content
stringlengths 0
14.9M
| filename
stringlengths 44
136
|
---|---|
ask_file <- function(file, ask) {
if (!ask) {
return(TRUE)
}
if (file.exists(file)) {
return(yesno("Overwrite file '", file, "'?"))
}
yesno("Create file '", file, "'?")
}
bh <- function(stock, alpha, beta) {
unname(alpha * stock / (1 + (beta * stock)))
}
ri <- function(stock, alpha, beta) {
unname(alpha * stock * exp(-beta * stock))
}
add_parameters <- function(x, object) {
object <- as.data.frame(unclass(object))
object$pi <- NULL
merge(x, object)
}
drop_constant_parameters <- function(x) {
parameters <- parameters()
parameters <- parameters[parameters != "pi"]
bol <- vapply(parameters, function(y) length(unique(x[[y]])) == 1, TRUE)
parameters <- parameters[bol]
x[parameters] <- NULL
x
}
drop_all_parameters <- function(x) {
parameters <- parameters()
parameters <- parameters[parameters != "pi"]
x[parameters] <- NULL
x
}
quantiles <- function(x, level) {
x <- unlist(x)
x <- stats::quantile(x, c(0.5, (1 - level) / 2, (1 - level) / 2 + level))
setNames(x, c("estimate", "lower", "upper"))
}
sanitize <- function(x) {
x[is.nan(x)] <- 0
x[x < 0] <- 0
x
}
tabulate_yield_pi <- function(pi, object, Ly, harvest, biomass, all) {
object <- set_par(object, "pi", pi)
yield <- ypr_tabulate_yield(
object = object, Ly = Ly,
harvest = harvest, biomass = biomass,
type = "actual", all = all
)
yield$Type <- NULL
yield
}
sum_fish <- function(x) {
ecotype <- x$Ecotype[1]
x$Ecotype <- NULL
x[] <- lapply(x, sum)
x[[1]] <- x[[1]] / nrow(x)
x <- x[1, ]
x$Ecotype <- ecotype
x
}
.sub <- function(x, pattern, replacement) {
sub(pattern, replacement, x)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/internal.R |
#' Tests if is a Population, Populations or Ecotypes
#' @param x The object to test.
#' @export
#' @examples
#' is.ypr_population(ypr_population())
is.ypr_population <- function(x) {
is_ypr_population(x)
}
#' @describeIn is.ypr_population Test if is a Population
#' @export
#' @examples
#' is_ypr_population(ypr_population())
is_ypr_population <- function(x) {
inherits(x, "ypr_population")
}
#' @describeIn is.ypr_population Test if is a Populations
#' @export
#' @examples
#' is.ypr_populations(ypr_populations())
is.ypr_populations <- function(x) {
is_ypr_populations(x)
}
#' @describeIn is.ypr_population Test if is a Populations
#' @export
#' @examples
#' is_ypr_population(ypr_populations())
is_ypr_populations <- function(x) {
inherits(x, "ypr_populations")
}
#' @describeIn is.ypr_population Test if is an Ecotypes
#' @export
#' @examples
#' is.ypr_ecotypes(ypr_ecotypes())
is.ypr_ecotypes <- function(x) {
is_ypr_ecotypes(x)
}
#' @describeIn is.ypr_population Test if is an Ecotypes
#' @export
#' @examples
#' is_ypr_ecotypes(ypr_ecotypes())
is_ypr_ecotypes <- function(x) {
inherits(x, "ypr_ecotypes")
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/is.R |
#' Population Names
#'
#' Generates set of unique names based on differences in parameter values.
#' `r lifecycle::badge('deprecated')`
#' @param population An object of class ypr_population, ypr_populations or ypr_ecotypes.
#' @return A character vector of the unique parameter based names.
#' @seealso [`ypr_names()`]
#'
#' @export
ypr_population_names <- function(population) {
lifecycle::deprecate_soft("0.5.3", "ypr_population_names()", "ypr_names()")
ypr_names(population)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/names-deprec.R |
#' Population(s) or Ecotype Names
#'
#' Generates set of unique names based on differences in parameter values.
#'
#' Parameter RPR is ignored because it is irrelevant to population(s) and does not
#' distinguish between ecotypes.
#'
#' @param x An object of class ypr_population, ypr_populations or ypr_ecotypes.
#' @param ... Unused.
#'
#' @return A character vector of the unique parameter based names.
#' @export
ypr_names <- function(x, ...) {
UseMethod("ypr_names")
}
#' @describeIn ypr_names Population Names
#' @export
#' @examples
#' ypr_names(ypr_population())
ypr_names.ypr_population <- function(x, ...) {
chk_unused(...)
"Pop_1"
}
#' @describeIn ypr_names Populations Names
#' @export
#' @examples
#' ypr_names(ypr_populations())
ypr_names.ypr_populations <- function(x, ...) {
chk_unused(...)
x <- as_tibble(x)
x$RPR <- NULL
x <- x[, vapply(
x,
FUN = function(x) length(unique(x)) > 1,
TRUE
)]
if (!ncol(x)) {
return(paste0("Pop_", seq_len(nrow(x))))
}
x <- as.list(x)
x <- purrr::map(
x,
.sub,
pattern = "[.]",
replacement = "_"
)
x <- purrr::map2(
x,
names(x),
function(x, y) paste(y, x, sep = "_")
)
x <- purrr::transpose(x)
x <- purrr::map(
x,
function(x) {
paste0(unname(unlist(x)),
collapse = "_"
)
}
)
names <- unlist(x)
duplicates <- unique(names[duplicated(names)])
for (duplicate in duplicates) {
bol <- names == duplicate
names[bol] <- paste(names[bol], "Pop", 1:sum(bol), sep = "_")
}
names
}
#' @describeIn ypr_names Ecotypes Names
#' @export
#' @examples
#' ypr_names(ypr_populations())
ypr_names.ypr_ecotypes <- function(x, ...) {
chk_unused(...)
x <- as_ypr_populations(x)
names <- ypr_names(x)
names <- .sub(names, "^Pop_", "Eco_")
names
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/names.R |
#' @import chk yesno lifecycle
#' @importFrom ggplot2 ggplot
#' @importFrom purrr map map2 transpose
#' @importFrom tidyplus only
#' @importFrom stats update setNames
#' @importFrom tibble as_tibble
#' @importFrom graphics plot
#' @importFrom lifecycle deprecated
NULL
| /scratch/gouwar.j/cran-all/cranData/ypr/R/namespace.R |
optimize <- function(object, Ly, harvest, biomass) {
stats::optimize(yield_pi, c(0, 1),
object = object,
Ly = Ly, harvest = harvest, biomass = biomass,
maximum = TRUE
)$maximum
}
#' Optimize Capture
#'
#' Finds the interval annual capture probability (pi) that maximises the yield
#' for a given population.
#'
#' @inheritParams params
#' @return The interval annual capture probability (pi) that maximises the
#' yield.
#' @family calculate
#' @aliases ypr_optimise
#' @export
#' @examples
#' ypr_optimize(ypr_population())
ypr_optimize <- function(object,
Ly = 0,
harvest = TRUE,
biomass = FALSE) {
chk_number(Ly)
chk_gte(Ly)
chk_flag(biomass)
chk_flag(harvest)
yield <- optimize(
object = object, Ly = Ly,
harvest = harvest, biomass = biomass
)
sanitize(yield)
}
#' @export
ypr_optimise <- ypr_optimize
| /scratch/gouwar.j/cran-all/cranData/ypr/R/optimise.R |
set_par <- function(object, par, value) {
if(is.ypr_population(object)) {
object[[par]] <- value
} else {
for(i in seq_len(length(object))) {
object[[i]] <- set_par(object[[i]], par, value = value)
}
}
object
}
get_par <- function(object, par) {
return(object[[par]])
}
get_pars <- function(object, par) {
unname(purrr::map_dbl(object, get_par, par))
}
#' Get Parameter Value
#'
#' @param object A ypr object.
#' @param par A string of the parameter.
#'
#' @return A numeric or integer scalar or vector of the parameter value.
#' @export
#'
#' @examples
#' ypr_get_par(ypr_population())
ypr_get_par <- function(object, par = "pi") {
chk_string(par)
chk_subset(par, parameters())
if(is.ypr_population(object)) {
return(get_par(object, par))
}
pars <- get_pars(object, par)
if(is.ypr_populations(object)) {
return(pars)
}
if(!par %in% ecoall_parameters()) {
return(pars)
}
only(pars)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/par.R |
#' Parameter Descriptions for ypr Functions
#' @param tmax The maximum age (yr).
#' @param k The VB growth coefficient (yr-1).
#' @param Linf The VB mean maximum length (cm).
#' @param t0 The (theoretical) age at zero length (yr).
#' @param k2 The VB growth coefficient after length L2 (yr-1).
#' @param Linf2 The VB mean maximum length after length L2 (cm).
#' @param L2 The length (or age if negative) at which growth switches from the
#' first to second phase (cm or yr).
#' @param Wb The weight (as a function of length) scaling exponent.
#' @param Ls The length (or age if negative) at which 50 % mature (cm or yr).
#' @param Sp The maturity (as a function of length) power.
#' @param es The annual probability of a mature fish spawning.
#' @param Sm The spawning mortality probability.
#' @param fb The fecundity (as a function of weight) scaling exponent.
#' @param tR The age from which survival is density-independent (yr).
#' @param BH Recruitment follows a Beverton-Holt (1) or Ricker (0) relationship.
#' @param Rk The lifetime spawners per spawner at low density (or the egg to tR survival if between 0 and 1).
#' @param n The annual interval natural mortality rate from age tR.
#' @param nL The annual interval natural mortality rate from length Ln.
#' @param Ln The length (or age if negative) at which the natural mortality
#' rate switches from n to nL (cm or yr).
#' @param Lv The length (or age if negative) at which 50 % vulnerable to harvest
#' (cm or yr).
#' @param Vp The vulnerability to harvest (as a function of length) power.
#' @param Llo The lower harvest slot length (cm).
#' @param Lup The upper harvest slot length (cm).
#' @param Nc The slot limits non-compliance probability.
#' @param pi A vector of probabilities of capture to calculate the yield for.
#' @param rho The release probability.
#' @param Hm The hooking mortality probability.
#' @param Rmax The number of recruits at the carrying capacity (ind).
#' @param Wa The (extrapolated) weight of a 1 cm individual (g).
#' @param fa The (theoretical) fecundity of a 1 g female (eggs).
#' @param q The catchability (annual probability of capture) for a unit of
#' effort.
#' @param RPR The relative proportion of recruits that are of the ecotype.
#' @param all A flag specifying whether to include all parameter values.
#' @param u A flag specifying whether to plot the exploitation rate as opposed
#' to the capture rate.
#' @param percent A flag specifying whether to plot the number of fish as a
#' percent or frequency (the default).
#' @param color A string of the color around each bar (or NULL).
#' @param population An object of class [ypr_population()].
#' @param populations An object of class [ypr_populations()].
#' @param ecotypes An object of class [ypr_ecotypes()].
#' @param plot_values A flag specifying whether to plot the actual and optimal
#' values.
#' @param Ly The minimum length (trophy) fish to consider when calculating the
#' yield (cm).
#' @param harvest A flag specifying whether to calculate the yield for harvested
#' fish or captures.
#' @param biomass A flag specifying whether to calculate the yield in terms of
#' the biomass versus number of individuals.
#' @param title A string of the report title.
#' @param date A date of the report date.
#' @param file A string of the path to the file (without the extension).
#' @param binwidth A positive integer of the width of the bins for grouping.
#' @param type A string indicating whether to include 'both' or just the
#' 'actual' or 'optimal' yield.
#' @param object The population or populations.
#' @param ... Unused parameters.
#' @param expand A flag specifying whether to expand parameter combinations.
#' @param view A flag specifying whether to view the report (after rendering it
#' to html).
#' @param ask A flag specifying whether to ask before overwriting or creating a
#' file.
#' @param description A string describing the population.
#' @param age A numeric vector of the age (yr).
#' @param length A numeric vector of the length (cm).
#' @param names A character vector of unique ecotype names.
#' @param x The object to coerce.
#' @keywords internal
#' @name params
NULL
| /scratch/gouwar.j/cran-all/cranData/ypr/R/params.R |
#' Plot Biomass
#'
#' Produces a frequency histogram of the total fish 'Biomass' or 'Eggs'
#' deposition by 'Age' class.
#'
#' @inheritParams params
#' @inheritParams ypr_plot_schedule
#' @return A ggplot2 object.
#' @seealso [ggplot2::geom_histogram()]
#' @family biomass
#' @family plot
#' @export
#' @examples
#' ypr_plot_biomass(ypr_population(), color = "white")
ypr_plot_biomass <- function(population, y = "Biomass", color = NULL) {
if (!requireNamespace("ggplot2")) err("Package 'ggplot2' must be installed.")
if (!requireNamespace("scales")) err("Package 'scales' must be installed.")
chk_string(y)
chk_subset(y, c("Biomass", "Eggs"))
biomass <- ypr_tabulate_biomass(population)
labels <- if (sum(biomass[[y]]) >= 1000) {
scales::comma
} else {
ggplot2::waiver()
}
ggplot2::ggplot(data = biomass, ggplot2::aes_string(x = "Age", weight = y)) +
(if (is.null(color)) {
ggplot2::geom_bar(width = 1)
} else {
ggplot2::geom_bar(width = 1, color = color)
}) +
ggplot2::scale_y_continuous(y, labels = labels) +
ggplot2::expand_limits(x = 0, y = 0)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/plot-biomass.R |
#' Plot Fish
#'
#' Produces a frequency histogram of the number of fish in the 'Survivors',
#' 'Spawners', 'Caught', 'Harvested' or 'Released' categories by 'Length', 'Age'
#' or 'Weight' class.
#'
#' @inheritParams params
#' @inheritParams ypr_plot_schedule
#' @return A ggplot2 object.
#' @seealso [ggplot2::geom_histogram()]
#' @family fish
#' @family plot
#' @export
#' @examples
#' ypr_plot_fish(ypr_population(), color = "white")
ypr_plot_fish <- function(population, x = "Age", y = "Survivors",
percent = FALSE,
binwidth = 1L, color = NULL) {
if (!requireNamespace("ggplot2")) err("Package 'ggplot2' must be installed.")
if (!requireNamespace("scales")) err("Package 'scales' must be installed.")
chk_string(y)
chk_subset(y, c(
"Survivors", "Spawners", "Caught", "Harvested",
"Released", "HandlingMortalities"
))
chk_flag(percent)
fish <- ypr_tabulate_fish(population, x = x, binwidth = binwidth)
if (percent) fish[[y]] <- fish[[y]] / sum(fish[[y]])
labels <- if (percent) {
scales::percent
} else if (sum(fish[[y]]) >= 1000) {
scales::comma
} else {
ggplot2::waiver()
}
gp <- ggplot2::ggplot(data = fish) +
(if(length(unique(fish$Ecotype)) == 1) {
ggplot2::aes_string(x = x, weight = y)
} else {
ggplot2::aes_string(x = x, weight = y, fill = "Ecotype")
}) +
(if (is.null(color)) {
ggplot2::geom_bar(width = binwidth)
} else {
ggplot2::geom_bar(width = binwidth, color = color)
}) +
ggplot2::scale_y_continuous(y, labels = labels) +
ggplot2::expand_limits(x = 0, y = 0)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/plot-fish.R |
#' Plot Population or Ecotypes Schedule Terms
#'
#' Produces a bivariate line plot of two schedule terms.
#'
#' @inheritParams params
#' @param x A string of the term on the x-axis.
#' @param y A string of the term on the y-axis.
#' @return A ggplot2 object.
#' @family schedule
#' @family plot
#' @export
#' @examples
#' ypr_plot_schedule(ypr_population())
ypr_plot_schedule <- function(population, x = "Age", y = "Length") {
if (!requireNamespace("ggplot2")) err("Package 'ggplot2' must be installed.")
if (!requireNamespace("scales")) err("Package 'scales' must be installed.")
schedule <- ypr_tabulate_schedule(object = population)
chk_string(x)
chk_subset(x, values = colnames(schedule))
chk_string(y)
chk_subset(y, values = colnames(schedule))
labels <- if (sum(schedule[[y]]) >= 1000) scales::comma else ggplot2::waiver()
ecotype <- "Ecotype" %in% names(schedule) && length(unique(schedule$Ecotype)) > 1
group <- if(ecotype) "Ecotype" else NULL
color <- if(ecotype) "Ecotype" else NULL
ggplot2::ggplot(data = schedule, ggplot2::aes_string(x = x, y = y, group = group, color = color)) +
ggplot2::geom_line() +
ggplot2::scale_y_continuous(y, labels = labels) +
ggplot2::expand_limits(x = 0, y = 0)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/plot-schedule.R |
#' Plot Stock-Recruitment Curve
#'
#' @inheritParams params
#' @return A ggplot2 object.
#' @family sr
#' @family plot
#' @export
#' @examples
#' ypr_plot_sr(ypr_population(Rk = 10))
#' ypr_plot_sr(ypr_population(Rk = 10, BH = 0L))
ypr_plot_sr <- function(population,
Ly = 0,
harvest = TRUE,
biomass = FALSE,
plot_values = TRUE) {
if (!requireNamespace("ggplot2")) err("Package 'ggplot2' must be installed.")
if (!requireNamespace("scales")) err("Package 'scales' must be installed.")
chk_number(Ly)
chk_gte(Ly)
chk_flag(biomass)
chk_flag(harvest)
chk_flag(plot_values)
schedule <- ypr_tabulate_schedule(population)
BH <- ypr_get_par(population, "BH")
Rmax <- ypr_get_par(population, "Rmax")
schedule <- as.list(schedule)
schedule$BH <- BH
schedule$Rmax <- Rmax
schedule <- c(schedule, sr(schedule, population))
data <- with(schedule, {
data <- data.frame(Eggs = seq(0, to = only(phi) * only(R0) * 2, length.out = 100))
fun <- if (BH == 1L) bh else ri
data$Recruits <- fun(data$Eggs, alpha, beta)
data
})
data2 <- ypr_tabulate_sr(
population,
Ly = Ly,
harvest = harvest,
biomass = biomass
)
data2$Type <- factor(data2$Type, levels = c("actual", "optimal", "unfished"))
data2 <- rbind(data2, data2, data2)
data2$Recruits[1:3] <- 0
data2$Eggs[7:9] <- 0
labels_x <- if (sum(data[["Eggs"]]) >= 1000) {
scales::comma
} else {
ggplot2::waiver()
}
labels_y <- if (sum(data[["Recruits"]]) >= 1000) {
scales::comma
} else {
ggplot2::waiver()
}
ggplot2::ggplot(
data = data,
ggplot2::aes_string(
x = "Eggs",
y = "Recruits"
)
) +
(
if (plot_values) {
ggplot2::geom_path(
data = data2,
ggplot2::aes_string(
group = "Type",
color = "Type"
),
linetype = "dotted"
)
} else {
NULL
}) +
ggplot2::geom_line() +
ggplot2::expand_limits(x = 0, y = 0) +
ggplot2::scale_x_continuous(labels = labels_x) +
ggplot2::scale_y_continuous(labels = labels_y) +
ggplot2::scale_color_manual(values = c("red", "blue", "black")) +
NULL
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/plot-sr.R |
#' Plot Yield by Capture
#'
#' Plots the 'Yield', 'Age', 'Length', 'Weight', 'Effort', or 'YPUE' by the
#' annual interval capture/exploitation probability.
#'
#' @inheritParams params
#' @inheritParams ypr_plot_schedule
#' @return A ggplot2 object.
#' @family populations
#' @family yield
#' @family plot
#' @examples
#' \dontrun{
#' ypr_plot_yield(ypr_populations(
#' Rk = c(2.5, 4.6),
#' Llo = c(0, 60)
#' ),
#' plot_values = FALSE
#' ) +
#' ggplot2::facet_wrap(~Llo) +
#' ggplot2::aes_string(group = "Rk", color = "Rk") +
#' ggplot2::scale_color_manual(values = c("black", "blue"))
#'
#' ypr_plot_yield(ypr_populations(Rk = c(2.5, 4.6), Llo = c(0, 60))) +
#' ggplot2::facet_grid(Rk ~ Llo)
#' }
#'
#' ypr_plot_yield(ypr_population())
#' @export
#'
ypr_plot_yield <- function(object, ...) {
UseMethod("ypr_plot_yield")
}
#' @describeIn ypr_plot_yield Plot Yield by Capture
#' @export
ypr_plot_yield.default <- function(object,
y = "Yield",
pi = seq(0, 1, length.out = 100),
Ly = 0,
harvest = TRUE,
biomass = FALSE,
u = harvest,
plot_values = TRUE,
...) {
chkor_vld(vld_is(object, "ypr_population"), vld_is(object, "ypr_ecotypes"))
if (!requireNamespace("ggplot2")) err("Package 'ggplot2' must be installed.")
if (!requireNamespace("scales")) err("Package 'scales' must be installed.")
chk_number(Ly)
chk_gte(Ly)
chk_flag(biomass)
chk_flag(harvest)
chk_string(y)
chk_subset(y, c("Yield", "Age", "Length", "Weight", "Effort", "YPUE"))
chk_flag(u)
data <- ypr_tabulate_yields(
object,
pi = pi,
Ly = Ly,
harvest = harvest,
biomass = biomass
)
data2 <- ypr_tabulate_yield(
object = object,
Ly = Ly,
harvest = harvest,
biomass = biomass
)
data$YPUE <- data$Yield / data$Effort
data2$YPUE <- data2$Yield / data2$Effort
data1 <- data2
data3 <- data2
data1[c("Yield", "Age", "Length", "Weight", "Effort", "YPUE")] <- 0
data3[c("pi", "u")] <- 0
data2 <- rbind(data1, data2, data3, stringsAsFactors = FALSE)
xlab <- if (u) "Exploitation Probability (%)" else "Capture Probability (%)"
x <- if (u) "u" else "pi"
ggplot2::ggplot(data = data, ggplot2::aes_string(x = x, y = y)) +
(
if (plot_values) {
list(
ggplot2::geom_path(
data = data2,
ggplot2::aes_string(
group = "Type",
color = "Type"
),
linetype = "dotted"
),
ggplot2::scale_color_manual(values = c("red", "blue"))
)
} else {
NULL
}) +
ggplot2::geom_line() +
ggplot2::expand_limits(x = 0) +
ggplot2::scale_x_continuous(xlab, labels = scales::percent) +
NULL
}
#' @describeIn ypr_plot_yield Plot Yield by Capture
#' @export
ypr_plot_yield.ypr_populations <- function(object,
y = "Yield",
pi = seq(0, 1, length.out = 100),
Ly = 0,
harvest = TRUE,
biomass = FALSE,
u = harvest,
plot_values = TRUE,
...) {
if (!requireNamespace("ggplot2")) err("Package 'ggplot2' must be installed.")
if (!requireNamespace("scales")) err("Package 'scales' must be installed.")
chk_string(y)
chk_subset(y, c("Yield", "Age", "Length", "Weight", "Effort", "YPUE"))
chk_flag(u)
data <- ypr_tabulate_yields(object,
pi = pi, Ly = Ly, harvest = harvest,
biomass = biomass
)
data2 <- ypr_tabulate_yield(
object = object,
Ly = Ly,
harvest = harvest,
biomass = biomass
)
data$YPUE <- data$Yield / data$Effort
data2$YPUE <- data2$Yield / data2$Effort
parameters <- setdiff(intersect(colnames(data), parameters()), "pi")
for (parameter in parameters) {
data[[parameter]] <- factor(
paste0(parameter, ": ", data[[parameter]]),
levels = unique(paste0(parameter, ": ", sort(data[[parameter]])))
)
data2[[parameter]] <- factor(
paste0(parameter, ": ", data2[[parameter]]),
levels = unique(paste0(parameter, ": ", sort(data2[[parameter]])))
)
}
data1 <- data2
data3 <- data2
data1[c("Yield", "Age", "Length", "Weight", "Effort", "YPUE")] <- 0
data3[c("pi", "u")] <- 0
data2 <- rbind(data1, data2, data3, stringsAsFactors = FALSE)
xlab <- if (u) "Exploitation Probability (%)" else "Capture Probability (%)"
x <- if (u) "u" else "pi"
ggplot2::ggplot(data = data, ggplot2::aes_string(x = x, y = y)) +
(
if (plot_values) {
list(
ggplot2::geom_path(
data = data2,
ggplot2::aes_string(
group = "Type",
color = "Type"
),
linetype = "dotted"
),
ggplot2::scale_color_manual(values = c("red", "blue"))
)
} else {
NULL
}) +
ggplot2::geom_line() +
ggplot2::expand_limits(x = 0) +
ggplot2::scale_x_continuous(xlab, labels = scales::percent) +
NULL
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/plot-yield.R |
#' Plot Population Schedule
#'
#' @param x The population to plot.
#' @param type A string specifying the plot type.
#' Possible values include 'b', 'p' and 'l'.
#' @param ... Additional arguments passed to [graphics::plot] function.
#' @return An invisible copy of the original object.
#' @seealso [graphics::plot]
#' @export
#' @examples
#' \dontrun{
#' plot(ypr_population())
#' }
plot.ypr_population <- function(x, type = "b", ...) {
check_population(x)
schedule <- ypr_tabulate_schedule(x)
with(schedule, {
plot(Length ~ Age,
xlim = c(0, max(Age)), ylim = c(0, max(Length)),
type = type, ...
)
plot(Weight ~ Length,
xlim = c(0, max(Length)), ylim = c(0, max(Weight)),
type = type, ...
)
plot(Fecundity ~ Length,
xlim = c(0, max(Length)), ylim = c(0, max(Fecundity)),
type = type, ...
)
plot(Spawning ~ Length,
xlim = c(0, max(Length)), ylim = c(0, 1),
type = type, ...
)
plot(Vulnerability ~ Length,
xlim = c(0, max(Length)), ylim = c(0, 1),
type = type, ...
)
plot(NaturalMortality ~ Length,
xlim = c(0, max(Length)), ylim = c(0, 1),
type = type, ...
)
plot(FishingMortality ~ Length,
xlim = c(0, max(Length)), ylim = c(0, 1),
type = type, ...
)
plot(Survivorship ~ Age,
xlim = c(0, max(Age)), ylim = c(0, 1),
type = type, ...
)
plot(FishedSurvivorship ~ Age,
xlim = c(0, max(Age)), ylim = c(0, 1),
type = type, ...
)
})
invisible(x)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/plot.R |
#' Population Parameters
#'
#' Generates an object of class `ypr_population`.
#'
#' @inheritParams params
#' @param pi The annual capture probability.
#' @return An object of class `ypr_population`.
#' @export
#' @examples
#' ypr_population(k = 0.1, Linf = 90)
ypr_population <- function(tmax = 20L, k = 0.15, Linf = 100, t0 = 0,
k2 = 0.15, Linf2 = 100, L2 = 1000,
Wb = 3, Ls = 50, Sp = 100, es = 1, Sm = 0,
fb = 1,
tR = 1L, BH = 1L, Rk = 3, n = 0.2, nL = 0.2,
Ln = 1000,
Lv = 50, Vp = 100,
Llo = 0, Lup = 1000, Nc = 0,
pi = 0.2, rho = 0, Hm = 0,
Rmax = 1, Wa = 0.01, fa = 1,
q = 0.1,
RPR = 1) {
population <- as.list(environment())
class(population) <- c("ypr_population")
check_population(population)
population
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/population.R |
#' Populations
#'
#' @inheritParams params
#' @inheritParams ypr_update
#'
#' @return A list of [ypr_population()] objects
#' @family populations
#' @export
#' @examples
#' ypr_populations(Rk = c(2.5, 4.6), Hm = c(0.2, 0.05))
ypr_populations <- function(..., expand = TRUE, names = NULL) {
chk_flag(expand)
chk_null_or(names, vld = vld_character)
population <- ypr_population()
parameters <- list(...)
if (!length(parameters)) {
populations <- list(population)
class(populations) <- "ypr_populations"
return(populations)
}
chk_named(parameters, x_name = "`...`")
chk_subset(names(parameters), parameters(), x_name = "`names(...)`")
chk_unique(names(parameters), x_name = "`names(...)`")
if (expand) {
parameters <- lapply(parameters, function(x) sort(unique(x)))
parameters <- expand.grid(parameters)
} else {
lengths <- vapply(parameters, length, FUN.VALUE = 1L)
lengths <- unique(lengths)
lengths <- lengths[lengths != 1]
if (length(lengths) > 1) {
err(
"Non-scalar parameter values must all be the same length (not ",
cc(sort(lengths), conj = " and ", brac = ""), ")"
)
}
parameters <- as.data.frame(parameters)
}
populations <- list()
for (i in seq_len(nrow(parameters))) {
population <- as.list(parameters[i, , drop = FALSE])
attr(population, "out.attrs") <- NULL
populations[[i]] <- do.call("ypr_population", population)
}
class(populations) <- "ypr_populations"
if(!is.null(names)) {
chk_not_any_na(names)
chk_unique(names)
if (!chk::vld_equal(length(populations), length(names))) {
chk::abort_chk(paste0("Number of populations and names do not match. ",
length(populations), " != ", length(names)))
}
} else {
names <- ypr_names(populations)
}
names(populations) <- names
populations
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/populations.R |
#' @export
print.ypr_population <- function(x, ...) {
suppressWarnings(check_population(x))
nchar <- nchar(names(x))
nchar <- max(nchar) - nchar + 1
space <- vapply(
nchar,
function(x) paste0(rep(" ", times = x), collapse = ""), ""
)
x <- paste0(names(x), ":", space, x, collapse = "\n")
x <- paste0(x, "\n", collapse = "")
cat(x)
invisible(x)
}
#' @export
print.ypr_populations <- function(x, ...) {
suppressWarnings(check_populations(x))
if (length(x) == 1) {
return(print(x[[1]]))
}
x$FUN <- c
x <- do.call("mapply", x)
x <- as.data.frame(x)
x <- lapply(x, function(x) if (length(unique(x)) == 1) x[1] else x)
nchar <- nchar(names(x))
nchar <- max(nchar) - nchar + 1
space <- vapply(
nchar,
function(x) paste0(rep(" ", times = x), collapse = ""), ""
)
names <- names(x)
x <- lapply(x, paste0, collapse = ", ")
x <- paste0(names, ":", space, x, collapse = "\n")
x <- paste0(x, "\n", collapse = "")
cat(x)
invisible(x)
}
### Add ecotype and proportion and weight formatted as other things
#' @export
print.ypr_ecotypes <- function(x, ...) {
suppressWarnings(check_ecotypes(x))
if (length(x) == 1) { ### should print with name and weight so not confused
return(print(x[[1]]))
}
eco_names <- attr(x, "names")
x$FUN <- c
x <- do.call("mapply", x)
x <- as.data.frame(x)
x <- lapply(x, function(x) if (length(unique(x)) == 1) x[1] else x)
nchar <- nchar(names(x))
nchar <- max(nchar) - nchar + 1
space <- vapply(
nchar,
function(x) paste0(rep(" ", times = x), collapse = ""), ""
)
names <- names(x)
x <- lapply(x, paste0, collapse = ", ")
x <- paste0(names, ":", space, x, collapse = "\n")
x <- paste0(x, "\n", collapse = "")
eco_names <- paste0(eco_names, collapse = ", ")
eco_names <- paste0("Ecotype", ": ", eco_names, collapse = "\n")
eco_names <- paste0(eco_names, "\n", collapse = "")
cat(x, eco_names, sep = "")
invisible(x)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/print.R |
get_prop <- function(x) {
x <- ypr_get_par(x, "RPR")
x / sum(x)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/prop.R |
integer_parameters <- function() {
.parameters$Parameter[.parameters$Integer == 1]
}
parameters <- function() {
.parameters$Parameter
}
ecoall_parameters <- function() {
.parameters$Parameter[.parameters$EcoAll == 1]
}
lines_population <- function(population) {
population <- unclass(population)
population <- lapply(population, as.character)
population <- mapply(paste, names(population), population, sep = " = ")
population <- unlist(population)
population[integer_parameters()] <- paste0(
population[integer_parameters()],
"L"
)
population <- paste(population, collapse = ", ")
paste0("ypr_population(", population, ")", collapse = "")
}
#' Report
#'
#' Creates an Rmd file that can be used to generate a report.
#'
#' @inheritParams params
#' @return An invisible character vector of the contents of the file.
#' @family tabulate
#' @export
#' @examples
#' \dontrun{
#' ypr_report(ypr_population(), file = tempfile(), ask = FALSE)
#' }
ypr_report <- function(population,
Ly = 0,
harvest = TRUE,
biomass = FALSE,
title = "Population Report",
description = "",
date = Sys.Date(),
file = "report",
view = FALSE,
ask = TRUE) {
check_population(population)
chk_number(Ly)
chk_gte(Ly)
chk_flag(biomass)
chk_flag(harvest)
chk_string(title)
chk_string(description)
chk_date(date)
chk_string(file)
chk_flag(view)
chk_flag(ask)
if (!requireNamespace("usethis")) err("Package 'usethis' must be installed.")
if (grepl("[.](R|r)md$", file)) {
wrn("File extension on argument `file` is deprecated (please remove).")
file <- .sub(file, "[.](R|r)md$", "")
}
file <- p0(file, ".Rmd")
if (!ask_file(file, ask)) {
return(invisible(character(0)))
}
data <- list(
title = title,
date = date,
description = description,
population = lines_population(population),
Ly = Ly,
harvest = harvest,
biomass = biomass
)
usethis::use_template(
template = "template-report.Rmd",
save_as = file,
data = data,
package = "ypr"
)
if (view) {
if (!requireNamespace("rmarkdown")) {
err("Package 'rmarkdown' is required to render the report to html.")
}
file_html <- p0(.sub(file, "[.](R|r)md$", ""), ".html")
if (!ask_file(file_html, ask)) {
return(invisible(readLines(file)))
}
rmarkdown::render(file, output_format = "html_document", quiet = TRUE)
if (!requireNamespace("rstudioapi")) {
err("Package 'rstudioapi' is required to view the html report.")
}
rstudioapi::viewer(file_html)
}
invisible(readLines(file))
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/report.R |
sr <- function(schedule, object) {
schedule <- as.list(schedule)
schedule$BH <- ypr_get_par(object, "BH")
schedule$Rk <- ypr_get_par(object, "Rk")
schedule$Rmax <- ypr_get_par(object, "Rmax")
R0 <- 1
sr <- with(schedule, {
phi <- sum(Fecundity * Spawning / 2 * Survivorship)
phiF <- sum(Fecundity * Spawning / 2 * FishedSurvivorship)
if(Rk <= 1) {
Rk <- Rk * phi
}
alpha <- Rk / phi
if (BH) {
beta <- (alpha * phi - 1) / (R0 * phi)
kappa <- alpha / beta
R0F <- (alpha * phiF - 1) / (beta * phiF)
} else {
beta <- log(alpha * phi) / (R0 * phi)
kappa <- alpha / (beta * exp(1))
R0F <- log(alpha * phiF) / (beta * phiF)
}
beta <- beta * kappa / Rmax
R0 <- R0 / kappa * Rmax
R0F <- R0F / kappa * Rmax
S0 <- sum(Spawning * Survivorship * R0)
S0F <- sum(Spawning * FishedSurvivorship * R0F)
sr <- data.frame(
alpha = alpha, beta = beta,
Rk = Rk,
phi = phi, phiF = phiF,
R0 = R0, R0F = R0F,
S0 = S0, S0F = S0F
)
})
as_tibble(sr)
}
#' Stock-Recruitment Parameters
#'
#' Returns a single rowed data frame of the SR parameters:
#' \describe{
#' \item{alpha}{Survival from egg to age tR at low density}
#' \item{beta}{Density-dependence}
#' \item{Rk}{Lifetime spawners per spawner at low density}
#' \item{phi}{Lifetime eggs deposited per recruit at unfished equilibrium}
#' \item{phiF}{Lifetime eggs deposited per recruit at the fished equilibrium}
#' \item{R0}{Age tR recruits at the unfished equilibrium}
#' \item{R0F}{Age tR recruits at the fished equilibrium}
#' \item{S0}{Spawners at the unfished equilibrium}
#' \item{S0F}{Spawners at the fished equilibrium}
#' }
#'
#' @inheritParams params
#' @return A data frame of the SR parameters.
#' @family sr
#' @export
#' @examples
#' ypr_sr(ypr_population()) # Beverton-Holt
#' ypr_sr(ypr_population(BH = 0L)) # Ricker
ypr_sr <- function(object) {
if(!inherits(object, "ypr"))
schedule <- ypr_tabulate_schedule(object)
sr <- sr(schedule, object)
sr$R0F <- max(sr$R0F, 0)
sr$S0F <- max(sr$S0F, 0)
sr
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/sr.R |
#' Tabulate Biomass (and Eggs)
#'
#' Produces a data frame of the 'Weight' and 'Fecundity' and the number of
#' 'Survivors' and 'Spawners' and the total 'Biomass' and 'Eggs' by 'Age' class.
#'
#' @inheritParams params
#' @return A data frame
#' @family tabulate
#' @family biomass
#' @export
#' @examples
#' ypr_tabulate_biomass(ypr_population())
ypr_tabulate_biomass <- function(population) {
schedule <- ypr_tabulate_schedule(population)
fish <- ypr_tabulate_fish(population)
schedule <- schedule[c("Age", "Length", "Weight", "Fecundity")]
fish <- fish[c("Survivors", "Spawners")]
biomass <- cbind(schedule, fish)
biomass$Biomass <- biomass$Weight * biomass$Survivors
biomass$Eggs <- (biomass$Fecundity * biomass$Spawners) / 2
as_tibble(biomass)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-biomass.R |
sum_fish_table <- function(table, binwidth) {
breaks <- seq(0, max(table[[1]] + binwidth), by = binwidth)
table[[1]] <- cut(table[[1]], breaks = breaks)
table[[1]] <- as.integer(table[[1]]) * binwidth
table <- split(table, table[[1]])
table <- lapply(table, sum_fish)
table <- do.call("rbind", table)
row.names(table) <- NULL
table
}
#' Tabulate Fish Numbers
#'
#' Produces a data frame of the number of fish in the 'Survivors', 'Spawners',
#' 'Caught', 'Harvested', 'Released' and 'HandlingMortalities' categories by
#' 'Length', 'Age' or 'Weight' class and 'Ecotype' (NA if not applicable)
#'
#' @inheritParams params
#' @inheritParams ypr_plot_schedule
#' @return A data frame
#' @family tabulate
#' @family fish
#' @export
#' @examples
#' ypr_tabulate_fish(ypr_population())
ypr_tabulate_fish <- function(population, x = "Age", binwidth = 1L) {
chk_string(x)
chk_subset(x, c("Age", "Length", "Weight"))
chk_whole_number(binwidth)
chk_range(binwidth, c(1L, 1000L))
table <- ypr_tabulate_schedule(population)
table <- as.data.frame(table)
R0F <- sr(table, population)$R0F
R0F <- max(0, R0F)
pi <- ypr_get_par(population)
Hm <- ypr_get_par(population, "Hm")
table$Survivors <- table$FishedSurvivorship * R0F
table$Spawners <- table$Survivors * table$Spawning
table$Caught <- table$Survivors * table$Vulnerability * pi
table$Harvested <- table$Caught * table$Retention
table$Released <- table$Caught * (1 - table$Retention)
table$HandlingMortalities <- table$Released * Hm
if(!"Ecotype" %in% colnames(table))
table$Ecotype <- 1
table <- table[c(
x, "Survivors", "Spawners", "Caught", "Harvested",
"Released", "HandlingMortalities", "Ecotype"
)]
table <- split(table, table$Ecotype)
table <- lapply(table, sum_fish_table, binwidth)
table <- do.call("rbind", table)
row.names(table) <- NULL
if(length(unique(table$Ecotype)) == 1L)
table$Ecotype <- NA_character_
as_tibble(table)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-fish.R |
#' Tabulate Population Parameters
#'
#' @inheritParams params
#' @return A table of population parameters
#' @family tabulate
#' @family parameters
#' @export
#' @examples
#' ypr_tabulate_parameters(ypr_population())
ypr_tabulate_parameters <- function(population) {
check_population(population)
parameters <- data.frame(
Parameter = names(population),
Value = unname(unlist(population)),
stringsAsFactors = FALSE
)
pattern <- "(\\\\item[{])([^}]+)([}])([{])([^}]+)([}])"
rd <- tools::Rd_db("ypr")$ypr_population.Rd
rd <- paste0(as.character(rd), collapse = "")
gp <- gregexpr(pattern, rd)
rd <- regmatches(rd, gp)[[1]]
data <- data.frame(
Parameter = .sub(rd, pattern, "\\2"),
Description = .sub(rd, pattern, "\\5"),
stringsAsFactors = FALSE
)
parameters <- merge(parameters, data, by = "Parameter", sort = FALSE)
as_tibble(parameters)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-parameters.R |
#' Life-History Schedule
#'
#' Generates the life-history schedule by age for a population.
#'
#' @keywords internal
#' @description
#' `r lifecycle::badge('deprecated')`
#'
#' DEPRECATED: Replace `ypr_schedule()` with `ypr_tabulate_schedule()`
#'
#' @export
ypr_schedule <- function(population) {
lifecycle::deprecate_warn(
when = "0.4.0",
what = "ypr_schedule()",
with = "ypr_tabulate_schedule()"
)
ypr_tabulate_schedule(population)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-schedule-deprec.R |
#' Life-History Schedule
#'
#' Generates the life-history schedule by age for a population.
#'
#' @inheritParams params
#' @return A tibble of the life-history schedule by age.
#' @family tabulate
#' @family schedule
#' @export
#' @examples
#' ypr_tabulate_schedule(ypr_population())
#' ypr_tabulate_schedule(ypr_ecotypes(Linf = c(10, 20)))
ypr_tabulate_schedule <- function(object, ...) {
UseMethod("ypr_tabulate_schedule")
}
#' @describeIn ypr_tabulate_schedule Tabulate Schedule
#' @export
ypr_tabulate_schedule.ypr_population <- function(object, ...) {
check_population(object)
chk::chk_unused(...)
schedule <- impl_tabulate_schedule(object)
as_tibble(schedule)
}
#' @describeIn ypr_tabulate_schedule Tabulate Schedule
#' @export
ypr_tabulate_schedule.ypr_ecotypes <- function(object, ...) {
check_ecotypes(object)
chk::chk_unused(...)
schedules <- lapply(object, impl_tabulate_schedule)
proportions <- get_prop(object)
eco_names <- names(object)
schedules <- mapply(function(schedules, proportions, eco_names) {
schedules[["Ecotype"]] <- eco_names
schedules[["Proportion"]] <- proportions
as_tibble(schedules)
}, schedules, proportions, eco_names, SIMPLIFY = FALSE)
schedule <- do.call("rbind", schedules)
schedule$Survivorship <- schedule$Survivorship * schedule$Proportion
schedule$FishedSurvivorship <- schedule$FishedSurvivorship * schedule$Proportion
schedule
}
impl_tabulate_schedule <- function(population) {
schedule <- with(population, {
t <- tR:tmax
nt <- length(t)
L <- length_at_age(population, t)
W <- Wa * L^Wb
E <- fa * W^fb
if (Ls < 0) Ls <- length_at_age(population, -Ls)
S <- exp(log(L / 1000) * Sp) / (exp(log(Ls / 1000) * Sp) +
exp(log(L / 1000) * Sp)) * es
N <- rep(n, nt)
if (Ln < 0) Ln <- length_at_age(population, -Ln)
N[L >= Ln] <- nL
N <- 1 - ((1 - N) * (1 - S * Sm))
if (Lv < 0) Lv <- length_at_age(population, -Lv)
V <- exp(log(L / 1000) * Vp) / (exp(log(Lv / 1000) * Vp) +
exp(log(L / 1000) * Vp))
C <- pi * V
R <- rep(1 - rho, nt)
R[L < Llo | L > Lup] <- Nc
U <- C * R + C * (1 - R) * Hm
TotalMortality <- 1 - (1 - N) * (1 - U)
Survivorship <- cumprod(1 - N)
Survivorship <- c(1, Survivorship[-nt])
FishedSurvivorship <- cumprod(1 - TotalMortality)
FishedSurvivorship <- c(1, FishedSurvivorship[-nt])
data.frame(
Age = t, Length = L, Weight = W, Fecundity = E, Spawning = S,
NaturalMortality = N, Vulnerability = V, Retention = R,
FishingMortality = U, Survivorship = Survivorship,
FishedSurvivorship = FishedSurvivorship
)
})
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-schedule.R |
#' Tabulate Stock-Recruitment Parameters
#'
#' @inheritParams params
#' @return A data.frame of stock-recruitment parameters.
#' @family tabulate
#' @family populations
#' @family sr
#' @export
#' @examples
#' ypr_tabulate_sr(ypr_population()) # Beverton-Holt
#' ypr_tabulate_sr(ypr_population(BH = 0L)) # Ricker
#' ypr_tabulate_sr(ypr_populations(Rk = c(2.5, 4.6)))
ypr_tabulate_sr <- function(object, ...) {
UseMethod("ypr_tabulate_sr")
}
#' @describeIn ypr_tabulate_sr Tabulate Stock-Recruitment Parameters
#' @export
ypr_tabulate_sr.default <- function(object, Ly = 0, harvest = TRUE,
biomass = FALSE, all = FALSE, ...) {
chkor_vld(vld_is(object, "ypr_population"), vld_is(object, "ypr_ecotypes"))
sr <- ypr_sr(object)
sr$BH <- ypr_get_par(object, "BH")
pi <- ypr_get_par(object)
object_pi <- ypr_optimise(
object,
Ly = Ly,
harvest = harvest,
biomass = biomass
)
object <- set_par(object, "pi", object_pi)
optimal_sr <- ypr_sr(object)
table <- with(sr, {
data <- data.frame(
Type = c("unfished", "actual", "optimal"),
pi = c(0, pi, object_pi),
u = ypr_exploitation(object, c(0, pi, object_pi)),
Eggs = c(phi * R0, phiF * R0F, optimal_sr$phiF * optimal_sr$R0F),
stringsAsFactors = FALSE
)
fun <- if (only(BH) == 1L) bh else ri
data$Recruits <- fun(data$Eggs, alpha, beta)
data$Spawners <- c(S0, S0F, optimal_sr$S0F)
data$Fecundity <- data$Eggs / data$Spawners * 2
data
})
if (all) table <- add_parameters(table, object)
as_tibble(table)
}
#' @describeIn ypr_tabulate_sr Tabulate Stock-Recruitment Parameters
#' @export
ypr_tabulate_sr.ypr_populations <- function(object,
Ly = 0,
harvest = TRUE,
biomass = FALSE,
all = FALSE, ...) {
chk_flag(all)
sr <- lapply(object, ypr_tabulate_sr,
Ly = Ly, harvest = harvest,
biomass = biomass, all = TRUE, ...
)
sr <- do.call("rbind", sr)
if (!all) sr <- drop_constant_parameters(sr)
as_tibble(sr)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-sr.R |
#' Tabulate Yield
#'
#' @inheritParams params
#'
#' @return A data frame.
#' @family tabulate
#' @family populations
#' @family yield
#' @export
#' @examples
#' ypr_tabulate_yield(ypr_population())
#' ypr_tabulate_yield(ypr_populations(Rk = c(3, 5)))
ypr_tabulate_yield <- function(object, ...) {
UseMethod("ypr_tabulate_yield")
}
#' @describeIn ypr_tabulate_yield Tabulate Yield
#' @export
ypr_tabulate_yield.default <- function(object,
Ly = 0,
harvest = TRUE,
biomass = FALSE,
type = "both",
all = FALSE,
...) {
chkor_vld(vld_is(object, "ypr_population"), vld_is(object, "ypr_ecotypes"))
chk_string(type)
chk_subset(type, c("both", "actual", "optimal"))
actual_pi <- ypr_get_par(object)
actual_yield <- ypr_yield(object,
Ly = Ly, harvest = harvest,
biomass = biomass
)
if (type == "actual") {
yield <- data.frame(
Type = "actual",
pi = actual_pi,
u = ypr_exploitation(object, actual_pi),
Yield = actual_yield,
Age = attr(actual_yield, "Age"),
Length = attr(actual_yield, "Length"),
Weight = attr(actual_yield, "Weight"),
Effort = attr(actual_yield, "Effort"),
stringsAsFactors = FALSE
)
} else {
optimal_pi <- ypr_optimize(object,
Ly = Ly, harvest = harvest,
biomass = biomass
)
object <- ypr_update(object, pi = optimal_pi)
optimal_yield <- ypr_yield(object,
Ly = Ly, harvest = harvest,
biomass = biomass
)
yield <- data.frame(
Type = c("actual", "optimal"),
pi = c(actual_pi, optimal_pi),
u = ypr_exploitation(object, c(actual_pi, optimal_pi)),
Yield = c(actual_yield, optimal_yield),
Age = c(attr(actual_yield, "Age"), attr(optimal_yield, "Age")),
Length = c(attr(actual_yield, "Length"), attr(optimal_yield, "Length")),
Weight = c(attr(actual_yield, "Weight"), attr(optimal_yield, "Weight")),
Effort = c(attr(actual_yield, "Effort"), attr(optimal_yield, "Effort")),
stringsAsFactors = FALSE
)
if (type == "optimal") {
yield <- yield[yield$Type == "optimal", ]
}
}
if (all) yield <- add_parameters(yield, object)
as_tibble(yield)
}
#' @describeIn ypr_tabulate_yield Tabulate Yield
#' @export
ypr_tabulate_yield.ypr_populations <- function(object,
Ly = 0,
harvest = TRUE,
biomass = FALSE,
type = "both",
all = FALSE,
...) {
chk_flag(all)
yield <- lapply(object, ypr_tabulate_yield,
Ly = Ly, harvest = harvest,
biomass = biomass, type = type, all = TRUE, ...
)
yield <- do.call("rbind", yield)
if (!all) yield <- drop_constant_parameters(yield)
as_tibble(yield)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-yield.R |
#' Tabulate Yields
#'
#' @inheritParams params
#'
#' @return A data frame.
#' @family tabulate
#' @family populations
#' @export
#' @examples
#' ypr_tabulate_yields(ypr_population())
#' ypr_tabulate_yields(
#' ypr_populations(
#' Rk = c(3, 5)
#' ),
#' pi = seq(0, 1, length.out = 10)
#' )
#' ypr_tabulate_yields(ypr_ecotypes(Linf = c(10, 20)))
ypr_tabulate_yields <- function(object, ...) {
UseMethod("ypr_tabulate_yields")
}
#' @describeIn ypr_tabulate_yields Tabulate Yields
#' @export
ypr_tabulate_yields.default <- function(object,
pi = seq(0, 1, length.out = 100),
Ly = 0,
harvest = TRUE,
biomass = FALSE,
all = FALSE,
...) {
chkor_vld(vld_is(object, "ypr_population"), vld_is(object, "ypr_ecotypes"))
chk_number(Ly)
chk_numeric(pi)
chk_not_empty(pi)
chk_not_any_na(pi)
chk_range(pi, c(0, 1))
yields <- lapply(pi, tabulate_yield_pi,
object = object, Ly = Ly,
harvest = harvest, biomass = biomass, all = all
)
yields <- do.call(rbind, yields)
as_tibble(yields)
}
#' @describeIn ypr_tabulate_yields Tabulate Yields
#' @export
ypr_tabulate_yields.ypr_populations <- function(object,
pi = seq(0, 1, length.out = 100),
Ly = 0,
harvest = TRUE,
biomass = FALSE,
all = FALSE,
...) {
chk_flag(all)
yield <- lapply(object, ypr_tabulate_yields,
pi = pi, Ly = Ly, harvest = harvest,
biomass = biomass, all = TRUE, ...
)
yield <- do.call("rbind", yield)
if (!all) yield <- drop_constant_parameters(yield)
as_tibble(yield)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/tabulate-yields.R |
save_csv <- function(x) {
path <- tempfile(fileext = ".csv")
readr::write_csv(x, path)
path
}
expect_snapshot_data <- function(x, name) {
testthat::skip_on_ci()
testthat::skip_on_os("windows")
path <- save_csv(x)
testthat::expect_snapshot_file(path, paste0(name, ".csv"))
}
save_png <- function(x, width = 400, height = 400) {
path <- tempfile(fileext = ".png")
grDevices::png(path, width = width, height = height)
on.exit(grDevices::dev.off())
print(x)
path
}
expect_snapshot_plot <- function(x, name) {
testthat::skip_on_ci()
testthat::skip_on_os("windows")
path <- save_png(x)
testthat::expect_snapshot_file(path, paste0(name, ".png"))
}
## Inspiration from usethis package https://usethis.r-lib.org/index.html
## If session temp directory appears to be, or be within, a project, there
## will be large scale, spurious test failures.
## The IDE sometimes leaves .Rproj files behind in session temp directory or
## one of its parents.
## Delete such files manually.
create_local_package <- function(dir = tempfile(pattern = "testpkg"),
env = parent.frame()) {
old_project <- proj_get_() # this could be `NULL`, i.e. no active project
old_wd <- getwd() # not necessarily same as `old_project`
withr::defer(
{
unlink(dir, recursive = TRUE)
},
envir = env
)
withr::with_options(
list(usethis.quiet = TRUE),
usethis::create_package(
dir,
rstudio = FALSE,
open = FALSE,
check_name = FALSE
)
)
withr::defer(usethis::proj_set(old_project, force = TRUE), envir = env)
usethis::proj_set(dir)
withr::defer(
{
setwd(old_wd)
},
envir = env
)
setwd(usethis::proj_get())
invisible(usethis::proj_get())
}
proj <- new.env(parent = emptyenv())
proj_get_ <- function() proj$cur
proj_set_ <- function(path) {
old <- proj$cur
proj$cur <- path
invisible(old)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/test-helpers.R |
#' @export
unique.ypr_populations <- function(x, ...) {
x <- as.data.frame(x)
x <- unique(x)
as_ypr_populations(x)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/unique.R |
#' Update a Population Object
#'
#' `r lifecycle::badge('deprecated')` for [`ypr_update()`].
#'
#' @param population A ypr_population object.
#' @param ... One or more parameter values from `ypr_population()`.
#'
#' @export
ypr_population_update <- function(population, ...) {
lifecycle::deprecate_soft(" 0.5.3", "ypr_population_update()", "ypr_update()")
check_population(population)
ypr_update(population, ...)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/update-deprec.R |
#' Update a YPR Object
#' Currently just works with scalar parameters for populations and ecotypes.
#'
#' @param x A population, populations or ecotypes object to update.
#' @param ... One or more parameter values from `ypr_population()`.
#' @export
ypr_update <- function(x, ...) {
UseMethod("ypr_update")
}
#' @export
update.ypr_population <- function(object, ...) {
ypr_update(object, ...)
}
#' @export
update.ypr_populations <- function(object, ...) {
ypr_update(object, ...)
}
#' @export
update.ypr_ecotypes <- function(object, ...) {
ypr_update(object, ...)
}
#' @describeIn ypr_update Update Population Parameters
#'
#' @export
#' @examples
#' ypr_update(ypr_population(), Rk = 2.5)
ypr_update.ypr_population <- function(x, ...) {
parameters <- list(...)
x[names(parameters)] <- unname(parameters)
check_population(x)
x
}
#' @describeIn ypr_update Update Populations Parameters
#'
#' @export
#' @examples
#' ypr_update(ypr_populations(Rk = c(2.5, 4)), Rk = 2.5)
ypr_update.ypr_populations <- function(x, ...) {
x <- lapply(x, ypr_update, ...)
class(x) <- "ypr_populations"
names(x) <- ypr_names(x)
x
}
#' @describeIn ypr_update Update Populations Parameters
#'
#' @export
#' @examples
#' ypr_update(ypr_ecotypes(Linf = c(2.5, 4)), k = 1.5)
ypr_update.ypr_ecotypes <- function(x, ...) {
x <- lapply(x, ypr_update, ...)
class(x) <- "ypr_ecotypes"
names(x) <- ypr_names(x)
check_ecotypes(x)
x
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/update.R |
#' Length At Age
#'
#' @inheritParams params
#' @return A double vector of the lengths.
#' @family calculate
#' @export
#' @examples
#' ypr_length_at_age(ypr_population(), seq(0, 5, by = 0.5))
ypr_length_at_age <- function(population, age) {
check_population(population)
chk_numeric(age)
chk_vector(age)
chk_gte(age)
length_at_age(population, age)
}
#' Age At Length
#'
#' @inheritParams params
#' @return A double vector of the lengths.
#' @family calculate
#' @export
#' @examples
#' ypr_age_at_length(ypr_population(), seq(0, 100, by = 10))
ypr_age_at_length <- function(population, length) {
check_population(population)
chk_numeric(length)
chk_vector(length)
chk_gte(length)
age_at_length(population, length)
}
inst2inter <- function(x) {
1 - exp(-x)
}
inter2inst <- function(x) {
-log(1 - x)
}
length_at_age <- function(population, age) {
with(population, {
if (L2 < 0) L2 <- Linf * (1 - exp(-k * (-L2 - t0)))
L <- Linf * (1 - exp(-k * (age - t0)))
t2 <- -log(1 - min(L2 / Linf, 1)) / k + t0
L[age > t2] <- L2 + (Linf2 - L2) * (1 - exp(-k2 * (age[age > t2] - t2)))
L[L < 0] <- 0
L
})
}
age_at_length <- function(population, length) {
with(population, {
if (L2 < 0) L2 <- Linf * (1 - exp(-k * (-L2 - t0)))
t <- -log(1 - pmin(length / Linf, 1)) / k + t0
t2 <- -log(1 - pmin(L2 / Linf, 1)) / k + t0
t[t > t2] <- -log(1 - pmin((length[t > t2] - L2) /
(Linf2 - L2), 1)) /
k2 + t2
t
})
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/utils.R |
yield <- function(schedule,
object,
Ly = 0,
harvest = TRUE,
biomass = FALSE) {
schedule <- as.list(schedule)
schedule$pi <- ypr_get_par(object)
schedule$q <- ypr_get_par(object, "q")
schedule <- c(schedule, sr(schedule, object))
yield <- with(schedule, {
FishedSurvivorship[Length < Ly] <- 0
yield <- R0F * FishedSurvivorship * Vulnerability * pi
if (harvest) yield <- yield * Retention
age <- weighted.mean(Age, yield)
length <- weighted.mean(Length, yield)
weight <- weighted.mean(Weight, yield)
effort <- log(1 - pi) / log(1 - q)
if (biomass) {
yield <- yield * Weight / 1000
}
yield <- sum(yield)
if (yield <= 0) {
age <- NA
length <- NA
weight <- NA
}
attr(yield, "Age") <- age
attr(yield, "Length") <- length
attr(yield, "Weight") <- weight
attr(yield, "Effort") <- effort
yield
})
yield
}
yield_pi <- function(pi, object, Ly, harvest, biomass) {
object <- set_par(object, "pi", pi)
schedule <- ypr_tabulate_schedule(object)
yield(schedule, object, Ly = Ly, harvest = harvest, biomass = biomass)
}
#' Yield
#'
#' Calculates the yield for a population.
#'
#' By default, with `Rmax = 1` the number of individuals is the proportion of
#' the recruits at the carrying capacity. If the yield is given in terms of the
#' biomass (kg) then the scaling also depends on the value of `Wa` (g).
#'
#' @inheritParams params
#' @return The yield as number of fish or biomass.
#' @family yield
#' @family calculate
#' @export
#' @examples
#' ypr_yield(ypr_population())
#' ypr_yield(ypr_ecotypes(Linf = c(100, 200)))
ypr_yield <- function(object,
Ly = 0,
harvest = TRUE,
biomass = FALSE,
...) {
chk_number(Ly)
chk_gte(Ly)
chk_flag(biomass)
chk_flag(harvest)
schedule <- ypr_tabulate_schedule(object)
yield <- yield(
schedule,
object,
Ly = Ly,
harvest = harvest,
biomass = biomass
)
sanitize(yield)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/yield.R |
#' Yields
#'
#' Calculates the yield(s) for a population based on one or more capture rates.
#'
#' @inheritParams params
#' @return A numeric vector of the yields.
#' @family yield
#' @family calculate
#' @export
#' @examples
#' pi <- seq(0, 1, length.out = 30)
#' plot(pi, ypr_yields(ypr_population(), pi), type = "l")
ypr_yields <- function(object,
pi = seq(0, 1, length.out = 100),
Ly = 0,
harvest = TRUE,
biomass = FALSE) {
chk_number(Ly)
chk_gte(Ly)
chk_flag(biomass)
chk_flag(harvest)
chk_numeric(pi)
chk_not_empty(pi)
chk_not_any_na(pi)
chk_range(pi, c(0, 1))
yields <- vapply(pi,
FUN = yield_pi, FUN.VALUE = 1,
object = object, Ly = Ly, harvest = harvest,
biomass = biomass
)
sanitize(yields)
}
| /scratch/gouwar.j/cran-all/cranData/ypr/R/yields.R |
#' @keywords internal
"_PACKAGE"
## usethis namespace: start
## usethis namespace: end
NULL
| /scratch/gouwar.j/cran-all/cranData/ypr/R/ypr-package.R |
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 4
)
## -----------------------------------------------------------------------------
library(ypr)
library(ggplot2) # for plotting
ecotypes <- ypr_ecotypes(
Linf2 = 200,
L2 = c(100, 50),
Ls = c(50, 75),
pi = 0.05,
names = c("small", "large"),
RPR = c(0.8, 0.2))
ypr_plot_schedule(ecotypes) + scale_color_manual(values = c("black", "blue"))
ypr_plot_schedule(ecotypes, x = "Age", y = "Spawning") + scale_color_manual(values = c("black", "blue"))
## ---- fig.width=6, fig.height=4-----------------------------------------------
ypr_plot_fish(ecotypes, color = "white") + scale_fill_manual(values = c("black", "blue"))
ypr_plot_fish(ecotypes, x = "Length", y = "Caught", color = "white", binwidth = 15) + scale_fill_manual(values = c("black", "blue"))
## ---- fig.width=6, fig.height=4-----------------------------------------------
ypr_plot_sr(ecotypes, biomass = TRUE)
ypr_tabulate_sr(ecotypes, biomass = TRUE)
## ---- fig.width=6, fig.height=4-----------------------------------------------
ypr_tabulate_yield(ecotypes, biomass = TRUE)
ypr_plot_yield(ecotypes, biomass = TRUE)
| /scratch/gouwar.j/cran-all/cranData/ypr/inst/doc/ecotypes.R |
---
title: "Ecotypes"
author: "Joe Thorley and Ayla Pearson"
date: "`r Sys.Date()`"
bibliography: bibliography.bib
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Ecotypes}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 4
)
```
## Ecotypes
In the `ypr` package a population is considered to be group of interbreeding fish that are indistinguishable to anglers.
Ecotypes are groups of individuals with a population that have different life-history strategies.
Consequently, ecotypes must share key fishery (`pi`, `Llo`, `Lup`, `Nc`, `rho`, `Hm` and `q`) and stock recruitment (`BH`, `RK`, `tR` and `Rmax`) parameters.y
To use a yield-per-recruit approach it is also necessary to assume that the relative proportion of recruits (`RPR`) adopting each life-history strategy is independent of the size and composition of the parental stock.
## Two Ecotypes
Consider a population with a smaller ecotype and a second larger ecotype that delays maturation in order to achieve sufficient size to switch to piscivory which allows it to grow much larger.
```{r}
library(ypr)
library(ggplot2) # for plotting
ecotypes <- ypr_ecotypes(
Linf2 = 200,
L2 = c(100, 50),
Ls = c(50, 75),
pi = 0.05,
names = c("small", "large"),
RPR = c(0.8, 0.2))
ypr_plot_schedule(ecotypes) + scale_color_manual(values = c("black", "blue"))
ypr_plot_schedule(ecotypes, x = "Age", y = "Spawning") + scale_color_manual(values = c("black", "blue"))
```
### Fish
```{r, fig.width=6, fig.height=4}
ypr_plot_fish(ecotypes, color = "white") + scale_fill_manual(values = c("black", "blue"))
ypr_plot_fish(ecotypes, x = "Length", y = "Caught", color = "white", binwidth = 15) + scale_fill_manual(values = c("black", "blue"))
```
### Stock-Recruitment
```{r, fig.width=6, fig.height=4}
ypr_plot_sr(ecotypes, biomass = TRUE)
ypr_tabulate_sr(ecotypes, biomass = TRUE)
```
### Yield
```{r, fig.width=6, fig.height=4}
ypr_tabulate_yield(ecotypes, biomass = TRUE)
ypr_plot_yield(ecotypes, biomass = TRUE)
```
| /scratch/gouwar.j/cran-all/cranData/ypr/inst/doc/ecotypes.Rmd |
## ----setup, include = FALSE---------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 4
)
## ---- echo=FALSE--------------------------------------------------------------
library(ypr)
nparameters <- length(ypr_population())
caption <- paste("Table 1. The", nparameters, "parameters with their default values and descriptions.")
table <- ypr_tabulate_parameters(ypr_population())
table$Description <- sub("\n", " ", table$Description)
knitr::kable(table, caption = caption)
## -----------------------------------------------------------------------------
population <- ypr_population()
ypr_plot_schedule(population, "Age", "Length")
## -----------------------------------------------------------------------------
ypr_plot_schedule(ypr_population_update(population, L2 = 75, Linf2 = 200), "Age", "Length")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, Wa = 0.01, Wb = 3)
ypr_plot_schedule(population, "Length", "Weight")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, fa = 1, fb = 1)
ypr_plot_schedule(population, "Weight", "Fecundity")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, Ls = 50, Sp = 10, es = 0.8)
ypr_plot_schedule(population, "Length", "Spawning")
## -----------------------------------------------------------------------------
ypr_plot_schedule(population, "Length", "NaturalMortality")
## -----------------------------------------------------------------------------
ypr_plot_schedule(ypr_population_update(population, nL = 0.15, Ln = 60), "Length", "NaturalMortality")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, Sm = 0.5)
ypr_plot_schedule(population, "Length", "NaturalMortality")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, Lv = 50, Vp = 50)
ypr_plot_schedule(population, "Length", "Vulnerability")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, rho = 0.5, Llo = 40, Lup = 70, Nc = 0.1)
ypr_plot_schedule(population, "Length", "Retention")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, pi = 0.3, Hm = 0.2)
ypr_plot_schedule(population, "Length", "FishingMortality")
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, Rk = 3)
ypr_plot_sr(population, plot_values = FALSE)
## -----------------------------------------------------------------------------
population <- ypr_population_update(population, BH = 0L)
ypr_plot_sr(population, plot_values = FALSE)
## -----------------------------------------------------------------------------
ypr_plot_schedule(population, "Age", "Survivorship")
## -----------------------------------------------------------------------------
ypr_plot_yield(population, harvest = TRUE, biomass = TRUE, Ly = 60)
ypr_tabulate_yield(population, harvest = TRUE, biomass = TRUE, Ly = 60)
## -----------------------------------------------------------------------------
ypr_plot_yield(population, y = "Effort", harvest = TRUE, biomass = TRUE, Ly = 60)
## -----------------------------------------------------------------------------
ypr_plot_yield(population, y = "YPUE", harvest = TRUE, biomass = TRUE, Ly = 60)
| /scratch/gouwar.j/cran-all/cranData/ypr/inst/doc/ypr.R |
---
title: "Get Started with ypr"
author: "Joe Thorley"
date: "`r Sys.Date()`"
bibliography: bibliography.bib
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Get Started with ypr}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 4
)
```
## Introduction
> Fish are born, they grow, they reproduce and they die – whether from natural causes or from fishing.
That’s it.
Modelers just use complicated (or not so complicated) math to iron out the details.
@cooper_guide_2006
Equilibrium based yield per recruit (YPR) methods [@walters_fisheries_2004] estimate the capture rate that optimizes the yield under the assumption that there is no stochasticity and all density-dependence is captured by the stock-recruitment relationship.
The remaining population processes of growth, reproduction and death are captured through a series of relatively straight-forward deterministic equations.
```{r, echo=FALSE}
library(ypr)
nparameters <- length(ypr_population())
caption <- paste("Table 1. The", nparameters, "parameters with their default values and descriptions.")
table <- ypr_tabulate_parameters(ypr_population())
table$Description <- sub("\n", " ", table$Description)
knitr::kable(table, caption = caption)
```
## Growth
### Length
In `ypr` length (in cm) at age ($t$) is assumed to follow a Von Bertalanffy growth curve
$$L = L_{\infty} \cdot (1 - \exp(-k \cdot (t-t_0)))$$
```{r}
population <- ypr_population()
ypr_plot_schedule(population, "Age", "Length")
```
which can be biphasic
```{r}
ypr_plot_schedule(ypr_population_update(population, L2 = 75, Linf2 = 200), "Age", "Length")
```
### Weight
The weight ($W$) at a given length is assumed to follow the classic allometric relationship
$$W = w_\alpha \cdot L^{w_\beta}$$
```{r}
population <- ypr_population_update(population, Wa = 0.01, Wb = 3)
ypr_plot_schedule(population, "Length", "Weight")
```
Its worth noting that $w_\alpha$, which is the extrapolated weight (g) of a 1 cm individual, is a scaling constant that only affects the estimate of the yield (when calculated in terms of the biomass), ie, it does not affect the estimate of the optimal capture rate.
## Reproduction
### Fecundity
The fecundity ($F$) is assumed to scale allometrically with the weight according to the equation
$$F = f_\alpha \cdot W^{f_\beta}$$
```{r}
population <- ypr_population_update(population, fa = 1, fb = 1)
ypr_plot_schedule(population, "Weight", "Fecundity")
```
$f_\alpha$, which is the extrapolated eggs produced by a 1 g female, is a scaling constant with no effect on the yield or optimal capture rate.
### Spawning
The probability of spawning at length $L$ is determined by the equation
$$S = \frac{L^{S_p}}{L_s^{S_p} + L^{S_p}} \cdot es$$
```{r}
population <- ypr_population_update(population, Ls = 50, Sp = 10, es = 0.8)
ypr_plot_schedule(population, "Length", "Spawning")
```
## Death
### Natural Mortality
By default the natural annual interval mortality rate ($n$) is assumed to be constant
```{r}
ypr_plot_schedule(population, "Length", "NaturalMortality")
```
although like growth it can vary biphasically
```{r}
ypr_plot_schedule(ypr_population_update(population, nL = 0.15, Ln = 60), "Length", "NaturalMortality")
```
The natural mortality rate can also be affected by spawning mortality
```{r}
population <- ypr_population_update(population, Sm = 0.5)
ypr_plot_schedule(population, "Length", "NaturalMortality")
```
### Fishing Mortality
The vulnerability to capture ($V$) is assumed to vary by length as follows
$$V = \frac{L^{V_p}}{L_v^{V_p} + L^{V_p}}$$
```{r}
population <- ypr_population_update(population, Lv = 50, Vp = 50)
ypr_plot_schedule(population, "Length", "Vulnerability")
```
If $V_p$ is 100 then vulnerability is effectively knife-edged.
The probabilty of being retained if captured ($R$) depends on the release rate ($\rho$), the slot limits ($L_{lo}$ and $L_{up}$) and the non-compliance with the limits ($N_c$)
```{r}
population <- ypr_population_update(population, rho = 0.5, Llo = 40, Lup = 70, Nc = 0.1)
ypr_plot_schedule(population, "Length", "Retention")
```
The fishing mortality ($U$) depends on $V$, $R$ and the probability of capture when fully vulnerable ($pi$) as well as the hooking mortality ($H_m$)
$$U = V \cdot \pi \cdot R + V \cdot \pi \cdot (1 - R) \cdot H_m$$
The calculation assumes that a released fish cannot be recaught in the same year.
```{r}
population <- ypr_population_update(population, pi = 0.3, Hm = 0.2)
ypr_plot_schedule(population, "Length", "FishingMortality")
```
## Recruitment
With growth, reproduction and death defined, the final task is to estimate the recruitment (birth) rate.
This requires the lifetime number of spawners per spawner at low density ($R_k$) and the recruitment age ($R_t$; by default 1) to be defined.
If recruitment follows a Beverton-Holt ($BH = 1$) curve then
$$R = \frac{\alpha \cdot E}{(\beta \cdot E + 1)}$$
```{r}
population <- ypr_population_update(population, Rk = 3)
ypr_plot_sr(population, plot_values = FALSE)
```
where $E$ is the annual eggs (stock) and $R$ is the annual recruits at age $R_t$.
With a Ricker curve ($BH = 0$) the relationship is as follows
$$R = \alpha \cdot E \cdot \exp (-\beta \cdot E)$$
```{r}
population <- ypr_population_update(population, BH = 0L)
ypr_plot_sr(population, plot_values = FALSE)
```
The number of recruits at the carrying capacity ($R_\text{max}$) is a scaling constant that only affects the estimate of the yield.
Before calculating the recruitment it is important to introduce the concept of the (unfished) survivorship ($lx_a$) which is the probability of a recruit surviving to age $a$ in the absence of fish mortality.
```{r}
ypr_plot_schedule(population, "Age", "Survivorship")
```
The unfished survivorship ($lx_a$) is defined recursively by
$$lx_{R_t} = 1, lx_a = lx_{a-1} \cdot (1-N_{a-1}) \;\text{for}\; a > R_t$$
where $N_a$ is the annual interval natural mortality at age $a$.
And the fished survivorship ($lx_a^F$) is
$$lx_{R_t}^F = 1, lx_a^F = lx_{a-1}^F \cdot (1 - (1 - N_{a-1}) \cdot (1 - U_{a-1})) \;\text{for}\; a > R_t$$
The lifetime number of eggs deposited per (unfished) recruit ($\phi$) is then just
$$\phi = \sum_{a = R_t}^{t_\text{max}} lx_a \cdot F_a/2 \cdot S_a$$
where $t_\text{max}$ is the maximum age considered (by default `r ypr_population()$tmax`) and $F_a$ the fecundity at age $a$ is divided by two as the sex ratio is assumed to 1:1 and $S_a$ is the probability of spawning.
The fished equivalent is denoted $\phi_F$.
It important to realize that at the unfished equilibrium the annual number of recruits ($R_0$) is related to the annual egg deposition according to the following equation
$$E_0 = \phi \cdot R_0$$
By definition
$$\alpha = \frac{R_k \cdot R_0}{E_0} = \frac{R_k}{\phi}$$
The $\beta$ term of the Beverton-Holt curve can then be found by rearranging the following formula
$$R_0 = \frac{\alpha \cdot \phi \cdot R_0}{\beta \cdot \phi \cdot R_0 + 1}$$
$$\beta \cdot \phi \cdot R_0 + 1 = \alpha \cdot \phi$$
$$\beta = \frac{\alpha \cdot \phi - 1}{\phi \cdot R_0}$$
The equivalent equation for the Ricker curve is arrived at as follows
$$R_0 = \alpha \cdot \phi \cdot R_0 \cdot \exp (-\beta \cdot \phi \cdot R_0)$$
$$\frac{1}{\exp (-\beta \cdot \phi \cdot R_0)} = \alpha \cdot \phi$$
$$\beta \cdot \phi \cdot R_0 = \log(\alpha \cdot \phi)$$
$$\beta = \frac{\log(\alpha \cdot \phi)}{\phi \cdot R_0}$$
The number of recruits at the fished equilibrium ($R_{0F}$) can then be found for the Beverton-Holt curve as follows
$$R_{0F} = \frac{\alpha \cdot \phi_F \cdot R_{0F}}{\beta \cdot \phi_F \cdot R_{0F} + 1}$$
$$\beta \cdot \phi_F \cdot R_{0F} + 1 = \alpha \cdot \phi_F$$
$$R_{0F} = \frac{\alpha \cdot \phi_F - 1}{\beta \cdot \phi_F}$$
and for the Ricker
$$R_{0F} = \alpha \cdot \phi_F \cdot R_{0F} \cdot \exp (-\beta \cdot \phi_F \cdot R_{0F})$$
$$\frac{1}{\exp(-\beta \cdot \phi_F \cdot R_{0F})} = \alpha \cdot \phi_F$$
$$\beta \cdot \phi_F \cdot R_{0F} = \log(\alpha \cdot \phi_F)$$
$$R_{0F} = \frac{\log(\alpha \cdot \phi_F)}{\beta \cdot \phi_F}$$
Finally the estimates are rescaled so that the carrying capacity is identical to $R_\text{max}$ through the following transformations
$$ \beta = \beta \cdot \kappa / R_\text{max} $$
$$ R_0 = R_0 / \kappa \cdot R_\text{max} $$
$$ R_{0F} = R_{0F} / \kappa \cdot R_\text{max} $$
where $\kappa$, which is the carrying capacity in the original scale, is $\alpha/\beta$ for the Beverton-Holt and $\alpha/(\beta \cdot e)$ for the Ricker curve.
## Yield
When the yield is simply the number of fish caught (irrespective of the weight or whether or not its harvested) then it is given by
$$Y = \sum_{a = R_t}^{t_\text{max}} R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a$$
if only harvested fish are considered it becomes
$$Y = \sum_{a = R_t}^{t_\text{max}} R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a \cdot R$$
and if the total weight (in kg) is important then its
$$Y = \sum_{a = R_t}^{t_\text{max}} R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a \cdot R \cdot W_a/1000$$
and if only trophy fish are to be considered then its
$$Y = \sum_{a = R_t}^{t_\text{max}} \text{if}(La < L_y)\ 0\ \text{else}\ R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a \cdot R \cdot W_a/1000$$
where $L_y$ is the minimum length of a trophy fish.
```{r}
ypr_plot_yield(population, harvest = TRUE, biomass = TRUE, Ly = 60)
ypr_tabulate_yield(population, harvest = TRUE, biomass = TRUE, Ly = 60)
```
## Efficiency
The catchability `q` indicates the probability of capture for a unit of effort ($E$).
It is assumed to be related to $\pi$ according to the relationship
$$\pi = 1 - \exp(\log(1-q)\cdot E)$$
which can be rearranged to give
$$E = \frac{\log(1-\pi)}{\log(1-q)}.$$
```{r}
ypr_plot_yield(population, y = "Effort", harvest = TRUE, biomass = TRUE, Ly = 60)
```
```{r}
ypr_plot_yield(population, y = "YPUE", harvest = TRUE, biomass = TRUE, Ly = 60)
```
## References
| /scratch/gouwar.j/cran-all/cranData/ypr/inst/doc/ypr.Rmd |
---
title: "{{{ title }}}"
date: "{{{ date }}}"
output: html_document
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
echo = FALSE,
fig.width = 4,
fig.height = 4
)
```
{{{ description }}}
```{r}
library(ypr)
population <- {{{ population }}}
```
```{r}
knitr::kable(ypr_tabulate_parameters(population))
```
```{r}
ypr_plot_schedule(population)
ypr_plot_schedule(population, "Length", "Weight")
ypr_plot_schedule(population, "Weight", "Fecundity")
ypr_plot_schedule(population, "Length", "Spawning")
```
```{r}
ypr_plot_schedule(population, "Length", "Vulnerability")
ypr_plot_schedule(population, "Length", "Retention")
ypr_plot_schedule(population, "Length", "FishingMortality")
ypr_plot_schedule(population, "Length", "NaturalMortality")
```
```{r}
ypr_plot_fish(population, color = "white")
ypr_plot_fish(population, "Length", "Caught")
ypr_plot_fish(population, "Age", "Spawners", color = "white")
ypr_plot_fish(population, "Length", "Spawners")
ypr_plot_biomass(population, color = "white")
ypr_plot_biomass(population, y = "Eggs", color = "white")
```
```{r, fig.width = 6, fig.height = 4}
ypr_plot_sr(population)
knitr::kable(ypr_sr(population))
knitr::kable(ypr_tabulate_sr(population))
```
```{r, fig.width = 6, fig.height = 4}
ypr_plot_yield(population, Ly = {{{ Ly }}}, harvest = {{{ harvest }}}, biomass = {{{ biomass }}})
knitr::kable(ypr_tabulate_yield(population, Ly = {{{ Ly }}}, harvest = {{{ harvest }}}, biomass = {{{ biomass }}}))
```
| /scratch/gouwar.j/cran-all/cranData/ypr/inst/templates/template-report.Rmd |
---
title: "Ecotypes"
author: "Joe Thorley and Ayla Pearson"
date: "`r Sys.Date()`"
bibliography: bibliography.bib
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Ecotypes}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 4
)
```
## Ecotypes
In the `ypr` package a population is considered to be group of interbreeding fish that are indistinguishable to anglers.
Ecotypes are groups of individuals with a population that have different life-history strategies.
Consequently, ecotypes must share key fishery (`pi`, `Llo`, `Lup`, `Nc`, `rho`, `Hm` and `q`) and stock recruitment (`BH`, `RK`, `tR` and `Rmax`) parameters.y
To use a yield-per-recruit approach it is also necessary to assume that the relative proportion of recruits (`RPR`) adopting each life-history strategy is independent of the size and composition of the parental stock.
## Two Ecotypes
Consider a population with a smaller ecotype and a second larger ecotype that delays maturation in order to achieve sufficient size to switch to piscivory which allows it to grow much larger.
```{r}
library(ypr)
library(ggplot2) # for plotting
ecotypes <- ypr_ecotypes(
Linf2 = 200,
L2 = c(100, 50),
Ls = c(50, 75),
pi = 0.05,
names = c("small", "large"),
RPR = c(0.8, 0.2))
ypr_plot_schedule(ecotypes) + scale_color_manual(values = c("black", "blue"))
ypr_plot_schedule(ecotypes, x = "Age", y = "Spawning") + scale_color_manual(values = c("black", "blue"))
```
### Fish
```{r, fig.width=6, fig.height=4}
ypr_plot_fish(ecotypes, color = "white") + scale_fill_manual(values = c("black", "blue"))
ypr_plot_fish(ecotypes, x = "Length", y = "Caught", color = "white", binwidth = 15) + scale_fill_manual(values = c("black", "blue"))
```
### Stock-Recruitment
```{r, fig.width=6, fig.height=4}
ypr_plot_sr(ecotypes, biomass = TRUE)
ypr_tabulate_sr(ecotypes, biomass = TRUE)
```
### Yield
```{r, fig.width=6, fig.height=4}
ypr_tabulate_yield(ecotypes, biomass = TRUE)
ypr_plot_yield(ecotypes, biomass = TRUE)
```
| /scratch/gouwar.j/cran-all/cranData/ypr/vignettes/ecotypes.Rmd |
---
title: "Get Started with ypr"
author: "Joe Thorley"
date: "`r Sys.Date()`"
bibliography: bibliography.bib
output: rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Get Started with ypr}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 4
)
```
## Introduction
> Fish are born, they grow, they reproduce and they die – whether from natural causes or from fishing.
That’s it.
Modelers just use complicated (or not so complicated) math to iron out the details.
@cooper_guide_2006
Equilibrium based yield per recruit (YPR) methods [@walters_fisheries_2004] estimate the capture rate that optimizes the yield under the assumption that there is no stochasticity and all density-dependence is captured by the stock-recruitment relationship.
The remaining population processes of growth, reproduction and death are captured through a series of relatively straight-forward deterministic equations.
```{r, echo=FALSE}
library(ypr)
nparameters <- length(ypr_population())
caption <- paste("Table 1. The", nparameters, "parameters with their default values and descriptions.")
table <- ypr_tabulate_parameters(ypr_population())
table$Description <- sub("\n", " ", table$Description)
knitr::kable(table, caption = caption)
```
## Growth
### Length
In `ypr` length (in cm) at age ($t$) is assumed to follow a Von Bertalanffy growth curve
$$L = L_{\infty} \cdot (1 - \exp(-k \cdot (t-t_0)))$$
```{r}
population <- ypr_population()
ypr_plot_schedule(population, "Age", "Length")
```
which can be biphasic
```{r}
ypr_plot_schedule(ypr_population_update(population, L2 = 75, Linf2 = 200), "Age", "Length")
```
### Weight
The weight ($W$) at a given length is assumed to follow the classic allometric relationship
$$W = w_\alpha \cdot L^{w_\beta}$$
```{r}
population <- ypr_population_update(population, Wa = 0.01, Wb = 3)
ypr_plot_schedule(population, "Length", "Weight")
```
Its worth noting that $w_\alpha$, which is the extrapolated weight (g) of a 1 cm individual, is a scaling constant that only affects the estimate of the yield (when calculated in terms of the biomass), ie, it does not affect the estimate of the optimal capture rate.
## Reproduction
### Fecundity
The fecundity ($F$) is assumed to scale allometrically with the weight according to the equation
$$F = f_\alpha \cdot W^{f_\beta}$$
```{r}
population <- ypr_population_update(population, fa = 1, fb = 1)
ypr_plot_schedule(population, "Weight", "Fecundity")
```
$f_\alpha$, which is the extrapolated eggs produced by a 1 g female, is a scaling constant with no effect on the yield or optimal capture rate.
### Spawning
The probability of spawning at length $L$ is determined by the equation
$$S = \frac{L^{S_p}}{L_s^{S_p} + L^{S_p}} \cdot es$$
```{r}
population <- ypr_population_update(population, Ls = 50, Sp = 10, es = 0.8)
ypr_plot_schedule(population, "Length", "Spawning")
```
## Death
### Natural Mortality
By default the natural annual interval mortality rate ($n$) is assumed to be constant
```{r}
ypr_plot_schedule(population, "Length", "NaturalMortality")
```
although like growth it can vary biphasically
```{r}
ypr_plot_schedule(ypr_population_update(population, nL = 0.15, Ln = 60), "Length", "NaturalMortality")
```
The natural mortality rate can also be affected by spawning mortality
```{r}
population <- ypr_population_update(population, Sm = 0.5)
ypr_plot_schedule(population, "Length", "NaturalMortality")
```
### Fishing Mortality
The vulnerability to capture ($V$) is assumed to vary by length as follows
$$V = \frac{L^{V_p}}{L_v^{V_p} + L^{V_p}}$$
```{r}
population <- ypr_population_update(population, Lv = 50, Vp = 50)
ypr_plot_schedule(population, "Length", "Vulnerability")
```
If $V_p$ is 100 then vulnerability is effectively knife-edged.
The probabilty of being retained if captured ($R$) depends on the release rate ($\rho$), the slot limits ($L_{lo}$ and $L_{up}$) and the non-compliance with the limits ($N_c$)
```{r}
population <- ypr_population_update(population, rho = 0.5, Llo = 40, Lup = 70, Nc = 0.1)
ypr_plot_schedule(population, "Length", "Retention")
```
The fishing mortality ($U$) depends on $V$, $R$ and the probability of capture when fully vulnerable ($pi$) as well as the hooking mortality ($H_m$)
$$U = V \cdot \pi \cdot R + V \cdot \pi \cdot (1 - R) \cdot H_m$$
The calculation assumes that a released fish cannot be recaught in the same year.
```{r}
population <- ypr_population_update(population, pi = 0.3, Hm = 0.2)
ypr_plot_schedule(population, "Length", "FishingMortality")
```
## Recruitment
With growth, reproduction and death defined, the final task is to estimate the recruitment (birth) rate.
This requires the lifetime number of spawners per spawner at low density ($R_k$) and the recruitment age ($R_t$; by default 1) to be defined.
If recruitment follows a Beverton-Holt ($BH = 1$) curve then
$$R = \frac{\alpha \cdot E}{(\beta \cdot E + 1)}$$
```{r}
population <- ypr_population_update(population, Rk = 3)
ypr_plot_sr(population, plot_values = FALSE)
```
where $E$ is the annual eggs (stock) and $R$ is the annual recruits at age $R_t$.
With a Ricker curve ($BH = 0$) the relationship is as follows
$$R = \alpha \cdot E \cdot \exp (-\beta \cdot E)$$
```{r}
population <- ypr_population_update(population, BH = 0L)
ypr_plot_sr(population, plot_values = FALSE)
```
The number of recruits at the carrying capacity ($R_\text{max}$) is a scaling constant that only affects the estimate of the yield.
Before calculating the recruitment it is important to introduce the concept of the (unfished) survivorship ($lx_a$) which is the probability of a recruit surviving to age $a$ in the absence of fish mortality.
```{r}
ypr_plot_schedule(population, "Age", "Survivorship")
```
The unfished survivorship ($lx_a$) is defined recursively by
$$lx_{R_t} = 1, lx_a = lx_{a-1} \cdot (1-N_{a-1}) \;\text{for}\; a > R_t$$
where $N_a$ is the annual interval natural mortality at age $a$.
And the fished survivorship ($lx_a^F$) is
$$lx_{R_t}^F = 1, lx_a^F = lx_{a-1}^F \cdot (1 - (1 - N_{a-1}) \cdot (1 - U_{a-1})) \;\text{for}\; a > R_t$$
The lifetime number of eggs deposited per (unfished) recruit ($\phi$) is then just
$$\phi = \sum_{a = R_t}^{t_\text{max}} lx_a \cdot F_a/2 \cdot S_a$$
where $t_\text{max}$ is the maximum age considered (by default `r ypr_population()$tmax`) and $F_a$ the fecundity at age $a$ is divided by two as the sex ratio is assumed to 1:1 and $S_a$ is the probability of spawning.
The fished equivalent is denoted $\phi_F$.
It important to realize that at the unfished equilibrium the annual number of recruits ($R_0$) is related to the annual egg deposition according to the following equation
$$E_0 = \phi \cdot R_0$$
By definition
$$\alpha = \frac{R_k \cdot R_0}{E_0} = \frac{R_k}{\phi}$$
The $\beta$ term of the Beverton-Holt curve can then be found by rearranging the following formula
$$R_0 = \frac{\alpha \cdot \phi \cdot R_0}{\beta \cdot \phi \cdot R_0 + 1}$$
$$\beta \cdot \phi \cdot R_0 + 1 = \alpha \cdot \phi$$
$$\beta = \frac{\alpha \cdot \phi - 1}{\phi \cdot R_0}$$
The equivalent equation for the Ricker curve is arrived at as follows
$$R_0 = \alpha \cdot \phi \cdot R_0 \cdot \exp (-\beta \cdot \phi \cdot R_0)$$
$$\frac{1}{\exp (-\beta \cdot \phi \cdot R_0)} = \alpha \cdot \phi$$
$$\beta \cdot \phi \cdot R_0 = \log(\alpha \cdot \phi)$$
$$\beta = \frac{\log(\alpha \cdot \phi)}{\phi \cdot R_0}$$
The number of recruits at the fished equilibrium ($R_{0F}$) can then be found for the Beverton-Holt curve as follows
$$R_{0F} = \frac{\alpha \cdot \phi_F \cdot R_{0F}}{\beta \cdot \phi_F \cdot R_{0F} + 1}$$
$$\beta \cdot \phi_F \cdot R_{0F} + 1 = \alpha \cdot \phi_F$$
$$R_{0F} = \frac{\alpha \cdot \phi_F - 1}{\beta \cdot \phi_F}$$
and for the Ricker
$$R_{0F} = \alpha \cdot \phi_F \cdot R_{0F} \cdot \exp (-\beta \cdot \phi_F \cdot R_{0F})$$
$$\frac{1}{\exp(-\beta \cdot \phi_F \cdot R_{0F})} = \alpha \cdot \phi_F$$
$$\beta \cdot \phi_F \cdot R_{0F} = \log(\alpha \cdot \phi_F)$$
$$R_{0F} = \frac{\log(\alpha \cdot \phi_F)}{\beta \cdot \phi_F}$$
Finally the estimates are rescaled so that the carrying capacity is identical to $R_\text{max}$ through the following transformations
$$ \beta = \beta \cdot \kappa / R_\text{max} $$
$$ R_0 = R_0 / \kappa \cdot R_\text{max} $$
$$ R_{0F} = R_{0F} / \kappa \cdot R_\text{max} $$
where $\kappa$, which is the carrying capacity in the original scale, is $\alpha/\beta$ for the Beverton-Holt and $\alpha/(\beta \cdot e)$ for the Ricker curve.
## Yield
When the yield is simply the number of fish caught (irrespective of the weight or whether or not its harvested) then it is given by
$$Y = \sum_{a = R_t}^{t_\text{max}} R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a$$
if only harvested fish are considered it becomes
$$Y = \sum_{a = R_t}^{t_\text{max}} R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a \cdot R$$
and if the total weight (in kg) is important then its
$$Y = \sum_{a = R_t}^{t_\text{max}} R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a \cdot R \cdot W_a/1000$$
and if only trophy fish are to be considered then its
$$Y = \sum_{a = R_t}^{t_\text{max}} \text{if}(La < L_y)\ 0\ \text{else}\ R_{0F} \cdot lx_a^F \cdot \pi \cdot V_a \cdot R \cdot W_a/1000$$
where $L_y$ is the minimum length of a trophy fish.
```{r}
ypr_plot_yield(population, harvest = TRUE, biomass = TRUE, Ly = 60)
ypr_tabulate_yield(population, harvest = TRUE, biomass = TRUE, Ly = 60)
```
## Efficiency
The catchability `q` indicates the probability of capture for a unit of effort ($E$).
It is assumed to be related to $\pi$ according to the relationship
$$\pi = 1 - \exp(\log(1-q)\cdot E)$$
which can be rearranged to give
$$E = \frac{\log(1-\pi)}{\log(1-q)}.$$
```{r}
ypr_plot_yield(population, y = "Effort", harvest = TRUE, biomass = TRUE, Ly = 60)
```
```{r}
ypr_plot_yield(population, y = "YPUE", harvest = TRUE, biomass = TRUE, Ly = 60)
```
## References
| /scratch/gouwar.j/cran-all/cranData/ypr/vignettes/ypr.Rmd |
####################################################################################################################################
################################## Err #############################################################################################
# >>
Err = new.env()
####################################################################################################################################
Err$msg = ""
Err$prefix = "ypssc"
Err$tab = " "
Err$msgDash = " - "
Err$fullprefix = ""
Err$funcType = ""
Err$msgType = ""
Err$msgColon = " : "
Err$lenOfLine = 50
Err$boxLen = 60
Err$checkAndWriteMsg = function() { # checkAndWriteMsg >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$checkMsg()
Err$writeMsg()
}
Err$checkMsg = function() { # checkMsg >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
if( is.character(Err$msg) ) { Err$msgType = "character" }
else if( is.double(Err$msg) | is.integer(Err$msg) ) { Err$msgType = "double" }
else { stop( paste("Please provide either character/string or double/integer message for ", Err$funcType, sep = ""), call. = FALSE) }
}
Err$writeMsg = function() { # writeMsg >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$msg = gsub("\n", " \n ", Err$msg)
if( Err$prefix == "" ) {
Err$fullprefix = paste( Err$tab, Err$funcType, Err$msgColon, sep = "" )
} else {
Err$fullprefix = paste( Err$tab, Err$prefix, Err$msgDash, Err$funcType, Err$msgColon, sep = "" )
}
if( Err$msgType == "character" ) {
lines = Err$getListOfLines(Err$msg)
for( i in 1:length(lines) ) {
msg = paste(Err$fullprefix, lines[i], sep = "")
writeLines(msg)
}
} else {
if( Err$msg < 0 ) {
stop( paste("Please provide non-negetive integer.", funcType, sep = ""), call. = FALSE)
} else if( Err$msg == 0 ) {
writeLines("")
} else {
for( i in 1:Err$msg ) { writeLines(Err$fullprefix) }
}
}
}
Err$getListOfLines = function(text) { # writeMsg >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
words = unlist( strsplit(text, " ") )
lines = c()
l = 0; w = 0
while( w < length(words) ) {
l = l + 1
w = w + 1
if( words[w] == "\n" ) { lines[l] = ""; next}
else{ lines[l] = words[w]}
while( nchar(lines[l]) <= Err$lenOfLine & w < length(words) ) {
w = w + 1
if( words[w] == "\n" ) { break }
else{ lines[l] = paste( lines[l], words[w], sep = " " ) }
}
}
return(lines)
}
####################################################################################################################################
Err$help = function() { # note >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
prefixCurrent = Err$prefix
Err$prefix = "Err"
tab = Err$tab
Err$box( paste("Usage:", "\n",
"\n",
tab, "Set Prefix (optional):", "\n",
"\n",
tab, tab, "Err$prefix = 'Shashank'", "\n",
"\n",
tab, "Methods for displaying Notes, Warnings, Fatal error", "\n",
tab, tab, "Err$note('your text')", "\n",
tab, tab, "Err$warn('your text')", "\n",
tab, tab, "Err$abort('your text')", "\n", sep = "") )
Err$prefix = prefixCurrent
}
Err$note = function(msg) { # note >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$msg = msg; Err$funcType = "NOTE"; Err$checkAndWriteMsg()
msg = 15
}
Err$warn = function(msg) { # warn >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$msg = msg; Err$funcType = "WARNING"; Err$checkAndWriteMsg()
}
Err$abort = function(msg) { # abort >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$note(0)
Err$msg = msg; Err$funcType = "FATAL"; Err$checkAndWriteMsg()
Err$note(0)
Err$msg = "Aborting..."; Err$funcType = "FATAL"; Err$checkAndWriteMsg()
Err$note(0)
Err$note(0)
exit()
}
Err$box = function(msg) { # box >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$note(0)
Err$note( paste0( rep(">", Err$boxLen), collapse = '' ) )
Err$note(1)
Err$note( msg )
Err$note(1)
Err$note( paste0( rep("<", Err$boxLen), collapse = '' ) )
Err$note(0)
}
Err$reset = function() { # reset >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$prefix = "ypssc"
}
####################################################################################################################################
################################## Err #############################################################################################
####################################################################################################################################
####################################################################################################################################
################################## Help Code #######################################################################################
# >>
# Err$note( "dummy text dummy text dummy text dummy text dummy text dummy text dummy text dummy text dummy text dummy text dummy text dummy text dummy text dummy text " )
# Err$note( "dummy text dummy text \n dummy text dummy text \ndummy text\n dummy text dummy text dummy text\ndummy text dummy text dummy text dummy text dummy text \n dummy text " )
# Err$note( 0 )
# Err$note( 1 )
# Err$note( 2 )
# <<
################################## Help Code #######################################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/Err.R |
####################################################################################################################################
##################################### auxil functions ##############################################################################
####################################################################################################################################
filter <- dplyr::filter
####################################################################################################################################
##################################### checkFileInput() #############################################################################
# >>
checkFileInput <- function( pathFileInput = NULL ){
# Checking if `pathFileInput` is provided or the file exists >>
if ( is.null(pathFileInput) ) { isFile = FALSE }
else { isFile = file.exists( pathFileInput ) | startsWith( pathFileInput, "https") }
# Selecting an input file from a doalog box if `pathFileInput` is not provided or if `pathFileInput` does not exists >>
if ( !isFile ) {
msg = paste0( "Argument `pathFileInput` is not provided.\n",
" or \n",
"The file does not exists.\n",
"\n",
"Input csv file generated from MaxQuant is necessary to run this function.\n",
"\n",
"Do you want to select an input csv file generated from MaxQuant?" )
Err$warn( 0 )
Err$warn( msg )
response = dlgMessage( msg,
type = "yesno" )$res
if ( response == "yes" ) {
msgSelectFile = "Please select an input csv file generated from MaxQuant."
Err$note( 0 )
Err$note( paste0( "A dialog box must have been opened.\n",
msgSelectFile ) )
pathFileInput = dlg_open( title = msgSelectFile )$res
} else {
updateUserFailure( "Argument `pathFileInput` is not provided." )
}
}
# Printing `pathFileInput` provided >>
Err$note( 0 )
Err$note( paste0( "Provided input csv file generated from MaxQuant:\n",
"'", pathFileInput, "'" ) )
return( pathFileInput )
}
# <<
##################################### checkFileInput() #############################################################################
####################################################################################################################################
####################################################################################################################################
##################################### checkDirOutput() #############################################################################
# >>
checkDirOutput <- function( pathDirOutput = NULL ){
# Checking if `pathDirOutput` is provided or the dir exists >>
if ( is.null(pathDirOutput) ) { isDir = FALSE }
else { isDir = dir.exists( pathDirOutput ) }
# Selecting an output dir from a doalog box if `pathDirOutput` is not provided or if `pathDirOutput` does not exists >>
if ( !isDir ) {
msg = paste0( "Argument `pathDirOutput` is not provided.\n",
" or \n",
"The directory does not exists.\n",
"\n",
"Do you want to select an output directory? \n",
"'Yes': Then select. \n",
"'No' : Then the current working directory will be selected." )
Err$warn( 0 )
Err$warn( msg )
response = dlgMessage( msg,
type = "yesno" )$res
if ( response == "yes" ) {
msgSelectDir = "Please select an output directory."
Err$note( 0 )
Err$note( paste0( "A dialog box must have been opened. \n",
msgSelectDir ) )
pathDirOutput = dlg_dir( title = msgSelectDir )$res
} else {
pathDirOutput = getwd()
}
}
# Printing `pathDirOutput` provided >>
Err$note( 0 )
Err$note( paste0( "Provided output directory where the output files will be saved:\n",
"'", pathDirOutput, "'" ) )
return( pathDirOutput )
}
# <<
##################################### checkDirOutput() #############################################################################
####################################################################################################################################
####################################################################################################################################
##################################### readFileInput() ##############################################################################
# >>
readFileInput <- function( pathFileInput, isTest ) {
Err$note(0)
Err$note( paste0( "Reading input file...." ) )
# Reading csv file >>
df = read.csv( pathFileInput )
# Removing the columns that are not needed and finding the columns containing sample information >>
df = df[ , -which( names(df) %in% c( "Sequence","N.term.cleavage.window",
"C.term.cleavage.window","Amino.acid.before",
"First.amino.acid","Second.amino.acid",
"Second.last.amino.acid","Last.amino.acid",
"Amino.acid.after","A.Count","R.Count","N.Count",
"D.Count","C.Count","Q.Count","E.Count",
"G.Count","H.Count","I.Count","L.Count",
"K.Count","M.Count","F.Count","P.Count",
"S.Count","T.Count","W.Count","Y.Count",
"V.Count","U.Count","O.Count","Length",
"Missed.cleavages","Mass",
"Leading.razor.protein","Gene.names",
"Protein.names","Unique..Groups.",
"Unique..Proteins.","Charges","PEP",
"Score","Experiment.ST168.THF.A",
"Experiment.ST168.THF.O",
"Experiment.ST169.DMSO.A","Experiment.ST169.DMSO.O",
"Experiment.ST170.But.A","Experiment.ST170.But.O",
"Intensity.ST168.THF.A",
"Intensity.ST168.THF.O",
"Intensity.ST169.DMSO.A",
"Intensity.ST169.DMSO.O",
"Intensity.ST170.But.A",
"id","Protein.group.IDs","Mod..peptide.IDs",
"Evidence.IDs","MS.MS.IDs","Best.MS.MS",
"Oxidation..M..site.IDs","Taxonomy.IDs",
"MS.MS.Count" ) ) ]
names = names(df)
sampleNames = names[ grepl("Intensity.", names) ]
sampleNamesUpdate = gsub( '\\.|Intensity.', ' ', sampleNames )
names_list = vector()
i = 1
pb = winProgressBar( title = "progress bar",
min = 0,
max = length(sampleNames),
width = 300 )
for ( i in 1 : length(sampleNames) ) {
# temp = paste(sampleNamesUpdate[i],' \n \n ')
temp = sampleNamesUpdate[i]
names_list = c( names_list, temp )
Sys.sleep(0.1)
setWinProgressBar( pb, i, title = paste( sampleNamesUpdate[i], ' ', round(i/length(sampleNames)*100, 0), "% done") )
}
close(pb)
# Conformation about sample names from user >>
if ( !isTest ) {
sampleNameConfirmation = dlgMessage( c( "Identified sample names in the uploaded file:",
"\n",
names_list,
"\n",
"If it is correct, please enter 'Yes'" ),
type = "yesno" )$res
} else {
sampleNameConfirmation = "yes"
}
if ( sampleNameConfirmation != "yes" ) {
msg = paste0( "Wrong sample names.\n",
"\n",
"Please re-run the program using correct input file." )
updateUserFailure( msg )
}
# Returning multiple variables as a R-list >>
dataFileInput = list()
dataFileInput$df = df
dataFileInput$sampleNames = sampleNames
dataFileInput$sampleNamesUpdate = sampleNamesUpdate
Err$note( "Done." )
return( dataFileInput )
}
# <<
##################################### readFileInput() ##############################################################################
####################################################################################################################################
####################################################################################################################################
##################################### creatOutputDir() #############################################################################
# >>
creatOutputDir <- function( pathDirOutput, type = "secondary" ) {
Err$note(0)
Err$note( paste0( "Creating output directory" ) )
dateTimeCurrent = format( Sys.time(), "%Y%m%d_%H%M%S" ) # << get current date and time
nameDirOutput = paste0( "ypssc_", dateTimeCurrent, "_", type ) # << name of the output folder
pathDirOutput = paste0( pathDirOutput, "/", nameDirOutput ) # << path of the output folder
dir.create( pathDirOutput ) # creating new folder for output files
setwd( pathDirOutput ) # << setting working dir to "pathDirOutput" to write output files
Err$note( "Done." )
Err$note( paste0( "Output directory created:\n",
"'", getwd(), "'" ) )
return( dateTimeCurrent )
}
##################################### creatOutputDir() #############################################################################
####################################################################################################################################
####################################################################################################################################
##################################### removeRows() #################################################################################
# >>
removeRows <- function( df, dateTimeCurrent, isTest ) {
Err$note(0)
Err$note( paste0( "Filtering input file:" ) )
if ( !isTest ) {
# Removing rows containing doubious proteins >>
removeDoubious = dlgMessage( paste0( "Do you want to remove the rows containing doubious proteins?\n",
"Rows that have 2 or more protiens assigned to one identified peptide are called doubious\n",
"Answer with yes or no" ),
type = "yesno" )$res
if ( removeDoubious == "yes" ) {
Err$note( "Removing rows containing doubious proteins..." )
df = filter( df, !grepl( ';', df$Proteins ) )
}
# Removing rows that contains peptides that matched to decoy that has reverse >>
removeReverse = dlgMessage( paste0( "Do you want to remove rows that contains peptides that matched to decoy that has reverse ",
"sequnce of real protein?\n",
"Theses proteins are usually removed.\n",
"Answer with yes or no" ),
type = "yesno" )$res
if ( removeReverse == "yes" ) {
Err$note( "Removing rows that contains peptides that matched to decoy that has reverse..." )
df = filter( df, !grepl( '\\+', df$Reverse ) )
}
# Removing rows that contains peptides that are showing signs of contamination >>
removeContaminant = dlgMessage( paste0( "Do you want to remove rows that contains peptides that are showing signs of contamination?\n",
"Theses proteins are usually removed.\n",
"Answer with yes or no" ),
type = "yesno" )$res
if ( removeContaminant == "yes" ) {
Err$note( "Removing rows that contains peptides that are showing signs of contamination..." )
df = filter( df, !grepl( '\\+', df$Potential.contaminant ) )
}
# Removing rows that contains peptides that are not showing any intensity >>
removeNoIntensity = dlgMessage( paste( "Do you want to remove rows that contains peptides that are not showing any intensity?\n",
"Theses proteins are usually removed.\n",
"Answer with yes or no" ),
type = "yesno" )$res
if ( removeNoIntensity == "yes" ) {
Err$note( "Removing rows that contains peptides that are not showing any intensity..." )
df = filter( df, df$Intensity > 0 )
}
} else {
df = filter( df, !grepl( ';', df$Proteins ) )
df = filter( df, !grepl( '\\+', df$Reverse ) )
df = filter( df, !grepl( '\\+', df$Potential.contaminant ) )
df = filter( df, df$Intensity > 0 )
}
# Print Done >>
Err$note( "Done." )
# Writing new df to output file in output dir >>
Err$note(0)
Err$note( "Writing filtered file to output file in output dir..." )
nameFile = paste0( dateTimeCurrent, "_", 'df.csv' )
write.csv( df, nameFile, row.names = FALSE )
Err$note( "Done." )
# Err$note( paste0( "Output file created:\n",
# "'", getwd(), "/", nameFile, "'" ) )
updateUserFileCreated( nameFile )
return( df )
}
##################################### removeRows() #################################################################################
####################################################################################################################################
####################################################################################################################################
################################## updateUserFailure ###############################################################################
# >>
updateUserFailure <- function( msg, isTest = FALSE ) {
msg = paste0( msg, "\n",
"\n",
"Analysis failed!" )
if ( !isTest ) {
tkmessageBox( title = "Error",
message = msg,
icon = "error",
type = "ok" )
}
Err$abort( msg )
}
# <<
################################## updateUserFailure ###############################################################################
####################################################################################################################################
####################################################################################################################################
################################## updateUserSuccess ###############################################################################
# >>
updateUserSuccess <- function( isTest = FALSE ) {
msg = paste0( "Analysis completed successfully! \n",
"\n",
"Please see output files at: \n",
"'", getwd(), "'" )
if ( !isTest ) {
tkmessageBox( title = "Success",
message = msg,
icon = "info",
type = "ok" )
}
Err$note(0)
Err$box(msg)
Err$note(0)
}
# <<
################################## updateUserSuccess ###############################################################################
####################################################################################################################################
####################################################################################################################################
################################## updateUserFileCreated ###########################################################################
# >>
updateUserFileCreated <- function( nameFile ) {
Err$note( paste0( "Output file created:\n",
"'", getwd(), "/", nameFile, "'" ) )
}
# <<
################################## updateUserFileCreated ###########################################################################
####################################################################################################################################
####################################################################################################################################
##################################### auxil functions ##############################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/auxil.R |
####################################################################################################################################
####################################################################################################################################
# >>
#' @title calculationAlphaHelix
#' @param df Dataframe for input file data.
#' @param sampleNames Names of the samples found in the input file.
#' @param sampleNamesUpdate Updated names of the samples found in the input file.
#' @param dateTimeCurrent Date and time at the time the simulation began.
#' @noRd
# <<
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
##################################### calculationAlphaHelix() ######################################################################
# >>
calculationAlphaHelix <- function( df, sampleNames, sampleNamesUpdate, dateTimeCurrent ) {
# Performing Alpha-helix calculation for database ####
Err$prefix = "Alpha"
Err$note(0)
Err$note( "Performing Alpha-helix calculation for database..." )
dataBase_alpha = select( dataBase_alpha, c(1,2) )
num_Pro_aaa = unique( dataBase_alpha$id )
protein = vector()
num_aaa_pro_DB = vector()
pb_1 = winProgressBar( title = "progress bar",
min = 0,
max = length(num_Pro_aaa),
width = 300 )
i = 1
for( i in 1 : length(num_Pro_aaa) ) {
item = num_Pro_aaa[i]
proteins = filter( dataBase_alpha, id == item )
num_aaa_pro_DB_temp = length(proteins$id)
num_aaa_pro_DB = c( num_aaa_pro_DB_temp, num_aaa_pro_DB )
protein = c( unique(proteins$id), protein )
proteins = vector()
num_aaa_pro_DB_temp = vector()
setWinProgressBar( pb_1, i,
title = paste( 'Alpha-helix calculation for database ',
round( i/length(num_Pro_aaa)*100, 0 ),
"% done") )
}
Err$note("Done." )
close(pb_1)
# Calculating the number of amino acids for alpha ####
aaa = data.frame( id = protein,
num_aaa = num_aaa_pro_DB )
cal_for_database = left_join( dataBase_numOfAA,
aaa,
by = 'id' )
Sys.sleep(0.5)
# Samples ####
i = 1
for( i in 1 : length(sampleNames) ) {
Err$note( 0 )
Err$note( paste0("Working on sample: ", sampleNamesUpdate[i] ) )
Err$note( 1 )
# Peptides in the sample >>
Err$note( "Geting list of peptides..." )
temp = which( names(df) == sampleNames[i] )
sample_peptides = filter( df, df[,temp] > 0 )
Err$note("Done." )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'list of peptides in', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( sample_peptides,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
Err$note( 1 )
sample = paste( as.character(sampleNamesUpdate[i]), '_ peptides' )
assign( sample, sample_peptides )
# Proteins in the sample >>
Err$note( "Geting list of proteins..." )
sample_proteins = unique(sample_peptides$Proteins)
Err$note("Done." )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'list of proteins in', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( sample_proteins,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
Err$note( 1 )
sample = paste( as.character(sampleNamesUpdate[i]), '_ proteins' )
assign( sample, sample_proteins )
# Calculating alpha-helix coverage for samples >>
Err$note( "Calculating alpha-helix coverage for samples..." )
proteins_in_s = vector()
aa_in_s = vector()
aaa_in_s = vector()
pb_2 = winProgressBar( title = "progress bar",
min = 0,
max = length(sample_proteins),
width = 300 )
j = 1
for( j in 1 : length(sample_proteins) ) {
item = sample_proteins[j]
Pro_chunk = filter( sample_peptides, sample_peptides$Proteins == item )
k = 1
list_aa_s = vector()
for( k in 1 : length(Pro_chunk$Proteins) ) {
start = Pro_chunk$Start.position[k]
end = Pro_chunk$End.position[k]
list_aa_s_temp = seq(start:end)
list_aa_s_temp = list_aa_s_temp+start-1
list_aa_s = c( list_aa_s_temp, list_aa_s )
list_aa_s_temp = vector()
}
proteins_temp = item
proteins_in_s = c( proteins_temp, proteins_in_s )
proteins_temp = vector()
aa_in_s_temp = length( unique(list_aa_s) )
aa_in_s = c( aa_in_s_temp, aa_in_s )
aa_in_s_temp = vector()
protein_chunk_dataBase = filter( dataBase_alpha, id == item )
aaa_in_s_temp = unique(list_aa_s)%in%protein_chunk_dataBase$n
aaa_in_s_temp = sum(aaa_in_s_temp)
aaa_in_s = c( aaa_in_s_temp, aaa_in_s )
aaa_in_s_temp = vector()
results = data.frame( id = proteins_in_s,
num_amino_acids_in_sample = aa_in_s,
num_alpha_amino_acids_in_sample = aaa_in_s )
results = left_join( results, cal_for_database, by = 'id' )
setWinProgressBar( pb_2, j,
title = paste( 'Alpha-helix calculation for ',
sampleNames[i],
' ',
round( j/length(sample_proteins)*100, 0 ),
"% done") )
}
Err$note( "Done" )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'alpha helix analysis of', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( results,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
close(pb_2)
}
Err$reset()
return( invisible(NULL) )
}
# <<
##################################### calculationAlphaHelix() ######################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/calculationAlphaHelix.R |
####################################################################################################################################
####################################################################################################################################
# >>
#' @title calculationBetaSheet
#' @param df Dataframe for input file data.
#' @param sampleNames Names of the samples found in the input file.
#' @param sampleNamesUpdate Updated names of the samples found in the input file.
#' @param dateTimeCurrent Date and time at the time the simulation began.
#' @noRd
# <<
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
##################################### calculationBetaSheet() #######################################################################
# >>
calculationBetaSheet <- function( df, sampleNames, sampleNamesUpdate, dateTimeCurrent ) {
# Performing Beta-sheet calculation for database ####
Err$prefix = "Beta"
Err$note(0)
Err$note( "Performing Beta-sheet calculation for database..." )
dataBase_beta = select( dataBase_beta, c(1,2) )
num_Pro_baa = unique( dataBase_beta$id )
protein = vector()
num_baa_pro_DB = vector()
pb_1 = winProgressBar( title = "progress bar",
min = 0,
max = length(num_Pro_baa),
width = 300 )
i = 1
for( i in 1 : length(num_Pro_baa) ) {
item = num_Pro_baa[i]
proteins = filter( dataBase_beta, id == item )
num_baa_pro_DB_temp = length(proteins$id)
num_baa_pro_DB = c( num_baa_pro_DB_temp, num_baa_pro_DB )
protein = c( unique(proteins$id), protein )
proteins = vector()
num_baa_pro_DB_temp = vector()
setWinProgressBar( pb_1, i,
title = paste( 'Beta-sheet calculation for database ',
round( i/length(num_Pro_baa)*100, 0 ),
"% done") )
}
Err$note("Done." )
close(pb_1)
# Calculating the number of amino acids for beta ####
baa = data.frame( id = protein,
num_baa = num_baa_pro_DB )
cal_for_database = left_join( dataBase_numOfAA,
baa,
by = 'id' )
Sys.sleep(0.5)
# Samples ####
i = 1
for( i in 1 : length(sampleNames) ) {
Err$note( 0 )
Err$note( paste0("Working on sample: ", sampleNamesUpdate[i] ) )
Err$note( 1 )
# Peptides in the sample >>
Err$note( "Geting list of peptides..." )
temp = which( names(df) == sampleNames[i] )
sample_peptides = filter( df, df[,temp] > 0 )
Err$note("Done." )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'list of peptides in', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( sample_peptides,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
Err$note( 1 )
sample = paste( as.character(sampleNamesUpdate[i]), '_ peptides' )
assign( sample, sample_peptides )
# Proteins in the sample >>
Err$note( "Geting list of proteins..." )
sample_proteins = unique(sample_peptides$Proteins)
Err$note("Done." )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'list of proteins in', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( sample_proteins,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
Err$note( 1 )
sample = paste( as.character(sampleNamesUpdate[i]), '_ proteins' )
assign( sample, sample_proteins )
# Calculating beta-sheet coverage for samples >>
Err$note( "Calculating beta-sheet coverage for samples..." )
proteins_in_s = vector()
aa_in_s = vector()
baa_in_s = vector()
pb_2 = winProgressBar( title = "progress bar",
min = 0,
max = length(sample_proteins),
width = 300 )
j = 1
for( j in 1 : length(sample_proteins) ) {
item = sample_proteins[j]
Pro_chunk = filter( sample_peptides, sample_peptides$Proteins == item )
k = 1
list_aa_s = vector()
for( k in 1 : length(Pro_chunk$Proteins) ) {
start = Pro_chunk$Start.position[k]
end = Pro_chunk$End.position[k]
list_aa_s_temp = seq(start:end)
list_aa_s_temp = list_aa_s_temp+start-1
list_aa_s = c( list_aa_s_temp, list_aa_s )
list_aa_s_temp = vector()
}
proteins_temp = item
proteins_in_s = c( proteins_temp, proteins_in_s )
proteins_temp = vector()
aa_in_s_temp = length( unique(list_aa_s) )
aa_in_s = c( aa_in_s_temp, aa_in_s )
aa_in_s_temp = vector()
protein_chunk_dataBase = filter( dataBase_beta, id == item )
baa_in_s_temp = unique(list_aa_s)%in%protein_chunk_dataBase$n
baa_in_s_temp = sum(baa_in_s_temp)
baa_in_s = c( baa_in_s_temp, baa_in_s )
baa_in_s_temp = vector()
results = data.frame( id = proteins_in_s,
num_amino_acids_in_sample = aa_in_s,
num_beta_amino_acids_in_sample = baa_in_s )
results = left_join( results, cal_for_database, by = 'id' )
setWinProgressBar( pb_2, j,
title = paste( 'Beta-sheet calculation for ',
sampleNames[i],
' ',
round( j/length(sample_proteins)*100, 0 ),
"% done") )
}
Err$note( "Done" )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'beta sheet analysis of', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( results,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
close(pb_2)
}
Err$reset()
return( invisible(NULL) )
}
# <<
##################################### calculationBetaSheet() #######################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/calculationBetaSheet.R |
####################################################################################################################################
####################################################################################################################################
# >>
#' @title calculationChain
#' @param df Dataframe for input file data.
#' @param sampleNames Names of the samples found in the input file.
#' @param sampleNamesUpdate Updated names of the samples found in the input file.
#' @param dateTimeCurrent Date and time at the time the simulation began.
#' @noRd
# <<
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
##################################### calculationChain() ###########################################################################
# >>
calculationChain <- function( df, sampleNames, sampleNamesUpdate, dateTimeCurrent ) {
# Performing Alpha-helix calculation for database ####
Err$prefix = "Chain"
Err$note(0)
Err$note( "Performing chain calculation for database..." )
dataBase_chain = select( dataBase_chain, c(1,2) )
num_Pro_caa = unique( dataBase_chain$id )
protein = vector()
num_caa_pro_DB = vector()
pb_1 = winProgressBar( title = "progress bar",
min = 0,
max = length(num_Pro_caa),
width = 300)
i = 1
for( i in 1 : length(num_Pro_caa) ) {
item = num_Pro_caa[i]
proteins = filter( dataBase_chain, id == item )
num_caa_pro_DB_temp = length(proteins$id)
num_caa_pro_DB = c( num_caa_pro_DB_temp, num_caa_pro_DB )
protein = c( unique(proteins$id), protein )
proteins = vector()
num_caa_pro_DB_temp = vector()
setWinProgressBar( pb_1, i,
title = paste( 'chain calculation for database ',
round( i/length(num_Pro_caa)*100, 0 ),
"% done") )
}
Err$note("Done." )
close(pb_1)
# Calculating the number of amino acids for chain ####
caa = data.frame( id = protein,
num_caa = num_caa_pro_DB )
cal_for_database = left_join( dataBase_numOfAA,
caa,
by = 'id' )
Sys.sleep(0.5)
# Samples ####
i = 1
for( i in 1 : length(sampleNames) ) {
Err$note( 0 )
Err$note( paste0("Working on sample: ", sampleNamesUpdate[i] ) )
Err$note( 1 )
# Peptides in the sample >>
Err$note( "Geting list of peptides..." )
temp = which( names(df) == sampleNames[i] )
sample_peptides = filter( df, df[,temp] > 0 )
Err$note("Done." )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'list of peptides in', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( sample_peptides,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
Err$note( 1 )
sample = paste( as.character(sampleNamesUpdate[i]), '_ peptides' )
assign( sample, sample_peptides )
# Proteins in the sample >>
Err$note( "Geting list of proteins..." )
sample_proteins = unique(sample_peptides$Proteins)
Err$note("Done." )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'list of proteins in', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( sample_proteins,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
Err$note( 1 )
sample = paste( as.character(sampleNamesUpdate[i]), '_ proteins' )
assign( sample, sample_proteins )
# Calculating chain coverage for samples >>
Err$note( "Calculating chain coverage for samples..." )
proteins_in_s = vector()
aa_in_s = vector()
caa_in_s = vector()
pb_2 = winProgressBar( title = "progress bar",
min = 0,
max = length(sample_proteins),
width = 300 )
j = 1
for( j in 1 : length(sample_proteins) ) {
item = sample_proteins[j]
Pro_chunk = filter( sample_peptides, sample_peptides$Proteins == item )
k = 1
list_aa_s = vector()
for( k in 1 : length(Pro_chunk$Proteins) ) {
start = Pro_chunk$Start.position[k]
end = Pro_chunk$End.position[k]
list_aa_s_temp = seq(start:end)
list_aa_s_temp = list_aa_s_temp+start-1
list_aa_s = c( list_aa_s_temp, list_aa_s )
list_aa_s_temp = vector()
}
proteins_temp = item
proteins_in_s = c( proteins_temp, proteins_in_s )
proteins_temp = vector()
aa_in_s_temp = length( unique(list_aa_s) )
aa_in_s = c( aa_in_s_temp, aa_in_s )
aa_in_s_temp = vector()
protein_chunk_dataBase = filter( dataBase_chain, id == item )
caa_in_s_temp = unique(list_aa_s)%in%protein_chunk_dataBase$n
caa_in_s_temp = sum(caa_in_s_temp)
caa_in_s = c( caa_in_s_temp, caa_in_s )
caa_in_s_temp = vector()
results = data.frame( id = proteins_in_s,
num_amino_acids_in_sample = aa_in_s,
num_chain_amino_acids_in_sample = caa_in_s )
results = left_join( results, cal_for_database, by = 'id' )
setWinProgressBar( pb_2, j,
title = paste( 'Chain calculation for ',
sampleNames[i],
' ',
round( j/length(sample_proteins)*100, 0 ),
"% done") )
}
Err$note( "Done" )
nameFile = gsub( " ", "_", paste0( dateTimeCurrent, " ", 'chain analysis of', sampleNamesUpdate[i], '.csv' ), fixed = FALSE )
write.csv( results,
nameFile,
row.names = FALSE )
updateUserFileCreated( nameFile )
close(pb_2)
}
Err$reset()
return( invisible(NULL) )
}
# <<
##################################### calculationChain() ###########################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/calculationChain.R |
####################################################################################################################################
################################## exit ############################################################################################
# >>
exit <- function() {
opt = options(show.error.messages = FALSE)
on.exit(options(opt))
stop()
}
# <<
################################## exit ############################################################################################
####################################################################################################################################
####################################################################################################################################
################################## exit (old) ######################################################################################
# >>
# exit <- function() {
# .Internal(.invokeRestart(list(NULL, NULL), NULL))
# }
# <<
################################## exit (old) ######################################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/exit.R |
####################################################################################################################################
####################################################################################################################################
# >>
#' @title Alpha Helix Calculator
#' @description Form bottom-up proteomics data of proteins (peptides), this function determines the sections of proteins (in
#' percentage) with alpha-helix, structure.
#' @param pathFileInput Path of the input csv file generated from MaxQuant. \cr
#' \cr
#' MaxQuant is a quantitative proteomics software designed to analyze large mass-spectrometric data. The input of MaxQuant is a
#' raw file (.raw) from high-resolution mass spectrometers. After analysis of the raw file in MaxQuant, the program generates a
#' folder named “combined”. \cr
#' \cr
#' In this folder there is another folder named “txt” which contains many files with text format (.txt). One of the files called
#' “peptides” which is the input of the ypssc to calculate secondary structures. ypssc has been designed such a way that can
#' analyzed and extract information regarding the sample regardless of the name that user chosen for the sample.
#' @param pathDirOutput Path of the directory to which the output files will be generated.
#' @param ... (for developer use only)
#' @return The output of the program is a csv file (.csv) that contains 5 columns, and the number of rows depends on the number of
#' proteins in the sample. \cr
#' \cr
#' First column contains the ID of the identified alpha-helix proteins in the sample, second column contains the number of identified
#' amino acids from the corresponding protein, third column contains number of identified amino acids with alpha-helix structure,
#' fourth column contains the number of amino acids that the protein originally has in the SSDYP, and fifth column contains the
#' number of amino acids with alpha-helix structure that the protein originally has in the SSDYP. \cr
#' \cr
#' These columns should provide all information that the user needs to know about the protein and its structural information as
#' well as structural information about the parts of the protein that has been identified in the sample. \cr
#' \cr
#' In addition, it also generates 4 more '.csv' files. \cr
#' 1. The no. of proteins found in the sample. \cr
#' 2. The no. of peptides found in the sample. \cr
#' 3. The no. of amino acids for each protein in database. \cr
#' 4. It is the input file from MaxQuant that's been cleaned up for the sole purpose of calculating secondary structures.
#' @examples
#' \dontrun{
#' findAlpha( pathFileInput = "some/path/to/inputFile.csv",
#' pathDirOutput = "some/path/to/outputDir/" )
#'
#' findAlpha()
#' }
#' @seealso [`findSecondary`], [`findBeta`], [`findChain`]
#' @export
# <<
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
##################################### findAlpha() ##################################################################################
# >>
findAlpha = function( pathFileInput = NULL,
pathDirOutput = NULL, ... ) {
startTime = Sys.time()
originalWorkingDir = getwd()
if ( length(c(...)) != 0 ) { isTest = c(...)[1] } else { isTest = FALSE }
# Print intro >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$box( "Alpha Helix Calculator started..." )
# Checking if 'pathFileInput' is provided or exists >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathFileInput = checkFileInput( pathFileInput )
# Checking if 'pathDirOutput' is provided >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathDirOutput = checkDirOutput( pathDirOutput )
# Reading the input sample file >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dataFileInput = readFileInput( pathFileInput, isTest )
df = dataFileInput$df
sampleNames = dataFileInput$sampleNames
sampleNamesUpdate = dataFileInput$sampleNamesUpdate
# Creating output folder >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dateTimeCurrent = creatOutputDir( pathDirOutput, "alpha" )
# Removing the rows that are not needed >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
df = removeRows( df, dateTimeCurrent, isTest )
# Writing `dataBase_numOfAA` >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
write.csv( dataBase_numOfAA,
paste0( dateTimeCurrent, "_dataBase_numOfAA.csv" ),
row.names = FALSE )
# Alpha helix calculation for dataBase >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
calculationAlphaHelix( df, sampleNames, sampleNamesUpdate, dateTimeCurrent )
# End >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
updateUserSuccess(isTest)
endTime = Sys.time()
timeTaken = endTime - startTime
Err$note(0); Err$note( paste0( "Time taken for the ypssc run: ", format(timeTaken) ) )
Err$note(0); Err$note(0)
# Setting working directory back to original >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
setwd( originalWorkingDir )
return( invisible(NULL) )
}
# <<
##################################### findAlpha() ##################################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/findAlpha.R |
####################################################################################################################################
####################################################################################################################################
# >>
#' @title Beta Sheet Calculator
#' @description Form bottom-up proteomics data of proteins (peptides), this function determines the sections of proteins (in
#' percentage) with beta-sheet, structure.
#' @param pathFileInput Path of the input csv file generated from MaxQuant. \cr
#' \cr
#' MaxQuant is a quantitative proteomics software designed to analyze large mass-spectrometric data. The input of MaxQuant is a
#' raw file (.raw) from high-resolution mass spectrometers. After analysis of the raw file in MaxQuant, the program generates a
#' folder named “combined”. \cr
#' \cr
#' In this folder there is another folder named “txt” which contains many files with text format (.txt). One of the files called
#' “peptides” which is the input of the ypssc to calculate secondary structures. ypssc has been designed such a way that can
#' analyzed and extract information regarding the sample regardless of the name that user chosen for the sample.
#' @param pathDirOutput Path of the directory to which the output files will be generated.
#' @param ... (for developer use only)
#' @return The output of the program is a csv file (.csv) that contains 5 columns, and the number of rows depends on the number of
#' proteins in the sample. \cr
#' \cr
#' First column contains the ID of the identified alpha-helix proteins in the sample, second column contains the number of identified
#' amino acids from the corresponding protein, third column contains number of identified amino acids with secondary structure,
#' fourth column contains the number of amino acids that the protein originally has in the SSDYP, and fifth column contains the
#' number of amino acids with beta-sheet that the protein originally has in the SSDYP. \cr
#' \cr
#' These columns should provide all information that the user needs to know about the protein and its structural information as
#' well as structural information about the parts of the protein that has been identified in the sample. \cr
#' \cr
#' In addition, it also generates 4 more '.csv' files. \cr
#' 1. The no. of proteins found in the sample. \cr
#' 2. The no. of peptides found in the sample. \cr
#' 3. The no. of amino acids for each protein in database. \cr
#' 4. It is the input file from MaxQuant that's been cleaned up for the sole purpose of calculating secondary structures.
#' @examples
#' \dontrun{
#' findBeta( pathFileInput = "some/path/to/inputFile.csv",
#' pathDirOutput = "some/path/to/outputDir/" )
#'
#' findBeta()
#' }
#' @seealso [`findSecondary`], [`findAlpha`], [`findChain`]
#' @export
# <<
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
##################################### findBeta() ###################################################################################
# >>
findBeta = function( pathFileInput = NULL,
pathDirOutput = NULL, ... ) {
startTime = Sys.time()
originalWorkingDir = getwd()
if ( length(c(...)) != 0 ) { isTest = c(...)[1] } else { isTest = FALSE }
# Print intro >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$box( "Beta Sheet Calculator started..." )
# Checking if 'pathFileInput' is provided or exists >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathFileInput = checkFileInput( pathFileInput )
# Checking if 'pathDirOutput' is provided >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathDirOutput = checkDirOutput( pathDirOutput )
# Reading the input sample file >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dataFileInput = readFileInput( pathFileInput, isTest )
df = dataFileInput$df
sampleNames = dataFileInput$sampleNames
sampleNamesUpdate = dataFileInput$sampleNamesUpdate
# Creating output folder >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dateTimeCurrent = creatOutputDir( pathDirOutput, "beta" )
# Removing the rows that are not needed >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
df = removeRows( df, dateTimeCurrent, isTest )
# Writing `dataBase_numOfAA` >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
write.csv( dataBase_numOfAA,
paste0( dateTimeCurrent, "_dataBase_numOfAA.csv" ),
row.names = FALSE )
# Alpha helix calculation for dataBase >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
calculationBetaSheet( df, sampleNames, sampleNamesUpdate, dateTimeCurrent )
# End >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
updateUserSuccess(isTest)
endTime = Sys.time()
timeTaken = endTime - startTime
Err$note(0); Err$note( paste0( "Time taken for the ypssc run: ", format(timeTaken) ) )
Err$note(0); Err$note(0)
# Setting working directory back to original >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
setwd( originalWorkingDir )
return( invisible(NULL) )
}
# <<
##################################### findBeta() ###################################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/findBeta.R |
####################################################################################################################################
####################################################################################################################################
# >>
#' @title Chain Calculator
#' @description Form bottom-up proteomics data of proteins (peptides), this function determines the sections of proteins (in
#' percentage) with primary, structure.
#' @param pathFileInput Path of the input csv file generated from MaxQuant. \cr
#' \cr
#' MaxQuant is a quantitative proteomics software designed to analyze large mass-spectrometric data. The input of MaxQuant is a
#' raw file (.raw) from high-resolution mass spectrometers. After analysis of the raw file in MaxQuant, the program generates a
#' folder named “combined”. \cr
#' \cr
#' In this folder there is another folder named “txt” which contains many files with text format (.txt). One of the files called
#' “peptides” which is the input of the ypssc to calculate secondary structures. ypssc has been designed such a way that can
#' analyzed and extract information regarding the sample regardless of the name that user chosen for the sample.
#' @param pathDirOutput Path of the directory to which the output files will be generated.
#' @param ... (for developer use only)
#' @return The output of the program is a csv file (.csv) that contains 5 columns, and the number of rows depends on the number of
#' proteins in the sample. \cr
#' \cr
#' First column contains the ID of the identified alpha-helix proteins in the sample, second column contains the number of identified
#' amino acids from the corresponding protein, third column contains number of identified amino acids with secondary structure,
#' fourth column contains the number of amino acids that the protein originally has in the SSDYP, and fifth column contains the
#' number of amino acids in chain structure that the protein originally has in the SSDYP. \cr
#' \cr
#' These columns should provide all information that the user needs to know about the protein and its structural information as
#' well as structural information about the parts of the protein that has been identified in the sample. \cr
#' \cr
#' In addition, it also generates 4 more '.csv' files. \cr
#' 1. The no. of proteins found in the sample. \cr
#' 2. The no. of peptides found in the sample. \cr
#' 3. The no. of amino acids for each protein in database. \cr
#' 4. It is the input file from MaxQuant that's been cleaned up for the sole purpose of calculating secondary structures.
#' @examples
#' \dontrun{
#' findChain( pathFileInput = "some/path/to/inputFile.csv",
#' pathDirOutput = "some/path/to/outputDir/" )
#'
#' findChain()
#' }
#' @seealso [`findSecondary`], [`findAlpha`], [`findBeta`]
#' @export
# <<
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
##################################### findChain() ##################################################################################
# >>
findChain <- function( pathFileInput = NULL,
pathDirOutput = NULL, ... ) {
startTime = Sys.time()
originalWorkingDir = getwd()
if ( length(c(...)) != 0 ) { isTest = c(...)[1] } else { isTest = FALSE }
# Print intro >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$box( "Chain Calculator started..." )
# Checking if 'pathFileInput' is provided or exists >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathFileInput = checkFileInput( pathFileInput )
# Checking if 'pathDirOutput' is provided >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathDirOutput = checkDirOutput( pathDirOutput )
# Reading the input sample file >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dataFileInput = readFileInput( pathFileInput, isTest )
df = dataFileInput$df
sampleNames = dataFileInput$sampleNames
sampleNamesUpdate = dataFileInput$sampleNamesUpdate
# Creating output folder >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dateTimeCurrent = creatOutputDir( pathDirOutput, "chain" )
# Removing the rows that are not needed >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
df = removeRows( df, dateTimeCurrent, isTest )
# Writing `dataBase_numOfAA` >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
write.csv( dataBase_numOfAA,
paste0( dateTimeCurrent, "_dataBase_numOfAA.csv" ),
row.names = FALSE )
# Chain calculation for dataBase >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
calculationChain ( df, sampleNames, sampleNamesUpdate, dateTimeCurrent )
# End >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
updateUserSuccess(isTest)
endTime = Sys.time()
timeTaken = endTime - startTime
Err$note(0); Err$note( paste0( "Time taken for the ypssc run: ", format(timeTaken) ) )
Err$note(0); Err$note(0)
# Setting working directory back to original >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
setwd( originalWorkingDir )
return( invisible(NULL) )
}
# <<
##################################### findChain() ##################################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/findChain.R |
####################################################################################################################################
####################################################################################################################################
# >>
#' @title Secondary Structure Calculator
#' @description Form bottom-up proteomics data of proteins (peptides), this function determines the sections of proteins (in
#' percentage) with secondary structure like alpha-helix, beta sheet; also determines the parts that has primary structure.
#' @param pathFileInput Path of the input csv file generated from MaxQuant. \cr
#' \cr
#' MaxQuant is a quantitative proteomics software designed to analyze large mass-spectrometric data. The input of MaxQuant is a
#' raw file (.raw) from high-resolution mass spectrometers. After analysis of the raw file in MaxQuant, the program generates a
#' folder named “combined”. \cr
#' \cr
#' In this folder there is another folder named “txt” which contains many files with text format (.txt). One of the files called
#' “peptides” which is the input of the ypssc to calculate secondary structures. ypssc has been designed such a way that can
#' analyzed and extract information regarding the sample regardless of the name that user chosen for the sample.
#' @param pathDirOutput Path of the directory to which the output files will be generated.
#' @param ... (for developer use only)
#' @import dplyr
#' @import readxl
#' @import stringr
#' @import eulerr
#' @import Peptides
#' @import utils
#' @import svDialogs
#' @import tcltk
#' @return The output of the program is a csv file (.csv) that contains 5 columns, and the number of rows depends on the number of
#' proteins in the sample. \cr
#' \cr
#' First column contains the ID of the identified alpha-helix proteins in the sample, second column contains the number of identified
#' amino acids from the corresponding protein, third column contains number of identified amino acids with secondary structure,
#' fourth column contains the number of amino acids that the protein originally has in the SSDYP, and fifth column contains the
#' number of amino acids with secondary structure that the protein originally has in the SSDYP. \cr
#' \cr
#' These columns should provide all information that the user needs to know about the protein and its structural information as
#' well as structural information about the parts of the protein that has been identified in the sample. \cr
#' \cr
#' In addition, it also generates 4 more '.csv' files. \cr
#' 1. The no. of proteins found in the sample. \cr
#' 2. The no. of peptides found in the sample. \cr
#' 3. The no. of amino acids for each protein in database. \cr
#' 4. It is the input file from MaxQuant that's been cleaned up for the sole purpose of calculating secondary structures.
#' @examples
#' \dontrun{
#' findSecondary( pathFileInput = "some/path/to/inputFile.csv",
#' pathDirOutput = "some/path/to/outputDir/" )
#'
#' findSecondary()
#' }
#' @seealso [`findAlpha`], [`findBeta`], [`findChain`]
#' @export
# <<
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
##################################### findSecondary() ##############################################################################
# >>
findSecondary <- function( pathFileInput = NULL,
pathDirOutput = NULL, ... ) {
startTime = Sys.time()
originalWorkingDir = getwd()
if ( length(c(...)) != 0 ) { isTest = c(...)[1] } else { isTest = FALSE }
# Print intro >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
Err$box( "Secondary Structure Calculator started..." )
# Checking if 'pathFileInput' is provided or exists >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathFileInput = checkFileInput( pathFileInput )
# Checking if 'pathDirOutput' is provided >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
pathDirOutput = checkDirOutput( pathDirOutput )
# Reading the input sample file >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dataFileInput = readFileInput( pathFileInput, isTest )
df = dataFileInput$df
sampleNames = dataFileInput$sampleNames
sampleNamesUpdate = dataFileInput$sampleNamesUpdate
# Creating output folder >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
dateTimeCurrent = creatOutputDir( pathDirOutput, "secondary" )
# Removing the rows that are not needed >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
df = removeRows( df, dateTimeCurrent, isTest )
# Writing `dataBase_numOfAA` >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
write.csv( dataBase_numOfAA,
paste0( dateTimeCurrent, "_dataBase_numOfAA.csv" ),
row.names = FALSE )
# Alpha helix calculation for dataBase >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
calculationAlphaHelix( df, sampleNames, sampleNamesUpdate, dateTimeCurrent )
# Beta-sheet calculation for dataBase >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
calculationBetaSheet ( df, sampleNames, sampleNamesUpdate, dateTimeCurrent )
# Chain calculation for dataBase >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
calculationChain ( df, sampleNames, sampleNamesUpdate, dateTimeCurrent )
# End >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
updateUserSuccess(isTest)
endTime = Sys.time()
timeTaken = endTime - startTime
Err$note(0); Err$note( paste0( "Time taken for the ypssc run: ", format(timeTaken) ) )
Err$note(0); Err$note(0)
# Setting working directory back to original >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
setwd( originalWorkingDir )
return( invisible(NULL) )
}
# <<
##################################### findSecondary() ##############################################################################
####################################################################################################################################
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/findSecondary.R |
packageName = "ypssc"
####################################################################################################################################
################################## ypssc-package-doc ###############################################################################
# >>
#'
#' @details
#'
#-----------------------------------------------------------------------------------------------------------------------------------
#' \describe{\item{_**What is `ypssc`?**_}{
#-----------------------------------------------------------------------------------------------------------------------------------
#'
#' **`ypssc`** is an extension for NetSurfP-2.0 which is specifically designed to analyze the results of bottom-up proteomics that
#' is primarily analyzed with MaxQuant. We call this tool _**Yeast Proteome Secondary Structure Calculator**_ (**`ypssc`**).
#'
#' \out{<hr>}
#'
#' **Functionalities in `ypssc`**:
#'
#' 1. [`findSecondary`]
#'
#' 2. [`findAlpha`]
#'
#' 3. [`findBeta`]
#'
#' 4. [`findChain`]
#'
#' (Click the above links to find out more about these functionalities and their usage.)
#'
#' \out{<hr>}
#'
#' **Note:** NetSurfP
#'
#' - NetSurfP-1.0 is a prediction tool for secondary structures using neural network.
#'
#' - NetSurfP-2.0 is an extension of NetSurfP-1.0 which utilized deep neural network to predict secondary structures with the
#' accuracy of 85%. In addition to accuracy, this tool presents reduced computational time compared to other methods.
#'
#' - NetSurfP-2.0 is designed to be user friendly and efficient in calculation time of large number of sequences. In addition to
#' that the output of the calculation is available in many formats that would make further data analysis even easier.
#'
#' - NetSurfP-2.0 is available as a web-sever (http://www.cbs.dtu.dk/services/NetSurfP-2.0/) which can accept up to 4000 sequences
#' at a time.
#'
#' }}
#'
#' \out{<hr>}
#'
#-----------------------------------------------------------------------------------------------------------------------------------
#' \describe{\item{_**Why this package?**_}{
#-----------------------------------------------------------------------------------------------------------------------------------
#'
#' This tool is designed to process large number of yeast peptides that produced as a results of whole yeast cell proteome digestion
#' and provide a coherent picture of secondary structure of proteins. NetSurfP-2.0 is not designed to do this task.
#'
#' \out{<hr>}
#'
#' **Drawbacks of NetSurfP-2.0**
#'
#' - First, NetSurfP-2.0 is not designed to accept as many peptides at once, therefore the process of uploading the sequences and
#' waiting for the calculations to be complete is extremely time consuming.
#'
#' - Second, even if all sequences uploaded successfully and the results are back, it would be almost impossible to combine the
#' results that have been produced for each individual peptide (hundreds of thousands of spread sheets) to get a coherent
#' picture of the secondary structure of the proteins.
#'
#' \out{<hr>}
#'
#' **Advantages of `ypssc`**
#'
#' - **`ypssc`**, on one hand benefits forms the accuracy of NetSurfP-2.0 to calculate secondary structure and on the other hand
#' address the issue of analyzing so many peptides with NetSurfP-2.0 by eliminating the need for direct analysis of the peptides
#' from bottom-up proteomics.
#'
#' - Instead of direct analysis of peptides by NetSurfP-2.0 which raises the problem of combining the results of peptides to
#' proteins, the whole yeast proteome has been analyzed once by NetSurfP-2.0 and kept as Secondary Structure Database for Yeast
#' Proteome (SSDYP). Then the peptides form the experiment are matched and compared to this database to extract secondary
#' structure of the peptides.
#'
#' }}
#'
#' \out{<hr>}
#'
#-----------------------------------------------------------------------------------------------------------------------------------
#' \describe{\item{_**Methodology**_}{
#-----------------------------------------------------------------------------------------------------------------------------------
#'
#' The SSDYP contains structural information for all amino acids of whole yeast proteome (Over 3000,000 amino acids) which contains
#' over 6700 proteins. For a hypothetical protein, the SSDYP contains the ID of the protein, amino acids with numbers and structural
#' information for each amino acid. Focusing on the hypothetical protein, in the real sample, there are many peptides identified
#' from the hypothetical protein. **`ypssc`** first finds all the peptides that belongs to the hypothetical protein and arrange them
#' based on the numbers of the amino acids; then it removes the parts of the protein that have been identified more than once in
#' multiple peptides and collapses the population of identified peptides in the sample into one sequence that represents the
#' coverage of the hypothetical protein. The result would show that which part of the protein is identified, and which part is
#' missing. Then, **`ypssc`** matches the the sequence that identified in the sample with SSDYP to find the structural information
#' about amino acids.
#'
#' }}
#'
#' \out{<hr>}
#'
####################################################################################################################################
#'
#' @seealso [`findSecondary`], [`findAlpha`], [`findBeta`], [`findChain`]
#'
# <<
################################## ypssc-package-doc ###############################################################################
####################################################################################################################################
#'
#' @keywords internal
"_PACKAGE"
# The following block is used by usethis to automatically manage
# roxygen namespace tags. Modify with care!
## usethis namespace: start
## usethis namespace: end
NULL
| /scratch/gouwar.j/cran-all/cranData/ypssc/R/ypssc-package.R |
# Class Definitions
# This source MUST be loaded first
# Class 'yuima.pars'
# parameter object included in 'yuima.model'
setClass("model.parameter",representation(all="character",
common="character",
diffusion="character",
drift="character",
jump="character",
measure="character",
# Insert parameters for starting conditions
xinit="character"
)
)
# Class 'yuima.model'
setClass("yuima.model",representation(drift="expression",
diffusion="list",
hurst="ANY",
jump.coeff="list",
#jump.coeff="expression",
measure="list",
measure.type="character",
parameter="model.parameter",
state.variable="character",
jump.variable="character",
time.variable="character",
noise.number="numeric",
equation.number="numeric",
dimension="numeric",
solve.variable="character",
# xinit="numeric",
xinit="expression",
J.flag="logical"
)
)
# Class 'carma.info'
setClass("carma.info",
representation(p="numeric",
q="numeric",
loc.par="character",
scale.par="character",
ar.par="character",
ma.par="character",
lin.par="character",
Carma.var="character",
Latent.var="character",
XinExpr="logical")
)
# Class 'yuima.carma'
setClass("yuima.carma",
representation(info="carma.info"),
contains="yuima.model")
# Class Compound Poisson
setClass("yuima.poisson", contains="yuima.model")
# Class 'yuima.data'
# we want yuimaS4 to use any class of data as input
# the original data will be stored in OrigData
# we convert these objects internally to "zoo" object
# in the future, we may want to use more flexible
# classes
setClass("yuima.data", representation(original.data = "ANY",
zoo.data = "ANY"
)
)
# Class 'yuima.sampling'
# sampling is now empty, but should give informations on the sampling
# type, rate, deltas, etc.
setClass("yuima.sampling", representation(Initial = "numeric",
Terminal = "numeric",
n = "numeric",
delta = "numeric",
grid = "ANY",
random = "ANY",
regular = "logical",
sdelta = "numeric",
sgrid = "ANY",
oindex = "ANY",
interpolation = "character"
)
)
# Class 'yuima.functional'
# functional model used in 'asymptotic term' procedure
setClass("yuima.functional", representation(F = "ANY",
f = "list",
xinit = "numeric",
e = "numeric"
)
)
# Class 'yuima'
# this is the principal class of yuima project. It may contain up to
# three slots for now: the data, the model and the sampling
setClass("yuima.characteristic", representation(equation.number = "numeric",
time.scale = "numeric"
)
)
setClass("yuima", representation(data = "yuima.data",
model = "yuima.model",
sampling = "yuima.sampling",
characteristic = "yuima.characteristic",
functional = "yuima.functional"
)
)
# Class yuima.carma.qmle
setClass("yuima.carma.qmle",representation(Incr.Lev = "ANY",
model = "yuima.carma",
logL.Incr = "ANY"
),
contains="mle"
)
setClass("yuima.qmle",representation(
model = "yuima.model"),
contains="mle"
)
setClass("yuima.CP.qmle",representation(Jump.times = "ANY",
Jump.values = "ANY",
X.values = "ANY",
model = "yuima.model",
threshold="ANY"),
contains="mle"
)
setClass("summary.yuima.carma.qmle",representation(MeanI = "ANY",
SdI = "ANY",
logLI = "ANY",
TypeI = "ANY",
NumbI = "ANY",
StatI ="ANY",
model = "yuima.carma",
Additional.Info = "ANY"),
contains="summary.mle"
)
setClass("summary.yuima.CP.qmle",
representation(NJ = "ANY",
MeanJ = "ANY",
SdJ = "ANY",
MeanT = "ANY",
Jump.times = "ANY",
Jump.values = "ANY",
X.values = "ANY",
model = "yuima.model",
threshold = "ANY"),
contains="summary.mle"
)
setClass("summary.yuima.qmle",
representation(
model = "yuima.model",
threshold = "ANY",
Additional.Info = "ANY"),
contains="summary.mle"
)
# The yuima.carma.qmle extends the S4 class "mle". It contains three slots: Estimated Levy,
# The description of the carma model and the mle.
| /scratch/gouwar.j/cran-all/cranData/yuima/R/AllClasses.R |
is.CarmaHawkes<-function(obj){
if(is(obj,"yuima"))
return(is(obj@model, "yuima.carmaHawkes"))
if(is(obj,"yuima.model"))
return(is(obj, "yuima.carmaHawkes"))
return(FALSE)
}
# CARMA Hawkes Utilities
Atilde<-function(a,b){
# a <- [a_1,...a_p]
# b <- [b_0,...,b_{p-1}]
d <- length(a)
btrue<-numeric(length =d)
btrue[1:length(b)]<-b
lastrow <- btrue-rev(a)
if(d>1){
A <- cbind(0,diag(1,d-1,d-1))
Atilde <-rbind(A,lastrow)
}else{
Atilde <- as.matrix(lastrow)
}
rownames(Atilde) <- rep(" ",d)
return(Atilde)
}
myebold<-function(d){
res <- matrix(0, d,1)
res[d]<-1
return(res)
}
bbold<-function(b,d){
btrue<-numeric(length =d)
btrue[1:length(b)]<-b
return(btrue)
}
Atildetilde<-function(a,b,p){
res <- matrix(0, p*(p+1)/2, p*(p+1)/2)
aaa<- length(b)
btrue<-numeric(length =p)
btrue[1:aaa]<-b
b<-btrue
for(j in c(1:p)){
for(i in c(1:p)){
dimrow <- p-j+1
dimcol <- p-i+1
if(dimrow==dimcol){
#DMat<- Matr(0,dimrow,dimcol)
posdf<- j*p-sum(c(0:(j-1)))
if(dimrow!=1){
id<-matrix(0,dimrow,dimcol)
id[1,2]<-1
DMat<-Atilde(a=a[1:dimrow],b[j:aaa]) + id
}else{
DMat<- as.matrix(2*tail(btrue-rev(a),1L))
}
res[(posdf-dimrow+1):posdf,(posdf-dimrow+1):posdf]<-DMat
}
if(dimrow<dimcol){
posdfcol<- i*p-sum(c(0:(i-1)))
posdfrow<- j*p-sum(c(0:(j-1)))
LMat<- matrix(0,dimrow,dimcol)
if(dimrow!=1){
LMat[dim(LMat)[1],j-i+1]<-b[i]-a[p-i+1]
}else{
LMat[dim(LMat)[1],j-i+1]<-2*(b[i]-a[p-i+1])
}
res[(posdfrow-dimrow+1):posdfrow,(posdfcol-dimcol+1):posdfcol]<-LMat
}
if(dimrow==dimcol+1){
posdfcol<- i*p-sum(c(0:(i-1)))
posdfrow<- j*p-sum(c(0:(j-1)))
UMat<- rbind(0,diag(dimcol))
res[(posdfrow-dimrow+1):posdfrow,(posdfcol-dimcol+1):posdfcol]<-UMat
}
}
}
return(res)
}
BboldFunct<-function(b,p){
aaa<- length(b)
btrue<-numeric(length =p)
btrue[1:aaa]<-b
b<-btrue
#Bbold[1,]<-b
if(p>1){
Bbold<- diag(rep(b[1],p))
Bbold[1,]<-b
for(i in c(2:p)){
A0<-matrix(0,i-1,p-i+1)
if(p-i+1!=1){
Ai<-diag(rep(b[i],p-i+1))
}else{Ai <- as.matrix(b[i])}
Ai[1,]<-b[i:p]
dumA <- rbind(A0,Ai)
Bbold<- cbind(Bbold,dumA)
}
}else{
Bbold<-as.matrix(b)
}
return(Bbold)
}
Ctilde <- function(mu,b,p){
if(p>1){
Ctilde <- matrix(0,p,p)
Ctilde[p,1] <- mu
for(j in c(1:(p-1))){
dum<- matrix(0,p-j,p)
dum[p-j,j+1]<- mu
Ctilde<- rbind(Ctilde,dum)
}
aaa<- length(b)
btrue<-numeric(length =p)
btrue[1:aaa]<-b
dumVec <- numeric(length =p)
dumVec[p]<- 2*mu
vect <- btrue+dumVec
Ctilde[p*(p+1)/2,]<- vect
}else{
Ctilde <- as.matrix(b+2*mu)
}
return(Ctilde)
}
ExpIncr<-function(mu,b,a,X0,t0,ti1,ti2){
At<-Atilde(a,b)
Ainv<-solve(At)
d <- length(a)
ebold <-myebold(d)
bb<-bbold(b,d)
term1 <-t(bb)%*%Ainv
res <- mu*(1-term1%*%ebold)*(ti2-ti1)
res <- res+term1%*%(expm(At*(ti2-t0))-expm(At*(ti1-t0)))%*%(X0+Ainv%*%ebold*mu)
return(res)
}
tripletExpInt <- function(A11,A12,A22,A23,A33,T1){
# dA <- dim(A)
# dB <- dim(B)
# bigA<- cbind(A,C)
# dummy <-matrix(0,dB[1],dA[2])
# big1<- cbind(dummy,B)
# bigA<-rbind(bigA,big1)
dA11 <- dim(A11)
dA12 <- dim(A12)
dA22<-dim(A22)
dA23 <- dim(A23)
dA33 <- dim(A33)
dummy <-matrix(0,dA11[1],dA23[2])
bigA<- cbind(A11,A12,dummy)
dummy <-matrix(0,dA22[1],dA23[2])
big1 <- cbind(dummy,A22,A23)
bigA<-rbind(bigA,big1)
dummy<- matrix(0,dA33[1],dA11[2]+dA22[2])
big1 <- cbind(dummy,A33)
bigA<-rbind(bigA,big1)
return(bigA)
#res <- expm(bigA*T1)[1:dA[1], 1:dB[2]+dA[2]]
}
makeSymm <- function(m) {
m[upper.tri(m)] <- t(m)[upper.tri(m)]
return(m)
}
doubleExpInt <- function(A,C,B,T1){
dA <- dim(A)
dB <- dim(B)
bigA<- cbind(A,C)
dummy <-matrix(0,dB[1],dA[2])
big1<- cbind(dummy,B)
bigA<-rbind(bigA,big1)
res <- expm(bigA*T1)[1:dA[1], 1:dB[2]+dA[2]]
}
VtrillX0 <- function(X0, Att, At, Ct, mu, p, t0=0, T1){
e<- matrix(0,p,1)
e[p,1]<-1
et <- matrix(0,p*(p+1)/2,1)
et[p*(p+1)/2,1]<-1
XX0<- as.matrix(X0)%*%t(as.matrix(X0))
vtXX0<-as.matrix(XX0[lower.tri(XX0,T)])
AttInv<-solve(Att)
AtInv <-solve(At)
term1 <- expm(Att*(T1-t0))%*%(vtXX0+mu*AttInv%*%et-mu*AttInv%*%Ct%*%AtInv%*%e )# ->0 as T->+\infty
term2 <- mu*AttInv%*%Ct%*%AtInv%*%e - mu*AttInv%*%et
B12<-doubleExpInt(A=Att,C=Ct,B=At,T1=T1)
term3 <- B12%*%expm(-At*t0)%*%(X0+AtInv%*%e*mu)
return(list(res =term1+term2+term3, term1=term1, term2=term2, term3=term3))
}
gfunct <- function(a,b,mu){
p<-length(a)
At<-Atilde(a,b)
eb<-myebold(p)
AtInv <- solve(At)
Att <- Atildetilde(a,b,p)
AttInv <- solve(Att)
etilde <- myebold(p*(p+1)/2)
B <- BboldFunct(b,p)
Ct <- Ctilde(mu,b,p)
aaa <- length(b)
btrue<-numeric(length =p)
btrue[1:aaa]<-b
b<-btrue
const <- AtInv*mu
Term1 <- as.numeric(t(b)%*%AtInv%*%eb)
res <- eb*Term1-eb+AtInv%*%eb*mu*Term1+B%*%AttInv%*%(etilde-Ct%*%AtInv%*%eb)
return(mu*AtInv%*%res)
}
# Function For simulation of the trajectories
S_Kfunction <- function(S_old, T_k, T_old, A, Id){
res<- expm(A*(T_k-T_old))%*%(S_old + Id)
return(res)
}
S_KfunctionSim <- function(S_old, T_k, T_old, A, Id){
res<- expm(A*(T_k-T_old))%*%(S_old ) + Id
return(res)
}
ConditionForSimul <-function(x,U,S_k, T_k, A, Ainv, Id, bbold1, ebold1, mu, t0=0, X0){
res0 <- mu*(x-T_k)+t(bbold1)%*%expm(A*(T_k-t0))%*%(Ainv%*%(expm(A*(x-T_k))-Id)%*%X0)
res0 <-res0+t(bbold1)%*%S_k%*%(Ainv%*%(expm(A*(x-T_k))-Id)%*%ebold1)
res<-log(U)+as.numeric(res0)
return(res)
}
simulateCarmaHawkes <-function(mu,b,a,X0,t0=0,FinalTime){
p<- length(a)
A <- Atilde(a, numeric(length =p))
Ainv <- solve(A)
bbold1 <- bbold(b,p)
ebold1 <- myebold(p)
JumpTime <- NULL
U<-runif(1)
JumpTime <- -log(U)/mu
if(JumpTime<FinalTime){
Cond<-TRUE
}else{
return(NULL)
}
S_old <- diag(1,p,p)
Id <- diag(1,p,p)
T_old<-JumpTime
S_k <- S_old
T_k <- JumpTime
while(Cond){
U<-runif(1)
# S_old <-S_Kfunction(S_k, T_k, T_old, A, Id)
S_k <-S_KfunctionSim(S_k, T_k, T_old, A, Id)
T_old <- T_k
res<-uniroot(f=ConditionForSimul,interval=c(T_k, 10*FinalTime),
U=U,S_k=S_k, T_k=T_k,
A=A, Ainv=Ainv, Id=Id,
bbold1=bbold1, ebold1=ebold1, mu=mu,
X0=X0)
T_k<-res$root
if(T_k<=FinalTime){
JumpTime<-c(JumpTime,T_k)
#cat("\n",T_k)
f_u<-ConditionForSimul(x=10*FinalTime,U,S_k, T_k, A, Ainv, Id, bbold1, ebold1, mu, t0=0, X0)
f_l<-ConditionForSimul(x=T_k,U,S_k, T_k, A, Ainv, Id, bbold1, ebold1, mu, t0=0, X0)
if(f_u*f_l>=0){
Cond=FALSE
# cat("\n vedi ", T_k)
}
}else{
Cond <- FALSE
}
}
#CountProc <- 1:length(JumpTime)
JumpTime<- c(0,JumpTime)
return(JumpTime)
}
aux.simulateCarmaHawkes<- function(object, true.parameter){
model <- object@model
ar.par <- true.parameter[model@[email protected]]
ma.par <- true.parameter[model@[email protected]]
if(!model@info@XinExpr){
X0 <- rep(0,model@info@p)
}else{
yuima.stop("X0 will be available as soon as possible")
}
mu <- true.parameter[model@[email protected]]
t0 <- object@sampling@Initial[1]
FinalTime <- object@sampling@Terminal[1]
res <- simulateCarmaHawkes(mu = mu,b = ma.par,a = ar.par,
X0 = X0,t0 = t0, FinalTime = FinalTime)
numb<-length(res)
if(length(object@model@[email protected])==0){
param <- 1
names(param)<- object@model@[email protected]
Nt<-cumsum(c(0,rand(object@model@measure$df, n=numb, param=param)))
}else{
yuima.stop("Jump size different from 1 will be available as soon as possible")
}
Nt<-matrix(Nt)
colnames(Nt)<-object@model@[email protected]
res1<-zoo(x=Nt, order.by=res)
mydata <- setData(original.data = res1)
obsgrid <- na.approx(res1,xout=object@sampling@grid[[1]], method ="constant")
[email protected][[1]]<-obsgrid
object@data <- mydata
object@[email protected] <- object@model@[email protected] # Check Again
return(object)
}
SimThinAlg <- function(x,FinalT, p, q){
mu0<-x[1]
a0<-x[1:p+1]
b0<-x[1:(q+1)+p+1]
b0 <- bbold(b0,p)
A <- Atilde(a0, numeric(length =p))
eigenvalues <- sort(eigen(A)$values,decreasing = TRUE)
dumexp <- 1:p-1
S <- kronecker(t(eigenvalues),as.matrix(dumexp),"^")
#S_new%*%diag(eigenvalues)%*%solve(S_new)
#
coef<-as.matrix(sqrt(sum(abs(t(b0)%*%S)^2))*sqrt(sum(abs(solve(S)%*%myebold(p))^2)))
expcoef <- as.matrix(-max(Re(eigenvalues)))
# Initialize
JumpTime <- NA
s <- 0
n <- 0
U<-runif(1)
JumpTime[1] <- -log(U)/mu0
S_k <- diag(1,p,p)
Id <- diag(1,p,p)
S_k_H <- diag(1)
Id_H <- diag(1)
s <- s+ JumpTime[1]
T_old <- 0
T_k <- JumpTime[1]
S_k <-S_KfunctionSim(S_k, T_k, T_old, A, Id)
S_k_H <-S_KfunctionSim(S_k_H, T_k, T_old, -expcoef, Id_H)
bbold1 <- bbold(b0,p)
ebold1 <- myebold(p)
n<-1
#i=0
while(s<FinalT){
U<-runif(1)
# S_old <-S_Kfunction(S_k, T_k, T_old, A, Id)
lambda_k_bar <- as.numeric(mu0+exp(-expcoef*(s-T_k))*coef*S_k_H)
omega <- -log(U)/lambda_k_bar
s <- s+omega
D <- runif(1)
lambda_k <- mu0+ as.numeric(t(bbold1)%*%expm(A*(s-T_k))%*%S_k%*%ebold1)
if(lambda_k_bar*D<lambda_k){
n<-n+1
T_old <- T_k
T_k <- s
JumpTime <- c(JumpTime, T_k)
S_k <-S_KfunctionSim(S_k, T_k, T_old, A, Id)
S_k_H <-S_KfunctionSim(S_k_H, T_k, T_old, -expcoef, Id_H)
}
#i<-i+1
# cat("\n",i)
}
if(T_k <=FinalT){
res <- zoo(0:n,order.by = c(0,JumpTime))
}else{
JumpTime <- JumpTime[-n]
res <- zoo(1:n-1, order.by =c(0,JumpTime))
}
return(res)
}
aux.simulateCarmaHawkes_thin<- function(object, true.parameter){
model <- object@model
p <- length(model@[email protected])
q <- length(model@[email protected])
if(!model@info@XinExpr){
X0 <- rep(0,p)
}else{
yuima.stop("X0 will be available as soon as possible")
}
# mu <- true.parameter[model@[email protected]]
# t0 <- object@sampling@Initial[1]
true.parameter <- true.parameter[c(model@[email protected],model@[email protected],model@[email protected])]
FinalTime <- object@sampling@Terminal[1]
res <- SimThinAlg(x=true.parameter,FinalT=FinalTime, p = p, q = q-1)
numb<-length(res)
if(length(object@model@[email protected])==0){
param <- 1
names(param)<- object@model@[email protected]
Nt<-cumsum(c(0,rand(object@model@measure$df, n=numb, param=param)))
}else{
yuima.stop("Jump size different from 1 will be available as soon as possible")
}
Nt<-matrix(Nt)
colnames(Nt)<-object@model@[email protected]
res1<-zoo(x=Nt, order.by=index(res))
mydata <- setData(original.data = res1)
obsgrid <- na.approx(res1,xout=object@sampling@grid[[1]], method ="constant")
[email protected][[1]]<-obsgrid
object@data <- mydata
object@[email protected] <- object@model@[email protected] # Check Again
return(object)
}
Int_LikelihoodCarmaHawkes <- function(x,p,q,JumpTime,T_k,
numbOfJump,
t0 = 0, Id = diag(p),
X0 = matrix(0,p),
display = FALSE){
mu<-x[1]
a<-x[1:p+1]
b<-x[1:(q+1)+p+1]
A <- Atilde(a,rep(0,p))
InvA <- solve(A)
bbold1 <- bbold(b,p)
ebold1 <- myebold(p)
res0<-mu*(T_k-t0)
dum <- t(bbold1)%*%InvA
res1 <- dum%*%(expm(A*(T_k-t0))-Id)%*%X0
lambda<-numeric(length=numbOfJump)
S<-Id*0 #S_Kfunction(Id, T_k=JumpTime[1], JumpTime[1], A, Id) hawkes
#S<-S_Kfunction(Id, T_k=JumpTime[1], JumpTime[1], A, Id)
# interstep <- expm(A*(JumpTime[1]-t0))%*%X0+S%*%ebold1
lambda[1]<-mu# + as.numeric(t(bbold1)%*%interstep)
for(i in c(2:numbOfJump)){
S<-S_Kfunction(S, T_k=JumpTime[i], JumpTime[i-1], A, Id)
interstep <- expm(A*(JumpTime[i]-t0))%*%X0+S%*%ebold1
lambda[i]<-mu+as.numeric(t(bbold1)%*%interstep)
}
if(any(is.infinite(lambda))){
res <--10^6
}else{
if(any(is.nan(lambda))){
res <--10^6
}else{
if(all(lambda>0)){
res1 <- res1+dum%*%S%*%ebold1-numbOfJump*dum%*%ebold1
res <--res0-as.numeric(res1)+sum(log(lambda[-1]))
if(display){cat("\n", c(res,x))}
}else{
res<--10^6
}
}
}
return(-res/numbOfJump)
}
EstimCarmaHawkes <- function(yuima, start, est.method = "qmle", method = "BFGS",
lower = NULL, upper = NULL, lags = NULL, display = FALSE){
model <- yuima@model
names.par <- c(model@[email protected], model@[email protected], model@[email protected])
cond0 <- all(names(start) %in% names.par) #& all(names.par %in% names(start))
if(!cond0){
yuima.stop(paste("names in start are ",
paste(names(start), collapse = ", "), " while param names in the model are ",
paste(names.par, collapse = ", "), collapse =""))
}
true.par <- start[names.par]
p <- model@info@p
q <- model@info@q
t0 <- yuima@sampling@Initial[1]
if(est.method=="qmle"){
JumpTime <- time(yuima@[email protected])
T_k <- tail(JumpTime,1L)
#t0 <- JumpTime[1]
if(is.null(lower) & is.null(upper)){
res <- optim(par=true.par,fn = Int_LikelihoodCarmaHawkes,
p = p,q=q, JumpTime = JumpTime,
T_k= T_k,
numbOfJump=tail(as.numeric(yuima@[email protected]),1L),
t0=t0,Id=diag(1,p,p), display = display,
method = method)
}else{
yuima.stop("constraints will be available as soon as possible.")
}
res$value <- res$value*T_k
}else{
yuima.warn("We estimate the Carma(p,q)-Hawkes using the empirical autocorrelation function")
yuima.stop("This method is not available yet!!! It will be implemented as soon as possible")
}
return(res)
} | /scratch/gouwar.j/cran-all/cranData/yuima/R/AuxMethodForCARMAHawkes.R |
## Here we write all auxiliar functions for the Point Process
## Regression Model
is.PPR <- function(yuimaPPR){is(yuimaPPR,"yuima.PPR")}
Internal.LogLikPPR <- function(param,my.envd1=NULL,
my.envd2=NULL,my.envd3=NULL,
commonPar = FALSE,
auxModel = NULL,
auxPar = NULL){
param<-unlist(param)
if(any(my.envd3$CondIntensityInKern)){
IntLambda<- InternalConstractionIntensityFeedBackIntegrand(param,my.envd1,
my.envd2,my.envd3)
}else{
IntLambda<-InternalConstractionIntensity2(param,my.envd1,
my.envd2,my.envd3)
}
# IntLambda<-InternalConstractionIntensity(param,my.envd1,
# my.envd2,my.envd3)
Index<-my.envd3$gridTime
if(my.envd3$YUIMA.PPR@gFun@dimension[1]==1){
Integr1a <- -sum(IntLambda[-length(IntLambda)]*my.envd3$YUIMA.PPR@sampling@delta,na.rm=TRUE)
Integr1b <- -sum(IntLambda[-1]*my.envd3$YUIMA.PPR@sampling@delta,na.rm=TRUE)
Integr1 <- (Integr1a+Integr1b)/2
# if(is.nan(Integr1)){
# Integr1 <- -10^6
# }
if(length(my.envd3$YUIMA.PPR@[email protected])>0){
cond1 <- my.envd3$YUIMA.PPR@[email protected] %in% my.envd3$YUIMA.PPR@[email protected]
cond2 <- diff(as.numeric(my.envd3$YUIMA.PPR@[email protected][,cond1]))
#Integr2<- sum(log(IntLambda[-1][cond2!=0]),na.rm=TRUE)
Integr2 <- sum(log(IntLambda[cond2!=0]),na.rm=TRUE)
#Integr2 <- (Integr2a+Integr2b)/2
logLik <- Integr1+Integr2
}else{
yuima.stop("Spal")
}
if(is.null(my.envd1$oldpar)){
oldpar <- param
}else{
oldpar <- my.envd1$oldpar
}
ret <- -logLik/sum(cond2,na.rm=TRUE)
if(commonPar){
#ret<- ret-quasilogl(auxModel,param = param[auxModel@model@parameter@all])/auxModel@sampling@n[1]
ret<- -logLik-quasilogl(auxModel,param = param[auxModel@model@parameter@all])
}
}else{
posAAA <- dim(IntLambda)[2]
logLik <- 0
Njump <- 0
cond0 <- length(my.envd3$YUIMA.PPR@[email protected])>0
for(hh in c(1:my.envd3$YUIMA.PPR@gFun@dimension[1])){
Integr1a <- -sum(IntLambda[hh ,-posAAA]*my.envd3$YUIMA.PPR@sampling@delta,na.rm=TRUE)
Integr1b <- -sum(IntLambda[hh ,-1]*my.envd3$YUIMA.PPR@sampling@delta,na.rm=TRUE)
Integr1 <- (Integr1a+Integr1b)/2
if(cond0){
cond1 <- my.envd3$YUIMA.PPR@[email protected] %in% my.envd3$YUIMA.PPR@[email protected][hh]
cond2 <- diff(as.numeric(my.envd3$YUIMA.PPR@[email protected][,cond1]))
#Integr2<- sum(log(IntLambda[-1][cond2!=0]),na.rm=TRUE)
Integr2 <- sum(log(IntLambda[hh, cond2!=0]),na.rm=TRUE)
#Integr2 <- (Integr2a+Integr2b)/2
logLik <- logLik+Integr1+Integr2
Njump <- Njump + sum(cond2,na.rm=TRUE)
ret <- -logLik/Njump
}
}
}
# if(is.nan(Integr2)){
# Integr2 <- -10^6
# }
#+sum((param-oldpar)^2*param^2)/2
# line 40 necessary for the development of the cod
#cat("\n ",logLik, param)
#assign("oldpar",param,envir = my.envd1)
return(ret)
}
quasiLogLik.PPR <- function(yuimaPPR, parLambda=list(), method=method, fixed = list(),
lower, upper, call, ...){
yuimaPPR->yuimaPPR
parLambda->param
# gfun<-yuimaPPR@gFun@formula
gfun<-yuimaPPR@gFun@formula
dimIntegr <- length(yuimaPPR@Kernel@Integrand@IntegrandList)
Integrand2 <- character(length=dimIntegr)
for(i in c(1:dimIntegr)){
#Integrand1 <- as.character(yuimaPPR@Kernel@Integrand@IntegrandList[[i]])
#timeCond <- paste0(" * (",yuimaPPR@[email protected]@var.time," < ",yuimaPPR@[email protected]@upper.var,")")
#Integrand2[i] <-paste0(Integrand1,timeCond)
Integrand2[i] <- as.character(yuimaPPR@Kernel@Integrand@IntegrandList[[i]])
}
Integrand2<- matrix(Integrand2,yuimaPPR@Kernel@Integrand@dimIntegrand[1],yuimaPPR@Kernel@Integrand@dimIntegrand[2])
# for(j in c(1:yuimaPPR@Kernel@Integrand@dimIntegrand[2])){
# Integrand2[,j]<-paste0(Integrand2[,j]," * d",yuimaPPR@[email protected]@var.dx[j])
# }
colnames(Integrand2) <- paste0("d",yuimaPPR@[email protected]@var.dx)
NamesIntegrandExpr <- as.character(matrix(colnames(Integrand2), dim(Integrand2)[1],dim(Integrand2)[2], byrow = TRUE))
# Integrand2expr<- parse(text=Integrand2)
if(yuimaPPR@Kernel@Integrand@dimIntegrand[1]==1){
Integrand2expr<- parse(text=Integrand2)
}else{
Integrand2expr <- list()
for(hh in c(1:yuimaPPR@Kernel@Integrand@dimIntegrand[1])){
Integrand2expr[[hh]] <- parse(text=Integrand2[hh,])
}
}
gridTime <- time(yuimaPPR@[email protected])
# yuimaPPR@[email protected]@var.dx
if(any(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@[email protected])){
my.envd1<-new.env()
ExistdN<-TRUE
}else{
ExistdN<-FALSE
}
Univariate<-FALSE
if(length(yuimaPPR@[email protected])==1){
Univariate<-TRUE
}
if(any(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@PPR@covariates)){
my.envd2<-new.env()
ExistdX<-TRUE
}else{
my.envd2<-new.env()
ExistdX<-FALSE
}
my.envd3 <- new.env()
namesparam<-names(param)
resCov<-NULL
NoFeedBackIntensity <- TRUE
commonPar <- FALSE
if(!(all(namesparam %in% yuimaPPR@PPR@allparamPPR) && length(namesparam)==length(yuimaPPR@PPR@allparamPPR))){
if(length(yuimaPPR@PPR@common)==0){
if(!all(yuimaPPR@[email protected] %in% yuimaPPR@[email protected])|yuimaPPR@PPR@RegressWithCount){
NoFeedBackIntensity <- FALSE
}
if(NoFeedBackIntensity){
namesCov <-yuimaPPR@PPR@covariates
posCov <- length(namesCov)
dummydrift <- as.character(yuimaPPR@model@drift[1:posCov])
dummydiff0<- NULL
for(j in c(1:posCov)){
dummydiff0<-c(dummydiff0,
as.character(unlist(yuimaPPR@model@diffusion[[j]])))
}
dummydiff <- matrix(dummydiff0, nrow = posCov,
ncol = length(dummydiff0)/posCov)
dimJump <- length(yuimaPPR@[email protected][[1]])-length(yuimaPPR@[email protected])
if(dimJump>0){
dummyJump0<- NULL
for(j in c(1:posCov)){
dummyJump0 <- c(dummyJump0,
as.character(unlist(yuimaPPR@[email protected][[j]][1:dimJump])))
}
dummyJump <- matrix(dummyJump0, nrow=posCov,ncol=dimJump)
dummyModel <- setModel(drift = dummydrift,
diffusion = dummydiff, jump.coeff =dummyJump,
measure = list(df=yuimaPPR@model@measure$df),
measure.type = yuimaPPR@[email protected][posCov],
solve.variable = yuimaPPR@PPR@covariates,
state.variable = yuimaPPR@PPR@covariates,
xinit=yuimaPPR@model@xinit[posCov])
dummydata<-setData(original.data = yuimaPPR@[email protected][,1:posCov],delta = yuimaPPR@sampling@delta)
dummyMod1 <-setYuima(model = dummyModel,
data=dummydata)
dummyMod1@sampling<-yuimaPPR@sampling
resCov <- qmleLevy(yuima = dummyMod1,
start=param[dummyMod1@model@parameter@all],
lower = lower[dummyMod1@model@parameter@all],upper=upper[dummyMod1@model@parameter@all])
}
}
}else{
if(!all(yuimaPPR@[email protected] %in% yuimaPPR@[email protected])|yuimaPPR@PPR@RegressWithCount){
NoFeedBackIntensity <- FALSE
}
if(!all(yuimaPPR@[email protected] %in% yuimaPPR@[email protected])|yuimaPPR@PPR@RegressWithCount){
NoFeedBackIntensity <- FALSE
}
if(NoFeedBackIntensity){
namesCov <-yuimaPPR@PPR@covariates
posCov <- length(namesCov)
dummydrift <- as.character(yuimaPPR@model@drift[1:posCov])
# dummydiff0<- NULL
# for(j in c(1:posCov)){
# dummydiff0<-c(dummydiff0,
# as.character(unlist(yuimaPPR@model@diffusion[[j]])))
# }
#
# dummydiff <- matrix(dummydiff0, nrow = posCov,
# ncol = length(dummydiff0)/posCov)
dimJump <- length(yuimaPPR@[email protected][[1]])-length(yuimaPPR@[email protected])
if(dimJump>0){
dummyJump0<- NULL
for(j in c(1:posCov)){
dummyJump0 <- c(dummyJump0,
as.character(unlist(yuimaPPR@[email protected][[j]][1:dimJump])))
}
dummyJump <- matrix(dummyJump0, nrow=posCov,ncol=dimJump)
# dummyModel <- setModel(drift = dummydrift,
# diffusion = dummydiff, jump.coeff =dummyJump,
# measure = list(df=yuimaPPR@model@measure$df),
# measure.type = yuimaPPR@[email protected][posCov],
# solve.variable = yuimaPPR@PPR@covariates,
# state.variable = yuimaPPR@PPR@covariates,
# xinit=yuimaPPR@model@xinit[posCov])
dummyModel <- setModel(drift = dummydrift,
diffusion = dummyJump,
solve.variable = yuimaPPR@PPR@covariates,
state.variable = yuimaPPR@PPR@covariates,
xinit=yuimaPPR@model@xinit[posCov])
dummydata<-setData(original.data = yuimaPPR@[email protected][,1:posCov],delta = yuimaPPR@sampling@delta)
dummyMod1 <-setYuima(model = dummyModel,
data=dummydata)
dummyMod1@sampling<-yuimaPPR@sampling
commonPar <- TRUE
# resCov <- qmleLevy(yuima = dummyMod1,
# start=param[dummyMod1@model@parameter@all],
# lower = lower[dummyMod1@model@parameter@all],upper=upper[dummyMod1@model@parameter@all])
}
}
#return(NULL)
}
}
# construction my.envd1
if(ExistdN){
# Names expression
assign("NamesIntgra", NamesIntegrandExpr, envir=my.envd1)
#dN
namedX <-NULL
namedJumpTimeX <- NULL
for(i in c(1:length(yuimaPPR@[email protected]@var.dx))){
if(yuimaPPR@[email protected]@var.dx[i] %in% yuimaPPR@[email protected]){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected]@var.dx[i]
namedX<-c(namedX,paste0("d",yuimaPPR@[email protected]@var.dx[i]))
namedJumpTimeX <-c(namedJumpTimeX,paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]))
dummyData <- diff(as.numeric(yuimaPPR@[email protected][,cond]))# We consider only Jump
dummyJumpTime <- gridTime[-1][dummyData!=0]
dummyData2 <- diff(unique(cumsum(dummyData)))
#dummyData3 <- zoo(dummyData2,order.by = dummyJumpTime)
# dummyData3 <- rep(1,length(dummyData2))
#JumpTime <- dummyJumpTime
# Jump <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT,Jump){Jump[JumpT<X]},
# JumpT = dummyJumpTime, Jump = as.numeric(dummyData3!=0))
Jump <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT,Jump){Jump[JumpT<X]},
JumpT = dummyJumpTime, Jump = dummyData2)
assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]),
Jump ,
envir=my.envd1)
dummyJumpTimeNew <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT){JumpT[JumpT<X]},
JumpT = dummyJumpTime)
assign(paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]), dummyJumpTimeNew ,envir=my.envd1)
}
}
assign("namedX",namedX, envir = my.envd1)
assign("namedJumpTimeX",namedJumpTimeX, envir = my.envd1)
assign("var.time",yuimaPPR@[email protected]@var.time,envir=my.envd1)
assign("t.time",yuimaPPR@[email protected]@upper.var,envir=my.envd1)
#CountingVariable
PosListCountingVariable <- NULL
for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
# dummyData <-unique(yuimaPPR@[email protected][,cond])[-1]
# assign(yuimaPPR@[email protected][i], rep(1,length(dummyData)),envir=my.envd1)
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
#JUMPTIME <- tail(my.envd1$JumpTime.dN,1L)[[1]]
JUMPTIME <- tail(my.envd1[[paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i])]],1L)[[1]]
condTime <- gridTime %in% JUMPTIME
dummyData <- yuimaPPR@[email protected][condTime,cond]
dummyDataA <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT,Jump){Jump[JumpT<X]},
JumpT = JUMPTIME, Jump = dummyData)
dummyList <- paste0("List_",yuimaPPR@[email protected][i])
PosListCountingVariable <- c(PosListCountingVariable,dummyList)
assign(dummyList, dummyDataA, envir=my.envd1)
assign(yuimaPPR@[email protected][i], numeric(length=0L), envir=my.envd1)
}
assign("PosListCountingVariable", PosListCountingVariable, envir=my.envd1)
# Covariates
if(length(yuimaPPR@PPR@covariates)>0){
# Covariates should be identified at jump time
PosListCovariates <- NULL
for(i in c(1:length(yuimaPPR@PPR@covariates))){
# cond <- yuimaPPR@[email protected] %in% yuimaPPR@PPR@covariates[i]
# condTime <- gridTime %in% my.envd1$JumpTime.dN
# assign(yuimaPPR@PPR@covariates[i],yuimaPPR@[email protected][condTime,cond],envir = my.envd1)
cond <- yuimaPPR@[email protected] %in% yuimaPPR@PPR@covariates[i]
#dummyData <-yuimaPPR@[email protected][,cond]
dummyData <- yuimaPPR@[email protected][condTime, cond]
dummyDataB <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT,Jump){Jump[JumpT<X]},
JumpT = JUMPTIME, Jump = dummyData)
dummyListCov <- paste0("List_",yuimaPPR@PPR@covariates[i])
PosListCovariates <- c(PosListCovariates,dummyListCov)
assign(dummyListCov, dummyDataB,envir=my.envd1)
assign(yuimaPPR@PPR@covariates[i], numeric(length=0L),envir=my.envd1)
}
assign("PosListCovariates", PosListCovariates,envir=my.envd1)
}
}
# end coonstruction my.envd1
# construction my.envd2
if(ExistdX){
#Covariate
#CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
# dummyData <-yuimaPPR@[email protected][,cond]
# assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd1)
# }
#Covariate
dummyData<-NULL
#CountingVariable
for(i in c(1:length(yuimaPPR@[email protected]))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
dummyData <-as.numeric(yuimaPPR@[email protected][,cond])
# assign(yuimaPPR@[email protected][i], dummyData[-length(dummyData)],envir=my.envd2)
assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd2)
}
namedX<-NULL
namedJumpTimeX<-NULL
for(i in c(1:length(yuimaPPR@[email protected]@var.dx))){
if(yuimaPPR@[email protected]@var.dx[i] %in% yuimaPPR@PPR@covariates){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected]@var.dx[i]
namedX<-c(namedX,paste0("d",yuimaPPR@[email protected]@var.dx[i]))
namedJumpTimeX <-c(namedJumpTimeX,paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]))
dummyData <- diff(as.numeric(yuimaPPR@[email protected][,cond]))# We consider only Jump
#dummyJumpTime <- gridTime[-1][dummyData>0]
#assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]), dummyData ,envir=my.envd2)
assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]), c(0,dummyData) ,envir=my.envd2)
#assign(paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]), gridTime[-1] ,envir=my.envd2)
assign(paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]), as.numeric(gridTime) ,envir=my.envd2)
}
}
assign("namedX",namedX, envir = my.envd2)
assign("namedJumpTimeX",namedJumpTimeX, envir = my.envd2)
assign("var.time",yuimaPPR@[email protected]@var.time,envir=my.envd2)
assign("t.time",yuimaPPR@[email protected]@upper.var,envir=my.envd2)
for(i in c(1:length(yuimaPPR@PPR@covariates))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@PPR@covariates[i]
#dummyData <-yuimaPPR@[email protected][,cond]
dummyData <-as.numeric(yuimaPPR@[email protected][, cond])
#assign(yuimaPPR@PPR@covariates[i], dummyData[-length(dummyData)],envir=my.envd2)
assign(yuimaPPR@PPR@covariates[i], dummyData,envir=my.envd2)
}
}else{
assign("KerneldX",NULL,envir=my.envd2)
}
# end construction my.envd2
# construction my.envd3
#Covariate
dimCov<-length(yuimaPPR@PPR@covariates)
if(dimCov>0){
for(i in c(1:dimCov)){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@PPR@covariates[i]
dummyData <- yuimaPPR@[email protected][,cond]
assign(yuimaPPR@PPR@covariates[i], dummyData,envir=my.envd3)
}
}
#CountingVariable
for(i in c(1:length(yuimaPPR@[email protected]))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
dummyData <-cumsum(c(as.numeric(yuimaPPR@[email protected][1,cond]!=0),as.numeric(diff(yuimaPPR@[email protected][,cond])!=0)))
assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd3)
}
#time
assign(yuimaPPR@[email protected], gridTime, my.envd3)
#Model
assign("YUIMA.PPR",yuimaPPR,envir=my.envd3)
assign("namesparam",namesparam,envir=my.envd3)
assign("gfun",gfun,envir=my.envd3)
assign("Integrand2",Integrand2,envir=my.envd3)
assign("Integrand2expr",Integrand2expr,envir=my.envd3)
# assign("gridTime",as.numeric(gridTime),envir=my.envd3)
l1 =as.list(as.numeric(gridTime))
l2 = as.list(c(1:length(l1)))
l3 = mapply(c, l1, l2, SIMPLIFY=FALSE)
assign("gridTime",l3,envir=my.envd3)
assign("Univariate",Univariate,envir=my.envd3)
assign("ExistdN",ExistdN,envir=my.envd3)
assign("ExistdX",ExistdX,envir=my.envd3)
assign("JumpTimeLogical",c(FALSE,as.integer(diff(my.envd3$N))!=0),envir=my.envd3)
assign("CondIntensityInKern",
my.envd3$YUIMA.PPR@[email protected] %in% all.vars(my.envd3$Integrand2expr),
envir=my.envd3)
out<-NULL
# quasilogl(dummyMod1,param = param[dummyMod1@model@parameter@all])
# commonPar
if(length(lower)==0 && length(upper)>0 && length(fixed)==0){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, upper = upper,
commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, upper=upper, ...)
}
}
if(length(lower)==0 && length(upper)==0 && length(fixed)>0){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, fixed = fixed,
commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, fixed = fixed, ...)
}
}
if(length(lower)>0 && length(upper)==0 && length(fixed)==0){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, lower = lower,
commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par = param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, lower=lower, ...)
}
}
if(length(lower)>0 && length(upper)>0 && length(fixed)==0){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, lower = lower, upper = upper,
commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, upper = upper,
lower=lower, ...)
}
}
if(length(lower)==0 && length(upper)>0 && length(fixed)>0){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, upper = upper,
fixed = fixed,
commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, upper = upper,
fixed = fixed, ...)
}
}
if(length(lower)>0 && length(upper)==0 && length(fixed)>0){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, lower = lower,
fixed = fixed,
commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, lower = lower,
fixed = fixed, ...)
}
}
if(length(lower)>0 && length(upper)>0 && length(fixed)>0){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, lower = lower, fixed = fixed, upper = upper,
commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, lower = lower, fixed = fixed, upper = upper, ...)
}
}
if(is.null(out)){
if(commonPar){
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, commonPar=commonPar,
auxModel = dummyMod1)
# return(out)
}else{
out <- optim(par=param, fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
method = method, ...)
}
}
if(commonPar){
Hessian <- tryCatch(optimHess(as.list(out$par),
fn=Internal.LogLikPPR,
my.envd1=my.envd1,
my.envd2=my.envd2,
my.envd3=my.envd3,
commonPar=commonPar,
auxModel = dummyMod1),
error=function(){NULL})
if(is.null(Hessian)){
vcov <- matrix(NA,length(out$par),
length(out$par))
}else{
vcov <- solve(Hessian)
}
minuslog <- out$value
final_res<-new("yuima.PPR.qmle", call = call, coef = out$par,
fullcoef = out$par,
vcov = vcov, min = minuslog, details = out, minuslogl = Internal.LogLikPPR,
method = method, nobs=integer(), model=my.envd3$YUIMA.PPR)
return(final_res)
}
Hessian <- tryCatch(optimHess(as.list(out$par),
fn=Internal.LogLikPPR,
my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3),
error=function(){NULL})
if(!is.null(Hessian)){
Hessian <- Hessian[yuimaPPR@PPR@allparamPPR,yuimaPPR@PPR@allparamPPR]
}
cond1 <- my.envd3$YUIMA.PPR@[email protected] %in% my.envd3$YUIMA.PPR@[email protected]
cond2 <- diff(as.numeric(my.envd3$YUIMA.PPR@[email protected][,cond1]))
N.jump <- sum(cond2,na.rm=TRUE)
if(is.null(Hessian)){
vcov <- matrix(NA,length(out$par[yuimaPPR@PPR@allparamPPR]),
length(out$par[yuimaPPR@PPR@allparamPPR]))
}else{
vcov <- solve(Hessian)/N.jump
}
minuslog <- out$value*N.jump
final_res<-new("yuima.PPR.qmle", call = call, coef = out$par[yuimaPPR@PPR@allparamPPR],
fullcoef = out$par[yuimaPPR@PPR@allparamPPR],
vcov = vcov, min = minuslog, details = out, minuslogl = Internal.LogLikPPR,
method = method, nobs=as.integer(N.jump), model=my.envd3$YUIMA.PPR)
if(!is.null(resCov)){
return(list(PPR=final_res,Covariates=resCov))
}
if(!NoFeedBackIntensity){
if(all(yuimaPPR@[email protected] %in% yuimaPPR@[email protected])){
myMod <- yuimaPPR@model
myYuima <- setYuima(data = yuimaPPR@data,
model = yuimaPPR@model, sampling = yuimaPPR@sampling)
resCov <- qmleLevy(yuima = myYuima,
start=param[myMod@parameter@all],upper=upper[myMod@parameter@all],
lower=lower[myMod@parameter@all])
}else{
if(all(yuimaPPR@[email protected] %in% yuimaPPR@[email protected])){
OrigData <- yuimaPPR@[email protected]
IntensityData <- Intensity.PPR(final_res@model,
param=coef(final_res))
mylambda <- [email protected]
NewData0 <- cbind(OrigData,mylambda)
colnames(NewData0) <- yuimaPPR@[email protected]
NewData<-setData(zoo(NewData0,
order.by = index([email protected][[1]])))
}else{
NewData <- yuimaPPR@data
}
lengthOrigVar <- length(yuimaPPR@[email protected])
if(length(yuimaPPR@[email protected])>lengthOrigVar){
lengthVar <- length(yuimaPPR@[email protected])
}else{
lengthVar<-lengthOrigVar
}
DummyDrift <- as.character(rep(0,lengthVar))
DummyDrift[1:lengthOrigVar] <- as.character(yuimaPPR@model@drift)
dummydiff0<- NULL
for(j in c(1:lengthOrigVar)){
dummydiff0<-c(dummydiff0,
as.character(unlist(yuimaPPR@model@diffusion[[j]])))
}
dummydiff <- matrix(dummydiff0, nrow = lengthOrigVar,
ncol = length(dummydiff0)/lengthOrigVar)
if(length(yuimaPPR@[email protected])!=0){
if(lengthVar-lengthOrigVar>0){
dummydiff <- rbind(dummydiff,matrix("0",
nrow = lengthVar-lengthOrigVar,dim(dummydiff)[2]))
}
}
dummyJump0 <- NULL
for(j in c(1:lengthOrigVar)){
dummyJump0 <- c(dummyJump0,
as.character(unlist(yuimaPPR@[email protected][[j]][])))
}
dummyJump <- matrix(dummyJump0, nrow=lengthOrigVar,ncol=length(dummyJump0)/lengthOrigVar, byrow = T)
if(length(yuimaPPR@[email protected])!=0){
dummyJump1<- matrix(as.character(diag(lengthVar)),lengthVar,lengthVar)
dummyJump1[1:lengthOrigVar,1:lengthOrigVar] <- dummyJump
}
# aaa<-setModel(drift="1",diffusion = "1")
# [email protected]
# yuimaPPR@[email protected]
meas.type <- rep("code",lengthVar)
myMod <- setModel(drift = DummyDrift, diffusion = dummydiff,
jump.coeff = dummyJump1, jump.variable = yuimaPPR@[email protected],
measure = list(df=yuimaPPR@model@measure$df),
measure.type = meas.type,
solve.variable = yuimaPPR@[email protected],
#solve.variable = yuimaPPR@[email protected],
state.variable = yuimaPPR@[email protected])
myYuima <- setYuima(data = NewData, model = myMod)
myYuima@sampling <- yuimaPPR@sampling
resCov <- qmleLevy(yuima = myYuima,
start=param[myMod@parameter@all],upper=upper[myMod@parameter@all],
lower=lower[myMod@parameter@all])
}
return(list(PPR=final_res,Covariates=resCov))
}
return(final_res)
}
# quasiLogLik.PPR <- function(yuimaPPR, parLambda=list(), method=method, fixed = list(),
# lower, upper, call, ...){
#
# yuimaPPR->yuimaPPR
# parLambda->param
# gfun<-yuimaPPR@gFun@formula
#
# dimIntegr <- length(yuimaPPR@Kernel@Integrand@IntegrandList)
# Integrand2 <- character(length=dimIntegr)
# for(i in c(1:dimIntegr)){
# Integrand1 <- as.character(yuimaPPR@Kernel@Integrand@IntegrandList[[i]])
# timeCond <- paste0(" * (",yuimaPPR@[email protected]@var.time," < ",yuimaPPR@[email protected]@upper.var,")")
# Integrand2[i] <-paste0(Integrand1,timeCond)
# }
#
# Integrand2<- matrix(Integrand2,yuimaPPR@Kernel@Integrand@dimIntegrand[1],yuimaPPR@Kernel@Integrand@dimIntegrand[2])
#
#
# for(j in c(1:yuimaPPR@Kernel@Integrand@dimIntegrand[2])){
# Integrand2[,j]<-paste0(Integrand2[,j]," * d",yuimaPPR@[email protected]@var.dx[j])
# }
# colnames(Integrand2) <- paste0("d",yuimaPPR@[email protected]@var.dx)
# NamesIntegrandExpr <- as.character(matrix(colnames(Integrand2), dim(Integrand2)[1],dim(Integrand2)[2], byrow = TRUE))
# Integrand2expr<- parse(text=Integrand2)
#
# gridTime <- time(yuimaPPR@[email protected])
#
# yuimaPPR@[email protected]@var.dx
# if(any(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@[email protected])){
# my.envd1<-new.env()
# ExistdN<-TRUE
# }else{
# ExistdN<-FALSE
# }
# Univariate<-FALSE
# if(length(yuimaPPR@[email protected])==1){
# Univariate<-TRUE
# }
# if(any(!(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@[email protected]))){
# my.envd2<-new.env()
# ExistdX<-TRUE
# }else{
# my.envd2<-new.env()
# ExistdX<-FALSE
# }
#
# my.envd3 <- new.env()
# namesparam<-names(param)
# if(!(all(namesparam %in% yuimaPPR@PPR@allparamPPR) && length(namesparam)==length(yuimaPPR@PPR@allparamPPR))){
# return(NULL)
# }
#
# # construction my.envd1
# if(ExistdN){
#
# #CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected][i] %in% yuimaPPR@[email protected]
# dummyData <-unique(yuimaPPR@[email protected][,cond])[-1]
# assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd1)
# }
# # Names expression
# assign("NamesIntgra", NamesIntegrandExpr, envir=my.envd1)
# #dN
# namedX <-NULL
# for(i in c(1:length(yuimaPPR@[email protected]@var.dx))){
# if(yuimaPPR@[email protected]@var.dx[i] %in% yuimaPPR@[email protected]){
# cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected]@var.dx[i]
# namedX<-c(namedX,paste0("d",yuimaPPR@[email protected]@var.dx[i]))
# dummyData <- diff(as.numeric(yuimaPPR@[email protected][,cond]))# We consider only Jump
# dummyJumpTime <- gridTime[-1][dummyData>0]
# dummyData2 <- diff(unique(cumsum(dummyData)))
# dummyData3 <- zoo(dummyData2,order.by = dummyJumpTime)
# assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]), dummyData3 ,envir=my.envd1)
# }
# }
# assign("namedX",namedX, envir = my.envd1)
# assign("var.time",yuimaPPR@[email protected]@var.time,envir=my.envd1)
# assign("t.time",yuimaPPR@[email protected]@upper.var,envir=my.envd1)
#
# # Covariates
# if(length(yuimaPPR@PPR@covariates)>1){
# # Covariates should be identified at jump time
# return(NULL)
# }
#
# }
# # end coonstruction my.envd1
#
# # construction my.envd2
# if(ExistdX){
# #Covariate
#
# #CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected][i] %in% yuimaPPR@[email protected]
# dummyData <-yuimaPPR@[email protected][,cond]
# assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd1)
# }
#
#
# }else{
# assign("KerneldX",NULL,envir=my.envd2)
# }
#
# # end construction my.envd2
#
# # construction my.envd3
#
# #Covariate
#
# #CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected][i] %in% yuimaPPR@[email protected]
# dummyData <-yuimaPPR@[email protected][,cond]
# assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd3)
# }
# #time
# assign(yuimaPPR@[email protected], gridTime, my.envd3)
#
# #Model
# assign("YUIMA.PPR",yuimaPPR,envir=my.envd3)
# assign("namesparam",namesparam,envir=my.envd3)
# assign("gfun",gfun,envir=my.envd3)
# assign("Integrand2",Integrand2,envir=my.envd3)
# assign("Integrand2expr",Integrand2expr,envir=my.envd3)
#
# assign("gridTime",gridTime,envir=my.envd3)
# assign("Univariate",Univariate,envir=my.envd3)
# assign("ExistdN",ExistdN,envir=my.envd3)
# assign("ExistdX",ExistdX,envir=my.envd3)
# out<-NULL
#
# if(length(lower)==0 && length(upper)>0 && length(fixed)==0){
# out <- optim(par=param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, upper=upper, ...)
#
# }
#
# if(length(lower)==0 && length(upper)==0 && length(fixed)>0){
# out <- optim(par=param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, fixed = fixed, ...)
#
# }
#
#
# if(length(lower)>0 && length(upper)==0 && length(fixed)==0){
# out <- optim(par = param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, lower=lower, ...)
# }
#
# if(length(lower)>0 && length(upper)>0 && length(fixed)==0){
# out <- optim(par=param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, upper = upper,
# lower=lower, ...)
# }
#
#
# if(length(lower)==0 && length(upper)>0 && length(fixed)>0){
# out <- optim(par=param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, upper = upper,
# fixed = fixed, ...)
# }
#
# if(length(lower)>0 && length(upper)==0 && length(fixed)>0){
# out <- optim(par=param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, lower = lower,
# fixed = fixed, ...)
# }
#
#
# if(length(lower)>0 && length(upper)>0 && length(fixed)>0){
# out <- optim(par=param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, lower = lower, fixed = fixed, upper = upper, ...)
# }
#
#
# if(is.null(out)){
# out <- optim(par=param, fn=Internal.LogLikPPR,
# my.envd1=my.envd1,my.envd2=my.envd2,my.envd3=my.envd3,
# method = method, ...)
# }
#
#
# return(out)
#
# }
lambdaFromData <- function(yuimaPPR, PPRData=NULL, parLambda=list()){
if(is.null(PPRData)){
PPRData<-yuimaPPR@data
}else{
# checklambdaFromData(yuimaPPR,PPRData)
}
if(!any(names(parLambda) %in% yuimaPPR@PPR@allparamPPR)){yuima.stop("1 ...")}
if(!any(yuimaPPR@PPR@allparamPPR %in% names(parLambda))){yuima.stop("2 ...")}
Time <- index(yuimaPPR@[email protected][[1]])
envPPR <- list()
dY <- paste0("d",yuimaPPR@[email protected])
for(i in (c(1:(length(Time)-1)))){
envPPR[[i]]<-new.env()
assign(yuimaPPR@gFun@[email protected],rep(Time[i+1],i),envir=envPPR[[i]])
assign(yuimaPPR@[email protected],Time[1:i],envir=envPPR[[i]])
if(length(yuimaPPR@PPR@covariates)>0){
for(j in c(1:length(yuimaPPR@PPR@covariates))){
cond<-colnames(yuimaPPR@[email protected])%in%yuimaPPR@PPR@covariates[[j]]
assign(yuimaPPR@PPR@covariates[[j]],
as.numeric(yuimaPPR@[email protected][1:(i+1),cond]),
envir=envPPR[[i]])
}
}
for(j in c(1:length(yuimaPPR@[email protected]))){
cond<-colnames(yuimaPPR@[email protected])%in%yuimaPPR@[email protected][[j]]
assign(yuimaPPR@[email protected][[j]],
as.numeric(yuimaPPR@[email protected][1:(i+1),cond]),
envir=envPPR[[i]])
}
for(j in c(1:length(yuimaPPR@[email protected]))){
cond<-c(colnames(yuimaPPR@[email protected]),yuimaPPR@[email protected])%in%c(yuimaPPR@[email protected],yuimaPPR@[email protected])[[j]]
if(any(cond[-length(cond)])){
assign(paste0("d",yuimaPPR@[email protected][[j]]),
diff(as.numeric(yuimaPPR@[email protected][1:(i+1),cond[-length(cond)]])),
envir=envPPR[[i]])
}
if(tail(cond,n=1L)){
assign(paste0("d",yuimaPPR@[email protected][[j]]),
as.numeric(diff(Time[1:(i+1),cond[-length(cond)]])),
envir=envPPR[[i]])
}
}
}
IntKernExpr<- function(Kern,dy){
dum<-paste(Kern,dy,sep="*")
dum<-paste0(dum, collapse = " + ")
dum <- paste0("sum( ", dum, " )")
return(parse(text = dum))
}
IntegKern <- lapply(yuimaPPR@Kernel@Integrand@IntegrandList,IntKernExpr,dY)
Integrator <- t(as.matrix(eval(parse(text=dY[1]),envir=envPPR[[length(envPPR)]])))
if(length(dY)>1){
for(i in c(2:length(dY))){
Integrator <- rbind(Integrator,
t(as.matrix(eval(parse(text=dY[1]),envir=envPPR[[length(envPPR)]]))))
}
}
assign("Integrator",Integrator,envir=envPPR[[length(envPPR)]])
assign("Nlamb",length(yuimaPPR@[email protected]),envir=envPPR[[length(envPPR)]])
res<-aux.lambdaFromData(param = unlist(parLambda), gFun=yuimaPPR@gFun,
Kern =IntegKern, intensityParm = yuimaPPR@PPR@allparamPPR,
envPPR)
return(res)
}
# my.lapply <- function (X, FUN, ...){
# # FUN <- match.fun(FUN)
# .Internal(lapply(X, FUN))
# }
myfun3<-function(X,Kern){
t(simplify2array(lapply(Kern, FUN=DumFun,
Y = X), higher = (TRUE == "array")))}
dumFun2<-function(X,Y){list2env(Y,envir=X)}
aux.lambdaFromData <-function(param, gFun, Kern, intensityParm, envPPR,logLikelihood = FALSE){
lapply(envPPR,FUN=dumFun2,Y=as.list(param))
lastEnv <- tail(envPPR,n=1L)[[1]]
# gFunVect<- t(simplify2array(my.lapply(gFun@formula, FUN=DumFun,
# Y = lastEnv), higher = (TRUE == "array")))
gFunVect<- matrix(unlist(lapply(gFun@formula, FUN=DumFun,
Y = lastEnv)),nrow=lastEnv$Nlamb,byrow=TRUE)
# IntKer<- simplify2array(my.lapply(envPPR,function(my.env){
# t(simplify2array(my.lapply(Kern, FUN=DumFun,
# Y = my.env), higher = (TRUE == "array")))}),
# higher = (TRUE == "array")
# )
# IntKer<- simplify2array(my.lapply(envPPR,myfun3,Kern=Kern),
# higher = (TRUE == "array")
# )
# IntKer<- matrix(unlist(my.lapply(envPPR,myfun3,Kern=Kern)),
# nrow=1,byrow=TRUE)
IntKer<- matrix(unlist(lapply(envPPR,myfun3,Kern=Kern)),
nrow=lastEnv$Nlamb)
# lambda <- gFunVect+cbind(0,IntKer)
lambda <- gFunVect+IntKer
time <- (c(lastEnv$s,lastEnv$t[1]))
if(!logLikelihood){
Intensity <- zoo(t(lambda), order.by = time)
return(Intensity)
}
dn <- dim(lambda)
if(dn[1]==1){
#logLiklihood2 <- -sum(lambda*diff(time)[1])
logLiklihood2 <- -1/2*sum((lambda[1:(length(lambda)-1)]+lambda[2:(length(lambda))])*diff(time)[1])
logLiklihood1 <- sum(log(lambda)*lastEnv$CountVar)
# logLiklihood2 <- -sum(lambda*diff(time))
# dummyLamb <- lambda[lastEnv$CountVar]
# #logLiklihood1 <- sum(log(dummyLamb[-length(dummyLamb)]))
# logLiklihood1 <- sum(log(dummyLamb))
# newlamb <- unique(as.numeric(lambda))
#
# cond <- as.numeric(lastEnv$CountVar)!=0
# timeJ <- time[-1][cond]
# timeJ1 <- unique(c(0,timeJ,lastEnv$t[1]))
# logLiklihood2 <- -sum(newlamb*diff(timeJ1))
# InternCount<-c(0:length(timeJ))
# if((length(timeJ)+2)==length(timeJ1)){
# InternCount <- c(InternCount,tail(InternCount, n=1L))
# }
#
# logLiklihood1 <- sum(log(newlamb)*diff(InternCount))
}else{
#### NO Rewrite
# logLiklihood2 <- -rowSums(lambda[,-1]*diff(time)[1])
# logLiklihood1 <- rowSums(log(lambda[,-1])*lastEnv$Integrator)
logLiklihood2 <- -rowSums(lambda*diff(time)[1])
#cond <- t(apply(as.matrix(lastEnv$CountVar),FUN = "diff",MARGIN = 2))!=0
logLiklihood1 <- rowSums(log(lambda)*lastEnv$CountVar)
}
if(is.nan(logLiklihood1)){
logLiklihood1 <- -10^10
}
if(is.nan(logLiklihood2)){
logLiklihood2 <- -10^10
}
minusLoglik <- -sum(logLiklihood2+logLiklihood1)
# cat(sprintf("\n%.5f",minusLoglik))
# cat(sprintf("\n%.5f",param))
return(minusLoglik)
}
DumFun<- function(X,Y){eval(X,envir=Y)}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/AuxMethodforPPR.R |
qmleL <- function(yuima, t, ...){
call <- match.call()
times <- time(yuima@[email protected][[1]])
minT <- as.numeric(times[1])
maxT <- as.numeric(times[length(times)])
if(missing(t) )
t <- mean(c(minT,maxT))
if(t<minT || t>maxT)
yuima.stop("time 't' out of bounds")
grid <- times[which(times<=t)]
tmp <- subsampling(yuima, grid=grid)
mydots <- as.list(call)[-1]
mydots$t <- NULL
mydots$yuima <- tmp
tmp <- do.call("qmle", args=mydots)
tmp
}
qmleR <- function (yuima, t, ...)
{
call <- match.call()
times <- time(yuima@[email protected][[1]])
minT <- as.numeric(times[1])
maxT <- as.numeric(times[length(times)])
if (missing(t))
t <- mean(c(minT, maxT))
if (t < minT || t > maxT)
yuima.stop("time 't' out of bounds")
grid <- times[which(times >= t)]
tmp <- subsampling(yuima, grid = grid)
mydots <- as.list(call)[-1]
mydots$t <- NULL
mydots$yuima <- tmp
tmp <- do.call("qmle", args=mydots)
tmp
}
CPointOld <- function(yuima, param1, param2, print=FALSE, plot=FALSE){
d.size <- yuima@[email protected]
n <- length(yuima)[1]
d.size <- yuima@[email protected]
env <- new.env()
assign("X", as.matrix(onezoo(yuima)), envir=env)
assign("deltaX", matrix(0, n-1, d.size), envir=env)
for(t in 1:(n-1))
env$deltaX[t,] <- env$X[t+1,] - env$X[t,]
assign("h", deltat(yuima@[email protected][[1]]), envir=env)
assign("time", as.numeric(index(yuima@[email protected][[1]])), envir=env)
QL1 <- pminusquasilogl(yuima=yuima, param=param1, print=print, env)
QL2 <- pminusquasilogl(yuima=yuima, param=param2, print=print, env)
D <- sapply(2:(n-1), function(x) sum(QL1[1:x]) + sum(QL2[-(1:x)]))
D <- c(D[1], D, D[length(D)])
D <- ts(D, start=0, deltat=deltat(yuima@[email protected][[1]]))
if(plot)
plot(D,type="l", main="change point statistic")
tau.hat <- index(yuima@[email protected][[1]])[which.min(D)]
return(list(tau=tau.hat, param1=param1, param2=param2))
}
# partial quasi-likelihood
# returns a vector of conditionational minus-log-likelihood terms
# the whole negative log likelihood is the sum
pminusquasilogl <- function(yuima, param, print=FALSE, env){
diff.par <- yuima@model@parameter@diffusion
fullcoef <- diff.par
npar <- length(fullcoef)
nm <- names(param)
oo <- match(nm, fullcoef)
if(any(is.na(oo)))
oo <- oo[-which(is.na(oo))]
if(any(is.na(oo)))
yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima model")
param <- param[order(oo)]
nm <- names(param)
idx.diff <- match(diff.par, nm)
h <- env$h
theta1 <- unlist(param[idx.diff])
n.theta1 <- length(theta1)
n.theta <- n.theta1
d.size <- yuima@[email protected]
#n <- length(yuima)[1]
n <- dim(env$X)[1]
vec <- env$deltaX
K <- -0.5*d.size * log( (2*pi*h) )
QL <- 0
pn <- numeric(n-1)
diff <- diffusion.term(yuima, param, env)
dimB <- dim(diff[, , 1])
if(is.null(dimB)){ # one dimensional X
for(t in 1:(n-1)){
yB <- diff[, , t]^2
logdet <- log(yB)
pn[t] <- K - 0.5*logdet-0.5*vec[t, ]^2/(h*yB)
QL <- QL+pn[t]
}
} else { # multidimensional X
for(t in 1:(n-1)){
yB <- diff[, , t] %*% t(diff[, , t])
logdet <- log(det(yB))
if(is.infinite(logdet) ){ # should we return 1e10?
pn[t] <- log(1)
yuima.warn("singular diffusion matrix")
return(1e10)
}else{
pn[t] <- K - 0.5*logdet +
((-1/(2*h))*t(vec[t, ])%*%solve(yB)%*%vec[t, ])
QL <- QL+pn[t]
}
}
}
if(!is.finite(QL)){
yuima.warn("quasi likelihood is too small to calculate.")
QL <- 1e10
}
if(print==TRUE){
yuima.warn(sprintf("NEG-QL: %f, %s", -QL, paste(names(param),param,sep="=",collapse=", ")))
}
return(-pn)
}
pminusquasiloglL <- function(yuima, param, print=FALSE, env){
diff.par <- yuima@model@parameter@diffusion
fullcoef <- diff.par
npar <- length(fullcoef)
nm <- names(param)
oo <- match(nm, fullcoef)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima model")
param <- param[order(oo)]
nm <- names(param)
idx.diff <- match(diff.par, nm)
h <- env$h
theta1 <- unlist(param[idx.diff])
n.theta1 <- length(theta1)
n.theta <- n.theta1
d.size <- yuima@[email protected]
n <- length(yuima)[1]
vec <- env$deltaX
K <- -0.5*d.size * log( (2*pi*h) )
QL <- 0
pn <- numeric(n-1)
diff <- diffusion.term(yuima, param, env)
dimB <- dim(diff[, , 1])
if(is.null(dimB)){ # one dimensional X
for(t in 1:(n-1)){
yB <- diff[, , t]^2
logdet <- log(yB)
pn[t] <- K - 0.5*logdet-0.5*vec[t, ]^2/(h*yB)
QL <- QL+pn[t]
}
} else { # multidimensional X
for(t in 1:(n-1)){
yB <- diff[, , t] %*% t(diff[, , t])
logdet <- log(det(yB))
if(is.infinite(logdet) ){ # should we return 1e10?
pn[t] <- log(1)
yuima.warn("singular diffusion matrix")
return(1e10)
}else{
pn[t] <- K - 0.5*logdet +
((-1/(2*h))*t(vec[t, ])%*%solve(yB)%*%vec[t, ])
QL <- QL+pn[t]
}
}
}
if(!is.finite(QL)){
yuima.warn("quasi likelihood is too small to calculate.")
QL <- 1e10
}
if(print==TRUE){
yuima.warn(sprintf("NEG-QL: %f, %s", -QL, paste(names(param),param,sep="=",collapse=", ")))
}
return(-pn)
}
# symmetrized version
pminusquasiloglsym <- function(yuima, param, print=FALSE, env){
diff.par <- yuima@model@parameter@diffusion
fullcoef <- diff.par
npar <- length(fullcoef)
nm <- names(param)
oo <- match(nm, fullcoef)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima model")
param <- param[order(oo)]
nm <- names(param)
idx.diff <- match(diff.par, nm)
h <- env$h
theta1 <- unlist(param[idx.diff])
n.theta1 <- length(theta1)
n.theta <- n.theta1
d.size <- yuima@[email protected]
n <- dim(env$X)[1]-1
idx0 <- 1:round((n-1)/2)
vec <- matrix((env$X[2*idx0+1]-2* env$X[2*idx0]+env$X[2*idx0-1])/sqrt(2), length(idx0), dim(env$X)[2])
K <- -0.5*d.size * log( (2*pi*h) )
QL <- 0
pn <- numeric(length(idx0))
diff <- diffusion.term(yuima, param, env)
dimB <- dim(diff[, , 1])
if(is.null(dimB)){ # one dimensional X
for(t in idx0){
yB <- diff[, , 2*t-1]^2
logdet <- log(yB)
pn[t] <- K - 0.5*logdet-0.5*vec[t, ]^2/(h*yB)
QL <- QL+pn[t]
}
} else { # multidimensional X
for(t in idx0[-length(idx0)]){
yB <- diff[, , 2*t-1] %*% t(diff[, , 2*t-1])
logdet <- log(det(yB))
if(is.infinite(logdet) ){ # should we return 1e10?
pn[t] <- log(1)
yuima.warn("singular diffusion matrix")
return(1e10)
}else{
pn[t] <- K - 0.5*logdet +
((-1/(2*h))*t(vec[t, ])%*%solve(yB)%*%vec[t, ])
QL <- QL+pn[t]
}
}
}
if(!is.finite(QL)){
yuima.warn("quasi likelihood is too small to calculate.")
QL <- 1e10
}
if(print==TRUE){
yuima.warn(sprintf("NEG-QL: %f, %s", -QL, paste(names(param),param,sep="=",collapse=", ")))
}
return(-pn)
}
CPoint <- function(yuima, param1, param2, print=FALSE, symmetrized=FALSE, plot=FALSE){
d.size <- yuima@[email protected]
n <- length(yuima)[1]
d.size <- yuima@[email protected]
env <- new.env()
assign("X", as.matrix(onezoo(yuima)), envir=env)
assign("deltaX", matrix(0, n-1, d.size), envir=env)
for(t in 1:(n-1))
env$deltaX[t,] <- env$X[t+1,] - env$X[t,]
assign("h", deltat(yuima@[email protected][[1]]), envir=env)
assign("time", as.numeric(index(yuima@[email protected][[1]])), envir=env)
QL1 <- NULL
QL2 <- NULL
if(!symmetrized){
QL1 <- pminusquasilogl(yuima=yuima, param=param1, print=print, env)
QL2 <- pminusquasilogl(yuima=yuima, param=param2, print=print, env)
} else {
QL1 <- pminusquasiloglsym(yuima=yuima, param=param1, print=print, env)
QL2 <- pminusquasiloglsym(yuima=yuima, param=param2, print=print, env)
}
nn <- length(QL1)
D <- sapply(2:(nn-1), function(x) sum(QL1[1:x]) + sum(QL2[-(1:x)]))
D <- c(D[1], D, D[length(D)])
if(symmetrized)
D <- ts(D, start=0, deltat=2*deltat(yuima@[email protected][[1]]))
else
D <- ts(D, start=0, deltat=deltat(yuima@[email protected][[1]]))
if(plot)
plot(D,type="l", main="change point statistic")
# tau.hat <- index(yuima@[email protected][[1]])[which.min(D)]
tau.hat <- index(D)[which.min(D)]
return(list(tau=tau.hat, param1=param1, param2=param2))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/CPoint.R |
# In this file we develop the procedure described in Brockwell, Davis and Yang (2012)
# for estimation of the underlying noise once the parameters of carma(p,q) are previously
# obtained
yuima.eigen2arparam<-function(lambda){
MatrixLamb<-diag(lambda)
matrixR<-matrix(NA,length(lambda),length(lambda))
for(i in c(1:length(lambda))){
matrixR[,i]<-lambda[i]^c(0:(length(lambda)-1))
}
AMatrix<-matrixR%*%MatrixLamb%*%solve(matrixR)
acoeff<-AMatrix[length(lambda),]
}
yuima.carma.eigen<-function(A){
diagA<-eigen(A)
diagA$values<-diagA$values[order(diagA$values, na.last = TRUE, decreasing = TRUE)]
n_eigenval<-length(diagA$values)
diagA$vectors<-matrix(diagA$values[1]^(c(1:n_eigenval)-1),n_eigenval,1)
if(n_eigenval>=2){
for (i in 2:n_eigenval){
diagA$vectors<-cbind(diagA$vectors,
matrix(diagA$values[i]^(c(1:n_eigenval)-1),n_eigenval,1))
}
}
return(diagA)
}
StateVarX<-function(y,tt,X_0,B,discr.eul){
# The code obtains the first q-1 state variable using eq 5.1 in Brockwell, Davis and Yang 2011
Time<-length(tt)
q<-length(X_0)
e_q<-rep(0,q)
e_q[q]<-1
X_0<-matrix(X_0,q,1)
e_q<-matrix(e_q,q,1)
X<-matrix(0,q,Time)
int<-matrix(0,q,1)
for (i in c(3:Time)){
if(discr.eul==FALSE){
int<-int+(expm(B*(tt[i]-tt[(i-1)]))%*%(e_q*y[i-1]))*(tt[i]-tt[(i-1)])
X[,i]<-as.matrix(expm(B*tt[i])%*%X_0+int)
}else{
X[,i]<-X[,i-1]+(B%*%X[,i-1])*(tt[i]-tt[(i-1)])+(e_q*y[i-1])*(tt[i]-tt[(i-1)])
}
}
return(X)
}
# StateVarXp<-function(y,X_q,tt,B,q,p){
# # The code computes the state variable X using the derivatives of eq 5.2
# # see Brockwell, Davis and Yang 2011
#
# diagMatB<-yuima.carma.eigen(B)
# if(length(diagMatB$values)>1){
# MatrD<-diag(diagMatB$values)
# }else{
# MatrD<-as.matrix(diagMatB$values)
# }
# MatrR<-diagMatB$vectors
# idx.r<-c(q:(p-1))
# elem.X <-length(idx.r)
# YMatr<-matrix(0,q,length(y))
# YMatr[q,]<-y
# OutherX<-matrix(NA,elem.X,length(y))
# # OutherXalt<-matrix(NA,q,length(y))
# for(i in 1:elem.X){
# OutherX[i,]<-((MatrR%*%MatrD^(idx.r[i])%*%solve(MatrR))%*%X_q+
# (MatrR%*%MatrD^(idx.r[i]-1)%*%solve(MatrR))%*%YMatr)[1,]
# }
# X.StatVar<-rbind(X_q,OutherX)
# return(X.StatVar)
# }
StateVarXp<-function(y,X_q,tt,B,q,p,nume.Der){
# The code computes the state variable X using the derivatives of eq 5.2
# see Brockwell, Davis and Yang 2011
if(nume.Der==FALSE){
yuima.warn("We need to develop this part in the future for gaining speed")
return(NULL)
# diagMatB<-yuima.carma.eigen(B)
# if(length(diagMatB$values)>1){
# MatrD<-diag(diagMatB$values)
# }else{
# MatrD<-as.matrix(diagMatB$values)
# }
# MatrR<-diagMatB$vectors
# idx.r<-c(q:(p-1))
# elem.X <-length(idx.r)
# YMatr<-matrix(0,q,length(y))
# YMatr[q,]<-y
# OutherX<-matrix(NA,elem.X,length(y))
# # OutherXalt<-matrix(NA,q,length(y))
# for(i in 1:elem.X){
# OutherX[i,]<-((MatrR%*%MatrD^(idx.r[i])%*%solve(MatrR))%*%X_q+
# (MatrR%*%MatrD^(idx.r[i]-1)%*%solve(MatrR))%*%YMatr)[1,]
# }
# X.StatVar<-rbind(X_q,OutherX)
# return(X.StatVar)
}else{
X_q0<-as.numeric(X_q[1,])
qlen<-length(X_q0)
X.StatVar<-matrix(0,p,qlen)
X.StatVar[1,]<-X_q0[1:length(X_q0)]
diffStatVar<-diff(X_q0)
difftime<-diff(tt)[1]
for(i in 2:p){
in.count<-(p-i+1)
fin.count<-length(diffStatVar)
dummyDer<-(diffStatVar/difftime)
X.StatVar[i,c(1:length(dummyDer))]<-(dummyDer)
diffStatVar<-diff(dummyDer)
# if(in.count-1>0){
# difftime<-difftime[c((in.count-1):fin.count)]
# }else{difftime<-difftime[c((in.count):fin.count)]}
}
X.StatVar[c(1:dim(X_q)[1]),]<-X_q
return(X.StatVar[,c(1:length(dummyDer))])
}
}
bEvalPoly<-function(b,lambdax){
result<-sum(b*lambdax^(c(1:length(b))-1))
return(result)
}
aEvalPoly<-function(a,lambdax){
p<-length(a)
a.new<-c(1,a[c(1:(p-1))])
pa.new<-c(p:1)*a.new
result<-sum(pa.new*lambdax^(c(p:1)-1))
return(result)
}
CarmaNoise<-function(yuima, param, data=NULL,NoNeg.Noise=FALSE){
if( missing(param) )
yuima.stop("Parameter values are missing.")
if(!is.list(param))
yuima.stop("Argument 'param' must be of list type.")
vect.param<-as.numeric(param)
name.param<-names(param)
names(vect.param)<-name.param
if(is(yuima,"yuima")){
model<-yuima@model
if(is.null(data)){
observ<-yuima@data
}else{observ<-data}
}else{
if(is(yuima,"yuima.carma")){
model<-yuima
if(is.null(data)){
yuima.stop("Missing data")
}
observ<-data
}
}
if(!is(observ,"yuima.data")){
yuima.stop("Data must be an object of class yuima.data-class")
}
info<-model@info
numb.ar<-info@p
name.ar<-paste([email protected],c(numb.ar:1),sep="")
ar.par<-vect.param[name.ar]
numb.ma<-info@q
name.ma<-paste([email protected],c(0:numb.ma),sep="")
ma.par<-vect.param[name.ma]
loc.par=NULL
if (length([email protected])!=0){
loc.par<-vect.param[[email protected]]
}
scale.par=NULL
if (length([email protected])!=0){
scale.par<-vect.param[[email protected]]
}
lin.par=NULL
if (length([email protected])!=0){
lin.par<-vect.param[[email protected]]
}
ttt<[email protected][[1]]
tt<-index(ttt)
y<-coredata(ttt)
levy<-yuima.CarmaNoise(y,tt,ar.par,ma.par, loc.par, scale.par, lin.par,NoNeg.Noise)
inc.levy<-diff(as.numeric(levy))
return(inc.levy[-1]) #We start to compute the increments from the second observation.
}
yuima.CarmaNoise<-function(y,tt,ar.par,ma.par,
loc.par=NULL,
scale.par=NULL,
lin.par=NULL,
NoNeg.Noise=FALSE){
if(!is.null(loc.par)){
y<-y-loc.par
# yuima.warn("the loc.par will be implemented as soon as possible")
# return(NULL)
}
if(NoNeg.Noise==TRUE){
if(length(ar.par)==length(ma.par)){
yuima.warn("The case with no negative jump needs to test deeply")
#mean.y<-tail(ma.par,n=1)/ar.par[1]*scale.par
mean.y<-mean(y)
#y<-y-mean.y
mean.L1<-mean.y/tail(ma.par,n=1)*ar.par[1]/scale.par
}
}
if(!is.null(scale.par)){
ma.parAux<-ma.par*scale.par
names(ma.parAux)<-names(ma.par)
ma.par<-ma.parAux
# yuima.warn("the scale.par will be implemented as soon as possible")
# return(NULL)
}
if(!is.null(lin.par)){
yuima.warn("the lin.par will be implemented as soon as possible")
return(NULL)
}
p<-length(ar.par)
q<-length(ma.par)
A<-MatrixA(ar.par[c(p:1)])
b_q<-tail(ma.par,n=1)
ynew<-y/b_q
if(q==1){
yuima.warn("The Derivatives for recovering noise have been performed numerically.")
nume.Der<-TRUE
X_qtot<-ynew
X.StVa<-matrix(0,p,length(ynew))
X_q<-X_qtot[c(1:length(X_qtot))]
X.StVa[1,]<-X_q
if(p>1){
diffY<-diff(ynew)
diffX<-diff(tt)[1]
for (i in c(2:p)){
dummyDerY<-diffY/diffX
X.StVa[i,c(1:length(dummyDerY))]<-(dummyDerY)
diffY<-diff(dummyDerY)
}
X.StVa<-X.StVa[,c(1:length(dummyDerY))]
}
#yuima.warn("the car(p) process will be implemented as soon as possible")
#return(NULL)
}else{
newma.par<-ma.par/b_q
# We build the matrix B which is necessary for building eq 5.2
B<-MatrixA(newma.par[c(1:(q-1))])
diagB<-yuima.carma.eigen(B)
e_q<-rep(0,(q-1))
if((q-1)>0){
e_q[(q-1)]<-1
X_0<-rep(0,(q-1))
}else{
e_q<-1
X_0<-0
}
discr.eul<-TRUE
# We use the Euler discretization of eq 5.1 in Brockwell, Davis and Yang
X_q<-StateVarX(ynew,tt,X_0,B,discr.eul)
nume.Der<-TRUE
#plot(t(X_q))
X.StVa<-StateVarXp(ynew,X_q,tt,B,q-1,p,nume.Der) #Checked once the numerical derivatives have been used
#plot(y)
}
diagA<-yuima.carma.eigen(A)
BinLambda<-rep(NA,length(ma.par))
for(i in c(1:length(diagA$values))){
BinLambda[i]<-bEvalPoly(ma.par,diagA$values[i])
}
if(length(BinLambda)==1){
MatrBLam<-as.matrix(BinLambda)
}else{
MatrBLam<-diag(BinLambda)
}
# We get the Canonical Vector Space in eq 2.17
Y_CVS<-MatrBLam%*%solve(diagA$vectors)%*%X.StVa #Canonical Vector Space
# We verify the prop 2 in the paper "Estimation for Non-Negative Levy Driven CARMA process
# yver1<-Y_CVS[1,]+Y_CVS[2,]+Y_CVS[3,]
# plot(yver1)
# plot(y)
# Prop 2 Verified even in the case of q=0
idx.r<-match(0,Im(diagA$values))
lambda.r<-Re(diagA$values[idx.r])
if(is.na(idx.r)){
yuima.warn("all eigenvalues are immaginary numbers")
idx.r<-1
lambda.r<-diagA$values[idx.r]
}
int<-0
derA<-aEvalPoly(ar.par[c(p:1)],lambda.r)
# if(q==1){
# tt<-tt[p:length(tt)]
# # CHECK HERE 15/01
# }
if(nume.Der==TRUE){
tt<-tt[p:length(tt)]
# CHECK HERE 15/01
}
lev.und<-matrix(0,1,length(tt))
Alternative<-FALSE
if(Alternative==TRUE){
incr.vect<-(X.StVa[,2:dim(X.StVa)[2]]-X.StVa[,1:(dim(X.StVa)[2]-1)])-(A%*%X.StVa[,1:(dim(X.StVa)[2]-1)]
# +(matrix(c(0,mean.L1),2,(dim(X.StVa)[2]-1)))/diff(tt)[1]
)*diff(tt)[1]
#+(matrix(c(0,mean.L1),2,(dim(X.StVa)[2]-1)))
lev.und<-as.matrix(cumsum(as.numeric(incr.vect[dim(X.StVa)[1],])),1,length(tt))
}else{
for(t in c(2:length(tt))){
int<-int+Y_CVS[idx.r,t-1]*(tt[t]-tt[t-1])
lev.und[,t]<-derA/BinLambda[idx.r]*(Y_CVS[idx.r,t]-Y_CVS[idx.r,1]-lambda.r*int)
}
}
# if(NoNeg.Noise==TRUE){
# if(length(ar.par)==length(ma.par)){
# if(Alternative==TRUE){
# mean.Ltt<-mean.L1*tt[c(2:length(tt))]
# }else{mean.Ltt<-mean.L1*tt}
# lev.und<-lev.und+mean.Ltt
#
# }
# }
return(Re(lev.und))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/CarmaNoise.R |
##--------------------------------------------------------------------------
## Author : Alexandre Brouste
## Project: Yuima
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Input mesh : mesh grid where the fBm is evaluated
## H : self-similarity parameter
## dim : valued in R^dim
##
##
## Output : simulation of a standard fractional Brownian noise
## for the mesh grid evaluation by Choleki s
## decomposition of the covariance matrix of the fGn.
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Complexity O(N^3) via method chol.... mais mieux pour dim different
## Taille memoire N^2
## -------------------------------------------------------------------------
CholeskyfGn <- function( mesh , H , dim ){
H2 <- 2*H
mesh<-mesh[[1]]
N<-length(mesh)-2 # N+1 is the size of the fGn sample to be simulated
fGn<-matrix(0,dim,N+1)
matcov <- matrix(0,N+1,N+1) # Covariance matrix of the fGn
for (i in (1:(N+1))) {
j <- i:(N+1)
matcov[i, j]<- 0.5 * (abs(mesh[i+1]-mesh[j])^H2 + abs(mesh[i]-mesh[j+1])^H2 - abs(mesh[i] - mesh[j])^H2-abs(mesh[i+1] - mesh[j+1])^H2)
matcov[j, i]<- matcov[i, j]
}
L <- chol(matcov)
for (k in 1:dim){
Z <- rnorm(N+1)
fGn[k,] <- t(L) %*% Z
}
return(fGn)
} | /scratch/gouwar.j/cran-all/cranData/yuima/R/CholeskyfGn.R |
# In order to deal the cogarch model in the \texttt{yuima} package
# We define a new class called \texttt{yuima.cogarch} and its structure
# is similar to those used for the carma model.
# The class \texttt{yuima.cogarch} extends the \texttt{yuima.model} and has
# an additional slot that contains informations about the model stored in an object of
# class \texttt{cogarch.info}.
# The class \texttt{cogarch.info} is build internally by the function \texttt{setCogarch} and it is a
# the first slot of an object of class \texttt{yuima.cogarch}.
# Class 'cogarch.info'
setClass("cogarch.info",
representation(p="numeric",
q="numeric",
ar.par="character",
ma.par="character",
loc.par="character",
Cogarch.var="character",
V.var="character",
Latent.var="character",
XinExpr="logical",
measure="list",
measure.type="character")
)
# Class 'yuima.cogarch'
setClass("yuima.cogarch",
representation(info="cogarch.info"),
contains="yuima.model")
# Class 'gmm.cogarch'
setClass("cogarch.est",representation(
yuima = "yuima",
objFun="character"),
contains="mle"
)
setClass("summary.cogarch.est",
representation(objFun = "ANY",
objFunVal = "ANY",
object = "ANY"),
contains="summary.mle"
)
setClass("cogarch.est.incr",
representation(Incr.Lev = "ANY",
logL.Incr = "ANY"
),
contains="cogarch.est"
)
setClass("summary.cogarch.est.incr",
representation(logL.Incr = "ANY",
MeanI = "ANY",
SdI = "ANY",
logLI = "ANY",
TypeI = "ANY",
NumbI = "ANY",
StatI ="ANY"),
contains="summary.cogarch.est"
)
# setClass("cogarch.gmm.incr",representation(Incr.Lev = "ANY",
# model = "yuima.cogarch",
# logL.Incr = "ANY",
# objFun="character"
# ),
# contains="mle"
# )
#
# setClass("cogarch.gmm",representation(
# model = "yuima.cogarch",
# objFun="character"),
# contains="mle"
# )
# setClass("gmm.cogarch",
# contains="mle"
# )
| /scratch/gouwar.j/cran-all/cranData/yuima/R/ClassCogarch.R |
# Class 'yuima.carmaHawkes'
setClass("carmaHawkes.info",
representation(p = "numeric",
q = "numeric",
Counting.Process = "character",
base.Int = "character",
ar.par = "character",
ma.par = "character",
Intensity.var = "character",
Latent.var = "character",
XinExpr = "logical",
Type.Jump = "logical")
)
# Initialization Carma.Hawkes Info
setMethod("initialize", "carmaHawkes.info",
function(.Object,
p=numeric(),
q=numeric(),
Counting.Process = character(),
base.Int=character(),
ar.par=character(),
ma.par=character(),
Intensity.var=character(),
Latent.var=character(),
XinExpr=logical(),
Type.Jump=logical()){
.Object@p <- p
.Object@q <- q
[email protected] <- Counting.Process
[email protected] <- base.Int
[email protected] <- ar.par
[email protected] <- ma.par
[email protected] <- Intensity.var
[email protected] <- Latent.var
.Object@XinExpr <- XinExpr
[email protected] <- Type.Jump
return(.Object)
})
setClass("yuima.carmaHawkes",
representation(info="carmaHawkes.info"),
contains="yuima.model")
setMethod("initialize", "yuima.carmaHawkes",
function(.Object,
info = new("carmaHawkes.info"),
drift = expression() ,
diffusion = list() ,
hurst = 0.5,
jump.coeff = expression(),
measure=list(),
measure.type=character(),
parameter = new("model.parameter"),
state.variable = "lambda",
jump.variable = "N",
time.variable = "t",
noise.number = numeric(),
equation.number = numeric(),
dimension = numeric(),
solve.variable = character(),
xinit = expression(),
J.flag = logical()){
.Object@info <- info
.Object@drift <- drift
.Object@diffusion <- diffusion
.Object@hurst <- hurst
[email protected] <- jump.coeff
.Object@measure <- measure
[email protected] <- measure.type
.Object@parameter <- parameter
[email protected] <- state.variable
[email protected] <- jump.variable
[email protected] <- time.variable
[email protected] <- noise.number
[email protected] <- equation.number
.Object@dimension <- dimension
[email protected] <- solve.variable
.Object@xinit <- xinit
[email protected] <- J.flag
return(.Object)
})
# setCarmaHawkes function
setCarmaHawkes <- function(p, q, law = NULL, base.Int = "mu0",
ar.par="a", ma.par = "b",
Counting.Process = "N",
Intensity.var = "lambda",
Latent.var = "x",
time.var = "t",
Type.Jump = FALSE,
XinExpr = FALSE){
if(is.null(law)){
mylaw<-setLaw(rng = function(n){rconst(n,1)}, density=function(x){dconst(x,1)},
time.var = time.var)
Type.Jump <- TRUE
}else{
mylaw <- law
}
ar.par1 <- paste0(ar.par,1:p)
ma.par1 <- paste0(ma.par,0:q)
carmaHawkesInfo <- new("carmaHawkes.info",
p=p,
q=q,
Counting.Process = Counting.Process,
base.Int=base.Int,
ar.par=ar.par1,
ma.par=ma.par1,
Intensity.var=Intensity.var,
Latent.var=Latent.var,
XinExpr=XinExpr,
Type.Jump=Type.Jump)
InternalCarma <- setCarma(p,q, loc.par=base.Int,
Carma.var=Intensity.var,
ar.par = ar.par,
ma.par = ma.par,
Latent.var=Latent.var, diffusion=NULL,
# time.variable = time.var,
# jump.variable = Counting.Process,
measure= list(df = "dconst"),
measure.type="code",
XinExpr = XinExpr)
# prova1 <- setCarma(p,q, loc.par=base.Int,
# Carma.var=Intensity.var,
# ar.par = ar.par,
# ma.par = ma.par,
# Latent.var=Intensity.var, diffusion=NULL,
# time.variable = "s", jump.variable = Counting.Process,
# measure= list(df= mylaw),
# measure.type="code",
# XinExpr = XinExpr)
InternalCarma@measure<-list(df=mylaw)
[email protected]<-time.var
[email protected] <- Counting.Process
CARMA_HAWKES <- new("yuima.carmaHawkes",
info = carmaHawkesInfo,
drift = InternalCarma@drift,
diffusion = InternalCarma@diffusion,
hurst = InternalCarma@hurst,
jump.coeff = [email protected],
measure = InternalCarma@measure,
measure.type = [email protected],
parameter = InternalCarma@parameter,
state.variable = [email protected],
jump.variable = [email protected],
time.variable = [email protected],
noise.number = [email protected],
equation.number = [email protected],
dimension = InternalCarma@dimension,
solve.variable = [email protected],
xinit = InternalCarma@xinit,
J.flag = [email protected])
return(CARMA_HAWKES)
} | /scratch/gouwar.j/cran-all/cranData/yuima/R/ClassMethodsForCarmaHawkes.R |
# The following example is necessary for the structure of
# the PPR Data
# library(yuima)
# Terminal <- 10
# samp <- setSampling(T=Terminal,n=1000)
#
# # Ex 1. (Simple homogeneous Poisson process)
# mod1 <- setPoisson(intensity="lambda", df=list("dconst(z,1)"))
# set.seed(123)
# y1 <- simulate(mod1, true.par=list(lambda=1),sampling=samp)
# y1@[email protected]
# simprvKern->yuimaPPR
get.counting.data<-function(yuimaPPR,type="zoo"){
count <- yuimaPPR@[email protected]
dimCount <- length(count)
Time_Arrivals_Grid <- index(yuimaPPR@[email protected][[1]])
if(dimCount==1){
cond <- yuimaPPR@[email protected] %in% count
Count.Var <- yuimaPPR@[email protected][,cond]
}
Time_Arrivals <- t(Time_Arrivals_Grid[1])
colnames(Time_Arrivals) <- "Time"
Obser <- t(yuimaPPR@[email protected][1,])
colnames(Obser) <- yuimaPPR@[email protected]
cond <- diff(Count.Var)==1
Time_Arrivals <- rbind(Time_Arrivals,as.matrix(Time_Arrivals_Grid[-1][cond]))
if(is(yuimaPPR@[email protected],"matrix")){
Obser <- rbind(Obser,yuimaPPR@[email protected][-1,][cond,])
}else{
Obser <- rbind(Obser,as.matrix(yuimaPPR@[email protected][-1][cond]))
}
Data <- zoo(x = Obser,order.by = Time_Arrivals)
# plot(Data)
if(type=="zoo"){
Data <- Data
return(Data)
}
if(type=="yuima.PPR"){
yuimaPPR@[email protected] <- Data
return(yuimaPPR)
}
if(type=="matrix"){
Data <- cbind(Time_Arrivals, Obser)
return(Data)
}
yuima.stop("type is not supported.")
}
DataPPR <- function(CountVar, yuimaPPR, samp){
if(!is(yuimaPPR,"yuima.PPR")){
yuima.stop("...")
}
if(!is(samp,"yuima.sampling")){
yuima.stop("...")
}
if(!is(CountVar,"zoo")){
yuima.stop("...")
}
names <- colnames(CountVar)
if(all(names %in% yuimaPPR@[email protected]) && all(yuimaPPR@[email protected] %in% names)){
TimeArr <- index(CountVar)
grid <- samp@grid[[1]]
dimData <- dim(CountVar)[2]
DataOr <- NULL
for(i in c(1:dimData)){
prv <- approx(x=TimeArr, y = CountVar[,i], xout = grid, method = "constant")$y
DataOr <- cbind(DataOr,prv)
}
DataFin <- zoo(DataOr, order.by = grid)
colnames(DataFin) <- names
myData <- setData(DataFin)
yuimaPPR@data <- myData
yuimaPPR@sampling <- samp
return(yuimaPPR)
}else{
dummy <- paste0("The labels of variables should be ", paste0(yuimaPPR@[email protected],collapse= ", "),collapse = " ")
yuima.stop(dummy)
}
} | /scratch/gouwar.j/cran-all/cranData/yuima/R/DataPPR.R |
yuima.PhamBreton.Alg<-function(a){
p<-length(a)
gamma<-a[p:1]
if(p>2){
gamma[p]<-a[1]
alpha<-matrix(NA,p,p)
for(j in 1:p){
if(is.integer(as.integer(j)/2)){
alpha[p,j]<-0
alpha[p-1,j]<-0
}else{
alpha[p,j]<-a[j]
alpha[p-1,j]<-a[j+1]/gamma[p]
}
}
for(n in (p-1):1){
gamma[n]<-alpha[n+1,2]-alpha[n,2]
for(j in 1:n-1){
alpha[n-1,j]<-(alpha[n+1,j+2]-alpha[n,j+2])/gamma[n]
}
alpha[n-1,n-1]<-alpha[n+1,n+1]/gamma[n]
}
gamma[1]<-alpha[2,2]
}
return(gamma)
}
Diagnostic.Carma<-function(carma){
if(!is(carma@model,"yuima.carma"))
yuima.stop("model is not a carma")
if(!is(carma,"mle"))
yuima.stop("object does not belong
to yuima.qmle-class or yuima.carma.qmle-class ")
param<-coef(carma)
info <- carma@model@info
numb.ar<-info@p
name.ar<-paste([email protected],c(numb.ar:1),sep="")
ar.par<-param[name.ar]
statCond<-FALSE
if(min(yuima.PhamBreton.Alg(ar.par[numb.ar:1]))>=0)
statCond<-TRUE
return(statCond)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/DiagnosticCarma.R |
# We write a Diagnostic function that evaluates the following quantity
Diagnostic.Cogarch <- function(yuima.cogarch, param = list(),
matrixS = NULL , mu = 1,
display =TRUE){
if(missing(yuima.cogarch))
yuima.stop("yuima.cogarch or yuima object is missing.")
if((length(param)==0 && !is(yuima.cogarch, "cogarch.est"))){
yuima.stop("missing values parameters")
}
if(is(yuima.cogarch,"yuima")){
model<-yuima.cogarch@model
}else{
if(is(yuima.cogarch,"yuima.cogarch")){
model<-yuima.cogarch
}else{
if(is(yuima.cogarch,"cogarch.est")){
model<-yuima.cogarch@yuima@model
if(length(param)==0){
param<-coef(yuima.cogarch)
}
}
}
}
if(!is.COGARCH(model)){
yuima.warn("The model does not belong to the class yuima.cogarch")
}
info <- model@info
numb.ar <- info@q
ar.name <- paste([email protected],c(numb.ar:1),sep="")
numb.ma <- info@p
ma.name <- paste([email protected],c(1:numb.ma),sep="")
loc.par <- [email protected]
if(is.list(param)){
param <- unlist(param)
}
xinit.name0 <- model@parameter@xinit
idx <- na.omit(match(c(loc.par, ma.name), xinit.name0))
xinit.name <- xinit.name0[-idx]
fullcoeff <- c(ar.name, ma.name, loc.par,xinit.name)
nm<-names(param)
if(!all(xinit.name %in% nm)){
fullcoeff <- c(ar.name, ma.name, loc.par)
}
oo <- match(nm, fullcoeff)
if(!is(yuima.cogarch,"cogarch.est")){
if(length(na.omit(oo))!=length(fullcoeff))
yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima.cogarch model")
}
acoeff <- param[ma.name]
b <- param[ar.name]
cost<- param[loc.par]
# Check Strictly Stationary condition
Amatr<-MatrixA(b[c(info@q:1)])
if(is.null(matrixS)){
Dum <- yuima.carma.eigen(Amatr)
matrixS <- Dum$vectors
lambda.eig <- Dum$values
}else{
if(!is.matrix(matrixS)){
if(dim(matrixS)[1]!=dim(matrixS)[2]){
yuima.stop("matrixS must be an object of class matrix")
}else{
if(dim(matrixS)[1]!=numb.ar)
yuima.stop("matrixS must be an square matrix. Its row number is equal to the dimension of autoregressive coefficients")
}
}
lambda.eig<-diag(solve(matrixS)%*%Amatr%*%matrixS)
}
lambda1<- max(Re(lambda.eig)) # we find lambda1
ev.dum<-matrix(0,1,info@q)
ev.dum[1,info@q] <- 1
av.dum <-matrix(0,info@q,1)
av.dum[c(1:info@p),1]<-acoeff
if(display==TRUE){
cat(paste0("\n COGARCH(",info@p,info@q,") model \n"))
}
matrforck<-solve(matrixS)%*%(av.dum%*%ev.dum)%*%matrixS
if(is.complex(matrforck)){
A2Matrix<-Conj(t(matrforck))%*%matrforck
SpectNorm<-max(sqrt(as.numeric(abs(eigen(A2Matrix)$values))))
}else{
A2Matrix<-t(matrforck)%*%matrforck
SpectNorm<-max(sqrt(abs(eigen(A2Matrix)$values)))
}
if(SpectNorm*mu < -lambda1){
if(display==TRUE){
cat("\n The process is strictly stationary\n The unconditional first moment of the Variance process exists \n")
}
res.stationarity <- TRUE
}else{
if(display==TRUE){
cat("\n We are not able to establish if the process is stationary \n
Try a new S matrix such that the Companion matrix is diagonalizable")
}
res.stationarity <- "Try a different S matrix"
}
# Check the positivity
massage <- "\n We are not able to establish the positivity of the Variance \n"
res.pos <- " "
if(info@p==1){
if(is.numeric(lambda.eig) && all(lambda.eig<0)){
massage <- "\n the Variance is a positive process \n"
res.pos <- TRUE
}
if(is.complex(lambda.eig) && all(Im(lambda.eig)==0) && all(Re(lambda.eig) < 0)){
massage <- "\n the Variance is a positive process \n"
res.pos <- TRUE
}
}
if((info@q==2 && info@p==2 )){
if(is.numeric(lambda.eig)|| (is.complex(lambda.eig) && all(Im(lambda.eig)==0))){
if(acoeff[1]>=-acoeff[2]*lambda1){
massage <- "\n the Variance is a positive process \n"
res.pos <- TRUE
}else{
massage <- "\n the Variance process is not strictly positive \n"
res.pos <- FALSE
}
}
}
if(info@p>=2 && info@q>info@p){
gamma.eig<-polyroot(acoeff)
if(all(Im(gamma.eig)==0)){
gamm.eig<-as.numeric(gamma.eig)
}
if( all(Re(gamma.eig)<0) && all(Re(lambda.eig)<0)){
NewLamb <- sort(Re(lambda.eig),decreasing = T)
NewGam <- sort(Re(gamma.eig),decreasing = T)
if(cumsum(NewLamb[c(1:(info@p-1))])>=cumsum(NewGam[c(1:(info@p-1))])){
massage <- "\n The Variance process is strictly positive. \n"
res.pos<-TRUE
}
}
}
if(display==TRUE){
cat(massage)
}
res1<-StationaryMoments(cost,b,acoeff,mu)
res <- list(meanVarianceProc=res1$ExpVar,
meanStateVariable=res1$ExpStatVar,
stationary = res.stationarity,
positivity = res.pos)
return(invisible(res))
}
yuima.norm2<-function(x){
res<-sqrt(max(eigen(t(x) %*% x)$values))
return(res)
}
StationaryMoments<-function(cost,b,acoeff,mu=1){
# We obtain stationary mean of State process
# stationary mean of the variance
# E\left(Y\right)=-a_{0}m_{2}\left(A+m_{2}ea'\right)^{-1}e
q<-length(b)
a <- e <- matrix(0,nrow=q,ncol=1)
e[q,1] <- 1
p<-length(acoeff)
a[1:p,1] <- acoeff
B_tilde <- MatrixA(b[c(q:1)])+mu*e%*%t(a)
if(q>1){
invB<-rbind(c(-B_tilde[q,-1],1)/B_tilde[q,1],cbind(diag(q-1),matrix(0,q-1,1)))
}else{invB<-1/B_tilde}
ExpStatVar <- -cost*mu*invB%*%e
ExpVar <- cost+t(a)%*%ExpStatVar
res <- list(ExpVar=ExpVar, ExpStatVar=ExpStatVar)
return(res)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/DiagnosticCogarch.R |
# Method for construction of function and operator of yuima
# object
setMap <- function(func, yuima, out.var = "", nrow =1 ,ncol=1){
# A function has three kind of inputs
# parameters that is a scalar
# Process that is an object of class yuima
# Time that is an object of sample grid
res <- aux.setMaps(func, yuima, out.var = out.var, nrow =1 ,
ncol=1, type="Maps")
return(res)
# if(missing(yuima)){
# yuima.stop("yuima object is missing.")
# }
#
# if(missing(func)){
# yuima.stop("function is missing.")
# return(NULL)
# }
#
# # if(is.array(func)){
# # dimens<-dim(func)
# # }else{
# # if(length(func)!=(nrow*ncol)){
# # yuima.warn("nrow*ncol is different from the dim of image. f becomes a vector function")
# # func<-as.matrix(func)
# # dimens<-dim(func)
# # }else{
# # func<-matrix(func,nrow = nrow, ncol = ncol)
# # dimens<-dim(func)
# # }
# # }
#
# resFunc<-constFunc(func, nrow, ncol)
#
# func <- resFunc$func
# dimens <- resFunc$dimens
#
# # if(is(yuima, "yuima.model")){
# # mod<-yuima
# # yuima<-setYuima(model = mod)
# # }else{
# # if(is(yuima, "yuima")){
# # mod<-yuima@model
# # }else{
# # yuima.stop("yuima must be an object of class yuima or yuima.model")
# # }
# # }
#
#
# modDum <- ExtYuimaMod(yuima)
# mod <- modDum$mod
# yuima <- modDum$yuima
#
# paramfunc<-NULL
# ddd<-prod(dimens)
# funcList<-as.list(character(length=ddd))
# func<-as.character(func)
# for(i in c(1:ddd)){
# funcList[[i]]<-parse(text=func[i])
# paramfunc<-c(paramfunc,all.vars(funcList[[i]]))
# }
# # funcList<-array(funcList,dim=dimens)
# # for(j in c(1:ncol)){
# # for(i in c(1:nrow)){
# # funcList[[i+(j-1)*nrow]]<-parse(text = func[i,j])
# # paramfunc<-c(paramfunc,all.vars(funcList[[i+(j-1)*nrow]]))
# # }
# # }
# paramfunc<-unique(paramfunc)
# common<-mod@parameter@common
#
# Cond<-(mod@parameter@all %in% paramfunc)
# common <- c(common,mod@parameter@all[Cond])
# Cond <- (paramfunc %in% [email protected])
# if(sum(Cond)==0){
# yuima.warn("function does not depend on solve.variable")
# }
# paramfunc<-paramfunc[!Cond]
#
# Cond <- (paramfunc %in% [email protected])
# paramfunc <- paramfunc[!Cond]
# if(length(out.var)==1){
# out.var<-rep(out.var,ddd)
# }
# param <- new("param.Output",
# out.var = out.var,
# allparam = unique(c(paramfunc,mod@parameter@all)),
# allparamMap = paramfunc,
# common = common,
# Input.var = [email protected],
# [email protected])
#
# objFunc <- new("info.Output", formula = funcList,
# dimension=dimens, type ="Maps")
#
# res<-new("yuima.Output",
# param = param,
# Output = objFunc,
# yuima=yuima )
#
# return(res)
}
aux.setMaps <- function(func, yuima, out.var = "",
nrow =1 ,ncol=1, type="Maps"){
if(missing(yuima)){
yuima.stop("yuima object is missing.")
}
if(missing(func)){
yuima.stop("function is missing.")
return(NULL)
}
# if(is.array(func)){
# dimens<-dim(func)
# }else{
# if(length(func)!=(nrow*ncol)){
# yuima.warn("nrow*ncol is different from the dim of image. f becomes a vector function")
# func<-as.matrix(func)
# dimens<-dim(func)
# }else{
# func<-matrix(func,nrow = nrow, ncol = ncol)
# dimens<-dim(func)
# }
# }
resFunc<-constFunc(func, nrow, ncol)
func <- resFunc$func
dimens <- resFunc$dimens
# if(is(yuima, "yuima.model")){
# mod<-yuima
# yuima<-setYuima(model = mod)
# }else{
# if(is(yuima, "yuima")){
# mod<-yuima@model
# }else{
# yuima.stop("yuima must be an object of class yuima or yuima.model")
# }
# }
modDum <- ExtYuimaMod(yuima)
mod <- modDum$mod
yuima <- modDum$yuima
paramfunc<-NULL
ddd<-prod(dimens)
funcList<-as.list(character(length=ddd))
funcList <- vector(mode ="expression", length=ddd)
func<-as.character(func)
for(i in c(1:ddd)){
#funcList[[i]]<-parse(text=func[i])
funcList[i]<-parse(text=func[i])
paramfunc<-c(paramfunc,all.vars(funcList[[i]]))
}
# funcList<-array(funcList,dim=dimens)
# for(j in c(1:ncol)){
# for(i in c(1:nrow)){
# funcList[[i+(j-1)*nrow]]<-parse(text = func[i,j])
# paramfunc<-c(paramfunc,all.vars(funcList[[i+(j-1)*nrow]]))
# }
# }
paramfunc<-unique(paramfunc)
common<-mod@parameter@common
Cond<-(mod@parameter@all %in% paramfunc)
common <- c(common,mod@parameter@all[Cond])
Cond <- (paramfunc %in% [email protected])
if(sum(Cond)==0){
yuima.warn("function does not depend on solve.variable")
}
paramfunc<-paramfunc[!Cond]
Cond <- (paramfunc %in% [email protected])
paramfunc <- paramfunc[!Cond]
if(length(out.var)==1){
out.var<-rep(out.var,ddd)
}
param <- new("param.Map",
out.var = out.var,
allparam = unique(c(paramfunc,mod@parameter@all)),
allparamMap = paramfunc,
common = common,
Input.var = [email protected],
[email protected])
objFunc <- new("info.Map", formula = funcList,
dimension=dimens, type = type,
param=param)
res<-new("yuima.Map",
Output = objFunc,
yuima=yuima )
return(res)
}
setIntegral <- function(yuima, integrand, var.dx,
lower.var, upper.var, out.var = "", nrow =1 ,ncol=1){
type <- "Integral"
res <- aux.setIntegral(yuima = yuima, integrand = integrand,
var.dx = var.dx, lower.var = lower.var, upper.var = upper.var,
out.var = out.var, nrow = nrow , ncol = ncol,
type = type)
return(res)
# param <- list(allparam=unique(allparam), common=common,
# IntegrandParam = paramIntegrand)
#
# return(list(param = param, IntegrandList=IntegrandList,
# var.dx=var.dx, lower.var=lower.var, upper.var=upper.var,
# out.var=out.var, dimIntegrand = dimension))
}
aux.setIntegral <- function(yuima, integrand, var.dx,
lower.var, upper.var, out.var = "", nrow =1 ,ncol=1,
type = "Integral"){
if(missing(yuima)){
yuima.stop("yuima object is missing.")
}
if(missing(integrand)){
yuima.stop("Integrand function is missing")
}
if(missing(var.dx)){
yuima.stop("dx object is missing.")
}
if(!is(integrand,"yuima.Map")){
resFunc<-constFunc(func=integrand, nrow, ncol)
}else{
resFunc <-list()
resFunc$func <- integrand@Output@formula
resFunc$dimens <- integrand@Output@dimension
if(!(integrand@Output@[email protected]%in%[email protected])){
yuima.warn("check integrand function")
}
}
Integrand <- resFunc$func
dimension <- resFunc$dimens
modDum <- ExtYuimaMod(yuima)
mod <- modDum$mod
yuima <- modDum$yuima
paramIntegrand <- NULL
ddd <- prod(dimension)
IntegrandList <- as.list(character(length=ddd))
Integrand <- as.character(Integrand)
for(i in c(1:ddd)){
IntegrandList[[i]]<-parse(text=Integrand[i])
paramIntegrand<-c(paramIntegrand,all.vars(IntegrandList[[i]]))
}
paramIntegrand<-unique(paramIntegrand)
common<-mod@parameter@common
Cond<-(mod@parameter@all %in% paramIntegrand)
common <- c(common,mod@parameter@all[Cond])
# solve variable
Cond <- (paramIntegrand %in% [email protected])
if(sum(Cond)==0){
yuima.warn("Integrand fuction does not depend on solve.variable")
}
paramIntegrand <- paramIntegrand[!Cond]
# state variable
Cond <- (paramIntegrand %in% [email protected])
if(sum(Cond)==0){
yuima.warn("Integrand fuction does not depend on state.variable")
}
paramIntegrand <- paramIntegrand[!Cond]
# time variable
Cond <- (paramIntegrand %in% [email protected])
paramIntegrand <- paramIntegrand[!Cond]
# upper.var
if((upper.var == [email protected])||(lower.var == [email protected])){
yuima.stop("upper.var or lower.var must be different from time.variable")
}
Cond <- (paramIntegrand %in% upper.var)
paramIntegrand <- paramIntegrand[!Cond]
Cond <- (paramIntegrand %in% lower.var)
paramIntegrand <- paramIntegrand[!Cond]
allparam <- c(mod@parameter@all, unique(paramIntegrand))
if(type == "Integral"){
cond1 <-c(var.dx %in% c([email protected], [email protected]))
if(sum(cond1)!=dimension[2]){
yuima.stop("var.dx must be contains only components of solve variable or time variable")
}
}
my.param.Integral <- new("param.Integral",
allparam = unique(allparam),
common = common,
Integrandparam = paramIntegrand)
my.variable.Integral <- new("variable.Integral",
var.dx = var.dx,
lower.var = lower.var,
upper.var = upper.var,
out.var = out.var,
var.time = yuima@[email protected])
my.integrand <- new("Integrand",
IntegrandList=IntegrandList,
dimIntegrand = dimension)
my.Integral<-new("Integral.sde",
param.Integral = my.param.Integral,
variable.Integral = my.variable.Integral,
Integrand = my.integrand)
res<-new("yuima.Integral",Integral=my.Integral, yuima=yuima)
return(res)
}
# setOperator <- function(operator, X, Y,
# out.var = "", nrow =1 ,ncol=1){
# if(is(X, "yuima.model")&& is(Y, "yuima.model")){
# modtot <- rbind(X,Y)
# }
# #assign("mod1",mod1)
# Oper<- strsplit(operator,split="")[[1]]
# if([email protected][email protected]){
# yuima.stop("the models must have the same dimension")
# }
# func <- matrix(character(),[email protected],1)
# condX <- (Oper %in% "X")
# condY <- (Oper %in% "Y")
# for(i in c(1:[email protected])){
# dummyCond <- Oper
# dummyCond[condX] <- [email protected][i]
# dummyCond[condY] <- [email protected][i]
# func[i,] <- paste0(dummyCond,collapse ="")
# }
# # res <- setMaps(func = func, yuima = modtot,
# # out.var = out.var, nrow = nrow , ncol = ncol)
# res <- aux.setMaps(func = func, yuima = modtot,
# out.var = out.var, nrow = nrow ,
# ncol=ncol, type="Operator")
# return(res)
# }
#
# setIntensity <- function(...){
# return(NULL)
# }
constFunc<-function(func, nrow, ncol){
if(is.array(func)){
dimens<-dim(func)
}else{
if(length(func)!=(nrow*ncol)){
yuima.warn("nrow*ncol is different from the dim of image. f becomes a vector function")
func<-as.matrix(func)
dimens<-dim(func)
}else{
func<-matrix(func,nrow = nrow, ncol = ncol)
dimens<-dim(func)
}
}
return(list(func=func, dimens = dimens))
}
ExtYuimaMod <- function(yuima){
if(is(yuima, "yuima.model")){
mod<-yuima
yuima<-setYuima(model = mod)
}else{
if(is(yuima, "yuima")){
mod<-yuima@model
}else{
yuima.stop("yuima must be an object of class yuima or yuima.model")
}
}
return(list(mod=mod, yuima=yuima))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/FunctionAndOperators.R |
## information criteria
IC <- function(drif = NULL, diff = NULL, jump.coeff = NULL, data = NULL, Terminal = 1, add.settings = list(), start, lower, upper, ergodic = TRUE, stepwise = FALSE, weight = FALSE, rcpp = FALSE, ...){
Levy <- FALSE
if(length(jump.coeff) > 0){
torf.jump <- (jump.coeff == "0")
for(i in 1:length(jump.coeff)){
if(torf.jump[i] == FALSE){
Levy <- TRUE
stepwise <- TRUE
break
}
}
}
if(Levy == FALSE && ergodic == FALSE){
stepwise <- FALSE
}
settings <- list(hurst = 0.5, measure = list(), measure.type = character(), state.variable = "x", jump.variable = "z", time.variable = "t", solve.variable = "x")
if(length(add.settings) > 0){
match.settings <- match(names(add.settings), names(settings))
for(i in 1:length(match.settings)){
settings[[match.settings[i]]] <- add.settings[[i]]
}
}
if(stepwise == FALSE){
# Joint
## Candidate models
yuimas <- NULL
if(ergodic == TRUE){
joint <- TRUE
for(i in 1:length(diff)){
for(j in 1:length(drif)){
mod <- setModel(drift = drif[[j]], diffusion = diff[[i]], hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
if(is.matrix(data) == FALSE){
n <- length(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list(zoo(x = data, order.by = modyuima@sampling@grid[[1]]))
names(sub.zoo.data)[1] <- "Series 1"
}else{
n <- nrow(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list()
for(j in 1:ncol(data)){
sub.zoo.data <- c(sub.zoo.data, list(zoo(x = data[,j], order.by = modyuima@sampling@grid[[1]])))
names(sub.zoo.data)[j] <- paste("Series", j)
}
}
modyuima@[email protected] <- sub.zoo.data
yuimas <- c(yuimas, list(modyuima))
}
}
}else{
joint <- FALSE
for(i in 1:length(diff)){
if(is.matrix(data) == FALSE){
mod <- setModel(drift = "0", diffusion = diff[[i]], hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- length(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list(zoo(x = data, order.by = modyuima@sampling@grid[[1]]))
names(sub.zoo.data)[1] <- "Series 1"
}else{
zerovec <- rep("0", length=ncol(data))
mod <- setModel(drift = zerovec, diffusion = diff[[i]], hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- nrow(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list()
for(j in 1:ncol(data)){
sub.zoo.data <- c(sub.zoo.data, list(zoo(x = data[,j], order.by = modyuima@sampling@grid[[1]])))
names(sub.zoo.data)[j] <- paste("Series", j)
}
}
modyuima@[email protected] <- sub.zoo.data
yuimas <- c(yuimas, list(modyuima))
}
}
mod.num <- length(yuimas)
## Model comparison
Esti <- BIC <- QBIC <- AIC <- NULL
for(i in 1:mod.num){
yuima <- yuimas[[i]]
#alpha <- yuima@model@parameter@drift
#beta <- yuima@model@parameter@diffusion
para.num.init <- match(yuima@model@parameter@all, names(start))
para.num.low <- match(yuima@model@parameter@all, names(lower))
para.num.upp <- match(yuima@model@parameter@all, names(upper))
para.start <- NULL
para.lower <- NULL
para.upper <- NULL
for(j in 1:length(yuima@model@parameter@all)){
para.start <- c(para.start, list(start[[para.num.init[j]]]))
para.lower <- c(para.lower, list(lower[[para.num.low[j]]]))
para.upper <- c(para.upper, list(upper[[para.num.upp[j]]]))
}
names(para.start) <- yuima@model@parameter@all
names(para.lower) <- yuima@model@parameter@all
names(para.upper) <- yuima@model@parameter@all
mle <- qmle(yuima, start = para.start, lower = para.lower, upper = para.upper, method = "L-BFGS-B", joint = joint, rcpp = rcpp)
hess <- list(mle@details$hessian)
hess.diff <- subset(hess[[1]], rownames(hess[[1]])%in%yuima@model@parameter@diffusion, select=yuima@model@parameter@diffusion)
hess.drif <- subset(hess[[1]], rownames(hess[[1]])%in%yuima@model@parameter@drift, select=yuima@model@parameter@drift)
esti <- list(coef(mle))
names(esti[[1]]) <- c(yuima@model@parameter@diffusion, yuima@model@parameter@drift)
bic <- summary(mle)@m2logL+length(yuima@model@parameter@drift)*log(Terminal)+length(yuima@model@parameter@diffusion)*log(n)
if(det(hess.diff) > 0 && det(hess.drif) > 0){
qbic <- summary(mle)@m2logL+log(det(hess.diff))+log(det(hess.drif))
}else{
qbic <- summary(mle)@m2logL+length(yuima@model@parameter@drift)*log(Terminal)+length(yuima@model@parameter@diffusion)*log(n)
}
aic <- summary(mle)@m2logL+2*(length(yuima@model@parameter@drift)+length(yuima@model@parameter@diffusion))
Esti <- c(Esti, esti)
BIC <- c(BIC, bic)
QBIC <- c(QBIC, qbic)
AIC <- c(AIC, aic)
}
BIC.opt <- which.min(BIC)
QBIC.opt <- which.min(QBIC)
AIC.opt <- which.min(AIC)
## Names
if(ergodic == TRUE){
for(i in 1:length(diff)){
for(j in 1:length(drif)){
names(Esti)[(length(drif)*(i-1)+j)] <- paste("diffusion_", i, " & drift_", j, sep = "")
}
}
BIC <- matrix(BIC, length(drif), length(diff))
QBIC <- matrix(QBIC, length(drif), length(diff))
AIC <- matrix(AIC, length(drif), length(diff))
diff.name <- numeric(length(diff))
drif.name <- numeric(length(drif))
for(i in 1:length(diff)){
diff.name[i] <- paste("scale", i, sep = "_")
}
colnames(BIC) <- colnames(QBIC) <- colnames(AIC) <- diff.name
for(i in 1:length(drif)){
drif.name[i] <- paste("drift", i, sep = "_")
}
rownames(BIC) <- rownames(QBIC) <- rownames(AIC) <- drif.name
}else{
for(i in 1:length(diff)){
names(Esti)[i] <- paste("scale", i, sep = "_")
}
diff.name <- numeric(length(diff))
for(i in 1:length(diff)){
diff.name[i] <- paste("scale", i, sep = "_")
}
names(BIC) <- names(QBIC) <- diff.name
}
## Model weights
if(weight == TRUE){
BIC.weight <- exp(-(1/2)*(BIC-BIC[BIC.opt]))/sum(exp(-(1/2)*(BIC-BIC[BIC.opt])))
QBIC.weight <- exp(-(1/2)*(QBIC-QBIC[QBIC.opt]))/sum(exp(-(1/2)*(QBIC-QBIC[QBIC.opt])))
AIC.weight <- exp(-(1/2)*(AIC-AIC[AIC.opt]))/sum(exp(-(1/2)*(AIC-AIC[AIC.opt])))
if(ergodic == TRUE){
BIC.weight <- matrix(BIC.weight, length(drif), length(diff))
QBIC.weight <- matrix(QBIC.weight, length(drif), length(diff))
AIC.weight <- matrix(AIC.weight, length(drif), length(diff))
colnames(BIC.weight) <- colnames(QBIC.weight) <- colnames(AIC.weight) <- diff.name
rownames(BIC.weight) <- rownames(QBIC.weight) <- rownames(AIC.weight) <- drif.name
}else{
names(BIC.weight) <- names(QBIC.weight) <- diff.name
}
}
## Results
diff.copy <- diff
drif.copy <- drif
for(i in 1:length(diff)){
names(diff.copy)[i] <- paste("scale", i, sep = "_")
}
if(ergodic == TRUE){
for(i in 1:length(drif)){
names(drif.copy)[i] <- paste("drift", i, sep = "_")
}
diff.BIC.opt <- (BIC.opt-1)%/%length(drif)+1
diff.QBIC.opt <- (QBIC.opt-1)%/%length(drif)+1
diff.AIC.opt <- (AIC.opt-1)%/%length(drif)+1
drif.BIC.opt <- (BIC.opt+(length(drif)-1))%%length(drif)+1
drif.QBIC.opt <- (QBIC.opt+(length(drif)-1))%%length(drif)+1
drif.AIC.opt <- (AIC.opt+(length(drif)-1))%%length(drif)+1
}else{
drif <- NULL
}
call <- match.call()
model.coef <- list(drift = drif.copy, scale = diff.copy)
if(length(drif) >0){
bic.selected.coeff <- list(drift = drif[[drif.BIC.opt]], scale = diff[[diff.BIC.opt]])
qbic.selected.coeff <- list(drift = drif[[drif.QBIC.opt]], scale = diff[[diff.QBIC.opt]])
aic.selected.coeff <- list(drift = drif[[drif.AIC.opt]], scale = diff[[diff.AIC.opt]])
}else{
bic.selected.coeff <- list(drift = NULL, scale = diff[[BIC.opt]])
qbic.selected.coeff <- list(drift = NULL, scale = diff[[QBIC.opt]])
aic.selected.coeff <- list(drift = NULL, scale = NULL)
AIC <- NULL
AIC.weight <- NULL
}
ic.selected <- list(BIC = bic.selected.coeff, QBIC = qbic.selected.coeff, AIC = aic.selected.coeff)
if(weight == TRUE){
ak.weight <- list(BIC = BIC.weight, QBIC = QBIC.weight, AIC = AIC.weight)
}else{
ak.weight <- NULL
}
final_res <- list(call = call, model = model.coef, par = Esti, BIC = BIC, QBIC = QBIC, AIC = AIC, weight = ak.weight, selected = ic.selected)
}else{
# Stepwise
pena.aic <- function(yuimaaic, data, pdiff, moment){
tmp.env <- new.env()
aic1para <- yuimaaic@model@parameter@diffusion
for(i in 1:length(aic1para)){
aic1match <- match(aic1para[i], names(pdiff)[i])
assign(aic1para[i], pdiff[aic1match], envir=tmp.env)
}
aic1state <- yuimaaic@[email protected]
aic1ldata <- length(data)-1
aic1dx <- diff(data)
assign(aic1state, data, envir=tmp.env)
aic1ter <- yuimaaic@sampling@Terminal
aic1diff <- eval(yuimaaic@model@diffusion[[1]], envir=tmp.env)
if(length(aic1diff) == 1){
aic1diff <- rep(aic1diff, aic1ldata)
}
aic1sum <- 0
for(i in 1:aic1ldata){
subaic1sum <- (aic1dx[i]/aic1diff[i])^moment
aic1sum <- aic1sum + subaic1sum
}
return(aic1sum/aic1ter)
}
Esti1 <- BIC1 <- QBIC1 <- AIC1 <- NULL
Esti2.bic <- Esti2.qbic <- Esti2.aic <- BIC2 <- QBIC2 <- AIC2 <- NULL
# First step
yuimas1 <- swbeta <- NULL
if(Levy == TRUE){
diff <- jump.coeff
}
for(i in 1:length(diff)){
## Candidate models
if(is.matrix(data) == FALSE){
mod <- setModel(drift = "0", diffusion = diff[[i]], hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- length(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list(zoo(x = data, order.by = modyuima@sampling@grid[[1]]))
names(sub.zoo.data)[1] <- "Series 1"
}else{
zerovec <- rep("0", length=ncol(data))
mod <- setModel(drift = zerovec, diffusion = diff[[i]], hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- nrow(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list()
for(j in 1:ncol(data)){
sub.zoo.data <- c(sub.zoo.data, list(zoo(x = data[,j], order.by = modyuima@sampling@grid[[1]])))
names(sub.zoo.data)[j] <- paste("Series", j)
}
}
modyuima@[email protected] <- sub.zoo.data
yuimas1 <- c(yuimas1, list(modyuima))
## Model comparison
yuima <- modyuima
swbeta <- c(swbeta, list(yuima@model@parameter@diffusion))
para.num.init <- match(swbeta[[i]], names(start))
para.num.low <- match(swbeta[[i]], names(lower))
para.num.upp <- match(swbeta[[i]], names(upper))
para.start <- NULL
para.lower <- NULL
para.upper <- NULL
for(j in 1:length(swbeta[[i]])){
para.start <- c(para.start, list(start[[para.num.init[j]]]))
para.lower <- c(para.lower, list(lower[[para.num.low[j]]]))
para.upper <- c(para.upper, list(upper[[para.num.upp[j]]]))
}
names(para.start) <- swbeta[[i]]
names(para.lower) <- swbeta[[i]]
names(para.upper) <- swbeta[[i]]
mle <- qmle(yuima, start = para.start, lower = para.lower, upper = para.upper, method = "L-BFGS-B", joint = FALSE, rcpp = rcpp)
hess <- mle@details$hessian
esti <- list(coef(mle))
names(esti[[1]]) <- swbeta[[i]]
if(is.matrix(data) == FALSE && Levy == TRUE){
bic <- summary(mle)@m2logL+(length(swbeta[[i]])/(yuima@sampling@delta))*log(yuima@sampling@Terminal)
qbic <- summary(mle)@m2logL+(length(swbeta[[i]])/(yuima@sampling@delta))*log(yuima@sampling@Terminal)
}else{
bic <- summary(mle)@m2logL+length(swbeta[[i]])*log(n)
if(det(hess) > 0){
qbic <- summary(mle)@m2logL+log(det(hess))
}else{
qbic <- summary(mle)@m2logL+length(swbeta[[i]])*log(n)
}
}
if(is.matrix(data) == FALSE && Levy == TRUE){
aic <- summary(mle)@m2logL+length(swbeta[[i]])*((1/yuima@sampling@delta)*pena.aic(yuima,data,coef(mle),4)-(pena.aic(yuima,data,coef(mle),2))^2)
}else{
aic <- summary(mle)@m2logL+2*length(swbeta[[i]])
}
Esti1 <- c(Esti1, esti)
BIC1 <- c(BIC1, bic)
QBIC1 <- c(QBIC1, qbic)
AIC1 <- c(AIC1, aic)
}
BIC.opt1 <- which.min(BIC1)
QBIC.opt1 <- which.min(QBIC1)
AIC.opt1 <- which.min(AIC1)
## Names
for(i in 1:length(diff)){
names(Esti1)[i] <- paste("scale", i, sep = "_")
names(BIC1)[i] <- paste("scale", i, sep = "_")
names(QBIC1)[i] <- paste("scale", i, sep = "_")
names(AIC1)[i] <- paste("scale", i, sep = "_")
}
## Model weights
if(weight == TRUE){
BIC.weight1 <- exp(-(1/2)*(BIC1-BIC1[BIC.opt1]))/sum(exp(-(1/2)*(BIC1-BIC1[BIC.opt1])))
QBIC.weight1 <- exp(-(1/2)*(QBIC1-QBIC1[QBIC.opt1]))/sum(exp(-(1/2)*(QBIC1-QBIC1[QBIC.opt1])))
AIC.weight1 <- exp(-(1/2)*(AIC1-AIC1[AIC.opt1]))/sum(exp(-(1/2)*(AIC1-AIC1[AIC.opt1])))
for(i in 1:length(diff)){
names(BIC.weight1)[i] <- paste("scale", i, sep = "_")
names(QBIC.weight1)[i] <- paste("scale", i, sep = "_")
names(AIC.weight1)[i] <- paste("scale", i, sep = "_")
}
}
# Second step
## Use the selection results of first step
diff.row.bic <- length(yuimas1[[BIC.opt1]]@model@diffusion)
Diff.esti.bic <- NULL
Esti1.chr.bic <- as.character(Esti1[[BIC.opt1]])
Diff.esti.bic <- diff[[BIC.opt1]]
for(i in 1:diff.row.bic){
if(length(Esti1.chr.bic) == 1){
Diff.esti.bic.sub <- gsub(swbeta[[BIC.opt1]][1], Esti1.chr.bic[1], yuimas1[[BIC.opt1]]@model@diffusion[[i]])
}else{
Diff.esti.bic.sub <- gsub(swbeta[[BIC.opt1]][1], Esti1.chr.bic[1], yuimas1[[BIC.opt1]]@model@diffusion[[i]])
for(j in 1:(length(Esti1.chr.bic)-1)){
Diff.esti.bic.sub <- gsub(swbeta[[BIC.opt1]][(j+1)], Esti1.chr.bic[(j+1)], Diff.esti.bic.sub)
}
}
# if(class(Diff.esti.bic) == "character"){
if(inherits(Diff.esti.bic, "character")){
Diff.esti.bic <- Diff.esti.bic.sub
} else {
Diff.esti.bic[i,] <- Diff.esti.bic.sub
}
}
diff.row.qbic <- length(yuimas1[[QBIC.opt1]]@model@diffusion)
Diff.esti.qbic <- NULL
Esti1.chr.qbic <- as.character(Esti1[[QBIC.opt1]])
Diff.esti.qbic <- diff[[QBIC.opt1]]
for(i in 1:diff.row.qbic){
if(length(Esti1.chr.qbic) == 1){
Diff.esti.qbic.sub <- gsub(swbeta[[QBIC.opt1]][1], Esti1.chr.qbic[1], yuimas1[[QBIC.opt1]]@model@diffusion[[i]])
}else{
Diff.esti.qbic.sub <- gsub(swbeta[[QBIC.opt1]][1], Esti1.chr.qbic[1], yuimas1[[QBIC.opt1]]@model@diffusion[[i]])
for(j in 1:(length(Esti1.chr.qbic)-1)){
Diff.esti.qbic.sub <- gsub(swbeta[[QBIC.opt1]][(j+1)], Esti1.chr.qbic[(j+1)], Diff.esti.qbic.sub)
}
}
#if(class(Diff.esti.qbic) == "character"){
if(inherits(Diff.esti.qbic,"character")){
Diff.esti.qbic <- Diff.esti.qbic.sub
} else {
Diff.esti.qbic[i,] <- Diff.esti.qbic.sub
}
}
diff.row.aic <- length(yuimas1[[AIC.opt1]]@model@diffusion)
Diff.esti.aic <- NULL
Esti1.chr.aic <- as.character(Esti1[[AIC.opt1]])
Diff.esti.aic <- diff[[AIC.opt1]]
for(i in 1:diff.row.aic){
if(length(Esti1.chr.aic) == 1){
Diff.esti.aic.sub <- gsub(swbeta[[AIC.opt1]][1], Esti1.chr.aic[1], yuimas1[[AIC.opt1]]@model@diffusion[[i]])
}else{
Diff.esti.aic.sub <- gsub(swbeta[[AIC.opt1]][1], Esti1.chr.aic[1], yuimas1[[AIC.opt1]]@model@diffusion[[i]])
for(j in 1:(length(Esti1.chr.aic)-1)){
Diff.esti.aic.sub <- gsub(swbeta[[AIC.opt1]][(j+1)], Esti1.chr.aic[(j+1)], Diff.esti.aic.sub)
}
}
#if(class(Diff.esti.aic) == "character"){
if(inherits(Diff.esti.aic, "character")){
Diff.esti.aic <- Diff.esti.aic.sub
} else {
Diff.esti.aic[i,] <- Diff.esti.aic.sub
}
}
yuimas2.bic <- yuimas2.qbic <- yuimas2.aic <- swalpha <- NULL
for(i in 1:length(drif)){
## Candidate models
if(is.matrix(data) == FALSE){
mod.bic <- setModel(drift = drif[[i]], diffusion = Diff.esti.bic, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
mod.qbic <- setModel(drift = drif[[i]], diffusion = Diff.esti.qbic, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
mod.aic <- setModel(drift = drif[[i]], diffusion = Diff.esti.aic, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- length(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima.bic <- setYuima(model = mod.bic, sampling = modsamp)
modyuima.qbic <- setYuima(model = mod.qbic, sampling = modsamp)
modyuima.aic <- setYuima(model = mod.aic, sampling = modsamp)
sub.zoo.data.bic <- list(zoo(x = data, order.by = modyuima.bic@sampling@grid[[1]]))
sub.zoo.data.qbic <- list(zoo(x = data, order.by = modyuima.qbic@sampling@grid[[1]]))
sub.zoo.data.aic <- list(zoo(x = data, order.by = modyuima.aic@sampling@grid[[1]]))
names(sub.zoo.data.bic)[1] <- names(sub.zoo.data.qbic)[1] <- names(sub.zoo.data.aic)[1] <- "Series 1"
}else{
mod.bic <- setModel(drift = drif[[i]], diffusion = Diff.esti.bic, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
mod.qbic <- setModel(drift = drif[[i]], diffusion = Diff.esti.qbic, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
mod.aic <- setModel(drift = drif[[i]], diffusion = Diff.esti.aic, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- nrow(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima.bic <- setYuima(model = mod.bic, sampling = modsamp)
modyuima.qbic <- setYuima(model = mod.qbic, sampling = modsamp)
modyuima.aic <- setYuima(model = mod.bic, sampling = modsamp)
sub.zoo.data.bic <- sub.zoo.data.qbic <- sub.zoo.data.aic <- list()
for(j in 1:ncol(data)){
sub.zoo.data.bic <- c(sub.zoo.data.bic, list(zoo(x = data[,j], order.by = modyuima.bic@sampling@grid[[1]])))
sub.zoo.data.qbic <- c(sub.zoo.data.qbic, list(zoo(x = data[,j], order.by = modyuima.qbic@sampling@grid[[1]])))
sub.zoo.data.aic <- c(sub.zoo.data.aic, list(zoo(x = data[,j], order.by = modyuima.aic@sampling@grid[[1]])))
names(sub.zoo.data.bic)[j] <- names(sub.zoo.data.qbic)[j] <- names(sub.zoo.data.aic)[j] <- paste("Series", j)
}
}
modyuima.bic@[email protected] <- sub.zoo.data.bic
modyuima.qbic@[email protected] <- sub.zoo.data.qbic
modyuima.aic@[email protected] <- sub.zoo.data.aic
yuimas2.bic <- c(yuimas2.bic, list(modyuima.bic))
yuimas2.qbic <- c(yuimas2.qbic, list(modyuima.qbic))
yuimas2.aic <- c(yuimas2.aic, list(modyuima.aic))
## Model comparison
swalpha <- c(swalpha, list(modyuima.bic@model@parameter@drift))
para.number.init <- match(swalpha[[i]], names(start))
para.number.low <- match(swalpha[[i]], names(lower))
para.number.upp <- match(swalpha[[i]], names(upper))
para.start <- NULL
para.lower <- NULL
para.upper <- NULL
for(j in 1:length(swalpha[[i]])){
para.start <- c(para.start, list(start[[para.number.init[j]]]))
para.lower <- c(para.lower, list(lower[[para.number.low[j]]]))
para.upper <- c(para.upper, list(upper[[para.number.upp[j]]]))
}
names(para.start) <- swalpha[[i]]
names(para.lower) <- swalpha[[i]]
names(para.upper) <- swalpha[[i]]
mle.bic <- qmle(modyuima.bic, start = para.start, lower = para.lower, upper = para.upper, method = "L-BFGS-B", rcpp = rcpp)
mle.qbic <- qmle(modyuima.qbic, start = para.start, lower = para.lower, upper = para.upper, method = "L-BFGS-B", rcpp = rcpp)
mle.aic <- qmle(modyuima.aic, start = para.start, lower = para.lower, upper = para.upper, method = "L-BFGS-B", rcpp = rcpp)
hess2 <- mle.qbic@details$hessian
esti.bic <- list(coef(mle.bic))
esti.qbic <- list(coef(mle.qbic))
esti.aic <- list(coef(mle.aic))
names(esti.bic[[1]]) <- names(esti.qbic[[1]]) <- names(esti.aic[[1]]) <- swalpha[[i]]
bic <- summary(mle.bic)@m2logL+length(swalpha[[i]])*log(Terminal)
if(det(hess2) > 0){
qbic <- summary(mle.qbic)@m2logL+log(det(hess2))
}else{
qbic <- summary(mle.qbic)@m2logL+length(swalpha[[i]])*log(Terminal)
}
aic <- summary(mle.aic)@m2logL+2*length(swalpha[[i]])
Esti2.bic <- c(Esti2.bic, esti.bic)
Esti2.qbic <- c(Esti2.qbic, esti.qbic)
Esti2.aic <- c(Esti2.aic, esti.aic)
BIC2 <- c(BIC2, bic)
QBIC2 <- c(QBIC2, qbic)
AIC2 <- c(AIC2, aic)
}
BIC.opt2 <- which.min(BIC2)
QBIC.opt2 <- which.min(QBIC2)
AIC.opt2 <- which.min(AIC2)
## Names
for(i in 1:length(drif)){
names(Esti2.bic)[i] <- paste("drift", i, sep = "_")
names(Esti2.qbic)[i] <- paste("drift", i, sep = "_")
names(Esti2.aic)[i] <- paste("drift", i, sep = "_")
names(BIC2)[i] <- paste("drift", i, sep = "_")
names(QBIC2)[i] <- paste("drift", i, sep = "_")
names(AIC2)[i] <- paste("drift", i, sep = "_")
}
## Model weights
if(weight == TRUE){
BIC.weight.full <- QBIC.weight.full <- AIC.weight.full <- matrix(0, length(drif), length(diff))
for(i in 1:length(diff)){
diff.row <- length(yuimas1[[i]]@model@diffusion)
Esti1.chr <- as.character(Esti1[[i]])
Diff.esti <- diff[[i]]
for(j in 1:diff.row){
if(length(Esti1.chr) == 1){
Diff.esti.sub <- gsub(swbeta[[i]][1], Esti1.chr[1], yuimas1[[i]]@model@diffusion[[j]])
}else{
Diff.esti.sub <- gsub(swbeta[[i]][1], Esti1.chr[1], yuimas1[[i]]@model@diffusion[[j]])
for(k in 1:(length(Esti1.chr)-1)){
Diff.esti.sub <- gsub(swbeta[[i]][(k+1)], Esti1.chr[(k+1)], Diff.esti.sub)
}
}
#if(class(Diff.esti) == "character"){
if(inherits(Diff.esti, "character")){
Diff.esti <- Diff.esti.sub
} else {
Diff.esti[j,] <- Diff.esti.sub
}
}
BIC2.sub <- QBIC2.sub <- AIC2.sub <- NULL
for(j in 1:length(drif)){
if(is.matrix(data) == FALSE){
mod <- setModel(drift = drif[[j]], diffusion = Diff.esti, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- length(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list(zoo(x = data, order.by = modyuima@sampling@grid[[1]]))
names(sub.zoo.data)[1] <- "Series 1"
}else{
mod <- setModel(drift = drif[[j]], diffusion = Diff.esti, hurst = settings[[1]], measure = settings[[2]], measure.type = settings[[3]], state.variable = settings[[4]], jump.variable = settings[[5]], time.variable = settings[[6]], solve.variable = settings[[7]])
n <- nrow(data)-1
modsamp <- setSampling(Terminal = Terminal, n = n)
modyuima <- setYuima(model = mod, sampling = modsamp)
sub.zoo.data <- list()
for(k in 1:ncol(data)){
sub.zoo.data <- c(sub.zoo.data, list(zoo(x = data[,k], order.by = modyuima@sampling@grid[[1]])))
names(sub.zoo.data)[k] <- paste("Series", k)
}
}
modyuima@[email protected] <- sub.zoo.data
para.number.init <- match(swalpha[[j]], names(start))
para.number.low <- match(swalpha[[j]], names(lower))
para.number.upp <- match(swalpha[[j]], names(upper))
para.start <- NULL
para.lower <- NULL
para.upper <- NULL
for(k in 1:length(swalpha[[j]])){
para.start <- c(para.start, list(start[[para.number.init[k]]]))
para.lower <- c(para.lower, list(lower[[para.number.low[k]]]))
para.upper <- c(para.upper, list(upper[[para.number.upp[k]]]))
}
names(para.start) <- swalpha[[j]]
names(para.lower) <- swalpha[[j]]
names(para.upper) <- swalpha[[j]]
mle.weight <- qmle(modyuima, start = para.start, lower = para.lower, upper = para.upper, method = "L-BFGS-B", rcpp = rcpp)
hess.weight <- mle.weight@details$hessian
esti.weight <- list(coef(mle.weight))
names(esti.weight[[1]]) <- swalpha[[j]]
bic <- summary(mle.weight)@m2logL+length(swalpha[[j]])*log(Terminal)
if(det(hess.weight) > 0){
qbic <- summary(mle.weight)@m2logL+log(det(hess.weight))
}else{
qbic <- summary(mle.weight)@m2logL+length(swalpha[[j]])*log(Terminal)
}
aic <- summary(mle.weight)@m2logL+2*length(swalpha[[j]])
BIC2.sub <- c(BIC2.sub, bic)
QBIC2.sub <- c(QBIC2.sub, qbic)
AIC2.sub <- c(AIC2.sub, aic)
}
BIC2.sub.opt <- which.min(BIC2.sub)
QBIC2.sub.opt <- which.min(QBIC2.sub)
AIC2.sub.opt <- which.min(AIC2.sub)
BIC.weight2 <- exp(-(1/2)*(BIC2.sub-BIC2.sub[BIC2.sub.opt]))/sum(exp(-(1/2)*(BIC2.sub-BIC2.sub[BIC2.sub.opt])))
QBIC.weight2 <- exp(-(1/2)*(QBIC2.sub-QBIC2.sub[BIC2.sub.opt]))/sum(exp(-(1/2)*(QBIC2.sub-QBIC2.sub[QBIC2.sub.opt])))
AIC.weight2 <- exp(-(1/2)*(AIC2.sub-AIC2.sub[AIC2.sub.opt]))/sum(exp(-(1/2)*(AIC2.sub-AIC2.sub[AIC2.sub.opt])))
BIC.weight.full[,i] <- BIC.weight1[i]*BIC.weight2
QBIC.weight.full[,i] <- QBIC.weight1[i]*QBIC.weight2
AIC.weight.full[,i] <- AIC.weight1[i]*AIC.weight2
}
colname.weight <- numeric(length(diff))
rowname.weight <- numeric(length(drif))
for(i in 1:length(diff)){
colname.weight[i] <- paste("scale", i, sep = "_")
}
colnames(BIC.weight.full) <- colname.weight
colnames(QBIC.weight.full) <- colname.weight
colnames(AIC.weight.full) <- colname.weight
for(i in 1:length(drif)){
rowname.weight[i] <- paste("drift", i, sep = "_")
}
rownames(BIC.weight.full) <- rowname.weight
rownames(QBIC.weight.full) <- rowname.weight
rownames(AIC.weight.full) <- rowname.weight
}
## Results
diff.copy <- diff
drif.copy <- drif
for(i in 1:length(diff)){
names(diff.copy)[i] <- paste("scale", i, sep = "_")
}
for(i in 1:length(drif)){
names(drif.copy)[i] <- paste("drift", i, sep = "_")
}
BIC <- list(first = BIC1, second = BIC2)
QBIC <- list(first = QBIC1, second = QBIC2)
AIC <- list(first = AIC1, second = AIC2)
if(is.matrix(data) == FALSE && Levy == TRUE){
Esti <- list(first = Esti1, second.bic = NULL, second.qbic = Esti2.qbic, second.aic = Esti2.aic)
}else{
Esti <- list(first = Esti1, second.bic = Esti2.bic, second.qbic = Esti2.qbic, second.aic = Esti2.aic)
}
call <- match.call()
model.coef <- list(drift = drif.copy, scale = diff.copy)
bic.selected.coeff <- list(drift = drif[[BIC.opt2]], scale = diff[[BIC.opt1]])
qbic.selected.coeff <- list(drift = drif[[QBIC.opt2]], scale = diff[[QBIC.opt1]])
aic.selected.coeff <- list(drift = drif[[AIC.opt2]], scale = diff[[AIC.opt1]])
if(is.matrix(data) == FALSE && Levy == TRUE){
ic.selected <- list(BIC = NULL, QBIC = qbic.selected.coeff, AIC = aic.selected.coeff)
}else{
ic.selected <- list(BIC = bic.selected.coeff, QBIC = qbic.selected.coeff, AIC = aic.selected.coeff)
}
if(weight == TRUE){
if(is.matrix(data) == FALSE && Levy == TRUE){
ak.weight <- list(BIC = NULL, QBIC = QBIC.weight.full, AIC = AIC.weight.full)
}else{
ak.weight <- list(BIC = BIC.weight.full, QBIC = QBIC.weight.full, AIC = AIC.weight.full)
}
}else{
ak.weight <- NULL
}
if(is.matrix(data) == FALSE && Levy == TRUE){
final_res <- list(call = call, model = model.coef, par = Esti, BIC = NULL, QBIC = QBIC, AIC = AIC, weight = ak.weight, selected = ic.selected)
}else{
final_res <- list(call = call, model = model.coef, par = Esti, BIC = BIC, QBIC = QBIC, AIC = AIC, weight = ak.weight, selected = ic.selected)
}
}
class(final_res) <- "yuima.ic"
return(final_res)
}
print.yuima.ic <- function(x, ...){
cat("\nCall:\n")
print(x$call)
cat("\nInformation criteria:\n")
cat("\nBIC:\n")
print(x$BIC)
cat("\nQBIC:\n")
print(x$QBIC)
cat("\nAIC:\n")
print(x$AIC)
#if(class(x$AIC) == "matrix"){
#if(is.matrix(x$AIC)){ # fixed by YK
# if(!is.null(x$AIC)){
# cat("\nAIC:\n")
# print(x$AIC)
# }
#}
#if(class(x$AIC) == "list"){
#if(is.list(class(x$AIC))){ # fixed by YK
# if(!is.null(x$AIC$first)){
# cat("\nAIC:\n")
# print(x$AIC)
# }
#}
invisible(x)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/IC.R |
JBtest<-function(yuima,start,lower,upper,alpha,skewness=TRUE,kurtosis=TRUE,withdrift=FALSE){
## The new options "skewness" and "kurtosis" are added (3/27).
## Multivariate Mardia's skewness is tentativity written, not work now (5/30), workable (6/6)!.
if(yuima@[email protected] == 1){
data <- get.zoo.data(yuima)
s.size<-yuima@sampling@n
modelstate<-yuima@[email protected]
modeltime<-yuima@[email protected]
DRIFT<-yuima@model@drift
DIFFUSION<-yuima@model@diffusion
PARLENGS<-length(yuima@model@parameter@drift)+length(yuima@model@parameter@diffusion)
XINIT<-yuima@model@xinit
X<-as.numeric(data[[1]])
dX <- abs(diff(X))
odX <- sort(dX, decreasing=TRUE)
plot(yuima,main="Original path")
abline(0,0,lty=5)
pX<-X[1:(s.size-1)]
sY<-as.numeric(data[[1]])
derDIFFUSION<-D(DIFFUSION[[1]],modelstate)
tmp.env<-new.env()
INTENSITY<-eval(yuima@model@measure$intensity)
inc<-double(s.size-1)
inc<-X[2:(s.size)]-pX
preservedinc<-inc
ainc<-abs(inc)
oinc<-sort(ainc,decreasing=TRUE)
if(length(yuima@model@parameter@measure)!=0){
extp <- match(yuima@model@parameter@measure, yuima@model@parameter@all)
extplow <- match(yuima@model@parameter@measure, names(lower))
extpupp <- match(yuima@model@parameter@measure, names(upper))
extpsta <- match(yuima@model@parameter@measure, names(start))
lower <- lower[-extplow]
upper <- upper[-extpupp]
start <- start[-extpsta]
yuima@model@parameter@all <- yuima@model@parameter@all[-extp]
yuima@model@parameter@measure <- as.character("abcdefg")
yuima@model@measure$df$expr <- expression(dunif(z,abcdefg,10))
lower <- c(lower,abcdefg=2-10^(-2))
upper <- c(upper,abcdefg=2+10^(-2))
start <- c(start,abcdefg=2)
yuima@model@parameter@all <- c(yuima@model@parameter@all,as.character("abcdefg"))
}else{
yuima@model@parameter@measure <- as.character("abcdefg")
yuima@model@measure$df$expr <- expression(dunif(z,abcdefg,10))
lower <- c(lower,abcdefg=2-10^(-2))
upper <- c(upper,abcdefg=2+10^(-2))
start <- c(start,abcdefg=2)
yuima@model@parameter@all <- c(yuima@model@parameter@all,as.character("abcdefg"))
}
#yuima@model@drift<-expression((0))
qmle<-qmle(yuima, start = start, lower = lower, upper = upper,threshold = oinc[1]+1) # initial estimation
parameter<-yuima@model@parameter@all
mp<-match(names(qmle@coef),parameter)
esort <- qmle@coef[order(mp)]
for(i in 1:length(parameter))
{
assign(parameter[i],esort[[i]],envir=tmp.env)
}
resi<-double(s.size-1)
derv<-double(s.size-1)
total<-c()
j.size<-c()
assign(modeltime,yuima@sampling@delta,envir=tmp.env)
h<-yuima@sampling@delta
assign(modelstate,pX,envir=tmp.env)
diff.term<-eval(DIFFUSION[[1]],envir=tmp.env)
drif.term<-eval(DRIFT,envir=tmp.env)
if(length(diff.term)==1){
diff.term <- rep(diff.term, s.size)
}
if(length(drif.term)==1){
drif.term <- rep(drif.term, s.size)
} # vectorization (note. if an expression type object does not include state.variable, the length of the item after "eval" operation is 1.)
for(s in 1:(s.size-1)){
nova<-sqrt((diff.term)^2) # normalized variance
resi[s]<-(1/(nova[s]*sqrt(h)))*(inc[s]-h*withdrift*drif.term[s])
}
assign(modelstate,pX,envir=tmp.env)
derv<-eval(derDIFFUSION,envir=tmp.env)
if(length(derv)==1){
derv<-rep(derv,s.size) # vectorization
}
mresi<-mean(resi)
vresi<-mean((resi-mresi)^2)
snr<-(resi-mresi)/sqrt(vresi)
isnr<-snr
if(skewness==TRUE&kurtosis==FALSE){
bias<-3*sqrt(h)*sum(derv)
JB<-1/(6*s.size)*(sum(snr^3)-bias)^2
rqmle<-list() # jump removed qmle
statis<-c() # the value of JB statistics
limJB<-5*INTENSITY*yuima@sampling@Terminal
# the limit of JB repetition
klarinc<-numeric(floor(limJB))
k<-1
if(JB<=qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE)){
print("There is no jump.")
result<-list(OGQMLE=qmle@coef[1:PARLENGS])
}else{
while(JB>qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE))
{
klarinc[k]<-which(ainc==oinc[k]) ## detect the largest increment
j.size<-append(j.size,round(preservedinc[klarinc[k]],digits=3))
rqmle[[k]]<-qmle(yuima, start = start, lower = lower, upper = upper, threshold = oinc[k]-(oinc[k]-oinc[k+1])/2)@coef
## calculate the modified qmle
mp<-match(names(rqmle[[k]]),parameter)
resort <- rqmle[[k]][order(mp)]
for(i in 1:length(parameter))
{
assign(parameter[i],resort[[i]],envir=tmp.env)
}
diff.term<-eval(DIFFUSION[[1]],envir=tmp.env)
drif.term<-eval(DRIFT,envir=tmp.env)
if(length(diff.term)==1){
diff.term <- rep(diff.term, s.size-1)
}
if(length(drif.term)==1){
drif.term <- rep(drif.term, s.size-1)
} # vectorization
for(s in 1:(s.size-1)){
nova<-sqrt((diff.term)^2) # normalized variance
resi[s]<-(1/(nova[s]*sqrt(h)))*(inc[s]-h*withdrift*drif.term[s])
} ## rebuild Euler-residuals
derv<-eval(derDIFFUSION,envir=tmp.env)
if(length(derv)==1){
derv<-rep(derv,s.size) # vectorization
}
## rebuild derivative vector
resi[klarinc]<-0
derv[klarinc]<-0
mresi<-mean(resi)
vresi<-mean((resi-mresi)^2)
snr<-(resi-mresi)/sqrt(vresi) ## rebuild self-normalized residuals
snr[klarinc]<-0
bias<-3*sqrt(h)*sum(derv)
JB<-1/(6*(s.size-k))*(sum(snr^3)-bias)^2
jump.point<-klarinc[k]
points(jump.point*h,sY[klarinc[k]],col="red", type="h", lty=3, lwd=2)
points(jump.point*h,sY[klarinc[k]],col="red", pch="+",lwd=2)
points(jump.point*h,0,col="red", pch=17,cex=1.5)
total<-append(total,as.character(round(jump.point*h,digits=3)))
statis<-append(statis,JB)
k<-k+1
if(k == floor(limJB))
{
warning("Removed jumps seems to be too many. Change intensity for more removal.")
break
}
}
par(mfrow=c(2,2))
# plot(isnr,main="Raw self-normalized residual")
par(new=T)
abline(0,0,lty=5,col="green")
snr <- snr[-(klarinc)]
# h <- dpih(snr)
# bins <- seq(min(snr)-0.1, max(snr)+0.1+h, by=h)
# hist(snr, prob=1, breaks=bins,xlim=c(-3,3),ylim=c(0,1))
hist(snr, freq = FALSE, breaks = "freedman-diaconis", xlim=c(min(snr),max(snr)),ylim=c(0,1))
xval <- seq(min(snr),max(snr),0.01) # to add plot the corresponding density
lines(xval,dnorm(xval,0,1),xlim=c(-3,3),ylim=c(0,1),col="red",main="Jump removed self-normalized residual")
if(k > 2){
estimat<-matrix(0,PARLENGS,k-1)
for(i in 1:(k-1)){
for(j in 1:PARLENGS){
estimat[j,i]<-rqmle[[i]][j]
}
}
oo<-match(parameter,names(estimat[1,]))
parameter<-parameter[order(oo)]
for(i in 1:PARLENGS){
plot(estimat[i,], main=paste("Transition of",parameter[i]),
xlab="The number of trial",ylab = "Estimated value",type="l",xlim = c(1,k-1),xaxp = c(1,k-1,k-2))
}
plot(log(statis),main="Transition of the logJB statistics",
xlab="The number of trial",ylab="log JB"
,type="l",xlim = c(1,k-1),xaxp = c(1,k-1,k-2))
par(new=T)
abline(log(qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE)),0,lty=5,col="red")
}
names(j.size)<-total
removed<-j.size
resname<-c("Jump size")
names(resname)<-"Jump time"
removed<-append(resname,removed)
result<-list(Removed=removed,OGQMLE=qmle@coef[1:PARLENGS],JRGQMLE=rqmle[[k-1]][1:PARLENGS])
}
}else if(skewness==FALSE&kurtosis==TRUE){
JB<-1/(24*s.size)*(sum(snr^4-3))^2
fbias<-rep(3,s.size-1)
rqmle<-list() # jump removed qmle
statis<-c() # the value of JB statistics
limJB<-5*INTENSITY*yuima@sampling@Terminal
# the limit of JB repetition
klarinc<-numeric(floor(limJB))
k<-1
if(JB<=qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE)){
print("There is no jump.")
result<-list(OGQMLE=qmle@coef[1:PARLENGS])
}else{
while(JB>qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE))
{
klarinc[k]<-which(ainc==oinc[k]) ## detect the largest increment
j.size<-append(j.size,round(preservedinc[klarinc[k]],digits=3))
rqmle[[k]]<-qmle(yuima, start = start, lower = lower, upper = upper, threshold = oinc[k]-(oinc[k]-oinc[k+1])/2)@coef
## calculate the modified qmle
mp<-match(names(rqmle[[k]]),parameter)
resort <- rqmle[[k]][order(mp)]
for(i in 1:length(parameter))
{
assign(parameter[i],resort[[i]],envir=tmp.env)
}
diff.term<-eval(DIFFUSION[[1]],envir=tmp.env)
drif.term<-eval(DRIFT,envir=tmp.env)
if(length(diff.term)==1){
diff.term <- rep(diff.term, s.size-1)
}
if(length(drif.term)==1){
drif.term <- rep(drif.term, s.size-1)
} # vectorization
for(s in 1:(s.size-1)){
nova<-sqrt((diff.term)^2) # normalized variance
resi[s]<-(1/(nova[s]*sqrt(h)))*(inc[s]-h*withdrift*drif.term[s])
} ## rebuild Euler-residuals
derv<-eval(derDIFFUSION,envir=tmp.env)
if(length(derv)==1){
derv<-rep(derv,s.size) # vectorization
}
resi[klarinc]<-0
derv[klarinc]<-0
mresi<-mean(resi)
vresi<-mean((resi-mresi)^2)
snr<-(resi-mresi)/sqrt(vresi) ## rebuild self-normalized residuals
snr[klarinc]<-0
fbias[klarinc]<-0
JB<-1/(24*(s.size-k))*(sum(snr^4-fbias))^2
jump.point<-klarinc[k]
points(jump.point*h,sY[klarinc[k]],col="red", type="h", lty=3, lwd=2)
points(jump.point*h,sY[klarinc[k]],col="red", pch="+",lwd=2)
points(jump.point*h,0,col="red", pch=17,cex=1.5)
total<-append(total,as.character(round(jump.point*h,digits=3)))
statis<-append(statis,JB)
k<-k+1
if(k == floor(limJB))
{
warning("Removed jumps seems to be too many. Change intensity for more removal.")
break
}
}
par(mfrow=c(2,2))
# plot(isnr,main="Raw self-normalized residual")
par(new=T)
abline(0,0,lty=5,col="green")
snr <- snr[-(klarinc)]
# h <- dpih(snr)
# bins <- seq(min(snr)-0.1, max(snr)+0.1+h, by=h)
# hist(snr, prob=1, breaks=bins,xlim=c(-3,3),ylim=c(0,1))
hist(snr, freq = FALSE, breaks = "freedman-diaconis", xlim=c(min(snr),max(snr)),ylim=c(0,1))
xval <- seq(min(snr),max(snr),0.01) # to add plot the corresponding density
lines(xval,dnorm(xval,0,1),xlim=c(-3,3),ylim=c(0,1),col="red",main="Jump removed self-normalized residual")
if(k > 2){
estimat<-matrix(0,PARLENGS,k-1)
for(i in 1:(k-1)){
for(j in 1:PARLENGS){
estimat[j,i]<-rqmle[[i]][j]
}
}
oo<-match(parameter,names(estimat[1,]))
parameter<-parameter[order(oo)]
for(i in 1:PARLENGS){
plot(estimat[i,], main=paste("Transition of",parameter[i]),
xlab="The number of trial",ylab = "Estimated value",type="l",xlim = c(1,k-1),xaxp = c(1,k-1,k-2))
}
plot(log(statis),main="Transition of the logJB statistics",
xlab="The number of trial",ylab="log JB"
,type="l",xlim = c(1,k-1),xaxp = c(1,k-1,k-2))
par(new=T)
abline(log(qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE)),0,lty=5,col="red")
}
names(j.size)<-total
removed<-j.size
resname<-c("Jump size")
names(resname)<-"Jump time"
removed<-append(resname,removed)
result<-list(Removed=removed,OGQMLE=qmle@coef[1:PARLENGS],JRGQMLE=rqmle[[k-1]][1:PARLENGS])
}
}else{
fbias<-rep(3,s.size-1)
bias<-3*sqrt(h)*sum(derv)
JB<-1/(6*s.size)*(sum(snr^3)-bias)^2+1/(24*s.size)*(sum(snr^4-fbias))^2
rqmle<-list() # jump removed qmle
statis<-c() # the value of JB statistics
limJB<-5*INTENSITY*yuima@sampling@Terminal
# the limit of JB repetition
klarinc<-numeric(floor(limJB))
k<-1
if(JB<=qchisq(alpha,df=2,ncp=0,lower.tail=FALSE,log.p=FALSE)){
print("There is no jump.")
result<-list(OGQMLE=qmle@coef[1:PARLENGS])
}else{
while(JB>qchisq(alpha,df=2,ncp=0,lower.tail=FALSE,log.p=FALSE))
{
klarinc[k]<-which(ainc==oinc[k]) ## detect the largest increment
j.size<-append(j.size,round(preservedinc[klarinc[k]],digits=3))
rqmle[[k]]<-qmle(yuima, start = start, lower = lower, upper = upper, threshold = oinc[k]-(oinc[k]-oinc[k+1])/2)@coef
## calculate the modified qmle
mp<-match(names(rqmle[[k]]),parameter)
resort <- rqmle[[k]][order(mp)]
for(i in 1:length(parameter))
{
assign(parameter[i],resort[[i]],envir=tmp.env)
}
diff.term<-eval(DIFFUSION[[1]],envir=tmp.env)
drif.term<-eval(DRIFT,envir=tmp.env)
if(length(diff.term)==1){
diff.term <- rep(diff.term, s.size-1)
}
if(length(drif.term)==1){
drif.term <- rep(drif.term, s.size-1)
} # vectorization
for(s in 1:(s.size-1)){
nova<-sqrt((diff.term)^2) # normalized variance
resi[s]<-(1/(nova[s]*sqrt(h)))*(inc[s]-h*withdrift*drif.term[s])
} ## rebuild Euler-residuals
derv<-eval(derDIFFUSION,envir=tmp.env)
if(length(derv)==1){
derv<-rep(derv,s.size) # vectorization
}
## rebuild derivative vector
resi[klarinc]<-0
derv[klarinc]<-0
mresi<-mean(resi)
vresi<-mean((resi-mresi)^2)
snr<-(resi-mresi)/sqrt(vresi) ## rebuild self-normalized residuals
snr[klarinc]<-0
bias<-3*sqrt(h)*sum(derv)
fbias[klarinc]<-0
JB<-1/(6*(s.size-k))*(sum(snr^3)-bias)^2+1/(24*(s.size-k))*(sum(snr^4-fbias))^2
jump.point<-klarinc[k]
points(jump.point*h,sY[klarinc[k]],col="red", type="h", lty=3, lwd=2)
points(jump.point*h,sY[klarinc[k]],col="red", pch="+",lwd=2)
points(jump.point*h,0,col="red", pch=17,cex=1.5)
total<-append(total,as.character(round(jump.point*h,digits=3)))
statis<-append(statis,JB)
k<-k+1
if(k == floor(limJB))
{
warning("Removed jumps seems to be too many. Change intensity for more removal.")
break
}
}
par(mfrow=c(2,2))
# plot(isnr,main="Raw snr")
par(new=T)
abline(0,0,lty=5,col="green")
snr <- snr[-(klarinc)]
# h <- dpih(snr)
# bins <- seq(min(snr)-0.1, max(snr)+0.1+h, by=h)
# hist(snr, prob=1, breaks=bins,xlim=c(-3,3),ylim=c(0,1))
hist(snr, freq = FALSE, breaks = "freedman-diaconis", xlim=c(min(snr),max(snr)),ylim=c(0,1))
xval <- seq(min(snr),max(snr),0.01) # to add plot the corresponding density
lines(xval,dnorm(xval,0,1),xlim=c(-3,3),ylim=c(0,1),col="red",main="Jump removed self-normalized residual")
if(k > 2){
estimat<-matrix(0,PARLENGS,k-1)
for(i in 1:(k-1)){
for(j in 1:PARLENGS){
estimat[j,i]<-rqmle[[i]][j]
}
}
oo<-match(parameter,names(estimat[1,]))
parameter<-parameter[order(oo)]
for(i in 1:PARLENGS){
plot(estimat[i,], main=paste("Transition of",parameter[i]),
xlab="The number of trial",ylab = "Estimated value",type="l",xlim = c(1,k-1),xaxp = c(1,k-1,k-2))
}
plot(log(statis),main="Transition of the logJB statistics",
xlab="The number of trial",ylab="log JB"
,type="l",xlim = c(1,k-1),xaxp = c(1,k-1,k-2))
par(new=T)
abline(log(qchisq(alpha,df=2,ncp=0,lower.tail=FALSE,log.p=FALSE)),0,lty=5,col="red")
}
names(j.size)<-total
removed<-j.size
resname<-c("Jump size")
names(resname)<-"Jump time"
removed<-append(resname,removed)
result<-list(Removed=removed,OGQMLE=qmle@coef[1:PARLENGS],JRGQMLE=rqmle[[k-1]][1:PARLENGS])
}
}
# }else{
# ## Multivariate version based on Mardia's kurtosis, not work now !
# DRIFT <- yuima@model@drift
# DIFFUSION <- yuima@model@diffusion
# d.size <- yuima@[email protected]
# data <- matrix(0,length(yuima@[email protected][[1]]),d.size)
# for(i in 1:d.size) data[,i] <- as.numeric(yuima@[email protected][[i]])
# dx_set <- as.matrix((data-rbind(numeric(d.size),as.matrix(data[-length(data[,1]),])))[-1,])
# preservedinc <- dx_set
# ainc <- numeric(length(yuima@[email protected][[1]])-1)
# for(i in 1:length(yuima@[email protected][[1]])-1){
# ainc[i] <- sqrt(t(dx_set[i,])%*%dx_set[i,])
# }
# oinc<-sort(ainc,decreasing=TRUE)
# qmle<-qmle(yuima, start = start, lower = lower, upper = upper,threshold = oinc[1]+1) # initial estimation
#
# parameter<-yuima@model@parameter@all
# mp<-match(names(qmle@coef),parameter)
# esort <- qmle@coef[order(mp)]
#
# tmp.env <- new.env()
# for(i in 1:length(parameter))
# {
# assign(parameter[i],esort[[i]],envir=tmp.env)
# }
#
# noise_number <- yuima@[email protected]
#
# for(i in 1:d.size) assign(yuima@[email protected][i], data[-length(data[,1]),i], envir=tmp.env)
#
# d_b <- NULL
# for(i in 1:d.size){
# if(length(eval(DRIFT[[i]],envir=tmp.env))==(length(data[,1])-1)){
# d_b[[i]] <- DRIFT[[i]] #this part of model includes "x"(state.variable)
# }
# else{
# if(is.na(c(DRIFT[[i]][2]))){ #ex. yuima@model@drift=expression(0) (we hope "expression((0))")
# DRIFT[[i]] <- parse(text=paste(sprintf("(%s)", DRIFT[[i]])))[[1]]
# }
# d_b[[i]] <- parse(text=paste("(",DRIFT[[i]][2],")*rep(1,length(data[,1])-1)",sep=""))
# #vectorization
# }
# }
#
# v_a<-matrix(list(NULL),d.size,noise_number)
# for(i in 1:d.size){
# for(j in 1:noise_number){
# if(length(eval(DIFFUSION[[i]][[j]],envir=tmp.env))==(length(data[,1])-1)){
# v_a[[i,j]] <- DIFFUSION[[i]][[j]] #this part of model includes "x"(state.variable)
# }
# else{
# if(is.na(c(DIFFUSION[[i]][[j]][2]))){
# DIFFUSION[[i]][[j]] <- parse(text=paste(sprintf("(%s)", DIFFUSION[[i]][[j]])))[[1]]
# }
# v_a[[i,j]] <- parse(text=paste("(",DIFFUSION[[i]][[j]][2],")*rep(1,length(data[,1])-1)",sep=""))
# #vectorization
# }
# }
# }
#
# resi<-NULL
# nvari<-matrix(0,d.size,noise_number)
# drivec<-numeric(d.size)
# for(k in 1:(length(data[,1])-1)){
# for(i in 1:d.size)
# {
# for(j in 1:noise_number){
# nvari[i,j]<-eval(v_a[[i,j]],envir=tmp.env)[k]
# }
# drivec[i]<-eval(d_b[[i]],envir=tmp.env)[k]
# }
# resi[[k]]<-1/sqrt(yuima@sampling@delta[[1]])*solve(t(nvari)%*%nvari)%*%t(nvari)%*%(dx_set[k,]-withdrift*drivec)
# }
#
# mresi<-numeric(d.size)
# for(k in 1:(length(data[,1])-1)){
# mresi<-mresi+resi[[k]]
# }
# mresi<-mresi/(length(data[,1])-1)
#
# svresi<-matrix(0,d.size,d.size)
# for(k in 1:(length(data[,1])-1)){
# svresi<-svresi+(resi[[k]]-mresi)%*%t(resi[[k]]-mresi)
# }
# svresi<-svresi/(length(data[,1])-1)
#
# snr<-NULL
# invsvresi<-solve(svresi)
# U <- svd(invsvresi)$u
# V <- svd(invsvresi)$v
# D <- diag(sqrt(svd(invsvresi)$d))
# sqinvsvresi <- U %*% D %*% t(V)
# for(k in 1:(length(data[,1])-1)){
# snr[[k]]<-sqinvsvresi%*%(resi[[k]]-mresi)
# }
# fourmom<-numeric(1)
# for(k in 1:(length(data[,1])-1)){
# fourmom<-fourmom+(t(snr[[k]])%*%snr[[k]])^2
# }
#
# Mard<-1/((length(data[,1])-1)*8*d.size*(d.size+2))*(fourmom-(length(data[,1])-1)*d.size*(d.size+2))^2
# if(Mard<=qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE)){
# print("There is no jump.")
# }else{
# INTENSITY<-eval(yuima@model@measure$intensity)
# limMard<-5*INTENSITY*yuima@sampling@Terminal[1]
# # the limit of the Mardia's kurtosis based opration repetition
# klarinc<-numeric(floor(limMard))
# statis<-c()
# trial<-1
# jumpdec<-NULL
# rqmle<<-NULL
# result<-NULL
# while((Mard>qchisq(alpha,df=1,ncp=0,lower.tail=FALSE,log.p=FALSE))){
# klarinc[trial]<-which(ainc==oinc[trial]) ## detect the largest increment
# jumpdec[[trial]]<-preservedinc[klarinc[trial],]
# rqmle[[trial]]<-qmle(yuima, start = start, lower = lower, upper = upper, threshold = oinc[trial]-(oinc[trial]-oinc[trial+1])/2)@coef
# ## calculate the modified qmle
# mp<-match(names(rqmle[[trial]]),parameter)
# resort <- rqmle[[trial]][order(mp)]
#
# for(i in 1:length(parameter))
# {
# assign(parameter[i],resort[[i]],envir=tmp.env)
# }
#
#
# d_b <- NULL
# for(i in 1:d.size){
# if(length(eval(DRIFT[[i]],envir=tmp.env))==(length(data[,1])-1)){
# d_b[[i]] <- DRIFT[[i]] #this part of model includes "x"(state.variable)
# }
# else{
# if(is.na(c(DRIFT[[i]][2]))){ #ex. yuima@model@drift=expression(0) (we hope "expression((0))")
# DRIFT[[i]] <- parse(text=paste(sprintf("(%s)", DRIFT[[i]])))[[1]]
# }
# d_b[[i]] <- parse(text=paste("(",DRIFT[[i]][2],")*rep(1,length(data[,1])-1)",sep=""))
# #vectorization
# }
# }
#
# v_a<-matrix(list(NULL),d.size,noise_number)
# for(i in 1:d.size){
# for(j in 1:noise_number){
# if(length(eval(DIFFUSION[[i]][[j]],envir=tmp.env))==(length(data[,1])-1)){
# v_a[[i,j]] <- DIFFUSION[[i]][[j]] #this part of model includes "x"(state.variable)
# }
# else{
# if(is.na(c(DIFFUSION[[i]][[j]][2]))){
# DIFFUSION[[i]][[j]] <- parse(text=paste(sprintf("(%s)", DIFFUSION[[i]][[j]])))[[1]]
# }
# v_a[[i,j]] <- parse(text=paste("(",DIFFUSION[[i]][[j]][2],")*rep(1,length(data[,1])-1)",sep=""))
# #vectorization
# }
# }
# }
#
# resi<-NULL
# nvari<-matrix(0,d.size,noise_number)
# drivec<-numeric(d.size)
#
# for(k in 1:(length(data[,1])-1)){
# for(i in 1:d.size)
# {
# for(j in 1:noise_number){
# nvari[i,j]<-eval(v_a[[i,j]],envir=tmp.env)[k]
# }
# drivec[i]<-eval(d_b[[i]],envir=tmp.env)[k]
# }
# if(sum(k == klarinc)==0) resi[[k]] <- 1/sqrt(yuima@sampling@delta[[1]])*solve(t(nvari)%*%nvari)%*%t(nvari)%*%(dx_set[k,]--withdrift*drivec)
# else resi[[k]] <- numeric(d.size)
# }
#
# mresi<-numeric(d.size)
# for(k in 1:(length(data[,1])-1)){
# mresi<-mresi+resi[[k]]
# }
# mresi<-mresi/(length(data[,1])-1)
#
# svresi<-matrix(0,d.size,d.size)
# for(k in 1:(length(data[,1])-1)){
# svresi<-svresi+(resi[[k]]-mresi)%*%t(resi[[k]]-mresi)
# }
# svresi<-svresi/(length(data[,1])-1)
#
# snr<-NULL
# invsvresi<-solve(svresi)
# U <- svd(invsvresi)$u
# V <- svd(invsvresi)$v
# D <- diag(sqrt(svd(invsvresi)$d))
# sqinvsvresi <- U %*% D %*% t(V)
# for(k in 1:(length(data[,1])-1)){
# if(sum(k == klarinc)==0) snr[[k]]<-sqinvsvresi%*%(resi[[k]]-mresi)
# else snr[[k]] <- numeric(d.size)
# }
# fourmom<-numeric(1)
# for(k in 1:(length(data[,1])-1)){
# fourmom<-fourmom+(t(snr[[k]])%*%snr[[k]])^2
# }
#
# Mard<-1/((length(data[,1])-1-trial)*8*d.size*(d.size+2))*(fourmom-(length(data[,1])-1)*d.size*(d.size+2))^2
# statis[trial]<-Mard
# trial<-trial+1
# if(trial == floor(limMard))
# {
# warning("Removed jumps seems to be too many. Change intensity for more removal.")
# result[[1]]<-jumpdec
# result[[2]]<-rqmle[[trial-1]]
# break
# }
# result[[1]]<-jumpdec
# result[[2]]<-rqmle[[trial-1]]
# }
# }
# }
plot(odX, type="p", main="Ordered absolute-value increments with threshold", ylab="increment sizes")
abline(odX[k-1],0,lty=5,col="red")
# arrows(2*s.size/3,odX[k-1],2*s.size/3,odX[k-1]+2.5, col="red")
text(4*s.size/5,odX[k-1],labels="Threshold")
}
result
} | /scratch/gouwar.j/cran-all/cranData/yuima/R/JBtest.R |
# In this function we consider different kind estimation procedures for COGARCH(P,Q)
# Model.
is.COGARCH <- function(obj){
if(is(obj,"yuima"))
return(is(obj@model, "yuima.cogarch"))
if(is(obj,"yuima.cogarch"))
return(is(obj, "yuima.cogarch"))
return(FALSE)
}
yuima.acf<-function(data,lag.max, forward=TRUE){
if(forward==FALSE){
burndata<-lag.max+1
dataused<-as.list(numeric(length=burndata+1))
Time<-length(data)
dataformean<-data[burndata:Time]
dataused[[1]]<-mean(dataformean)
dataused[[2]]<-mean(dataformean^2)
mu<-mean(dataformean)
leng <-length(dataformean)
var1<-sum((dataformean-mu)*(dataformean-mu))/leng
res1<-numeric(length=lag.max)
elem<-matrix(0,lag.max,(Time-lag.max))
for (t in (lag.max+1):(Time)){
# h<-leng-lag.max
# elem<-(data[(1+t):leng]-mu)*(data[1:h]-mu)/(leng*var1)
# res1[t+1]<-sum(elem)
h <-c(lag.max:1)
elem[,(t-lag.max)]<-(data[(t-h)[order(t-h,decreasing=TRUE)]]-mu)*(data[t]-mu)/(var1)
}
for(h in 3:(lag.max+2)){
dataused[[h]]<-sum(elem[h-2,])/leng
}
elem0<-rbind(t(as.matrix(dataformean)),elem)
# res1<-res1
# acfr<-res1[2:(lag.max+1)] #analogously to Matlab program
}else{
burndata<-lag.max
dataused<-as.list(numeric(length=burndata+1))
Time<-length(data)
dataformean<-data[1:(Time-burndata)]
dataused[[1]]<-mean(dataformean)
dataused[[2]]<-mean(dataformean^2)
mu<-mean(dataformean)
leng <-length(dataformean)
var1<-sum((dataformean-mu)*(dataformean-mu))/leng
res1<-numeric(length=lag.max)
elem<-matrix(0,lag.max,(Time-lag.max))
for (t in 1:(Time-(lag.max))){
# h<-leng-lag.max
# elem<-(data[(1+t):leng]-mu)*(data[1:h]-mu)/(leng*var1)
# res1[t+1]<-sum(elem)
h <-c(1:lag.max)
elem[,t]<-(data[(t+h)]-mu)*(data[t]-mu)/(var1)
}
for(h in 3:(lag.max+2)){
dataused[[h]]<-sum(elem[h-2,])/leng
}
elem0<-rbind(t(as.matrix(dataformean)),elem)
}
return(list(dataused=dataused, elem=elem0, leng=leng))
}
# The estimation procedure for cogarch(p,q) implemented in this code are based on the
# Chadraa phd's thesis
gmm<-function(yuima, data = NULL, start, method="BFGS", fixed = list(),
lower, upper, lag.max = NULL, equally.spaced = FALSE, aggregation=TRUE,
Est.Incr = "NoIncr", objFun = "L2"){
print <- FALSE
aggr.G <- equally.spaced
call <- match.call()
if(objFun=="L1" && method!="Nelder-Mead"){
yuima.warn("Mean absolute error minimization is available only for 'method=Nelder-Mead'. yuima sets automatically 'method=Nelder-Mead' ")
method<-"Nelder.Mead"
}
if(objFun=="L1" && (length(fixed)!=0 || !missing(lower) || !missing(upper))){
yuima.stop("Constraints are not allow for the minimization of Mean absolute error")
}
codelist.objFun <- c("L1","L2","L2CUE", "TWOSTEPS")
if(any(is.na(match(objFun,codelist.objFun)))){
yuima.stop("Value of objFun not available. Please choose among L1, L2, L2CUE, TWOSTEPS")
}
codelist.Est.Incr <- c("NoIncr","Incr","IncrPar")
if(any(is.na(match(Est.Incr,codelist.Est.Incr)))){
yuima.stop("Value of Est.Incr not available. Please choose among NoIncr, Incr, IncrPar ")
}
if( missing(yuima))
yuima.stop("yuima object is missing.")
if( missing(start) )
yuima.stop("Starting values for the parameters are missing.")
if( !is.COGARCH(yuima) )
yuima.stop("The model is not an object of class yuima.")
if( !is(yuima,"yuima") && missing(data) )
yuima.stop("data are missing.")
if(is(yuima,"yuima")){
model<-yuima@model
if(is.null(data)){
observ<-yuima@data
}else{observ<-data}
}else{
if(is(yuima,"yuima.cogarch")){
model<-yuima
if(is.null(data)){
yuima.stop("Missing data")
}
observ<-data
}
}
if(!is(observ,"yuima.data")){
yuima.stop("Data must be an object of class yuima.data-class")
}
if( !missing(upper) && (method!="L-BFGS-B"||method!="brent")){
yuima.warn("The upper requires L-BFGS-B or brent methods. We change method in L-BFGS-B")
method <- "L-BFGS-B"
}
if( !missing(lower) && (method!="L-BFGS-B"||method!="brent")){
yuima.warn("The lower constraints requires L-BFGS-B or brent methods. We change method in L-BFGS-B")
method <- "L-BFGS-B"
}
if( !missing(fixed) && (method!="L-BFGS-B"||method!="brent")){
yuima.warn("The fixed constraints requires L-BFGS-B or brent methods. We change method in L-BFGS-B")
method <- "L-BFGS-B"
}
# We identify the model parameters
info <- model@info
numb.ar <- info@q
ar.name <- paste([email protected],c(numb.ar:1),sep="")
numb.ma <- info@p
ma.name <- paste([email protected],c(1:numb.ma),sep="")
loc.par <- [email protected]
#xinit.name <- paste([email protected], c(1:numb.ar), sep = "")
xinit.name0 <- model@parameter@xinit
idx <- na.omit(match(c(loc.par, ma.name), xinit.name0))
xinit.name <- xinit.name0[-idx]
meas.par <- model@parameter@measure
if(length(meas.par)==0 && Est.Incr=="IncrPar"){
yuima.warn("The dimension of measure parameters is zero, yuima changes 'Est.Incr = IncrPar' into 'Est.Incr = Incr'")
Est.Incr <- "Incr"
}
fixed.name <- names(fixed)
if(info@q==1){
# nm <- c(names(start), "EL1", "phi1","phi2")
nm <- c(names(start), "EL1")
}else{
# nm <- c(names(start), "EL1", "M2Lev","M4Lev")
nm <- c(names(start), "EL1")
}
# We identify the index of parameters
if(length(meas.par)!=0){
if(info@q==1){
# fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, measure.par, "EL1", "phi1","phi2")
fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, meas.par, "EL1")
}else{
# fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, measure.par, "EL1", "M2Lev","M4Lev")
fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, meas.par, "EL1")
}
}else{
if(info@q==1){
# fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, "EL1", "phi1","phi2")
fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, "EL1")
}else{
# fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, "EL1", "M2Lev","M4Lev")
fullcoeff <- c(ar.name, ma.name, loc.par, xinit.name, "EL1")
}
}
oo <- match(nm, fullcoeff)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'start' are not arguments to the supplied yuima model")
if(info@q==1){
# start <- c(start, EL1 = 1, phi1=-1, phi2=-1)
start <- c(start, EL1 = 1)
}else{
# start <- c(start, EL1 = 1, M2Lev=1, M4Lev=2)
start <- c(start, EL1 = 1)
}
start <- start[order(oo)]
nm <- names(start)
ar.idx <- match(ar.name, fullcoeff)
ma.idx <- match(ma.name, fullcoeff)
loc.idx <- match(loc.par, fullcoeff)
meas.idx <- match(meas.par, fullcoeff)
fixed.idx <- match(fixed.name, fullcoeff)
EL1.idx <- match("EL1",fullcoeff) # We decide to pass EL1 as parameter !!!
env <- new.env()
# n <- length(observ)[1]
#n <- attr([email protected],"tsp")[2]
n <- length(index([email protected]))
#Lag
assign("lag", lag.max, envir=env)
# Data
assign("Data", as.matrix(onezoo(observ)[,1]), envir=env)
#assign("deltaData", (n-1)/index([email protected][[1]])[n], envir=env)
assign("deltaData", 1/yuima@sampling@delta, envir=env)
assign("time.obs",length(env$Data),envir=env)
# Order
assign("p", info@p, envir=env)
assign("q", info@q, envir=env)
# Idx
assign("ar.idx", ar.idx, envir=env)
assign("ma.idx", ma.idx, envir=env)
assign("loc.idx", loc.idx, envir=env)
assign("meas.idx", meas.idx, envir=env)
assign("EL1.idx", EL1.idx, envir=env)
objFunDummy <- NULL
if(objFun=="TWOSTEPS"||objFun=="L2CUE"){
objFunDummy <- objFun
objFun <- "L2"
}
assign("objFun",objFun, envir=env)
if(aggr.G==TRUE){
if(floor(env$deltaData)!=env$deltaData){
yuima.stop("the n/Terminal in sampling information is not an integer. equally.spaced=FALSE is recommended")
}
}
if(aggr.G==TRUE){
# Aggregate returns G
#dt<-round(deltat(onezoo(observ)[,1])*10^5)/10^5
# Time<-index([email protected][[1]])[n]
G_i <- diff(env$Data[seq(1,length(env$Data),by=env$deltaData)])
r<-1
}else{
dummydata<-index(onezoo(observ)[,1])
unitarytime<-floor(dummydata)
index<-!duplicated(unitarytime)
G_i <- diff(env$Data[index])
r <- 1
}
d <- min(floor(sqrt(length(G_i))),env$lag)
assign("d", d, envir=env)
typeacf <- "correlation"
assign("typeacf", typeacf, envir=env)
# CovQuad <- acf(G_i^2,plot=FALSE,lag.max=d,type=typeacf)$acf[-1]
example<-yuima.acf(data=G_i^2,lag.max=d)
dummyEmpiricalMoM<-as.numeric(example$dataused)
CovQuad <- as.numeric(example$dataused)[-c(1:2)]
#
assign("G_i", G_i, envir=env)
assign("r", r, envir=env)
#mu_G2 <- as.numeric(example$dataused)[1]
mu_G2<-mean(G_i^2)
assign("mu_G2", mu_G2, envir=env)
#var_G2 <- as.numeric(example$dataused)[2] - mu_G2^2
var_G2 <- mean(G_i^4) - mu_G2^2
assign("var_G2", var_G2, envir=env)
assign("score",example$elem,envir=env )
assign("leng",example$leng,envir=env )
#CovQuad <-log(abs(yuima.acf(data=G_i^2,lag.max=min(d,env$lag))))
assign("CovQuad", CovQuad, envir=env)
objectiveFun <- function(p,env) {
mycoef <- as.list(p)
if(length(c(fixed.idx, meas.idx))>0){ ## SMI 2/9/14
names(mycoef) <- nm[-c(fixed.idx,meas.idx)] ## SMI 2/9/14
}else{
names(mycoef) <- nm
}
ErrTerm(yuima=yuima, param=mycoef, print=print, env)
}
if(method!="L-BFGS-B"&&method!="brent"){
out<- optim(start, objectiveFun, method = method, env=env, hessian = TRUE)
}else{
if(length(fixed)!=0 && !missing(upper) && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed),
lower=as.numeric(lower),
upper=as.numeric(upper), env=env)
}else{
if(!missing(upper) && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
lower=as.numeric(lower),
upper=as.numeric(upper), env=env)
}
if(length(fixed)!=0 && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed),
lower=as.numeric(lower), env=env)
}
if(!missing(upper) && length(fixed)!=0){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed),
upper=as.numeric(upper), env=env)
}
}
if(length(fixed)!=0 && missing(upper) && missing(lower)){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed), env=env)
}
if(length(fixed)==0 && !missing(upper) && missing(lower)){
out<- optim(start, objectiveFun, method = method,
upper=as.numeric(upper), env=env)
}
if(length(fixed)==0 && missing(upper) && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
lower=as.numeric(lower), env=env)
}
}
# Alternative way for calculating Variance Covariance Matrix
# sig2eps<-out$value/d
#
# dumHess<- out$hessian[c(ar.name, ma.name),c(ar.name, ma.name)]/(2*sig2eps)
# vcovgmm<-solve(dumHess)
# sqrt(diag(vcovgmm))
if(!is.null(objFunDummy)){
assign("objFun",objFunDummy, envir=env)
bvect<-out$par[ar.name]
bq<-bvect[1]
avect<-out$par[ma.name]
a1<-avect[1]
out$par[loc.par]<-(bq-a1)*mu_G2/(bq*r)
# Determine the Variance-Covariance Matrix
if(length(meas.par)!=0){
idx.dumm<-match(meas.par,names(out$par))
out$par<-out$par[- idx.dumm]
}
dimOutp<-length(out$par)-(1+info@q)
coef <- out$par[c(1:dimOutp)]
vcov<-matrix(NA, dimOutp, dimOutp)
names_coef<-names(coef)
colnames(vcov) <- names_coef
rownames(vcov) <- names_coef
mycoef <- start
min <- out$value
# # call
gradVect0<-MM_grad_Cogarch(p=info@p, q=info@q,
acoeff=avect,cost=out$par[loc.par], b=bvect,
r=env$r, h=seq(1, env$d, by = 1)*env$r, type=typeacf,
m2=env$mu_G2, var=env$var_G2)
score0 <- MM_Cogarch(p=info@p, q=info@q,
acoeff=avect,cost=out$par[loc.par], b=bvect,
r=env$r, h=seq(1, env$d, by = 1)*env$r, type=typeacf,
m2=env$mu_G2, var=env$var_G2)
idx.aaa<-match(loc.par,names_coef)
# gradVect <- gradVect0[names_coef[-idx.aaa], ]
gradVect <- gradVect0[names_coef[-idx.aaa],CovQuad>0]
# score <- c(score0$acfG2)%*%matrix(1,1,example$leng)
score <- c(score0$acfG2[CovQuad>0])%*%matrix(1,1,example$leng)
#We need to write the matrix W for the matrix sandwhich
#plot(as.numeric(example$dataused)[-1],type="h")
#S_matrix
# EmpirScore <-score-example$elem[-1,]
exampelem <-example$elem[-1,]
EmpirScore <-score-exampelem[CovQuad>0,]
Omega_est <- tryCatch((1/example$leng*EmpirScore%*%t(EmpirScore)),
error=function(theta){NULL})
W_est <-tryCatch(chol2inv(Omega_est),error=function(theta){NULL})
if(!is.null(W_est)){
assign("W_est",W_est,envir=env)
start0<-unlist(start)
start0[names(out$par)]<-out$par
start <- as.list(start0)
#start<-out$par
if(method!="L-BFGS-B"&&method!="brent"){
out<- optim(start, objectiveFun, method = method, env=env)
}else{
if(length(fixed)!=0 && !missing(upper) && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed),
lower=as.numeric(lower),
upper=as.numeric(upper), env=env)
}else{
if(!missing(upper) && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
lower=as.numeric(lower),
upper=as.numeric(upper), env=env)
}
if(length(fixed)!=0 && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed),
lower=as.numeric(lower), env=env)
}
if(!missing(upper) && length(fixed)!=0){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed),
upper=as.numeric(upper), env=env)
}
}
if(length(fixed)!=0 && missing(upper) && missing(lower)){
out<- optim(start, objectiveFun, method = method,
fixed=as.numeric(fixed), env=env)
}
if(length(fixed)==0 && !missing(upper) && missing(lower)){
out<- optim(start, objectiveFun, method = method,
upper=as.numeric(upper), env=env)
}
if(length(fixed)==0 && missing(upper) && !missing(lower)){
out<- optim(start, objectiveFun, method = method,
lower=as.numeric(lower), env=env)
}
}
}else{
yuima.warn("Method TWOSTEPS or L2CUE Changed in L2 since First W failed to compute")
}
}
bvect<-out$par[ar.name]
bq<-bvect[1]
avect<-out$par[ma.name]
a1<-avect[1]
out$par[loc.par]<-(bq-a1)*mu_G2/(bq*r)
# Determine the Variance-Covariance Matrix
if(length(meas.par)!=0){
idx.dumm<-match(meas.par,names(out$par))
out$par<-out$par[- idx.dumm]
}
dimOutp<-length(out$par)-(1+info@q)
coef <- out$par[c(1:dimOutp)]
vcov<-matrix(NA, dimOutp, dimOutp)
names_coef<-names(coef)
colnames(vcov) <- names_coef
rownames(vcov) <- names_coef
# mycoef <- start
min <- out$value
# # call
if(objFun!="L1"){
gradVect0<-MM_grad_Cogarch(p=info@p, q=info@q,
acoeff=avect,cost=out$par[loc.par], b=bvect,
r=env$r, h=seq(1, env$d, by = 1)*env$r, type=typeacf,
m2=env$mu_G2, var=env$var_G2)
score0 <- MM_Cogarch(p=info@p, q=info@q,
acoeff=avect,cost=out$par[loc.par], b=bvect,
r=env$r, h=seq(1, env$d, by = 1)*env$r, type=typeacf,
m2=env$mu_G2, var=env$var_G2)
if(objFun == "L2"){
# min <- log(sum((score0$acfG2[CovQuad>0]-CovQuad[CovQuad>0])^2))
min <- log(sum((score0$acfG2-CovQuad)^2))
#min <- log(sum((score0$acfG2[CovQuad>0]-CovQuad[CovQuad>0])^2))
}
idx.aaa<-match(loc.par,names_coef)
# gradVect <- gradVect0[names_coef[-idx.aaa], ]
gradVect <- gradVect0[names_coef[-idx.aaa],CovQuad>0]
# score <- c(score0$acfG2)%*%matrix(1,1,example$leng)
score <- c(score0$acfG2[CovQuad>0])%*%matrix(1,1,example$leng)
#We need to write the matrix W for the matrix sandwhich
#plot(as.numeric(example$dataused)[-1],type="h")
#S_matrix
# EmpirScore <-score-example$elem[-1,]
exampelem <-example$elem[-1,]
EmpirScore <-score-exampelem[CovQuad>0,]
Omega_est<-tryCatch((1/example$leng*EmpirScore%*%t(EmpirScore)),
error=function(theta){NULL})
if(is.null(Omega_est)){
Omega_est<-matrix(NA,dim(EmpirScore)[1],dim(EmpirScore)[1])
}
if(is.null(objFunDummy)){
Gmatr<-gradVect%*%t(gradVect)
CentMat<-gradVect%*%Omega_est%*%t(gradVect)
Var_Matr0 <- tryCatch(solve(Gmatr)%*%CentMat%*%solve(Gmatr)/example$leng,
error=function(theta){NULL})
}else{
#Gmatr<-gradVect%*%W_est%*%t(gradVect)
#CentMat<-gradVect%*%W_est%*%Omega_est%*%W_est%*%t(gradVect)
Var_Matr0 <- tryCatch(solve(gradVect%*%solve(Omega_est)%*%t(gradVect))/example$leng,
error=function(theta){NULL})
#Var_Matr0 <- solve(Gmatr)/example$leng
}
if(!is.null(Var_Matr0)){
aaa<-dimOutp-1
vcov[c(1:aaa),c(1:aaa)]<-Var_Matr0
}
# Var_Matr <- solve(gradVect%*%t(gradVect))
#vcov <- Var_Matr
# vcov[loc.par,]<-NA
# vcov[,loc.par]<-NA
#out$par[loc.par]<-(bq-a1)*mu_G2/(bq*r)
}
# Build an object of class mle
# if(Est.Incr=="NoIncr"){
# res<-new("cogarch.est", call = call, coef = coef, fullcoef = unlist(coef),
# vcov = vcov, min = min, details = list(),
# method = character(),
# model = setYuima(model=model),
# objFun = objFun
# )
# }
# if(Est.Incr=="Incr"||Est.Incr=="IncrPar"){
# L.Incr<-cogarchNoise(yuima = model, data=observ,
# param=as.list(coef), mu=1)
# ttt<[email protected][[1]]
# tt<-index(ttt)
# L.Incr_Fin <- zoo(L.Incr$incr.L,tt[(1+length(tt)-length(L.Incr$incr.L)):length(tt)])
# }
# if(Est.Incr=="Incr"){
# # Build an object of class cogarch.gmm.incr
# res<-new("cogarch.est.incr", call = call, coef = coef, fullcoef = unlist(coef),
# vcov = vcov, min = min, details = list(),
# method = character(),
# Incr.Lev = L.Incr_Fin,
# model = setYuima(data = L.Incr$Cogarch,
# model=model), nobs=as.integer(length(L.Incr)+1),
# logL.Incr = numeric(),
# objFun= objFun
# )
# }
# if(Est.Incr=="IncrPar"){
# #estimationLevy
#
# fixedCon <- constdum(fixed, meas.par)
# lowerCon <- constdum(lower, meas.par)
# upperCon <- constdum(upper, meas.par)
# if(aggregation==TRUE){
# if(floor(n/index([email protected][[1]])[n])!=env$deltaData){
# yuima.stop("the n/Terminal in sampling information is not an integer. Aggregation=FALSE is recommended")
# }
# inc.levy1<-diff(cumsum(c(0,L.Incr$incr.L))[seq(from=1,
# to=yuima@sampling@n[1],
# by=env$deltaData
# )])
# }else{
# inc.levy1 <- L.Incr$incr.L
# }
#
# result.Lev <- gmm.Est.Lev(Increment.lev=c(0,inc.levy1),
# param0=start[meas.par],
# fixed = fixedCon[meas.par],
# lower=lowerCon[meas.par],
# upper=upperCon[meas.par],
# measure=model@measure,
# [email protected],
# aggregation=aggregation,
# dt=1/env$deltaData
# )
#
# if(is.null(result.Lev)){
# res<-new("cogarch.est.incr", call = call, coef = coef, fullcoef = unlist(coef),
# vcov = vcov, min = min, details = list(),
# method = character(),
# Incr.Lev=L.Incr_Fin,
# model = setYuima(data = L.Incr$Cogarch,
# model=model),
# nobs=as.integer(length(L.Incr)+1),
# logL.Incr = numeric(),
# objFun= objFun
# )
#
# }
# else{
# Inc.Parm<-result.Lev$estLevpar
# IncVCOV<-result.Lev$covLev
# if(length(meas.par)==length(Inc.Parm)){
# names(Inc.Parm)<-meas.par
# rownames(IncVCOV)<-as.character(meas.par)
# colnames(IncVCOV)<-as.character(meas.par)
# }
# name.parm.cog<-names(coef)
# coef<-c(coef,Inc.Parm)
#
# names.par<-names(coef)
# cov<-NULL
# cov<-matrix(NA,length(names.par),length(names.par))
# rownames(cov)<-names.par
# colnames(cov)<-names.par
#
# cov[unique(name.parm.cog),unique(name.parm.cog)]<-vcov
# cov[names(Inc.Parm),names(Inc.Parm)]<-IncVCOV
# cov<-cov
#
# res<-new("cogarch.est.incr", call = call, coef = coef, fullcoef = unlist(coef),
# vcov = cov, min = min, details = list(),
# method = character(),
# Incr.Lev=L.Incr_Fin,
# model = setYuima(data = L.Incr$Cogarch,
# model=model), nobs=as.integer(length(L.Incr)+1),
# logL.Incr = tryCatch(-result.Lev$value,error=function(theta){NULL}),
# objFun= objFun
# )
#
# }
#
#
# }
res <- ExtraNoiseFromEst(Est.Incr,
call, coef, vcov, min, details = list(),
method = character(), model, objFun, observ,
fixed, meas.par, lower, upper, env, yuima, start, aggregation)
return(res)
}
ExtraNoiseFromEst <- function(Est.Incr,
call, coef, vcov, min, details = list(),
method = character(), model, objFun, observ,
fixed, meas.par, lower, upper, env, yuima, start, aggregation){
n <- length(index([email protected]))
if(Est.Incr=="NoIncr"){
res<-new("cogarch.est", call = call, coef = coef,
fullcoef = unlist(coef),
vcov = vcov, min = min, details = details,
method = method,
yuima = setYuima(model=model),
objFun = objFun
)
}
if(Est.Incr=="Incr"||Est.Incr=="IncrPar"){
L.Incr<-cogarchNoise(yuima=model, data=observ,
param=as.list(coef), mu=1)
ttt<[email protected][[1]]
tt<-index(ttt)
L.Incr_Fin <- zoo(L.Incr$incr.L,tt[(1+length(tt)-length(L.Incr$incr.L)):length(tt)])
}
if(Est.Incr=="Incr"){
# Build an object of class cogarch.gmm.incr
res<-new("cogarch.est.incr", call = call, coef = coef, fullcoef = unlist(coef),
vcov = vcov, min = min, details = list(),
method = character(),
Incr.Lev = L.Incr_Fin,
yuima = setYuima(data = L.Incr$Cogarch,
model=model), nobs=as.integer(length(L.Incr)+1),
logL.Incr = numeric(),
objFun= objFun
)
}
if(Est.Incr=="IncrPar"){
#estimationLevy
fixedCon <- constdum(fixed, meas.par)
lowerCon <- constdum(lower, meas.par)
upperCon <- constdum(upper, meas.par)
if(aggregation==TRUE){
if(floor(n/index([email protected][[1]])[n])!=env$deltaData){
yuima.stop("the n/Terminal in sampling information is not an integer. aggregation=FALSE is recommended")
}
inc.levy1<-diff(cumsum(c(0,L.Incr$incr.L))[seq(from=1,
to=yuima@sampling@n[1],
by=env$deltaData
)])
}else{
inc.levy1 <- L.Incr$incr.L
}
result.Lev <- gmm.Est.Lev(Increment.lev=c(0,inc.levy1),
param0=start[meas.par],
fixed = fixedCon[meas.par],
lower=lowerCon[meas.par],
upper=upperCon[meas.par],
measure=model@measure,
[email protected],
aggregation=aggregation,
dt=env$deltaData
)##Modified 17/05/2016
if(is.null(result.Lev)){
res<-new("cogarch.est.incr", call = call, coef = coef, fullcoef = unlist(coef),
vcov = vcov, min = min, details = list(),
method = character(),
Incr.Lev=L.Incr_Fin,
yuima = setYuima(data = L.Incr$Cogarch,
model=model),
nobs=as.integer(length(L.Incr)+1),
logL.Incr = numeric(),
objFun= objFun
)
}
else{
Inc.Parm<-result.Lev$estLevpar
IncVCOV<-result.Lev$covLev
if(length(meas.par)==length(Inc.Parm)){
names(Inc.Parm)<-meas.par
rownames(IncVCOV)<-as.character(meas.par)
colnames(IncVCOV)<-as.character(meas.par)
}
name.parm.cog<-names(coef)
coef<-c(coef,Inc.Parm)
names.par<-names(coef)
cov<-NULL
cov<-matrix(NA,length(names.par),length(names.par))
rownames(cov)<-names.par
colnames(cov)<-names.par
cov[unique(name.parm.cog),unique(name.parm.cog)]<-vcov
cov[names(Inc.Parm),names(Inc.Parm)]<-IncVCOV
cov<-cov
res<-new("cogarch.est.incr", call = call, coef = coef, fullcoef = unlist(coef),
vcov = cov, min = min, details = list(),
method = character(),
Incr.Lev=L.Incr_Fin,
yuima = setYuima(data = L.Incr$Cogarch,
model=model), nobs=as.integer(length(L.Incr)+1),
logL.Incr = tryCatch(-result.Lev$value,error=function(theta){NULL}),
objFun= objFun
)
}
}
return(res)
}
constdum<-function(fixed, meas.par){
fixedCon<-list()
if(!missing(fixed)){
measure.par.dum.idx<-na.omit(names(fixed[meas.par]))
if(length(measure.par.dum.idx)!=0){
fixedCon<-fixed[measure.par.dum.idx]
}
}
}
gmm.Est.Lev<-function(Increment.lev,
param0,
fixed=list(),
lower=list(),
upper=list(),
measure,
measure.type,
aggregation,
dt,
noCPFFT = TRUE){
fixed.carma <- unlist(fixed)
lower.carma <- unlist(lower)
upper.carma <- unlist(upper)
Dummy <- TRUE
if(noCPFFT && measure.type=="CP"){
L<-cumsum(c(0,Increment.lev))
mod1 <- setPoisson(intensity=as.character(measure$intensity),
df=list(as.character(measure$df$expr)))
Yui1<-setYuima(data=setData(L,delta=dt), model=mod1)
Noise <- qmle(yuima=Yui1,
start=param0,
upper = upper.carma,
lower=lower.carma,
fixed = fixed.carma)
result.Lev <- list(estLevpar = coef(Noise), covLev = Noise@vcov, value = Noise@min)
return(result.Lev)
}
CPlist <- c("dnorm","dgamma", "dexp")
codelist <- c("rvgamma","rNIG","rIG", "rgamma")
if(measure.type=="CP"){
tmp <- regexpr("\\(", measure$df$exp)[1]
measurefunc <- substring(measure$df$exp, 1, tmp-1)
if(is.na(match(measurefunc,CPlist))){
yuima.warn("COGARCH(p,q): Other compound poisson processes will be implemented as soon as")
Dummy <- FALSE
}
}
if(measure.type=="code"){
tmp <- regexpr("\\(", measure$df$exp)[1]
measurefunc <- substring(measure$df$exp, 1, tmp-1)
if(is.na(match(measurefunc,codelist))){
yuima.warn("COGARCH(p,q): Other Levy measure will be implemented as soon as possible")
Dummy <- FALSE
}
}
if(Dummy){
#env$h<-dt
result.Lev <- yuima.Estimation.Lev(Increment.lev=Increment.lev,
param0=unlist(param0),
fixed.carma=fixed.carma,
lower.carma=lower.carma,
upper.carma=upper.carma,
measure=measurefunc,
measure.type=measure.type,
aggregation=aggregation,
dt=dt)
}else{
result.Lev<-NULL
}
return(result.Lev)
}
ErrTerm <- function(yuima, param, print, env){
typeacf <- env$typeacf
param <- as.numeric(param)
G_i <- env$G_i
r <- env$r
mu_G2 <- env$mu_G2
var_G2 <- env$var_G2
d <- env$d
CovQuad <-env$CovQuad
h <- seq(1, d, by = 1)*r
cost <- env$loc.idx
b <- env$ar.idx
a <- env$ma.idx
meanL1 <- param[env$EL1.idx]
# meanL1 <- 1
# if(env$q == 1){
#
# beta <- param[cost]*param[b]
# eta <- param[b]
# phi <- param[a]
#
# # phi1 <- param[env$phi1.idx]
# # phi2 <- param[env$phi2.idx]
# #theo_mu_G2 <- meanL1*r*beta/abs(phi1)
# phi1 <- meanL1*r*beta/mu_G2
#
# termA <- (6*mu_G2/r*beta/abs(phi1)*(2*eta/phi-meanL1)*(r-(1-exp(-r*abs(phi1)))/abs(phi1))+2*beta^2/phi^2*r)
# phi2 <-2*termA*abs(phi1)/((var_G2-2*mu_G2^2)*abs(phi1)+termA)
# if(typeacf == "covariance"){
# TheoCovQuad <- meanL1*beta^2/abs(phi1)^3*(2*eta/phi-meanL1)*
# (2/abs(phi2)-1/abs(phi1))*(1-exp(-r*abs(phi1)))*(exp(r*abs(phi1))-1)*
# exp(-h*abs(phi1))
# }else{
# TheoCovQuad <- meanL1*beta^2/abs(phi1)^3*(2*eta/phi-meanL1)*
# (2/abs(phi2)-1/abs(phi1))*(1-exp(-r*abs(phi1)))*(exp(r*abs(phi1))-1)*
# exp(-h*abs(phi1))/(var_G2)
# }
#
# }
if(env$q >= 1){
TheoCovQuad <- numeric(length = length(h))
cost<-param[cost]
# for(i in c(1:length(h))){
MomentCog <- MM_Cogarch(p = env$p, q = env$q, acoeff=param[a],
cost=cost,
b=param[b], r = r, h = h,
type = typeacf, m2=mu_G2, var=var_G2)
TheoCovQuad <- MomentCog$acfG2
# }
theo_mu_G2 <- MomentCog$meanG2
#param[cost]<-MomentCog$cost
}
if(env$objFun=="L2"){
# res <- log(sum((TheoCovQuad[CovQuad>0]-CovQuad[CovQuad>0])^2))
# emp <- log(CovQuad[CovQuad>0])
# theo <- log(TheoCovQuad[CovQuad>0])
# res <- log(sum((abs(TheoCovQuad)-abs(CovQuad))^2))
res <- sum((log(TheoCovQuad[CovQuad>0])-log(CovQuad[CovQuad>0]))^2)
# res <- sum((TheoCovQuad[CovQuad>0]-CovQuad[CovQuad>0])^2)
# res <- sum((TheoCovQuad-CovQuad)^2)
# res <- sum((log(abs(TheoCovQuad))-log(abs(CovQuad)))^2)
# res <- sum((log(TheoCovQuad[CovQuad>0]))-log(CovQuad[CovQuad>0]))^2)
return(res)
}
if(env$objFun=="TWOSTEPS"){
TheoMoM<-log(TheoCovQuad[CovQuad>0])
#TheoMoM<-log(abs(TheoCovQuad))
#TheoMoM<-TheoCovQuad[CovQuad>0]
#dumScore <- (TheoMoM%*%matrix(1,1,env$leng))-env$score[-1,]
#W_est<-chol2inv(dumScore%*%t(dumScore)/env$leng)
W_est<-env$W_est
CompMoM0<-TheoMoM-c(log(CovQuad[CovQuad>0]))
#CompMoM0<-TheoMoM-c(log(abs(CovQuad)))
#CompMoM0<-TheoMoM-CovQuad[CovQuad>0]
CompMoM<-matrix(CompMoM0,1,length(CompMoM0))
res <- as.numeric(CompMoM%*%W_est%*%t(CompMoM))
# TheoMoM<-TheoCovQuad[CovQuad>0]
# intrDum<-env$score[-1,]
#
# dumScore <- (TheoMoM%*%matrix(1,1,env$leng))-intrDum[CovQuad>0,]
# W_est<-chol2inv(dumScore%*%t(dumScore)/env$leng)
# CompMoM0<-TheoMoM-c(CovQuad[CovQuad>0])
# CompMoM<-matrix(CompMoM0,1,length(CompMoM0))
# res <- as.numeric(CompMoM%*%W_est%*%t(CompMoM))
return(res)
}
if(env$objFun=="L1"){
res <- log(sum(abs(c(TheoCovQuad)-c(CovQuad))))
return(res)
}
if(env$objFun=="L2CUE"){
#TheoMoM<-TheoCovQuad
#
#TheoMoM<-log(TheoCovQuad[CovQuad>0])
TheoMoM<-TheoCovQuad[CovQuad>0]
intrDum<-env$score[-1,]
dumScore <- (TheoMoM%*%matrix(1,1,env$leng))-intrDum[CovQuad>0,]
W_est<-chol2inv(dumScore%*%t(dumScore)/env$leng)
CompMoM0<-TheoMoM-c(CovQuad[CovQuad>0])
CompMoM<-matrix(CompMoM0,1,length(CompMoM0))
res <- as.numeric(CompMoM%*%W_est%*%t(CompMoM))
return(res)
}
}
MM_Cogarch <- function(p, q, acoeff,cost, b, r, h, type, m2, var){
# The code developed here is based on the acf for squared returns derived in the
# Chaadra phd Thesis
a <- e <- matrix(0,nrow=q,ncol=1)
e[q,1] <- 1
a[1:p,1] <- acoeff
bq <- b[1]
a1 <- a[1]
# # Matching only the autocorrelation we are not able to estimate the a_0 parameter
# nevertheless using the theoretical formula of the expectaion of squared returns we
# are able to fix this parameter for having a perfect match between theoretical and
# empirical mean
# We recall that under the assumption of levy process is centered the mean at time 1 of the
# squared returns and the mean of the corresponding levy measure are equals.
mu<-1 # we assume variance of the underlying L\'evy is one
meanL1<-mu
cost<-(bq-mu*a1)*m2/(bq*r)
B<- MatrixA(b[c(q:1)])
B_tilde <- B+mu*e%*%t(a)
meanG2 <- cost*bq*r/(bq-mu*a1)*meanL1
Inf_eps <- IdentM <- diag(q)
if(q==1){
Inf_eps[q,q] <- -1/(2*B_tilde[1,1])
}
if(q==2){
Inf_eps[q,q] <- -B_tilde[2,1]
Inf_eps <- 1/(2*B_tilde[2,1]*B_tilde[2,2])*Inf_eps
}
if(q==3){
Inf_eps[1,1] <- B_tilde[3,3]/B_tilde[3,1]
Inf_eps[q,q] <- -B_tilde[3,2]
Inf_eps[1,3] <- -1
Inf_eps[3,1] <- -1
Inf_eps <- 1/(2*(B_tilde[3,3]*B_tilde[3,2]+B_tilde[3,1]))*Inf_eps
}
if(q>=4){
Inf_eps <- round(AsympVar(B_tilde,e,lower=0,upper=100,delta=0.01)*10^5)/10^5
}
#term <- expm(B_tilde*h)
term <- lapply(h,"yuimaExpm",B=B_tilde)
#invB <- solve(B_tilde) # In this case we can use the analytical form for Companion Matrix???
# We invert the B_tilde using the Inverse of companion matrix
if(q>1){
invB<-rbind(c(-B_tilde[q,-1],1)/B_tilde[q,1],cbind(diag(q-1),matrix(0,q-1,1)))
}else{invB<-1/B_tilde}
term1 <- invB%*%(IdentM-expm(-B_tilde*r))
term2 <- (expm(B_tilde*r)-IdentM)
P0_overRho <- 2*mu^2*(3*invB%*%(invB%*%term2-r*IdentM)-IdentM)%*%Inf_eps
Q0_overRho <- 6*mu*((r*IdentM-invB%*%term2)%*%Inf_eps
-invB%*%(invB%*%term2-r*IdentM)%*%Inf_eps%*%t(B_tilde))%*%e
# Q0_overRho <- 6*mu*((r*IdentM-invB%*%term2)%*%Inf_eps
# -invB%*%(invB%*%term2-r*IdentM)%*%Inf_eps%*%t(B))%*%e
m_overRho <- as.numeric(t(a)%*%Inf_eps%*%a)
Den<- (m_overRho*meanL1^2/m2^2*var*r^2+t(a)%*%Q0_overRho+t(a)%*%P0_overRho%*%a+1)
num <-(meanL1^2/m2^2*var-2*mu^2)*r^2
rh0 <- as.numeric(num/Den)
Inf_eps1 <- Inf_eps*rh0
Ph_withouterm <- term1%*%invB%*%term2%*%Inf_eps1*mu^2
Ph<-lapply(term,"%*%",Ph_withouterm)
Qh_without <- term1%*%(-term2%*%Inf_eps1-invB%*%term2%*%Inf_eps1%*%t(B_tilde))%*%e*mu
Qh<-lapply(term,"%*%",Qh_without)
# Qh <- mu*term%*%term1%*%(-term2%*%Inf_eps1-invB%*%term2%*%Inf_eps1%*%t(B))%*%e
m <- m_overRho*rh0
atrasp<-t(a)
if(type=="correlation"){
VarTheo<-as.numeric(rh0*atrasp%*%P0_overRho%*%a+rh0*atrasp%*%Q0_overRho+2*r^2*mu^2+rh0)
acfG2 <- (as.numeric(lapply(Ph,"yuimaQuadrForm",at=atrasp,a=a))
+ as.numeric(lapply(Qh,"yuimaInnerProd",at=atrasp)))/VarTheo
}else{
coeff <- cost^2*bq^2/((1-m)*(bq-mu*a1)^2)
acfG2 <- coeff*( as.numeric(lapply(Ph,"yuimaQuadrForm",at=atrasp,a=a))
+ as.numeric(lapply(Qh,"yuimaInnerProd",at=atrasp)) )
}
res <- list(acfG2=acfG2, meanG2=meanG2)
return(res)
}
MM_grad_Cogarch <- function(p, q, acoeff,cost, b, r, h, type, m2, var){
eps<-10^(-3)
PartialP<-matrix(0,p,length(h))
epsA<-eps*diag(p)
for(i in c(1:p)){
LeftApproxP<-MM_Cogarch(p, q, acoeff-epsA[i,],cost, b, r, h, type, m2, var)
RightApproxP<-MM_Cogarch(p, q, acoeff[i]+epsA[i,],cost, b, r, h, type, m2, var)
PartialP[i,]<-(RightApproxP$acfG2-LeftApproxP$acfG2)/(2*eps)
}
PartialQ<-matrix(0,q,length(h))
epsB<-eps*diag(q)
for(i in c(1:q)){
LeftApproxQ<-MM_Cogarch(p, q, acoeff,cost, b-epsB[i,], r, h, type, m2, var)
RightApproxQ<-MM_Cogarch(p, q, acoeff,cost, b+epsB[i,], r, h, type, m2, var)
PartialQ[i,]<-(RightApproxQ$acfG2-LeftApproxQ$acfG2)/(2*eps)
}
# LeftApproxCost<-MM_Cogarch(p, q, acoeff,cost-eps, b, r, h, type, m2, var)
# RightApproxCost<-MM_Cogarch(p, q, acoeff,cost+eps, b, r, h, type, m2, var)
# PartialCost0<-(c(RightApproxCost$meanG2,RightApproxCost$acfG2)-c(LeftApproxCost$meanG2,LeftApproxCost$acfG2))/(2*eps)
# PartialCost<-matrix(PartialCost0,1, (length(h)+1))
namesCoeff<-names(c(acoeff,b))
res<-rbind(PartialP,PartialQ)
rownames(res)<-namesCoeff
return(res)
}
yuimaQuadrForm<-function(P,a,at){at%*%P%*%a}
yuimaInnerProd<-function(P,at){at%*%P}
yuimaExpm<-function(h,B){expm(B*h)}
AsympVar<-function(B_tilde,e,lower=0,upper=100,delta=0.1){
part<-seq(lower,upper-delta, by=delta)+delta/2
last <- length(part)
Integrand <- as.matrix(matrix(0,length(e),length(e)))
for(i in c(1:last)){
Integrand<-Integrand+expm(B_tilde*part[i])%*%e%*%t(e)%*%expm(t(B_tilde)*part[i])*delta
}
return(Integrand)
}
setMethod("plot",signature(x="cogarch.est.incr"),
function(x, type="l" ,...){
Time<-index([email protected])
Incr.L<-coredata([email protected])
if(is.complex(Incr.L)){
yuima.warn("Complex increments. We plot only the real part")
Incr.L<-Re(Incr.L)
}
# model <- x@model
# EndT <- Time[length(Time)]
# numb <- (length(Incr.L)+1)
plot(x= Time,y= Incr.L, type=type,...)
}
)
setMethod("summary", "cogarch.est",
function (object, ...)
{
cmat <- cbind(Estimate = object@coef, `Std. Error` = sqrt(diag(object@vcov)))
obj<- object@min
labFun <- object@objFun
tmp <- new("summary.cogarch.est", call = object@call, coef = cmat,
m2logL = 0,
#model = object@model,
objFun = labFun,
objFunVal = obj,
object = object
)
tmp
}
)
# errorfun <- function(estimates, labelFun = "L2"){
# if(LabelFun == "L2"){
#
# }
#
# }
setMethod("show", "summary.cogarch.est",
function (object)
{
if(object@objFun == "PseudoLogLik"){
cat("PML estimation\n\nCall:\n")
}else{
cat("GMM estimation\n\nCall:\n")
}
print(object@call)
cat("\nCoefficients:\n")
print(coef(object))
if(object@objFun == "PseudoLogLik"){
cat("\n",paste0(paste("-2 ", object@objFun),":"), 2*object@objFunVal, "\n")
}else{
cat("\n",paste0(paste("Log.objFun", object@objFun),":"), object@objFunVal, "\n")
}
#cat("objFun", object@min, "\n")
dummy <- Diagnostic.Cogarch(object@object, display = FALSE)
info <- object@object@yuima@model@info
nameMod <- paste0("Cogarch(",info@p,
",", info@q, ") model:", collapse = "")
if(dummy$stationary){
cat("\n", nameMod, "Stationarity conditions are satisfied.\n")
}else{
cat("\n", nameMod, "Stationarity conditions are not satisfied.\n")
}
if(dummy$positivity){
cat("\n", nameMod, "Variance process is positive.\n")
}else{
cat("\n", nameMod, "Variance process is not positive.\n")
}
}
)
setMethod("summary", "cogarch.est.incr",
function (object, ...)
{
cmat <- cbind(Estimate = object@coef, `Std. Error` = sqrt(diag(object@vcov)))
m2logL <- 0
data<-Re(coredata([email protected]))
data<- data[!is.na(data)]
obj<- object@min
labFun <- object@objFun
tmp <- new("summary.cogarch.est.incr", call = object@call, coef = cmat,
m2logL = m2logL,
objFun = labFun,
objFunVal = obj,
MeanI = mean(data),
SdI = sd(data),
logLI = [email protected],
TypeI = object@yuima@[email protected],
NumbI = length(data),
StatI =summary(data),
object = object
)
tmp
}
)
#
setMethod("show", "summary.cogarch.est.incr",
function (object)
{
if(object@objFun == "PseudoLogLik"){
cat("Two Stages PSEUDO-LogLik estimation \n\nCall:\n")
}else{
cat("Two Stages GMM estimation \n\nCall:\n")
}
print(object@call)
cat("\nCoefficients:\n")
print(coef(object))
# cat("\n-2 log L:", object@m2logL, "\n")
cat("\n",paste0(paste("Log.objFun", object@objFun),":"), object@objFunVal, "\n")
cat(sprintf("\n\nNumber of increments: %d\n",object@NumbI))
cat(sprintf("\nAverage of increments: %f\n",object@MeanI))
cat(sprintf("\nStandard Dev. of increments: %f\n",object@SdI))
if(!is.null(object@logLI)){
cat(sprintf("\n\n-2 log L of increments: %f\n",-2*object@logLI))
}
cat("\nSummary statistics for increments:\n")
print(object@StatI)
cat("\n")
dummy <- Diagnostic.Cogarch(object@object, display = FALSE)
info <- object@object@yuima@model@info
nameMod <- paste0("Cogarch(",info@p,
",", info@q, ") model:", collapse = "")
if(dummy$stationary){
cat("\n", nameMod, "Stationarity conditions are satisfied.\n")
}else{
cat("\n", nameMod, "Stationarity conditions are not satisfied.\n")
}
if(dummy$positivity){
cat("\n", nameMod, "Variance process is positive.\n")
}else{
cat("\n", nameMod, "Variance process is not positive.\n")
}
}
)
| /scratch/gouwar.j/cran-all/cranData/yuima/R/MM.COGARCH.R |
aux.funForLaw <- function(object, param, my.env, dummy){
# param <- unlist(param)
name.par <- names(param)
if(length([email protected])>=1){
if([email protected]%in%name.par){
assign([email protected],param[[[email protected]]], envir = my.env)
}else{
yuima.stop("time.var is not assigned")
}
param <- param[!(name.par %in% [email protected])]
name.par <- names(param)
}
if(length(param)>0){
if(length(param)!=length([email protected])){
yuima.stop("mismatch arguments")
}
for(i in c(1: length(param))){
cond<[email protected] %in% name.par[[i]]
assign([email protected][cond], param[[i]], envir = my.env)
}
}
res <- eval(parse(text=dummy),envir=my.env)
return(res)
}
# rng
aux.rand<- function(object, n, param, ...){
dummy <- deparse(object@rng)[1]
dummy <- gsub("function ", deparse(substitute(object@rng)), dummy)
my.env <- new.env()
assign("n", n, envir = my.env)
res <- aux.funForLaw(object, param, my.env, dummy)
return(res)
# param <- unlist(param)
# name.par <- names(param)
# if(length([email protected])>=1){
# if([email protected]%in%name.par){
# assign([email protected],param[[email protected]], envir = my.env)
# }else{
# yuima.stop("time.var is not assigned")
# }
# param <- param[!(name.par %in% [email protected])]
# name.par <- names(param)
# }
# if(length(param)>0){
# if(length(param)!=length([email protected])){
# yuima.stop("mismatch arguments")
# }
# for(i in c(1: length(param))){
# cond<[email protected] %in% name.par[i]
# assign([email protected][cond], param[i], envir = my.env)
# }
# }
# res <- eval(parse(text=dummy),envir=my.env)
# return(res)
}
setGeneric("rand",
function(object, n, param, ...){
standardGeneric("rand")
}
)
# dens
setGeneric("dens",
function(object, x, param, log = FALSE, ...)
standardGeneric("dens")
)
aux.dens<- function(object, x, param, log, ...){
dummy <- deparse(object@density)[1]
dummy <- gsub("function ", deparse(substitute(object@density)), dummy)
my.env <- new.env()
assign("x", x, envir = my.env)
res <- aux.funForLaw(object, param, my.env, dummy)
if(log){res <- log(res)}
return(as.numeric(res))
}
# CDF
# cdf
setGeneric("cdf",
function(object, q, param, ...)
standardGeneric("cdf")
)
aux.cdf<- function(object, q, param, ...){
dummy <- deparse(object@cdf)[1]
dummy <- gsub("function ", deparse(substitute(object@cdf)), dummy)
my.env <- new.env()
assign("q", q, envir = my.env)
res <- aux.funForLaw(object, param, my.env, dummy)
return(as.numeric(res))
}
# quantile
setGeneric("quant",
function(object, p, param, ...)
standardGeneric("quant")
)
aux.quant <- function(object, p, param, ...){
dummy <- deparse(object@quantile)[1]
dummy <- gsub("function ", deparse(substitute(object@quantile)), dummy)
my.env <- new.env()
assign("p", p, envir = my.env)
res <- aux.funForLaw(object, param, my.env, dummy)
return(as.numeric(res))
}
# characteristic
setGeneric("char",
function(object, u, param, ...)
standardGeneric("char")
)
aux.char <- function(object, u, param, ...){
dummy <- deparse(object@characteristic)[1]
dummy <- gsub("function ", deparse(substitute(object@characteristic)), dummy)
my.env <- new.env()
assign("u", u, envir = my.env)
res <- aux.funForLaw(object, param, my.env, dummy)
return(as.numeric(res))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/MethodForLaw.R |
# Here we insert new classes for extending the object of classes yuima
setClass("param.Map",
representation(out.var = "character",
allparam = "character",
allparamMap = "character",
common = "character",
Input.var = "character",
time.var = "character"))
setClass("info.Map",
representation(formula="vector",
dimension="numeric",
type="character",
param = "param.Map"))
setClass("yuima.Map",
representation(Output = "info.Map"),
contains="yuima"
)
# Initialization
setMethod("initialize",
"param.Map",
function(.Object, out.var = character(),
allparam = character(),
allparamMap = character(),
common = character(),
Input.var = character(),
time.var = character()){
[email protected] <- out.var
.Object@allparam <- allparam
.Object@allparamMap <- allparamMap
.Object@common <- common
[email protected] <-Input.var
[email protected] <- time.var
return(.Object)
}
)
#
setMethod("initialize",
"info.Map", function(.Object,
formula = vector(mode = expression),
dimension = numeric(),
type = character(),
param = new("param.Map")){
.Object@formula <- formula
.Object@dimension <- dimension
.Object@type <- type
.Object@param <- param
return(.Object)
}
)
setMethod("initialize",
"yuima.Map",
function(.Object,
#param = new("param.Map"),
Output = new("info.Map"),
yuima = new("yuima")){
#.Object@param <- param
.Object@Output <- Output
.Object@data <- yuima@data
.Object@model <- yuima@model
.Object@sampling <- yuima@sampling
.Object@characteristic <- yuima@characteristic
.Object@functional <- yuima@functional
return(.Object)
}
)
#
# Class for yuima.integral is structured as follows:
# param.Integral
# Integral$param$allparam
# Integral$param$common
# Integral$param$IntegrandParam
setClass("param.Integral",representation(allparam = "character",
common = "character", Integrandparam = "character")
)
#
setMethod("initialize","param.Integral",
function(.Object, allparam = character(),
common = character(),
Integrandparam = character()){
.Object@allparam <- allparam
.Object@common <- common
.Object@Integrandparam <- Integrandparam
return(.Object)
}
)
#
# # variable.Integral
# # Integral$var.dx
# # Integral$lower.var
# # Integral$upper.var
# # Integral$out.var
# # Integral$var.time <-"s"
#
setClass("variable.Integral",
representation(var.dx = "character",
lower.var = "character",
upper.var = "character",
out.var = "character",
var.time = "character")
)
#
setMethod("initialize","variable.Integral",
function(.Object,
var.dx = character(),
lower.var = character(),
upper.var = character(),
out.var = character(),
var.time = character()){
[email protected] <- var.dx
[email protected] <- lower.var
[email protected] <- upper.var
[email protected] <- out.var
[email protected] <- var.time
return(.Object)
}
)
# Integrand
# Integral$IntegrandList
# Integral$dimIntegrand
setClass("Integrand",
representation(IntegrandList = "list",
dimIntegrand = "numeric")
)
setMethod("initialize","Integrand",
function(.Object,
IntegrandList = list(),
dimIntegrand = numeric()){
.Object@IntegrandList <- IntegrandList
.Object@dimIntegrand <- dimIntegrand
return(.Object)
}
)
#
# # Integral.sde
#
setClass("Integral.sde", representation(param.Integral = "param.Integral",
variable.Integral = "variable.Integral", Integrand = "Integrand")
)
#
setMethod("initialize", "Integral.sde",
function(.Object,
param.Integral = new("param.Integral"),
variable.Integral = new("variable.Integral"),
Integrand = new("Integrand")){
[email protected] <- param.Integral
[email protected] <- variable.Integral
.Object@Integrand <- Integrand
return(.Object)
}
)
#
# # yuima.Integral
#
setClass("yuima.Integral", representation(
Integral = "Integral.sde"),
contains = "yuima"
)
#
setMethod("initialize", "yuima.Integral",
function(.Object,
Integral = new("Integral.sde"),
yuima = new("yuima")){
.Object@Integral <- Integral
#.Object@param <- param
#.Object@Output <- Output
.Object@data <- yuima@data
.Object@model <- yuima@model
.Object@sampling <- yuima@sampling
.Object@characteristic <- yuima@characteristic
.Object@functional <- yuima@functional
return(.Object)
}
)
#
# yuima.multimodel. We replacate the yuima.model class in order to
# describe from mathematical point of view the multi dimensional jump
# diffusion model
setClass("yuima.multimodel",
contains="yuima.model")
setClass("yuima.snr", representation(call = "call", coef = "numeric", snr = "numeric", model = "yuima.model"), prototype = list(call = NULL, coef = NULL, snr = NULL, model = NULL))
## yuima.qmle.incr-class
#setClassUnion("yuima.qmle.incr", members=c("yuima.carma.qmle","cogarch.est.incr"))
setClass("yuima.qmleLevy.incr",representation(Incr.Lev = "ANY",
logL.Incr = "ANY",
minusloglLevy="function",
Levydetails= "list",
Data = "ANY"),
contains="yuima.qmle")
setMethod("initialize", "yuima.qmleLevy.incr",
function(.Object,
Incr.Lev = NULL,
logL.Incr = NULL,
minusloglLevy=function(){NULL},
Levydetails= list(),
Data=NULL,
yuima = new("yuima.qmle")){
[email protected] <- Incr.Lev
#.Object@param <- param
#.Object@Output <- Output
[email protected] <- logL.Incr
.Object@Levydetails<- Levydetails
.Object@minusloglLevy <- minusloglLevy
.Object@Data <- Data
.Object@model <- yuima@model
.Object@call <- yuima@call
.Object@coef <- yuima@coef
.Object@fullcoef <- yuima@fullcoef
.Object@vcov <- yuima@vcov
.Object@min <-yuima@min
.Object@details<- yuima@details
.Object@minuslogl<-yuima@minuslogl
.Object@nobs<-yuima@nobs
.Object@method<-yuima@method
return(.Object)
}
)
| /scratch/gouwar.j/cran-all/cranData/yuima/R/NewClasses.R |
setClass("info.PPR",
representation(allparam = "character",
allparamPPR = "character",
common ="character",
counting.var = "character",
var.dx = "character",
upper.var = "character",
lower.var = "character",
covariates = "character",
var.dt = "character",
additional.info = "character",
Info.measure = "list",
RegressWithCount = "logical",
IntensWithCount = "logical")
)
setClass("yuima.PPR",
representation(PPR = "info.PPR",
gFun = "info.Map",
Kernel = "Integral.sde"),
contains="yuima"
)
setMethod("initialize",
"info.PPR",
function(.Object,
allparam = character(),
allparamPPR = character(),
common = character(),
counting.var = character(),
var.dx = character(),
upper.var = character(),
lower.var = character(),
covariates = character(),
var.dt = character(),
additional.info = character(),
Info.measure = list(),
RegressWithCount = FALSE,
IntensWithCount = TRUE){
.Object@allparam <- allparam
.Object@allparamPPR <- allparamPPR
.Object@common <- common
[email protected] <- counting.var
[email protected] <- var.dx
[email protected] <- upper.var
[email protected] <- lower.var
.Object@covariates <- covariates
[email protected] <- var.dt
[email protected] <- additional.info
[email protected] <- Info.measure
.Object@RegressWithCount <- RegressWithCount
.Object@IntensWithCount <- IntensWithCount
return(.Object)
}
)
setMethod("initialize",
"yuima.PPR",
function(.Object,
PPR = new("info.PPR"),
gFun = new("info.Map"),
Kernel = new("Integral.sde"),
yuima = new("yuima")){
#.Object@param <- param
.Object@PPR <- PPR
.Object@gFun <- gFun
.Object@Kernel <- Kernel
.Object@data <- yuima@data
.Object@model <- yuima@model
.Object@sampling <- yuima@sampling
.Object@characteristic <- yuima@characteristic
.Object@functional <- yuima@functional
return(.Object)
}
)
setClass("yuima.Hawkes",
contains="yuima.PPR"
)
# Class yuima.PPR.qmle
setClass("yuima.PPR.qmle",representation(
model = "yuima.PPR"),
contains="mle"
)
setClass("summary.yuima.PPR.qmle",
representation(
model = "yuima.PPR"),
contains="summary.mle"
)
setMethod("show", "summary.yuima.PPR.qmle",
function (object)
{
cat("Quasi-Maximum likelihood estimation\n\nCall:\n")
print(object@call)
cat("\nCoefficients:\n")
print(coef(object))
cat("\n-2 log L:", object@m2logL, "\n")
}
)
| /scratch/gouwar.j/cran-all/cranData/yuima/R/PointProcessClasses.R |
# This code is useful for estimation of the COGARCH(p,q) model according the PseudoLogLikelihood
# maximization procedure developed in Iacus et al. 2015
#
PseudoLogLik.COGARCH <- function(yuima, start, method="BFGS", fixed = list(),
lower, upper, Est.Incr, call, grideq, aggregation,...){
if(is(yuima,"yuima")){
model <- yuima@model
info <- model@info
Data <- onezoo(yuima)
}
time <- index(Data)
Obs <- as.numeric(as.matrix(Data)[,1])
my.env <- new.env()
param <- unlist(start)
assign("mycog",model,envir=my.env)
meas.par <- model@parameter@measure
if(length(meas.par)==0 && Est.Incr=="IncrPar"){
yuima.warn("The dimension of measure parameters is zero, yuima changes 'Est.Incr = IncrPar' into 'Est.Incr = Incr'")
Est.Incr <- "Incr"
}
ar.names <- paste0([email protected],c(1:info@q))
ma.names <- paste0([email protected],c(1:info@p))
start.state <- paste0(paste0([email protected],0),c(1:info@q))
e <- matrix(0, info@q,1)
e[info@q,1] <- 1
assign("e", e, envir = my.env)
assign("start.state", start.state, envir = my.env)
assign("q", info@q, envir = my.env)
assign("p", info@p, envir = my.env)
assign("B", matrix(0,info@q,info@q), envir = my.env)
# consider two cases:
# 1) equally spaced grid
if(grideq){
assign("Deltat", tail(index(Data),1)/length(index(Data)), envir = my.env)
# assign("Deltat", diff(time)[1], envir = my.env)
# 2) no-equally spaced grid
assign("grideq", TRUE, envir = my.env)
}else{
assign("Deltat", diff(time), envir = my.env)
assign("grideq", FALSE, envir = my.env)
}
assign("Obs", (diff(Obs))^2, envir = my.env)
assign("nObs",length(Obs),envir = my.env)
assign("ar.names", ar.names, envir = my.env)
assign("ma.names", ma.names, envir = my.env)
assign("loc.par",[email protected], envir = my.env)
I <- diag(info@q)
assign("I",I, envir = my.env)
param1 <- param[c(my.env$loc.par, ma.names, ar.names)]
out<-NULL
if(length(lower)==0 && length(upper)>0 && length(fixed)==0){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, upper=upper, env = my.env,...)
}
if(length(lower)==0 && length(upper)==0 && length(fixed)>0){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, fixed=fixed, env = my.env,...)
}
if(length(lower)>0 && length(upper)==0 && length(fixed)==0){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, lower=lower, env = my.env,...)
}
if(length(lower)>0 && length(upper)>0 && length(fixed)==0){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, upper = upper,
lower=lower, env = my.env,...)
}
if(length(lower)==0 && length(upper)>0 && length(fixed)>0){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, upper = upper,
fixed = fixed, env = my.env,...)
}
if(length(lower)>0 && length(upper)==0 && length(fixed)>0){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, lower = lower,
fixed = fixed, env = my.env,...)
}
if(length(lower)>0 && length(upper)>0 && length(fixed)>0){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, lower = lower,
fixed = fixed, upper = upper,
env = my.env,...)
}
if(is.null(out)){
out <- optim(par=param1, fn=minusloglik.COGARCH1,
method = method, env = my.env,...)
}
# control= list(maxit=100),
# Write the object mle with result
# my.env1 <- my.env
# my.env1$grideq <- TRUE
resHessian<-tryCatch(optimHess(par = out$par, fn = minusloglik.COGARCH1,
env = my.env),error=function(theta){NULL})
bvect<-out$par[ar.names]
bq<-bvect[1]
avect<-out$par[ma.names]
a1<-avect[1]
a0<-out$par[[email protected]]
# if(length(meas.par)!=0){
# idx.dumm<-match(meas.par,names(out$par))
# out$par<-out$par[- idx.dumm]
# }
#
# idx.dumm1<-match(start.state,names(out$par))
coef <- out$par
#coef <- out$par
vcov<-matrix(NA, length(coef), length(coef))
names_coef<-names(coef)
colnames(vcov)[1:length(names_coef)] <- names_coef
rownames(vcov)[1:length(names_coef)] <- names_coef
if(!is.null(resHessian)){
vcov[c(1:length(names_coef)),c(1:length(names_coef))]<- tryCatch(solve(resHessian),error=function(resHessian){NA})
}
mycoef <- start
# min <- out$value
objFun <- "PseudoLogLik"
# min <- numeric()
min <- out$value
# res<-new("cogarch.est", call = call, coef = coef, fullcoef = unlist(coef),
# vcov = vcov, min = min, details = list(),
# method = character(),
# model = model,
# objFun = objFun
# )
env <- list(deltaData = yuima@sampling@delta)
res <- ExtraNoiseFromEst(Est.Incr,
call, coef, vcov, min, details = list(),
method = character(), model, objFun, observ=yuima@data,
fixed, meas.par, lower, upper, env, yuima, start, aggregation)
return(res)
}
minusloglik.COGARCH1<-function(param,env){
# assign("start.state", start.state, envir = my.env)
# assign("q", info@q, envir = my.env)
# assign("p", info@p, envir = my.env)
# assign("time", time, envir = my.env)
# assign("Obs", Obs, envir = my.env)
# assign("nObs",length(Obs),envir = my.env)
# assign("ar.names", ar.names, envir = my.env)
# assign("ma.names", ma.names, envir = my.env)
# assign("loc.par",[email protected], envir = my.env)
a0<-param[env$loc.par]
bq<-param[env$ar.names[env$q]]
a1<-param[env$ma.names[1]]
stateMean <- a0/(bq-a1)*as.matrix(c(1,numeric(length=(env$q-1))))
penalty <- 0
CondStat <- Diagnostic.Cogarch(env$mycog,param = as.list(param),display = FALSE)
if(CondStat$stationary=="Try a different S matrix"){
penalty <-penalty + 10^6
}
if(CondStat$positivity==" "){
penalty <- penalty + 10^6
}
#param[env$start.state]<-stateMean
state <- stateMean
# state <- param[env$start.state]
DeltaG2 <- env$Obs
B <- env$B
if(env$q>1){
#B[1:(env$q-1),] <- c(matrix(0,(env$p-1),1), diag(env$q-1))
B[1:(env$q-1),] <- cbind(matrix(0,(env$q-1),1), diag(env$q-1))
}
B[env$q,] <- -param[env$ar.names[env$q:1]]
a<-matrix(0,env$q,1)
a[1:env$p,]<-param[env$ma.names]
ta<-t(a)
e <- env$e
Btilde <-B+e%*%ta
InvBtilde <- solve(Btilde)
V1 <- a0+ta%*% state
V <- V1[1]
Deltat<- env$Deltat
I <- env$I
# VarDeltaG <- 0
PseudologLik <- 0
# DeltatB1 <- lapply(as.list(Deltat), function(dt,B){expm(B*dt)} , B)
# # DeltatB <- lapply(as.list(Deltat), "*" , B)
# # assign("DeltatB",as.list(DeltatB),.GlobalEnv)
# outputB <- matrix(unlist(DeltatB1), ncol = env$q, byrow = TRUE)
if(env$grideq){
DeltatB1 <- expm(B*Deltat)
# DeltatB2 <- lapply(as.list(Deltat), function(dt,B){expm(B*dt)} , Btilde)
# # DeltatB <- lapply(as.list(Deltat), "*" , B)
# # assign("DeltatB",as.list(DeltatB),.GlobalEnv)
# outputB2 <- matrix(unlist(DeltatB2), ncol = env$q, byrow = TRUE)
DeltatB2 <- expm(Btilde*Deltat)
# DeltatB3 <- lapply(as.list(-Deltat), function(dt,B){expm(B*dt)} , Btilde)
# outputB3 <- matrix(unlist(DeltatB3), ncol = env$q, byrow = TRUE)
DeltatB3 <- expm(-Btilde*Deltat)
dummyMatr <- ta%*%DeltatB2%*%InvBtilde%*%(I-DeltatB3)
dummyeB1 <- e%*%ta%*%DeltatB1
#aa <- .Call("myfun1", DeltatB1, state)
PseudologLik <-.Call("pseudoLoglik_COGARCH1", a0, bq, a1, stateMean, Q=as.integer(env$q),
DeltaG2, Deltat, DeltatB1, a, e,
V, nObs=as.integer(env$nObs-1),
dummyMatr, dummyeB1) - penalty
#cat(sprintf("\n%.5f ", PseudologLik))
#
#
# PseudologLikR<-0
# V1 <- a0+ta%*% state
# V <- V1[1]
#
#
# for(i in c(1:(env$nObs-1))){
#
# # cat(sprintf("\n dummy1R %.10f ",dummyMatr%*%(state-stateMean) ))
# # d <- 0
# # for(j in 1:2){
# # d<- d+dummyMatr[1,j]*(state[j]-stateMean[j])
# # cat(sprintf("\n %d dummy1R %.10f ",j,d ))
# # }
# VarDeltaG <- a0*Deltat*bq/(bq-a1)+ dummyMatr%*%(state-stateMean)
#
# VarDeltaG <- VarDeltaG[1]
# #state <- (I+DeltaG2[i]/V*e%*%ta)%*%DeltatB1%*%state+a0*DeltaG2[i]/V*e
# state <- DeltatB1%*%state+DeltaG2[i]/V*dummyeB1%*%state+a0*DeltaG2[i]/V*e
# #state <- DeltatB1%*%state+dummyeB1%*%state
# # cat(sprintf("\n d1 %.10f d2 %.10f", DeltatB1%*%state, dummyeB1%*%state));
# V <- a0+ta%*% state
# V <- V[1]
# if(is.nan(VarDeltaG))
# VarDeltaG<- 10^(-6)
# PseudologLikR<--0.5*(DeltaG2[i]/VarDeltaG+log(VarDeltaG)+log(2.*3.14159265))+PseudologLikR
# # cat(sprintf("\n%.5f - %.5f %.5f - %.5f",VarDeltaG, state[1], state[2],V ))
# cat(sprintf("\n Part %.10f partial %.10f ", PseudologLikR, VarDeltaG))
# if(is.nan(V))
# V <- 10^(-6)
#
# }
# #
# cat(sprintf("\n%.5f - %.5f",PseudologLikR, PseudologLik))
# # #
# #
}else{
# DeltatB1 <- lapply(as.list(Deltat), function(dt,B){expm(B*dt)} , B)
# DeltatB2 <- lapply(as.list(Deltat), function(dt,B){expm(B*dt)} , Btilde)
# DeltatB3 <- lapply(as.list(-Deltat), function(dt,B){expm(B*dt)} , Btilde)
#
# for(i in c(1:(env$nObs-1))){
# VarDeltaG <- as.numeric(a0*Deltat[i]*bq/(bq-a1)+ta%*%DeltatB2[[i]]%*%InvBtilde%*%(I-DeltatB3[[i]])%*%(state-stateMean))
# state <- (I+DeltaG2[i]/V*e%*%ta)%*%DeltatB1[[i]]%*%state+a0*DeltaG2[i]/V*e
# V <- as.numeric(a0+ta%*% state)
# PseudologLik<--1/2*(DeltaG2[i]/VarDeltaG+log(VarDeltaG)+log(2*pi))+PseudologLik
# }
#
#
PseudologLik <- 0
PseudologLik <- Irregular_PseudoLoglik_COG(lengthObs=(env$nObs-1), B, Btilde, InvBtilde, a0,
bq, a1, V, PseudologLik, ta, state, stateMean, e, DeltaG2, Deltat)
PseudologLik<-PseudologLik-penalty
#
# for(i in c(1:(env$nObs-1))){
# VarDeltaG <- a0*Deltat*bq/(bq-a1)+ dummyMatr%*%(state-stateMean)
# #state <- (I+DeltaG2[i]/V*e%*%ta)%*%DeltatB1%*%state+a0*DeltaG2[i]/V*e
# state <- DeltatB1%*%state+DeltaG2[i]/V*dummyeB1%*%state+a0*DeltaG2[i]/V*e
# V <- as.numeric(a0+ta%*% state)
# PseudologLik<--1/2*(DeltaG2[i]/VarDeltaG+log(VarDeltaG)+log(2*pi))+PseudologLik
# }
# for(i in c(1:(env$nObs-1))){
# VarDeltaG <- as.numeric(a0*Deltat[i]*bq/(bq-a1)+t(a)%*%DeltatB2[[i]]%*%InvBtilde%*%(I-DeltatB3[[i]])%*%(state-stateMean))
# state <- (I+DeltaG2[i]/V*e%*%t(a))%*%DeltatB1[[i]]%*%state+a0*DeltaG2[i]/V*e
# V <- as.numeric(a0+t(a)%*% state)
# PseudologLik<--1/2*(DeltaG2[i]/VarDeltaG+log(VarDeltaG)+log(2*pi))
# }
# dummyMatr <- ta%*%DeltatB2%*%InvBtilde%*%(I-DeltatB3)
# dummyeB1 <- e%*%ta%*%DeltatB1
# PseudologLik1 <- 0
# for(i in c(1:(env$nObs-1))){
# VarDeltaG <- as.numeric(a0*Deltat*bq/(bq-a1)+dummyMatr%*%(state-stateMean))
# state <- DeltatB1%*%state+DeltaG2[i]/V*dummyeB1%*%state+a0*DeltaG2[i]/V*e
# V <- as.numeric(a0+ta%*% state)
# PseudologLik1 <- -1/2*(DeltaG2[i]/VarDeltaG+log(VarDeltaG)+log(2*pi))
# if(is.finite(PseudologLik1)){
# PseudologLik <- PseudologLik1 + PseudologLik
# }
# }
}
minusPseudoLogLik <- -PseudologLik
return(minusPseudoLogLik)
}
# res<-.Call("pseudoLoglik_COGARCH", a0, bq, a1, stateMean, Q=as.integer(env$q),
# state, DeltaG2, Deltat, DeltatB, B, a, e,
# Btilde, InvBtilde, V, I, VarDeltaG,
# PseudologLik, nObs = as.integer(env$nObs-1), fn = quote(expm(x)) , rho= .GlobalEnv,
# PACKAGE = "yuima")
#
# output <- matrix(unlist(res), ncol = env$q, byrow = TRUE)
# res <- res
| /scratch/gouwar.j/cran-all/cranData/yuima/R/PseudoLogLikCOGARCH.R |
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
evalKernelCpp <- function(Integrand2, Integrand2expr, myenvd1, myenvd2, ExistdN, ExistdX, gridTime, dimCol, NameCol, JumpTimeName) {
.Call('_yuima_evalKernelCpp', PACKAGE = 'yuima', Integrand2, Integrand2expr, myenvd1, myenvd2, ExistdN, ExistdX, gridTime, dimCol, NameCol, JumpTimeName)
}
evalKernelCpp2 <- function(Integrand2, Integrand2expr, myenvd1, myenvd2, CondIntensity, NameCountingVar, Namecovariates, ExistdN, ExistdX, gridTime, dimCol, NameCol, JumpTimeName) {
.Call('_yuima_evalKernelCpp2', PACKAGE = 'yuima', Integrand2, Integrand2expr, myenvd1, myenvd2, CondIntensity, NameCountingVar, Namecovariates, ExistdN, ExistdX, gridTime, dimCol, NameCol, JumpTimeName)
}
sqnorm <- function(x) {
.Call('_yuima_sqnorm', PACKAGE = 'yuima', x)
}
makeprop <- function(mu, sample, low, up) {
.Call('_yuima_makeprop', PACKAGE = 'yuima', mu, sample, low, up)
}
is_zero <- function(x) {
.Call('_yuima_is_zero', PACKAGE = 'yuima', x)
}
cpp_split <- function(str, sep) {
.Call('_yuima_cpp_split', PACKAGE = 'yuima', str, sep)
}
cpp_paste <- function(x, y, sep) {
.Call('_yuima_cpp_paste', PACKAGE = 'yuima', x, y, sep)
}
cpp_collapse <- function(str, sep) {
.Call('_yuima_cpp_collapse', PACKAGE = 'yuima', str, sep)
}
cpp_outer <- function(x, y) {
.Call('_yuima_cpp_outer', PACKAGE = 'yuima', x, y)
}
cpp_ito_outer <- function(x, y) {
.Call('_yuima_cpp_ito_outer', PACKAGE = 'yuima', x, y)
}
cpp_label <- function(I) {
.Call('_yuima_cpp_label', PACKAGE = 'yuima', I)
}
cpp_ito_product <- function(idx, dZ, Z_K, K, d, a, p, q = 0L) {
.Call('_yuima_cpp_ito_product', PACKAGE = 'yuima', idx, dZ, Z_K, K, d, a, p, q)
}
cpp_E <- function(str) {
.Call('_yuima_cpp_E', PACKAGE = 'yuima', str)
}
cpp_ito <- function(K_set, dZ, Z_K, d, r) {
.Call('_yuima_cpp_ito', PACKAGE = 'yuima', K_set, dZ, Z_K, d, r)
}
W1 <- function(crossdx, b, A, h) {
.Call('_yuima_W1', PACKAGE = 'yuima', crossdx, b, A, h)
}
W2 <- function(dx, b, h) {
.Call('_yuima_W2', PACKAGE = 'yuima', dx, b, h)
}
Irregular_PseudoLoglik_COG <- function(lengthObs, B, Btilde, InvBtilde, a0, bq, a1, V, PseudologLik, ta, state, stateMean, e, DeltaG2, Deltat) {
.Call('_yuima_Irregular_PseudoLoglik_COG', PACKAGE = 'yuima', lengthObs, B, Btilde, InvBtilde, a0, bq, a1, V, PseudologLik, ta, state, stateMean, e, DeltaG2, Deltat)
}
detcpp <- function(A) {
.Call('_yuima_detcpp', PACKAGE = 'yuima', A)
}
Smake <- function(b, d) {
.Call('_yuima_Smake', PACKAGE = 'yuima', b, d)
}
solvecpp <- function(A) {
.Call('_yuima_solvecpp', PACKAGE = 'yuima', A)
}
sub_f <- function(S, b) {
.Call('_yuima_sub_f', PACKAGE = 'yuima', S, b)
}
likndim <- function(dx, b, A, h) {
.Call('_yuima_likndim', PACKAGE = 'yuima', dx, b, A, h)
}
residualCpp <- function(dx, a, b, w, h) {
.Call('_yuima_residualCpp', PACKAGE = 'yuima', dx, a, b, w, h)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/RcppExports.R |
WoodChanfGn <-
function( mesh , H , dimmesh )
{
##--------------------------------------------------------------------------
## Author : Alexandre Brouste
## Project: Yuima
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Input mesh : mesh grid where the fBm is evaluated
## H : self-similarity parameter
## dim : valued in R^dim
##
##
## Output :
##--------------------------------------------------------------------------
##--------------------------------------------------------------------------
## Complexity ?
## -------------------------------------------------------------------------
mesh<-mesh[[1]]
N<-length(mesh)-2 # N+1 is the size of the fGn sample to be simulated
fGn<-matrix(0,dimmesh,N+1)
T<-mesh[N+2]
H2 <- 2*H
k <- 0:N
autocov<-0.5 * (abs(k-1)^H2 - 2*(k)^H2 + (k+1)^H2) * (T/(N+1))^H2
# g(0),g(1),g(n-1),g(1)
ligne1C<-autocov[1 + c(0:N,(N-1):1)]
lambdak<-Re(fft(ligne1C,inverse = TRUE))
for (k in 1:dimmesh){
zr <- rnorm(N+1)
zi <- rnorm(N-1)
zr[c(1,N+1)] <- zr[c(1,N+1)]*sqrt(2)
zr <- c(zr[1:(N+1)], zr[N:2])
zi <- c(0,zi,0,-zi[(N-1):1])
z <- Re(fft((zr + 1i* zi) * sqrt(lambdak), inverse = TRUE))
fGn[k,]<-z[1:(N+1)] / (2*sqrt(N))
}
#Traitement des zeros
#La matrice est definie positive (voir 17)
return(fGn)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/WoodChanfGn.R |
##::quasi-bayes function
setGeneric("adaBayes",
function(yuima, start,prior,lower,upper, method="mcmc",iteration=NULL,mcmc,rate=1.0,
rcpp=TRUE,algorithm="randomwalk",center=NULL,sd=NULL,rho=NULL,path=FALSE
)
standardGeneric("adaBayes")
)
#
# adabayes<- setClass("adabayes",contains = "mle",
# slots = c(mcmc="list", accept_rate="list",coef = "numeirc",
# call="call",vcov="matrix",fullcoef="numeric",model="yuima.model"))
adabayes<- setClass("adabayes",
#contains = "mle",
slots = c(mcmc="list", accept_rate="list",coef = "numeric",call="call",vcov="matrix",fullcoef="numeric"))
setMethod("adaBayes",
"yuima",
function(yuima, start,prior,lower,upper, method="mcmc",iteration=NULL,mcmc,rate=1.0,rcpp=TRUE,
algorithm="randomwalk",center=NULL,sd=NULL,rho=NULL,path=FALSE
)
{
if(length(iteration)>0){mcmc=iteration}
mean=unlist(center)
joint <- FALSE
fixed <- numeric(0)
print <- FALSE
call <- match.call()
if( missing(yuima))
yuima.stop("yuima object is missing.")
## param handling
## FIXME: maybe we should choose initial values at random within lower/upper
## at present, qmle stops
if(missing(lower) || missing(upper)){
if(missing(prior)){
lower = numeric(0)
upper = numeric(0)
pdlist <- numeric(length(yuima@model@parameter@all))
names(pdlist) <- yuima@model@parameter@all
for(i in 1: length(pdlist)){
lower = append(lower,-Inf)
upper = append(upper,Inf)
}
}
# yuima.stop("lower or upper is missing.")
}
diff.par <- yuima@model@parameter@diffusion
drift.par <- yuima@model@parameter@drift
jump.par <- yuima@model@parameter@jump
measure.par <- yuima@model@parameter@measure
common.par <- yuima@model@parameter@common
## BEGIN Prior construction
if(!missing(prior)){
priorLower = numeric(0)
priorUpper = numeric(0)
pdlist <- numeric(length(yuima@model@parameter@all))
names(pdlist) <- yuima@model@parameter@all
for(i in 1: length(pdlist)){
if(prior[[names(pdlist)[i]]]$measure.type=="code"){
expr <- prior[[names(pdlist)[i]]]$df
code <- suppressWarnings(sub("^(.+?)\\(.+", "\\1", expr, perl=TRUE))
args <- unlist(strsplit(suppressWarnings(sub("^.+?\\((.+)\\)", "\\1", expr, perl=TRUE)), ","))
pdlist[i] <- switch(code,
dunif=paste("function(z){return(dunif(z, ", args[2], ", ", args[3],"))}"),
dnorm=paste("function(z){return(dnorm(z,", args[2], ", ", args[3], "))}"),
dbeta=paste("function(z){return(dbeta(z, ", args[2], ", ", args[3], "))}"),
dgamma=paste("function(z){return(dgamma(z, ", args[2], ", ", args[3], "))}"),
dexp=paste("function(z){return(dexp(z, ", args[2], "))}")
)
qf <- switch(code,
dunif=paste("function(z){return(qunif(z, ", args[2], ", ", args[3],"))}"),
dnorm=paste("function(z){return(qnorm(z,", args[2], ", ", args[3], "))}"),
dbeta=paste("function(z){return(qbeta(z, ", args[2], ", ", args[3], "))}"),
dgamma=paste("function(z){return(qgamma(z, ", args[2], ", ", args[3], "))}"),
dexp=paste("function(z){return(qexp(z, ", args[2], "))}")
)
priorLower = append(priorLower,eval(parse("text"=qf))(0.00))
priorUpper = append(priorUpper,eval(parse("text"=qf))(1.00))
}
}
#20200518kaino
names(priorLower)<-names(pdlist)
names(priorUpper)<-names(pdlist)
if(missing(lower) || missing(upper)){
lower <- priorLower
upper <- priorUpper
}
else{
#20200518kaino
#if(sum(unlist(lower)<priorLower) + sum(unlist(upper)>priorUpper) > 0){
if(sum(unlist(lower)<priorLower[names(lower)]) + sum(unlist(upper)>priorUpper[names(upper)]) > 0){
yuima.stop("lower&upper of prior are out of parameter space.")
}
}
#20200518
#names(lower) <- names(pdlist)
#names(upper) <- names(pdlist)
pd <- function(param){
value <- 1
for(i in 1:length(pdlist)){
value <- value*eval(parse(text=pdlist[[i]]))(param[[i]])
}
return(value)
}
}else{
pd <- function(param) return(1)
}
## END Prior construction
if(!is.list(lower)){
lower <- as.list(lower)
}
if(!is.list(upper)){
upper <- as.list(upper)
}
JointOptim <- joint
if(length(common.par)>0){
JointOptim <- TRUE
yuima.warn("Drift and diffusion parameters must be different. Doing
joint estimation, asymptotic theory may not hold true.")
}
if(length(jump.par)+length(measure.par)>0)
yuima.stop("Cannot estimate the jump models, yet")
fulcoef <- NULL
if(length(diff.par)>0)
fulcoef <- diff.par
if(length(drift.par)>0)
fulcoef <- c(fulcoef, drift.par)
if(length(yuima@model@parameter@common)>0){
fulcoef<-unique(fulcoef)
}
fixed.par <- names(fixed)
if (any(!(fixed.par %in% fulcoef)))
yuima.stop("Some named arguments in 'fixed' are not arguments to the supplied yuima model")
nm <- names(start)
npar <- length(nm)
oo <- match(nm, fulcoef)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'start' are not arguments to the supplied yuima model")
start <- start[order(oo)]
if(!missing(prior)){
#20200525kaino
#pdlist <- pdlist[order(oo)]
pdlist <- pdlist[names(start)]
}
nm <- names(start)
idx.diff <- match(diff.par, nm)
idx.drift <- match(drift.par,nm)
if(length(common.par)>0){
idx.common=match(common.par,nm)
idx.drift=setdiff(idx.drift,idx.common)
}
idx.fixed <- match(fixed.par, nm)
tmplower <- as.list( rep( -Inf, length(nm)))
names(tmplower) <- nm
if(!missing(lower)){
idx <- match(names(lower), names(tmplower))
if(any(is.na(idx)))
yuima.stop("names in 'lower' do not match names fo parameters")
tmplower[ idx ] <- lower
}
lower <- tmplower
tmpupper <- as.list( rep( Inf, length(nm)))
names(tmpupper) <- nm
if(!missing(upper)){
idx <- match(names(upper), names(tmpupper))
if(any(is.na(idx)))
yuima.stop("names in 'lower' do not match names fo parameters")
tmpupper[ idx ] <- upper
}
upper <- tmpupper
d.size <- yuima@[email protected]
#20200601kaino
if (is.CARMA(yuima)){
# 24/12
d.size <-1
}
n <- length(yuima)[1]
G <- rate
if(G<=0 || G>1){
yuima.stop("rate G should be 0 < G <= 1")
}
n_0 <- floor(n^G)
if(n_0 < 2) n_0 <- 2
#######data is reduced to n_0 before qmle(16/11/2016)
env <- new.env()
#assign("X", yuima@[email protected][1:n_0,], envir=env)
assign("X", as.matrix(onezoo(yuima)[1:n_0,]), envir=env)
assign("deltaX", matrix(0, n_0 - 1, d.size), envir=env)
assign("time", as.numeric(index(yuima@[email protected][[1]])), envir=env)
#20200601kaino
if (is.CARMA(yuima)){
#24/12 If we consider a carma model,
# the observations are only the first column of env$X
# assign("X", as.matrix(onezoo(yuima)), envir=env)
# env$X<-as.matrix(env$X[,1])
# assign("deltaX", matrix(0, n-1, d.size)[,1], envir=env)
env$X<-as.matrix(env$X[,1])
env$deltaX<-as.matrix(env$deltaX[,1])
assign("time.obs",length(env$X),envir=env)
assign("p", yuima@model@info@p, envir=env)
assign("q", yuima@model@info@q, envir=env)
assign("V_inf0", matrix(diag(rep(1,env$p)),env$p,env$p), envir=env)
}
assign("Cn.r", rep(1,n_0-1), envir=env)
for(t in 1:(n_0-1))
env$deltaX[t,] <- env$X[t+1,] - env$X[t,]
assign("h", deltat(yuima@[email protected][[1]]), envir=env)
pp<-0
if(env$h >= 1){
qq <- 2/G
}else{
while(1){
if(n*env$h^pp < 0.1) break
pp <- pp + 1
}
qq <- max(pp,2/G)
}
C.temper.diff <- n_0^(2/(qq*G)-1) #this is used in pg.
C.temper.drift <- (n_0*env$h)^(2/(qq*G)-1) #this is used in pg.
mle <- qmle(yuima, "start"=start, "lower"=lower,"upper"=upper, "method"="L-BFGS-B",rcpp=rcpp)
start <- as.list(mle@coef)
sigma.diff=NULL
sigma.drift=NULL
if(length(sd)<npar){
sigma=mle@vcov;
}
# if(length(diff.par)>0){
# sigma.diff=diag(1,length(diff.par))
# for(i in 1:length(diff.par)){
# sigma.diff[i,i]=sd[[diff.par[i]]]
# }
# }
#
# if(length(drift.par)>0){
# sigma.drift=diag(1,length(drift.par))
# for(i in 1:length(drift.par)){
# sigma.drift[i,i]=sd[[drift.par[i]]]
# }
# }
#}
# mu.diff=NULL
# mu.drift=NULL
#
#
# if(length(mean)<npar){
# mu.diff=NULL
# mu.drift=NULL}
#else{
# if(length(diff.par)>0){
# for(i in 1:length(diff.par)){
# mu.diff[i]=mean[[diff.par[i]]]
# }
# }
#
# if(length(drift.par)>0){
# for(i in 1:length(drift.par)){
# mu.drift[i]=mean[[drift.par[i]]]
# }
# }
# }
####mpcn make proposal
sqn<-function(x,LL){
vv=x%*%LL
zz=sum(vv*vv)
if(zz<0.0000001){
zz=0.0000001
}
return(zz)
}
# mpro<-function(mu,sample,low,up,rho,LL,L){
# d=length(mu);
# tmp=mu+sqrt(rho)*(sample-mu);
# tmp = mu+sqrt(rho)*(sample-mu);
# dt=(sample-mu)%*%LL%*%(sample-mu)
# tmp2 = 2.0/dt;
# while(1){
# prop = tmp+rnorm(d)*L*sqrt((1.0-rho)/rgamma(1,0.5*d,tmp2));
# if((sum(low>prop)+sum(up<prop))==0) break;
# }
# return(prop)
# }
make<-function(mu,sample,low,up,rho,LL,L){
d=length(mu);
tmp=mu+sqrt(rho)*(sample-mu);
dt=sqn(sample-mu,LL);
tmp2 = 2.0/dt;
prop = tmp+rnorm(d)%*%L*sqrt((1.0-rho)/rgamma(1,0.5*d,scale=tmp2));
# for(i in 1:100){
# prop = tmp+rnorm(d)*sqrt((1.0-rho)/rgamma(1,0.5*d,tmp2));
# if((sum(low>prop)+sum(up<prop))==0){break;}
# flg=flg+1;
# }
# if(flg>100){print("error")}else{
# return(prop)
# }
return(prop)
}
integ <- function(idx.fixed=NULL,f=f,start=start,par=NULL,hessian=FALSE,upper,lower){
if(length(idx.fixed)==0){
intf <- hcubature(f,lowerLimit=unlist(lower),upperLimit=unlist(upper),fDim=(length(upper)+1))$integral
}else{
intf <- hcubature(f,lowerLimit=unlist(lower[-idx.fixed]),upperLimit=unlist(upper[-idx.fixed]),fDim=(length(upper[-idx.fixed])+1))$integral
}
return(intf[-1]/intf[1])
}
mcinteg <- function(idx.fixed=NULL,f=f,p,start=start,par=NULL,hessian=FALSE,upper,lower,mean,vcov,mcmc){
#vcov=vcov[nm,nm];#Song add
if(setequal(unlist(drift.par),unlist(diff.par))&(length(mean)>length(diff.par))){mean=mean[1:length(diff.par)]}
if(length(idx.fixed)==0){#only have drift or diffusion part
intf <- mcintegrate(f,p,lowerLimit=lower,upperLimit=upper,mean,vcov,mcmc)
}else{
intf <- mcintegrate(f,p,lowerLimit=lower[-idx.fixed],upperLimit=upper[-idx.fixed],mean[-idx.fixed],vcov[-idx.fixed,-idx.fixed],mcmc)
}
return(intf)
}
mcintegrate <- function(f,p, lowerLimit, upperLimit,mean,vcov,mcmc){
acc=0
if(algorithm=="randomwalk"){
x_c <- mean
if(path){
X <- matrix(0,mcmc,length(mean))
acc=0
}
nm=length(mean)
if(length(vcov)!=(nm^2)){
vcov=diag(1,nm,nm)*vcov[1:nm,1:nm]
}
sigma=NULL
if(length(sd)>0&length(sd)==npar){
sigma=diag(sd,npar,npar);
if(length(idx.fixed)>0){
vcov=sigma[-idx.fixed,-idx.fixed]
}else{
vcov=sigma;
}
}
p_c <- p(x_c)
val <- f(x_c)
if(path) X[1,] <- x_c
# if(length(mean)>1){
# x <- rmvnorm(mcmc-1,mean,vcov)
# q <- dmvnorm(x,mean,vcov)
# q_c <- dmvnorm(mean,mean,vcov)
# }else{
# x <- rnorm(mcmc-1,mean,sqrt(vcov))
# q <- dnorm(x,mean,sqrt(vcov))
# q_c <- dnorm(mean,mean,sqrt(vcov))
# }
#
for(i in 1:(mcmc-1)){
if(length(mean)>1){
x_n <- rmvnorm(1,x_c,vcov)
#if(sum(x_n<lowerLimit)==0 & sum(x_n>upperLimit)==0) break
}else{
x_n <- rnorm(1,x_c,sqrt(vcov))
#if(sum(x_n<lowerLimit)==0 & sum(x_n>upperLimit)==0) break
}
if(sum(x_n<lowerLimit)==0 & sum(x_n>upperLimit)==0){
p_n <- p(x_n)
u <- log(runif(1))
a <- p_n-p_c
if(u<a){
p_c <- p_n
# q_c <- q_n
x_c <- x_n
acc=acc+1
}
}
if(path) X[i+1,] <- x_c
#}
val <- val+f(x_c)
}
if(path){
return(list(val=unlist(val/mcmc),X=X,acc=acc/mcmc))
}else{
return(list(val=unlist(val/mcmc)))
}
}
else if(tolower(algorithm)=="mpcn"){ #MpCN
if(path) X <- matrix(0,mcmc,length(mean))
if((sum(idx.diff==idx.fixed)==0)){
if(length(center)>0){
if(length(idx.fixed)>0){
mean =unlist(center[-idx.fixed])
}else{
mean =unlist(center) ##drift or diffusion parameter only
}
}
}
# if((sum(idx.diff==idx.fixed)>0)){
# if(length(center)>0){
# mean =unlist(center[-idx.fixed])
# }
# }
x_n <- mean
val <- mean
L=diag(1,length(mean));LL=L;
nm=length(mean)
LL=vcov;
if(length(vcov)!=(nm^2)){
LL=diag(1,nm,nm)
}
if(length(sd)>0&length(sd)==npar){
sigma=diag(sd,npar,npar);
if(length(idx.fixed)>0){
LL=sigma[-idx.fixed,-idx.fixed]
}else{
LL=sigma;
}
}
# if(length(pre_conditionnal)==1){
# LL=t(chol(solve(vcov)));L=chol(vcov);
# }
if(length(rho)==0){rho=0.8}
logLik_old <- p(x_n)+0.5*length(mean)*log(sqn(x_n-mean,LL))
if(path) X[1,] <- x_n
for(i in 1:(mcmc-1)){
prop <- make(mean,x_n,unlist(lowerLimit),unlist(upperLimit),rho,LL,L)
if((sum(prop<lowerLimit)+sum(prop>upperLimit))==0){
logLik_new <- p(prop)+0.5*length(mean)*log(sqn(prop-mean,LL))
u <- log(runif(1))
if( logLik_new-logLik_old > u){
x_n <- prop
logLik_old <- logLik_new
acc=acc+1
}
}
if(path) X[i+1,] <- x_n
val <- val+f(x_n)
}
#return(unlist(val/mcmc))
if(path){
return(list(val=unlist(val/mcmc),X=X,acc=acc/mcmc))
}else{
return(list(val=unlist(val/mcmc)))
}
}
}
#print(mle@coef)
flagNotPosDif <- 0
for(i in 1:npar){
if(mle@vcov[i,i] <= 0) flagNotPosDif <- 1 #Check mle@vcov is positive difinite matrix
}
if(flagNotPosDif == 1){
mle@vcov <- diag(c(rep(1 / n_0,length(diff.par)),rep(1 / (n_0 * env$h), npar-length(diff.par)))) # Redifine mle@vcov
}
# cov.diff=mle@vcov[1:length(diff.par),1:length(diff.par)]
# cov.drift=mle@vcov[(length(diff.par)+1):(length(diff.par)+length(drift.par)),(length(diff.par)+1):(length(diff.par)+length(drift.par))]
# if(missing(cov){
# }else{
# cov.diff=cov[[1]]
# cov.drift=cov[[2]]
tmp <- minusquasilogl(yuima=yuima, param=mle@coef, print=print, env,rcpp=rcpp)
g <- function(p,fixed,idx.fixed){
mycoef <- mle@coef
#mycoef <- as.list(p)
if(length(idx.fixed)>0){
mycoef[-idx.fixed] <- p
mycoef[idx.fixed] <- fixed
}else{
mycoef <- as.list(p)
names(mycoef) <- nm
}
return(c(1,p)*exp(-minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmp)*pd(param=mycoef))
}
pg <- function(p,fixed,idx.fixed){
mycoef <- start
#mycoef <- as.list(p)
if(length(idx.fixed)>0){
mycoef[-idx.fixed] <- p
mycoef[idx.fixed] <- fixed
}else{
mycoef <- as.list(p)
names(mycoef) <- nm
}
# mycoef <- as.list(p)
# names(mycoef) <- nm
#return(exp(-minusquasilogl(yuima=yuima, param=mycoef, print=print, env)+tmp)*pd(param=mycoef))
#return(-minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmp+log(pd(param=mycoef)))#log
if(sum(idx.diff==idx.fixed)>0){
#return(C.temper.diff*(-minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmp+log(pd(param=mycoef))))#log
return(C.temper.drift*(-minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmp+log(pd(param=mycoef))))#log
}else{
#return(C.temper.drift*(-minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmp+log(pd(param=mycoef))))#log
return(C.temper.diff*(-minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmp+log(pd(param=mycoef))))#log
}
}
idf <- function(p){return(p)}
# fj <- function(p) {
# mycoef <- as.list(p)
# names(mycoef) <- nm
# mycoef[fixed.par] <- fixed
# minusquasilogl(yuima=yuima, param=mycoef, print=print, env)
# }
X.diff <- NULL
X.drift <- NULL
oout <- NULL
HESS <- matrix(0, length(nm), length(nm))
colnames(HESS) <- nm
rownames(HESS) <- nm
HaveDriftHess <- FALSE
HaveDiffHess <- FALSE
if(length(start)){
# if(JointOptim){ ### joint optimization
# if(length(start)>1){ #multidimensional optim
# oout <- optim(start, fj, method = method, hessian = TRUE, lower=lower, upper=upper)
# HESS <- oout$hessian
# HaveDriftHess <- TRUE
# HaveDiffHess <- TRUE
# } else { ### one dimensional optim
# opt1 <- optimize(f, ...) ## an interval should be provided
# opt1 <- list(par=integ(f=f,upper=upper,lower=lower,fDim=length(lower)+1),objective=0)
# oout <- list(par = opt1$minimum, value = opt1$objective)
# } ### endif( length(start)>1 )
# } else { ### first diffusion, then drift
theta1 <- NULL
acc.diff<-NULL
old.fixed <- fixed
old.start <- start
if(length(idx.diff)>0){
## DIFFUSION ESTIMATIOn first
old.fixed <- fixed
old.start <- start
new.start <- start[idx.diff] # considering only initial guess for diffusion
new.fixed <- fixed
if(length(idx.drift)>0)
new.fixed[nm[idx.drift]] <- start[idx.drift]
fixed <- new.fixed
fixed.par <- names(fixed)
idx.fixed <- match(fixed.par, nm)
names(new.start) <- nm[idx.diff]
f <- function(p){return(g(p,fixed,idx.fixed))}
pf <- function(p){return(pg(p,fixed,idx.fixed))}
if(length(unlist(new.start))>1){
# oout <- do.call(optim, args=mydots)
if(method=="mcmc"){
#oout <- list(par=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc))
mci=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc)
X.diff=mci$X
acc.diff=mci$acc
oout <- list(par=mci$val)
}else{
oout <- list(par=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower,start=start))
}
} else {
# opt1 <- do.call(optimize, args=mydots)
if(method=="mcmc"){
#opt1 <- list(minimum=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc))
mci=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc)
if(path) X.diff=mci$X
acc.diff=mci$acc
opt1 <- list(minimum=mci$val)
}else{
opt1 <- list(minimum=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
}
theta1 <- opt1$minimum
#names(theta1) <- diff.par
# oout <- list(par = theta1, value = opt1$objective)
oout <- list(par=theta1,value=0)
}
theta1 <- oout$par
#names(theta1) <- nm[idx.diff]
names(theta1) <- diff.par
} ## endif(length(idx.diff)>0)
theta2 <- NULL
acc.drift<-NULL
if(length(idx.drift)>0 & setequal(unlist(drift.par),unlist(diff.par))==FALSE){
## DRIFT estimation with first state diffusion estimates
fixed <- old.fixed
start <- old.start
new.start <- start[idx.drift] # considering only initial guess for drift
new.fixed <- fixed
new.fixed[names(theta1)] <- theta1
fixed <- new.fixed
fixed.par <- names(fixed)
idx.fixed <- match(fixed.par, nm)
names(new.start) <- nm[idx.drift]
f <- function(p){return(g(p,fixed,idx.fixed))}
pf <- function(p){return(pg(p,fixed,idx.fixed))}
if(length(unlist(new.start))>1){
# oout1 <- do.call(optim, args=mydots)
if(method=="mcmc"){
#oout1 <- list(par=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc))
mci=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc)
if(path) X.drift=mci$X
acc.drift=mci$acc
#20200601kaino
#oout1 <- list(minimum=mci$val)
oout1 <- list(par=mci$val)
}else{
oout1 <- list(par=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
}
} else {
# opt1 <- do.call(optimize, args=mydots)
if(method=="mcmc"){
#opt1 <- list(minimum=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc))
mci=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=mle@vcov,mcmc=mcmc)
X.drift=mci$X
acc.drift=mci$acc
opt1 <- list(minimum=mci$val)
}else{
opt1 <- list(minimum=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
}
theta2 <- opt1$minimum
names(theta2) <-nm[-idx.fixed]
oout1 <- list(par = theta2, value = as.numeric(opt1$objective))
}
theta2 <- oout1$par
} ## endif(length(idx.drift)>0)
oout1 <- list(par=c(theta1, theta2))
names(oout1$par) <-nm # c(diff.par,drift.par)
oout <- oout1
# } ### endif JointOptim
} else {
list(par = numeric(0L), value = f(start))
}
# if(path){
# return(list(coef=oout$par,X.diff=X.diff,X.drift=X.drift,accept_rate=accept_rate))
# }else{
# return(list(coef=oout$par))
# }
fDrift <- function(p) {
mycoef <- as.list(p)
names(mycoef) <- drift.par
mycoef[diff.par] <- coef[diff.par]
minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
}
fDiff <- function(p) {
mycoef <- as.list(p)
names(mycoef) <- diff.par
mycoef[drift.par] <- coef[drift.par]
minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
}
coef <- oout$par
control=list()
par <- coef
names(par) <- nm
#names(par) <- c(diff.par, drift.par)
#nm <- c(diff.par, drift.par)
# print(par)
# print(coef)
conDrift <- list(trace = 5, fnscale = 1,
parscale = rep.int(5, length(drift.par)),
ndeps = rep.int(0.001, length(drift.par)), maxit = 100L,
abstol = -Inf, reltol = sqrt(.Machine$double.eps), alpha = 1,
beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5,
factr = 1e+07, pgtol = 0, tmax = 10, temp = 10)
conDiff <- list(trace = 5, fnscale = 1,
parscale = rep.int(5, length(diff.par)),
ndeps = rep.int(0.001, length(diff.par)), maxit = 100L,
abstol = -Inf, reltol = sqrt(.Machine$double.eps), alpha = 1,
beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5,
factr = 1e+07, pgtol = 0, tmax = 10, temp = 10)
# nmsC <- names(con)
# if (method == "Nelder-Mead")
# con$maxit <- 500
# if (method == "SANN") {
# con$maxit <- 10000
# con$REPORT <- 100
# }
# con[(namc <- names(control))] <- control
# if (length(noNms <- namc[!namc %in% nmsC]))
# warning("unknown names in control: ", paste(noNms, collapse = ", "))
# if (con$trace < 0)
# warning("read the documentation for 'trace' more carefully")
# else if (method == "SANN" && con$trace && as.integer(con$REPORT) ==
# 0)
# stop("'trace != 0' needs 'REPORT >= 1'")
# if (method == "L-BFGS-B" && any(!is.na(match(c("reltol",
# "abstol"), namc))))
# warning("method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol'")
# npar <- length(par)
# if (npar == 1 && method == "Nelder-Mead")
# warning("one-diml optimization by Nelder-Mead is unreliable: use optimize")
#
if(!HaveDriftHess & (length(drift.par)>0)){
#hess2 <- .Internal(optimhess(coef[drift.par], fDrift, NULL, conDrift))
hess2 <- optimHess(coef[drift.par], fDrift, NULL, control=conDrift)
HESS[drift.par,drift.par] <- hess2
}
if(!HaveDiffHess & (length(diff.par)>0)){
#hess1 <- .Internal(optimhess(coef[diff.par], fDiff, NULL, conDiff))
hess1 <- optimHess(coef[diff.par], fDiff, NULL, control=conDiff)
HESS[diff.par,diff.par] <- hess1
}
oout$hessian <- HESS
# vcov <- if (length(coef))
# solve(oout$hessian)
# else matrix(numeric(0L), 0L, 0L)
mycoef <- as.list(coef)
names(mycoef) <- nm
mycoef[fixed.par] <- fixed
#min <- minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
#
# new("mle", call = call, coef = coef, fullcoef = unlist(mycoef),
#
# # vcov = vcov, min = min, details = oout, minuslogl = minusquasilogl,
# vcov = vcov, details = oout,
# method = method)
mcmc_sample<-cbind(X.diff,X.drift)
mcmc<-list()
lf=length(diff.par)
vcov=matrix(0,npar,npar)
if(path){
if(lf>1){
vcov[1:lf,1:lf]=cov(X.diff)
}else if(lf==1){
vcov[1:lf,1:lf]=var(X.diff)
}
if((npar-lf)>1){
vcov[(lf+1):npar,(lf+1):npar]=cov(X.drift)
}else if((npar-lf)==1){
vcov[(lf+1):npar,(lf+1):npar]=var(X.drift)
}
}
accept_rate<-list()
if(path){
for(i in 1:npar){
mcmc[[i]]=as.mcmc(mcmc_sample[,i])
}
#para_drift=yuima@model@parameter@drift[yuima@model@parameter@drift!=yuima@model@parameter@common]
names(mcmc) <-nm;# c(yuima@model@parameter@diffusion,para_drift)
accept_rate=list(acc.drift,acc.diff)
names(accept_rate)<-c("accepte.rate.drift","accepte.rate.diffusion")
}else{
mcmc=list("NULL")
accept_rate=list("NULL")
}
fulcoef = unlist(mycoef);
new("adabayes",mcmc=mcmc, accept_rate=accept_rate,coef=fulcoef,call=call,vcov=vcov,fullcoef=fulcoef)
}
)
setGeneric("coef")
setMethod("coef", "adabayes", function(object) object@fullcoef )
| /scratch/gouwar.j/cran-all/cranData/yuima/R/adaBayes.R |
#' Class for the asymptotic expansion of diffusion processes
#'
#' The \code{yuima.ae} class is used to describe the output of the functions \code{\link{ae}} and \code{\link{aeMarginal}}.
#'
#' @slot order integer. The order of the expansion.
#' @slot var character. The state variables.
#' @slot u.var character. The variables of the characteristic function.
#' @slot eps.var character. The perturbation variable.
#' @slot characteristic expression. The characteristic function.
#' @slot density expression. The probability density function.
#' @slot Z0 numeric. The solution to the deterministic process obtained by setting the perturbation to zero.
#' @slot Mu numeric. The drift vector for the representation of Z1.
#' @slot Sigma matrix. The diffusion matrix for the representation of Z1.
#' @slot c.gamma list. The coefficients of the Hermite polynomials.
#' @slot h.gamma list. Hermite polynomials.
#'
setClass("yuima.ae", slots = c(
order = "integer",
var = "character",
u.var = "character",
eps.var = "character",
characteristic = "expression",
density = "expression",
Z0 = "numeric",
Mu = "numeric",
Sigma = "matrix",
c.gamma = "list",
h.gamma = "list"
))
#' Constructor for yuima.ae
#' @rdname yuima.ae-class
setMethod("initialize", "yuima.ae", function(.Object, order, var, u.var, eps.var, characteristic, Z0, Mu, Sigma, c.gamma, verbose){
########################################################
# Set density #
########################################################
if(verbose) {
cat(paste0('Computing distribution...'))
time <- Sys.time()
}
tmp <- calculus::hermite(var = var, sigma = solve(Sigma), order = 3*order)
h.gamma <- lapply(tmp, function(x) x$f)
.Object@density <- sapply(0:order, function(m) {
if(m>0){
pdf <- sapply(1:m, function(m){
g <- c.gamma[[m]][sapply(c.gamma[[m]], function(x) x!=0)]
if(length(g)==0) return(0)
h <- h.gamma[names(g)]
p <- paste(calculus::wrap(g), calculus::wrap(h), sep = "*", collapse = " + ")
paste(paste0(eps.var, "^", m), calculus::wrap(p), sep = " * ")
})
pdf <- paste(pdf, collapse = " + ")
pdf <- paste0(1, " + ", pdf)
}
else {
pdf <- 1
}
kernel <- sprintf('%s * exp(%s)', ((2*pi)^(-length(var)/2)*(det(Sigma)^(-0.5))), (-0.5 * solve(Sigma)) %inner% (var %outer% var))
pdf <- paste0(kernel, " * (", pdf, ")")
for(i in 1:length(var)) {
z <- sprintf("(((%s - %s)/%s) - %s)", var[i], Z0[var[i]], eps.var, Mu[i])
pdf <- gsub(x = pdf, pattern = paste0("\\b",var[i],"\\b"), replacement = z)
pdf <- sprintf("(%s) / abs(%s)", pdf, eps.var)
}
return(parse(text = pdf))
})
if(verbose) {
cat(sprintf(' (%s sec)\n', difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
# Set object #
########################################################
.Object@order <- order
.Object@var <- var
[email protected] <- u.var
[email protected] <- eps.var
.Object@characteristic <- characteristic
.Object@Z0 <- Z0
.Object@Mu <- Mu
.Object@Sigma <- Sigma
[email protected] <- c.gamma
[email protected] <- h.gamma
# return
return(.Object)
})
#' Plot method for an object of class yuima.ae
#' @rdname yuima.ae-class
setMethod("plot", signature(x = "yuima.ae"), function(x, grids = list(), eps = 1, order = NULL, ...){
n <- length(x@var)
for(z in x@var){
margin <- aeMarginal(ae = x, var = z)
grid <- grids[z]
if(is.null(grid[[1]])){
mu <- aeMean(ae = margin, eps = eps, order = order)[[1]]
sd <- aeSd(ae = margin, eps = eps, order = order)[[1]]
grid <- list(seq(mu-5*sd, mu+5*sd, length.out = 1000))
names(grid) <- z
}
dens <- do.call('aeDensity', c(grid, list(ae = margin, eps = eps, order = order)))
plot(x = grid[[1]], y = dens, type = 'l', xlab = z, ylab = 'Density', ...)
}
})
#' Asymptotic Expansion
#'
#' Asymptotic expansion of uni-dimensional and multi-dimensional diffusion processes.
#'
#' @param model an object of \code{\link{yuima-class}} or \code{\link{yuima.model-class}}.
#' @param xinit initial value vector of state variables.
#' @param order integer. The asymptotic expansion order. Higher orders lead to better approximations but longer computational times.
#' @param true.parameter named list of parameters.
#' @param sampling a \code{\link{yuima.sampling-class}} object.
#' @param eps.var character. The perturbation variable.
#' @param solver the solver for ordinary differential equations. One of \code{"rk4"} (more accurate) or \code{"euler"} (faster).
#' @param verbose logical. Print on progress? Default \code{FALSE}.
#'
#' @return An object of \code{\link{yuima.ae-class}}
#'
#' @details
#' If \code{sampling} is not provided, then \code{model} must be an object of \code{\link{yuima-class}} with non-empty \code{sampling}.
#'
#' if \code{eps.var} does not appear in the model specification, then it is internally added in front of the diffusion matrix to apply the asymptotic expansion scheme.
#'
#' @author
#' Emanuele Guidotti <[email protected]>
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # exact density
#' x <- seq(50, 200, by = 0.1)
#' exact <- dlnorm(x = x, meanlog = log(xinit)+(par$mu-0.5*par$sigma^2)*1, sdlog = par$sigma*sqrt(1))
#'
#' # compare
#' plot(x, exact, type = 'l', ylab = "Density")
#' lines(x, aeDensity(x = x, ae = approx, order = 1), col = 2)
#' lines(x, aeDensity(x = x, ae = approx, order = 2), col = 3)
#' lines(x, aeDensity(x = x, ae = approx, order = 3), col = 4)
#' lines(x, aeDensity(x = x, ae = approx, order = 4), col = 5)
#'
#' @importFrom calculus %dot%
#' @importFrom calculus %inner%
#' @importFrom calculus %mx%
#' @importFrom calculus %outer%
#' @importFrom calculus %prod%
#' @importFrom calculus %sum%
#' @importFrom calculus %gradient%
#'
#' @export
#'
ae <- function(model, xinit, order = 1L, true.parameter = list(), sampling = NULL, eps.var = 'eps', solver = "rk4", verbose = FALSE){
obj.class <- class(model)
if(!is.null(sampling)){
if(obj.class=='yuima'){
stop('model must be of class yuima.model when sampling is provided')
}
else if(obj.class=='yuima.model'){
model <- setYuima(model = model, sampling = sampling)
}
else stop('model must be of class yuima or yuima.model')
}
else if(obj.class!='yuima'){
stop('model must be of class yuima when sampling is not provided')
}
if(!model@sampling@regular)
stop('ae needs regular sampling')
if(length(sampling@grid)!=1)
stop('ae needs a unidimensional sampling grid')
if(length(model@[email protected])>0)
stop('ae does not support jump processes')
if(model@model@hurst!=0.5)
stop('ae does not support fractional processes')
# temporary disable calculus.auto.wrap
calculus.auto.wrap <- options(calculus.auto.wrap = FALSE)
on.exit(options(calculus.auto.wrap), add = TRUE)
########################################################
# dz #
########################################################
dz <- function(i){
paste0('d', i, '.', AE$z)
}
dz.nu <- function(i, nu){
dz <- dz(i)
z <- sapply(1:AE$d, function(i) rep(dz[i], nu[i]), simplify = F)
z <- paste(unlist(z), collapse = ' * ')
if(z=='') z <- '1'
return(z)
}
########################################################
# Z.I #
########################################################
Z.I <- function(I, bar = FALSE) {
tmp <- NULL
for(i in I){
z.i <- dz(i = i)
if(bar) {
z.i <- c( z.i, ifelse(i==1, 1, 0) )
}
z.i <- array(z.i)
if(is.null(tmp)) tmp <- z.i
else tmp <- tmp %outer% z.i
}
return(tmp)
}
# Hermite Valued Expectation
HVE <- function(nu, K){
# convert to label
nu <- label(nu)
# for each nu'
H <- sapply(names(AE$c.nu[[nu]]), function(nu.prime) {
c(AE$c.nu[[nu]][[nu.prime]]) * as.numeric(AE$Ez.T[AE$Ez.K[[label(K)]][[nu.prime]]])
})
if(is.null(dim(H)))
H <- sum(H)
else
H <- rowSums(H)
return(H)
}
# Tensor Valued Expectation
TVE <- function(K){
K <- K + 1
nu <- AE$nu[[sum(K)]]
E <- apply(nu, 2, function(nu){
c <- (1i)^sum(nu) / prod(factorial(nu)) * HVE(nu = nu, K = K)
c <- c/prod(factorial(K))
paste0(AE$u,"^",nu, collapse = "*") %prod% array(calculus::wrap(c))
})
if(is.null(dim(E))) E <- cpp_collapse(E, ' + ')
else E <- apply(E, 1, function(x) cpp_collapse(x, ' + '))
E <- array(E, dim = rep(AE$d, length(K)))
return(E)
}
# Characteristic function
psi <- function(m){
martingale <- sprintf('exp(%s)', (calculus::wrap(1i*AE$Mu) %inner% AE$u) %sum% ((-0.5 * AE$Sigma) %inner% (AE$u %outer% AE$u)))
if(m>0){
psi <- cpp_collapse(paste0(AE$eps.var, "^", (1:m)) %prod% calculus::wrap(AE$P.m[1:m]), " + ")
psi <- 1 %sum% psi
}
else {
psi <- 1
}
psi <- paste0(martingale," * (", psi, ")")
for(i in 1:AE$d)
psi <- gsub(x = psi, pattern = paste0("\\b",AE$u[i],"\\b"), replacement = calculus::wrap(paste(AE$eps.var,"*",AE$u[i])))
psi <- paste0("exp((",1i,") * (",AE$u %inner% AE$Ez.T[AE$z],")) * (", psi, ")")
return(parse(text = psi))
}
# label for partitions
label <- function(I){
paste(I, collapse = ',')
}
########################################################
# AE environment #
########################################################
AE <- new.env()
# expansion order
AE$m <- as.integer(order)
# expansion variable
AE$eps.var <- eps.var
# model parameters
AE$par <- true.parameter
AE$par[[AE$eps.var]] <- 0
# model dimension
AE$d <- model@[email protected]
# noise dimension
AE$r <- model@[email protected] + 1
# solve variables
AE$z <- model@[email protected]
# extended solve variables
AE$z.bar <- c(AE$z, AE$eps.var)
# characteristic function variables
AE$u <- paste0('u', 1:AE$d)
# simulation initial value
AE$xinit <- xinit
# timing if verbose
if(verbose) time <- Sys.time()
########################################################
# V: V[,1] -> V_{0}; V[,2] -> V_{1} #
########################################################
AE$V <- NULL
# drift
drift <- calculus::e2c(model@model@drift)
# diffusion
diffusion <- unlist(lapply(model@model@diffusion, calculus::e2c))
diffusion <- as.array(matrix(diffusion, nrow = AE$d, ncol = AE$r-1, byrow = TRUE))
# expansion coefficient
is.eps.diffusion <- any(grepl(x = diffusion, pattern = paste0('\\b',AE$eps.var,'\\b')))
is.eps.drift <- any(grepl(x = drift, pattern = paste0('\\b',AE$eps.var,'\\b')))
if(!is.eps.diffusion){
diffusion <- AE$eps.var %prod% calculus::wrap(diffusion)
} else {
test <- parse(text = diffusion)
env <- AE$par
env[[AE$eps.var]] <- 0
for(z in AE$z)
env[[z]] <- runif(n = 100, min = -999, max = 999)
is.ok <- suppressWarnings(sapply(test, function(expr){
all(eval(expr, env)==0, na.rm = TRUE)
}))
if(!all(is.ok)){
stop('diffusion must vanish when evaluated at epsilon = 0')
}
}
# building V...
AE$V <- array(c(drift, diffusion), c(AE$d, AE$r))
########################################################
# dV #
########################################################
AE$dV <- list()
if(verbose) cat('Computing dV...')
# parse v only once
expr <- array(parse(text = AE$V), dim = dim(AE$V))
# for j up to twice the expansion order...
for(j in 1:(2*AE$m)) {
# differentiate expression
expr <- calculus::derivative(expr, var = AE$z.bar, deparse = FALSE)
# convert to char
tmp <- calculus::e2c(expr)
# break if dV vanishes
if(all(tmp=="0")) break
# evaluate at eps = 0
if(!is.eps.diffusion & !is.eps.drift){
# auto: eps * diffusion -> boost performance
zero <- grepl(x = tmp, pattern = paste0('\\b',AE$eps.var,'\\b'))
tmp[zero] <- "0"
}
else {
# user defined: gsub
tmp[] <- gsub(x = tmp, pattern = paste0('\\b',AE$eps.var,'\\b'), replacement = "0")
}
# drop white spaces (!important)
tmp[] <- gsub(x = tmp, pattern = ' ', replacement = '', fixed = T)
# store dV
AE$dV[[j]] <- tmp
}
if(verbose) {
cat(sprintf(' %s derivatives (%s sec)\n', length(unlist(AE$dV)), difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
# dZ #
########################################################
AE$dZ <- list()
if(verbose) cat('Computing dZ...')
# for j up to twice the expnasion order...
for(k in 1:(2*AE$m)) {
# get partitions of k
I.set <- calculus::partitions(n = k)
# building dZ...
AE$dZ[[k]] <- "0"
# for each I in I.set
lapply(I.set, function(I){
# length I
j <- length(I)
# if dV[[j]] does not vanish
if(j <= length(AE$dV)){
# compute U
U <- (factorial(sum(I))/prod(factorial(c( I, table(I) )))) %prod% calculus::wrap(AE$dV[[j]])
# isolate coefficients
U[] <- paste0('{',U,'}')
# add to dZ
AE$dZ[[k]] <- AE$dZ[[k]] %sum% ( U %dot% Z.I(I = I, bar = TRUE) )
}
# void
return(NULL)
})
}
if(verbose) {
cat(sprintf(' (%s sec)\n', difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
# K.set #
########################################################
AE$K.set <- NULL
# for n up to 4 times the expansion order...
for(n in 1:(4*AE$m)){
# store K.set
AE$K.set <- c(AE$K.set, calculus::partitions(n = n, max = 2*AE$m))
}
########################################################
# Z.K #
########################################################
AE$Z.K <- lapply(AE$K.set, function(K) Z.I(I = K))
names(AE$Z.K) <- lapply(AE$K.set, label)
########################################################
if(verbose) cat('Computing Ito ODE system...')
ito <- cpp_ito(K_set = AE$K.set, dZ = AE$dZ, Z_K = AE$Z.K, d = AE$d, r = AE$r)
AE$ito.lhs <- ito$lhs
AE$ito.rhs <- ito$rhs
AE$ito.rhs.var <- ito$rhs.var
if(verbose) {
cat(sprintf(' %s equations (%s sec)\n', length(AE$ito.rhs)+AE$d, difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
if(verbose) cat('Reducing Ito ODE system...')
AE$nu <- list()
AE$Ez.K <- list()
# nu indices
for(k in 1:(2*AE$m))
AE$nu[[k]] <- calculus::partitions(n = k, length = AE$d, fill = TRUE, perm = TRUE, equal = FALSE)
# find needed terms
for(i in 1:AE$m) {
for(l in 1:i){
K.set <- calculus::partitions(n = i, length = l, perm = TRUE)
lapply(K.set, function(K) {
K <- K+1
AE$Ez.K[[label(K)]] <- list()
apply(AE$nu[[sum(K)]], 2, function(nu) {
# store
AE$Ez.K[[label(K)]][[label(nu)]] <- cpp_E( dz.nu(i = 1, nu = nu) %prod% Z.I(I = K) )
# void
return(NULL)
})
# void
return(NULL)
})
}
}
########################################################
AE$Ez.T <- list()
AE$Ez <- unique(unlist(AE$Ez.K))
# drop duplicated equations
idx <- which(!duplicated(AE$ito.lhs))
AE$ito.lhs <- AE$ito.lhs[idx]
AE$ito.rhs <- AE$ito.rhs[idx]
AE$ito.rhs.var <- AE$ito.rhs.var[idx]
while(TRUE){
# needed equation id
idx <- which(AE$ito.lhs %in% AE$Ez)
# additional needed var
add <- unique(unlist(AE$ito.rhs.var[idx]))
add <- add[!(add %in% AE$Ez)]
# break or store
if(length(add)==0) break
AE$Ez <- c(AE$Ez, add)
}
# drop equations not needed
idx <- which(AE$ito.lhs %in% AE$Ez)
AE$ito.lhs <- AE$ito.lhs[idx]
AE$ito.rhs <- AE$ito.rhs[idx]
AE$ito.rhs.var <- AE$ito.rhs.var[idx]
# plug zero if empty equation
while(TRUE){
idx <- which(AE$ito.rhs=='')
if(length(idx)==0) break
zero <- AE$ito.lhs[idx]
AE$Ez.T[zero] <- 0
AE$ito.lhs <- AE$ito.lhs[-idx]
AE$ito.rhs <- AE$ito.rhs[-idx]
pattern <- gsub(zero, pattern = '.', replacement = '\\.', fixed = T)
pattern <- gsub(pattern, pattern = '_', replacement = '\\_', fixed = T)
pattern <- paste0(pattern, collapse = '|')
pattern <- paste0(' \\* (',pattern,')\\b')
AE$ito.rhs <- unlist(lapply(strsplit(AE$ito.rhs, split = ' + ', fixed = T), function(x){
is.zero <- grepl(x = x, pattern = pattern)
x <- x[!is.zero]
if(length(x)==0) return("")
else return(paste(x, collapse = ' + '))
}))
}
if(verbose) {
cat(sprintf(' %s equations (%s sec)\n', length(AE$ito.rhs)+AE$d, difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
if(verbose) cat('Solving Ito ODE system...')
# Ito ODE
lhs <- c(AE$z, AE$ito.lhs)
rhs <- c(AE$V[,1], AE$ito.rhs)
# Initial values
xinit <- c(rep(AE$xinit, length.out = AE$d), rep(0, length(lhs)-AE$d))
names(xinit) <- lhs
# Solve
Ez.T <- calculus::ode(f = rhs, var = xinit, times = sampling@grid[[1]], params = AE$par, timevar = model@[email protected], drop = TRUE, method = solver)
AE$Ez.T <- c(as.list(Ez.T), AE$Ez.T)
if(verbose) {
cat(sprintf(' (%s sec)\n', difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
if(verbose) cat('Computing Sigma matrix...')
y.lhs <- array(paste('y', gsub(AE$z %outer% AE$z, pattern = " * ", replacement = "_", fixed = T), sep = '.'), dim = rep(AE$d, 2))
y.rhs <- calculus::wrap(AE$V[,1] %gradient% AE$z) %mx% y.lhs
y.0 <- diag(AE$d)
dim(y.lhs) <- NULL
dim(y.rhs) <- NULL
dim(y.0) <- NULL
y.lhs <- c(AE$z, y.lhs)
y.rhs <- c(AE$V[,1], y.rhs)
y.0 <- c(rep(AE$xinit, length.out = AE$d), y.0)
names(y.0) <- y.lhs
times <- sampling@grid[[1]]
n.times <- length(times)
x <- calculus::ode(f = y.rhs, var = y.0, times = times, params = AE$par, timevar = model@[email protected], method = solver)
y <- x[, -c(1:AE$d), drop = FALSE]
z <- as.data.frame(x[, c(1:AE$d), drop = FALSE])
if(!is.null(model@[email protected]))
z[[model@[email protected]]] <- times
y.s <- lapply(1:n.times, function(i) matrix(y[i,], nrow = AE$d))
y_inv.s <- lapply(y.s, solve)
dV <- AE$V %gradient% AE$eps.var
dV.s <- calculus::evaluate(dV, as.data.frame(c(z, AE$par)))
dV.s <- lapply(1:n.times, function(i) array(dV.s[i,], dim = dim(dV)))
if(length(dV.s)==1)
dV.s = rep(dV.s, n.times)
# Mu
if(all(dV[,1,]=="0")){
AE$Mu <- array(0, dim = AE$d)
}
else {
Mu <- sapply(1:n.times, function(i){
y_inv.s[[i]] %*% dV.s[[i]][,1,]
})
if(is.null(dim(Mu))) {
n <- length(Mu)
Mu <- ( sum(Mu[c(-1,-n)]) + sum(Mu[c(1,n)])/2 ) * sampling@delta
}
else {
n <- ncol(Mu)
Mu <- ( rowSums(Mu[,c(-1,-n)]) + rowSums(Mu[,c(1,n)])/2 ) * sampling@delta
}
AE$Mu <- array(y.s[[n.times]] %*% Mu)
}
# Sigma
S <- sapply(1:n.times, function(i){
a <- y.s[[n.times]] %*% y_inv.s[[i]] %*% dV.s[[i]][,-1,]
a %*% t(a)
})
if(is.null(dim(S))) {
n <- length(S)
S <- ( sum(S[c(-1,-n)]) + sum(S[c(1,n)])/2 ) * sampling@delta
}
else {
n <- ncol(S)
S <- ( rowSums(S[,c(-1,-n)]) + rowSums(S[,c(1,n)])/2 ) * sampling@delta
}
AE$Sigma <- array(S, dim = c(AE$d,AE$d))
if(verbose) {
cat(sprintf(' (%s sec)\n', difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
# Hermite coefficients
if(verbose) cat(paste0('Computing Hermite...'))
tmp <- calculus::hermite(var = AE$z, sigma = AE$Sigma, order = 2*AE$m,
transform = solve(AE$Sigma) %dot% calculus::wrap(AE$z %sum% -AE$Mu))
AE$c.nu <- lapply(tmp, function(x) {
coef <- as.list(x$terms$coef)
names(coef) <- rownames(x$terms)
return(coef)
})
AE$h.nu <- lapply(tmp, function(x) x$f)
if(verbose) {
cat(sprintf(' (%s sec)\n', difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
AE$ul <- list(array(AE$u))
if(AE$m > 1) for(l in 2:AE$m){
AE$ul[[l]] <- AE$ul[[l-1]] %outer% AE$u
}
AE$ul <- lapply(AE$ul, function(ul){
array(unlist(lapply(strsplit(ul, split = " * ", fixed = T), function(u) {
u <- table(u)
paste0(names(u),"^",u, collapse = "*")
})), dim = dim(ul))
})
########################################################
if(verbose) cat('Computing characteristic function...')
AE$psi <- list()
for(m in 1:AE$m) {
AE$psi[[m]] <- list()
for(l in 1:m){
K.set <- calculus::partitions(n = m, length = l, perm = TRUE)
psi.m.l <- unlist(lapply(K.set, function(K){
calculus::wrap((1i)^l) %prod% calculus::wrap((calculus::wrap(TVE(K = K)) %inner% AE$ul[[l]]))
}))
expr <- (1/factorial(l)) %prod% calculus::wrap(cpp_collapse(psi.m.l, ' + '))
AE$psi[[m]][[l]] <- calculus::taylor(expr, var = AE$u, order = m+2*l)$f
}
}
AE$P.m = sapply(AE$psi, function(p.m.l) cpp_collapse(unlist(p.m.l), " + "))
AE$c.gamma <- lapply(1:AE$m, function(m) {
p <- calculus::taylor(AE$P.m[m], var = AE$u, order = 3*m)
coef <- Re(p$terms$coef/(1i)^p$terms$degree)
coef <- as.list(coef)
names(coef) <- rownames(p$terms)
return(coef)
})
AE$PSI <- sapply(0:AE$m, psi)
if(verbose) {
cat(sprintf(' (%s sec)\n', difftime(Sys.time(), time, units = "secs")[[1]]))
time <- Sys.time()
}
########################################################
return(new(
"yuima.ae",
order = AE$m,
var = AE$z,
u.var = AE$u,
eps.var = AE$eps.var,
characteristic = AE$PSI,
Z0 = unlist(AE$Ez.T[AE$z]),
Mu = as.numeric(AE$Mu),
Sigma = AE$Sigma,
c.gamma = AE$c.gamma,
verbose = verbose
))
}
#' Asymptotic Expansion - Density
#'
#' @param ... named argument, data.frame, list, or environment specifying the grid to evaluate the density. See examples.
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#'
#' @return Probability density function evaluated on the given grid.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # The following are all equivalent methods to specify the grid via ....
#' # Notice that the character 'x' corresponds to the solve.variable of the yuima model.
#'
#' # 1) named argument
#' x <- seq(50, 200, by = 0.1)
#' density <- aeDensity(x = x, ae = approx, order = 4)
#' # 2) data frame
#' df <- data.frame(x = seq(50, 200, by = 0.1))
#' density <- aeDensity(df, ae = approx, order = 4)
#' # 3) environment
#' env <- new.env()
#' env$x <- seq(50, 200, by = 0.1)
#' density <- aeDensity(env, ae = approx, order = 4)
#' # 4) list
#' lst <- list(x = seq(50, 200, by = 0.1))
#' density <- aeDensity(lst, ae = approx, order = 4)
#'
#' # exact density
#' exact <- dlnorm(x = x, meanlog = log(xinit)+(par$mu-0.5*par$sigma^2)*1, sdlog = par$sigma*sqrt(1))
#'
#' # compare
#' plot(x = exact, y = density, xlab = "Exact", ylab = "Approximated")
#'
#' @export
#'
aeDensity <- function(..., ae, eps = 1, order = NULL){
if(is.null(order))
order <- ae@order
pdf <- ae@density[order+1]
env <- list(...)
if(length(env)==1)
if(is.list(env[[1]]) | is.environment(env[[1]]))
env <- env[[1]]
env[[[email protected]]] <- eps
return(eval(expr = pdf, envir = env))
}
#' Asymptotic Expansion - Marginals
#'
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param var variables of the marginal distribution to compute.
#'
#' @return An object of \code{\link{yuima.ae-class}}
#'
#' @examples
#'
#' # multidimensional model
#' gbm <- setModel(drift = c('mu*x1','mu*x2'),
#' diffusion = matrix(c('sigma1*x1',0,0,'sigma2*x2'), nrow = 2),
#' solve.variable = c('x1','x2'))
#'
#' # settings
#' xinit <- c(100, 100)
#' par <- list(mu = 0.01, sigma1 = 0.2, sigma2 = 0.1)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 3, true.parameter = par, xinit = xinit)
#'
#' # extract marginals
#' margin1 <- aeMarginal(ae = approx, var = "x1")
#' margin2 <- aeMarginal(ae = approx, var = "x2")
#'
#' # compare with exact solution for marginal 1
#' x1 <- seq(50, 200, by = 0.1)
#' exact <- dlnorm(x = x1, meanlog = log(xinit[1])+(par$mu-0.5*par$sigma1^2), sdlog = par$sigma1)
#' plot(x1, exact, type = 'p', ylab = "Density")
#' lines(x1, aeDensity(x1 = x1, ae = margin1, order = 3), col = 2)
#'
#' # compare with exact solution for marginal 2
#' x2 <- seq(50, 200, by = 0.1)
#' exact <- dlnorm(x = x2, meanlog = log(xinit[2])+(par$mu-0.5*par$sigma2^2), sdlog = par$sigma2)
#' plot(x2, exact, type = 'p', ylab = "Density")
#' lines(x2, aeDensity(x2 = x2, ae = margin2, order = 3), col = 2)
#'
#' @export
#'
aeMarginal <- function(ae, var){
# init
keep <- ae@var %in% var
if(sum(!keep)==0) return(ae)
# vanish marginal coefficients
c.gamma <- [email protected]
for(i in 1:length(c.gamma)) for(j in 1:length(c.gamma[[i]])){
o <- as.numeric(unlist(strsplit(x = names(c.gamma[[i]][j]), split = ',')))
if(any(o[!keep]>0)){
c.gamma[[i]][[j]] <- 0
}
else {
names(c.gamma[[i]])[j] <- paste(o[keep], collapse = ',')
}
}
# characteristic
characteristic <- sapply(calculus::e2c(ae@characteristic), function(psi) {
for(u in [email protected][!keep])
psi <- gsub(x = psi, pattern = paste0("\\b",u,"\\b"), replacement = 0)
return(calculus::c2e(psi))
})
# return
return(new(
"yuima.ae",
order = ae@order,
var = ae@var[keep],
u.var = [email protected][keep],
eps.var = [email protected],
characteristic = characteristic,
Z0 = ae@Z0[keep],
Mu = ae@Mu[keep],
Sigma = ae@Sigma[keep, keep, drop = FALSE],
c.gamma = c.gamma,
verbose = FALSE
))
}
#' Asymptotic Expansion - Functionals
#'
#' Compute the expected value of functionals.
#'
#' @param f character. The functional.
#' @param bounds named list of integration bounds in the form \code{list(x = c(xmin, xmax), y = c(ymin, ymax), ...)}
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#' @param ... additional arguments passed to \code{\link[cubature]{cubintegrate}}.
#'
#' @return return value of \code{\link[cubature]{cubintegrate}}. The expectation of the functional provided.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # compute the mean via integration
#' aeExpectation(f = 'x', bounds = list(x = c(0,1000)), ae = approx)
#'
#' # compare with the mean computed by differentiation of the characteristic function
#' aeMean(approx)
#'
#' @export
#'
aeExpectation <- function(f, bounds, ae, eps = 1, order = NULL, ...){
f <- calculus::c2e(f)
var <- names(bounds)
ae <- aeMarginal(ae = ae, var = var)
lower <- sapply(bounds, function(x) x[1])
upper <- sapply(bounds, function(x) x[2])
args <- list(...)
args$f <- function(x) {
names(x) <- var
x <- as.list(x)
eval(f, envir = x) * aeDensity(x, ae = ae, eps = eps, order = order)
}
args$lower <- lower
args$upper <- upper
if(is.null(args$method))
args$method <- 'hcubature'
return(do.call("cubintegrate", args))
}
#' Asymptotic Expansion - Characteristic Function
#'
#' @param ... named argument, data.frame, list, or environment specifying the grid to evaluate the characteristic function. See examples.
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#'
#' @return Characteristic function evaluated on the given grid.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # The following are all equivalent methods to specify the grid via ....
#' # Notice that the character 'u1' corresponds to the 'u.var' of the ae object.
#' [email protected]
#'
#' # 1) named argument
#' u1 <- seq(0, 1, by = 0.1)
#' psi <- aeCharacteristic(u1 = u1, ae = approx, order = 4)
#' # 2) data frame
#' df <- data.frame(u1 = seq(0, 1, by = 0.1))
#' psi <- aeCharacteristic(df, ae = approx, order = 4)
#' # 3) environment
#' env <- new.env()
#' env$u1 <- seq(0, 1, by = 0.1)
#' psi <- aeCharacteristic(env, ae = approx, order = 4)
#' # 4) list
#' lst <- list(u1 = seq(0, 1, by = 0.1))
#' psi <- aeCharacteristic(lst, ae = approx, order = 4)
#'
#' @export
#'
aeCharacteristic <- function(..., ae, eps = 1, order = NULL){
if(is.null(order))
order <- ae@order
psi <- ae@characteristic[order+1]
env <- list(...)
if(length(env)==1)
if(is.list(env[[1]]) | is.environment(env[[1]]))
env <- env[[1]]
env[[[email protected]]] <- eps
return(eval(expr = psi, envir = env))
}
#' Asymptotic Expansion - Moments
#'
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param m integer. The moment order. In case of multidimensional processes, it is possible to compute cross-moments by providing a vector of the same length as the state variables.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#'
#' @return numeric.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # second moment, expansion order max
#' aeMoment(ae = approx, m = 2)
#'
#' # second moment, expansion order 3
#' aeMoment(ae = approx, m = 2, order = 3)
#'
#' # second moment, expansion order 2
#' aeMoment(ae = approx, m = 2, order = 2)
#'
#' # second moment, expansion order 1
#' aeMoment(ae = approx, m = 2, order = 1)
#'
#' @export
#'
aeMoment <- function(ae, m = 1, eps = 1, order = NULL){
if(is.null(order))
order <- ae@order
psi <- ae@characteristic[order+1]
env <- c()
env[[email protected]] <- 0
env[[email protected]] <- eps
return(Re((-1i)^sum(m) * calculus::evaluate(calculus::derivative(psi, var = [email protected], order = m, deparse = FALSE), env)))
}
#' Asymptotic Expansion - Mean
#'
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#'
#' @return numeric.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # expansion order max
#' aeMean(ae = approx)
#'
#' # expansion order 1
#' aeMean(ae = approx, order = 1)
#'
#' @export
#'
aeMean <- function(ae, eps = 1, order = NULL){
return(aeMoment(ae = ae, m = 1, eps = eps, order = order))
}
#' Asymptotic Expansion - Standard Deviation
#'
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#'
#' @return numeric.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # expansion order max
#' aeSd(ae = approx)
#'
#' # expansion order 1
#' aeSd(ae = approx, order = 1)
#'
#' @export
#'
aeSd <- function(ae, eps = 1, order = NULL){
m1 <- aeMoment(ae = ae, m = 1, eps = eps, order = order)
m2 <- aeMoment(ae = ae, m = 2, eps = eps, order = order)
return(sqrt(m2-m1^2))
}
#' Asymptotic Expansion - Skewness
#'
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#'
#' @return numeric.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # expansion order max
#' aeSkewness(ae = approx)
#'
#' # expansion order 1
#' aeSkewness(ae = approx, order = 1)
#'
#' @export
#'
aeSkewness <- function(ae, eps = 1, order = NULL){
m1 <- aeMoment(ae = ae, m = 1, eps = eps, order = order)
m2 <- aeMoment(ae = ae, m = 2, eps = eps, order = order)
m3 <- aeMoment(ae = ae, m = 3, eps = eps, order = order)
return((m3-3*m1*m2+2*m1^3)/sqrt(m2-m1^2)^3)
}
#' Asymptotic Expansion - Kurtosis
#'
#' @param ae an object of class \code{\link{yuima.ae-class}}.
#' @param eps numeric. The intensity of the perturbation.
#' @param order integer. The expansion order. If \code{NULL} (default), it uses the maximum order used in \code{ae}.
#'
#' @return numeric.
#'
#' @examples
#'
#' # model
#' gbm <- setModel(drift = 'mu*x', diffusion = 'sigma*x', solve.variable = 'x')
#'
#' # settings
#' xinit <- 100
#' par <- list(mu = 0.01, sigma = 0.2)
#' sampling <- setSampling(Initial = 0, Terminal = 1, n = 1000)
#'
#' # asymptotic expansion
#' approx <- ae(model = gbm, sampling = sampling, order = 4, true.parameter = par, xinit = xinit)
#'
#' # expansion order max
#' aeKurtosis(ae = approx)
#'
#' # expansion order 1
#' aeKurtosis(ae = approx, order = 1)
#'
#' @export
#'
aeKurtosis <- function(ae, eps = 1, order = NULL){
m1 <- aeMoment(ae = ae, m = 1, eps = eps, order = order)
m2 <- aeMoment(ae = ae, m = 2, eps = eps, order = order)
m3 <- aeMoment(ae = ae, m = 3, eps = eps, order = order)
m4 <- aeMoment(ae = ae, m = 4, eps = eps, order = order)
return((m4-4*m1*m3+6*m1^2*m2-3*m1^4)/sqrt(m2-m1^2)^4)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/ae.R |
yuima.warn <- function(x){
cat(sprintf("\nYUIMA: %s\n", x))
}
# in this source we note formulae like latex
setGeneric("asymptotic_term",
function(yuima,block=100, rho, g, expand.var="e")
standardGeneric("asymptotic_term"))
setMethod("asymptotic_term",signature(yuima="yuima"),
function(yuima,block=100, rho, g, expand.var="e"){
if(is.null(yuima@model)) stop("model object is missing!")
if(is.null(yuima@sampling)) stop("sampling object is missing!")
if(is.null(yuima@functional)) stop("functional object is missing!")
f <- getf(yuima@functional)
F <- getF(yuima@functional)
##:: fix bug 07/23
#e <- gete(yuima@functional)
assign(expand.var, gete(yuima@functional))
Terminal <- yuima@sampling@Terminal[1]
division <- yuima@sampling@n[1]
xinit <- getxinit(yuima@functional)
state <- yuima@[email protected]
V0 <- yuima@model@drift
V <- yuima@model@diffusion
r.size <- yuima@[email protected]
d.size <- yuima@[email protected]
k.size <- length(F)
# print("compute X.t0")
X.t0 <- Get.X.t0(yuima, expand.var=expand.var)
delta <- deltat(X.t0)
##:: fix bug 07/23
pars <- expand.var #yuima@model@parameter@all[1] #epsilon
# fix bug 20110628
if(k.size==1){
G <- function(x){
n <- length(x)
res <- numeric(0)
for(i in 1:n){
res <- append(res,g(x[i]))
}
return(res)
}
}else{
G <- function(x) return(g(x))
}
# function to return symbolic derivatives of myfunc by mystate(multi-state)
Derivation.vector <- function(myfunc,mystate,dim1,dim2){
tmp <- vector(dim1*dim2,mode="expression")
for(i in 1:dim1){
for(j in 1:dim2){
tmp[(i-1)*dim2+j] <- parse(text=deparse(D(myfunc[i],mystate[j])))
}
}
return(tmp)
}
# function to return symbolic derivatives of myfunc by mystate(single state)
Derivation.scalar <- function(myfunc,mystate,dim){
tmp <- vector(dim,mode="expression")
for(i in 1:dim){
tmp[i] <- parse(text=deparse(D(myfunc[i],mystate)))
}
return(tmp)
}
# function to solve Y_{t} (between (13.9) and (13.10)) using runge kutta method. Y_{t} is GL(d) valued (matrices)
Get.Y <- function(env){
## init
dt <- env$delta
assign(pars,0) ## epsilon=0
Yinit <- as.vector(diag(d.size))
Yt <- Yinit
Y <- Yinit
k <- numeric(d.size*d.size)
k1 <- numeric(d.size*d.size)
k2 <- numeric(d.size*d.size)
k3 <- numeric(d.size*d.size)
k4 <- numeric(d.size*d.size)
Ystate <- paste("y",1:(d.size*d.size),sep="")
F <- NULL
F.n <- vector(d.size,mode="expression")
for(n in 1:d.size){
for(i in 1:d.size){
F.tmp <- dx.drift[((i-1)*d.size+1):(i*d.size)]
F.n[i] <- parse(text=paste(paste("(",F.tmp,")","*",
Ystate[((n-1)*d.size+1):(n*d.size)],sep=""),
collapse="+"))
}
F <- append(F,F.n)
}
## runge kutta
for(t in 1:(division-1)){
## Xt
for(i in 1:d.size){
assign(state[i],X.t0[t,i]) ## state[i] is x_i, for example.
}
## k1
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i])
}
for(i in 1:(d.size*d.size)){
k1[i] <- dt*eval(F[i])
}
## k2
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i]+k1[i]/2)
}
for(i in 1:(d.size*d.size)){
k2[i] <- dt*eval(F[i])
}
## k3
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i]+k2[i]/2)
}
for(i in 1:(d.size*d.size)){
k3[i] <- dt*eval(F[i])
}
## k4
##modified
## Xt+1
for(i in 1:d.size){
assign(state[i],X.t0[t+1,i])
}
##
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i]+k3[i])
}
for(i in 1:(d.size*d.size)){
k4[i] <- dt*eval(F[i])
}
## F(Y(t+dt))
k <- (k1+k2+k2+k3+k3+k4)/6
Yt <- Yt+k
Y <- rbind(Y,Yt)
}
## return matrix : (division+1)*(d.size*d.size)
rownames(Y) <- NULL
colnames(Y) <- Ystate
return(ts(Y,deltat=dt,start=0))
}
#l*t
e_F <- function(X.t0,tmp.F,env){
d.size <- env$d.size
k.size <- env$k.size
division <- env$division
result <- matrix(0,k.size,division)
assign(pars[1],0)
de.F <- list()
for(k in 1:k.size){
de.F[[k]] <- parse(text=deparse(D(tmp.F[k],pars[1])))
}
for(t in 1:division){
for(d in 1:d.size){
assign(state[d],X.t0[t,d])
}
for(k in 1:k.size){
result[k,t] <- eval(de.F[[k]])
}
}
return(result)
}
# function to calculate mu in thesis p5
funcmu <- function(e=0,env){
d.size <- env$d.size
k.size <- env$k.size
division <- env$division
delta <- env$delta
n1 <- length(get_e_f0)
n2 <- sum(get_e_f0 == 0)
n3 <- length(get_e_F)
n4 <- sum(get_e_F == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
if(n == 0){
mu1 <- double(k.size)
}else{
mu1 <- apply(get_e_f0,1,sum) * delta + get_e_F[,division]
}
n5 <- length(get_Y_e_V0)
n6 <- sum(get_Y_e_V0 == 0)
n <- n5 - n6
if(n == 0){
mu2 <- double(k.size)
}else{
n7 <- length(get_x_F)
n8 <- sum(get_x_F == 0)
n <- n7 - n8
if(n == 0){
mu2_1 <- double(k.size)
}else{
mu2_1 <- matrix(get_x_F[,,division],k.size,d.size) %*%
tmpY[,,d.size] %*% matrix(apply(get_Y_e_V0,1,sum),d.size,1) *
delta
}
n9 <- length(get_x_f0)
n10 <- sum(get_x_f0 == 0)
n <- n7 - n8
if(n == 0){
mu2_2 <- double(k.size)
}else{
mu2_2 <- double(k.size)
for(l in 1:k.size){
for(i in 1:d.size){
for(j in 1:d.size){
tmp1 <- I0(get_Y_e_V0[j,],env)
tmp2 <- get_x_f0[l,i,] * tmpY[i,j,] * tmp1
mu2_2[l] <- mu2_2[l] + I0(tmp2,env)
}
}
}
}
mu2 <- mu2_1 + mu2_2
}
mu <- mu1 + mu2
return(mu)
}
# function to calculate a_{s}^{alpha} in bookchapter p5
#k*r*t
funca <- function(e=0,env=env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
division <- env$division
delta <- env$delta
first <- get_e_f
second <- array(0,dim=c(k.size,r.size,division))
second.tmp <- matrix(get_x_F[,,division],k.size,d.size) %*%
tmpY[,,division]
for(t in 1:division){
second[,,t] <- second.tmp %*% matrix(get_Y_e_V[,,t],d.size,r.size)
}
third <- array(0,dim=c(k.size,r.size,division))
third.tmp <- matrix(0,k.size,d.size)
n1 <- length(get_x_f0)
n2 <- sum(get_x_f0 == 0)
n <- n1 - n2
third[,,division] <- 0
## modified 12/06
if(n != 0){
for(s in (division-1):1){
third.tmp <- third.tmp + matrix(get_x_f0[,,s],k.size,d.size) %*%
tmpY[,,s] * delta
third[,,s] <- third.tmp %*% matrix(get_Y_e_V[,,s],d.size,r.size)
}
}
result <- first + second + third
return(result) #size:array[k.size,r.size,division]
}
# function to calculate sigma in thesis p5
# require: aMat
funcsigma <- function(e=0,env=env){
k.size <- env$k.size
division <- env$division
delta <- env$delta
sigma <- matrix(0,k.size,k.size) #size:matrix[k.size,k.size]
for(t in 1:(division-1)){
a.t <- matrix(aMat[,,t],k.size,r.size)
sigma <- sigma + (a.t %*% t(a.t)) * delta
}
# Singularity check
if(any(eigen(sigma)$value<=0.0001)){
yuima.warn("Eigen value of covariance matrix in very small.")
}
return(sigma)
}
## integrate start:1 end:t number to integrate:block
# because integration at all 0:T takes too much time,
# we sample only 'block' points and use trapezium rule to integrate
make.range.for.trapezium.fomula <- function(t,block){
if(t/block <= 1){ # block >= t : just use all points
range <- c(1:t)
}else{ # make array which includes points to use
range <- as.integer( (c(0:block) * (t/block))+1)
if( range[block+1] < t){
range[block+2] <- t
}else if( range[block+1] > t){
range[block+1] <- t
}
}
return(range)
}
## multi dimension gausian distribusion
normal <- function(x,mu,Sigma){
if(length(x)!=length(mu)){
print("Error:length of x != one of mu")
}
dimension <- length(x)
tmp <- 1/((sqrt(2*pi))^dimension * sqrt(det(Sigma))) * exp(-1/2 * t((x-mu)) %*% solve(Sigma) %*% (x-mu) )
return(tmp)
}
## get d0
##
get.d0.term <- function(){
## get g(z)*pi0(z)
##modified
# gz_pi0 <- function(z){
# return( G(z) * H0 *normal(z,mu=mu,Sigma=Sigma))
# }
gz_pi0 <- function(z){
tmpz <- matA %*% z
return(G(tmpz) * H0 * normal(tmpz,mu=mu,Sigma=Sigma)) #det(matA) = 1
}
##
gz_pi02 <- function(z){
return(G(z) * H0 * dnorm(z,mean=mu,sd=sqrt(Sigma)))
}
## integrate
if( k.size ==1){ # use 'integrate' if k=1
tmp <- integrate(gz_pi02,mu-7*sqrt(Sigma),mu+7*sqrt(Sigma))$value
}else if( 2 <= k.size || k.size <= 20 ){ # use 'cubature' to solve multi-dimentional integration
lambda <- eigen(Sigma)$values
matA <- eigen(Sigma)$vector
lower <- c()
upper <- c()
for(k in 1:k.size){
max <- 7 * sqrt(lambda[k])
lower[k] <- - max
upper[k] <- max
}
#if(require(cubature)){
tmp <- adaptIntegrate(gz_pi0, lowerLimit=lower,upperLimit=upper)$integral
# } else {
# tmp <- NA
# }
}else{
stop("length k is too big.")
}
return(tmp)
}
###############################################################################
# following funcs are part of d1 term
# because they are finally integrated at 'get.d1.term()',
# these funcs are called over and over again.
# so, we use trapezium rule for integration to save time and memory.
# these funcs almost calculate each formulas including trapezium integration.
# see each formulas in thesis to know what these funcs do.
# some funcs do alternative calculation at k=1.
# it depends on 'integrate()' function
###############################################################################
#a:l, b:l*j*r*t/j*r*t, c:l*r*t
#l
ft1_1 <- function(a1,env){
k.size <- env$k.size
result <- a1
return(result)
}
#first:l*k*k, second:l
ft1_2 <- function(b1,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size))
second <- double(k.size)
for(l in 1:k.size){
for(j in 1:d.size){
tmp <- I_12(b1[[1]][l,j,,],b1[[2]][j,,],env)
first[l,,] <- first[l,,] + tmp$first[,,block]
second <- second + tmp$second[block]
}
}
return(list(first=first,second=second))
}
#l*k
ft1_3 <- function(c1,env){
k.size <- env$k.size
block <- env$block
result <- matrix(0,k.size,k.size)
for(l in 1:k.size){
tmp <- I_1(c1[l,,],env)
result[l,] <- tmp[,block]
}
return(result)
}
F_tilde1__1 <- function(get_F_tilde1,env){
k.size <- env$k.size
temp <- list()
temp$first <- array(0,dim=c(k.size,k.size,k.size))
temp$second <- matrix(0,k.size,k.size)
temp$third <- double(k.size)
calc.range <- c(1:3)
tmp1 <- get_F_tilde1$result1
n1 <- length(tmp1)
n2 <- sum(tmp1 == 0)
if(n1 == n2){
calc.range <- calc.range[calc.range != 1]
}
tmp2 <- get_F_tilde1$result2[[1]]
n3 <- length(tmp2)
n4 <- sum(tmp2 == 0)
tmp3 <- get_F_tilde1$result2[[2]]
n5 <- length(tmp3)
n6 <- sum(tmp3 == 0)
n <- (n3 - n4 != 0) * (n5 - n6 != 0)
if(n == 0){
calc.range <- calc.range[calc.range != 2]
}
tmp3 <- get_F_tilde1$result3
n7 <- length(tmp3)
n8 <- sum(tmp3 == 0)
if(n7 == n8){
calc.range <- calc.range[calc.range != 3]
}
for(i in calc.range){
tmp <- switch(i,"a","b","c")
result <- switch(tmp,"a"=ft1_1(get_F_tilde1[[i]],env),
"b"=ft1_2(get_F_tilde1[[i]],env),
"c"=ft1_3(get_F_tilde1[[i]],env))
nlist <- length(result)
if(nlist != 2){
tmp1 <- length(dim(result)) #2 or NULL
if(tmp1 == 0){
tmp1 <- 3
}
temp[[tmp1]] <- temp[[tmp1]] + result
}else{
temp[[1]] <- temp[[1]] + result[[1]]
temp[[3]] <- temp[[3]] + result[[2]]
}
}
first <- temp$first
second <- temp$second
third <- temp$third
return(list(first=first,second=second,third=third))
}
F_tilde1_x <- function(l,x){
first <- matrix(get_F_tilde1__1$first[l,,],
k.size,k.size)
result1 <- 0
for(k1 in 1:k.size){
for(k2 in 1:k.size){
result1 <- result1 + first[k1,k2] * x[k1] * x[k2]
}
}
second <- get_F_tilde1__1$second[l,]
result2 <- 0
for(k1 in 1:k.size){
result2 <- result2 + second[k1] * x[k1]
}
result3 <- get_F_tilde1__1$third[l]
result <- result1 + result2 + result3
return(result)
}
#h:d*block
#first:numeric(1), second:k.size*block
Di_bar <- function(h,env){
block <- env$block
first <- double(1)
tmp4 <- matrix(0,r.size,block)
tmp6 <- matrix(0,r.size,block)
tmp5 <- matrix(0,r.size,block)
for(i in 1:d.size){
tmp1 <- h[i,] * get_Y_D[i,]
first <- first + I0(tmp1,env)[block]
for(j in 1:d.size){
tmp2 <- h[i,] * tmpY[i,j,]
tmp3 <- I0(tmp2,env)
tmp4 <- tmp4 + tmp3[block] * get_Y_e_V[j,,]
for(r in 1:r.size){
tmp5[r,] <- tmp3 * get_Y_e_V[j,r,]
}
tmp6 <- tmp6 + tmp5
}
}
tmp7 <- tmp4 - tmp6
second <- I_1(tmp7,env)
return(list(first=first,second=second))
}
Di_bar_x <- function(h,x){
tmp1 <- Di_bar(h,env)
tmp2 <- tmp1$second
result <- tmp1$first + I_1_x(x,tmp2,env)
return(result)
}
get.P2 <- function(z){
block <- env$block
if(k.size==1){
First <- Di_bar_x(di.rho,z)
Second <- rep(de.rho %*% Diff[block,] * delta ,length(z))
}else{
First <- Di_bar_x(di.rho,z)
Second <- de.rho %*% Diff[block,] * delta
}
tmp <- First + Second
return(tmp)
}
# now calculate pi1 using funcs above
get.pi1 <- function(z){
First <- 0
z.tilda <- z - mu
if(k.size ==1){
zlen <- length(z)
result <- c()
for(i in 1:zlen){
First <- (F_tilde1_x(1,z.tilda[i]+delta) *
dnorm(z[i]+delta,mean=mu,sd=sqrt(Sigma)) -
F_tilde1_x(1,z.tilda[i]) *
dnorm(z[i],mean=mu,sd=sqrt(Sigma)))/delta
Second <- get.P2(z.tilda[i]) * dnorm(z[i],mean=mu,sd=sqrt(Sigma))
result[i] <- First + Second
}
}else{
tmp <- numeric(k.size)
for(k in 1:k.size){
dif <- numeric(k.size)
dif[k] <- dif[k] + delta
z.delta <- z.tilda + dif
tmp[k] <- (F_tilde1_x(k,z.delta) * normal(z.delta,numeric(k.size),Sigma) -
F_tilde1_x(k,z.tilda) * normal(z.tilda,numeric(k.size),Sigma))/delta
}
First <- sum(tmp)
Second <- get.P2(z.tilda) * normal(z.tilda,numeric(k.size),Sigma)
result <- First + Second
}
pi1 <- - H0 * result
return(pi1)
}
# calculate d1
##
get.d1.term<- function(){
## get g(z)*pi1(z)
gz_pi1 <- function(z){
tmp <- G(z) * get.pi1(z)
return( tmp )
}
## integrate
if(k.size == 1){ # use 'integrate()'
tmp <- integrate(gz_pi1,mu-7*sqrt(Sigma),mu+7*sqrt(Sigma))$value
}else if(2 <= k.size || k.size <= 20){
lambda <- eigen(Sigma)$values
matA <- eigen(Sigma)$vector
gz_pi1 <- function(z){
tmpz <- matA %*% z
tmp <- G(tmpz) * get.pi1(tmpz) #det(matA) = 1
return( tmp )
}
my.x <- matrix(0,k.size,20^k.size)
dt <- 1
for(k in 1:k.size){
max <- 7 * sqrt(lambda[k])
min <- -7 * sqrt(lambda[k])
tmp.x <- seq(min,max,length=20)
dt <- dt * (tmp.x[2] - tmp.x[1])
my.x[k,] <- rep(tmp.x,each=20^(k.size-k),times=20^(k-1))
}
tmp <- 0
for(i in 1:20^k.size){
tmp <- tmp + gz_pi1(my.x[,i])
}
tmp <- tmp * dt
}else{
stop("length k is too long.")
}
return(tmp)
}
# 'rho' is a given function of (X,e) (p.7 formula(13.19))
# d(rho)/di
get.di.rho <- function(){
assign(pars[1],0)
di.rho <- numeric(d.size)
tmp <- matrix(0,d.size,block+1)
for(i in 1:d.size){
di.rho[i] <- deriv(rho,state[i])
}
for(t in 1:(block+1)){
for(i in 1:d.size){
assign(state[i],X.t0[t,i])
}
for(j in 1:d.size){
tmp[j,t]<- attr(eval(di.rho[j]),"grad")
}
}
return(tmp)
}
# d(rho)/de
get.de.rho <- function(){
assign(pars[1],0)
tmp <- matrix(0,1,block+1)
de.rho <- deriv(rho,pars[1])
for(t in 1:(block+1)){
for(i in 1:d.size){
assign(state[i],X.t0[t,i])
}
tmp[1,t]<- attr(eval(de.rho),"grad")
}
return(tmp)
}
# H_{t}^{e} at t=0 (see formula (13.19))
# use trapezium integration
get.H0 <- function(){
assign(pars[1],0)
tmp <- matrix(0,1,division-1)
for(t in 1:(division-1)){
for(i in 1:d.size){
assign(state[i],X.t0[t,i])
}
tmp[1,t] <- eval(rho)
}
H0 <- exp(-(sum(tmp) * delta))
return(as.double(H0) )
}
#################################################
# Here is an entry point of 'asymptotic_term()' #
#################################################
## initialization part
division <- nrow(X.t0)
delta <- Terminal/(division - 1)
# make expressions of derivation of V0
dx.drift <- Derivation.vector(V0,state,d.size,d.size)
de.drift <- Derivation.scalar(V0,pars,d.size)
dede.drift <- Derivation.scalar(de.drift,pars,d.size)
# make expressions of derivation of V
dx.diffusion <- as.list(NULL)
for(i in 1:d.size){
dx.diffusion[i] <- list(Derivation.vector(V[[i]],state,d.size,r.size))
}
de.diffusion <- as.list(NULL)
for(i in 1:d.size){
de.diffusion[i] <- list(Derivation.scalar(V[[i]],pars,r.size))
}
dede.diffusion <- as.list(NULL)
for(i in 1:d.size){
dede.diffusion[i] <- list(Derivation.scalar(de.diffusion[[i]],pars,r.size))
}
dxdx.drift <- list()
dxdx.diffusion <- list()
for(i1 in 1:d.size){
dxdx.drift[[i1]] <- list()
dxdx.diffusion[[i1]] <- list()
for(i2 in 1:d.size){
dxdx.drift[[i1]][[i2]] <- list()
dxdx.diffusion[[i1]][[i2]] <- list()
for(i in 1:d.size){
tmp1 <- parse(text=deparse(D(V0[i],state[i2])))
dxdx.drift[[i1]][[i2]][i] <- parse(text=deparse(D(tmp1,state[i1])))
dxdx.diffusion[[i1]][[i2]][[i]] <- list()
for(r in 1:r.size){
tmp2 <- parse(text=deparse(D(V[[i]][r],state[i2])))
dxdx.diffusion[[i1]][[i2]][[i]][r] <- parse(text=deparse(D(tmp2,state[i1])))
}
}
}
}
dxde.drift <- list()
dxde.diffusion <- list()
for(i1 in 1:d.size){
dxde.drift[[i1]] <- list()
dxde.diffusion[[i1]] <- list()
for(i in 1:d.size){
tmp1 <- parse(text=deparse(D(V0[i],pars[1])))
dxde.drift[[i1]][i] <- parse(text=deparse(D(tmp1,state[i1])))
dxde.diffusion[[i1]][[i]] <- list()
for(r in 1:r.size){
tmp2 <- parse(text=deparse(D(V[[i]][r],pars[1])))
dxde.diffusion[[i1]][[i]][r] <- parse(text=deparse(D(tmp2,state[i1])))
}
}
}
env <- new.env()
env$d.size <- d.size
env$r.size <- r.size
env$k.size <- k.size
env$division <- division
env$delta <- delta
env$state <- state
env$pars <- pars
env$block <- division
env$my.range <- c(1:division)
# yuima.warn("Get variables ...")
Y <- Get.Y(env=env)
tmpY <- array(0,dim=c(d.size,d.size,division))
invY <- array(0,dim=c(d.size,d.size,division))
for(t in 1:division){
tmpY[,,t] <- matrix(Y[t,],d.size,d.size)
invY[,,t] <- solve(tmpY[,,t])
}
env$invY <- invY
get_e_f0 <- e_f0(X.t0,f,env)
get_e_f <- e_f(X.t0,f,env)
get_x_f0 <- x_f0(X.t0,f,env)
get_e_F <- e_F(X.t0,F,env)
get_x_F <- x_F(X.t0,F,env)
get_Y_e_V0 <- Y_e_V0(X.t0,de.drift,env)
get_Y_e_V <- Y_e_V(X.t0,de.diffusion,env)
mu <- funcmu(env=env)
aMat <- funca(env=env) ## 2010/11/24, TBC
Sigma <- funcsigma(env=env)
invSigma <- solve(Sigma)
di.rho <- get.di.rho()
de.rho <- get.de.rho()
H0 <- get.H0()
# yuima.warn("Done.")
## calculation
# yuima.warn("Calculating d0 ...")
d0 <- get.d0.term()
# yuima.warn("Done\n")
# yuima.warn("Calculating d1 term ...")
# prepare for trapezium integration
my.range <- make.range.for.trapezium.fomula(division,block)
my.diff <- my.range[2:(block+1)] - my.range[1:block]
Diff <- matrix(0,block+1,block+1)
for(t in 2:length(my.range)){
for(s in 1:t){
if( s==1 || t==s ){
if(s==1){
Diff[t,s] <- my.diff[s]
}else if(t==s){
Diff[t,s] <- my.diff[s-1]
}
}else{
Diff[t,s] <- my.diff[s-1] + my.diff[s]
}
}
}
Diff <- Diff / 2 # trapezium integrations need "/2"
env$aMat <- aMat
env$mu <- mu
env$Sigma <- Sigma
env$invSigma <- invSigma
env$invY <- array(invY[,,my.range],dim=c(d.size,d.size,block+1))
env$block <- block + 1
env$my.range <- my.range
env$Diff <- Diff
tmpY <- array(tmpY[,,my.range],dim=c(d.size,d.size,block+1))
get_Y_e_V0 <- Y_e_V0(X.t0,de.drift,env)
get_Y_e_V <- Y_e_V(X.t0,de.diffusion,env)
get_Y_D <- Y_D(X.t0,tmpY,get_Y_e_V0,env)
get_Y_x1_x2_V0 <- Y_x1_x2_V0(X.t0,dxdx.drift,env)
get_Y_x1_x2_V <- Y_x1_x2_V(X.t0,dxdx.diffusion,env)
get_Y_x_e_V0 <- Y_x_e_V0(X.t0,dxde.drift,env)
get_Y_x_e_V <- Y_x_e_V (X.t0,dxde.diffusion,env)
get_Y_e_e_V0 <- Y_e_e_V0(X.t0,dede.drift,env)
get_Y_e_e_V <- Y_e_e_V(X.t0,dede.diffusion,env)
get_D0_t <- D0_t(tmpY, get_Y_D, get_Y_e_V)
get_e_t <- e_t(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V0, get_Y_e_e_V0, env)
get_U_t <- U_t(tmpY, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V0, env)
get_U_hat_t <- U_hat_t(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V, env)
get_E0_t <- E0_t(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env)
get_e_f0 <- e_f0(X.t0,f,env)
get_e_f <- e_f(X.t0,f,env)
get_x_f0 <- x_f0(X.t0,f,env)
get_x1_x2_f0 <- x1_x2_f0(X.t0,f,env)
get_x1_x2_f <- x1_x2_f(X.t0,f,env)
get_x_e_f0 <- x_e_f0(X.t0,f,env)
get_x_e_f <- x_e_f(X.t0,f,env)
get_e_e_f0 <- e_e_f0(X.t0,f,env)
get_e_e_f <- e_e_f(X.t0,f,env)
get_F_t <- F_t (tmpY, get_Y_e_V, get_Y_D, get_x1_x2_f0, get_x_e_f0, get_e_e_f0, env)
get_W_t <- W_t (tmpY, get_Y_D, get_x1_x2_f0, get_x_e_f0, env)
get_W_hat_t <- W_hat_t (tmpY, get_Y_e_V, get_x1_x2_f0, get_x_e_f, env)
get_F_tilde1_1 <- F_tilde1_1(tmpY, get_Y_e_V, get_x1_x2_f0, get_e_e_f, get_F_t, get_W_t, get_W_hat_t, env)
get_F_tilde1_2 <- F_tilde1_2(get_E0_t,get_x_f0,env)
get_x_F <- x_F(X.t0,F,env)
get_x1_x2_F <- x1_x2_F(X.t0,F,env)
get_x_e_F <- x_e_F(X.t0,F,env)
get_e_e_F <- e_e_F(X.t0,F,env)
get_F_tilde1_3 <- F_tilde1_3(get_E0_t,get_x_F,env)
get_F_tilde1_4 <- F_tilde1_4(tmpY, get_Y_e_V, get_Y_D, get_x_F, get_x1_x2_F, get_x_e_F, get_e_e_F, env)
get_F_tilde1 <- F_tilde1(get_F_tilde1_1, get_F_tilde1_2, get_F_tilde1_3, get_F_tilde1_4)
get_F_tilde1__1 <- F_tilde1__1(get_F_tilde1,env)
d1 <- get.d1.term()
# yuima.warn("Done\n")
terms <- list(d0=d0, d1=d1, Sigma=Sigma)
return(terms)
})
| /scratch/gouwar.j/cran-all/cranData/yuima/R/asymptotic_term_second.R |
yuima.warn <- function(x){
cat(sprintf("\nYUIMA: %s\n", x))
}
# in this source we note formulae like latex
setGeneric("asymptotic_term",
function(yuima,block=100, rho, g, expand.var="e")
standardGeneric("asymptotic_term"))
setMethod("asymptotic_term",signature(yuima="yuima"),
function(yuima,block=100, rho, g, expand.var="e"){
if(is.null(yuima@model)) stop("model object is missing!")
if(is.null(yuima@sampling)) stop("sampling object is missing!")
if(is.null(yuima@functional)) stop("functional object is missing!")
f <- getf(yuima@functional)
F <- getF(yuima@functional)
##:: fix bug 07/23
#e <- gete(yuima@functional)
assign(expand.var, gete(yuima@functional))
Terminal <- yuima@sampling@Terminal[1]
division <- yuima@sampling@n[1]
xinit <- getxinit(yuima@functional)
state <- yuima@[email protected]
V0 <- yuima@model@drift
V <- yuima@model@diffusion
r.size <- yuima@[email protected]
d.size <- yuima@[email protected]
k.size <- length(F)
print("compute X.t0")
X.t0 <- Get.X.t0(yuima, expand.var=expand.var)
delta <- deltat(X.t0)
##:: fix bug 07/23
pars <- expand.var #yuima@model@parameter@all[1] #epsilon
# fix bug 20110628
if(k.size==1){
G <- function(x){
n <- length(x)
res <- numeric(0)
for(i in 1:n){
res <- append(res,g(x[i]))
}
return(res)
}
}else{
G <- function(x) return(g(x))
}
# function to return symbolic derivatives of myfunc by mystate(multi-state)
Derivation.vector <- function(myfunc,mystate,dim1,dim2){
tmp <- vector(dim1*dim2,mode="expression")
for(i in 1:dim1){
for(j in 1:dim2){
tmp[(i-1)*dim2+j] <- parse(text=deparse(D(myfunc[i],mystate[j])))
}
}
return(tmp)
}
# function to return symbolic derivatives of myfunc by mystate(single state)
Derivation.scalar <- function(myfunc,mystate,dim){
tmp <- vector(dim,mode="expression")
for(i in 1:dim){
tmp[i] <- parse(text=deparse(D(myfunc[i],mystate)))
}
return(tmp)
}
# function to solve Y_{t} (between (13.9) and (13.10)) using runge kutta method. Y_{t} is GL(d) valued (matrices)
Get.Y <- function(env){
## init
dt <- env$delta
assign(pars,0) ## epsilon=0
Yinit <- as.vector(diag(d.size))
Yt <- Yinit
Y <- Yinit
k <- numeric(d.size*d.size)
k1 <- numeric(d.size*d.size)
k2 <- numeric(d.size*d.size)
k3 <- numeric(d.size*d.size)
k4 <- numeric(d.size*d.size)
Ystate <- paste("y",1:(d.size*d.size),sep="")
F <- NULL
F.n <- vector(d.size,mode="expression")
for(n in 1:d.size){
for(i in 1:d.size){
F.tmp <- dx.drift[((i-1)*d.size+1):(i*d.size)]
F.n[i] <- parse(text=paste(paste("(",F.tmp,")","*",
Ystate[((n-1)*d.size+1):(n*d.size)],sep=""),
collapse="+"))
}
F <- append(F,F.n)
}
## runge kutta
for(t in 1:(division-1)){
## Xt
for(i in 1:d.size){
assign(state[i],X.t0[t,i]) ## state[i] is x_i, for example.
}
## k1
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i])
}
for(i in 1:(d.size*d.size)){
k1[i] <- dt*eval(F[i])
}
## k2
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i]+k1[i]/2)
}
for(i in 1:(d.size*d.size)){
k2[i] <- dt*eval(F[i])
}
## k3
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i]+k2[i]/2)
}
for(i in 1:(d.size*d.size)){
k3[i] <- dt*eval(F[i])
}
## k4
##modified
## Xt+1
for(i in 1:d.size){
assign(state[i],X.t0[t+1,i])
}
##
for(i in 1:(d.size*d.size)){
assign(Ystate[i],Yt[i]+k3[i])
}
for(i in 1:(d.size*d.size)){
k4[i] <- dt*eval(F[i])
}
## F(Y(t+dt))
k <- (k1+k2+k2+k3+k3+k4)/6
Yt <- Yt+k
Y <- rbind(Y,Yt)
}
## return matrix : (division+1)*(d.size*d.size)
rownames(Y) <- NULL
colnames(Y) <- Ystate
return(ts(Y,deltat=dt,start=0))
}
#l*t
e_F <- function(X.t0,tmp.F,env){
d.size <- env$d.size
k.size <- env$k.size
division <- env$division
result <- matrix(0,k.size,division)
assign(pars[1],0)
de.F <- list()
for(k in 1:k.size){
de.F[[k]] <- parse(text=deparse(D(tmp.F[k],pars[1])))
}
for(t in 1:division){
for(d in 1:d.size){
assign(state[d],X.t0[t,d])
}
for(k in 1:k.size){
result[k,t] <- eval(de.F[[k]])
}
}
return(result)
}
# function to calculate mu in thesis p5
funcmu <- function(e=0,env){
d.size <- env$d.size
k.size <- env$k.size
division <- env$division
delta <- env$delta
n1 <- length(get_e_f0)
n2 <- sum(get_e_f0 == 0)
n3 <- length(get_e_F)
n4 <- sum(get_e_F == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
if(n == 0){
mu1 <- double(k.size)
}else{
mu1 <- apply(get_e_f0,1,sum) * delta + get_e_F[,division]
}
n5 <- length(get_Y_e_V0)
n6 <- sum(get_Y_e_V0 == 0)
n <- n5 - n6
if(n == 0){
mu2 <- double(k.size)
}else{
n7 <- length(get_x_F)
n8 <- sum(get_x_F == 0)
n <- n7 - n8
if(n == 0){
mu2_1 <- double(k.size)
}else{
mu2_1 <- matrix(get_x_F[,,division],k.size,d.size) %*%
tmpY[,,d.size] %*% matrix(apply(get_Y_e_V0,1,sum),d.size,1) *
delta
}
n9 <- length(get_x_f0)
n10 <- sum(get_x_f0 == 0)
n <- n7 - n8
if(n == 0){
mu2_2 <- double(k.size)
}else{
mu2_2 <- double(k.size)
for(l in 1:k.size){
for(i in 1:d.size){
for(j in 1:d.size){
tmp1 <- I0(get_Y_e_V0[j,],env)
tmp2 <- get_x_f0[l,i,] * tmpY[i,j,] * tmp1
mu2_2[l] <- mu2_2[l] + I0(tmp2,env)
}
}
}
}
mu2 <- mu2_1 + mu2_2
}
mu <- mu1 + mu2
return(mu)
}
# function to calculate a_{s}^{alpha} in bookchapter p5
#k*r*t
funca <- function(e=0,env=env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
division <- env$division
delta <- env$delta
first <- get_e_f
second <- array(0,dim=c(k.size,r.size,division))
second.tmp <- matrix(get_x_F[,,division],k.size,d.size) %*%
tmpY[,,division]
for(t in 1:division){
second[,,t] <- second.tmp %*% matrix(get_Y_e_V[,,t],d.size,r.size)
}
third <- array(0,dim=c(k.size,r.size,division))
third.tmp <- matrix(0,k.size,d.size)
n1 <- length(get_x_f0)
n2 <- sum(get_x_f0 == 0)
n <- n1 - n2
third[,,division] <- 0
if(n != 0){
for(s in (division-1):1){
third.tmp <- third.tmp + matrix(get_x_f0[,,s],k.size,d.size) %*%
tmpY[,,s] * delta
third[,,s] <- third.tmp %*% matrix(get_Y_e_V[,,s],d.size,r.size)
}
}
result <- first + second + third
return(result) #size:array[k.size,r.size,division]
}
# function to calculate sigma in thesis p5
# require: aMat
funcsigma <- function(e=0,env=env){
k.size <- env$k.size
division <- env$division
delta <- env$delta
sigma <- matrix(0,k.size,k.size) #size:matrix[k.size,k.size]
for(t in 1:(division-1)){
a.t <- matrix(aMat[,,t],k.size,r.size)
sigma <- sigma + (a.t %*% t(a.t)) * delta
}
# Singularity check
if(any(eigen(sigma)$value<=0.0001)){
yuima.warn("Eigen value of covariance matrix in very small.")
}
return(sigma)
}
## integrate start:1 end:t number to integrate:block
# because integration at all 0:T takes too much time,
# we sample only 'block' points and use trapezium rule to integrate
make.range.for.trapezium.fomula <- function(t,block){
if(t/block <= 1){ # block >= t : just use all points
range <- c(1:t)
}else{ # make array which includes points to use
range <- as.integer( (c(0:block) * (t/block))+1)
if( range[block+1] < t){
range[block+2] <- t
}else if( range[block+1] > t){
range[block+1] <- t
}
}
return(range)
}
## multi dimension gausian distribusion
normal <- function(x,mu,Sigma){
if(length(x)!=length(mu)){
print("Error:length of x != one of mu")
}
dimension <- length(x)
tmp <- 1/((sqrt(2*pi))^dimension * sqrt(det(Sigma))) * exp(-1/2 * t((x-mu)) %*% solve(Sigma) %*% (x-mu) )
return(tmp)
}
## get d0
##
get.d0.term <- function(){
## get g(z)*pi0(z)
##modified
# gz_pi0 <- function(z){
# return( G(z) * H0 *normal(z,mu=mu,Sigma=Sigma))
# }
gz_pi0 <- function(z){
tmpz <- matA %*% z
return(G(tmpz) * H0 * normal(tmpz,mu=mu,Sigma=Sigma)) #det(matA) = 1
}
##
gz_pi02 <- function(z){
return(G(z) * H0 * dnorm(z,mean=mu,sd=sqrt(Sigma)))
}
## integrate
if( k.size ==1){ # use 'integrate' if k=1
tmp <- integrate(gz_pi02,mu-7*sqrt(Sigma),mu+7*sqrt(Sigma))$value
}else if( 2 <= k.size || k.size <= 20 ){ # use 'cubature' to solve multi-dimentional integration
lambda <- eigen(Sigma)$values
matA <- eigen(Sigma)$vector
lower <- c()
upper <- c()
for(k in 1:k.size){
max <- 7 * sqrt(lambda[k])
lower[k] <- - max
upper[k] <- max
}
# if(require(cubature)){
tmp <- adaptIntegrate(gz_pi0, lowerLimit=lower,upperLimit=upper)$integral
# } else {
# tmp <- NA
#}
}else{
stop("length k is too big.")
}
return(tmp)
}
###############################################################################
# following funcs are part of d1 term
# because they are finally integrated at 'get.d1.term()',
# these funcs are called over and over again.
# so, we use trapezium rule for integration to save time and memory.
# these funcs almost calculate each formulas including trapezium integration.
# see each formulas in thesis to know what these funcs do.
# some funcs do alternative calculation at k=1.
# it depends on 'integrate()' function
###############################################################################
#a:l, b:l*j*r*t/j*r*t, c:l*r*t
#l
ft1_1 <- function(a1,env){
k.size <- env$k.size
result <- a1
return(result)
}
#first:l*k*k, second:l
ft1_2 <- function(b1,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size))
second <- double(k.size)
for(l in 1:k.size){
for(j in 1:d.size){
tmp <- I_12(b1[[1]][l,j,,],b1[[2]][j,,],env)
first[l,,] <- first[l,,] + tmp$first[,,block]
second <- second + tmp$second[block]
}
}
return(list(first=first,second=second))
}
#l*k
ft1_3 <- function(c1,env){
k.size <- env$k.size
block <- env$block
result <- matrix(0,k.size,k.size)
for(l in 1:k.size){
tmp <- I_1(c1[l,,],env)
result[l,] <- tmp[,block]
}
return(result)
}
F_tilde1__1 <- function(get_F_tilde1,env){
k.size <- env$k.size
temp <- list()
temp$first <- array(0,dim=c(k.size,k.size,k.size))
temp$second <- matrix(0,k.size,k.size)
temp$third <- double(k.size)
calc.range <- c(1:3)
tmp1 <- get_F_tilde1$result1
n1 <- length(tmp1)
n2 <- sum(tmp1 == 0)
if(n1 == n2){
calc.range <- calc.range[calc.range != 1]
}
tmp2 <- get_F_tilde1$result2[[1]]
n3 <- length(tmp2)
n4 <- sum(tmp2 == 0)
tmp3 <- get_F_tilde1$result2[[2]]
n5 <- length(tmp3)
n6 <- sum(tmp3 == 0)
n <- (n3 - n4 != 0) * (n5 - n6 != 0)
if(n == 0){
calc.range <- calc.range[calc.range != 2]
}
tmp3 <- get_F_tilde1$result3
n7 <- length(tmp3)
n8 <- sum(tmp3 == 0)
if(n7 == n8){
calc.range <- calc.range[calc.range != 3]
}
for(i in calc.range){
tmp <- switch(i,"a","b","c")
result <- switch(tmp,"a"=ft1_1(get_F_tilde1[[i]],env),
"b"=ft1_2(get_F_tilde1[[i]],env),
"c"=ft1_3(get_F_tilde1[[i]],env))
nlist <- length(result)
if(nlist != 2){
tmp1 <- length(dim(result)) #2 or NULL
if(tmp1 == 0){
tmp1 <- 3
}
temp[[tmp1]] <- temp[[tmp1]] + result
}else{
temp[[1]] <- temp[[1]] + result[[1]]
temp[[3]] <- temp[[3]] + result[[2]]
}
}
first <- temp$first
second <- temp$second
third <- temp$third
return(list(first=first,second=second,third=third))
}
F_tilde1_x <- function(l,x){
first <- matrix(get_F_tilde1__1$first[l,,],
k.size,k.size)
result1 <- 0
for(k1 in 1:k.size){
for(k2 in 1:k.size){
result1 <- result1 + first[k1,k2] * x[k1] * x[k2]
}
}
second <- get_F_tilde1__1$second[l,]
result2 <- 0
for(k1 in 1:k.size){
result2 <- result2 + second[k1] * x[k1]
}
result3 <- get_F_tilde1__1$third[l]
result <- result1 + result2 + result3
return(result)
}
#h:d*block
#first:numeric(1), second:r.size*block, third:r.size*block
Di_bar <- function(h,env){
block <- env$block
first <- double(1)
second <- matrix(0,r.size,block)
third <- matrix(0,r.size,block)
tmp4 <- matrix(0,r.size,block)
for(i in 1:d.size){
tmp1 <- h[i,] * get_Y_D[i,]
first <- first + I0(tmp1,env)[block]
for(j in 1:d.size){
tmp2 <- h[i,] * tmpY[i,j,]
tmp3 <- I0(tmp2,env)
second <- second + tmp3[block] * get_Y_e_V[j,,]
for(r in 1:r.size){
tmp4[r,] <- tmp3 * get_Y_e_V[j,r,]
}
third <- third + tmp4
}
}
return(list(first=first,second=second,third=third))
}
Di_bar_x <- function(h,x){
tmp1 <- Di_bar(h,env)
for(r in 1:r.size){
tmp2 <- I_1(tmp1$second[r,],env)
tmp3 <- I_1(tmp1$third[r,],env)
result <- tmp1$first + I_1_x(x,tmp2,env) -
I_1_x(x,tmp3,env)
}
return(result)
}
get.P2 <- function(z){
if(k.size==1){
First <- Di_bar_x(di.rho,z)
Second <- rep(de.rho %*% Diff[block,] * delta ,length(z))
}else{
First <- Di_bar_x(di.rho,z)
Second <- de.rho %*% Diff[block,] * delta
}
tmp <- First + Second
}
# now calculate pi1 using funcs above
get.pi1 <- function(z){
First <- 0
z.tilda <- z - mu
if(k.size ==1){
zlen <- length(z)
result <- c()
for(i in 1:zlen){
First <- (F_tilde1_x(1,z.tilda[i]+delta) *
dnorm(z[i]+delta,mean=mu,sd=sqrt(Sigma)) -
F_tilde1_x(1,z.tilda[i]) *
dnorm(z[i],mean=mu,sd=sqrt(Sigma)))/delta
Second <- get.P2(z.tilda[i]) * dnorm(z[i],mean=mu,sd=sqrt(Sigma))
result[i] <- First + Second
}
}else{
tmp <- numeric(k.size)
for(k in 1:k.size){
dif <- numeric(k.size)
dif[k] <- dif[k] + delta
z.delta <- z.tilda + dif
tmp[k] <- (F_tilde1_x(k,z.delta) * normal(z.delta,numeric(k.size),Sigma) -
F_tilde1_x(k,z.tilda) * normal(z.tilda,numeric(k.size),Sigma))/delta
}
First <- sum(tmp)
Second <- get.P2(z.tilda) * normal(z.tilda,numeric(k.size),Sigma)
result <- First + Second
}
pi1 <- - H0 * result
return(pi1)
}
# calculate d1
##
get.d1.term<- function(){
## get g(z)*pi1(z)
gz_pi1 <- function(z){
tmp <- G(z) * get.pi1(z)
return( tmp )
}
## integrate
if(k.size == 1){ # use 'integrate()'
tmp <- integrate(gz_pi1,mu-7*sqrt(Sigma),mu+7*sqrt(Sigma))$value
}else if(2 <= k.size || k.size <= 20){
lambda <- eigen(Sigma)$values
matA <- eigen(Sigma)$vector
gz_pi1 <- function(z){
tmpz <- matA %*% z
tmp <- G(tmpz) * get.pi1(tmpz) #det(matA) = 1
return( tmp )
}
my.x <- matrix(0,k.size,20^k.size)
dt <- 1
for(k in 1:k.size){
max <- 7 * sqrt(lambda[k])
min <- -7 * sqrt(lambda[k])
tmp.x <- seq(min,max,length=20)
dt <- dt * (tmp.x[2] - tmp.x[1])
my.x[k,] <- rep(tmp.x,each=20^(k.size-k),times=20^(k-1))
}
tmp <- 0
for(i in 1:20^k.size){
tmp <- tmp + gz_pi1(my.x[,i])
}
tmp <- tmp * dt
}else{
stop("length k is too long.")
}
return(tmp)
}
# 'rho' is a given function of (X,e) (p.7 formula(13.19))
# d(rho)/di
get.di.rho <- function(){
assign(pars[1],0)
di.rho <- numeric(d.size)
tmp <- matrix(0,d.size,block+1)
for(i in 1:d.size){
di.rho[i] <- deriv(rho,state[i])
}
for(t in 1:(block+1)){
for(i in 1:d.size){
assign(state[i],X.t0[t,i])
}
for(j in 1:d.size){
tmp[j,t]<- attr(eval(di.rho[j]),"grad")
}
}
return(tmp)
}
# d(rho)/de
get.de.rho <- function(){
assign(pars[1],0)
tmp <- matrix(0,1,block+1)
de.rho <- deriv(rho,pars[1])
for(t in 1:(block+1)){
for(i in 1:d.size){
assign(state[i],X.t0[t,i])
}
tmp[1,t]<- attr(eval(de.rho),"grad")
}
return(tmp)
}
# H_{t}^{e} at t=0 (see formula (13.19))
# use trapezium integration
get.H0 <- function(){
assign(pars[1],0)
tmp <- matrix(0,1,division-1)
for(t in 1:(division-1)){
for(i in 1:d.size){
assign(state[i],X.t0[t,i])
}
tmp[1,t] <- eval(rho)
}
H0 <- exp(-(sum(tmp) * delta))
return(as.double(H0) )
}
##third expansion
p2_z <- function(z){
if(k.size == 1){
zlen <- length(z)
result <- c()
for(i in 1:zlen){
result[i] <- p2(z[i],get_F_tilde1__2,get_F_tilde2,
get_F_tilde1H1,get_H2_1,get_H2_2,get_H2_3,env)
}
}else{
result <- p2(z,get_F_tilde1__2,get_F_tilde2,
get_F_tilde1H1,get_H2_1,get_H2_2,get_H2_3,env)
}
return(result)
}
d2.term <- function(){
gz_p2 <- function(z){
result <- H0 * G(z) * p2_z(z)
return(result)
}
if(k.size == 1){
ztmp <- seq(mu-7*sqrt(Sigma),mu+7*sqrt(Sigma),length=1000)
dt <- ztmp[2] - ztmp[1]
my.diff <- diff(ztmp)
my.diff[1] <- my.diff[1]/2
my.diff <- c(my.diff,my.diff[1])
p2tmp <- gz_p2(ztmp)
result <- p2tmp %*% my.diff
}else if(2 <= k.size || k.size <= 20){
lambda <- eigen(Sigma)$values
matA <- eigen(Sigma)$vector
gz_p2 <- function(z){
tmpz <- matA %*% z
tmp <- H0 * G(tmpz) * p2_z(tmpz) #det(matA) = 1
return( tmp )
}
my.x <- matrix(0,k.size,20^k.size)
dt <- 1
for(k in 1:k.size){
max <- 7 * sqrt(lambda[k])
min <- -7 * sqrt(lambda[k])
tmp.x <- seq(min,max,length=20)
dt <- dt * (tmp.x[2] - tmp.x[1])
my.x[k,] <- rep(tmp.x,each=20^(k.size-k),times=20^(k-1))
}
result <- 0
for(i in 1:20^k.size){
result <- result + gz_p2(my.x[,i])
}
result <- result * dt
}else{
stop("length k is too long.")
}
return(result)
}
#################################################
# Here is an entry point of 'asymptotic_term()' #
#################################################
## initialization part
division <- nrow(X.t0)
delta <- Terminal/(division - 1)
# make expressions of derivation of V0
dx.drift <- Derivation.vector(V0,state,d.size,d.size)
de.drift <- Derivation.scalar(V0,pars,d.size)
dede.drift <- Derivation.scalar(de.drift,pars,d.size)
# make expressions of derivation of V
dx.diffusion <- as.list(NULL)
for(i in 1:d.size){
dx.diffusion[i] <- list(Derivation.vector(V[[i]],state,d.size,r.size))
}
de.diffusion <- as.list(NULL)
for(i in 1:d.size){
de.diffusion[i] <- list(Derivation.scalar(V[[i]],pars,r.size))
}
dede.diffusion <- as.list(NULL)
for(i in 1:d.size){
dede.diffusion[i] <- list(Derivation.scalar(de.diffusion[[i]],pars,r.size))
}
dxdx.drift <- list()
dxdx.diffusion <- list()
for(i1 in 1:d.size){
dxdx.drift[[i1]] <- list()
dxdx.diffusion[[i1]] <- list()
for(i2 in 1:d.size){
dxdx.drift[[i1]][[i2]] <- list()
dxdx.diffusion[[i1]][[i2]] <- list()
for(i in 1:d.size){
tmp1 <- parse(text=deparse(D(V0[i],state[i2])))
dxdx.drift[[i1]][[i2]][i] <- parse(text=deparse(D(tmp1,state[i1])))
dxdx.diffusion[[i1]][[i2]][[i]] <- list()
for(r in 1:r.size){
tmp2 <- parse(text=deparse(D(V[[i]][r],state[i2])))
dxdx.diffusion[[i1]][[i2]][[i]][r] <- parse(text=deparse(D(tmp2,state[i1])))
}
}
}
}
dxde.drift <- list()
dxde.diffusion <- list()
for(i1 in 1:d.size){
dxde.drift[[i1]] <- list()
dxde.diffusion[[i1]] <- list()
for(i in 1:d.size){
tmp1 <- parse(text=deparse(D(V0[i],pars[1])))
dxde.drift[[i1]][i] <- parse(text=deparse(D(tmp1,state[i1])))
dxde.diffusion[[i1]][[i]] <- list()
for(r in 1:r.size){
tmp2 <- parse(text=deparse(D(V[[i]][r],pars[1])))
dxde.diffusion[[i1]][[i]][r] <- parse(text=deparse(D(tmp2,state[i1])))
}
}
}
env <- new.env()
env$d.size <- d.size
env$r.size <- r.size
env$k.size <- k.size
env$division <- division
env$delta <- delta
env$state <- state
env$pars <- pars
env$block <- division
env$my.range <- c(1:division)
yuima.warn("Get variables ...")
Y <- Get.Y(env=env)
tmpY <- array(0,dim=c(d.size,d.size,division))
invY <- array(0,dim=c(d.size,d.size,division))
for(t in 1:division){
tmpY[,,t] <- matrix(Y[t,],d.size,d.size)
invY[,,t] <- solve(tmpY[,,t])
}
env$invY <- invY
get_e_f0 <- e_f0(X.t0,f,env)
get_e_f <- e_f(X.t0,f,env)
get_x_f0 <- x_f0(X.t0,f,env)
get_e_F <- e_F(X.t0,F,env)
get_x_F <- x_F(X.t0,F,env)
get_Y_e_V0 <- Y_e_V0(X.t0,de.drift,env)
get_Y_e_V <- Y_e_V(X.t0,de.diffusion,env)
mu <- funcmu(env=env)
aMat <- funca(env=env) ## 2010/11/24, TBC
Sigma <- funcsigma(env=env)
invSigma <- solve(Sigma)
di.rho <- get.di.rho()
de.rho <- get.de.rho()
H0 <- get.H0()
yuima.warn("Done.")
## calculation
yuima.warn("Calculating d0 ...")
d0 <- get.d0.term()
yuima.warn("Done\n")
yuima.warn("Calculating d1 term ...")
# prepare for trapezium integration
my.range <- make.range.for.trapezium.fomula(division,block)
my.diff <- my.range[2:(block+1)] - my.range[1:block]
Diff <- matrix(0,block+1,block+1)
for(t in 2:length(my.range)){
for(s in 1:t){
if( s==1 || t==s ){
if(s==1){
Diff[t,s] <- my.diff[s]
}else if(t==s){
Diff[t,s] <- my.diff[s-1]
}
}else{
Diff[t,s] <- my.diff[s-1] + my.diff[s]
}
}
}
Diff <- Diff / 2 # trapezium integrations need "/2"
env$aMat <- aMat
env$mu <- mu
env$Sigma <- Sigma
env$invSigma <- invSigma
env$invY <- array(invY[,,my.range],dim=c(d.size,d.size,block+1))
env$block <- block + 1
env$my.range <- my.range
env$Diff <- Diff
tmpY <- array(tmpY[,,my.range],dim=c(d.size,d.size,block+1))
get_Y_e_V0 <- Y_e_V0(X.t0,de.drift,env)
get_Y_e_V <- Y_e_V(X.t0,de.diffusion,env)
get_Y_D <- Y_D(X.t0,tmpY,get_Y_e_V0,env)
get_Y_x1_x2_V0 <- Y_x1_x2_V0(X.t0,dxdx.drift,env)
get_Y_x1_x2_V <- Y_x1_x2_V(X.t0,dxdx.diffusion,env)
get_Y_x_e_V0 <- Y_x_e_V0(X.t0,dxde.drift,env)
get_Y_x_e_V <- Y_x_e_V (X.t0,dxde.diffusion,env)
get_Y_e_e_V0 <- Y_e_e_V0(X.t0,dede.drift,env)
get_Y_e_e_V <- Y_e_e_V(X.t0,dede.diffusion,env)
get_D0_t <- D0_t(tmpY, get_Y_D, get_Y_e_V)
get_e_t <- e_t(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V0, get_Y_e_e_V0, env)
get_U_t <- U_t(tmpY, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V0, env)
get_U_hat_t <- U_hat_t(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V, env)
get_E0_t <- E0_t(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env)
get_e_f0 <- e_f0(X.t0,f,env)
get_e_f <- e_f(X.t0,f,env)
get_x_f0 <- x_f0(X.t0,f,env)
get_x1_x2_f0 <- x1_x2_f0(X.t0,f,env)
get_x1_x2_f <- x1_x2_f(X.t0,f,env)
get_x_e_f0 <- x_e_f0(X.t0,f,env)
get_x_e_f <- x_e_f(X.t0,f,env)
get_e_e_f0 <- e_e_f0(X.t0,f,env)
get_e_e_f <- e_e_f(X.t0,f,env)
get_F_t <- F_t (tmpY, get_Y_e_V, get_Y_D, get_x1_x2_f0, get_x_e_f0, get_e_e_f0, env)
get_W_t <- W_t (tmpY, get_Y_D, get_x1_x2_f0, get_x_e_f0, env)
get_W_hat_t <- W_hat_t (tmpY, get_Y_e_V, get_x1_x2_f0, get_x_e_f, env)
get_F_tilde1_1 <- F_tilde1_1(tmpY, get_Y_e_V, get_x1_x2_f0, get_e_e_f, get_F_t, get_W_t, get_W_hat_t, env)
get_F_tilde1_2 <- F_tilde1_2(get_E0_t,get_x_f0,env)
get_x_F <- x_F(X.t0,F,env)
get_x1_x2_F <- x1_x2_F(X.t0,F,env)
get_x_e_F <- x_e_F(X.t0,F,env)
get_e_e_F <- e_e_F(X.t0,F,env)
get_F_tilde1_3 <- F_tilde1_3(get_E0_t,get_x_F,env)
get_F_tilde1_4 <- F_tilde1_4(tmpY, get_Y_e_V, get_Y_D, get_x_F, get_x1_x2_F, get_x_e_F, get_e_e_F, env)
get_F_tilde1 <- F_tilde1(get_F_tilde1_1, get_F_tilde1_2, get_F_tilde1_3, get_F_tilde1_4)
get_F_tilde1__1 <- F_tilde1__1(get_F_tilde1,env)
d1 <- get.d1.term()
yuima.warn("Done\n")
##third
get_F_tilde1__2 <- F_tilde1__2(get_F_tilde1,env)
dxdxdx.drift <- list()
for(i1 in 1:d.size){
dxdxdx.drift[[i1]] <- list()
for(i2 in 1:d.size){
dxdxdx.drift[[i1]][[i2]] <- list()
for(i3 in 1:d.size){
tmp1 <- parse(text=deparse(D(V0[i],state[i2])))
dxdxdx.drift[[i1]][[i2]][[i3]] <- list()
for(i in 1:d.size){
tmp1 <- parse(text=deparse(D(V0[i],state[i3])))
tmp2 <- parse(text=deparse(D(tmp1,state[i2])))
dxdxdx.drift[[i1]][[i2]][[i3]][i] <- parse(text=deparse(D(tmp2,state[i1])))
}
}
}
}
dxdxde.drift <- list()
dxdxde.diffusion <- list()
for(i1 in 1:d.size){
dxdxde.drift[[i1]] <- list()
dxdxde.diffusion[[i1]] <- list()
for(i2 in 1:d.size){
dxdxde.drift[[i1]][[i2]] <- list()
dxdxde.diffusion[[i1]][[i2]] <- list()
for(i in 1:d.size){
tmp1 <- dxde.drift[[i2]][[i]]
dxdxde.drift[[i1]][[i2]][i] <- parse(text=deparse(D(tmp1,state[i1])))
dxdxde.diffusion[[i1]][[i2]][[i]] <- list()
for(r in 1:r.size){
tmp2 <- dxde.diffusion[[i2]][[i]][[r]]
dxdxde.diffusion[[i1]][[i2]][[i]][r] <- parse(text=deparse(D(tmp2,state[i1])))
}
}
}
}
dxdede.drift <- list()
dxdede.diffusion <- list()
for(i1 in 1:d.size){
dxdede.drift[[i1]] <- list()
dxdede.diffusion[[i1]] <- list()
for(i in 1:d.size){
tmp1 <- dxde.drift[[i1]][[i]]
dxdede.drift[[i1]][i] <- parse(text=deparse(D(tmp1,pars[1])))
dxdede.diffusion[[i1]][[i]] <- list()
for(r in 1:r.size){
tmp2 <- dxde.diffusion[[i1]][[i]][[r]]
dxdede.diffusion[[i1]][[i]][r] <- parse(text=deparse(D(tmp2,pars[1])))
}
}
}
dedede.drift <- list()
dedede.diffusion <- list()
for(i in 1:d.size){
tmp1 <- parse(text=deparse(D(V0[i],pars[1])))
tmp2 <- parse(text=deparse(D(tmp1,pars[1])))
dedede.drift[[i]] <- parse(text=deparse(D(tmp2,pars[1])))
dedede.diffusion[[i]] <- list()
for(r in 1:r.size){
tmp3 <- parse(text=deparse(D(V[[i]][r],pars[1])))
tmp4 <- parse(text=deparse(D(tmp3,pars[1])))
dedede.diffusion[[i]][r] <- parse(text=deparse(D(tmp4,pars[1])))
}
}
get_Y_x1_x2_x3_V0 <- Y_x1_x2_x3_V0(X.t0,dxdxdx.drift,env)
get_Y_x1_x2_e_V0 <- Y_x1_x2_e_V0(X.t0,dxdxde.drift,env)
get_Y_x1_x2_e_V <- Y_x1_x2_e_V (X.t0,dxdxde.diffusion,env)
get_Y_x_e_e_V0 <- Y_x_e_e_V0(X.t0,dxdede.drift,env)
get_Y_x_e_e_V <- Y_x_e_e_V (X.t0,dxdede.diffusion,env)
get_Y_e_e_e_V0 <- Y_e_e_e_V0(X.t0,dedede.drift,env)
get_Y_e_e_e_V <- Y_e_e_e_V(X.t0,dedede.diffusion,env)
get_x1_x2_x3_f0 <- x1_x2_x3_f0(X.t0,f,env)
get_x1_x2_x3_f <- x1_x2_x3_f(X.t0,f,env)
get_x1_x2_e_f0 <- x1_x2_e_f0(X.t0,f,env)
get_x1_x2_e_f <- x1_x2_e_f(X.t0,f,env)
get_x_e_e_f0 <- x_e_e_f0(X.t0,f,env)
get_x_e_e_f <- x_e_e_f(X.t0,f,env)
get_e_e_e_f0 <- e_e_e_f0(X.t0,f,env)
get_e_e_e_f <- e_e_e_f(X.t0,f,env)
get_x1_x2_x3_F <- x1_x2_x3_F(X.t0,F,env)
get_x1_x2_e_F <- x1_x2_e_F(X.t0,F,env)
get_x_e_e_F <- x_e_e_F(X.t0,F,env)
get_e_e_e_F <- e_e_e_F(X.t0,F,env)
get_C_hat1 <- C_hat1(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env)
get_C_hat2 <- C_hat2(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_x_e_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env)
get_C_hat3 <- C_hat3(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_x3_V0, env)
get_C_hat4 <- C_hat4(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_e_V0, env)
get_C_hat5 <- C_hat5(tmpY, get_Y_e_V, get_Y_D, get_Y_x_e_e_V0, env)
get_C_hat6 <- C_hat6(tmpY, get_Y_e_e_e_V0, env)
get_C_hat7 <- C_hat7(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_x_e_V, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env)
get_C_hat8 <- C_hat8(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_e_V, env)
get_C_hat9 <- C_hat9(tmpY, get_Y_e_V, get_Y_D, get_Y_x_e_e_V, env)
get_C_hat10 <- C_hat10(tmpY, get_Y_e_e_e_V, env)
get_C0_t <- C0_t(get_C_hat1, get_C_hat2, get_C_hat3, get_C_hat4, get_C_hat5, get_C_hat6, get_C_hat7, get_C_hat8, get_C_hat9, get_C_hat10)
get_F_tilde2_1_1 <- F_tilde2_1_1(get_x_f0,get_C0_t,env)
get_F_tilde2_1_2 <- F_tilde2_1_2(get_x_F,get_C0_t,env)
get_D_E <- D_E(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env)
get_F_tilde2_2_1 <- F_tilde2_2_1(get_x1_x2_f0,get_D_E,env)
get_F_tilde2_2_2 <- F_tilde2_2_2(get_x1_x2_F,get_D_E,env)
get_F_tilde2_3_1 <- F_tilde2_3_1(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_e_e_V, get_U_t, get_U_hat_t, get_e_t, get_x_e_f0, env)
get_E0_bar <- E0_bar(get_E0_t,env)
get_F_tilde2_3_2 <- F_tilde2_3_2(get_E0_bar, get_x_e_F, env)
get_D_a <- D_a(tmpY, get_Y_e_V, get_Y_D, env)
get_D_b <- D_b(tmpY, get_Y_e_V, get_Y_D, env)
get_D_c <- D_c(tmpY, get_Y_e_V, get_Y_D, env)
get_F_tilde2_4_1 <- F_tilde2_4_1(get_x1_x2_x3_f0, get_x1_x2_e_f0, get_x_e_e_f0, get_e_e_e_f0, get_D_a, get_D_b, get_D_c, env)
get_F_tilde2_4_2 <- F_tilde2_4_2(get_x1_x2_x3_F, get_x1_x2_e_F, get_x_e_e_F, get_e_e_e_F, get_D_a, get_D_b, get_D_c, env)
get_F_tilde2_5 <- F_tilde2_5(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, get_x_e_f, env)
get_F_tilde2_6 <- F_tilde2_6(tmpY, get_Y_e_V, get_Y_D, get_x1_x2_e_f, env)
get_F_tilde2_7 <- F_tilde2_7(tmpY, get_Y_e_V, get_Y_D, get_x_e_e_f, env)
get_F_tilde2_8 <- F_tilde2_8(get_e_e_e_f,env)
get_F_tilde2 <- F_tilde2(get_F_tilde2_1_1, get_F_tilde2_1_2, get_F_tilde2_2_1, get_F_tilde2_2_2,
get_F_tilde2_3_1, get_F_tilde2_3_2, get_F_tilde2_4_1, get_F_tilde2_4_2,
get_F_tilde2_5, get_F_tilde2_6, get_F_tilde2_7, get_F_tilde2_8)
#added
get_x_rho <- x_rho(X.t0,rho,env)
get_e_rho <- e_rho(X.t0,rho,env)
get_x1_x2_rho <- x1_x2_rho(X.t0,rho,env)
get_x_e_rho <- x_e_rho(X.t0,rho,env)
get_e_e_rho <- e_e_rho(X.t0,rho,env)
##modified
n1 <- length(get_x_rho)
n2 <- sum(get_x_rho == 0)
n3 <- length(get_e_rho)
n4 <- sum(get_e_rho == 0)
n5 <- length(get_x1_x2_rho)
n6 <- sum(get_x1_x2_rho == 0)
n7 <- length(get_x_e_rho)
n8 <- sum(get_x_e_rho == 0)
n9 <- length(get_e_e_rho)
n10 <- sum(get_e_e_rho == 0)
n <- (n1 - n2 != 0) + (n3 - n4 != 0) + (n5 - n6 != 0) +
(n7 - n8 != 0) + (n9 - n10 != 0)
if(n != 0){
get_scH_0_1 <- scH_0_1(get_Y_D,get_e_rho,get_x_rho,env)
get_scH_1_1 <- scH_1_1(tmpY,get_Y_e_V,get_x_rho,env)
get_scH_1_2 <- scH_1_2(get_scH_1_1,env)
get_F_tilde1H1 <- F_tilde1H1(get_F_tilde1,get_scH_0_1,get_scH_1_1,get_scH_1_2,env)
get_H2_1 <- H2_1(get_scH_0_1,get_scH_1_1,get_scH_1_2,env)
get_H2_2 <- H2_2(get_D_b,get_D_c,get_x1_x2_rho,get_x_e_rho,get_e_e_rho)
get_H2_3 <- H2_3(get_E0_bar,get_x_rho)
}else{
p2 <- function(z,get_F_tilde1__2,get_F_tilde2,env){
k.size <- env$k.size
delta <- env$delta
mu <- env$mu
Sigma <- env$Sigma
z.tilde <- z - mu
first <- 0
second <- 0
if(k.size == 1){
first <- (F_tilde1__2_x(1,1,z.tilde+2*delta,get_F_tilde1__2,env) *
dnorm(z+2*delta,mean=mu,sd=sqrt(Sigma)) -
2 * F_tilde1__2_x(1,1,z.tilde+delta,get_F_tilde1__2,env) *
dnorm(z+delta,mean=mu,sd=sqrt(Sigma)) +
F_tilde1__2_x(1,1,z.tilde,get_F_tilde1__2,env) *
dnorm(z,mean=mu,sd=sqrt(Sigma)))/(delta)^2
first <- first/2
second <- (F_tilde2_x(1,z.tilde+delta,get_F_tilde2,env) *
dnorm(z+delta,mean=mu,sd=sqrt(Sigma)) -
F_tilde2_x(1,z.tilde,get_F_tilde2,env) *
dnorm(z,mean=mu,sd=sqrt(Sigma)))/delta
}else{
tmp1 <- matrix(0,k.size,k.size)
for(l1 in 1:k.size){
for(l2 in 1:k.size){
dif1 <- numeric(k.size)
dif2 <- numeric(k.size)
dif1[l1] <- dif1[l1] + delta
dif2[l2] <- dif2[l2] + delta
tmp1[l1,l2] <- (F_tilde1__2_x(l1,l2,z.tilde+dif1+dif2,get_F_tilde1__2,env) *
ft_norm(z+dif1+dif2,env) -
F_tilde1__2_x(l1,l2,z.tilde+dif1,get_F_tilde1__2,env) *
ft_norm(z+dif1,env) -
F_tilde1__2_x(l1,l2,z.tilde+dif2,get_F_tilde1__2,env) *
ft_norm(z+dif2,env) +
F_tilde1__2_x(l1,l2,z.tilde,get_F_tilde1__2,env) *
ft_norm(z,env))/(delta)^2
}
}
first <- sum(tmp1)/2
tmp2 <- double(k.size)
for(l in 1:k.size){
dif <- numeric(k.size)
dif[l] <- dif[l] + delta
tmp2[l] <- (F_tilde2_x(l,z.tilde+dif,get_F_tilde2,env) *
ft_norm(z+dif,env) -
F_tilde2_x(l,z.tilde,get_F_tilde2,env) *
ft_norm(z,env))/delta
}
second <- sum(tmp2)
}
result <- first - second
return(result)
}
p2_z <- function(z){
if(k.size == 1){
zlen <- length(z)
result <- c()
for(i in 1:zlen){
result[i] <- p2(z[i],get_F_tilde1__2,get_F_tilde2,env)
}
}else{
result <- p2(z,get_F_tilde1__2,get_F_tilde2,env)
}
return(result)
}
}
d2 <- d2.term()
terms <- list(d0=d0, d1=d1, d2=d2)
return(terms)
})
| /scratch/gouwar.j/cran-all/cranData/yuima/R/asymptotic_term_third.R |
###########################
# third expansion #
###########################
#bi:r.size*division #aMat:k.size*r.size*division
#Sigma:k.size*k.size
#env:d.size,r.size,k.size,division,delta,state,pars,aMat,mu,Sigma,
# invSigma,invY,block,my.range,Diff
#first:k*k*k*t, second:k*t
I_123 <- function(b1,b2,b3,env){
r.size <- env$r.size
k.size <- env$k.size
delta <- env$delta
aMat <- env$aMat
invSigma <- env$invSigma
block <- env$block
my.range <- env$my.range
Diff <- env$Diff
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n5 <- length(b3)
n6 <- sum(b3 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) * (n5 - n6 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,k.size,block))
second <- matrix(0,k.size,block)
return(list(first=first,second=second))
}
b1a <- matrix(0,k.size,block)
b2a <- matrix(0,k.size,block)
b3a <- matrix(0,k.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
b2 <- matrix(b2,1,block)
b3 <- matrix(b3,1,block)
}
for(t in 1:block){
b1a[,t] <- matrix(b1[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
b2a[,t] <- matrix(b2[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
b3a[,t] <- matrix(b3[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
}
first <- array(0,dim=c(k.size,k.size,k.size,block))
tmp1 <- matrix(0,k.size,block)
tmp2 <- array(0,dim=c(k.size,k.size,block))
tmp3 <- array(0,dim=c(k.size,k.size,k.size,block))
for(t in 2:block){
tmp1[,t] <- b3a %*% Diff[t,] * delta
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(t in 2:block){
tmp2[k1,k2,t] <- (b2a[k1,] * tmp1[k2,]) %*%
Diff[t,] * delta
}
}
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(t in 2:block){
tmp3[k1,k2,k3,t] <- (b1a[k1,] * tmp2[k2,k3,]) %*%
Diff[t,] * delta
}
}
}
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(t in 1:block){
first[k1,k2,,t] <- matrix(tmp3[k1,k2,,t],1,k.size) %*%
invSigma
}
}
}
for(k1 in 1:k.size){
for(k3 in 1:k.size){
for(t in 1:block){
first[k1,,k3,t] <- matrix(first[k1,,k3,t],1,k.size) %*%
invSigma
}
}
}
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(t in 1:block){
first[,k2,k3,t] <- matrix(first[,k2,k3,t],1,k.size) %*%
invSigma
}
}
}
second1 <- matrix(0,k.size,block)
for(t in 1:block){
for(k1 in 1:k.size){
for(k2 in 1:k.size){
second1[,t] <- second1[,t] + tmp3[k1,k2,,t] * invSigma[k1,k2]
}
}
second1[,t] <- matrix(second1[,t],1,k.size) %*% invSigma
}
second2 <- matrix(0,k.size,block)
for(t in 1:block){
for(k1 in 1:k.size){
for(k3 in 1:k.size){
second2[,t] <- second2[,t] + tmp3[k1,,k3,t] * invSigma[k1,k3]
}
}
second2[,t] <- matrix(second2[,t],1,k.size) %*% invSigma
}
second3 <- matrix(0,k.size,block)
for(t in 1:block){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
second3[,t] <- second3[,t] + tmp3[,k2,k3,t] * invSigma[k2,k3]
}
}
second3[,t] <- matrix(second3[,t],1,k.size) %*% invSigma
}
second <- - second1 - second2 - second3
return(list(first=first,second=second))
}
I_123_x <- function(x,get_I_123,env){
k.size <- env$k.size
block <- env$block
first <- array(get_I_123$first[,,,block],dim=c(k.size,k.size,k.size))
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
result1 <- result1 + first[k1,k2,k3] *
x[k1] * x[k2] * x[k3]
}
}
}
second <- get_I_123$second[,block]
result2 <- matrix(x,1,k.size) %*%
matrix(second,k.size,1)
result <- result1 + result2
return(result)
}
#first:k*k*k*k*t, second:k*k*t, third:t
I_1234 <- function(b1,b2,b3,b4,env){
r.size <- env$r.size
k.size <- env$k.size
delta <- env$delta
aMat <- env$aMat
invSigma <- env$invSigma
block <- env$block
my.range <- env$my.range
Diff <- env$Diff
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n5 <- length(b3)
n6 <- sum(b3 == 0)
n7 <- length(b4)
n8 <- sum(b4 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) *
(n5 - n6 != 0) * (n7 - n8 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,block))
third <- double(block)
return(list(first=first,second=second,third=third))
}
b1a <- matrix(0,k.size,block)
b2a <- matrix(0,k.size,block)
b3a <- matrix(0,k.size,block)
b4a <- matrix(0,k.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
b2 <- matrix(b2,1,block)
b3 <- matrix(b3,1,block)
b4 <- matrix(b4,1,block)
}
for(t in 1:block){
b1a[,t] <- matrix(b1[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
b2a[,t] <- matrix(b2[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
b3a[,t] <- matrix(b3[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
b4a[,t] <- matrix(b4[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
}
first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
tmp1 <- matrix(0,k.size,block)
tmp2 <- array(0,dim=c(k.size,k.size,block))
tmp3 <- array(0,dim=c(k.size,k.size,k.size,block))
tmp4 <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
for(t in 2:block){
tmp1[,t] <- b4a %*% Diff[t,] * delta
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(t in 2:block){
tmp2[k1,k2,t] <- (b3a[k1,] * tmp1[k2,]) %*%
Diff[t,] * delta
}
}
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(t in 2:block){
tmp3[k1,k2,k3,t] <- (b2a[k1,] * tmp2[k2,k3,]) %*%
Diff[t,] * delta
}
}
}
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(k4 in 1:k.size){
for(t in 2:block){
tmp4[k1,k2,k3,k4,t] <- (b1a[k1,] * tmp3[k2,k3,k4,]) %*%
Diff[t,]* delta
}
}
}
}
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(t in 1:block){
first[k1,k2,k3,,t] <- matrix(tmp4[k1,k2,k3,,t],1,k.size) %*%
invSigma
}
}
}
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k4 in 1:k.size){
for(t in 1:block){
first[k1,k2,,k4,t] <- matrix(first[k1,k2,,k4,t],1,k.size) %*%
invSigma
}
}
}
}
for(k1 in 1:k.size){
for(k3 in 1:k.size){
for(k4 in 1:k.size){
for(t in 1:block){
first[k1,,k3,k4,t] <- matrix(first[k1,,k3,k4,t],1,k.size) %*%
invSigma
}
}
}
}
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(k4 in 1:k.size){
for(t in 1:block){
first[,k2,k3,k4,t] <- matrix(first[,k2,k3,k4,t],1,k.size) %*%
invSigma
}
}
}
}
second1 <- array(0,dim=c(k.size,k.size,block))
tmp5 <- array(0,dim=c(k.size,k.size,block))
for(t in 1:block){
for(k1 in 1:k.size){
for(k2 in 1:k.size){
tmp5[,,t] <- tmp5[,,t] + tmp4[k1,k2,,,t] *
invSigma[k1,k2]
}
}
}
for(k3 in 1:k.size){
for(t in 1:block){
second1[k3,,t] <- matrix(tmp5[k3,,t],1,k.size) %*%
invSigma
}
}
for(k4 in 1:k.size){
for(t in 1:block){
second1[,k4,t] <- matrix(second1[,k4,t],1,k.size) %*%
invSigma
}
}
second2 <- array(0,dim=c(k.size,k.size,block))
tmp6 <- array(0,dim=c(k.size,k.size,block))
for(t in 1:block){
for(k1 in 1:k.size){
for(k3 in 1:k.size){
tmp6[,,t] <- tmp6[,,t] + tmp4[k1,,k3,,t] *
invSigma[k1,k3]
}
}
}
for(k2 in 1:k.size){
for(t in 1:block){
second2[k2,,t] <- matrix(tmp6[k2,,t],1,k.size) %*%
invSigma
}
}
for(k4 in 1:k.size){
for(t in 1:block){
second2[,k4,t] <- matrix(second2[,k4,t],1,k.size) %*%
invSigma
}
}
second3 <- array(0,dim=c(k.size,k.size,block))
tmp7 <- array(0,dim=c(k.size,k.size,block))
for(t in 1:block){
for(k1 in 1:k.size){
for(k4 in 1:k.size){
tmp7[,,t] <- tmp7[,,t] + tmp4[k1,,,k4,t] *
invSigma[k1,k4]
}
}
}
for(k2 in 1:k.size){
for(t in 1:block){
second3[k2,,t] <- matrix(tmp7[k2,,t],1,k.size) %*%
invSigma
}
}
for(k3 in 1:k.size){
for(t in 1:block){
second3[,k3,t] <- matrix(second3[,k3,t],1,k.size) %*%
invSigma
}
}
second4 <- array(0,dim=c(k.size,k.size,block))
for(t in 1:block){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
second4[,,t] <- second4[,,t] + tmp4[,k2,k3,,t] *
invSigma[k2,k3]
}
}
}
for(k1 in 1:k.size){
for(t in 1:block){
second4[k1,,t] <- matrix(second4[k1,,t],1,k.size) %*%
invSigma
}
}
for(k4 in 1:k.size){
for(t in 1:block){
second4[,k4,t] <- matrix(second4[,k4,t],1,k.size) %*%
invSigma
}
}
second5 <- array(0,dim=c(k.size,k.size,block))
for(t in 1:block){
for(k2 in 1:k.size){
for(k4 in 1:k.size){
second5[,,t] <- second5[,,t] + tmp4[,k2,,k4,t] *
invSigma[k2,k4]
}
}
}
for(k1 in 1:k.size){
for(t in 1:block){
second5[k1,,t] <- matrix(second5[k1,,t],1,k.size) %*%
invSigma
}
}
for(k3 in 1:k.size){
for(t in 1:block){
second5[,k3,t] <- matrix(second5[,k3,t],1,k.size) %*%
invSigma
}
}
second6 <- array(0,dim=c(k.size,k.size,block))
for(t in 1:block){
for(k3 in 1:k.size){
for(k4 in 1:k.size){
second6[,,t] <- second6[,,t] + tmp4[,,k3,k4,t] *
invSigma[k3,k4]
}
}
}
for(k1 in 1:k.size){
for(t in 1:block){
second6[k1,,t] <- matrix(second6[k1,,t],1,k.size) %*%
invSigma
}
}
for(k2 in 1:k.size){
for(t in 1:block){
second6[,k2,t] <- matrix(second6[,k2,t],1,k.size) %*%
invSigma
}
}
second <- - second1 - second2 - second3 - second4 - second5 - second6
third1 <- double(block)
for(t in 1:block){
for(k3 in 1:k.size){
for(k4 in 1:k.size){
third1[t] <- third1[t] + tmp5[k3,k4,t] *
invSigma[k3,k4]
}
}
}
third2 <- double(block)
for(t in 1:block){
for(k2 in 1:k.size){
for(k4 in 1:k.size){
third2[t] <- third2[t] + tmp6[k2,k4,t] *
invSigma[k2,k4]
}
}
}
third3 <- double(block)
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
for(t in 1:block){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
third3[t] <- third3[t] + tmp6[k2,k3,t] *
invSigma[k2,k3]
}
}
}
third <- third1 + third2 + third3
return(list(first=first,second=second,third=third))
}
I_1234_x <- function(x,get_I_1234,env){
k.size <- env$k.size
block <- env$block
first <- array(get_I_1234$first[,,,,block],
dim=c(k.size,k.size,k.size,k.size))
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(k4 in 1:k.size){
result1 <- result1 + first[k1,k2,k3,k4] *
x[k1] * x[k2] * x[k3] * x[k4]
}
}
}
}
second <- matrix(get_I_1234$second[,,block],k.size,k.size)
result2 <- t(matrix(x,k.size,1)) %*% second %*%
matrix(x,k.size,1)
third <- get_I_1234$third[block]
result <- result1 + result2 + third
return(result)
}
b1b2 <- function(b1,b2,env){
r.size <- env$r.size
block <- env$block
result <- double(block)
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
if(n == 0){
return(result)
}
if(r.size == 1){
b1 <- matrix(b1,1,block)
b2 <- matrix(b2,1,block)
}
for(t in 1:block){
result[t] <- matrix(b1[,t],1,r.size) %*%
matrix(b2[,t],r.size,1)
}
return(result)
}
b1_b2 <- function(b1,b2,env){
delta <- env$delta
block <- env$block
Diff <- env$Diff
tmp <- b1b2(b1,b2,env)
result <- double(block)
for(t in 1:block){
result[t] <- tmp %*% Diff[t,] * delta
}
return(result)
}
I0 <- function(f,env){
delta <- env$delta
block <- env$block
Diff <- env$Diff
result <- double(block)
n1 <- length(f)
n2 <- sum(f == 0)
n <- n1 - n2
if(n == 0){
return(result)
}
for(t in 1:block){
result[t] <- f %*% Diff[t,] * delta
}
return(result)
}
#k*t
I_1 <- function(b1,env){
r.size <- env$r.size
k.size <- env$k.size
delta <- env$delta
aMat <- env$aMat
invSigma <- env$invSigma
block <- env$block
my.range <- env$my.range
Diff <- env$Diff
result <- matrix(0,k.size,block)
n1 <- length(b1)
n2 <- sum(b1 == 0)
if(n1 == n2){
return(result)
}
b1a <- matrix(0,k.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
}
# b1 <- matrix(b1, ncol=block) # FIXME: should be a matrix with block-columns but it is a scalar
for(t in 1:block){
# print(str(b1))
#print(t)
#print(block)
#print(str(b1[,t]))
#print(r.size)
b1a[,t] <- matrix(b1[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
}
for(t in 2:block){
result[,t] <- t(invSigma) %*% b1a %*% Diff[t,] * delta
}
return(result)
}
I_1_x <- function(x,get_I_1,env){
k.size <- env$k.size
block <- env$block
tmp <- get_I_1[,block]
result <- matrix(tmp,1,k.size) %*% matrix(x,k.size,1)
return(result)
}
#first:k*k*t, second:t
I_12 <- function(b1,b2,env){
r.size <- env$r.size
k.size <- env$k.size
delta <- env$delta
aMat <- env$aMat
Sigma <- env$Sigma
invSigma <- env$invSigma
block <- env$block
my.range <- env$my.range
Diff <- env$Diff
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,block))
second <- double(block)
return(list(first=first,second=second))
}
b1a <- matrix(0,k.size,block)
b2a <- matrix(0,k.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
b2 <- matrix(b2,1,block)
}
for(t in 1:block){
b1a[,t] <- matrix(b1[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
b2a[,t] <- matrix(b2[,t],1,r.size) %*%
t(matrix(aMat[,,my.range[t]],k.size,r.size))
}
first <- array(0,dim=c(k.size,k.size,block))
tmp1 <- matrix(0,k.size,block)
tmp2 <- array(0,dim=c(k.size,k.size,block))
for(t in 2:block){
tmp1[,t] <- b2a %*% Diff[t,] * delta
}
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(t in 2:block){
tmp2[k1,k2,t] <- (b1a[k1,] * tmp1[k2,]) %*%
Diff[t,] * delta
}
}
}
for(k1 in 1:k.size){
for(t in 1:block){
first[k1,,t] <- matrix(tmp2[k1,,t],1,k.size) %*%
invSigma
}
}
for(k2 in 1:k.size){
for(t in 1:block){
first[,k2,t] <- matrix(first[,k2,t],1,k.size) %*%
invSigma
}
}
second <- double(block)
for(t in 1:block){
for(k1 in 1:k.size){
for(k2 in 1:k.size){
second[t] <- second[t] + tmp2[k1,k2,t] * invSigma[k1,k2]
}
}
}
second <- - second
return(list(first=first,second=second))
}
I_12_x <- function(x,get_I_12,env){
k.size <- env$k.size
block <- env$block
first <- matrix(get_I_12$first[,,block],k.size,k.size)
second <- get_I_12$second[block]
result <- matrix(x,1,k.size) %*% first %*%
matrix(x,k.size,1) + second
return(result)
}
#first:k*k*t, second:t
I_1_2 <- function(b1,b2,env){
k.size <- env$k.size
block <- env$block
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,block))
second <- double(block)
return(list(first=first,second=second))
}
first.tmp <- I_12(b1,b2,env)
second.tmp <- I_12(b2,b1,env)
third.tmp <- b1_b2(b1,b2,env)
first <- first.tmp$first + second.tmp$first
second <- first.tmp$second + second.tmp$second + third.tmp
return(list(first=first,second=second))
}
I_1_2_x <- function(x,get_I_1_2,env){
result <- I_12_x(x,get_I_1_2,env)
return(result)
}
#first:k*k*t, second:t
I_1_23 <- function(b1,b2,b3,env){
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
my.range <- env$my.range
Diff <- env$Diff
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n5 <- length(b3)
n6 <- sum(b3 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) * (n5 - n6 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,k.size,block))
second <- matrix(0,k.size,block)
return(list(first=first,second=second))
}
first.tmp <- I_123(b1,b2,b3,env)
second.tmp <- I_123(b2,b1,b3,env)
third.tmp <- I_123(b2,b3,b1,env)
tmp1 <- b1_b2(b1,b3,env)
tmp2 <- matrix(0,r.size,block)
if(r.size == 1){
b2 <- matrix(b2,1,block)
}
for(t in 1:block){
tmp2[,t] <- tmp1[t] * b2[,t]
}
fourth.tmp <- I_1(tmp2,env)
tmp3 <- b1b2(b1,b2,env)
tmp4 <- I_1(b3,env)
tmp5 <- matrix(0,k.size,block)
for(t in 1:block){
tmp5[,t] <- tmp3[t] * tmp4[,t]
}
fifth.tmp <- matrix(0,k.size,block)
for(k in 1:k.size){
fifth.tmp[k,] <- I0(tmp5[k,],env)
}
first <- first.tmp$first + second.tmp$first + third.tmp$first
second <- first.tmp$second + second.tmp$second + third.tmp$second +
fourth.tmp + fifth.tmp
return(list(first=first,second=second))
}
I_1_23_x <- function(x,get_I_1_23,env){
result <- I_123_x(x,get_I_1_23,env)
return(result)
}
#first:k*k*t, second:t
I_12_3 <- function(b1,b2,b3,env){
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n5 <- length(b3)
n6 <- sum(b3 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) * (n5 - n6 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,k.size,block))
second <- matrix(0,k.size,block)
return(list(first=first,second=second))
}
first.tmp <- I_123(b1,b2,b3,env)
second.tmp <- I_123(b1,b3,b2,env)
tmp1 <- b1_b2(b2,b3,env)
tmp2 <- matrix(0,r.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
}
for(t in 1:block){
tmp2[,t] <- tmp1[t] * b1[,t]
}
third.tmp <- I_1(tmp2,env)
first <- first.tmp$first + second.tmp$first
second <- first.tmp$second + second.tmp$second + third.tmp
return(list(first=first,second=second))
}
I_12_3_x <- function(x,get_I_12_3,env){
result <- I_123_x(x,get_I_12_3,env)
return(result)
}
#first:k*k*t, second:t
I_1_2_3 <- function(b1,b2,b3,env){
k.size <- env$k.size
block <- env$block
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n5 <- length(b3)
n6 <- sum(b3 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) * (n5 - n6 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,k.size,block))
second <- matrix(0,k.size,block)
return(list(first=first,second=second))
}
first.tmp <- I_123(b1,b2,b3,env)
second.tmp <- I_123(b2,b1,b3,env)
third.tmp <- I_123(b2,b3,b1,env)
fourth.tmp <- I_123(b1,b3,b2,env)
fifth.tmp <- I_123(b3,b1,b2,env)
sixth.tmp <- I_123(b3,b2,b1,env)
tmp1 <- b1_b2(b1,b3,env)
tmp2 <- I_1(b2,env)
seventh.tmp <- matrix(0,k.size,block)
for(t in 1:block){
seventh.tmp[,t] <- tmp1[t] * tmp2[,t]
}
tmp3 <- b1_b2(b1,b2,env)
tmp4 <- I_1(b3,env)
eighth.tmp <- matrix(0,k.size,block)
for(t in 1:block){
eighth.tmp[,t] <- tmp3[t] * tmp4[,t]
}
tmp5 <- b1_b2(b2,b3,env)
tmp6 <- I_1(b1,env)
ninth.tmp <- matrix(0,k.size,block)
for(t in 1:block){
ninth.tmp[,t] <- tmp5[t] * tmp6[,t]
}
first <- first.tmp$first + second.tmp$first + third.tmp$first +
fourth.tmp$first + fifth.tmp$first + sixth.tmp$first
second <- first.tmp$second + second.tmp$second + third.tmp$second +
fourth.tmp$second + fifth.tmp$second + sixth.tmp$second +
seventh.tmp + eighth.tmp + ninth.tmp
return(list(first=first,second=second))
}
I_1_2_3_x <- function(x,get_I_1_2_3,env){
result <- I_123_x(x,get_I_1_2_3,env)
return(result)
}
#first:k*k*k*k*t, second:k*k*t, third:t
I_12_34 <- function(b1,b2,b3,b4,env){
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
n1 <- length(b1)
n2 <- sum(b1 == 0)
n3 <- length(b2)
n4 <- sum(b2 == 0)
n5 <- length(b3)
n6 <- sum(b3 == 0)
n7 <- length(b4)
n8 <- sum(b4 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) *
(n5 - n6 != 0) * (n7 - n8 != 0)
if(n == 0){
first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,block))
third <- double(block)
return(list(first=first,second=second,third=third))
}
first.tmp <- I_1234(b1,b2,b3,b4,env)
second.tmp <- I_1234(b1,b3,b4,b2,env)
third.tmp <- I_1234(b1,b3,b2,b4,env)
tmp1 <- b1_b2(b2,b4,env)
tmp2 <- matrix(0,r.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
b2 <- matrix(b2,1,block)
b3 <- matrix(b3,1,block)
b4 <- matrix(b4,1,block)
}
for(t in 1:block){
tmp2[,t] <- tmp1[t] * b3[,t]
}
fourth.tmp <- I_12(b1,tmp2,env)
tmp3 <- b1_b2(b2,b3,env)
tmp4 <- matrix(0,r.size,block)
for(t in 1:block){
tmp4[,t] <- tmp3[t] * b1[,t]
}
fifth.tmp <- I_12(tmp4,b4,env)
tmp5 <- matrix(0,r.size,block)
for(t in 1:block){
tmp5[,t] <- tmp3[t] * b4[,t]
}
sixth.tmp <- I_12(b1,tmp5,env)
seventh.tmp <- I_1234(b3,b4,b1,b2,env)
eighth.tmp <- I_1234(b3,b1,b2,b4,env)
ninth.tmp <- I_1234(b3,b1,b4,b2,env)
tmp6 <- b1_b2(b4,b2,env)
tmp7 <- matrix(0,r.size,block)
for(t in 1:block){
tmp7[,t] <- tmp6[t] * b1[,t]
}
tenth.tmp <- I_12(b3,tmp7,env)
tmp8 <- b1_b2(b4,b1,env)
tmp9 <- matrix(0,r.size,block)
for(t in 1:block){
tmp9[,t] <- tmp8[t] * b3[,t]
}
eleventh.tmp <- I_12(tmp9,b2,env)
tmp10 <- matrix(0,r.size,block)
for(t in 1:block){
tmp10[,t] <- tmp8[t] * b2[,t]
}
twelfth.tmp <- I_12(b3,tmp10,env)
tmp11 <- b1_b2(b1,b3,env)
tmp12 <- I_12(b2,b4,env)
thirteenth.tmp <- tmp12
for(t in 1:block){
thirteenth.tmp$first[,,t] <- tmp11[t] * tmp12$first[,,t]
thirteenth.tmp$second[t] <- tmp11[t] * tmp12$second[t]
}
tmp13 <- matrix(0,r.size,block)
for(t in 1:block){
tmp13[,t] <- tmp11[t] * b2[,t]
}
fourteenth.tmp <- I_12(tmp13,b4,env)
tmp14 <- I_12(b4,b2,env)
fifteenth.tmp <- tmp14
for(t in 1:block){
fifteenth.tmp$first[,,t] <- tmp11[t] * tmp14$first[,,t]
fifteenth.tmp$second[t] <- tmp11[t] * tmp14$second[t]
}
tmp15 <- matrix(0,r.size,block)
for(t in 1:block){
tmp15[,t] <- tmp11[t] * b4[,t]
}
sixteenth.tmp <- I_12(tmp15,b2,env)
tmp16 <- b1_b2(b4,b2,env)
tmp17 <- matrix(0,r.size,block)
for(t in 1:block){
tmp17[,t] <- tmp16[t] * b3[,t]
}
tmp18 <- b1b2(b1,tmp17,env)
seventeenth.tmp <- I0(tmp18,env)
first <- first.tmp$first + second.tmp$first + third.tmp$first +
seventh.tmp$first + eighth.tmp$first + ninth.tmp$first
second <- first.tmp$second + second.tmp$second + third.tmp$second +
fourth.tmp$first + fifth.tmp$first - sixth.tmp$first +
seventh.tmp$second + eighth.tmp$second + ninth.tmp$second +
tenth.tmp$first + eleventh.tmp$first - twelfth.tmp$first +
thirteenth.tmp$first - fourteenth.tmp$first +
fifteenth.tmp$first - sixteenth.tmp$first
third <- first.tmp$third + second.tmp$third + third.tmp$third +
fourth.tmp$second + fifth.tmp$second - sixth.tmp$second +
seventh.tmp$third + eighth.tmp$third + ninth.tmp$third +
tenth.tmp$second + eleventh.tmp$second - twelfth.tmp$second +
thirteenth.tmp$second - fourteenth.tmp$second +
fifteenth.tmp$second - sixteenth.tmp$second +
seventeenth.tmp
return(list(first=first,second=second,third=third))
}
I_12_34_x <- function(x,get_I_12_34,env){
result <- I_1234_x(x,get_I_12_34,env)
return(result)
}
#first:k*k*k*k*t, second:k*k*t, third:t
I_1_2_34 <- function(b1,b2,b3,b4,env){
division <- env$division
first.tmp <- I_12_34(b1,b2,b3,b4,env)
second.tmp <- I_12_34(b2,b1,b3,b4,env)
tmp1 <- b1_b2(b1,b2,env)
tmp2 <- I_12(b3,b4,env)
third.tmp <- tmp2
for(t in 1:division){
third.tmp$first[,,t] <- tmp1[t] * tmp2$first[,,t]
third.tmp$second[t] <- tmp1[t] * tmp2$second[t]
}
first <- first.tmp$first + second.tmp$first
second <- first.tmp$second + second.tmp$second + third.tmp$first
third <- first.tmp$third + second.tmp$third + third.tmp$second
return(list(first=first,second=second,third=third))
}
I_1_2_34_x <- function(x,get_I_1_2_34,env){
result <- I_1234_x(x,get_I_1_2_34,env)
return(result)
}
I_1_2_3_4 <- function(b1,b2,b3,b4){
}
##p16 Lemma3
I0_a <- function(b1,c1,env){
r.size <- env$r.size
block <- env$block
first.coef <- I0(c1,env)
first <- b1
if(r.size == 1){
b1 <- matrix(b1,1,block)
}
second <- matrix(0,r.size,block)
for(r in 1:r.size){
second[r,] <- first.coef * b1[r,]
}
return(list(first.coef=first.coef,first=first,second=second))
}
I0_b <- function(b1,b2,c1,env){
r.size <- env$r.size
block <- env$block
first.coef <- I0(c1,env)
first <- list()
first[[1]] <- b1
first[[2]] <- b2
second <- list()
second[[1]] <- matrix(0,r.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
}
for(r in 1:r.size){
second[[1]][r,] <- first.coef * b1[r,]
}
second[[2]] <- b2
return(list(first.coef=first.coef,first=first,second=second))
}
I0_c <- function(b1,b2,c1,c2,env){
r.size <- env$r.size
block <- env$block
tmp1 <- I0(c2,env)
tmp2 <- c1 * tmp1
first.coef <- I0(tmp2,env)
first <- list()
first[[1]] <- b1
first[[2]] <- b2
second <- list()
second[[1]] <- matrix(0,r.size,block)
if(r.size == 1){
b1 <- matrix(b1,1,block)
}
for(r in 1:r.size){
second[[1]][r,] <- first.coef * b1[r,]
}
second[[2]] <- b2
third.coef <- I0(c1,env)
third <- list()
third[[1]] <- matrix(0,r.size,block)
for(r in 1:r.size){
third[[1]][r,] <- tmp1 * b1[r,]
}
third[[2]] <- b2
fourth <- list()
fourth[[1]] <- matrix(0,r.size,block)
for(r in 1:r.size){
fourth[[1]][r,] <- third.coef * tmp1 * b1[r,]
}
fourth[[2]] <- b2
return(list(first.coef=first.coef,first=first,second=second,
third.coef=third.coef,third=third,fourth=fourth))
}
#d*t
Y_e_V0 <- function(X.t0,de.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- matrix(0,d.size,block)
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(d in 1:d.size){
tmp[d] <- eval(de.drift[[d]])
}
result[,t] <- invY[,,t] %*% tmp
}
return(result)
}
#d*r*t
Y_e_V <- function(X.t0,de.diffusion,env){
d.size <- env$d.size
r.size <- env$r.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,r.size,block))
tmp <- matrix(0,d.size,r.size)
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i in 1:d.size){
for(r in 1:r.size){
tmp[i,r] <- eval(de.diffusion[[i]][[r]])
}
}
result[,,t] <- invY[,,t] %*% tmp
}
return(result)
}
#d*t
Y_D <- function(X.t0,tmpY,get_Y_e_V0,env){
d.size <- env$d.size
delta <- env$delta
block <- env$block
Diff <- env$Diff
result <- matrix(0,d.size,block)
for(i in 1:d.size){
for(t in 2:block){
result[i,] <- get_Y_e_V0[i,] %*% Diff[t,] * delta
}
}
for(t in 2:block){
result[,t] <- tmpY[,,t] %*% result[,t]
}
return(result)
}
#d*d*d*t
Y_x1_x2_V0 <- function(X.t0,dxdx.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,d.size,block))
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp.drift <- dxdx.drift[[i1]][[i2]]
for(d in 1:d.size){
tmp[d] <- eval(tmp.drift[[d]])
}
result[i1,i2,,t] <- invY[,,t] %*% tmp
}
}
}
return(result)
}
#d*d*d*r*t
Y_x1_x2_V <- function(X.t0,dxdx.diffusion,env){
d.size <- env$d.size
r.size <- env$r.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,d.size,r.size,block))
tmp <- matrix(0,d.size,r.size)
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp.diffusion <- dxdx.diffusion[[i1]][[i2]]
for(i in 1:d.size){
for(r in 1:r.size){
tmp[i,r] <- eval(tmp.diffusion[[i]][[r]])
}
}
result[i1,i2,,,t] <- invY[,,t] %*% tmp
}
}
}
return(result)
}
#d*d*t
Y_x_e_V0 <- function(X.t0,dxde.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,block))
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
tmp.drift <- dxde.drift[[i1]]
for(d in 1:d.size){
tmp[d] <- eval(tmp.drift[[d]])
}
result[i1,,t] <- invY[,,t] %*% tmp
}
}
return(result)
}
#d*d*r*t
Y_x_e_V <- function(X.t0,dxde.diffusion,env){
d.size <- env$d.size
r.size <- env$r.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,r.size,block))
tmp <- matrix(0,d.size,r.size)
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
tmp.diffusion <- dxde.diffusion[[i1]]
for(i in 1:d.size){
for(r in 1:r.size){
tmp[i,r] <- eval(tmp.diffusion[[i]][[r]])
}
}
result[i1,,,t] <- invY[,,t] %*% tmp
}
}
return(result)
}
#d*t
Y_e_e_V0 <- function(X.t0,dede.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- matrix(0,d.size,block)
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(d in 1:d.size){
tmp[d] <- eval(dede.drift[[d]])
}
result[,t] <- invY[,,t] %*% tmp
}
return(result)
}
#d*r*t
Y_e_e_V <- function(X.t0,dede.diffusion,env){
d.size <- env$d.size
r.size <- env$r.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,r.size,block))
tmp <- matrix(0,d.size,r.size)
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i in 1:d.size){
for(r in 1:r.size){
tmp[i,r] <- eval(dede.diffusion[[i]][[r]])
}
}
result[,,t] <- invY[,,t] %*% tmp
}
return(result)
}
#d*d*d*d*t
Y_x1_x2_x3_V0 <- function(X.t0,dxdxdx.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,d.size,d.size,block))
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp.drift <- dxdxdx.drift[[i1]][[i2]][[i3]]
for(d in 1:d.size){
tmp[d] <- eval(tmp.drift[[d]])
}
result[i1,i2,i3,,t] <- invY[,,t] %*% tmp
}
}
}
}
return(result)
}
#d*d*d*t
Y_x1_x2_e_V0 <- function(X.t0,dxdxde.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,d.size,block))
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp.drift <- dxdxde.drift[[i1]][[i2]]
for(d in 1:d.size){
tmp[d] <- eval(tmp.drift[[d]])
}
result[i1,i2,,t] <- invY[,,t] %*% tmp
}
}
}
return(result)
}
#d*d*d*r*t
Y_x1_x2_e_V <- function(X.t0,dxdxde.diffusion,env){
d.size <- env$d.size
r.size <- env$r.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,d.size,r.size,block))
tmp <- matrix(0,d.size,r.size)
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp.diffusion <- dxdxde.diffusion[[i1]][[i2]]
for(i in 1:d.size){
for(r in 1:r.size){
tmp[i,r] <- eval(tmp.diffusion[[i]][[r]])
}
}
result[i1,i2,,,t] <- invY[,,t] %*% tmp
}
}
}
return(result)
}
#d*d*t
Y_x_e_e_V0 <- function(X.t0,dxdede.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,block))
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
tmp.drift <- dxdede.drift[[i1]]
for(d in 1:d.size){
tmp[d] <- eval(tmp.drift[[d]])
}
result[i1,,t] <- invY[,,t] %*% tmp
}
}
return(result)
}
#d*d*r*t
Y_x_e_e_V <- function(X.t0,dxdede.diffusion,env){
d.size <- env$d.size
r.size <- env$r.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,r.size,block))
tmp <- matrix(0,d.size,r.size)
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
tmp.diffusion <- dxdede.diffusion[[i1]]
for(i in 1:d.size){
for(r in 1:r.size){
tmp[i,r] <- eval(tmp.diffusion[[i]][[r]])
}
}
result[i1,,,t] <- invY[,,t] %*% tmp
}
}
return(result)
}
#d*t
Y_e_e_e_V0 <- function(X.t0,dedede.drift,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- matrix(0,d.size,block)
tmp <- c()
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(d in 1:d.size){
tmp[d] <- eval(dedede.drift[[d]])
}
result[,t] <- invY[,,t] %*% tmp
}
return(result)
}
#d*r*t
Y_e_e_e_V <- function(X.t0,dedede.diffusion,env){
d.size <- env$d.size
r.size <- env$r.size
state <- env$state
pars <- env$pars
invY <- env$invY
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,r.size,block))
tmp <- matrix(0,d.size,r.size)
assign(pars[1],0)
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i in 1:d.size){
for(r in 1:r.size){
tmp[i,r] <- eval(dedede.diffusion[[i]][[r]])
}
}
result[,,t] <- invY[,,t] %*% tmp
}
return(result)
}
D0_t <- function(tmpY, get_Y_D, get_Y_e_V){
first <- get_Y_D
second.coef <- tmpY
second <- get_Y_e_V
return(list(first=first,second.coef=second.coef,second=second))
}
#i*t
e_t <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V0, get_Y_e_e_V0, env){
d.size <- env$d.size
delta <- env$delta
block <- env$block
Diff <- env$Diff
result <- matrix(0,d.size,block)
first <- matrix(0,d.size,block)
second <- matrix(0,d.size,block)
third <- matrix(0,d.size,block)
fourth <- matrix(0,d.size,block)
first.tmp <- array(0,dim=c(d.size,d.size,block))
second.tmp <- array(0,dim=c(d.size,d.size,block))
third.tmp <- array(0,dim=c(d.size,d.size,block))
for(i in 1:d.size){
for(j in 1:d.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp1 <- b1_b2(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
tmp2 <- double(block)
for(t in 2:block){
tmp2[t] <- (get_Y_x1_x2_V0[i1,i2,j,] *
tmpY[i1,j1,] * tmpY[i2,j2,] *
tmp1) %*% Diff[t,] * delta
}
first.tmp[i,j,] <- first.tmp[i,j,] + tmp2
}
}
tmp3 <- double(block)
for(t in 2:block){
tmp3[t] <- (get_Y_x1_x2_V0[i1,i2,j,] * get_Y_D[i1,] *
get_Y_D[i2,]) %*% Diff[t,] * delta
}
second.tmp[i,j,] <- second.tmp[i,j,] + tmp3
}
tmp4 <- double(block)
for(t in 2:block){
tmp4[t] <- (get_Y_x_e_V0[i1,j,] *
get_Y_D[i1,]) %*% Diff[t,] * delta
}
third.tmp[i,j,] <- third.tmp[i,j,] + tmp4
}
tmp5 <- double(block)
for(t in 2:block){
tmp5[t] <- get_Y_e_e_V0[j,] %*% Diff[t,] * delta
}
first[i,] <- first[i,] + first.tmp[i,j,] * tmpY[i,j,]
second[i,] <- second[i,] + second.tmp[i,j,] * tmpY[i,j,]
third[i,] <- third[i,] + 2 * third.tmp[i,j,] * tmpY[i,j,]
fourth[i,] <- fourth[i,] + tmp5 * tmpY[i,j,]
}
}
result <- first + second + third + fourth
return(result)
}
#j1*j*s
U_t <- function(tmpY, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V0, env){
d.size <- env$d.size
block <- env$block
result <- array(0,dim=c(d.size,d.size,block))
first <- array(0,dim=c(d.size,d.size,block))
second <- array(0,dim=c(d.size,d.size,block))
for(j1 in 1:d.size){
for(j in 1:d.size){
for(s in 1:block){
for(i1 in 1:d.size){
tmp.Y <- as.matrix(tmpY[,,s])
for(i2 in 1:d.size){
first[j1,j,s] <- first[j1,j,s] + get_Y_x1_x2_V0[i1,i2,j,s] *
get_Y_D[i1,s] * tmp.Y[i2,j1]
}
second[j1,j,s] <- second[j1,j,s] + get_Y_x_e_V0[i1,j,s] *
tmp.Y[i1,j1]
}
}
}
}
result <- first + second
return(result)
}
#j1*j*r*t
U_hat_t <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_x_e_V, env){
d.size <- env$d.size
r.size <- env$r.size
block <- env$block
result <- array(0,dim=c(d.size,d.size,r.size,block))
first <- array(0,dim=c(d.size,d.size,r.size,block))
second <- array(0,dim=c(d.size,d.size,r.size,block))
for(j1 in 1:d.size){
for(j in 1:d.size){
for(s in 1:block){
tmp.Y <- as.matrix(tmpY[,,s])
for(i1 in 1:d.size){
first[j1,j,,s] <- first[j1,j,,s] + get_Y_x_e_V[i1,j,,s] *
tmp.Y[i1,j1]
}
}
}
}
for(j1 in 1:d.size){
for(j in 1:d.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(j2 in 1:d.size){
tmp1 <- get_Y_x1_x2_V0[i1,i2,j,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
tmp2 <- I0(tmp1,env)
tmp3 <- matrix(0,r.size,block)
for(r in 1:r.size){
tmp3[r,] <- tmp2 * get_Y_e_V[j2,r,]
}
second[j1,j,,] <- second[j1,j,,] + tmp3
}
}
}
}
}
result <- first - second
return(result)
}
E0_t <- function(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env){
d.size <- env$d.size
r.size <- env$r.size
block <- env$block
first <- get_e_t
second.coef <- array(0,dim=c(d.size,d.size,d.size,block)) # i, j1, j2, t
for(i in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(j in 1:d.size){
tmp2 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp1 <- get_Y_x1_x2_V0[i1,i2,j,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
tmp2 <- tmp2 + tmp1
}
}
second.coef[i,j1,j2,] <- second.coef[i,j1,j2,] +
2 * tmpY[i,j,] * I0(tmp2,env)
}
}
}
}
second <- list()
second[[1]] <- get_Y_e_V
second[[2]] <- get_Y_e_V
third.coef <- array(0,dim=c(d.size,d.size,block)) # i, j1, t
for(j1 in 1:d.size){
for(j in 1:d.size){
tmp3 <- I0(get_U_t[j1,j,],env)
for(i in 1:d.size){
third.coef[i,j1,] <- third.coef[i,j1,] +
2 * tmpY[i,j,] * tmp3
}
}
}
third <- get_Y_e_V
fourth.coef <- - 2 * tmpY
fourth <- array(0,dim=c(d.size,r.size,block))
for(j in 1:d.size){
for(j1 in 1:d.size){
tmp4 <- I0(get_U_t[j1,j,],env)
for(r in 1:r.size){
fourth[j,r,] <- fourth[j,r,] + tmp4 * get_Y_e_V[j1,r,]
}
}
}
fifth.coef <- 2 * tmpY
fifth <- list()
fifth[[1]] <- get_U_hat_t
fifth[[2]] <- get_Y_e_V
sixth.coef <- tmpY
sixth <- get_Y_e_e_V
return(list(first=first,second.coef=second.coef,second=second,
third.coef=third.coef,third=third,
fourth.coef=fourth.coef,fourth=fourth,
fifth.coef=fifth.coef,fifth=fifth,
sixth.coef=sixth.coef,sixth=sixth))
}
#l*t
e_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- matrix(0,k.size,block)
assign(pars[1],0)
de.f0 <- list()
for(k in 1:k.size){
de.f0[[k]] <- parse(text=deparse(D(tmp.f[[1]][k],pars[1])))
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
result[k,t] <- eval(de.f0[[k]])
}
}
return(result)
}
#l*r*t
e_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,r.size,block))
assign(pars[1],0)
de.f <- list()
for(k in 1:k.size){
de.f[[k]] <- list()
for(r in 1:r.size){
de.f[[k]][r] <- parse(text=deparse(D(tmp.f[[r+1]][k],pars[1])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(r in 1:r.size){
result[k,r,t] <- eval(de.f[[k]][[r]])
}
}
}
return(result)
}
#l*i*t
x_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,block))
assign(pars[1],0)
dx.f0 <- list()
for(k in 1:k.size){
dx.f0[[k]] <- list()
for(i in 1:d.size){
dx.f0[[k]][i] <- parse(text=deparse(D(tmp.f[[1]][k],state[i])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i in 1:d.size){
result[k,i,t] <- eval(dx.f0[[k]][[i]])
}
}
}
return(result)
}
#l*i1*i2*t
x1_x2_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,block))
assign(pars[1],0)
dxdx.f0 <- list()
for(k in 1:k.size){
dxdx.f0[[k]] <- list()
for(i1 in 1:d.size){
dxdx.f0[[k]][[i1]] <- list()
for(i2 in 1:d.size){
dxdx.f0[[k]][[i1]][i2] <- parse(text=deparse(D(D(tmp.f[[1]][k],state[i2]),state[i1])))
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
result[k,i1,i2,t] <- eval(dxdx.f0[[k]][[i1]][[i2]])
}
}
}
}
return(result)
}
#l*i1*i2*r*t
x1_x2_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,r.size,block))
assign(pars[1],0)
dxdx.f <- list()
for(k in 1:k.size){
dxdx.f[[k]] <- list()
for(i1 in 1:d.size){
dxdx.f[[k]][[i1]] <- list()
for(i2 in 1:d.size){
dxdx.f[[k]][[i1]][[i2]] <- list()
for(r in 1:r.size){
dxdx.f[[k]][[i1]][[i2]][r] <- parse(text=deparse(D(D(tmp.f[[r+1]][k],state[i2]),state[i1])))
}
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
result[k,i1,i2,r,t] <- eval(dxdx.f[[k]][[i1]][[i2]][[r]])
}
}
}
}
}
return(result)
}
#l*i*t
x_e_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,block))
assign(pars[1],0)
dxde.f0 <- list()
for(k in 1:k.size){
dxde.f0[[k]] <- list()
for(i in 1:d.size){
dxde.f0[[k]][i] <- parse(text=deparse(D(D(tmp.f[[1]][k],pars[1]),state[i])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i in 1:d.size){
result[k,i,t] <- eval(dxde.f0[[k]][[i]])
}
}
}
return(result)
}
#l*i*r*t
x_e_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,r.size,block))
assign(pars[1],0)
dxde.f <- list()
for(k in 1:k.size){
dxde.f[[k]] <- list()
for(i in 1:d.size){
dxde.f[[k]][[i]] <- list()
for(r in 1:r.size){
dxde.f[[k]][[i]][r] <- parse(text=deparse(D(D(tmp.f[[r+1]][k],pars[1]),state[i])))
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i in 1:d.size){
for(r in 1:r.size){
result[k,i,r,t] <- eval(dxde.f[[k]][[i]][[r]])
}
}
}
}
return(result)
}
#l*t
e_e_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- matrix(0,k.size,block)
assign(pars[1],0)
dede.f0 <- list()
for(k in 1:k.size){
dede.f0[[k]] <- parse(text=deparse(D(D(tmp.f[[1]][k],pars[1]),pars[1])))
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
result[k,t] <- eval(dede.f0[[k]])
}
}
return(result)
}
#l*r*t
e_e_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,r.size,block))
assign(pars[1],0)
dede.f <- list()
for(k in 1:k.size){
dede.f[[k]] <- list()
for(r in 1:r.size){
dede.f[[k]][r] <- parse(text=deparse(D(D(tmp.f[[r+1]][k],pars[1]),pars[1])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(r in 1:r.size){
result[k,r,t] <- eval(dede.f[[k]][[r]])
}
}
}
return(result)
}
#l*i1*i2*i3*t
x1_x2_x3_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,d.size,block))
assign(pars[1],0)
dxdxdx.f0 <- list()
for(k in 1:k.size){
dxdxdx.f0[[k]] <- list()
for(i1 in 1:d.size){
dxdxdx.f0[[k]][[i1]] <- list()
for(i2 in 1:d.size){
dxdxdx.f0[[k]][[i1]][[i2]] <- list()
for(i3 in 1:d.size){
dxdxdx.f0[[k]][[i1]][[i2]][i3] <- parse(text=deparse(D(D(D(tmp.f[[1]][k],state[i3]),state[i2]),state[i1])))
}
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
result[k,i1,i2,i3,t] <- eval(dxdxdx.f0[[k]][[i1]][[i2]][[i3]])
}
}
}
}
}
return(result)
}
#l*i1*i2*i3*r*t
x1_x2_x3_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,d.size,r.size,block))
assign(pars[1],0)
dxdxdx.f <- list()
for(k in 1:k.size){
dxdxdx.f[[k]] <- list()
for(i1 in 1:d.size){
dxdxdx.f[[k]][[i1]] <- list()
for(i2 in 1:d.size){
dxdxdx.f[[k]][[i1]][[i2]] <- list()
for(i3 in 1:d.size){
dxdxdx.f[[k]][[i1]][[i2]][[i3]] <- list()
for(r in 1:r.size){
dxdxdx.f[[k]][[i1]][[i2]][[i3]][r] <- parse(text=deparse(D(D(D(tmp.f[[r+1]][k],state[i3]),state[i2]),state[i1])))
}
}
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
for(r in 1:r.size){
result[k,i1,i2,i3,r,t] <- eval(dxdxdx.f[[k]][[i1]][[i2]][[i3]][[r]])
}
}
}
}
}
}
return(result)
}
#l*i1*i2*t
x1_x2_e_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,block))
assign(pars[1],0)
dxdxde.f0 <- list()
for(k in 1:k.size){
dxdxde.f0[[k]] <- list()
for(i1 in 1:d.size){
dxdxde.f0[[k]][[i1]] <- list()
for(i2 in 1:d.size){
dxdxde.f0[[k]][[i1]][i2] <- parse(text=deparse(D(D(D(tmp.f[[1]][k],pars[1]),state[i2]),state[i1])))
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
result[k,i1,i2,t] <- eval(dxdxde.f0[[k]][[i1]][[i2]])
}
}
}
}
return(result)
}
#l*i1*i2*r*t
x1_x2_e_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,r.size,block))
assign(pars[1],0)
dxdxde.f <- list()
for(k in 1:k.size){
dxdxde.f[[k]] <- list()
for(i1 in 1:d.size){
dxdxde.f[[k]][[i1]] <- list()
for(i2 in 1:d.size){
dxdxde.f[[k]][[i1]][[i2]] <- list()
for(r in 1:r.size){
dxdxde.f[[k]][[i1]][[i2]][r] <- parse(text=deparse(D(D(D(tmp.f[[r+1]][k],pars[1]),state[i2]),state[i1])))
}
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
result[k,i1,i2,r,t] <- eval(dxdxde.f[[k]][[i1]][[i2]][[r]])
}
}
}
}
}
return(result)
}
#l*i*t
x_e_e_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,block))
assign(pars[1],0)
dxdede.f0 <- list()
for(k in 1:k.size){
dxdede.f0[[k]] <- list()
for(i in 1:d.size){
dxdede.f0[[k]][i] <- parse(text=deparse(D(D(D(tmp.f[[1]][k],pars[1]),pars[1]),state[i])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i in 1:d.size){
result[k,i,t] <- eval(dxdede.f0[[k]][[i]])
}
}
}
return(result)
}
#l*i*r*t
x_e_e_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,r.size,block))
assign(pars[1],0)
dxdede.f <- list()
for(k in 1:k.size){
dxdede.f[[k]] <- list()
for(i in 1:d.size){
dxdede.f[[k]][[i]] <- list()
for(r in 1:r.size){
dxdede.f[[k]][[i]][r] <- parse(text=deparse(D(D(D(tmp.f[[r+1]][k],pars[1]),pars[1]),state[i])))
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(i in 1:d.size){
for(r in 1:r.size){
result[k,i,r,t] <- eval(dxdede.f[[k]][[i]][[r]])
}
}
}
}
return(result)
}
#l*t
e_e_e_f0 <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- matrix(0,k.size,block)
assign(pars[1],0)
dedede.f0 <- list()
for(k in 1:k.size){
dedede.f0[[k]] <- parse(text=deparse(D(D(D(tmp.f[[1]][k],pars[1]),pars[1]),pars[1])))
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
result[k,t] <- eval(dedede.f0[[k]])
}
}
return(result)
}
#l*r*t
e_e_e_f <- function(X.t0,tmp.f,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,r.size,block))
dedede.f <- list()
for(k in 1:k.size){
dedede.f[[k]] <- list()
for(r in 1:r.size){
dedede.f[[k]][r] <- parse(text=deparse(D(D(D(tmp.f[[r+1]][k],pars[1]),pars[1]),pars[1])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(k in 1:k.size){
for(r in 1:r.size){
result[k,r,t] <- eval(dedede.f[[k]][[r]])
}
}
}
return(result)
}
##p.19
#l*t
F_t <- function(tmpY, get_Y_e_V, get_Y_D, get_x1_x2_f0, get_x_e_f0, get_e_e_f0, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
delta <- env$delta
block <- env$block
Diff <- env$Diff
result <- matrix(0,k.size,block)
first <- matrix(0,k.size,block)
second <- matrix(0,k.size,block)
third <- matrix(0,k.size,block)
fourth <- matrix(0,k.size,block)
for(l in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp1 <- b1_b2(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
tmp2 <- double(block)
for(t in 2:block){
tmp2[t] <- (get_x1_x2_f0[l,i1,i2,] *
tmpY[i1,j1,] * tmpY[i2,j2,] *
tmp1) %*% Diff[t,] * delta
}
first[l,] <- first[l,] + tmp2
}
}
tmp3 <- double(block)
for(t in 2:block){
tmp3[t] <- (get_x1_x2_f0[l,i1,i2,] * get_Y_D[i1,] *
get_Y_D[i2,]) %*% Diff[t,] * delta
}
second[l,] <- second[l,] + tmp3
}
tmp4 <- double(block)
for(t in 2:block){
tmp4[t] <- (get_x_e_f0[l,i1,] *
get_Y_D[i1,]) %*% Diff[t,] * delta
}
third[l,] <- third[l,] + 2 * tmp4
}
tmp5 <- double(block)
for(t in 2:block){
tmp5[t] <- get_e_e_f0[l,] %*% Diff[t,] * delta
}
fourth[l,] <- fourth[l,] + tmp5
}
result <- first + second + third + fourth
return(result)
}
#l*j1*t
W_t <- function(tmpY, get_Y_D, get_x1_x2_f0, get_x_e_f0, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
result <- array(0,dim=c(k.size,d.size,block))
first <- array(0,dim=c(k.size,d.size,block))
second <- array(0,dim=c(k.size,d.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
first[l,j1,] <- first[l,j1,] + get_x1_x2_f0[l,i1,i2,] *
get_Y_D[i1,] * tmpY[i2,j1,]
}
second[l,j1,] <- second[l,j1,] + get_x_e_f0[l,i1,] *
tmpY[i1,j1,]
}
}
}
result <- first + second
return(result)
}
#l*j1*r*t
W_hat_t <- function(tmpY, get_Y_e_V, get_x1_x2_f0, get_x_e_f, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
result <- array(0,dim=c(k.size,d.size,r.size,block))
first <- array(0,dim=c(k.size,d.size,r.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
for(r in 1:r.size){
for(i1 in 1:d.size){
first[l,j1,r,] <- first[l,j1,r,] + get_x_e_f[l,i1,r,] *
tmpY[i1,j1,]
}
}
}
}
second <- array(0,dim=c(k.size,d.size,r.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp2 <- double(block)
tmp3 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp1 <- get_x1_x2_f0[l,i1,i2,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
tmp2 <- tmp2 + tmp1
}
}
for(r in 1:r.size){
tmp3[r,] <- I0(tmp2,env) * get_Y_e_V[j2,r,]
}
second[l,j1,,] <- second[l,j1,,] + tmp3
}
}
}
result <- first - second
return(result)
}
#first:l, second:l*j2*r*t&j2*r*t, third:l*r*t
F_tilde1_1 <- function(tmpY, get_Y_e_V, get_x1_x2_f0, get_e_e_f, get_F_t, get_W_t, get_W_hat_t, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first <- get_F_t[block]
second <- list()
second[[1]] <- array(0,dim=c(k.size,d.size,r.size,block))
second[[2]] <- get_Y_e_V
for(l in 1:k.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp2 <- double(block)
tmp3 <- double(1)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp1 <- get_x1_x2_f0[l,i1,i2,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
tmp2 <- tmp2 + tmp1
}
}
tmp3 <- tmp3 + 2 * I0(tmp2,env)[block]
for(r in 1:r.size){
second[[1]][l,j2,r,] <- second[[1]][l,j2,r,] +
tmp3 * get_Y_e_V[j1,r,]
}
}
}
}
third.coef <- array(0,dim=c(k.size,d.size,block)) #l, j1, t
third <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
third.coef[l,j1,] <- 2 * I0(get_W_t[l,j1,],env)
for(r in 1:r.size){
third[l,r,] <- third[l,r,] +
third.coef[l,j1,block] * get_Y_e_V[j1,r,]
}
}
}
fourth <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
for(r in 1:r.size){
fourth[l,r,] <- fourth[l,r,] -
third.coef[l,j1,] * get_Y_e_V[j1,r,]
}
}
}
fifth <- list()
fifth[[1]] <- 2 * get_W_hat_t
fifth[[2]] <- get_Y_e_V
sixth <- get_e_e_f
second[[1]] <- second[[1]] + fifth[[1]]
third <- third + fourth + sixth
return(list(first=first,second=second,third=third))
}
#first:d*k*k*t, second:d*k*t, third:d*t
E0_bar <- function(get_E0_t,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- get_E0_t$first
second.coef <- get_E0_t$second.coef
second.wtmp <- get_E0_t$second
second.tmp <- list()
second.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
second.tmp$second <- matrix(0,d.size,block)
n1 <- length(second.coef)
n2 <- sum(second.coef == 0)
n3 <- length(second.wtmp[[1]])
n4 <- sum(second.wtmp[[1]] == 0)
n5 <- length(second.wtmp[[2]])
n6 <- sum(second.wtmp[[2]] == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) * (n5 - n6 != 0)
for(j1 in 1:1:d.size){
if(n == 0){
break
}
for(j2 in 1:d.size){
tmp1 <- I_12(second.wtmp[[1]][j1,,],second.wtmp[[2]][j2,,],env)
for(i in 1:d.size){
for(t in 1:block){
second.tmp$first[i,,,t] <- second.tmp$first[i,,,t] +
second.coef[i,j1,j2,t] * tmp1$first[,,t]
second.tmp$second[i,t] <- second.tmp$second[i,t] +
second.coef[i,j1,j2,t] * tmp1$second[t]
}
}
}
}
third.coef <- get_E0_t$third.coef
third.wtmp <- get_E0_t$third
third.tmp <- array(0,dim=c(d.size,k.size,block))
n7 <- length(third.coef)
n8 <- sum(third.coef == 0)
n9 <- length(third.wtmp)
n10 <- sum(third.wtmp == 0)
n <- (n7 - n8 != 0) * (n9 - n10 != 0)
for(i in 1:d.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
tmp2 <- I_1(third.wtmp[j1,,],env)
for(t in 1:block){
third.tmp[i,,t] <- third.tmp[i,,t] + third.coef[i,j1,t] * tmp2[,t]
}
}
}
fourth.coef <- get_E0_t$fourth.coef
fourth.wtmp <- get_E0_t$fourth
fourth.tmp <- array(0,dim=c(d.size,k.size,block))
fifth.coef <- get_E0_t$fifth.coef
fifth.wtmp <- get_E0_t$fifth
fifth.tmp <- list()
fifth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
fifth.tmp$second <- matrix(0,d.size,block)
sixth.coef <- get_E0_t$sixth.coef
sixth.wtmp <- get_E0_t$sixth
sixth.tmp <- array(0,dim=c(d.size,k.size,block))
n11 <- length(sixth.wtmp)
n12 <- sum(sixth.wtmp == 0)
n <- n11 - n12
for(i in 1:d.size){
for(j in 1:d.size){
tmp3 <- I_1(fourth.wtmp[j,,],env)
for(k in 1:k.size){
fourth.tmp[i,k,] <- fourth.tmp[i,k,] +
fourth.coef[i,j,] * tmp3[k,]
}
for(j1 in 1:d.size){
tmp4 <- I_12(fifth.wtmp[[1]][j1,j,,],fifth.wtmp[[2]][j1,,],env)
for(t in 1:block){
fifth.tmp$first[i,,,t] <- fifth.tmp$first[i,,,t] +
fifth.coef[i,j,t] * tmp4$first[,,t]
fifth.tmp$second[i,t] <- fifth.tmp$second[i,t] +
fifth.coef[i,j,t] * tmp4$second[t]
}
}
}
if(n == 0){
next
}
tmp5 <- I_1(sixth.wtmp[j,,],env)
for(i in 1:d.size){
for(k in 1:k.size){
sixth.tmp[i,k,] <- sixth.tmp[i,k,] +
sixth.coef[i,j,] * tmp5[k,]
}
}
}
first <- second.tmp$first + fifth.tmp$first
second <- third.tmp + fourth.tmp + sixth.tmp
third <- first.tmp + second.tmp$second + fifth.tmp$second
return(list(first=first,second=second,third=third))
}
E0_bar_x <- function(x,get_E0_bar,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
result <- double(d.size)
for(i in 1:d.size){
first.tmp <- list()
first.tmp$first <- get_E0_bar$first[i,,,]
first.tmp$second <- get_E0_bar$third[i,]
second.tmp <- get_E0_bar$second[i,,]
result1 <- I_12_x(x,first.tmp,env)
result2 <- I_1_x(x,second.tmp,env)
result[i] <- result1 + result2
}
return(result)
}
#first:l, second:l*j2*r*t&j2*r*t, third:l*r*t
F_tilde1_2 <- function(get_E0_t,get_x_f0,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
result1 <- get_E0_t$first
first <- double(k.size)
for(l in 1:k.size){
for(i in 1:d.size){
tmp1 <- get_x_f0[l,i,] * result1[i,]
first[l] <- first[l] + I0(tmp1,env)[block]
}
}
result2.coef <- get_E0_t$second.coef
result2 <- get_E0_t$second[[1]]
second <- list()
second[[1]] <- array(0,dim=c(k.size,d.size,r.size,block)) #l,j2,r,t
second[[2]] <- result2
third <- list()
third[[1]] <- array(0,dim=c(k.size,d.size,r.size,block))
third[[2]] <- result2
for(l in 1:k.size){
for(j2 in 1:d.size){
for(j1 in 1:d.size){
tmp3 <- double(block)
for(i in 1:d.size){
tmp2 <- get_x_f0[l,i,] * result2.coef[i,j1,j2,]
tmp3 <- tmp3 + tmp2
}
tmp4 <- I0(tmp3,env)
for(r in 1:r.size){
second[[1]][l,j2,r,] <- second[[1]][l,j2,r,] +
tmp4[block] * result2[j1,r,]
third[[1]][l,j2,r,] <- third[[1]][l,j2,r,] -
tmp4 * result2[j1,r,]
}
}
}
}
result4.coef <- get_E0_t$third.coef
fourth <- array(0,dim=c(k.size,r.size,block))
fifth <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
tmp6 <- double(block)
for(i in 1:d.size){
tmp5 <- get_x_f0[l,i,] * result4.coef[i,j1,]
tmp6 <- tmp6 + tmp5
}
tmp7 <- I0(tmp6,env)
for(r in 1:r.size){
fourth[l,r,] <- fourth[l,r,] + tmp7[block] * result2[j1,r,]
fifth[l,r,] <- fifth[l,r,] - tmp7 * result2[j1,r,]
}
}
}
result6.coef <- get_E0_t$fourth.coef
result6 <- get_E0_t$fourth
result8 <- get_E0_t$fifth[[1]]
result10 <- get_E0_t$sixth
sixth <- array(0,dim=c(k.size,r.size,block))
seventh <- array(0,dim=c(k.size,r.size,block))
eighth <- list()
eighth[[1]] <- array(0,dim=c(k.size,d.size,r.size,block))
eighth[[2]] <- result2
ninth <- list()
ninth[[1]] <- array(0,dim=c(k.size,d.size,r.size,block))
ninth[[2]] <- result2
tenth <- array(0,dim=c(k.size,r.size,block))
eleventh <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j in 1:d.size){
tmp9 <- double(block)
for(i in 1:d.size){
tmp8 <- get_x_f0[l,i,] * result6.coef[i,j,]
tmp9 <- tmp9 + tmp8
}
tmp10 <- I0(tmp9,env)
for(r in 1:r.size){
sixth[l,r,] <- sixth[l,r,] + tmp10[block] * result6[j,r,]
seventh[l,r,] <- seventh[l,r,] - tmp10 * result6[j,r,]
for(j1 in 1:d.size){
eighth[[1]][l,j1,r,] <- eighth[[1]][l,j1,r,] -
tmp10[block] * result8[j1,j,r,]
ninth[[1]][l,j1,r,] <- ninth[[1]][l,j1,r,] +
tmp10 * result8[j1,j,r,]
}
tenth[l,r,] <- tenth[l,r,] -
tmp10[block]/2 * result10[j,r,]
eleventh[l,r,] <- eleventh[l,r,] +
tmp10/2 * result10[j,r,]
}
}
}
second[[1]] <- second[[1]] + third[[1]] + eighth[[1]] +
ninth[[1]]
third <- fourth + fifth + sixth + seventh + tenth + eleventh
return(list(first=first,second=second,third=third))
}
#first:l*t, second.coef:l*j1*j2*t, second:j1*r*t&j2*r*t,
#third.coef:l*j1*t, third:j1*r*t, fourth.coef:l*j*t, fourth:j*r*t,
#fifth.coef:l*j*t, fifth:j1*j*r*t&j1*r*t, sixth.coef:l*j*t,
#sixth:j*r*t
##p.22
#l*i*t
x_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,block))
assign(pars[1],0)
dx.F <- list()
for(l in 1:k.size){
dx.F[[l]] <- list()
for(i in 1:d.size){
dx.F[[l]][i] <- parse(text=deparse(D(F[l],state[i])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
for(i in 1:d.size){
result[l,i,t] <- eval(dx.F[[l]][[i]])
}
}
}
return(result)
}
#l*i1*i2*t
x1_x2_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,block))
assign(pars[1],0)
dxdx.F <- list()
for(l in 1:k.size){
dxdx.F[[l]] <- list()
for(i1 in 1:d.size){
dxdx.F[[l]][[i1]] <- list()
for(i2 in 1:d.size){
dxdx.F[[l]][[i1]][i2] <- parse(text=deparse(D(D(F[l],state[i2]),state[i1])))
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
result[l,i1,i2,t] <- eval(dxdx.F[[l]][[i1]][[i2]])
}
}
}
}
return(result)
}
#l*i*t
x_e_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,block))
assign(pars[1],0)
dxde.F <- list()
for(l in 1:k.size){
dxde.F[[l]] <- list()
for(i in 1:d.size){
dxde.F[[l]][i] <- parse(text=deparse(D(D(F[l],pars[1]),state[i])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
for(i in 1:d.size){
result[l,i,t] <- eval(dxde.F[[l]][[i]])
}
}
}
return(result)
}
#l*t
e_e_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- matrix(0,k.size,block)
assign(pars[1],0)
dede.F <- list()
for(l in 1:k.size){
dede.F[[l]] <- parse(text=deparse(D(D(F[l],pars[1]),pars[1])))
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
result[l,t] <- eval(dede.F[[l]])
}
}
return(result)
}
#l*i1*i2*i3*t
x1_x2_x3_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,d.size,block))
assign(pars[1],0)
dxdxdx.F <- list()
for(l in 1:k.size){
dxdxdx.F[[l]] <- list()
for(i1 in 1:d.size){
dxdxdx.F[[l]][[i1]] <- list()
for(i2 in 1:d.size){
dxdxdx.F[[l]][[i1]][[i2]] <- list()
for(i3 in 1:d.size){
dxdxdx.F[[l]][[i1]][[i2]][i3] <- parse(text=deparse(D(D(D(F[l],state[i3]),state[i2]),state[i1])))
}
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
result[l,i1,i2,i3,t] <- eval(dxdxdx.F[[l]][[i1]][[i2]][[i3]])
}
}
}
}
}
return(result)
}
#l*i1*i2*t
x1_x2_e_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,d.size,block))
assign(pars[1],0)
dxdxde.F <- list()
for(l in 1:k.size){
dxdxde.F[[l]] <- list()
for(i1 in 1:d.size){
dxdxde.F[[l]][[i1]] <- list()
for(i2 in 1:d.size){
dxdxde.F[[l]][[i1]][i2] <- parse(text=deparse(D(D(D(F[l],pars[1]),state[i2]),state[i1])))
}
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
result[l,i1,i2,t] <- eval(dxdxde.F[[l]][[i1]][[i2]])
}
}
}
}
return(result)
}
#l*i*t
x_e_e_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(k.size,d.size,block))
assign(pars[1],0)
dxdede.F <- list()
for(l in 1:k.size){
dxdede.F[[l]] <- list()
for(i in 1:d.size){
dxdede.F[[l]][i] <- parse(text=deparse(D(D(D(F[l],pars[1]),pars[1]),state[i])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
for(i in 1:d.size){
result[l,i,t] <- eval(dxdede.F[[l]][[i]])
}
}
}
return(result)
}
#l*t
e_e_e_F <- function(X.t0,F,env){
d.size <- env$d.size
k.size <- env$k.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- matrix(0,k.size,block)
assign(pars[1],0)
dedede.F <- list()
for(l in 1:k.size){
dedede.F[[l]] <- parse(text=deparse(D(D(D(F[l],pars[1]),pars[1]),pars[1])))
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(l in 1:k.size){
result[l,t] <- eval(dedede.F[[l]])
}
}
return(result)
}
#first:l,second:l*j2*r*t&j2*r*t,third:l*r*t
F_tilde1_3 <- function(get_E0_t,get_x_F,env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
result1 <- get_E0_t$first
first <- double(k.size)
for(l in 1:k.size){
for(i in 1:d.size){
tmp1 <- get_x_F[l,i,block] * result1[i,block]
first[l] <- first[l] + tmp1
}
}
result2.coef <- get_E0_t$second.coef
result2 <- get_E0_t$second[[1]]
second <- list()
second[[1]] <- array(0,dim=c(k.size,d.size,r.size,block))
second[[2]] <- result2
for(l in 1:k.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp3 <- double(1)
for(i in 1:d.size){
tmp2 <- get_x_F[l,i,block] * result2.coef[i,j1,j2,block]
tmp3 <- tmp3 + tmp2
}
for(r in 1:r.size){
second[[1]][l,j2,r,] <- second[[1]][l,j2,r,] +
tmp3 * result2[j1,r,]
}
}
}
}
result3.coef <- get_E0_t$third.coef
third <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
tmp5 <- double(1)
for(i in 1:d.size){
tmp4 <- get_x_F[l,i,block] * result3.coef[i,j1,block]
tmp5 <- tmp5 + tmp4
}
for(r in 1:r.size){
third[l,r,] <- third[l,r,] + tmp5 * result2[j1,r,]
}
}
}
result4.coef <- get_E0_t$fourth.coef
result4 <- get_E0_t$fourth
result5 <- get_E0_t$fifth[[1]]
result6 <- get_E0_t$sixth
fourth <- array(0,dim=c(k.size,r.size,block))
fifth <- list()
fifth[[1]] <- array(0,dim=c(k.size,d.size,r.size,block))
fifth[[2]] <- result2
sixth <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j in 1:d.size){
tmp7 <- double(1)
for(i in 1:d.size){
tmp6 <- get_x_F[l,i,block] * result4.coef[i,j,block]
tmp7 <- tmp7 + tmp6
}
for(r in 1:r.size){
fourth[l,r,] <- fourth[l,r,] + tmp7 * result4[j,r,]
for(j1 in 1:d.size){
fifth[[1]][l,j1,r,] <- fifth[[1]][l,j1,r,] -
tmp7 * result5[j1,j,r,]
}
sixth[l,r,] <- sixth[l,r,] - tmp7/2 * result6[j1,r,]
}
}
}
second[[1]] <- second[[1]] + fifth[[1]]
third <- third + fourth + sixth
return(list(first=first,second=second,third=third))
}
#first:l,second:l*j2*r*t&j2*r*t,third:l*r*t
F_tilde1_4 <- function(tmpY, get_Y_e_V, get_Y_D, get_x_F, get_x1_x2_F, get_x_e_F, get_e_e_F, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first <- double(k.size)
for(l in 1:k.size){
for(i1 in 1:d.size){
for(i2 in 1:d.size){
first[l] <- first[l] + get_x1_x2_F[l,i1,i2,block] *
get_Y_D[i1,block] * get_Y_D[i2,block]
}
}
}
second <- double(k.size)
for(l in 1:k.size){
for(i in 1:d.size){
second[l] <- second[l] + 2 * get_x_e_F[l,i,block] *
get_Y_D[i1,block]
}
}
third <- get_e_e_F[,block]
fourth <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j1 in 1:d.size){
tmp1 <- double(1)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp1 <- tmp1 + 2 * get_x1_x2_F[l,i1,i2,block] *
get_Y_D[i1,block] * tmpY[i2,j1,block]
}
}
for(r in 1:r.size){
fourth[l,r,] <- fourth[l,r,] + tmp1 * get_Y_e_V[j1,r,]
}
}
}
fifth <- array(0,dim=c(k.size,r.size,block))
for(l in 1:k.size){
for(j in 1:d.size){
tmp2 <- double(1)
for(i in 1:d.size){
tmp2 <- tmp2 + 2 * get_x_e_F[l,i,block] * tmpY[i,j,block]
}
for(r in 1:r.size){
fifth[l,r,] <- fifth[l,r,] + tmp2 * get_Y_e_V[j,r,]
}
}
}
sixth <- list()
sixth[[1]] <- array(0,dim=c(k.size,d.size,r.size,block))
sixth[[2]] <- get_Y_e_V
seventh <- double(k.size)
for(l in 1:k.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp3 <- double(1)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp3 <- tmp3 + 2 * get_x1_x2_F[l,i1,i2,block] *
tmpY[i1,j1,block] * tmpY[i2,j2,block]
}
}
for(r in 1:r.size){
sixth[[1]][l,j2,r,] <- sixth[[1]][l,j2,r,] +
tmp3 * get_Y_e_V[j1,r,]
}
tmp4 <- b1_b2(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)[block]
seventh[l] <- seventh[l] + tmp3/2 * tmp4
}
}
}
first <- first + second + third + seventh
second <- list()
second[[1]] <- sixth[[1]]
second[[2]] <- sixth[[2]]
third <- fourth + fifth
return(list(first=first,second=second,third=third))
}
#result1:l, result2:l*j2*r*t/j2*r*t, result3:l*r*t
F_tilde1 <- function(get_F_tilde1_1, get_F_tilde1_2, get_F_tilde1_3, get_F_tilde1_4){
result1 <- get_F_tilde1_1$first + get_F_tilde1_2$first +
get_F_tilde1_3$first + get_F_tilde1_4$first
result1 <- result1/2
result2 <- list()
result2[[1]] <- get_F_tilde1_1$second[[1]] +
get_F_tilde1_2$second[[1]] +
get_F_tilde1_3$second[[1]] +
get_F_tilde1_4$second[[1]]
result2[[1]] <- result2[[1]]/2
result2[[2]] <- get_F_tilde1_1$second[[2]]
result3 <- get_F_tilde1_1$third + get_F_tilde1_2$third +
get_F_tilde1_3$third + get_F_tilde1_4$third
result3 <- result3/2
return(list(result1=result1,result2=result2,result3=result3))
}
##p.31(I)
#a:l, b:l*j*r*t/j*r*t, c:l*r*t
#l1*l2
ft_1 <- function(a1,a2,env){
k.size <- env$k.size
result <- matrix(0,k.size,k.size)
for(l1 in 1:k.size){
for(l2 in 1:k.size){
result[l1,l2] <- a1[l1] * a2[l2]
}
}
return(result)
}
#first:l1*l2*k*k, second:l1*l2
ft_2 <- function(a1,b1,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size))
second <- matrix(0,k.size,k.size)
for(l2 in 1:k.size){
for(j in 1:d.size){
tmp <- I_12(b1[[1]][l2,j,,],b1[[2]][j,,],env)
for(l1 in 1:k.size){
first[l1,l2,,] <- first[l1,l2,,] + a1[l1] * tmp$first[,,block]
second[l1,l2] <- second[l1,l2] + a1[l1] * tmp$second[block]
}
}
}
return(list(first=first,second=second))
}
#l1*l2*k
ft_3 <- function(a1,c1,env){
k.size <- env$k.size
block <- env$block
result <- array(0,dim=c(k.size,k.size,k.size))
for(l2 in 1:k.size){
tmp <- I_1(c1[l2,,],env)
for(l1 in 1:k.size){
result[l1,l2,] <- a1[l1] * tmp[,block]
}
}
return(result)
}
#first:l1*l2*k*k*k*k, second:l1*l2*k*k*, third:l1*l2
ft_4 <- function(b1,b2,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size,k.size,k.size))
second <- array(0,dim=c(k.size,k.size,k.size,k.size))
third <- matrix(0,k.size,k.size)
for(l1 in 1:k.size){
for(l2 in 1:k.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp <- I_12_34(b1[[1]][l1,j1,,],b1[[2]][j1,,],
b2[[1]][l2,j2,,],b2[[2]][j2,,],env)
first[l1,l2,,,,] <- first[l1,l2,,,,] + tmp$first[,,,,block]
second[l1,l2,,] <- second[l1,l2,,] + tmp$second[,,block]
third[l1,l2] <- third[l1,l2] + tmp$third[block]
}
}
}
}
return(list(first=first,second=second,third=third))
}
#first:l1*l2*k*k*k, second:l1*l2*k
ft_5 <- function(b1,c1,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size,k.size))
second <- array(0,dim=c(k.size,k.size,k.size))
for(l1 in 1:k.size){
for(l2 in 1:k.size){
for(j in 1:d.size){
tmp <- I_1_23(c1[l2,,],b1[[1]][l1,j,,],b1[[2]][j,,],env)
first[l1,l2,,,] <- first[l1,l2,,,] + tmp$first[,,,block]
second[l1,l2,] <- second[l1,l2,] + tmp$second[,block]
}
}
}
return(list(first=first,second=second))
}
#first:l1*l2*k*k, second:l1*l2
ft_6 <- function(c1,c2,env){
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size))
second <- matrix(0,k.size,k.size)
for(l1 in 1:k.size){
for(l2 in 1:k.size){
tmp <- I_1_2(c1[l1,,],c2[l2,,],env)
first[l1,l2,,] <- tmp$first[,,block]
second[l1,l2] <- tmp$second[block]
}
}
return(list(first=first,second=second))
}
#first:l1*l2*k*k*k*k, second:l1*l2*k*k*k,
#third:l1*l2*k*k, fourth:l1*l2*k, fifth:l1*l2
F_tilde1__2 <- function(get_F_tilde1,env){
k.size <- env$k.size
temp <- list()
temp$first <- array(0,dim=c(k.size,k.size,k.size,k.size,k.size,k.size))
temp$second <- array(0,dim=c(k.size,k.size,k.size,k.size,k.size))
temp$third <- array(0,dim=c(k.size,k.size,k.size,k.size))
temp$fourth <- array(0,dim=c(k.size,k.size,k.size))
temp$fifth <- matrix(0,k.size,k.size)
calc.range <- c(1:3)
tmp1 <- get_F_tilde1$result1
n1 <- length(tmp1)
n2 <- sum(tmp1 == 0)
if(n1 == n2){
calc.range <- calc.range[calc.range != 1]
}
tmp2 <- get_F_tilde1$result2[[1]]
n3 <- length(tmp2)
n4 <- sum(tmp2 == 0)
tmp3 <- get_F_tilde1$result2[[2]]
n5 <- length(tmp3)
n6 <- sum(tmp3 == 0)
n <- (n3 - n4 != 0) * (n5 - n6 != 0)
if(n == 0){
calc.range <- calc.range[calc.range != 2]
}
tmp3 <- get_F_tilde1$result3
n7 <- length(tmp3)
n8 <- sum(tmp3 == 0)
if(n7 == n8){
calc.range <- calc.range[calc.range != 3]
}
for(i1 in calc.range){
for(i2 in calc.range){
tmp1 <- switch(i1,"a","b","c")
tmp2 <- switch(i2,"a","b","c")
tmp <- paste(tmp1,tmp2,sep="")
result <- switch(tmp,"aa"=ft_1(get_F_tilde1[[i1]],get_F_tilde1[[i2]],env),
"ab"=ft_2(get_F_tilde1[[i1]],get_F_tilde1[[i2]],env),
"ac"=ft_3(get_F_tilde1[[i1]],get_F_tilde1[[i2]],env),
"ba"=ft_2(get_F_tilde1[[i2]],get_F_tilde1[[i1]],env),
"bb"=ft_4(get_F_tilde1[[i1]],get_F_tilde1[[i2]],env),
"bc"=ft_5(get_F_tilde1[[i1]],get_F_tilde1[[i2]],env),
"ca"=ft_3(get_F_tilde1[[i2]],get_F_tilde1[[i1]],env),
"cb"=ft_5(get_F_tilde1[[i2]],get_F_tilde1[[i1]],env),
"cc"=ft_6(get_F_tilde1[[i1]],get_F_tilde1[[i2]],env))
nlist <- length(result)
if(nlist != 2 && nlist != 3){
tmp3 <- 7 - length(dim(result)) #4 or 5
temp[[tmp3]] <- temp[[tmp3]] + result
}else if(nlist == 2){
tmp4 <- 7 - length(dim(result[[1]])) #2 or 3
temp[[tmp4]] <- temp[[tmp4]] + result[[1]]
tmp5 <- 7 - length(dim(result[[2]])) #4 or 5
temp[[tmp5]] <- temp[[tmp5]] + result[[2]]
}else{
temp[[1]] <- temp[[1]] + result[[1]]
temp[[3]] <- temp[[3]] + result[[2]]
temp[[5]] <- temp[[5]] + result[[3]]
}
}
}
first <- temp$first
second <- temp$second
third <- temp$third
fourth <- temp$fourth
fifth <- temp$fifth
return(list(first=first,second=second,third=third,
fourth=fourth,fifth=fifth))
}
F_tilde1__2_x <- function(l1,l2,x,get_F_tilde1__2,env){
k.size <- env$k.size
first <- array(get_F_tilde1__2$first[l1,l2,,,,],
dim=c(k.size,k.size,k.size,k.size))
result1 <- 0
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
for(k4 in 1:k.size){
result1 <- result1 + first[k1,k2,k3,k4] *
x[k1] * x[k2] * x[k3] * x[k4]
}
}
}
}
second <- array(get_F_tilde1__2$second[l1,l2,,,],
dim=c(k.size,k.size,k.size))
result2 <- 0
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
result2 <- result2 + second[k1,k2,k3] *
x[k1] * x[k2] * x[k3]
}
}
}
third <- matrix(get_F_tilde1__2$third[l1,l2,,],
k.size,k.size)
result3 <- 0
for(k1 in 1:k.size){
for(k2 in 1:k.size){
result3 <- result3 + third[k1,k2] *
x[k1] * x[k2]
}
}
fourth <- get_F_tilde1__2$fourth[l1,l2,]
result4 <- 0
for(k1 in 1:k.size){
result4 <- result4 + fourth[k1] * x[k1]
}
fifth <- get_F_tilde1__2$fifth[l1,l2]
result <- result1 + result2 + result3 + result4 + fifth
return(result)
}
##p.32(II)-1
#b:r*t, c:1*t
#k*t
C_b <- function(b,c1,c2,env){
k.size <- env$k.size
block <- env$block
result <- matrix(0,k.size,block)
tmp1 <- I_1(b,env)
for(k in 1:k.size){
tmp2 <- c2 * tmp1[k,]
tmp3 <- I0(tmp2,env)
result[k,] <- c1 * tmp3
}
return(result)
}
#first:k*k*t, second:t
C_c <- function(b1,b2,c1,c2,env){
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,block))
tmp1 <- I_12(b1,b2,env)
for(k1 in 1:k.size){
for(k2 in 1:k.size){
tmp2 <- c2 * tmp1$first[k1,k2,]
tmp3 <- I0(tmp2,env)
first[k1,k2,] <- c1 * tmp3
}
}
second <- double(block)
tmp4 <- c2 * tmp1$second
tmp5 <- I0(tmp4,env)
second <- c1 * tmp5
return(list(first=first,second=second))
}
#first:k*k*t, second:t
C_d <- function(b1,b2,c1,c2,env){
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,block))
tmp1 <- I_1_2(b1,b2,env)
for(k1 in 1:k.size){
for(k2 in 1:k.size){
tmp2 <- c2 * tmp1$first[k1,k2,]
tmp3 <- I0(tmp2,env)
first[k1,k2,] <- c1 * tmp3
}
}
tmp4 <- c2 * tmp1$second
tmp5 <- I0(tmp4,env)
second <- c1 * tmp5
return(list(first=first,second=second))
}
#first:k*k*k*t, second:k*t
C_e <- function(b1,b2,b3,c1,c2,env){
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,block))
tmp1 <- I_1_23(b1,b2,b3,env)
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
tmp2 <- c2 * tmp1$first[k1,k2,k3,]
tmp3 <- I0(tmp2,env)
first[k1,k2,k3,] <- c1 * tmp3
}
}
}
second <- matrix(0,k.size,block)
for(k in 1:k.size){
tmp4 <- c2 * tmp1$second[k,]
tmp5 <- I0(tmp4,env)
second[k,] <- c1 * tmp5
}
return(list(first=first,second=second))
}
#k*t
C_f <- function(b1,c1,env){
k.size <- env$k.size
block <- env$block
result <- matrix(0,k.size,block)
tmp1 <- I_1(b1,env)
for(k in 1:k.size){
result[k,] <- c1 * tmp1[k,]
}
return(result)
}
#first:k*k*t, second:t
C_g <- function(b1,b2,c1,env){
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,block))
tmp1 <- I_12(b1,b2,env)
for(k1 in 1:k.size){
for(k2 in 1:k.size){
first[k1,k2,] <- c1 * tmp1$first[k1,k2,]
}
}
second <- c1 * tmp1$second
return(list(first=first,second=second))
}
#first:k*k*k*t, second:k*t
C_h <- function(b1,b2,b3,c1,env){
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,block))
tmp1 <- I_123(b1,b2,b3,env)
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
first[k1,k2,k3,] <- c1 * tmp1$first[k1,k2,k3,]
}
}
}
second <- matrix(0,k.size,block)
for(k in 1:k.size){
second[k,] <- c1 * tmp1$second[k,]
}
return(list(first=first,second=second))
}
#first:k*k*k*t, second:k*t
C_i <- function(b1,b2,b3,c1,c2,env){
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,block))
tmp1 <- I_1_2_3(b1,b2,b3,env)
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
tmp2 <- c2 * tmp1$first[k1,k2,k3,]
tmp3 <- I0(tmp2,env)
first[k1,k2,k3,] <- c1 * tmp3
}
}
}
second <- matrix(0,k.size,block)
for(k in 1:k.size){
tmp4 <- c2 * tmp1$second[k,]
tmp5 <- I0(tmp4,env)
second[k,] <- c1 * tmp5
}
return(list(first=first,second=second))
}
##p.24
#first:i*k*k*k*t, second:i*k*k*t, third:i*k*t, fourth:i*t
C_hat1 <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- matrix(0,d.size,block)
n1 <- length(get_Y_x1_x2_V0)
n2 <- sum(get_Y_x1_x2_V0 == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n5 <- length(get_e_t)
n6 <- sum(get_e_t == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0) * (n5 - n6 != 0)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- double(block)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp1 <- 3 * get_Y_x1_x2_V0[i3,i4,j,] * get_Y_D[i3,] *
get_e_t[i4,]
tmp2 <- tmp2 + I0(tmp1,env)
}
}
first.tmp[i,] <- first.tmp[i,] + tmpY[i,j,] * tmp2
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
second.tmp$second <- matrix(0,d.size,block)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(j4 in 1:d.size){
tmp4 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp3 <- get_Y_x1_x2_V0[i1,i2,j4,] * tmpY[i1,j1,] *
tmpY[i2,j2,]
tmp4 <- tmp4 + I0(tmp3,env)
}
}
tmp5 <- 6 * get_Y_x1_x2_V0[i3,i4,j,] * get_Y_D[i3,] *
tmpY[i4,j4,] * tmp4
tmp6 <- C_c(get_Y_e_V[j1,,],get_Y_e_V[j2,,],tmpY[i,j,],tmp5,env)
second.tmp$first[i,,,] <- second.tmp$first[i,,,] +
tmp6$first
second.tmp$second[i,] <- second.tmp$second[i,] +
tmp6$second
}
}
}
}
}
}
}
third.tmp <- array(0,dim=c(d.size,k.size,block))
fourth.tmp <- array(0,dim=c(d.size,k.size,block))
fifth.tmp <- list()
fifth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
fifth.tmp$second <- matrix(0,d.size,block)
sixth.tmp <- array(0,dim=c(d.size,k.size,block))
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
tmp11 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(j1 in 1:d.size){
for(j4 in 1:d.size){
tmp7 <- I0(get_U_t[j1,j4,],env)
tmp8 <- 6 * get_Y_x1_x2_V0[i3,i4,j,] * get_Y_D[i3,] *
tmpY[i4,j4,] * tmp7
tmp9 <- C_b(get_Y_e_V[j1,,],tmpY[i,j,],tmp8,env)
third.tmp[i,,] <- third.tmp[i,,] + tmp9
tmp10 <- 6 * get_Y_x1_x2_V0[i3,i4,j,] * get_Y_D[i3,] *
tmpY[i4,j4,]
for(t in 1:block){
tmp11[,t] <- tmp7[t] * get_Y_e_V[j1,,t]
}
tmp12 <- C_b(tmp11,tmpY[i,j,],tmp10,env)
fourth.tmp[i,,] <- fourth.tmp[i,,] - tmp12
tmp13 <- C_c(get_U_hat_t[j1,j4,,],get_Y_e_V[j1,,],tmpY[i,j,],tmp10,env)
fifth.tmp$first[i,,,] <- fifth.tmp$first[i,,,] +
tmp13$first
fifth.tmp$second[i,] <- fifth.tmp$second[i,] +
tmp13$second
tmp14 <- C_b(get_Y_e_e_V[j4,,],tmpY[i,j,],tmp10/2,env)
sixth.tmp[i,,] <- sixth.tmp[i,,] + tmp14
}
}
}
}
}
}
seventh.tmp <- array(0,dim=c(d.size,k.size,block))
n <- (n1 - n2 != 0) * (n5 - n6 != 0)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(j3 in 1:d.size){
tmp15 <- 3 * get_Y_x1_x2_V0[i3,i4,j,] * tmpY[i3,j3,] *
get_e_t[i4,]
tmp16 <- C_b(get_Y_e_V[j3,,],tmpY[i,j,],tmp15,env)
seventh.tmp[i,,] <- seventh.tmp[i,,] + tmp16
}
}
}
}
}
eighth.tmp <- list()
eighth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,k.size,block))
eighth.tmp$second <- array(0,dim=c(d.size,k.size,block))
n <- n1 - n2
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(j4 in 1:d.size){
tmp18 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp17 <- get_Y_x1_x2_V0[i1,i2,j4,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
tmp18 <- tmp18 + I0(tmp17,env)
}
}
tmp19 <- 6 * get_Y_x1_x2_V0[i3,i4,j,] *
tmpY[i3,j3,] * tmpY[i4,j4,] * tmp18
tmp20 <- C_e(get_Y_e_V[j3,,],get_Y_e_V[j1,,],get_Y_e_V[j2,,],tmpY[i,j,],tmp19,env)
eighth.tmp$first[i,,,,] <- eighth.tmp$first[i,,,,] +
tmp20$first
eighth.tmp$second[i,,] <- eighth.tmp$second[i,,] +
tmp20$second
}
}
}
}
}
}
}
ninth.tmp <- list()
ninth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
ninth.tmp$second <- matrix(0,d.size,block)
tenth.tmp <- list()
tenth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
tenth.tmp$second <- matrix(0,d.size,block)
eleventh.tmp <- list()
eleventh.tmp$first <- array(0,dim=c(d.size,k.size,k.size,k.size,block))
eleventh.tmp$second <- array(0,dim=c(d.size,k.size,block))
twelfth.tmp <- list()
twelfth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
twelfth.tmp$second <- matrix(0,d.size,block)
n <- n1 - n2
tmp25 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(j1 in 1:d.size){
for(j4 in 1:d.size){
tmp21 <- I0(get_U_t[j1,j4,],env)
tmp22 <- 6 * get_Y_x1_x2_V0[i3,i4,j,] * tmpY[i3,j3,] *
tmpY[i4,j4,] * tmp21
tmp23 <- C_d(get_Y_e_V[j3,,],get_Y_e_V[j1,,],tmpY[i,j,],tmp22,env)
ninth.tmp$first[i,,,] <- ninth.tmp$first[i,,,] +
tmp23$first
ninth.tmp$second[i,] <- ninth.tmp$second[i,] +
tmp23$second
tmp24 <- 6 * get_Y_x1_x2_V0[i3,i4,j,] * tmpY[i3,j3,] *
tmpY[i4,j4,]
for(t in 1:block){
tmp25[,t] <- tmp21[t] * get_Y_e_V[j1,,t]
}
tmp26 <- C_d(get_Y_e_V[j3,,],tmp25,tmpY[i,j,],tmp24,env)
tenth.tmp$first[i,,,] <- tenth.tmp$first[i,,,] -
tmp26$first
tenth.tmp$second[i,] <- tenth.tmp$second[i,] -
tmp26$second
tmp27 <- C_e(get_Y_e_V[j3,,],get_U_hat_t[j1,j4,,],get_Y_e_V[j1,,],tmpY[i,j,],tmp24,env)
eleventh.tmp$first[i,,,,] <- eleventh.tmp$first[i,,,,] +
tmp27$first
eleventh.tmp$second[i,,] <- eleventh.tmp$second[i,,] +
tmp27$second
tmp28 <- C_d(get_Y_e_V[j3,,],get_Y_e_e_V[j4,,],tmpY[i,j,],tmp24/2,env)
twelfth.tmp$first[i,,,] <- twelfth.tmp$first[i,,,] +
tmp28$first
twelfth.tmp$second[i,] <- twelfth.tmp$second[i,] +
tmp28$second
}
}
}
}
}
}
first <- eighth.tmp$first + eleventh.tmp$first
second <- second.tmp$first + fifth.tmp$first + ninth.tmp$first +
tenth.tmp$first + twelfth.tmp$first
third <- third.tmp + fourth.tmp + sixth.tmp + seventh.tmp +
eighth.tmp$second + eleventh.tmp$second
fourth <- first.tmp + second.tmp$second + fifth.tmp$second +
ninth.tmp$second + tenth.tmp$second +
twelfth.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:i*k*k*t, second:i*k*t, third:i*t
C_hat2 <- function(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_x_e_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- matrix(0,d.size,block)
n1 <- length(get_Y_x1_x2_V0)
n2 <- sum(get_Y_x1_x2_V0 == 0)
n3 <- length(get_e_t)
n4 <- sum(get_e_t == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- double(block)
for(i3 in 1:d.size){
tmp1 <- 3 * get_Y_x_e_V0[i3,j,] * get_e_t[i3,]
tmp2 <- tmp2 + I0(tmp1,env)
}
first.tmp[i,] <- first.tmp[i,] + tmpY[i,j,] * tmp2
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
second.tmp$second <- matrix(0,d.size,block)
n5 <- length(get_Y_x_e_V0)
n6 <- sum(get_Y_x_e_V0 == 0)
n <- (n1 - n2 != 0) * (n5 - n6 != 0)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(j3 in 1:d.size){
tmp4 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp3 <- get_Y_x1_x2_V0[i1,i2,j3,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
tmp4 <- tmp4 + I0(tmp3,env)
}
}
tmp5 <- 6 * get_Y_x_e_V0[i3,j,] *
tmpY[i3,j3,] * tmp4
tmp6 <- C_c(get_Y_e_V[j1,,],get_Y_e_V[j2,,],tmpY[i,j,],tmp5,env)
second.tmp$first[i,,,] <- second.tmp$first[i,,,] +
tmp6$first
second.tmp$second[i,] <- second.tmp$second[i,] +
tmp6$second
}
}
}
}
}
}
third.tmp <- array(0,dim=c(d.size,k.size,block))
fourth.tmp <- array(0,dim=c(d.size,k.size,block))
fifth.tmp <- list()
fifth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
fifth.tmp$second <- matrix(0,d.size,block)
sixth.tmp <- array(0,dim=c(d.size,k.size,block))
n <- n1 - n2
tmp11 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(j1 in 1:d.size){
for(j3 in 1:d.size){
tmp7 <- I0(get_U_t[j1,j3,],env)
tmp8 <- 6 * get_Y_x_e_V0[i3,j,] *
tmpY[i3,j3,] * tmp7
tmp9 <- C_b(get_Y_e_V[j1,,],tmpY[i,j,],tmp8,env)
third.tmp[i,,] <- third.tmp[i,,] + tmp9
tmp10 <- 6 * get_Y_x_e_V0[i3,j,] * tmpY[i3,j3,]
for(r in 1:r.size){
tmp11[r,] <- tmp7 * get_Y_e_V[j1,r,]
}
tmp12 <- C_b(tmp11,tmpY[i,j,],tmp10,env)
fourth.tmp[i,,] <- fourth.tmp[i,,] - tmp12
tmp13 <- C_c(get_U_hat_t[j1,j3,,],get_Y_e_V[j1,,],tmpY[i,j,],tmp10,env)
fifth.tmp$first[i,,,] <- fifth.tmp$first[i,,,] +
tmp13$first
fifth.tmp$second[i,] <- fifth.tmp$second[i,] +
tmp13$second
tmp14 <- C_b(get_Y_e_e_V[j3,,],tmpY[i,j,],tmp10/2,env)
sixth.tmp[i,,] <- sixth.tmp[i,,] + tmp14
}
}
}
}
}
first <- second.tmp$first + fifth.tmp$first
second <- third.tmp + fourth.tmp + sixth.tmp
third <- first.tmp + second.tmp$second + fifth.tmp$second
return(list(first=first,second=second,third=third))
}
#first:i*k*k*k*t, second:i*k*k*t, third:i*k*t, fourth:i*t
C_hat3 <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_x3_V0, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first.tmp <- matrix(0,d.size,block)
n1 <- length(get_Y_x1_x2_x3_V0)
n2 <- sum(get_Y_x1_x2_x3_V0 == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp1 <- get_Y_x1_x2_x3_V0[i1,i2,i3,j,] *
get_Y_D[i1,] * get_Y_D[i2,] *
get_Y_D[i3,]
tmp2 <- tmp2 + I0(tmp1,env)
}
}
}
first.tmp[i,] <- first.tmp[i,] + tmpY[i,j,] * tmp2
}
}
second.tmp <- array(0,dim=c(d.size,k.size,block))
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j3 in 1:d.size){
tmp4 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp3 <- get_Y_x1_x2_x3_V0[i1,i2,i3,j3,] *
get_Y_D[i1,] * get_Y_D[i2,] *
tmpY[i3,j3,]
tmp4 <- tmp4 + tmp3
}
}
}
tmp5 <- C_b(get_Y_e_V[j3,,],tmpY[i,j,],tmp4,env)
second.tmp[i,,] <- second.tmp[i,,] + 3 * tmp5
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
third.tmp$second <- matrix(0,d.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j2 in 1:d.size){
for(j3 in 1:d.size){
tmp7 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp6 <- get_Y_x1_x2_x3_V0[i1,i2,i3,j,] *
get_Y_D[i1,] * tmpY[i2,j2,] *
tmpY[i3,j3,]
tmp7 <- tmp7 + tmp6
}
}
}
tmp8 <- C_d(get_Y_e_V[j2,,],get_Y_e_V[j3,,],tmpY[i,j,],tmp7,env)
third.tmp$first[i,,,] <- third.tmp$first[i,,,] +
3 * tmp8$first
third.tmp$second[i,] <- third.tmp$second[i,] +
3 * tmp8$second
}
}
}
}
fourth.tmp <- list()
fourth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,k.size,block))
fourth.tmp$second <- array(0,dim=c(d.size,k.size,block))
n <- n1 - n2
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(j3 in 1:d.size){
tmp10 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp9 <- get_Y_x1_x2_x3_V0[i1,i2,i3,j,] *
tmpY[i1,j1,] * tmpY[i2,j2,] *
tmpY[i3,j3,]
tmp10 <- tmp10 + tmp9
}
}
}
tmp11 <- C_i(get_Y_e_V[j1,,],get_Y_e_V[j2,,],get_Y_e_V[j3,,],tmpY[i,j,],tmp10,env)
fourth.tmp$first[i,,,,] <- fourth.tmp$first[i,,,,] +
tmp11$first
fourth.tmp$second[i,,] <- fourth.tmp$second[i,,] +
tmp11$second
}
}
}
}
}
first <- fourth.tmp$first
second <- third.tmp$first
third <- second.tmp + fourth.tmp$second
fourth <- first.tmp + third.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:i*k*k*t, second:i*k*t, third:i*t
C_hat4 <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_e_V0, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
n1 <- length(get_Y_x1_x2_e_V0)
n2 <- sum(get_Y_x1_x2_e_V0 == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
first.tmp <- matrix(0,d.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp1 <- 3 * get_Y_x1_x2_e_V0[i1,i2,j,] * get_Y_D[i1,] *
get_Y_D[i2,]
tmp2 <- tmp2 + I0(tmp1,env)
}
}
first.tmp[i,] <- first.tmp[i,] + tmpY[i,j,] * tmp2
}
}
second.tmp <- array(0,dim=c(d.size,k.size,block))
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j2 in 1:d.size){
tmp4 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp3 <- 6 * get_Y_x1_x2_e_V0[i1,i2,j,] *
get_Y_D[i1,] * tmpY[i2,j2,]
tmp4 <- tmp4 + tmp3
}
}
tmp5 <- C_b(get_Y_e_V[j2,,],tmpY[i,j,],tmp4,env)
second.tmp[i,,] <- second.tmp[i,,] + tmp5
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
third.tmp$second <- matrix(0,d.size,block)
n <- n1 - n2
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp7 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp6 <- 3 * get_Y_x1_x2_e_V0[i1,i2,j,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
tmp7 <- tmp7 + tmp6
}
}
tmp8 <- C_d(get_Y_e_V[j1,,],get_Y_e_V[j2,,],tmpY[i,j,],tmp7,env)
third.tmp$first[i,,,] <- third.tmp$first[i,,,] +
tmp8$first
third.tmp$second[i,] <- third.tmp$second[i,] +
tmp8$second
}
}
}
}
first <- third.tmp$first
second <- second.tmp
third <- first.tmp + third.tmp$second
return(list(first=first,second=second,third=third))
}
#first:i*k*t, second:i*t
C_hat5 <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x_e_e_V0, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
n1 <- length(get_Y_x_e_e_V0)
n2 <- sum(get_Y_x_e_e_V0 == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
first.tmp <- matrix(0,d.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- double(block)
for(i1 in 1:d.size){
tmp1 <- 3 * get_Y_x_e_e_V0[i1,j,] * get_Y_D[i1,]
tmp2 <- tmp2 + I0(tmp1,env)
}
first.tmp[i,] <- first.tmp[i,] + tmpY[i,j,] * tmp2
}
}
second.tmp <- array(0,dim=c(d.size,k.size,block))
n <- n1 - n2
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
tmp4 <- double(block)
for(i1 in 1:d.size){
tmp3 <- 3 * get_Y_x_e_e_V0[i1,j,] * tmpY[i1,j1,]
tmp4 <- tmp4 + tmp3
}
tmp5 <- C_b(get_Y_e_V[j1,,],tmpY[i,j,],tmp4,env)
second.tmp[i,,] <- second.tmp[i,,] + tmp5
}
}
}
first <- second.tmp
second <- first.tmp
return(list(first=first,second=second))
}
#i*t
C_hat6 <- function(tmpY, get_Y_e_e_e_V0, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
result <- matrix(0,d.size,block)
n1 <- length(get_Y_e_e_e_V0)
n2 <- sum(get_Y_e_e_e_V0 == 0)
n <- n1 - n2
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp1 <- I0(get_Y_e_e_e_V0[j,],env)
result[i,] <- result[i,] + tmpY[i,j,] * tmp1
}
}
return(result)
}
#first:i*k*k*k*t, second:i*k*k*t, third:i*k*t, fourth:i*t
C_hat7 <- function(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_x_e_V, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(d.size,k.size,block))
n1 <- length(get_Y_x_e_V)
n2 <- sum(get_Y_x_e_V == 0)
n3 <- length(get_e_t)
n4 <- sum(get_e_t == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
tmp1 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- matrix(0,r.size,block)
for(i3 in 1:d.size){
for(r in 1:r.size){
tmp1[r,] <- 3 * get_Y_x_e_V[i3,j,r,] * get_e_t[i3,]
}
tmp2 <- tmp2 + tmp1
}
tmp3 <- C_f(tmp2,tmpY[i,j,],env)
first.tmp[i,,] <- first.tmp[i,,] + tmp3
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(d.size,k.size,k.size,k.size,block))
second.tmp$second <- array(0,dim=c(d.size,k.size,block))
n5 <- length(get_Y_x1_x2_V0)
n6 <- sum(get_Y_x1_x2_V0 == 0)
n <- (n1 - n2 != 0) * (n5 - n6 != 0)
tmp7 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i3 in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(j3 in 1:d.size){
tmp5 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp4 <- get_Y_x1_x2_V0[i1,i2,j3,] * tmpY[i1,j1,] *
tmpY[i2,j2,]
tmp5 <- tmp5 + tmp4
}
}
tmp6 <- I0(tmp5,env)
for(r in 1:r.size){
tmp7[r,] <- 6 * get_Y_x_e_V[i3,j,r,] *
tmpY[i3,j3,] * tmp6
}
tmp8 <- C_h(tmp7,get_Y_e_V[j1,,],get_Y_e_V[j2,,],tmpY[i,j,],env)
second.tmp$first[i,,,,] <- second.tmp$first[i,,,,] +
tmp8$first
second.tmp$second[i,,] <- second.tmp$second[i,,] +
tmp8$second
}
}
}
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
third.tmp$second <- matrix(0,d.size,block)
fourth.tmp <- list()
fourth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
fourth.tmp$second <- matrix(0,d.size,block)
fifth.tmp <- list()
fifth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,k.size,block))
fifth.tmp$second <- array(0,dim=c(d.size,k.size,block))
sixth.tmp <- list()
sixth.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
sixth.tmp$second <- matrix(0,d.size,block)
tmp10 <- matrix(0,r.size,block)
tmp12 <- matrix(0,r.size,block)
tmp13 <- matrix(0,r.size,block)
for(i in 1:d.size){
for(j in 1:d.size){
for(i3 in 1:d.size){
for(j1 in 1:d.size){
for(j3 in 1:d.size){
tmp9 <- I0(get_U_t[j1,j3,],env)
for(r in 1:r.size){
tmp10[r,] <- 6 * get_Y_x_e_V[i3,j,r,] *
tmpY[i3,j3,] * tmp9
}
tmp11 <- C_g(tmp9,get_Y_e_V[j1,,],tmpY[i,j,],env)
third.tmp$first[i,,,] <- third.tmp$first[i,,,] +
tmp11$first
third.tmp$second[i,] <- third.tmp$second[i,] +
tmp11$second
for(r in 1:r.size){
tmp12[r,] <- 6 * get_Y_x_e_V[i3,j,r,] * tmpY[i3,j3,]
tmp13[r,] <- tmp9 * get_Y_e_V[j1,r,]
}
tmp14 <- C_g(tmp12,tmp13,tmpY[i,j,],env)
fourth.tmp$first[i,,,] <- fourth.tmp$first[i,,,] -
tmp14$first
fourth.tmp$second[i,] <- fourth.tmp$second[i,] -
tmp14$second
tmp15 <- C_h(tmp12,get_U_hat_t[j1,j3,,],get_Y_e_V[j1,,],tmpY[i,j,],env)
fifth.tmp$first[i,,,,] <- fifth.tmp$first[i,,,,] +
tmp15$first
fifth.tmp$second[i,,] <- fifth.tmp$second[i,,] +
tmp15$second
tmp16 <- C_g(tmp12/2,get_Y_e_e_V[j3,,],tmpY[i,j,],env)
sixth.tmp$first[i,,,] <- sixth.tmp$first[i,,,] +
tmp16$first
sixth.tmp$second[i,] <- sixth.tmp$second[i,] +
tmp16$second
}
}
}
}
}
first <- second.tmp$first + fifth.tmp$first
second <- third.tmp$first + fourth.tmp$first + sixth.tmp$first
third <- first.tmp + second.tmp$second + fifth.tmp$second
fourth <- third.tmp$second + fourth.tmp$second + sixth.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:i*k*k*k*t, second:i*k*k*t, third:i*k*t, fourth:i*t
C_hat8 <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_e_V, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(d.size,k.size,block))
n1 <- length(get_Y_x1_x2_e_V)
n2 <- sum(get_Y_x1_x2_e_V == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
tmp1 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp1[r,] <- 3 * get_Y_x1_x2_e_V[i1,i2,j,r,] *
get_Y_D[i1,] * get_Y_D[i2,]
}
tmp2 <- tmp2 + tmp1
}
}
tmp3 <- C_f(tmp2,tmpY[i,j,],env)
first.tmp[i,,] <- first.tmp[i,,] + tmp3
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
second.tmp$second <- matrix(0,d.size,block)
tmp4 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j2 in 1:d.size){
tmp5 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp4[r,] <- 6 * get_Y_x1_x2_e_V[i1,i2,j,r,] *
get_Y_D[i1,] * tmpY[i2,j2,]
}
tmp5 <- tmp5 + tmp4
}
}
tmp6 <- C_g(tmp5,get_Y_e_V[j2,,],tmpY[i,j,],env)
second.tmp$first[i,,,] <- second.tmp$first[i,,,] +
tmp6$first
second.tmp$second[i,] <- second.tmp$second[i,] +
tmp6$second
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(d.size,k.size,k.size,k.size,block))
third.tmp$second <- array(0,dim=c(d.size,k.size,block))
n <- n1 - n2
tmp7 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp8 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp7[r,] <- 6 * get_Y_x1_x2_e_V[i1,i2,j,r,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
}
tmp8 <- tmp8 + tmp7
}
}
tmp9 <- C_h(tmp8,get_Y_e_V[j1,,],get_Y_e_V[j2,,],tmpY[i,j,],env)
third.tmp$first[i,,,,] <- third.tmp$first[i,,,,] +
tmp9$first
third.tmp$second[i,,] <- third.tmp$second[i,,] +
tmp9$second
}
}
}
}
fourth.tmp <- array(0,dim=c(d.size,k.size,block))
tmp11 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp10 <- b1_b2(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
tmp12 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp11[r,] <- 3 * get_Y_x1_x2_e_V[i1,i2,j,r,] *
tmpY[i1,j1,] * tmpY[i2,j2,] *
tmp10
}
tmp12 <- tmp12 + tmp11
}
}
tmp13 <- C_f(tmp12,tmpY[i,j,],env)
fourth.tmp[i,,] <- fourth.tmp[i,,] + tmp13
}
}
}
}
first <- third.tmp$first
second <- second.tmp$first
third <- first.tmp + third.tmp$second + fourth.tmp
fourth <- second.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:i*k*k*t, second:i*k*t, third:i*t
C_hat9 <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x_e_e_V, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
n1 <- length(get_Y_x_e_e_V)
n2 <- sum(get_Y_x_e_e_V == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
first.tmp <- array(0,dim=c(d.size,k.size,block))
tmp1 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp2 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(r in 1:r.size){
tmp1[r,] <- get_Y_x_e_e_V[i1,j,r,] * get_Y_D[i1,]
}
tmp2 <- tmp2 + tmp1
}
tmp3 <- C_f(tmp2,tmpY[i,j,],env)
first.tmp[i,,] <- first.tmp[i,,] + tmp3
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(d.size,k.size,k.size,block))
second.tmp$second <- matrix(0,d.size,block)
n <- n1 - n2
tmp4 <- matrix(0,r.size,block)
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
tmp5 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(r in 1:r.size){
tmp4[r,] <- get_Y_x_e_e_V[i1,j,r,] * tmpY[i1,j1,]
}
tmp5 <- tmp5 + tmp4
}
tmp6 <- C_g(tmp5,get_Y_e_V[j1,,],tmpY[i,j,],env)
second.tmp$first[i,,,] <- second.tmp$first[i,,,] +
tmp6$first
second.tmp$second[i,] <- second.tmp$second[i,] +
tmp6$second
}
}
}
first <- 3 * second.tmp$first
second <- 3 * first.tmp
third <- 3 * second.tmp$second
return(list(first=first,second=second,third=third))
}
#first:i*k*t
C_hat10 <- function(tmpY, get_Y_e_e_e_V, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
result <- array(0,dim=c(d.size,k.size,block))
n1 <- length(get_Y_e_e_e_V)
n2 <- sum(get_Y_e_e_e_V == 0)
n <- n1 - n2
for(i in 1:d.size){
if(n == 0){
break
}
for(j in 1:d.size){
result[i,,] <- result[i,,] + C_f(get_Y_e_e_e_V[j,,],tmpY[i,j,],env)
}
}
return(result)
}
#first:i*k*k*k*t, second:i*k*k*t, third:i*k*t, fourth:i*t
C0_t <- function(get_C_hat1, get_C_hat2, get_C_hat3, get_C_hat4,
get_C_hat5, get_C_hat6, get_C_hat7, get_C_hat8,
get_C_hat9, get_C_hat10){
result1 <- get_C_hat1
result2 <- get_C_hat2
result3 <- get_C_hat3
result4 <- get_C_hat4
result5 <- get_C_hat5
result6 <- get_C_hat6
result7 <- get_C_hat7
result8 <- get_C_hat8
result9 <- get_C_hat9
result10 <- get_C_hat10
first <- result1$first + result3$first + result7$first +
result8$first
second <- result1$second + result2$first + result3$second +
result4$first + result7$second + result8$second +
result9$first
third <- result1$third + result2$second + result3$third +
result4$second + result5$first + result7$third +
result8$third + result9$second + result10
fourth <- result1$fourth + result2$third + result3$fourth +
result4$third + result5$second + result6 +
result7$fourth + result8$fourth + result9$third
return(list(first=first,second=second,third=third,
fourth=fourth))
}
##p.32(II)-1
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_1_1 <- function(get_x_f0,get_C0_t,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,k.size,block))
third <- array(0,dim=c(k.size,k.size,block))
fourth <- matrix(0,k.size,block)
n1 <- length(get_x_f0)
n2 <- sum(get_x_f0 == 0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(i in 1:d.size){
for(k1 in 1:k.size){
for(k2 in 1: k.size){
for(k3 in 1:k.size){
tmp1 <- get_x_f0[l,i,] *
get_C0_t$first[i,k1,k2,k3,]
first[l,k1,k2,k3,] <- first[l,k1,k2,k3,] + I0(tmp1,env)/6
}
tmp2 <- get_x_f0[l,i,] *
get_C0_t$second[i,k1,k2,]
second[l,k1,k2,] <- second[l,k1,k2,] + I0(tmp2,env)/6
}
tmp3 <- get_x_f0[l,i,] *
get_C0_t$third[i,k1,]
third[l,k1,] <- third[l,k1,] + I0(tmp3,env)/6
}
tmp4 <- get_x_f0[l,i,] *
get_C0_t$fourth[i,]
fourth[l,] <- fourth[l,] + I0(tmp4,env)/6
}
}
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_1_2 <- function(get_x_F,get_C0_t,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,k.size,block))
third <- array(0,dim=c(k.size,k.size,block))
fourth <- matrix(0,k.size,block)
n1 <- length(get_x_F)
n2 <- sum(get_x_F == 0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(i in 1:d.size){
for(k1 in 1:k.size){
for(k2 in 1: k.size){
for(k3 in 1:k.size){
tmp1 <- get_x_F[l,i,] *
get_C0_t$first[i,k1,k2,k3,]
first[l,k1,k2,k3,] <- first[l,k1,k2,k3,] + tmp1/6
}
tmp2 <- get_x_F[l,i,] *
get_C0_t$second[i,k1,k2,]
second[l,k1,k2,] <- second[l,k1,k2,] + tmp2/6
}
tmp3 <- get_x_F[l,i,] *
get_C0_t$third[i,k1,]
third[l,k1,] <- third[l,k1,] + tmp3/6
}
tmp4 <- get_x_F[l,i,] *
get_C0_t$fourth[i,]
fourth[l,] <- fourth[l,] + tmp4/6
}
}
return(list(first=first,second=second,third=third,
fourth=fourth))
}
##p.33(II)-2
#first:i3*i4*k*k*k*t, second:i3*i4*k*k*t, third:i3*i4*k*t, fourth:i3*i4*t
D_E <- function(tmpY, get_Y_e_V, get_Y_D, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(d.size,d.size,block))
n1 <- length(get_Y_D)
n2 <- sum(get_Y_D == 0)
n <- n1 - n2
for(i3 in 1:d.size){
if(n == 0){
break
}
for(i4 in 1:d.size){
first.tmp[i3,i4,] <- get_Y_D[i3,] * get_e_t[i4,]
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,block))
second.tmp$second <- array(0,dim=c(d.size,d.size,block))
n3 <- length(get_Y_x1_x2_V0)
n4 <- sum(get_Y_x1_x2_V0 == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
I0_V0_Y_Y <- array(0,dim=c(d.size,d.size,d.size,block)) #j1,j2,j4,t
for(j1 in 1:d.size){
if(n3 == n4){
break
}
for(j2 in 1:d.size){
for(j4 in 1:d.size){
tmp2 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp1 <- get_Y_x1_x2_V0[i1,i2,j4,] * tmpY[i1,j1,] *
tmpY[i2,j2,]
tmp2 <- tmp2 + tmp1
}
}
I0_V0_Y_Y[j1,j2,j4,] <- I0_V0_Y_Y[j1,j2,j4,] + I0(tmp2,env)
}
}
}
for(j1 in 1:d.size){
if(n == 0){
break
}
for(j2 in 1:d.size){
tmp3 <- I_12(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp4 <- double(block)
for(j4 in 1:d.size){
tmp4 <- tmp4 + 2 * get_Y_D[i3,] * tmpY[i4,j4,] *
I0_V0_Y_Y[j1,j2,j4,]
}
for(t in 1:block){
second.tmp$first[i3,i4,,,t] <- second.tmp$first[i3,i4,,,t] +
tmp4[t] * tmp3$first[,,t]
second.tmp$second[i3,i4,t] <- second.tmp$second[i3,i4,t] +
tmp4[t] * tmp3$second[t]
}
}
}
}
}
third.tmp <- array(0,dim=c(d.size,d.size,k.size,block))
n5 <- length(get_U_t)
n6 <- sum(get_U_t == 0)
n <- (n1 - n2 != 0) * (n5 - n6 != 0)
I0_U <- array(0,dim=c(d.size,d.size,block)) #j1,j4,t
for(j1 in 1:d.size){
if(n5 == n6){
break
}
for(j4 in 1:d.size){
I0_U[j1,j4,] <- I0(get_U_t[j1,j4,],env)
}
}
for(j1 in 1:d.size){
if(n == 0){
break
}
tmp5 <- I_1(get_Y_e_V[j1,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp6 <- double(block)
for(j4 in 1:d.size){
tmp6 <- tmp6 + 2 * get_Y_D[i3,] * tmpY[i4,j4,] *
I0_U[j1,j4,]
}
for(k in 1:k.size){
third.tmp[i3,i4,k,] <- third.tmp[i3,i4,k,] +
tmp6 * tmp5[k,]
}
}
}
}
fourth.tmp <- array(0,dim=c(d.size,d.size,k.size,block))
tmp7 <- matrix(0,r.size,block)
for(j4 in 1:d.size){
if(n == 0){
break
}
tmp8 <- matrix(0,r.size,block)
for(j1 in 1:d.size){
for(r in 1:r.size){
tmp7[r,] <- I0_U[j1,j4,] * get_Y_e_V[j1,r,]
}
tmp8 <- tmp8 + tmp7
}
tmp9 <- I_1(tmp8,env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(k in 1:k.size){
fourth.tmp[i3,i4,k,] <- fourth.tmp[i3,i4,k,] - 2 *
get_Y_D[i3,] * tmpY[i4,j4,] *
tmp9[k,]
}
}
}
}
fifth.tmp <- list()
fifth.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,block))
fifth.tmp$second <- array(0,dim=c(d.size,d.size,block))
n <- n1 - n2
for(j1 in 1:d.size){
if(n == 0){
break
}
for(j4 in 1:d.size){
tmp10 <- I_12(get_U_hat_t[j1,j4,,],get_Y_e_V[j1,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(t in 1:block){
fifth.tmp$first[i3,i4,,,t] <- fifth.tmp$first[i3,i4,,,t] + 2 *
get_Y_D[i3,t] * tmpY[i4,j4,t] *
tmp10$first[,,t]
fifth.tmp$second[i3,i4,t] <- fifth.tmp$second[i3,i4,t] + 2 *
get_Y_D[i3,t] * tmpY[i4,j4,t] *
tmp10$second[t]
}
}
}
}
}
sixth.tmp <- array(0,dim=c(d.size,d.size,k.size,block))
n7 <- length(get_Y_e_e_V)
n8 <- sum(get_Y_e_e_V == 0)
n <- (n1 - n2 != 0) * (n7 - n8 != 0)
for(j4 in 1:d.size){
if(n == 0){
break
}
tmp11 <- I_1(get_Y_e_e_V[j4,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(k in 1:k.size){
sixth.tmp[i3,i4,k,] <- sixth.tmp[i3,i4,k,] +
get_Y_D[i3,] * tmpY[i4,j4,] *
tmp11[k,]
}
}
}
}
seventh.tmp <- array(0,dim=c(d.size,d.size,k.size,block))
n9 <- length(get_e_t)
n10 <- sum(get_e_t == 0)
n <- n9 - n10
for(j3 in 1:d.size){
if(n == 0){
break
}
tmp12 <- I_1(get_Y_e_V[j3,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(k in 1:k.size){
seventh.tmp[i3,i4,k,] <- seventh.tmp[i3,i4,k,] +
tmpY[i3,j3,] * get_e_t[i4,] *
tmp12[k,]
}
}
}
}
eighth.tmp <- list()
eighth.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,k.size,block))
eighth.tmp$second <- array(0,dim=c(d.size,d.size,k.size,block))
n <- n3 - n4
for(j1 in 1:d.size){
if(n == 0){
break
}
for(j2 in 1:d.size){
for(j3 in 1:d.size){
tmp13 <- I_1_23(get_Y_e_V[j3,,],get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp14 <- double(block)
for(j4 in 1:d.size){
tmp14 <- tmp14 + 2 * tmpY[i3,j3,] * tmpY[i4,j4,] *
I0_V0_Y_Y[j1,j2,j4,]
}
for(t in 1:block){
eighth.tmp$first[i3,i4,,,,t] <- eighth.tmp$first[i3,i4,,,,t] +
tmp14[t] * tmp13$first[,,,t]
eighth.tmp$second[i3,i4,,t] <- eighth.tmp$second[i3,i4,,t] +
tmp14[t] * tmp13$second[,t]
}
}
}
}
}
}
ninth.tmp <- list()
ninth.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,block))
ninth.tmp$second <- array(0,dim=c(d.size,d.size,block))
n <- n5 - n6
for(j1 in 1:d.size){
if(n == 0){
break
}
for(j3 in 1:d.size){
tmp15 <- I_1_2(get_Y_e_V[j3,,],get_Y_e_V[j1,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp16 <- double(block)
for(j4 in 1:d.size){
tmp16 <- tmp16 + 2 * tmpY[i3,j3,] * tmpY[i4,j4,] *
I0_U[j1,j4,]
}
for(t in 1:block){
ninth.tmp$first[i3,i4,,,t] <- ninth.tmp$first[i3,i4,,,t] +
tmp16[t] * tmp15$first[,,t]
ninth.tmp$second[i3,i4,t] <- ninth.tmp$second[i3,i4,t] +
tmp16[t] * tmp15$second[t]
}
}
}
}
}
tenth.tmp <- list()
tenth.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,block))
tenth.tmp$second <- array(0,dim=c(d.size,d.size,block))
for(j3 in 1:d.size){
if(n == 0){
break
}
for(j4 in 1:d.size){
tmp17 <- matrix(0,r.size,block)
for(j1 in 1:d.size){
for(r in 1:r.size){
tmp17[r,] <- tmp17[r,] + I0_U[j1,j4,] *
get_Y_e_V[j1,r,]
}
}
tmp18 <- I_1_2(get_Y_e_V[j3,,],tmp17,env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp19 <- 2 * tmpY[i3,j3,] * tmpY[i4,j4,]
for(t in 1:block){
tenth.tmp$first[i3,i4,,,t] <- tenth.tmp$first[i3,i4,,,t] -
tmp19[t] * tmp18$first[,,t]
tenth.tmp$second[i3,i4,t] <- tenth.tmp$second[i3,i4,t] -
tmp19[t] * tmp18$second[t]
}
}
}
}
}
eleventh.tmp <- list()
eleventh.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,k.size,block))
eleventh.tmp$second <- array(0,dim=c(d.size,d.size,k.size,block))
for(j1 in 1:d.size){
for(j3 in 1:d.size){
for(j4 in 1:d.size){
tmp20 <- I_1_23(get_Y_e_V[j3,,],get_U_hat_t[j1,j4,,],get_Y_e_V[j1,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp21 <- 2 * tmpY[i3,j3,] * tmpY[i4,j4,]
for(t in 1:block){
eleventh.tmp$first[i3,i4,,,,t] <- eleventh.tmp$first[i3,i4,,,,t] +
tmp21[t] * tmp20$first[,,,t]
eleventh.tmp$second[i3,i4,,t] <- eleventh.tmp$second[i3,i4,,t] +
tmp21[t] * tmp20$second[,t]
}
}
}
}
}
}
twelfth.tmp <- list()
twelfth.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,block))
twelfth.tmp$second <- array(0,dim=c(d.size,d.size,block))
n <- n7 - n8
for(j3 in 1:d.size){
if(n == 0){
break
}
for(j4 in 1:d.size){
tmp22 <- I_1_2(get_Y_e_V[j3,,],get_Y_e_e_V[j4,,],env)
for(i3 in 1:d.size){
for(i4 in 1:d.size){
tmp23 <- tmpY[i3,j3,] * tmpY[i4,j4,]
for(t in 1:block){
twelfth.tmp$first[i3,i4,,,t] <- twelfth.tmp$first[i3,i4,,,t] +
tmp23[t] * tmp22$first[,,t]
twelfth.tmp$second[i3,i4,t] <- twelfth.tmp$second[i3,i4,t] +
tmp23[t] * tmp22$second[t]
}
}
}
}
}
first <- eighth.tmp$first + eleventh.tmp$first
second <- second.tmp$first + fifth.tmp$first + ninth.tmp$first +
tenth.tmp$first + twelfth.tmp$first
third <- third.tmp + fourth.tmp + sixth.tmp + seventh.tmp +
eighth.tmp$second + eleventh.tmp$second
fourth <- first.tmp + second.tmp$second + fifth.tmp$second +
ninth.tmp$second + tenth.tmp$second +
twelfth.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_2_1 <- function(get_x1_x2_f0,get_D_E,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,k.size,block))
third <- array(0,dim=c(k.size,k.size,block))
fourth <- matrix(0,k.size,block)
n1 <- length(get_x1_x2_f0)
n2 <- sum(get_x1_x2_f0 == 0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
tmp1 <- get_x1_x2_f0[l,i3,i4,] *
get_D_E$first[i3,i4,k1,k2,k3,]
first[l,k1,k2,k3,] <- first[l,k1,k2,k3,] + I0(tmp1,env)/2
}
tmp2 <- get_x1_x2_f0[l,i3,i4,] *
get_D_E$second[i3,i4,k1,k2,]
second[l,k1,k2,] <- second[l,k1,k2,] + I0(tmp2,env)/2
}
tmp3 <- get_x1_x2_f0[l,i3,i4,] *
get_D_E$third[i3,i4,k1,]
third[l,k1,] <- third[l,k1,] + I0(tmp3,env)/2
}
tmp4 <- get_x1_x2_f0[l,i3,i4,] *
get_D_E$fourth[i3,i4,]
fourth[l,] <- fourth[l,] + I0(tmp4,env)/2
}
}
}
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_2_2 <- function(get_x1_x2_F,get_D_E,env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,k.size,block))
third <- array(0,dim=c(k.size,k.size,block))
fourth <- matrix(0,k.size,block)
n1 <- length(get_x1_x2_F)
n2 <- sum(get_x1_x2_F == 0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(i3 in 1:d.size){
for(i4 in 1:d.size){
for(k1 in 1: k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
tmp1 <- get_x1_x2_F[l,i3,i4,] *
get_D_E$first[i4,i3,k1,k2,k3,]
first[l,k1,k2,k3,] <- first[l,k1,k2,k3,] + tmp1/2
}
tmp2 <- get_x1_x2_F[l,i3,i4,] *
get_D_E$second[i4,i3,k1,k2,]
second[l,k1,k2,] <- second[l,k1,k2,] + tmp2/2
}
tmp3 <- get_x1_x2_F[l,i3,i4,] *
get_D_E$third[i4,i3,k1,]
third[l,k1,] <- third[l,k1,] + tmp3/2
}
tmp4 <- get_x1_x2_F[l,i3,i4,] *
get_D_E$fourth[i4,i3,]
fourth[l,] <- fourth[l,] + tmp4/2
}
}
}
return(list(first=first,second=second,third=third,
fourth=fourth))
}
##p.34(II)-3
#first:l*k*k*t, second:l*k*t, third:l*t
F_tilde2_3_1 <- function(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_e_e_V, get_U_t, get_U_hat_t, get_e_t, get_x_e_f0, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
h.tmp <- get_x_e_f0/2
first <- array(0,dim=c(k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,block))
third <- matrix(0,k.size,block)
first.tmp <- matrix(0,k.size,block)
n1 <- length(h.tmp)
n2 <- sum(h.tmp == 0)
n3 <- length(get_e_t)
n4 <- sum(get_e_t == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
for(l in 1:k.size){
if(n == 0){
break
}
tmp1 <- double(block)
for(i in 1:d.size){
tmp1 <- tmp1 + h.tmp[l,i,] * get_e_t[i,]
}
first.tmp[l,] <- I0(tmp1,env)
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
second.tmp$second <- matrix(0,k.size,block)
n5 <- length(get_Y_x1_x2_V0)
n6 <- sum(get_Y_x1_x2_V0 == 0)
n <- (n1 - n2 != 0) * (n5 - n6 != 0)
I0.tmp1 <- array(0,dim=c(k.size,d.size,d.size,block)) #l,j1,j2,t
for(l in 1:k.size){
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(i in 1:d.size){
for(j in 1:d.size){
tmp3 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp2 <- get_Y_x1_x2_V0[i1,i2,j,] * tmpY[i1,j1,] *
tmpY[i2,j2,]
tmp3 <- tmp3 + tmp2
}
}
tmp4 <- 2 * h.tmp[l,i,] * tmpY[i,j,] * I0(tmp3,env)
tmp5 <- I0(tmp4,env)
I0.tmp1[l,j1,j2,] <- I0.tmp1[l,j1,j2,] + tmp5
}
}
}
}
}
for(l in 1:k.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp6 <- I_12(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
for(t in 1:block){
second.tmp$first[l,,,t] <- second.tmp$first[l,,,t] +
I0.tmp1[l,j1,j2,t] * tmp6$first[,,t]
second.tmp$second[l,t] <- second.tmp$second[l,t] +
I0.tmp1[l,j1,j2,t] * tmp6$second[t]
}
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
third.tmp$second <- matrix(0,k.size,block)
tmp7 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(r in 1:r.size){
tmp7[r,] <- I0.tmp1[l,j1,j2,] * get_Y_e_V[j1,r,]
}
tmp8 <- I_12(tmp7,get_Y_e_V[j2,,],env)
for(t in 1:block){
third.tmp$first[l,,,t] <- third.tmp$first[l,,,t] -
tmp8$first[,,t]
third.tmp$second[l,t] <- third.tmp$second[l,t] -
tmp8$second[t]
}
}
}
}
fourth.tmp <- array(0,dim=c(k.size,k.size,block))
fifth.tmp <- array(0,dim=c(k.size,k.size,block))
n7 <- length(get_U_t)
n8 <- sum(get_U_t == 0)
n <- (n1 - n2 != 0) * (n7 - n8 != 0)
tmp12 <- matrix(0,r.size,block)
I0_U <- array(0,dim=c(d.size,d.size,block)) #j1,j,t
for(j1 in 1:d.size){
for(j in 1:d.size){
I0_U[j1,j,] <- I0_U[j1,j,] + I0(get_U_t[j1,j,],env)
}
}
for(l in 1:k.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
tmp9 <- double(block)
for(i in 1:d.size){
for(j in 1:d.size){
tmp9 <- tmp9 + 2 * h.tmp[l,i,] * tmpY[i,j,] *
I0_U[j1,j,]
}
}
tmp10 <- I0(tmp9,env)
tmp11 <- I_1(get_Y_e_V[j1,,],env)
for(k in 1:k.size){
fourth.tmp[l,k,] <- fourth.tmp[l,k,] +
tmp10 * tmp11[k,]
}
for(r in 1:r.size){
tmp12[r,] <- tmp10 * get_Y_e_V[j1,r,]
}
tmp13 <- I_1(tmp12,env)
for(k in 1:k.size){
fifth.tmp[l,k,] <- fifth.tmp[l,k,] - tmp13[k,]
}
}
}
sixth.tmp <- array(0,dim=c(k.size,k.size,block))
tmp14 <- matrix(0,r.size,block)
I0.tmp2 <- array(0,dim=c(k.size,d.size,block)) #l,j,t
for(l in 1:k.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(i in 1:d.size){
I0.tmp2[l,j,] <- I0.tmp2[l,j,] + 2 * h.tmp[l,i,] * tmpY[i,j,]
}
I0.tmp2[l,j,] <- I0(I0.tmp2[l,j,],env)
tmp15 <- matrix(0,k.size,block)
for(j1 in 1:d.size){
for(r in 1:r.size){
tmp14[r,] <- I0_U[j1,j,] * get_Y_e_V[j1,r,]
}
tmp15 <- tmp15 + I_1(tmp14,env)
}
for(k in 1:k.size){
sixth.tmp[l,k,] <- sixth.tmp[l,k,] -
I0.tmp2[l,j,] * tmp15[k,]
}
}
}
seventh.tmp <- array(0,dim=c(k.size,k.size,block))
tmp16 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
tmp17 <- matrix(0,r.size,block)
for(j in 1:d.size){
for(j1 in 1:d.size){
for(r in 1:r.size){
tmp16[r,] <- I0.tmp2[l,j,] * I0_U[j1,j,] *
get_Y_e_V[j1,r,]
}
tmp17 <- tmp17 + tmp16
}
}
seventh.tmp[l,,] <- I_1(tmp17,env)
}
eighth.tmp <- list()
eighth.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
eighth.tmp$second <- matrix(0,k.size,block)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
tmp18 <- I_12(get_U_hat_t[j1,j,,],get_Y_e_V[j1,,],env)
for(t in 1:block){
eighth.tmp$first[l,,,t] <- eighth.tmp$first[l,,,t] +
I0.tmp2[l,j,t] * tmp18$first[,,t]
eighth.tmp$second[l,t] <- eighth.tmp$second[l,t] +
I0.tmp2[l,j,t] * tmp18$second[t]
}
}
}
}
ninth.tmp <- list()
ninth.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
ninth.tmp$second <- matrix(0,k.size,block)
tmp19 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
for(j in 1:d.size){
for(j1 in 1:d.size){
for(r in 1:r.size){
tmp19[r,] <- I0.tmp2[l,j,] * get_U_hat_t[j1,j,r,]
}
tmp20 <- I_12(tmp19,get_Y_e_V[j1,,],env)
ninth.tmp$first[l,,,] <- ninth.tmp$first[l,,,] -
tmp20$first
ninth.tmp$second[l,] <- ninth.tmp$second[l,] -
tmp20$second
}
}
}
tenth.tmp <- array(0,dim=c(k.size,k.size,block))
n9 <- length(get_Y_e_e_V)
n10 <- sum(get_Y_e_e_V == 0)
n <- (n1 - n2 != 0) * (n9 - n10 != 0)
for(l in 1:k.size){
if(n == 0){
break
}
for(j in 1:d.size){
tmp21 <- I0.tmp2[l,j,]/2
tmp22 <- I_1(get_Y_e_e_V[j,,],env)
for(k in 1:k.size){
tenth.tmp[l,k,] <- tenth.tmp[l,k,] +
tmp21 * tmp22[k,]
}
}
}
eleventh.tmp <- array(0,dim=c(k.size,k.size,block))
tmp24 <- matrix(0,r.size,block)
for(l in 1:k.size){
tmp25 <- matrix(0,r.size,block)
for(j in 1:d.size){
tmp23 <- I0.tmp2[l,j,]/2
for(r in 1:r.size){
tmp24[r,] <- tmp23 * get_Y_e_e_V[j,r,]
}
tmp25 <- tmp25 + tmp24
}
eleventh.tmp[l,,] <- - I_1(tmp25,env)
}
first <- second.tmp$first + third.tmp$first + eighth.tmp$first +
ninth.tmp$first
second <- fourth.tmp + fifth.tmp + sixth.tmp + seventh.tmp +
tenth.tmp + eleventh.tmp
third <- first.tmp + second.tmp$second + third.tmp$second +
eighth.tmp$second + ninth.tmp$second
return(list(first=first,second=second,third=third))
}
#first:l*k*k*t, second:l*k*t, third:l*t
F_tilde2_3_2 <- function(get_E0_bar, get_x_e_F, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first <- array(0,dim=c(k.size,k.size,k.size,block))
second <- array(0,dim=c(k.size,k.size,block))
third <- matrix(0,k.size,block)
n1 <- length(get_x_e_F)
n2 <- sum(get_x_e_F == 0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(i in 1:d.size){
tmp1 <- get_x_e_F[l,i,]/2
for(k1 in 1:k.size){
for(k2 in 1:k.size){
first[l,k1,k2,] <- first[l,k1,k2,] +
tmp1 * get_E0_bar$first[i,k1,k2,]
}
second[l,k1,] <- second[l,k1,] +
tmp1 * get_E0_bar$second[i,k1,]
}
third[l,] <- third[l,] +
tmp1 * get_E0_bar$third[i,]
}
}
return(list(first=first,second=second,third=third))
}
##p.34(II)-4
#first:i1*i2*i3*k*k*k*t, second:i1*i2*i3*k*k*t, third:i1*i2*i3*k*t, fourth:i1*i2*i3*t
D_a <- function(tmpY, get_Y_e_V, get_Y_D, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(d.size,d.size,d.size,block))
n1 <- length(get_Y_D)
n2 <- sum(get_Y_D == 0)
n <- n1 - n2
for(i1 in 1:d.size){
if(n == 0){
break
}
for(i2 in 1:d.size){
for(i3 in 1:d.size){
first.tmp[i1,i2,i3,] <- get_Y_D[i1,] * get_Y_D[i2,] *
get_Y_D[i3,]
}
}
}
second.tmp <- array(0,dim=c(d.size,d.size,d.size,k.size,block))
for(j3 in 1:d.size){
if(n == 0){
break
}
tmp1 <- I_1(get_Y_e_V[j3,,],env)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp2 <- 3 * get_Y_D[i1,] * get_Y_D[i2,] * tmpY[i3,j3,]
for(k in 1:k.size){
second.tmp[i1,i2,i3,k,] <- second.tmp[i1,i2,i3,k,] +
tmp2 * tmp1[k,]
}
}
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(d.size,d.size,d.size,k.size,k.size,block))
third.tmp$second <- array(0,dim=c(d.size,d.size,d.size,block))
for(j2 in 1:d.size){
if(n == 0){
break
}
for(j3 in 1:d.size){
tmp3 <- I_1_2(get_Y_e_V[j2,,],get_Y_e_V[j3,,],env)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp4 <- 3 * get_Y_D[i1,] * tmpY[i2,j2,] * tmpY[i3,j3,]
for(t in 1:block){
third.tmp$first[i1,i2,i3,,,t] <- third.tmp$first[i1,i2,i3,,,t] +
tmp4[t] * tmp3$first[,,t]
third.tmp$second[i1,i2,i3,t] <- third.tmp$second[i1,i2,i3,t] +
tmp4[t] * tmp3$second[t]
}
}
}
}
}
}
fourth.tmp <- list()
fourth.tmp$first <- array(0,dim=c(d.size,d.size,d.size,k.size,k.size,k.size,block))
fourth.tmp$second <- array(0,dim=c(d.size,d.size,d.size,k.size,block))
for(j1 in 1:d.size){
for(j2 in 1:d.size){
for(j3 in 1:d.size){
tmp5 <- I_1_2_3(get_Y_e_V[j1,,],get_Y_e_V[j2,,],get_Y_e_V[j3,,],env)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp6 <- tmpY[i1,j1,] * tmpY[i2,j2,] * tmpY[i3,j3,]
for(t in 1:block){
fourth.tmp$first[i1,i2,i3,,,,t] <- fourth.tmp$first[i1,i2,i3,,,,t] +
tmp6[t] * tmp5$first[,,,t]
fourth.tmp$second[i1,i2,i3,,t] <- fourth.tmp$second[i1,i2,i3,,t] +
tmp6[t] * tmp5$second[,t]
}
}
}
}
}
}
}
first <- fourth.tmp$first
second <- third.tmp$first
third <- second.tmp + fourth.tmp$second
fourth <- first.tmp + third.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:i1*i2*k*k*t, second:i1*i2*k*t, third:i1*i2*t
D_b <- function(tmpY, get_Y_e_V, get_Y_D, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(d.size,d.size,block))
n1 <- length(get_Y_D)
n2 <- sum(get_Y_D == 0)
n <- n1 - n2
for(i1 in 1:d.size){
if(n == 0){
break
}
for(i2 in 1:d.size){
first.tmp[i1,i2,] <- get_Y_D[i1,] * get_Y_D[i2,]
}
}
second.tmp <- array(0,dim=c(d.size,d.size,k.size,block))
for(j1 in 1:d.size){
if(n == 0){
break
}
tmp1 <- I_1(get_Y_e_V[j2,,],env)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp2 <- 2 * get_Y_D[i1,] * tmpY[i2,j2,]
for(k in 1:k.size){
second.tmp[i1,i2,k,] <- second.tmp[i1,i2,k,] +
tmp2 * tmp1[k,]
}
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(d.size,d.size,k.size,k.size,block))
third.tmp$second <- array(0,dim=c(d.size,d.size,block))
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp3 <- I_1_2(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp4 <- tmpY[i1,j1,] * tmpY[i2,j2,]
for(t in 1:block){
third.tmp$first[i1,i2,,,t] <- third.tmp$first[i1,i2,,,t] +
tmp4[t] * tmp3$first[,,t]
third.tmp$second[i1,i2,t] <- third.tmp$second[i1,i2,t] +
tmp4[t] * tmp3$second[t]
}
}
}
}
}
first <- third.tmp$first
second <- second.tmp
third <- first.tmp + third.tmp$second
return(list(first=first,second=second,third=third))
}
#first:i1*k*t, second:i1*t
D_c <- function(tmpY, get_Y_e_V, get_Y_D, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first.tmp <- get_Y_D
second.tmp <- array(0,dim=c(d.size,k.size,block))
for(j1 in 1:d.size){
tmp1 <- I_1(get_Y_e_V[j1,,],env)
for(i1 in 1:d.size){
tmp2 <- tmpY[i1,j1,]
for(k in 1:k.size){
second.tmp[i1,k,] <- second.tmp[i1,k,] +
tmp2 * tmp1[k,]
}
}
}
first <- second.tmp
second <- first.tmp
return(list(first=first,second=second))
}
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_4_1 <- function(get_x1_x2_x3_f0, get_x1_x2_e_f0, get_x_e_e_f0, get_e_e_e_f0, get_D_a, get_D_b, get_D_c, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first.tmp <- list()
first.tmp$first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
first.tmp$second <- array(0,dim=c(k.size,k.size,k.size,block))
first.tmp$third <- array(0,dim=c(k.size,k.size,block))
first.tmp$fourth <- matrix(0,k.size,block)
n1 <- length(get_x1_x2_x3_f0)
n2 <- sum(get_x1_x2_x3_f0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp1 <- get_x1_x2_x3_f0[l,i1,i2,i3,]
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
tmp2 <- tmp1 * get_D_a$first[i1,i2,i3,k1,k2,k3,]
first.tmp$first[l,k1,k2,k3,] <- first.tmp$first[l,k1,k2,k3,] +
I0(tmp2,env)/6
}
tmp3 <- tmp1 * get_D_a$second[i1,i2,i3,k1,k2,]
first.tmp$second[l,k1,k2,] <- first.tmp$second[l,k1,k2,] +
I0(tmp3,env)/6
}
tmp4 <- tmp1 * get_D_a$third[i1,i2,i3,k1,]
first.tmp$third[l,k1,] <- first.tmp$third[l,k1,] +
I0(tmp4,env)/6
}
tmp5 <- tmp1 * get_D_a$fourth[i1,i2,i3,]
first.tmp$fourth[l,] <- first.tmp$fourth[l,] +
I0(tmp5,env)/6
}
}
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
second.tmp$second <- array(0,dim=c(k.size,k.size,block))
second.tmp$third <- matrix(0,k.size,block)
n3 <- length(get_x1_x2_e_f0)
n4 <- sum(get_x1_x2_e_f0 == 0)
n <- n3 - n4
for(l in 1:k.size){
if(n == 0){
break
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp6 <- get_x1_x2_e_f0[l,i1,i2,]
for(k1 in 1:k.size){
for(k2 in 1:k.size){
tmp7 <- tmp6 * get_D_b$first[i1,i2,k1,k2,]
second.tmp$first[l,k1,k2,] <- second.tmp$first[l,k1,k2,] +
I0(tmp7,env)/2
}
tmp8 <- tmp6 * get_D_b$second[i1,i2,k1,]
second.tmp$second[l,k1,] <- second.tmp$second[l,k1,] +
I0(tmp8,env)/2
}
tmp9 <- tmp6 * get_D_b$third[i1,i2,]
second.tmp$third[l,] <- second.tmp$third[l,] +
I0(tmp9,env)/2
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(k.size,k.size,block))
third.tmp$second <- matrix(0,k.size,block)
n5 <- length(get_x_e_e_f0)
n6 <- sum(get_x_e_e_f0 == 0)
n <- n5 - n6
for(l in 1:k.size){
if(n == 0){
break
}
for(i1 in 1:d.size){
tmp10 <- get_x_e_e_f0[l,i1,]
for(k1 in 1:k.size){
tmp11 <- tmp10 * get_D_c$first[i1,k1,]
third.tmp$first[l,k1,] <- third.tmp$first[l,k1,] +
I0(tmp11,env)/2
}
tmp12 <- tmp10 * get_D_c$second[i1,]
third.tmp$second[l,] <- third.tmp$second[l,] +
I0(tmp12,env)/2
}
}
fourth.tmp <- matrix(0,k.size,block)
for(l in 1:k.size){
fourth.tmp[l,] <- I0(get_e_e_e_f0[l,],env)/6
}
first <- first.tmp$first
second <- first.tmp$second + second.tmp$first
third <- first.tmp$third + second.tmp$second + third.tmp$first
fourth <- first.tmp$fourth + second.tmp$third + third.tmp$second +
fourth.tmp
return(list(first=first,second=second,third=third,
fourth=fourth))
}
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_4_2 <- function(get_x1_x2_x3_F, get_x1_x2_e_F, get_x_e_e_F, get_e_e_e_F, get_D_a, get_D_b, get_D_c, env){
d.size <- env$d.size
k.size <- env$k.size
block <- env$block
first.tmp <- list()
first.tmp$first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
first.tmp$second <- array(0,dim=c(k.size,k.size,k.size,block))
first.tmp$third <- array(0,dim=c(k.size,k.size,block))
first.tmp$fourth <- matrix(0,k.size,block)
n1 <- length(get_x1_x2_x3_F)
n2 <- sum(get_x1_x2_x3_F == 0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(i3 in 1:d.size){
tmp1 <- get_x1_x2_x3_F[l,i1,i2,i3,]/6
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
tmp2 <- tmp1 * get_D_a$first[i1,i2,i3,k1,k2,k3,]
first.tmp$first[l,k1,k2,k3,] <- first.tmp$first[l,k1,k2,k3,] +
tmp2
}
tmp3 <- tmp1 * get_D_a$second[i1,i2,i3,k1,k2,]
first.tmp$second[l,k1,k2,] <- first.tmp$second[l,k1,k2,] +
tmp3
}
tmp4 <- tmp1 * get_D_a$third[i1,i2,i3,k1,]
first.tmp$third[l,k1,] <- first.tmp$third[l,k1,] + tmp4
}
tmp5 <- tmp1 * get_D_a$fourth[i1,i2,i3,]
first.tmp$fourth[l,] <- first.tmp$fourth[l,] + tmp5
}
}
}
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
second.tmp$second <- array(0,dim=c(k.size,k.size,block))
second.tmp$third <- matrix(0,k.size,block)
n3 <- length(get_x1_x2_e_F)
n4 <- sum(get_x1_x2_e_F == 0)
n <- n3 - n4
for(l in 1:k.size){
if(n == 0){
break
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp6 <- get_x1_x2_e_F[l,i1,i2,]/2
for(k1 in 1:k.size){
for(k2 in 1:k.size){
tmp7 <- tmp6 * get_D_b$first[i1,i2,k1,k2,]
second.tmp$first[l,k1,k2,] <- second.tmp$first[l,k1,k2,] +
tmp7
}
tmp8 <- tmp6 * get_D_b$second[i1,i2,k1,]
second.tmp$second[l,k1,] <- second.tmp$second[l,k1,] +
tmp8
}
tmp9 <- tmp6 * get_D_b$third[i1,i2,]
second.tmp$third[l,] <- second.tmp$third[l,] +
tmp9
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(k.size,k.size,block))
third.tmp$second <- matrix(0,k.size,block)
n5 <- length(get_x_e_e_F)
n6 <- sum(get_x_e_e_F == 0)
n <- n5 - n6
for(l in 1:k.size){
if(n == 0){
break
}
for(i1 in 1:d.size){
tmp10 <- get_x_e_e_F[l,i1,]/2
for(k1 in 1:k.size){
tmp11 <- tmp10 * get_D_c$first[i1,k1,]
third.tmp$first[l,k1,] <- third.tmp$first[l,k1,] +
tmp11
}
tmp12 <- tmp10 * get_D_c$second[i1,]
third.tmp$second[l,] <- third.tmp$second[l,] +
tmp12
}
}
fourth.tmp <- matrix(0,k.size,block)
for(l in 1:k.size){
fourth.tmp[l,] <- I0(get_e_e_e_F[l,],env)/6
}
first <- first.tmp$first
second <- first.tmp$second + second.tmp$first
third <- first.tmp$third + second.tmp$second + third.tmp$first
fourth <- first.tmp$fourth + second.tmp$third + third.tmp$second +
fourth.tmp
return(list(first=first,second=second,third=third,
fourth=fourth))
}
##p.36(II)-5
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_5 <- function(tmpY, get_Y_e_V, get_Y_x1_x2_V0, get_Y_e_e_V, get_e_t, get_U_t, get_U_hat_t, get_x_e_f, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(k.size,k.size,block))
n1 <- length(get_x_e_f)
n2 <- sum(get_x_e_f == 0)
n3 <- length(get_e_t)
n4 <- sum(get_e_t == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
tmp1 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
tmp2 <- matrix(0,r.size,block)
for(i in 1:d.size){
for(r in 1:r.size){
tmp1[r,] <- get_x_e_f[l,i,r,] * get_e_t[i,]
}
tmp2 <- tmp2 + tmp1
}
first.tmp[l,,] <- first.tmp[l,,] + I_1(tmp2,env)/2
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
second.tmp$second <- array(0,dim=c(k.size,k.size,block))
n5 <- length(get_Y_x1_x2_V0)
n6 <- sum(get_Y_x1_x2_V0 == 0)
n <- (n1 - n2 != 0) * (n5 - n6 != 0)
tmp5 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp6 <- matrix(0,r.size,block)
for(j3 in 1:d.size){
for(i3 in 1:d.size){
tmp4 <- double(block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
tmp3 <- get_Y_x1_x2_V0[i1,i2,j3,] * tmpY[i1,j1,] *
tmpY[i2,j2,]
tmp4 <- tmp4 + I0(tmp3,env)
}
}
for(r in 1:r.size){
tmp5[r,] <- get_x_e_f[l,i3,r,] *
tmpY[i3,j3,] * tmp4
}
tmp6 <- tmp6 + tmp5
}
}
tmp7 <- I_123(tmp6,get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
second.tmp$first[l,,,,] <- second.tmp$first[l,,,,] +
tmp7$first
second.tmp$second[l,,] <- second.tmp$second[l,,] +
tmp7$second
}
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
third.tmp$second <- matrix(0,k.size,block)
fourth.tmp <- list()
fourth.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
fourth.tmp$second <- matrix(0,k.size,block)
fifth.tmp <- list()
fifth.tmp$first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
fifth.tmp$second <- array(0,dim=c(k.size,k.size,block))
sixth.tmp <- list()
sixth.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
sixth.tmp$second <- matrix(0,k.size,block)
n5 <- length(get_U_t)
n6 <- sum(get_U_t == 0)
n <- n5 - n6
f_Y <- array(0,dim=c(k.size,d.size,r.size,block)) #l,j3,r,t
for(l in 1:k.size){
if(n == 0){
break
}
for(j3 in 1:d.size){
for(i3 in 1:d.size){
for(r in 1:r.size){
f_Y[l,j3,r,] <- f_Y[l,j3,r,] +
get_x_e_f[l,i3,r,] * tmpY[i3,j3,]
}
}
}
}
tmp9 <- matrix(0,r.size,block)
tmp13 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
tmp10 <- matrix(0,r.size,block)
for(j3 in 1:d.size){
tmp8 <- I0(get_U_t[j1,j3,],env)
for(r in 1:r.size){
tmp9[r,] <- f_Y[l,j3,r,] * tmp8
}
tmp10 <- tmp10 + tmp9
}
tmp11 <- I_12(tmp10,get_Y_e_V[j1,,],env)
third.tmp$first[l,,,] <- third.tmp$first[l,,,] +
tmp11$first
third.tmp$second[l,] <- third.tmp$second[l,] +
tmp11$second
}
for(j3 in 1:d.size){
tmp14 <- matrix(0,r.size,block)
for(j1 in 1:d.size){
tmp12 <- I0(get_U_t[j1,j3,],env)
for(r in 1:r.size){
tmp13[r,] <- tmp12 * get_Y_e_V[j1,r,]
}
tmp14 <- tmp14 + tmp13
}
tmp15 <- I_12(f_Y[l,j3,,],tmp14,env)
fourth.tmp$first[l,,,] <- fourth.tmp$first[l,,,] -
tmp15$first
fourth.tmp$second[l,] <- fourth.tmp$second[l,] -
tmp15$second
}
for(j3 in 1:d.size){
for(j1 in 1:d.size){
tmp16 <- I_123(f_Y[l,j3,,],get_U_hat_t[j1,j3,,],get_Y_e_V[j1,,],env)
fifth.tmp$first[l,,,,] <- fifth.tmp$first[l,,,,] +
tmp16$first
fifth.tmp$second[l,,] <- fifth.tmp$second[l,,] +
tmp16$second
}
tmp17 <- I_12(f_Y[l,j3,,]/2,get_Y_e_e_V[j3,,],env)
sixth.tmp$first[l,,,] <- sixth.tmp$first[l,,,] +
tmp17$first
sixth.tmp$second[l,] <- sixth.tmp$second[l,] +
tmp17$second
}
}
first <- second.tmp$first + fifth.tmp$first
second <- third.tmp$first + fourth.tmp$first + sixth.tmp$first
third <- first.tmp + second.tmp$second + fifth.tmp$second
fourth <- third.tmp$second + fourth.tmp$second + sixth.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
##p.36(II)-6
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2_6 <- function(tmpY, get_Y_e_V, get_Y_D, get_x1_x2_e_f, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(k.size,k.size,block))
n1 <- length(get_x1_x2_e_f)
n2 <- sum(get_x1_x2_e_f == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
tmp1 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
tmp2 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp1[r,] <- get_x1_x2_e_f[l,i1,i2,r,] *
get_Y_D[i1,] * get_Y_D[i2,]
}
tmp2 <- tmp2 + tmp1
}
}
tmp3 <- I_1(tmp2,env)/2
first.tmp[l,,] <- first.tmp[l,,] + tmp3
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
second.tmp$second <- matrix(0,k.size,block)
tmp4 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
for(j2 in 1:d.size){
tmp5 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp4[r,] <- get_x1_x2_e_f[l,i1,i2,r,] *
get_Y_D[i1,] * tmpY[i2,j2,]
}
tmp5 <- tmp5 + tmp4
}
}
tmp6 <- I_12(tmp5,get_Y_e_V[j2,,],env)
second.tmp$first[l,,,] <- second.tmp$first[l,,,] +
tmp6$first
second.tmp$second[l,] <- second.tmp$second[l,] +
tmp6$second
}
}
third.tmp <- list()
third.tmp$first <- array(0,dim=c(k.size,k.size,k.size,k.size,block))
third.tmp$second <- array(0,dim=c(k.size,k.size,block))
n <- n1 - n2
tmp7 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp8 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp7[r,] <- get_x1_x2_e_f[l,i1,i2,r,] *
tmpY[i1,j1,] * tmpY[i2,j2,]
}
tmp8 <- tmp8 + tmp7
}
}
tmp9 <- I_123(tmp8,get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
third.tmp$first[l,,,,] <- third.tmp$first[l,,,,] +
tmp9$first
third.tmp$second[l,,] <- third.tmp$second[l,,] +
tmp9$second
}
}
}
fourth.tmp <- array(0,dim=c(k.size,k.size,block))
tmp11 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
tmp12 <- matrix(0,r.size,block)
for(j1 in 1:d.size){
for(j2 in 1:d.size){
tmp10 <- b1_b2(get_Y_e_V[j1,,],get_Y_e_V[j2,,],env)
for(i1 in 1:d.size){
for(i2 in 1:d.size){
for(r in 1:r.size){
tmp11[r,] <- get_x1_x2_e_f[l,i1,i2,r,] *
tmpY[i1,j1,] * tmpY[i2,j2,] *
tmp10
}
tmp12 <- tmp12 + tmp11
}
}
}
}
tmp13 <- I_1(tmp12,env)/2
fourth.tmp[l,,] <- fourth.tmp[l,,] + tmp13
}
first <- third.tmp$first
second <- second.tmp$first
third <- first.tmp + third.tmp$second + fourth.tmp
fourth <- second.tmp$second
return(list(first=first,second=second,third=third,
fourth=fourth))
}
##p.36(II)-7
#first:l*k*k*t, second:l*k*t, third:l*t
F_tilde2_7 <- function(tmpY, get_Y_e_V, get_Y_D, get_x_e_e_f, env){
d.size <- env$d.size
r.size <- env$r.size
k.size <- env$k.size
block <- env$block
first.tmp <- array(0,dim=c(k.size,k.size,block))
n1 <- length(get_x_e_e_f)
n2 <- sum(get_x_e_e_f == 0)
n3 <- length(get_Y_D)
n4 <- sum(get_Y_D == 0)
n <- (n1 - n2 != 0) * (n3 - n4 != 0)
tmp1 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
tmp2 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(r in 1:r.size){
tmp1[r,] <- get_x_e_e_f[l,i1,r,] * get_Y_D[i1,]
}
tmp2 <- tmp2 + tmp1
}
tmp3 <- I_1(tmp2,env)/2
first.tmp[l,,] <- first.tmp[l,,] + tmp3
}
second.tmp <- list()
second.tmp$first <- array(0,dim=c(k.size,k.size,k.size,block))
second.tmp$second <- matrix(0,k.size,block)
n <- n1 - n2
tmp4 <- matrix(0,r.size,block)
for(l in 1:k.size){
if(n == 0){
break
}
for(j1 in 1:d.size){
tmp5 <- matrix(0,r.size,block)
for(i1 in 1:d.size){
for(r in 1:r.size){
tmp4[r,] <- get_x_e_e_f[l,i1,r,] * tmpY[i1,j1,]
}
tmp5 <- tmp5 + tmp4
}
tmp6 <- I_12(tmp5/2,get_Y_e_V[j1,,],env)
second.tmp$first[l,,,] <- second.tmp$first[l,,,] +
tmp6$first
second.tmp$second[l,] <- second.tmp$second[l,] +
tmp6$second
}
}
first <- second.tmp$first
second <- first.tmp
third <- second.tmp$second
return(list(first=first,second=second,third=third))
}
##p.37(II)-8
#l*k*t
F_tilde2_8 <- function(get_e_e_e_f,env){
k.size <- env$k.size
block <- env$block
result <- array(0,dim=c(k.size,k.size,block))
n1 <- length(get_e_e_e_f)
n2 <- sum(get_e_e_e_f == 0)
n <- n1 - n2
for(l in 1:k.size){
if(n == 0){
break
}
result[l,,] <- I_1(get_e_e_e_f[l,,],env)/6
}
return(result)
}
##p.6(1.19)
#first:l*k*k*k*t, second:l*k*k*t, third:l*k*t, fourth:l*t
F_tilde2 <- function(get_F_tilde2_1_1, get_F_tilde2_1_2, get_F_tilde2_2_1,
get_F_tilde2_2_2, get_F_tilde2_3_1, get_F_tilde2_3_2,
get_F_tilde2_4_1, get_F_tilde2_4_2, get_F_tilde2_5,
get_F_tilde2_6, get_F_tilde2_7, get_F_tilde2_8){
result1_1 <- get_F_tilde2_1_1
result1_2 <- get_F_tilde2_1_2
result2_1 <- get_F_tilde2_2_1
result2_2 <- get_F_tilde2_2_2
result3_1 <- get_F_tilde2_3_1
result3_2 <- get_F_tilde2_3_2
result4_1 <- get_F_tilde2_4_1
result4_2 <- get_F_tilde2_4_2
result5 <- get_F_tilde2_5
result6 <- get_F_tilde2_6
result7 <- get_F_tilde2_7
result8 <- get_F_tilde2_8
first <- result1_1$first + result1_2$first + result2_1$first +
result2_2$first + result4_1$first + result4_2$first +
result5$first + result6$first
second <- result1_1$second + result1_2$second + result2_1$second +
result2_2$second + result3_1$first + result3_2$first +
result4_1$second + result4_2$second + result5$second +
result6$second + result7$first
third <- result1_1$third + result1_2$third + result2_1$third +
result2_2$third + result3_1$second + result3_2$second +
result4_1$third + result4_2$third + result5$third +
result6$third + result7$second + result8
fourth <- result1_1$fourth + result1_2$fourth + result2_1$fourth +
result2_2$fourth + result3_1$third + result3_2$third +
result4_1$fourth + result4_2$fourth + result5$fourth +
result6$fourth + result7$third
return(list(first=first,second=second,third=third,
fourth=fourth))
}
F_tilde2_x <- function(l,x,get_F_tilde2,env){
k.size <- env$k.size
block <- env$block
first <- array(get_F_tilde2$first[l,,,,],
dim=c(k.size,k.size,k.size,block))
result1 <- 0
for(k1 in 1:k.size){
for(k2 in 1:k.size){
for(k3 in 1:k.size){
result1 <- result1 + first[k1,k2,k3,block] *
x[k1] * x[k2] * x[k3]
}
}
}
second <- array(get_F_tilde2$second[l,,,],
dim=c(k.size,k.size,block))
result2 <- 0
for(k1 in 1:k.size){
for(k2 in 1:k.size){
result2 <- result2 + second[k1,k2,block] *
x[k1] * x[k2]
}
}
third <- matrix(get_F_tilde2$third[l,,],
k.size,block)
result3 <- 0
for(k1 in 1:k.size){
result3 <- result3 + third[k1,block] * x[k1]
}
fourth <- get_F_tilde2$fourth[l,block]
result <- result1 + result2 + result3 + fourth
return(result)
}
##p.38(III)
#d*t
x_rho <- function(X.t0,tmp.rho,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,block))
assign(pars[1],0)
de.rho <- list()
for(i in 1:d.size){
de.rho[[i]] <- parse(text=deparse(D(tmp.rho,state[i])))
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i in 1:d.size){
result[i,t] <- eval(de.rho[[i]])
}
}
return(result)
}
#t
e_rho <- function(X.t0,tmp.rho,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(block))
assign(pars[1],0)
tmp <- parse(text=deparse(D(tmp.rho,pars[1])))
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
result[t] <- eval(tmp)
}
return(result)
}
#d*d*t
x1_x2_rho <- function(X.t0,tmp.rho,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,d.size,block))
assign(pars[1],0)
dxdx.rho <- list()
for(i1 in 1:d.size){
dxdx.rho[[i1]] <- list()
for(i2 in 1:d.size){
dxdx.rho[[i1]][[i2]] <- parse(text=deparse(D(D(tmp.rho,state[i2]),state[i1])))
}
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i1 in 1:d.size){
for(i2 in 1:d.size){
result[i1,i2,t] <- eval(dxdx.rho[[i1]][[i2]])
}
}
}
return(result)
}
#d*t
x_e_rho <- function(X.t0,tmp.rho,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- array(0,dim=c(d.size,block))
assign(pars[1],0)
dxde.rho <- list()
for(i in 1:d.size){
dxde.rho[[i]] <- parse(text=deparse(D(D(tmp.rho,pars[1]),state[i])))
}
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
for(i in 1:d.size){
result[i,t] <- eval(dxde.rho[[i]])
}
}
return(result)
}
#t
e_e_rho <- function(X.t0,tmp.rho,env){
d.size <- env$d.size
state <- env$state
pars <- env$pars
block <- env$block
my.range <- env$my.range
result <- double(block)
assign(pars[1],0)
tmp <- parse(text=deparse(D(D(tmp.rho,pars[1]),pars[1])))
for(t in 1:block){
for(d in 1:d.size){
assign(state[d],X.t0[my.range[t],d])
}
result[t] <- eval(tmp)
}
return(result)
}
#numeric
scH_0_1 <- function(get_Y_D,get_e_rho,get_x_rho,env){
d.size <- env$d.size
block <- env$block
result <- - I0(get_e_rho,env)[block]
for(i in 1:d.size){
result <- result - I0(get_x_rho[i,] * get_Y_D[i,],env)[block]
}
return(result)
}
#d*t/d*r*t
scH_1_1 <- function(tmpY,get_Y_e_V,get_x_rho,env){
d.size <- env$d.size
block <- env$block
coef <- array(0,dim=c(d.size,block))
for(j in 1:d.size){
tmp <- double(block)
for(t in 1:block){
tmp[t] <- get_x_rho[,t] %*% tmpY[,j,t]
}
#
# for(i in 1:d.size){
# tmp <- tmp + get_x_rho[i,] * tmpY[i,j,]
# }
coef[j,] <- I0(tmp,env)
}
integrand <- get_Y_e_V
return(list(coef=coef,integrand=integrand))
}
#r*t
scH_1_2 <- function(get_scH_1_1,env){
r.size <- env$r.size
block <- env$block
result <- array(0,dim=c(r.size,block))
coef <- get_scH_1_1$coef
integrand <- get_scH_1_1$integrand
for(t in 1:block){
for(r in 1:r.size){
result[r,t] <- integrand[,r,t] %*% coef[,t]
}
}
return(result)
}
F_tilde1H1 <- function(get_F_tilde1,get_scH_0_1,get_scH_1_1,get_scH_1_2,env){
k.size <- env$k.size
d.size <- env$d.size
r.size <- env$r.size
block <- env$block
# print(block)
coef1 <- get_F_tilde1$result1[[1]][,block] # FIXME: this is broken, should have the same dimension as block but has 2
coef2 <- get_F_tilde1$result2[[1]][,block]
coef3 <- get_F_tilde1$result3[[1]][,block]
coef4 <- get_F_tilde1$result4[[1]][,block]
coef5 <- get_F_tilde1$result5[[1]][,block]
coef6 <- get_F_tilde1$result6[[1]][,block]
coef7 <- get_F_tilde1$result7[[1]][,block]
coef8 <- array(get_F_tilde1$result8[[1]][,,block],dim=c(k.size,d.size))
coef9 <- array(get_F_tilde1$result9[[1]][,,block],dim=c(k.size,d.size))
coef10 <- get_F_tilde1$result10[[1]]
coef11 <- array(get_F_tilde1$result11[[1]][,,block],dim=c(k.size,d.size))
coef12 <- get_F_tilde1$result12[[1]]
coef13 <- array(get_F_tilde1$result13[[1]][,,block],dim=c(k.size,d.size))
coef14 <- get_F_tilde1$result14[[1]]
coef15 <- array(get_F_tilde1$result15[[1]][,,block],dim=c(k.size,d.size))
coef16 <- get_F_tilde1$result16[[1]]
coef17 <- array(get_F_tilde1$result17[[1]][,,block],dim=c(k.size,d.size))
coef18 <- array(get_F_tilde1$result18[[1]][,,block],dim=c(k.size,d.size))
coef19 <- array(get_F_tilde1$result19[[1]][,,block],dim=c(k.size,d.size))
coef20 <- array(get_F_tilde1$result20[[1]][,,block],dim=c(k.size,d.size))
coef21 <- array(get_F_tilde1$result21[[1]][,,block],dim=c(k.size,d.size))
coef22 <- array(get_F_tilde1$result22[[1]][,,,block],dim=c(k.size,d.size,d.size))
coef23 <- get_F_tilde1$result23[[1]]
coef24 <- array(get_F_tilde1$result24[[1]][,,,block],dim=c(k.size,d.size,d.size))
coef25 <- get_F_tilde1$result25[[1]]
coef26 <- array(get_F_tilde1$result26[[1]][,,block],dim=c(k.size,d.size))
coef27 <- get_F_tilde1$result27[[1]]
coef28 <- array(get_F_tilde1$result28[[1]][,,,block],dim=c(k.size,d.size,d.size))
coef29 <- array(get_F_tilde1$result29[[1]][,,block],dim=c(k.size,d.size))
coef30 <- array(get_F_tilde1$result30[[1]][,,,block],dim=c(k.size,d.size,d.size))
integrand1 <- get_F_tilde1$result1[[2]]
integrand2 <- get_F_tilde1$result2[[2]]
integrand3 <- get_F_tilde1$result3[[2]]
integrand4 <- get_F_tilde1$result4[[2]]
integrand5 <- get_F_tilde1$result5[[2]]
integrand6 <- get_F_tilde1$result6[[2]]
integrand7 <- get_F_tilde1$result7[[2]]
integrand8 <- get_F_tilde1$result8[[2]]
integrand9 <- get_F_tilde1$result9[[2]]
integrand10 <- get_F_tilde1$result10[[2]]
integrand11 <- get_F_tilde1$result11[[2]]
integrand12 <- get_F_tilde1$result12[[2]]
integrand13 <- get_F_tilde1$result13[[2]]
integrand14 <- get_F_tilde1$result14[[2]]
integrand15 <- get_F_tilde1$result15[[2]]
integrand16 <- get_F_tilde1$result16[[2]]
integrand17 <- get_F_tilde1$result17[[2]]
integrand18 <- get_F_tilde1$result18[[2]]
integrand19 <- get_F_tilde1$result19[[2]]
integrand20 <- get_F_tilde1$result20[[2]]
integrand21 <- get_F_tilde1$result21[[2]]
integrand22 <- get_F_tilde1$result22[[2]]
integrand23 <- get_F_tilde1$result23[[2]]
integrand24 <- get_F_tilde1$result24[[2]]
integrand25 <- get_F_tilde1$result25[[2]]
integrand26 <- get_F_tilde1$result26[[2]]
integrand27 <- get_F_tilde1$result27[[2]]
integrand28 <- get_F_tilde1$result28[[2]]
integrand29 <- get_F_tilde1$result29[[2]]
integrand30 <- get_F_tilde1$result30[[2]]
coef <- get_scH_1_1$coef[,block]
integrand <- get_scH_1_1$integrand
##modified
obj1 <- coef1 + coef2 + coef3 + coef4 + coef5 + coef6 + coef7
obj2 <- coef10 * integrand10 + coef12 * integrand12 +
coef14 * integrand14 + coef16 * integrand16
obj3 <- array(0,dim=c(k.size,r.size,block))
result0 <- obj1 * get_scH_0_1
result1 <- array(0,dim=c(k.size,k.size,block))
result3 <- list()
for(l in 1:k.size){
##modified
tmp1 <- coef10 * integrand10[l,,] + coef12 * integrand12[l,,] +
coef14 * integrand14[l,,] + coef16 * integrand16[l,,]
tmp1 <- obj2[l,,]
tmp2 <- array(0,dim=c(r.size,block))
for(j in 1:d.size){
tmp2 <- tmp2 + coef8[l,j] * integrand8[j,,] +
coef9[l,j] * integrand9[j,,] +
coef11[l,j] * integrand11[j,,] +
coef13[l,j] * integrand13[j,,] +
coef15[l,j] * integrand15[j,,] +
coef17[l,j] * integrand17[j,,] +
coef18[l,j] * integrand18[j,,] +
coef19[l,j] * integrand19[j,,] +
coef20[l,j] * integrand20[j,,] +
coef21[l,j] * integrand21[j,,]
obj3[l,,] <- as.matrix(obj3[l,,] + coef[j] * integrand[j,,])
}
tmp3 <- get_scH_0_1 * (tmp1 + tmp2) +
obj1[l] * (obj3[l,,] + get_scH_1_2)
result1[l,,] <- I_1(array(tmp3,dim=c(r.size,block)),env)
result3[[l]] <- I_1_2(tmp1 + tmp2,obj3[l,,] + get_scH_1_2,env)
}
result2 <- list()
result4 <- list()
for(l in 1:k.size){
result2[[l]] <- list(first=array(0,dim=c(k.size,k.size,block)),second=double(block))
result4[[l]] <- list(first=array(0,dim=c(k.size,k.size,k.size,block)),second=array(0,dim=c(k.size,block)))
for(j1 in 1:d.size){
tmp23.1 <- I_12(get_scH_0_1 * integrand23[[1]][l,j1,,],integrand23[[2]][j1,,],env)
tmp25.1 <- I_12(get_scH_0_1 * integrand25[[1]][l,j1,,],integrand25[[2]][j1,,],env)
tmp27.1 <- I_12(get_scH_0_1 * integrand27[[1]][l,j1,,],integrand27[[2]][j1,,],env)
result2[[l]]$first <- result2[[l]]$first + coef23 * tmp23.1$first +
coef25 * tmp25.1$first +
coef27 * tmp27.1$first
result2[[l]]$second <- result2[[l]]$second + coef23 * tmp23.1$second +
coef25 * tmp25.1$second +
coef27 * tmp27.1$second
tmp23.2 <- I_1_23(get_scH_1_2 + obj3[l,,],integrand23[[1]][l,j1,,],integrand23[[2]][j1,,],env)
tmp25.2 <- I_1_23(get_scH_1_2 + obj3[l,,],integrand25[[1]][l,j1,,],integrand25[[2]][j1,,],env)
tmp27.2 <- I_1_23(get_scH_1_2 + obj3[l,,],integrand27[[1]][l,j1,,],integrand27[[2]][j1,,],env)
result4[[l]]$first <- result4[[l]]$first + coef23 * tmp23.2$first +
coef25 * tmp25.2$first +
coef27 * tmp27.2$first
result4[[l]]$second <- result4[[l]]$second + coef23 * tmp23.2$second +
coef25 * tmp25.2$second +
coef27 * tmp27.2$second
obj22 <- array(0,dim=c(r.size,block))
obj24 <- array(0,dim=c(r.size,block))
obj26 <- array(0,dim=c(r.size,block))
obj28 <- array(0,dim=c(r.size,block))
obj29 <- array(0,dim=c(r.size,block))
obj30 <- array(0,dim=c(r.size,block))
for(j2 in 1:d.size){
obj22 <- obj22 + coef22[l,j1,j2] * integrand22[[2]][j2,,]
obj24 <- obj24 + coef24[l,j1,j2] * integrand24[[2]][j2,,]
obj28 <- obj28 + coef28[l,j1,j2] * integrand28[[2]][j2,,]
obj30 <- obj30 + coef30[l,j1,j2] * integrand30[[2]][j2,,]
obj26 <- obj26 + coef26[l,j2] * integrand26[[1]][j1,j2,,]
obj29 <- obj29 + coef29[l,j2] * integrand29[[1]][j1,j2,,]
}
tmp22.1 <- I_12(get_scH_0_1 * integrand22[[1]][j1,,],array(obj22,dim=c(r.size,block)),env)
tmp24.1 <- I_12(get_scH_0_1 * integrand24[[1]][j1,,],array(obj24,dim=c(r.size,block)),env)
tmp28.1 <- I_12(get_scH_0_1 * integrand28[[1]][j1,,],array(obj28,dim=c(r.size,block)),env)
tmp30.1 <- I_12(get_scH_0_1 * integrand30[[1]][j1,,],array(obj30,dim=c(r.size,block)),env)
tmp26.1 <- I_12(get_scH_0_1 * array(obj26,dim=c(r.size,block)),integrand26[[2]][j1,,],env)
tmp29.1 <- I_12(get_scH_0_1 * array(obj29,dim=c(r.size,block)),integrand29[[2]][j1,,],env)
result2[[l]]$first <- result2[[l]]$first + tmp22.1$first +
tmp29.1$first +
tmp24.1$first +
tmp26.1$first +
tmp28.1$first +
tmp30.1$first
result2[[l]]$second <- result2[[l]]$second + tmp22.1$second +
tmp29.1$second +
tmp24.1$second +
tmp26.1$second +
tmp28.1$second +
tmp30.1$second
tmp22.2 <- I_1_23(get_scH_1_2 + obj3[l,,],integrand22[[1]][j1,,],array(obj22,dim=c(r.size,block)),env)
tmp24.2 <- I_1_23(get_scH_1_2 + obj3[l,,],integrand24[[1]][j1,,],array(obj24,dim=c(r.size,block)),env)
tmp28.2 <- I_1_23(get_scH_1_2 + obj3[l,,],integrand28[[1]][j1,,],array(obj28,dim=c(r.size,block)),env)
tmp30.2 <- I_1_23(get_scH_1_2 + obj3[l,,],integrand30[[1]][j1,,],array(obj30,dim=c(r.size,block)),env)
tmp26.2 <- I_1_23(get_scH_1_2 + obj3[l,,],array(obj26,dim=c(r.size,block)),integrand26[[2]][j1,,],env)
tmp29.2 <- I_1_23(get_scH_1_2 + obj3[l,,],array(obj29,dim=c(r.size,block)),integrand29[[2]][j1,,],env)
result4[[l]]$first <- result4[[l]]$first + tmp22.2$first +
tmp29.2$first +
tmp24.2$first +
tmp26.2$first +
tmp28.2$first +
tmp30.2$first
result4[[l]]$second <- result4[[l]]$second + tmp22.2$second +
tmp29.2$second +
tmp24.2$second +
tmp26.2$second +
tmp28.2$second +
tmp30.2$second
}
}
return(list(result0=result0,result1=result1,result2=result2,
result3=result3,result4=result4))
}
F_tilde1H1_x <- function(l,x,get_F_tilde1H1,env){
block <- env$block
result0 <- get_F_tilde1H1$result0
result1 <- get_F_tilde1H1$result1
result2 <- get_F_tilde1H1$result2
result3 <- get_F_tilde1H1$result3
result4 <- get_F_tilde1H1$result4
result <- result0[l] + I_1_x(x,result1[l,,],env)[block] +
I_12_x(x,result2[[l]],env)[block] +
I_1_2_x(x,result3[[l]],env)[block] +
I_1_23_x(x,result4[[l]],env)[block]
return(result)
}
##p.39(IV)-1
#result1:numeric, result2:i*j/i*j;list, result3:numeric/list,
#result4:i/i;list, result5:i/i*k*t, result6:numeric/k*t
H2_1 <- function(get_scH_0_1,get_scH_1_1,get_scH_1_2,env){
d.size <- env$d.size
k.size <- env$k.size
r.size <- env$r.size
block <- env$block
coef <- get_scH_1_1$coef
integrand <- get_scH_1_1$integrand
result1 <- get_scH_0_1^2 #mathcal{H}_{0;1}^2
result2 <- list() #mathcal{H}_{1;1}^2
result3 <- list() #mathcal{H}_{1;2}^2
result4 <- list() #2mathcal{H}_{0;1}mathcal{H}_{1;1}
result5 <- list() #2mathcal{H}_{1;1}mathcal{H}_{1;2}
result6 <- list() #2mathcal{H}_{1;2}mathcal{H}_{0;1}
result2[[1]] <- matrix(coef[,block],d.size,1) %*% matrix(coef[,block],1,d.size)
result3[[1]] <- 1
result4[[1]] <- 2 * get_scH_0_1 * coef[,block]
result5[[1]] <- 2 * coef[,block]
result6[[1]] <- 2 * get_scH_0_1
result2[[2]] <- array(list(),dim=c(d.size,d.size))
result3[[2]] <- I_1_2(get_scH_1_2,get_scH_1_2,env)
result4[[2]] <- array(0,dim=c(d.size,k.size,block))
result5[[2]] <- list()
result6[[2]] <- I_1(get_scH_1_2,env)
for(i in 1:d.size){
for(j in 1:d.size){
result2[[2]][i,j][[1]] <- I_1_2(integrand[i,,],integrand[j,,],env)
}
result4[[2]][i,,] <- I_1(integrand[i,,],env)
result5[[2]][[i]] <- I_1_2(integrand[i,,],get_scH_1_2,env)
}
return(list(result1=result1,result2=result2,result3=result3,
result4=result4,result5=result5,result6=result6))
}
##p.39(IV)-2
##remark:I0 is removed
#result1:i1*i2*t/i1*i2*k*k*t & i1*i2*k*t & i1*i2*t,
#result2:i1*t/i1*k*t & i1*t,
#result3:t/numeric
H2_2 <- function(get_D_b,get_D_c,get_x_x_rho,get_x_e_rho,get_e_e_rho){
result1 <- list()
result2 <- list()
result3 <- list()
result1[[1]] <- get_x_x_rho
result2[[1]] <- 2 * get_x_e_rho
result3[[1]] <- get_e_e_rho
result1[[2]] <- get_D_b
result2[[2]] <- get_D_c
result3[[2]] <- 0
return(list(result1=result1,result2=result2,result3=result3))
}
##p.39(IV)-3
##remark:I0&H0_T is removed
#coef:i*t, integrand:i*k*k*t & i*k*t & i*t
H2_3 <- function(get_E0_bar,get_x_rho){
return(list(coef=get_x_rho,integrand=get_E0_bar))
}
##p.38(IV)
##remark:H0_T is removed
H2_x <- function(x,get_H2_1,get_H2_2,get_H2_3,env){
k.size <- env$k.size
d.size <- env$d.size
block <- env$block
result1_1 <- get_H2_1$result1
result2_1 <- get_H2_1$result2
result3_1 <- get_H2_1$result3
result4_1 <- get_H2_1$result4
result5_1 <- get_H2_1$result5
result6_1 <- get_H2_1$result6
##modified
result1_2 <- get_H2_2$result1
result2_2 <- get_H2_2$result2
# result2_3 <- get_H2_2$result3
result3_2 <- get_H2_2$result3
H2_1_x <- result1_1 + result3_1[[1]] * I_1_2_x(x,result3_1[[2]],env) +
result6_1[[1]] * I_1_x(x,as.matrix(result6_1[[2]]),env)
# H2_2_x <- I0(result2_3[[1]],env)[block]
H2_2_x <- I0(result3_2[[1]],env)[block]
H2_3_x <- 0
first1_2 <- array(result1_2[[2]]$first,dim=c(d.size,d.size,k.size,k.size,block))
second1_2 <- array(result1_2[[2]]$second,dim=c(d.size,d.size,k.size,block))
third1_2 <- array(result1_2[[2]]$third,dim=c(d.size,d.size,block))
first2_2 <- result2_2[[2]]$first
second2_2 <- result2_2[[2]]$second
H2_3coef <- get_H2_3$coef
get_E0_bar_x <- as.matrix(E0_bar_x(x,get_H2_3$integrand,env))
for(i in 1:d.size){
for(j in 1:d.size){
H2_1_x <- H2_1_x + result2_1[[1]][i,j] * I_1_2_x(x,result2_1[[2]][i,j][[1]],env)[block]
tmp <- list(first=first1_2[i,j,,,],second=third1_2[i,j,])
integrand1 <- I_1_x(x,t(as.matrix(second1_2[i,j,,])),env) + I_12_x(x,tmp,env)
H2_2_x <- H2_2_x + I0(result1_2[[1]][i,j,] * integrand1,env)[block]
}
H2_1_x <- H2_1_x + result4_1[[1]][i] * I_1_2_x(x,result5_1[[2]][[i]],env)[block] +
result5_1[[1]][i] * I_1_x(x,t(as.matrix(result4_1[[2]][i,,])),env)[block]
integrand2 <- result2_2[[1]][i,] * (second2_2[i,]+I_1_x(x,t(as.matrix(first2_2[i,,])),env))
H2_2_x <- H2_2_x + I0(integrand2,env)[block]
H2_3_x <- H2_3_x + I0(H2_3coef[i,] * get_E0_bar_x[i,],env)[block]
}
result <- H2_1_x/2-H2_2_x/2-H2_3_x/2
return(result)
}
ft_norm <- function(x,env){
k.size <- env$k.size
mu <- env$mu
Sigma <- env$Sigma
invSigma <- env$invSigma
denominator <- (sqrt(2*pi))^k.size * sqrt(det(Sigma))
numerator <- exp(-1/2 * t((x-mu)) %*% invSigma %*% (x-mu))
result <- numerator/denominator
return(result)
}
# p2 <- function(z,get_F_tilde1__2,get_F_tilde2,
# get_F_tilde1H1,get_H2_1,get_H2_2,get_H2_3,env){
#
# k.size <- env$k.size
# delta <- env$delta
# mu <- env$mu
# Sigma <- env$Sigma
#
# z.tilde <- z - mu
#
# first <- 0
# second <- 0
# third <- 0 #added
#
# if(k.size == 1){
#
# first <- (F_tilde1__2_x(1,1,z.tilde+2*delta,get_F_tilde1__2,env) *
# dnorm(z+2*delta,mean=mu,sd=sqrt(Sigma)) -
# 2 * F_tilde1__2_x(1,1,z.tilde+delta,get_F_tilde1__2,env) *
# dnorm(z+delta,mean=mu,sd=sqrt(Sigma)) +
# F_tilde1__2_x(1,1,z.tilde,get_F_tilde1__2,env) *
# dnorm(z,mean=mu,sd=sqrt(Sigma)))/(delta)^2
#
# first <- first/2
#
# second <- (F_tilde2_x(1,z.tilde+delta,get_F_tilde2,env) *
# dnorm(z+delta,mean=mu,sd=sqrt(Sigma)) -
# F_tilde2_x(1,z.tilde,get_F_tilde2,env) *
# dnorm(z,mean=mu,sd=sqrt(Sigma)))/delta
#
##added:start
# obj1 <- F_tilde1H1_x(1,z.tilde+delta,get_F_tilde1H1,env)
#
# obj2 <- F_tilde1H1_x(1,z.tilde,get_F_tilde1H1,env)
#
# third <- (obj1 * dnorm(z+delta,mean=mu,sd=sqrt(Sigma)) -
# obj2 * dnorm(z,mean=mu,sd=sqrt(Sigma)))/delta
#
# forth <- H2_x(z.tilde,get_H2_1,get_H2_2,get_H2_3,env) * #dnorm(z,mean=mu,sd=sqrt(Sigma))
#adde#d:end
#
# }else{
#
# tmp1 <- matrix(0,k.size,k.size)
#
# for(l1 in 1:k.size){
# for(l2 in 1:k.size){
#
# dif1 <- numeric(k.size)
# dif2 <- numeric(k.size)
# dif1[l1] <- dif1[l1] + delta
# dif2[l2] <- dif2[l2] + delta
#
# tmp1[l1,l2] <- (F_tilde1__2_x(l1,l2,z.tilde+dif1+dif2,get_F_tilde1__2,env) *
# ft_norm(z+dif1+dif2,env) -
# F_tilde1__2_x(l1,l2,z.tilde+dif1,get_F_tilde1__2,env) *
# ft_norm(z+dif1,env) -
# F_tilde1__2_x(l1,l2,z.tilde+dif2,get_F_tilde1__2,env) *
# ft_norm(z+dif2,env) +
# F_tilde1__2_x(l1,l2,z.tilde,get_F_tilde1__2,env) *
# ft_norm(z,env))/(delta)^2
#
# }
# }
#
# first <- sum(tmp1)/2
#
# tmp2 <- double(k.size)
# tmp3 <- double(k.size) #added
#
# for(l in 1:k.size){
#
# dif <- numeric(k.size)
# dif[l] <- dif[l] + delta
#
# tmp2[l] <- (F_tilde2_x(l,z.tilde+dif,get_F_tilde2,env) *
# ft_norm(z+dif,env) -
# F_tilde2_x(l,z.tilde,get_F_tilde2,env) *
# ft_norm(z,env))/delta
#
##added:start
# obj1 <- F_tilde1H1_x(l,z.tilde+dif,get_F_tilde1H1,env)
#
# obj2 <- F_tilde1H1_x(l,z.tilde,get_F_tilde1H1,env)
#
# tmp3[l] <- (obj1 * ft_norm(z+dif,env) -
# obj2 * ft_norm(z,env))/delta
##added:end
#
# }
#
# second <- sum(tmp2)
# third <- sum(tmp3) #added
# forth <- H2_x(z.tilde,get_H2_1,get_H2_2,get_H2_3,env)*ft_norm(z,env) #added
# }
#
# result <- first - second -
# third + forth #added
# return(result)
# }
#
#
# p2_z <- function(z){
#
# if(k.size == 1){
# zlen <- length(z)
# result <- c()
#
# for(i in 1:zlen){
# result[i] <- p2(z[i],get_F_tilde1__2,get_F_tilde2,
# get_F_tilde1H1,get_H2_1,get_H2_2,get_H2_3,env)
# }
# }else{
# result <- p2(z,get_F_tilde1__2,get_F_tilde2,
# get_F_tilde1H1,get_H2_1,get_H2_2,get_H2_3,env)
# }
#
# return(result)
# }
# d2.term <- function(){
#
# gz_p2 <- function(z){
#
# result <- H0 * G(z) * p2_z(z)
# return(result)
# }
#
# if(k.size == 1){
#
# ztmp <- seq(mu-7*sqrt(Sigma),mu+7*sqrt(Sigma),length=1000)
# dt <- ztmp[2] - ztmp[1]
#
# p2tmp <- gz_p2(ztmp)
#
# result <- sum(p2tmp) * dt
#
# }else if(2 <= k.size || k.size <= 20){
#
# lambda <- eigen(Sigma)$values
# matA <- eigen(Sigma)$vector
#
# gz_p2 <- function(z){
# tmpz <- matA %*% z
# tmp <- H0 * G(tmpz) * p2_z(tmpz) #det(matA) = 1
# return( tmp )
# }
#
# my.x <- matrix(0,k.size,20^k.size)
# dt <- 1
#
# for(k in 1:k.size){
# max <- 5 * sqrt(lambda[k])
# min <- -5 * sqrt(lambda[k])
# tmp.x <- seq(min,max,length=20)
# dt <- dt * (tmp.x[2] - tmp.x[1])
# my.x[k,] <- rep(tmp.x,each=20^(k.size-k),times=20^(k-1))
# }
#
# tmp <- 0
#
# for(i in 1:20^k.size){
# tmp <- tmp + gz_pi1(my.x[,i])
# }
#
# tmp <- tmp * dt
#
# }else{
# stop("length k is too long.")
# }
#
# return(result)
# }
#
| /scratch/gouwar.j/cran-all/cranData/yuima/R/asymptotic_term_third_function.R |
##########################################################################
# Barndorff-Nielsen and Shephard jump test
##########################################################################
setGeneric("bns.test",
function(yuima,r=rep(1,4),type="standard",adj=TRUE)
standardGeneric("bns.test"))
setMethod("bns.test",signature(yuima="yuima"),
function(yuima,r=rep(1,4),type="standard",adj=TRUE)
bns.test(yuima@data,r,type,adj))
setMethod("bns.test",signature(yuima="yuima.data"),
function(yuima,r=rep(1,4),type="standard",adj=TRUE){
# functions for computing the test statistics
bns.stat_standard <- function(yuima,r=rep(1,4)){
JV <- mpv(yuima,r=2)-mpv(yuima,r=c(1,1))
IQ <- mpv(yuima,r)
return(JV/sqrt((pi^2/4+pi-5)*IQ))
}
bns.stat_ratio <- function(yuima,r=rep(1,4),adj=TRUE){
bpv <- mpv(yuima,r=c(1,1))
RJ <- 1-bpv/mpv(yuima,r=2)
avar <- mpv(yuima,r)/bpv^2
if(adj){
avar[avar<1] <- 1
}
return(RJ/sqrt((pi^2/4+pi-5)*avar))
}
bns.stat_log <- function(yuima,r=rep(1,4),adj=TRUE){
bpv <- mpv(yuima,r=c(1,1))
RJ <- log(mpv(yuima,r=2)/bpv)
avar <- mpv(yuima,r)/bpv^2
if(adj){
avar[avar<1] <- 1
}
return(RJ/sqrt((pi^2/4+pi-5)*avar))
}
# main body of the test procedure
data <- get.zoo.data(yuima)
d.size <- length(data)
n <- integer(d.size)
for(d in 1:d.size){
n[d] <- sum(!is.na(as.numeric(data[[d]])))
if(n[d]<2) {
stop("length of data (w/o NA) must be more than 1")
}
}
switch(type,
"standard"="<-"(bns,bns.stat_standard(yuima,r)),
"ratio"="<-"(bns,bns.stat_ratio(yuima,r,adj)),
"log"="<-"(bns,bns.stat_log(yuima,r,adj)))
bns <- sqrt(n)*bns
result <- vector(d.size,mode="list")
for(d in 1:d.size){
p <- pnorm(bns[d],lower.tail=FALSE)
result[[d]] <- list(statistic=c(BNS=bns[d]),p.value=p,
method="Barndorff-Nielsen and Shephard jump test",
data.names=paste("x",d,sep=""))
class(result[[d]]) <- "htest"
}
return(result)
})
| /scratch/gouwar.j/cran-all/cranData/yuima/R/bns.test.R |
# cce() Cumulative Covariance Estimator
#
# CumulativeCovarianceEstimator
#
# returns a matrix of var-cov estimates
########################################################
# functions for the synchronization
########################################################
# refresh time
## data: a list of zoos
refresh_sampling <- function(data){
d.size <- length(data)
if(d.size>1){
#ser.times <- vector(d.size, mode="list")
#ser.times <- lapply(data,time)
ser.times <- lapply(lapply(data,"time"),"as.numeric")
ser.lengths <- sapply(data,"length")
ser.samplings <- vector(d.size, mode="list")
#refresh.times <- c()
if(0){
tmp <- sapply(ser.times,"[",1)
refresh.times[1] <- max(tmp)
I <- rep(1,d.size)
for(d in 1:d.size){
#ser.samplings[[d]][1] <- max(which(ser.times[[d]]<=refresh.times[1]))
while(!(ser.times[[d]][I[d]+1]>refresh.times[1])){
I[d] <- I[d]+1
if((I[d]+1)>ser.lengths[d]){
break
}
}
ser.samplings[[d]][1] <- I[d]
}
i <- 1
#while(all(sapply(ser.samplings,"[",i)<ser.lengths)){
while(all(I<ser.lengths)){
J <- I
tmp <- double(d.size)
for(d in 1:d.size){
#tmp[d] <- ser.times[[d]][min(which(ser.times[[d]]>refresh.times[i]))
repeat{
J[d] <- J[d] + 1
tmp[d] <- ser.times[[d]][J[d]]
if((!(J[d]<ser.lengths))||(tmp[d]>refresh.times[i])){
break
}
}
}
i <- i+1
refresh.times[i] <- max(tmp)
for(d in 1:d.size){
#ser.samplings[[d]][i] <- max(which(ser.times[[d]]<=refresh.times[i]))
while(!(ser.times[[d]][I[d]+1]>refresh.times[i])){
I[d] <- I[d]+1
if((I[d]+1)>ser.lengths[d]){
break
}
}
ser.samplings[[d]][i] <- I[d]
}
}
}
MinL <- min(ser.lengths)
refresh.times <- double(MinL)
refresh.times[1] <- max(sapply(ser.times,"[",1))
#idx <- matrix(.C("refreshsampling",
# as.integer(d.size),
# integer(d.size),
# as.double(unlist(ser.times)),
# as.double(refresh.times),
# as.integer(append(ser.lengths,0,after=0)),
# min(sapply(ser.times,FUN="tail",n=1)),
# as.integer(MinL),
# result=integer(d.size*MinL))$result,ncol=d.size)
idx <- matrix(.C("refreshsampling",
as.integer(d.size),
integer(d.size),
as.double(unlist(ser.times)),
as.double(refresh.times),
as.integer(ser.lengths),
as.integer(diffinv(ser.lengths[-d.size],xi=0)),
min(sapply(ser.times,FUN="tail",n=1)),
as.integer(MinL),
result=integer(d.size*MinL),
PACKAGE = "yuima")$result, # PACKAGE is added (YK, Dec 4, 2018)
ncol=d.size)
result <- vector(d.size, mode="list")
for(d in 1:d.size){
#result[[d]] <- data[[d]][ser.samplings[[d]]]
result[[d]] <- data[[d]][idx[,d]]
}
return(result)
}else{
return(data)
}
}
# refresh sampling for PHY
## data: a list of zoos
refresh_sampling.PHY <- function(data){
d.size <- length(data)
if(d.size>1){
ser.times <- lapply(lapply(data,"time"),"as.numeric")
ser.lengths <- sapply(data,"length")
#refresh.times <- max(sapply(ser.times,"[",1))
ser.samplings <- vector(d.size,mode="list")
if(0){
for(d in 1:d.size){
ser.samplings[[d]][1] <- 1
}
I <- rep(1,d.size)
i <- 1
while(all(I<ser.lengths)){
flag <- integer(d.size)
for(d in 1:d.size){
while(I[d]<ser.lengths[d]){
I[d] <- I[d]+1
if(ser.times[[d]][I[d]]>refresh.times[i]){
flag[d] <- 1
ser.samplings[[d]][i+1] <- I[d]
break
}
}
}
if(any(flag<rep(1,d.size))){
break
}else{
i <- i+1
tmp <- double(d.size)
for(d in 1:d.size){
tmp[d] <- ser.times[[d]][ser.samplings[[d]][i]]
}
refresh.times <- append(refresh.times,max(tmp))
}
}
}
MinL <- min(ser.lengths)
refresh.times <- double(MinL)
refresh.times[1] <- max(sapply(ser.times,"[",1))
#obj <- .C("refreshsamplingphy",
# as.integer(d.size),
# integer(d.size),
# as.double(unlist(ser.times)),
# rtimes=as.double(refresh.times),
# as.integer(append(ser.lengths,0,after=0)),
# min(sapply(ser.times,FUN="tail",n=1)),
# as.integer(MinL),
# Samplings=integer(d.size*(MinL+1)),
# rNum=integer(1))
obj <- .C("refreshsamplingphy",
as.integer(d.size),
integer(d.size),
as.double(unlist(ser.times)),
rtimes=as.double(refresh.times),
as.integer(ser.lengths),
as.integer(diffinv(ser.lengths[-d.size],xi=0)),
min(sapply(ser.times,FUN="tail",n=1)),
as.integer(MinL),
Samplings=integer(d.size*(MinL+1)),
rNum=integer(1),
PACKAGE = "yuima") # PACKAGE is added (YK, Dec 4, 2018)
refresh.times <- obj$rtimes[1:obj$rNum]
idx <- matrix(obj$Samplings,ncol=d.size)
result <- vector(d.size, mode="list")
for(d in 1:d.size){
#result[[d]] <- data[[d]][ser.samplings[[d]]]
result[[d]] <- data[[d]][idx[,d]]
}
return(list(data=result,refresh.times=refresh.times))
}else{
return(list(data=data,refresh.times=as.numeric(time(data[[1]]))))
}
}
# Bibinger's synchronization algorithm
## x: a zoo y: a zoo
Bibsynchro <- function(x,y){
xtime <- as.numeric(time(x))
ytime <- as.numeric(time(y))
xlength <- length(xtime)
ylength <- length(ytime)
N.max <- max(xlength,ylength)
if(0){
mu <- integer(N.max)
w <- integer(N.max)
q <- integer(N.max)
r <- integer(N.max)
if(xtime[1]<ytime[1]){
I <- 1
while(xtime[I]<ytime[1]){
I <- I+1
if(!(I<xlength)){
break
}
}
#mu0 <- min(which(ytime[1]<=xtime))
mu0 <- I
if(ytime[1]<xtime[mu0]){
#q[1] <- mu0-1
q[1] <- mu0
}else{
#q[1] <- mu0
q[1] <- mu0+1
}
r[1] <- 2
}else if(xtime[1]>ytime[1]){
I <- 1
while(xtime[I]<ytime[1]){
I <- I+1
if(!(I<xlength)){
break
}
}
#w0 <- min(which(xtime[1]<=ytime))
w0 <- I
q[1] <- 2
if(xtime[1]<ytime[w0]){
#r[1] <- w0-1
r[1] <- w0
}else{
#r[1] <- w0
r[1] <- w0+1
}
}else{
q[1] <- 2
r[1] <- 2
}
i <- 1
repeat{
#while((q[i]<xlength)&&(r[i]<ylength)){
if(xtime[q[i]]<ytime[r[i]]){
#tmp <- which(ytime[r[i]]<=xtime)
#if(identical(all.equal(tmp,integer(0)),TRUE)){
# break
#}
#mu[i] <- min(tmp)
if(xtime[xlength]<ytime[r[i]]){
break
}
I <- q[i]
while(xtime[I]<ytime[r[i]]){
I <- I+1
}
mu[i] <- I
w[i] <- r[i]
if(ytime[r[i]]<xtime[mu[i]]){
#q[i+1] <- mu[i]-1
q[i+1] <- mu[i]
}else{
#q[i+1] <- mu[i]
q[i+1] <- mu[i]+1
}
r[i+1] <- r[i]+1
}else if(xtime[q[i]]>ytime[r[i]]){
#tmp <- which(xtime[q[i]]<=ytime)
#if(identical(all.equal(tmp,integer(0)),TRUE)){
# break
#}
if(xtime[q[i]]>ytime[ylength]){
break
}
mu[i] <- q[i]
#w[i] <- min(tmp)
I <- r[i]
while(xtime[q[i]]>ytime[I]){
I <- I+1
}
w[i] <- I
q[i+1] <- q[i]+1
if(xtime[q[i]]<ytime[w[i]]){
#r[i+1] <- w[i]-1
r[i+1] <- w[i]
}else{
#r[i+1] <- w[i]
r[i+1] <- w[i]+1
}
}else{
mu[i] <- q[i]
w[i] <- r[i]
q[i+1] <- q[i]+1
r[i+1] <- r[i]+1
}
i <- i+1
if((q[i]>=xlength)||(r[i]>=ylength)){
break
}
}
mu[i] <- q[i]
w[i] <- r[i]
}
sdata <- .C("bibsynchro",
as.double(xtime),
as.double(ytime),
as.integer(xlength),
as.integer(ylength),
mu=integer(N.max),
w=integer(N.max),
q=integer(N.max),
r=integer(N.max),
Num=integer(1),
PACKAGE = "yuima")
Num <- sdata$Num
#return(list(xg=as.numeric(x)[mu[1:i]],
# xl=as.numeric(x)[q[1:i]-1],
# ygamma=as.numeric(y)[w[1:i]],
# ylambda=as.numeric(y)[r[1:i]-1],
# num.data=i))
return(list(xg=as.numeric(x)[sdata$mu[1:Num]+1],
xl=as.numeric(x)[sdata$q[1:Num]],
ygamma=as.numeric(y)[sdata$w[1:Num]+1],
ylambda=as.numeric(y)[sdata$r[1:Num]],
num.data=Num))
}
##############################################################
# functions for tuning parameter
##############################################################
set_utime <- function(data){
init.min <- min(as.numeric(sapply(data, FUN = function(x) time(x)[1])))
term.max <- max(as.numeric(sapply(data, FUN = function(x) tail(time(x), n=1))))
return(23400 * (term.max - init.min))
}
# Barndorff-Nielsen et al. (2009)
RV.sparse <- function(zdata,frequency=1200,utime){
znum <- as.numeric(zdata)
ztime <- as.numeric(time(zdata))*utime
n.size <- length(zdata)
end <- ztime[n.size]
grid <- seq(ztime[1],end,by=frequency)
n.sparse <- length(grid)
#result <- double(frequency)
#result <- 0
#I <- rep(1,n.sparse)
#for(t in 1:frequency){
# for(i in 1:n.sparse){
# while((ztime[I[i]+1]<=grid[i])&&(I[i]<n.size)){
# I[i] <- I[i]+1
# }
# }
# result[t] <- sum(diff(znum[I])^2)
#result <- result+sum(diff(znum[I])^2)
# grid <- grid+rep(1,n.sparse)
# if(grid[n.sparse]>end){
# grid <- grid[-n.sparse]
# I <- I[-n.sparse]
# n.sparse <- n.sparse-1
# }
#}
K <- floor(end-grid[n.sparse]) + 1
zmat <- matrix(.C("ctsubsampling",
as.double(znum),
as.double(ztime),
as.integer(frequency),
as.integer(n.sparse),
as.integer(n.size),
as.double(grid),
result=double(frequency*n.sparse),
PACKAGE = "yuima")$result,
n.sparse,frequency)
result <- double(frequency)
result[1:K] <- colSums(diff(zmat[,1:K])^2)
result[-(1:K)] <- colSums(diff(zmat[-n.sparse,-(1:K)])^2)
return(mean(result))
#return(result/frequency)
#return(znum[I])
}
Omega_BNHLS <- function(zdata,sec=120,utime){
#q <- ceiling(sec/mean(diff(as.numeric(time(zdata))*utime)))
#q <- ceiling(sec*(length(zdata)-1)/utime)
ztime <- as.numeric(time(zdata))
q <- ceiling(sec*(length(zdata)-1)/(utime*(tail(ztime,n=1)-head(ztime,n=1))))
obj <- diff(as.numeric(zdata),lag=q)
n <- length(obj)
#result <- 0
result <- double(q)
for(i in 1:q){
tmp <- obj[seq(i,n,by=q)]
n.tmp <- sum(tmp!=0)
if(n.tmp>0){
result[i] <- sum(tmp^2)/(2*n.tmp)
}
}
#return(result/q)
return(mean(result))
}
NSratio_BNHLS <- function(zdata,frequency=1200,sec=120,utime){
IV <- RV.sparse(zdata,frequency,utime)
Omega <- Omega_BNHLS(zdata,sec,utime)
return(Omega/IV)
}
# Pre-averaging estimator
selectParam.pavg <- function(data,utime,frequency=1200,sec=120,
a.theta,b.theta,c.theta){
if(missing(utime)) utime <- set_utime(data)
NS <- sapply(data,FUN=NSratio_BNHLS,frequency=frequency,sec=sec,utime=utime)
coef <- (b.theta+sqrt(b.theta^2+3*a.theta*c.theta))/a.theta
return(sqrt(coef*NS))
}
selectParam.TSCV <- function(data,utime,frequency=1200,sec=120){
if(missing(utime)) utime <- set_utime(data)
NS <- sapply(data,FUN=NSratio_BNHLS,frequency=frequency,sec=sec,
utime=utime)
return((12*NS)^(2/3))
}
selectParam.GME <- function(data,utime,frequency=1200,sec=120){
if(missing(utime)) utime <- set_utime(data)
NS <- sapply(data,FUN=NSratio_BNHLS,frequency=frequency,sec=sec,
utime=utime)
a.theta <- 52/35
#b.theta <- (12/5)*(NS^2+3*NS)
b.theta <- (24/5)*(NS^2+2*NS)
c.theta <- 48*NS^2
return(sqrt((b.theta+sqrt(b.theta^2+12*a.theta*c.theta))/(2*a.theta)))
}
selectParam.RK <- function(data,utime,frequency=1200,sec=120,cstar=3.5134){
if(missing(utime)) utime <- set_utime(data)
NS <- sapply(data,FUN=NSratio_BNHLS,frequency=frequency,sec=sec,
utime=utime)
return(cstar*(NS^(2/5)))
}
if(0){
selectParam_BNHLS <- function(yuima,method,utime=1,frequency=1200,sec=120,kappa=7585/1161216,
kappabar=151/20160,kappatilde=1/24,cstar=3.51){
data <- get.zoo.data(yuima)
switch(method,
"PHY"=selectParam.PHY(data,utime,frequency,sec,kappa,kappabar,kappatilde),
"GME"=selectParam.GME(data,utime,frequency,sec),
"RK"=selectParam.RK(data,utime,frequency,sec,cstar),
"PTHY"=selectParam.PHY(data,utime,frequency,sec,kappa,kappabar,kappatilde))
}
}
###############################################################
# functions for selecting the threshold functions
###############################################################
# local universal thresholding method
## Bipower variation
### x: a zoo lag: a positive integer
BPV <- function(x,lag=1){
n <- length(x)-1
dt <- diff(as.numeric(time(x)))
obj <- abs(diff(as.numeric(x)))/sqrt(dt)
result <- (pi/2)*(obj[1:(n-lag)]*dt[1:(n-lag)])%*%obj[(1+lag):n]
return(result)
}
## local univaersal thresholding method
### data: a list of zoos coef: a positive number
local_univ_threshold <- function(data,coef=5,eps=0.1){
d.size <- length(data)
result <- vector(d.size,mode="list")
for(d in 1:d.size){
x <- data[[d]]
#x <- as.numeric(data[[d]])
n <- length(x)-1
dt <- diff(as.numeric(time(x)))
obj <- abs(diff(as.numeric(x)))/sqrt(dt)
#dx <- diff(as.numeric(x))
#xtime <- time(x)
#xtime <- time(data[[d]])
#if(is.numeric(xtime)){
# r <- max(diff(xtime))
#}else{
# xtime <- as.numeric(xtime)
#r <- max(diff(xtime))/(length(x)-1)
# r <- max(diff(xtime))/(tail(xtime,n=1)-head(xtime,n=1))
#}
#K <- ceiling(sqrt(1/r))
#K <- max(ceiling(sqrt(1/r)),3)
K <- max(ceiling(n^0.5),3)
coef2 <- coef^2
rho <- double(n+1)
#tmp <- coef2*sum(dx^2)*n^(eps-1)
#tmp <- double(n+1)
#tmp[-(1:(K-1))] <- coef2*n^eps*rollmean(dx^2,k=K-1,align="left")
#tmp[1:(K-1)] <- tmp[K]
#dx[dx^2>tmp[-(n+1)]] <- 0
if(K<n){
#rho[1:K] <- coef2*(mad(diff(as.numeric(x)[1:(K+1)]))/0.6745)^2
#rho[1:K] <- coef2*2*log(K)*(mad(diff(x[1:(K+1)]))/0.6745)^2
#for(i in (K+1):n){
# rho[i] <- coef2*2*log(length(x))*BPV(x[(i-K):(i-1)])/(K-2)
#}
#rho[-(1:K)] <- coef2*2*log(n)^(1+eps)*
# #rollapply(x[-n],width=K,FUN=BPV,align="left")/(K-2)
rho[-(1:(K-1))] <- coef2*n^eps*(pi/2)*
rollmean((obj*dt)[-n]*obj[-1],k=K-2,align="left")
#rho[-(1:(K-1))] <- coef2*n^eps*rollmean(dx^2,k=K-1,align="left")
rho[1:(K-1)] <- rho[K]
}else{
#rho <- coef2*(mad(diff(as.numeric(x)))/0.6745)^2
#rho <- coef2*(mad(diff(x))/0.6745)^2
#rho <- coef2*2*log(n)^(1+eps)*BPV(x)
rho <- coef2*n^(eps-1)*BPV(x)
#rho <- coef2*sum(dx^2)*n^(eps-1)
}
result[[d]] <- rho[-(n+1)]
}
return(result)
}
#################################################################
# functions for calculating the estimators
#################################################################
# Hayashi-Yoshida estimator
## data: a list of zoos
HY <- function(data) {
n.series <- length(data)
# allocate memory
ser.X <- vector(n.series, mode="list") # data in 'x'
ser.times <- vector(n.series, mode="list") # time index in 'x'
ser.diffX <- vector(n.series, mode="list") # difference of data
for(i in 1:n.series){
# set data and time index
ser.X[[i]] <- as.numeric(data[[i]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[i]] <- as.numeric(time(data[[i]]))
# set difference of the data
ser.diffX[[i]] <- diff( ser.X[[i]] )
}
# core part of cce
cmat <- matrix(0, n.series, n.series) # cov
for(i in 1:n.series){
for(j in i:n.series){
#I <- rep(1,n.series)
#Checking Starting Point
#repeat{
#while((I[i]<length(ser.times[[i]])) && (I[j]<length(ser.times[[j]]))){
# if(ser.times[[i]][I[i]] >= ser.times[[j]][I[j]+1]){
# I[j] <- I[j]+1
# }else if(ser.times[[i]][I[i]+1] <= ser.times[[j]][I[j]]){
# I[i] <- I[i]+1
# }else{
# break
# }
#}
#Main Component
if(i!=j){
#while((I[i]<length(ser.times[[i]])) && (I[j]<length(ser.times[[j]]))) {
# cmat[j,i] <- cmat[j,i] + (ser.diffX[[i]])[I[i]]*(ser.diffX[[j]])[I[j]]
# if(ser.times[[i]][I[i]+1]>ser.times[[j]][I[j]+1]){
# I[j] <- I[j] + 1
# }else if(ser.times[[i]][I[i]+1]<ser.times[[j]][I[j]+1]){
# I[i] <- I[i] +1
# }else{
# I[i] <- I[i]+1
# I[j] <- I[j]+1
# }
#}
cmat[j,i] <- .C("HayashiYoshida",as.integer(length(ser.times[[i]])),
as.integer(length(ser.times[[j]])),as.double(ser.times[[i]]),
as.double(ser.times[[j]]),as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),value=double(1),
PACKAGE = "yuima")$value
}else{
cmat[i,j] <- sum(ser.diffX[[i]]^2)
}
cmat[i,j] <- cmat[j,i]
}
}
return(cmat)
}
#########################################################
# Modulated realized covariance (Cristensen et al.(2010))
## data: a list of zoos theta: a positive number
## g: a real-valued function on [0,1] (a weight function)
## delta: a positive number
MRC <- function(data,theta,kn,g,delta=0,adj=TRUE){
n.series <- length(data)
#if(missing(theta)&&missing(kn))
# theta <- selectParam.pavg(data,utime=utime,a.theta=151/80640,
# b.theta=1/96,c.theta=1/6)
if(missing(theta)) theta <- 1
cmat <- matrix(0, n.series, n.series) # cov
# synchronize the data and take the differences
#diffX <- lapply(lapply(refresh_sampling(data),"as.numeric"),"diff")
#diffX <- do.call("rbind",diffX) # transform to matrix
diffX <- diff(do.call("cbind",lapply(refresh_sampling(data),"as.numeric")))
#Num <- ncol(diffX)
Num <- nrow(diffX)
if(missing(kn)) kn <- floor(mean(theta)*Num^(1/2+delta))
kn <- min(max(kn,2),Num+1)
weight <- sapply((1:(kn-1))/kn,g)
psi2.kn <- sum(weight^2)
# pre-averaging
#myfunc <- function(dx)rollapplyr(dx,width=kn-1,FUN="%*%",weight)
#barX <- apply(diffX,1,FUN=myfunc)
barX <- filter(diffX,filter=rev(weight),method="c",sides=1)[(kn-1):Num,]
cmat <- (Num/(Num-kn+2))*t(barX)%*%barX/psi2.kn
if(delta==0){
psi1.kn <- kn^2*sum(diff(c(0,weight,0))^2)
scale <- psi1.kn/(theta^2*psi2.kn*2*Num)
#cmat <- cmat-scale*diffX%*%t(diffX)
cmat <- cmat-scale*t(diffX)%*%diffX
if(adj) cmat <- cmat/(1-scale)
}
return(cmat)
}
#########################################################
# Pre-averaged Hayashi-Yoshida estimator
## data: a list of zoos theta: a positive number
## g: a real-valued function on [0,1] (a weight function)
## refreshing: a logical value (if TRUE we use the refreshed data)
PHY <- function(data,theta,kn,g,refreshing=TRUE,cwise=TRUE){
n.series <- length(data)
#if(missing(theta)&&missing(kn))
# theta <- selectParam.pavg(data,a.theta=7585/1161216,
# b.theta=151/20160,c.theta=1/24)
if(missing(theta)) theta <- 0.15
cmat <- matrix(0, n.series, n.series) # cov
if(refreshing){
if(cwise){
if(missing(kn)){# refreshing,cwise,missing kn
theta <- matrix(theta,n.series,n.series)
theta <- (theta+t(theta))/2
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
resample <- refresh_sampling.PHY(list(data[[i]],data[[j]]))
dat <- resample$data
ser.numX <- length(resample$refresh.times)-1
# set data and time index
ser.X <- lapply(dat,"as.numeric")
ser.times <- lapply(lapply(dat,"time"),"as.numeric")
# set difference of the data
ser.diffX <- lapply(ser.X,"diff")
# pre-averaging
kn <- min(max(ceiling(theta[i,j]*sqrt(ser.numX)),2),ser.numX)
weight <- sapply((1:(kn-1))/kn,g)
psi.kn <- sum(weight)
#ser.barX <- list(rollapplyr(ser.diffX[[1]],width=kn-1,FUN="%*%",weight),
# rollapplyr(ser.diffX[[2]],width=kn-1,FUN="%*%",weight))
ser.barX <- list(filter(ser.diffX[[1]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[1]])],
filter(ser.diffX[[2]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[2]])])
ser.num.barX <- sapply(ser.barX,"length")-1
# core part of cce
#start <- kn+1
#end <- 1
#for(k in 1:ser.num.barX[1]){
# while(!(ser.times[[1]][k]<ser.times[[2]][start])&&((start-kn)<ser.num.barX[2])){
# start <- start + 1
# }
# while((ser.times[[1]][k+kn]>ser.times[[2]][end+1])&&(end<ser.num.barX[2])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[1]][k]*sum(ser.barX[[2]][(start-kn):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(kn),
as.integer(ser.num.barX[1]),
as.integer(ser.num.barX[2]),
as.double(ser.times[[1]]),
as.double(ser.times[[2]]),
as.double(ser.barX[[1]]),
as.double(ser.barX[[2]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[i,j] <- cmat[i,j]/(psi.kn^2)
cmat[j,i] <- cmat[i,j]
}else{
diffX <- diff(as.numeric(data[[i]]))
kn <- min(max(ceiling(theta[i,i]*sqrt(length(diffX))),2),
length(data[[i]]))
weight <- sapply((1:(kn-1))/kn,g)
psi.kn <- sum(weight)
#barX <- rollapplyr(diffX,width=kn-1,FUN="%*%",weight)
barX <- filter(diffX,rev(weight),method="c",
sides=1)[(kn-1):length(diffX)]
tmp <- barX[-length(barX)]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kn-1)+1,FUN="sum",partial=TRUE)/(psi.kn)^2
cmat[i,j] <- tmp%*%rollsum(c(double(kn-1),tmp,double(kn-1)),
k=2*(kn-1)+1)/(psi.kn)^2
}
}
}
}else{# refreshing,cwise,not missing kn
kn <- matrix(kn,n.series,n.series)
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
resample <- refresh_sampling.PHY(list(data[[i]],data[[j]]))
dat <- resample$data
ser.numX <- length(resample$refresh.times)-1
# set data and time index
ser.X <- lapply(dat,"as.numeric")
ser.times <- lapply(lapply(dat,"time"),"as.numeric")
# set difference of the data
ser.diffX <- lapply(ser.X,"diff")
# pre-averaging
knij <- min(max(kn[i,j],2),ser.numX+1)
weight <- sapply((1:(knij-1))/knij,g)
psi.kn <- sum(weight)
#ser.barX <- list(rollapplyr(ser.diffX[[1]],width=knij-1,FUN="%*%",weight),
# rollapplyr(ser.diffX[[2]],width=knij-1,FUN="%*%",weight))
ser.barX <- list(filter(ser.diffX[[1]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[1]])],
filter(ser.diffX[[2]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[2]])])
ser.num.barX <- sapply(ser.barX,"length")-1
# core part of cce
#start <- knij+1
#end <- 1
#for(k in 1:ser.num.barX[1]){
# while(!(ser.times[[1]][k]<ser.times[[2]][start])&&((start-knij)<ser.num.barX[2])){
# start <- start + 1
# }
# while((ser.times[[1]][k+knij]>ser.times[[2]][end+1])&&(end<ser.num.barX[2])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[1]][k]*sum(ser.barX[[2]][(start-knij):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(knij),
as.integer(ser.num.barX[1]),
as.integer(ser.num.barX[2]),
as.double(ser.times[[1]]),
as.double(ser.times[[2]]),
as.double(ser.barX[[1]]),
as.double(ser.barX[[2]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[i,j] <- cmat[i,j]/(psi.kn^2)
cmat[j,i] <- cmat[i,j]
}else{
diffX <- diff(as.numeric(data[[i]]))
# pre-averaging
kni <- min(max(kn[i,i],2),length(data[[i]]))
weight <- sapply((1:(kni-1))/kni,g)
psi.kn <- sum(weight)
#barX <- rollapplyr(diffX,width=kni-1,FUN="%*%",weight)
barX <- filter(diffX,rev(weight),method="c",
sides=1)[(kni-1):length(diffX)]
tmp <- barX[-length(barX)]
# core part of cce
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kni-1)+1,FUN="sum",partial=TRUE)/(psi.kn)^2
cmat[i,j] <- tmp%*%rollsum(c(double(kni-1),tmp,double(kni-1)),
k=2*(kni-1)+1)/(psi.kn)^2
}
}
}
}
}else{# refreshing,non-cwise
# synchronize the data
resample <- refresh_sampling.PHY(data)
data <- resample$data
ser.numX <- length(resample$refresh.times)-1
# if missing kn, we choose it following Barndorff-Nielsen et al. (2011)
if(missing(kn)){
kn <- min(max(ceiling(mean(theta)*sqrt(ser.numX)),2),ser.numX+1)
}
kn <- kn[1]
weight <- sapply((1:(kn-1))/kn,g)
# allocate memory
ser.X <- vector(n.series, mode="list") # data in 'x'
ser.times <- vector(n.series, mode="list") # time index in 'x'
ser.diffX <- vector(n.series, mode="list") # difference of data
ser.barX <- vector(n.series, mode="list") # pre-averaged data
ser.num.barX <- integer(n.series)
for(i in 1:n.series){
# set data and time index
ser.X[[i]] <- as.numeric(data[[i]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[i]] <- as.numeric(time(data[[i]]))
# set difference of the data
ser.diffX[[i]] <- diff( ser.X[[i]] )
# pre-averaging
#ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.barX[[i]] <- filter(ser.diffX[[i]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[i]])]
ser.num.barX[i] <- length(ser.barX[[i]])-1
}
# core part of cce
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
#start <- kn+1
#end <- 1
#for(k in 1:ser.num.barX[i]){
# while(!(ser.times[[i]][k]<ser.times[[j]][start])&&((start-kn)<ser.num.barX[j])){
# start <- start + 1
# }
# while((ser.times[[i]][k+kn]>ser.times[[j]][end+1])&&(end<ser.num.barX[j])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[i]][k]*sum(ser.barX[[j]][(start-kn):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(kn),
as.integer(ser.num.barX[i]),
as.integer(ser.num.barX[j]),
as.double(ser.times[[i]]),
as.double(ser.times[[j]]),
as.double(ser.barX[[i]]),
as.double(ser.barX[[j]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[j,i] <- cmat[i,j]
}else{
tmp <- ser.barX[[i]][1:ser.num.barX[i]]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kn-1)+1,FUN="sum",partial=TRUE)
cmat[i,j] <- tmp%*%rollsum(c(double(kn-1),tmp,double(kn-1)),
k=2*(kn-1)+1)
}
}
}
psi.kn <- sum(weight)
cmat <- cmat/(psi.kn^2)
}
}else{# non-refreshing
if(cwise){# non-refreshing,cwise
theta <- matrix(theta,n.series,n.series)
theta <- (theta+t(theta))/2
if(missing(kn)){
ntmp <- matrix(sapply(data,"length"),n.series,n.series)
ntmp <- ntmp+t(ntmp)
diag(ntmp) <- diag(ntmp)/2
kn <- ceiling(theta*sqrt(ntmp))
kn[kn<2] <- 2 # kn must be larger than 1
}
kn <- matrix(kn,n.series,n.series)
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
dat <- list(data[[i]],data[[j]])
# set data and time index
ser.X <- lapply(dat,"as.numeric")
ser.times <- lapply(lapply(dat,"time"),"as.numeric")
# set difference of the data
ser.diffX <- lapply(ser.X,"diff")
# pre-averaging
knij <- min(kn[i,j],sapply(ser.X,"length")) # kn must be less than the numbers of the observations
weight <- sapply((1:(knij-1))/knij,g)
#ser.barX <- list(rollapplyr(ser.diffX[[1]],width=knij-1,FUN="%*%",weight),
# rollapplyr(ser.diffX[[2]],width=knij-1,FUN="%*%",weight))
ser.barX <- list(filter(ser.diffX[[1]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[1]])],
filter(ser.diffX[[2]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[2]])])
ser.num.barX <- sapply(ser.barX,"length")-1
psi.kn <- sum(weight)
# core part of cce
start <- knij+1
end <- 1
#for(k in 1:ser.num.barX[1]){
# while(!(ser.times[[1]][k]<ser.times[[2]][start])&&((start-knij)<ser.num.barX[2])){
# start <- start + 1
# }
# while((ser.times[[1]][k+knij]>ser.times[[2]][end+1])&&(end<ser.num.barX[2])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[1]][k]*sum(ser.barX[[2]][(start-knij):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(knij),
as.integer(ser.num.barX[1]),
as.integer(ser.num.barX[2]),
as.double(ser.times[[1]]),
as.double(ser.times[[2]]),
as.double(ser.barX[[1]]),
as.double(ser.barX[[2]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[i,j] <- cmat[i,j]/(psi.kn^2)
cmat[j,i] <- cmat[i,j]
}else{
diffX <- diff(as.numeric(data[[i]]))
# pre-averaging
kni <- min(kn[i,i],length(data[[i]])) # kn must be less than the number of the observations
weight <- sapply((1:(kni-1))/kni,g)
psi.kn <- sum(weight)
#barX <- rollapplyr(diffX,width=kni-1,FUN="%*%",weight)
barX <- filter(diffX,rev(weight),method="c",
sides=1)[(kni-1):length(diffX)]
tmp <- barX[-length(barX)]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kni-1)+1,FUN="sum",partial=TRUE)/(psi.kn)^2
cmat[i,j] <- tmp%*%rollsum(c(double(kni-1),tmp,double(kni-1)),
k=2*(kni-1)+1)/(psi.kn)^2
}
}
}
}else{# non-refreshing, non-cwise
# allocate memory
ser.X <- vector(n.series, mode="list") # data in 'x'
ser.times <- vector(n.series, mode="list") # time index in 'x'
ser.diffX <- vector(n.series, mode="list") # difference of data
ser.numX <- integer(n.series)
ser.barX <- vector(n.series, mode="list")
for(i in 1:n.series){
# set data and time index
ser.X[[i]] <- as.numeric(data[[i]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[i]] <- as.numeric(time(data[[i]]))
# set difference of the data
ser.diffX[[i]] <- diff( ser.X[[i]] )
ser.numX[i] <- length(ser.diffX[[i]])
}
# pre-averaging
if(missing(kn)){
kn <- min(max(ceiling(mean(theta)*sqrt(sum(ser.numX))),2),
ser.numX+1)
}
kn <- kn[1]
weight <- sapply((1:(kn-1))/kn,g)
psi.kn <- sum(weight)
for(i in 1:n.series){
#ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.barX[[i]] <- filter(ser.diffX[[i]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[i]])]
}
ser.num.barX <- sapply(ser.barX,"length")-1
# core part of cce
cmat <- matrix(0, n.series, n.series) # cov
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
#start <- kn+1
#end <- 1
#for(k in 1:ser.num.barX[i]){
# while(!(ser.times[[i]][k]<ser.times[[j]][start])&&((start-kn)<ser.num.barX[j])){
# start <- start + 1
# }
# while((ser.times[[i]][k+kn]>ser.times[[j]][end+1])&&(end<ser.num.barX[j])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[i]][k]*sum(ser.barX[[j]][(start-kn):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(kn),
as.integer(ser.num.barX[i]),
as.integer(ser.num.barX[j]),
as.double(ser.times[[i]]),
as.double(ser.times[[j]]),
as.double(ser.barX[[i]]),
as.double(ser.barX[[j]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[j,i] <- cmat[i,j]
}else{
tmp <- ser.barX[[i]][1:ser.num.barX[i]]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kn-1)+1,FUN="sum",partial=TRUE)
cmat[i,j] <- tmp%*%rollsum(c(double(kn-1),tmp,double(kn-1)),
k=2*(kn-1)+1)
}
}
}
cmat <- cmat/(psi.kn^2)
}
}
return(cmat)
}
################################################################
# previous tick Two Scales realized CoVariance
## data: a list of zoos c.two: a postive number
TSCV <- function(data,K,c.two,J=1,adj=TRUE,utime){
#X <- do.call("rbind",lapply(refresh_sampling(data),"as.numeric"))
#N <- ncol(X)
X <- do.call("cbind",lapply(refresh_sampling(data),"as.numeric"))
N <- nrow(X)
if(missing(K)){
if(missing(c.two)) c.two <- selectParam.TSCV(data,utime=utime)
K <- ceiling(mean(c.two)*N^(2/3))
}
scale <- (N-K+1)*J/(K*(N-J+1))
#diffX1 <- apply(X,1,"diff",lag=K)
#diffX2 <- apply(X,1,"diff",lag=J)
diffX1 <- diff(X,lag=K)
diffX2 <- diff(X,lag=J)
cmat <- t(diffX1)%*%diffX1/K-scale*t(diffX2)%*%diffX2/J
if(adj) cmat <- cmat/(1-scale)
return(cmat)
}
################################################################
# Generalized multiscale estimator
## data: a list of zoos c.multi: a postive number
GME <- function(data,c.multi,utime){
d.size <- length(data)
if(missing(c.multi)) c.multi <- selectParam.GME(data,utime=utime)
c.multi <- matrix(c.multi,d.size,d.size)
c.multi <- (c.multi+t(c.multi))/2
cmat <- matrix(0,d.size,d.size)
for(i in 1:d.size){
for(j in i:d.size){
if(i!=j){
sdata <- Bibsynchro(data[[i]],data[[j]])
N <- sdata$num.data
M <- ceiling(c.multi[i,j]*sqrt(N))
M <- min(c(M,N)) # M must be smaller than N
M <- max(c(M,2)) # M must be lager than 2
alpha <- 12*(1:M)^2/(M^3-M)-6*(1:M)/(M^2-1)-6*(1:M)/(M^3-M)
#tmp <- double(M)
#for(m in 1:M){
# tmp[m] <- (sdata$xg[m:N]-sdata$xl[1:(N-m+1)])%*%
# (sdata$ygamma[m:N]-sdata$ylambda[1:(N-m+1)])
#}
tmp <- .C("msrc",
as.integer(M),
as.integer(N),
as.double(sdata$xg),
as.double(sdata$xl),
as.double(sdata$ygamma),
as.double(sdata$ylambda),
result=double(M),
PACKAGE = "yuima")$result
cmat[i,j] <- (alpha/(1:M))%*%tmp
}else{
X <- as.numeric(data[[i]])
N <- length(X)-1
M <- ceiling(c.multi[i,j]*sqrt(N))
M <- min(c(M,N)) # M must be smaller than N
M <- max(c(M,2)) # M must be lager than 2
alpha <- 12*(1:M)^2/(M^3-M)-6*(1:M)/(M^2-1)-6*(1:M)/(M^3-M)
#tmp <- double(M)
#for(m in 1:M){
#tmp[m] <- sum((X[m:N]-X[1:(N-m+1)])^2)
# tmp[m] <- sum(diff(X,lag=m)^2)
#}
tmp <- .C("msrc",
as.integer(M),
as.integer(N),
as.double(X[-1]),
as.double(X[1:N]),
as.double(X[-1]),
as.double(X[1:N]),
result=double(M),
PACKAGE = "yuima")$result
cmat[i,j] <- (alpha/(1:M))%*%tmp
}
cmat[j,i] <- cmat[i,j]
}
}
return(cmat)
}
################################################################
# Realized kernel
## data: a list of zoos
## kernel: a real-valued function on [0,infty) (a kernel)
## H: a positive number m: a postive integer
RK <- function(data,kernel,H,c.RK,eta=3/5,m=2,ftregion=0,utime){
# if missing kernel, we use the Parzen kernel
if(missing(kernel)){
kernel <- function(x){
if(x<=1/2){
return(1-6*x^2+6*x^3)
}else if(x<=1){
return(2*(1-x)^3)
}else{
return(0)
}
}
}
d <- length(data)
tmp <- lapply(refresh_sampling(data),"as.numeric")
#tmp <- do.call("rbind",tmp)
tmp <- do.call("cbind",tmp)
#n <- max(c(ncol(tmp)-2*m+1,2))
n <- max(c(nrow(tmp)-2*m+1,2))
# if missing H, we select it following Barndorff-Nielsen et al.(2011)
if(missing(H)){
if(missing(c.RK)) c.RK <- selectParam.RK(data,utime=utime)
H <- mean(c.RK)*n^eta
}
#X <- matrix(0,d,n+1)
X <- matrix(0,n+1,d)
#X[,1] <- apply(matrix(tmp[,1:m],d,m),1,"sum")/m
#X[,1] <- apply(matrix(tmp[,1:m],d,m),1,"mean")
X[1,] <- colMeans(matrix(tmp[1:m,],m,d))
#X[,2:n] <- tmp[,(m+1):(m+n-1)]
X[2:n,] <- tmp[(m+1):(m+n-1),]
#X[,n+1] <- apply(matrix(tmp[,(n+m):(n+2*m-1)],d,m),1,"sum")/m
#X[,n+1] <- apply(matrix(tmp[,(n+m):(n+2*m-1)],d,m),1,"mean")
X[n+1,] <- colMeans(matrix(tmp[(n+m):(n+2*m-1),],m,d))
cc <- floor(ftregion*H) # flat-top region
Kh <- rep(1,cc)
Kh <- append(Kh,sapply(((cc+1):(n-1))/H,kernel))
h.size <- max(which(Kh!=0))
#diffX <- apply(X,1,FUN="diff")
#diffX <- diff(X)
#Gamma <- array(0,dim=c(h.size+1,d,d))
#for(h in 1:(h.size+1))
# Gamma[h,,] <- t(diffX)[,h:n]%*%diffX[1:(n-h+1),]
Gamma <- acf(diff(X),lag.max=h.size,type="covariance",
plot=FALSE,demean=FALSE)$acf*n
cmat <- matrix(0,d,d)
for (i in 1:d){
cmat[,i] <- kernel(0)*Gamma[1,,i]+
Kh[1:h.size]%*%(Gamma[-1,,i]+Gamma[-1,i,])
}
return(cmat)
}
#############################################################
# QMLE (Ait-Sahalia et al.(2010))
## Old sources
if(0){
ql.xiu <- function(zdata){
diffX <- diff(as.numeric(zdata))
inv.difft <- diff(as.numeric(time(zdata)))^(-1)
n <- length(diffX)
a <- 4*inv.difft*sin((pi/2)*seq(1,2*n-1,by=2)/(2*n+1))^2
z <- double(n)
for(k in 1:n){
z[k] <- cos(pi*((2*k-1)/(2*n+1))*(1:n-1/2))%*%diffX
}
z <- sqrt(2/(n+1/2))*z
#z <- sqrt(2/(n+1/2))*cos(pi*((2*(1:n)-1)/(2*n+1))%o%(1:n-1/2))%*%diffX
z2 <- inv.difft*z^2
n.ql <- function(v){
V <- v[1]+a*v[2]
return(sum(log(V)+V^(-1)*z2))
}
gr <- function(v){
V <- v[1]+a*v[2]
obj <- V^(-1)-V^(-2)*z2
return(c(sum(obj),sum(a*obj)))
}
return(list(n.ql=n.ql,gr=gr))
}
cce.qmle <- function(data,opt.method="BFGS",vol.init=NA,
covol.init=NA,nvar.init=NA,ncov.init=NA,...,utime){
d.size <- length(data)
dd <- d.size*(d.size-1)/2
vol.init <- matrix(vol.init,1,d.size)
nvar.init <- matrix(vol.init,1,d.size)
covol.init <- matrix(covol.init,2,dd)
ncov.init <- matrix(ncov.init,2,dd)
if(missing(utime)) utime <- set_utime(data)
cmat <- matrix(0,d.size,d.size)
for(i in 1:d.size){
for(j in i:d.size){
if(i!=j){
idx <- d.size*(i-1)-(i-1)*i/2+(j-i)
dat <- refresh_sampling(list(data[[i]],data[[j]]))
dattime <- apply(do.call("rbind",
lapply(lapply(dat,"time"),"as.numeric")),
2,"max")
dat[[1]] <- zoo(as.numeric(dat[[1]]),dattime)
dat[[2]] <- zoo(as.numeric(dat[[2]]),dattime)
dat1 <- dat[[1]]+dat[[2]]
dat2 <- dat[[1]]-dat[[2]]
ql1 <- ql.xiu(dat1)
ql2 <- ql.xiu(dat2)
Sigma1 <- covol.init[1,idx]
Sigma2 <- covol.init[2,idx]
Omega1 <- ncov.init[1,idx]
Omega2 <- ncov.init[2,idx]
if(is.na(Sigma1)) Sigma1 <- RV.sparse(dat1,frequency=1200,utime=utime)
if(is.na(Sigma2)) Sigma2 <- RV.sparse(dat2,frequency=1200,utime=utime)
if(is.na(Omega1)) Omega1 <- Omega_BNHLS(dat1,sec=120,utime=utime)
if(is.na(Omega2)) Omega2 <- Omega_BNHLS(dat2,sec=120,utime=utime)
#par1 <- optim(par1,fn=ql.ks(dat1),method=opt.method)
#par2 <- optim(par2,fn=ql.ks(dat2),method=opt.method)
par1 <- constrOptim(theta=c(Sigma1,Omega1),
f=ql1$n.ql,grad=ql1$gr,method=opt.method,
ui=diag(2),ci=0,...)$par[1]
par2 <- constrOptim(theta=c(Sigma2,Omega2),
f=ql2$n.ql,grad=ql2$gr,method=opt.method,
ui=diag(2),ci=0,...)$par[1]
cmat[i,j] <- (par1-par2)/4
cmat[j,i] <- cmat[i,j]
}else{
ql <- ql.xiu(data[[i]])
Sigma <- vol.init[i]
Omega <- nvar.init[i]
if(is.na(Sigma)) Sigma <- RV.sparse(data[[i]],frequency=1200,utime=utime)
if(is.na(Omega)) Omega <- Omega_BNHLS(data[[i]],sec=120,utime=utime)
#cmat[i,i] <- optim(par,fn=ql.ks(data[[i]]),method=opt.method)
cmat[i,i] <- constrOptim(theta=c(Sigma,Omega),f=ql$n.ql,grad=ql$gr,
method=opt.method,
ui=diag(2),ci=0,...)$par[1]
}
}
}
return(cmat)
}
}
## New sources (2014/11/10, use arima0)
cce.qmle <- function(data,vol.init=NA,covol.init=NA,nvar.init=NA,ncov.init=NA){
d.size <- length(data)
dd <- d.size*(d.size-1)/2
vol.init <- matrix(vol.init,1,d.size)
nvar.init <- matrix(vol.init,1,d.size)
covol.init <- matrix(covol.init,2,dd)
ncov.init <- matrix(ncov.init,2,dd)
cmat <- matrix(0,d.size,d.size)
for(i in 1:d.size){
for(j in i:d.size){
if(i!=j){
idx <- d.size*(i-1)-(i-1)*i/2+(j-i)
dat <- refresh_sampling(list(data[[i]],data[[j]]))
dat[[1]] <- diff(as.numeric(dat[[1]]))
dat[[2]] <- diff(as.numeric(dat[[2]]))
n <- length(dat[[1]])
Sigma1 <- covol.init[1,idx]
Sigma2 <- covol.init[2,idx]
Omega1 <- ncov.init[1,idx]
Omega2 <- ncov.init[2,idx]
init <- (-2*Omega1-Sigma1/n+sqrt(Sigma1*(4*Omega1+Sigma1/n)/n))/(2*Omega1)
obj <- arima0(dat[[1]]+dat[[2]],order=c(0,0,1),include.mean=FALSE,
init=init)
par1 <- n*obj$sigma2*(1+obj$coef)^2
init <- (-2*Omega2-Sigma2/n+sqrt(Sigma2*(4*Omega2+Sigma2/n)/n))/(2*Omega2)
obj <- arima0(dat[[1]]-dat[[2]],order=c(0,0,1),include.mean=FALSE,
init=init)
par2 <- n*obj$sigma2*(1+obj$coef)^2
cmat[i,j] <- (par1-par2)/4
cmat[j,i] <- cmat[i,j]
}else{
dx <- diff(as.numeric(data[[i]]))
n <- length(dx)
Sigma <- vol.init[i]
Omega <- nvar.init[i]
init <- (-2*Omega-Sigma/n+sqrt(Sigma*(4*Omega+Sigma/n)/n))/(2*Omega)
obj <- arima0(dx,order=c(0,0,1),include.mean=FALSE,init=init)
cmat[i,i] <- n*obj$sigma2*(1+obj$coef)^2
}
}
}
return(cmat)
}
##################################################################
# Separating information maximum likelihood estimator (Kunitomo and Sato (2008))
SIML <- function(data,mn,alpha=0.4){
d.size <- length(data)
data <- lapply(refresh_sampling(data),"as.numeric")
data <- do.call("cbind",data)
n.size <- nrow(data)-1
if(missing(mn)){
mn <- ceiling(n.size^alpha)
}
#C <- matrix(1,n.size,n.size)
#C[upper.tri(C)] <- 0
#P <- matrix(0,n.size,n.size)
#for(j in 1:n.size){
# for(k in 1:n.size){
# P[j,k] <- sqrt(2/(n.size+1/2))*cos((2*pi/(2*n.size+1))*(j-1/2)*(k-1/2))
# }
#}
#Z <- data[-1,]-matrix(1,n.size,1)%*%matrix(data[1,],1,d.size)
#Z <- sqrt(n.size)*t(P)%*%solve(C)%*%Z
#diff.Y <- apply(data,2,"diff")
diff.Y <- diff(data)
#Z <- matrix(0,n.size,d.size)
#for(j in 1:n.size){
# pj <- sqrt(2/(n.size+1/2))*cos((2*pi/(2*n.size+1))*(j-1/2)*(1:n.size-1/2))
# Z[j,] <- matrix(pj,1,n.size)%*%diff.Y
#}
#Z <- matrix(0,mn,d.size)
#for(j in 1:mn){
# pj <- sqrt(2/(n.size+1/2))*cos((2*pi/(2*n.size+1))*(j-1/2)*(1:n.size-1/2))
# Z[j,] <- matrix(pj,1,n.size)%*%diff.Y
#}
#Z <- sqrt(n.size)*Z
Z <- sqrt(n.size)*
sqrt(2/(n.size+1/2))*cos((2*pi/(2*n.size+1))*(1:mn-1/2)%o%(1:n.size-1/2))%*%
diff.Y
cmat <- matrix(0,d.size,d.size)
for(k in 1:mn){
cmat <- cmat+matrix(Z[k,],d.size,1)%*%matrix(Z[k,],1,d.size)
}
return(cmat/mn)
}
#############################################################
# Truncated Hayashi-Yoshida estimator
## data: a list of zoos
## threshold: a numeric vector or a list of numeric vectors or zoos
THY <- function(data,threshold) {
n.series <- length(data)
if(missing(threshold)){
threshold <- local_univ_threshold(data,coef=5,eps=0.1)
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
}
#if(n.series <2)
# stop("Please provide at least 2-dimensional time series")
# allocate memory
ser.X <- vector(n.series, mode="list") # data in 'x'
ser.times <- vector(n.series, mode="list") # time index in 'x'
ser.diffX <- vector(n.series, mode="list") # difference of data
ser.rho <- vector(n.series, mode="list")
for(i in 1:n.series){
# set data and time index
ser.X[[i]] <- as.numeric(data[[i]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[i]] <- as.numeric(time(data[[i]]))
# set difference of the data with truncation
ser.diffX[[i]] <- diff( ser.X[[i]] )
if(is.numeric(threshold)){
ser.rho[[i]] <- rep(threshold[i],length(ser.diffX[[i]]))
}else{
ser.rho[[i]] <- as.numeric(threshold[[i]])
}
# thresholding
ser.diffX[[i]][ser.diffX[[i]]^2>ser.rho[[i]]] <- 0
}
# core part of cce
cmat <- matrix(0, n.series, n.series) # cov
for(i in 1:n.series){
for(j in i:n.series){
#I <- rep(1,n.series)
#Checking Starting Point
#repeat{
# if(ser.times[[i]][I[i]] >= ser.times[[j]][I[j]+1]){
# I[j] <- I[j]+1
# }else if(ser.times[[i]][I[i]+1] <= ser.times[[j]][I[j]]){
# I[i] <- I[i]+1
# }else{
# break
# }
#}
#Main Component
if(i!=j){
#while((I[i]<length(ser.times[[i]])) && (I[j]<length(ser.times[[j]]))) {
# cmat[j,i] <- cmat[j,i] + (ser.diffX[[i]])[I[i]]*(ser.diffX[[j]])[I[j]]
# if(ser.times[[i]][I[i]+1]>ser.times[[j]][I[j]+1]){
# I[j] <- I[j] + 1
# }else if(ser.times[[i]][I[i]+1]<ser.times[[j]][I[j]+1]){
# I[i] <- I[i] +1
# }else{
# I[i] <- I[i]+1
# I[j] <- I[j]+1
# }
#}
cmat[j,i] <- .C("HayashiYoshida",as.integer(length(ser.times[[i]])),
as.integer(length(ser.times[[j]])),as.double(ser.times[[i]]),
as.double(ser.times[[j]]),as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),value=double(1),
PACKAGE = "yuima")$value
}else{
cmat[i,j] <- sum(ser.diffX[[i]]^2)
}
cmat[i,j] <- cmat[j,i]
}
}
return(cmat)
}
#########################################################
# Pre-averaged truncated Hayashi-Yoshida estimator
## data: a list of zoos theta: a postive number
## g: a real-valued function on [0,1] (a weight function)
## threshold: a numeric vector or a list of numeric vectors or zoos
## refreshing: a logical value (if TRUE we use the refreshed data)
PTHY <- function(data,theta,kn,g,threshold,refreshing=TRUE,
cwise=TRUE,eps=0.2){
n.series <- length(data)
#if(missing(theta)&&missing(kn))
# theta <- selectParam.pavg(data,a.theta=7585/1161216,
# b.theta=151/20160,c.theta=1/24)
if(missing(theta)) theta <- 0.15
cmat <- matrix(0, n.series, n.series) # cov
if(refreshing){
if(cwise){
if(missing(kn)){# refreshing,cwise,missing kn
theta <- matrix(theta,n.series,n.series)
theta <- (theta+t(theta))/2
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
resample <- refresh_sampling.PHY(list(data[[i]],data[[j]]))
dat <- resample$data
ser.numX <- length(resample$refresh.times)-1
# set data and time index
ser.X <- lapply(dat,"as.numeric")
ser.times <- lapply(lapply(dat,"time"),"as.numeric")
# set difference of the data
ser.diffX <- lapply(ser.X,"diff")
# pre-averaging
kn <- min(max(ceiling(theta[i,j]*sqrt(ser.numX)),2),ser.numX)
weight <- sapply((1:(kn-1))/kn,g)
psi.kn <- sum(weight)
#ser.barX <- list(rollapplyr(ser.diffX[[1]],width=kn-1,FUN="%*%",weight),
# rollapplyr(ser.diffX[[2]],width=kn-1,FUN="%*%",weight))
ser.barX <- list(filter(ser.diffX[[1]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[1]])],
filter(ser.diffX[[2]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[2]])])
ser.num.barX <- sapply(ser.barX,"length")
# thresholding
if(missing(threshold)){
for(ii in 1:2){
K <- ceiling(ser.num.barX[ii]^(3/4))
obj0 <- abs(ser.barX[[ii]])
obj1 <- (pi/2)*obj0[1:(ser.num.barX[ii]-kn)]*obj0[-(1:kn)]
if(min(K,ser.num.barX[ii]-1)<2*kn){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(ser.num.barX[ii])
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(ser.num.barX[ii]-2*kn)],k=K-2*kn+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(ser.num.barX[ii])*
# (median(abs(ser.barX[[ii]])/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(ser.num.barX[ii])^(1+eps)*v.hat
ser.barX[[ii]][ser.barX[[ii]]^2>rho] <- 0
}
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
ser.barX[[1]][ser.barX[[1]]^2>threshold[i]] <- 0
ser.barX[[2]][ser.barX[[2]]^2>threshold[j]] <- 0
}else{
ser.barX[[1]][ser.barX[[1]]^2>threshold[[i]][1:ser.num.barX[1]]] <- 0
ser.barX[[2]][ser.barX[[2]]^2>threshold[[j]][1:ser.num.barX[2]]] <- 0
}
ser.num.barX <- ser.num.barX-1
# core part of cce
#start <- kn+1
#end <- 1
#for(k in 1:ser.num.barX[1]){
# while(!(ser.times[[1]][k]<ser.times[[2]][start])&&((start-kn)<ser.num.barX[2])){
# start <- start + 1
# }
# while((ser.times[[1]][k+kn]>ser.times[[2]][end+1])&&(end<ser.num.barX[2])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[1]][k]*sum(ser.barX[[2]][(start-kn):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(kn),
as.integer(ser.num.barX[1]),
as.integer(ser.num.barX[2]),
as.double(ser.times[[1]]),
as.double(ser.times[[2]]),
as.double(ser.barX[[1]]),
as.double(ser.barX[[2]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[i,j] <- cmat[i,j]/(psi.kn^2)
cmat[j,i] <- cmat[i,j]
}else{
diffX <- diff(as.numeric(data[[i]]))
# pre-averaging
kn <- min(max(ceiling(theta[i,i]*sqrt(length(diffX))),2),
length(data[[i]]))
weight <- sapply((1:(kn-1))/kn,g)
psi.kn <- sum(weight)
#barX <- rollapplyr(diffX,width=kn-1,FUN="%*%",weight)
barX <- filter(diffX,rev(weight),method="c",
sides=1)[(kn-1):length(diffX)]
num.barX <- length(barX)
# thresholding
if(missing(threshold)){
K <- ceiling(num.barX^(3/4))
#K <- ceiling(kn^(3/2))
obj0 <- abs(barX)
obj1 <- (pi/2)*obj0[1:(num.barX-kn)]*obj0[-(1:kn)]
if(min(K,num.barX-1)<2*kn){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(num.barX)
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(num.barX-2*kn)],k=K-2*kn+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(num.barX)*
# (median(abs(barX)/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(num.barX)^(1+eps)*v.hat
barX[barX^2>rho] <- 0
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
barX[barX^2>threshold[i]] <- 0
}else{
barX[barX^2>threshold[[i]][1:num.barX]] <- 0
}
tmp <- barX[-num.barX]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kn-1)+1,FUN="sum",partial=TRUE)/(psi.kn)^2
cmat[i,j] <- tmp%*%rollsum(c(double(kn-1),tmp,double(kn-1)),
k=2*(kn-1)+1)/(psi.kn)^2
}
}
}
}else{# refreshing,cwise,not missing kn
kn <- matrix(kn,n.series,n.series)
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
resample <- refresh_sampling.PHY(list(data[[i]],data[[j]]))
dat <- resample$data
ser.numX <- length(resample$refresh.times)-1
knij <- min(max(kn[i,j],2),ser.numX+1)
weight <- sapply((1:(knij-1))/knij,g)
psi.kn <- sum(weight)
# set data and time index
ser.X <- lapply(dat,"as.numeric")
ser.times <- lapply(lapply(dat,"time"),"as.numeric")
# set difference of the data
ser.diffX <- lapply(ser.X,"diff")
# pre-averaging
#ser.barX <- list(rollapplyr(ser.diffX[[1]],width=knij-1,FUN="%*%",weight),
# rollapplyr(ser.diffX[[2]],width=knij-1,FUN="%*%",weight))
ser.barX <- list(filter(ser.diffX[[1]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[1]])],
filter(ser.diffX[[2]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[2]])])
ser.num.barX <- sapply(ser.barX,"length")
# thresholding
if(missing(threshold)){
for(ii in 1:2){
K <- ceiling(ser.num.barX[ii]^(3/4))
obj0 <- abs(ser.barX[[ii]])
obj1 <- (pi/2)*obj0[1:(ser.num.barX[ii]-knij)]*obj0[-(1:knij)]
if(min(K,ser.num.barX[ii]-1)<2*knij){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(ser.num.barX[ii])
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(ser.num.barX[ii]-2*knij)],k=K-2*knij+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(ser.num.barX[ii])*
# (median(abs(ser.barX[[ii]])/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(ser.num.barX[ii])^(1+eps)*v.hat
ser.barX[[ii]][ser.barX[[ii]]^2>rho] <- 0
}
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
ser.barX[[1]][ser.barX[[1]]^2>threshold[i]] <- 0
ser.barX[[2]][ser.barX[[2]]^2>threshold[j]] <- 0
}else{
ser.barX[[1]][ser.barX[[1]]^2>threshold[[i]][1:ser.num.barX[1]]] <- 0
ser.barX[[2]][ser.barX[[2]]^2>threshold[[j]][1:ser.num.barX[2]]] <- 0
}
ser.num.barX <- ser.num.barX-1
# core part of cce
#start <- knij+1
#end <- 1
#for(k in 1:ser.num.barX[1]){
# while(!(ser.times[[1]][k]<ser.times[[2]][start])&&((start-knij)<ser.num.barX[2])){
# start <- start + 1
# }
# while((ser.times[[1]][k+knij]>ser.times[[2]][end+1])&&(end<ser.num.barX[2])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[1]][k]*sum(ser.barX[[2]][(start-knij):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(knij),
as.integer(ser.num.barX[1]),
as.integer(ser.num.barX[2]),
as.double(ser.times[[1]]),
as.double(ser.times[[2]]),
as.double(ser.barX[[1]]),
as.double(ser.barX[[2]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[i,j] <- cmat[i,j]/(psi.kn^2)
cmat[j,i] <- cmat[i,j]
}else{
diffX <- diff(as.numeric(data[[i]]))
# pre-averaging
kni <- min(max(kni,2),length(data[[i]]))
weight <- sapply((1:(kni-1))/kni,g)
psi.kn <- sum(weight)
#barX <- rollapplyr(diffX,width=kni-1,FUN="%*%",weight)
barX <- filter(diffX,rev(weight),method="c",
sides=1)[(kni-1):length(diffX)]
num.barX <- length(barX)
# thresholding
if(missing(threshold)){
K <- ceiling(num.barX^(3/4))
#K <- ceiling(kn^(3/2))
obj0 <- abs(barX)
obj1 <- (pi/2)*obj0[1:(num.barX-kni)]*obj0[-(1:kni)]
if(min(K,num.barX-1)<2*kni){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(num.barX)
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(num.barX-2*kni)],k=K-2*kni+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(num.barX)*
# (median(abs(barX)/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(num.barX)^(1+eps)*v.hat
barX[barX^2>rho] <- 0
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
barX[barX^2>threshold[i]] <- 0
}else{
barX[barX^2>threshold[[i]][1:num.barX]] <- 0
}
tmp <- barX[-num.barX]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kni-1)+1,FUN="sum",partial=TRUE)/(psi.kn)^2
cmat[i,j] <- tmp%*%rollsum(c(double(kni-1),tmp,double(kni-1)),
k=2*(kni-1)+1)/(psi.kn)^2
}
}
}
}
}else{# refreshing,non-cwise
# synchronize the data
resample <- refresh_sampling.PHY(data)
data <- resample$data
ser.numX <- length(resample$refresh.times)-1
# if missing kn, we choose it following Barndorff-Nielsen et al. (2011)
if(missing(kn)){
kn <- min(max(ceiling(mean(theta)*sqrt(ser.numX)),2),ser.numX+1)
}
kn <- kn[1]
weight <- sapply((1:(kn-1))/kn,g)
# allocate memory
ser.X <- vector(n.series, mode="list") # data in 'x'
ser.times <- vector(n.series, mode="list") # time index in 'x'
ser.diffX <- vector(n.series, mode="list") # difference of data
ser.barX <- vector(n.series, mode="list") # pre-averaged data
ser.num.barX <- integer(n.series)
for(i in 1:n.series){
# set data and time index
ser.X[[i]] <- as.numeric(data[[i]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[i]] <- as.numeric(time(data[[i]]))
# set difference of the data
ser.diffX[[i]] <- diff( ser.X[[i]] )
}
# thresholding
if(missing(threshold)){
#coef <- 2*coef*kn/sqrt(ser.numX)
for(i in 1:n.series){
#ser.num.barX[i] <- ser.numX[i]-kn+2
#ser.barX[[i]] <- double(ser.num.barX[i])
#for(j in 1:ser.num.barX[i]){
# ser.barX[[i]][j] <- sapply((1:(kn-1))/kn,g)%*%ser.diffX[[i]][j:(j+kn-2)]
#}
#ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.barX[[i]] <- filter(ser.diffX[[i]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[i]])]
ser.num.barX[i] <- length(ser.barX[[i]])
K <- ceiling(ser.num.barX[i]^(3/4))
obj0 <- abs(ser.barX[[i]])
obj1 <- (pi/2)*obj0[1:(ser.num.barX[i]-kn)]*obj0[-(1:kn)]
if(min(K,ser.num.barX[i]-1)<2*kn){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(ser.num.barX[i])
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(ser.num.barX[i]-2*kn)],
k=K-2*kn+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(ser.num.barX[ii])*
# (median(abs(ser.barX[[ii]])/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(ser.num.barX[i])^(1+eps)*v.hat
ser.barX[[i]][ser.barX[[i]]^2>rho] <- 0
}
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
for(i in 1:n.series){
#ser.num.barX[i] <- ser.numX[i]-kn+2
#ser.barX[[i]] <- double(ser.num.barX[i])
#for(j in 1:ser.num.barX[i]){
# tmp <- sapply((1:(kn-1))/kn,g)%*%ser.diffX[[i]][j:(j+kn-2)]
# if(tmp^2>threshold[i]){
# ser.barX[[i]][j] <- 0
# }else{
# ser.barX[[i]][j] <- tmp
# }
#}
#ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.barX[[i]] <- filter(ser.diffX[[i]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[i]])]
ser.num.barX[i] <- length(ser.barX[[i]])
ser.barX[[i]][ser.barX[[i]]^2>threshold[i]] <- 0
}
}else{
for(i in 1:n.series){
#ser.num.barX[i] <- ser.numX[i]-kn+2
#ser.barX[[i]] <- double(ser.num.barX[i])
#for(j in 1:ser.num.barX[i]){
# tmp <- sapply((1:(kn-1))/kn,g)%*%ser.diffX[[i]][j:(j+kn-2)]
# if(tmp^2>threshold[[i]][j]){
# ser.barX[[i]][j] <- 0
# }else{
# ser.barX[[i]][j] <- tmp
# }
#}
#ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.barX[[i]] <- filter(ser.diffX[[i]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[i]])]
ser.num.barX[i] <- length(ser.barX[[i]])
ser.barX[[i]][ser.barX[[i]]^2>threshold[[i]][1:ser.num.barX[i]]] <- 0
}
}
ser.num.barX <- ser.num.barX-1
# core part of cce
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
#start <- kn+1
#end <- 1
#for(k in 1:ser.num.barX[i]){
# while(!(ser.times[[i]][k]<ser.times[[j]][start])&&((start-kn)<ser.num.barX[j])){
# start <- start + 1
# }
# while((ser.times[[i]][k+kn]>ser.times[[j]][end+1])&&(end<ser.num.barX[j])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[i]][k]*sum(ser.barX[[j]][(start-kn):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(kn),
as.integer(ser.num.barX[i]),
as.integer(ser.num.barX[j]),
as.double(ser.times[[i]]),
as.double(ser.times[[j]]),
as.double(ser.barX[[i]]),
as.double(ser.barX[[j]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[j,i] <- cmat[i,j]
}else{
tmp <- ser.barX[[i]][1:ser.num.barX[i]]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kn-1)+1,FUN="sum",partial=TRUE)
cmat[i,j] <- tmp%*%rollsum(c(double(kn-1),tmp,double(kn-1)),
k=2*(kn-1)+1)
}
}
}
psi.kn <- sum(weight)
cmat <- cmat/(psi.kn^2)
}
}else{# non-refreshing
if(cwise){# non-refreshing,cwise
theta <- matrix(theta,n.series,n.series)
theta <- (theta+t(theta))/2
if(missing(kn)){
ntmp <- matrix(sapply(data,"length"),n.series,n.series)
ntmp <- ntmp+t(ntmp)
diag(ntmp) <- diag(ntmp)/2
kn <- ceiling(theta*sqrt(ntmp))
kn[kn<2] <- 2 # kn must be larger than 1
}
kn <- matrix(kn,n.series,n.series)
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
dat <- list(data[[i]],data[[j]])
# set data and time index
ser.X <- lapply(dat,"as.numeric")
ser.times <- lapply(lapply(dat,"time"),"as.numeric")
# set difference of the data
ser.diffX <- lapply(ser.X,"diff")
# pre-averaging
knij <- min(kn[i,j],sapply(ser.X,"length")) # kn must be less than the numbers of the observations
weight <- sapply((1:(knij-1))/knij,g)
psi.kn <- sum(weight)
#ser.barX <- list(rollapplyr(ser.diffX[[1]],width=knij-1,FUN="%*%",weight),
# rollapplyr(ser.diffX[[2]],width=knij-1,FUN="%*%",weight))
ser.barX <- list(filter(ser.diffX[[1]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[1]])],
filter(ser.diffX[[2]],rev(weight),method="c",
sides=1)[(knij-1):length(ser.diffX[[2]])])
ser.num.barX <- sapply(ser.barX,"length")
# thresholding
if(missing(threshold)){
for(ii in 1:2){
K <- ceiling(ser.num.barX[ii]^(3/4))
obj0 <- abs(ser.barX[[ii]])
obj1 <- (pi/2)*obj0[1:(ser.num.barX[ii]-knij)]*obj0[-(1:knij)]
if(min(K,ser.num.barX[ii]-1)<2*knij){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(ser.num.barX[ii])
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(ser.num.barX[ii]-2*knij)],k=K-2*knij+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(ser.num.barX[ii])*
# (median(abs(ser.barX[[ii]])/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(ser.num.barX[ii])^(1+eps)*v.hat
ser.barX[[ii]][ser.barX[[ii]]^2>rho] <- 0
}
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
ser.barX[[1]][ser.barX[[1]]^2>threshold[i]] <- 0
ser.barX[[2]][ser.barX[[2]]^2>threshold[j]] <- 0
}else{
ser.barX[[1]][ser.barX[[1]]^2>threshold[[i]][1:ser.num.barX[1]]] <- 0
ser.barX[[2]][ser.barX[[2]]^2>threshold[[j]][1:ser.num.barX[2]]] <- 0
}
ser.num.barX <- ser.num.barX-1
# core part of cce
#start <- knij+1
#end <- 1
#for(k in 1:ser.num.barX[1]){
# while(!(ser.times[[1]][k]<ser.times[[2]][start])&&((start-knij)<ser.num.barX[2])){
# start <- start + 1
# }
# while((ser.times[[1]][k+knij]>ser.times[[2]][end+1])&&(end<ser.num.barX[2])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[1]][k]*sum(ser.barX[[2]][(start-knij):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(knij),
as.integer(ser.num.barX[1]),
as.integer(ser.num.barX[2]),
as.double(ser.times[[1]]),
as.double(ser.times[[2]]),
as.double(ser.barX[[1]]),
as.double(ser.barX[[2]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[i,j] <- cmat[i,j]/(psi.kn^2)
cmat[j,i] <- cmat[i,j]
}else{
diffX <- diff(as.numeric(data[[i]]))
# pre-averaging
kni <- min(kn[i,i],length(data[[i]])) # kn must be less than the number of the observations
weight <- sapply((1:(kni-1))/kni,g)
psi.kn <- sum(weight)
#barX <- rollapplyr(diffX,width=kni-1,FUN="%*%",weight)
barX <- filter(diffX,rev(weight),method="c",
sides=1)[(kni-1):length(diffX)]
num.barX <- length(barX)
# thrsholding
if(missing(threshold)){
K <- ceiling(num.barX^(3/4))
#K <- ceiling(kn^(3/2))
obj0 <- abs(barX)
obj1 <- (pi/2)*obj0[1:(num.barX-kni)]*obj0[-(1:kni)]
if(min(K,num.barX-1)<2*kni){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(num.barX)
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(num.barX-2*kni)],k=K-2*kni+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(num.barX)*
# (median(abs(barX)/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(num.barX)^(1+eps)*v.hat
barX[barX^2>rho] <- 0
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
barX[barX^2>threshold[i]] <- 0
}else{
barX[barX^2>threshold[[i]][1:num.barX]] <- 0
}
tmp <- barX[-num.barX]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kni-1)+1,FUN="sum",partial=TRUE)/(psi.kn)^2
cmat[i,j] <- tmp%*%rollsum(c(double(kni-1),tmp,double(kni-1)),
k=2*(kni-1)+1)/(psi.kn)^2
}
}
}
}else{# non-refreshing, non-cwise
# allocate memory
ser.X <- vector(n.series, mode="list") # data in 'x'
ser.times <- vector(n.series, mode="list") # time index in 'x'
ser.diffX <- vector(n.series, mode="list") # difference of data
ser.numX <- integer(n.series)
ser.barX <- vector(n.series, mode="list")
for(i in 1:n.series){
# set data and time index
ser.X[[i]] <- as.numeric(data[[i]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[i]] <- as.numeric(time(data[[i]]))
# set difference of the data
ser.diffX[[i]] <- diff( ser.X[[i]] )
ser.numX[i] <- length(ser.diffX[[i]])
}
# if missing kn, we select it following Barndorff-Nielsen et al.(2011)
if(missing(kn)){
kn <- min(max(ceiling(mean(theta)*sqrt(sum(ser.numX))),2),
ser.numX+1)
}
kn <- kn[1]
weight <- sapply((1:(kn-1))/kn,g)
psi.kn <- sum(weight)
ser.num.barX <- integer(n.series)
# pre-averaging and thresholding
if(missing(threshold)){
for(i in 1:n.series){
#ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.barX[[i]] <- filter(ser.diffX[[i]],rev(weight),method="c",
sides=1)[(kn-1):length(ser.diffX[[i]])]
ser.num.barX[i] <- length(ser.barX[[i]])
K <- ceiling(ser.num.barX[i]^(3/4))
obj0 <- abs(ser.barX[[i]])
obj1 <- (pi/2)*obj0[1:(ser.num.barX[i]-kn)]*obj0[-(1:kn)]
if(min(K,ser.num.barX[i]-1)<2*kn){
#v.hat <- (median(obj0)/0.6745)^2
v.hat <- mean(obj1)
}else{
v.hat <- double(ser.num.barX[i])
#v.hat[1:K] <- (median(obj0[1:K])/0.6745)^2
v.hat[-(1:K)] <- rollmean(obj1[1:(ser.num.barX[i]-2*kn)],k=K-2*kn+1,align="left")
v.hat[1:K] <- v.hat[K+1]
}
#rho <- 2*log(ser.num.barX[ii])*
# (median(abs(ser.barX[[ii]])/sqrt(v.hat))/0.6745)^2*v.hat
rho <- 2*log(ser.num.barX[i])^(1+eps)*v.hat
ser.barX[[i]][ser.barX[[i]]^2>rho] <- 0
}
}else if(is.numeric(threshold)){
threshold <- matrix(threshold,1,n.series)
for(i in 1:n.series){
ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.num.barX[i] <- length(ser.barX[[i]])
ser.barX[[i]][ser.barX[[i]]^2>threshold[i]] <- 0
}
}else{
for(i in 1:n.series){
ser.barX[[i]] <- rollapplyr(ser.diffX[[i]],width=kn-1,FUN="%*%",weight)
ser.num.barX[i] <- length(ser.barX[[i]])
ser.barX[[i]][ser.barX[[i]]^2>threshold[[i]][1:ser.num.barX[i]]] <- 0
}
}
ser.num.barX <- ser.num.barX-1
# core part of cce
cmat <- matrix(0, n.series, n.series) # cov
for(i in 1:n.series){
for(j in i:n.series){
if(i!=j){
#start <- kn+1
#end <- 1
#for(k in 1:ser.num.barX[i]){
# while(!(ser.times[[i]][k]<ser.times[[j]][start])&&((start-kn)<ser.num.barX[j])){
# start <- start + 1
# }
# while((ser.times[[i]][k+kn]>ser.times[[j]][end+1])&&(end<ser.num.barX[j])){
# end <- end + 1
# }
# cmat[i,j] <- cmat[i,j] + ser.barX[[i]][k]*sum(ser.barX[[j]][(start-kn):end])
#}
cmat[i,j] <- .C("pHayashiYoshida",
as.integer(kn),
as.integer(ser.num.barX[i]),
as.integer(ser.num.barX[j]),
as.double(ser.times[[i]]),
as.double(ser.times[[j]]),
as.double(ser.barX[[i]]),
as.double(ser.barX[[j]]),
value=double(1),
PACKAGE = "yuima")$value
cmat[j,i] <- cmat[i,j]
}else{
tmp <- ser.barX[[i]][1:ser.num.barX[i]]
#cmat[i,j] <- tmp%*%rollapply(tmp,width=2*(kn-1)+1,FUN="sum",partial=TRUE)
cmat[i,j] <- tmp%*%rollsum(c(double(kn-1),tmp,double(kn-1)),
k=2*(kn-1)+1)
}
}
}
cmat <- cmat/(psi.kn^2)
}
}
return(cmat)
}
###################################################################
# subsampled realized covariance
SRC <- function(data,frequency=300,avg=TRUE,utime){
d.size <- length(data)
if(missing(utime)) utime <- set_utime(data)
# allocate memory
ser.X <- vector(d.size, mode="list") # data in 'x'
ser.times <- vector(d.size, mode="list") # time index in 'x'
ser.numX <- double(d.size)
for(d in 1:d.size){
# set data and time index
ser.X[[d]] <- as.numeric(data[[d]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[d]] <- as.numeric(time(data[[d]]))*utime
ser.numX[d] <- length(ser.X[[d]])
}
Init <- max(sapply(ser.times,FUN="head",n=1))
Terminal <- max(sapply(ser.times,FUN="tail",n=1))
grid <- seq(Init,Terminal,by=frequency)
n.sparse <- length(grid)
#I <- matrix(1,d.size,n.sparse)
K <- floor(Terminal-grid[n.sparse]) + 1
sdiff1 <- array(0,dim=c(d.size,n.sparse-1,K))
sdiff2 <- array(0,dim=c(d.size,n.sparse-2,frequency-K))
for(d in 1:d.size){
subsample <- matrix(.C("ctsubsampling",as.double(ser.X[[d]]),
as.double(ser.times[[d]]),
as.integer(frequency),as.integer(n.sparse),
as.integer(ser.numX[d]),as.double(grid),
result=double(frequency*n.sparse),
PACKAGE = "yuima")$result,
n.sparse,frequency)
sdiff1[d,,] <- diff(subsample[,1:K])
sdiff2[d,,] <- diff(subsample[-n.sparse,-(1:K)])
}
if(avg){
#cmat <- matrix(0,d.size,d.size)
#for(t in 1:frequency){
# sdiff <- matrix(0,d.size,n.sparse-1)
# for(d in 1:d.size){
# for(i in 1:n.sparse){
# while((ser.times[[d]][I[d,i]+1]<=grid[i])&&(I[d,i]<ser.numX[d])){
# I[d,i] <- I[d,i]+1
# }
# }
# sdiff[d,] <- diff(ser.X[[d]][I[d,]])
# }
# cmat <- cmat + sdiff%*%t(sdiff)
# grid <- grid+rep(1,n.sparse)
# if(grid[n.sparse]>Terminal){
# grid <- grid[-n.sparse]
#I <- I[,-n.sparse]
# n.sparse <- n.sparse-1
# I <- matrix(I[,-n.sparse],d.size,n.sparse)
# }
#}
#cmat <- cmat/frequency
cmat <- matrix(rowMeans(cbind(apply(sdiff1,3,FUN=function(x) x %*% t(x)),
apply(sdiff2,3,FUN=function(x) x %*% t(x)))),
d.size,d.size)
}else{
#sdiff <- matrix(0,d.size,n.sparse-1)
#for(d in 1:d.size){
# for(i in 1:n.sparse){
# while((ser.times[[d]][I[d,i]+1]<=grid[i])&&(I[d,i]<ser.numX[d])){
# I[d,i] <- I[d,i]+1
# }
# }
# sdiff[d,] <- diff(ser.X[[d]][I[d,]])
#}
#cmat <- sdiff%*%t(sdiff)
if(K>0){
cmat <- sdiff1[,,1]%*%t(sdiff1[,,1])
}else{
cmat <- sdiff2[,,1]%*%t(sdiff2[,,1])
}
}
return(cmat)
}
##############################################################
# subsampled realized bipower covariation
BPC <- function(sdata){
d.size <- nrow(sdata)
cmat <- matrix(0,d.size,d.size)
for(i in 1:d.size){
for(j in i:d.size){
if(i!=j){
cmat[i,j] <- (BPV(sdata[i,]+sdata[j,])-BPV(sdata[i,]-sdata[j,]))/4
cmat[j,i] <- cmat[i,j]
}else{
cmat[i,i] <- BPV(sdata[i,])
}
}
}
return(cmat)
}
SBPC <- function(data,frequency=300,avg=TRUE,utime){
d.size <- length(data)
if(missing(utime)) utime <- set_utime(data)
# allocate memory
ser.X <- vector(d.size, mode="list") # data in 'x'
ser.times <- vector(d.size, mode="list") # time index in 'x'
ser.numX <- double(d.size)
for(d in 1:d.size){
# set data and time index
ser.X[[d]] <- as.numeric(data[[d]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[d]] <- as.numeric(time(data[[d]]))*utime
ser.numX[d] <- length(ser.X[[d]])
}
Init <- max(sapply(ser.times,FUN="head",n=1))
Terminal <- max(sapply(ser.times,FUN="tail",n=1))
grid <- seq(Init,Terminal,by=frequency)
n.sparse <- length(grid)
#I <- matrix(1,d.size,n.sparse)
K <- floor(Terminal-grid[n.sparse]) + 1
sdata1 <- array(0,dim=c(d.size,n.sparse,K))
sdata2 <- array(0,dim=c(d.size,n.sparse-1,frequency-K))
for(d in 1:d.size){
subsample <- matrix(.C("ctsubsampling",as.double(ser.X[[d]]),
as.double(ser.times[[d]]),
as.integer(frequency),as.integer(n.sparse),
as.integer(ser.numX[d]),as.double(grid),
result=double(frequency*n.sparse),
PACKAGE = "yuima")$result,
n.sparse,frequency)
sdata1[d,,] <- subsample[,1:K]
sdata2[d,,] <- subsample[-n.sparse,-(1:K)]
}
if(avg){
cmat <- matrix(0,d.size,d.size)
#for(t in 1:frequency){
# sdata <- matrix(0,d.size,n.sparse)
# for(d in 1:d.size){
# for(i in 1:n.sparse){
# while((ser.times[[d]][I[d,i]+1]<=grid[i])&&(I[d,i]<ser.numX[d])){
# I[d,i] <- I[d,i]+1
# }
# }
# sdata[d,] <- ser.X[[d]][I[d,]]
# }
# cmat <- cmat + BPC(sdata)
# grid <- grid+rep(1,n.sparse)
# if(grid[n.sparse]>Terminal){
# grid <- grid[-n.sparse]
#I <- I[,-n.sparse]
# n.sparse <- n.sparse-1
# I <- matrix(I[,-n.sparse],d.size,n.sparse)
# }
#}
#cmat <- cmat/frequency
cmat <- matrix(rowMeans(cbind(apply(sdata1,3,FUN=BPC),
apply(sdata2,3,FUN=BPC))),
d.size,d.size)
}else{
#sdata <- matrix(0,d.size,n.sparse)
#for(d in 1:d.size){
# for(i in 1:n.sparse){
# while((ser.times[[d]][I[d,i]+1]<=grid[i])&&(I[d,i]<ser.numX[d])){
# I[d,i] <- I[d,i]+1
# }
# }
# sdata[d,] <- ser.X[[d]][I[d,]]
#}
#cmat <- BPC(sdata)
if(K>0){
cmat <- BPC(sdata1[,,1])
}else{
cmat <- BPC(sdata2[,,1])
}
}
return(cmat)
}
#
# CumulativeCovarianceEstimator
#
# returns a matrix of var-cov estimates
setGeneric("cce",
function(x,method="HY",theta,kn,g=function(x)min(x,1-x),
refreshing=TRUE,cwise=TRUE,
delta=0,adj=TRUE,K,c.two,J=1,c.multi,
kernel,H,c.RK,eta=3/5,m=2,ftregion=0,
vol.init=NA,covol.init=NA,nvar.init=NA,ncov.init=NA,
mn,alpha=0.4,frequency=300,avg=TRUE,
threshold,utime,psd=FALSE)
standardGeneric("cce"))
setMethod("cce",signature(x="yuima"),
function(x,method="HY",theta,kn,g=function(x)min(x,1-x),
refreshing=TRUE,cwise=TRUE,
delta=0,adj=TRUE,K,c.two,J=1,c.multi,
kernel,H,c.RK,eta=3/5,m=2,ftregion=0,
vol.init=NA,covol.init=NA,
nvar.init=NA,ncov.init=NA,mn,alpha=0.4,
frequency=300,avg=TRUE,threshold,utime,psd=FALSE)
cce(x@data,method=method,theta=theta,kn=kn,g=g,refreshing=refreshing,
cwise=cwise,delta=delta,adj=adj,K=K,c.two=c.two,J=J,
c.multi=c.multi,kernel=kernel,H=H,c.RK=c.RK,eta=eta,m=m,
ftregion=ftregion,vol.init=vol.init,
covol.init=covol.init,nvar.init=nvar.init,
ncov.init=ncov.init,mn=mn,alpha=alpha,
frequency=frequency,avg=avg,threshold=threshold,
utime=utime,psd=psd))
setMethod("cce",signature(x="yuima.data"),
function(x,method="HY",theta,kn,g=function(x)min(x,1-x),
refreshing=TRUE,cwise=TRUE,
delta=0,adj=TRUE,K,c.two,J=1,c.multi,
kernel,H,c.RK,eta=3/5,m=2,ftregion=0,
vol.init=NA,covol.init=NA,
nvar.init=NA,ncov.init=NA,mn,alpha=0.4,
frequency=300,avg=TRUE,threshold,utime,psd=FALSE){
data <- get.zoo.data(x)
d.size <- length(data)
for(i in 1:d.size){
# NA data must be skipped
idt <- which(is.na(data[[i]]))
if(length(idt>0)){
data[[i]] <- data[[i]][-idt]
}
if(length(data[[i]])<2) {
stop("length of data (w/o NA) must be more than 1")
}
}
cmat <- NULL
switch(method,
"HY"="<-"(cmat,HY(data)),
"PHY"="<-"(cmat,PHY(data,theta,kn,g,refreshing,cwise)),
"MRC"="<-"(cmat,MRC(data,theta,kn,g,delta,adj)),
"TSCV"="<-"(cmat,TSCV(data,K,c.two,J,adj,utime)),
"GME"="<-"(cmat,GME(data,c.multi,utime)),
"RK"="<-"(cmat,RK(data,kernel,H,c.RK,eta,m,ftregion,utime)),
"QMLE"="<-"(cmat,cce.qmle(data,vol.init,covol.init,
nvar.init,ncov.init)),
"SIML"="<-"(cmat,SIML(data,mn,alpha)),
"THY"="<-"(cmat,THY(data,threshold)),
"PTHY"="<-"(cmat,PTHY(data,theta,kn,g,threshold,
refreshing,cwise)),
"SRC"="<-"(cmat,SRC(data,frequency,avg,utime)),
"SBPC"="<-"(cmat,SBPC(data,frequency,avg,utime)))
if(is.null(cmat))
stop("method is not available")
if(psd){
#tmp <- svd(cmat%*%cmat)
#cmat <- tmp$u%*%diag(sqrt(tmp$d))%*%t(tmp$v)
tmp <- eigen(cmat)
cmat <- tmp$vectors %*% (abs(tmp$values) * t(tmp$vectors))
}
if(d.size>1){
#if(all(diag(cmat)>0)){
#sdmat <- diag(sqrt(diag(cmat)))
#cormat <- solve(sdmat) %*% cmat %*% solve(sdmat)
#}else{
# cormat <- NA
#}
cormat <- cov2cor(cmat)
}else{
cormat <- as.matrix(1)
}
rownames(cmat) <- names(data)
colnames(cmat) <- names(data)
rownames(cormat) <- names(data)
colnames(cormat) <- names(data)
return(list(covmat=cmat,cormat=cormat))
})
| /scratch/gouwar.j/cran-all/cranData/yuima/R/cce.R |
######################################################
# High-Dimensional Cumulative Covariance Estimator
# by Factor Modeling and Regularization
######################################################
cce.factor <- function(yuima, method = "HY", factor = NULL, PCA = FALSE,
nfactor = "interactive", regularize = "glasso",
taper, group = 1:(dim(yuima) - length(factor)),
lambda = "bic", weight = TRUE, nlambda = 10,
ratio, N, thr.type = "soft", thr = NULL,
tau = NULL, par.alasso = 1, par.scad = 3.7,
thr.delta = 0.01, frequency = 300, utime, ...){
cmat <- cce(yuima, method = method, frequency = frequency,utime = utime, ...)$covmat
if(missing(N)) N <- effective.n(yuima, method, frequency, utime)
if(PCA){
ed <- eigen(cmat, symmetric = TRUE)
pc <- ed$values
if(nfactor == "interactive"){
plot(pc, type = "h", ylab = "PC scores", main = "Scree plot")
nfactor <- readline("Type the number of factors you want to use. \n")
}
if(nfactor == 0){
factor <- NULL
sigma.z <- sigma.y
beta.hat <- NULL
sigma.x <- NULL
}else{
factor <- "PCA"
sigma.x <- diag(ed$values[1:nfactor], nfactor)
inv.sigma.x <- solve(sigma.x)
beta.hat <- as.matrix(ed$vectors[ ,1:nfactor])
sigma.f <- tcrossprod(beta.hat %*% sigma.x, beta.hat)
sigma.z <- cmat - sigma.f
}
}else{
pc <- NULL
if(is.null(factor)){
sigma.z <- cmat
beta.hat <- NULL
sigma.x <- NULL
}else{
if(is.character(factor))
factor <- which(rownames(cmat) %in% factor)
sigma.y <- as.matrix(cmat[-factor,-factor])
sigma.x <- as.matrix(cmat[factor,factor])
sigma.yx <- as.matrix(cmat[-factor,factor])
# is sigma.x singular?
inv.sigma.x <- solve(sigma.x)
beta.hat <- sigma.yx %*% inv.sigma.x
sigma.f <- tcrossprod(beta.hat %*% sigma.x, beta.hat)
sigma.z <- sigma.y - sigma.f
}
}
reg.result <- cce.regularize(sigma.z, regularize, taper, group,
lambda, weight, nlambda, ratio, N,
thr.type, thr, tau, par.alasso, par.scad, thr.delta)
if(is.null(factor)){
covmat.y <- reg.result$cmat
premat.y <- reg.result$pmat
}else{
covmat.y <- sigma.f + reg.result$cmat
# using Sherman-Morisson-Woodbury formula to compute the inverse
beta.pmat <- crossprod(beta.hat, reg.result$pmat)
premat.y <- reg.result$pmat -
crossprod(beta.pmat,
solve(inv.sigma.x + beta.pmat %*% beta.hat) %*% beta.pmat)
}
return(list(covmat.y = covmat.y, premat.y = premat.y,
beta.hat = beta.hat, covmat.x = sigma.x,
covmat.z = reg.result$cmat,
premat.z = reg.result$pmat,
sigma.z = sigma.z, pc = pc))
}
cce.regularize <- function(cmat, method = "tapering", taper, group,
lambda = "bic", weight = TRUE, nlambda = 10,
ratio, N, thr.type = "hard", thr = NULL,
tau = NULL, par.alasso = 1, par.scad = 3.7,
thr.delta = 0.01){
result <- switch(method,
tapering = cce.taper(cmat, taper, group),
glasso = rglasso(cmat, lambda, weight, nlambda, ratio, N),
eigen.cleaning = eigen.cleaning(cmat, N),
thresholding = cce.thr(cmat, thr.type, thr, tau, par.alasso, par.scad, thr.delta))
return(result)
}
## if matrix inversion is failed, the result is set to NA
myinv <- function(X){
result <- try(solve(X), silent = TRUE)
#if(!is.numeric(result)) result <- try(ginv(X))
if(!is.numeric(result)) result <- NA
return(result)
}
##################################
# tapering related functions
##################################
cce.taper <- function(cmat, taper, group){
if(missing(taper)){
taper <- outer(group, group, FUN = function(x, y) x == y)
}
cmat.tilde <- cmat * taper
return(list(cmat = cmat.tilde, pmat = myinv(cmat.tilde)))
}
##################################
# glasso related functions
##################################
rglasso.path <- function(S, lambda, weight = TRUE, nlambda, ratio){
if(weight){
W <- sqrt(diag(S) %o% diag(S))
}else{
W <- matrix(1, nrow(S), ncol(S))
}
diag(W) <- 0
if(missing(lambda)){
lambda.max <- max(abs((S/W)[upper.tri(S)]))
lambda.min <- ratio * lambda.max
lambda <- exp(seq(log(lambda.min), log(lambda.max), length = nlambda))
}
f <- function(rho){
res <- glassoFast::glassoFast(S, rho * W)
return(list(w = res$w, wi = res$wi))
}
out <- lapply(lambda, FUN = f)
w <- lapply(out, function(x) x$w)
wi <- lapply(out, function(x) x$wi)
return(list(w = w, wi = wi, lambda = lambda))
}
IC.rglasso <- function(out, s, n){
f <- function(wi){
nll <- -log(det(wi)) + sum(wi * s)
J <- sum(wi[upper.tri(wi, diag = TRUE)] != 0)
return(c(aic = nll + (2/n)*J, bic = nll + (log(n)/n)*J))
}
res <- sapply(out$wi, FUN = f)
return(res)
}
effective.n <- function(yuima, method, frequency, utime){
if(method == "HY" | method == "THY"){
out <- min(length(yuima))
}else if(method == "SRC" | method == "SBPC"){
if(missing(utime)) utime <- set_utime(get.zoo.data(yuima))
out <- utime/frequency
}else if(method == "RK" | method == "SIML"){
out <- min(length(yuima))^(2/5)
}else if(method == "TSCV"){
out <- min(length(yuima))^(1/3)
}else{
out <- sqrt(min(length(yuima)))
}
return(out)
}
rglasso <- function(S, lambda = "aic", weight = TRUE, nlambda = 10, ratio, N){
if(lambda == "aic" | lambda == "bic"){
if(missing(ratio)) ratio <- sqrt(log(nrow(S))/N)
out <- rglasso.path(S, weight = weight, nlambda = nlambda, ratio = ratio)
ic <- IC.rglasso(out, S, N)
idx <- which.min(ic[lambda, ])
#w <- out$w[[idx]]
wi <- out$wi[[idx]]
w <- solve(wi)
lambda <- out$lambda[idx]
}else{
out <- rglasso.path(S, lambda = lambda, weight = weight)
#w <- out$w[[1]]
wi <- out$wi[[1]]
w <- solve(wi)
}
attr(w, "lambda") <- lambda
attr(wi, "lambda") <- lambda
dimnames(w) <- dimnames(S)
dimnames(wi) <- dimnames(S)
return(list(cmat = w, pmat = wi))
}
##################################
# eigen.cleaning related functions
##################################
eigen.cleaning <- function(S, N){
p <- ncol(S)
#if(missing(N)) N <- effective.n(yuima, method, frequency, utime)
q <- N/p
R <- cov2cor(S)
ed <- eigen(R, symmetric = TRUE)
lambda <- ed$values
sigma2 <- 1 - max(lambda)/p
lambda.max <- sigma2 * (1 + 1/q + 2/sqrt(q))
idx <- (lambda > lambda.max)
delta <- (sum(lambda[lambda > 0]) - sum(lambda[idx]))/(p - sum(idx))
lambda[!idx] <- delta
obj <- sqrt(diag(S))
cmat <- tcrossprod(ed$vectors %*% diag(lambda), ed$vectors)
cmat <- obj * cmat %*% diag(obj)
#pmat <- solve(cmat)
pmat <- tcrossprod(ed$vectors %*% diag(1/lambda), ed$vectors)
pmat <- (1/obj) * cmat %*% diag(1/obj)
dimnames(cmat) <- dimnames(S)
dimnames(pmat) <- dimnames(S)
return(list(cmat = cmat, pmat = pmat))
}
##################################
# thresholding related functions
##################################
thr.hard <- function(S, thr){
out <- S * (abs(S) > thr)
diag(out) <- diag(S)
return(out)
}
thr.soft <- function(S, thr){
out <- sign(S) * pmax(abs(S) - thr, 0)
diag(out) <- diag(S)
return(out)
}
thr.alasso <- function(S, thr, par.alasso = 1){
out <- sign(S) *
pmax(abs(S) - thr^(par.alasso + 1)/abs(S)^par.alasso, 0)
diag(out) <- diag(S)
return(out)
}
thr.scad <- function(S, thr, par.scad = 3.7){
out <- S
idx <- (abs(S) <= par.scad * thr)
out[idx] <- ((par.scad - 1) * S[idx]
- sign(S[idx]) * par.scad * thr[idx])/(par.scad - 2)
idx <- (abs(S) <= 2 * thr)
out[idx] <- sign(S[idx]) * pmax(abs(S[idx]) - thr[idx], 0)
diag(out) <- diag(S)
return(out)
}
thr.fun <- function(S, type = "hard", thr, par.alasso = 1, par.scad = 3.7){
thr <- matrix(thr, nrow(S), ncol(S))
out <- switch (type,
hard = thr.hard(S, thr),
soft = thr.soft(S, thr),
alasso = thr.alasso(S, thr, par.alasso),
scad = thr.scad(S, thr, par.scad)
)
return(out)
}
check.pd <- function(S){
lambda <- min(eigen(S, symmetric = TRUE, only.values = TRUE)$values)
if(lambda < 0 | isTRUE(all.equal(lambda, 0))){
return(FALSE)
}else{
return(TRUE)
}
}
cce.thr <- function(S, type = "hard", thr = NULL, tau = NULL, par.alasso = 1, par.scad = 3.7, thr.delta = 0.01){
if(is.null(thr)){
if(is.null(tau)){
#if(check.pd(S)){
# tau <- 0
#}else{
#
# R <- cov2cor(S)
# tau.seq <- sort(abs(R[upper.tri(R)])) + .Machine$double.eps
#
# for(tau in tau.seq){
# tmp.R <- thr.fun(R, type, tau, par.alasso, par.scad)
# if(check.pd(tmp.R)) break
# }
#}
R <- cov2cor(S)
tau.seq <- seq(0, 1, by = thr.delta)
for(tau in tau.seq){
tmp.R <- thr.fun(R, type, tau, par.alasso, par.scad)
if(check.pd(tmp.R)) break
}
#f <- function(tau){
# tmp.R <- thr.fun(R, type, tau, par.alasso, par.scad)
# return(min(eigen(tmp.R)$value))
#}
#tau <- uniroot(f, interval = c(0, 1))$root
}
thr <- tau * tcrossprod(sqrt(diag(S)))
}
cmat <- thr.fun(S, type, thr, par.alasso, par.scad)
pmat <- myinv(cmat)
attr(cmat, "thr") <- thr
attr(pmat, "thr") <- thr
dimnames(cmat) <- dimnames(S)
dimnames(pmat) <- dimnames(S)
return(list(cmat = cmat, pmat = pmat))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/cce.factor.R |
## 7/8/2021 Kito
## Some functions didn't work when 'fixed' parameters are given. (at present, qmle and adaBayes)
## We added functions below to allow functions above to work with fixed params by rewriting yuima model.
transform.drift <- function(drift, fixed, unfixed.nms, state.nms ,index, unfixed.vals, state.vals){## Kurisaki 4/10/2021
drift <- drift
fixed <- fixed
unfixed.nms <- unfixed.nms
state.nms <- state.nms
unfixed.vals <- unfixed.vals
state.vals <- state.vals
## substitute for the fixed parameters
for(var in names(fixed)) {
assign(var, fixed[[var]])
}
## substitute for the unfixed parameters
i <- 1
for(nm in unfixed.nms) {
assign(nm, unfixed.vals[i])
i <- i+1
}
## substitute for the state parameters
i <- 1
for(nm in state.nms) {
assign(nm, state.vals[,i])
i <- i+1
}
eval(drift[index])
}
transform.diffusion <- function(diffusion, fixed, unfixed.nms, state.nms, row, index, unfixed.vals, state.vals){
diffusion <- diffusion
fixed <- fixed
unfixed.nms <- unfixed.nms
state.nms <- state.nms
unfixed.vals <- unfixed.vals
state.vals <- state.vals
## substitute for the fixed parameters
for(var in names(fixed)) {
assign(var, fixed[[var]])
}
## substitute x for the unfixed parameters
i <- 1
for(nm in unfixed.nms) {
assign(nm, unfixed.vals[i])
i <- i+1
}
## substitute for the state parameters
i <- 1
for(nm in state.nms) {
assign(nm, state.vals[,i])
i <- i+1
}
eval(diffusion[[row]][index])
}
transform.jump <- function(jump, fixed, unfixed.nms, state.nms, row, index, unfixed.vals, state.vals){
jump <- jump
fixed <- fixed
unfixed.nms <- unfixed.nms
state.nms <- state.nms
unfixed.vals <- unfixed.vals
state.vals <- state.vals
## substitute for the fixed parameters
for(var in names(fixed)) {
assign(var, fixed[[var]])
}
## substitute for the unfixed parameters
i <- 1
for(nm in unfixed.nms) {
assign(nm, unfixed.vals[i])
i <- i+1
}
## substitute for the state parameters
i <- 1
for(nm in state.nms) {
assign(nm, state.vals[,i])
i <- i+1
}
eval(jump[[row]][index])
}
changeFixedParametersToConstant <- function(yuima, fixed) {
env <- new.env() # environment to calculate estimation
yuima = yuima
fixed = fixed
# list of names of unfixed parameters
drift.unfixed.nms = yuima@model@parameter@drift[!is.element(yuima@model@parameter@drift, names(fixed))]
diffusion.unfixed.nms = yuima@model@parameter@diffusion[!is.element(yuima@model@parameter@diffusion, names(fixed))]
# list of names of state variables
state.nms = yuima@[email protected]
# arguments for new.drift.func & new.diffusion.func
state.vals = paste("matrix(c(", paste(state.nms, collapse=", "), "), ncol=", length(state.nms),")")
drift.unfixed.vals = paste("c(", paste(drift.unfixed.nms, collapse=", "), ")")
diffusion.unfixed.vals = paste("c(", paste(diffusion.unfixed.nms, collapse=", "), ")")
new.drift.func <- function(index, unfixed.vals, state.vals){transform.drift(yuima@model@drift, fixed, drift.unfixed.nms, state.nms, index, unfixed.vals, state.vals)}
new.diffusion.func <- function(row, index, unfixed.vals, state.vals){transform.diffusion(yuima@model@diffusion, fixed, diffusion.unfixed.nms, state.nms, row, index, unfixed.vals, state.vals)}
# new drift and diffusion term
transformed.drift <- paste("new.drift.func(", 1:length(yuima@model@drift), ", ", drift.unfixed.vals, ", ", state.vals, ")", sep="")
vector.diffusion <- c()
for(row in 1:length(yuima@model@diffusion)) {
vector.diffusion <- c(vector.diffusion, paste("new.diffusion.func(", row, ", ", 1:length(yuima@model@diffusion[[row]]), ", ", diffusion.unfixed.vals, ", ", state.vals, ")", sep=""))
}
transformed.diffusion <- matrix(vector.diffusion, nrow = length(yuima@model@diffusion),byrow=T)
# new jump term
if(length(yuima@[email protected]) > 0) {
jump.unfixed.nms <- yuima@model@parameter@jump[!is.element(yuima@model@parameter@jump, names(fixed))]
jump.unfixed.vals = paste("c(", paste(jump.unfixed.nms, collapse=", "), ")")
new.jump.func <- function(row, index, unfixed.vals, state.vals){transform.jump(yuima@[email protected], fixed, jump.unfixed.nms, state.nms, row, index, unfixed.vals, state.vals)}
vector.jump <- c()
for(row in 1:length(yuima@[email protected])) {
vector.jump <- c(vector.jump, paste("new.jump.func(", row, ", ", 1:length(yuima@[email protected][[row]]), ", ", jump.unfixed.vals, ", ", state.vals, ")", sep=""))
}
transformed.jump <- matrix(vector.jump, nrow = length(yuima@[email protected]),byrow=T)
new.measure = list()
measure.params <- yuima@model@parameter@measure
df.measure.params <- measure.params
if(yuima@[email protected]=="CP"){
intensity <- as.character(yuima@model@measure$intensity)
if(is.element(intensity, names(fixed))) {
df.measure.params <- df.measure.params[-which(df.measure.params %in% intensity)]
intensity = as.character(fixed[intensity])
}
new.measure[["intensity"]] <- intensity
}
df <- yuima@model@measure$df
expr <- df$expr
cal <- as.call(expr[[1]])
params <- as.list(cal[-1])
for(i in 1:length(params)) {
if(is.element(c(params[[i]]), names(fixed))) {
params[[i]] <- fixed[[params[[i]]]]
}
}
cal[-1] <- as.call(params)
new.measure[["df"]] <- list(as.character(as.expression(cal)))
} else {
transformed.jump <- NULL
new.measure <- list()
}
new.ymodel <- setModel(drift = transformed.drift, diffusion = transformed.diffusion, hurst = yuima@model@hurst,
jump.coeff = transformed.jump, measure = new.measure, measure.type = yuima@[email protected],
state.variable = yuima@[email protected], jump.variable = yuima@[email protected],
time.variable = yuima@[email protected], solve.variable = yuima@[email protected],
xinit = yuima@model@xinit)
new.yuima <- setYuima(data = yuima@data, model = new.ymodel, sampling = yuima@sampling, characteristic = yuima@characteristic, functional = yuima@functional)
return(list(new.yuima=new.yuima, env=env))
} | /scratch/gouwar.j/cran-all/cranData/yuima/R/changeFixedToConstant.R |
# In this code we implement a filter that returns the increments of the undelying levy process
# if the model is a COGARCH(P,Q)
# Using the squared of returns, we obtain the increment of Levy process using the relation
# Y_t=e^{A\Delta t}Y_{t-\Delta t}+e^{A\left(\Delta t\right)}e\left(\Delta G_{t}\right)^{2}.
# for the state process $Y_t$ and then the levy increments definely are:
# \Delta L_{t}=\frac{\Delta G_{t}}{\sqrt{V_{t}}}.
cogarchNoise<-function(yuima, data=NULL, param, mu=1){
yuima.cogarch <- yuima
if(missing(yuima.cogarch))
yuima.stop("yuima.cogarch or yuima object is missing.")
if(length(param)==0)
yuima.stop("missing values parameters")
if(!is.COGARCH(yuima.cogarch)){
yuima.warn("The model does not belong to the class yuima.cogarch")
}
if(is(yuima.cogarch,"yuima")){
model<-yuima.cogarch@model
if(is.null(data)){
observ<-yuima.cogarch@data
}else{observ<-data}
}else{
if(is(yuima.cogarch,"yuima.cogarch")){
model<-yuima.cogarch
if(is.null(data)){
yuima.stop("Missing data")
}
observ<-data
}
}
info <- model@info
numb.ar <- info@q
ar.name <- paste([email protected],c(numb.ar:1),sep="")
numb.ma <- info@p
ma.name <- paste([email protected],c(1:numb.ma),sep="")
loc.par <- [email protected]
nm <- c(names(param))
param<-as.numeric(param)
names(param)<-nm
xinit.name0 <- model@parameter@xinit
idx <- na.omit(match(c(loc.par, ma.name), xinit.name0))
xinit.name <- xinit.name0[-idx]
fullcoeff <- c(ar.name, ma.name, loc.par,xinit.name)
# oo <- match(nm, fullcoeff)
#
# if(any(is.na(oo)))
# yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima.cogarch model")
acoeff <- param[ma.name]
b <- param[ar.name]
cost<- param[loc.par]
Data<-as.matrix(onezoo(observ)[,1])
#freq<-round(frequency(onezoo(observ)[,1]))
freq<- diff(time(onezoo(observ)))
res<-auxcogarch.noise(cost,b,acoeff,mu,Data,freq,[email protected])
return(res)
}
auxcogarch.noise<-function(cost,b,acoeff,mu,Data,freq,lab){
res<-StationaryMoments(cost,b,acoeff,mu)
ExpY0<-res$ExpStatVar
q<-length(b)
a <- e <- matrix(0,nrow=q,ncol=1)
e[q,1] <- 1
p<-length(acoeff)
a[1:p,1] <- acoeff
B <- MatrixA(b[c(q:1)])
DeltaG <- c(0,diff(Data))
squaredG <- DeltaG^2
Process_Y <- ExpY0
# Process_Y1 <- ExpY0
# Process_Y <- as.matrix(50.33)
var_V<-cost + sum(a*Process_Y)
# delta <- 1/freq
deltatot <- c(0,freq)
for(t in c(2:(length(Data)))){
# Y_t=e^{A\Delta t}Y_{t-\Delta t}+e^{A\left(\Delta t\right)}e\left(\Delta G_{t}\right)^{2}
delta <- deltatot[t]
Process_Y <- cbind(Process_Y, (expm(B*delta)%*%(Process_Y[,t-1]+e*squaredG[t])))
# Process_Y1 <- merge(Process_Y1, (expm(B*delta)%*%(Process_Y1[,t-1]+e*squaredG[t])))
#Process_Y <- cbind(Process_Y, (Process_Y[,t-1]+delta*B%*%Process_Y[,t-1]+e*squaredG[t]))
# sim[t,3:ncolsim]<-sim[t-1,3:ncolsim]+(AMatrix*Delta)%*%sim[t-1,3:ncolsim]+evect*sim[t-1,2]*incr.L[2,t-1]
# sim[t,2]<-value.a0+tavect%*%sim[t-1,3:ncolsim]
# sim[t,1]<-sim[t-1,1]+sqrt(sim[t,2])*incr.L[1,t]
var_V[t] <- cost + t(a)%*%Process_Y[,t-1]
}
#\Delta L_{t}=\frac{\Delta G_{t}}{\sqrt{V_{t}}}.
incr.L<- DeltaG/sqrt(var_V)
CogDum <- cbind(var_V,t(Process_Y))
DumRet <- as.numeric(Data[1]+cumsum(DeltaG))
Cog <- cbind(DumRet,CogDum)
colnames(Cog) <- lab
Cog <- zoo(Cog,
order.by = cumsum(deltatot)) # Dataset on true irregular grid
Cogarch <- setData(Cog)
res<-list(incr.L=incr.L, Cogarch=Cogarch)
return(res)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/cogarchNoise.R |
## function to provide the preliminary explicit estimator
get_preliminaryEstimators <- function(data){ # use data returned from calling simulate_CIR()
n <- dim(data)[2]-1 # we have observations at t_j for j=0,...,n, this equals n+1 observations in total
# -> therefore, n is the number of observations minus 1.
h <- as.numeric(data[1,2]) # as the vector containing the t always starts with 0, this equals diff(data[1,])[1]
# and thus gives h if the t_j are chosen to be equidistant.
X_major <- data[2,-1] # the observations of the CIR process starting at t_1=h.
X_minor <- head(data[2,], -1) # the observations of the CIR process discarding j=n.
X_mean_major <- mean(X_major) # mean of all observations without j=0.
X_mean_minor <- mean(X_minor) # mean of all observations without j=n.
beta_0n <- -1/h * log( sum((X_minor - X_mean_minor) * (X_major - X_mean_major)) / # calculate estimate for beta from Eq. (2.6)
sum( (X_minor - X_mean_minor) ^ 2 ) )
alpha_0n <- (X_mean_major - exp(-beta_0n * h) * X_mean_minor) * beta_0n / (1 - exp(-beta_0n * h) ) # calculate estimate for alpha from Eq. (2.5)
to_gamma_numerator <- (X_major - exp(-beta_0n * h) * X_minor - alpha_0n / beta_0n * (1 - exp(-beta_0n * h))) ^ 2
to_gamma_denominator <- (1 - exp(-beta_0n * h)) / beta_0n * (exp(-beta_0n * h) * X_minor + alpha_0n * (1 - exp(-beta_0n * h)) / (2 * beta_0n) )
gamma_0n <- 1 / n * sum(to_gamma_numerator / to_gamma_denominator) # calculate estimate for gamma from Eq. (2.7), where first the numerator and denominator
# are computed separately.
return(as.matrix(c(alpha_0n, beta_0n, gamma_0n))) # return the estimated parameter vector.
}
### ONE STEP IMPROVEMENT
# first we need a few auxiliary functions
#the mean of the CIR with parameter (alpha,beta,gamma) conditioned on X_h=x
mu<- function(alpha,beta,gamma,x,h){
return(exp(-beta*h)*x+alpha/beta*(1-exp(-beta*h)))
}
#derivatives of the mean of CIR with parameter (alpha,beta,gamma) conditioned on X_h=x
mu_alpha <-function(alpha,beta,gamma,x,h)
{
return ((1-exp(-beta*h))/beta)
}
mu_alpha_alpha<-function(alpha,beta,gamma,x,h)
{
return (0)
}
mu_alpha_beta <- function(alpha,beta,gamma,x,h)
{
return ( (exp(-beta*h)*(beta*h+1)-1)/beta^2)
}
mu_alpha_gamma <- function(alpha,beta,gamma,x,h)
{
return (0)
}
mu_beta <- function(alpha,beta,gamma,x,h)
{
return(-h*exp(-beta*h)*x+alpha*(exp(-beta*h)*(beta*h+1)-1)/beta^2)
}
mu_beta_beta <- function(alpha,beta,gamma,x,h)
{
return(h^2*exp(-beta*h)*x+alpha*(exp(-beta*h)*(-beta^2*h^2-2*beta*h-2)+2)/beta^3)
}
mu_beta_gamma <- function(alpha,beta,gamma,x,h)
{
return(0)
}
mu_gamma <- function(alpha,beta,gamma,x,h)
{
return(0)
}
mu_gamma_gamma <- function(alpha,beta,gamma,x,h)
{
return(0)
}
#the variance of CIR with parameter (alpha,beta,gamma) conditioned on X_h=x
sigma_mod <- function(alpha,beta,gamma,x,h){ ## HM 2022/6/21: sigma --> sigma_mod
return(gamma/beta*(1-exp(-beta*h))*(exp(-beta*h)*x+alpha/(2*beta)*(1-exp(-beta*h))))
}
#derivatives of the variance of CIR with parameter (alpha,beta,gamma) conditioned on X_h=x
sigma_alpha <- function(alpha,beta,gamma,x,h)
{
return(gamma*(1-exp(-beta*h))^2/(2*beta^2))
}
sigma_alpha_alpha <- function(alpha,beta,gamma,x,h)
{
return(0)
}
sigma_alpha_beta <- function(alpha,beta,gamma,x,h)
{
return(- gamma*exp(-2*beta*h)*(exp(beta*h)-1)*(-beta*h+exp(beta*h)-1)/beta^3)
}
sigma_alpha_gamma <- function(alpha,beta,gamma,x,h)
{
return((1-exp(-beta*h))^2/(2*beta^2))
}
sigma_beta <- function(alpha, beta, gamma, x, h)
{
exp(-2 * h * beta) / beta ^3 * ( x * beta * (2 * h * beta - exp(h * beta) * (h * beta + 1) + 1) -
alpha * (exp(beta * h) - 1) * (-h * beta + exp(h * beta) - 1) )
}
sigma_beta_beta <- function(alpha,beta,gamma,x,h)
{
exp(-2 * beta * h) / (beta ^ 4) * (
alpha * (2 * h * beta * (h * beta + 2) + 3 * exp(2 * beta * h) - exp(h * beta) * (h * beta * (h * beta + 4) + 6) + 3) +
x * beta * (exp(beta * h) * (h ^ 2 * beta ^ 2 + 2 * h * beta + 2) - 2 * (2 * h ^ 2 * beta ^ 2 + 2 * h * beta + 1))
)
}
sigma_beta_gamma <- function(alpha,beta,gamma,x,h)
{
return(h*exp(-beta*h)*(exp(-beta*h)*x/beta+alpha*(1-exp(-beta*h))/(2*beta^2))+(1-exp(-beta*h))*
(-exp(-beta*h)*(beta*h+1)/beta^2*x+alpha*exp(-beta*h)*(beta*h-2*exp(beta*h)+2)/(2*beta^3)))
}
sigma_gamma <- function(alpha,beta,gamma,x,h)
{
return((1-exp(-beta*h))*(exp(-beta*h)*x+alpha/(2*beta)*(1-exp(-beta*h)))/beta)
}
sigma_gamma_gamma <- function(alpha,beta,gamma,x,h)
{
return(0)
}
#the inverse of the Hessian matrix of H_n
H_n_Hessian <- function(alpha,beta,gamma,x,h)
{
mu <- mu(alpha,beta,gamma,x,h)
mu_1 <- mu_alpha(alpha,beta,gamma,x,h)
mu_2 <- mu_beta(alpha,beta,gamma,x,h)
mu_3 <- mu_gamma(alpha,beta,gamma,x,h)
mu_11 <- mu_alpha_alpha(alpha,beta,gamma,x,h)
mu_12 <- mu_alpha_beta(alpha,beta,gamma,x,h)
mu_13 <- mu_alpha_gamma(alpha,beta,gamma,x,h)
mu_22 <- mu_beta_beta(alpha,beta,gamma,x,h)
mu_23 <- mu_beta_gamma(alpha,beta,gamma,x,h)
mu_33 <- mu_gamma_gamma(alpha,beta,gamma,x,h)
sigma <- sigma_mod(alpha,beta,gamma,x,h) ## HM 2022/6/21: sigma --> sigma_mod
sigma_1 <- sigma_alpha(alpha,beta,gamma,x,h)
sigma_2 <- sigma_beta(alpha,beta,gamma,x,h)
sigma_3 <- sigma_gamma(alpha,beta,gamma,x,h)
sigma_11 <- sigma_alpha_alpha(alpha,beta,gamma,x,h)
sigma_12 <- sigma_alpha_beta(alpha,beta,gamma,x,h)
sigma_13 <- sigma_alpha_gamma(alpha,beta,gamma,x,h)
sigma_22 <- sigma_beta_beta(alpha,beta,gamma,x,h)
sigma_23 <- sigma_beta_gamma(alpha,beta,gamma,x,h)
sigma_33 <- sigma_gamma_gamma(alpha,beta,gamma,x,h)
H_11 <- -0.5*sum( (sigma_11*sigma-sigma_1*sigma_1)/sigma^2-(sigma_11*sigma-2*sigma_1*sigma_1)/sigma^3*(x-mu)^2+
2*sigma_1/sigma^2*(x-mu)*mu_1-
2*(mu_11*sigma-mu_1*sigma_1)*(x-mu)/sigma^2+2*mu_1*mu_1/sigma)
H_22 <- -0.5*sum( (sigma_22*sigma-sigma_2*sigma_2)/sigma^2-(sigma_22*sigma-2*sigma_2*sigma_2)/sigma^3*(x-mu)^2+
2*sigma_2/sigma^2*(x-mu)*mu_2-
2*(mu_22*sigma-mu_2*sigma_2)*(x-mu)/sigma^2+2*mu_2*mu_2/sigma)
H_33 <- -0.5*sum( (sigma_33*sigma-sigma_3*sigma_3)/sigma^2-(sigma_33*sigma-2*sigma_3*sigma_3)/sigma^3*(x-mu)^2+
2*sigma_3/sigma^2*(x-mu)*mu_3-
2*(mu_33*sigma-mu_3*sigma_3)*(x-mu)/sigma^2+2*mu_3*mu_3/sigma)
H_12 <- -0.5*sum( (sigma_12*sigma-sigma_1*sigma_2)/sigma^2-(sigma_12*sigma-2*sigma_1*sigma_2)/sigma^2*(x-mu)^2+
2*sigma_1/sigma^2*(x-mu)*mu_2-
2*(mu_12*sigma-mu_1*sigma_2)*(x-mu)/sigma^2+2*mu_1*mu_2/sigma)
H_13 <- -0.5*sum( (sigma_13*sigma-sigma_1*sigma_3)/sigma^2-(sigma_13*sigma-2*sigma_1*sigma_3)/sigma^3*(x-mu)^2+
2*sigma_1/sigma^2*(x-mu)*mu_3-
2*(mu_13*sigma-mu_1*sigma_3)*(x-mu)/sigma^2+2*mu_1*mu_3/sigma)
H_23 <- -0.5*sum( (sigma_23*sigma-sigma_2*sigma_3)/sigma^2-(sigma_23*sigma-2*sigma_2*sigma_3)/sigma^3*(x-mu)^2+
2*sigma_2/sigma^2*(x-mu)*mu_3-
2*(mu_23*sigma-mu_2*sigma_3)*(x-mu)/sigma^2+2*mu_2*mu_3/sigma)
H_det <- H_11*H_22*H_33+H_12*H_23*H_13+H_13*H_12*H_23-H_13*H_22*H_13-H_11*H_23*H_23-H_12*H_12*H_33
return(matrix(1/H_det*c(H_22*H_33-H_23^2,H_13*H_23-H_12*H_33, H_12*H_23-H_13*H_22,
H_13*H_23-H_12*H_33,H_11*H_33-H_13^2,H_13*H_12-H_11*H_23,
H_12*H_23-H_13*H_22,H_13*H_12-H_11*H_23, H_11*H_22-H_12^2),nrow=3))
}
#derivatives of the function H_n(theta)
H_n_alpha <- function(alpha,beta,gamma,x,h){
x_minor <- head(x, -1)
x_major <- x[-1]
sigma_deriv <- sigma_alpha(alpha,beta,gamma,x_minor,h)
sigma <- sigma_mod(alpha,beta,gamma,x_minor,h) ## HM 2022/6/21: sigma --> sigma_mod
mu <- mu(alpha,beta,gamma,x_minor,h)
mu_deriv <- mu_alpha(alpha,beta,gamma,x_minor,h)
return (sum(-0.5*(sigma_deriv/sigma-sigma_deriv/sigma^2*(x_major-mu)^2-2/sigma*(x_major-mu)*mu_deriv)))
}
H_n_beta <- function(alpha,beta,gamma,x,h){
x_minor <- head(x, -1)
x_major <- x[-1]
sigma_deriv <- sigma_beta(alpha,beta,gamma,x_minor,h)
sigma <- sigma_mod(alpha,beta,gamma,x_minor,h) ## HM 2022/6/21: sigma --> sigma_mod
mu <- mu(alpha,beta,gamma,x_minor,h)
mu_deriv <- mu_beta(alpha,beta,gamma,x_minor,h)
return (sum(-0.5*(sigma_deriv/sigma-sigma_deriv/sigma^2*(x_major-mu)^2-2/sigma*(x_major-mu)*mu_deriv)))
}
H_n_gamma <- function(alpha,beta,gamma,x,h){
x_minor <- head(x, -1)
x_major <- x[-1]
sigma_deriv <- sigma_gamma(alpha,beta,gamma,x_minor,h)
sigma <- sigma_mod(alpha,beta,gamma,x_minor,h) ## HM 2022/6/21: sigma --> sigma_mod
mu <- mu(alpha,beta,gamma,x_minor,h)
return (sum(-0.5*(sigma_deriv/sigma-sigma_deriv/sigma^2*(x_major-mu)^2)))
}
get_finalEstimators_scoring <- function(data) {
prelim_estim <- get_preliminaryEstimators(data) #We need the preliminary estimator for the one step improvement
alpha <- prelim_estim[1]
beta <- prelim_estim[2]
gamma <- prelim_estim[3]
T <- tail(data[1,],1) #T is the time of the last observation n*h
n<- length(data[1,])-1 #number of observations minus 1
x<-data[2,-1]
h<-data[1,2]
H_n<-c(H_n_alpha(alpha,beta,gamma,x,h),H_n_beta(alpha,beta,gamma,x,h),H_n_gamma(alpha,beta,gamma,x,h)) #calculate estimate from Eq.
return(c(alpha,beta,gamma)+diag(c(1/T,1/T,1/n))%*%
matrix(c(alpha*(2*alpha-gamma)/beta, 2*alpha-gamma,0,2*alpha-gamma,2*beta,0,0,0,2*gamma^2),nrow=3,byrow=TRUE)%*%
H_n)
}
get_finalEstimators_newton <- function(data) {
prelim_estim <- get_preliminaryEstimators(data)
alpha <- prelim_estim[1]
beta <- prelim_estim[2]
gamma <- prelim_estim[3]
T <- tail(data[1,],1)
n<- length(data[1,])-1
x<-data[2,-1]
h<-data[1,2]
H_n<-c(H_n_alpha(alpha,beta,gamma,x,h),H_n_beta(alpha,beta,gamma,x,h),H_n_gamma(alpha,beta,gamma,x,h))
return(c(alpha,beta,gamma)-H_n_Hessian(alpha,beta,gamma,x,h)%*%H_n)
}
fitCIR<- function(data){
if( (max(diff(data[1,]))/ min(diff(data[1,])) -1) > 1e-10 ) stop('Please use equidistant sampling points')
# fittedCIR.yuima <- setModel(drift="alpha - beta*x", diffusion="sqrt(gamma*x)", solve.variable=c("x"))
return(list(get_preliminaryEstimators(data),get_finalEstimators_newton(data),get_finalEstimators_scoring(data)
# ,fittedCIR.yuima
))
}
# ###Examples of usage
# ##If the sampling points are not equidistant, there will be an corresponding output.
# data <- sim.CIR(alpha=3,beta=1,gamma=1,time.points = c(0,0.1,0.2,0.25,0.3))
# fit.CIR(data)
# ##Otherwise it calculate the three estimators
# data <- sim.CIR(alpha=3,beta=1,gamma=1,n=1000,h=0.1,equi.dist=TRUE)
# fit.CIR(data)
| /scratch/gouwar.j/cran-all/cranData/yuima/R/fitCIR.R |
hyavar <- function(yuima, bw, nonneg = TRUE, psd = TRUE){
x <- get.zoo.data(yuima)
n.series <- length(x)
# allocate memory
ser.X <- vector(n.series, mode="list") # data in 'x'
ser.times <- vector(n.series, mode="list") # time index in 'x'
ser.diffX <- vector(n.series, mode="list")
ser.num <- integer(n.series) # number of observations
avar.cov <- diag(n.series) # asymptotic variances of cce(yuima)$covmat
avar.cor <- diag(0, n.series) # asymptotic variances of cce(yuima)$cormat
for(i in 1:n.series){
# NA data must be skipped
idt <- which(is.na(x[[i]]))
if(length(idt>0)){
x[[i]] <- x[[i]][-idt]
}
if(length(x[[i]])<2) {
stop("length of data (w/o NA) must be more than 1")
}
# set data and time index
ser.X[[i]] <- as.numeric(x[[i]]) # we need to transform data into numeric to avoid problem with duplicated indexes below
ser.times[[i]] <- as.numeric(time(x[[i]]))
ser.diffX[[i]] <- diff(ser.X[[i]])
# set number of observations
ser.num[i] <- length(ser.X[[i]])
}
# Computing the Hayashi-Yoshida estimator
result <- cce(yuima, psd = psd)
cmat <- result$covmat
if(n.series > 1){
if(missing(bw)){
bw <- matrix(0, n.series, n.series)
for(i in 1:(n.series - 1)){
for(j in (i + 1):n.series){
Init <- min(ser.times[[i]][1], ser.times[[j]][1])
Term <- max(ser.times[[i]][ser.num[i]], ser.times[[j]][ser.num[j]])
bw[i, j] <- (Term - Init) * min(ser.num[c(i,j)])^(-0.45)
bw[j, i] <- bw[i, j]
}
}
}
}
bw <- matrix(bw, n.series, n.series)
for(i in 1:n.series){
avar.cov[i, i] <- (2/3) * sum(ser.diffX[[i]]^4)
for(j in 1:i){
if(i > j){
N.max <- max(ser.num[i],ser.num[j])
avar <- .C("hyavar",
as.double(ser.times[[i]]),
as.double(ser.times[[j]]),
as.integer(ser.num[i]),
as.integer(ser.num[j]),
as.double(ser.X[[i]]),
as.double(ser.X[[j]]),
as.integer(N.max),
as.double(bw[i, j]),
avar = double(4),
PACKAGE = "yuima")$avar
## avar[1] = var(HYij), avar[2] = cov(HYii, HYij), avar[3] = cov(HYij, HYjj), avar[4] = cov(HYii, HYjj)
avar.cov[i, j] <- avar[1]
avar.cov[j, i] <- avar[1]
Pi <- matrix(c(avar.cov[i,i], avar[2], avar[4],
avar[2], avar[1], avar[3],
avar[4], avar[3], avar.cov[j,j]), 3, 3)
if(nonneg){ # Taking the spectral absolute value of Pi
tmp <- eigen(Pi, symmetric = TRUE)
Pi <- tmp$vectors %*% diag(abs(tmp$values)) %*% t(tmp$vectors)
}
d <- c(-0.5 * cmat[i,j]/cmat[i,i], 1, -0.5 * cmat[i,j]/cmat[j,j])
avar.cor[i, j] <- d %*% Pi %*% d / (cmat[i,i] * cmat[j,j])
avar.cor[j, i] <- avar.cor[i, j]
}
}
}
return(list(covmat = cmat, cormat = result$cormat, avar.cov = avar.cov, avar.cor = avar.cor))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/hyavar.R |
# auxiliar function for the evaluation of g(t,X_t,N_t, theta)
internalGfunFromPPRModel <- function(gfun,my.envd3, univariate=TRUE){
if(univariate){
res<-as.numeric(eval(gfun, envir=my.envd3))
}else{res<-NULL}
return(res)
}
# auxiliar function for the evaluation of Kernel
InternalKernelFromPPRModel<-function(Integrand2,Integrand2expr,my.envd1=NULL,my.envd2=NULL,
Univariate=TRUE, ExistdN, ExistdX, gridTime){
if(Univariate){
if(ExistdN){
dimCol<- dim(Integrand2)[2]
NameCol<-colnames(Integrand2)
assign(my.envd1$t.time,gridTime, envir=my.envd1)
IntegralKernel<- 0
for(i in c(1:dimCol)){
cond <- NameCol[i] %in% my.envd1$NamesIntgra
assign(my.envd1$var.time, time(my.envd1[[my.envd1$namedX[cond]]]), my.envd1)
# since it is just univariate we don't need a cycle for
IntegralKernelDum<- sum(eval(Integrand2expr[cond], envir=my.envd1))
IntegralKernel<-IntegralKernel+IntegralKernelDum
# cat("\n", IntegralKernel)
}
}
}else{
return(NULL)
}
return(IntegralKernel)
}
# auxiliar function for the evaluation of Intensity
InternalConstractionIntensity<-function(param,my.envd1=NULL,
my.envd2=NULL,my.envd3=NULL){
paramPPR <- my.envd3$YUIMA.PPR@PPR@allparamPPR
namesparam <-my.envd3$namesparam
gridTime <-my.envd3$gridTime
Univariate <-my.envd3$Univariate
ExistdN <-my.envd3$ExistdN
ExistdX <-my.envd3$ExistdX
gfun<-my.envd3$gfun
Integrand2<-my.envd3$Integrand2
Integrand2expr<-my.envd3$Integrand2expr
if(ExistdN){
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd1 )
}
}
if(ExistdX){
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd2)
}
}
#param
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd3)
}
KerneldN<- numeric(length=length(gridTime))
for(i in c(1:length(gridTime))){
KerneldN[i] <- InternalKernelFromPPRModel(Integrand2,Integrand2expr,my.envd1=my.envd1,my.envd2=my.envd2,
Univariate=Univariate, ExistdN, ExistdX, gridTime=gridTime[i])
}
# KerneldN <- sapply(X=as.numeric(gridTime),FUN = InternalKernelFromPPRModel,
# Integrand2=Integrand2, Integrand2expr = Integrand2expr,my.envd1=my.envd1,my.envd2=my.envd2,
# Univariate=Univariate, ExistdN =ExistdN, ExistdX=ExistdX )
KerneldCov<- numeric(length=length(gridTime))
Evalgfun <- internalGfunFromPPRModel(gfun,my.envd3, univariate=Univariate)
result<-KerneldN+KerneldCov+Evalgfun
}
InternalConstractionIntensityFeedBackIntegrand<-function(param,my.envd1,
my.envd2,my.envd3){
paramPPR <- my.envd3$YUIMA.PPR@PPR@allparamPPR
namesparam <-my.envd3$namesparam
gridTime <-my.envd3$gridTime
Univariate <-my.envd3$Univariate
ExistdN <-my.envd3$ExistdN
ExistdX <-my.envd3$ExistdX
gfun<-my.envd3$gfun
allVarsInG<- all.vars(gfun)
CondIntFeedBacksToG <- my.envd3$YUIMA.PPR@[email protected] %in% allVarsInG
Integrand2<-my.envd3$Integrand2
Integrand2expr<-my.envd3$Integrand2expr
if(ExistdN){
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd1 )
}
}
if(ExistdX){
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd2)
}
}
#param
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd3)
}
# for(i in c(1:length(gridTime))){
# KerneldN[i] <- InternalKernelFromPPRModel(Integrand2,Integrand2expr,my.envd1=my.envd1,my.envd2=my.envd2,
# Univariate=Univariate, ExistdN, ExistdX, gridTime=gridTime[i])
# }
if(Univariate){
NameCol <- colnames(Integrand2)
# Kernel <- sapply(X=gridTime,FUN = InternalKernelFromPPRModel3,
# Integrand2=Integrand2, Integrand2expr = Integrand2expr,my.envd1=my.envd1,my.envd2=my.envd2,
# my.envd3=my.envd3,
# Univariate=Univariate, ExistdN =ExistdN, ExistdX=ExistdX,
# dimCol=dim(Integrand2)[2], NameCol = NameCol,
# JumpTimeName =paste0("JumpTime.",NameCol))
# Kernel <- evalKernelCpp2(Integrand2,
# Integrand2expr,
# my.envd1, my.envd2, my.envd3$YUIMA.PPR@PPR@IntensWithCount,
# my.envd3$YUIMA.PPR@[email protected],
# my.envd3$YUIMA.PPR@PPR@covariates,
# ExistdN, ExistdX,
# gridTime, dimCol = dim(Integrand2)[2], NameCol = NameCol,
# JumpTimeName =paste0("JumpTime.",NameCol))
# Evalgfun <- internalGfunFromPPRModel(gfun[i],my.envd3, univariate=TRUE)
# result<-Kernel+Evalgfun
kernel <- numeric(length = length(gridTime))
Intensity <- numeric(length = length(gridTime))
JumpTimeName <- paste0("JumpTime.", NameCol)
dimCol <- dim(Integrand2)[2]
IntensityatJumpTime<-as.list(numeric(length=length(gridTime)))
differentialCounting <- paste0("d",
c(my.envd3$YUIMA.PPR@[email protected],
my.envd3$YUIMA.PPR@[email protected]))
if(!CondIntFeedBacksToG){
EvalGFUN <- eval(gfun,envir=my.envd3)
Intensity[1]<-EvalGFUN[1]
}
aaaa<- length(gridTime)
CondallJump <- rep(FALSE,aaaa+1)
for(t in c(2:aaaa)){
assign(my.envd1$t.time,gridTime[[t]][1],envir=my.envd1)
for(j in c(1:dimCol)){
if(NameCol[j] %in% differentialCounting){
# Intensity at Jump Time
assign(my.envd3$YUIMA.PPR@[email protected],
IntensityatJumpTime[[t-1]],
envir=my.envd1)
# Counting Var at Jump Time
assign(my.envd3$YUIMA.PPR@[email protected],
my.envd1[[my.envd1$PosListCountingVariable]][[t]],
envir=my.envd1)
# Jump time <= t
assign(my.envd1$var.time,my.envd1[[JumpTimeName[j]]][[t]],envir=my.envd1)
KerneldN <- sum(eval(Integrand2expr,envir=my.envd1)*my.envd1[[my.envd1$namedX[j]]][[t]])
kernel[t-1] <- KerneldN
}
}
# Evaluation gFun
if(!CondIntFeedBacksToG){
#EvalGFUN <- eval(gfun,envir=my.envd3)
if(t<=aaaa){
Intensity[t]<- EvalGFUN[t-1]+kernel[t-1]
}
}else{
# Here we evaluate gFun time by time
}
for(j in c(1:dimCol)){
if(t+1<=aaaa){
if(NameCol[j] %in% differentialCounting){
#
CondallJump[t] <-my.envd3$JumpTimeLogical[t]
IntensityatJumpTime[[t]]<- Intensity[CondallJump[-1]]
}
}
}
if(t==77){
ff<-2
}
}
}else{
n.row <- length(my.envd3$YUIMA.PPR@[email protected])
n.col <- length(gridTime)
result <- matrix(NA,n.row, n.col)
#Kernel<- numeric(length=n.col-1)
dimCol<- dim(Integrand2)[2]
NameCol<-colnames(Integrand2)
JumpTimeName <- paste0("JumpTime.",NameCol)
for(i in c(1:n.row)){
# Kernel <- sapply(X=gridTime,FUN = InternalKernelFromPPRModel2,
# Integrand2=t(Integrand2[i,]), Integrand2expr = Integrand2expr[[i]],my.envd1=my.envd1,my.envd2=my.envd2,
# Univariate=TRUE, ExistdN =ExistdN, ExistdX=ExistdX, dimCol=dimCol, NameCol = NameCol,
# JumpTimeName =JumpTimeName)
# Kernel <- evalKernelCpp2(t(Integrand2[i,]), Integrand2expr[[i]],
# my.envd1, my.envd2, my.envd3$YUIMA.PPR@PPR@IntensWithCount,
# my.envd3$YUIMA.PPR@[email protected],
# my.envd3$YUIMA.PPR@PPR@covariates,
# ExistdN, ExistdX,
# gridTime, dimCol = dim(Integrand2)[2], NameCol = NameCol,
# JumpTimeName =paste0("JumpTime.",NameCol))
# Evalgfun <- internalGfunFromPPRModel(gfun[i],my.envd3, univariate=TRUE)
# result[i,]<-Kernel+Evalgfun
}
}
return(Intensity)
}
InternalKernelFromPPRModel2<-function(Integrand2,Integrand2expr,my.envd1=NULL,my.envd2=NULL,
Univariate=TRUE, ExistdN, ExistdX, gridTime, dimCol, NameCol,
JumpTimeName){
if(Univariate){
# JumpTimeName <- paste0("JumpTime.",NameCol[i])
# dimCol<- dim(Integrand2)[2]
# NameCol<-colnames(Integrand2)
if(ExistdN){
assign(my.envd1$t.time,gridTime, envir=my.envd1)
}
if(ExistdX){
assign(my.envd2$t.time,gridTime, envir=my.envd2)
}
IntegralKernel<- 0
for(i in c(1:dimCol)){
# cond <- NameCol[i] %in% my.envd1$NamesIntgra
# assign(my.envd1$var.time, time(my.envd1[[my.envd1$namedX[cond]]]), my.envd1)
# since it is just univariate we don't need a cycle for
if(ExistdN){
# cond <- paste0("JumpTime.",NameCol[i]) %in% my.envd1$namedJumpTimeX
# cond <- my.envd1$namedJumpTimeX %in% paste0("JumpTime.",NameCol[i])
cond <- my.envd1$namedJumpTimeX %in% JumpTimeName[i]
if(any(cond)){
assign(my.envd1$var.time,my.envd1[[my.envd1$namedJumpTimeX[cond]]],envir=my.envd1)
# condpos <- NameCol %in% my.envd1$namedX
condpos <- my.envd1$namedX %in% NameCol[i]
if(any(condpos)){
IntegralKernelDum<- sum(eval(Integrand2expr[condpos], envir=my.envd1),na.rm=TRUE)
IntegralKernel<-IntegralKernel+IntegralKernelDum
}
}
}
if(ExistdX){
# cond <- paste0("JumpTime.",NameCol[i]) %in% my.envd2$namedJumpTimeX
# cond <- my.envd2$namedJumpTimeX %in% paste0("JumpTime.",NameCol[i])
cond <- my.envd2$namedJumpTimeX %in% JumpTimeName[i]
if(any(cond)){
assign(my.envd2$var.time,my.envd2[[my.envd2$namedJumpTimeX[cond]]],envir=my.envd2)
# condpos <- NameCol %in% my.envd2$namedX
condpos <- my.envd2$namedX %in% NameCol[i]
if(any(condpos)){
IntegralKernelDum<- sum(eval(Integrand2expr[condpos], envir=my.envd2))
IntegralKernel<-IntegralKernel+IntegralKernelDum
}
}
}
}
}else{
return(NULL)
}
return(IntegralKernel)
}
InternalKernelFromPPRModel3<-function(Integrand2,Integrand2expr,my.envd1=NULL,my.envd2=NULL,my.envd3=NULL,
Univariate=TRUE, ExistdN, ExistdX, gridTime, dimCol, NameCol,
JumpTimeName){
if(Univariate){
# JumpTimeName <- paste0("JumpTime.",NameCol[i])
# dimCol<- dim(Integrand2)[2]
# NameCol<-colnames(Integrand2)
if(ExistdN){
#assign(my.envd1$t.time,gridTime[1], envir=my.envd1)
my.envd1[[my.envd1$t.time]]<-gridTime[1]
}
if(ExistdX){
assign(my.envd2$t.time,gridTime[1], envir=my.envd2)
}
if(my.envd3$YUIMA.PPR@PPR@IntensWithCount){
for(i in c(1:length(my.envd3$YUIMA.PPR@[email protected]))){
# assign(my.envd3$YUIMA.PPR@[email protected][i],
# my.envd1[[my.envd1$PosListCountingVariable[i]]][[gridTime[2]]]
# ,envir = my.envd1)
my.envd1[[my.envd3$YUIMA.PPR@[email protected][i]]]<-my.envd1[[my.envd1$PosListCountingVariable[i]]][[gridTime[2]]]
}
if(length(my.envd3$YUIMA.PPR@PPR@covariates)>0){
for(i in c(1:length(my.envd3$YUIMA.PPR@PPR@covariates))){
# assign(my.envd3$YUIMA.PPR@PPR@covariates[i],
# my.envd1[[my.envd1$PosListCovariates[i]]][[gridTime[2]]]
# ,envir = my.envd1)
my.envd1[[my.envd3$YUIMA.PPR@PPR@covariates[i]]]<-my.envd1[[my.envd1$PosListCovariates[i]]][[gridTime[2]]]
}
}
}
IntegralKernel<- 0
for(i in c(1:dimCol)){
# cond <- NameCol[i] %in% my.envd1$NamesIntgra
# assign(my.envd1$var.time, time(my.envd1[[my.envd1$namedX[cond]]]), my.envd1)
# since it is just univariate we don't need a cycle for
if(ExistdN){
# cond <- paste0("JumpTime.",NameCol[i]) %in% my.envd1$namedJumpTimeX
# cond <- my.envd1$namedJumpTimeX %in% paste0("JumpTime.",NameCol[i])
cond <- my.envd1$namedJumpTimeX %in% JumpTimeName[i]
if(any(cond)){
assign(my.envd1$var.time,my.envd1[[my.envd1$namedJumpTimeX[cond]]][[gridTime[2]]],envir=my.envd1)
# condpos <- NameCol %in% my.envd1$namedX
#condpos <- my.envd1$namedX %in% NameCol[i]
condpos <- NameCol %in% NameCol[i]
if(any(condpos)){
InterDum <- eval(Integrand2expr[condpos], envir=my.envd1)*my.envd1[[NameCol[i]]][[gridTime[2]]]
IntegralKernelDum<- sum(InterDum,na.rm=TRUE)
IntegralKernel<-IntegralKernel+IntegralKernelDum
}
}
}
if(ExistdX){
# cond <- paste0("JumpTime.",NameCol[i]) %in% my.envd2$namedJumpTimeX
# cond <- my.envd2$namedJumpTimeX %in% paste0("JumpTime.",NameCol[i])
cond <- my.envd2$namedJumpTimeX %in% JumpTimeName[i]
if(any(cond)){
#assign(my.envd2$var.time,my.envd2[[my.envd2$namedJumpTimeX[cond]]],envir=my.envd2)
assign(my.envd2$var.time,my.envd2[[my.envd2$namedJumpTimeX[cond]]][1:gridTime[2]],envir=my.envd2)
# condpos <- my.envd2$namedX %in% NameCol
condpos <- NameCol %in% NameCol[i]
if(any(condpos)){
IntegralKernelDum<- sum(eval(Integrand2expr[condpos], envir=my.envd2)*my.envd2[[NameCol[i]]][1:gridTime[2]] , na.rm=TRUE)
IntegralKernel<-IntegralKernel+IntegralKernelDum
}
}
}
}
}else{
return(NULL)
}
return(IntegralKernel)
}
InternalConstractionIntensity2<-function(param,my.envd1=NULL,
my.envd2=NULL,my.envd3=NULL){
paramPPR <- my.envd3$YUIMA.PPR@PPR@allparamPPR
namesparam <-my.envd3$namesparam
gridTime <-my.envd3$gridTime
Univariate <-my.envd3$Univariate
ExistdN <-my.envd3$ExistdN
ExistdX <-my.envd3$ExistdX
gfun<-my.envd3$gfun
Integrand2<-my.envd3$Integrand2
Integrand2expr<-my.envd3$Integrand2expr
if(ExistdN){
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd1 )
}
}
if(ExistdX){
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd2)
}
}
#param
for(i in c(1:length(paramPPR))){
cond<-namesparam %in% paramPPR[i]
assign(paramPPR[i], param[cond], envir = my.envd3)
}
# for(i in c(1:length(gridTime))){
# KerneldN[i] <- InternalKernelFromPPRModel(Integrand2,Integrand2expr,my.envd1=my.envd1,my.envd2=my.envd2,
# Univariate=Univariate, ExistdN, ExistdX, gridTime=gridTime[i])
# }
if(Univariate){
# Kernel<- numeric(length=length(gridTime))
NameCol <- colnames(Integrand2)
# Kernel <- sapply(X=gridTime,FUN = InternalKernelFromPPRModel2,
# Integrand2=Integrand2, Integrand2expr = Integrand2expr,my.envd1=my.envd1,my.envd2=my.envd2,
# Univariate=Univariate, ExistdN =ExistdN, ExistdX=ExistdX,
# dimCol=dim(Integrand2)[2], NameCol = NameCol,
# JumpTimeName =paste0("JumpTime.",NameCol))
# NameCol <- colnames(Integrand2)
# Kernel <- evalKernelCpp(Integrand2, Integrand2expr,my.envd1, my.envd2,
# ExistdN, ExistdX, gridTime, dim(Integrand2)[2], NameCol,
# paste0("JumpTime.",NameCol))
# Kernel <- sapply(X=gridTime,FUN = InternalKernelFromPPRModel3,
# Integrand2=Integrand2, Integrand2expr = Integrand2expr,my.envd1=my.envd1,my.envd2=my.envd2,
# my.envd3=my.envd3,
# Univariate=Univariate, ExistdN =ExistdN, ExistdX=ExistdX,
# dimCol=dim(Integrand2)[2], NameCol = NameCol,
# JumpTimeName =paste0("JumpTime.",NameCol))
Kernel <- evalKernelCpp2(Integrand2,
Integrand2expr,
my.envd1, my.envd2, my.envd3$YUIMA.PPR@PPR@IntensWithCount,
my.envd3$YUIMA.PPR@[email protected],
my.envd3$YUIMA.PPR@PPR@covariates,
ExistdN, ExistdX,
gridTime, dimCol = dim(Integrand2)[2], NameCol = NameCol,
JumpTimeName =paste0("JumpTime.",NameCol))
#KerneldCov<- numeric(length=length(gridTime))
Evalgfun <- internalGfunFromPPRModel(gfun,my.envd3, univariate=Univariate)
result<-Kernel+Evalgfun
}else{
n.row <- length(my.envd3$YUIMA.PPR@[email protected])
n.col <- length(gridTime)
result <- matrix(NA,n.row, n.col)
#Kernel<- numeric(length=n.col-1)
dimCol<- dim(Integrand2)[2]
NameCol<-colnames(Integrand2)
JumpTimeName <- paste0("JumpTime.",NameCol)
for(i in c(1:n.row)){
# Kernel <- pvec(v=gridTime,FUN = InternalKernelFromPPRModel2,
# Integrand2=t(Integrand2[i,]), Integrand2expr = Integrand2expr[[i]],my.envd1=my.envd1,my.envd2=my.envd2,
# Univariate=TRUE, ExistdN =ExistdN, ExistdX=ExistdX, dimCol=dimCol, NameCol = NameCol,
# JumpTimeName =JumpTimeName)
# Kernel <- sapply(X=gridTime,FUN = InternalKernelFromPPRModel2,
# Integrand2=t(Integrand2[i,]), Integrand2expr = Integrand2expr[[i]],my.envd1=my.envd1,my.envd2=my.envd2,
# Univariate=TRUE, ExistdN =ExistdN, ExistdX=ExistdX, dimCol=dimCol, NameCol = NameCol,
# JumpTimeName =JumpTimeName)
# Kernel <- sapply(X=gridTime,FUN = evalKernelCppPvec,
# Integrand2=t(Integrand2[i,]), Integrand2expr = Integrand2expr[[i]],
# myenvd1=my.envd1,myenvd2=my.envd2,
# ExistdN =ExistdN, ExistdX=ExistdX,
# dimCol=dimCol, NameCol = NameCol,
# JumpTimeName =JumpTimeName)
# Kernel <- evalKernelCpp(t(Integrand2[i,]), Integrand2expr[[i]],my.envd1, my.envd2,
# ExistdN, ExistdX, gridTime, dimCol, NameCol,
# JumpTimeName)
Kernel <- evalKernelCpp2(t(Integrand2[i,]), Integrand2expr[[i]],
my.envd1, my.envd2, my.envd3$YUIMA.PPR@PPR@IntensWithCount,
my.envd3$YUIMA.PPR@[email protected],
my.envd3$YUIMA.PPR@PPR@covariates,
ExistdN, ExistdX,
gridTime, dimCol = dim(Integrand2)[2], NameCol = NameCol,
JumpTimeName =paste0("JumpTime.",NameCol))
Evalgfun <- internalGfunFromPPRModel(gfun[i],my.envd3, univariate=TRUE)
result[i,]<-Kernel+Evalgfun
}
}
return(result)
}
Intensity.PPR <- function(yuimaPPR,param){
# I need three envirnment
# 1. my.envd1 is used when the counting variable is integrator
# 2. my.envd2 is used when covariates or time are integrator
# 3. my.envd3 for gfun
gfun<-yuimaPPR@gFun@formula
dimIntegr <- length(yuimaPPR@Kernel@Integrand@IntegrandList)
Integrand2 <- character(length=dimIntegr)
for(i in c(1:dimIntegr)){
#Integrand1 <- as.character(yuimaPPR@Kernel@Integrand@IntegrandList[[i]])
#timeCond <- paste0(" * (",yuimaPPR@[email protected]@var.time," < ",yuimaPPR@[email protected]@upper.var,")")
#Integrand2[i] <-paste0(Integrand1,timeCond)
Integrand2[i] <- as.character(yuimaPPR@Kernel@Integrand@IntegrandList[[i]])
}
Integrand2<- matrix(Integrand2,yuimaPPR@Kernel@Integrand@dimIntegrand[1],yuimaPPR@Kernel@Integrand@dimIntegrand[2])
# for(j in c(1:yuimaPPR@Kernel@Integrand@dimIntegrand[2])){
# Integrand2[,j]<-paste0(Integrand2[,j]," * d",yuimaPPR@[email protected]@var.dx[j])
# }
colnames(Integrand2) <- paste0("d",yuimaPPR@[email protected]@var.dx)
NamesIntegrandExpr <- as.character(matrix(colnames(Integrand2), dim(Integrand2)[1],dim(Integrand2)[2], byrow = TRUE))
# if(yuimaPPR@Kernel@Integrand@dimIntegrand[2]==1 & yuimaPPR@Kernel@Integrand@dimIntegrand[1]==1)
# Integrand2expr<- parse(text=Integrand2)
#
# if(yuimaPPR@Kernel@Integrand@dimIntegrand[2]>1 & yuimaPPR@Kernel@Integrand@dimIntegrand[1]==1){
# dum <- paste0(Integrand2,collapse=" + ")
# Integrand2expr <- parse(text=dum)
# }
if(yuimaPPR@Kernel@Integrand@dimIntegrand[1]==1){
Integrand2expr <- parse(text=Integrand2)
}else{
Integrand2expr <- list()
for(hh in c(1:yuimaPPR@Kernel@Integrand@dimIntegrand[1])){
Integrand2expr[[hh]] <- parse(text=Integrand2[hh,])
}
}
gridTime <- time(yuimaPPR@[email protected])
yuimaPPR@[email protected]@var.dx
if(any(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@[email protected])){
my.envd1<-new.env()
ExistdN<-TRUE
}else{
ExistdN<-FALSE
}
Univariate<-FALSE
if(length(yuimaPPR@[email protected])==1){
Univariate<-TRUE
}
if(any(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@PPR@covariates)){
my.envd2<-new.env()
ExistdX<-TRUE
}else{
my.envd2<-new.env()
ExistdX<-FALSE
}
my.envd3 <- new.env()
namesparam<-names(param)
if(!(all(namesparam %in% yuimaPPR@PPR@allparamPPR) && length(namesparam)==length(yuimaPPR@PPR@allparamPPR))){
return(NULL)
}
# construction my.envd1
if(ExistdN){
#CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
# condTime <- gridTime %in% my.envd1$JumpTime.dN
# dummyData <- yuimaPPR@[email protected][condTime,cond]
# assign(yuimaPPR@[email protected][i], as.numeric(dummyData),envir=my.envd1)
# }
# Names expression
assign("NamesIntgra", NamesIntegrandExpr, envir=my.envd1)
#dN
namedX <-NULL
namedJumpTimeX <- NULL
for(i in c(1:length(yuimaPPR@[email protected]@var.dx))){
if(yuimaPPR@[email protected]@var.dx[i] %in% yuimaPPR@[email protected]){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected]@var.dx[i]
namedX<-c(namedX,paste0("d",yuimaPPR@[email protected]@var.dx[i]))
namedJumpTimeX <-c(namedJumpTimeX,paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]))
dummyData <- diff(as.numeric(yuimaPPR@[email protected][,cond]))# We consider only Jump
#dummyJumpTime <- gridTime[-1][dummyData>0]
dummyJumpTime <- gridTime[-1][dummyData!=0]
dummyData2 <- diff(unique(cumsum(dummyData)))
#dummyData3 <- zoo(dummyData2,order.by = dummyJumpTime)
dummyData3 <- dummyData2
JumpTime <- dummyJumpTime
Jump <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT,Jump){Jump[JumpT<X]},
JumpT = dummyJumpTime, Jump = as.numeric(dummyData3!=0))
assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]),
Jump ,
envir=my.envd1)
dummyJumpTimeNew <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT){JumpT[JumpT<X]},
JumpT = dummyJumpTime)
assign(paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]), dummyJumpTimeNew ,envir=my.envd1)
}
}
assign("namedX",namedX, envir = my.envd1)
assign("namedJumpTimeX",namedJumpTimeX, envir = my.envd1)
assign("var.time",yuimaPPR@[email protected]@var.time,envir=my.envd1)
assign("t.time",yuimaPPR@[email protected]@upper.var,envir=my.envd1)
#CountingVariable
PosListCountingVariable <- NULL
for(i in c(1:length(yuimaPPR@[email protected]))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
JUMPTIME <- tail(my.envd1[[paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i])]],1L)[[1]]
condTime <- gridTime %in% JUMPTIME
dummyData <- yuimaPPR@[email protected][condTime,cond]
dummyDataA <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT,Jump){Jump[JumpT<X]},
JumpT = JUMPTIME, Jump = dummyData)
dummyList <- paste0("List_",yuimaPPR@[email protected][i])
PosListCountingVariable <- c(PosListCountingVariable,dummyList)
assign(dummyList, dummyDataA, envir=my.envd1)
assign(yuimaPPR@[email protected][i], numeric(length=0L), envir=my.envd1)
}
assign("PosListCountingVariable", PosListCountingVariable, envir=my.envd1)
# Covariates
if(length(yuimaPPR@PPR@covariates)>0){
# Covariates should be identified at jump time
# return(NULL)
PosListCovariates <- NULL
for(i in c(1:length(yuimaPPR@PPR@covariates))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@PPR@covariates[i]
#dummyData <-yuimaPPR@[email protected][,cond]
dummyData <- yuimaPPR@[email protected][condTime, cond]
dummyDataB <- lapply(X=as.numeric(gridTime), FUN = function(X,JumpT,Jump){Jump[JumpT<X]},
JumpT = JUMPTIME, Jump = dummyData)
dummyListCov <- paste0("List_",yuimaPPR@PPR@covariates[i])
PosListCovariates <- c(PosListCovariates,dummyListCov)
assign(dummyListCov, dummyDataB,envir=my.envd1)
assign(yuimaPPR@PPR@covariates[i], numeric(length=0L),envir=my.envd1)
}
assign("PosListCovariates", PosListCovariates,envir=my.envd1)
}
}
# end coonstruction my.envd1
# construction my.envd2
if(ExistdX){
#Covariate
dummyData<-NULL
#CountingVariable
for(i in c(1:length(yuimaPPR@[email protected]))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
dummyData <-as.numeric(yuimaPPR@[email protected][,cond])
# assign(yuimaPPR@[email protected][i], dummyData[-length(dummyData)],envir=my.envd2)
assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd2)
}
namedX<-NULL
namedJumpTimeX<-NULL
for(i in c(1:length(yuimaPPR@[email protected]@var.dx))){
if(yuimaPPR@[email protected]@var.dx[i] %in% yuimaPPR@PPR@covariates){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected]@var.dx[i]
namedX<-c(namedX,paste0("d",yuimaPPR@[email protected]@var.dx[i]))
namedJumpTimeX <-c(namedJumpTimeX,paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]))
dummyData <- diff(as.numeric(yuimaPPR@[email protected][,cond]))# We consider only Jump
#dummyJumpTime <- gridTime[-1][dummyData>0]
#assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]), dummyData ,envir=my.envd2)
assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]), c(0,dummyData) ,envir=my.envd2)
#assign(paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]), gridTime[-1] ,envir=my.envd2)
assign(paste0("JumpTime.d",yuimaPPR@[email protected]@var.dx[i]), as.numeric(gridTime) ,envir=my.envd2)
}
}
assign("namedX",namedX, envir = my.envd2)
assign("namedJumpTimeX",namedJumpTimeX, envir = my.envd2)
assign("var.time",yuimaPPR@[email protected]@var.time,envir=my.envd2)
assign("t.time",yuimaPPR@[email protected]@upper.var,envir=my.envd2)
for(i in c(1:length(yuimaPPR@PPR@covariates))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@PPR@covariates[i]
#dummyData <-yuimaPPR@[email protected][,cond]
dummyData <-as.numeric(yuimaPPR@[email protected][, cond])
#assign(yuimaPPR@PPR@covariates[i], dummyData[-length(dummyData)],envir=my.envd2)
assign(yuimaPPR@PPR@covariates[i], dummyData,envir=my.envd2)
}
}else{
assign("KerneldX",NULL,envir=my.envd2)
}
# end construction my.envd2
# construction my.envd3
#Covariate
dimCov <- length(yuimaPPR@PPR@covariates)
if(dimCov>0){
for(j in c(1:dimCov)){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@PPR@covariates[j]
dummyData <-yuimaPPR@[email protected][,cond]
assign(yuimaPPR@PPR@covariates[j], dummyData,envir=my.envd3)
}
}
#CountingVariable
for(i in c(1:length(yuimaPPR@[email protected]))){
cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected][i]
dummyData <-yuimaPPR@[email protected][,cond]
assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd3)
}
#time
assign(yuimaPPR@[email protected], gridTime, my.envd3)
#Model
assign("YUIMA.PPR",yuimaPPR,envir=my.envd3)
assign("namesparam",namesparam,envir=my.envd3)
assign("gfun",gfun,envir=my.envd3)
assign("Integrand2",Integrand2,envir=my.envd3)
assign("Integrand2expr",Integrand2expr,envir=my.envd3)
l1 =as.list(as.numeric(gridTime))
l2 = as.list(c(1:(length(l1))))
l3 = mapply(c, l1, l2, SIMPLIFY=FALSE)
assign("gridTime",l3,envir=my.envd3)
assign("Univariate",Univariate,envir=my.envd3)
assign("ExistdN",ExistdN,envir=my.envd3)
assign("ExistdX",ExistdX,envir=my.envd3)
assign("JumpTimeLogical",c(FALSE,as.integer(diff(my.envd3$N))!=0),envir=my.envd3)
# end construction my.envd3
################################
# Start Intensity construction #
################################
#We define the parameters value for each environment
param<-unlist(param)
# if(my.envd3$YUIMA.PPR@[email protected] %in% all.vars(my.envd3$Integrand2expr)){
# result <- InternalConstractionIntensityFeedBackIntegrand(param,my.envd1,
# my.envd2,my.envd3)
# }else{
# result<-InternalConstractionIntensity2(param,my.envd1,
# my.envd2,my.envd3)
# }
myvardummy <- NULL
for(i in c(1:length(my.envd3$Integrand2expr))){
myvardummy <- c(myvardummy, all.vars(my.envd3$Integrand2expr[[i]]))
}
myvardummy<-unique(myvardummy)
if(any(my.envd3$YUIMA.PPR@[email protected] %in% myvardummy)){
result <- InternalConstractionIntensityFeedBackIntegrand(param,my.envd1,
my.envd2,my.envd3)
}else{
result<-InternalConstractionIntensity2(param,my.envd1,
my.envd2,my.envd3)
}
#if(class(result)=="matrix"){
if(inherits(result, "matrix")){ # YK, Mar. 22, 2022
my.matr <- t(result)
colnames(my.matr) <-paste0("lambda",c(1:yuimaPPR@Kernel@Integrand@dimIntegrand[1]))
Int2<-zoo(my.matr,order.by = gridTime)
}else{
Int2<-zoo(as.matrix(result),order.by = gridTime)
colnames(Int2)<-"lambda"
}
res<-setData(Int2)
return(res)
}
# Intensity.PPR <- function(yuimaPPR,param){
# # I need three envirnment
# # 1. my.envd1 is used when the counting variable is integrator
# # 2. my.envd2 is used when covariates or time are integrator
# # 3. my.envd3 for gfun
#
# gfun<-yuimaPPR@gFun@formula
#
# dimIntegr <- length(yuimaPPR@Kernel@Integrand@IntegrandList)
# Integrand2 <- character(length=dimIntegr)
# for(i in c(1:dimIntegr)){
# Integrand1 <- as.character(yuimaPPR@Kernel@Integrand@IntegrandList[[i]])
# timeCond <- paste0(" * (",yuimaPPR@[email protected]@var.time," < ",yuimaPPR@[email protected]@upper.var,")")
# Integrand2[i] <-paste0(Integrand1,timeCond)
# }
#
# Integrand2<- matrix(Integrand2,yuimaPPR@Kernel@Integrand@dimIntegrand[1],yuimaPPR@Kernel@Integrand@dimIntegrand[2])
#
#
# for(j in c(1:yuimaPPR@Kernel@Integrand@dimIntegrand[2])){
# Integrand2[,j]<-paste0(Integrand2[,j]," * d",yuimaPPR@[email protected]@var.dx[j])
# }
# colnames(Integrand2) <- paste0("d",yuimaPPR@[email protected]@var.dx)
# NamesIntegrandExpr <- as.character(matrix(colnames(Integrand2), dim(Integrand2)[1],dim(Integrand2)[2], byrow = TRUE))
# Integrand2expr<- parse(text=Integrand2)
#
# gridTime <- time(yuimaPPR@[email protected])
#
# yuimaPPR@[email protected]@var.dx
# if(any(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@[email protected])){
# my.envd1<-new.env()
# ExistdN<-TRUE
# }else{
# ExistdN<-FALSE
# }
# Univariate<-FALSE
# if(length(yuimaPPR@[email protected])==1){
# Univariate<-TRUE
# }
# if(any(!(yuimaPPR@[email protected]@var.dx %in% yuimaPPR@[email protected]))){
# my.envd2<-new.env()
# ExistdX<-TRUE
# }else{
# my.envd2<-new.env()
# ExistdX<-FALSE
# }
#
# my.envd3 <- new.env()
# namesparam<-names(param)
# if(!(all(namesparam %in% yuimaPPR@PPR@allparamPPR) && length(namesparam)==length(yuimaPPR@PPR@allparamPPR))){
# return(NULL)
# }
#
# # construction my.envd1
# if(ExistdN){
#
# #CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected][i] %in% yuimaPPR@[email protected]
# dummyData <-unique(yuimaPPR@[email protected][,cond])[-1]
# assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd1)
# }
# # Names expression
# assign("NamesIntgra", NamesIntegrandExpr, envir=my.envd1)
# #dN
# namedX <-NULL
# for(i in c(1:length(yuimaPPR@[email protected]@var.dx))){
# if(yuimaPPR@[email protected]@var.dx[i] %in% yuimaPPR@[email protected]){
# cond <- yuimaPPR@[email protected] %in% yuimaPPR@[email protected]@var.dx[i]
# namedX<-c(namedX,paste0("d",yuimaPPR@[email protected]@var.dx[i]))
# dummyData <- diff(as.numeric(yuimaPPR@[email protected][,cond]))# We consider only Jump
# dummyJumpTime <- gridTime[-1][dummyData>0]
# dummyData2 <- diff(unique(cumsum(dummyData)))
# dummyData3 <- zoo(dummyData2,order.by = dummyJumpTime)
# assign(paste0("d",yuimaPPR@[email protected]@var.dx[i]), dummyData3 ,envir=my.envd1)
# }
# }
# assign("namedX",namedX, envir = my.envd1)
# assign("var.time",yuimaPPR@[email protected]@var.time,envir=my.envd1)
# assign("t.time",yuimaPPR@[email protected]@upper.var,envir=my.envd1)
#
# # Covariates
# if(length(yuimaPPR@PPR@covariates)>1){
# # Covariates should be identified at jump time
# return(NULL)
# }
#
# }
# # end coonstruction my.envd1
#
# # construction my.envd2
# if(ExistdX){
# #Covariate
#
# #CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected][i] %in% yuimaPPR@[email protected]
# dummyData <-yuimaPPR@[email protected][,cond]
# assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd1)
# }
#
#
# }else{
# assign("KerneldX",NULL,envir=my.envd2)
# }
#
# # end construction my.envd2
#
# # construction my.envd3
#
# #Covariate
#
# #CountingVariable
# for(i in c(1:length(yuimaPPR@[email protected]))){
# cond <- yuimaPPR@[email protected][i] %in% yuimaPPR@[email protected]
# dummyData <-yuimaPPR@[email protected][,cond]
# assign(yuimaPPR@[email protected][i], dummyData,envir=my.envd3)
# }
# #time
# assign(yuimaPPR@[email protected], gridTime, my.envd3)
#
# #Model
# assign("YUIMA.PPR",yuimaPPR,envir=my.envd3)
# assign("namesparam",namesparam,envir=my.envd3)
# assign("gfun",gfun,envir=my.envd3)
# assign("Integrand2",Integrand2,envir=my.envd3)
# assign("Integrand2expr",Integrand2expr,envir=my.envd3)
#
# assign("gridTime",gridTime,envir=my.envd3)
# assign("Univariate",Univariate,envir=my.envd3)
# assign("ExistdN",ExistdN,envir=my.envd3)
# assign("ExistdX",ExistdX,envir=my.envd3)
#
#
# # end construction my.envd3
#
#
#
#
#
# ################################
# # Start Intensity construction #
# ################################
# #We define the parameters value for each environment
#
# param<-unlist(param)
#
# result<-InternalConstractionIntensity(param,my.envd1,
# my.envd2,my.envd3)
#
# Int2<-zoo(as.matrix(result),order.by = gridTime)
# colnames(Int2)<-"lambda"
# res<-setData(Int2)
# return(res)
#
#
# }
| /scratch/gouwar.j/cran-all/cranData/yuima/R/lambdaPPR.R |
# Initial version of lasso estimation for SDEs
# fixes a small bug in passing arguments to the
# inner optim function
lasso <- function (yuima, lambda0, start, delta = 1, ...)
{
call <- match.call()
if (missing(yuima))
yuima.stop("yuima object 'yuima' is missing.")
pars <- yuima@model@parameter@all
npars <- length(pars)
if (missing(lambda0)) {
lambda0 <- rep(1, npars)
names(lambda0) <- pars
lambda0 <- as.list(lambda0)
}
if(!is.list(lambda0)){
lambda0 <- as.numeric(lambda0)
lambda0 <- as.numeric(matrix(lambda0, npars,1))
names(lambda0) <- pars
lambda0 <- as.list(lambda0)
}
if (missing(start))
yuima.stop("Starting values for the parameters are missing.")
fail <- lapply(lambda0, function(x) as.numeric(NA))
cat("\nLooking for MLE estimates...\n")
fit <- try(qmle(yuima, start = start, ...), silent = TRUE)
if (class(fit)[1] == "try-error"){
tmp <- list(mle = fail, sd.mle = NA, lasso = fail, sd.lasso = NA)
class(tmp) <- "yuima.lasso"
return(tmp)
}
theta.mle <- coef(fit)
SIGMA <- try(sqrt(diag(vcov(fit))), silent = TRUE)
if (class(SIGMA)[1] == "try-error"){
tmp <- list(mle = theta.mle, sd.mle = NA, lasso = fail, sd.lasso = NA)
class(tmp) <- "yuima.lasso"
return(tmp)
}
H <- try(solve(vcov(fit)), silent = TRUE)
if (class(H)[1] == "try-error"){
tmp <- list(mle = theta.mle, sd.mle = SIGMA, lasso = fail, sd.lasso = NA)
class(tmp) <- "yuima.lasso"
return(tmp)
}
lambda <- unlist(lambda0[names(theta.mle)])/abs(theta.mle)^delta
#lambda1 <- unlist(lambda0[names(theta.mle)])/abs(theta.mle)
idx <- which(lambda > 10000)
lambda[idx] <- 10000
f2 <- function(theta) as.numeric(t(theta - theta.mle) %*%
H %*% (theta - theta.mle) + lambda %*% abs(theta))
cat("\nPerforming LASSO estimation...\n")
args <- list(...)
args$joint <- NULL
args$par <- theta.mle
args$fn <- f2
args$hessian <- TRUE
args$delta <- NULL
args$control <- list(maxit = 30000, temp = 2000, REPORT = 500)
# fit2 <- try(optim(theta.mle, f2, hessian = TRUE, args, control = list(maxit = 30000,
# temp = 2000, REPORT = 500)), silent = FALSE)
fit2 <- try( do.call(optim, args = args), silent = TRUE)
if (class(fit2)[1] == "try-error"){
tmp <- list(mle = theta.mle, sd.mle = SIGMA, lasso = fail, sd.lasso = NA)
class(tmp) <- "yuima.lasso"
return(tmp)
}
theta.lasso <- fit2$par
SIGMA1 <- try(sqrt(diag(solve(fit2$hessian))), silent = TRUE)
if (class(SIGMA1)[1] == "try-error"){
tmp <- list(mle = theta.mle, sd.mle = SIGMA, lasso = theta.lasso,
sd.lasso = NA)
class(tmp) <- "yuima.lasso"
return(tmp)
}
tmp <- list(mle = theta.mle, sd.mle = SIGMA, lasso = theta.lasso,
sd.lasso = SIGMA1, call = call, lambda0 = lambda0)
class(tmp) <- "yuima.lasso"
return(tmp)
}
print.yuima.lasso <- function(x,...){
cat("Adaptive Lasso estimation\n")
cat("\nCall:\n")
print(x$cal)
if(!is.null(x$mle) & !is.null(x$sd.mle)){
qmle.tab <- rbind(x$mle, x$sd.mle)
rownames(qmle.tab) <- c("Estimate", "Std. Error")
cat("\nQMLE estimates\n")
print(t(qmle.tab))
}
if(!is.null(x$lasso) & !is.null(x$sd.lasso)){
lasso.tab <- rbind(x$lasso, x$sd.lasso)
rownames(lasso.tab) <- c("Estimate", "Std. Error")
cat("\nLASSO estimates\n")
print(t(lasso.tab))
}
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/lasso.R |
setGeneric("limiting.gamma",
function(obj, theta, verbose=FALSE)
standardGeneric("limiting.gamma")
)
setMethod("limiting.gamma", "yuima",
function(obj, theta, verbose=FALSE){
limiting.gamma(obj@model, theta, verbose=verbose)
})
setMethod("limiting.gamma", "yuima.model",
function(obj, theta, verbose=FALSE){
## error check 1
if(missing(obj)){
stop("main object is missing.")
}
if(missing(theta)){
stop("theta is missing.")
}
if(is.list(theta)==FALSE){
stop("theta required list.\ntheta <- list(theta1, theta2)")
}
if(verbose){
yuima.warn("Initializing... ")
}
r.size <- [email protected]
d.size <- [email protected]
state <- [email protected]
THETA.1 <- obj@parameter@diffusion
THETA.2 <- obj@parameter@drift
mi.size <- c(length(THETA.1), length(THETA.2))
## error check 2
if(d.size!=1){
stop("this program is 1-dimention yuima limitation.")
}
if(mi.size[1]!=length(theta[[1]])){
stop("the length of m1 and theta1 is different.")
}
if(mi.size[2]!=length(theta[[2]])){
stop("the length of m2 and theta2 is different.")
}
Differentiation.vector <- function(myfunc, mystate, dim1, dim2){
tmp <- vector(dim1*dim2, mode="expression")
for(i in 1:dim1){
for(j in 1:dim2){
tmp[(i-1)*dim2+j] <- parse(text=deparse(D(myfunc[i], mystate[j])))
}
}
return(tmp)
}
Differentiation.scalar <- function(myfunc, mystate, dim){
tmp <- vector(dim, mode="expression")
for(i in 1:dim){
tmp[i] <- parse(text=deparse(D(myfunc[i], mystate)))
}
return(tmp)
}
## assign theta
for(i in 1:mi.size[1]){
assign(THETA.1[i], theta[[1]][i])
}
for(i in 1:mi.size[2]){
assign(THETA.2[i], theta[[2]][i])
}
if(verbose){
yuima.warn("Done")
}
## p(x)
if(verbose){
yuima.warn("get C ... ")
}
## a part of p(x) function
tmp.y <- function(x.arg){
assign([email protected], x.arg)
a.eval <- eval(obj@drift)
b.eval <- numeric(d.size)
for(i in 1:d.size){
b.eval[i] <- eval(obj@diffusion[[1]][i])
}
return(2*a.eval/as.double(t(b.eval)%*%b.eval))
}
## a part of p(x) function for integrate
integrate.tmp.y <- function(x.arg){
tmp <- numeric(length(x.arg))
for(i in 1:length(x.arg)){
tmp[i]<-tmp.y(x.arg[i])
}
return(tmp)
}
## p(x) function without normalize const C
p0.x <- function(x.arg){
assign([email protected], x.arg)
b.eval <- numeric(d.size)
for(i in 1:d.size){
b.eval[i] <- eval(obj@diffusion[[1]][i])
}
return(exp(as.double(integrate(integrate.tmp.y, 0, x.arg)$value))/as.double(t(b.eval)%*%b.eval))
}
## p0.x function for integrate
integrate.p0.x <- function(x.arg){
tmp <- numeric(length(x.arg))
for(i in 1:length(x.arg)){
tmp[i]<-p0.x(x.arg[i])
}
return(tmp)
}
## normalize const
C <- 1/integrate(integrate.p0.x, -Inf, Inf)$value
if(verbose){
yuima.warn("Done")
}
## gamma1
if(verbose){
yuima.warn("Get gamma1 ... ")
}
counter.gamma1 <- 1
## gamma1 function
get.gamma1 <- function(x.arg){
assign([email protected], x.arg)
b.eval <- numeric(d.size)
for(i in 1:d.size){
b.eval[i] <- eval(obj@diffusion[[1]][i])
}
Bi <- solve(t(b.eval)%*%b.eval)
dTHETA.1.B <- array(0,c(d.size, d.size, mi.size[1]))
tmp1.B <- array(0, c(d.size, d.size, mi.size[1]))
tmp2.B <- numeric(mi.size[1])
for(k in 1:mi.size[1]){
dTHETA.1.b <- Differentiation.scalar(obj@diffusion[[1]], THETA.1[k], d.size)
dTHETA.1.b.eval <- numeric(d.size)
for(i in 1:d.size){
dTHETA.1.b.eval[i] <- eval(dTHETA.1.b[i])
}
tmp <- b.eval%*%t(dTHETA.1.b.eval)
dTHETA.1.B[, , k] <- tmp+t(tmp)
tmp1.B[, , k] <- dTHETA.1.B[, , k]%*%Bi
tmp2.B[k] <- tmp1.B[, , k] #sum(diag(tmp1.B[,,k])) 1-dimention limitation
}
tmp <- tmp2.B %*% t(tmp2.B) * p0.x(x.arg)
return(tmp[((counter.gamma1-1)%%mi.size[1])+1, ((counter.gamma1-1)%/%mi.size[1])+1])
}
## gamma1 function for integrate
integrate.get.gamma1 <- function(x.arg){
tmp <- numeric(length(x.arg))
for(i in 1:length(x.arg)){
tmp[i] <- get.gamma1(x.arg[i])
}
return(tmp*C/2)
}
## calculating gamma1
gamma1 <- matrix(0, mi.size[1], mi.size[1])
for(i in 1:(mi.size[1]*mi.size[1])){
gamma1[((i-1)%%mi.size[1])+1,((i-1)%/%mi.size[1])+1] <- integrate(integrate.get.gamma1, -Inf, Inf)$value
counter.gamma1 <- counter.gamma1+1
}
if(verbose){
yuima.warn("Done")
}
## gamma2
if(verbose){
yuima.warn("Get gamma2 ... ")
}
counter.gamma2 <- 1
## gamma2 function
get.gamma2 <- function(x.arg){
assign([email protected], x.arg)
if(mi.size[2]==1){
dTHETA.2.a <- Differentiation.scalar(obj@drift, THETA.2, d.size)
}else{
dTHETA.2.a <- Differentiation.vector(obj@drift, THETA.2, d.size, mi.size[2])
}
dTHETA.2.a.eval <- numeric(mi.size[2])
for(i in 1:mi.size[2]){
dTHETA.2.a.eval[i] <- eval(dTHETA.2.a[i])
}
b.eval <- numeric(d.size)
for(i in 1:d.size){
b.eval[i] <- eval(obj@diffusion[[1]][i])
}
Bi <- solve(t(b.eval)%*%b.eval)
tmp <- dTHETA.2.a.eval %*% Bi %*% t(dTHETA.2.a.eval) * p0.x(x.arg)
return(tmp[((counter.gamma2-1)%%mi.size[2])+1, ((counter.gamma2-1)%/%mi.size[2])+1])
}
## gamma2 function for intefrate
integrate.get.gamma2 <- function(x.arg){
tmp <- numeric(length(x.arg))
for(i in 1:length(x.arg)){
tmp[i]<-get.gamma2(x.arg[i])
}
return(tmp*C)
}
## calculating gamma2
gamma2 <- matrix(0, mi.size[2], mi.size[2])
for(i in 1:(mi.size[2]*mi.size[2])){
gamma2[((i-1)%%mi.size[2])+1, ((i-1)%/%mi.size[2])+1] <- integrate(integrate.get.gamma2, -Inf, Inf)$value
counter.gamma2 <- counter.gamma2+1
}
if(verbose){
yuima.warn("Done")
}
## make list for return
poi1 <- list(gamma1, gamma2)
names(poi1) <- c("gamma1", "gamma2")
poi2 <- append(gamma1, gamma2)
ret <- list(poi1, poi2)
names(ret) <- c("list", "vec")
return(ret)
})
| /scratch/gouwar.j/cran-all/cranData/yuima/R/limiting.gamma.R |
#lead-lag estimation
#x:data
#setGeneric( "llag", function(x,verbose=FALSE) standardGeneric("llag") )
#setMethod( "llag", "yuima", function(x,verbose=FALSE) llag(x@data,verbose=verbose ))
#setMethod( "llag", "yuima.data", function(x,verbose=FALSE) {
#setGeneric( "llag",
# function(x,from=FALSE,to=FALSE,division=FALSE,verbose=FALSE)
# standardGeneric("llag") )
#setMethod( "llag", "yuima",
# function(x,from=FALSE,to=FALSE,division=FALSE,verbose=FALSE)
# llag(x@data,from=FALSE,to=FALSE,division=FALSE,verbose=verbose ))
#setMethod( "llag", "yuima.data", function(x,from=FALSE,to=FALSE,division=FALSE,verbose=FALSE) {
## function to make the grid if it is missing
make.grid <- function(d, d.size, x, from, to, division){
out <- vector(d.size, mode = "list")
if(length(from) != d.size){
from <- c(from,rep(-Inf,d.size - length(from)))
}
if(length(to) != d.size){
to <- c(to,rep(Inf,d.size - length(to)))
}
if(length(division) == 1){
division <- rep(division,d.size)
}
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- as.numeric(time(x[[i]]))
time2 <- as.numeric(time(x[[j]]))
# calculate the maximum of correlation by substituting theta to lagcce
#n:=2*length(data)
num <- d*(i-1) - (i-1)*i/2 + (j-i)
if(division[num]==FALSE){
n <- round(2*max(length(time1),length(time2)))+1
}else{
n <- division[num]
}
# maximum value of lagcce
tmptheta <- time2[1]-time1[1] # time lag (sec)
num1 <- time1[length(time1)]-time1[1] # elapsed time for series 1
num2 <- time2[length(time2)]-time2[1] # elapsed time for series 2
# modified
if(is.numeric(from[num])==TRUE && is.numeric(to[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(from[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- num1-tmptheta
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(to[num])==TRUE){
num2 <- num2+tmptheta
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}
out[[num]] <- seq(-num2-tmptheta,num1-tmptheta,length=n)[2:(n-1)]
}
}
return(out)
}
## function to compute asymptotic variances
llag.avar <- function(x, grid, bw, alpha, fisher, ser.diffX, ser.times, vol, cormat, ccor, idx, G, d, d.size, tol){
# treatment of the bandwidth
if(missing(bw)){
bw <- matrix(0, d, d)
for(i in 1:(d - 1)){
for(j in (i + 1):d){
Init <- min(ser.times[[i]][1], ser.times[[j]][1])
Term <- max(tail(ser.times[[i]], n = 1), tail(ser.times[[j]], n = 1))
bw[i, j] <- (Term - Init) * min(length(ser.times[[i]]), length(ser.times[[j]]))^(-0.45)
bw[j, i] <- bw[i, j]
}
}
}else{
bw <- bw/tol
}
bw <- matrix(bw, d, d)
p <- diag(d) # p-values
avar <- vector(d.size,mode="list") # asymptotic variances
CI <- vector(d.size,mode="list") # confidence intervals
names(avar) <- names(ccor)
names(CI) <- names(ccor)
vv <- (2/3) * sapply(ser.diffX, FUN = function(x) sum(x^4)) # AVAR for RV
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
num <- d*(i-1) - (i-1)*i/2 + (j-i)
## computing conficence intervals
N.max <- max(length(time1), length(time2))
tmp <- rev(as.numeric(ccor[[num]]))
d1 <- -0.5 * tmp * sqrt(vol[j]/vol[i])
d2 <- -0.5 * tmp * sqrt(vol[i]/vol[j])
avar.tmp <- .C("hycrossavar",
as.double(G[[num]]),
as.double(time1),
as.double(time2),
as.integer(length(G[[num]])),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(x[[i]]),
as.double(x[[j]]),
as.integer(N.max),
as.double(bw[i, j]),
as.double(vv[i]),
as.double(vv[j]),
as.double(d1^2),
as.double(d2^2),
as.double(2 * d1),
as.double(2 * d2),
as.double(2 * d1 * d2),
covar = double(length(G[[num]])),
corr = double(length(G[[num]])),
PACKAGE = "yuima")$corr / (vol[i] * vol[j])
#avar[[num]][avar[[num]] <= 0] <- NA
if(fisher == TRUE){
z <- atanh(tmp) # the Fisher z transformation of the estimated correlation
se.z <- sqrt(avar.tmp)/(1 - tmp^2)
p[i,j] <- pchisq((atanh(cormat[i,j])/se.z[idx[num]])^2, df=1, lower.tail=FALSE)
CI[[num]] <- zoo(tanh(qnorm(1 - alpha/2) * se.z), -grid[[num]])
}else{
p[i,j] <- pchisq(cormat[i,j]^2/avar.tmp[idx[num]], df=1, lower.tail=FALSE)
c.alpha <- sqrt(qchisq(alpha, df=1, lower.tail = FALSE) * avar.tmp)
CI[[num]] <- zoo(c.alpha, -grid[[num]])
}
p[j,i] <- p[i,j]
avar[[num]] <- zoo(avar.tmp, -grid[[num]])
}
}
return(list(p = p, avar = avar, CI = CI))
}
## main body
setGeneric( "llag", function(x, from = -Inf, to = Inf, division = FALSE,
verbose = (ci || ccor), grid, psd = TRUE, plot = ci,
ccor = ci, ci = FALSE, alpha = 0.01, fisher = TRUE, bw, tol = 1e-6) standardGeneric("llag") )
## yuima-method
setMethod("llag", "yuima", function(x, from, to, division, verbose, grid, psd, plot,
ccor, ci, alpha, fisher, bw, tol)
llag(x@data, from, to, division, verbose, grid, psd, plot, ccor, ci, alpha, fisher, bw, tol))
## yuima.data-method
setMethod("llag", "yuima.data", function(x, from, to, division, verbose, grid, psd, plot,
ccor, ci, alpha, fisher, bw, tol)
llag([email protected], from, to, division, verbose, grid, psd, plot, ccor, ci, alpha, fisher, bw, tol))
## list-method
setMethod("llag", "list", function(x, from, to, division, verbose, grid, psd, plot,
ccor, ci, alpha, fisher, bw, tol) {
d <- length(x)
d.size <- d*(d-1)/2
# allocate memory
ser.times <- vector(d, mode="list") # time index in 'x'
ser.diffX <- vector(d, mode="list") # difference of data
vol <- double(d)
# treatment of the grid (2016-07-04: we implement this before the NA treatment)
if(missing(grid))
grid <- make.grid(d, d.size, x, from, to, division)
# Set the tolerance to avoid numerical erros in comparison
#tol <- 1e-6
for(i in 1:d){
# NA data must be skipped
idt <- which(is.na(x[[i]]))
if(length(idt>0)){
x[[i]] <- x[[i]][-idt]
}
if(length(x[[i]])<2) {
stop("length of data (w/o NA) must be more than 1")
}
# set data and time index
ser.times[[i]] <- as.numeric(time(x[[i]]))/tol
# set difference of the data
ser.diffX[[i]] <- diff( as.numeric(x[[i]]) )
vol[i] <- sum(ser.diffX[[i]]^2)
}
theta <- matrix(0,d,d)
#d.size <- d*(d-1)/2
crosscor <- vector(d.size,mode="list")
idx <- integer(d.size)
# treatment of the grid
#if(missing(grid))
# grid <- make.grid(d, d.size, x, from, to, division)
if(is.list(grid)){
G <- relist(unlist(grid)/tol, grid)
}else{
if(is.numeric(grid)){
G <- data.frame(matrix(grid/tol,length(grid),d.size))
grid <- data.frame(matrix(grid,length(grid),d.size))
}else{
print("llag:invalid grid")
return(NULL)
}
}
# core part
if(psd){ # positive semidefinite correction is implemented
cormat <- diag(d)
LLR <- diag(d)
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
num <- d*(i-1) - (i-1)*i/2 + (j-i)
names(crosscor)[num] <- paste("(",i,",",j,")", sep = "")
tmp <- .C("HYcrosscorr2",
as.integer(length(G[[num]])),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(G[[num]]),
as.double(time1),
as.double(time2),
#double(length(time2)),
as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),
as.double(vol[i]),
as.double(vol[j]),
value=double(length(G[[num]])),
PACKAGE = "yuima")$value
idx[num] <- which.max(abs(tmp))
mlag <- -grid[[num]][idx[num]] # make the first timing of max or min
cor <- tmp[idx[num]]
theta[i,j] <- mlag
cormat[i,j] <- cor
theta[j,i] <- -mlag
cormat[j,i] <- cormat[i,j]
LLR[i,j] <- sum(tmp[grid[[num]] < 0]^2)/sum(tmp[grid[[num]] > 0]^2)
LLR[j,i] <- 1/LLR[i,j]
crosscor[[num]] <- zoo(tmp,-grid[[num]])
}
}
covmat <- diag(sqrt(vol))%*%cormat%*%diag(sqrt(vol))
}else{# non-psd
covmat <- diag(vol)
LLR <- diag(d)
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
num <- d*(i-1) - (i-1)*i/2 + (j-i)
names(crosscor)[num] <- paste("(",i,",",j,")", sep = "")
tmp <- .C("HYcrosscov2",
as.integer(length(G[[num]])),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(G[[num]]),
as.double(time1),
as.double(time2),
#double(length(time2)),
as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),
value=double(length(G[[num]])),
PACKAGE = "yuima")$value
idx[num] <- which.max(abs(tmp))
mlag <- -grid[[num]][idx[num]] # make the first timing of max or min
cov <- tmp[idx[num]]
theta[i,j] <- mlag
covmat[i,j] <- cov
theta[j,i] <- -mlag
covmat[j,i] <- covmat[i,j]
LLR[i,j] <- sum(tmp[grid[[num]] < 0]^2)/sum(tmp[grid[[num]] > 0]^2)
LLR[j,i] <- 1/LLR[i,j]
crosscor[[num]] <- zoo(tmp,-grid[[num]])/sqrt(vol[i]*vol[j])
}
}
cormat <- diag(1/sqrt(diag(covmat)))%*%covmat%*%diag(1/sqrt(diag(covmat)))
}
if(ci){ # computing confidence intervals
out <- llag.avar(x = x, grid = grid, bw = bw, alpha = alpha, fisher = fisher,
ser.diffX = ser.diffX, ser.times = ser.times,
vol = vol, cormat = cormat, ccor = crosscor, idx = idx,
G = G, d = d, d.size = d.size, tol = tol)
p <- out$p
CI <- out$CI
avar <- out$avar
colnames(theta) <- names(x)
rownames(theta) <- names(x)
colnames(p) <- names(x)
rownames(p) <- names(x)
if(plot){
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
y.max <- max(abs(as.numeric(crosscor[[num]])),as.numeric(CI[[num]]))
plot(crosscor[[num]],
main=paste(i,"vs",j,"(positive",expression(theta),"means",i,"leads",j,")"),
xlab=expression(theta),ylab=expression(U(theta)),
ylim=c(-y.max,y.max))
lines(CI[[num]],lty=2,col="blue")
lines(-CI[[num]],lty=2,col="blue")
}
}
}
if(verbose==TRUE){
colnames(covmat) <- names(x)
rownames(covmat) <- names(x)
colnames(cormat) <- names(x)
rownames(cormat) <- names(x)
colnames(LLR) <- names(x)
rownames(LLR) <- names(x)
if(ccor){
result <- list(lagcce=theta,p.values=p,covmat=covmat,cormat=cormat,LLR=LLR,ccor=crosscor,avar=avar)
}else{
result <- list(lagcce=theta,p.values=p,covmat=covmat,cormat=cormat,LLR=LLR)
}
}else{
return(theta)
}
}else{
colnames(theta) <- names(x)
rownames(theta) <- names(x)
if(plot){
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
plot(crosscor[[num]],
main=paste(i,"vs",j,"(positive",expression(theta),"means",i,"leads",j,")"),
xlab=expression(theta),ylab=expression(U(theta)))
}
}
}
if(verbose==TRUE){
colnames(covmat) <- names(x)
rownames(covmat) <- names(x)
colnames(cormat) <- names(x)
rownames(cormat) <- names(x)
colnames(LLR) <- names(x)
rownames(LLR) <- names(x)
if(ccor){
result <- list(lagcce=theta,covmat=covmat,cormat=cormat,LLR=LLR,ccor=crosscor)
}else{
result <- list(lagcce=theta,covmat=covmat,cormat=cormat,LLR=LLR)
}
}else{
return(theta)
}
}
class(result) <- "yuima.llag"
return(result)
})
# print method for yuima.llag-class
print.yuima.llag <- function(x, ...){
if(is.null(x$p.values)){
cat("Estimated lead-lag parameters\n")
print(x$lagcce, ...)
cat("Corresponding covariance matrix\n")
print(x$covmat, ...)
cat("Corresponding correlation matrix\n")
print(x$cormat, ...)
cat("Lead-lag ratio\n")
print(x$LLR, ...)
}else{
cat("Estimated lead-lag parameters\n")
print(x$lagcce, ...)
cat("Corresponding p-values\n")
print(x$p.values, ...)
cat("Corresponding covariance matrix\n")
print(x$covmat, ...)
cat("Corresponding correlation matrix\n")
print(x$cormat, ...)
cat("Lead-lag ratio\n")
print(x$LLR, ...)
}
}
# plot method for yuima.llag-class
plot.yuima.llag <- function(x, alpha = 0.01, fisher = TRUE,
main = NULL, xlab = NULL, ylab = NULL, ...){
if(is.null(x$ccor)){
warning("cross-correlation functions were not returned by llag. Set verbose = TRUE and ccor = TRUE to return them.",
call. = FALSE)
return(NULL)
}else{
if(is.null(xlab)) xlab <- expression(theta)
if(is.null(ylab)) ylab <- expression(U(theta))
d <- nrow(x$LLR)
if(is.null(x$avar)){
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
if(is.null(main)){
plot(x$ccor[[num]],
main=paste(i,"vs",j,"(positive",expression(theta),"means",i,"leads",j,")"),
xlab=xlab,ylab=ylab)
}else{
plot(x$ccor[[num]],main=main,xlab=xlab,ylab=ylab)
}
}
}
}else{
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
G <- time(x$ccor[[num]])
if(fisher == TRUE){
z <- atanh(x$ccor[[num]]) # the Fisher z transformation of the estimated correlation
se.z <- sqrt(x$avar[[num]])/(1 - x$ccor[[num]]^2)
CI <- zoo(tanh(qnorm(1 - alpha/2) * se.z), G)
}else{
c.alpha <- sqrt(qchisq(alpha, df=1, lower.tail = FALSE) * x$avar[[num]])
CI <- zoo(c.alpha, G)
}
y.max <- max(abs(as.numeric(x$ccor[[num]])),as.numeric(CI))
if(is.null(main)){
plot(x$ccor[[num]],
main=paste(i,"vs",j,"(positive",expression(theta),"means",i,"leads",j,")"),
xlab=xlab,ylab=ylab,ylim=c(-y.max,y.max))
}else{
plot(x$ccor[[num]],main = main,xlab=xlab,ylab=ylab,
ylim=c(-y.max,y.max))
}
lines(CI,lty=2,col="blue")
lines(-CI,lty=2,col="blue")
}
}
}
}
}
## Old version until Oct. 10, 2015
if(0){
setGeneric( "llag",
function(x,from=-Inf,to=Inf,division=FALSE,verbose=FALSE,grid,psd=TRUE,
plot=FALSE,ccor=FALSE)
standardGeneric("llag") )
setMethod( "llag", "yuima",
function(x,from=-Inf,to=Inf,division=FALSE,verbose=FALSE,grid,psd=TRUE,
plot=FALSE,ccor=FALSE)
llag(x@data,from=from,to=to,division=division,verbose=verbose,grid=grid,
psd=psd,plot=plot))
setMethod( "llag", "yuima.data", function(x,from=-Inf,to=Inf,division=FALSE,
verbose=FALSE,grid,psd=TRUE,
plot=FALSE,ccor=FALSE) {
if((is(x)=="yuima")||(is(x)=="yuima.data")){
zdata <- get.zoo.data(x)
}else{
print("llag:invalid argument")
return(NULL)
}
d <- length(zdata)
# allocate memory
ser.times <- vector(d, mode="list") # time index in 'x'
ser.diffX <- vector(d, mode="list") # difference of data
vol <- double(d)
# Set the tolerance to avoid numerical erros in comparison
tol <- 1e-6
for(i in 1:d){
# NA data must be skipped
idt <- which(is.na(zdata[[i]]))
if(length(idt>0)){
zdata[[i]] <- zdata[[i]][-idt]
}
if(length(zdata[[i]])<2) {
stop("length of data (w/o NA) must be more than 1")
}
# set data and time index
ser.times[[i]] <- as.numeric(time(zdata[[i]]))
# set difference of the data
ser.diffX[[i]] <- diff( as.numeric(zdata[[i]]) )
vol[i] <- sum(ser.diffX[[i]]^2)
}
theta <- matrix(0,d,d)
d.size <- d*(d-1)/2
crosscor <- vector(d.size,mode="list")
if(psd){
cormat <- diag(d)
if(missing(grid)){
if(length(from) != d.size){
from <- c(from,rep(-Inf,d.size - length(from)))
}
if(length(to) != d.size){
to <- c(to,rep(Inf,d.size - length(to)))
}
if(length(division) == 1){
division <- rep(division,d.size)
}
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
# calculate the maximum of correlation by substituting theta to lagcce
#n:=2*length(data)
num <- d*(i-1) - (i-1)*i/2 + (j-i)
if(division[num]==FALSE){
n <- round(2*max(length(time1),length(time2)))+1
}else{
n <- division[num]
}
# maximum value of lagcce
tmptheta <- time2[1]-time1[1] # time lag (sec)
num1 <- time1[length(time1)]-time1[1] # elapsed time for series 1
num2 <- time2[length(time2)]-time2[1] # elapsed time for series 2
# modified
if(is.numeric(from[num])==TRUE && is.numeric(to[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(from[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- num1-tmptheta
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(to[num])==TRUE){
num2 <- num2+tmptheta
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}
y <- seq(-num2-tmptheta,num1-tmptheta,length=n)[2:(n-1)]
tmp <- .C("HYcrosscorr",
as.integer(n-2),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(y/tol),
as.double(time1/tol),
as.double(time2/tol),
double(length(time2)),
as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),
as.double(vol[i]),
as.double(vol[j]),
value=double(n-2),
PACKAGE = "yuima")$value
idx <- which.max(abs(tmp))
mlag <- -y[idx] # make the first timing of max or min
corr <- tmp[idx]
theta[i,j] <- mlag
cormat[i,j] <- corr
theta[j,i] <- -mlag
cormat[j,i] <- cormat[i,j]
crosscor[[num]] <- zoo(tmp,-y)
}
}
}else{
if(!is.list(grid)){
if(is.numeric(grid)){
grid <- data.frame(matrix(grid,length(grid),d.size))
}else{
print("llag:invalid grid")
return(NULL)
}
}
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
num <- d*(i-1) - (i-1)*i/2 + (j-i)
tmp <- .C("HYcrosscorr",
as.integer(length(grid[[num]])),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(grid[[num]]/tol),
as.double(time1/tol),
as.double(time2/tol),
double(length(time2)),
as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),
as.double(vol[i]),
as.double(vol[j]),
value=double(length(grid[[num]])),
PACKAGE = "yuima")$value
idx <- which.max(abs(tmp))
mlag <- -grid[[num]][idx] # make the first timing of max or min
cor <- tmp[idx]
theta[i,j] <- mlag
cormat[i,j] <- cor
theta[j,i] <- -mlag
cormat[j,i] <- cormat[i,j]
crosscor[[num]] <- zoo(tmp,-grid[[num]])
}
}
}
covmat <- diag(sqrt(vol))%*%cormat%*%diag(sqrt(vol))
}else{# non-psd
covmat <- diag(vol)
if(missing(grid)){
if(length(from) != d.size){
from <- c(from,rep(-Inf,d.size - length(from)))
}
if(length(to) != d.size){
to <- c(to,rep(Inf,d.size - length(to)))
}
if(length(division) == 1){
division <- rep(division,d.size)
}
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
# calculate the maximum of correlation by substituting theta to lagcce
#n:=2*length(data)
num <- d*(i-1) - (i-1)*i/2 + (j-i)
if(division[num]==FALSE){
n <- round(2*max(length(time1),length(time2)))+1
}else{
n <- division[num]
}
# maximum value of lagcce
tmptheta <- time2[1]-time1[1] # time lag (sec)
num1 <- time1[length(time1)]-time1[1] # elapsed time for series 1
num2 <- time2[length(time2)]-time2[1] # elapsed time for series 2
# modified
if(is.numeric(from[num])==TRUE && is.numeric(to[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(from[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- num1-tmptheta
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(to[num])==TRUE){
num2 <- num2+tmptheta
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}
y <- seq(-num2-tmptheta,num1-tmptheta,length=n)[2:(n-1)]
tmp <- .C("HYcrosscov",
as.integer(n-2),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(y/tol),
as.double(time1/tol),
as.double(time2/tol),
double(length(time2)),
as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),
value=double(n-2),
PACKAGE = "yuima")$value
idx <- which.max(abs(tmp))
mlag <- -y[idx] # make the first timing of max or min
cov <- tmp[idx]
theta[i,j] <- mlag
covmat[i,j] <- cov
theta[j,i] <- -mlag
covmat[j,i] <- covmat[i,j]
crosscor[[num]] <- zoo(tmp,-y)/sqrt(vol[i]*vol[j])
}
}
}else{
if(!is.list(grid)){
if(is.numeric(grid)){
grid <- data.frame(matrix(grid,length(grid),d.size))
}else{
print("llag:invalid grid")
return(NULL)
}
}
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
num <- d*(i-1) - (i-1)*i/2 + (j-i)
tmp <- .C("HYcrosscov",
as.integer(length(grid[[num]])),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(grid[[num]]/tol),
as.double(time1/tol),
as.double(time2/tol),
double(length(time2)),
as.double(ser.diffX[[i]]),
as.double(ser.diffX[[j]]),
value=double(length(grid[[num]])),
PACKAGE = "yuima")$value
idx <- which.max(abs(tmp))
mlag <- -grid[[num]][idx] # make the first timing of max or min
cov <- tmp[idx]
theta[i,j] <- mlag
covmat[i,j] <- cov
theta[j,i] <- -mlag
covmat[j,i] <- covmat[i,j]
crosscor[[num]] <- zoo(tmp,-grid[[num]])/sqrt(vol[i]*vol[j])
}
}
}
cormat <- diag(1/sqrt(diag(covmat)))%*%covmat%*%diag(1/sqrt(diag(covmat)))
}
colnames(theta) <- names(zdata)
rownames(theta) <- names(zdata)
if(plot){
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
plot(crosscor[[num]],
main=paste(i,"vs",j,"(positive",expression(theta),"means",i,"leads",j,")"),
xlab=expression(theta),ylab=expression(U(theta)))
}
}
}
if(verbose==TRUE){
colnames(covmat) <- names(zdata)
rownames(covmat) <- names(zdata)
colnames(cormat) <- names(zdata)
rownames(cormat) <- names(zdata)
if(ccor){
return(list(lagcce=theta,covmat=covmat,cormat=cormat,ccor=crosscor))
}else{
return(list(lagcce=theta,covmat=covmat,cormat=cormat))
}
}else{
return(theta)
}
})
}
## Old version
if(0){
setMethod( "llag", "yuima.data", function(x,from=-Inf,to=Inf,division=FALSE,verbose=FALSE) {
if(!is(x)=="yuima.data"){
if(is(x)=="yuima"){
dat <- x@data
}else{
print("llag:invalid argument")
return(NULL)
}
}else{
dat <- x
}
d <- length([email protected])
lagccep <- function(datp,theta){
time(datp[[2]]) <- time(datp[[2]])+theta
return(cce(setData(datp))$covmat[1,2])
}
lagcce <- function(datzoo,theta){
d <- dim(theta)[1]
lcmat <- cce(setData(datzoo))$covmat
for(i in 1:(d-1)){
for(j in (i+1):d){
datp <- datzoo[c(i,j)]
lcmat[i,j] <- lagccep(datp,theta[i,j])
lcmat[j,i] <- lcmat[i,j]
}
}
return(lcmat)
}
d.size <- d*(d-1)/2
if(length(from) != d.size){
from <- c(from,rep(-Inf,d.size - length(from)))
}
if(length(to) != d.size){
to <- c(to,rep(Inf,d.size - length(to)))
}
if(length(division) != d.size){
division <- c(division,rep(FALSE,d.size - length(division)))
}
find_lag <- function(i,j){
datp <- [email protected][c(i,j)]
time1 <- time(datp[[1]])
time2 <- time(datp[[2]])
# calculate the maximum of correlation by substituting theta to lagcce
#n:=2*length(data)
num <- d*(i-1) - (i-1)*i/2 + (j-i)
if(division[num]==FALSE){
n <- round(2*max(length(datp[[1]]),length(datp[[2]])))+1
}else{
n <- division[num]
}
# maximum value of lagcce
tmptheta <- as.numeric(time2[1])-as.numeric(time1[1]) # time lag (sec)
num1 <- as.numeric(time1[length(time1)])-as.numeric(time1[1]) # elapsed time for series 1
num2 <- as.numeric(time2[length(time2)])-as.numeric(time2[1]) # elapsed time for series 2
# modified
if(is.numeric(from[num])==TRUE && is.numeric(to[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(from[num])==TRUE){
num2 <- min(-from[num],num2+tmptheta)
num1 <- num1-tmptheta
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}else if(is.numeric(to[num])==TRUE){
num2 <- num2+tmptheta
num1 <- min(to[num],num1-tmptheta)
tmptheta <- 0
if(-num2 >= num1){
print("llag:invalid range")
return(NULL)
}
}
y <- seq(-num2-tmptheta,num1-tmptheta,length=n)
tmp <- double(n)
for(i.tmp in 2:(n-1)){
tmp[i.tmp] <- lagccep(datp,y[i.tmp])
}
mat <- cbind(y[2:(n-1)],tmp[2:(n-1)])
#idx <- abs(mat[,2])==max(abs(mat[,2]))
#mlag <- mat[,1][idx][1] # make the first timing of max or min
#cov <- mat[,2][idx][1]
idx <- which.max(abs(mat[,2]))
mlag <- mat[,1][idx] # make the first timing of max or min
cov <- mat[,2][idx]
return(list(lag=-mlag,cov=cov))
}
theta <- matrix(numeric(d^2),ncol=d)
covmat <- cce(dat)$covmat
for(i in 1:(d-1)){
for(j in (i+1):d){
fl <- find_lag(i,j)
theta[i,j] <- fl$lag
covmat[i,j] <- fl$cov
theta[j,i] <- -theta[i,j]
covmat[j,i] <- covmat[i,j]
}
}
# covmat <- lagcce([email protected],theta)
cormat <- diag(1/sqrt(diag(covmat)))%*%covmat%*%diag(1/sqrt(diag(covmat)))
if(verbose==TRUE){
return(list(lagcce=theta,covmat=covmat,cormat=cormat))
}else{
return(theta)
}
})
} | /scratch/gouwar.j/cran-all/cranData/yuima/R/llag.R |
llag.test <- function(x, from = -Inf, to = Inf, division = FALSE,
grid, R = 999, parallel = "no",
ncpus = getOption("boot.ncpus", 1L),
cl = NULL, tol = 1e-6){
x <- get.zoo.data(x)
d <- length(x)
d.size <- d*(d-1)/2
# allocate memory
ser.times <- vector(d, mode="list") # time index in 'x'
ser.diffX <- vector(d, mode="list") # difference of data
vol <- double(d)
# treatment of the grid (2016-07-04: we implement this before the NA treatment)
if(missing(grid))
grid <- make.grid(d, d.size, x, from, to, division)
# Set the tolerance to avoid numerical erros in comparison
#tol <- 1e-6
for(i in 1:d){
# NA data must be skipped
idt <- which(is.na(x[[i]]))
if(length(idt>0)){
x[[i]] <- x[[i]][-idt]
}
if(length(x[[i]])<2) {
stop("length of data (w/o NA) must be more than 1")
}
# set data and time index
ser.times[[i]] <- as.numeric(time(x[[i]]))/tol
# set difference of the data
ser.diffX[[i]] <- diff( as.numeric(x[[i]]) )
vol[i] <- sum(ser.diffX[[i]]^2)
}
pval <- matrix(0,d,d)
mcov <- diag(vol)
mcor <- diag(d)
rownames(pval) <- names(x)
rownames(mcov) <- names(x)
rownames(mcor) <- names(x)
colnames(pval) <- names(x)
colnames(mcov) <- names(x)
colnames(mcor) <- names(x)
# treatment of the grid
#if(missing(grid))
# grid <- make.grid(d, d.size, x, from, to, division)
if(is.list(grid)){
G <- relist(unlist(grid)/tol, grid)
}else{
if(is.numeric(grid)){
G <- data.frame(matrix(grid/tol,length(grid),d.size))
grid <- data.frame(matrix(grid,length(grid),d.size))
}else{
print("llag:invalid grid")
return(NULL)
}
}
# core part
for(i in 1:(d-1)){
for(j in (i+1):d){
time1 <- ser.times[[i]]
time2 <- ser.times[[j]]
num <- d*(i-1) - (i-1)*i/2 + (j-i)
hry <- function(data){
dx <- data$dx
dy <- data$dy
U <- .C("HYcrosscov2",
as.integer(length(G[[num]])),
as.integer(length(time1)),
as.integer(length(time2)),
as.double(G[[num]]),
as.double(time1),
as.double(time2),
#double(length(time2)),
as.double(dx),
as.double(dy),
value=double(length(G[[num]])),
PACKAGE = "yuima")$value
return(max(abs(U)))
}
ran.gen <- function(data, mle){
dx <- data$dx
dy <- data$dy
list(dx = (2*rbinom(length(dx),1,0.5)-1) * dx,
dy = (2*rbinom(length(dy),1,0.5)-1) * dy)
}
out <- boot(list(dx = ser.diffX[[i]], dy = ser.diffX[[j]]),
hry, R, sim = "parametric", ran.gen = ran.gen,
parallel = parallel, ncpus = ncpus, cl = cl)
pval[i,j] <- mean(out$t > out$t0)
mcov[i,j] <- out$t0
mcor[i,j] <- out$t0/sqrt(vol[i]*vol[j])
pval[j,i] <- pval[i,j]
mcov[j,i] <- mcov[i,j]
mcor[j,i] <- mcor[i,j]
}
}
return(list(p.values = pval, max.cov = mcov, max.corr = mcor))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/llag.test.R |
# Lee-Mykland's jump test
lm.jumptest <- function(yuima, K){
data <- get.zoo.data(yuima)
d.size <- length(data)
n <- length(yuima) - 1
if(missing(K)) K <- pmin(floor(sqrt(252*n)), n)
K <- rep(K, d.size)
cn <- sqrt(2*log(n)) -
(log(pi) + log(log(n)))/(2*sqrt(2*log(n)))
sn <- 1/sqrt(2*log(n))
result <- vector(d.size,mode="list")
for(d in 1:d.size){
x <- data[[d]]
adx <- abs(diff(as.numeric(x)))
v.hat <- (pi/2) * rollmeanr(adx[-n[d]] * adx[-1],
k = K[d] - 2, fill = "e")
v.hat <- append(v.hat, v.hat[1], after = 0)
stat <- (max(adx/sqrt(v.hat)) - cn[d])/sn[d]
p <- 1 - exp(-exp(-stat))
result[[d]] <- list(statistic = c(LM = stat),
p.value = p,
method = "Lee and Mykland jump test",
data.names = paste("x",d,sep = ""))
class(result[[d]]) <- "htest"
}
return(result)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/lm.jumptest.R |
##estimate theta2 by LSE
##function name LSE1
lse <- function(yuima, start, lower, upper, method="BFGS", ...){
call <- match.call()
if( missing(yuima))
yuima.stop("yuima object is missing.")
## param handling
## FIXME: maybe we should choose initial values at random within lower/upper
## at present, qmle stops
if( missing(start) )
yuima.stop("Starting values for the parameters are missing.")
diff.par <- yuima@model@parameter@diffusion
drift.par <- yuima@model@parameter@drift
jump.par <- yuima@model@parameter@jump
measure.par <- yuima@model@parameter@measure
common.par <- yuima@model@parameter@common
fullcoef <- c(diff.par, drift.par)
npar <- length(fullcoef)
nm <- names(start)
oo <- match(nm, fullcoef)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'start' are not arguments to the supplied yuima model")
start <- start[order(oo)]
nm <- names(start)
idx.diff <- match(diff.par, nm)
idx.drift <- match(drift.par, nm)
tmplower <- as.list( rep( -Inf, length(nm)))
names(tmplower) <- nm
if(!missing(lower)){
idx <- match(names(lower), names(tmplower))
if(any(is.na(idx)))
yuima.stop("names in 'lower' do not match names fo parameters")
tmplower[ idx ] <- lower
}
lower <- tmplower
tmpupper <- as.list( rep( Inf, length(nm)))
names(tmpupper) <- nm
if(!missing(upper)){
idx <- match(names(upper), names(tmpupper))
if(any(is.na(idx)))
yuima.stop("names in 'lower' do not match names fo parameters")
tmpupper[ idx ] <- upper
}
upper <- tmpupper
d.size <- yuima@[email protected]
n <- length(yuima)[1]
env <- new.env()
assign("X", as.matrix(onezoo(yuima)), envir=env)
assign("deltaX", matrix(0, n-1, d.size), envir=env)
for(t in 1:(n-1))
env$deltaX[t,] <- env$X[t+1,] - env$X[t,]
assign("h", deltat(yuima@[email protected][[1]]), envir=env)
##objective function
f <-function(theta){
names(theta) <- drift.par
tmp <- env$deltaX - env$h * drift.term(yuima, theta, env)[-n,]
ret <- t(tmp) %*% tmp
return(sum(ret))
}
mydots <- as.list(call)[-(1:2)]
mydots$fixed <- NULL
mydots$fn <- as.name("f")
mydots$start <- NULL
mydots$par <- unlist(start)
mydots$hessian <- FALSE
mydots$upper <- unlist( upper[ nm[idx.diff] ])
mydots$lower <- unlist( lower[ nm[idx.diff] ])
if(length(start)>1){ #multidimensional optim
oout <- do.call(optim, args=mydots)
} else { ### one dimensional optim
mydots$f <- mydots$fn
mydots$fn <- NULL
mydots$par <- NULL
mydots$hessian <- NULL
mydots$method <- NULL
mydots$interval <- as.numeric(c(lower[drift.par],upper[drift.par]))
mydots$lower <- NULL
mydots$upper <- NULL
opt1 <- do.call(optimize, args=mydots)
#opt1 <- optimize(f, ...) ## an interval should be provided
oout <- list(par = opt1$minimum, value = opt1$objective)
}
return(oout$par)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/lse.R |
##::quasi-bayes function
#new minusquasilogl "W1","W2" like lse function.
setGeneric("lseBayes",
function(yuima, start,prior,lower,upper, method="mcmc",mcmc=1000,rate=1.0,algorithm="randomwalk")
standardGeneric("lseBayes")
)
setMethod("lseBayes", "yuima",
function(yuima, start,prior,lower,upper, method="mcmc",mcmc=1000,rate=1.0,algorithm="randomwalk")
{
rcpp <- TRUE
joint <- FALSE
fixed <- numeric(0)
print <- FALSE
call <- match.call()
if( missing(yuima))
yuima.stop("yuima object is missing.")
## param handling
## FIXME: maybe we should choose initial values at random within lower/upper
## at present, qmle stops
if(missing(lower) || missing(upper)){
yuima.stop("lower or upper is missing.")
}
diff.par <- yuima@model@parameter@diffusion
drift.par <- yuima@model@parameter@drift
jump.par <- yuima@model@parameter@jump
measure.par <- yuima@model@parameter@measure
common.par <- yuima@model@parameter@common
## BEGIN Prior construction
if(!missing(prior)){
priorLower = numeric(0)
priorUpper = numeric(0)
pdlist <- numeric(length(yuima@model@parameter@all))
names(pdlist) <- yuima@model@parameter@all
for(i in 1: length(pdlist)){
if(prior[[names(pdlist)[i]]]$measure.type=="code"){
expr <- prior[[names(pdlist)[i]]]$df
code <- suppressWarnings(sub("^(.+?)\\(.+", "\\1", expr, perl=TRUE))
args <- unlist(strsplit(suppressWarnings(sub("^.+?\\((.+)\\)", "\\1", expr, perl=TRUE)), ","))
pdlist[i] <- switch(code,
dunif=paste("function(z){return(dunif(z, ", args[2], ", ", args[3],"))}"),
dnorm=paste("function(z){return(dnorm(z,", args[2], ", ", args[3], "))}"),
dbeta=paste("function(z){return(dbeta(z, ", args[2], ", ", args[3], "))}"),
dgamma=paste("function(z){return(dgamma(z, ", args[2], ", ", args[3], "))}"),
dexp=paste("function(z){return(dexp(z, ", args[2], "))}")
)
qf <- switch(code,
dunif=paste("function(z){return(qunif(z, ", args[2], ", ", args[3],"))}"),
dnorm=paste("function(z){return(qnorm(z,", args[2], ", ", args[3], "))}"),
dbeta=paste("function(z){return(qbeta(z, ", args[2], ", ", args[3], "))}"),
dgamma=paste("function(z){return(qgamma(z, ", args[2], ", ", args[3], "))}"),
dexp=paste("function(z){return(qexp(z, ", args[2], "))}")
)
priorLower = append(priorLower,eval(parse("text"=qf))(0.00))
priorUpper = append(priorUpper,eval(parse("text"=qf))(1.00))
}
}
if(sum(unlist(lower)<priorLower) + sum(unlist(upper)>priorUpper) > 0){
yuima.stop("lower&upper of prior are out of parameter space.")
}
names(lower) <- names(pdlist)
names(upper) <- names(pdlist)
pd <- function(param){
value <- 1
for(i in 1:length(pdlist)){
value <- value*eval(parse(text=pdlist[[i]]))(param[[i]])
}
return(value)
}
}else{
pd <- function(param) return(1)
}
## END Prior construction
JointOptim <- joint
if(length(common.par)>0){
JointOptim <- TRUE
yuima.warn("Drift and diffusion parameters must be different. Doing
joint estimation, asymptotic theory may not hold true.")
}
if(length(jump.par)+length(measure.par)>0)
yuima.stop("Cannot estimate the jump models, yet")
fullcoef <- NULL
if(length(diff.par)>0)
fullcoef <- diff.par
if(length(drift.par)>0)
fullcoef <- c(fullcoef, drift.par)
npar <- length(fullcoef)
fixed.par <- names(fixed)
if (any(!(fixed.par %in% fullcoef)))
yuima.stop("Some named arguments in 'fixed' are not arguments to the supplied yuima model")
nm <- names(start)
oo <- match(nm, fullcoef)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'start' are not arguments to the supplied yuima model")
start <- start[order(oo)]
if(!missing(prior)){
pdlist <- pdlist[order(oo)]
}
nm <- names(start)
idx.diff <- match(diff.par, nm)
idx.drift <- match(drift.par, nm)
idx.fixed <- match(fixed.par, nm)
tmplower <- as.list( rep( -Inf, length(nm)))
names(tmplower) <- nm
if(!missing(lower)){
idx <- match(names(lower), names(tmplower))
if(any(is.na(idx)))
yuima.stop("names in 'lower' do not match names fo parameters")
tmplower[ idx ] <- lower
}
lower <- tmplower
tmpupper <- as.list( rep( Inf, length(nm)))
names(tmpupper) <- nm
if(!missing(upper)){
idx <- match(names(upper), names(tmpupper))
if(any(is.na(idx)))
yuima.stop("names in 'lower' do not match names fo parameters")
tmpupper[ idx ] <- upper
}
upper <- tmpupper
d.size <- yuima@[email protected]
n <- length(yuima)[1]
G <- rate
if(G<=0 || G>1){
yuima.stop("rate G should be 0 < G <= 1")
}
n_0 <- floor(n^G)
if(n_0 < 2) n_0 <- 2
#######data is reduced to n_0 before qmle(16/11/2016)
env <- new.env()
#assign("X", yuima@[email protected][1:n_0,], envir=env)
assign("X", as.matrix(onezoo(yuima)[1:n_0,]), envir=env)
assign("deltaX", matrix(0, n_0 - 1, d.size), envir=env)
assign("crossdx",matrix(0,n_0 - 1,d.size*d.size),envir=env) ####(deltaX)%*%t(deltaX).this is used in W1.
assign("time", as.numeric(index(yuima@[email protected][[1]])), envir=env)
assign("Cn.r", rep(1,n_0 - 1), envir=env)
for(t in 1:(n_0 - 1)){
env$deltaX[t,] <- env$X[t+1,] - env$X[t,]
env$crossdx[t,] <- as.vector(tcrossprod(env$deltaX[t,]))
}
assign("h", deltat(yuima@[email protected][[1]]), envir=env)
pp<-0
while(1){
if(n*env$h^pp < 0.1) break
pp <- pp + 1
}
qq <- max(pp,2/G)
C.temper.diff <- n_0^(2/(qq*G)-1) #this is used in pg.
C.temper.drift <- (n_0*env$h)^(2/(qq*G)-1) #this is used in pg.
mle <- qmle(yuima, "start"=start, "lower"=lower,"upper"=upper, "method"="L-BFGS-B",rcpp=rcpp)
start <- as.list(mle@coef)
integ <- function(idx.fixed=NULL,f=f,start=start,par=NULL,hessian=FALSE,upper,lower){
if(length(idx.fixed)==0){
intf <- adaptIntegrate(f,lowerLimit=lower,upperLimit=upper,fDim=(length(upper)+1))$integral
}else{
intf <- adaptIntegrate(f,lowerLimit=lower[-idx.fixed],upperLimit=upper[-idx.fixed],fDim=(length(upper[-idx.fixed])+1))$integral
}
return(intf[-1]/intf[1])
}
mcinteg <- function(idx.fixed=NULL,f=f,p,start=start,par=NULL,hessian=FALSE,upper,lower,mean,vcov,mcmc){
if(length(idx.fixed)==0){
intf <- mcIntegrate(f,p,lowerLimit=lower,upperLimit=upper,mean,vcov,mcmc)
}else{
intf <- mcIntegrate(f,p,lowerLimit=lower[-idx.fixed],upperLimit=upper[-idx.fixed],mean[-idx.fixed],vcov[-idx.fixed,-idx.fixed],mcmc)
}
return(intf)
}
mcIntegrate <- function(f,p, lowerLimit, upperLimit,mean,vcov,mcmc){
if(algorithm=="randomwalk"){
x_c <- mean
p_c <- p(mean)
val <- f(x_c)
if(length(mean)>1){
x <- rmvnorm(mcmc-1,mean,vcov)
q <- dmvnorm(x,mean,vcov)
q_c <- dmvnorm(mean,mean,vcov)
}else{
x <- rnorm(mcmc-1,mean,sqrt(vcov))
q <- dnorm(x,mean,sqrt(vcov))
q_c <- dnorm(mean,mean,sqrt(vcov))
}
for(i in 1:(mcmc-1)){
if(length(mean)>1){x_n <- x[i,]}else{x_n <- x[i]}
if(sum(x_n<lowerLimit)==0 & sum(x_n>upperLimit)==0){
q_n <- q[i]
p_n <- p(x_n)
#u <- runif(1)
#a <- (p_n*q_c)/(p_c*q_n)
u <- log(runif(1))
a <- p_n-p_c+log(q_c/q_n)
if(u<a){
p_c <- p_n
q_c <- q_n
x_c <- x_n
}
}
val <- val+f(x_c)
}
return(unlist(val/mcmc))
}
else if(tolower(algorithm)=="mpcn"){ #MpCN
x_n <- mean
val <- mean
logLik_old <- p(x_n)+0.5*length(mean)*log(sqnorm(x_n-mean))
for(i in 1:(mcmc-1)){
prop <- makeprop(mean,x_n,unlist(lowerLimit),unlist(upperLimit))
logLik_new <- p(prop)+0.5*length(mean)*log(sqnorm(prop-mean))
u <- log(runif(1))
if( logLik_new-logLik_old > u){
nx_ <- prop
logLik_old <- logLik_new
}
val <- val+f(x_n)
}
return(unlist(val/mcmc))
}
}
#print(mle@coef)
flagNotPosDif <- 0
for(i in 1:npar){
if(mle@vcov[i,i] <= 0) flagNotPosDif <- 1 #Check mle@vcov is positive difinite matrix
}
if(flagNotPosDif == 1){
mle@vcov <- diag(c(rep(1 / n_0,length(diff.par)),rep(1 / (n_0 * env$h),length(drift.par)))) # Redifine mle@vcov
}
tmpW1 <- minusquasilogl_W1(yuima=yuima, param=mle@coef, print=print, env,rcpp=rcpp)
tmpW2 <- minusquasilogl_W2(yuima=yuima, param=mle@coef, print=print, env,rcpp=rcpp)
g <- function(p,fixed,idx.fixed){
mycoef <- mle@coef
if(length(idx.fixed)>0){
mycoef[-idx.fixed] <- p
mycoef[idx.fixed] <- fixed
}else{
names(mycoef) <- nm
}
if(sum(idx.diff==idx.fixed)>0){
return(c(1,p)*exp(-minusquasilogl_W1(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW1)*pd(param=mycoef))
}else{
return(c(1,p)*exp(-minusquasilogl_W2(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW2)*pd(param=mycoef))
}
}
pg <- function(p,fixed,idx.fixed){
mycoef <- start
if(length(idx.fixed)>0){
mycoef[-idx.fixed] <- p
mycoef[idx.fixed] <- fixed
}else{
names(mycoef) <- nm
}
if(sum(idx.diff==idx.fixed)>0){
return(C.temper.diff*(-minusquasilogl_W1(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW1+log(pd(param=mycoef))))#log
}else{
return(C.temper.drift*(-minusquasilogl_W2(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)+tmpW2+log(pd(param=mycoef))))#log
}
}
idf <- function(p){return(p)}
# fj <- function(p) {
# mycoef <- as.list(p)
# names(mycoef) <- nm
# mycoef[fixed.par] <- fixed
# minusquasilogl(yuima=yuima, param=mycoef, print=print, env)
# }
oout <- NULL
HESS <- matrix(0, length(nm), length(nm))
colnames(HESS) <- nm
rownames(HESS) <- nm
HaveDriftHess <- FALSE
HaveDiffHess <- FALSE
if(length(start)){
# if(JointOptim){ ### joint optimization
# if(length(start)>1){ #multidimensional optim
# oout <- optim(start, fj, method = method, hessian = TRUE, lower=lower, upper=upper)
# HESS <- oout$hessian
# HaveDriftHess <- TRUE
# HaveDiffHess <- TRUE
# } else { ### one dimensional optim
# opt1 <- optimize(f, ...) ## an interval should be provided
# opt1 <- list(par=integ(f=f,upper=upper,lower=lower,fDim=length(lower)+1),objective=0)
# oout <- list(par = opt1$minimum, value = opt1$objective)
# } ### endif( length(start)>1 )
# } else { ### first diffusion, then drift
theta1 <- NULL
old.fixed <- fixed
old.start <- start
if(length(idx.diff)>0){
## DIFFUSION ESTIMATIOn first
old.fixed <- fixed
old.start <- start
new.start <- start[idx.diff] # considering only initial guess for diffusion
new.fixed <- fixed
if(length(idx.drift)>0)
new.fixed[nm[idx.drift]] <- start[idx.drift]
fixed <- new.fixed
fixed.par <- names(fixed)
idx.fixed <- match(fixed.par, nm)
names(new.start) <- nm[idx.diff]
mydots <- as.list(call)[-(1:2)]
mydots$fixed <- NULL
mydots$fn <- as.name("f")
mydots$start <- NULL
mydots$par <- unlist(new.start)
mydots$hessian <- FALSE
mydots$upper <- unlist( upper[ nm[idx.diff] ])
mydots$lower <- unlist( lower[ nm[idx.diff] ])
f <- function(p){return(g(p,fixed,idx.fixed))}
pf <- function(p){return(pg(p,fixed,idx.fixed))}
if(length(mydots$par)>1){
# oout <- do.call(optim, args=mydots)
if(method=="mcmc"){
oout <- list(par=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=diag(diag(mle@vcov)),mcmc=mcmc))
}else{
oout <- list(par=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower,start=start))
}
} else {
mydots$f <- mydots$fn
mydots$fn <- NULL
mydots$par <- NULL
mydots$hessian <- NULL
mydots$method <- NULL
mydots$interval <- as.numeric(c(unlist(lower[diff.par]),unlist(upper[diff.par])))
mydots$lower <- NULL
mydots$upper <- NULL
# opt1 <- do.call(optimize, args=mydots)
if(method=="mcmc"){
opt1 <- list(minimum=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=diag(diag(mle@vcov)),mcmc=mcmc))
}else{
opt1 <- list(minimum=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
}
theta1 <- opt1$minimum
names(theta1) <- diff.par
# oout <- list(par = theta1, value = opt1$objective)
oout <- list(par=theta1,value=0)
}
theta1 <- oout$par
#names(theta1) <- nm[idx.diff]
names(theta1) <- diff.par
} ## endif(length(idx.diff)>0)
theta2 <- NULL
if(length(idx.drift)>0){
## DRIFT estimation with first state diffusion estimates
fixed <- old.fixed
start <- old.start
new.start <- start[idx.drift] # considering only initial guess for drift
new.fixed <- fixed
new.fixed[names(theta1)] <- theta1
fixed <- new.fixed
fixed.par <- names(fixed)
idx.fixed <- match(fixed.par, nm)
names(new.start) <- nm[idx.drift]
mydots <- as.list(call)[-(1:2)]
mydots$fixed <- NULL
mydots$fn <- as.name("f")
mydots$start <- NULL
mydots$par <- unlist(new.start)
mydots$hessian <- FALSE
mydots$upper <- unlist( upper[ nm[idx.drift] ])
mydots$lower <- unlist( lower[ nm[idx.drift] ])
f <- function(p){return(g(p,fixed,idx.fixed))}
pf <- function(p){return(pg(p,fixed,idx.fixed))}
if(length(mydots$par)>1){
# oout1 <- do.call(optim, args=mydots)
if(method=="mcmc"){
oout1 <- list(par=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=diag(diag(mle@vcov)),mcmc=mcmc))
}else{
oout1 <- list(par=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
}
} else {
mydots$f <- mydots$fn
mydots$fn <- NULL
mydots$par <- NULL
mydots$hessian <- NULL
mydots$method <- NULL
mydots$interval <- as.numeric(c(lower[drift.par],upper[drift.par]))
# opt1 <- do.call(optimize, args=mydots)
if(method=="mcmc"){
opt1 <- list(minimum=mcinteg(idx.fixed=idx.fixed,f=idf,p=pf,upper=upper,lower=lower,mean=mle@coef,vcov=diag(diag(mle@vcov)),mcmc=mcmc))
}else{
opt1 <- list(minimum=integ(idx.fixed=idx.fixed,f=f,upper=upper,lower=lower))
}
theta2 <- opt1$minimum
names(theta2) <- drift.par
oout1 <- list(par = theta2, value = as.numeric(opt1$objective))
}
theta2 <- oout1$par
} ## endif(length(idx.drift)>0)
oout1 <- list(par= c(theta1, theta2))
names(oout1$par) <- c(diff.par,drift.par)
oout <- oout1
# } ### endif JointOptim
} else {
list(par = numeric(0L), value = f(start))
}
fDrift <- function(p) {
mycoef <- as.list(p)
names(mycoef) <- drift.par
mycoef[diff.par] <- coef[diff.par]
minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
}
fDiff <- function(p) {
mycoef <- as.list(p)
names(mycoef) <- diff.par
mycoef[drift.par] <- coef[drift.par]
minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
}
coef <- oout$par
control=list()
par <- coef
names(par) <- c(diff.par, drift.par)
nm <- c(diff.par, drift.par)
# print(par)
# print(coef)
conDrift <- list(trace = 5, fnscale = 1,
parscale = rep.int(5, length(drift.par)),
ndeps = rep.int(0.001, length(drift.par)), maxit = 100L,
abstol = -Inf, reltol = sqrt(.Machine$double.eps), alpha = 1,
beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5,
factr = 1e+07, pgtol = 0, tmax = 10, temp = 10)
conDiff <- list(trace = 5, fnscale = 1,
parscale = rep.int(5, length(diff.par)),
ndeps = rep.int(0.001, length(diff.par)), maxit = 100L,
abstol = -Inf, reltol = sqrt(.Machine$double.eps), alpha = 1,
beta = 0.5, gamma = 2, REPORT = 10, type = 1, lmm = 5,
factr = 1e+07, pgtol = 0, tmax = 10, temp = 10)
# nmsC <- names(con)
# if (method == "Nelder-Mead")
# con$maxit <- 500
# if (method == "SANN") {
# con$maxit <- 10000
# con$REPORT <- 100
# }
# con[(namc <- names(control))] <- control
# if (length(noNms <- namc[!namc %in% nmsC]))
# warning("unknown names in control: ", paste(noNms, collapse = ", "))
# if (con$trace < 0)
# warning("read the documentation for 'trace' more carefully")
# else if (method == "SANN" && con$trace && as.integer(con$REPORT) ==
# 0)
# stop("'trace != 0' needs 'REPORT >= 1'")
# if (method == "L-BFGS-B" && any(!is.na(match(c("reltol",
# "abstol"), namc))))
# warning("method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and 'abstol'")
# npar <- length(par)
# if (npar == 1 && method == "Nelder-Mead")
# warning("one-diml optimization by Nelder-Mead is unreliable: use optimize")
#
if(!HaveDriftHess & (length(drift.par)>0)){
#hess2 <- .Internal(optimhess(coef[drift.par], fDrift, NULL, conDrift))
hess2 <- optimHess(coef[drift.par], fDrift, NULL, control=conDrift)
HESS[drift.par,drift.par] <- hess2
}
if(!HaveDiffHess & (length(diff.par)>0)){
#hess1 <- .Internal(optimhess(coef[diff.par], fDiff, NULL, conDiff))
hess1 <- optimHess(coef[diff.par], fDiff, NULL, control=conDiff)
HESS[diff.par,diff.par] <- hess1
}
oout$hessian <- HESS
vcov <- if (length(coef))
solve(oout$hessian)
else matrix(numeric(0L), 0L, 0L)
mycoef <- as.list(coef)
names(mycoef) <- nm
mycoef[fixed.par] <- fixed
min <- minusquasilogl(yuima=yuima, param=mycoef, print=print, env,rcpp=rcpp)
new("mle", call = call, coef = coef, fullcoef = unlist(mycoef),
# vcov = vcov, min = min, details = oout, minuslogl = minusquasilogl,
vcov = vcov, details = oout,
method = method)
}
)
minusquasilogl_W1 <- function(yuima, param, print=FALSE, env,rcpp=T){ #new logl estimates volatility
diff.par <- yuima@model@parameter@diffusion
drift.par <- yuima@model@parameter@drift
if(0){
if(length(yuima@model@[email protected])!=0){
xinit.par <- yuima@model@parameter@xinit
}
}
if(0 && length(yuima@model@[email protected])==0
&& length(yuima@model@parameter@jump)!=0){
diff.par<-yuima@model@parameter@jump
# measure.par<-yuima@model@parameter@measure
}
if(0 && length(yuima@model@[email protected])==0
&& length(yuima@model@parameter@measure)!=0){
measure.par<-yuima@model@parameter@measure
}
# 24/12
if(0 && length(yuima@model@[email protected])>0 ){
yuima.warn("carma(p,q): the case of lin.par will be implemented as soon as")
return(NULL)
}
if(0){
xinit.par <- yuima@model@parameter@xinit
}
drift.par <- yuima@model@parameter@drift
fullcoef <- NULL
if(length(diff.par)>0)
fullcoef <- diff.par
if(length(drift.par)>0)
fullcoef <- c(fullcoef, drift.par)
if(0){
if(length(xinit.par)>0)
fullcoef <- c(fullcoef, xinit.par)
}
if(0 && (length(yuima@model@parameter@measure)!=0))
fullcoef<-c(fullcoef, measure.par)
if(0){
if("mean.noise" %in% names(param)){
mean.noise<-"mean.noise"
fullcoef <- c(fullcoef, mean.noise)
NoNeg.Noise<-TRUE
}
}
npar <- length(fullcoef)
nm <- names(param)
oo <- match(nm, fullcoef)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima model")
param <- param[order(oo)]
nm <- names(param)
idx.diff <- match(diff.par, nm)
idx.drift <- match(drift.par, nm)
if(0){
idx.xinit <-as.integer(na.omit(match(xinit.par, nm)))
}
h <- env$h
Cn.r <- env$Cn.r
theta1 <- unlist(param[idx.diff])
theta2 <- unlist(param[idx.drift])
n.theta1 <- length(theta1)
n.theta2 <- length(theta2)
n.theta <- n.theta1+n.theta2
if(0){
theta3 <- unlist(param[idx.xinit])
n.theta3 <- length(theta3)
n.theta <- n.theta1+n.theta2+n.theta3
}
d.size <- yuima@[email protected]
n <- length(yuima)[1]
if (0){
# 24/12
d.size <-1
# We build the two step procedure as described in
# if(length(yuima@model@[email protected])!=0){
prova<-as.numeric(param)
#names(prova)<-fullcoef[oo]
names(prova)<-names(param)
param<-prova[c(length(prova):1)]
time.obs<-env$time.obs
y<-as.numeric(env$X)
u<-env$h
p<-env$p
q<-env$q
# p<-yuima@model@info@p
ar.par <- yuima@model@[email protected]
name.ar<-paste0(ar.par, c(1:p))
# q <- yuima@model@info@q
ma.par <- yuima@model@[email protected]
name.ma<-paste0(ma.par, c(0:q))
if (length(yuima@model@[email protected])==0){
a<-param[name.ar]
# a_names<-names(param[c(1:p)])
# names(a)<-a_names
b<-param[name.ma]
# b_names<-names(param[c((p+1):(length(param)-p+1))])
# names(b)<-b_names
if(length(yuima@model@[email protected])!=0){
if(length(b)==1){
b<-1
} else{
indx_b0<-paste0(yuima@model@[email protected],"0",collapse="")
b[indx_b0]<-1
}
sigma<-tail(param,1)
}else {sigma<-1}
NoNeg.Noise<-FALSE
if(0){
if("mean.noise" %in% names(param)){
NoNeg.Noise<-TRUE
}
}
if(NoNeg.Noise==TRUE){
if (length(b)==p){
#mean.noise<-param[mean.noise]
# Be useful for carma driven by a no negative levy process
mean.y<-mean(y)
#mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
#param[mean.noise]<-mean.y/(tail(b,n=1)/tail(a,n=1)*sigma)
}else{
mean.y<-0
}
y<-y-mean.y
}
# V_inf0<-matrix(diag(rep(1,p)),p,p)
V_inf0<-env$V_inf0
p<-env$p
q<-env$q
strLog<-yuima.carma.loglik1(y, u, a, b, sigma,time.obs,V_inf0,p,q)
}else if (!rcpp){
# 01/01
# ar.par <- yuima@model@[email protected]
# name.ar<-paste0(ar.par, c(1:p))
a<-param[name.ar]
# ma.par <- yuima@model@[email protected]
# q <- yuima@model@info@q
name.ma<-paste0(ma.par, c(0:q))
b<-param[name.ma]
if(length(yuima@model@[email protected])!=0){
if(length(b)==1){
b<-1
} else{
indx_b0<-paste0(yuima@model@[email protected],"0",collapse="")
b[indx_b0]<-1
}
scale.par <- yuima@model@[email protected]
sigma <- param[scale.par]
} else{sigma <- 1}
loc.par <- yuima@model@[email protected]
mu <- param[loc.par]
NoNeg.Noise<-FALSE
if(0){
if("mean.noise" %in% names(param)){
NoNeg.Noise<-TRUE
}
}
# Lines 883:840 work if we have a no negative noise
if(0&&(NoNeg.Noise==TRUE)){
if (length(b)==p){
mean.noise<-param[mean.noise]
# Be useful for carma driven by levy process
# mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
mean.y<-mean(y-mu)
}else{
mean.y<-0
}
y<-y-mean.y
}
y.start <- y-mu
#V_inf0<-matrix(diag(rep(1,p)),p,p)
V_inf0<-env$V_inf0
p<-env$p
q<-env$q
strLog<-yuima.carma.loglik1(y.start, u, a, b, sigma,time.obs,V_inf0,p,q)
}
QL<-strLog$loglikCdiag
# }else {
# yuima.warn("carma(p,q): the scale parameter is equal to 1. We will implemented as soon as possible")
# return(NULL)
# }
} else {
drift_name <- yuima@model@drift
diffusion_name <- yuima@model@diffusion
####data <- yuima@[email protected]
data <- env$X
thetadim <- length(yuima@model@parameter@all)
noise_number <- yuima@[email protected]
assign(yuima@[email protected],env$time[-length(env$time)])
for(i in 1:d.size) assign(yuima@[email protected][i], data[-length(data[,1]),i])
for(i in 1:thetadim) assign(names(param)[i], param[[i]])
d_b <- NULL
for(i in 1:d.size){
if(length(eval(drift_name[[i]]))==(length(data[,1])-1)){
d_b[[i]] <- drift_name[[i]] #this part of model includes "x"(state.variable)
}
else{
if(is.na(c(drift_name[[i]][2]))){ #ex. yuima@model@drift=expression(0) (we hope "expression((0))")
drift_name[[i]] <- parse(text=paste(sprintf("(%s)", drift_name[[i]])))[[1]]
}
d_b[[i]] <- parse(text=paste("(",drift_name[[i]][2],")*rep(1,length(data[,1])-1)",sep=""))
#vectorization
}
}
v_a<-matrix(list(NULL),d.size,noise_number)
for(i in 1:d.size){
for(j in 1:noise_number){
if(length(eval(diffusion_name[[i]][[j]]))==(length(data[,1])-1)){
v_a[[i,j]] <- diffusion_name[[i]][[j]] #this part of model includes "x"(state.variable)
}
else{
if(is.na(c(diffusion_name[[i]][[j]][2]))){
diffusion_name[[i]][[j]] <- parse(text=paste(sprintf("(%s)", diffusion_name[[i]][[j]])))[[1]]
}
v_a[[i,j]] <- parse(text=paste("(",diffusion_name[[i]][[j]][2],")*rep(1,length(data[,1])-1)",sep=""))
#vectorization
}
}
}
dx_set <- as.matrix((data-rbind(numeric(d.size),as.matrix(data[-length(data[,1]),])))[-1,])
crossdx_set <- env$crossdx
drift_set <- diffusion_set <- NULL
#for(i in 1:thetadim) assign(names(param)[i], param[[i]])
for(i in 1:d.size) drift_set <- cbind(drift_set,eval(d_b[[i]]))
for(i in 1:noise_number){
for(j in 1:d.size) diffusion_set <- cbind(diffusion_set,eval(v_a[[j,i]]))
}
QL <- W1(crossdx_set,drift_set,diffusion_set,env$h)*(-0.5*env$h*env$h)
}
if(!is.finite(QL)){
yuima.warn("quasi likelihood is too small to calculate.")
return(1e10)
}
if(print==TRUE){
yuima.warn(sprintf("NEG-QL: %f, %s", -QL, paste(names(param),param,sep="=",collapse=", ")))
}
if(is.infinite(QL)) return(1e10)
return(as.numeric(-QL))
}
minusquasilogl_W2 <- function(yuima, param, print=FALSE, env,rcpp=T){#new logl estimates drift
diff.par <- yuima@model@parameter@diffusion
drift.par <- yuima@model@parameter@drift
if(0){
if(length(yuima@model@[email protected])!=0){
xinit.par <- yuima@model@parameter@xinit
}
}
if(0 && length(yuima@model@[email protected])==0
&& length(yuima@model@parameter@jump)!=0){
diff.par<-yuima@model@parameter@jump
# measure.par<-yuima@model@parameter@measure
}
if(0 && length(yuima@model@[email protected])==0
&& length(yuima@model@parameter@measure)!=0){
measure.par<-yuima@model@parameter@measure
}
# 24/12
if(0 && length(yuima@model@[email protected])>0 ){
yuima.warn("carma(p,q): the case of lin.par will be implemented as soon as")
return(NULL)
}
if(0){
xinit.par <- yuima@model@parameter@xinit
}
drift.par <- yuima@model@parameter@drift
fullcoef <- NULL
if(length(diff.par)>0)
fullcoef <- diff.par
if(length(drift.par)>0)
fullcoef <- c(fullcoef, drift.par)
if(0){
if(length(xinit.par)>0)
fullcoef <- c(fullcoef, xinit.par)
}
if(0 && (length(yuima@model@parameter@measure)!=0))
fullcoef<-c(fullcoef, measure.par)
if(0){
if("mean.noise" %in% names(param)){
mean.noise<-"mean.noise"
fullcoef <- c(fullcoef, mean.noise)
NoNeg.Noise<-TRUE
}
}
npar <- length(fullcoef)
nm <- names(param)
oo <- match(nm, fullcoef)
if(any(is.na(oo)))
yuima.stop("some named arguments in 'param' are not arguments to the supplied yuima model")
param <- param[order(oo)]
nm <- names(param)
idx.diff <- match(diff.par, nm)
idx.drift <- match(drift.par, nm)
if(0){
idx.xinit <-as.integer(na.omit(match(xinit.par, nm)))
}
h <- env$h
Cn.r <- env$Cn.r
theta1 <- unlist(param[idx.diff])
theta2 <- unlist(param[idx.drift])
n.theta1 <- length(theta1)
n.theta2 <- length(theta2)
n.theta <- n.theta1+n.theta2
if(0){
theta3 <- unlist(param[idx.xinit])
n.theta3 <- length(theta3)
n.theta <- n.theta1+n.theta2+n.theta3
}
d.size <- yuima@[email protected]
n <- length(yuima)[1]
if (0){
# 24/12
d.size <-1
# We build the two step procedure as described in
# if(length(yuima@model@[email protected])!=0){
prova<-as.numeric(param)
#names(prova)<-fullcoef[oo]
names(prova)<-names(param)
param<-prova[c(length(prova):1)]
time.obs<-env$time.obs
y<-as.numeric(env$X)
u<-env$h
p<-env$p
q<-env$q
# p<-yuima@model@info@p
ar.par <- yuima@model@[email protected]
name.ar<-paste0(ar.par, c(1:p))
# q <- yuima@model@info@q
ma.par <- yuima@model@[email protected]
name.ma<-paste0(ma.par, c(0:q))
if (length(yuima@model@[email protected])==0){
a<-param[name.ar]
# a_names<-names(param[c(1:p)])
# names(a)<-a_names
b<-param[name.ma]
# b_names<-names(param[c((p+1):(length(param)-p+1))])
# names(b)<-b_names
if(length(yuima@model@[email protected])!=0){
if(length(b)==1){
b<-1
} else{
indx_b0<-paste0(yuima@model@[email protected],"0",collapse="")
b[indx_b0]<-1
}
sigma<-tail(param,1)
}else {sigma<-1}
NoNeg.Noise<-FALSE
if(0){
if("mean.noise" %in% names(param)){
NoNeg.Noise<-TRUE
}
}
if(NoNeg.Noise==TRUE){
if (length(b)==p){
#mean.noise<-param[mean.noise]
# Be useful for carma driven by a no negative levy process
mean.y<-mean(y)
#mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
#param[mean.noise]<-mean.y/(tail(b,n=1)/tail(a,n=1)*sigma)
}else{
mean.y<-0
}
y<-y-mean.y
}
# V_inf0<-matrix(diag(rep(1,p)),p,p)
V_inf0<-env$V_inf0
p<-env$p
q<-env$q
strLog<-yuima.carma.loglik1(y, u, a, b, sigma,time.obs,V_inf0,p,q)
}else if (!rcpp){
# 01/01
# ar.par <- yuima@model@[email protected]
# name.ar<-paste0(ar.par, c(1:p))
a<-param[name.ar]
# ma.par <- yuima@model@[email protected]
# q <- yuima@model@info@q
name.ma<-paste0(ma.par, c(0:q))
b<-param[name.ma]
if(length(yuima@model@[email protected])!=0){
if(length(b)==1){
b<-1
} else{
indx_b0<-paste0(yuima@model@[email protected],"0",collapse="")
b[indx_b0]<-1
}
scale.par <- yuima@model@[email protected]
sigma <- param[scale.par]
} else{sigma <- 1}
loc.par <- yuima@model@[email protected]
mu <- param[loc.par]
NoNeg.Noise<-FALSE
if(0){
if("mean.noise" %in% names(param)){
NoNeg.Noise<-TRUE
}
}
# Lines 883:840 work if we have a no negative noise
if(0&&(NoNeg.Noise==TRUE)){
if (length(b)==p){
mean.noise<-param[mean.noise]
# Be useful for carma driven by levy process
# mean.y<-mean.noise*tail(b,n=1)/tail(a,n=1)*sigma
mean.y<-mean(y-mu)
}else{
mean.y<-0
}
y<-y-mean.y
}
y.start <- y-mu
#V_inf0<-matrix(diag(rep(1,p)),p,p)
V_inf0<-env$V_inf0
p<-env$p
q<-env$q
strLog<-yuima.carma.loglik1(y.start, u, a, b, sigma,time.obs,V_inf0,p,q)
}
QL<-strLog$loglikCdiag
# }else {
# yuima.warn("carma(p,q): the scale parameter is equal to 1. We will implemented as soon as possible")
# return(NULL)
# }
} else {
drift_name <- yuima@model@drift
diffusion_name <- yuima@model@diffusion
####data <- yuima@[email protected]
data <- env$X
thetadim <- length(yuima@model@parameter@all)
noise_number <- yuima@[email protected]
assign(yuima@[email protected],env$time[-length(env$time)])
for(i in 1:d.size) assign(yuima@[email protected][i], data[-length(data[,1]),i])
for(i in 1:thetadim) assign(names(param)[i], param[[i]])
d_b <- NULL
for(i in 1:d.size){
if(length(eval(drift_name[[i]]))==(length(data[,1])-1)){
d_b[[i]] <- drift_name[[i]] #this part of model includes "x"(state.variable)
}
else{
if(is.na(c(drift_name[[i]][2]))){ #ex. yuima@model@drift=expression(0) (we hope "expression((0))")
drift_name[[i]] <- parse(text=paste(sprintf("(%s)", drift_name[[i]])))[[1]]
}
d_b[[i]] <- parse(text=paste("(",drift_name[[i]][2],")*rep(1,length(data[,1])-1)",sep=""))
#vectorization
}
}
dx_set <- as.matrix((data-rbind(numeric(d.size),as.matrix(data[-length(data[,1]),])))[-1,])
drift_set <- diffusion_set <- NULL
for(i in 1:d.size) drift_set <- cbind(drift_set,eval(d_b[[i]]))
QL <- W2(dx_set,drift_set,env$h)*(-0.5*env$h)
}
if(!is.finite(QL)){
yuima.warn("quasi likelihood is too small to calculate.")
return(1e10)
}
if(print==TRUE){
yuima.warn(sprintf("NEG-QL: %f, %s", -QL, paste(names(param),param,sep="=",collapse=", ")))
}
if(is.infinite(QL)) return(1e10)
return(as.numeric(-QL))
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/lseBayes.R |
# multiple lead-lag detector
mllag <- function(x, from = -Inf, to = Inf, division = FALSE, grid, psd = TRUE,
plot = TRUE, alpha = 0.01, fisher = TRUE, bw) {
if((is(x) == "yuima")||(is(x) == "yuima.data")||(is(x) == "list")){
x <- llag(x, from = from, to = to, division = division, grid = grid, psd = psd, plot = FALSE,
ci = TRUE, alpha = alpha, fisher = fisher, bw = bw)
}else if((is(x) != "yuima.llag") && (is(x) != "yuima.mllag")){
cat("mllag: invalid x")
return(NULL)
}
d <- ncol(x$LLR)
d.size <- length(x$ccor)
CI <- vector(d.size,mode="list") # confidence intervals
result <- vector(d.size,mode="list")
names(CI) <- names(x$ccor)
names(result) <- names(x$ccor)
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
G <- time(x$ccor[[num]])
tmp <- x$ccor[[num]]
avar.tmp <- x$avar[[num]]
if(fisher == TRUE){
z <- atanh(tmp) # the Fisher z transformation of the estimated correlation
se.z <- sqrt(avar.tmp)/(1 - tmp^2)
c.alpha <- tanh(qnorm(1 - alpha/2) * se.z)
idx <- which(abs(tmp) > c.alpha)
result[[num]] <- data.frame(lagcce = G[idx],
p.values = pchisq(atanh(tmp[idx])^2/se.z[idx]^2, df=1, lower.tail=FALSE),
correlation = tmp[idx])
}else{
c.alpha <- sqrt(qchisq(alpha, df=1, lower.tail=FALSE) * avar.tmp)
idx <- which(abs(tmp) > c.alpha)
result[[num]] <- data.frame(lagcce = G[idx],
p.value = pchisq(tmp[idx]^2/avar.tmp[idx], df=1, lower.tail=FALSE),
correlation = tmp[idx])
}
CI[[num]] <- zoo(c.alpha, G)
}
}
if(plot){
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
y.max <- max(abs(as.numeric(x$ccor[[num]])),as.numeric(CI[[num]]))
plot(x$ccor[[num]],
main=paste(i,"vs",j,"(positive",expression(theta),"means",i,"leads",j,")"),
xlab=expression(theta),ylab=expression(U(theta)),
ylim=c(-y.max,y.max))
lines(CI[[num]],lty=2,col="blue")
lines(-CI[[num]],lty=2,col="blue")
points(result[[num]]$lagcce, result[[num]]$correlation, col = "red", pch = 19)
}
}
}
out <- list(mlagcce = result, LLR = x$LLR, ccor = x$ccor, avar = x$avar, CI = CI)
class(out) <- "yuima.mllag"
return(out)
}
# print method for yuima.mllag-class
print.yuima.mllag <- function(x, ...){
cat("Estimated lead-lag parameters\n")
print(x$mlagcce, ...)
cat("Lead-lag ratio\n")
print(x$LLR, ...)
}
# plot method for yuima.mllag-class
plot.yuima.mllag <- function(x, alpha = 0.01, fisher = TRUE, ...){
d <- nrow(x$LLR)
for(i in 1:(d-1)){
for(j in (i+1):d){
num <- d*(i-1) - (i-1)*i/2 + (j-i)
G <- time(x$ccor[[num]])
if(fisher == TRUE){
z <- atanh(x$ccor[[num]]) # the Fisher z transformation of the estimated correlation
se.z <- sqrt(x$avar[[num]])/(1 - x$ccor[[num]]^2)
CI <- zoo(tanh(qnorm(1 - alpha/2) * se.z), G)
}else{
c.alpha <- sqrt(qchisq(alpha, df=1, lower.tail = FALSE) * x$avar[[num]])
CI <- zoo(c.alpha, G)
}
y.max <- max(abs(as.numeric(x$ccor[[num]])),as.numeric(CI))
plot(x$ccor[[num]],
main=paste(i,"vs",j,"(positive",expression(theta),"means",i,"leads",j,")"),
xlab=expression(theta),ylab=expression(U(theta)),
ylim=c(-y.max,y.max))
lines(CI,lty=2,col="blue")
lines(-CI,lty=2,col="blue")
points(x$result[[num]]$lagcce, x$result[[num]]$correlation, col = "red", pch = 19)
}
}
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/mllag.R |
##estimate theta2 by LSE
mmfrac <- function(yuima,...){
call <- match.call()
if(missing(yuima)){
yuima.stop("yuima object is missing.")
}
#if(class(yuima)!="yuima"){
if(!inherits(yuima,"yuima")){
yuima.stop("an object of class yuima is needed.")
}
Ddiffx0 <- D(yuima@model@diffusion[[1]],yuima@[email protected]) == 0
Ddifft0 <- D(yuima@model@diffusion[[1]],yuima@[email protected]) == 0
bconst<-FALSE
Hconst<-FALSE
diffnoparam<-length(yuima@model@parameter@diffusion)==0
if (Ddiffx0 & Ddifft0 & diffnoparam){
if(eval(yuima@model@diffusion[[1]])==0){
yuima.stop("the model has no fractional part.")
}
}
if (length(yuima@model@parameter@drift)!=1){
yuima.stop("the drift is malformed.")
}
dx <- D(yuima@model@drift,yuima@[email protected])
dbx <- D(yuima@model@diffusion[[1]],yuima@[email protected])==0
dbt <- D(yuima@model@diffusion[[1]],yuima@[email protected])==0
bxx <- D(dx,yuima@[email protected])==0
bmix <- D(dx,yuima@[email protected])==0
isfOU <- (bxx || bmix) && (dbx && dbt)
if (!isfOU){yuima.stop("estimation not available for this model")}
process<-yuima@[email protected][[1]]
T<-yuima@sampling@Terminal
est<-qgv(yuima,...)
H<-est$coeff[1]
sigma<-est$coeff[2]
if ((!is.na(H))&(!is.na(sigma))){
theta<-(2*mean(process^2)/(sigma^2*gamma(2*H+1)))^(-1/2/H)
sH<-sqrt((4*H-1)*(1+(gamma(1-4*H)*gamma(4*H-1))/(gamma(2-2*H)*gamma(2*H))))
sdtheta<- sqrt(theta)*(sH/(2*H))/sqrt(T)
}else{
yuima.warn("Diffusion estimation not available, can not estimate the drift parameter")
}
x<-c(est$coeff,theta)
names(x)<-c(names(est$coeff),yuima@model@parameter@drift)
sdx<-matrix(,3,3)
diag(sdx)<-c(diag(est$vcov),sdtheta)
colnames(sdx)<-names(x)
rownames(sdx)<-names(x)
obj <- list(coefficients=x,vcov=sdx,call=call)
class(obj) <- "mmfrac"
return(obj)
}
print.mmfrac<-function(x,...){
tmp <- rbind(x$coefficients, diag(x$vcov))
rownames(tmp) <- c("Estimate", "Std. Error")
cat("\nFractional OU estimation\n")
print(tmp)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/mmfrac.R |
#########################################################################
# Realized multipower variation
#########################################################################
setGeneric("mpv",function(yuima,r=2,normalize=TRUE)standardGeneric("mpv"))
setMethod("mpv",signature(yuima="yuima"),
function(yuima,r=2,normalize=TRUE)mpv(yuima@data,r,normalize))
setMethod("mpv",signature(yuima="yuima.data"),
function(yuima,r=2,normalize=TRUE){
data <- get.zoo.data(yuima)
d.size <- length(data)
result <- double(d.size)
if(is.numeric(r)){
for(d in 1:d.size){
X <- as.numeric(data[[d]])
idt <- which(is.na(X))
if(length(idt>0)){
X <- X[-idt]
}
if(length(X)<2) {
stop("length of data (w/o NA) must be more than 1")
}
abs.diffX <- abs(diff(X))
tmp <- rollapplyr(abs.diffX,length(r),FUN=function(x)prod(x^r))
result[d] <- length(abs.diffX)^(sum(r)/2-1)*sum(tmp)
}
if(normalize){
result <- result/prod(2^(r/2)*gamma((r+1)/2)/gamma(1/2))
}
}else{
for(d in 1:d.size){
X <- as.numeric(data[[d]])
idt <- which(is.na(X))
if(length(idt>0)){
X <- X[-idt]
}
if(length(X)<2) {
stop("length of data (w/o NA) must be more than 1")
}
abs.diffX <- abs(diff(X))
tmp <- rollapplyr(abs.diffX,length(r[[d]]),FUN=function(x)prod(x^r[[d]]))
result[d] <- length(abs.diffX)^(sum(r[[d]])/2-1)*sum(tmp)
if(normalize){
result[d] <- result[d]/prod(2^(r[[d]]/2)*gamma((r[[d]]+1)/2)/gamma(1/2))
}
}
}
return(result)
}) | /scratch/gouwar.j/cran-all/cranData/yuima/R/mpv.R |
###############################################################
# function for adding noise
###############################################################
setGeneric("noisy.sampling",
function(x,var.adj=0,rng="rnorm",mean.adj=0,...,end.coef=0,n,order.adj=0,znoise)
standardGeneric("noisy.sampling"))
setMethod("noisy.sampling",signature(x="yuima"),
function(x,var.adj=0,rng="rnorm",mean.adj=0,...,end.coef=0,n,order.adj=0,znoise)
noisy.sampling(x@data,var.adj=var.adj,rng=rng,mean.adj=mean.adj,...,
end.coef=end.coef,n=n,order.adj=order.adj,znoise=znoise))
setMethod("noisy.sampling",signature(x="yuima.data"),
function(x,var.adj=0,rng="rnorm",mean.adj=0,...,
end.coef=0,n,order.adj=0,znoise){
data <- get.zoo.data(x)
d.size <- length(data)
ser.times <- lapply(data,"time")
total.samp <- unique(sort(unlist(ser.times)))
samp.size <- length(total.samp)
if(missing(n)) n <- sapply(data,"length")
n <- as.vector(matrix(n,d.size,1))
if(missing(znoise)) znoise <- as.list(double(d.size))
result <- vector(d.size,mode="list")
if(any(var.adj!=0)){ # exogenous noise is present
rn <- n^(order.adj/2)*(matrix(do.call(rng,list(d.size*samp.size,...)),d.size,samp.size)-mean.adj)
if(is.list(var.adj)){
total.noise <- matrix(0,d.size,samp.size)
for(d in 1:d.size){
idx <- is.element(time(var.adj[[d]]),total.samp)
total.noise[d,] <- sqrt(var.adj[[d]][idx])*rn[d,]
}
}else{
if(d.size>1){
tmp <- svd(as.matrix(var.adj))
total.noise <- (tmp$u%*%diag(sqrt(tmp$d))%*%t(tmp$v))%*%rn
}else{
total.noise <- sqrt(var.adj)*rn
}
}
if(any(end.coef!=0)){
if(is.list(end.coef)){
n.tmp <- n^((1-order.adj)/2)
for(d in 1:d.size){
noise <- subset(total.noise[d,],is.element(total.samp,ser.times[[d]]))
result[[d]] <- data[[d]]+noise+znoise[[d]]+
n.tmp*c(0,end.coef[[d]]*diff(as.numeric(data[[d]])))
}
}else{
psi <- n^((1-order.adj)/2)*end.coef
for(d in 1:d.size){
noise <- subset(total.noise[d,],is.element(total.samp,ser.times[[d]]))
result[[d]] <- data[[d]]+noise+znoise[[d]]+
psi[d]*c(0,diff(as.numeric(data[[d]])))
}
}
}else{
for(d in 1:d.size){
noise <- subset(total.noise[d,],is.element(total.samp,ser.times[[d]]))
result[[d]] <- data[[d]]+noise+znoise[[d]]
}
}
}else{ # exogenous noise is absent
if(any(end.coef!=0)){
if(is.list(end.coef)){
n.tmp <- n^((1-order.adj)/2)
for(d in 1:d.size){
result[[d]] <- data[[d]]+znoise[[d]]+
n.tmp*c(0,end.coef[[d]]*diff(as.numeric(data[[d]])))
}
}else{
end.coef <- n^((1-order.adj)/2)*end.coef
for(d in 1:d.size){
result[[d]] <- data[[d]]+znoise[[d]]+
end.coef[d]*c(0,diff(as.numeric(data[[d]])))
}
}
}else{
for(d in 1:d.size){
result[[d]] <- data[[d]]+znoise[[d]]
}
}
}
return(setData(result))
})
| /scratch/gouwar.j/cran-all/cranData/yuima/R/noisy.sampling.R |
######################################################
# Volatility estimation and jump test using
# nearest neighbor truncation
######################################################
######## Volatility estimation ########
## MinRV
minrv <- function(yuima){
x <- get.zoo.data(yuima)
d <- length(x)
out <- double(d)
for(j in 1:d){
dx2 <- diff(as.numeric(x[[j]]))^2
out[j] <- length(dx2) * mean(pmin(dx2[-length(dx2)], dx2[-1]))
}
return((pi/(pi - 2)) * out)
}
## MedRV
medrv <- function(yuima){
x <- get.zoo.data(yuima)
d <- length(x)
out <- double(d)
for(j in 1:d){
dx2 <- diff(as.numeric(x[[j]]))^2
out[j] <- length(dx2) * mean(rollmedian(dx2, k = 3))
}
return((pi/(6 - 4*sqrt(3) + pi)) * out)
}
######## Jump test ########
## function to compute log-type test statistics
logstat <- function(rv, iv, iq, n, theta, adj){
avar <- iq/iv^2
if(adj) avar[avar < 1] <- 1
return(log(rv/iv)/sqrt(theta * avar/n))
}
## function to compute ratio-type test statistics
ratiostat <- function(rv, iv, iq, n, theta, adj){
avar <- iq/iv^2
if(adj) avar[avar < 1] <- 1
return((1 - iv/rv)/sqrt(theta * avar/n))
}
## Jump test based on minRV
minrv.test <- function(yuima, type = "ratio", adj = TRUE){
data <- get.zoo.data(yuima)
d.size <- length(data)
rv <- double(d.size)
iv <- double(d.size)
iq <- double(d.size)
n <- integer(d.size)
for(d in 1:d.size){
dx2 <- diff(as.numeric(data[[d]]))^2
n[d] <- length(dx2)
rv[d] <- sum(dx2)
obj <- pmin(dx2[-n[d]], dx2[-1])
iv[d] <- (pi/(pi - 2)) * n[d] * mean(obj)
iq[d] <- (pi/(3*pi - 8)) * n[d]^2 * mean(obj^2)
}
stat <- switch(type,
"standard" = (rv - iv)/sqrt(1.81 * iq/n),
"ratio" = ratiostat(rv, iv, iq, n, 1.81, adj),
"log" = logstat(rv, iv, iq, n, 1.81, adj))
p <- pnorm(stat, lower.tail = FALSE)
result <- vector(d.size,mode="list")
for(d in 1:d.size){
result[[d]] <- list(statistic = c(ADS = stat[d]),
p.value = p[d],
method = "Andersen-Dobrev-Schaumburg jump test based on MinRV",
data.names = paste("x",d,sep = ""))
class(result[[d]]) <- "htest"
}
return(result)
}
## Jump test based on medRV
medrv.test <- function(yuima, type = "ratio", adj = TRUE){
data <- get.zoo.data(yuima)
d.size <- length(data)
rv <- double(d.size)
iv <- double(d.size)
iq <- double(d.size)
n <- integer(d.size)
for(d in 1:d.size){
dx2 <- diff(as.numeric(data[[d]]))^2
n[d] <- length(dx2)
rv[d] <- sum(dx2)
obj <- rollmedian(dx2, k = 3)
iv[d] <- (pi/(6 - 4*sqrt(3) + pi)) * n[d] * mean(obj)
iq[d] <- (3*pi/(9*pi + 72 - 52*sqrt(3))) * n[d]^2 * mean(obj^2)
}
stat <- switch(type,
"standard" = (rv - iv)/sqrt(0.96 * iq/n),
"ratio" = ratiostat(rv, iv, iq, n, 0.96, adj),
"log" = logstat(rv, iv, iq, n, 0.96, adj))
p <- pnorm(stat, lower.tail = FALSE)
result <- vector(d.size,mode="list")
for(d in 1:d.size){
result[[d]] <- list(statistic = c(ADS = stat[d]),
p.value = p[d],
method = "Andersen-Dobrev-Schaumburg jump test based on MedRV",
data.names = paste("x",d,sep = ""))
class(result[[d]]) <- "htest"
}
return(result)
}
| /scratch/gouwar.j/cran-all/cranData/yuima/R/ntv.R |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.