' % terms[ind]), # Explanation of the model, script en TFIDF # We hebben zo ingesteld dat er uit de drie bronnen(nu.nl, twitter en omroepzeeland) vijf clusters gemaakt moeten worden. Eerst worden uit de drie bronnen de stopwoorden eruit gefilterd. Daarna word er door # middel van term frequency-inverse document frequency aka TFIDF aan ieder woord een cijfer gegeven om zo aan te geven hoe belangrijk het woord is voor de tekst. Deze informatie wordt door het K-means algoritme # gebruikt om de belangrijkste woorden te groeperen in clusters. Hierbij staan de belangrijkste woorden in cluster 1 en de minder belangrijke woorden in het laatste cluster print(Y) print(vectorizer.get_feature_names()) # print(pd.DataFrame(X.toarray(), columns=vectorizer.get_feature_names())) # Mee bezig, zie http://jonathansoma.com/lede/foundations/classes/text%20processing/tf-idf/ word1 = 'windmolens' word2 = 'energie' xdata = model.cluster_centers_[:,vectorizer.vocabulary_[word1]] ydata = model.cluster_centers_[:,vectorizer.vocabulary_[word2]] plt.scatter(xdata, ydata, s=1) for clusternum, (xcoord,ycoord) in enumerate(zip(xdata, ydata)): plt.text(xcoord, ycoord, str(clusternum)) plt.title('TFIDF score in cluster') plt.xlabel(word1) plt.ylabel(word2) plt.show() print(Counter(model.labels_)) nu1 = [text for clusternum, text in zip(model.labels_,nu) if clusternum == 3] print(nu1) # regex bij token pattern # woordcloud maken van die woorden en selecteren van onderscheidende woorden
3.34375
3
Project Euler/general.py
pybae/etc
0
12786758
<reponame>pybae/etc #!/usr/bin/env python # -*- coding: utf-8 -*- # A general purpose file including several blanket functions to simplify Project # Euler code import numpy import math import cProfile import pstats import StringIO def prime(n): return filter(lambda num: (num % \ numpy.arange(2, 1+int(math.sqrt(num)))).all(), range(2, n+1)) pr = cProfile.Profile() pr.enable() array = prime(1000) pr.disable() s = StringIO.StringIO() sortby = 'cumulative' ps = pstats.Stats(pr, stream=s).sort_stats(sortby) ps.print_stats()
2.421875
2
ghostwriter/rolodex/migrations/0013_projectsubtask_marked_complete.py
bbhunter/Ghostwriter
601
12786759
# Generated by Django 3.0.10 on 2021-02-11 21:09 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('rolodex', '0012_auto_20210211_1853'), ] operations = [ migrations.AddField( model_name='projectsubtask', name='marked_complete', field=models.DateField(blank=True, help_text='Date the task was marked complete', null=True, verbose_name='Marked Complete'), ), ]
1.492188
1
resources/drive.py
MujyKun/IreneAPI
1
12786760
<reponame>MujyKun/IreneAPI<gh_stars>1-10 from __future__ import print_function import pickle import os.path import io # noinspection PyPackageRequirements from googleapiclient.http import MediaIoBaseDownload # noinspection PyPackageRequirements from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow # noinspection PyPackageRequirements from google.auth.transport.requests import Request def get_drive_connection(): scopes = ['https://www.googleapis.com/auth/drive'] cred = None if os.path.exists(f'token.pickle'): with open(f'token.pickle', 'rb') as token: try: cred = pickle.load(token) except Exception as e: print(e) # If there are no (valid) credentials available, let the user log in. if not cred or not cred.valid: if cred and cred.expired and cred.refresh_token: cred.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', scopes) cred = flow.run_local_server(port=0) # Save the credentials for the next run with open(f'token.pickle', 'wb') as token: pickle.dump(cred, token) drive_service = build('drive', 'v3', credentials=cred) return drive_service drive = get_drive_connection() def get_file_type(file_id): """Get the file type of a drive file. ex: image.jpeg or media.mp4""" file_data = get_file_data(file_id) file_type = file_data.get('mimeType') if file_type: return file_type.replace('/', '.') return file_data.get('mimeType') def get_file_data(file_id): """Get the file data of a drive file.""" return drive.files().get(fileId=file_id).execute() def download_media(file_id, file_location): media = drive.files().get_media(fileId=file_id) fh = io.BytesIO() downloader = MediaIoBaseDownload(fh, media) done = False while done is False: status, done = downloader.next_chunk() # print percentage of download print("Download %d%%." % int(status.progress() * 100)) with open(file_location, 'wb') as f: fh.seek(0) # go to start of stream f.write(fh.read()) try: fh.close() except Exception as e: print(e, "--download")
2.734375
3
mqtt/ping.py
Laged/test-python-ping-mqtt
0
12786761
<gh_stars>0 import socket from time import sleep import paho.mqtt.client as mqtt hostname = socket.gethostname() broker = 'broker.hivemq.com' port = 1883 default_user = hostname default_pw = None default_topic = '/ping-mqtt/' + hostname default_msg = 'ping' default_qos = 0 ping_interval = 1 running = True subscribed = False def __ping_loop(client): while running: if subscribed: print 'Pinging',default_topic client.publish(default_topic, default_msg) sleep(ping_interval) def __on_connect(client, userdata, flags, rc): if rc == 0: username = userdata['user'] if 'user' in userdata else None print 'Connection',str(username),'to',str(client._host)+':'+str(client._port),'OK' print 'Subscribing to',str(default_topic),'with QoS',str(default_qos) client.subscribe(default_topic, default_qos) else: print 'Connection failed with code',rc def __on_message(client, userdata, msg): print 'Message ' + msg.topic+': '+str(msg.payload) def __on_subscribe(client, userdata, mid, granted_qos): topic = userdata['topic'] if 'topic' in userdata else None print 'Subscription to',topic,'with QoS',str(granted_qos),'OK' global subscribed subscribed = True def init(): print 'Initializing client that pings a MQTT broker' defaults = { 'user':default_user, 'password':<PASSWORD>, 'topic': default_topic, 'msg': default_msg } client = mqtt.Client() client.username_pw_set(default_user, default_pw) client.user_data_set(defaults) client.on_connect = __on_connect client.on_message = __on_message client.on_subscribe = __on_subscribe print 'Connecting',hostname,'to',broker+':'+str(port) client.loop_start() client.connect(broker, port) __ping_loop(client) if __name__ == '__main__': init()
2.59375
3
dwh/indicator_lib.py
LaudateCorpus1/openmrs-fhir-analytics
0
12786762
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Set of functions to work with Spark DataFrames containing FHIR resources. See test_spark.ipynb for real examples of how to create/use these functions. """ # TODO move common and query related parts to `query_lib.py` and only keep # indicator calculation logic that is independent of Spark here. from typing import List from datetime import datetime from dateutil.parser import parse as parse_date import pandas as pd import common import query_lib def _find_age_band(birth_date: str, end_date: datetime) -> str: """Given the birth date, finds the age_band for PEPFAR disaggregation.""" birth = parse_date(birth_date) age = int((end_date - birth).days / 365.25) if age < 1: return '0-1' if age <= 4: return '1-4' if age <= 9: return '5-9' if age <= 14: return '10-14' if age <= 19: return '15-19' if age <= 24: return '20-24' if age <= 49: return '25-49' return '50+' def _agg_buckets(birth_date: str, gender: str, end_date: datetime) -> List[str]: """Generates the list of all PEPFAR disaggregation buckets.""" age_band = _find_age_band(birth_date, end_date) return [age_band + '_' + gender, 'ALL-AGES_' + gender, age_band + '_ALL-GENDERS', 'ALL-AGES_ALL-GENDERS'] def _gen_counts_and_ratio(temp_df: pd.DataFrame, end_date: datetime, ind_name: str) -> pd.DataFrame: """Generates aggregated dataframe when supplied with patient-level df""" temp_df['buckets'] = temp_df.apply( lambda x: _agg_buckets(x.birthDate, x.gender, end_date), axis=1) temp_df_exp = temp_df.explode('buckets') temp_df_exp = temp_df_exp.groupby( [ind_name, 'buckets'], as_index=False).count()[[ ind_name, 'buckets', 'patientId']].rename( columns={'patientId': ind_name + '_count'}) # calculate ratio num_patients = len(temp_df.index) temp_df_exp[ind_name + '_ratio'] = temp_df_exp[ ind_name + '_count'] / num_patients return temp_df_exp def calc_TX_PVLS(patient_agg_obs: pd.DataFrame, VL_code: str, failure_threshold: int, end_date_str: str = None) -> pd.DataFrame: """Calculates TX_PVLS indicator with its corresponding disaggregations. Args: patient_agg_obs: An output from `patient_query.find_patient_aggregates()`. VL_code: The code for viral load values. failure_threshold: VL count threshold of failure. end_date: The string representation of the last date as 'YYYY-MM-DD'. Returns: The aggregated DataFrame with age/gender buckets. """ end_date = datetime.today() if end_date_str: end_date = parse_date(end_date_str) temp_df = patient_agg_obs[(patient_agg_obs['code'] == VL_code)].copy() # Note the above copy is used to avoid setting a new column on a slice next: temp_df['latest_vl_value'] = temp_df['last_value'].astype(float) temp_df['sup_VL'] = (temp_df['latest_vl_value'] < failure_threshold) temp_df = _gen_counts_and_ratio(temp_df, end_date, 'sup_VL') return temp_df def calc_TX_NEW(patient_agg_obs: pd.DataFrame, ARV_plan: str, start_drug: List[str], end_date_str: str = None) -> pd.DataFrame: """Calculates TX_NEW indicator with its corresponding disaggregations. TX_NEW indicator counts the number of adults and children newly enrolled on antiretroviral therapy (ART) prior to the provided end-date Args: patient_agg_obs: A DataFrame generated by `patient_query.find_patient_aggregates()`. ARV_plan: The concept question code for ANTIRETROVIRAL PLAN start_drug: The concept answer codes for START DRUG end_date: The string representation of the last date as 'YYYY-MM-DD'. Returns: The aggregated DataFrame with age/gender buckets. """ end_date = datetime.today() if end_date_str: end_date = parse_date(end_date_str) temp_df = patient_agg_obs[(patient_agg_obs['code'] == ARV_plan)].copy() # Note the above copy is used to avoid setting a new column on a slice next: temp_df['TX_NEW'] = (temp_df['last_value_code'].isin(start_drug)) temp_df = _gen_counts_and_ratio(temp_df, end_date, 'TX_NEW') return temp_df
2.546875
3
chapter11/code/pickle_safe_chroot.py
gabrielmahia/ushuhudAI
74
12786763
import os import pickle from contextlib import contextmanager class ShellSystemChroot(object): def __reduce__(self): # this will list contents of root / folder return (os.system, ('ls /',)) @contextmanager def system_chroot(): """ A simple chroot """ os.chroot('/') yield def serialize(): with system_chroot(): shellcode = pickle.dumps(ShellSystemChroot()) return shellcode def deserialize(exploit_code): with system_chroot(): pickle.loads(exploit_code) if __name__ == '__main__': shellcode = serialize() print('Obtaining files...') deserialize(shellcode)
2.78125
3
Heatmap.py
Ruhen-Bhuiyan/Logistic-regression-vs-SVM-vs-Decision-Tree-vs-Random-Forest
0
12786764
<filename>Heatmap.py import pandas as pd import numpy as np from sklearn import preprocessing from sklearn.metrics import confusion_matrix from sklearn import svm import itertools import matplotlib.pyplot as plt import matplotlib.mlab as mlab import seaborn get_ipython().run_line_magic('matplotlib', 'inline') data = pd.read_csv("D:\\445\\KhidmahActuall.csv") df = pd.DataFrame(data) df_corr = df.corr() plt.figure(figsize=(15,10)) seaborn.heatmap(df_corr, cmap="YlGnBu") # Displaying the Heatmap seaborn.set(font_scale=2,style='white') plt.title('Heatmap correlation') plt.show()
3.125
3
Project Euler #1: Multiples of 3 and 5/Python.py
gitvy/Project-Euler
0
12786765
for i in range(int(input())): n = int(input()) -1 l1 = n - n%3 l2 = n - n%5 l3 = n - n%15 s1 = ((l1)*(3+l1))//6 s2 = ((l2)*(5+l2))//10 s3 = ((l3)*(15+l3))//30 print(s1+s2-s3)
3.171875
3
carim/configuration/mods/vanilla_plus_plus_map/model.py
schana/dayz-server-carim
3
12786766
<reponame>schana/dayz-server-carim<filename>carim/configuration/mods/vanilla_plus_plus_map/model.py<gh_stars>1-10 from collections import namedtuple from carim.global_resources import locations def get_markers(): return [Marker( name=m[0], icon=Icon.DEFAULT, color=WHITE, position=m[1], active=True, active_3d=True ) for m in locations.marks] def get_config(): return { 'M_STATIC_MARKER_ARRAY': [m.get_config() for m in get_markers()], 'm_CanUse3DMarkers': 1, 'm_OwnPositionMarkerDisabled': 0, 'm_ForceMapItemOnly': 0 } def get_admin_teleport_config(): return { 'm_TeleportLocations': [m.get_admin_teleport_config() for m in get_markers()] } class Marker: def __init__(self, name, icon, color, position, active, active_3d): self.name = name self.icon = icon self.color = color self.position = position self.active = active self.active_3d = active_3d def get_config(self): return { 'M_MARKER_NAME': self.name, 'M_ICON_PATH': self.icon, 'M_COLOR': [self.color.r, self.color.g, self.color.b], 'M_POSITION': [self.position.x, 0, self.position.z], 'M_ISACTIVE': 1 if self.active else 0, 'M_IS_3D_ACTIVE': 1 if self.active_3d else 0 } def get_admin_teleport_config(self): return { 'm_Name': self.name, 'm_Position': [ self.position.x, 0, self.position.z ] } Color = namedtuple('Color', ('r', 'g', 'b')) WHITE = Color(255, 255, 255) RED = Color(255, 0, 0) GREEN = Color(0, 255, 0) BLUE = Color(0, 0, 255) class Icon: DEFAULT = "VanillaPPMap\\GUI\\Textures\\CustomMapIcons\\waypointeditor_CA.paa"
1.945313
2
src/test_import.py
usdot-its-jpo-data-portal/canary-lambda
0
12786767
<gh_stars>0 import unittest import os class TestImports(unittest.TestCase): def test_imports(self): print('Temporary dummy import test for coverage config.') import main
1.679688
2
huobi/model/pricedepthevent.py
Wing-Lo/huobi_Python
0
12786768
<gh_stars>0 from huobi.model import * class PriceDepthEvent: """ The price depth received by subscription of price depth. :member symbol: The symbol you subscribed. timestamp: The UNIX formatted timestamp generated by server in UTC. data: The price depth. """ def __init__(self): self.symbol = "" self.timestamp = 0 self.data = PriceDepth()
2.375
2
src/filters.py
git2samus/xpost-bot
16
12786769
class SubmissionFilter(object): """ methods to determine whether a submission is relevant for reposting """ def __init__(self, settings): """ store settings """ self.settings = settings def _is_valid_submitter(self, submission): """ returns True when the submission isn't from an ignored submitter or the submitter deleted his account """ ignored_submitters = self.settings['ignored_submitters'] if not submission.author: return True # allow [deleted] author_name = submission.author.name.lower() return author_name not in ignored_submitters def _is_valid_subreddit(self, submission): """ returns True when the submission hasn't been done on an ignored subreddit """ ignored_subreddits = self.settings['ignored_subreddits'] subreddit_name = submission.subreddit.display_name.lower() return subreddit_name not in ignored_subreddits def _test_text(self, text, target_keywords=None, target_regexps=None): """ returns True when 'text' contains any of the target_keywords or matches any of the target_regexps """ target_keywords = [] if target_keywords is None else target_keywords target_regexps = [] if target_regexps is None else target_regexps text = text.lower() return any( keyword in text for keyword in target_keywords ) or any( regexp.search(text) for regexp in target_regexps ) def _test_matches(self, submission): """ returns True when the submission's title or selftext contains any of the matched_keywords or matches any of the matched_regexps """ matched_keywords = self.settings['matched_keywords'] matched_regexps = self.settings['matched_regexps'] match = self._test_text(submission.title, matched_keywords, matched_regexps) if not match and submission.is_self: match = self._test_text(submission.selftext, matched_keywords, matched_regexps) return match def _test_exclusions(self, submission): """ returns True when the submission's title or selftext contains any of the excluded_keywords or matches any of the excluded_regexps """ excluded_keywords = self.settings['excluded_keywords'] excluded_regexps = self.settings['excluded_regexps'] excluded = self._test_text(submission.title, excluded_keywords, excluded_regexps) if not excluded and submission.is_self: excluded = self._test_text(submission.selftext, excluded_keywords, excluded_regexps) return excluded def filter_submission(self, submission): """ determine whether this submission should be filtered or not, returns True when the sumission: -isn't from an ignored submitter -hasn't been posted on an ignored subreddit -contains any of the matched_keywords or matches any of the matched_regexps -doesn't contain any of the excluded_keywords or matches any of the excluded_regexps """ return all(( self._is_valid_submitter(submission), self._is_valid_subreddit(submission), self._test_matches(submission), not self._test_exclusions(submission), )) def filter_stream(self, stream): """ apply self.filter_submission to each element of the stream """ for submission in stream: if self.filter_submission(submission): yield submission
3.34375
3
tests/test_mock_audio.py
CameronJRAllan/eTree-Browser
1
12786770
<reponame>CameronJRAllan/eTree-Browser from unittest import TestCase import os import mock import pytest from PyQt5 import QtWidgets import application import audio class TestApplication(): @pytest.fixture(scope="function", autouse=True) def setup(self, qtbot): # Create dialog to show this instance self.dialog = QtWidgets.QMainWindow() # Start main event loop self.prog = application.mainWindow(self.dialog)
2.25
2
public-engines/iris-h2o-automl/marvin_iris_h2o_automl/training/metrics_evaluator.py
guialba/incubator-marvin
101
12786771
#!/usr/bin/env python # coding=utf-8 """MetricsEvaluator engine action. Use this module to add the project main code. """ from .._compatibility import six from .._logging import get_logger from marvin_python_toolbox.engine_base import EngineBaseTraining from ..model_serializer import ModelSerializer __all__ = ['MetricsEvaluator'] logger = get_logger('metrics_evaluator') class MetricsEvaluator(ModelSerializer, EngineBaseTraining): def __init__(self, **kwargs): super(MetricsEvaluator, self).__init__(**kwargs) def execute(self, params, **kwargs): import h2o from sklearn import metrics # h2o.init() y_test = self.marvin_dataset['test_X']['Species'] self.marvin_dataset['test_X'].drop(columns='Species', inplace=True) teste = h2o.H2OFrame.from_python(self.marvin_dataset['test_X']) preds = self.marvin_model.predict(teste).as_data_frame()['predict'].values self.marvin_metrics = metrics.accuracy_score(y_test, preds)
2.28125
2
bettertexts/migrations/0001_initial.py
citizenline/citizenline
0
12786772
# Generated by Django 2.2.3 on 2019-09-26 19:42 import bettertexts.models import ckeditor.fields from decimal import Decimal from django.conf import settings import django.contrib.sites.managers from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import django_extensions.db.fields import model_utils.fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('contenttypes', '0002_remove_content_type_name'), ('sites', '0002_alter_domain_unique'), ] operations = [ migrations.CreateModel( name='Question', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('question', models.CharField(max_length=200, verbose_name='question')), ('position', models.IntegerField(verbose_name='position')), ], options={ 'verbose_name': 'question', 'verbose_name_plural': 'questions', 'ordering': ('position',), }, ), migrations.CreateModel( name='Type', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=200, verbose_name='name')), ('header', models.CharField(max_length=200, verbose_name='main header')), ('rating_header', models.CharField(blank=True, max_length=200, verbose_name='rating header')), ('comment_header', models.CharField(blank=True, max_length=200, verbose_name='comment header')), ('response_header', models.CharField(blank=True, max_length=200, verbose_name='response header')), ('rating_enabled', models.BooleanField(default=True, verbose_name='rating enabled')), ('comment_enabled', models.BooleanField(default=True, verbose_name='comment enabled')), ('notification_enabled', models.BooleanField(default=True, verbose_name='notification enabled')), ('site', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sites.Site')), ], options={ 'verbose_name': 'communication type', 'verbose_name_plural': 'communication types', }, managers=[ ('objects', bettertexts.models.TypeManager()), ('on_site', django.contrib.sites.managers.CurrentSiteManager()), ], ), migrations.CreateModel( name='TextComment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('object_pk', models.TextField(verbose_name='object ID')), ('user_name', models.CharField(blank=True, max_length=50, verbose_name="user's name")), ('user_email', models.EmailField(blank=True, max_length=254, verbose_name="user's email address")), ('user_url', models.URLField(blank=True, verbose_name="user's URL")), ('inform', models.BooleanField(default=False, help_text='Check this box to keep me informed about updates.', verbose_name='Keep informed')), ('involved', models.BooleanField(default=False, help_text='Check this box to make more texts better.', verbose_name='Stay involved')), ('comment', models.TextField(max_length=3000, verbose_name='comment')), ('submit_date', models.DateTimeField(default=None, verbose_name='date/time submitted')), ('ip_address', models.GenericIPAddressField(blank=True, null=True, unpack_ipv4=True, verbose_name='IP address')), ('is_public', models.BooleanField(default=True, help_text='Uncheck this box to make the comment effectively disappear from the site.', verbose_name='is public')), ('is_removed', models.BooleanField(default=False, help_text='Check this box if the comment is inappropriate. A "This comment has been removed" message will be displayed instead.', verbose_name='is removed')), ('content_type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='content_type_set_for_textcomment', to='contenttypes.ContentType', verbose_name='content type')), ('site', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='sites.Site')), ('user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='textcomment_comments', to=settings.AUTH_USER_MODEL, verbose_name='user')), ], options={ 'verbose_name': 'comment', 'verbose_name_plural': 'comments', 'ordering': ('submit_date',), 'permissions': [('can_moderate', 'Can moderate comments')], }, ), migrations.CreateModel( name='Text', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=200, verbose_name='title')), ('slug', django_extensions.db.fields.RandomCharField(blank=True, editable=False, length=8, unique=True, verbose_name='slug')), ('intro', ckeditor.fields.RichTextField(blank=True, max_length=20000, verbose_name='intro')), ('body', ckeditor.fields.RichTextField(max_length=20000, verbose_name='text')), ('version', models.PositiveIntegerField(default=0, verbose_name='version')), ('pub_date', models.DateTimeField(auto_now_add=True, verbose_name='date published')), ('end_date', models.DateTimeField(blank=True, null=True, verbose_name='date end')), ('site', models.ForeignKey(default=1, editable=False, on_delete=django.db.models.deletion.CASCADE, to='sites.Site')), ('type', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bettertexts.Type')), ], options={ 'verbose_name': 'text', 'verbose_name_plural': 'texts', }, managers=[ ('objects', bettertexts.models.TypeManager()), ], ), migrations.CreateModel( name='Rating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('version', models.PositiveIntegerField(default=0, verbose_name='version')), ('range', models.PositiveIntegerField(default=10, verbose_name='range')), ('count', models.PositiveIntegerField(default=0, verbose_name='count')), ('total', models.PositiveIntegerField(default=0, verbose_name='total')), ('average', models.DecimalField(decimal_places=2, default=Decimal('0'), max_digits=6, verbose_name='average')), ('question', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bettertexts.Question', verbose_name='Question')), ('text', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bettertexts.Text')), ], options={ 'verbose_name': 'rating', 'verbose_name_plural': 'ratings', 'unique_together': {('text', 'version', 'question')}, }, ), migrations.AddField( model_name='question', name='type', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='bettertexts.Type'), ), migrations.CreateModel( name='UserRating', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', model_utils.fields.AutoCreatedField(default=django.utils.timezone.now, editable=False, verbose_name='created')), ('modified', model_utils.fields.AutoLastModifiedField(default=django.utils.timezone.now, editable=False, verbose_name='modified')), ('user', models.CharField(max_length=200)), ('ip', models.GenericIPAddressField(blank=True, null=True)), ('score', models.PositiveSmallIntegerField()), ('rating', models.ForeignKey(editable=False, on_delete=django.db.models.deletion.CASCADE, related_name='user_ratings', to='bettertexts.Rating')), ], options={ 'unique_together': {('user', 'rating')}, }, ), ]
1.742188
2
SLpackage/private/pacbio/pythonpkgs/pbsmrtpipe/lib/python2.7/site-packages/pbsmrtpipe/__init__.py
fanglab/6mASCOPE
5
12786773
<filename>SLpackage/private/pacbio/pythonpkgs/pbsmrtpipe/lib/python2.7/site-packages/pbsmrtpipe/__init__.py<gh_stars>1-10 from __future__ import absolute_import, division, print_function VERSION = '1.4.0' def get_version(): return VERSION __version__ = get_version() def get_changelist(): # Legacy from the perforce era, but keeping this. It's not worth breaking return "UnknownChangelist"
1.421875
1
cspace/main/appletserver.py
jmcvetta/cspace
28
12786774
<filename>cspace/main/appletserver.py import os, sys, threading from string import Template from ncrypt.rand import bytes as rand_bytes from ncrypt.rsa import RSAKey, RSAError from nitro.selectreactor import SelectReactor from nitro.tcp import tcpListen, TCPStream from nitro.ssl import sslAbort from nitro.linestream import TCPLineStream from cspace.util.spawn import spawnProcess from cspace.util.hexcode import hexEncode, hexDecode, HexDecodeError from cspace.util.wordcode import wordEncode, wordDecode, WordDecodeError from cspace.util.settings import getAppDir from cspace.util.queue import ThreadQueue from cspace.main.common import localSettings, appSettings, \ isValidUserName, isValidServiceName from cspace.main.sslbridge import SSLBridge def _substituteMetaVars( s ) : if sys.platform == 'win32' : _metaDict = dict( python='python.exe', pythonw='pythonw.exe' ) else : _metaDict = dict( python='python', pythonw='python' ) _metaDict['approot'] = getAppDir() return Template( s ).safe_substitute( _metaDict ) def _readCommand( settings, entryPath ) : data = settings.getData( entryPath ).strip() lines = [line.strip() for line in data.split('\n')] return lines class ServiceConfig( object ) : def _listServices( self, settings ) : services = [] for entry in settings.listEntries('Services') : serviceName = entry.split('/')[-1] assert isValidServiceName(serviceName) serviceCommand = _readCommand( settings, entry ) services.append( (serviceName,serviceCommand) ) return services def listSystemServices( self ) : return self._listServices( appSettings() ) def listUserServices( self ) : return self._listServices( localSettings() ) def listActiveServices( self ) : sysServices = self.listSystemServices() userServices = self.listUserServices() serviceDict = {} out = [] for x in userServices+sysServices : if x[0] in serviceDict : continue serviceDict[x[0]] = x out.append( x ) return out class ActionConfig( object ) : def _listActions( self, settings ) : actions = [] for entry in settings.listEntries('ContactActions') : actionDir = entry.split('/')[-1] assert isValidServiceName(actionDir) actionName = settings.getData( entry+'/Action' ).strip() actionCommand = _readCommand( settings, entry+'/Command' ) actionOrder = settings.getInt(entry+'/SortOrder',10000) actions.append( (actionDir,actionName,actionCommand,actionOrder) ) return actions def listSystemActions( self ) : return self._listActions( appSettings() ) def listUserActions( self ) : return self._listActions( localSettings() ) def listActiveActions( self ) : sysActions = self.listSystemActions() userActions = self.listUserActions() actionDict = {} out = [] for x in userActions+sysActions : if x[0] in actionDict : continue actionDict[x[0]] = x out.append( x ) return out class BridgeThread( threading.Thread ) : def __init__( self ) : threading.Thread.__init__( self ) self.reactor = SelectReactor() self.threadQueue = ThreadQueue( self._onMessage, self.reactor ) self.bridges = {} self.start() def _onMessage( self, msg ) : cmd,args = msg[0],msg[1:] if cmd == 'bridge' : sock,sslConn = args bridge = SSLBridge( sock, sslConn, self.reactor ) self.bridges[bridge] = 1 bridge.setCloseCallback( lambda : self._onBridgeClosed(bridge) ) elif cmd == 'clear' : for b in self.bridges.keys() : b.shutdown() self.bridges.clear() elif cmd == 'stop' : for b in self.bridges.keys() : b.shutdown() self.bridges.clear() self.reactor.stop() def _onBridgeClosed( self, bridge ) : del self.bridges[bridge] def run( self ) : self.reactor.run() class AppletConnection( object ) : DEFAULT = 0 CONNECTING = 1 WAITING_BRIDGE = 2 LISTENER = 3 CLOSED = 4 def __init__( self, sock, reactor, appletServer ) : self.reactor = reactor self.stream = TCPLineStream( sock, reactor ) self.appletServer = appletServer self.appletServer.appletConnections[self] = 1 self.session = appletServer.session self.incoming = appletServer.incoming self.state = self.DEFAULT self._writeData = self.stream.writeData rt = {} self.requestTable = rt rt['echo'] = self._doEcho rt['getcontacts'] = self._doGetContacts rt['getpubkey'] = self._doGetPubKey rt['getcontactpubkeys'] = self._doGetContactPubKeys rt['connect'] = self._doConnect rt['connectpubkey'] = self._doConnectPubKey rt['accept'] = self._doAccept rt['getincomingpubkey'] = self._doGetIncomingPubKey rt['registerlistener'] = self._doRegisterListener rt['sendlistener'] = self._doSendListener self.stream.setInputCallback( self._onInput ) self.stream.setCloseCallback( self._onClose ) self.stream.setErrorCallback( self._onError ) self.stream.enableRead( True ) def _setClosed( self ) : del self.appletServer.appletConnections[self] self.state = self.CLOSED def shutdown( self, deferred=False ) : if self.state == self.CONNECTING : self.connectOp.cancel() elif self.state == self.LISTENER : self.appletServer.unregisterListener( self.listenerName ) elif self.state == self.WAITING_BRIDGE : sslAbort( self.peerSSLConn ) self.stream.close( deferred ) self._setClosed() def _onClose( self ) : self.shutdown() def _onError( self, err, errMsg ) : self.shutdown() def _writeLine( self, line ) : self._writeData( line + '\r\n' ) def _writeWords( self, words ) : words = [wordEncode(w) for w in words] self._writeData( ' '.join(words) + '\r\n' ) def _writeError( self, msg ) : self._writeLine( 'ERROR %s' % msg ) def _writeResult( self, words ) : self._writeWords( ['OK'] + words ) def dispatchMessage( self, msg ) : assert self.state == self.LISTENER self._writeWords( ['MSG'] + msg ) def _doEcho( self, words ) : self._writeResult( words ) def _doGetContacts( self, words ) : if len(words) != 0 : self._writeError( 'Malformed request' ) return if not self.session.isOnline() : self._writeError( 'Not online' ) return names = self.session.getProfile().getContactNames() self._writeResult( [c.getNickName() for c in contacts] ) def _doGetPubKey( self, words ) : if len(words) > 1 : self._writeError( 'Malformed request' ) return if not self.session.isOnline() : self._writeError( 'Not online' ) return if len(words) == 0 : keyData = self.session.getProfile().rsaKey.toDER_PublicKey() self._writeResult( [hexEncode(keyData)] ) return contact = self.session.getProfile().getContactByName( words[0] ) if contact is None : self._writeError( 'Unknown contact' ) return self._writeResult( [hexEncode(contact.publicKeyData)] ) def _doGetContactPubKeys( self, words ) : if len(words) != 0 : self._writeError( 'Malformed request' ) return if not self.session.isOnline() : self._writeError( 'Not online' ) return out = [] profile = self.session.getProfile() for name in profile.getContactNames() : c = profile.getContactByName( name ) out.extend( [c.name,hexEncode(c.publicKeyData)] ) self._writeResult( out ) def _connectInternal( self, publicKey, service ) : def onWriteComplete() : self.stream.shutdown() sock = self.stream.getSock() self.appletServer.bridgeThread.threadQueue.postMessage( ('bridge',sock,self.peerSSLConn) ) self._setClosed() def onConnect( err, sslConn ) : if err < 0 : self._writeError( 'Connect failed' ) self.state = self.DEFAULT return self._writeResult( ['Connected'] ) self.peerSSLConn = sslConn self.state = self.WAITING_BRIDGE self.stream.enableRead( False ) self.stream.setWriteCompleteCallback( onWriteComplete ) self.connectOp = self.session.connectTo( publicKey, service, onConnect ) self.state = self.CONNECTING def _doConnect( self, words ) : if len(words) != 2 : self._writeError( 'Malformed request' ) return contactName, service = words if not self.session.isOnline() : self._writeError( 'Not online' ) return contact = self.session.getProfile().getContactByName( contactName ) if not contact : self._writeError( 'Unknown contact' ) return self._connectInternal( contact.publicKey, service ) def _doConnectPubKey( self, words ) : if len(words) != 2 : self._writeError( 'Malformed request' ) return hexPubKey, service = words if not self.session.isOnline() : self._writeError( 'Not online' ) return try : pubKeyData = hexDecode( hexPubKey ) pubKey = RSAKey() pubKey.fromDER_PublicKey( pubKeyData ) except (HexDecodeError,RSAError) : self._writeError( 'Malformed publickey' ) return self._connectInternal( pubKey, service ) def _doAccept( self, words ) : if len(words) != 1 : self._writeError( 'Malformed request' ) return connectionId = words[0] sslConn = self.incoming.acceptIncoming( connectionId ) if not sslConn : self._writeError( 'Invalid connection' ) return self._writeResult( ['Connected'] ) self.peerSSLConn = sslConn self.state = self.WAITING_BRIDGE self.stream.enableRead( False ) def onWriteComplete() : self.stream.shutdown() sock = self.stream.getSock() self.appletServer.bridgeThread.threadQueue.postMessage( ('bridge',sock,self.peerSSLConn) ) self._setClosed() self.stream.setWriteCompleteCallback( onWriteComplete ) def _doGetIncomingPubKey( self, words ) : if len(words) != 1 : self._writeError( 'Malformed request' ) return connectionId = words[0] peerKey = self.incoming.getPeerKey( connectionId ) if not peerKey : self._writeError( 'Invalid connection' ) return self._writeResult( [hexEncode(peerKey.toDER_PublicKey())] ) def _doRegisterListener( self, words ) : if len(words) != 1 : self._writeError( 'Malformed request' ) return listenerName = words[0] result = self.appletServer.registerListener( listenerName, self ) if not result : self._writeError( 'Listener already registered' ) return self.listenerName = listenerName self.state = self.LISTENER self._writeResult( ['Registered'] ) def _doSendListener( self, words ) : if len(words) <= 1 : self._writeError( 'Malformed request' ) return listenerName = words[0] listener = self.appletServer.getListener( listenerName ) if listener is None : self._writeError( 'No such listener' ) return listener.dispatchMessage( words[1:] ) self._writeResult( ['Sent'] ) def _onInput( self, line ) : assert self.state in (self.DEFAULT,self.CONNECTING,self.LISTENER) if self.state in (self.CONNECTING,self.LISTENER) : self._writeError( 'Junk received' ) self.shutdown( deferred=True ) return words = line.strip().split() if len(words) == 0 : return try : words = [wordDecode(w) for w in words] except WordDecodeError : self._writeError( 'Malformed request' ) return cmd = words[0].lower() handler = self.requestTable.get( cmd, None ) if not handler : self._writeError( 'Unknown request' ) return handler( words[1:] ) class IncomingConnections( object ) : def __init__( self, reactor ) : self.reactor = reactor self.connections = {} def clearConnections( self ) : for sslConn,peerKey,timerOp in self.connections.values() : sslAbort( sslConn ) timerOp.cancel() self.connections.clear() def addIncoming( self, sslConn, peerKey ) : while True : connectionId = hexEncode( rand_bytes(8) ) if connectionId not in self.connections : break def onTimeout() : self._onTimeout( connectionId ) timerOp = self.reactor.callLater( 30, onTimeout ) self.connections[connectionId] = (sslConn,peerKey,timerOp) return connectionId def acceptIncoming( self, connectionId ) : info = self.connections.pop( connectionId, None ) if info is None : return None sslConn,peerKey,timerOp = info timerOp.cancel() return sslConn def getPeerKey( self, connectionId ) : info = self.connections.get( connectionId ) if info is None : return None return info[1] def _onTimeout( self, connectionId ) : sslConn,peerKey,timerOp = self.connections.pop( connectionId ) sslAbort( sslConn ) class AppletServer( object ) : def __init__( self, session, actionManager, reactor ) : self.session = session self.actionManager = actionManager self.reactor = reactor self.listener = tcpListen( ('127.0.0.1',0), reactor, self._onNewConnection ) self.listenPort = self.listener.getSock().getsockname()[1] print 'listenport = %d' % self.listenPort self.serviceConfig = ServiceConfig() self.actionConfig = ActionConfig() self.listeners = {} self.incoming = IncomingConnections( self.reactor ) self.services = [] self.appletConnections = {} for (service,command) in self.serviceConfig.listActiveServices() : def doRegisterService( service, command ) : def onService( sslConn, peerKey, contactName, incomingName ) : self._onService( service, command, sslConn, peerKey, contactName, incomingName ) self.session.registerService( service, onService ) doRegisterService( service, command ) self.services.append( service ) self.actions = [] for (actionDir,action,command,order) in self.actionConfig.listActiveActions() : def doRegisterAction( actionDir, action, command, order ) : def onAction( contactName ) : self._onAction( actionDir, action, command, contactName ) return self.actionManager.registerAction( action, onAction, order ) actionId = doRegisterAction( actionDir, action, command, order ) self.actions.append( actionId ) if actionDir == 'TextChat' : self.actionManager.setDefaultAction( actionId ) self.bridgeThread = BridgeThread() def shutdown( self ) : self.incoming.clearConnections() appletConns = self.appletConnections.keys() for conn in appletConns : conn.shutdown() self.bridgeThread.threadQueue.postMessage( ('stop',) ) self.bridgeThread.join() self.listener.close() def clearConnections( self ) : self.incoming.clearConnections() appletConns = self.appletConnections.keys() for conn in appletConns : conn.shutdown() self.bridgeThread.threadQueue.postMessage( ('clear',) ) def getListenPort( self ) : return self.listenPort def registerListener( self, name, connection ) : conn = self.listeners.setdefault( name, connection ) return conn is connection def unregisterListener( self, name ) : del self.listeners[name] def getListener( self, name ) : return self.listeners.get( name, None ) def _onNewConnection( self, sock ) : AppletConnection( sock, self.reactor, self ) def _findProgram( self, relPath ) : dirList = os.environ.get( 'PATH', '' ).split( ';' ) for d in dirList : p = os.path.join( d, relPath ) if os.path.isfile(p) : return p return relPath def _runCommand( self, command, envNew ) : env = dict( os.environ.items() ) env.update( envNew ) cmdLine = [_substituteMetaVars(x) for x in command] p = os.path.join( getAppDir(), cmdLine[0] ) if not os.path.isfile(p) : p = self._findProgram( cmdLine[0] ) args = [p] + cmdLine[1:] startingDir = os.getcwd() result = spawnProcess( p, args, env, startingDir, 0 ) if not result : print 'error starting command (%s)' % p def _onService( self, service, command, sslConn, peerKey, contactName, incomingName ) : print '_onService( service=%s command=%s from=(%s,%s) )' % ( service, command, contactName, incomingName ) connectionId = self.incoming.addIncoming( sslConn, peerKey ) env = {} env['CSPACE_PORT'] = str(self.listenPort) env['CSPACE_USER'] = self.session.getProfile().name env['CSPACE_EVENT'] = 'INCOMING' env['CSPACE_SERVICE'] = service env['CSPACE_CONNECTIONID'] = connectionId env['CSPACE_CONTACTNAME'] = contactName env['CSPACE_INCOMINGNAME'] = incomingName self._runCommand( command, env ) def _onAction( self, actionDir, action, command, contactName ) : print '_onAction( actionDir=%s, action=%s, command=%s, contact=%s )' % ( actionDir, action, command, contactName ) env = {} env['CSPACE_PORT'] = str(self.listenPort) env['CSPACE_USER'] = self.session.getProfile().name env['CSPACE_EVENT'] = 'CONTACTACTION' env['CSPACE_CONTACTNAME'] = contactName env['CSPACE_ACTIONDIR'] = actionDir env['CSPACE_ACTION'] = action self._runCommand( command, env )
2.046875
2
trading_gym/envs/portfolio_gym/data_generator.py
zhaoshiying97/trading_gym
32
12786775
<reponame>zhaoshiying97/trading_gym<filename>trading_gym/envs/portfolio_gym/data_generator.py import numpy as np import pandas as pd import pdb class DataGeneratorDF(object): """input is a DataFrame with MultiIndex, considering Panal data structure is depreciated after pandas=0.24""" def __init__(self, data_df, sequence_window=2, add_cash=False, risk_free_return=0.0001): data_df = data_df.rename_axis(["order_book_id","datetime"]) self.data_df = data_df self.order_book_ids = list(data_df.index.levels[0]) self.trading_dates = list(data_df.index.levels[1]) self.number_feature = len(data_df.columns) -1 self.sequence_window = sequence_window self.add_cash = add_cash self.risk_free_return = risk_free_return def step(self): self.idx += 1 dt = self.trading_dates[self.idx-1] if dt == self.trading_dates[-1]: done = True else: done = False state, one_step_fwd_returns = self._step(dt) return state, one_step_fwd_returns, dt, done def _step(self, dt): idx = self.trading_dates.index(dt)+1 trading_dates_slice = self.trading_dates[idx - self.sequence_window: idx] total_state = self.data_df.loc[(self.order_book_ids, trading_dates_slice),:] #pdb.set_trace() # fillna to a balanced panel data total_state = total_state.unstack().stack(dropna=False) # state state = total_state.iloc[:,:self.number_feature] # one_step_fwd_returns one_step_fwd_returns = total_state.xs(dt, level="datetime").iloc[:,-1] one_step_fwd_returns.name = "returns at {}".format(dt) #pdb.set_trace() if self.add_cash: multi_index = pd.MultiIndex.from_tuples([("CASH", i) for i in trading_dates_slice]) df_cash = pd.DataFrame(1, index=multi_index, columns=state.columns) state = pd.concat([state, df_cash]) one_step_fwd_returns.loc["CASH"] = self.risk_free_return return state, one_step_fwd_returns def reset(self): self.idx = self.sequence_window first_date = self.trading_dates[self.idx-1] state, one_step_fwd_returns = self._step(first_date) return state class DataGeneratorNP(object): def __init__(self, data_np, order_book_ids, trading_dates, sequence_window=None, risk_free_return=0.0001): number_order_book_id, total_dates, num_feature = data_np.shape self.number_feature = num_feature self._data = data_np self.order_book_ids = order_book_ids self.trading_dates = trading_dates self.sequence_window = sequence_window self.risk_free_return= risk_free_return def step(self): self.steps += 1 self.idx = self.steps + self.sequence_window next_state = self._data[:,self.idx - self.sequence_window: self.idx, :self.number_feature-1] dt = self.trading_dates[self.idx-1] one_step_fwd_returns = self._data[:,self.idx-1, self.number_feature-1] one_step_fwd_returns = pd.Series(index=self.order_book_ids, data=one_step_fwd_returns) one_step_fwd_returns.loc["CASH"] = self.risk_free_return return next_state, one_step_fwd_returns, dt def reset(self): self.steps = 0 self.idx = self.steps + self.sequence_window dt = self.trading_dates[self.idx] #pdb.set_trace() state = self._data[:,self.idx - self.sequence_window: self.idx, :self.number_feature-1] return state if __name__ == "__main__": pass # order_book_ids = ["000001.XSHE","000002.XSHE"] # total_dates = 20 # number_feature = 4 # contain returns # sequence_window = 2 # # data = np.random.randn(len(order_book_ids),total_dates, number_feature) # # data_generator = DataGenerator(data_np=data, order_book_ids=order_book_ids,trading_dates=list(range(1,total_dates+1)),sequence_window=sequence_window) # # state = data_generator.reset() # next_state, one_step_fwd_returns, dt = data_generator.step()
2.921875
3
dsaii/views.py
khushi0205/DSAII
0
12786776
from django.shortcuts import render from django.views import View from django.views.generic import ListView, DetailView, CreateView from django.http import HttpResponseRedirect from .models import Post, Comments, Event, EveComm from django.urls import reverse_lazy, reverse from django.core.mail import send_mail from django.conf import settings import datetime from .forms import CommentForm, CF class Index(View): def get(self, request, *args, **kwargs): return render(request, 'index.html') class Quiz(View): def get(self, request, *args, **kwargs): return render(request, 'quiz.html') class Inaug(View): def get(self, request, *args, **kwargs): return render(request, 'inauguration.html') class CodHr(View): def get(self, request, *args, **kwargs): return render(request, 'codinghr.html') class Blogs(ListView): model = Post template_name = 'blogs.html' class Events(ListView): #model = Event #template_name = 'events.html' def get(self, request, *args, **kwargs): return render(request, 'events.html') class Eve(ListView): model = Event template_name = 'eve.html' class Article(DetailView): model = Post template_name = 'article.html' class Team(View): def get(self, request, *args, **kwargs): return render(request, 'about.html') class Login(View): def get(self, request, *args, **kwargs): return render(request, 'l1.html') class AddC(CreateView): model = Comments form_class = CommentForm template_name = 'addcomm.html' #fields = '__all__' def form_valid(self, form): form.instance.post_id = self.kwargs['pk'] return super().form_valid(form) succes_url = reverse_lazy('blogs') class EveC(CreateView): model = EveComm form_class = CF template_name = 'addcomm.html' # fields = '__all__' def form_valid(self, form): form.instance.post_id = self.kwargs['pk'] return super().form_valid(form) succes_url = reverse_lazy('events')
2.09375
2
mud/admin.py
lambda-mud-cs18/backend
1
12786777
<reponame>lambda-mud-cs18/backend<filename>mud/admin.py<gh_stars>1-10 from django.contrib import admin from .models import Player, PlayerInventory, Item, Team, Map, Room # Register your models here. admin.site.register(Player) admin.site.register(PlayerInventory) admin.site.register(Item) admin.site.register(Team) admin.site.register(Map) admin.site.register(Room)
1.601563
2
TranskribusDU/tasks/performCVLLA.py
Transkribus/TranskribusDU
20
12786778
# -*- coding: utf-8 -*- """ performCVLLA.py create profile for nomacs (CVL LA toolkit) <NAME> copyright Xerox 2017 READ project Developed for the EU project READ. The READ project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 674943. """ import sys, os sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(sys.argv[0])))) import glob import common.Component as Component from common.trace import traceln from xml_formats.PageXml import PageXml from xml_formats.PageXml import MultiPageXml from util.Polygon import Polygon from lxml import etree class LAProcessor(Component.Component): """ """ usage = "" version = "v.01" description = "description: Nomacs LA processor" if sys.platform == 'win32': cNomacs = '"C:\\Program Files\\READFramework\\bin\\nomacs.exe"' else: cNomacs = "/opt/Tools/src/tuwien-2017/nomacs/nomacs" cCVLLAProfile = """ [%%General] FileList="%s" OutputDirPath=%s FileNamePattern=<c:0>.<old> PluginBatch\LayoutPlugin\General\drawResults=false PluginBatch\LayoutPlugin\General\saveXml=true PluginBatch\LayoutPlugin\General\\useTextRegions=%s PluginBatch\LayoutPlugin\Layout Analysis Module\computeSeparators=true PluginBatch\LayoutPlugin\Layout Analysis Module\localBlockOrientation=false PluginBatch\LayoutPlugin\Layout Analysis Module\maxImageSide=3000 PluginBatch\LayoutPlugin\Layout Analysis Module\minSuperPixelsPerBlock=15 PluginBatch\LayoutPlugin\Layout Analysis Module\\removeWeakTextLines=true PluginBatch\LayoutPlugin\Layout Analysis Module\scaleMode=1 PluginBatch\LayoutPlugin\Super Pixel Classification\classifierPath= PluginBatch\LayoutPlugin\Super Pixel Labeler\\featureFilePath= PluginBatch\LayoutPlugin\Super Pixel Labeler\labelConfigFilePath= PluginBatch\LayoutPlugin\Super Pixel Labeler\maxNumFeaturesPerClass=10000 PluginBatch\LayoutPlugin\Super Pixel Labeler\maxNumFeaturesPerImage=1000000 PluginBatch\LayoutPlugin\Super Pixel Labeler\minNumFeaturesPerClass=10000 PluginBatch\pluginList=Layout Analysis | Layout Analysis SaveInfo\Compression=-1 SaveInfo\DeleteOriginal=false SaveInfo\InputDirIsOutputDir=true SaveInfo\Mode=2 PluginBatch\LayoutPlugin\Super Pixel Labeler\\featureFilePath= PluginBatch\LayoutPlugin\Layout Analysis Module\\removeWeakTextLines=true """ #PluginBatch\pluginList="Layout Analysis | Layout Analysis;Layout Analysis | Detect Lines" cCVLLASeparatorProfile=""" [%%General] FileList="%s" OutputDirPath=%s FileNamePattern=<c:0>.<old> SaveInfo\Compression=-1 SaveInfo\Mode=2 SaveInfo\DeleteOriginal=false SaveInfo\InputDirIsOutputDir=true PluginBatch\pluginList=Layout Analysis | Detect Separator Lines PluginBatch\LayoutPlugin\General\\useTextRegions=false PluginBatch\LayoutPlugin\General\drawResults=false PluginBatch\LayoutPlugin\General\saveXml=true PluginBatch\LayoutPlugin\Super Pixel Labeler\\featureFilePath= PluginBatch\LayoutPlugin\Super Pixel Labeler\labelConfigFilePath= PluginBatch\LayoutPlugin\Super Pixel Labeler\maxNumFeaturesPerImage=1000000 PluginBatch\LayoutPlugin\Super Pixel Labeler\minNumFeaturesPerClass=10000 PluginBatch\LayoutPlugin\Super Pixel Labeler\maxNumFeaturesPerClass=10000 PluginBatch\LayoutPlugin\Super Pixel Classification\classifierPath= """ cCVLProfileTabReg =""" [%%General] FileList="%s" OutputDirPath="%s" FileNamePattern=<c:0>.<old> SaveInfo\Compression=-1 SaveInfo\Mode=2 SaveInfo\DeleteOriginal=false SaveInfo\InputDirIsOutputDir=true PluginBatch\pluginList=Forms Analysis | Apply template (Match) PluginBatch\FormAnalysis\FormFeatures\\formTemplate="%s" PluginBatch\FormAnalysis\FormFeatures\distThreshold=200 PluginBatch\FormAnalysis\FormFeatures\colinearityThreshold=20 PluginBatch\FormAnalysis\FormFeatures\\variationThresholdLower=0.5 PluginBatch\FormAnalysis\FormFeatures\\variationThresholdUpper=0.55 PluginBatch\FormAnalysis\FormFeatures\saveChilds=false """ # cCVLProfileTabReg =""" # [%%General] # FileList="%s" # OutputDirPath="%s" # FileNamePattern=<c:0>.<old> # SaveInfo\Compression=-1 # SaveInfo\Mode=2 # SaveInfo\DeleteOriginal=false # SaveInfo\InputDirIsOutputDir=true # PluginBatch\pluginList=Forms Analysis | Apply template (Match) # PluginBatch\FormAnalysis\FormFeatures\\formTemplate="%s" # PluginBatch\FormAnalysis\FormFeatures\distThreshold=200 # PluginBatch\FormAnalysis\FormFeatures\colinearityThreshold=20 # PluginBatch\FormAnalysis\FormFeatures\\variationThresholdLower=0.5 # PluginBatch\FormAnalysis\FormFeatures\\variationThresholdUpper=0.55 # PluginBatch\FormAnalysis\FormFeatures\saveChilds=false # """ #--- INIT ------------------------------------------------------------------------------------------------------------- def __init__(self): """ Always call first the Component constructor. """ Component.Component.__init__(self, "tableProcessor", self.usage, self.version, self.description) self.coldir = None self.docid= None self.bKeepRegion = False self.bKeepTL=False self.bTemplate = False self.bBaseLine = False self.bSeparator = False self.bRegularTextLine = False self.sTemplateFile = None self.xmlns='http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15' def setParams(self, dParams): """ Always call first the Component setParams Here, we set our internal attribute according to a possibly specified value (otherwise it stays at its default value) """ Component.Component.setParams(self, dParams) if "coldir" in dParams.keys(): self.coldir = dParams["coldir"].strip() if "docid" in dParams.keys(): self.docid = dParams["docid"].strip() # if dParams.has_key("bRegion"): # self.bKeepRegion = dParams["bRegion"] if "bTL" in dParams.keys(): self.bKeepTL = dParams["bTL"] if "bBaseline" in dParams.keys(): self.bBaseLine = dParams["bBaseline"] if "bSeparator" in dParams.keys(): self.bSeparator = dParams["bSeparator"] if "template" in dParams.keys(): self.bTemplate = dParams["template"] if "regTL" in dParams.keys(): self.bRegularTextLine = dParams["regTL"] if "templatefile" in dParams.keys(): self.sTemplateFile = dParams["templatefile"] self.bTemplate=True def reintegrateTextIntoCells(self,doc,lLTextLines=[]): """ from XMLDSTABLE """ def overlapX(zone1,zone2): [a1,a2] = zone1 #self.getX(),self.getX()+ self.getWidth() [b1,b2] = zone2 #zone.getX(),zone.getX()+ zone.getWidth() return min(a2, b2) >= max(a1, b1) def overlapY(zone1,zone2): [a1,a2] = zone1 #self.getY(),self.getY() + self.getHeight() [b1,b2] = zone2 #zone.getY(),zone.getY() + zone.getHeight() return min(a2, b2) >= max(a1, b1) def signedRatioOverlap(zone1,zone2): """ overlap self and zone return surface of self in zone """ [x1,y1,x12,y12] = zone1 #self.getX(),self.getY(),self.getHeight(),self.getWidth() [x2,y2,x22,y22] = zone2 #zone.getX(),zone.getY(),zone.getHeight(),zone.getWidth() w1,h1 = x12-x1,y12-y1 w2,h2 = x22-x2,y22-y2 fOverlap = 0.0 # print (x1,x12),(x2,x22) # print overlapX((x1,x12),(x2,x22)) # print (y1,y12),(y2,y22) # print overlapY((y1,y12),(y2,y22)) # if overlapX((x1,w1),(x2,w2)) and overlapY((y1,h1),(y2,h2)): if overlapX((x1,x12),(x2,x22)) and overlapY((y1,y12),(y2,y22)): [x11,y11,x12,y12] = [x1,y1,x1+w1,y1+h1] [x21,y21,x22,y22] = [x2,y2,x2+w2,y2+h2] s1 = w1 * h1 # possible ? if s1 == 0: s1 = 1.0 #intersection nx1 = max(x11,x21) nx2 = min(x12,x22) ny1 = max(y11,y21) ny2 = min(y12,y22) h = abs(nx2 - nx1) w = abs(ny2 - ny1) inter = h * w if inter > 0 : fOverlap = inter/s1 else: # if overX and Y this is not possible ! fOverlap = 0.0 return fOverlap def bestRegionsAssignment(plgtl,lRegions): """ find the best (max overlap for self) region for self """ lOverlap=[] for _,plg in lRegions: lOverlap.append(signedRatioOverlap(plgtl.getBoundingBox(),plg.getBoundingBox())) # print plgtl.getBoundingBox(), lOverlap if max(lOverlap) == 0: return None return lRegions[lOverlap.index(max(lOverlap))] lPages = PageXml.getChildByName(doc.getroot(),'Page') lRegionsToBeDeleted = [] for i, page in enumerate(lPages): if lLTextLines == []: lTextLines = PageXml.getChildByName(page,'TextLine') else: lTextLines =lLTextLines[i] lCells = PageXml.getChildByName(page,'TableCell') # print len(lCells),len(lTextLines) lOCells=[] for cell in lCells: #get Coords xpath = "./a:%s" % ("Coords") lCoords = cell.xpath(xpath,namespaces={"a": self.xmlns}) coord= lCoords[0] sPoints=coord.get('points') lsPair = sPoints.split(' ') lXY = list() for sPair in lsPair: (sx,sy) = sPair.split(',') lXY.append( (int(sx), int(sy)) ) plg = Polygon(lXY) lOCells.append((cell,plg)) # find the best assignment of each text for tl in lTextLines: #get Coords xpath = "./a:%s" % ("Coords") lCoords = tl.xpath(xpath,namespaces={"a": self.xmlns}) coord= lCoords[0] sPoints=coord.get('points') lsPair = sPoints.split(' ') lXY = list() for sPair in lsPair: (sx,sy) = sPair.split(',') lXY.append( (int(sx), int(sy)) ) plg = Polygon(lXY) cell = bestRegionsAssignment(plg,lOCells) if cell: c,_=cell lRegionsToBeDeleted.append(c.parent) ## what about parent TextRegion delete at least TextRegion/TextEquiv # tl.unlinkNode() tlcp = tl.docCopyNode(c.doc,True) # tlcp.unlinkNode() c.append(tlcp) # print c for region in lRegionsToBeDeleted: region.getParent().remove(region) # region.unlinkNode() # region.freeNode() def reinitPage(self,doc): """ empty page """ lNodes = PageXml.getChildByName(doc.getroot(),'Page') for node in lNodes: node.unlinkNode() def findTemplate(self,doc): """ find the page where the first TableRegion occurs and extract it """ from copy import deepcopy lT = PageXml.getChildByName(doc.getroot(),'TableRegion') if lT == []: return None firstTable=lT[0] # lazy guy! newDoc,fakepage = PageXml.createPageXmlDocument('NLE', '', 0,0) page=firstTable.getparent() fakepage.set("imageFilename",page.get('imageFilename')) fakepage.set("imageWidth",page.get('imageWidth')) fakepage.set("imageHeight",page.get('imageHeight')) page.getparent().remove(page) # add table xx =deepcopy(firstTable) fakepage.append(xx) return newDoc def createRegistrationProfile(self,sTemplatefile): # get all images files localpath = os.path.abspath("./%s/col/%s"%(self.coldir,self.docid)) l = glob.glob(os.path.join(localpath, "*.jpg")) l.sort() listfile = ";".join(l) listfile = listfile.replace(os.sep,"/") txt= LAProcessor.cCVLProfileTabReg % (listfile,localpath.replace(os.sep,"/"),os.path.abspath("%s"%(sTemplatefile)).replace(os.sep,"/")) # wb mandatory for crlf in windows prnfilename = "%s%s%s_reg.prn"%(self.coldir,os.sep,self.docid) f=open(prnfilename,'w', encoding="utf-8") f.write(txt) return prnfilename def createLinesProfile(self): """ OutputDirPath mandatory """ # get all images files localpath = os.path.abspath("./%s/col/%s"%(self.coldir,self.docid)) l = glob.glob(os.path.join(localpath, "*.jpg")) l.sort() listfile = ";".join(l) listfile = listfile.replace(os.sep,"/") localpath = localpath.replace(os.sep,'/') txt = LAProcessor.cCVLLASeparatorProfile % (listfile,localpath) # wb mandatory for crlf in windows prnfilename = "%s%s%s_gl.prn"%(self.coldir,os.sep,self.docid) f=open(prnfilename,'wb') f.write(txt) return prnfilename def createLAProfile(self): """ OutputDirPath mandatory """ # get all images files localpath = os.path.abspath("./%s/col/%s"%(self.coldir,self.docid)) l = glob.glob(os.path.join(localpath, "*.jpg")) l.sort() listfile = ";".join(l) listfile = listfile.replace(os.sep,"/") localpath = localpath.replace(os.sep,'/') txt = LAProcessor.cCVLLAProfile % (listfile,localpath,self.bKeepRegion) # print txt # wb mandatory for crlf in windows prnfilename = "%s%s%s_la.prn"%(self.coldir,os.sep,self.docid) f=open(prnfilename,'wb') f.write(txt) return prnfilename def storeMPXML(self,lFiles): """ store files in lFiles as mpxml """ docDir = os.path.join(self.coldir+os.sep+'col',self.docid) doc = MultiPageXml.makeMultiPageXml(lFiles) sMPXML = docDir+".mpxml" # print sMPXML doc.write(sMPXML,encoding="UTF-8",pretty_print=True,xml_declaration=True) # trace("\t\t- validating the MultiPageXml ...") # if not MultiPageXml.validate(doc): # traceln(" *** WARNING: XML file is invalid against the schema: '%s'"%self.outputFileName) # traceln(" Ok!") return doc, sMPXML def extractFileNamesFromMPXML(self,doc): """ to insure correct file order ! """ xmlpath=os.path.abspath("%s%s%s%s%s" % (self.coldir,os.sep,'col',os.sep,self.docid)) lNd = PageXml.getChildByName(doc.getroot(), 'Page') # for i in lNd:print i return list(map(lambda x:"%s%s%s.xml"%(xmlpath,os.sep,x.get('imageFilename')[:-4]), lNd)) def performLA(self,doc): """ # for document doc ## find the page where the template is ## store it as template (check borders)) ## generate profile for table registration ## (execution) ## create profile for lA ## (execution) """ # lNumPages = [] if self.bTemplate or self.bBaseLine or self.bSeparator: # extract list of files sorted as in MPXML lFullPathXMLNames = self.extractFileNamesFromMPXML(doc) nbPages = len(lFullPathXMLNames) ## 1 generate xml files if only pxml are there xmlpath=os.path.abspath(os.path.join (self.coldir,'col',self.docid)) lXMLNames = [ "%s%s%s"%(xmlpath,os.sep,name) for name in os.listdir(xmlpath) if os.path.basename(name)[-4:] =='.xml'] isXml = [] != lXMLNames if isXml: [ os.remove("%s%s%s"%(xmlpath,os.sep,name)) for name in os.listdir(xmlpath) if os.path.basename(name)[-4:] =='.xml'] isXml = False isPXml = [] != [ name for name in os.listdir(xmlpath) if os.path.basename(name)[-5:] =='.pxml'] assert not isXml and isPXml # recreate doc? (mpxml) lPXMLNames = [ name for name in os.listdir(xmlpath) if os.path.basename(name)[-5:] =='.pxml'] if not isXml: # copy pxml in xml for name in lPXMLNames: oldname = "%s%s%s" %(xmlpath,os.sep,name) newname = "%s%s%s" % (xmlpath,os.sep,name) newname = newname[:-5]+'.xml' tmpdoc = etree.parse(oldname) tmpdoc.write(newname,encoding="UTF-8", pretty_print=True,xml_declaration=True) if self.bKeepTL: # keep ltextLione lTextLines=[] lPages = PageXml.getChildByName(doc.getroot(),'Page') for page in lPages: lTextLines.append(PageXml.getChildByName(page,'TextLine')) ## Table registration if self.bTemplate: if self.sTemplateFile is None: templatePage = self.findTemplate(doc) if templatePage is None: traceln("No table found in this document: %s" % self.docid) else: oldOut= self.outputFileName self.outputFileName = "%s%s%s.templ.xml" % (self.coldir,os.sep,self.docid) stemplatefile = "%s%s%s.templ.xml" % (self.coldir,os.sep,self.docid) print (stemplatefile) self.writeDom(templatePage, True) self.outputFileName = oldOut prnregfilename= self.createRegistrationProfile(stemplatefile) else: # raise Exception, 'file template stuff: to be done' prnregfilename= self.createRegistrationProfile(self.sTemplateFile) job = LAProcessor.cNomacs+ " --batch %s"%(prnregfilename) os.system(job) traceln('table registration done: %s'% prnregfilename) ## separator detection if self.bSeparator: prnglfilename = self.createLinesProfile() job = LAProcessor.cNomacs+ " --batch %s"%(prnglfilename) os.system(job) traceln( 'GL done: %s' % prnglfilename) ## baseline detection if self.bBaseLine: prnlafilename = self.createLAProfile() # job = LAProcessor.cNomacs+ " --batch %s"%(prnlafilename) job = LAProcessor.cNomacsold+ " --batch %s"%(prnlafilename) os.system(job) traceln('LA done: %s' % prnlafilename) if self.bTemplate or self.bBaseLine or self.bSeparator: doc, sMPXML= self.storeMPXML(lFullPathXMLNames) # Does not work with URO LA! if self.bKeepTL: self.reintegrateTextIntoCells(doc,lTextLines) ## text rectangles as textline region if self.bRegularTextLine: self.regularTextLines(doc) doc.write(sMPXML,encoding="UTF-8",pretty_print=True,xml_declaration=True) return doc, nbPages def regularTextLinesold(self,doc): """ from a baseline: create a regular TextLine: also: for slanted baseline: """ from shapely.geometry import LineString from shapely.affinity import translate self.xmlns='http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15' lTextLines = PageXml.getChildByName(doc.getroot(),'TextLine') for tl in lTextLines: #get Coords xpath = "./a:%s" % ("Coords") lCoords = tl.xpath(xpath,namespaces={"a": self.xmlns}) coord= lCoords[0] xpath = "./a:%s" % ("Baseline") lBL = tl.xpath(xpath,namespaces={"a": self.xmlns}) baseline = lBL[0] sPoints=baseline.get('points') lsPair = sPoints.split(' ') lXY = list() for sPair in lsPair: try: (sx,sy) = sPair.split(',') lXY.append( (int(sx), int(sy)) ) except ValueError:print (tl) plg = Polygon(lXY) line=LineString(lXY) # 50 seems to large: the manual GT is 30 ? not always! iHeight = 30 # in pixel x1,y1, x2,y2 = plg.getBoundingBox() if coord is not None: coord.set('points',"%d,%d %d,%d %d,%d %d,%d" % (x1,y1-iHeight,x2,y1-iHeight,x2,y2,x1,y2)) else: print (tl) def regularTextLines(self,doc): """ from a baseline: create a regular TextLine: """ from shapely.geometry import LineString from shapely.affinity import translate self.xmlns='http://schema.primaresearch.org/PAGE/gts/pagecontent/2013-07-15' lTextLines = PageXml.getChildByName(doc.getroot(),'TextLine') for tl in lTextLines: #get Coords xpath = "./a:%s" % ("Coords") lCoords = tl.xpath(xpath,namespaces={"a": self.xmlns}) coord= lCoords[0] xpath = "./a:%s" % ("Baseline") lBL = tl.xpath(xpath,namespaces={"a": self.xmlns}) try:baseline = lBL[0] except IndexError:continue sPoints=baseline.get('points') lsPair = sPoints.split(' ') lXY = list() for sPair in lsPair: try: (sx,sy) = sPair.split(',') lXY.append( (int(sx), int(sy)) ) except ValueError:print (tl) #plg = Polygon(lXY) try: line=LineString(lXY) except ValueError: continue # LineStrings must have at least 2 coordinate tuples topline=translate(line,yoff=-20) #iHeight = 20 # in pixel #x1,y1, x2,y2 = topline.getBoundingBox() if coord is not None: spoints = ' '.join("%s,%s"%(int(x[0]),int(x[1])) for x in line.coords) lp=list(topline.coords) lp.reverse() spoints =spoints+ ' ' +' '.join("%s,%s"%(int(x[0]),int(x[1])) for x in lp) #spoints = ' '.join("%s,%s"%(x[0],x[1]) for x in pp.coords) #coord.set('points',"%d,%d %d,%d %d,%d %d,%d" % (x1,y1-iHeight,x2,y1-iHeight,x2,y2,x1,y2)) coord.set('points',spoints) else: print (tl) # print tl def run(self,doc): """ GT from TextRegion or GT from Table input mpxml (GT) delete TextLine """ if not (self.bTemplate or self.bBaseLine or self.bSeparator) and self.bRegularTextLine: self.regularTextLines(doc) self.writeDom(doc, True) else: doc,nbpages = self.performLA(doc) return doc if __name__ == "__main__": # for each document ## find the page where the template is ## store it as template (check borders)) ## generate profile for table registration ## (execution) ## create profile for lA ## (execution) tp = LAProcessor() #prepare for the parsing of the command line tp.createCommandLineParser() tp.add_option("--coldir", dest="coldir", action="store", type="string", help="collection folder") tp.add_option("--docid", dest="docid", action="store", type="string", help="document id") tp.add_option("--bl", dest="bBaseline", action="store_true", default=False, help="detect baselines") # tp.add_option("--region", dest="bRegion", action="store_true", default=False, help="keep Region") tp.add_option("--tl", dest="bTL", action="store_true", default=False, help="keep textlines") tp.add_option("--sep", dest="bSeparator", action="store_true", default=False, help="detect separator (graphical lines)") tp.add_option("--regTL", dest="regTL", action="store_true", default=False, help="generate regular TextLines") tp.add_option("--form", dest="template", action="store_true", default=False, help="perform template registration") tp.add_option("--formfile", dest="templatefile", action="store", type='string', default=None,help="use this template file (pagexml) for registration") #tp.add_option("--form", dest="template", action="store", type="string", help="perform template registration") #parse the command line dParams, args = tp.parseCommandLine() #Now we are back to the normal programmatic mode, we set the componenet parameters tp.setParams(dParams) doc = tp.loadDom() tp.run(doc)
1.625
2
tests/pert_test.py
EnricaBelfiore/sandy
30
12786779
import pytest from io import StringIO import numpy as np import pandas as pd import sandy __author__ = "<NAME>" ##################### # Test initialization ##################### def test_from_file_1_column(): vals = '1\n5\n9' file = StringIO(vals) with pytest.raises(Exception): sandy.Pert.from_file(file) def test_from_file_non_monotonic(): vals = '1 1\n6 5\n5 2\n9 3' file = StringIO(vals) with pytest.raises(Exception): sandy.Pert.from_file(file) @pytest.fixture(scope="module") def pert3(): vals = '1 1 5\n5 2 1\n9 3 1' file = StringIO(vals) return sandy.Pert.from_file(file) def test_from_file_3_columns(pert3): # should try and catch the warning pass def test_init_with_series(pert3): pert = sandy.Pert(pert3.right) assert pert.data.equals(pert3.data) def test_init_with_dataframe(pert3): with pytest.raises(Exception): sandy.Pert(pert3.right.to_frame()) def test_init_with_intervalindex(pert3): pert = sandy.Pert(pert3.data) assert pert.data.equals(pert3.data) ################################ # Test initialization attributes ################################ def test_Pert_type(pert3): assert isinstance(pert3, sandy.Pert) def test_Pert_data_index_type(pert3): assert isinstance(pert3.data.index, pd.IntervalIndex) def test_Pert_data_index_right_values(pert3): assert pert3.data.index.right.tolist() == [1, 5, 9] def test_Pert_data_index_left_values(pert3): assert pert3.data.index.left.tolist() == [0, 1, 5] def test_Pert_data_index_float(pert3): assert pert3.data.index.right.values.dtype == float def test_Pert_data_values(pert3): np.testing.assert_array_equal(pert3.data.values, [1,2,3]) def test_Pert_data_values_float(pert3): assert pert3.data.values.dtype == float ######################## # Test attributes ######################## ######################## # Test methods ######################## # def test_Spectrum_selfreshape(spec_const): # S = spec_const.reshape(spec_const.right.index) # assert np.allclose(S.data.values,spec_const.data.values) # @pytest.mark.parametrize("eg, flux", # [ # ([30], 500), # ([6e-12], 0.6), # ([5e-12], 0.5), # ([4e-12], 0.4), # ([1e-11], 1), # ([18.896380829766173], 499), # ([1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e0, 1e1, 20], 500), # ] # ) # def test_Spectrum_reshape(spec_const, eg, flux): # S = spec_const.reshape(eg) # assert S.right.index.tolist() == eg # assert S.flux == pytest.approx(flux) # @pytest.mark.parametrize("eg, err, errtype", # [ # ([2, 1], True, ValueError), # ([2, 2], False, None), # ([-1, 2], True, ValueError), # ] # ) # def test_Spectrum_reshape_error(spec_const, eg, err, errtype): # if err: # with pytest.raises(errtype): # spec_const.reshape(eg) # else: # spec_const.reshape(eg)
2.140625
2
sect/core/trapezoidal/edge.py
lycantropos/sect
17
12786780
from ground.base import (Context, Orientation) from ground.hints import Point from reprit.base import generate_repr class Edge: @classmethod def from_endpoints(cls, left: Point, right: Point, interior_to_left: bool, context: Context) -> 'Edge': """Constructs edge given its endpoints.""" return cls(left, right, interior_to_left, context) __slots__ = 'context', 'interior_to_left', 'left', 'right' def __init__(self, left: Point, right: Point, interior_to_left: bool, context: Context) -> None: assert left < right, 'Incorrect endpoints order' self.context, self.interior_to_left, self.left, self.right = ( context, interior_to_left, left, right) def __lt__(self, other: 'Edge') -> bool: """Checks if the edge is lower than the other.""" other_left_orientation = self.orientation_of(other.left) other_right_orientation = self.orientation_of(other.right) if other_left_orientation is other_right_orientation: return other_left_orientation is Orientation.COUNTERCLOCKWISE elif other_left_orientation is Orientation.COLLINEAR: return other_right_orientation is Orientation.COUNTERCLOCKWISE left_orientation = other.orientation_of(self.left) right_orientation = other.orientation_of(self.right) if left_orientation is right_orientation: return left_orientation is Orientation.CLOCKWISE elif left_orientation is Orientation.COLLINEAR: return right_orientation is Orientation.CLOCKWISE elif other_right_orientation is Orientation.COLLINEAR: return other_left_orientation is Orientation.COUNTERCLOCKWISE else: return (left_orientation is Orientation.CLOCKWISE if right_orientation is Orientation.COLLINEAR # crossing edges are incomparable else NotImplemented) __repr__ = generate_repr(__init__) def orientation_of(self, point: Point) -> Orientation: """Returns orientation of the point relative to the edge.""" return self.context.angle_orientation(self.left, self.right, point)
3.234375
3
asset_app/urls.py
jameskomo/asset-management-system
3
12786781
<gh_stars>1-10 from django.urls import path from django.conf.urls import url from .views import ( AssetsListView, AssetsDetailView, AssetsCreateView, AssetsUpdateView, AssetsDeleteView, ) from . import views urlpatterns = [ path('', AssetsListView.as_view(), name='assets_app_home'), path('assets/<int:pk>/', AssetsDetailView.as_view(), name='assets-detail'), path('assets/new/', AssetsCreateView.as_view(), name='assets-create'), path('assets/<int:pk>/update/', AssetsUpdateView.as_view(), name='assets-update'), path('assets/<int:pk>/delete/', AssetsDeleteView.as_view(), name='assets-delete'), path('about/', views.about, name='asset_app-about'), url(r'^searchassets/$', views.assetssearch, name='assetssearch'), ]
1.851563
2
src/areas_determination.py
joeyzhong90595/Robotic_Poker_Dealer
2
12786782
<filename>src/areas_determination.py<gh_stars>1-10 #!/usr/bin/env python import numpy as np import matplotlib.image as mpimg import matplotlib.pyplot as plt import pcl from sensor_msgs.msg import PointCloud # Extra points from point cloud according to indices def extra_pc(pc, indices): coord = [] for index in indices: coord.append(list(pc[index])) array = np.array(coord, dtype='float32') pc = pcl.PointCloud(array) return pc # Pass through pc filter def pass_through(pc, field="z", range=[0,3]): pass_fil = pc.make_passthrough_filter() pass_fil.set_filter_field_name(field) pass_fil.set_filter_limits(range[0], range[1]) return pass_fil.filter() # Down sampling point clouds def down_sampling(pc, leaf_size=[0.03, 0.03, 0.03]): sor = pc.make_voxel_grid_filter() sor.set_leaf_size(leaf_size[0], leaf_size[1], leaf_size[2]) return sor.filter() # Point cloud plane detection def plane_detection(pc, k=50, optimize=True, model=pcl.SACMODEL_NORMAL_PLANE, method=pcl.SAC_RANSAC, dis_threshold=0.01, normal_weight=0.01, iteration=100): seg = pc.make_segmenter_normals(ksearch=k) seg.set_optimize_coefficients(optimize) seg.set_model_type(model) seg.set_method_type(method) seg.set_distance_threshold(dis_threshold) seg.set_normal_distance_weight(normal_weight) seg.set_max_iterations(iteration) indices, coefficients = seg.segment() if len(indices) == 0: print('Could not estimate a planar model for the given dataset.') exit(0) return indices, coefficients # Outlier filter def outlier_fil(pc, mean=50, sdv=1): outlier_fil = pc.make_statistical_outlier_filter() outlier_fil.set_mean_k(mean) outlier_fil.set_std_dev_mul_thresh(sdv) return outlier_fil.filter() # Get homogeneous matrix from point o, x, y def get_homogeneous(o, x, y): # Origin coordinate x0 = np.array([1, 0, 0]) y0 = np.array([0, 1, 0]) z0 = np.array([0, 0, 1]) # New coordinate x1 = (x-o) / np.linalg.norm(x-o) y1 = (y-o) / np.linalg.norm(y-o) z1 = np.cross(x1,y1) # Transform homogeneous matrix homo = np.array([[np.dot(x1,x0), np.dot(y1,x0), np.dot(z1,x0), o[0]], [np.dot(x1,y0), np.dot(y1,y0), np.dot(z1,y0), o[1]], [np.dot(x1,z0), np.dot(y1,z0), np.dot(z1,z0), o[2]], [0, 0, 0, 1]]) return homo # Main def det_areas(rgb_image, pc2, loc): ''' Return player side information and displacement in table coordinate :param rbg_image: rbg kinect image :param pc2: point cloud :param loc: players' location in image :return: A list consisting of player's side and player's displacement in table coordinate of each player ''' # Find The Table # Pass through the far away points passed_pc = pass_through(pc2) # Down sampling to simplify calculation sored_pc = down_sampling(passed_pc) # Find plane indices, coefficients = plane_detection(sored_pc) # Extra plane plane_pc = extra_pc(sored_pc, indices) # Filte outlier table_pc = outlier_fil(plane_pc) # Determine Table Coordinate # Sort the points array_table = table_pc.to_array() z_array = array_table[array_table[:,2].argsort()] # sort according to z x_array = array_table[array_table[:,0].argsort()] # sort according to x # Use some samples to determine corners num_sample = 3 top_corner = np.zeros(3) left_corner = np.zeros(3) right_corner = np.zeros(3) for i in range(num_sample): top_corner += z_array[-(i+1)] left_corner += x_array[i] right_corner += x_array[-(i+1)] top_corner /= num_sample left_corner /= num_sample right_corner /= num_sample # Calculate homogeneous matrix homo_matrix = get_homogeneous(top_corner, left_corner, right_corner) ''' # For debugging from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(array_table[:,0], array_table[:,1], array_table[:,2], zdir='z', c='black') ax.scatter(top_corner[0], top_corner[1], top_corner[2], zdir='z', c='red') ax.scatter(left_corner[0], left_corner[1], left_corner[2], zdir='z', c='red') ax.scatter(right_corner[0], right_corner[1], right_corner[2], zdir='z', c='red') ''' # Determine Player Location in Table Coordinate players_info = [] # load each player for player_loc in loc: # Player Info Container # First element decides where the player is # Second element decides the displacement between the player and the origin info = [] # See whether the player is sitting on the left or right if player_loc[3] < 470: info.append(2) # 2 represents left else: info.append(1) # 1 represents right # Get Facial Points in world coordinates face_index = [] # Calculate face coordinate for y in range(player_loc[0], player_loc[2]+1): for x in range(player_loc[3], player_loc[1]+1): face_index.append(y*len(rgb_image[0]) + x) # Extra face points pc_face = extra_pc(pc2, face_index) # Pass through the far away points passed_face = pass_through(pc_face) # Down sampling to simplify calculation sored_face = down_sampling(passed_face) # Perform a outlier filter filtered_face = outlier_fil(sored_face) # Calculate player location face_loc = filtered_face # Calculate Displacement in New Coordinate # Take the average coord as player location array_face = face_loc.to_array() face_camera_coord = np.average(array_face, axis=0) # Transform from camera coordinate to table coordinate face_table_coord = np.dot(np.linalg.inv(homo_matrix), np.append(face_camera_coord, 1)) # The displacement information if info[0] == 1: displacement = face_table_coord[1] else: displacement = face_table_coord[0] info.append(int(displacement*1000)) # Save result players_info.append(info) ''' # For debugging ax.scatter(face_camera_coord[0], face_camera_coord[1], face_camera_coord[2], zdir='z', c= 'yellow') ax.scatter(array_face[:,0], array_face[:,1], array_face[:,2], zdir='z', c= 'orange') plt.show() # For debugging ''' players_arr = np.array(players_info) index = np.lexsort((players_arr[:,1], players_arr[:,0])) players_info = players_arr[index].tolist() return players_info if __name__ == "__main__": from player_recognition import face_rec import os # load image rbg_image_path = os.path.join(os.path.dirname(__file__),"../data/test_rgb.jpg") rbg_image = mpimg.imread(rbg_image_path) pcl_path = os.path.join(os.path.dirname(__file__),"../data/test.pcd") pc2 = pcl.load(pcl_path) # detect areas loc = face_rec(rbg_image) infos = det_areas(rbg_image, pc2, loc) # show result for info in infos: print ["Player side:", info[0], "Player displacement:", info[1]]
2.328125
2
18f/prac2/aah.py
willzhang05/icpc-practice
0
12786783
<filename>18f/prac2/aah.py a = input() b = input() print("go" if len(b) <= len(a) else "no")
3.21875
3
nodenet/python/nodenet/trainingsessions/__init__.py
NOOXY-research/NodeNet
2
12786784
<gh_stars>1-10 # Create alias from nodenet.trainingsessions.batch import * from nodenet.trainingsessions.online import *
0.957031
1
broker/plugins/spark_sahara/plugin.py
alessandroliafook/bigsea-manager
3
12786785
<reponame>alessandroliafook/bigsea-manager<filename>broker/plugins/spark_sahara/plugin.py # Copyright (c) 2017 UFCG-LSD. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os import subprocess import time import threading import uuid import math from broker import exceptions as ex from broker.utils.openstack import connector as os_connector from broker.plugins import base from broker.service import api from broker.utils import hdfs from broker.utils.framework import monitor from broker.utils.framework import optimizer from broker.utils import remote from broker.utils.framework import controller from broker.utils import spark from broker.utils.logger import Log, configure_logging from saharaclient.api.base import APIException as SaharaAPIException from broker.utils.ids import ID_Generator from broker.plugins.base import GenericApplicationExecutor plugin_log = Log("Sahara_Plugin", "logs/sahara_plugin.log") application_time_log = Log("Application_Time", "logs/application_time.log") instances_log = Log("Instances", "logs/instances.log") configure_logging() class OpenStackSparkApplicationExecutor(GenericApplicationExecutor): def __init__(self, app_id): self.application_state = "None" self.state_lock = threading.RLock() self.application_time = -1 self.start_time = -1 self.app_id = app_id self._verify_existing_log_paths(app_id) self._clean_log_files(app_id) self.running_log = Log("Running_Application_%s" % app_id, "logs/apps/%s/execution" % app_id) self.stdout = Log("stdout_%s" % app_id, "logs/apps/%s/stdout" % app_id) self.stderr = Log("stderr_%s" % app_id, "logs/apps/%s/stderr" % app_id) def get_application_state(self): with self.state_lock: state = self.application_state return state def update_application_state(self, state): with self.state_lock: self.application_state = state def get_application_execution_time(self): return self.application_time def get_application_start_time(self): return self.start_time def start_application(self, data, spark_applications_ids, app_id): try: self.update_application_state("Running") # Broker Parameters cluster_id = None user = api.user password = <PASSWORD> project_id = api.project_id auth_ip = api.auth_ip domain = api.domain public_key = api.public_key key_path = api.key_path log_path = api.log_path container = api.container hosts = api.hosts remote_hdfs = api.remote_hdfs swift_logdir = api.swift_logdir number_of_attempts = api.number_of_attempts dummy_opportunistic = api.dummy_opportunistic # User Request Parameters net_id = data['net_id'] master_ng = data['master_ng'] slave_ng = data['slave_ng'] op_slave_ng = data['opportunistic_slave_ng'] opportunism = str(data['opportunistic']) plugin = data['openstack_plugin'] percentage = int(data['percentage']) job_type = data['job_type'] version = data['version'] args = data['args'] main_class = data['main_class'] dependencies = data['dependencies'] job_template_name = data['job_template_name'] job_binary_name = data['job_binary_name'] job_binary_url = data['job_binary_url'] image_id = data['image_id'] monitor_plugin = data['monitor_plugin'] expected_time = data['expected_time'] collect_period = data['collect_period'] number_of_jobs = data['number_of_jobs'] image_id = data['image_id'] starting_cap = data['starting_cap'] # Optimizer Parameters app_name = data['app_name'] days = 0 if app_name.lower() == 'bulma': if 'days' in data.keys(): days = data['days'] else: self._log("""%s | 'days' parameter missing""" % (time.strftime("%H:%M:%S"))) raise ex.ConfigurationError() # Openstack Components connector = os_connector.OpenStackConnector(plugin_log) sahara = connector.get_sahara_client(user, password, project_id, auth_ip, domain) swift = connector.get_swift_client(user, password, project_id, auth_ip, domain) nova = connector.get_nova_client(user, password, project_id, auth_ip, domain) # Optimizer gets the vcpu size of flavor cores_per_slave = connector.get_vcpus_by_nodegroup(nova, sahara, slave_ng) cores, vms = optimizer.get_info(api.optimizer_url, expected_time, app_name, days) if cores <= 0: if 'cluster_size' in data.keys(): req_cluster_size = data['cluster_size'] else: self._log("""%s | 'cluster_size' parameter missing""" % (time.strftime("%H:%M:%S"))) raise ex.ConfigurationError() else: req_cluster_size = int(math.ceil(cores/float(cores_per_slave))) # Check Oportunism if opportunism == "True": self._log("""%s | Checking if opportunistic instances are available""" % (time.strftime("%H:%M:%S"))) pred_cluster_size = optimizer.get_cluster_size( api.optimizer_url, hosts, percentage, dummy_opportunistic) else: pred_cluster_size = req_cluster_size if pred_cluster_size > req_cluster_size: cluster_size = pred_cluster_size else: cluster_size = req_cluster_size self._log("%s | Cluster size: %s" % (time.strftime("%H:%M:%S"), str(cluster_size))) self._log("%s | Creating cluster..." % (time.strftime("%H:%M:%S"))) cluster_id = self._create_cluster(sahara, connector, req_cluster_size, pred_cluster_size, public_key, net_id, image_id, plugin, version, master_ng, slave_ng, op_slave_ng) self._log("%s | Cluster id: %s" % (time.strftime("%H:%M:%S"), cluster_id)) swift_path = self._is_swift_path(args) if cluster_id: master = connector.get_master_instance( sahara, cluster_id)['internal_ip'] self._log("%s | Master is %s" % (time.strftime("%H:%M:%S"), master)) workers = connector.get_worker_instances(sahara, cluster_id) workers_id = [] for worker in workers: workers_id.append(worker['instance_id']) self._log("%s | Configuring controller" % (time.strftime("%H:%M:%S"))) controller.setup_environment(api.controller_url, workers_id, starting_cap, data) if swift_path: job_status = self._swift_spark_execution( master, key_path, sahara, connector, job_binary_name, job_binary_url, user, password, job_template_name, job_type, plugin, cluster_size, args, main_class, cluster_id, spark_applications_ids, workers_id, app_id, expected_time, monitor_plugin, collect_period, number_of_jobs, log_path, swift, container, data, number_of_attempts) else: job_status = self._hdfs_spark_execution( master, remote_hdfs, key_path, args, job_binary_url, main_class, dependencies, spark_applications_ids, expected_time, monitor_plugin, collect_period, number_of_jobs, workers_id, data, connector, swift, swift_logdir, container, number_of_attempts) else: # FIXME: exception type self.update_application_state("Error") raise ex.ClusterNotCreatedException() # Delete cluster self._log("%s | Delete cluster: %s" % (time.strftime("%H:%M:%S"), cluster_id)) connector.delete_cluster(sahara, cluster_id) self._log("%s | Finished application execution" % (time.strftime("%H:%M:%S"))) return job_status except KeyError as ke: self._log("%s | Parameter missing in submission: %s, " "please check the config file" % (time.strftime("%H:%M:%S"), str(ke))) self._log("%s | Finished application execution with error" % (time.strftime("%H:%M:%S"))) self.update_application_state("Error") except ex.ConfigurationError as ce: self._log("%s | Finished application execution with error" % (time.strftime("%H:%M:%S"))) self.update_application_state("Error") except SaharaAPIException as se: self._log("%s | There is not enough resource to create a cluster" % (time.strftime("%H:%M:%S"))) self._log("%s | Finished application execution with error" % (time.strftime("%H:%M:%S"))) self.update_application_state("Error") except Exception as e: if cluster_id is not None: self._log("%s | Delete cluster: %s" % (time.strftime("%H:%M:%S"), cluster_id)) connector.delete_cluster(sahara, cluster_id) self._log("%s | Unknown error, please report to administrators " "of WP3 infrastructure" % (time.strftime("%H:%M:%S"))) self._log("%s | Finished application execution with error" % (time.strftime("%H:%M:%S"))) self.update_application_state("Error") def get_application_time(self): return self.application_time def _get_job_binary_id(self, sahara, connector, job_binary_name, job_binary_url, user, password): extra = dict(user=user, password=password) job_binary_id = connector.get_job_binary(sahara, job_binary_url) if not job_binary_id: job_binary_id = connector.create_job_binary(sahara, job_binary_name, job_binary_url, extra) return job_binary_id def _get_job_template_id(self, sahara, connector, mains, job_template_name, job_type): job_template_id = connector.get_job_template(sahara, mains) if not job_template_id: job_template_id = connector.create_job_template(sahara, job_template_name, job_type, mains) return job_template_id def _wait_on_job_finish(self, sahara, connector, job_exec_id, spark_app_id): completed = failed = False start_time = datetime.datetime.now() self.start_time = time.mktime(start_time.timetuple()) while not (completed or failed): job_status = connector.get_job_status(sahara, job_exec_id) self._log("%s | Sahara current job status: %s" % (time.strftime("%H:%M:%S"), job_status)) if job_status == 'RUNNING': time.sleep(2) current_time = datetime.datetime.now() current_job_time = (current_time - start_time).total_seconds() if current_job_time > 3600: self._log("%s | Job execution killed due to inactivity" % time.strftime("%H:%M:%S")) job_status = 'TIMEOUT' completed = connector.is_job_completed(job_status) failed = connector.is_job_failed(job_status) end_time = datetime.datetime.now() total_time = end_time - start_time application_time_log.log("%s|%.0f|%.0f" % ( spark_app_id, float(time.mktime(start_time.timetuple())), float(total_time.total_seconds()))) self.application_time = total_time.total_seconds() self._log("%s | Sahara job took %s seconds to execute" % (time.strftime("%H:%M:%S"), str(total_time.total_seconds()))) return job_status def _create_cluster(self, sahara, connector, req_cluster_size, pred_cluster_size, public_key, net_id, image_id, plugin, version, master_ng, slave_ng, op_slave_ng): self._log('Creating cluster') try: cluster_id = connector.create_cluster(sahara, req_cluster_size, pred_cluster_size, public_key, net_id, image_id, plugin, version, master_ng, slave_ng, op_slave_ng) except SaharaAPIException: raise SaharaAPIException('Could not create clusters') return cluster_id def _is_swift_path(self, args): for arg in args: if arg.startswith('hdfs://') or arg.startswith('swift://'): if arg.startswith('swift://'): return True else: return False def _swift_spark_execution(self, master, key_path, sahara, connector, job_binary_name, job_binary_url, user, password, job_template_name, job_type, plugin, cluster_size, args, main_class, cluster_id, spark_applications_ids, workers_id, app_id, expected_time, monitor_plugin, collect_period, number_of_jobs, log_path, swift, container, data, number_of_attempts): # Preparing job job_binary_id = self._get_job_binary_id(sahara, connector, job_binary_name, job_binary_url, user, password) mains = [job_binary_id] job_template_id = self._get_job_template_id(sahara, connector, mains, job_template_name, job_type) self._log("%s | Starting job..." % (time.strftime("%H:%M:%S"))) # Running job configs = os_utils.get_job_config(connector, plugin, cluster_size, user, password, args, main_class) job = connector.create_job_execution(sahara, job_template_id, cluster_id, configs=configs) self._log("%s | Created job" % (time.strftime("%H:%M:%S"))) spark_app_id = spark.get_running_app(master, spark_applications_ids, number_of_attempts) spark_applications_ids.append(spark_app_id) self._log("%s | Spark app id" % (time.strftime("%H:%M:%S"))) job_exec_id = job.id for worker_id in workers_id: instances_log.log("%s|%s" % (app_id, worker_id)) job_status = connector.get_job_status(sahara, job_exec_id) self._log("%s | Sahara job status: %s" % (time.strftime("%H:%M:%S"), job_status)) info_plugin = {"spark_submisson_url": "http://" + master, "expected_time": expected_time, "number_of_jobs": number_of_jobs} self._log("%s | Starting monitor" % (time.strftime("%H:%M:%S"))) monitor.start_monitor(api.monitor_url, spark_app_id, monitor_plugin, info_plugin, collect_period) self._log("%s | Starting controller" % (time.strftime("%H:%M:%S"))) controller.start_controller(api.controller_url, spark_app_id, workers_id, data) job_status = self._wait_on_job_finish(sahara, connector, job_exec_id, app_id) self._log("%s | Stopping monitor" % (time.strftime("%H:%M:%S"))) monitor.stop_monitor(api.monitor_url, spark_app_id) self._log("%s | Stopping controller" % (time.strftime("%H:%M:%S"))) controller.stop_controller(api.controller_url, spark_app_id) spark_applications_ids.remove(spark_app_id) self._log("Finished application execution") if connector.is_job_completed(job_status): self.update_application_state("OK") if connector.is_job_failed(job_status): self.update_application_state("Error") return job_status def _hdfs_spark_execution(self, master, remote_hdfs, key_path, args, job_bin_url, main_class, dependencies, spark_applications_ids, expected_time, monitor_plugin, collect_period, number_of_jobs, workers_id, data, connector, swift, swift_logdir, container, number_of_attempts): job_exec_id = str(uuid.uuid4())[0:7] self._log("%s | Job execution ID: %s" % (time.strftime("%H:%M:%S"), job_exec_id)) # Defining params local_path = '/tmp/spark-jobs/' + job_exec_id + '/' remote_path = 'ubuntu@' + master + ':' + local_path job_input_paths, job_output_path, job_params = ( hdfs.get_job_params(key_path, remote_hdfs, args)) job_binary_path = hdfs.get_path(job_bin_url) # Create temporary job directories self._log("%s | Create temporary job directories" % (time.strftime("%H:%M:%S"))) self._mkdir(local_path) # Create cluster directories self._log("%s | Creating cluster directories" % (time.strftime("%H:%M:%S"))) remote.execute_command(master, key_path, 'mkdir -p %s' % local_path) # Get job binary from hdfs self._log("%s | Get job binary from hdfs" % (time.strftime("%H:%M:%S"))) remote.copy_from_hdfs(master, key_path, remote_hdfs, job_binary_path, local_path) # Enabling event log on cluster self._log("%s | Enabling event log on cluster" % (time.strftime("%H:%M:%S"))) self._enable_event_log(master, key_path, local_path) # Submit job self._log("%s | Starting job" % (time.strftime("%H:%M:%S"))) local_binary_file = (local_path + remote.list_directory(key_path, master, local_path)) spark_job = self._submit_job(master, key_path, main_class, dependencies, local_binary_file, args) spark_app_id = spark.get_running_app(master, spark_applications_ids, number_of_attempts) if spark_app_id is None: self._log("%s | Error on submission of application, " "please check the config file" % (time.strftime("%H:%M:%S"))) (output, err) = spark_job.communicate() self.stdout.log(output) self.stderr.log(err) raise ex.ConfigurationError() spark_applications_ids.append(spark_app_id) info_plugin = {"spark_submisson_url": "http://" + master, "expected_time": expected_time, "number_of_jobs": number_of_jobs} self._log("%s | Starting monitor" % (time.strftime("%H:%M:%S"))) monitor.start_monitor(api.monitor_url, spark_app_id, monitor_plugin, info_plugin, collect_period) self._log("%s | Starting controller" % (time.strftime("%H:%M:%S"))) controller.start_controller(api.controller_url, spark_app_id, workers_id, data) (output, err) = spark_job.communicate() self._log("%s | Stopping monitor" % (time.strftime("%H:%M:%S"))) monitor.stop_monitor(api.monitor_url, spark_app_id) self._log("%s | Stopping controller" % (time.strftime("%H:%M:%S"))) controller.stop_controller(api.controller_url, spark_app_id) self.stdout.log(output) self.stderr.log(err) self._log("%s | Copy log from cluster" % (time.strftime("%H:%M:%S"))) event_log_path = local_path + 'eventlog/' self._mkdir(event_log_path) remote_event_log_path = 'ubuntu@%s:%s%s' % (master, local_path, spark_app_id) remote.copy(key_path, remote_event_log_path, event_log_path) self._log("%s | Upload log to Swift" % (time.strftime("%H:%M:%S"))) connector.upload_directory(swift, event_log_path, swift_logdir, container) spark_applications_ids.remove(spark_app_id) self.update_application_state("OK") return 'OK' def _submit_job(self, remote_instance, key_path, main_class, dependencies, job_binary_file, args): args_line = '' for arg in args: args_line += arg + ' ' spark_submit = ('/opt/spark/bin/spark-submit ' '--packages %(dependencies)s ' '--class %(main_class)s ' '--master spark://%(master)s:7077 ' '%(job_binary_file)s %(args)s ' % {'dependencies': dependencies, 'main_class': main_class, 'master': remote_instance, 'job_binary_file': 'file://'+job_binary_file, 'args': args_line}) if main_class == '': spark_submit = spark_submit.replace('--class', '') if dependencies == '': spark_submit = spark_submit.replace('--packages', '') self._log("%s | spark-submit: %s" % (time.strftime("%H:%M:%S"), spark_submit)) job = remote.execute_command_popen(remote_instance, key_path, spark_submit) return job def _enable_event_log(self, master, key_path, path): enable_event_log_command = ("echo -e 'spark.executor.extraClassPath " "/usr/lib/hadoop-mapreduce/hadoop-openstack.jar\n" "spark.eventLog.enabled true\n" "spark.eventLog.dir " "file://%(path)s' > " "/opt/spark/conf/spark-defaults.conf" % {'path': path}) remote.execute_command(master, key_path, enable_event_log_command) def _log(self, string): plugin_log.log(string) self.running_log.log(string) def _verify_existing_log_paths(self, app_id): if not os.path.exists('logs'): os.mkdir('logs') elif not os.path.exists('logs/apps'): os.mkdir('logs/apps') if not os.path.exists('logs/apps/%s' % app_id): os.mkdir('logs/apps/%s' % app_id) def _clean_log_files(self, app_id): running_log_file = open("logs/apps/%s/execution" % app_id, "w").close() stdout_file = open("logs/apps/%s/stdout" % app_id, "w").close() stderr_file = open("logs/apps/%s/stderr" % app_id, "w").close() def _mkdir(self, path): subprocess.call('mkdir -p %s' % path, shell=True) class SaharaProvider(base.PluginInterface): def __init__(self): self.spark_applications_ids = [] self.id_generator = ID_Generator() def get_title(self): return 'OpenStack Sahara' def get_description(self): return 'Plugin that allows utilization of Sahara to run jobs' def to_dict(self): return { 'name': self.name, 'title': self.get_title(), 'description': self.get_description(), } def execute(self, data): app_id = str(uuid.uuid4())[0:7] executor = OpenStackSparkApplicationExecutor(app_id) handling_thread = threading.Thread(target=executor.start_application, args=(data, self.spark_applications_ids, app_id)) handling_thread.start() return (app_id, executor)
1.6875
2
pump_script.py
hulsed/FFERMAT
1
12786786
<reponame>hulsed/FFERMAT<gh_stars>1-10 # -*- coding: utf-8 -*- """ File name: pump_script.py Author: <NAME> Created: October 2019 Description: A simple example of I/O using faultprop.py and the pump model in ex_pump.py """ #Using the model that was set up, we can now perform a few different operations #First, import the fault propogation library as well as the model import faultprop as fp import ex_pump as mdl #Before seeing how faults propogate, it's useful to see how the model performs #in the nominal state to check to see that the model has been defined correctly. # Some things worth checking: # -are all functions on the graph? # -are the functions connected with the correct flows? # -do any faults occur in the nominal state? # -do all the flow states proceed as desired over time? endresults, resgraph, flowhist, ghist=fp.runnominal(mdl, track={'Wat_1','Wat_2', 'EE_1', 'Sig_1'}) fp.showgraph(resgraph) fp.plotflowhist(flowhist, 'Nominal') #We might further query the faults to see what happens to the various states endresults, resgraph, flowhist, ghist=fp.proponefault(mdl, 'Move Water', 'short', time=10, track={'Wat_1','Wat_2', 'EE_1', 'Sig_1'}) fp.showgraph(resgraph) fp.plotflowhist(flowhist, 'short', time=10) t=fp.printresult('Move Water', 'short', 10, endresults) print(t) #in addition to these visualizations, we can also look at the final results #to see which specific faults were caused, as well as the flow states #print(endresults) #we can also look at other faults endresults, resgraph, flowhist, ghist=fp.proponefault(mdl, 'Export Water', 'block', time=10, track={'Wat_1','Wat_2', 'EE_1', 'Sig_1'}) fp.showgraph(resgraph) fp.plotflowhist(flowhist, 'blockage', time=10) t=fp.printresult('Export Water', 'block', 10, endresults) print(t) #you can save to a csv this with: #t.write('tab.ecsv', overwrite=True) #finally, to get the results of all of the scenarios, we can go through the list #note that this will propogate faults based on the times vector put in the model, # e.g. times=[0,3,15,55] will propogate the faults at the begining, end, and at # t=15 and t=15 resultsdict, resultstab=fp.proplist(mdl) print(resultstab) # resultstab.write('tab.ecsv', overwrite=True)
2.46875
2
main.py
Kiritow/PHDownloader
1
12786787
from mtdownloader import MTDownloader from mtdownloader import readable as readableSize from phuburl import resolver as PageResolver import requests import json import time def readableTime(s): s=int(s) if(s<60): return '{}s'.format(s) elif(s<3600): return '{}m{}s'.format(s//60,s%60) else: return '{}h{}m{}s'.format(s//3600,(s%3600)//60,s%60) def readConfig(): try: with open('config.json') as f: config=json.loads(f.read()) return config except FileNotFoundError: print('Unable to read config.') return None def setupConfig(): print('Welcome to PHDownloader config setup.') config={} str=input('Use proxy? (Y/n): ') if(str=='' or str.lower()=='y'): config["useProxy"]=True config["proxy"]={} str=input('http proxy (http://127.0.0.1:1080): ') if(str!=''): config["proxy"]["http"]=str else: config["proxy"]["http"]='http://127.0.0.1:1080' str=input('https proxy (https://127.0.0.1:1080): ') if(str!=''): config["proxy"]["https"]=str else: config["proxy"]["https"]='https://127.0.0.1:1080' else: config["useProxy"]=False config["proxy"]={"http":"http://127.0.0.1:1080","https":"https://127.0.0.1:1080"} str=input("Use timeout? (None): ") if(str=='' or str.lower()=='none'): config["timeout"]=None else: config["timeout"]=int(str) str=input("Use debug? (y/N): ") if(str=='' or str.lower()=='n'): config["debug"]=False else: config["debug"]=True str=input("Allow overwrite? (y/N): ") if(str=='' or str.lower()=='n'): config["overwrite"]=False else: config["overwrite"]=True with open('config.json','w') as f: f.write(json.dumps(config,indent=4)) print('Config saved to `config.json`') return config if __name__ == "__main__": config=readConfig() if(config is None): config=setupConfig() if(config["useProxy"]): theProxy=config["proxy"] else: theProxy=None while True: try: url=input('Please input URL: ') except EOFError: break try: print('[BEGIN] {}'.format(url)) res=requests.get(url,proxies=theProxy) info=PageResolver(res.text) print(info) downloader=MTDownloader(info['url'],filename=info['name'],overwrite=config["overwrite"],timeout=config["timeout"],proxy=theProxy,debug=config["debug"]) time_before=time.time() downloader.start() downloader.wait() time_diff=time.time()-time_before print('[DONE] {} ({} in {} at {})'.format(info["name"], readableSize(downloader.length),readableTime(time_diff), '{}/s'.format(readableSize(downloader.length/time_diff)))) except Exception as e: print('[Error] {}'.format(e))
2.53125
3
pyscf/x2c/test/test_x2c_grad.py
robert-anderson/pyscf
501
12786788
#!/usr/bin/env python # Copyright 2014-2018 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import reduce import unittest import numpy import scipy.linalg from pyscf import lib from pyscf import gto from pyscf.x2c import sfx2c1e from pyscf.x2c import sfx2c1e_grad def _sqrt0(a): w, v = scipy.linalg.eigh(a) return numpy.dot(v*numpy.sqrt(w), v.conj().T) def _invsqrt0(a): w, v = scipy.linalg.eigh(a) return numpy.dot(v/numpy.sqrt(w), v.conj().T) def _sqrt1(a0, a1): '''Solving first order of x^2 = a''' w, v = scipy.linalg.eigh(a0) w = numpy.sqrt(w) a1 = reduce(numpy.dot, (v.conj().T, a1, v)) x1 = a1 / (w[:,None] + w) x1 = reduce(numpy.dot, (v, x1, v.conj().T)) return x1 def _invsqrt1(a0, a1): '''Solving first order of x^2 = a^{-1}''' w, v = scipy.linalg.eigh(a0) w = 1./numpy.sqrt(w) a1 = -reduce(numpy.dot, (v.conj().T, a1, v)) x1 = numpy.einsum('i,ij,j->ij', w**2, a1, w**2) / (w[:,None] + w) x1 = reduce(numpy.dot, (v, x1, v.conj().T)) return x1 def get_R(mol): s0 = mol.intor('int1e_ovlp') t0 = mol.intor('int1e_kin') s0sqrt = _sqrt0(s0) s0invsqrt = _invsqrt0(s0) x0 = get_x0(mol) c = lib.param.LIGHT_SPEED stild = s0 + reduce(numpy.dot, (x0.T, t0*(.5/c**2), x0)) R = _invsqrt0(reduce(numpy.dot, (s0invsqrt, stild, s0invsqrt))) R = reduce(numpy.dot, (s0invsqrt, R, s0sqrt)) return R def get_r1(mol, atm_id, pos): # See JCP 135 084114, Eq (34) c = lib.param.LIGHT_SPEED aoslices = mol.aoslice_by_atom() ish0, ish1, p0, p1 = aoslices[atm_id] s0 = mol.intor('int1e_ovlp') t0 = mol.intor('int1e_kin') s1all = mol.intor('int1e_ipovlp', comp=3) t1all = mol.intor('int1e_ipkin', comp=3) s1 = numpy.zeros_like(s0) t1 = numpy.zeros_like(t0) s1[p0:p1,:] =-s1all[pos][p0:p1] s1[:,p0:p1] -= s1all[pos][p0:p1].T t1[p0:p1,:] =-t1all[pos][p0:p1] t1[:,p0:p1] -= t1all[pos][p0:p1].T x0 = get_x0(mol) x1 = get_x1(mol, atm_id)[pos] sa0 = s0 + reduce(numpy.dot, (x0.T, t0*(.5/c**2), x0)) sa1 = s1 + reduce(numpy.dot, (x0.T, t1*(.5/c**2), x0)) sa1+= reduce(numpy.dot, (x1.T, t0*(.5/c**2), x0)) sa1+= reduce(numpy.dot, (x0.T, t0*(.5/c**2), x1)) s0_sqrt = _sqrt0(s0) s0_invsqrt = _invsqrt0(s0) s1_sqrt = _sqrt1(s0, s1) s1_invsqrt = _invsqrt1(s0, s1) R0_part = reduce(numpy.dot, (s0_invsqrt, sa0, s0_invsqrt)) R1_part = (reduce(numpy.dot, (s0_invsqrt, sa1, s0_invsqrt)) + reduce(numpy.dot, (s1_invsqrt, sa0, s0_invsqrt)) + reduce(numpy.dot, (s0_invsqrt, sa0, s1_invsqrt))) R1 = reduce(numpy.dot, (s0_invsqrt, _invsqrt1(R0_part, R1_part), s0_sqrt)) R1 += reduce(numpy.dot, (s1_invsqrt, _invsqrt0(R0_part), s0_sqrt)) R1 += reduce(numpy.dot, (s0_invsqrt, _invsqrt0(R0_part), s1_sqrt)) return R1 def get_h0_s0(mol): s = mol.intor_symmetric('int1e_ovlp') t = mol.intor_symmetric('int1e_kin') v = mol.intor_symmetric('int1e_nuc') w = mol.intor_symmetric('int1e_pnucp') nao = s.shape[0] n2 = nao * 2 h = numpy.zeros((n2,n2), dtype=v.dtype) m = numpy.zeros((n2,n2), dtype=v.dtype) c = lib.param.LIGHT_SPEED h[:nao,:nao] = v h[:nao,nao:] = t h[nao:,:nao] = t h[nao:,nao:] = w * (.25/c**2) - t m[:nao,:nao] = s m[nao:,nao:] = t * (.5/c**2) return h, m def get_h1_s1(mol, ia): aoslices = mol.aoslice_by_atom() ish0, ish1, p0, p1 = aoslices[0] nao = mol.nao_nr() s1 = mol.intor('int1e_ipovlp', comp=3) t1 = mol.intor('int1e_ipkin', comp=3) v1 = mol.intor('int1e_ipnuc', comp=3) w1 = mol.intor('int1e_ipspnucsp', comp=12).reshape(3,4,nao,nao)[:,3] with mol.with_rinv_origin(mol.atom_coord(ia)): rinv1 = -8*mol.intor('int1e_iprinv', comp=3) prinvp1 = -8*mol.intor('int1e_ipsprinvsp', comp=12).reshape(3,4,nao,nao)[:,3] n2 = nao * 2 h = numpy.zeros((3,n2,n2), dtype=v1.dtype) m = numpy.zeros((3,n2,n2), dtype=v1.dtype) rinv1[:,p0:p1,:] -= v1[:,p0:p1] rinv1 = rinv1 + rinv1.transpose(0,2,1).conj() prinvp1[:,p0:p1,:] -= w1[:,p0:p1] prinvp1 = prinvp1 + prinvp1.transpose(0,2,1).conj() s1ao = numpy.zeros_like(s1) t1ao = numpy.zeros_like(t1) s1ao[:,p0:p1,:] = -s1[:,p0:p1] s1ao[:,:,p0:p1]+= -s1[:,p0:p1].transpose(0,2,1) t1ao[:,p0:p1,:] = -t1[:,p0:p1] t1ao[:,:,p0:p1]+= -t1[:,p0:p1].transpose(0,2,1) c = lib.param.LIGHT_SPEED h[:,:nao,:nao] = rinv1 h[:,:nao,nao:] = t1ao h[:,nao:,:nao] = t1ao h[:,nao:,nao:] = prinvp1 * (.25/c**2) - t1ao m[:,:nao,:nao] = s1ao m[:,nao:,nao:] = t1ao * (.5/c**2) return h, m def get_x0(mol): c = lib.param.LIGHT_SPEED h0, s0 = get_h0_s0(mol) e, c = scipy.linalg.eigh(h0, s0) nao = mol.nao_nr() cl = c[:nao,nao:] cs = c[nao:,nao:] x0 = scipy.linalg.solve(cl.T, cs.T).T return x0 def get_x1(mol, ia): h0, s0 = get_h0_s0(mol) h1, s1 = get_h1_s1(mol, ia) e0, c0 = scipy.linalg.eigh(h0, s0) nao = mol.nao_nr() cl0 = c0[:nao,nao:] cs0 = c0[nao:,nao:] x0 = scipy.linalg.solve(cl0.T, cs0.T).T h1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), h1, c0[:,nao:]) s1 = numpy.einsum('pi,xpq,qj->xij', c0.conj(), s1, c0[:,nao:]) epi = e0[:,None] - e0[nao:] degen_mask = abs(epi) < 1e-7 epi[degen_mask] = 1e200 c1 = (h1 - s1 * e0[nao:]) / -epi c1[:,degen_mask] = -.5 * s1[:,degen_mask] c1 = numpy.einsum('pq,xqi->xpi', c0, c1) cl1 = c1[:,:nao] cs1 = c1[:,nao:] x1 = [scipy.linalg.solve(cl0.T, (cs1[i] - x0.dot(cl1[i])).T).T for i in range(3)] return numpy.asarray(x1) mol1 = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) mol2 = gto.M( verbose = 0, atom = [["O" , (0. , 0. ,-0.0001)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) mol = gto.M( verbose = 0, atom = [["O" , (0. , 0. , 0. )], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]], basis = '3-21g', ) class KnownValues(unittest.TestCase): def test_x1(self): with lib.light_speed(10) as c: x_1 = get_x0(mol1) x_2 = get_x0(mol2) x1_ref = (x_1 - x_2) / 0.0002 * lib.param.BOHR x1t = get_x1(mol, 0) self.assertAlmostEqual(abs(x1t[2]-x1_ref).max(), 0, 7) x0 = get_x0(mol) h0, s0 = get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) get_h1_etc = sfx2c1e_grad._gen_first_order_quantities(mol, e0, c0, x0) x1 = get_h1_etc(0)[4] self.assertAlmostEqual(abs(x1-x1t).max(), 0, 9) def test_R1(self): with lib.light_speed(10) as c: R_1 = get_R(mol1) R_2 = get_R(mol2) R1_ref = (R_1 - R_2) / 0.0002 * lib.param.BOHR R1t = get_r1(mol, 0, 2) self.assertAlmostEqual(abs(R1t-R1_ref).max(), 0, 7) x0 = get_x0(mol) h0, s0 = get_h0_s0(mol) e0, c0 = scipy.linalg.eigh(h0, s0) get_h1_etc = sfx2c1e_grad._gen_first_order_quantities(mol, e0, c0, x0) R1 = get_h1_etc(0)[6][2] self.assertAlmostEqual(abs(R1-R1t).max(), 0, 9) def test_hfw(self): with lib.light_speed(10) as c: x2c_1 = sfx2c1e.SpinFreeX2C(mol1) x2c_2 = sfx2c1e.SpinFreeX2C(mol2) x2cobj = sfx2c1e.SpinFreeX2C(mol) fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) x2c_1.xuncontract = 0 x2c_2.xuncontract = 0 x2cobj.xuncontract =0 fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) x2c_1.xuncontract = 1 x2c_2.xuncontract = 1 x2cobj.xuncontract =1 x2c_1.approx = 'ATOM1E' x2c_2.approx = 'ATOM1E' x2cobj.approx = 'ATOM1E' fh_ref = (x2c_1.get_hcore() - x2c_2.get_hcore()) / 0.0002 * lib.param.BOHR fh = x2cobj.hcore_deriv_generator(deriv=1) self.assertAlmostEqual(abs(fh(0)[2] - fh_ref).max(), 0, 7) if __name__ == "__main__": print("Full Tests for sfx2c1e gradients") unittest.main()
2.375
2
WordModel1.py
MengZhang0904/Learn_New_World
0
12786789
<filename>WordModel1.py<gh_stars>0 import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import style style.use('ggplot') import seaborn as sns from gensim.models import Word2Vec def find_pct(word,age): df = pd.read_csv('word_acq_pct1.csv') row = df[df.definition2 == word] pct = row.iloc[0][int(age)] pct = pct*100 pct = int(pct) return pct def word_trajectory(df,word,age): x = list(range(16,31)) print(x) len(x) y = np.array(df[df.definition2 == word]) y = y[0,1:] type(y) y =y.astype(float) print(y) len(y) from matplotlib import style style.use('ggplot') plt.rcParams.update({'font.size': 13}) # set customized color for dots color1 = ['dodgerblue' for x in range(16,31)] idx = int(age) - 16 color1[idx] = 'crimson' color2 = color1 ax = sns.regplot(x, y,logistic=True, marker = 'o',scatter_kws={'facecolors':color2,'s':65,'edgecolor':'none'},line_kws={'color':'y','linewidth':4.0}) plt.rcParams.update({'font.size': 13}) ax.set(xlabel='Age(Month)', ylabel='Proportion of Kids Knowing This Word') save_name = 'static/plots/' + word + age + '.png' print(save_name) get_name = '../static/plots/' + word + age + '.png' print(get_name) plt.savefig(save_name) return get_name def same_mo(age,word): file = 'dataset/w2v_' + age + '_mo_s1500.bin' model = Word2Vec.load(file) similar_w = model.most_similar(word) words, score = zip(*similar_w) return words
2.8125
3
tests/featuresInPortuguese/steps/contact_steps.py
Schveitzer/selenium-python-bdd-behave-example
0
12786790
<gh_stars>0 from behave import step from nose.tools import assert_equal from constants import system_messages, system_label @step("eu clico no botão contato para abrir a página de contato") def step_impl(context): context.contact_page.contact_link().click() context.helper.wait_for_element_is_visible(context.contact_page.contact_page_header()) @step("sistema exibe o título da página de contato") def step_impl(context): context.helper.wait_for_element_is_visible(context.contact_page.contact_page_header()) assert_equal(context.contact_page.contact_page_header().text, system_label.CUSTOMER_SERVICE_LABEL) @step("eu envio uma mensagem com documento") def step_impl(context): content = { "subject": "Customer service", "message": "My message test", "file": "test.pdf" } context.contact_page.send_menssage(content) @step("sistema exibe mensagem de menssagem enviada com sucesso") def step_impl(context): context.helper.wait_for_element_is_visible(context.contact_page.sucess_message()) assert_equal(context.contact_page.sucess_message().text, system_messages.MESSAGE_SENT)
2.28125
2
tests/tests_verbs/test_order_by.py
fredzett/datastack
0
12786791
from datastack import DataTable, DataColumn, label, col, desc import pytest import numpy as np def test_one(): tbl = (DataTable(a=(1,2,1,2,3,1), b=(4,5,6,3,2,1),c=(6,7,8,1,2,3)) .order_by(desc(label("b"))) ) exp = DataTable(a=(1,2,1,2,3,1), b=(6,5,4,3,2,1), c=(8,7,6,1,2,3)) assert tbl == exp def test_one_str(): tbl = (DataTable(a=(1,2,1,2,3,1), b=(4,5,6,3,2,1),c=list("abcdef")) .order_by(label("b")) ) exp = DataTable(a=(1,3,2,1,2,1), b=(1,2,3,4,5,6), c=list("fedabc")) assert tbl == exp def test_two(): tbl = (DataTable(b=(4,5,2,3,2,1),c=(6,7,8,1,2,3),a=(1,2,1,2,3,1)) .order_by(label("b"), desc(label("a")), label("c"), ) ) exp = DataTable( b=(1,2,2,3,4,5), c=(3,2,8,1,6,7),a=(1,3,1,2,1,2)) assert tbl == exp def test_two_asc(): data = {"col1": np.array((1, 2, 3, 4, 5, 4, 3, 2, 1)), "col2": np.array(list("abcdeabcd")), "col3": np.array((10, 11, 9, 8, 7, 2, 12, 100, 1))} tbl = (DataTable.from_dict(data) .order_by(label("col1"), label("col2")) ) exp = DataTable.from_dict({'col1': np.array([1, 1, 2, 2, 3, 3, 4, 4, 5]), 'col2': np.array(['a', 'd', 'b', 'c', 'b', 'c', 'a', 'd', 'e']), 'col3': np.array([10, 1, 11, 100, 12, 9, 2, 8, 7])}) assert tbl == exp def test_two_asc_desc(): data = {"col1": np.array((1, 2, 3, 4, 5, 4, 3, 2, 1)), "col2": np.array(list("abcdeabcd")), "col3": np.array((10, 11, 9, 8, 7, 2, 12, 100, 1))} tbl = (DataTable.from_dict(data) .order_by(label("col1"), desc(label("col2"))) ) exp = DataTable.from_dict({'col1': np.array([1, 1, 2, 2, 3, 3, 4, 4, 5]), 'col2': np.array(['d', 'a', 'c', 'b', 'c', 'b', 'd', 'a', 'e']), 'col3': np.array([1, 10, 100, 11, 9, 12, 8, 2, 7])}) assert tbl == exp
2.546875
3
python/fire_rs/demo_front_interpolation.py
arthur-bit-monnot/fire-rs-saop
13
12786792
<reponame>arthur-bit-monnot/fire-rs-saop """Test fire front interpolation""" # Copyright (c) 2019, CNRS-LAAS # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # # import itertools import os import numpy as np import matplotlib.pyplot as plt import matplotlib.cm import skimage.io import skimage.draw import skimage.measure import scipy.interpolate import fire_rs.geodata.environment as g_environment import fire_rs.geodata.display as display import fire_rs.rbf from fire_rs.geodata.geo_data import GeoData from fire_rs.firemodel.propagation import Environment, FirePropagation, TimedPoint ################################################################################ # World initialization FIRERS_DATA_FOLDER = '/home/rbailonr/firers_data_porto' FIRERS_DEM_DATA = os.path.join(FIRERS_DATA_FOLDER, 'dem') FIRERS_WIND_DATA = os.path.join(FIRERS_DATA_FOLDER, 'wind') FIRERS_LANDCOVER_DATA = os.path.join(FIRERS_DATA_FOLDER, 'landcover') the_world = g_environment.World(elevation_path=FIRERS_DEM_DATA, wind_path=FIRERS_WIND_DATA, landcover_path=FIRERS_LANDCOVER_DATA, wind_mesh_resolution='fine', landcover_to_fuel_remap=g_environment.SLOW_FUELMODEL_REMAP) the_world.dem_wind_tile_split = 1 area = ((2776825.0 - 2500, 2776825.0 + 2500), (2212175.0 - 2500, 2212175.0 + 4500)) ignition = TimedPoint(2776825.0, 2212175.0, 0) ################################################################################ # Reference fire propagation fire_env = Environment(area, 5., np.pi / 2, the_world) fire_prop = FirePropagation(fire_env) fire_prop.set_ignition_point(ignition) propagation_end_time = 60 * 60 * 60 propagation_end_time = np.inf fire_prop.propagate(propagation_end_time) ################################################################################ # Reference fire display # Figure terrain + ignition contour + ignition point gdd = display.GeoDataDisplay.pyplot_figure( fire_env.raster.combine(fire_prop.ignitions().slice(["ignition"])), frame=(0., 0.)) gdd.draw_elevation_shade(with_colorbar=False, cmap=matplotlib.cm.terrain) gdd.draw_wind_quiver() gdd.draw_ignition_contour(with_labels=True, cmap=matplotlib.cm.plasma) gdd.draw_ignition_points(ignition) gdd.figure.show() ################################################################################ # Contour extraction firemap = fire_prop.ignitions() fire_image = np.ones(firemap.data.shape, dtype=np.float64) * np.NaN firepoints = {} # The ignition point is knwon firepoints[fire_prop.ignitions().array_index((ignition[0], ignition[1]))] = ignition[2] # Create contour with scikit-image contours1 = skimage.measure.find_contours(firemap.data["ignition"], 21 * 60 * 60) contours2 = skimage.measure.find_contours(firemap.data["ignition"], 20 * 60 * 60) contours3 = skimage.measure.find_contours(firemap.data["ignition"], 22 * 60 * 60) contours4 = skimage.measure.find_contours(firemap.data["ignition"], 40 * 60 * 60) contours5 = skimage.measure.find_contours(firemap.data["ignition"], 41 * 60 * 60) contours6 = skimage.measure.find_contours(firemap.data["ignition"], 42 * 60 * 60) # Print contour as binary image comp_cycle = itertools.cycle([lambda x, y: x < y, lambda x, y: x > y]) comp = next(comp_cycle) for i in [contours1, contours2, contours3, contours4, contours5, contours6]: comp = next(comp_cycle) for contour in i: for pt_i in range(len(contour)): if comp(pt_i, len(contour) / 2): continue if pt_i % 1 == 0: rr, cc = skimage.draw.line(*np.asarray(contour[pt_i - 1], dtype=int), *np.asarray(contour[pt_i], dtype=int)) fire_image[rr, cc] = firemap.data["ignition"][rr[0], cc[0]] for r, c in zip(rr, cc): firepoints[r, c] = firemap.data["ignition"][r, c] fig = plt.figure() ax = fig.gca() imag = ax.imshow(fire_image / 60.) fig.colorbar(imag, ax=ax, shrink=0.65, aspect=20, format="%d minutes") fig.show() ################################################################################ # Interpolate contour x, y = list(zip(*firepoints.keys())) z = tuple(firepoints.values()) function = 'thin_plate' # function = 'linear' # function = 'multiquadric' # function = 'cubic' # --function = lambda a: np.sin(a) # Wildland fire modeling with an Eulerian level set method and automated calibration # might give a clue of which kind of kernel function to use zfun_smooth_rbf = fire_rs.rbf.Rbf(x, y, z, function=function, epsilon=0.1, smooth=0) # default smooth=0 for interpolation xi = np.linspace(0, firemap.data.shape[0] - 1, firemap.data.shape[0]) yi = np.linspace(0, firemap.data.shape[1] - 1, firemap.data.shape[1]) meshgrid = np.meshgrid(xi, yi, indexing="ij") z_dense_smooth_rbf = zfun_smooth_rbf( *[x.flatten() for x in meshgrid]) # not really a function, but a callable class instance z_dense_smooth_rbf = z_dense_smooth_rbf.reshape(len(xi), len(yi)) ################################################################################ # Display interpolation fig = plt.figure() ax = fig.gca() levels = list(range(0, 70 * 60 * 60, 10 * 60 * 60)) ax.imshow(fire_image) c1 = ax.contour(z_dense_smooth_rbf, levels=levels) ax.clabel(c1) c2 = ax.contour(firemap.data["ignition"], levels=levels, alpha=0.6) # ax.imshow(z_dense_smooth_rbf - firemap.data["ignition"]) ax.clabel(c2) ax.imshow(fire_image) fig.show() ################################################################################ # Display error fig = plt.figure() ax = fig.gca() levels = list(range(0, 70 * 60, 10 * 60)) diferencia = z_dense_smooth_rbf - firemap.data["ignition"] # ax.imshow(firemap.data["ignition"]) # 150 min is 200m for wind 5km/h in wind direction diff_image = ax.imshow(diferencia / 60., cmap=matplotlib.cm.seismic, vmin=-150, vmax=150) cb = fig.colorbar(diff_image, ax=ax, shrink=0.65, aspect=20, format="%d minutes") cb.set_label("Interpolation error") ax.imshow(fire_image, cmap=matplotlib.cm.cool) c2 = ax.contour(firemap.data["ignition"] / 60., levels=levels, cmap=matplotlib.cm.cool) ax.clabel(c2) # ax.imshow(fire_image) fig.show() ################################################################################ # In 3D from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(121, projection='3d') ax.plot_surface(*meshgrid, z_dense_smooth_rbf, color="blue") fig.show() ax = fig.add_subplot(122, projection='3d') ax.plot_surface(*meshgrid, firemap.data["ignition"], color="red") fig.show() print("THE END")
1.203125
1
back_end/mlh/apps/headlines/serializers.py
22014471/malonghui_Django
1
12786793
<gh_stars>1-10 import logging from rest_framework import serializers from activity.models import Activity from headlines.models import HeadlinesCategory, HeadlinesNews, NewsComment, UserAttention, NewsCollection from questions.models import Question, Tag from talks.models import Talks from users.models import User class UserSerializer(serializers.ModelSerializer): """ 用户序列化器1 """ class Meta: model = User fields = ("id", "username", "avatar") class NewsSerializer(serializers.ModelSerializer): """ 新闻序列化器 """ class Meta: model = HeadlinesNews fields = ("id", "title", "create_time") class NewsCollectionSerializer(serializers.ModelSerializer): """ 收藏序列化器 """ user = UserSerializer() class Meta: model = NewsCollection fields = ("user",) class QuestionSerializer(serializers.ModelSerializer): """ 头条详情作者问答排行序列化器 """ class Meta: model = Question fields = ('id', 'title', 'update_time') class AuthorAttentionSerializer(serializers.ModelSerializer): """ 作者粉丝序列化器 """ user = UserSerializer() class Meta: model = User fields = ("id", 'user') class HeadlineUserSerializer(serializers.ModelSerializer): """ 用户序列化器2(用户新闻+用户粉丝) """ news = NewsSerializer(many=True) attention = AuthorAttentionSerializer(many=True) class Meta: model = User fields = ("id", "username", "avatar", 'news', 'attention') class HeadlineAuthorSerializer(serializers.ModelSerializer): """ 用户序列化器3(用户粉丝) """ attention = AuthorAttentionSerializer(many=True) class Meta: model = User fields = ("id", "username", "avatar", 'attention') class HeadlinesCategorySerializer(serializers.ModelSerializer): """ 头条分类序列化器 """ class Meta: model = HeadlinesCategory fields = ('id', 'name') class HeadlinesNewsSerializer(serializers.ModelSerializer): """ 头条新闻列表序列化器 """ author = HeadlineAuthorSerializer() class Meta: model = HeadlinesNews fields = ('id', 'title', 'author', 'create_time', 'content', "clicks") class HeadlinesDetailSerializer(serializers.ModelSerializer): """ 头条新闻详情序列化器 """ author = HeadlineUserSerializer() collected = NewsCollectionSerializer(many=True) class Meta: model = HeadlinesNews fields = ('id', 'title', 'author', 'collected', 'create_time', 'content', "comment_count") class CommentsSerializer(serializers.ModelSerializer): """ 新闻评论序列化器 """ user = UserSerializer() class Meta: model = NewsComment fields = ('id', 'user', 'content') class HeadlinesCommentsSerializer(serializers.ModelSerializer): """ 头条新闻详情页评论序列化器 """ user = UserSerializer() child = CommentsSerializer(many=True) class Meta: model = NewsComment fields = ('id', 'user', 'content', 'child', 'parent') class HeadlinesCommentAddSerializer(serializers.ModelSerializer): """ 评论添加序列化器 """ class Meta: model = NewsComment fields = ('id', 'news', 'user', 'content', 'parent') def create(self, validated_data): """ 创建评论 """ news= validated_data['news'] news.comment_count += 1 news.save() return super().create(validated_data) class HeadlinesQuestionSerializer(serializers.ModelSerializer): """ 头条首页问答排行序列化器 """ author = UserSerializer() class Meta: model = Question fields = ('id', 'author', 'title', 'update_time') class HeadlinesActivitiesSerializer(serializers.ModelSerializer): """ 热门活动排行序列化器 """ class Meta: model = Activity fields = ('id', 'cover', 'city', 'act_name', 'start_time') class HeadlinesTalksSerializer(serializers.ModelSerializer): """ 详情页吐槽排行序列化器 """ class Meta: model = Talks fields = ('id', 'content') class HeadlinesHotsSerializer(serializers.ModelSerializer): """ 详情页热门头条排行序列化器 """ class Meta: model = HeadlinesNews fields = ('id', 'title') class HeadlinesUserAttention(serializers.ModelSerializer): """ 用户关注作者序列化器 """ class Meta: model = UserAttention fields = ('user', 'author') def create(self, validated_data): """ 创建关注保存 """ user = validated_data['user'] author = validated_data['author'] # fans_list = author.attention.all() #作者的fans表 # user_attention = user.fun.all() #用户的attention表 # print(fans_list) # print(user_attention) # # 判断是否关注过 # for fan in fans_list: # if user == fan.user: # raise serializers.ValidationError('已关注该用户,请勿重复添加') #判断作者是否存在 if not author: raise serializers.ValidationError('没有该作者') # 判断作者是否是用户自己 if author.id == user.id: raise serializers.ValidationError('自己不能关注自己') return super().create(validated_data) class HeadlinesUserCollectionSerializer(serializers.ModelSerializer): """ 用户收藏序列化器 """ class Meta: model = NewsCollection fields = ('user', 'news') def create(self, validated_data): """ 创建收藏保存 """ user = validated_data['user'] news = validated_data['news'] #判断作者是否存在 if not news: raise serializers.ValidationError('没有该新闻') # 判断作者是否是用户自己 if news.author == user: raise serializers.ValidationError('不能收藏自己的新闻') return super().create(validated_data) class HeadlinesNewsAddSerializer(serializers.ModelSerializer): """ 发布新闻序列化器 """ class Meta: model = HeadlinesNews fields = ("title", 'category', 'author', 'content')
2.40625
2
paralleldomain/utilities/lazy_load_cache.py
parallel-domain/pd-sdk
10
12786794
import collections import logging import os import re from sys import getsizeof from threading import Event, RLock from typing import Any, Callable, Dict, Hashable, Tuple, TypeVar, Union import numpy as np from cachetools import Cache from humanize import naturalsize CachedItemType = TypeVar("CachedItemType") logger = logging.getLogger(__name__) SHOW_CACHE_LOGS = os.environ.get("SHOW_CACHE_LOGS", False) class CacheFullException(Exception): ... class CacheEmptyException(Exception): ... class LazyLoadCache(Cache): """Least Recently Used (LRU) cache implementation.""" _marker = object() def __init__(self, cache_name: str = "Default pd-sdk Cache", cache_max_size: str = "1GiB"): self.cache_name = cache_name self._maximum_allowed_bytes: int = byte_str_to_bytes(byte_str=cache_max_size) logger.info( f"Initializing LazyLoadCache '{cache_name}' with available " f"space of {naturalsize(self._maximum_allowed_bytes)}." ) self._key_load_locks: Dict[Hashable, Tuple[RLock, Event]] = dict() self._create_key_lock = RLock() Cache.__init__(self, maxsize=self._maximum_allowed_bytes, getsizeof=LazyLoadCache.getsizeof) self.__order = collections.OrderedDict() def get_item(self, key: Hashable, loader: Callable[[], CachedItemType]) -> CachedItemType: key_lock, wait_event = self._get_locks(key=key) with key_lock: if key not in self: if SHOW_CACHE_LOGS: logger.debug(f"load key {key} to cache") value = loader() try: self[key] = value except CacheFullException as e: logger.warning(f"Cant store {key} in Cache since no more space is left! {str(e)}") return value wait_event.set() return value return self[key] def __missing__(self, key): raise KeyError(key) def __getitem__(self, key: Hashable, cache_getitem: Callable[[Cache, Hashable], Any] = Cache.__getitem__): value = cache_getitem(self, key) if key in self: # __missing__ may not store item self.__update(key) return value def __setitem__(self, key: Hashable, value, cache_setitem=Cache.__setitem__): self._custom_set_item(key, value) self.__update(key) def _get_locks(self, key: Hashable) -> Tuple[RLock, Event]: if key not in self._key_load_locks: with self._create_key_lock: if key not in self._key_load_locks: self._key_load_locks[key] = (RLock(), Event()) return self._key_load_locks[key] def _custom_set_item(self, key, value): size = self.getsizeof(value) if SHOW_CACHE_LOGS: logger.debug(f"add item {key} with size {naturalsize(size)}") if size > self.maxsize: raise ValueError("value too large") if key not in self._Cache__data or self._Cache__size[key] < size: self.free_space_for_n_bytes(n_bytes=size) if key in self._Cache__data: diffsize = size - self._Cache__size[key] else: diffsize = size self._Cache__data[key] = value self._Cache__size[key] = size self._Cache__currsize += diffsize def __delitem__(self, key: Hashable, cache_delitem=Cache.__delitem__): key_lock, wait_event = self._get_locks(key=key) with key_lock: if wait_event.is_set(): if SHOW_CACHE_LOGS: logger.debug(f"delete {key} from cache") cache_delitem(self, key) del self.__order[key] wait_event.clear() def free_space_for_n_bytes(self, n_bytes: Union[float, int]): try: while n_bytes > self.free_space: self.popitem() except CacheEmptyException: if n_bytes > self.free_space: raise CacheFullException( f"Cache is already empty but there is no more space left tho store {n_bytes}B!" ) @property def maxsize(self) -> int: """The maximum size of the cache.""" return self._maximum_allowed_bytes @maxsize.setter def maxsize(self, value: Union[str, int]): if isinstance(value, int): self._maximum_allowed_bytes = value elif isinstance(value, str): self._maximum_allowed_bytes: int = byte_str_to_bytes(byte_str=value) else: raise ValueError(f"invalid type for maxsite {type(value)}! Has to be int or str.") logger.info(f"Changed '{self.cache_name}' available space to {naturalsize(self._maximum_allowed_bytes)}.") # If size got smaller make sure cache is cleared up self.free_space_for_n_bytes(n_bytes=0) @property def currsize(self) -> int: """The current size of the cache.""" return int(self._Cache__currsize) @property def free_space(self) -> int: """The maximum size of the caches free space.""" remaining_allowed_space = self.maxsize - self.currsize return remaining_allowed_space def popitem(self): """Remove and return the `(key, value)` pair least recently used.""" try: it = iter(list(self.__order.keys())) key = next(it) except StopIteration: raise CacheEmptyException("%s is empty" % type(self).__name__) else: del self[key] def pop(self, key, default=_marker): key_lock, wait_event = self._get_locks(key=key) with key_lock: if key in self: value = self[key] del self[key] elif default is LazyLoadCache._marker: raise KeyError(key) else: value = default return value def clear(self): "D.clear() -> None. Remove all items from D." try: while True: self.popitem() except CacheEmptyException: pass def __update(self, key): try: self.__order.move_to_end(key) except KeyError: self.__order[key] = None @staticmethod def getsizeof(value, seen=None): """Return the size of a cache element's value.""" # handle recursion if seen is None: seen = set() obj_id = id(value) if obj_id in seen: return 0 seen.add(obj_id) size = getsizeof(value) if hasattr(value, "__dict__"): pass # for k, v in value.__dict__.items(): # size += getsizeof(v) elif isinstance(value, list): for i in value: size += LazyLoadCache.getsizeof(i, seen) elif isinstance(value, dict): for k, v in value.items(): size += LazyLoadCache.getsizeof(v, seen) elif isinstance(value, np.ndarray): size = value.nbytes return size def byte_str_to_bytes(byte_str: str) -> int: split_numbers_and_letters = re.match(r"([.0-9]+)([kKMGTPEZY]*)([i]*)([bB]+)", byte_str.replace(" ", ""), re.I) powers = {"": 0, "k": 1, "m": 2, "g": 3, "t": 4, "p": 5, "e": 6, "z": 7, "y": 8} if split_numbers_and_letters is None: raise ValueError( f"Invalid byte string format {byte_str}. `byte_str` has to be an integer string followed by a byte unit." ) number, power_letter, base_letter, bites_or_bytes = split_numbers_and_letters.groups() bit_factor = 1 if bites_or_bytes == "B" else 1 / 8 base = 1024 if base_letter == "i" else 1000 power = powers[power_letter.lower()] number = float(number) total_bits = number * base**power * bit_factor return int(total_bits) cache_max_ram_usage_factor = float(os.environ.get("CACHE_MAX_USAGE_FACTOR", 0.1)) # 10% free space max cache_max_size = os.environ.get("CACHE_MAX_BYTES", "1GiB") if "CACHE_MAX_USAGE_FACTOR" in os.environ: logger.warning( "CACHE_MAX_USAGE_FACTOR is not longer supported! Use CACHE_MAX_BYTES instead to set a cache size in bytes!" ) LAZY_LOAD_CACHE = LazyLoadCache(cache_max_size=cache_max_size)
2.125
2
fmojinja/awk/makefile/pdb_reformer.py
Taro-Imahiro/fmojinja
0
12786795
from ...mixin import TemplateRendererMixin from ...__version__ import get_version from argparse import ArgumentParser class PdbReformer(TemplateRendererMixin): @classmethod def template(cls) -> str: return f"# Generated by fmojinja version {get_version()}" + """ PREFIX := {{ prefix }} PDB :={% for path in input_pdbs %} {{ path }}{% endfor %} CHAIN_STARTS :={% for seq_id in chain_starts %} {{ seq_id }}{% endfor %} FORMATTED_PDB := $(addsuffix .pdb, $(addprefix $(PREFIX), $(basename $(notdir $(PDB))))) .PHONY: run run: gen $(FORMATTED_PDB) .PHONY: gen gen: $(PREFIX) $(PREFIX)reformat.awk $(PREFIX): \tmkdir $(PREFIX) $(PREFIX)reformat.awk: \tpython -m fmojinja.awk pdb_reformer -c $(CHAIN_STARTS) > $@ define expr $(PREFIX)$(basename $(notdir $(1))).pdb: $(1) \tawk -f $(PREFIX)reformat.awk $(1) > $(PREFIX)$(basename $(notdir $(1))).pdb endef $(foreach i, $(PDB), $(eval $(call expr, $(i)))) .PHONY: clean clean: \trm $(PREFIX)* """ @classmethod def set_arguments(cls, p: ArgumentParser) -> ArgumentParser: p = super(PdbReformer, cls).set_arguments(p) p.add_argument("-P", "--prefix", default="reformat_pdb/") p.add_argument("-c", "--chain-starts", nargs="*", default=[]) p.add_argument("-i", "--input-pdbs", required=True, nargs="+") return p
2.25
2
services/api/__init__.py
flaviohenriqu/chemical-image-generation
0
12786796
<gh_stars>0 # services/__init__.py import os import connexion import logging def create_app(script_info=None): # instantiate the app con_app = connexion.FlaskApp(__name__, specification_dir='docs/') con_app.add_api('api.yaml', options={'swagger_url': '/docs'}) # set config app_settings = os.getenv('APP_SETTINGS') con_app.app.config.from_object(app_settings) return con_app
1.945313
2
viz/all-crossrefs-idb.py
cloakware-ctf/idascripts
11
12786797
<gh_stars>10-100 # Copyright 2016-2018 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import idascript import sys import os import traceback import idaapi import logging import sark import json # [ { label: 'label1', edges: { ea: { name: 'name', xrefs_from : { ... } } } }, # ... # ] logger = logging.getLogger(__name__) if not logger.handlers: handler = logging.StreamHandler(stream=sys.stdout) logger.addHandler(handler) try: Wait() all_functions = dict() # all functions for seg_ea in Segments(): for function_ea in Functions(seg_ea, SegEnd(seg_ea)): all_functions.update({ str(function_ea): { 'name': GetFunctionName(function_ea) }}) # add cross-refs unknown_functions = {}; for ea in all_functions.keys(): this_function = sark.Function(int(ea)) xrefs_from = dict() for xref in this_function.xrefs_from: if not xref.iscode: continue try: xrefs_from.update({ str(xref.to) : sark.Function(xref.to).ea}) except sark.exceptions.SarkNoFunction: print "unknown xref target function at 0x%x" % xref.to # add unknown functions unknown_functions.update({ str(xref.to): { 'name': 'unknown' , 'xrefs_from': {} }}) xrefs_from.update({ str(xref.to) : xref.to}) all_functions.get(ea).update({ 'xrefs_from': xrefs_from }) all_functions.update(unknown_functions); # collect all exports in a dict by 'ea' , remove them from above all-functions dict all_exports = dict() for index, ordinal, ea, name in idautils.Entries(): if all_functions.get(str(ea)) is not None: all_exports.update({ str(ea): all_functions.pop(str(ea)) }) # collect all imports in a dict by 'ea' , remove them from above all-functions dict all_imports = dict() for ea in all_functions.keys(): seg_name = idc.SegName(int(ea)) if seg_name in ['extern']: all_imports.update({ea: all_functions.pop(ea)}) groups_of_functions = [] groups_of_functions.append({ 'label': 'exports', 'edges': all_exports }) groups_of_functions.append({ 'label': 'others', 'edges': all_functions }) groups_of_functions.append({ 'label': 'imports', 'edges': all_imports }) name, extension = os.path.splitext(idaapi.get_input_file_path()) fd_out = open(name+'_allxrefs.json', 'w') fd_out.write(json.dumps(groups_of_functions, indent=2, sort_keys=False)) except: exc_type, exc_value, exc_traceback = sys.exc_info() logger.error("Uncaught exception", exc_info=(exc_type, exc_value, exc_traceback)) idascript.exit()
1.867188
2
tests/test_files_process_save.py
efratkohen/Project
1
12786798
<reponame>efratkohen/Project<filename>tests/test_files_process_save.py from files_process_save import * import clean_data_svi as cds import pathlib import pytest def test_valid_input(): fname = pathlib.Path(__file__) q = check_file(fname) assert fname == q def test_str_input(): q = check_file(__file__) assert pathlib.Path(__file__) == q def test_missing_file(): fname = pathlib.Path('test.fd') with pytest.raises(ValueError): check_file(fname) def test_wrong_input_type(): fname = 2 with pytest.raises(TypeError): check_file(pathlib.Path(fname)) def test_split_microscopic_to_reactor_len(): length = 4 micro_path = check_file('microscopic_data.csv') data = read_data(micro_path) data_microscopic = split_microscopic_to_reactor(data) assert len(data_microscopic) == length def test_split_microscopic_to_reactor_column_name(): column_names = [ "date", "ameoba_arcella", "ameoba_nude ameba", "crawling ciliates_aspidisca", "crawling ciliates_trachelopylum", "free swimming ciliates_lionutus", "free swimming ciliates_paramecium", "stalked ciliate_epistylis", "stalked ciliate_vorticella", "stalked ciliate_carchecium", "stalked ciliate_tokophyra", "stalked ciliate_podophyra", "stalked ciliate_opercularia", "rotifer_rotifer", "worms_nematode", "flagellates_peranema trich", "flagellates_micro flagellates", "worms_worms", "spirochaetes_spirochaetes", "Total Count- amoeba", "Total Count- Crawling Ciliates", "Total Count- Free swimming Ciliates", "Total Count- Stalked Ciliates", "Total Count- Rotifers", "Total Count- Worms", "Total Count- Spirochaetes", "Total Count- Flagellats", "Total Count- Filaments", "Filaments_Nocardia_index", "Filaments_Microthrix_index", "Filaments_N. Limicola_index", "Filaments_Thiothrix_index", "Filaments_0041/0675_index", "Filaments_0092_index", "Filaments_1851_index", "Filaments_beggiatoa_index", "Filaments_zoogloea_index", ] micro_path = check_file('microscopic_data.csv') data = read_data(micro_path) data_microscopic = split_microscopic_to_reactor(data) assert list(data_microscopic[0].columns) == column_names def test_split_svi_to_reactor_column_names(): columns_names = ['date', 'Settling_velocity', 'SVI'] svi_path = check_file('SVI.csv') data = read_data(svi_path) data_svi_computed = cds.svi_calculate(data) data_svi = split_svi_to_reactor(data_svi_computed) assert list(data_svi[0].columns) == columns_names def test_split_svi_to_reactor_len(): length = 4 svi_path = check_file('SVI.csv') data = read_data(svi_path) data_svi_computed = cds.svi_calculate(data) data_svi = split_svi_to_reactor(data_svi_computed) assert len(data_svi) == length def test_clean_table_SVI_dates(): "Check that every row is a day and there are no gaps" days_list= [] length_list = [] for i in range(4): svi_path = check_file(f"clean_tables/svi_{i+1}.csv") data = pd.read_csv(svi_path) data["date"] = pd.to_datetime(data["date"], dayfirst=True) df = data["date"] length_list.append(len(df)) days = df.diff().sum().days days_list.append(days+1) assert days_list == length_list def test_clean_table_temperature_dates(): "Check that every row is a day and there are no gaps" days_list= [] length_list = [] temp_path = check_file(f"clean_tables/temperatur.csv") data = pd.read_csv(temp_path) data["Date"] = pd.to_datetime(data["Date"], dayfirst=True) df = data["Date"] length = len(df) days = df.diff().sum().days assert days +1 == length
2.46875
2
address/models.py
wendell1101/EcommerceProject---Django
0
12786799
<gh_stars>0 from django.db import models from customer_profiles.models import CustomerProfile from django_countries.fields import CountryField class BillingAddress(models.Model): customer_profile = models.ForeignKey(CustomerProfile, on_delete=models.CASCADE) house_number = models.CharField(max_length=120) street = models.CharField(max_length=200) barangay = models.CharField(max_length=200) city = models.CharField(max_length=200) province = models.CharField(max_length=200) zip_code = models.CharField(max_length=200) country = CountryField(blank_label='(select country)') timestamp = models.DateTimeField(auto_now_add=True, blank=True) def __str__(self): return self.customer_profile.user.email def get_full_address(self): return f'{self.house_number}, {self.street}, {self.barangay}, {self.city} city, {self.province}, {self.country}' class ShippingAddress(models.Model): customer_profile = models.ForeignKey(CustomerProfile, on_delete=models.CASCADE) house_number = models.CharField(max_length=120) street = models.CharField(max_length=200) barangay = models.CharField(max_length=200) city = models.CharField(max_length=200) province = models.CharField(max_length=200) zip_code = models.CharField(max_length=200) country = CountryField(blank_label='(select country)') timestamp = models.DateTimeField(auto_now_add=True, blank=True) def __str__(self): return self.customer_profile.user.email def get_full_address(self): return f'{self.house_number}, {self.street}, {self.barangay}, {self.city} city, {self.province}, {self.country}' class DefaultAddress(models.Model): customer_profile = models.ForeignKey(CustomerProfile, on_delete=models.CASCADE) house_number = models.CharField(max_length=120) street = models.CharField(max_length=200) barangay = models.CharField(max_length=200) city = models.CharField(max_length=200) province = models.CharField(max_length=200) zip_code = models.CharField(max_length=200) country = CountryField(blank_label='(select country)') timestamp = models.DateTimeField(auto_now_add=True, blank=True) def __str__(self): return self.customer_profile.user.email def get_full_address(self): return f'{self.house_number}, {self.street}, {self.barangay}, {self.city} city, {self.province}, {self.country}'
2.203125
2
src/bot/gameobservers/tests/test_game_end_observers.py
malmgrens4/TwIOTch
0
12786800
import pytest from unittest import mock from unittest.mock import AsyncMock, MagicMock from src.bot.gameobservers.WinGameChatObserver import WinGameChatObserver class TestNumberGameObservers: @pytest.mark.asyncio async def test_win_chat_announce_winners(self): """tests winning messages are called when the game is over""" mock_subject = AsyncMock() mock_subject.won = True mock_subject.winning_team_id = 1 team_one = "Team 1" team_names = ["User 1", "User 2"] mock_subject.team_data = MagicMock() mock_subject.team_data.get_team_member_map = MagicMock() mock_subject.team_data.get_team_member_map.return_value = {1: ['id1', 'id2']} winGameChatObserver = WinGameChatObserver() winGameChatObserver.get_team_name = MagicMock() winGameChatObserver.get_team_name.return_value = team_one winGameChatObserver.get_usernames = MagicMock() winGameChatObserver.get_usernames.return_value = team_names await winGameChatObserver.update(mock_subject) mock_subject.send_message.assert_called()
2.59375
3
vdb/extensions/arm.py
wisdark/vivisect
716
12786801
<reponame>wisdark/vivisect<gh_stars>100-1000 import envi import envi.cli as e_cli import envi.common as e_common import envi.archs.arm.regs as e_arm_regs import envi.archs.thumb16.disasm as e_thumb def armdis(db, line): ''' Disassemble arm instructions from the given address. Usage: armdis <addr_exp> ''' disasmobj = e_arm.ArmDisasm() armthumdis(db, line, disasmobj) def thumbdis(db, line): ''' Disassemble thumb instructions from the given address. Usage: thumbdis <addr_exp> ''' disasmobj = e_thumb.ThumbDisasm() armthumdis(db, line, disasmobj) def armthumbdis(db, line, disasmobj): ''' Core of disassmbly, for code-reuse. Only difference is the object actually doing the disassembly. ''' t = db.getTrace() argv = e_cli.splitargs(line) size = 20 argc = len(argv) if argc == 0: addr = t.getProgramCounter() else: addr = t.parseExpression(argv[0]) if argc > 1: size = t.parseExpression(argv[1]) bytez = t.readMemory(addr, size) offset = 0 db.vprint("Dissassembly:") while offset < size: va = addr + offset op = disasmobj.disasm(bytez, offset, va) obytez = bytez[offset:offset+len(op)] db.canvas.addVaText('0x%.8x' % va, va=va) db.canvas.addText(": %s " % e_common.hexify(obytez).ljust(17)) op.render(db.canvas) db.canvas.addText("\n") offset += len(op) def togglethumb(db, line): ''' Toggle Thumb Mode ''' t = db.getTrace() cur_t = t.getRegister(e_arm_regs.REG_T) new_t = not cur_t arch = (envi.ARCH_ARMV7, envi.ARCH_THUMB)[new_t] t.setRegister(e_arm_regs.REG_T, new_t) db.canvas.addText("Toggled Thumb Mode: %r\n" % new_t) def vdbExtension(vdb, trace): vdb.addCmdAlias('db', 'mem -F bytes') vdb.addCmdAlias('dw', 'mem -F u_int_16') vdb.addCmdAlias('dd', 'mem -F u_int_32') vdb.addCmdAlias('dq', 'mem -F u_int_64') vdb.addCmdAlias('dr', 'mem -F "Deref View"') vdb.addCmdAlias('ds', 'mem -F "Symbols View"') vdb.registerCmdExtension(armdis) vdb.registerCmdExtension(thumbdis) vdb.registerCmdExtension(togglethumb)
2.390625
2
LeetCode/Python3/TwoPointers/86. Partition List.py
WatsonWangZh/CodingPractice
11
12786802
<gh_stars>10-100 # Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x. # You should preserve the original relative order of the nodes in each of the two partitions. # Example: # Input: head = 1->4->3->2->5->2, x = 3 # Output: 1->2->2->4->3->5 # Definition for singly-linked list. class ListNode(object): def __init__(self, x): self.val = x self.next = None class Solution(object): def partition(self, head, x): """ :type head: ListNode :type x: int :rtype: ListNode """ # M1. 模拟 # 首先找到第一个大于或等于给定值的节点cur # 然后再找小于给定值的节点,每找到一个就将其取出置于cur之前即可 dummy = ListNode(0) dummy.next = head pre, cur = dummy, head while pre.next and pre.next.val < x: pre = pre.next cur = pre while cur.next: if cur.next.val < x: tmp = cur.next cur.next = tmp.next tmp.next = pre.next pre.next = tmp pre = pre.next else: cur = cur.next return dummy.next # M2. 划分合并 # 将小于给定值和大于给定值的节点分别按原始先后顺序划分到两个链表中 # 然后再拼接成最后的结果返回即可 small_dummy, big_dummy = ListNode(0), ListNode(0) small_cur, big_cur = small_dummy, big_dummy while head: if head.val < x: small_cur.next = head small_cur = head else: big_cur.next = head big_cur = head head = head.next big_cur.next = None small_cur.next = big_dummy.next return small_dummy.next
3.625
4
src/Filler.py
DjamelALI/covid-19-database
0
12786803
from . import Config, DIR_NAME from .csv_tool import * from .print_func import print_head from .TemplateDir import TemplateDir, TEMPLATES_DIR DIR_INSERT = TEMPLATES_DIR / "insert" class Filler: def __init__(self, config: Config): self.config = config self.template_dir = TemplateDir(DIR_INSERT) @property def psql(self): return self.config.psql @property def path_data_source(self): return self.config.path_data_source def fill_sexe(self): print("Remplissage de la table Sexe") template = self.template_dir.get_template("sexe") self.psql.execute_template(template) def exec_template_file(self, name): TemplateDir(DIR_INSERT / name).exec_all_file(self.psql) def __fill_csv_simple(self, path, table, **kwargs): print(f"Remplissage de la table {table} " f"avec le fichier [{path}]") with open(path, 'r') as f: # skip header next(f) self.psql.copy(f, table, **kwargs) def __fill_csv_apply_func(self, path: str, table: str, info: tuple, sep=","): columns = [x[0] for x in info] funcs = [x[1] for x in info] print(f"Remplissage de la table {table} " f"avec le fichier [{path}]") with open(path, 'r') as f: # skip header next(f) values = [] for line in f.readlines(): line = tuple([f(l) for l, f in zip(line.split(sep), funcs)]) assert len(line) == len(funcs), f"{len(line)} != {len(funcs)}" values.append(f"({', '.join(line)})") values_str = ",\n".join(values) request = f"INSERT INTO {table} ({','.join(columns)}) VALUES\n" \ f"{values_str};" self.psql.execute(command=request) def __recent_file_dir(self, name: str): files = (self.path_data_source / DIR_NAME[name]).iterdir() return max(files) @property def path_region(self): return self.path_data_source / "regions-france.csv" def fill_region(self): self.__fill_csv_simple(self.path_region, "Region") @property def path_departement(self): return self.path_data_source / "departements-france.csv" def fill_departement(self): self.exec_template_file("departement") self.__fill_csv_simple(self.path_departement, "tempDepartement") @property def path_age_reg(self): return self.__recent_file_dir("age") @property def info_age_reg(self): return (("numReg", str_to_int), ("clAge90", str_to_int), ("jour", to_date), ("hospAge", to_int), ("reaAge", to_int), ("hospConvAge", int_or_null), ("ssrUsldAge", int_or_null), ("autreAge", int_or_null), ("radAge", to_int), ("dcAge", to_int)) def fill_age_reg(self, file_path=None): if file_path is None: file_path = self.path_age_reg self.__fill_csv_apply_func(file_path, table="AgesReg", info=self.info_age_reg, sep=";") @property def path_sexe_dep(self): return self.__recent_file_dir("sexe") @property def info_sexe_dep(self): return (("numDep", str_to_str), ("idSexe", str_to_int), ("jour", str_to_date), ("hospSexe", to_str), ("reaSexe", to_int), ("hospConvSexe", int_or_null), ("ssrUsldSexe", int_or_null), ("autreSexe", int_or_null), ("radSexe", to_int), ("dcSexe", to_int)) def fill_sexe_dep(self, file_path=None): if file_path is None: file_path = self.path_sexe_dep self.exec_template_file("sexeDep") self.__fill_csv_apply_func(file_path, table="TempSexesDep", info=self.info_sexe_dep, sep=";") self.psql.execute("SELECT insert_sexeDep_from_temp();") @property def path_incid_dep(self): return self.__recent_file_dir("incid_dep") @property def path_incid_reg(self): return self.__recent_file_dir("incid_reg") @property def path_service(self): return self.__recent_file_dir("service") @property def info_incid_dep(self): return \ ( ("numDep", str_to_str), ("jour", to_date), ("incidHosp", to_int), ("incidRea", to_int), ("incidDc", to_int), ("incidRad", to_int), ) def fill_incid_dep_tmp(self, path=None): if path is None: path = self.path_incid_dep self.__fill_csv_apply_func(path, "TempIncidDep", self.info_incid_dep, sep=';') def fill_incid_reg_tmp(self, path=None): if path is None: path = self.path_incid_reg self.__fill_csv_simple(path, "TempIncidReg", sep=';') @property def info_service(self): return \ ( ("numDep", str_to_str), ("jour", to_date), ("nbSvce", to_int), ) def fill_service_tmp(self, path=None): if path is None: path = self.path_service self.__fill_csv_apply_func(path, "TempService", self.info_service, sep=';') def fill_incidence(self, incid_dep=None, incid_reg=None, service_file=None): self.exec_template_file("incidence") print("Remplissage de la table Incidence") self.fill_incid_dep_tmp(incid_dep) self.fill_incid_reg_tmp(incid_reg) self.fill_service_tmp(service_file) self.psql.commit() self.psql.execute("SELECT InsertIncidence();") def fill_all(self): print_head("REMPLISSAGE DES TABLES") self.fill_sexe() self.fill_region() self.fill_departement() self.psql.commit() self.fill_age_reg() self.fill_sexe_dep() self.fill_incidence() self.psql.commit()
2.65625
3
xmodaler/engine/rl_trainer.py
YehLi/xmodaler
830
12786804
# Copyright 2021 JD.com, Inc., JD AI """ @author: <NAME> @contact: <EMAIL> """ import time import copy import torch from .defaults import DefaultTrainer from xmodaler.scorer import build_scorer from xmodaler.config import kfg from xmodaler.losses import build_rl_losses import xmodaler.utils.comm as comm from .build import ENGINE_REGISTRY __all__ = ['RLTrainer'] @ENGINE_REGISTRY.register() class RLTrainer(DefaultTrainer): def __init__(self, cfg): super(RLTrainer, self).__init__(cfg) self.scorer = self.build_scorer(cfg) self.losses = build_rl_losses(cfg) @classmethod def build_scorer(cls, cfg): return build_scorer(cfg) def run_step(self): start = time.perf_counter() try: data = next(self._train_data_loader_iter) except StopIteration: self._train_data_loader_iter = iter(self.train_data_loader) data = next(self._train_data_loader_iter) data_time = time.perf_counter() - start data = comm.unwrap_model(self.model).preprocess_batch(data) self.model.eval() with torch.no_grad(): bs_data = copy.copy(data) bs_outputs_dict = self.model(bs_data, use_beam_search=False, output_sents=False) bs_rewards = self.scorer(bs_outputs_dict) self.model.train() data[kfg.DECODE_BY_SAMPLE] = True outputs_dict = self.model(data, use_beam_search=False, output_sents=False) rewards = self.scorer(outputs_dict) rewards = torch.from_numpy(rewards[kfg.REWARDS] - bs_rewards[kfg.REWARDS]).float().cuda() outputs_dict.update({ kfg.REWARDS: rewards }) losses_dict = {} for loss in self.losses: loss_dict = loss(outputs_dict) losses_dict.update(loss_dict) losses = sum(losses_dict.values()) self.optimizer.zero_grad() losses.backward() bs_rewards.pop(kfg.REWARDS) losses_dict.update(bs_rewards) self._write_metrics(losses_dict, data_time) self.optimizer.step()
1.914063
2
utils/acs_utils.py
stephanballer/deepedgebench
1
12786805
<filename>utils/acs_utils.py #!/usr/bin/python3 """ Circuit: ____________ | | Uin _______________________| ACS712 5A |________ Uin device | |____________| _|_ | | | | Imes | R1 | | to A0 | |___| | |_________ Umes | _|_ zu A1 | | | | R2 | | | |_ _| GND | | to AGND | GND ________|______________|__________|__________ GND device Arduino out: "A0 A1\n" in mV I = (Umes / max_val) * 5000mV - 2500mV) / 185mV R1: 10kO R2: 2.2kO U = (Umes / max_val) * 5.0V * Rfac Rfac = (R1 + R2) / R2 """ from serial import Serial from time import time, sleep res_factor = (9.93 + 1.98) / 1.98 max_val = 1023.0 tolerance = 512 def acs_read(device_path, delay=0.1, file_path=None, calibrate=-1.0, zero_val=512.0): ser = Serial(device_path, 9600) rec = str() if calibrate >= 0.0: print("Calibrating for %d seconds..." % (calibrate)) rec += ser.read().decode('utf-8', errors='ignore') sleep(calibrate) rec += ser.read(ser.inWaiting()).decode('utf-8', errors='ignore') num_list = list() for line in rec.split("\n")[1:-1]: nums = line.split() if len(nums) == 2: try: num = float(nums[0]) if num >= 0.0 and num <= max_val: num_list.append(num) except ValueError: pass if len(num_list) > 0: zero_val = sum(num_list)/len(num_list) else: print('Error: no readable data received') exit() usr_inp = input("%.2f analog input value in relation to 1023 or %.3fV in relation to ~5V as base value. Press any key to continue or \'q\' to exit\n" % (zero_val, (zero_val/max_val) * 5.0)) if len(usr_inp) > 0 and usr_inp[0] == "q": exit() rec = str() if file_path is not None: with open(file_path, 'w') as f: f.write('serial_data\n') while True: rec += ser.read().decode('utf-8', errors='ignore') sleep(delay) rec += ser.read(ser.inWaiting()).decode('utf-8', errors='ignore') timestamp = time() rec_list = rec.split('\n') rec = rec_list[-1] vol_list, cur_list = list(), list() for line in rec_list[:-1]: nums = line.split() if len(nums) == 2: try: cur_num, vol_num = float(nums[0]), float(nums[1]) if cur_num >= zero_val - tolerance and cur_num <= max_val and vol_num >= 0 and vol_num <= max_val: voltage = (vol_num / max_val) * 5.0 * res_factor vol_list.append(voltage) current = ((cur_num - zero_val)/max_val) * 5000.0 / 185.0 cur_list.append(current) except ValueError: pass if (len(vol_list) > 0): voltage = sum(vol_list)/len(vol_list) current = sum(cur_list)/len(cur_list) if file_path is not None: with open(file_path, 'a') as f: f.write('%f %.8f %.8f\n' % (timestamp, current, voltage)) print('\x1b[1K\r%.6fA %.6fV %.6fW' % (current, voltage, current*voltage), end='') ser.close()
2.640625
3
pyPLANES/fem/elements/surfacic_elements.py
matael/pyPLANES
0
12786806
<reponame>matael/pyPLANES #! /usr/bin/env python # -*- coding:utf8 -*- # # surfacic_elements.py # # This file is part of pyplanes, a software distributed under the MIT license. # For any question, please contact one of the authors cited below. # # Copyright (c) 2020 # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # import numpy as np import numpy.linalg as LA def imposed_Neumann(_elem): coord_e = _elem.get_coordinates() K_ref = _elem.reference_element n, m = K_ref.Phi.shape F = np.zeros(n) for ipg in range(m): _Phi = K_ref.Phi[:, ipg].reshape(n) F += K_ref.w[ipg]*_Phi F *= LA.norm(coord_e[:, 1]-coord_e[:, 0])/2. return F def imposed_pw_elementary_vector(_elem, k): ''' Calculus of I = int_{\Omega_e} e^{-jkx} Phi(x) dx On the reference element: I = (h/2)e^{-jkx-mid} * \int_{-1}^{1} e^{-jkhxi/2} \Phi(xi) dxi ''' # Geometrical datas coord_e = _elem.get_coordinates() h = LA.norm(coord_e[:, 1]-coord_e[:, 0]) x_mid = min(coord_e[0, :]) + h/2. k_prime = k*h/2. F_analytical = _elem.reference_element.int_lobatto_exponential(k_prime) return (h/2.)*np.exp(-1j*k*x_mid)*F_analytical def fsi_elementary_matrix(_elem): coord_e = _elem.get_coordinates() K_ref = _elem.reference_element n, m = K_ref.Phi.shape M = np.zeros((n, n)) for ipg in range(m): _Phi = K_ref.Phi[:, ipg].reshape(n) M += K_ref.w[ipg]*np.dot(_Phi.reshape((n, 1)), _Phi.reshape((1, n))) M *= LA.norm(coord_e[:, 1]-coord_e[:, 0])/2. return M
2.171875
2
QuantitativeEditing/audio_rendering.py
wjs018/QuantitativeEditing
21
12786807
<reponame>wjs018/QuantitativeEditing import librosa import matplotlib.pyplot as plt import numpy as np from moviepy.editor import * from librosa.display import waveplot from moviepy.video.io.bindings import mplfig_to_npimage last_t = 0 tempgraph = [] def animate_audio(video, audio, output): """ Renders a waveform of a video's audio and progresses it every 0.5s as the video plays. Parameters ----------- video filepath to a video that has audio audio filepath to save the extracted audio from video as an .mp3 output filepath to save the animated audio to as a .mp4 Returns -------- output Simply returns the filepath to the saved output video """ global last_t global tempgraph # Load video and extract audio to file video_file = VideoFileClip(video) extracted_audio = video_file.audio extracted_audio.write_audiofile(audio) # Load the saved audio into librosa y, sr = librosa.load(audio, mono=False) # Make a waveplot figure fig, ax = plt.subplots(1, figsize=(12, 2), facecolor='white') waveplot(y, sr=sr, color='b', alpha=0.25) # Initialize some variables last_t = 0 tempgraph = mplfig_to_npimage(fig) # Function to animate our graph def animate(t): # Access our initialized variables from outside the function global last_t global tempgraph # Round time to nearest 0.5 second. This limits the number of times we # update the graph. Each graph update costs 10-20 seconds to draw, so by # limiting this, we can render the graph an order of magnitude faster temp_t = np.round(t * 2) / 2.0 # Only update the graph if we are at the next 0.5 seconds if t > 0 and temp_t != last_t: # Update our timekeeping variable last_t = temp_t # Delete the previous graph, otherwise we will keep plotting over # the same graphs again and again for coll in (ax.collections): ax.collections.remove(coll) # Load only the played portion of the mp3 and plot them y2, sr2 = librosa.load('extracted_audio.mp3', mono=False, duration=t) waveplot(y2, sr=sr2, color='b', alpha=0.8) waveplot(y, sr=sr, color='b', alpha=0.25) # Update the output graph tempgraph = mplfig_to_npimage(fig) return tempgraph # Make a video of the animated graph and save it animation1 = VideoClip(animate, duration=video_file.duration) animation1.write_videofile(output, fps=video_file.fps) return output if __name__ == '__main__': # Import source video and extract the audio to an mp3 video = VideoFileClip('BTS_2017_DNA.mkv') audio = video.audio audio.write_audiofile('extracted_audio.mp3') # Load the mp3 into librosa y, sr = librosa.load('extracted_audio.mp3', mono=False) # Make a waveplot figure fig, ax = plt.subplots(1, figsize=(12, 2), facecolor='white') waveplot(y, sr=sr, color='b', alpha=0.25) # Initialize some variables last_t = 0 tempgraph = mplfig_to_npimage(fig) # Function to animate our graph def animate1(t): # Access our initialized variables from outside the function global last_t global tempgraph # Round time to nearest 0.5 second. This limits the number of times we # update the graph. Each graph update costs 10-20 seconds to draw, so by # limiting this, we can render the graph an order of magnitude faster temp_t = np.round(t * 2) / 2.0 # Only update the graph if we are at the next 0.5 seconds if t > 0 and temp_t != last_t: # Update our timekeeping variable last_t = temp_t # Delete the previous graph, otherwise we will keep plotting over # the same graphs again and again for coll in (ax.collections): ax.collections.remove(coll) # Load only the played portion of the mp3 and plot them y2, sr2 = librosa.load('extracted_audio.mp3', mono=False, duration=t) waveplot(y2, sr=sr2, color='b', alpha=0.8) waveplot(y, sr=sr, color='b', alpha=0.25) # Update the output graph tempgraph = mplfig_to_npimage(fig) return tempgraph # Make a video of the animated graph and save it animation1 = VideoClip(animate1, duration=video.duration) animation1.write_videofile('audio_animation1.mp4', fps=video.fps)
3.328125
3
tests/test_duplicated_link.py
mhbl3/matlabdomain
38
12786808
<reponame>mhbl3/matlabdomain<filename>tests/test_duplicated_link.py<gh_stars>10-100 # -*- coding: utf-8 -*- """ test_package_links.py ~~~~~~~~~~~~ Test the autodoc extension. :copyright: Copyright 2007-2018 by the Sphinx team, see AUTHORS. :license: BSD, see LICENSE for details. """ from __future__ import unicode_literals import pickle import os import sys import docutils import pytest from sphinx import addnodes from sphinx import version_info from sphinx.testing.fixtures import test_params, make_app from sphinx.testing.path import path @pytest.fixture(scope='module') def rootdir(): return path(os.path.dirname(__file__)).abspath() @pytest.mark.skipif(sys.version_info < (3, 6), reason="requires python3.6 or higher") def test_with_prefix(make_app, rootdir): srcdir = rootdir / 'roots' / 'test_duplicate_link' app = make_app(srcdir=srcdir) app.builder.build_all() content = pickle.loads((app.doctreedir / 'groups.doctree').read_bytes()) assert isinstance(content[0], docutils.nodes.section) section = content[0][7] assert section.astext() == 'NiceFiniteGroup\n\n\n\nclass +replab.NiceFiniteGroup\n\nBases: +replab.FiniteGroup\n\nA nice finite group is a finite group equipped with an injective homomorphism into a permutation group\n\nReference that triggers the error: eqv' @pytest.mark.skipif(sys.version_info < (3, 6), reason="requires python3.6 or higher") def test_without_prefix(make_app, rootdir): srcdir = rootdir / 'roots' / 'test_duplicate_link' confdict = { 'matlab_keep_package_prefix' : False } app = make_app(srcdir=srcdir, confoverrides=confdict) app.builder.build_all() content = pickle.loads((app.doctreedir / 'groups.doctree').read_bytes()) assert isinstance(content[0], docutils.nodes.section) section = content[0][7] assert section.astext() == 'NiceFiniteGroup\n\n\n\nclass replab.NiceFiniteGroup\n\nBases: replab.FiniteGroup\n\nA nice finite group is a finite group equipped with an injective homomorphism into a permutation group\n\nReference that triggers the error: eqv' if __name__ == '__main__': pytest.main([__file__])
1.820313
2
numpy/doc/dispatch.py
Soniyanayak51/numpy
1
12786809
<reponame>Soniyanayak51/numpy """.. _dispatch_mechanism: Numpy's dispatch mechanism, introduced in numpy version v1.16 is the recommended approach for writing custom N-dimensional array containers that are compatible with the numpy API and provide custom implementations of numpy functionality. Applications include `dask <http://dask.pydata.org>`_ arrays, an N-dimensional array distributed across multiple nodes, and `cupy <https://docs-cupy.chainer.org/en/stable/>`_ arrays, an N-dimensional array on a GPU. To get a feel for writing custom array containers, we'll begin with a simple example that has rather narrow utility but illustrates the concepts involved. >>> import numpy as np >>> class DiagonalArray: ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self): ... return self._i * np.eye(self._N) ... Our custom array can be instantiated like: >>> arr = DiagonalArray(5, 1) >>> arr DiagonalArray(N=5, value=1) We can convert to a numpy array using :func:`numpy.array` or :func:`numpy.asarray`, which will call its ``__array__`` method to obtain a standard ``numpy.ndarray``. >>> np.asarray(arr) array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) If we operate on ``arr`` with a numpy function, numpy will again use the ``__array__`` interface to convert it to an array and then apply the function in the usual way. >>> np.multiply(arr, 2) array([[2., 0., 0., 0., 0.], [0., 2., 0., 0., 0.], [0., 0., 2., 0., 0.], [0., 0., 0., 2., 0.], [0., 0., 0., 0., 2.]]) Notice that the return type is a standard ``numpy.ndarray``. >>> type(arr) numpy.ndarray How can we pass our custom array type through this function? Numpy allows a class to indicate that it would like to handle computations in a custom-defined way through the interaces ``__array_ufunc__`` and ``__array_function__``. Let's take one at a time, starting with ``_array_ufunc__``. This method covers :ref:`ufuncs`, a class of functions that includes, for example, :func:`numpy.multiply` and :func:`numpy.sin`. The ``__array_ufunc__`` receives: - ``ufunc``, a function like ``numpy.multiply`` - ``method``, a string, differentiating between ``numpy.multiply(...)`` and variants like ``numpy.multiply.outer``, ``numpy.multiply.accumulate``, and so on. For the common case, ``numpy.multiply(...)``, ``method == '__call__'``. - ``inputs``, which could be a mixture of different types - ``kwargs``, keyword arguments passed to the function For this example we will only handle the method ``__call__``. >>> from numbers import Number >>> class DiagonalArray: ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self): ... return self._i * np.eye(self._N) ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... if method == '__call__': ... N = None ... scalars = [] ... for input in inputs: ... if isinstance(input, Number): ... scalars.append(input) ... elif isinstance(input, self.__class__): ... scalars.append(input._i) ... if N is not None: ... if N != self._N: ... raise TypeError("inconsistent sizes") ... else: ... N = self._N ... else: ... return NotImplemented ... return self.__class__(N, ufunc(*scalars, **kwargs)) ... else: ... return NotImplemented ... Now our custom array type passes through numpy functions. >>> arr = DiagonalArray(5, 1) >>> np.multiply(arr, 3) DiagonalArray(N=5, value=3) >>> np.add(arr, 3) DiagonalArray(N=5, value=4) >>> np.sin(arr) DiagonalArray(N=5, value=0.8414709848078965) At this point ``arr + 3`` does not work. >>> arr + 3 TypeError: unsupported operand type(s) for *: 'DiagonalArray' and 'int' To support it, we need to define the Python interfaces ``__add__``, ``__lt__``, and so on to dispatch to the corresponding ufunc. We can achieve this conveniently by inheriting from the mixin :class:`~numpy.lib.mixins.NDArrayOperatorsMixin`. >>> import numpy.lib.mixins >>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self): ... return self._i * np.eye(self._N) ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... if method == '__call__': ... N = None ... scalars = [] ... for input in inputs: ... if isinstance(input, Number): ... scalars.append(input) ... elif isinstance(input, self.__class__): ... scalars.append(input._i) ... if N is not None: ... if N != self._N: ... raise TypeError("inconsistent sizes") ... else: ... N = self._N ... else: ... return NotImplemented ... return self.__class__(N, ufunc(*scalars, **kwargs)) ... else: ... return NotImplemented ... >>> arr = DiagonalArray(5, 1) >>> arr + 3 DiagonalArray(N=5, value=4) >>> arr > 0 DiagonalArray(N=5, value=True) Now let's tackle ``__array_function__``. We'll create dict that maps numpy functions to our custom variants. >>> HANDLED_FUNCTIONS = {} >>> class DiagonalArray(numpy.lib.mixins.NDArrayOperatorsMixin): ... def __init__(self, N, value): ... self._N = N ... self._i = value ... def __repr__(self): ... return f"{self.__class__.__name__}(N={self._N}, value={self._i})" ... def __array__(self): ... return self._i * np.eye(self._N) ... def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): ... if method == '__call__': ... N = None ... scalars = [] ... for input in inputs: ... # In this case we accept only scalar numbers or DiagonalArrays. ... if isinstance(input, Number): ... scalars.append(input) ... elif isinstance(input, self.__class__): ... scalars.append(input._i) ... if N is not None: ... if N != self._N: ... raise TypeError("inconsistent sizes") ... else: ... N = self._N ... else: ... return NotImplemented ... return self.__class__(N, ufunc(*scalars, **kwargs)) ... else: ... return NotImplemented ... def __array_function__(self, func, types, args, kwargs): ... if func not in HANDLED_FUNCTIONS: ... return NotImplemented ... # Note: this allows subclasses that don't override ... # __array_function__ to handle DiagonalArray objects. ... if not all(issubclass(t, self.__class__) for t in types): ... return NotImplemented ... return HANDLED_FUNCTIONS[func](*args, **kwargs) ... A convenient pattern is to define a decorator ``implements`` that can be used to add functions to ``HANDLED_FUNCTIONS``. >>> def implements(np_function): ... "Register an __array_function__ implementation for DiagonalArray objects." ... def decorator(func): ... HANDLED_FUNCTIONS[np_function] = func ... return func ... return decorator ... Now we write implementations of numpy functions for ``DiagonalArray``. For completeness, to support the usage ``arr.sum()`` add a method ``sum`` that calls ``numpy.sum(self)``, and the same for ``mean``. >>> @implements(np.sum) ... def sum(arr): ... "Implementation of np.sum for DiagonalArray objects" ... return arr._i * arr._N ... >>> @implements(np.mean) ... def sum(arr): ... "Implementation of np.mean for DiagonalArray objects" ... return arr._i / arr._N ... >>> arr = DiagonalArray(5, 1) >>> np.sum(arr) 5 >>> np.mean(arr) 0.2 If the user tries to use any numpy functions not included in ``HANDLED_FUNCTIONS``, a ``TypeError`` will be raised by numpy, indicating that this operation is not supported. For example, concatenating two ``DiagonalArrays`` does not produce another diagonal array, so it is not supported. >>> np.concatenate([arr, arr]) TypeError: no implementation found for 'numpy.concatenate' on types that implement __array_function__: [<class '__main__.DiagonalArray'>] Additionally, our implementations of ``sum`` and ``mean`` do not accept the optional arguments that numpy's implementation does. >>> np.sum(arr, axis=0) TypeError: sum() got an unexpected keyword argument 'axis' The user always has the option of converting to a normal ``numpy.ndarray`` with :func:`numpy.asarray` and using standard numpy from there. >>> np.concatenate([np.asarray(arr), np.asarray(arr)]) array([[1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.], [1., 0., 0., 0., 0.], [0., 1., 0., 0., 0.], [0., 0., 1., 0., 0.], [0., 0., 0., 1., 0.], [0., 0., 0., 0., 1.]]) Refer to the `dask source code <https://github.com/dask/dask>`_ and `cupy source code <https://github.com/cupy/cupy>`_ for more fully-worked examples of custom array containers. See also `NEP 18 <http://www.numpy.org/neps/nep-0018-array-function-protocol.html>`_. """
3.09375
3
5/005_smallest_divisible_by_1_through_20.py
the-gigi/project-euler
7
12786810
<filename>5/005_smallest_divisible_by_1_through_20.py """Smallest Multiple - https://projecteuler.net/problem=5 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20? """ def get_prime_product(n): """Return a dictionary with prime keys and exponent values The product of all the keys raised to their exponent is the number For example: 20 = 2 ** 2 * 5 -> {2: 2, 5:1} """ primes_to_20 = (2, 3, 5, 7, 11, 13, 17, 19) if n in primes_to_20: return {n: 1} result = {k: 0 for k in primes_to_20} for p in primes_to_20: while n % p == 0: result[p] += 1 n /= p result = {k: v for k, v in result.iteritems() if v > 0} return result numbers = range(20, 2, -1) result = {} for n in numbers: prime_product = get_prime_product(n) for k, v in prime_product.iteritems(): if k not in result: result[k] = v elif v > result[k]: result[k] = v final_number = 1 for k, v in result.iteritems(): final_number *= k ** v assert 232792560 == final_number
3.921875
4
tests/segment.py
soootaleb/spare
1
12786811
import unittest, random from models.point import Point from models.segment import Segment import numpy as np class TestSegmentMethods(unittest.TestCase): def test_new(self): with self.assertRaises(ValueError) as context: Segment([]) def test_extremums(self): a = Point(random.randint(0, 100), random.randint(0, 100)) b = Point(random.randint(0, 100), random.randint(0, 100)) c = Point(random.randint(0, 100), random.randint(0, 100)) segment = Segment([a, b, c]) self.assertEqual(segment.start, a) self.assertEqual(segment.end, c) def test_getitem(self): a = Point(10, 20) b = Point(20, 30) c = Point(30, 40) segment = Segment([a, b, c]) self.assertEqual(segment[Point(10, 20)], a) # Access by point self.assertEqual(segment[20, 30], b) # Access by coordinates self.assertEqual(segment[2], c) # Access by index self.assertEqual(segment[100, 100], None) # Accessing a missing point def test_append(self): a = Point(10, 20) b = Point(20, 30) c = Point(30, 40) segment = Segment([a, b, c]) segment.append(Point(31, 40)) # Working case self.assertEqual(segment.end, Point(31, 40)) # Point is too far with self.assertRaises(ValueError) as context: segment.append(Point(100, 100)) # Point already exists with self.assertRaises(ValueError) as context: segment.append(Point(31, 40)) def test_angle(self): angle_1 = Segment([Point(0, 0), Point(10, 10)]) # Angle is 45° angle_2 = Segment([Point(0, 0), Point(10, 20)]) # Angle is arctan(20/10) angle_half = Segment([Point(0, 0), Point(20, 10)]) # Angle is arctan(10/20) angle_vertical = Segment([Point(0, 0), Point(10, 0)]) # Angle is 0° angle_horizontal = Segment([Point(0, 0), Point(0, 10)]) # Angle is 90° self.assertAlmostEqual(angle_1.angle(radians = True), np.pi / 4) self.assertAlmostEqual(angle_half.angle(radians = True), np.arctan(2)) self.assertAlmostEqual(angle_horizontal.angle(radians = True), 0) self.assertAlmostEqual(angle_vertical.angle(radians = True), np.pi / 2) self.assertAlmostEqual(angle_1.angle(radians = False), 45) self.assertAlmostEqual(angle_half.angle(radians = False), 63, places = 0) self.assertAlmostEqual(angle_horizontal.angle(radians = False), 0) self.assertAlmostEqual(angle_vertical.angle(radians = False), 90)
3.171875
3
EfficientNet-Transfer-Learning-Boiler-Plate/model_retrain_remove_layer.py
ntedgi/deep-learning-data-preparation-tools
0
12786812
import efficientnet.keras as efn import os from keras.layers import * from keras.models import Model from keras.preprocessing.image import ImageDataGenerator # load checkpoint def get_efficentnet_check_point(argument): check_points = { 0: efn.EfficientNetB0(weights='imagenet'), 1: efn.EfficientNetB1(weights='imagenet'), 2: efn.EfficientNetB2(weights='imagenet'), 3: efn.EfficientNetB3(weights='imagenet'), 4: efn.EfficientNetB4(weights='imagenet'), 5: efn.EfficientNetB5(weights='imagenet'), 6: efn.EfficientNetB6(weights='imagenet'), 7: efn.EfficientNetB7(weights='imagenet') } return check_points.get(argument, "Invalid month") experiment_name = "test5_7" data_dir = "test2" working_dir = "/home/naor/projects/Image-Recognition" model_name = f'{experiment_name}.h5' train_data_input_folder = f'{working_dir}/{data_dir}/train/' validation_data_input_folder = f'{working_dir}/test1/val/' model_output_dir = f'{working_dir}/models' model_output_path = f'{model_output_dir}/{model_name}' if not os.path.exists(model_output_dir): os.mkdir(model_output_dir) # input dimension for current check point input_dim = 600 model = efn.EfficientNetB7() # remove last layer model.layers.pop() model.summary() layer = Dense(5, activation='sigmoid', name='new_layer')(model.get_layer('avg_pool').output) new_model = Model(model.input, layer) # create new output layer output_layer = Dense(5, activation='sigmoid', name='output')(new_model.get_layer('new_layer').output) # new_model = Model(model.input, output_layer) # lock previous weights for i, l in enumerate(new_model.layers): if i < 228: l.trainable = False # new_model.compile(loss='sparse_categorical_crossentropy', optimizer='adam') new_model.compile(loss='mean_squared_error', optimizer='adam') # generate train data train_datagen = ImageDataGenerator( shear_range=0.2, zoom_range=0.2, horizontal_flip=True, validation_split=0) train_generator = train_datagen.flow_from_directory( train_data_input_folder, target_size=(input_dim, input_dim), batch_size=8, class_mode='categorical', seed=2019, subset='training') validation_generator = train_datagen.flow_from_directory( validation_data_input_folder, target_size=(input_dim, input_dim), batch_size=4, class_mode='categorical', seed=2019, subset='validation') new_model.fit_generator( train_generator, samples_per_epoch=2000 // 32, epochs=40, validation_steps=20, validation_data=validation_generator, nb_worker=24) new_model.save(model_output_path)
2.53125
3
tests/test_exception.py
AustinScola/illud
1
12786813
<filename>tests/test_exception.py<gh_stars>1-10 """Test illud.exception.""" from illud.exception import IlludException def test_inheritance() -> None: """Test illud.exception.IlludException inheritance.""" assert issubclass(IlludException, Exception)
1.914063
2
slugifile/slugifile.py
codehutlabs/slugifile
0
12786814
# -*- coding: utf-8 -*- from slugify import slugify import os """Main module.""" def ascii_safe_filename(filename: str) -> dict: file = os.path.splitext(filename) slug = slugify(file[0], separator="_") ext = file[1] return {"f_in": filename, "f_out": "{}{}".format(slug, ext)} def slugifile_directory(path: str): success = True messages = [] if path is None: success = False messages.append("No path specified. Done.") else: path = path.rstrip("\\/") if not os.path.isdir(path): success = False messages.append("Path specified is not a directory. Done.") else: filenames = os.listdir(path) for filename in filenames: result = ascii_safe_filename(filename) f_in = result["f_in"] f_out = result["f_out"] if f_in == f_out: messages.append("Skipping: {}".format(f_in)) continue filename_in = "{}/{}".format(path, f_in) filename_out = "{}/{}".format(path, f_out) messages.append("Renaming: {} => {}".format(f_in, f_out)) os.rename(filename_in, filename_out) return {"success": success, "messages": messages}
3.015625
3
dps/admin.py
takeflight/django-dps
0
12786815
<reponame>takeflight/django-dps<filename>dps/admin.py from django.contrib.admin import SimpleListFilter from django.contrib import admin from django.contrib.contenttypes.admin import GenericTabularInline from .models import Transaction class ContentTypeFilter(SimpleListFilter): title = 'purchase type' parameter_name = 'type' def lookups(self, request, model_admin): ctypes = Transaction.objects.values_list( 'content_type__id', 'content_type__app_label', 'content_type__model') \ .order_by('content_type__id').distinct() return [(c[0], (u"%s: %s" % c[1:]).title()) for c in ctypes] def queryset(self, request, queryset): if self.value(): return queryset.filter(content_type__id__exact=self.value()) else: return queryset class TransactionAdmin(admin.ModelAdmin): list_display = ('amount', 'status', 'transaction_type', 'content_object', 'created',) search_fields = ('secret', ) list_filter = (ContentTypeFilter, ) class TransactionInlineAdmin(GenericTabularInline): model = Transaction def has_add_permission(self, request): return False admin.site.register(Transaction, TransactionAdmin)
2.09375
2
ldb/export.py
bramvankooten/dienst2
1
12786816
<gh_stars>1-10 import csv import operator import re from functools import reduce from io import StringIO from django.db.models import Q from django.utils.encoding import smart_str from rest_framework import renderers, status from rest_framework.renderers import TemplateHTMLRenderer from rest_framework.response import Response from rest_framework.views import APIView from six import iteritems from ldb.models import * class CSVRenderer(renderers.BaseRenderer): media_type = "text/csv" format = "csv" def render(self, data, media_type=None, renderer_context=None): if not isinstance(data, list): return data if len(data) < 1: return "Geen resultaten" order = [ "name", "streetnumber", "postcodecity", "kixcode", "street_name", "house_number", "address_2", "address_3", "postcode", "city", "country", "email", "phone_fixed", "organization__name_prefix", "organization__name", "organization__name_short", "organization__salutation", "person__titles", "person__initials", "person__firstname", "person__preposition", "person__surname", "person__postfix_titles", "person__phone_mobile", "person__gender", "person__birthdate", "person__email_forward", "person__ldap_username", "person__netid", "person__student__study", "person__student__first_year", "person__student__student_number", "person__student__enrolled", "person__student__emergency_name", "person__student__emergency_phone", "person__alumnus__study", "person__alumnus__study_first_year", "person__alumnus__study_last_year", "person__alumnus__work_company", "id", ] fields = list(data[0]._data.keys()) fields.sort(key=lambda p: order.index(p)) raw_data = StringIO() writer = csv.DictWriter(raw_data, fieldnames=fields, quoting=csv.QUOTE_MINIMAL) writer.writeheader() for obj in data: writer.writerow({k: smart_str(v) for k, v in obj._data.items()}) return raw_data.getvalue() class ExportObject(object): def __init__(self, initial=None): self.__dict__["_data"] = {} if hasattr(initial, "items"): self.__dict__["_data"] = initial def __getattr__(self, name): return self._data.get(name, None) def __setattr__(self, name, value): self.__dict__["_data"][name] = value def to_dict(self): return self._data def flatten(infile): output = [] for obj in infile: fields = infile.get(obj) if obj == "entity": output += fields else: for field in fields: output.append("%s__%s" % (obj, field)) return output class Export(APIView): renderer_classes = (TemplateHTMLRenderer, CSVRenderer) def get(self, request): data = {"title": "Ledendatabase", "ng_app": "ldb"} return Response(data, template_name="ldb/export.html") # Fields allowed_fields = { "entity": [ "street_name", "house_number", "address_2", "address_3", "postcode", "city", "country", "email", "phone_fixed", ], "organization": ["name_prefix", "name", "name_short", "salutation"], "person": [ "titles", "initials", "firstname", "preposition", "surname", "postfix_titles", "phone_mobile", "gender", "birthdate", "email_forward", "ldap_username", "netid", ], "person__member": [], "person__student": [ "study", "first_year", "student_number", "enrolled", "emergency_name", "emergency_phone", ], "person__alumnus": [ "study", "study_first_year", "study_last_year", "work_company", ], "person__employee": [], } def set_fields(self, query): allowed_fields = flatten(self.allowed_fields) requested_fields = query.get("fields", []) fields = {} for k, v in iteritems(requested_fields): if v: fields[k] = v requested_fields = fields export_fields = list(set(allowed_fields) & set(requested_fields)) if len(export_fields) == 0: export_fields = ["id"] return export_fields # Querysets living_person = Q(~Q(person__isnull=True), Q(person__deceased=False)) allowed_querysets = { "organizations": Q(~Q(organization__isnull=True)), "members": Q( living_person, Q(person__member__date_from__isnull=False), Q(person__member__date_to__isnull=True) | Q(person__member__date_to__gt=date.today()), ), "merit": Q(living_person, ~Q(person__member__merit_date_from__isnull=True)), "honorary": Q( living_person, ~Q(person__member__honorary_date_from__isnull=True) ), "students": Q(living_person, ~Q(person__student__isnull=True)), "alumni": Q(living_person, ~Q(person__alumnus__isnull=True)), "employees": Q(living_person, ~Q(person__employee__isnull=True)), } def set_querysets(self, query): requested_querysets = query.get("queryset", []) querysets = {} for k, v in iteritems(requested_querysets): if v == True: querysets[k] = v requested_querysets = querysets export_querysets = list(set(self.allowed_querysets) & set(requested_querysets)) return export_querysets # Filters allowed_filters = { "entity": [ "country", "machazine", "board_invites", "constitution_card", "christmas_card", "yearbook", ], "organization": [], "person": ["mail_announcements", "mail_company", "mail_education"], "person__member": ["associate_member", "donating_member", "merit_invitations"], "person__student": ["first_year", "enrolled", "yearbook_permission"], "person__alumnus": [], "person__employee": [], } def set_filters(self, query): export_filters = {} allowed_filters = flatten(self.allowed_filters) requested_filters = query.get("filters", []) for field in requested_filters: if field in allowed_filters: value = requested_filters.get(field) if value == "true": export_filters[field] = True elif value == "false": export_filters[field] = False elif value != "undefined": export_filters[field] = value return export_filters def post(self, request): querysets = self.set_querysets(request.data) if not querysets: return Response("No groups selected", status=status.HTTP_400_BAD_REQUEST) objects = Entity.objects.filter( reduce( operator.or_, map(lambda x: self.allowed_querysets.get(x), querysets) ) ) filters = self.set_filters(request.data) objects = objects.filter(**filters) addresslist = request.data.get("addresslist", "off") if addresslist == "off": export_fields = self.set_fields(request.data) objects = objects.values(*export_fields) converted = list(map(ExportObject, objects)) elif addresslist in ["doubles", "living_with"]: objects = objects.filter(~Q(street_name=""), ~Q(house_number="")).values( "street_name", "house_number", "address_2", "address_3", "postcode", "city", "organization__name_prefix", "organization__name", "organization__name_short", "organization__salutation", "person__titles", "person__initials", "person__firstname", "person__preposition", "person__surname", "person__postfix_titles", "person__living_with", "person__gender", "id", ) def getname(obj): if obj.get("organization__name"): name = obj.get("organization__name_prefix", "") name += " " name += obj.get("organization__name") name = re.sub("\s+", " ", name) return name.strip() elif obj.get("person__surname"): titles = obj.get("person__titles") if titles: firstname = "%s %s" % ( titles, obj.get( "person__initials", obj.get("person__firstname", "") ), ) else: firstname = obj.get( "person__firstname", obj.get("person__initials", "") ) name = "%s %s %s %s" % ( firstname, obj.get("person__preposition", ""), obj.get("person__surname", ""), obj.get("person__postfix_titles", ""), ) name = re.sub("\s+", " ", name) return name.strip() else: return "" if addresslist == "living_with": doubles = {} others = [] for obj in objects: if obj.get("person__living_with"): if doubles.get(obj["person__living_with"]): other = doubles[obj["person__living_with"]] if obj.get("person__gender") == "M": obj["combined_name"] = "%s en %s" % ( getname(obj), getname(other), ) else: obj["combined_name"] = "%s en %s" % ( getname(other), getname(obj), ) others.append(obj) else: doubles[obj["id"]] = obj else: others.append(obj) objects = others def format(obj): converted_obj = {} converted_obj["streetnumber"] = "%s %s" % ( obj.get("street_name"), obj.get("house_number"), ) postcode = obj.get("postcode").replace(" ", "") converted_obj["postcodecity"] = "%s %s" % (postcode, obj.get("city")) converted_obj["kixcode"] = "%s%s" % (postcode, obj.get("house_number")) converted_obj["name"] = obj.get("combined_name", getname(obj)) return ExportObject(converted_obj) converted = list(map(format, objects)) converted.sort(key=lambda p: p.kixcode) return Response(converted)
2.0625
2
filemon/files.py
asvetlov/filemon
0
12786817
import os import sys import subprocess from PySide import QtGui, QtCore class FileSystemModel(QtGui.QFileSystemModel): filter_reset = QtCore.Signal() root_index_changed = QtCore.Signal(QtCore.QModelIndex) status_changed = QtCore.Signal(int, int) STORAGE_NAME = '.filemon.dat' def __init__(self): QtGui.QFileSystemModel.__init__(self) self.setFilter(QtCore.QDir.AllDirs | QtCore.QDir.NoDot | QtCore.QDir.NoDotDot | QtCore.QDir.AllEntries | QtCore.QDir.DirsFirst | QtCore.QDir.Name) self._processed = set() self._marked_count = 0 self._total_count = 0 self.setNameFilterDisables(False) self.directoryLoaded.connect(self._update_stats) def _update_stats(self): files = self._files() print(files, self._processed) self._marked_count = sum(1 for f in files if f in self._processed) self._total_count = len(files) self.status_changed.emit(self._total_count, self._marked_count) @QtCore.Slot(str) def filter_changed(self, text): print('filter changed', text) text = text.strip() if text: self.setNameFilters(['*' + text + '*']) else: self.setNameFilters([]) self._update_stats() def _files(self): ret = [] idx = self.index(self.rootPath()) for i in range(0, self.rowCount(idx)): child = idx.child(i, idx.column()) ret.append(self.fileName(child)) return ret def set_path(self, path): print(path) path = os.path.abspath(path) self.reset() self.setRootPath(path) self.filter_reset.emit() self.root_index_changed.emit(self.index(path)) storage = os.path.join(path, self.STORAGE_NAME) self._processed = set() present = set(os.listdir(path)) if os.path.isfile(storage): with open(storage) as f: data = set(f.read().splitlines()) self._processed = data - present if data != self._processed: self._save() self._update_stats() @QtCore.Slot() def go_parent(self): path = self.rootPath() self.set_path(path + '/..') @QtCore.Slot() def go_home(self): path = os.path.expanduser('~') self.set_path(path) @QtCore.Slot() def go_cwd(self): self.set_path(os.getcwd()) def file_dragged(self, path): print("Dragged", path) self._processed.add(path) self._save() def _save(self): self._update_stats() storage = os.path.join(self.rootPath(), self.STORAGE_NAME) with open(storage, 'w') as f: f.write('\n'.join(sorted(self._processed))) def data(self, index, role): if index.isValid() and role == QtCore.Qt.ForegroundRole: path = self.filePath(index) if path in self._processed: return QtGui.QBrush(QtGui.QColor(255, 0, 0)) return super().data(index, role) @QtCore.Slot() def reset_markers(self): self._processed = set() self._save() self.set_path(self.rootPath()) def unmark(self, index): if not index.isValid(): return path = self.filePath(index) self._processed.discard(path) self._save() self.set_path(self.rootPath()) def start_file(self, index): filename = self.fileName(index) if sys.platform == "win32": os.startfile(filename) else: opener = "open" if sys.platform == "darwin" else "xdg-open" subprocess.call([opener, filename]) class FileView(QtGui.QListView): def __init__(self, parent): QtGui.QListView.__init__(self, parent) self.setDragEnabled(True) def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: self._drag_start_pos = event.pos() return QtGui.QListView.mousePressEvent(self, event) def mouseMoveEvent(self, event): if not event.buttons() & QtCore.Qt.LeftButton: return if ((event.pos() - self._drag_start_pos).manhattanLength() < QtGui.QApplication.startDragDistance()): return model = self.model() drag = QtGui.QDrag(self) index = self.indexAt(self._drag_start_pos) if not index.isValid(): return if model.isDir(index): return path = model.filePath(index) mimedata = model.mimeData([index]) drag.setMimeData(mimedata) drop_action = drag.exec_(QtCore.Qt.CopyAction) if drop_action == QtCore.Qt.CopyAction: model.file_dragged(path)
2.375
2
08-recursive-and-backtracking/leetcode_22.py
xiaolinzi-xl/Algorithm-Interview-Study
1
12786818
ans = [] def rebot(l, r, n, res): if l == n and r == n: ans.append(res) return if l > r: if l < n: rebot(l + 1, r, n, res + '(') rebot(l, r + 1, n, res + ')') elif l == r: rebot(l + 1, r, n, res + '(') class Solution: def generateParenthesis(self, n): ans.clear() rebot(1, 0, n, '(') return ans
3.359375
3
manifold_flow/flows/flow.py
selflein/manifold-flow
199
12786819
<reponame>selflein/manifold-flow import logging from manifold_flow.utils.various import product from manifold_flow import distributions from manifold_flow.flows import BaseFlow logger = logging.getLogger(__name__) class Flow(BaseFlow): """ Ambient normalizing flow (AF) """ def __init__(self, data_dim, transform): super(Flow, self).__init__() self.data_dim = data_dim self.latent_dim = data_dim self.total_data_dim = product(data_dim) self.total_latent_dim = product(self.latent_dim) self.latent_distribution = distributions.StandardNormal((self.total_latent_dim,)) self.transform = transform self._report_model_parameters() def forward(self, x, context=None): """ Transforms data point to latent space, evaluates log likelihood """ # Encode u, log_det = self._encode(x, context=context) # Decode x = self.decode(u, context=context) # Log prob log_prob = self.latent_distribution._log_prob(u, context=None) log_prob = log_prob + log_det return x, log_prob, u def encode(self, x, context=None): """ Encodes data point to latent space """ u, _ = self._encode(x, context=context) return u def decode(self, u, context=None): """ Encodes data point to latent space """ x, _ = self.transform.inverse(u, context=context) return x def log_prob(self, x, context=None): """ Evaluates log likelihood """ # Encode u, log_det = self._encode(x, context) # Log prob log_prob = self.latent_distribution._log_prob(u, context=None) log_prob = log_prob + log_det return log_prob def sample(self, u=None, n=1, context=None): """ Generates samples from model """ if u is None: u = self.latent_distribution.sample(n, context=None) x = self.decode(u, context=context) return x def _encode(self, x, context=None): u, log_det = self.transform(x, context=context) return u, log_det
2.46875
2
InvoiceSystem-python/paymentCharged.py
gvensan/ep-design-workshop
0
12786820
<reponame>gvensan/ep-design-workshop from enum import Enum from typing import Sequence from entity import Entity class PaymentCharged(Entity): class Driver(Entity): def __init__( self, driverId: int, rating: int, lastName: str, carClass: str, firstName: str): self.driverId = driverId self.rating = rating self.lastName = lastName self.carClass = carClass self.firstName = firstName class Passenger(Entity): def __init__( self, passengerId: int, rating: int, lastName: str, firstName: str): self.passengerId = passengerId self.rating = rating self.lastName = lastName self.firstName = firstName def __init__( self, entityType: str, rideId: str, amountCharged: float, driver: Driver, paymentChargedId: str, passenger: Passenger, paymentStatus: str, invoiceSystemId: str, informationSource: str, timestamp: str): self.entityType = entityType self.rideId = rideId self.amountCharged = amountCharged self.driver = driver self.paymentChargedId = paymentChargedId self.passenger = passenger self.paymentStatus = paymentStatus self.invoiceSystemId = invoiceSystemId self.informationSource = informationSource self.timestamp = timestamp
2.984375
3
plugins/zeterpreter/multi/trolling/say.py
CrackerCat/ZetaSploit
3
12786821
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # from core.badges import badges class ZetaSploitPlugin: def __init__(self, controller): self.controller = controller self.badges = badges() self.details = { 'Name': "multi/trolling/say", 'Authors': ['enty8080'], 'Description': "Say text message on device.", 'Comment': "idk?" } self.options = { 'MESSAGE': { 'Description': "Message to say.", 'Value': "Hello, zeterpreter!", 'Required': True } } def run(self): status, output = self.controller.send_command("say", self.options['MESSAGE']['Value']) if status == "error": print(self.badges.E + "Failed to say message!")
1.90625
2
storage/baidu_cloud.py
wangkaibiao/SettlersFinancialData3
0
12786822
<reponame>wangkaibiao/SettlersFinancialData3 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ bypy,第一次运行时需要授权,只需跑任何一个命令(比如 bypy info)然后跟着说明(登陆等)来授权即可。 授权只需一次,一旦成功,以后不会再出现授权提示. 更详细的了解某一个命令:bypy help <command> 显示在云盘(程序的)根目录下文件列表:bypy list 把当前目录同步到云盘:bypy syncup or bypy upload 把云盘内容同步到本地来:bypy syncdown or bypy downdir / 比较本地当前目录和云盘(程序的)根目录(个人认为非常有用):bypy compare 更多命令和详细解释请见运行bypy的输出。 调试 运行时添加-v参数,会显示进度详情。 运行时添加-d,会显示一些调试信息。 运行时添加-ddd,还会会显示HTTP通讯信息(警告:非常多) 经验分享,请移步至wiki,方便分享/交流。 """ from bypy import ByPy#,gui import os,sys,psutil from service import png """-------------------------------------------------------------------------""" _paths=["/media/sfd/1CEE36D0EE36A1C6/core/","/media/sfd/LENOVO/SFD_assistant/core/"] for _path in _paths: if os.path.exists(_path): base_path=_path externalPaths=[base_path + 'basic_linux' , base_path + 'intelligent_device' , base_path + 'knowledge_continue' , ] #os.listdir(externalPaths[0]) """-------------------------------------------------------------------------""" def make_paths(paths=[]):#用于初始化开发环境 if paths: for path in paths: if not os.path.exists(path): os.makedirs(path) return "创建成功" else: return "请输入路径列表" #make_paths(externalPaths) """-------------------------------------------------------------------------""" def test(): bp=ByPy() bp.list("basic_linux/") # or whatever instance methods of ByPy class bp.syncup(base_path) bp.syndown("/apps/bypy",base_path) bp.downfile("basic_linux/wps-office_10.1.0.6634_amd64.deb",externalPaths[0]) bp.downfile("basic_linux/can_google.crx",externalPaths[0]) #gui.BypyGui() """-------------------------------------------------------------------------""" def qpython_sync(current_dir="/*/",file_name="*.py"): move_path="/run/user/1000/gvfs/mtp:host=%5Busb%3A001%2C002%5D/Internal storage/qpython" sourceFile=os.getcwd()+"/storage/emulated/0/qpython"+current_dir+file_name targetFile=move_path+current_dir+file_name if os.path.isfile(sourceFile): with open(sourceFile, "rb") as source: with open(targetFile, "wb") as copy: copy.write(source.read()) print("copy success")
1.84375
2
kbsbot/channel_handler/services.py
astandre/cb-channel-handler-ms
0
12786823
<reponame>astandre/cb-channel-handler-ms from requests import Session import requests import os COMPOSE_ENGINE = os.environ.get('COMPOSE_ENGINE') # COMPOSE_ENGINE = "http://127.0.0.1:5000" session = Session() session.trust_env = False session.verify = False session.headers["Accept"] = "application/json" session.headers["Content-Type"] = "application/json" def compose(data): """ This method connects to the compose engine in order to get the answer for the user. Args: :param data: A dict containing data to pass to the engine. This dict contains, the user id, the agent, the context and the user input. Returns: A dict containing the context and the answer for the user. """ url = COMPOSE_ENGINE + "/compose" try: r = session.get(url, json=data) if r.status_code == 200: response = r.json() print(response) return response except requests.exceptions.RequestException as e: print(e)
2.71875
3
callables.py
StanLivitski/python-runtime
0
12786824
# vim:fileencoding=UTF-8 # # Copyright © 2016, 2019 <NAME> # # Licensed under the Apache License, Version 2.0 with modifications, # (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # https://raw.githubusercontent.com/StanLivitski/EPyColl/master/LICENSE # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Helpers for obtaining information about callable objects and have the same code run different types of callables. Key elements ------------ prepare_call : A function that unwraps a callable, if necessary, and tells whether the resulting object requires the ``self`` argument to be called. call : Calls the target object, prepending ``self`` argument if necessary. """ import version version.requirePythonVersion(3, 3) def call(callable_, globals_, self, *args, **kwargs): """ Calls the target object, prepending ``self`` argument to the argument list if necessary. Parameters ---------- callable_ : callable Reference to a function or method object or wrapper. globals_ : dict The dictionary of the module defining the target callable, or the local dictionary for the scope in which the target callable's container is defined. self : object | None The value to be passed as ``self`` argument, if required by the target. args : collections.Iterable Any positional arguments, excluding ``self``. kwargs : collections.Mapping Any keyword arguments, excluding ``self``. Returns ------- object | None Any value returned by the call. Raises ------ TypeError If the argument is not callable or has unknown type. BaseException Any exception thrown by the call. See Also -------- prepare_call : processes the callable before making the call """ target, selfNeeded = prepare_call(callable_, globals_) _args = [ self ] if selfNeeded else [] _args.extend(args) return target(*_args, **kwargs) def prepare_call(callable_, globals_): """ Unwrap method decorators applied to ``callable_`` and tell whether the resulting object requires the ``self`` argument to be called. Dereferences ``@staticmethod`` and ``@classmethod`` decorators and returns a flag telling whether explicit ``self`` argument is required. This method may be used when preparing class definitions (e.g. decorating methods) as well as at runtime. Parameters ---------- callable_ : callable Reference to a function or method object or wrapper. globals_ : dict The dictionary of the module defining the target callable, or the local dictionary for the scope in which the target callable's container is defined. If the container has not yet been defined (e.g. when processing a decorator) this mapping should also contain its future qualified name mapped to the ``object`` type value. Returns ------- callable Dereferenced callable object. boolean A flag telling whether explicit ``self`` argument must be on the argument list. Raises ------ TypeError If the argument is not callable or has unknown type. """ bindable = None if not callable(callable_) and hasattr(callable_, '__func__'): if isinstance(callable_, staticmethod): bindable = False callable_ = callable_.__func__ if not callable(callable_): raise TypeError('Argument of type %s is not callable' % type(callable_).__name__) if hasattr(callable_, '__self__'): bindable = False if bindable is None: prefix = callable_.__qualname__[:-len(callable_.__name__)] if prefix: assert '.' == prefix[-1] prefix = prefix[:-1] try: bindable = isinstance(eval(prefix, globals_), type) except: bindable = False else: bindable = False return callable_, bindable
2.25
2
jes/jes-v4.3-linux/Sources/JESRunnable.py
utv-teaching/foundations-computer-science
0
12786825
<reponame>utv-teaching/foundations-computer-science #JES- Jython Environment for Students #Copyright (C) 2002 <NAME>, <NAME>, <NAME>, <NAME> #See JESCopyright.txt for full licensing information from java.lang import Runnable from javax.swing import JOptionPane ################################################################################ # JESRunnable # # a runnable object which update the command window, displaying the new results # from the execution of the user's code. ################################################################################ class JESRunnable( Runnable ): ###################################################################### # init # interpreter: the JESInterpreter object that this runnable updates # output: a string, the output from the user's code # errRec: a JESExceptionRecord object, only defined if an excption occured. # created from the exception information and stack trace returned # by sys.exc_info() ###################################################################### def __init__(self,interpreter, output, errRec, mode): self.interpreter = interpreter self.output = output self.mode = mode if errRec != None: self.errMsg = errRec.getExceptionMsg() self.errLine = errRec.getLineNumber() else: self.errMsg = '' self.errLine = None ###################################################################### # run # # the method that does all of the updating work. # this method should ALWAYS be called from within the same thread # that the GUI executes in. ###################################################################### def run(self): if self.output != '' and self.output != None: self.interpreter.sendOutput( self.output ) if self.errMsg != '' and self.errMsg != None: self.interpreter.sendOutput( self.errMsg ) if self.errLine != None: self.interpreter.program.gui.editor.showErrorLine(self.errLine) self.interpreter.program.gui.commandWindow.restoreConsole(self.mode) self.interpreter.program.gui.setRunning( 0 ) self.interpreter.program.gui.stopWork() self.interpreter.program.gui.editor.document.removeLineHighlighting() self.interpreter.program.gui.editor.editable = 1 # needed for midi note playing import JavaMusic try: JavaMusic.cleanUp() except: menuBar = self.interpreter.program.gui.getJMenuBar() mediaMenu = menuBar.getMenu(menuBar.getMenuCount() - 2) if mediaMenu.getText() == 'MediaTools': # the above is merely for sanity checking... #if mediaMenu.getItem(0).isEnabled(): if self.interpreter.program.gui.soundErrorShown == 0: # we don't want to keep bombarding the user with messages! # mediaMenu.getItem(0).setEnabled(0) self.interpreter.program.gui.soundErrorShown = 1 msg = 'Sound card initialization failed!\n\n' msg += 'You will not be able to use this functionality during the\n' msg += 'current session of JES. Please make sure your sound card\n' msg += 'is not currently being used by another program and restart\n' msg += 'JES.' JOptionPane.showMessageDialog(self.interpreter.program.gui, msg, 'Sound Error', JOptionPane.ERROR_MESSAGE) if self.interpreter.debug_mode: self.interpreter.debugger.endExecution()
3.15625
3
app/waterQual/30yr/CC/wrtds_WCC_err.py
fkwai/geolearn
0
12786826
<gh_stars>0 import importlib from hydroDL.master import basins from hydroDL.app import waterQuality from hydroDL import kPath, utils from hydroDL.model import trainTS from hydroDL.data import gageII, usgs from hydroDL.post import axplot, figplot import torch import os import json import pandas as pd import numpy as np import matplotlib.pyplot as plt import time # rmCode = ['00010', '00095', '00400'] # rmName = 'rmTKH' # rmCode = ['00010', '00095'] # rmName = 'rmTK' rmCode = ['00010'] rmName = 'rmT' dirSel = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteSel') with open(os.path.join(dirSel, 'dictRB_Y30N5.json')) as f: dictSite = json.load(f) codeLst = sorted(list(set(usgs.newC)-set(rmCode))) siteNoLst = dictSite[rmName] trainSet = 'B10N5' testSet = 'A10N5' df = pd.DataFrame(index=siteNoLst, columns=usgs.newC) df.index.name = 'siteNo' dirRoot = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-W', 'B10-{}'.format(rmName)) dirOut = os.path.join(dirRoot, 'output') dirPar = os.path.join(dirRoot, 'params') dfCorr1 = df.copy() dfCorr2 = df.copy() dfRmse1 = df.copy() dfRmse2 = df.copy() t0 = time.time() for kk, siteNo in enumerate(siteNoLst): print('{}/{} {:.2f}'.format( kk, len(siteNoLst), time.time()-t0)) saveFile = os.path.join(dirOut, siteNo) dfP = pd.read_csv(saveFile, index_col=None).set_index('date') dfP.index = pd.to_datetime(dfP.index) dfC = waterQuality.readSiteTS(siteNo, varLst=usgs.newC, freq='W') yr = dfC.index.year.values for code in codeLst: ind1 = np.where(yr < 2010)[0] ind2 = np.where(yr >= 2010)[0] rmse1, corr1 = utils.stat.calErr( dfP.iloc[ind1][code].values, dfC.iloc[ind1][code].values) rmse2, corr2 = utils.stat.calErr( dfP.iloc[ind2][code].values, dfC.iloc[ind2][code].values) dfCorr1.loc[siteNo][code] = corr1 dfRmse1.loc[siteNo][code] = rmse1 dfCorr2.loc[siteNo][code] = corr2 dfRmse2.loc[siteNo][code] = rmse2 dfCorr1.to_csv(os.path.join( dirRoot, '{}-{}-corr'.format(trainSet, trainSet))) dfRmse1.to_csv(os.path.join( dirRoot, '{}-{}-rmse'.format(trainSet, trainSet))) dfCorr2.to_csv(os.path.join( dirRoot, '{}-{}-corr'.format(trainSet, testSet))) dfRmse2.to_csv(os.path.join( dirRoot, '{}-{}-rmse'.format(trainSet, testSet)))
1.984375
2
blog.py
the-it-dude/the-it-dude
0
12786827
<gh_stars>0 import logging from jinja2 import Environment, FileSystemLoader, select_autoescape import yaml logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() CONFIG_FILE = 'blog.yml' class Blog(object): def __init__(self, config): self.env = Environment( loader=FileSystemLoader('./src'), autoescape=select_autoescape(['html']) ) self.config = config def render(self, source, destination, context=None): """ Simply glue files together. """ full_context = config.get('context', {}) if context is not None: full_context.update(context) logger.info("Rendering file: {} > {}".format(source, destination)) logger.debug(" Context: {}".format(repr(context))) template = self.env.get_template(source) template.stream(**full_context).dump(destination) def render_all(self): for file_config in self.config['files']: self.render( source=file_config['source'], destination=file_config['destination'], context=file_config.get('context', None) ) if __name__ == '__main__': with open(CONFIG_FILE, 'r') as config_file: config = yaml.load(config_file) logger.debug("Config: {}".format(repr(config))) blog = Blog(config) blog.render_all()
2.6875
3
app/stratified.py
CMUSTRUDEL/flask-browser
1
12786828
high_perspective = ['<KEY>', '<KEY>', '<KEY>', '<KEY>', '5eadd270bd354374a770a538', '<KEY>', '<KEY>', '5e9fa678bd35436be69b2a5e', '<KEY>', '<KEY>', '5eeb0729bd35431ff8d3fadc', '<KEY>', '<KEY>', '<KEY>', '5e7da4b1bd3543638522a940', '<KEY>', '<KEY>', '5e498c9ebd3543364e1aea31', '5e40af8bac8db7c63592a473', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e9bc38abd35431275afa132', '<KEY>', '5e3dd864bd3543283f73ef51', '5e7af5a3bd354337a360a294', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e9588febd35432157acf29a', '<KEY>', '5e3adb28bd35434aff586c46', '<KEY>', '<KEY>', '<KEY>', '5e7aca43bd3543414b890ff0', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e2845eabd35433a5078cde6', '<KEY>', '5e799d1ebd35432c2a28f4ab', '5ebba46bbd3543261a0b75e0', '<KEY>', '5e659345bd35432eba36b7e3', '5e4f012dac8db7c635ab2885', '<KEY>', '5e9e7cddbd3543498b9b4e77', '<KEY>', '5e258361bd35431073ac3196', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e7a0de3bd3543722ec74ac7', '5ea0ff6ebd354377ca40a4d0', '<KEY>', '<KEY>', '<KEY>', '5ec24ab8fd9edf38797e3a9e', '<KEY>', '<KEY>', '<KEY>', '5e8a870abd3543695e4646ea', '5e88be3ebd35436e5533d48c', '5ea13209bd3543279b20339e', '5e3d541abd354331243eb4dc', '<KEY>', '5e3d5421bd354321def3b482', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e2e7b63bd3543403ea57f38', '<KEY>', '<KEY>', '5ed0b76bbd35437e4ab4a36e', '5e7e3e1ebd354371da09d498', '5e6502debd354322f37901aa', '<KEY>', '<KEY>', '5eac250cbd354310d1e8f9be', '5e8d7b82bd354311592ae22a', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e7b1411bd35433aadd9ed6b', '<KEY>', '5e410203bd3543203ed17185', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e9fea52bd35432a086f49de', '<KEY>', '<KEY>', '5e87efa0bd35436e55336283', '5e399811bd35434a9d0c7c1c', '5e41707eac8db7c635289a8f', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e645fa0bd35433947c40a20', '<KEY>', '<KEY>', '5eb10aa6bd3543708c780cea', '5e23c281763a8b26aaa38d89', '<KEY>', '<KEY>', '5ea41232bd35436afab04ae0', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e8d4551bd354311592ac165', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e9083a6bd3543219db58a7d', '<KEY>', '<KEY>', '<KEY>', '5e9023a6bd35431f6aedacda', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e6ccd72bd35432dd15ea0cc', '5ea7e713bd3543282eea804d', '<KEY>', '<KEY>', '5e7b1420bd35433aadd9ed88', '<KEY>', '5e7db811bd3543626e053297', '5e5f218abd354338b13aa20b', '<KEY>', '<KEY>', '5e2f36edbd354337baabe23a', '<KEY>', '<KEY>', '<KEY>', '5e8f748ebd3543228aa00d90', '<KEY>', '<KEY>', '5e2adeb7bd35436fc59907ca', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e7b1417bd35434e768d80c3', '5e3d5415bd3543225ac4afb7', '<KEY>', '5e7b1410bd35434522e333a7', '<KEY>', '<KEY>', '5ebaff4fbd35437097d7ddb5', '<KEY>', '5e7ea488bd354363e2c0e9db', '5eb06626bd35435932b3721e', '5e3abe82bd354349e90125b5', '5e9d4261bd35437da961e410', '<KEY>', '5e8590eebd35437469ebe552', '<KEY>', '5e59df4abd354338b1373872', '5e39a3a7bd35433f22ea7747', '5eada0c7bd3543688a59f52e', '<KEY>', '5ec4af67bd3543763417e159', '5e2fe146bd35432aa312468c', '5e8ea238bd35430ccad168c2', '<KEY>', '<KEY>', '<KEY>', '5ea488f6bd3543694bcebeaa', '<KEY>', '5ec89851bd77503ee07636be', '<KEY>', '5ea945c9bd354376991ebe60', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e53e3dcbd354338b13337e2', '<KEY>', '<KEY>', '5e7be575bd3543414b89b0e0', '<KEY>', '<KEY>', '5e522329bd35432dd14d1da0', '<KEY>', '5e906fe7bd35430f344c1e20', '5e938361bd35431db66e910b', '<KEY>', '5e99d6d3bd35432927e34c30', '5ec9f26fbd77503ee08adf1e', '5e3d3d67bd35431de5230ca7', '<KEY>', '<KEY>', '<KEY>', '5e8e7d1dbd35430a0b73a519', '5ed26ce8bd77503ee02bf99e', '<KEY>', '<KEY>', '5e657561bd354338b13eb2ce', '<KEY>', '5e272a8dbd354343faf9c2e1', '<KEY>', '<KEY>', '5e8066cebd3543464e2f41b8', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e7ce40fbd354368c77c0c80', '<KEY>', '5e7a9186bd35434c25a298c4', '<KEY>', '5ea64998bd35434639f60d6e', '<KEY>', '5e7afb8dbd35434ac8ae80fa', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e316a60bd354302f7ea3ec7', '<KEY>', '<KEY>', '5e7fd1a8bd35434921e9b731', '<KEY>', '5e9ab7a1bd3543342c24002c', '5e7fb11abd354352ec828e2d', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e47970bbd3543364e199ece', '<KEY>', '<KEY>', '5e2e87f0bd354373f054d5ed', '5e54483ebd35432dd14e8194', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e3d12e0bd35432ad7dff825', '<KEY>', '5ea310d1bd35436ae2e6a350', '<KEY>', '5ecd106dbd77503ee084d044', '<KEY>', '<KEY>', '<KEY>', '5e8c2ad4bd3543797eb5f62a', '<KEY>', '5ed0862bbd354355218c17a9', '5e272ccabd35434161a98f5d', '<KEY>', '5e2ec388bd354321507e4d72', '<KEY>', '<KEY>', '<KEY>', '5eb06041bd354369b7ef3ea0', '5ed31d92bd354362ae5aeaea', '5e256551bd35431415399ed2', '5e8fdd32bd354323b1be9110', '<KEY>', '5e761b8ebd35433947cdece3', '<KEY>', '<KEY>', '<KEY>', '5e4d308bac8db7c63536add9', '<KEY>', '<KEY>', '<KEY>', '5e7d7b94bd3543616a30f1a7', '5eb2610abd35433915efd181', '<KEY>', '5e645f8abd354325d6a39b78', '<KEY>', '5ed23465bd77503ee0de3e9f', '<KEY>', '<KEY>', '5e9e599abd354353bdd065e7', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e7a7861bd354343331edbf8', '<KEY>', '<KEY>', '<KEY>', '5ebeb0d3bd35431a33fbe487', '5eaffa31bd3543614b1c3016', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5ecf6ea1bd354379eaa08910', '5e7a9e25bd35433ed568a3f5', '<KEY>', '5e418388ac8db7c6354c280a', '<KEY>', '5ea6d571bd354326d88e6a56', '5e957591bd35431a34d0b8de', '5e3d4e42bd35432524f8d755', '5e93e33abd354324255292d0', '5e683d18bd354338b1408261', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e399812bd35434a9d0c7c1e', '<KEY>', '<KEY>', '5ece9964bd77503ee00a576a', '<KEY>', '5e71d2bbbd35432eba3d8e3d', '5e4d91dfbd354329f971720e', '<KEY>', '<KEY>', '<KEY>', '5ea0a066bd35435e12e60e99', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e814e9fbd35435eb45ef974', '5eca7e7cbd77503ee051cc35', '<KEY>', '5ec66ad2bd354336ac2eda08', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e61e85dbd354329f97ed5cc', '<KEY>', '<KEY>', '5ec96cb7bd77503ee0b16e85', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e5b6a75bd35431d33658e9d', '<KEY>', '5e4d1763bd354336ddfa06cd', '5e7a846abd354345e894ab0e', '<KEY>', '<KEY>', '<KEY>', '5e3a8b01bd354345530000e0', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e512012ac8db7c635ec7617', '5e7b7eeebd3543414b897709', '5e9172e5bd3543248842e40a', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e7ce02bbd354361056ea950', '<KEY>', '5ec8a8e7bd35431974e4a4ed', '<KEY>', '<KEY>', '5e49c9ceac8db7c6353d6ef9', '5e441dbebd354322c5e93322', '<KEY>', '5e3d541dbd354331243eb4e5', '<KEY>', '5e2c9fedbd35437d92fe0e01', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e3e6a27bd35432981a64085', '5eca1b95bd77503ee0c1cc4f', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e91a037bd35431e2a669624', '5e7e0ed7bd354373da170b01', '5e8d7e93bd3543141202718c', '5e9d798fbd35431f2574a55c', '5e86d942bd354374e3114294', '<KEY>', '5e2f8f2abd35437c044c5678', '<KEY>', '<KEY>', '5ebe5f00bd35434c6a200fec', '<KEY>', '<KEY>', '5e9752d2bd35432157adccda', '<KEY>', '<KEY>', '<KEY>', '5e7af95dbd354337435532a1', '5e7a1747bd3543414b889483', '<KEY>', '<KEY>', '<KEY>', '5e813d69bd354354052754a2', '<KEY>', '<KEY>', '5e80ae9dbd354353a0dc2383', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e914dedbd35431e73fc59fe', '5ec9430abd3543575458d4a1', '<KEY>', '<KEY>', '5e5358a6bd35431cf00a1b7e', '5ec622a4bd35433ac1a19a89', '5e80536abd354348df041fa4', '<KEY>', '<KEY>', '<KEY>', '5e848be8bd354373ddad65b2', '<KEY>', '<KEY>', '5e8afa90bd35437156ee4d64', '5e9d2afabd35431a8b85b190', '5e7a98c9bd35433f084f7a96', '<KEY>', '5e9d3dd0bd35434f2949ae2c', '<KEY>', '5e99b714bd35436f01407ffe', '5e2f1da1bd35436b0ef74e2e', '5e3a3308bd35433ee0d5e60d', '<KEY>', '<KEY>', '5e39ecb0bd35433ee0d5b850', '<KEY>', '<KEY>', '5e53223abd354337716e6896', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5eb616abbd354362352a6c06', '5e41a7c8ac8db7c6359415c0', '5e33d611bd3543374c1ee86e', '5e63a96dbd354338b13da5b2', '5ed1d191bd3543696fa10202', '<KEY>', '5e9a8a00bd35436c60a03caa', '5e8df015bd3543139ef158ed', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e922a66bd354322dacba73d', '5ed328edbd77503ee0480db3', '<KEY>', '5e3d541bbd354321def3b477', '5ec27a5dbd35433e4834cf5f', '5e59a622bd35431fc2b40e6a', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e7a2d5abd354340bd54a35c', '<KEY>', '<KEY>', '5e47a930bd35431fc2a780c3', '<KEY>', '<KEY>', '<KEY>', '5ebcd306fd9edf38796ca0dc', '<KEY>', '<KEY>', '5e43a73fbd354332d1ed7f63', '5e812be3bd3543540527480c', '5e405d59bd354331ede4f2a1', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5ea9f8e1fd9edf3879dad6aa', '5e80a416bd354354d26ad3a5', '<KEY>', '<KEY>', '<KEY>', '5e3da920bd3543221becc934', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5ed4977dbd77503ee0951848', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e4b5becac8db7c6358131a6', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5ec8c0a5bd3543089e62db6f', '5e63b642bd3543229fdeee0d', '5eb4433abd35434d916378b6', '5e7fc0a7bd35434a41518387', '5e8cd3e5bd35430f79a5f0a0', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5e3edca7bd3543221bed8703', '5e6b2549bd3543229fe23ddf', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5ea69c4ebd354348d61288bd', '5e714e6abd35431fc2c29076', '<KEY>', '5ec67e9ebd77503ee033b2ab', '5eb025a2bd3543053232e572', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5ea40508bd354338a05e2a15', '5e41a52abd354336ddf21e5c', '<KEY>', '<KEY>', '5e9ad2c7bd3543589e6945dd', '<KEY>', '5ec74cf5bd77503ee080be8d', '5ed36c36bd77503ee0beea33', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '<KEY>', '5ed36c32bd77503ee0bee3e0', '<KEY>']
1.234375
1
core/models/program_availability.py
themightychris/prevention-point
1
12786829
<filename>core/models/program_availability.py from django.db import models from core.models import Program class ProgramAvailability(models.Model): program = models.ForeignKey(Program, on_delete=models.CASCADE) day_of_week = models.CharField(max_length = 10) start_time = models.TimeField() end_time = models.TimeField()
1.9375
2
Basic/Realtimeinfo.py
JHP4911/Quantum-Computing-UK
51
12786830
print('\nDevice Monitor') print('----------------') from qiskit import IBMQ from qiskit.tools.monitor import backend_overview IBMQ.enable_account('Insert API token here') # Insert your API token in to here provider = IBMQ.get_provider(hub='ibm-q') backend_overview() # Function to get all information back about each quantum device print('\nPress any key to close') input()
2.265625
2
Battery_Testing_Software/labphew/controller/blink_controller.py
sjoerdsein/FAIR-Battery
2
12786831
<reponame>sjoerdsein/FAIR-Battery<gh_stars>1-10 # -*- coding: utf-8 -*- """ ================ Blink controller ================ This is an example of a controller with a fake (invented) device. It should help to guide developers to create new controllers for real devices. Example usage can be found at the bottom of the file under if __name__=='__main___' """ import logging import time class BlinkController: """ Blink Controller: Fake Device controller to act as an example. """ def __init__(self): """ Create Blink controller object which simulates a fake device. """ self.logger = logging.getLogger(__name__) # Set parameters to simulate the device self.__simulated_device_blink_period= 1 # self.__simulated_device_start_time = time.time() self.__simulated_device_status = False self.__simulated_device_enabled = True # Set user parameters: self.max_blink_period = 2 self.min_blink_period = 0.2 self.logger.debug('BlinkController object created') self.connect() def connect(self): """ Fake method to connect to fake blink device :return: :rtype: """ self.logger.info('"Connected" to fake blink device') def set_blink_period(self, period_s): """ Method that mimics setting a device parameter. :param period_s: blink period (in seconds) :type period_s: float """ # You could do some checks first. For example to see if the value is in an allowed range: if period_s > self.max_blink_period: self.logger.warning(f'Blink period of {period_s}s exceeds maximum allowed. Setting period to {self.max_blink_period}s') period_s = self.max_blink_period if period_s < self.min_blink_period: self.logger.warning(f'Blink period of {period_s}s exceeds minimum allowed. Setting period to {self.min_blink_period}s') period_s = self.min_blink_period # Your code to communicate with the device goes here. # For the purpose of demonstration, this method simulates setting a parameter on a device: self.logger.debug('"Sending" blink period of {} to device'.format(period_s)) self.__simulated_device_blink_period = period_s self.__simulated_device_start_time = time.time() self.__simulated_device_status = not self.__simulated_device_status def enable(self, enable): """ Method that mimics setting a device parameter. :param enable: Enable device output :type enable: bool """ # Your code to communicate with the device goes here. # For the purpose of demonstration, this method simulates setting a parameter on a device: self.__simulated_device_enabled = bool(enable) self.logger.debug('Device is "{}"'.format(self.__simulated_device_enabled)) def get_status(self): """ Method that mimics communicating with a device and retrieving a status. :return: True when device is "on" :rtype: bool """ # Your code to communicate with the device goes here. # For the purpose of demonstration, this method returns a simulated status: if self.__simulated_device_enabled: return bool(int((time.time()-self.__simulated_device_start_time)/self.__simulated_device_blink_period/.5) % 2) else: self.logger.warning('Device is disabled') return False def disconnect(self): """ Fake method to disconnect from fake blink device :return: :rtype: """ self.logger.info('"Disconnected" from fake blink device') if __name__ == "__main__": import labphew # Import labphew, for labphew style logging device = BlinkController() print('The state if the device is:', device.get_status()) # Example of modifying the blink period: device.set_blink_period(3) device.set_blink_period(0.1) # # Example of acquiring data (the device state) in a for loop and then plotting it with matplotlib: # import matplotlib.pyplot as plt # record = [] # for i in range(100): # time.sleep(0.01) # record.append(device.get_status()) # plt.plot(record)
3.21875
3
glue/algorithms/square.py
glensc/glue
514
12786832
import copy class SquareAlgorithmNode(object): def __init__(self, x=0, y=0, width=0, height=0, used=False, down=None, right=None): """Node constructor. :param x: X coordinate. :param y: Y coordinate. :param width: Image width. :param height: Image height. :param used: Flag to determine if the node is used. :param down: Down :class:`~Node`. :param right Right :class:`~Node`. """ self.x = x self.y = y self.width = width self.height = height self.used = used self.right = right self.down = down def find(self, node, width, height): """Find a node to allocate this image size (width, height). :param node: Node to search in. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ if node.used: return self.find(node.right, width, height) or self.find(node.down, width, height) elif node.width >= width and node.height >= height: return node return None def grow(self, width, height): """ Grow the canvas to the most appropriate direction. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ can_grow_d = width <= self.width can_grow_r = height <= self.height should_grow_r = can_grow_r and self.height >= (self.width + width) should_grow_d = can_grow_d and self.width >= (self.height + height) if should_grow_r: return self.grow_right(width, height) elif should_grow_d: return self.grow_down(width, height) elif can_grow_r: return self.grow_right(width, height) elif can_grow_d: return self.grow_down(width, height) return None def grow_right(self, width, height): """Grow the canvas to the right. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ old_self = copy.copy(self) self.used = True self.x = self.y = 0 self.width += width self.down = old_self self.right = SquareAlgorithmNode(x=old_self.width, y=0, width=width, height=self.height) node = self.find(self, width, height) if node: return self.split(node, width, height) return None def grow_down(self, width, height): """Grow the canvas down. :param width: Pixels to grow down (width). :param height: Pixels to grow down (height). """ old_self = copy.copy(self) self.used = True self.x = self.y = 0 self.height += height self.right = old_self self.down = SquareAlgorithmNode(x=0, y=old_self.height, width=self.width, height=height) node = self.find(self, width, height) if node: return self.split(node, width, height) return None def split(self, node, width, height): """Split the node to allocate a new one of this size. :param node: Node to be splitted. :param width: New node width. :param height: New node height. """ node.used = True node.down = SquareAlgorithmNode(x=node.x, y=node.y + height, width=node.width, height=node.height - height) node.right = SquareAlgorithmNode(x=node.x + width, y=node.y, width=node.width - width, height=height) return node class SquareAlgorithm(object): def process(self, sprite): root = SquareAlgorithmNode(width=sprite.images[0].absolute_width, height=sprite.images[0].absolute_height) # Loot all over the images creating a binary tree for image in sprite.images: node = root.find(root, image.absolute_width, image.absolute_height) if node: # Use this node node = root.split(node, image.absolute_width, image.absolute_height) else: # Grow the canvas node = root.grow(image.absolute_width, image.absolute_height) image.x = node.x image.y = node.y
3.515625
4
apps/page/views.py
v02202/portal20
0
12786833
import re import csv import codecs import json import os import environ from django.shortcuts import render, get_object_or_404 from django.http import ( HttpResponse, HttpResponseNotFound, ) from django.db.models import ( Q, F, Count, Sum ) from django.conf import settings from apps.data.models import ( Dataset, Taxon, SimpleData, ) from apps.article.models import Article from .models import Post, Journal from utils.mail import taibif_mail_contact_us from apps.data.helpers.stats import get_home_stats from django.utils.translation import ugettext as _ from django.views.decorators.http import require_GET def index(request): news_list = Article.objects.filter(category='NEWS').all()[0:4] event_list = Article.objects.filter(category='EVENT').all()[0:4] update_list = Article.objects.filter(category='UPDATE').all()[0:4] #topic_list = Article.objects.filter(category__in=['SCI', 'TECH', 'PUB']).order_by('?').all()[0:10] topic_list = Article.objects.filter(is_homepage=True).order_by('?').all()[0:10] context = { 'news_list': news_list, 'event_list': event_list, 'update_list': update_list, 'topic_list': topic_list, 'stats': get_home_stats(), } return render(request, 'index.html', context) def publishing_data(request): return render(request, 'publishing-data.html') def journals(request): Journal_url = Journal.objects.all() return render(None,'journals.html', locals()) def cookbook(request): return render(request, 'cookbook.html') def cookbook_detail_1(request): return render(request, 'cookbook-detail-1.html') def cookbook_detail_2(request): return render(request, 'cookbook-detail-2.html') def cookbook_detail_3(request): return render(request, 'cookbook-detail-3.html') def tools(request): return render(request, 'tools.html') def contact_us(request): if request.method == 'GET': return render(request, 'contact-us.html') elif request.method == 'POST': data = { 'name': request.POST.get('name', ''), 'cat': request.POST.get('cat', ''), 'email': request.POST.get('email', ''), 'content': request.POST.get('content', ''), } context = taibif_mail_contact_us(data) #context = taibif_send_mail(subject, content, settings.SERVICE_EMAIL, to_list) return render(request, 'contact-us.html', context) def plans(request): return render(request, 'plans.html') def links(request): Post_url = Post.objects.all() return render(None,'links.html', locals()) def about_taibif(request): return render(request, 'about-taibif.html') def about_gbif(request): return render(request, 'about-gbif.html') def open_data(request): return render(request, 'open-data.html') def data_stats(request): is_most = request.GET.get('most', '') query = Dataset.objects #.exclude(status='Private') if is_most: query = query.filter(is_most_project=True) context = { 'dataset_list': query.order_by(F('pub_date').desc(nulls_last=True)).all(), 'env': settings.ENV } return render(request, 'data-stats.html', context) def common_name_checker(request): global results if request.method == 'GET': q = request.GET.get('q', '') sep = request.GET.get('sep', '') context = { 'q': q, 'sep': sep, } return render(request, 'tools-common_name_checker.html', context) elif request.method == 'POST': q = request.POST.get('q', '') sep = request.POST.get('sep', 'n') if not q: context = { 'message': { 'head': '輸入錯誤', 'content': '請輸入中文名', } } return render(request, 'tools-common_name_checker.html', context) if q in ['台灣', '臺灣']: context = { 'message': { 'head': '結果太多', 'content': '請輸入更完整中文名', }, 'sep': sep, 'q': q, } return render(request, 'tools-common_name_checker.html', context) if not sep: sep = 'n' results = [] if sep not in [',', 'n']: return HttpResponseNotFound('err input') sep_real = '\n' if sep == 'n' else sep cname_list = q.split(sep_real) cname_list = list(set(cname_list)) #taiwan_char_check_exclude = ['台灣留鳥', '台灣過境', '台灣亞種', '台灣特有亞種'] for cn in cname_list: cn = cn.strip() q_replace = '' if '台灣' in cn: q_replace = cn.replace('台灣', '臺灣') if '臺灣' in cn: q_replace = cn.replace('臺灣', '台灣') row = { 'common_name': cn, 'match_type': 'no match', 'match_list': [] } taxa = Taxon.objects.filter(rank='species') if q_replace: row['q_replace'] = q_replace taxa = Taxon.objects.filter(Q(name_zh__icontains=cn) | Q(name_zh__icontains=q_replace)).all() else: taxa = Taxon.objects.filter(name_zh__icontains=cn).all() if taxa: row['match_type'] = 'match' for t in taxa: row['match_list'].append(t) results.append(row) context = { 'results': results, 'q': q, 'sep': sep, } return render(request, 'tools-common_name_checker.html', context) def export_csv(request): response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="users.csv"' response.write(codecs.BOM_UTF8) writer = csv.writer(response) for row in results: writer.writerow(row['match_list']) return response def trans(request): translate_str = _("這裡放需要翻譯的文字") context = {"translate_str": translate_str} return render(request, 'index.html', context) @require_GET def robots_txt(request): if os.environ.get('ENV')=='prod': lines = [ "User-Agent: *", "Disallow: /admin/", ] return HttpResponse("\n".join(lines), content_type="text/plain") else: lines = [ "User-Agent: *", "Disallow: /", ] return HttpResponse("\n".join(lines), content_type="text/plain") ## Kuan-Yu added for API occurence record def test(request): Yearquery = SimpleData.objects \ .filter(scientific_name='Rana latouchii') \ .values('scientific_name', 'vernacular_name', 'year') \ .exclude(year__isnull=True) \ .annotate(count=Count('year')) \ .order_by('-count') year_rows = [{ 'key': x['scientific_name'], 'label': x['vernacular_name'], 'year': x['year'], 'count': x['count'] } for x in Yearquery] context = { 'occurrence_list': year_rows, } return render(request, 'test.html', context) ###example filt1 = 'speices' filt2 = 'database' pk1 = '<NAME>' pk2 = 'manager_17_15' pk3 = '<NAME>' pk4 = 'e10100001_4_10' def ChartYear(request): if filt1 == 'hi': species = SimpleData.objects.filter(Q(scientific_name=pk1) | Q(scientific_name=pk3)) sp_year = species.values('year') \ .exclude(year__isnull=True) \ .annotate(count=Count('year')) \ .order_by('-year') chart_year = [ { "page": 1, "pages": 1, "per_page": "50", "total": 1 }, [ { 'year': x['year'], 'count': x['count'] } for x in sp_year ] ] if filt2 == 'you': dataset = SimpleData.objects.filter(Q(taibif_dataset_name=pk2) | Q(taibif_dataset_name=pk4)) data_year = dataset.values( 'year') \ .exclude(year__isnull=True) \ .annotate(count=Count('year')) \ .order_by('-year') chart_year = [ { "page": 1, "pages": 1, "per_page": "50", "total": 1 }, [ { 'year': x['year'], 'count': x['count'] } for x in data_year ] ] if (filt2 == filt2 and filt1 == filt1): data_sp = SimpleData.objects.filter(Q(scientific_name=pk1) | Q(scientific_name=pk3)) \ .filter(Q(taibif_dataset_name=pk2) | Q(taibif_dataset_name=pk4)) data_sp_month = data_sp.values('year') \ .exclude(year__isnull=True) \ .annotate(count=Count('year')) \ .order_by('-year') chart_year = [ { "page": 1, "pages": 1, "per_page": "50", "total": 1 }, [ { 'year': x['year'], 'count': x['count'] } for x in data_sp_month ] ] return HttpResponse(json.dumps(chart_year), content_type="application/json") def ChartMonth(request): if filt1 == 'hi': species = SimpleData.objects.filter(Q(scientific_name=pk1) | Q(scientific_name=pk3)) sp_month = species.values( 'month') \ .exclude(month__isnull=True) \ .annotate(count=Count('month')) \ .order_by('-month') chart_month = [ { "page": 1, "pages": 1, "per_page": "50", "total": 1 }, [ { 'month': x['month'], 'count': x['count'] } for x in sp_month ] ] if filt2 == 'you': dataset = SimpleData.objects.filter(Q(taibif_dataset_name=pk2) | Q(taibif_dataset_name=pk4)) data_month = dataset.values('month') \ .exclude(month__isnull=True) \ .annotate(count=Count('month')) \ .order_by('-month') chart_month = [ { "page": 1, "pages": 1, "per_page": "50", "total": 1 }, [ { 'month': x['month'], 'count': x['count'] } for x in data_month ] ] if (filt2 == filt2 and filt1 == filt1): data_sp = SimpleData.objects.filter(Q(scientific_name=pk1) | Q(scientific_name=pk3)) \ .filter(Q(taibif_dataset_name=pk2) | Q(taibif_dataset_name=pk4)) data_sp_month = data_sp.values('month') \ .exclude(month__isnull=True) \ .annotate(count=Count('month')) \ .order_by('-month') chart_month = [ { "page": 1, "pages": 1, "per_page": "50", "total": 1 }, [ { 'month': x['month'], 'count': x['count'] } for x in data_sp_month ] ] return HttpResponse(json.dumps(chart_month), content_type="application/json")
1.890625
2
bundestagger/account/views.py
stefanw/Bundestagger
3
12786834
# -*- coding: utf-8 -*- from django.http import Http404, HttpResponseBadRequest, HttpResponseForbidden, HttpResponseNotAllowed from django.shortcuts import redirect from django.contrib import messages from bundestagger.helper.utils import is_post from bundestagger.account.auth import logged_in from bundestagger.account.models import User @is_post def logout(request): from bundestagger.account.auth import logout as logout_func logout_func(request) next = "/" if "next" in request.POST: next = request.POST["next"] return redirect(next) @is_post @logged_in def change_username(request): if "username" in request.POST: user = request.bundesuser username = request.POST["username"] if username != user.username: if len(username)>20: messages.add_message(request, messages.INFO, u"Username ist zu lang") elif len(username)==0: messages.add_message(request, messages.INFO, u"Username ist zu kurz") else: uc = User.objects.filter(username=username).count() if uc == 0: user.username = request.POST["username"] user.save() request.session["bundesuser"] = user messages.add_message(request, messages.INFO, u"Username geändert") else: messages.add_message(request, messages.INFO, u"Username ist schon vergeben") next = "/" if "next" in request.POST: next = request.POST["next"] return redirect(next)
1.976563
2
sdk/python/pulumi_linode/config/vars.py
displague/pulumi-linode
1
12786835
<reponame>displague/pulumi-linode # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from .. import utilities, tables __config__ = pulumi.Config('linode') token = utilities.require_with_default(lambda: __config__.require('token'), utilities.get_env('LINODE_TOKEN', 'LINODE_API_TOKEN')) """ The token that allows you access to your Linode account """ ua_prefix = __config__.get('uaPrefix') """ An HTTP User-Agent Prefix to prepend in API requests. """ url = __config__.get('url') """ The HTTP(S) API address of the Linode API to use. """
0.933594
1
audlib/nn/util.py
RaphaelOlivier/pyaudlib
26
12786836
"""Utility functions for neural networks.""" import numpy as np import torch def detach(states): """Truncate backpropagation (usually used in RNN).""" return [state.detach() for state in states] def hasnan(m): """Check if torch.tensor m have NaNs in it.""" return np.any(np.isnan(m.cpu().data.numpy())) def printnn(model): """Print out neural network.""" for name, param in model.named_parameters(): if param.requires_grad: print("{}[{}]\n{}".format('-' * 30, name, param.data.numpy())) def numparams(model): """Calculate the total number of learnable parameters.""" return sum(p.numel() for p in model.parameters()) class UnpackedSequence(object): """Unpack a PackedSequence to original (unpadded) examples.""" def __init__(self, ps): """Construct an unpacked sequence object.""" self.packed_sequence = ps lencnt = [int(n) for n in ps.batch_sizes[:-1]-ps.batch_sizes[1:]] \ + [int(ps.batch_sizes[-1])] self.seqlengths = [] # seqlengths[i] contains length of example i for num, ll in zip(lencnt[::-1], range(len(lencnt), 0, -1)): self.seqlengths.extend([ll] * num) assert len(self.seqlengths) == self.packed_sequence.batch_sizes[0] def __len__(self): """Return number of examples in this batch.""" return len(self.seqlengths) def __getitem__(self, i): """Get original idx-th item in the batch.""" idx = torch.LongTensor(self.seqlengths[i]) idx[0] = i idx[1:] = self.packed_sequence.batch_sizes[:self.seqlengths[i]-1] ei = self.packed_sequence.data[idx.cumsum(0)] # example i return ei
3.25
3
application/KitchenMagician/kitchen_magician/users/db/dummy_data.py
AsuPaul19/Kitchen-Magician
0
12786837
<reponame>AsuPaul19/Kitchen-Magician from django.contrib.auth.models import User from users.models import Profile from groups.models import Group from groups.models import GroupUser import random class DummyData(): def __init__(self, user_num=1): self.user_num = user_num self.users = self.create_dummy_users() def create_dummy_users(self): users = [] for i in range(self.user_num): username = f"User{i}" password = <PASSWORD> email = f"{<EMAIL>" user = User.objects.filter(username=username).first() # create user if not exist if not user: # create a user user = User.objects.create_user(username=username, password=password, email=email) user.save() # create the profile default_images_folder = 'default_images/avatars/' image_name = f"avatar-flat-{random.randint(1, 50)}.png" user_profile = Profile.objects.create(user=user, image=default_images_folder+image_name) print(user_profile.image) user_profile.save() print(f"User - {user}") users.append(user) return users def create_dummy_groupuser(self): groups = list(Group.objects.all()) l_groups = len(groups) for user in self.users: # random groups sample groups_sample = random.sample(groups, l_groups//2) for group in groups_sample: # If not join the group, add th=o table if not GroupUser.objects.filter(user=user, group=group).first(): group_user = GroupUser(user=user, group=group) group_user.save() print(f"GroupUser - {group_user}")
2.84375
3
slingen/src/algogen/core/algebraic_manipulation.py
danielesgit/slingen
23
12786838
<filename>slingen/src/algogen/core/algebraic_manipulation.py from core.expression import Symbol, Matrix, Vector, \ Equal, Plus, Minus, Times, Transpose, Inverse, \ BlockedExpression, Sequence, Predicate, \ PatternDot from core.properties import * from core.InferenceOfProperties import * from core.builtin_operands import Zero, Identity from core.functional import replace_all from core.rules_collection import simplify_rules, canonicalIO_rules from core.rules_collection_base import canonical_rules def to_canonical( expr ): return replace_all( expr, canonical_rules ) def to_canonicalIO( expr ): return replace_all( expr, canonical_rules+canonicalIO_rules ) def simplify( expr ): return replace_all( expr, simplify_rules )
1.75
2
6_google_trace/VMFuzzyPrediction/experiments/ExperimentFuzzyBPNNM.py
nguyenthieu95/machine_learning
1
12786839
<filename>6_google_trace/VMFuzzyPrediction/experiments/ExperimentFuzzyBPNNM.py from io_utils.NumLoad import * from sklearn.cross_validation import train_test_split from estimators.FuzzyFlow import FuzzyFlow from utils.TrainingTestMaker import TrainingTestMaker from scaling.ProactiveSLA import ProactiveSLA from __init__fuzzy import * dataset_holder = [] trainee_holder = {} metrics = ["cpu_rate","mem_usage","disk_io_time"] arr_desk = ['X_train','y_train','X_test'] sliding_number = 3 data = pd.read_csv('sampling_617685_metric_10min_datetime_origin.csv',parse_dates=True,index_col=0)[:3000] def experiment(sliding_number): for metric in metrics: dat = pd.Series(data[metric].round(5)) fuzzy_engine = FuzzyFlow() data_maker = TrainingTestMaker() fuzzy_engine.fit_transform(dat) sliding = np.array(list(SlidingWindow(fuzzy_engine.u_class_transform, sliding_number))) X_train, y_train, X_test, y_test = data_maker.make_fuzzy_test(sliding, fuzzy_engine.u_class_transform, dat) dataset_holder.append(fuzzy_engine) trainee_holder[metric] = { 'X_train': X_train, "y_train": y_train, "X_test": X_test, "y_test": y_test } y_train = np.asarray(zip(*[trainee_holder[metric]['y_train'] for metric in metrics])) # X_test = zip(trainee_holder['cpu_rate']['X_test'],trainee_holder['mem_usage']['X_test']) X_train = [] X_test = [] # y_train = [] for i in np.arange(len(trainee_holder['cpu_rate']['X_train'])): # tmp = zip(trainee_holder['cpu_rate']['X_train'][i],trainee_holder['mem_usage']['X_train'][i]) tmp = zip(*[trainee_holder[metric]['X_train'][i] for metric in metrics]) X_train.append(np.ravel(tmp)) for i in np.arange(len(trainee_holder['cpu_rate']['X_test'])): tmp = zip(*[trainee_holder[metric]['X_test'][i] for metric in metrics]) X_test.append(np.ravel(tmp)) X_train = np.array(X_train) X_test = np.array(X_test) classifier = KerasRegressor(hidden_nodes=[64],steps=10000,batch_size=32, activation='sigmoid',verbose=2, learning_rate=0.001) a = classifier.fit(X_train, y_train) y_pred = np.round(abs(classifier.predict(X_test))) y_cpu = dataset_holder[0].inverse_transform(abs(y_pred[:, 0])) y_ram = dataset_holder[1].inverse_transform(abs(y_pred[:, 1])) y_disk_io = dataset_holder[1].inverse_transform(abs(y_pred[:, 2])) score_mae_CPU = mean_absolute_error(y_cpu, trainee_holder['cpu_rate']['y_test']) score_mae_RAM = mean_absolute_error(y_ram, trainee_holder['mem_usage']['y_test']) score_mae_disk_io = mean_absolute_error(y_ram, trainee_holder['disk_io_time']['y_test']) y_test = zip(trainee_holder['cpu_rate']['y_test'],trainee_holder['mem_usage']['y_test']) np.savez('model_saved/Fuzzy_BPNNM_%s_%s' % (sliding_number, score_mae_CPU), y_pred=y_pred, y_true=y_test) return sliding_number, score_mae_CPU, score_mae_RAM, score_mae_disk_io result = [[experiment(sliding_number=i) for i in np.arange(2,6)] for j in np.arange(2)] cols = ["sliding_number"] cols.extend(metrics) results = pd.DataFrame(np.array(result).reshape(-1,len(cols)), columns=cols) #results.to_csv('experiment_logs/fgabpnnm_experiment.csv') results.to_csv('experiment_logs/fuzzy_bpnn_experimentm.csv')
2.078125
2
ziken03/models.py
ihakiwamu/Experiment_Ryakugo
0
12786840
<filename>ziken03/models.py<gh_stars>0 # coding UTF-8 import matplotlib.pyplot as plt from input import read_file, conv_str_to_kana, conv_kana_to_vec, conv_vec_to_kana, calc_accuracy from sklearn import svm from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_absolute_error import matplotlib.pyplot as plt import numpy as np import csv import pandas as pd from sklearn.decomposition import PCA from sklearn.cluster import KMeans #データ生成部 List = pd.read_csv('dataset_proto.csv') data = read_file('dataset_proto.csv') kana_title, kana_ans = conv_str_to_kana(data[0],data[1]) vec_title = conv_kana_to_vec_meta(kana_title,1,"T") vec_ans = conv_kana_to_vec_meta(kana_ans,1,"R") List1 = List.copy() List1['Title_vec'] = vec_title List1['Ans_vec'] = vec_ans pca = PCA(n_components=1) x_pca = pca.fit_transform(vec_title) y_pca = pca.fit_transform(vec_ans) List2 = List1.copy() List2['X'] = x_pca List2['Y'] = y_pca model1 = KMeans(n_clusters=5, random_state=0) data1_X = List2[['X','Y']] model1.fit(data1_X) y1 = model1.labels_ print(y1) data_results = List2.copy() data_results['分類結果'] = y1 data_result = data_results.sort_values('分類結果') #データ分類部 list_title = data_results[['Title_vec']] list_ans = data_results[['Ans_vec']] list_title = list_title.values list_ans = list_ans.values num = 0 list0_title = [] list1_title = [] list2_title = [] list3_title = [] list4_title = [] list0_ans = [] list1_ans = [] list2_ans = [] list3_ans = [] list4_ans = [] list_ = data_results[['分類結果']].values for i in list_: if int(i) == 0: list0_title.extend(list_title[num]) list0_ans.extend(list_ans[num]) elif int(i) == 1: list1_title.extend(list_title[num]) list1_ans.extend(list_ans[num]) elif int(i) == 2: list2_title.extend(list_title[num]) list2_ans.extend(list_ans[num]) elif int(i) == 3: list3_title.extend(list_title[num]) list3_ans.extend(list_ans[num]) elif int(i) == 4: list4_title.extend(list_title[num]) list4_ans.extend(list_ans[num]) else: print("なんか抜けてるよ") num += 1 #学習と予測の関数 def clustering(trainX,trainY): X_train, X_test, Y_train, Y_test = train_test_split(vec_title, vec_ans, train_size = 0.8, test_size = 0.2, random_state = 0) # 線形回帰に適用 lr = LinearRegression() lr.fit(trainX,trainY) Y_pred = lr.predict(X_test) Y_pred = np.array(Y_pred) Y_test = np.array(Y_test) # 予測と正解の差異を計算 pred_diff = [] for j,title in enumerate(Y_pred): title_diff = [] for k,val in enumerate(title): diff = abs(val - Y_test[j,k]) title_diff.append(diff) pred_diff.append(title_diff) #print(mean_absolute_error(Y_test, Y_pred)) # csvに出力 with open("pred_diff.csv", "w") as file: writer = csv.writer(file, lineterminator='\n') writer.writerows(pred_diff) # 0,1に変換 for title in Y_pred: for index,i in enumerate(title): if i<=0.2: title[index] = 0 else: title[index] = 1 # title[index] = round(j) # カナに直して比較 Y_pred = Y_pred.tolist() Y_test = Y_test.tolist() Y_pred_kana = conv_vec_to_kana(Y_pred) Y_test_kana = conv_vec_to_kana(Y_test) return calc_accuracy(Y_pred_kana,Y_test_kana), Y_pred_kana, Y_test_kana #実行部 model_listT = [list0_title, list1_title, list2_title, list3_title, list4_title] model_listA = [list0_ans, list1_ans, list2_ans, list3_ans, list4_ans] for i in range(5): score, Y_pred_kana, Y_test_kana = clustering(model_listT[i], model_listA[i]) print("モデル"+str(i)+"号") print(str(score)+"点") """ for x, y in enumerate(Y_pred_kana): print(" ".join(Y_test_kana[x])) print(" ".join(y)) print("\n") """
2.609375
3
main/lib/idds/tests/core_tests.py
HSF/iDDS
0
12786841
<gh_stars>0 import sys import datetime from idds.common.utils import json_dumps # noqa F401 from idds.common.constants import ContentStatus, ContentType, ContentRelationType, ContentLocking # noqa F401 from idds.core.requests import get_requests # noqa F401 from idds.core.messages import retrieve_messages # noqa F401 from idds.core.transforms import get_transforms # noqa F401 from idds.core.workprogress import get_workprogresses # noqa F401 from idds.core.processings import get_processings # noqa F401 from idds.core import transforms as core_transforms # noqa F401 from idds.orm.contents import get_input_contents from idds.core.transforms import release_inputs_by_collection, release_inputs_by_collection_old # noqa F401 def release_inputs_test(): to_release_inputs = {3498: [{'map_id': 1, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_jchiang_dark_12781_panda_20210712T222923Z.qgraph+3_isr_3020111900038_94+qgraphNodeId:3+qgraphId:1626129062.5744567-119392', 'content_id': 2248918, 'min_id': 0, 'bytes': 1, 'coll_id': 3498, 'max_id': 1, 'md5': None, 'request_id': 93, 'content_type': ContentType.File, 'adler32': '12345678', 'workload_id': 1626129080, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1411522}, 'transform_id': 1749, 'storage_id': None}, {'map_id': 2, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_jchiang_dark_12781_panda_20210712T222923Z.qgraph+2_isr_3020111900032_94+qgraphNodeId:2+qgraphId:1626129062.5744567-119392', 'content_id': 2248919, 'min_id': 0, 'bytes': 1, 'coll_id': 3498, 'max_id': 1, 'md5': None, 'request_id': 93, 'content_type': ContentType.File, 'adler32': '12345678', 'workload_id': 1626129080, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1411523}, 'transform_id': 1749, 'storage_id': None}, {'map_id': 3, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_jchiang_dark_12781_panda_20210712T222923Z.qgraph+4_isr_3020111900040_94+qgraphNodeId:4+qgraphId:1626129062.5744567-119392', 'content_id': 2248920, 'min_id': 0, 'bytes': 1, 'coll_id': 3498, 'max_id': 1, 'md5': None, 'request_id': 93, 'content_type': ContentType.File, 'adler32': '12345678', 'workload_id': 1626129080, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1411524}, 'transform_id': 1749, 'storage_id': None}, {'map_id': 4, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_jchiang_dark_12781_panda_20210712T222923Z.qgraph+1_isr_3020111900036_94+qgraphNodeId:1+qgraphId:1626129062.5744567-119392', 'content_id': 2248921, 'min_id': 0, 'bytes': 1, 'coll_id': 3498, 'max_id': 1, 'md5': None, 'request_id': 93, 'content_type': ContentType.File, 'adler32': '12345678', 'workload_id': 1626129080, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1411525}, 'transform_id': 1749, 'storage_id': None}, {'map_id': 5, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_jchiang_dark_12781_panda_20210712T222923Z.qgraph+0_isr_3020111900034_94+qgraphNodeId:0+qgraphId:1626129062.5744567-119392', 'content_id': 2248922, 'min_id': 0, 'bytes': 1, 'coll_id': 3498, 'max_id': 1, 'md5': None, 'request_id': 93, 'content_type': ContentType.File, 'adler32': '12345678', 'workload_id': 1626129080, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1411526}, 'transform_id': 1749, 'storage_id': None} ]} to_release_inputs = {4042: [{'map_id': 1, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_huanlin_panda_test_ci_imsim_w26_20210714T214732Z.qgraph+13_isr_257768_161+1626299263.3909254-24148+13', 'locking': ContentLocking.Idle, 'created_at': datetime.datetime(2021, 7, 14, 21, 48, 10), 'content_id': 2254913, 'min_id': 0, 'bytes': 1, 'updated_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'coll_id': 4042, 'max_id': 1, 'md5': None, 'accessed_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'request_id': 107, 'content_type': ContentType.File, 'adler32': '12345678', 'expired_at': datetime.datetime(2021, 8, 13, 21, 48, 10), 'workload_id': 1626299273, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1412272}, 'transform_id': 2021, 'storage_id': None}, # noqa E501 {'map_id': 2, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_huanlin_panda_test_ci_imsim_w26_20210714T214732Z.qgraph+2_isr_212071_54+1626299263.3909254-24148+2', 'locking': ContentLocking.Idle, 'created_at': datetime.datetime(2021, 7, 14, 21, 48, 10), 'content_id': 2254914, 'min_id': 0, 'bytes': 1, 'updated_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'coll_id': 4042, 'max_id': 1, 'md5': None, 'accessed_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'request_id': 107, 'content_type': ContentType.File, 'adler32': '12345678', 'expired_at': datetime.datetime(2021, 8, 13, 21, 48, 10), 'workload_id': 1626299273, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1412273}, 'transform_id': 2021, 'storage_id': None}, # noqa E501 {'map_id': 3, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_huanlin_panda_test_ci_imsim_w26_20210714T214732Z.qgraph+10_isr_456716_99+1626299263.3909254-24148+10', 'locking': ContentLocking.Idle, 'created_at': datetime.datetime(2021, 7, 14, 21, 48, 10), 'content_id': 2254915, 'min_id': 0, 'bytes': 1, 'updated_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'coll_id': 4042, 'max_id': 1, 'md5': None, 'accessed_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'request_id': 107, 'content_type': ContentType.File, 'adler32': '12345678', 'expired_at': datetime.datetime(2021, 8, 13, 21, 48, 10), 'workload_id': 1626299273, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1412274}, 'transform_id': 2021, 'storage_id': None}, # noqa E501 {'map_id': 4, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_huanlin_panda_test_ci_imsim_w26_20210714T214732Z.qgraph+34_isr_407919_130+1626299263.3909254-24148+34', 'locking': ContentLocking.Idle, 'created_at': datetime.datetime(2021, 7, 14, 21, 48, 10), 'content_id': 2254916, 'min_id': 0, 'bytes': 1, 'updated_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'coll_id': 4042, 'max_id': 1, 'md5': None, 'accessed_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'request_id': 107, 'content_type': ContentType.File, 'adler32': '12345678', 'expired_at': datetime.datetime(2021, 8, 13, 21, 48, 10), 'workload_id': 1626299273, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1412275}, 'transform_id': 2021, 'storage_id': None}, # noqa E501 {'map_id': 5, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_huanlin_panda_test_ci_imsim_w26_20210714T214732Z.qgraph+23_isr_254379_48+1626299263.3909254-24148+23', 'locking': ContentLocking.Idle, 'created_at': datetime.datetime(2021, 7, 14, 21, 48, 10), 'content_id': 2254917, 'min_id': 0, 'bytes': 1, 'updated_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'coll_id': 4042, 'max_id': 1, 'md5': None, 'accessed_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'request_id': 107, 'content_type': ContentType.File, 'adler32': '12345678', 'expired_at': datetime.datetime(2021, 8, 13, 21, 48, 10), 'workload_id': 1626299273, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1412276}, 'transform_id': 2021, 'storage_id': None}, # noqa E501 {'map_id': 6, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_huanlin_panda_test_ci_imsim_w26_20210714T214732Z.qgraph+11_isr_37657_141+1626299263.3909254-24148+11', 'locking': ContentLocking.Idle, 'created_at': datetime.datetime(2021, 7, 14, 21, 48, 10), 'content_id': 2254918, 'min_id': 0, 'bytes': 1, 'updated_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'coll_id': 4042, 'max_id': 1, 'md5': None, 'accessed_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'request_id': 107, 'content_type': ContentType.File, 'adler32': '12345678', 'expired_at': datetime.datetime(2021, 8, 13, 21, 48, 10), 'workload_id': 1626299273, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1412277}, 'transform_id': 2021, 'storage_id': None}, # noqa E501 {'map_id': 7, 'status': ContentStatus.Available, 'retries': 0, 'scope': 'pseudo_dataset', 'substatus': ContentStatus.Available, 'path': None, 'name': 'u_huanlin_panda_test_ci_imsim_w26_20210714T214732Z.qgraph+31_isr_226983_36+1626299263.3909254-24148+31', 'locking': ContentLocking.Idle, 'created_at': datetime.datetime(2021, 7, 14, 21, 48, 10), 'content_id': 2254919, 'min_id': 0, 'bytes': 1, 'updated_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'coll_id': 4042, 'max_id': 1, 'md5': None, 'accessed_at': datetime.datetime(2021, 7, 14, 22, 8, 30), 'request_id': 107, 'content_type': ContentType.File, 'adler32': '12345678', 'expired_at': datetime.datetime(2021, 8, 13, 21, 48, 10), 'workload_id': 1626299273, 'content_relation_type': ContentRelationType.Output, 'processing_id': None, 'content_metadata': {'events': 1, 'panda_id': 1412278}, 'transform_id': 2021, 'storage_id': None}]} # noqa E501 for coll_id in to_release_inputs: contents = get_input_contents(request_id=to_release_inputs[coll_id][0]['request_id'], coll_id=coll_id, name=None) print(len(contents)) in_dep_contents = [] for content in contents: if (content['content_relation_type'] == ContentRelationType.InputDependency): in_dep_contents.append(content) print(len(in_dep_contents)) update_contents = release_inputs_by_collection(to_release_inputs) print(update_contents) update_contents = release_inputs_by_collection(to_release_inputs, final=True) print(update_contents) # release_inputs_test() def show_works(req): workflow = req['processing_metadata']['workflow'] print(workflow.independent_works) print(len(workflow.independent_works)) print(workflow.works_template.keys()) print(len(workflow.works_template.keys())) print(workflow.work_sequence.keys()) print(len(workflow.work_sequence.keys())) print(workflow.works.keys()) print(len(workflow.works.keys())) work_ids = [] for i_id in workflow.works: work = workflow.works[i_id] print(i_id) print(work.work_name) print(work.task_name) print(work.work_id) work_ids.append(work.work_id) print(work_ids) reqs = get_requests(request_id=229, with_detail=True, with_metadata=True) for req in reqs: # print(req['request_id']) # print(rets) # print(json_dumps(req, sort_keys=True, indent=4)) # show_works(req) pass # sys.exit(0) """ # reqs = get_requests() # print(len(reqs)) for req in reqs: if req['request_id'] == 113: # print(req) # print(req['request_metadata']['workflow'].to_dict()) # print(json_dumps(req, sort_keys=True, indent=4)) pass sys.exit(0) """ tfs = get_transforms(request_id=230) for tf in tfs: # print(tf) # print(tf['transform_metadata']['work'].to_dict()) print(json_dumps(tf, sort_keys=True, indent=4)) pass sys.exit(0) """ msgs = retrieve_messages(workload_id=25972557) number_contents = 0 for msg in msgs: # if msg['msg_id'] in [323720]: # if True: # if msg['request_id'] in [208]: print(json_dumps(msg['msg_content'], sort_keys=True, indent=4)) if msg['msg_content']['msg_type'] == 'file_stagein' and msg['msg_content']['relation_type'] == 'output': # number_contents += len(msg['msg_content']['files']) for i_file in msg['msg_content']['files']: if i_file['status'] == 'Available': number_contents += 1 pass print(number_contents) sys.exit(0) """ prs = get_processings(request_id=219) i = 0 for pr in prs: # if pr['request_id'] == 91: print("processing_number: %s" % i) i += 1 print(json_dumps(pr, sort_keys=True, indent=4)) pass sys.exit(0) to_release_inputs = [{'request_id': 248, 'coll_id': 3425, 'name': 'shared_pipecheck_20210407T110240Z.qgraph', 'status': ContentStatus.Available, 'substatus': ContentStatus.Available}] # updated_contents = core_transforms.release_inputs(to_release_inputs) # print(updated_contents)
1.695313
2
tests/test_config.py
contourpy/contourpy
14
12786842
from image_comparison import compare_images import pytest import util_config import util_test @pytest.mark.parametrize("name", util_test.all_names()) def test_config_filled(name): config = util_config.ConfigFilled(name) image_buffer = config.save_to_buffer() compare_images(image_buffer, "config_filled.png", name) @pytest.mark.parametrize("name", util_test.quad_as_tri_names()) def test_config_filled_quad_as_tri(name): config = util_config.ConfigFilled(name, quad_as_tri=True) image_buffer = config.save_to_buffer() compare_images(image_buffer, "config_filled_quad_as_tri.png", name) @pytest.mark.parametrize("name", util_test.corner_mask_names()) def test_config_filled_corner(name): config = util_config.ConfigFilledCorner(name) image_buffer = config.save_to_buffer() compare_images(image_buffer, "config_filled_corner.png", name) @pytest.mark.parametrize("name", util_test.all_names()) def test_config_lines(name): if name == "mpl2005": pytest.skip() # Line directions are not consistent. config = util_config.ConfigLines(name) image_buffer = config.save_to_buffer() compare_images(image_buffer, "config_lines.png", name) @pytest.mark.parametrize("name", util_test.quad_as_tri_names()) def test_config_lines_quad_as_tri(name): config = util_config.ConfigLines(name, quad_as_tri=True) image_buffer = config.save_to_buffer() compare_images(image_buffer, "config_lines_quad_as_tri.png", name) @pytest.mark.parametrize("name", util_test.corner_mask_names()) def test_config_lines_corner(name): config = util_config.ConfigLinesCorner(name) image_buffer = config.save_to_buffer() compare_images(image_buffer, "config_lines_corner.png", name)
2.15625
2
src/sentry/web/frontend/organization_avatar.py
AlexWayfer/sentry
4
12786843
<gh_stars>1-10 from __future__ import absolute_import from sentry.models import OrganizationAvatar from sentry.web.frontend.base import AvatarPhotoView class OrganizationAvatarPhotoView(AvatarPhotoView): model = OrganizationAvatar
1.390625
1
dronedirector/tests/test_aerial.py
avmarchenko/dronedirector
0
12786844
# -*- coding: utf-8 -*- # Copyright 2018 <NAME> # Distributed under the terms of the Apache License 2.0 """ Test Aerial Objects ##################### """ import six import json import uuid import numpy as np from itertools import cycle from dronedirector.aerial import AerialObject, Drone, SinusoidalDrone class CaliRedwood(AerialObject): """Example of subclassing.""" def __init__(self): super(CaliRedwood, self).__init__(altitude=cycle([100.0]), latitude=cycle([37.8716]), longitude=cycle([-122.2727])) def test_simple_aerial(): """Test making a simple object on-the-fly.""" tree = AerialObject(altitude=cycle([100.0]), latitude=cycle([37.8716]), longitude=cycle([-122.2727])) msg = tree.message() assert isinstance(msg, six.string_types) assert isinstance(json.loads(msg), dict) def test_subclassing_ao(): """Test subclassing :class:`~dronedirector.aerial.AerialObject`.""" tree = CaliRedwood() msg = json.loads(tree.message()) # Tests for valid json assert isinstance(msg, dict) assert np.isclose(msg['altitude'], 100.0) def test_drone(): """Test basic drone creation.""" uid = uuid.uuid4() drone = Drone(cycle([1000.0]), cycle([41.0]), region="New York", uid=uid, longitude=cycle(np.sin(np.arange(0, 2*np.pi, np.pi/360)))) assert drone.region == "New York" assert drone.uid == uid msg = json.loads(drone.message()) assert len(msg) == 6
2.8125
3
tests/factories/base.py
korostil/invest
0
12786845
import asyncio import inspect import factory class AsyncFactory(factory.Factory): """ Copied from https://github.com/FactoryBoy/factory_boy/issues/679#issuecomment-673960170 """ class Meta: abstract = True @classmethod def _create(cls, model_class, *args, **kwargs): async def maker_coroutine(): for key, value in kwargs.items(): # when using SubFactory, you'll have a Task in the corresponding kwarg # await tasks to pass model instances instead if inspect.isawaitable(value): kwargs[key] = await value # replace as needed by your way of creating model instances document = model_class(*args, **kwargs) await document.commit() return document # A Task can be awaited multiple times, unlike a coroutine. # useful when a factory and a subfactory must share a same object return asyncio.create_task(maker_coroutine()) @classmethod async def create_batch(cls, size, **kwargs): return [await cls.create(**kwargs) for _ in range(size)] class BaseFactory(factory.Factory): class Meta: abstract = True
2.984375
3
ML_Module_src/try_merge.py
Logi-Meichu/Eduction_anywhere
0
12786846
import os import cv2 import time import imutils import pyrebase import numpy as np from utils import * import sys import dlib from skimage import io #################### Initialize #################### print("Start initializing") os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"} firebase = init_firebase() storage = firebase.storage() db = firebase.database() model, facecasc = init_model() history_list = [] loop = 0 predictor_path = "./shape_predictor_68_face_landmarks.dat" detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor(predictor_path) reset_counter = 0 #################### Initialize #################### print("Start looping") data = {'cur_emotion': "None"} db.child("CUR_EMOTION").set(data) while(1): print("Loop ======================================================================", loop) files = storage.list_files() reset_counter += 1 for file in files: if (file.name)[0] == "s" and file.name != "screenShot/": if file.name not in history_list: reset_counter = 0 history_list.append(file.name) img_local_name = "imgs/" + os.path.basename(file.name) + ".png" print(img_local_name) storage.child(file.name).download(img_local_name) gray_img = cv2.imread( img_local_name, cv2.IMREAD_GRAYSCALE) img = cv2.imread(img_local_name) dets = detector(img, 1) vec = np.empty([68, 2], dtype=int) status = "Not Sleeping" for k, d in enumerate(dets): shape = predictor(img, d) for b in range(68): vec[b][0] = shape.part(b).x vec[b][1] = shape.part(b).y right_ear = compute_EAR(vec[42:48]) left_ear = compute_EAR(vec[36:42]) if (right_ear+left_ear)/2 < 0.2: status = "sleeping" print(status) faces = facecasc.detectMultiScale( gray_img, scaleFactor=1.3, minNeighbors=5) for (x, y, w, h) in faces: print("Detect Face") roi_gray = gray_img[y:y + h, x:x + w] cropped_img = np.expand_dims(np.expand_dims( cv2.resize(roi_gray, (48, 48)), -1), 0) prediction = model.predict(cropped_img) maxindex = int(np.argmax(prediction)) if maxindex == 0 or maxindex == 1 or maxindex == 2 or maxindex == 4: maxindex = 5 print(emotion_dict[maxindex]) if status == "sleeping": data = {'cur_emotion': "sleeping"} else: data = {'cur_emotion': emotion_dict[maxindex]} db.child("CUR_EMOTION").set(data) if reset_counter >= 100: reset_counter = 0 data = {'cur_emotion': "None"} db.child("CUR_EMOTION").set(data) loop += 1 # time.sleep(1))
2.1875
2
client/tools/buildtool/chameleon_tool/chameleon_copyr.py
uclouddotcn/chameleon
4
12786847
<reponame>uclouddotcn/chameleon import os, shutil, sys, codecs def isNewerThan(a, b): return os.path.getmtime(a) > os.path.getmtime(b) def genRFileForPkgName(genPath, pkgName, newPkgName): s = pkgName.split('.') d = os.path.join(*([genPath] + s)) src = os.path.join(d, 'R.java') targetD = os.path.join(*([genPath] + newPkgName.split('.'))) target = os.path.join(targetD, 'R.java') if not os.path.exists(src): error('Fail to locate old source %s' %src) if not os.path.exists(targetD): os.makedirs(targetD) if not os.path.exists(target) or isNewerThan(src, target): with codecs.open(src, 'r', 'utf8') as srcF, codecs.open(target, 'w', 'utf8') as targetF: for l in srcF.readlines(): if l.startswith('package %s;' %pkgName): targetF.write('package %s;\n' %newPkgName) else: targetF.write(l) def main(): if len(sys.argv) < 4: return -1 gendir = sys.argv[1] origPkg = sys.argv[2] nowPkg = sys.argv[3] nowRFile = gendir + '/' + nowPkg.replace('.', '/') + '/R.java'; if not os.path.exists(nowRFile): print >> sys.stderr, "can't find "+nowRFile return -1 genRFileForPkgName(gendir, nowPkg, origPkg) sys.exit(main())
2.265625
2
flask_mrest/SupportUser.py
cindy-zimmerman/vmb-mrest
0
12786848
import os import base64 from flask.ext.login import UserMixin from flask.ext.login import AnonymousUserMixin as AnonymousUser from flask.ext.bcrypt import Bcrypt, generate_password_hash class User(UserMixin): # proxy for a database of users user_database = {"JohnDoe": ("JohnDoe", "John"), "JaneDoe": ("JaneDoe", "Jane") } def __init__(self, uid, username, upload_inv): self.id = uid self.username = username self.upload_inv = upload_inv @classmethod def get(cls,id): return cls.user_database.get(id) class Anonymous(AnonymousUser, dict): def __init__(self): super(Anonymous, self).__init__() self.username = None def __getattribute__(self, item): if item in ['pw', 'password']: raise AttributeError("Anonymous users have no '%s' attribute" % item) else: return super(Anonymous, self).__getattribute__(item) def hasBankRights(self): return False def is_authenticated(self): return False def is_active(self): return True
2.796875
3
test/input/099.py
EliRibble/pyfmt
0
12786849
<filename>test/input/099.py def some_really_long_function_name(i): return i ** i print([( some_really_long_function_name(i), some_really_long_function_name(i+1), some_really_long_function_name(i+3), ) for i in range(10)])
2.671875
3
laser_path_utils.py
mattvalentine/LaserAssistant
2
12786850
# laser_path_utils.py """Utility functions for working with paths for laser cutting""" import numpy as np import svgpathtools.svgpathtools as SVGPT # it's imporatant to clone and install the repo manually. The pip/pypi version is outdated from laser_svg_utils import tree_to_tempfile from laser_clipper import point_on_loops, point_inside_loop def tempfile_to_paths(temp_svg): """open temp SVG file and return a path""" # temp_svg.seek(0) paths, attributes = SVGPT.svg2paths(temp_svg.name) temp_svg.close() return (paths, attributes) def tree_to_paths(tree): """turns an svg tree into paths list""" temp_svg = tree_to_tempfile(tree) paths, _ = tempfile_to_paths(temp_svg) svg_paths = [] for path in paths: if not path: svg_paths.append(path.d()) return svg_paths def paths_to_loops(paths): """"Convert a list of paths to a list of points""" point_loop_list = [] for path_string in paths: points = path_string_to_points(path_string) if points is not None: point_loop_list.append(points) return point_loop_list def combine_paths(paths, as_list=True): """combines path strings into a single string""" combined = "" first = True for path in paths: if not first: combined += " " combined += path first = False if as_list: return [combined] else: return combined def path_string_to_points(path_string): """Convert path string into a list of points""" path = SVGPT.parse_path(path_string) empty = SVGPT.Path() if path == empty: return None points = [] for segment in path: segment_points = subpath_to_points(segment) for point in segment_points: if points == [] or point != points[-1]: points.append(point) return points def subpath_to_points(segment): """Converts a path segment into a list of points""" points = [] if isinstance(segment, SVGPT.path.Line): # pylint: disable=maybe-no-member points = points_from_line(segment) else: points = points_from_curve(segment) return points def get_start(path_string): """returns start point (x, y) of a path string""" path = SVGPT.parse_path(path_string) start_xy = complex_to_xy(path.start) return start_xy def points_from_line(line): """returns endpoints of line""" points_list = [] start = line.point(0) end = line.point(1) points_list.append(complex_to_xy(start)) points_list.append(complex_to_xy(end)) return points_list def points_from_curve(curve, samples=20): """returns poins along a curve""" points_list = [] for location in range(samples): fraction = location / (samples-1) point_on_curve = curve.point(fraction) points_list.append(complex_to_xy(point_on_curve)) return points_list def complex_to_xy(complex_point): """turns complex point (x+yj) into cartesian point [x,y]""" xy_point = [complex_point.real, complex_point.imag] return xy_point def xy_to_complex(xy_point): """turns cartesian point [x,y] into complex point (x+yj)""" complex_point = xy_point[0] + xy_point[1] * 1j return complex_point def loops_to_paths(loops): """turns a list of point loops into a list of path strings""" paths = [] for loop in loops: path = points_to_path(loop) paths.append(path) return paths def points_to_path(points, closed=True): """turn a series of points into a path""" first = True data = "M " for point in points: if not first: data += " L " data += f"{point[0]},{point[1]}" first = False if closed: data += " Z" return data def scale_path(path_string, scale): """scales a path string by a scale factor (float)""" path = SVGPT.parse_path(path_string) scaled_path = path.scaled(scale) new_path_string = scaled_path.d() return new_path_string def move_path(path_string, xy_translation): """Takes a path string and xy_translation (x, y), and moves it x units over, and y units down""" path = SVGPT.parse_path(path_string) empty = SVGPT.Path() if path == empty: return "" complex_translation = xy_to_complex(xy_translation) translated_path = path.translated(complex_translation) translated_string = translated_path.d() return translated_string def get_angle(path_string): """measures the angle in degrees (CCW) from the path positive X axis (0,0), (0,1)""" path = SVGPT.parse_path(path_string) vector = path.point(1) - path.point(0) angle = np.angle(vector, deg=True) return angle def rotate_path(path_string, angle_degrees, xy_point): """rotates a path string a given number of degrees (CCW) around point (x, y)""" path = SVGPT.parse_path(path_string) empty = SVGPT.Path() if path == empty: return "" complex_point = xy_to_complex(xy_point) rotated_path = path.rotated(angle_degrees, origin=complex_point) rotated_string = rotated_path.d() return rotated_string def get_length(path_string): """returns the length of a path string""" path = SVGPT.parse_path(path_string) return path.length() def get_all_segments(loops): """returns all of the segments from all of the loops""" all_segments = [] for loop in loops: loop_segments = get_loop_segments(loop) all_segments = all_segments + loop_segments return all_segments def segments_overlap(first, second): """returns true if segments share more than a single point""" first_path_string = points_to_path(first, closed=False) second_path_string = points_to_path(second, closed=False) first_path = SVGPT.parse_path(first_path_string)[0] second_path = SVGPT.parse_path(second_path_string)[0] overlaps = [] for point in first: complex_point = xy_to_complex(point) place_on_path = second_path.point_to_t(complex_point) if place_on_path is not None: if point not in overlaps: overlaps.append(point) for point in second: complex_point = xy_to_complex(point) place_on_path = first_path.point_to_t(complex_point) if place_on_path is not None: if point not in overlaps: overlaps.append(point) overlap = len(overlaps) >= 2 return overlap def get_loop_segments(loop): """returns a list of segments in a loop""" segments = [] last_point = None for this_point in loop: if last_point is not None: new_segment = [last_point, this_point] segments.append(new_segment) last_point = this_point return segments def segments_to_paths(segments): """converts list of segments into list of paths""" paths = [] for segment in segments: new_path = points_to_path(segment, closed=False) paths.append(new_path) return paths def get_not_overlapping(first, second): """returns the segments of the first path that do not overlap with the second.""" output_paths = [] first_loops = paths_to_loops(first) second_loops = paths_to_loops(second) for loop in first_loops: not_overlapping = "" segment_started = False last_point = loop[-1] for point in loop: if not point_on_loops(point, second_loops): if not segment_started: not_overlapping += f" M {last_point[0]},{last_point[1]}" segment_started = True if last_point != point: not_overlapping += f" L {point[0]},{point[1]}" else: # close the path if segment_started: not_overlapping += f" L {point[0]},{point[1]}" output_paths.append(not_overlapping) segment_started = False not_overlapping = "" last_point = point if segment_started: output_paths.append(not_overlapping) return output_paths def get_overlapping(first, second): """returns the overlapping segments of the first and second path.""" output_paths = [] first_loops = paths_to_loops(first) second_loops = paths_to_loops(second) for loop in first_loops: overlapping = "" segment_started = False for point in loop: if point_on_loops(point, second_loops): if not segment_started: overlapping += f" M {point[0]},{point[1]}" segment_started = True else: overlapping += f" L {point[0]},{point[1]}" else: # skip other points if segment_started: output_paths.append(overlapping) overlapping = "" segment_started = False if segment_started: output_paths.append(overlapping) return output_paths def divide_pathstring_parts(pathstring): """breaks single path string into substrings at each 'M' returning a list of path strings""" substring = pathstring.strip() paths = [] while 'M' in substring[1:]: m_index = substring.find('M', 1) if m_index > -1: subpath = substring[0:m_index].strip() paths.append(subpath) substring = substring[m_index:].strip() paths.append(substring) return paths # TODO: split open/closed separation into smaller chunks def separate_closed_paths(paths): """takes a list of path strings breaks non continuous paths and joins connecting paths together to return a list of closed paths """ discrete_paths = [] closed_paths = [] open_paths = [] dead_ends = [] for path in paths: discrete_paths += divide_pathstring_parts(path) for path in discrete_paths: parsed_path = SVGPT.parse_path(path) if parsed_path.isclosed(): closed_paths.append(path) else: open_paths.append(parsed_path) while open_paths: path = open_paths.pop() new_path = None for other_path in open_paths: if path.end == other_path.start: new_path = path.d() + " " + other_path.d().replace('M', 'L') open_paths.remove(other_path) break elif path.start == other_path.end: new_path = other_path.d() + " " + path.d().replace('M', 'L') open_paths.remove(other_path) break elif path.end == other_path.end: new_path = path.d() + " " + other_path.reversed().d().replace('M', 'L') open_paths.remove(other_path) break elif path.start == other_path.start: new_path = path.reversed().d() + " " + other_path.d().replace('M', 'L') open_paths.remove(other_path) break if new_path is not None: parsed_new_path = SVGPT.parse_path(new_path) if parsed_new_path.isclosed(): closed_paths.append(new_path) else: open_paths.append(parsed_new_path) else: dead_ends.append(path.d()) open_paths = dead_ends return closed_paths, open_paths def is_inside(path, other_path): """checks if path is inside other_path and returns true or false""" loop = paths_to_loops([path])[0] other_loop = paths_to_loops([other_path])[0] for point in loop: if point_inside_loop(point, other_loop) == 1: return True return False def path_to_segments(path_string): """breaks down a path into a list of segments""" segments = [] path = SVGPT.parse_path(path_string) for segment in path: if isinstance(segment, SVGPT.path.Line): # pylint: disable=maybe-no-member points = points_from_line(segment) new_path_string = f"M {points[0][0]} {points[0][1]} L {points[1][0]} {points[1][1]}" segments.append(new_path_string) return segments
2.90625
3