content
stringlengths
0
14.9M
filename
stringlengths
44
136
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 11 May 2020 # Function: saveAllMatchesBetween2WBBTeams # This function saves all matches between 2 teams as a single dataframe ################################################################################## #' @title #' Saves all matches between 2 WBB teams as dataframe #' #' @description #' This function saves all matches between 2 WBB teams as a single dataframe in the #' current directory #' #' @usage #' saveAllMatchesBetween2WBBTeams(dir=".",odir=".") #' #' @param dir #' Input Directory #' #' @param odir #' Output Directory to store saved matches #' #' @return None #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' saveAllMatchesBetween2BBLTeams(dir=".",odir=".") #' } #' @seealso #' \code{\link{batsmanDismissals}}\cr #' \code{\link{batsmanRunsVsDeliveries}}\cr #' \code{\link{batsmanRunsVsStrikeRate}}\cr #' \code{\link{getAllMatchesAllOpposition}}\cr #' \code{\link{getAllMatchesBetweenTeams}}\cr #' #' @export #' saveAllMatchesBetween2WBBTeams <- function(dir=".",odir="."){ teams <-c("Adelaide Strikers", "Brisbane Heat", "Hobart Hurricanes", "Melbourne Renegades", "Melbourne Stars", "Perth Scorchers", "Sydney Sixers", "Sydney Thunder") matches <- NULL #Create all combinations of teams for(i in seq_along(teams)){ for(j in seq_along(teams)){ if(teams[i] != teams[j]){ cat("Team1=",teams[i],"Team2=",teams[j],"\n") tryCatch(matches <- getAllMatchesBetweenTeams(teams[i],teams[j],dir=dir,save=TRUE,odir=odir), error = function(e) { print("No matches") } ) } } matches <- NULL } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/saveAllMatchesBetween2WBBTeams.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 2 May 2020 # Function: saveAllMatchesBetweenTeams # This function saves all matches between 2 teams as a single dataframe ################################################################################## #' @title #' Saves all matches between 2 teams as dataframe #' #' @description #' This function saves all matches between 2 teams as a single dataframe in the #' current directory #' #' @usage #' saveAllMatchesBetweenTeams(dir=".",odir=".") #' #' @param dir #' Input Directory to store saved matches #' #' @param odir #' Output Directory to store matches between teams #' #' @return None #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' saveAllMatchesBetweenTeams(dir=".",odir=".") #' } #' @seealso #' \code{\link{batsmanDismissals}}\cr #' \code{\link{batsmanRunsVsDeliveries}}\cr #' \code{\link{batsmanRunsVsStrikeRate}}\cr #' \code{\link{getAllMatchesAllOpposition}}\cr #' \code{\link{getAllMatchesBetweenTeams}}\cr #' #' @export #' saveAllMatchesBetweenTeams <- function(dir=".",odir="."){ teams <-c("Australia","India","Pakistan","West Indies", 'Sri Lanka', "England", "Bangladesh","Netherlands","Scotland", "Afghanistan", "Zimbabwe","Ireland","New Zealand","South Africa","Canada", "Bermuda","Kenya","Hong Kong","Nepal","Oman","Papua New Guinea", "United Arab Emirates","Namibia","Cayman Islands","Singapore", "United States of America","Bhutan","Maldives","Botswana","Nigeria", "Denmark","Germany","Jersey","Norway","Qatar","Malaysia","Vanuatu", "Thailand") matches <- NULL #Create all combinations of teams for(i in seq_along(teams)){ for(j in seq_along(teams)){ if(teams[i] != teams[j]){ cat("Team1=",teams[i],"Team2=",teams[j],"\n") tryCatch(matches <- getAllMatchesBetweenTeams(teams[i],teams[j],dir=dir,save=TRUE,odir=odir), error = function(e) { print("No matches") } ) } } matches <- NULL } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/saveAllMatchesBetweenTeams.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 04 Dec 2021 # Function: saveAllT20BattingDetails # This function saves all T20 batting Details # # ########################################################################################### #' @title #' Save all T20 batting details #' #' @description #' This function creates a single dataframe of all T20 batting details #' @usage #' saveAllT20BattingDetails(teamNames,dir=".",odir=".",type="IPL",save=TRUE) #' #' @param teamNames #' The team names #' #' @param dir #' The output directory #' #' @param odir #' The output directory #' #' @param type #' T20 format #' #' @param save #' To save or not #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' saveAllT20BattingDetails(teamNames,dir=".",odir=".",type="IPL",save=TRUE) #' } #' #' @seealso #' \code{\link{rankODIBowlers}}\cr #' \code{\link{rankODIBatsmen}}\cr #' \code{\link{rankT20Bowlers}}\cr #' @export #' saveAllT20BattingDetails <- function(teamNames,dir=".",odir=".",type="IPL",save=TRUE) { currDir= getwd() battingDetails=batsman=runs=strikeRate=matches=meanRuns=meanSR=battingDF=val=year=NULL teams = unlist(teamNames) battingDF<-NULL for(team in teams){ battingDetails <- NULL val <- paste(team,"-BattingDetails.RData",sep="") print(val) tryCatch(load(val), error = function(e) { print("No data1") setNext=TRUE } ) details <- battingDetails battingDF <- rbind(battingDF,details) } if(save){ fl <-paste(odir,"/",type,"-BattingDetails.RData",sep="") print(fl) save(battingDF,file=fl) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/saveAllT20BattingDetails.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 08 Dec 2021 # Function: saveAllT20BowlingDetails # This function saves all T20 batting Details # # ########################################################################################### #' @title #' Save all T20 batting details #' #' @description #' This function creates a single dataframe of all T20 batting details #' @usage #' saveAllT20BowlingDetails(teamNames,dir=".",odir=".",type="IPL",save=TRUE) #' #' @param teamNames #' The team names #' #' @param dir #' The output directory #' #' @param odir #' The output directory #' #' @param type #' T20 format #' #' @param save #' To save or not #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' saveAllT20BowlingDetails(teamNames,dir=".",odir=".",type="IPL",save=TRUE) #' } #' #' @seealso #' \code{\link{rankODIBowlers}}\cr #' \code{\link{rankODIBatsmen}}\cr #' \code{\link{rankT20Bowlers}}\cr #' @export #' saveAllT20BowlingDetails <- function(teamNames,dir=".",odir=".",type="IPL",save=TRUE) { currDir= getwd() bowlingDetails=bowler=wickets=economyRate=matches=meanWickets=meanER=totalWickets=NULL teams = unlist(teamNames) bowlingDF<-NULL for(team1 in teams){ bowlingDetails <- NULL val <- paste(team1,"-BowlingDetails.RData",sep="") print(val) tryCatch(load(val), error = function(e) { print("No data1") setNext=TRUE } ) details <- bowlingDetails bowlingDF <- rbind(bowlingDF,details) } if(save){ fl <-paste(odir,"/",type,"-BowlingDetails.RData",sep="") print(fl) save(bowlingDF,file=fl) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/saveAllT20BowlingDetails.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 07 Dec 2021 # Function: saveAllT20MatchesAsDF # This function ranks the T20 batsmen # # ########################################################################################### #' @title #' Overall picture Ranks the T20 batsmen #' #' @description #' This function creates a single datframe of all T20 batsmen and then ranks them #' @usage #' saveAllT20MatchesAsDF(teamNames,dir=".",odir=".",type="IPL",save=TRUE) #' #' @param teamNames #' The team names #' #' @param dir #' The output directory #' #' @param odir #' The output directory #' #' @param type #' T20 format #' #' @param save #' To save or not #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' saveAllT20MatchesAsDF(teamNames,dir=".",odir=".",type="IPL",save=TRUE) #' } #' #' @seealso #' \code{\link{rankODIBowlers}}\cr #' \code{\link{rankODIBatsmen}}\cr #' \code{\link{rankT20Bowlers}}\cr #' @export #' saveAllT20MatchesAsDF <- function(teamNames,dir=".",odir=".",type="IPL",save=TRUE){ cat("Entering rank Batsmen1 \n") currDir= getwd() cat("T20batmandir=",currDir,"\n") battingDetails=batsman=runs=strikeRate=matches=meanRuns=meanSR=battingDF=val=year=overs=NULL teams = unlist(teamNames) t20MDF <-NULL a <- paste(dir,"/","*",".RData",sep="") fl <- Sys.glob(a) for(i in 1:length(fl)){ # Add try-catch to handle issues tryCatch({ load(fl[i]) match <- overs # If the side has not batted details will be NULL. Skip in that case if(!is.null(dim(match))){ t20MDF <- rbind(t20MDF,match) }else { #print("Empty") next } }, error=function(e){cat("ERROR :",conditionMessage(e), "\n")}) } if(save==TRUE){ fl <-paste(odir,"/",type,"-MatchesDataFrame.RData",sep="") print(fl) save(t20MDF,file=fl) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/saveAllT20MatchesAsDF.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 20 Mar 2016 # Function: specialProc # This is a helper function used by parseYamlOver when the over has more tan 10 # deliveries. # ########################################################################################### #' @title #' Used to parse yaml file #' #' @description #' This is special processing function. This is an internal function and #' is used by convertAllYaml2RDataframes() & convertYaml2RDataframe() #' #' @usage #' specialProc(dist, overset, ateam,over,str1,meta) #' #' @param dist #' dist #' #' @param overset #' overset #' #' @param ateam #' The team #' #' @param over #' over #' #' @param str1 #' str1 #' #' #' @param meta #' The meta information of the match #' #' @return over #' The dataframe of over #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Parse the yaml over #' } #' #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' # This functio is used when there are more than 10 deliveries in the over specialProc <- function(dist, overset, ateam,over,str1,meta){ team=ball=totalRuns=rnames=batsman=bowler=nonStriker=i=NULL byes=legbyes=noballs=wides=nonBoundary=penalty=runs=NULL extras=wicketFielder=wicketKind=wicketPlayerOut=NULL if(dist == 6){ names(over) <-c("batsman","bowler","nonStriker","runs","extras","totalRuns") # Add the missing elements for extras over$byes<-as.factor(0) over$legbyes<-as.factor(0) over$noballs<-as.factor(0) over$wides<-as.factor(0) over$nonBoundary <- as.factor(0) over$penalty<-as.factor(0) over$wicketFielder="nobody" over$wicketKind="not-out" over$wicketPlayerOut="nobody" over$ball=gsub("\\\\.","",str1) over$team = ateam # Reorder the rows over <- select(over, ball,team,batsman,bowler,nonStriker, byes,legbyes,noballs, wides,nonBoundary,penalty,runs, extras,totalRuns,wicketFielder, wicketKind,wicketPlayerOut) over <- cbind(over,meta) } else if(dist==7){ # The over had 7 deliveries if(sum(grepl("\\.byes",overset$rnames))){ names(over) <-c("batsman","bowler","byes","nonStriker","runs","extras","totalRuns") over$legbyes=as.factor(0) over$noballs=as.factor(0) over$wides=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty=as.factor(0) } else if(sum(grepl("legbyes",overset$rnames))){ names(over) <-c("batsman","bowler","legbyes","nonStriker","runs","extras","totalRuns") over$byes=as.factor(0) over$noballs=as.factor(0) over$wides=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty=as.factor(0) } else if(sum(grepl("noballs",overset$rnames))){ names(over) <-c("batsman","bowler","noballs","nonStriker","runs","extras","totalRuns") over$byes=as.factor(0) over$legbyes=as.factor(0) over$wides=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty=as.factor(0) } else if(sum(grepl("wides",overset$rnames))){ names(over) <-c("batsman","bowler","wides","nonStriker","runs","extras","totalRuns") over$byes=as.factor(0) over$legbyes=as.factor(0) over$noballs=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty=as.factor(0) } else if(sum(grepl("non_boundary",overset$rnames))){ cat("sp=",i,"\n") names(over) <-c("batsman","bowler","nonStriker","runs","extras","nonBoundary","totalRuns") over$byes=as.factor(0) over$legbyes=as.factor(0) over$wides=as.factor(0) over$noballs=as.factor(0) over$penalty=as.factor(0) } else if(sum(grepl("penalty",overset$rnames))){ names(over1) <-c("batsman","bowler","penalty","nonStriker","runs","extras","totalRuns") over$byes=as.factor(0) over$legbyes=as.factor(0) over$noballs=as.factor(0) over$wides=as.factor(0) over$nonBoundary <- as.factor(0) } # Add missing elements over$wicketFielder="nobody" over$wicketKind="not-out" over$wicketPlayerOut="nobody" over$ball=gsub("\\\\.","",str1) over$team = ateam # Reorder over <- select(over, ball,team,batsman,bowler,nonStriker, byes,legbyes,noballs, wides,nonBoundary,penalty,runs, extras,totalRuns,wicketFielder, wicketKind,wicketPlayerOut) #over <- over[,c(14,15,1,2,3,4,5,6,7,8,9,10,11,12,13)] over <- cbind(over,meta) #cat("Hhhh",dim(over),"\n") } else if(dist ==8){ names(over) <-c("batsman","bowler","nonStriker","runs","extras","totalRuns","wicketKind","wicketPlayerOut") # Add the missing elements for extras over$byes<-as.factor(0) over$legbyes<-as.factor(0) over$noballs<-as.factor(0) over$wides<-as.factor(0) over$nonBoundary <- as.factor(0) over$penalty<-as.factor(0) over$wicketFielder="nobody" over$ball=gsub("\\\\.","",str1) over$team = ateam # Reorder over <- select(over, ball,team,batsman,bowler,nonStriker, byes,legbyes,noballs, wides,nonBoundary,penalty,runs, extras,totalRuns,wicketFielder, wicketKind,wicketPlayerOut) over <- cbind(over,meta) } else if(dist ==9){ names(over) <-c("batsman","bowler","nonStriker","runs","extras","totalRuns", "wicketFielder","wicketKind","wicketPlayerOut") # Add the missing elements for extras over$byes<-as.factor(0) over$legbyes<-as.factor(0) over$noballs<-as.factor(0) over$wides<-as.factor(0) over$nonBoundary <- as.factor(0) over$penalty<-as.factor(0) over$ball=gsub("\\\\.","",str1) over$team = ateam over <- select(over, ball,team,batsman,bowler,nonStriker, byes,legbyes,noballs, wides,nonBoundary,penalty,runs, extras,totalRuns,wicketFielder, wicketKind,wicketPlayerOut) over <- cbind(over,meta) } else if(dist == 10){ if(sum(grepl("\\.byes",overset$rnames))){ names(over) <-c("batsman","bowler","byes","nonStriker","runs","extras","totalRuns", "wicketFielder","wicketKind","wicketPlayerOut") over$legbyes=as.factor(0) over$noballs=as.factor(0) over$wides=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty<-as.factor(0) } else if(sum(grepl("legbyes",overset$rnames))){ names(over) <-c("batsman","bowler","legbyes","nonStriker","runs","extras","totalRuns", "wicketFielder","wicketKind","wicketPlayerOut") over$byes=as.factor(0) over$noballs=as.factor(0) over$wides=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty<-as.factor(0) } else if(sum(grepl("noballs",overset$rnames))){ names(over) <-c("batsman","bowler","noballs","nonStriker","runs","extras","totalRuns", "wicketFielder","wicketKind","wicketPlayerOut") over$byes=as.factor(0) over$legbyes=as.factor(0) over$wides=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty<-as.factor(0) } else if(sum(grepl("wides",overset$rnames))){ names(over) <-c("batsman","bowler","wides","nonStriker","runs","extras","totalRuns", "wicketFielder","wicketKind","wicketPlayerOut") over$byes=as.factor(0) over$legbyes=as.factor(0) over$noballs=as.factor(0) over$nonBoundary <- as.factor(0) over$penalty<-as.factor(0) } else if(sum(grepl("non_boundary",overset$rnames))){ cat("sp=",i,"\n") names(over) <-c("batsman","bowler","nonStriker","runs","extras","nonBoundary","totalRuns") over$byes=as.factor(0) over$legbyes=as.factor(0) over$wides=as.factor(0) over$noballs=as.factor(0) over$penalty=as.factor(0) over$penalty<-as.factor(0) } else if(sum(grepl("penalty",overset$rnames))){ names(over) <-c("batsman","bowler","penalty","nonStriker","runs","extras","totalRuns") over$byes=as.factor(0) over$legbyes=as.factor(0) over$noballs=as.factor(0) over$wides=as.factor(0) over$nonBoundary=as.factor(0) over$penalty<-as.factor(0) } over$ball=gsub("\\\\.","",str1) over$team = ateam over <- select(over, ball,team,batsman,bowler,nonStriker, byes,legbyes,nonBoundary,penalty,noballs, wides,runs, extras,totalRuns,wicketFielder, wicketKind,wicketPlayerOut) over <- cbind(over,meta) print("Ho!") } #cat("returning",dim(over),"\n") over }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/specialProc.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 24 Mar 2016 # Function: teamBatsmenPartnershipAllOppnAllMatches # This function computes the partnetship of the batsman against all opposition # # ########################################################################################### #' @title #' Team batting partnership in all matches all oppositions #' #' @description #' This function computes the batting partnership of a team againt all oppositions in all matches #' This function returns a dataframe which is a summary of the batsman with the highest partnerships #' or the partnership of an individual batsman #' #' @usage #' teamBatsmenPartnershipAllOppnAllMatches(matches,theTeam,report="summary") #' #' @param matches #' All the matches of the team against all oppositions #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #'@param report #' if the report="summary" then the data frame returned gives a list of the batsmen with the highest #' partnerships. If report="detailed" then the detailed breakup of the partnership is returned. #' #' @return partnerships #' The data frame with the partnerships #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches for team India against all oppositions #' m <-teamBattingScorecardAllOppnAllMatches(matches,theTeam="India") #' # Get the summary report #' teamBatsmenPartnershipAllOppnAllMatches(matches,theTeam='India') #' #' # Get the detailed report #' teamBatsmenPartnershipAllOppnAllMatches(matches,theTeam='India',report="detailed") #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenVsBowlersOppnAllMatches}}\cr #' #' @export #' teamBatsmenPartnershipAllOppnAllMatches <- function(matches,theTeam,report="summary"){ team=batsman=nonStriker=runs=partnershipRuns=totalRuns=NULL ggplotly=NULL a <-filter(matches,team==theTeam) #Get partnerships df <- data.frame(summarise(group_by(a,batsman,nonStriker),sum(runs))) names(df) <- c("batsman","nonStriker","partnershipRuns") b <- summarise(group_by(df,batsman),totalRuns=sum(partnershipRuns)) c <- arrange(b,desc(totalRuns)) d <- full_join(df,c,by="batsman") if(report == "detailed"){ partnerships <- arrange(d,desc(totalRuns)) } else{ partnerships <- arrange(c,desc(totalRuns)) } partnerships }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenPartnershipAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 24 Mar 2016 # Function: teamBatsmenPartnershipAllOppnAllMatchesPlot # This function computes the batting partnerships of a team against all oppositions and # also the partenerships of th eopposition against this team # # ########################################################################################### #' @title #' Plots team batting partnership all matches all oppositions #' #' @description #' This function plots the batting partnership of a team againt all oppositions in all matches #' This function also returns a dataframe with the batting partnerships #' #' @usage #' teamBatsmenPartnershipAllOppnAllMatchesPlot(matches,theTeam,main,plot=1) #' #' @param matches #' All the matches of the team against all oppositions #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param main #' The main team for which the the batting partnerships are sought #' #'@param plot #' Whether the partnerships have top be rendered as a plot. Plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or partnerships #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches for team India against all oppositions #' d <- teamBatsmanVsBowlersAllOppnAllMatchesRept(matches,"India",rank=1,dispRows=50) #' #Plot the partnerships #' teamBatsmenVsBowlersAllOppnAllMatchesPlot(d) #' #' #Do not plot but get the dataframe #' e <- teamBatsmenVsBowlersAllOppnAllMatchesPlot(d,plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenVsBowlersOppnAllMatches}}\cr #' #' @export #' teamBatsmenPartnershipAllOppnAllMatchesPlot <- function(matches,theTeam,main,plot=1){ team=batsman=nonStriker=runs=partnershipRuns=totalRuns=NULL ggplotly=NULL a <- NULL a <-filter(matches,team==theTeam) #Get partnerships df <- data.frame(summarise(group_by(a,batsman,nonStriker),sum(runs))) names(df) <- c("batsman","nonStriker","runs") # Filter all rows where runs is 0. Problem when t2="Sri Lanka" # Sehwag and Ganguly show up as partnerships with runs=0 #*****Check******** when the line below is removed df <- filter(df,runs!=0) df <- arrange(df,desc(runs)) if(plot == 1){ #ggplot2 if(theTeam==main){ plot.title <- paste(theTeam," batting partnerships") }else if(theTeam != main){ plot.title <- paste(theTeam," batting partnerships against ", main) } ggplot(data=df,aes(x=batsman,y=runs,fill=nonStriker))+ geom_bar(data=df,stat="identity") + xlab("Batsman") + ylab("Partnership runs") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly if(theTeam==main){ plot.title <- paste(theTeam," batting partnerships") }else if(theTeam != main){ plot.title <- paste(theTeam," batting partnerships against ", main) } g <- ggplot(data=df,aes(x=batsman,y=runs,fill=nonStriker))+ geom_bar(data=df,stat="identity") + xlab("Batsman") + ylab("Partnership runs") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g) } else{ df } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenPartnershipAllOppnAllMatchesPlot.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 21 Mar 2016 # Function: teamBatsmenPartnershipMatch # This function computes and displays the partnership details in a match. The output # can either be a plot or the data frame used in the plot # ########################################################################################### #' @title #' Team batting partnerships of batsmen in a match #' #' @description #' This function plots the partnerships of batsmen in a match against an opposition or it can return #' the data frame #' #' @usage #' teamBatsmenPartnershipMatch(match,theTeam,opposition, plot=1) #' #' @param match #' The match between the teams #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param opposition #' The opposition team #' #' @param plot #' Plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return df #' The data frame of the batsmen partnetships #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get athe match between England and Pakistan #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' batsmenPartnershipMatch(a,"Pakistan","England") #' batsmenPartnershipMatch(a,"England","Pakistan", plot=TRUE) #' m <-batsmenPartnershipMatch(a,"Pakistan","England", plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenVsBowlersOppnAllMatches}}\cr #' #' @export #' teamBatsmenPartnershipMatch <- function(match,theTeam,opposition,plot=1){ team=batsman=nonStriker=runs=runsScored=NULL ggplotly=NULL a <-filter(match,team==theTeam) # Group batsman with non strikers and compute partnerships df <- data.frame(summarise(group_by(a,batsman,nonStriker),sum(runs))) names(df) <- c("batsman","nonStriker","runs") print(dim(df)) if(plot==1){ #ggplot2 plot.title <- paste(theTeam,"Batting partnership in match (vs.",opposition,")") ggplot(data=df,aes(x=batsman,y=runs,fill=nonStriker))+ geom_bar(data=df,stat="identity") + xlab("Batmen") + ylab("Runs Scored") + labs(title=plot.title,subtitle="Data source:http://cricsheet.org/") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title <- paste(theTeam,"Batting partnership in match (vs.",opposition,")") g <- ggplot(data=df,aes(x=batsman,y=runs,fill=nonStriker))+ geom_bar(data=df,stat="identity") + xlab("Batmen") + ylab("Runs Scored") + labs(title=plot.title,subtitle="Data source:http://cricsheet.org/") + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g) } else{ # Output dataframe df } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenPartnershipMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 22 Mar 2016 # Function: teamBatsmenPartnershiOppnAllMatches # This function computes the batting partnership of a team in all matches against # an opposition. The report generated can be detailed or a summary # ########################################################################################### #' @title #' Team batting partnership against a opposition all matches #' #' @description #' This function computes the performance of batsmen against all bowlers of an oppositions in all matches. This #' function returns a dataframe #' #' @usage #' teamBatsmenPartnershiOppnAllMatches(matches,theTeam,report="summary") #' #' @param matches #' All the matches of the team against the oppositions #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param report #' If the report="summary" then the list of top batsmen with the highest partnerships is displayed. If #' report="detailed" then the detailed break up of partnership is returned as a dataframe #' #' @return partnerships #' The data frame of the partnerships #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches for team India against all oppositions #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' # You can also directly load the data #' #load("India-Australia-allMatches.RData") #' #' m <-teamBatsmenPartnershiOppnAllMatches(a,'India',report="summary") #' m <-teamBatsmenPartnershiOppnAllMatches(a,'Australia',report="detailed") #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenMatch}}\cr #' \code{\link{teamBattingScorecardMatch}}\cr #' #' @export #' teamBatsmenPartnershiOppnAllMatches <- function(matches,theTeam,report="summary"){ team=batsman=nonStriker=partnershipRuns=runs=totalRuns=NULL a <-filter(matches,team==theTeam) #Get partnerships df <- data.frame(summarise(group_by(a,batsman,nonStriker),sum(runs))) names(df) <- c("batsman","nonStriker","partnershipRuns") b <- summarise(group_by(df,batsman),totalRuns=sum(partnershipRuns)) c <- arrange(b,desc(totalRuns)) d <- full_join(df,c,by="batsman") if(report == "detailed"){ partnerships <- arrange(d,desc(totalRuns)) } else{ partnerships <- arrange(c,desc(totalRuns)) } partnerships }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenPartnershipOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 22 Mar 2016 # Function: teamBatsmenPartnershipOppnAllMatchesChart # This function computes the batting partnership of a team in all matches against # an opposition. The report generated can be detailed or a summary # ########################################################################################### #' @title #' Plot of team partnership all matches against an opposition #' #' @description #' This function plots the batting partnership of a team againt all oppositions in all matches #' This function also returns a dataframe with the batting partnerships #' #' @usage #' teamBatsmenPartnershipOppnAllMatchesChart(matches,main,opposition, plot=1) #' #' @param matches #' All the matches of the team against all oppositions #' #' @param main #' The main team for which the the batting partnerships are sought #' #' @param opposition #' The opposition team for which the the batting partnerships are sought #' #' @param plot #' Plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or partnerships #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches for team India against all oppositions #' d <- teamBatsmenVsBowlersAllOppnAllMatchesRept(matches,"India",rank=1,dispRows=50) #' #Plot the partnerships #' teamBatsmenVsBowlersAllOppnAllMatchesPlot(d) #' #' #Do not plot but get the dataframe #' e <- teamBatsmenVsBowlersAllOppnAllMatchesPlot(d,plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenVsBowlersOppnAllMatches}}\cr #' #' @export #' teamBatsmenPartnershipOppnAllMatchesChart <- function(matches,main,opposition,plot=1){ team=batsman=nonStriker=runs=partnershipRuns=totalRuns=NULL ggplotly=NULL a <-filter(matches,team==main) #Get partnerships df <- data.frame(summarise(group_by(a,batsman,nonStriker),sum(runs))) names(df) <- c("batsman","nonStriker","runs") df <- arrange(df,desc(runs)) print("here") cat("plot=") plot.title = paste(main," Batting partnership ","(against ",opposition," all matches)",sep="") # Plot the data if(plot == 1){ #ggplot2 ggplot(data=df,aes(x=batsman,y=runs,fill=nonStriker))+ geom_bar(data=df,stat="identity") + xlab("Batsman") + ylab("Partnership runs") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly g <- ggplot(data=df,aes(x=batsman,y=runs,fill=nonStriker))+ geom_bar(data=df,stat="identity") + xlab("Batsman") + ylab("Partnership runs") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g) } else{ df } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenPartnershipOppnAllMatchesChart.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBatsmenVsBowlersAllOppnAllMatchesRept # This function computes performance of batsmen/batsman against bowlers of the opposition. # It provides the names of the bowlers against whom the batsman scored the most. # We can the over all performance of the team or the individual performances of the batsman # If rank=10 then the overall performance of the team is displayed # For a rank'n' the performance of the batsman at that rank against bowlers is displayed ########################################################################################### #' @title #' Report of team batsmen vs bowlers in all matches all oppositions #' #' @description #' This function computes the performance of batsmen against all bowlers of all oppositions in all matches #' #' @usage #' teamBatsmenVsBowlersAllOppnAllMatchesRept(matches,theTeam,rank=0,dispRows=50) #' #' @param matches #' All the matches of the team against all oppositions #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param rank #' if the rank=0 then the data frame returned gives a summary list of the batsmen with the highest #' runs against bowlers. If rank=N (where N=1,2,3...) then the detailed breakup of the batsman and the runs #' scored against each bowler is returned #' #' @param dispRows #' The number of rows to be returned #' #' @return h #' The data frame of the batsman and the runs against bowlers #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches for team India against all oppositions #' m <-teamBattingScorecardAllOppnAllMatches(matches,theTeam="India") #' # Get the summary report #' teamBatsmenVsBowlersAllOppnAllMatchesRept(matches,"India",rank=0) #' #Get detailed report #' teamBatsmenVsBowlersAllOppnAllMatchesRept(matches,"India",rank=1,dispRows=50) #' #' teamBatsmenVsBowlersAllOppnAllMatchesRept(matches,"Pakistan",rank=0) #' teamBatsmenVsBowlersAllOppnAllMatchesRept(matches,"England",rank=1) #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenVsBowlersOppnAllMatches}}\cr #' #' @export #' teamBatsmenVsBowlersAllOppnAllMatchesRept <- function(matches,theTeam,rank=0,dispRows=50) { team=batsman=bowler=runs=runsScored=NULL ggplotly=NULL a <-filter(matches,team==theTeam) b <-summarise(group_by(a,batsman,bowler),sum(runs)) names(b) <- c("batsman","bowler","runs") c <- summarise(b,runsScored=sum(runs)) d <- arrange(c,desc(runsScored)) # If rank == 0 thne display top batsman with best performance if(rank == 0){ f <- d } else { # display dispRows for selected batsman with rank and runs scored against opposing bowlers bman <- d[rank,] f <- filter(b,batsman==bman$batsman) f <- arrange(f,desc(runs)) # Output only dispRows f <- f[1:dispRows,] } g <- complete.cases(f) h <- f[g,] }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenVsBowlersAllOppnAllMatchesRept.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 21 Mar 2016 # Function: teamBatsmenVsBowlersMatch # This function computes the performance of batsmen against different bowlers. # The user has a choice of either taking the output as a plot or as a dataframe # ########################################################################################### #' @title #' Team batsmen against bowlers in a match #' #' @description #' This function plots the performance of batsmen versus bowlers in a match or it can return #' the data frame #' #' @usage #' teamBatsmenVsBowlersMatch(match,theTeam,opposition, plot=1) #' #' @param match #' The match between the teams #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param opposition #' The opposition team #' #' @param plot #' lot=1 (static),plot=2(interactive),plot=3(table) #' #' @return b #' The data frame of the batsmen vs bowlers performance #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get athe match between England and Pakistan #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' batsmenVsBowlersMatch(a,'Pakistan','England', plot=TRUE) #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBattingScorecardMatch}}\cr #' #' @export #' teamBatsmenVsBowlersMatch <- function(match,theTeam,opposition, plot=1) { team=batsman=bowler=runs=runsConceded=NULL ggplotly=NULL a <-filter(match,team==theTeam) # Summarise the performance of the batsmen against the bowlers vs total runs scored b <-summarise(group_by(a,batsman,bowler),sum(runs)) names(b) <- c("batsman","bowler","runsConceded") if(plot == 1){ #ggplot2 plot.title <- paste(theTeam,"Batsmen vs Bowlers in Match (vs.",opposition,")") # Plot the performance of the batsmen as a facted grid ggplot(data=b,aes(x=bowler,y=runsConceded,fill=factor(bowler))) + facet_grid(~ batsman) + geom_bar(stat="identity") + xlab("Opposition bowlers") + ylab("Runs scored") + ggtitle('Batsmen vs Bowlers in Match') + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title <- paste(theTeam,"Batsmen vs Bowlers in Match (vs.",opposition,")") # Plot the performance of the batsmen as a facted grid g <- ggplot(data=b,aes(x=bowler,y=runsConceded,fill=factor(bowler))) + facet_grid(~ batsman) + geom_bar(stat="identity") + xlab("Opposition bowlers") + ylab("Runs scored") + ggtitle('Batsmen vs Bowlers in Match') + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g) } else{ b } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenVsBowlersMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 22 Mar 2016 # Function: teamBatsmenVsBowlersOppnAllMatches # This function computes the best performing batsman against an opposition's bowlers # in all matches with this team.The top 5 batsman are displayed by default # # ########################################################################################### #' @title #' Team batsmen vs bowlers all matches of an opposition #' #' @description #' This function computes the performance of batsmen against the bowlers of an oppositions in all matches #' #' @usage #' teamBatsmenVsBowlersOppnAllMatches(matches,main,opposition,plot=1,top=5) #' #' @param matches #' All the matches of the team against one specific opposition #' #' @param main #' The team for which the the batting partnerships are sought #' #' @param opposition #' The opposition team #' #' @param plot #' lot=1 (static),plot=2(interactive),plot=3(table) #' #' @param top #' The number of players to be plotted or returned as a dataframe. The default is 5 #' #' #' @return None or dataframe #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches for team India against an opposition #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' # Get the performance of India batsman against Australia in all matches #' teamBatsmenVsBowlersOppnAllMatches(a,"India","Australia") #' #' # Display top 3 #' teamBatsmanVsBowlersOppnAllMatches(a,"Australia","India",top=3) #' #' # Get top 10 and do not plot #' n <- teamBatsmenVsBowlersOppnAllMatches(a,"Australia","India",top=10,plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenVsBowlersOppnAllMatches}}\cr #' #' @export #' teamBatsmenVsBowlersOppnAllMatches <- function(matches,main,opposition,plot=1,top=5){ team=batsman=bowler=runs=runsScored=NULL ggplotly=NULL a <-filter(matches,team==main) b <-summarise(group_by(a,batsman,bowler),sum(runs)) names(b) <- c("batsman","bowler","runs") c <- summarise(b,runsScored=sum(runs)) d <- arrange(c,desc(runsScored)) # Pick 9 highest run givers d <- head(d,top) batsmen <- as.character(d$batsman) e <- NULL for(i in 1:length(batsmen)){ f <- filter(b,batsman==batsmen[i]) e <- rbind(e,f) } if(plot == 1){ #ggplot2 plot.title = paste(main," Batsmen vs bowlers"," (against ",opposition," all matches)",sep="") ggplot(data=e,aes(x=bowler,y=runs,fill=factor(bowler))) + facet_grid(~ batsman) + geom_bar(stat="identity") + xlab("Bowler") + ylab("Runs Scored") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title = paste(main," Batsmen vs bowlers"," (against ",opposition," all matches)",sep="") g <- ggplot(data=e,aes(x=bowler,y=runs,fill=factor(bowler))) + facet_grid(~ batsman) + geom_bar(stat="identity") + xlab("Bowler") + ylab("Runs Scored") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) } else{ e } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenVsBowlersOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBatsmenVsBowlersAllOppnAllMatchesPlot # This function computes performance of batsmen/batsman against bowlers of the opposition. # It provides the names of the bowlers against whom the batsman scored the most. # This is plotted as a chart ########################################################################################### #' @title #' Plot of Team batsmen vs bowlers against all opposition all matches #' #' @description #' This function computes the performance of batsmen against all bowlers of all oppositions in all matches. #' The data frame can be either plotted or returned to the user #' #' @usage #' teamBatsmenVsBowlersAllOppnAllMatchesPlot(df,plot=1) #' #' @param df #' The dataframe of all the matches of the team against all oppositions #' #' @param plot #' plot=1 (static),plot=2(interactive), plot=3 (table) #' #' #' @return None or dataframe #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches for team India against all oppositions in all matches #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # Also load directly from file #' #load("allMatchesAllOpposition-India.RData") #' #' d <- teamBatsmanVsBowlersAllOppnAllMatchesRept(matches,"India",rank=1,dispRows=50) #' teamBatsmenVsBowlersAllOppnAllMatchesPlot(d) #' e <- teamBatsmenVsBowlersAllOppnAllMatchesPlot(d,plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenVsBowlersOppnAllMatches}}\cr #' #' @export #' teamBatsmenVsBowlersAllOppnAllMatchesPlot <- function(df,plot=1) { runs=bowler=NULL ggplotly=NULL bman <- df$batsman if(plot == 1){ #ggplot2 plot.title <- paste(bman,"-Performances against all bowlers") ggplot(data=df,aes(x=bowler,y=runs,fill=factor(bowler))) + facet_grid(~ batsman) + geom_bar(stat="identity") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title <- paste(bman,"-Performances against all bowlers") g <- ggplot(data=df,aes(x=bowler,y=runs,fill=factor(bowler))) + facet_grid(~ batsman) + geom_bar(stat="identity") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) }else{ df } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBatsmenvsBowlersAllOppnAllMatchesPlot.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBattingPerfDetails # This function get the overall team batting details of the matcjh # ########################################################################################### #' @title #' Gets the team batting details. #' #' @description #' This function gets the team batting detals #' #' @usage #' teamBattingPerfDetails(match,theTeam,includeInfo=FALSE) #' #' @param match #' The match between the teams #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param includeInfo #' Whether to include venue,date, winner and result #' #' @return df #' dataframe #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #teamBattingPerfDetails() #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBattingScorecardMatch}}\cr #' #' #' teamBattingPerfDetails <- function(match,theTeam,includeInfo=FALSE){ team=batsman=runs=fours=sixes=NULL byes=legbyes=noballs=wides=bowler=wicketFielder=NULL wicketKind=wicketPlayerOut=NULL # Initialise to NULL details <- NULL a <-filter(match,team==theTeam) sz <- dim(a) if(sz[1] == 0){ #cat("No batting records.\n") return(NULL) } b <- select(a,batsman,runs) names(b) <-c("batsman","runs") #Compute the number of 4s c <- b %>% mutate(fours=(runs>=4 & runs <6)) %>% filter(fours==TRUE) # Group by batsman. Count 4s d <- summarise(group_by(c, batsman),fours=n()) # Get the total runs for each batsman e <-summarise(group_by(a,batsman),sum(runs)) names(b) <-c("batsman","runs") details <- full_join(e,d,by="batsman") names(details) <-c("batsman","runs","fours") # Compute number of 6's f <- b %>% mutate(sixes=(runs ==6)) %>% filter(sixes == TRUE) # Group by batsman. COunt 6s g <- summarise(group_by(f, batsman),sixes=n()) names(g) <-c("batsman","sixes") # Full join with 4s and 6s details <- full_join(details,g,by="batsman") # Count the balls played by the batsman ballsPlayed <- a %>% select(batsman,byes,legbyes,wides,noballs,runs) %>% filter(wides ==0,noballs ==0,byes ==0,legbyes == 0) %>% select(batsman,runs) ballsPlayed<- summarise(group_by(ballsPlayed,batsman),count=n()) names(ballsPlayed) <- c("batsman","ballsPlayed") # Create a data frame details <- full_join(details,ballsPlayed,by="batsman") # If there are NAs then replace with 0's if(sum(is.na(details$fours)) != 0){ details[is.na(details$fours),]$fours <- 0 } if(sum(is.na(details$sixes)) != 0){ details[is.na(details$sixes),]$sixes <- 0 } details <- select(details,batsman,ballsPlayed,fours,sixes,runs) #Calculate strike rate details <- mutate(details,strikeRate=round(((runs/ballsPlayed)*100),2)) w <- filter(a,wicketKind !="not-out" | wicketPlayerOut != "nobody" ) # Remove unnecessary factors w$wicketPlayerOut <-factor(w$wicketPlayerOut) wkts <- select(w,batsman,bowler,wicketFielder,wicketKind,wicketPlayerOut) details <- full_join(details,wkts,by="batsman") # Set as character to be able to assign value details$wicketPlayerOut <- as.character(details$wicketPlayerOut) details$wicketKind <- as.character(details$wicketKind) details$wicketFielder <- as.character(details$wicketFielder) details$bowler <- as.character(details$wicketFielder) # Set the NA columns in wicketPlayerOut with notOut # Also set the other columns for this row if(sum(is.na(details$wicketPlayerOut))!= 0){ details[is.na(details$wicketPlayerOut),]$wicketPlayerOut="notOut" details[is.na(details$wicketKind),]$wicketKind="notOut" details[is.na(details$wicketFielder),]$wicketFielder="nobody" details[is.na(details$bowler),]$bowler="nobody" } # Determine the opposition t <- match$team != theTeam # Pick the 1st element t1 <- match$team[t] opposition <- as.character(t1[1]) if(includeInfo == TRUE) { details$date <- a$date[1] details$venue <- a$venue[1] details$opposition <- opposition details$winner <- a$winner[1] details$result <- a$result[1] } details }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBattingPerfDetails.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 24 Mar 2016 # Function: teamBattingScorecardAllOppnAllMatches # This function computes the performances of the teams batsman against all opposition in # all matches # # ########################################################################################### #' @title #' Team batting scorecard against all oppositions in all matches #' #' @description #' This function omputes and returns the batting scorecard of a team in all matches against all #' oppositions. The data frame has the ball played, 4's,6's and runs scored by batsman #' #' @usage #' teamBattingScorecardAllOppnAllMatches(matches,theTeam) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' #' @return details #' The data frame of the scorecard of the team in all matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India with all oppositions #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # This can also be loaded from saved file #' # load("allMatchesAllOpposition-India.RData") #' #' # Top batsman is displayed in descending order of runs #' teamBattingScorecardAllOppnAllMatches(matches,theTeam="India") #' #' # The best England players scorecard against India is shown #' teamBattingScorecardAllOppnAllMatches(matches,theTeam="England") #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamBattingScorecardAllOppnAllMatches <- function(matches,theTeam){ team=batsman=runs=fours=sixes=NULL byes=legbyes=noballs=wides=NULL a <-filter(matches,team==theTeam) b <- select(a,batsman,runs) names(b) <-c("batsman","runs") #Compute the number of 4s c <- b %>% mutate(fours=(runs>=4 & runs <6)) %>% filter(fours==TRUE) # Group by batsman. Count 4s d <- summarise(group_by(c, batsman),fours=n()) # Get the total runs for each batsman e <-summarise(group_by(a,batsman),sum(runs)) names(b) <-c("batsman","runs") details <- full_join(e,d,by="batsman") names(details) <-c("batsman","runs","fours") f <- b %>% mutate(sixes=(runs ==6)) %>% filter(sixes == TRUE) # Group by batsman. COunt 6s g <- summarise(group_by(f, batsman),sixes=n()) names(g) <-c("batsman","sixes") #Full join with 4s and 6s details <- full_join(details,g,by="batsman") # Count the balls played by the batsman ballsPlayed <- a %>% select(batsman,byes,legbyes,wides,noballs,runs) %>% filter(wides ==0,noballs ==0,byes ==0,legbyes == 0) %>% select(batsman,runs) ballsPlayed<- summarise(group_by(ballsPlayed,batsman),count=n()) names(ballsPlayed) <- c("batsman","ballsPlayed") details <- full_join(details,ballsPlayed,by="batsman") cat("Total=",sum(details$runs),"\n") details <- arrange(details,desc(runs),desc(sixes),desc(fours)) details <- select(details,batsman,ballsPlayed,fours,sixes,runs) details }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBattingScorecardAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 20 Mar 2016 # Function: teamBattingScorecardMatch # This function gets the batting scorecard of team in a match. The result is # returned as a data frame # ########################################################################################### #' @title #' Team batting scorecard of a team in a match #' #' @description #' This function computes returns the batting scorecard (runs, fours, sixes, balls played) for the #' team #' @usage #' teamBattingScorecardMatch(match,theTeam) #' #' @param match #' The match for which the score card is required e.g. #' #' @param theTeam #' Team for which scorecard required #' #' @return scorecard #' A data frame with the batting scorecard #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' teamBowlingScorecardMatch(a,'England') #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' #' @export #' teamBattingScorecardMatch <- function(match,theTeam){ team=batsman=runs=fours=sixes=NULL byes=legbyes=noballs=wides=NULL a <-filter(match,team==theTeam) sz <- dim(a) if(sz[1] == 0){ cat("No batting records.\n") return(NULL) } b <- select(a,batsman,runs) names(b) <-c("batsman","runs") #Compute the number of 4s c <- b %>% mutate(fours=(runs>=4 & runs <6)) %>% filter(fours==TRUE) # Group by batsman. Count 4s d <- summarise(group_by(c, batsman),fours=n()) # Get the total runs for each batsman e <-summarise(group_by(a,batsman),sum(runs)) names(b) <-c("batsman","runs") details <- full_join(e,d,by="batsman") names(details) <-c("batsman","runs","fours") f <- b %>% mutate(sixes=(runs ==6)) %>% filter(sixes == TRUE) # Group by batsman. oOunt 6s g <- summarise(group_by(f, batsman),sixes=n()) names(g) <-c("batsman","sixes") #Full join with 4s and 6s details <- full_join(details,g,by="batsman") # Count the balls played by the batsman ballsPlayed <- a %>% select(batsman,byes,legbyes,wides,noballs,runs) %>% filter(wides ==0,noballs ==0,byes ==0,legbyes == 0) %>% select(batsman,runs) ballsPlayed<- summarise(group_by(ballsPlayed,batsman),count=n()) names(ballsPlayed) <- c("batsman","ballsPlayed") details <- full_join(details,ballsPlayed,by="batsman") cat("Total=",sum(details$runs),"\n") # If there are NAs then if(sum(is.na(details$fours)) != 0){ details[is.na(details$fours),]$fours <- 0 } if(sum(is.na(details$sixes)) != 0){ details[is.na(details$sixes),]$sixes <- 0 } # Out the details details <- select(details,batsman,ballsPlayed,fours,sixes,runs) details }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBattingScorecardMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Mar 2016 # Function: teamBattingBattingScorecardOppnAllMatches # This function computes the batting scorecard for the team against an oppositon # in all matches against the opposition # # ########################################################################################### #' @title #' Team batting scorecard of a team in all matches against an opposition #' #' @description #' This function computes returns the batting scorecard (runs, fours, sixes, balls played) for the #' team in all matches against an opposition #' #' @usage #' teamBattingScorecardOppnAllMatches(matches,main,opposition) #' #' @param matches #' the data frame of all matches between a team and an opposition obtained with #' the call getAllMatchesBetweenteam() #' #' @param main #' The main team for which scorecard required #' #' @param opposition #' The opposition team #' #' @return scorecard #' The scorecard of all the matches #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and Australia #' matches <- getAllMatchesBetweenTeams("India","Australia",dir="../data",save=TRUE) #' # Compute the scorecard of India in matches with australia #' teamBattingScorecardOppnAllMatches(matches,main="India",opposition="Australia") #' #' #Get all matches between Australia and India #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #Compute the batting scorecard of Australia #' teamBattingScorecardOppnAllMatches(matches,"Australia","India") #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' #' @export #' teamBattingScorecardOppnAllMatches <- function(matches,main,opposition){ team=batsman=runs=fours=sixes=NULL byes=legbyes=noballs=wides=NULL a <-filter(matches,team==main) b <- select(a,batsman,runs) names(b) <-c("batsman","runs") #Compute the number of 4s c <- b %>% mutate(fours=(runs>=4 & runs <6)) %>% filter(fours==TRUE) # Group by batsman. Count 4s d <- summarise(group_by(c, batsman),fours=n()) # Get the total runs for each batsman e <-summarise(group_by(a,batsman),sum(runs)) names(b) <-c("batsman","runs") details <- full_join(e,d,by="batsman") names(details) <-c("batsman","runs","fours") # Compute sixes f <- b %>% mutate(sixes=(runs ==6)) %>% filter(sixes == TRUE) # Group by batsman. COunt 6s g <- summarise(group_by(f, batsman),sixes=n()) names(g) <-c("batsman","sixes") #Full join with 4s and 6s details <- full_join(details,g,by="batsman") # Count the balls played by the batsman ballsPlayed <- a %>% select(batsman,byes,legbyes,wides,noballs,runs) %>% filter(wides ==0,noballs ==0,byes ==0,legbyes == 0) %>% select(batsman,runs) ballsPlayed<- summarise(group_by(ballsPlayed,batsman),count=n()) names(ballsPlayed) <- c("batsman","ballsPlayed") details <- full_join(details,ballsPlayed,by="batsman") cat("Total=",sum(details$runs),"\n") details <- arrange(details,desc(runs),desc(sixes),desc(fours)) details <- select(details,batsman,ballsPlayed,fours,sixes,runs) details }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBattingScoredcardOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBowlersVsBatsmenAllOppnAllMatchesMain # This function computes the performance of bowlers of team against all opposition in all matches # This function returns a dataframe # ########################################################################################### #' @title #' Compute team bowlers vs batsmen all opposition all matches #' #' @description #' This function computes performance of bowlers of a team against all opposition in all matches #' #' @usage #' teamBowlersVsBatsmenAllOppnAllMatchesMain(matches,theTeam,rank=0) #' #' @param matches #' the data frame of all matches between a team and aall opposition and all obtained with #' the call getAllMatchesAllOpposition() #' #' @param theTeam #' The team against which the performance is requires #' #' @param rank #' When the rank is 0 then the performance of all the bowlers is displayed. If rank=n (1,2,3 ..) then #' the performance of that bowler is given #' #' @return dataframe #' The dataframe with all performances #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and all oppostions #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # You could also load directly from the saved file #' #load("allMatchesAllOpposition-India.RData") #' # The call below gives the best bowlers of India #' teamBowlersVsBatsmenAllOppnAllMatchesMain(matches,theTeam="India",rank=0) #' #' # The call with rank=1 gives the performance of the 'India' bowler with rank=1 #' teamBowlersVsBatsmenAllOppnAllMatchesMain(matches,theTeam="India",rank=1) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlersVsBatsmenAllOppnAllMatchesMain <- function(matches,theTeam,rank=0) { team=bowler=batsman=NULL runs=over=runsConceded=NULL a <-filter(matches,team !=theTeam) b <-summarise(group_by(a,bowler,batsman),sum(runs)) names(b) <- c("bowler","batsman","runsConceded") # Compute total runs conceded c <- summarise(group_by(b,bowler),runs=sum(runsConceded)) # Sort by descneding d <- arrange(c,desc(runs)) # Initialise to NULL f <- NULL if(rank == 0){ f <- head(d,10) } else { # display dispRows for selected bowler with rank # Pick the chosen bowler bwlr <- d[rank,] f <- filter(b,bowler==bwlr$bowler) f <- arrange(f,desc(runsConceded)) } f }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersVsBatsmenAllOppnAllMatchesMain.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBowlersVsBatsmenAllOppnAllMatchesPlot # This function computes the performance of bowlers against batsman of opposition # ########################################################################################### #' @title #' Plot bowlers vs batsmen against all opposition all matches #' #' @description #' This function computes performance of bowlers of a team against all opposition in all matches #' #' @usage #' teamBowlersVsBatsmenAllOppnAllMatchesPlot(bowlerDF,t1,t2,plot=1) #' #' @param bowlerDF #' The data frame of the bowler whose performance is required #' #' @param t1 #' The team against to which the player belong #' #' @param t2 #' The opposing team #' #' @param plot #' plot=1 (static),plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and all oppostions #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' #Get the details of the bowler with the specified rank as a dataframe #' df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(matches,theTeam="India",rank=1) #' #Plot this #' teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"India","India") #' #' df <- teamBowlersVsBatsmenAllOppnAllMatchesRept(matches,theTeam="England",rank=1) #' teamBowlersVsBatsmenAllOppnAllMatchesPlot(df,"India","England") #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}}\cr #' @export #' teamBowlersVsBatsmenAllOppnAllMatchesPlot <- function(bowlerDF,t1,t2,plot=1){ batsman=runsConceded=team=NULL ggplotly=NULL bwlr <- bowlerDF$bowler if(t2 != "India"){ plot.title <- paste(bwlr,"-Performance against",t2,"batsmen") print("aa") }else{ plot.title <- paste(bwlr,"-Performance against all batsmen") } if(plot == 1){ #ggplot2 ggplot(data=bowlerDF,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + xlab("Batsman") + ylab("Runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly g <- ggplot(data=bowlerDF,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + xlab("Batsman") + ylab("Runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersVsBatsmenAllOppnAllMatchesPlot.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBowlersVsBatsmenAllOppnAllMatchesRept # This function computes the performance of bowlers of team against all opposition in all matches # This function returns a dataframe # ########################################################################################### #' @title #' report of Team bowlers vs batsmen against all opposition all matches #' #' @description #' This function computes performance of bowlers of a team against all opposition in all matches #' #' @usage #' teamBowlersVsBatsmenAllOppnAllMatchesRept(matches,theTeam,rank=0) #' #' @param matches #' the data frame of all matches between a team and aall opposition and all obtained with #' the call getAllMatchesAllOpposition() #' #' @param theTeam #' The team against which the performance is requires #' #' @param rank #' When the rank is 0 then the performance of all the bowlers is displayed. If rank=n (1,2,3 ..) then #' the performance of that bowler is given #' #' @return dataframe #' The dataframe with all performances #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and all oppostions #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # You could also load directly from the saved file #' #load("allMatchesAllOpposition-India.RData") #' # The call below gives the best bowlers against India #' teamBowlersVsBatsmenAllOppnAllMatchesRept(matches,theTeam="India",rank=0) #' #' # The call with rank=1 gives the performace of the bowler with rank #' teamBowlersVsBatsmenAllOppnAllMatchesRept(matches,theTeam="India",rank=1) #' #' # The call below gives the overall performance of India bowlers against South Africa #' teamBatsmenVsBowlersAllOppnAllMatchesRept(matches,"South Africa",rank=0) #' #' # The call below gives the performance of best Indias bowlers against Australia #' teamBowlersVsBatsmenAllOppnAllMatchesRept(matches,"Australia",rank=1) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' @export #' teamBowlersVsBatsmenAllOppnAllMatchesRept <- function(matches,theTeam,rank=0) { batsman=runsConceded=team=runs=bowler=NULL team=bowler=batsman=NULL a <-filter(matches,team==theTeam) b <-summarise(group_by(a,bowler,batsman),sum(runs)) names(b) <- c("bowler","batsman","runsConceded") # Compute total runs conceded c <- summarise(group_by(b,bowler),runs=sum(runsConceded)) # Sort by descneding d <- arrange(c,desc(runs)) # Initialise to NULL f <- NULL if(rank == 0){ f <- head(d,10) } else { # display dispRows for selected bowler with rank # Pick the chosen bowler bwlr <- d[rank,] f <- filter(b,bowler==bwlr$bowler) f <- arrange(f,desc(runsConceded)) } f }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersVsBatsmenAllOppnAllMatchesRept.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 22 Mar 2016 # Function: teamBowlersVsBatsmenMatch # This function computes performance of the team bowlers against the opposition batsmen # ########################################################################################### #' @title #' Team bowlers vs batsmen in a match #' #' @description #' This function computes performance of bowlers of a team against an opposition in a match #' #' @usage #' teamBowlersVsBatsmenMatch(match,theTeam,opposition, plot=1) #' #' @param match #' The data frame of the match. This can be obtained with the call for e.g #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' #' @param theTeam #' The team against which the performance is required #' #' @param opposition #' The opposition team #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or dataframe #' If plot=TRUE there is no return. If plot=TRUE then the dataframe is returned #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get the match between England and Pakistan #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' teamBowlersVsBatsmenMatch(a,"Pakistan","England") #' teamBowlersVsBatsmenMatch(a,"England","Pakistan") #' m <- teamBowlersVsBatsmenMatch(a,"Pakistan","England") #' } #' #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlersVsBatsmenMatch <- function(match,theTeam,opposition, plot=1){ batsman=runsConceded=team=runs=bowler=NULL ggplotly=NULL bowler=batsman=NULL c <- filter(match,team !=theTeam) b <-summarise(group_by(c,bowler,batsman),sum(runs)) names(b) <- c("bowler","batsman","runsConceded") # Output plot or dataframe if(plot == 1){ #ggplot2 plot.title <- paste(theTeam,"Bowler vs Batsman (against",opposition,")") p <- ggplot(data=b,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14, face="bold.italic",margin=margin(10))) p } else if(plot == 2){ #ggplotly plot.title <- paste(theTeam,"Bowler vs Batsman (against",opposition,")") p <- ggplot(data=b,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14, face="bold.italic",margin=margin(10))) ggplotly(p) } else{ b } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersVsBatsmenMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Mar 2016 # Function: teamBowlersVsBatsmenOppnAllMatches # This function computes the performance of the bowlers and the runs conceded and the batsman # who scored most # # ########################################################################################### #' @title #' Team bowlers vs batsmen against an opposition in all matches #' #' @description #' This function computes performance of bowlers of a team against an opposition in all matches #' against the opposition #' #' @usage #' teamBowlersVsBatsmenOppnAllMatches(matches,main,opposition,plot=1,top=5) #' #' @param matches #' The data frame of all matches between a team the opposition. This dataframe can be obtained with #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' @param main #' The main team against which the performance is requires #' #' @param opposition #' The opposition team against which the performance is require #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @param top #' The number of rows to be returned. 5 by default #' #' @return dataframe #' The dataframe with all performances #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and Australia #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' # Plot the performance of top 5 Indian bowlers against Australia #' teamBowlersVsBatsmanOppnAllMatches(matches,'India',"Australia",top=5) #' #' # Plot the performance of top 3 Australian bowlers against India #' teamBowlersVsBatsmenOppnAllMatches(matches,"Australia","India",top=3) #' #' # Get the top 5 bowlers of Australia. Do not plot but get as a dataframe #' teamBowlersVsBatsmenOppnAllMatches(matches,"Australia","India",plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlersVsBatsmenOppnAllMatches <- function(matches,main,opposition,plot=1,top=5){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL ggplotly=NULL team=bowler=ball=wides=noballs=runsConceded=overs=batsman=NULL a <-filter(matches,team != main) b <-summarise(group_by(a,bowler,batsman),sum(runs)) names(b) <- c("bowler","batsman","runsConceded") # Compute total runs conceded c <- summarise(group_by(b,bowler),runs=sum(runsConceded)) # Sort by descneding d <- arrange(c,desc(runs)) # Pick 5 highest run givers d <- head(d,top) bowlers <- as.character(d$bowler) e <- NULL for(i in 1:length(bowlers)){ f <- filter(b,bowler==bowlers[i]) e <- rbind(e,f) } names(e) <- c("bowler","batsman","runsConceded") if(plot == 1){ #ggplot2 plot.title = paste("Bowlers vs batsmen -",main," Vs ",opposition,"(all matches)",sep="") ggplot(data=e,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + #facet_wrap( ~ bowler,scales = "free", ncol=3,drop=TRUE) + #Does not work.Check! xlab("Batsman") + ylab("Runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title = paste("Bowlers vs batsmen -",main," Vs ",opposition,"(all matches)",sep="") g <- ggplot(data=e,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + #facet_wrap( ~ bowler,scales = "free", ncol=3,drop=TRUE) + #Does not work.Check! xlab("Batsman") + ylab("Runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) } else{ e } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersVsBatsmenOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 24 Mar 2016 # Function: teamBowlersWicketKindOppnAllMatches # This function computes the the types of wickets taken by the bowlers, caught,bowled, c&b etc # # ########################################################################################### #' @title #' Team bowlers wicket kind against an opposition in all matches #' #' @description #' This function computes performance of bowlers of a team and the wicket kind against an #' opposition in all matches against the opposition #' #' @usage #' teamBowlersWicketKindOppnAllMatches(matches,main,opposition,plot=1) #' #' @param matches #' The data frame of all matches between a team the opposition. This dataframe can be obtained with #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' @param main #' The team for which the performance is required #' #' @param opposition #' The opposing team #' #' @param plot #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or dataframe #' The return depends on the value of the plot #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and Australia #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' teamBowlersWicketKindOppnAllMatches(matches,"India","Australia",plot=TRUE) #' m <- teamBowlersWicketKindOppnAllMatches(matches,"Australia","India",plot=FALSE) #' #' teamBowlersWicketKindOppnAllMatches(matches,"Australia","India",plot=TRUE) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}} #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}} #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}} #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}} #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}} #' #' @export #' teamBowlersWicketKindOppnAllMatches <- function(matches,main,opposition,plot=1){ team=bowler=ball=NULL ggplotly=NULL runs=over=runsConceded=NULL byes=legbyes=noballs=wides=runConceded=NULL extras=wicketFielder=wicketKind=wicketPlayerOut=NULL # Compute the maidens,runs conceded and overs for the bowlers a <-filter(matches,team !=main) # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) r <- full_join(h,e,by="bowler") # Set NAs to 0 if(sum(is.na(r$wicketKind)) != 0){ r[is.na(r$wicketKind),]$wicketKind="noWicket" } if(sum(is.na(r$wicketPlayerOut)) !=0){ r[is.na(r$wicketPlayerOut),]$wicketPlayerOut="noWicket" } if(plot == 1){ #ggplot2 plot.title = paste("Wicket kind taken by bowlers -",main," Vs ",opposition,"(all matches)",sep="") ggplot(data=r,aes(x=wicketKind,y=runs,fill=factor(wicketKind))) + facet_wrap( ~ bowler,scales = "fixed", ncol=8) + geom_bar(stat="identity") + xlab("Wicket kind") + ylab("Runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title = paste("Wicket kind taken by bowlers -",main," Vs ",opposition,"(all matches)",sep="") g <- ggplot(data=r,aes(x=wicketKind,y=runs,fill=factor(wicketKind))) + facet_wrap( ~ bowler,scales = "fixed", ncol=8) + geom_bar(stat="identity") + xlab("Wicket kind") + ylab("Runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) } else{ r } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersWicketKindOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 24 Mar 2016 # Function: teamBowlersWicketRunsOppnAllMatches # This function computes the number of wickets taken and runs conceded by the bowlers in # all matches against the opposition # # ########################################################################################### #' @title #' Team bowlers wicket runs against an opposition in all matches #' #' @description #' This function computes performance of bowlers of a team and the runs conceded against an #' opposition in all matches against the opposition #' #' @usage #' teamBowlersWicketRunsOppnAllMatches(matches,main,opposition,plot=1) #' #' @param matches #' The data frame of all matches between a team the opposition. This dataframe can be obtained with #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' @param main #' The team for which the performance is required #' #' @param opposition #' The opposing team #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or dataframe #' The return depends on the value of the plot #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and Australia #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' teamBowlersWicketRunsOppnAllMatches(matches,"India","Australia") #' m <-teamBowlerWicketsRunsOppnAllMatches(matches,"Australia","India",plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBowlersWicketsOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlersWicketRunsOppnAllMatches <- function(matches,main,opposition,plot=1){ team=bowler=ball=NULL ggplotly=NULL runs=over=wickets=NULL byes=legbyes=noballs=wides=runsConceded=NULL extras=wicketFielder=wicketKind=wicketPlayerOut=NULL # Compute the maidens,runs conceded and overs for the bowlers a <-filter(matches,team !=main) # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } if(plot == 1){ #ggplot2 plot.title = paste("Wicket taken cs Runs conceded -",main," Vs ",opposition,"(all matches)",sep="") ggplot(data=l,aes(x=factor(wickets),y=runs,fill=factor(wickets))) + facet_wrap( ~ bowler,scales = "fixed", ncol=8) + geom_bar(stat="identity") + xlab("Number of wickets") + ylab('Runs conceded') + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title = paste("Wicket taken cs Runs conceded -",main," Vs ",opposition,"(all matches)",sep="") g <- ggplot(data=l,aes(x=factor(wickets),y=runs,fill=factor(wickets))) + facet_wrap( ~ bowler,scales = "fixed", ncol=8) + geom_bar(stat="identity") + xlab("Number of wickets") + ylab('Runs conceded') + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) } else { l } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersWicketRunsOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Mar 2016 # Function: teamBowlersWicketsOppnAllMatches # This function computes the total wickets taken by the top 20(default) bowlers against the # opposition # # ########################################################################################### #' @title #' Team bowlers wickets against an opposition in all matches #' #' @description #' This function computes performance of bowlers of a team and the wickets taken against an #' opposition in all matches against the opposition #' #' @usage #' teamBowlersWicketsOppnAllMatches(matches,main,opposition,plot=1,top=20) #' #' @param matches #' The data frame of all matches between a team the opposition. This dataframe can be obtained with #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' @param main #' The team for which the performance is required #' #' @param opposition #' The opposing team #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @param top #' The number of top bowlers to be included in the result #' #' @return None or dataframe #' The return depends on the value of the plot #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and Australia #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' #Display top 20 #' teamBowlersWicketsOppnAllMatches(matches,"India","Australia") #' #Display and plot top 10 #' teamBowlersWicketsOppnAllMatches(matches,"Australia","India",top=10) #' #' #Do not plot but return as dataframe #' teamBowlersWicketsOppnAllMatches(matches,"India","Australia",plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}}\cr #' \code{\link{teamBowlersWicketRunsOppnAllMatches}}\cr #' #' @export #' teamBowlersWicketsOppnAllMatches <- function(matches,main,opposition,plot=1,top=20){ team=bowler=ball=noballs=runs=NULL ggplotly=NULL wicketKind=wicketPlayerOut=over=wickets=NULL batsman=wides=NULL a = NULL #Filter the matches by the team a <-filter(matches,team!=main) # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Compute number of wickets c <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") d <- summarise(group_by(c,bowler),wickets=length(unique(wicketPlayerOut))) e <- arrange(d,desc(wickets)) # Display maximum or the requested 'top' size sz <- dim(e) if(sz[1] > top){ e <- e[1:top,] }else{ e <- e[1:sz[1],] } names(e) <- c("bowler","wickets") if(plot == 1){ #ggplot2 plot.title = paste(main," Bowler performances ","(against ",opposition," all matches)",sep="") ggplot(data=e,aes(x=bowler,y=wickets,fill=factor(bowler))) + geom_bar(stat="identity") + #facet_wrap( ~ bowler,scales = "free", ncol=3,drop=TRUE) + #Does not work.Check! xlab("Batsman") + ylab("Wickets taken") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title = paste(main," Bowler performances ","(against ",opposition," all matches)",sep="") g <- ggplot(data=e,aes(x=bowler,y=wickets,fill=factor(bowler))) + geom_bar(stat="identity") + #facet_wrap( ~ bowler,scales = "free", ncol=3,drop=TRUE) + #Does not work.Check! xlab("Batsman") + ylab("Wickets taken") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,500) } else{ e } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlersWicketsOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Mar 2016 # Function: teamBowlingPerfDetails # This function uses gets the bowling performance of a team # ########################################################################################### #' @title #' get team bowling performance details #' #' @description #' This function computes performance of bowlers of a team a #' #' @usage #' teamBowlingPerfDetails(match,theTeam,includeInfo=FALSE) #' #' @param match #' The data frame of all match #' #' @param theTeam #' The team for which the performance is required #' #' @param includeInfo #' If true details like venie,winner, result etc are included #' #' @return dataframe #' The dataframe of bowling performance #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India and Australia #' match <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' teamBowlingPerf(match,"India",includeInfo=TRUE) #' } #' #' @seealso #' \code{\link{teamBatsmenPartnershipAllOppnAllMatches}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesRept}}\cr #' \code{\link{teamBowlersWicketRunsOppnAllMatches}}\cr #' #' @export #' teamBowlingPerfDetails <- function(match,theTeam,includeInfo=FALSE){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL team=bowler=ball=wides=noballs=runsConceded=overs=over=NULL # Initialise to NULL l <- NULL a <-filter(match,team!=theTeam) sz <- dim(a) if(sz[1] == 0){ #cat("No bowling records.\n") return(NULL) } a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") #i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,h,by="bowler") # Remove unnecessary factors l$wicketPlayerOut <-factor(l$wicketPlayerOut) l$wicketKind <- factor(l$wicketKind) # Set as character to assign values l$wicketPlayerOut <- as.character(l$wicketPlayerOut) l$wicketKind <- as.character(l$wicketKind) # Set NAs to none if(sum(is.na(l$wicketKind)) != 0){ l[is.na(l$wicketKind),]$wicketKind <-"none" } if(sum(is.na(l$wicketPlayerOut)) != 0){ l[is.na(l$wicketPlayerOut),]$wicketPlayerOut="nobody" } l #Calculate strike rate l <- mutate(l,economyRate=round(((runs/overs)),2)) # Determine the opposition t <- match$team != theTeam # Pick the 1st element t1 <- match$team[t] opposition <- as.character(t1[1]) if(includeInfo == TRUE) { l$date <- a$date[1] l$venue <- a$venue[1] l$opposition <- opposition l$winner <- a$winner[1] l$result <- a$result[1] } l }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingPerfDetails.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Mar 2016 # Function: teamBowlingPerfOppnAllMatches # This function computes the team bowling performance against an opposition and picks # the top bowlers based on number of wickets taken # # ########################################################################################### #' @title #' team bowling performance all matches against an opposition #' #' @description #' This function computes returns the bowling dataframe of bowlers deliveries, maidens, overs, wickets #' against an opposition in all matches #' #' @usage #' teamBowlingPerfOppnAllMatches(matches,main,opposition) #' #' @param matches #' The matches of the team against an opposition. #' #' @param main #' Team for which bowling performance is required #' #' @param opposition #' The opposition Team #' #' #' @return l #' A data frame with the bowling performance #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get all matches between India and Autralia #' matches <- getAllMatchesBetweenTeams("Australia","India",dir="../data") #' #' # Or load directly from saved file #' # load("India-Australia-allMatches.RData") #' #' teamBowlingPerfOppnAllMatches(matches,"India","Australia") #' teamBowlingPerfOppnAllMatches(matches,main="Australia",opposition="India") #' } #' #' @seealso #' \code{\link{teamBowlersWicketsOppnAllMatches}}\cr #' \code{\link{teamBowlersWicketRunsOppnAllMatches}}\cr #' \code{\link{teamBowlersWicketKindOppnAllMatches}}\cr #' #' @export #' teamBowlingPerfOppnAllMatches <- function(matches,main,opposition){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL team=bowler=ball=wides=noballs=runsConceded=overs=over=NULL wickets=maidens=NULL # Compute the maidens,runs conceded and overs for the bowlers a <-filter(matches,team != main) # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if there are any if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } # Arrange in descending order of wickets and runs and ascending order for maidens l <-arrange(l,desc(wickets),desc(runs),maidens) l }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingPerfOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBowlingScorecardAllOppnAllMatches # This function computes the performance of bowlers of team against all opposition in all matches # This function returns a dataframe # ########################################################################################### #' @title #' Team bowling scorecard all opposition all matches #' #' @description #' This function computes returns the bowling dataframe of bowlers deliveries, maidens, overs, wickets #' against all oppositions in all matches #' #' @usage #' teamBowlingScorecardAllOppnAllMatches(matches,theTeam) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param theTeam #' Team for which bowling performance is required #' #' #' @return l #' A data frame with the bowling performance in alll matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get all matches between India and other opposition #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # Or load directly from saved file #' # load("allMatchesAllOpposition-India.RData") #' #' # Top opposition bowlers performances against India #' teamBowlingScorecardAllOppnAllMatches(matches,"India") #' #' #Top Indian bowlers against respective opposition #' teamBowlingScorecardAllOppnAllMatches(matches,'Australia') #' teamBowlingScorecardAllOppnAllMatches(matches,'South Africa') #' teamBowlingScorecardAllOppnAllMatches(matches,'England') #' } #' #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlingScorecardAllOppnAllMatches <- function(matches,theTeam){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL team=bowler=ball=wides=noballs=runsConceded=overs=NULL over=wickets=maidens=NULL a <-filter(matches,team==theTeam) a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(wicketPlayerOut)) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if there are any if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } # Arrange in descending order of wickets and runs and ascending order for maidens l <-arrange(l,desc(wickets),desc(runs),maidens) l }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingScorecardAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBowlingScorecardAllOppnAllMatchesMain # This function computes the performance of bowlers of team against all opposition in all matches # This function returns a dataframe # ########################################################################################### #' @title #' Team bowling scorecard all opposition all matches Main #' #' @description #' This function computes returns the bowling dataframe of best bowlers deliveries, maidens, overs, wickets #' against all oppositions in all matches #' #' @usage #' teamBowlingScorecardAllOppnAllMatchesMain(matches,theTeam) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param theTeam #' Team for which bowling performance is required #' #' #' @return l #' A data frame with the bowling performance in alll matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get all matches between India and other opposition #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # Or load directly from saved file #' # load("allMatchesAllOpposition-India.RData") #' #' # Top opposition bowlers of India #' teamBowlingScorecardAllOppnAllMatchesMain(matches,"India") #' } #' #' @seealso #' \code{\link{teamBowlingScorecardAllOppnAllMatches}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlingScorecardAllOppnAllMatchesMain <- function(matches,theTeam){ team=bowler=batsman=runs=runsConceded=NULL ball=noballs=wides=wicketKind=maidens=NULL wicketPlayerOut=over=wickets=NULL a <-filter(matches,team!=theTeam) a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(wicketPlayerOut)) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if there are any if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } # Arrange in descending order of wickets and runs and ascending order for maidens l <-arrange(l,desc(wickets),desc(runs),maidens) l }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingScorecardAllOppnAllMatchesMain.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 21 Mar 2016 # Function: teamBowlingScorecardMatch # This function computes the performance of bowlers of team in a match. # This function returns a dataframe # ########################################################################################### #' @title #' Compute and return the bowling scorecard of a team in a match #' #' @description #' This function computes and returns the bowling scorecard of a team in a match #' #' @usage #' teamBowlingScorecardMatch(match,theTeam) #' #' @param match #' The match between the teams #' #' @param theTeam #' Team for which bowling performance is required #' #' @return l #' A data frame with the bowling performance in alll matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get all matches between India and other opposition #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' teamBowlingScorecardMatch(a,'England') #' } #' #' @seealso #' \code{\link{teamBowlingWicketMatch}}\cr #' \code{\link{teamBowlersVsBatsmenMatch}}\cr #' \code{\link{teamBattingScorecardMatch}}\cr #' #' @export #' teamBowlingScorecardMatch <- function(match,theTeam){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL team=bowler=ball=wides=noballs=runsConceded=overs=over=NULL # Compute the maidens,runs conceded and overs for the bowlers. # The bowlers performance of the team is got when the other side is batting. Hence '!-" a <-filter(match,team != theTeam) a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } l }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingScorecardMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBowlingWicketKindAllOppnAllMatches # This function computes the wicket kind of bowlers against all opposition # ########################################################################################### #' @title #' team bowling wicket kind against all opposition all matches #' #' @description #' This function computes returns kind of wickets (caught, bowled etc) of bowlers in all matches against #' all oppositions. The user can chose to plot or return a data frame #' #' @usage #' teamBowlingWicketKindAllOppnAllMatches(matches,t1,t2="All",plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' t2=All gives the performance of the team against all opponents. Giving a opposing team (Australia, India #' ) will give the performance against this team #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or data fame #' A data frame with the bowling performance in alll matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get all matches between India and other opposition #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # Or load directly from saved file #' # load("allMatchesAllOpposition-India.RData") #' #' teamBowlingWicketKindAllOppnAllMatches(matches,t1="India",t2="All") #' m <-teamBowlingWicketKindAllOppnAllMatches(matches,t1="India",t2="All",plot=FALSE) #' #' teamBowlingWicketKindAllOppnAllMatches(matches,t1="India",t2="Bangladesh") #' teamBowlingWicketKindAllOppnAllMatches(matches,t1="India",t2="South Africa") #' } #' #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlingWicketKindAllOppnAllMatches <- function(matches,t1,t2="All",plot=1){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL ggplotly=NULL team=bowler=ball=wides=noballs=runsConceded=overs=NULL over=wickets=NULL a <- NULL if(t2 == "All"){ a <-filter(matches,team==t1) } else { a <-filter(matches,team==t2) } a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Compute number of wickets (remove nobody) c <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") # Count wickets by bowlers d <- summarise(group_by(c,bowler),wickets=length(wicketPlayerOut)) # Arrange in descending order e <- arrange(d,desc(wickets)) # Pick the top 8 f <- e[1:8,] # Create a character vector of top 8 bowlers g <- as.character(f$bowler) # Select these top 8 n <- NULL for(m in 1:8){ mm <- filter(c,bowler==g[m]) n <- rbind(n,mm) } # Summarise by the different wicket kinds for each bowler p <- summarise(group_by(n,bowler,wicketKind),m=n()) if(plot == 1){ #ggplot2 plot.title <- paste(t1,"vs",t2,"wicket-kind of bowlers") # Plot ggplot(data=p,aes(x=wicketKind,y=m,fill=factor(wicketKind))) + facet_wrap( ~ bowler,scales = "fixed", ncol=8) + geom_bar(stat="identity") + xlab("Wicket kind") + ylab("Wickets") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title <- paste(t1,"vs",t2,"wicket-kind of bowlers") # Plot g <- ggplot(data=p,aes(x=wicketKind,y=m,fill=factor(wicketKind))) + facet_wrap( ~ bowler,scales = "fixed", ncol=8) + geom_bar(stat="identity") + xlab("Wicket kind") + ylab("Wickets") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) }else{ p } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingWicketKindAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 21 Mar 2016 # Function: teamBowlingWicketKindMatch # This function computes the performance of bowlers of team with the wicketkind (caught, bowled, # caught & bowled) for the team # # ########################################################################################### #' @title #' Compute and plot the wicket kinds by bowlers in match #' #' @description #' This function computes returns kind of wickets (caught, bowled etc) of bowlers in a match between 2 teams #' #' @usage #' teamBowlingWicketKindMatch(match,theTeam,opposition,plot=1) #' #' @param match #' The match between the teams #' #' @param theTeam #' Team for which bowling performance is required #' #' @param opposition #' The opposition team #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or data fame #' A data frame with the bowling performance in alll matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get the match details #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' teamBowlingWicketKindMatch(a,"England","Pakistan",plot=FALSE) #' teamBowlingWicketKindMatch(a,"Pakistan","England") #' } #' #' @seealso #' \code{\link{teamBowlingWicketMatch}}\cr #' \code{\link{teamBowlingWicketRunsMatch}}\cr #' \code{\link{teamBowlersVsBatsmenMatch}}\cr #' #' @export #' teamBowlingWicketKindMatch <- function(match,theTeam,opposition,plot=1){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL ggplotly=NULL team=bowler=ball=wides=noballs=runsConceded=overs=over=NULL # The performance of bowlers of the team is got when the other side is batting. Hence '!-" # Filter the bowler's performance a <-filter(match,team !=theTeam) # Compute the maidens,runs conceded and overs for the bowlers a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) j <- full_join(h,e,by="bowler") # Make as.character to assign values j$wicketKind = as.character(j$wicketKind) j$wicketPlayerOut = as.character(j$wicketPlayerOut) # Set NAs to 0 if(sum(is.na(j$wicketKind) !=0)){ j[is.na(j$wicketKind),]$wicketKind="noWicket" } if(sum(is.na(j$wicketPlayerOut) != 0)){ j[is.na(j$wicketPlayerOut),]$wicketPlayerOut="noWicket" } if(plot == 1){ #ggplot2 plot.title <- paste(theTeam,"Wicketkind vs Runs given (against",opposition,")") p <- ggplot(data=j,aes(x=wicketKind,y=runs,fill=factor(wicketKind))) + facet_grid(. ~ bowler,scales = "free_x", space = "free_x") + geom_bar(stat="identity") + xlab("Wicket kind") + ylab("Total runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14,margin=margin(10))) p } else if(plot == 2){ #ggplotly plot.title <- paste(theTeam,"Wicketkind vs Runs given (against",opposition,")") p <- ggplot(data=j,aes(x=wicketKind,y=runs,fill=factor(wicketKind))) + facet_grid(. ~ bowler,scales = "free_x", space = "free_x") + geom_bar(stat="identity") + xlab("Wicket kind") + ylab("Total runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14,margin=margin(10))) ggplotly(p) } else{ j } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingWicketKindMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 21 Mar 2016 # Function: teamBowlingWicketMatch # This function computes the performance of bowlers and the wickets taken # The user has a choice of either taking the output as a plot or as a dataframe # ########################################################################################### #' @title #' Compute and plot wickets by bowlers in match #' #' @description #' This function computes returns the wickets taken bowlers in a match between 2 teams #' #' @usage #' teamBowlingWicketMatch(match,theTeam,opposition, plot=1) #' #' @param match #' The match between the teams #' #' @param theTeam #' Team for which bowling performance is required #' #' @param opposition #' The opposition team #' #' @param plot #' plot=1 (static),plot=2(interactive), plot=3 (table) #' #' @return None or data fame #' A data frame with the bowling performance in alll matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get the match details #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' teamBowlingWicketMatch(a,"England","Pakistan",plot=FALSE) #' teamBowlingWicketMatch(a,"Pakistan","England") #' } #' #' @seealso #' \code{\link{teamBowlingWicketMatch}}\cr #' \code{\link{teamBowlingWicketRunsMatch}}\cr #' \code{\link{teamBowlersVsBatsmenMatch}}\cr #' #' @export #' teamBowlingWicketMatch <- function(match,theTeam,opposition,plot=1){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL ggplotly=NULL team=bowler=ball=wides=noballs=runsConceded=overs=over=NULL # The bowlers performance of the team is got when the other side is batting. Hence '!-" # Filter the data frame a <-filter(match,team!=theTeam) # Compute the maidens,runs conceded and overs for the bowlers a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) j <- full_join(h,e,by="bowler") # Make as.character to assign values j$wicketKind = as.character(j$wicketKind) j$wicketPlayerOut = as.character(j$wicketPlayerOut) # Set NAs to 0 if(sum(is.na(j$wicketKind) !=0)){ j[is.na(j$wicketKind),]$wicketKind="noWicket" } if(sum(is.na(j$wicketPlayerOut) != 0)){ j[is.na(j$wicketPlayerOut),]$wicketPlayerOut="noWicket" } if(plot == 1){ #ggplot2 plot.title <- paste(theTeam,"No of Wickets vs Runs conceded (against",opposition,")") p <-ggplot(data=j,aes(x=wicketPlayerOut,y=runs,fill=factor(wicketPlayerOut))) + facet_grid(. ~ bowler,scales = "free_x", space = "free_x") + geom_bar(stat="identity") + xlab("Batsman out") + ylab("Total runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14,margin=margin(10))) p } else if(plot == 2){ #ggplotly plot.title <- paste(theTeam,"No of Wickets vs Runs conceded (against",opposition,")") p <-ggplot(data=j,aes(x=wicketPlayerOut,y=runs,fill=factor(wicketPlayerOut))) + facet_grid(. ~ bowler,scales = "free_x", space = "free_x") + geom_bar(stat="identity") + xlab("Batsman out") + ylab("Total runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14,margin=margin(10))) ggplotly(p) } else{ j } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingWicketMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Mar 2016 # Function: teamBowlingWicketRunsAllOppnAllMatches # This function computes the wickets taken and the runs conceded against all opposition # ########################################################################################### #' @title #' Team bowling wicket runs all matches against all oppositions #' #' @description #' This function computes the number of wickets and runs conceded by bowlers in all matches against #' all oppositions. The user can chose to plot or return a data frame #' #' @usage #' teamBowlingWicketRunsAllOppnAllMatches(matches,t1,t2="All",plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' t2=All gives the performance of the team against all opponents. Giving a opposing team (Australia, India #' ) will give the performance against this team #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or data fame #' A data frame with the bowling performance in alll matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get all matches between India and other opposition #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # Or load directly from saved file #' # load("allMatchesAllOpposition-India.RData") #' #' teamBowlingWicketRunsAllOppnAllMatches(matches,t1="India",t2="All",plot=TRUE) #' m <-teamBowlingWicketRunsAllOppnAllMatches(matches,t1="India",t2="All",plot=FALSE) #' } #' #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamBowlingWicketRunsAllOppnAllMatches <- function(matches,t1,t2="All",plot=1){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL ggplotly=NULL team=bowler=ball=wides=noballs=runsConceded=overs=NULL over=wickets=NULL a <- NULL if(t2 == "All"){ a <-filter(matches,team==t1) } else { a <-filter(matches,team==t2) } a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Compute number of wickets (remove nobody) c <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") # Count wickets by bowlers d <- summarise(group_by(c,bowler),wickets=length(wicketPlayerOut)) # Calculate runs e <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(e) <- c("bowler","over","runs") #Compute total runs conceded (runs_wides+noballs) f <- summarize(group_by(e,bowler),runsConceded=sum(runs)) # Join the runs conceded with the wickets taken g <- full_join(f,d,by="bowler") # Set the NAs (0 wickets) to 0 if(sum(is.na(g$wickets)) != 0){ g[is.na(g$wickets),]$wickets=0 } # Pick the top 10 bowlers h <- arrange(g,desc(wickets)) k <- h[1:10,] if(plot==1){ plot.title <- paste(t1,"vs",t2,"wicket Runs of bowlers") ggplot(data=k,aes(x=factor(wickets),y=runsConceded,fill=factor(wickets))) + facet_grid( ~ bowler) + geom_bar(stat="identity") + xlab("Number of wickets") + ylab('Runs conceded') + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ #ggplotly plot.title <- paste(t1,"vs",t2,"wicket Runs of bowlers") ggplot(data=k,aes(x=factor(wickets),y=runsConceded,fill=factor(wickets))) + facet_grid( ~ bowler) + geom_bar(stat="identity") + xlab("Number of wickets") + ylab('Runs conceded') + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) }else{ k } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingWicketRunsAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 21 Mar 2016 # Function: teamBowlingWicketRunsMatch # This function computes the performance of bowlers of team with the runs conceded # # ########################################################################################### #' @title #' Team bowling wickets runs conceded in match #' #' @description #' This function computes returns the wickets taken and runs conceded bowlers in a match between 2 teams. #' The user can choose to plot or return a dataframe #' #' @usage #' teamBowlingWicketRunsMatch(match,theTeam,opposition,plot=1) #' #' @param match #' The match between the teams #' #' @param theTeam #' Team for which bowling performance is required #' #' @param opposition #' The opposition team #' #' @param plot #' plot=1 (static),plot=2(interactive),plot=3(table) #' #' @return None or data fame #' A data frame with the bowling performance in all matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get the match details #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' teamBowlingWicketRunsMatch(a,"England","Pakistan",plot=FALSE) #' teamBowlingWicketRunsMatch(a,"Pakistan","England") #' } #' #' @seealso #' \code{\link{teamBowlingWicketMatch}}\cr #' \code{\link{teamBowlingWicketRunsMatch}}\cr #' \code{\link{teamBowlersVsBatsmenMatch}}\cr #' #' @export #' teamBowlingWicketRunsMatch <- function(match,theTeam,opposition, plot=1){ print("wicketruns") noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL ggplotly=NULL team=bowler=ball=wides=noballs=runsConceded=overs=over=wickets=NULL # The performance of bowlers of the team is got when the other side is batting. Hence '!-" # Filter the bowler's performance a <-filter(match,team!=theTeam) # Compute the maidens,runs conceded and overs for the bowlers a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) print("wicketruns1") #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(unique(wicketPlayerOut))) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") #l$wickets = as.character(l$wickets) #print(l$wickets) # Set NAs to 0 l$wickets=as.numeric(l$wickets) if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } # Plot or ourput data frame if(plot == 1){ #ggplot2 plot.title <- paste(theTeam,"Wicket vs Runs conceded (against",opposition,")") p <- ggplot(data=l,aes(x=factor(wickets),y=runs,fill=factor(wickets))) + facet_grid(. ~ bowler,scales = "free_x", space = "free_x") + geom_bar(stat="identity") + xlab("Number of wickets") + ylab("Total runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14,margin=margin(10))) p } else if(plot == 2){ #ggplotly plot.title <- paste(theTeam,"Wicket vs Runs conceded (against",opposition,")") p <- ggplot(data=l,aes(x=factor(wickets),y=runs,fill=factor(wickets))) + facet_grid(. ~ bowler,scales = "free_x", space = "free_x") + geom_bar(stat="identity") + xlab("Number of wickets") + ylab("Total runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) + theme(plot.title = element_text(size=14,margin=margin(10))) ggplotly(p) } else { l } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamBowlingWicketRunsMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 4 Nov 2021 # Function: teamERAcrossOvers # This function the plots economy rate in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the ER in powerplay, middle and death overs #' #' @description #' This function plots the runs in in powerplay, middle and death overs #' #' @usage #' teamERAcrossOvers(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamERAcrossOvers(match,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamERAcrossOvers <- function(match,t1,t2,plot=1) { team=ball=totalRuns=total=str_extract=type=ER=opposition=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(match,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,totalRuns) a3 <- a2 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) a3$ER=ifelse(dim(a3)[1]==0, 0,a3$total/a3$count * 6) if(dim(a3)[1]!=0){ a3$type="1-Power Play" a3$opposition=t2 } # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,totalRuns) b3 <- b2 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) b3$ER=ifelse(dim(b3)[1]==0, 0,b3$total/b3$count * 6) if(dim(b3)[1]!=0){ b3$type="2-Middle overs" b3$opposition=t2 } ##Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,totalRuns) c3 <- c2 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) c3$ER=ifelse(dim(c3)[1]==0, 0,c3$total/c3$count * 6) if(dim(c3)[1]!=0){ c3$type="3-Death overs" c3$opposition=t2 } #################### # Filter the performance of team2 a <-filter(match,team==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team,totalRuns) a31 <- a21 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) a31$ER=ifelse(dim(a31)[1]==0, 0,a31$total/a31$count * 6) if(dim(a31)[1]!=0){ a31$type="1-Power Play" a31$opposition=t1 } # Middle overs I b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b21 <- select(b11,team,totalRuns) b31 <- b21 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) b31$ER=ifelse(dim(b31)[1]==0, 0,b31$total/b31$count * 6) if(dim(b31)[1]!=0){ b31$type="2-Middle overs" b31$opposition=t1 } ##Death overs c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c21 <- select(c11,team,totalRuns) c31 <- c21 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) c31$ER=ifelse(dim(c31)[1]==0, 0,c31$total/c31$count * 6) if(dim(c31)[1]!=0){ c31$type="3-Death overs" c31$opposition=t1 } m=rbind(a3,b3,c3,a31,b31,c31) plot.title= paste("Economy rate across 20 overs of ",t1, "and", t2, sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=ER, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=ER, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamERAcrossOvers.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: teamERAcrossOversAllOppnAllMatches # This function computes economy rate across overs in all matches against all opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the ER by team against all team in powerplay, middle and death overs in all matches #' #' @description #' This function plots the ER by team against all team in in powerplay, middle and death overs #' #' @usage #' teamERAcrossOversAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamERAcrossOversAllOppnAllMatches(matches,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamERAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=ER=type=meanER=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,date,totalRuns) a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) a3$ER=a3$total/a3$count * 6 a4 = a3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) a4$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,date,totalRuns) b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) b3$ER=b3$total/b3$count * 6 b4 = b3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) b4$type="2-Middle Overs" ##Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,date,totalRuns) c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) c3$ER=c3$total/c3$count * 6 c4 = c3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) c4$type="3-Death Overs" m=rbind(a4,b4,c4) plot.title= paste("Wickets across 20 overs by ",t1,"in all matches against all teams", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=meanER, fill=t1)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=meanER, fill=t1)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamERAcrossOversAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: teamERAcrossOversOppnAllMatches # This function computes economy rate across overs in all matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the ER by team against team in powerplay, middle and death overs in all matches #' #' @description #' This function plots the ER by team against team in in powerplay, middle and death overs #' #' @usage #' teamERAcrossOversOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamERAcrossOversOppnAllMatches(matches,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamERAcrossOversOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=type=meanER=opposition=ER=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,date,totalRuns) a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) a3$ER=a3$total/a3$count * 6 a4 = a3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) a4$opposition=t2 a4$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,date,totalRuns) b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) b3$ER=b3$total/b3$count * 6 b4 = b3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) b4$opposition=t2 b4$type="2-Middle Overs" ##Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,date,totalRuns) c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) c3$ER=c3$total/c3$count * 6 c4 = c3 %>% select(team,ER) %>% summarise(meanER=mean(ER)) c4$opposition=t2 c4$type="3-Death Overs" #################### # Filter the performance of team2 a <-filter(matches,team==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team,date,totalRuns) a31 <- a21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) a31$ER=a31$total/a31$count * 6 a41 = a31 %>% select(team,ER) %>% summarise(meanER=mean(ER)) a41$opposition=t1 a41$type="1-Power Play" # Middle overs I b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b21 <- select(b11,team,date,totalRuns) b31 <- b21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) b31$ER=b31$total/b31$count * 6 b41 = b31 %>% select(team,ER) %>% summarise(meanER=mean(ER)) b41$opposition=t1 b41$type="2-Middle Overs" ##Death overs c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c21 <- select(c11,team,date,totalRuns) c31 <- c21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) c31$ER=c31$total/c31$count * 6 c41 = c31 %>% select(team,ER) %>% summarise(meanER=mean(ER)) c41$opposition=t1 c41$type="3-Death Overs" m=rbind(a4,b4,c4,a41,b41,c41) plot.title= paste("Wickets across 20 overs by ",t1, "and", t2, "in all matches", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=meanER, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=meanER, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamERAcrossOversOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunSRDeathOversPlotAllOppnAllMatches # This function plot the runs vs SR for the team batsman during death overs against all opposition in # in all matches # # ########################################################################################### #' @title #' Team batting plots runs vs SR in death overs for team against all oppositions in all matches #' #' @description #' This function computes and plots runs vs SR in death overs of a team in all matches against all #' oppositions. #' #' @usage #' teamRunSRDeathOversPlotAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param t1 #' The team for which the the batting partnerships are sought #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunSRDeathOversPlotAllOppnAllMatches(matches,t1,plot=1) #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunSRDeathOversPlotAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRDeathOvers=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRDeathOvers=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRDeathOvers,p=0.66,na.rm = TRUE) plot.title <- paste(t1, " Runs vs SR in Death overs in all matches against all opposition") if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRDeathOvers > y_lower ~ "Q1", runs <= x_lower & SRDeathOvers > y_lower ~ "Q2", runs <= x_lower & SRDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRDeathOvers,color=quadrant)) + geom_text(aes(runs,SRDeathOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Death overs") + ylab("Strike rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRDeathOvers > y_lower ~ "Q1", runs <= x_lower & SRDeathOvers > y_lower ~ "Q2", runs <= x_lower & SRDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRDeathOvers,color=quadrant)) + geom_text(aes(runs,SRDeathOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Death overs") + ylab("Strike rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunSRDeathOversPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 28 Nov 2021 # Function: teamRunSRDeathOversPlotMatch # This function plot the runs vs SR for the team batsman during death overs against opposition in match # # ########################################################################################### #' @title #' Team batting plots runs vs SR in death overs for team in match #' #' @description #' This function computes and plots runs vs SR in death overs of a team in match against #' opposition. #' #' @usage #' teamRunSRDeathOversPlotMatch(match,t1, t2, plot=1) #' #' @param match #' Match #' #' @param t1 #' The team #' #' @param t2 #' The opposition team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunSRDeathOversPlotMatch(match,t1="India",t2="England") #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunSRDeathOversPlotMatch <- function(match,t1,t2, plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRDeathOvers=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(match,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRDeathOvers=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRDeathOvers,p=0.66,na.rm = TRUE) plot.title <- paste(t1, " Runs vs SR in Death overs against ", t2,sep="") if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRDeathOvers > y_lower ~ "Q1", runs <= x_lower & SRDeathOvers > y_lower ~ "Q2", runs <= x_lower & SRDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRDeathOvers,color=quadrant)) + geom_text(aes(runs,SRDeathOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Death overs") + ylab("Strike rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRDeathOvers > y_lower ~ "Q1", runs <= x_lower & SRDeathOvers > y_lower ~ "Q2", runs <= x_lower & SRDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRDeathOvers,color=quadrant)) + geom_text(aes(runs,SRDeathOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Death overs") + ylab("Strike rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunSRDeathOversPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunSRDeathOversPlotOppnAllMatches # This function plot the runs vs SR for the team batsman during death overs against opposition in # in all matches # # ########################################################################################### #' @title #' Team batting plots runs vs SR in death overs for team against opposition in all matches #' #' @description #' This function computes and plots runs vs SR in middle overs of a team in all matches against #' opposition. #' #' @usage #' teamRunSRDeathOversPlotOppnAllMatches(matches,t1, t2, plot=1) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param t1 #' The team #' #' @param t2 #' The opposition team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunSRDeathOversPlotOppnAllMatches(matches,t1="India",t2="England") #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunSRDeathOversPlotOppnAllMatches <- function(matches,t1,t2, plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRDeathOvers=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRDeathOvers=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRDeathOvers,p=0.66,na.rm = TRUE) plot.title <- paste(t1, " Runs vs SR in Death overs in all matches against ", t2) if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRDeathOvers > y_lower ~ "Q1", runs <= x_lower & SRDeathOvers > y_lower ~ "Q2", runs <= x_lower & SRDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRDeathOvers,color=quadrant)) + geom_text(aes(runs,SRDeathOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Death overs") + ylab("Strike rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRDeathOvers > y_lower ~ "Q1", runs <= x_lower & SRDeathOvers > y_lower ~ "Q2", runs <= x_lower & SRDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRDeathOvers,color=quadrant)) + geom_text(aes(runs,SRDeathOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Death overs") + ylab("Strike rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunSRDeathOversPlotOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 4 Nov 2021 # Function: teamRunsAcrossOvers # This function the plots runs scored in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the runs in powerplay, middle and death overs #' #' @description #' This function plots the runs in in powerplay, middle and death overs #' #' @usage #' teamRunsAcrossOvers(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamRunsAcrossOvers(match,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamRunsAcrossOvers <- function(match,t1,t2,plot=1) { team=ball=totalRuns=total=type=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(match,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,totalRuns) a3 <- a2 %>% group_by(team) %>% summarise(total=sum(totalRuns)) a3$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,totalRuns) b3 <- b2 %>% group_by(team) %>% summarise(total=sum(totalRuns)) b3$type="2-Middle Overs" #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,totalRuns) c3 <- c2 %>% group_by(team) %>% summarise(total=sum(totalRuns)) c3$type="3-Death Overs" #################### # Filter the performance of team2 a <-filter(match,team==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team,totalRuns) a31 <- a21 %>% group_by(team) %>% summarise(total=sum(totalRuns)) a31$type="1-Power Play" # Middle overs I b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b21 <- select(b11,team,totalRuns) b31 <- b21 %>% group_by(team) %>% summarise(total=sum(totalRuns)) b31$type="2-Middle Overs" #Death overs c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1,20.0)) c21 <- select(c11,team,totalRuns) c31 <- c21 %>% group_by(team) %>% summarise(total=sum(totalRuns)) c31$type="3-Death Overs" m=rbind(a3,b3,c3,a31,b31,c31) # Plot both lines if(plot ==1){ #ggplot2 plot.title= paste("Runs scored across 20 overs by ",t1, "and", t2, sep=" ") ggplot(m,aes(x=type, y=total, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly plot.title= paste("Runs scored across 20 overs by ",t1, "and", t2, sep=" ") g <- ggplot(m,aes(x=type, y=total, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsAcrossOvers.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: teamRunsAcrossOversAllOppnAllMatches # This function computes runs across overs in all matches against all opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the runs by team against all team in powerplay, middle and death overs #' #' @description #' This function plots the runs by team against all teams in in powerplay, middle and death overs #' #' @usage #' teamRunsAcrossOversAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The team for which the runs is required #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamRunsAcrossOversAllOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamRunsAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=meanRuns=type=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,totalRuns,date) a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) a4 = a3 %>% summarise(meanRuns=mean(total)) a4$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,totalRuns,date) b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) b4 = b3 %>% summarise(meanRuns=mean(total)) b4$type="2-Middle Overs" #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,totalRuns,date) c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) c4 = c3 %>% summarise(meanRuns=mean(total)) c4$type="3-Death Overs" m=rbind(a4,b4,c4) plot.title= paste("Mean runs across 20 overs by ",t1, "in all matches against all teams", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=meanRuns, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=meanRuns, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsAcrossOversAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 4 Nov 2021 # Function: teamRunsAcrossOversOppnAllMatches # This function computes runs across overs in all matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the runs by team against team in powerplay, middle and death overs #' #' @description #' This function plots the runs by team against team in in powerplay, middle and death overs #' #' @usage #' teamRunsAcrossOversOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamRunsAcrossOversOppnAllMatches(matches,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamRunsAcrossOversOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=meanRuns=type=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,totalRuns,date) a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) a4 = a3 %>% summarise(meanRuns=mean(total)) a4$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,totalRuns,date) b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) b4 = b3 %>% summarise(meanRuns=mean(total)) b4$type="2-Middle Overs" #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,totalRuns,date) c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) c4 = c3 %>% summarise(meanRuns=mean(total)) c4$type="3-Death Overs" #################### # Filter the performance of team2 a <-filter(matches,team==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team,totalRuns,date) a31 <- a21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) a41 = a31 %>% summarise(meanRuns=mean(total)) a41$type="1-Power Play" # Middle overs I b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b21 <- select(b11,team,totalRuns,date) b31 <- b21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) b41 = b31 %>% summarise(meanRuns=mean(total)) b41$type="2-Middle Overs" # Death overs 2 c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1,20.0)) c21 <- select(c11,team,totalRuns,date) c31 <- c21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns)) c41 = c31 %>% summarise(meanRuns=mean(total)) c41$type="3-Death Overs" m=rbind(a4,b4,c4,a41,b41,c41) plot.title= paste("Mean runs across 20 overs by ",t1, "and", t2, "in all matches", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=meanRuns, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=meanRuns, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsAcrossOversOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunsSRMiddleOversPlotAllOppnAllMatches # This function plot the runs vs SR for the team batsman during middle overs against all opposition in # in all matches # # ########################################################################################### #' @title #' Team batting plots runs vs SR in middle overs for team against all oppositions in all matches #' #' @description #' This function computes and plots runs vs SR in middle overs of a team in all matches against all #' oppositions. #' #' @usage #' teamRunsSRMiddleOversPlotAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param t1 #' The team for which the the batting partnerships are sought #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRMiddleOversPlotAllOppnAllMatches(matches,t1,plot=1) #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRMiddleOversPlotAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRMiddleOvers=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRMiddleOvers=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRMiddleOvers,p=0.66,na.rm = TRUE) print("xx") print(x_lower) plot.title <- paste(t1, " Runs vs SR in Death overs in all matches against all opposition") if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRMiddleOvers > y_lower ~ "Q1", runs <= x_lower & SRMiddleOvers > y_lower ~ "Q2", runs <= x_lower & SRMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRMiddleOvers,color=quadrant)) + geom_text(aes(runs,SRMiddleOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Middle overs") + ylab("Strike rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRMiddleOvers > y_lower ~ "Q1", runs <= x_lower & SRMiddleOvers > y_lower ~ "Q2", runs <= x_lower & SRMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRMiddleOvers,color=quadrant)) + geom_text(aes(runs,SRMiddleOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Middle overs") + ylab("Strike rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRMiddleOversPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunsSRPMiddleOversPlotMatch # This function plot the runs vs SR for the team batsman during middle overs against opposition in match # # ########################################################################################### #' @title #' Team batting plots runs vs SR in middle overs for team in match #' #' @description #' This function computes and plots runs vs SR in middle overs of a team in match against #' opposition. #' #' @usage #' teamRunsSRPMiddleOversPlotMatch(match,t1, t2, plot=1) #' #' @param match #' Match #' #' @param t1 #' The team #' #' @param t2 #' The opposition team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPMiddleOversPlotMatch(match,t1="India",t2="England") #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPMiddleOversPlotMatch <- function(match,t1,t2, plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRMiddleOvers=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(match,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRMiddleOvers=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRMiddleOvers,p=0.66,na.rm = TRUE) plot.title <- paste(t1, " Runs vs SR in Middle overs against ", t2,sep="") if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRMiddleOvers > y_lower ~ "Q1", runs <= x_lower & SRMiddleOvers > y_lower ~ "Q2", runs <= x_lower & SRMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRMiddleOvers,color=quadrant)) + geom_text(aes(runs,SRMiddleOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Middle overs") + ylab("Strike rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRMiddleOvers > y_lower ~ "Q1", runs <= x_lower & SRMiddleOvers > y_lower ~ "Q2", runs <= x_lower & SRMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRMiddleOvers,color=quadrant)) + geom_text(aes(runs,SRMiddleOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Middle overs") + ylab("Strike rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRMiddleOversPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunsSRPMiddleOversPlotOppnAllMatches # This function plot the runs vs SR for the team batsman during middle overs against opposition in # in all matches # # ########################################################################################### #' @title #' Team batting plots runs vs SR in middle overs for team against opposition in all matches #' #' @description #' This function computes and plots runs vs SR in middle overs of a team in all matches against #' opposition. #' #' @usage #' teamRunsSRPMiddleOversPlotOppnAllMatches(matches,t1, t2, plot=1) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param t1 #' The team #' #' @param t2 #' The opposition team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPMiddleOversPlotOppnAllMatches(matches,t1="India",t2="England") #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPMiddleOversPlotOppnAllMatches <- function(matches,t1,t2, plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRMiddleOvers=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRMiddleOvers=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRMiddleOvers,p=0.66,na.rm = TRUE) plot.title <- paste(t1, "Runs vs SR in Middle overs in all matches against ", t2) if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRMiddleOvers > y_lower ~ "Q1", runs <= x_lower & SRMiddleOvers > y_lower ~ "Q2", runs <= x_lower & SRMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRMiddleOvers,color=quadrant)) + geom_text(aes(runs,SRMiddleOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Middle overs") + ylab("Strike rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRMiddleOvers > y_lower ~ "Q1", runs <= x_lower & SRMiddleOvers > y_lower ~ "Q2", runs <= x_lower & SRMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRMiddleOvers,color=quadrant)) + geom_text(aes(runs,SRMiddleOvers,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Middle overs") + ylab("Strike rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRMiddleOversPlotOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Nov 2021 # Function: teamRunsSRPlotAllOppnAllMatches # This function computes the runs vs SR for the team batsman against all opposition in # all matches # # ########################################################################################### #' @title #' Team batting plots runs vs SR for team against all oppositions in all matches #' #' @description #' This function computes and plots runs vs SR of a team in all matches against all #' oppositions. #' #' @usage #' teamRunsSRPlotAllOppnAllMatches(matches,theTeam,plot=1) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return details #' The data frame of the scorecard of the team in all matches against all oppositions #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' # Get all matches between India with all oppositions #' matches <-getAllMatchesAllOpposition("India",dir="../data/",save=TRUE) #' #' # This can also be loaded from saved file #' # load("allMatchesAllOpposition-India.RData") #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPlotAllOppnAllMatches(matches,theTeam="India") #' #' # The best England players scorecard against India is shown #' teamRunsSRPlotAllOppnAllMatches(matches,theTeam="England",plot=1) #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPlotAllOppnAllMatches <- function(matches,theTeam, plot=1){ team=batsman=runs=fours=sixes=SR=quantile=quadrant=NULL byes=legbyes=noballs=wides=ggplotly=NULL a <-filter(matches,team==theTeam) b <- select(a,batsman,runs) names(b) <-c("batsman","runs") #Compute the number of 4s c <- b %>% mutate(fours=(runs>=4 & runs <6)) %>% filter(fours==TRUE) # Group by batsman. Count 4s d <- summarise(group_by(c, batsman),fours=n()) # Get the total runs for each batsman e <-summarise(group_by(a,batsman),sum(runs)) names(b) <-c("batsman","runs") details <- full_join(e,d,by="batsman") names(details) <-c("batsman","runs","fours") f <- b %>% mutate(sixes=(runs ==6)) %>% filter(sixes == TRUE) # Group by batsman. COunt 6s g <- summarise(group_by(f, batsman),sixes=n()) names(g) <-c("batsman","sixes") #Full join with 4s and 6s details <- full_join(details,g,by="batsman") # Count the balls played by the batsman ballsPlayed <- a %>% select(batsman,byes,legbyes,wides,noballs,runs) %>% filter(wides ==0,noballs ==0,byes ==0,legbyes == 0) %>% select(batsman,runs) ballsPlayed<- summarise(group_by(ballsPlayed,batsman),count=n()) names(ballsPlayed) <- c("batsman","ballsPlayed") details <- full_join(details,ballsPlayed,by="batsman") details$SR= details$runs/details$ballsPlayed *100.00 cat("Total=",sum(details$runs),"\n") details <- arrange(details,desc(runs),desc(sixes),desc(fours)) details <- select(details,batsman,ballsPlayed,fours,sixes,runs,SR) x_lower <- quantile(details$runs,p=0.66, na.rm = TRUE) y_lower <- quantile(details$SR,p=0.66, na.rm = TRUE) plot.title <- paste(theTeam, "Runs vs SR against all opposition in all matches") if(plot == 1){ #ggplot2 details %>% mutate(quadrant = case_when(runs > x_lower & SR > y_lower ~ "Q1", runs <= x_lower & SR > y_lower ~ "Q2", runs <= x_lower & SR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SR,color=quadrant)) + geom_text(aes(runs,SR,label=batsman,color=quadrant)) + geom_point() + xlab("Runs") + ylab("Strike rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- details %>% mutate(quadrant = case_when(runs > x_lower & SR > y_lower ~ "Q1", runs <= x_lower & SR > y_lower ~ "Q2", runs <= x_lower & SR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SR,color=quadrant)) + geom_text(aes(runs,SR,label=batsman,color=quadrant)) + geom_point() + xlab("Runs") + ylab("Strike rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Nov 2021 # Function: teamRunsSRPlotMatch # This function plots the Runs vs SR of a team in a match # # ########################################################################################### #' @title #' Team Runs vs SR in match #' #' @description #' This function computes and plots the Runs vs SR of a team in matches #' #' @usage #' teamRunsSRPlotMatch(match,theTeam, opposition, plot=1) #' #' @param match #' All matches of the team in all matches with all oppositions #' #' @param theTeam #' The team for which the the batting partnerships are sought #' #' @param opposition #' The opposition team #' #' @param plot #' plot=1 (static),plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPlotMatch(matches,theTeam="India",opposition="England") #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPlotMatch <- function(match,theTeam,opposition,plot=1){ team=batsman=runs=fours=sixes=str_extract=batsman=runs=quantile=quadrant=SR=NULL byes=legbyes=noballs=wides=ggplotly=NULL a <-filter(match,team==theTeam) b <- select(a,batsman,runs) names(b) <-c("batsman","runs") #Compute the number of 4s c <- b %>% mutate(fours=(runs>=4 & runs <6)) %>% filter(fours==TRUE) # Group by batsman. Count 4s d <- summarise(group_by(c, batsman),fours=n()) # Get the total runs for each batsman e <-summarise(group_by(a,batsman),sum(runs)) names(b) <-c("batsman","runs") details <- full_join(e,d,by="batsman") names(details) <-c("batsman","runs","fours") f <- b %>% mutate(sixes=(runs ==6)) %>% filter(sixes == TRUE) # Group by batsman. COunt 6s g <- summarise(group_by(f, batsman),sixes=n()) names(g) <-c("batsman","sixes") #Full join with 4s and 6s details <- full_join(details,g,by="batsman") # Count the balls played by the batsman ballsPlayed <- a %>% select(batsman,byes,legbyes,wides,noballs,runs) %>% filter(wides ==0,noballs ==0,byes ==0,legbyes == 0) %>% select(batsman,runs) ballsPlayed<- summarise(group_by(ballsPlayed,batsman),count=n()) names(ballsPlayed) <- c("batsman","ballsPlayed") details <- full_join(details,ballsPlayed,by="batsman") details$SR= details$runs/details$ballsPlayed *100.00 cat("Total=",sum(details$runs),"\n") details <- arrange(details,desc(runs),desc(sixes),desc(fours)) details <- select(details,batsman,ballsPlayed,fours,sixes,runs,SR) details[is.na(details)] <- 0 x_lower <- quantile(details$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(details$SR,p=0.66,na.rm = TRUE) plot.title <- paste("Runs vs SR of ", theTeam, "in match against", opposition) if(plot == 1){ #ggplot2 details %>% mutate(quadrant = case_when(runs > x_lower & SR > y_lower ~ "Q1", runs <= x_lower & SR > y_lower ~ "Q2", runs <= x_lower & SR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SR,color=quadrant)) + geom_text(aes(runs,SR,label=batsman,color=quadrant)) + geom_point() + xlab("Runs") + ylab("Strike rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- details %>% mutate(quadrant = case_when(runs > x_lower & SR > y_lower ~ "Q1", runs <= x_lower & SR > y_lower ~ "Q2", runs <= x_lower & SR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SR,color=quadrant)) + xlab("Runs") + ylab("Strike rate") + geom_text(aes(runs,SR,label=batsman,color=quadrant)) + geom_point() + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 19 Nov 2021 # Function: teamRunsSRPlotOppnAllMatches # This function computes the Runs vs SR of the team batsman against opposition in # all matches # # ########################################################################################### #' @title #' Team batting Runs vs SR against oppositions in all matches #' #' @description #' This function computes and plots the Runs vs SR of a team in all matches against an #' oppositions. #' #' @usage #' teamRunsSRPlotOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' All matches of the team in all matches with opposition #' #' @param t1 #' The team t #' #' @param t2 #' The opposition team #' #'@param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPlotOppnAllMatches(matches,theTeam="India") #' #' # The best England players scorecard against India is shown #' teamRunsSRPlotOppnAllMatches(matches,theTeam="England") #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPlotOppnAllMatches <- function(matches,t1,t2,plot=1){ team=batsman=runs=fours=sixes=SR=quantile=quadrant=NULL byes=legbyes=noballs=wides=ggplotly=NULL a <-filter(matches,team==t1) b <- select(a,batsman,runs) names(b) <-c("batsman","runs") #Compute the number of 4s c <- b %>% mutate(fours=(runs>=4 & runs <6)) %>% filter(fours==TRUE) # Group by batsman. Count 4s d <- summarise(group_by(c, batsman),fours=n()) # Get the total runs for each batsman e <-summarise(group_by(a,batsman),sum(runs)) names(b) <-c("batsman","runs") details <- full_join(e,d,by="batsman") names(details) <-c("batsman","runs","fours") f <- b %>% mutate(sixes=(runs ==6)) %>% filter(sixes == TRUE) # Group by batsman. COunt 6s g <- summarise(group_by(f, batsman),sixes=n()) names(g) <-c("batsman","sixes") #Full join with 4s and 6s details <- full_join(details,g,by="batsman") # Count the balls played by the batsman ballsPlayed <- a %>% select(batsman,byes,legbyes,wides,noballs,runs) %>% filter(wides ==0,noballs ==0,byes ==0,legbyes == 0) %>% select(batsman,runs) ballsPlayed<- summarise(group_by(ballsPlayed,batsman),count=n()) names(ballsPlayed) <- c("batsman","ballsPlayed") details <- full_join(details,ballsPlayed,by="batsman") details$SR= details$runs/details$ballsPlayed *100.00 cat("Total=",sum(details$runs),"\n") details <- arrange(details,desc(runs),desc(sixes),desc(fours)) details <- select(details,batsman,ballsPlayed,fours,sixes,runs,SR) x_lower <- quantile(details$runs,p=0.66, na.rm = TRUE) y_lower <- quantile(details$SR,p=0.66, na.rm = TRUE) plot.title <- paste("Runs vs SR of ", t1, "in all matches against", t2) if(plot == 1){ #ggplot2 details %>% mutate(quadrant = case_when(runs > x_lower & SR > y_lower ~ "Q1", runs <= x_lower & SR > y_lower ~ "Q2", runs <= x_lower & SR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SR,color=quadrant)) + geom_text(aes(runs,SR,label=batsman,color=quadrant)) + geom_point() + xlab("Runs") + ylab("Strike rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- details %>% mutate(quadrant = case_when(runs > x_lower & SR > y_lower ~ "Q1", runs <= x_lower & SR > y_lower ~ "Q2", runs <= x_lower & SR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SR,color=quadrant)) + geom_text(aes(runs,SR,label=batsman,color=quadrant)) + geom_point() + xlab("Runs") + ylab("Strike rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRPlotOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunsSRPowerPlayPlotAllOppnAllMatches # This function plot the runs vs SR for the team batsman during powerplay against all opposition in # in all matches # # ########################################################################################### #' @title #' Team batting plots runs vs SR in powerplay for team against all oppositions in all matches #' #' @description #' This function computes and plots runs vs SR in power play of a team in all matches against all #' oppositions. #' #' @usage #' teamRunsSRPowerPlayPlotAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param t1 #' The team for which the the batting partnerships are sought #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPowerPlayPlotAllOppnAllMatches(matches,t1,plot=1) #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPowerPlayPlotAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRPowerPlay=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRPowerPlay=runs/count*100) x_lower <- quantile(a3$runs,p=0.66, na.rm = TRUE) y_lower <- quantile(a3$SRPowerPlay,p=0.66, na.rm = TRUE) plot.title <- paste(t1, " Runs vs SR in Power play in all matches against all opposition") if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRPowerPlay > y_lower ~ "Q1", runs <= x_lower & SRPowerPlay > y_lower ~ "Q2", runs <= x_lower & SRPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRPowerPlay,color=quadrant)) + geom_text(aes(runs,SRPowerPlay,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Power play") + ylab("Strike rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRPowerPlay > y_lower ~ "Q1", runs <= x_lower & SRPowerPlay > y_lower ~ "Q2", runs <= x_lower & SRPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRPowerPlay,color=quadrant)) + geom_text(aes(runs,SRPowerPlay,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Power play") + ylab("Strike rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRPowerPlayPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunsSRPowerPlayPlotMatch # This function plot the runs vs SR for the team batsman during powerplay against opposition in match # # ########################################################################################### #' @title #' Team batting plots runs vs SR in powerplay for team in match #' #' @description #' This function computes and plots runs vs SR in power play of a team in match against #' opposition. #' #' @usage #' teamRunsSRPowerPlayPlotMatch(match,t1, t2, plot=1) #' #' @param match #' Match #' #' @param t1 #' The team #' #' @param t2 #' The opposition team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPowerPlayPlotMatch(match,t1="India",t2="England") #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPowerPlayPlotMatch <- function(match,t1,t2, plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRPowerPlay=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(match,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRPowerPlay=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRPowerPlay,p=0.66,na.rm = TRUE) plot.title <- paste(t1, " Runs vs SR in Power play against ", t2,sep="") if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRPowerPlay > y_lower ~ "Q1", runs <= x_lower & SRPowerPlay > y_lower ~ "Q2", runs <= x_lower & SRPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRPowerPlay,color=quadrant)) + geom_text(aes(runs,SRPowerPlay,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Power play") + ylab("Strike rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRPowerPlay > y_lower ~ "Q1", runs <= x_lower & SRPowerPlay > y_lower ~ "Q2", runs <= x_lower & SRPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRPowerPlay,color=quadrant)) + geom_text(aes(runs,SRPowerPlay,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Power play") + ylab("Strike rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRPowerPlayPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 26 Nov 2021 # Function: teamRunsSRPowerPlayPlotOppnAllMatches # This function plot the runs vs SR for the team batsman during powerplay against opposition in # in all matches # # ########################################################################################### #' @title #' Team batting plots runs vs SR in powerplay for team against opposition in all matches #' #' @description #' This function computes and plots runs vs SR in power play of a team in all matches against #' opposition. #' #' @usage #' teamRunsSRPowerPlayPlotOppnAllMatches(matches,t1, t2, plot=1) #' #' @param matches #' All matches of the team in all matches with all oppositions #' #' @param t1 #' The team #' #' @param t2 #' The opposition team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' # Top batsman is displayed in descending order of runs #' teamRunsSRPowerPlayPlotOppnAllMatches(matches,t1="India") #' #' } #' #' @seealso #' \code{\link{teamBatsmenVsBowlersAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBatsmenPartnershipOppnAllMatchesChart}}\cr #' \code{\link{teamBatsmenPartnershipAllOppnAllMatchesPlot}}\cr #' \code{\link{teamBowlingWicketRunsAllOppnAllMatches}} #' #' @export #' teamRunsSRPowerPlayPlotOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=str_extract=batsman=runs=quantile=quadrant=SRPowerPlay=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRPowerPlay=runs/count*100) x_lower <- quantile(a3$runs,p=0.66,na.rm = TRUE) y_lower <- quantile(a3$SRPowerPlay,p=0.66,na.rm = TRUE) plot.title <- paste(t1, " Runs vs SR in Powerplay in all matches against ",t2) if(plot == 1){ #ggplot2 a3 %>% mutate(quadrant = case_when(runs > x_lower & SRPowerPlay > y_lower ~ "Q1", runs <= x_lower & SRPowerPlay > y_lower ~ "Q2", runs <= x_lower & SRPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRPowerPlay,color=quadrant)) + geom_text(aes(runs,SRPowerPlay,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Power play") + ylab("Strike rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a3 %>% mutate(quadrant = case_when(runs > x_lower & SRPowerPlay > y_lower ~ "Q1", runs <= x_lower & SRPowerPlay > y_lower ~ "Q2", runs <= x_lower & SRPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(runs,SRPowerPlay,color=quadrant)) + geom_text(aes(runs,SRPowerPlay,label=batsman,color=quadrant)) + geom_point() + xlab("Runs - Power play") + ylab("Strike rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamRunsSRPowerPlayPlotOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 4 Nov 2021 # Function: teamSRAcrossOvers # This function the computes the Strike Rate in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the Strike Rate in powerplay, middle and death overs #' #' @description #' This function plots strike rate scored in powerplay, middle and death overs #' #' @usage #' teamSRAcrossOvers(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamSRAcrossOvers(match,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamSRAcrossOvers <- function(match,t1,t2,plot=1) { team=ball=totalRuns=total=type=SR=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(match,team ==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,totalRuns) a3 <- a2 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) a3$SR=ifelse(dim(a3)[1]==0, 0,a3$total/a3$count *100) if(dim(a3)[1]!=0) a3$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,totalRuns) b3 <- b2 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) b3$SR=ifelse(dim(b3)[1]==0, 0,b3$total/b3$count *100) if(dim(b3)[1]!=0) b3$type="2-Middle Overs" ##Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,totalRuns) c3 <- c2 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) c3$SR=ifelse(dim(c3)[1]==0, 0,c3$total/c3$count *100) if(dim(c3)[1]!=0) c3$type="3-Death Overs" #################### # Filter the performance of team2 a <-filter(match,team ==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team,totalRuns) a31 <- a21 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) a31$SR=ifelse(dim(a31)[1]==0, 0,a31$total/a31$count *100) if(dim(a31)[1]!=0) a31$type="1-Power Play" # Middle overs I b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b21 <- select(b11,team,totalRuns) b31 <- b21 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) b31$SR=ifelse(dim(b31)[1]==0, 0,b31$total/b31$count *100) if(dim(b31)[1]!=0) b31$type="2-Middle Overs" ##Death overs c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c21 <- select(c11,team,totalRuns) c31 <- c21 %>% group_by(team) %>% summarise(total=sum(totalRuns),count=n()) c31$SR=ifelse(dim(c31)[1]==0, 0,c31$total/c31$count *100) if(dim(c31)[1]!=0) c31$type="3-Death Overs" m=rbind(a3,b3,c3,a31,b31,c31) plot.title= paste("Strike rate across 20 overs of ",t1, "and", t2, sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=SR, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(data = m,mapping=aes(x=type, y=SR, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamSRAcrossOvers.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: teamSRAcrossOversAllOppnAllMatches # This function computes strike rate across overs in all matches against allopposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the strike rate by team against all team in powerplay, middle and death overs in all matches #' #' @description #' This function plots the SR by team against all team in in powerplay, middle and death overs #' #' @usage #' teamSRAcrossOversAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The team of the matches #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamSRAcrossOversAllOppnAllMatches(matches,"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamSRAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=type=SR=meanSR=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team, totalRuns,date) a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) a3$SR = a3$total/a3$count *100 a4 = a3 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) a4$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team, totalRuns,date) b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) b3$SR = b3$total/b3$count *100 b4 = b3 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) b4$type="2-Middle Overs" #Death overs 2 c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team, totalRuns,date) c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) c3$SR = c3$total/c3$count *100 c4 = c3 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) c4$type="3-Death Overs" m=rbind(a4,b4,c4) plot.title= paste("Strike rate across 20 overs by ",t1, "in all matches against all teams", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(data = m,mapping=aes(x=type, y=meanSR, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <-ggplot(data = m,mapping=aes(x=type, y=meanSR, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamSRAcrossOversAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 4 Nov 2021 # Function: teamSRAcrossOversOppnAllMatches # This function computes strike rate across overs in all matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the strike rate by team against team in powerplay, middle and death overs in all matches #' #' @description #' This function plots the SR by team against team in in powerplay, middle and death overs #' #' @usage #' teamSRAcrossOversOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamSRAcrossOversOppnAllMatches(matches,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamSRAcrossOversOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=type=SR=meanSR=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team, totalRuns,date) a3 <- a2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) a3$SR = a3$total/a3$count *100 a4 = a3 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) a4$type="1-Power Play" # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team, totalRuns,date) b3 <- b2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) b3$SR = b3$total/b3$count *100 b4 = b3 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) b4$type="2-Middle Overs" #Death overs 2 c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team, totalRuns,date) c3 <- c2 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) c3$SR = c3$total/c3$count *100 c4 = c3 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) c4$type="3-Death Overs" #################### # Filter the performance of team2 a <-filter(matches,team==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team, totalRuns,date) a31 <- a21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) a31$SR = a31$total/a31$count *100 a41 = a31 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) a41$type="1-Power Play" # Middle overs I b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 11.9)) b21 <- select(b11,team, totalRuns,date) b31 <- b21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) b31$SR = b31$total/b31$count *100 b41 = b31 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) b41$type="2-Middle Overs" #Death overs 2 c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c21 <- select(c11,team, totalRuns,date) c31 <- c21 %>% group_by(team,date) %>% summarise(total=sum(totalRuns),count=n()) c31$SR = c31$total/c31$count *100 c41 = c31 %>% select(team,SR) %>% summarise(meanSR=mean(SR)) c41$type="3-Death Overs" m=rbind(a4,b4,c4,a41,b41,c41) plot.title= paste("Strike rate across 20 overs by ",t1, "and", t2, "in all matches", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(data = m,mapping=aes(x=type, y=meanSR, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <-ggplot(data = m,mapping=aes(x=type, y=meanSR, fill=team)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamSRAcrossOversOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 4 Nov 2021 # Function: teamWicketsAcrossOvers # This function the computes the wickets taken in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the wickets in powerplay, middle and death overs #' #' @description #' This function plots wickets scored in powerplay, middle and death overs #' #' @usage #' teamWicketsAcrossOvers(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamWicketsAcrossOvers(match,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamWicketsAcrossOvers <- function(match,t1,t2,plot=1) { team=ball=totalRuns=total=wicketPlayerOut=wickets=type=opposition=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(match,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,wicketPlayerOut) a3 <- a2 %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a3wickets=ifelse(!is.na(a3$wickets[1]), a3$wickets[1], 0) if(!is.na(a3$wickets[1])){ a3$opposition=t2 a3$type="1-Power Play" } # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,wicketPlayerOut) b3 <- b2 %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) b3wickets=ifelse(!is.na(b3$wickets[1]), b3$wickets[1], 0) if(!is.na(b3$wickets[1])){ b3$opposition=t2 b3$type="2-Middle Overs" } #Midle overs 2 c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,wicketPlayerOut) c3 <- c2 %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) c3wickets=ifelse(!is.na(c3$wickets[1]), c3$wickets[1], 0) if(!is.na(c3$wickets[1])){ c3$opposition=t2 c3$type="3-Death Overs" } #################### # Filter the performance of team2 a <-filter(match,team==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team,wicketPlayerOut) a31 <- a21 %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a31wickets=ifelse(!is.na(a31$wickets[1]), a31$wickets[1], 0) if(!is.na(a31$wickets[1])){ a31$opposition=t1 a31$type="1-Power Play" } b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b21 <- select(b11,team,wicketPlayerOut) b31 <- b21 %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) b31wickets=ifelse(!is.na(b31$wickets[1]), b31$wickets[1], 0) if(!is.na(b31$wickets[1])){ b31$type="2-Middle Overs" b31$opposition=t1 } #Midle overs 2 c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c21 <- select(c11,team,wicketPlayerOut) c31 <- c21 %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) c31wickets=ifelse(!is.na(c31$wickets[1]), c31$wickets[1], 0) if(!is.na(c31$wickets[1])){ c31$opposition=t1 c31$type="3-Death Overs" } m=rbind(a3,b3,c3,a31,b31,c31) plot.title= paste("Wickets across 20 overs of ",t1, "and", t2, sep=" ") # Plot both lines if(plot ==1){ #ggplot2 plot.title= paste("Wickets across 20 overs of ",t1, "and", t2, sep=" ") ggplot(m,aes(x=type, y=wickets, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=wickets, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsAcrossOvers.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: teamWicketsAcrossOversAllOppnAllMatches.R # This function computes wickets across overs in all matches against all opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the wickets by team against all team in powerplay, middle and death overs in all matches #' #' @description #' This function plots the wickets by team against all team in in powerplay, middle and death overs #' #' @usage #' teamWicketsAcrossOversAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamWicketsAcrossOversAllOppnAllMatches(matches,t1,plot=1) #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamWicketsAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=wicketPlayerOut=meanWickets=type=opposition=str_extract=t2=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,date,wicketPlayerOut) a3 <- a2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) a4 = select(a3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) a4$opposition=t1 a4$type="1-Power Play" # Middle overs b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,date,wicketPlayerOut) b3 <- b2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) b4 = select(b3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) b4$opposition=t1 b4$type="2-Middle Overs" #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,date,wicketPlayerOut) c3 <- c2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) c4 = select(c3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) c4$opposition=t1 c4$type="3-Death Overs" m=rbind(a4,b4,c4) plot.title= paste("Wickets across 20 overs by ",t1, "in all matches against all teams", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=meanWickets, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=meanWickets, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsAcrossOversAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 4 Nov 2021 # Function: teamWicketsAcrossOversOppnAllMatches.R # This function computes wickets across overs in all matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the wickets by team against team in powerplay, middle and death overs in all matches #' #' @description #' This function plots the wickets by team against team in in powerplay, middle and death overs #' #' @usage #' teamWicketsAcrossOversOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' teamWicketsAcrossOversOppnAllMatches.R(matches,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' teamWicketsAcrossOversOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=wicketPlayerOut=meanWickets=type=count=opposition=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,date,wicketPlayerOut) a3 <- a2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) a4 = select(a3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) a4$opposition=t2 a4$type="1-Power Play" # Middle overs b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,date,wicketPlayerOut) b3 <- b2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) b4 = select(b3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) b4$opposition=t2 b4$type="2-Middle Overs" #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,date,wicketPlayerOut) c3 <- c2 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) c4 = select(c3,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) c4$opposition=t2 c4$type="3-Death Overs" #################### # Filter the performance of team2 a <-filter(matches,team==t2) # Power play a11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a21 <- select(a11,team,date,wicketPlayerOut) a31 <- a21 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) a41 = select(a31,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) a41$opposition=t1 a41$type="1-Power Play" # Middle overs I b11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b21 <- select(b11,team,date,wicketPlayerOut) b31 <- b21 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) b41 = select(b31,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) b41$opposition=t1 b41$type="2-Middle Overs" #Midle overs 2 c11 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 12.1, 16.9)) c21 <- select(c11,team,date,wicketPlayerOut) c31 <- c21 %>% group_by(team,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(count =n()) c41 = select(c31,team,count) %>% group_by(team) %>% summarise(meanWickets=mean(count)) c41$opposition=t1 c41$type="3-Death Overs" m=rbind(a4,b4,c4,a41,b41,c41) plot.title= paste("Wickets across 20 overs by ",t1, "and", t2, "in all matches", sep=" ") # Plot both lines if(plot ==1){ #ggplot2 ggplot(m,aes(x=type, y=meanWickets, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot(m,aes(x=type, y=meanWickets, fill=opposition)) + geom_bar(stat="identity", position = "dodge") + ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsAcrossOversOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketsERDeathOversPlotAllOppnAllMatches # This function computes the wickets vs ER of team in death overs against all opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER in death overs against all opposition all matches #' #' @description #' This function computes wickets vs ER in death overs against all oppositions in all matches #' #' @usage #' teamWicketsERDeathOversPlotAllOppnAllMatches(matches,t1, plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketsERDeathOversPlotAllOppnAllMatches(matches, t1, plot=1) #' #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERDeathOversPlotAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsDeathOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERDeathOvers=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Middle overs a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsDeathOvers=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERDeathOvers=total/count *6) a41 <- a31 %>% select(bowler,ERDeathOvers) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsDeathOvers,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERDeathOvers,p=0.66,na.rm = TRUE) plot.title <- paste("Wickets-ER in death overs of", t1, "against all opposition all matches") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsDeathOvers > x_lower & ERDeathOvers > y_lower ~ "Q1", wicketsDeathOvers <= x_lower & ERDeathOvers > y_lower ~ "Q2", wicketsDeathOvers <= x_lower & ERDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsDeathOvers,ERDeathOvers,color=quadrant)) + geom_text(aes(wicketsDeathOvers,ERDeathOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Death overs") + ylab("Economy rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsDeathOvers > x_lower & ERDeathOvers > y_lower ~ "Q1", wicketsDeathOvers <= x_lower & ERDeathOvers > y_lower ~ "Q2", wicketsDeathOvers <= x_lower & ERDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsDeathOvers,ERDeathOvers,color=quadrant)) + geom_text(aes(wicketsDeathOvers,ERDeathOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Death overs") + ylab("Economy rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERDeathOversPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketsERDeathOversPlotMatch # This function computes the wickets vs ER of team in death overs against opposition in match # ########################################################################################### #' @title #' Team wickets vs ER in death overs against opposition in match #' #' @description #' This function computes wickets vs ER in death overs against oppositions in match #' #' @usage #' teamWicketsERDeathOversPlotMatch(match,t1, t2, plot=1) #' #' @param match #' The match of the team against opposition #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' Opposition Team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketsERDeathOversPlotMatch(match,t1,t2,plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERDeathOversPlotMatch <- function(match,t1,t2,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsDeathOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERDeathOvers=NULL # Filter the performance of team1 a <-filter(match,team!=t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsDeathOvers=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERDeathOvers=total/count *6) a41 <- a31 %>% select(bowler,ERDeathOvers) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsDeathOvers,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERDeathOvers,p=0.33,na.rm = TRUE) plot.title <- paste("Wickets-ER in Death overs of ", t1, " against ", t2, " in death overs") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsDeathOvers > x_lower & ERDeathOvers > y_lower ~ "Q1", wicketsDeathOvers <= x_lower & ERDeathOvers > y_lower ~ "Q2", wicketsDeathOvers <= x_lower & ERDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsDeathOvers,ERDeathOvers,color=quadrant)) + geom_text(aes(wicketsDeathOvers,ERDeathOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Death overs") + ylab("Economy rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsDeathOvers > x_lower & ERDeathOvers > y_lower ~ "Q1", wicketsDeathOvers <= x_lower & ERDeathOvers > y_lower ~ "Q2", wicketsDeathOvers <= x_lower & ERDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsDeathOvers,ERDeathOvers,color=quadrant)) + geom_text(aes(wicketsDeathOvers,ERDeathOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Death overs") + ylab("Economy rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERDeathOversPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketERDeathOversPlotOppnAllMatches # This function computes the wickets vs ER of team in death overs against opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER in death overs against opposition all matches #' #' @description #' This function computes wickets vs ER in death overs against oppositions in all matches #' #' @usage #' teamWicketERDeathOversPlotOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' Opposition Team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketERDeathOversPlotOppnAllMatches(matches,t1,t2,plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketERDeathOversPlotOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsDeathOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERDeathOvers=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Middle overs a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsDeathOvers=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERDeathOvers=total/count *6) a41 <- a31 %>% select(bowler,ERDeathOvers) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsDeathOvers,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERDeathOvers,p=0.33,na.rm = TRUE) plot.title <- paste("Wickets-ER in Death overs of", t1, " against ", t2, " in all matches") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsDeathOvers > x_lower & ERDeathOvers > y_lower ~ "Q1", wicketsDeathOvers <= x_lower & ERDeathOvers > y_lower ~ "Q2", wicketsDeathOvers <= x_lower & ERDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsDeathOvers,ERDeathOvers,color=quadrant)) + geom_text(aes(wicketsDeathOvers,ERDeathOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Death overs") + ylab("Economy rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsDeathOvers > x_lower & ERDeathOvers > y_lower ~ "Q1", wicketsDeathOvers <= x_lower & ERDeathOvers > y_lower ~ "Q2", wicketsDeathOvers <= x_lower & ERDeathOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsDeathOvers,ERDeathOvers,color=quadrant)) + geom_text(aes(wicketsDeathOvers,ERDeathOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Death overs") + ylab("Economy rate - Death overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERDeathOversPlotOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketERMiddleOversPlotAllOppnAllMatches # This function computes the wickets vs ER of team in middle overs against all opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER in middle overs against all opposition all matches #' #' @description #' This function computes wickets vs ER in middle overs against all oppositions in all matches #' #' @usage #' teamWicketERMiddleOversPlotAllOppnAllMatches(matches,t1, plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketERMiddleOversPlotAllOppnAllMatches(matches, t1, plot=1) #' } #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketERMiddleOversPlotAllOppnAllMatches <- function(matches,t1, plot=1) { team=ball=totalRuns=total=wickets=wicketsMiddleOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERMiddleOvers=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Middle overs a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsMiddleOvers=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERMiddleOvers=total/count *6) a41 <- a31 %>% select(bowler,ERMiddleOvers) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsMiddleOvers,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERMiddleOvers,p=0.33,na.rm = TRUE) plot.title <- paste("Wickets-ER Plot of", t1, "in Middle overs against all opposition all matches") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsMiddleOvers > x_lower & ERMiddleOvers > y_lower ~ "Q1", wicketsMiddleOvers <= x_lower & ERMiddleOvers > y_lower ~ "Q2", wicketsMiddleOvers <= x_lower & ERMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsMiddleOvers,ERMiddleOvers,color=quadrant)) + geom_text(aes(wicketsMiddleOvers,ERMiddleOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Middle overs") + ylab("Economy rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsMiddleOvers > x_lower & ERMiddleOvers > y_lower ~ "Q1", wicketsMiddleOvers <= x_lower & ERMiddleOvers > y_lower ~ "Q2", wicketsMiddleOvers <= x_lower & ERMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsMiddleOvers,ERMiddleOvers,color=quadrant)) + geom_text(aes(wicketsMiddleOvers,ERMiddleOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Middle overs") + ylab("Economy rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERMiddleOversPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketsERMiddleOversPlotMatch # This function computes the wickets vs ER of team in middle overs against opposition in match # ########################################################################################### #' @title #' Team wickets vs ER in middle overs against opposition in match #' #' @description #' This function computes wickets vs ER in middle overs against oppositions in all match #' #' @usage #' teamWicketsERMiddleOversPlotMatch(match,t1, t2, plot=1) #' #' @param match #' The match of the team against opposition #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' Opposition Team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketsERMiddleOversPlotMatch(match, t1,t2, plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERMiddleOversPlotMatch <- function(match,t1,t2,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsMiddleOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERMiddleOvers=NULL # Filter the performance of team1 a <-filter(match,team!=t1) # Middle overs a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsMiddleOvers=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERMiddleOvers=total/count *6) a41 <- a31 %>% select(bowler,ERMiddleOvers) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsMiddleOvers,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERMiddleOvers,p=0.66,na.rm = TRUE) plot.title <- paste("Wickets-ER in Middle overs of ", t1, " against ", t2, " in middle overs") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsMiddleOvers > x_lower & ERMiddleOvers > y_lower ~ "Q1", wicketsMiddleOvers <= x_lower & ERMiddleOvers > y_lower ~ "Q2", wicketsMiddleOvers <= x_lower & ERMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsMiddleOvers,ERMiddleOvers,color=quadrant)) + geom_text(aes(wicketsMiddleOvers,ERMiddleOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Middle overs") + ylab("Economy rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsMiddleOvers > x_lower & ERMiddleOvers > y_lower ~ "Q1", wicketsMiddleOvers <= x_lower & ERMiddleOvers > y_lower ~ "Q2", wicketsMiddleOvers <= x_lower & ERMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsMiddleOvers,ERMiddleOvers,color=quadrant)) + geom_text(aes(wicketsMiddleOvers,ERMiddleOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Middle overs") + ylab("Economy rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERMiddleOversPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketERMiddleOversPlotOppnAllMatches # This function computes the wickets vs ER of team in middle overs against opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER in middle overs against a pposition all matches #' #' @description #' This function computes wickets vs ER in middle overs against all oppositions in all matches #' #' @usage #' teamWicketERMiddleOversPlotOppnAllMatches(matches,t1, t2, plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' Opposition Team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketERMiddleOversPlotOppnAllMatches(matches,t1,t2,plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketERMiddleOversPlotOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsMiddleOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERMiddleOvers=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Middle overs a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsMiddleOvers=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERMiddleOvers=total/count *6) a41 <- a31 %>% select(bowler,ERMiddleOvers) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsMiddleOvers,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERMiddleOvers,p=0.33,na.rm = TRUE) plot.title <- paste("Wickets-ER in Middle overs of", t1, " against ", t2, "in all matches") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsMiddleOvers > x_lower & ERMiddleOvers > y_lower ~ "Q1", wicketsMiddleOvers <= x_lower & ERMiddleOvers > y_lower ~ "Q2", wicketsMiddleOvers <= x_lower & ERMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsMiddleOvers,ERMiddleOvers,color=quadrant)) + geom_text(aes(wicketsMiddleOvers,ERMiddleOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Middle overs") + ylab("Economy rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsMiddleOvers > x_lower & ERMiddleOvers > y_lower ~ "Q1", wicketsMiddleOvers <= x_lower & ERMiddleOvers > y_lower ~ "Q2", wicketsMiddleOvers <= x_lower & ERMiddleOvers <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsMiddleOvers,ERMiddleOvers,color=quadrant)) + geom_text(aes(wicketsMiddleOvers,ERMiddleOvers,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Middle overs") + ylab("Economy rate - Middle overs") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERMiddleOversPlotOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Nov 2021 # Function: teamWicketsERPlotAllOppnAllMatches # This function computes the wickets vs ER of team against all opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER against all opposition all matches #' #' @description #' This function computes wickets vs ER against all oppositions in all matches #' #' @usage #' teamWicketsERPlotAllOppnAllMatches(matches,theTeam, plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param theTeam #' Team for which bowling performance is required #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' wicketsERAllOppnAllMatches #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERPlotAllOppnAllMatches <- function(matches,theTeam,plot=1){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=ER=quantile=quadrant=NULL team=bowler=ball=wides=noballs=runsConceded=overs=ggplotly=NULL over=wickets=maidens=NULL a <-filter(matches,team!=theTeam) a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(wicketPlayerOut)) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if there are any if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } # Arrange in descending order of wickets and runs and ascending order for maidens l <-arrange(l,desc(wickets),desc(runs),maidens) l$ER = l$runs/l$overs x_lower <- quantile(l$wickets,p=0.66,na.rm = TRUE) y_lower <- quantile(l$ER,p=0.66,na.rm = TRUE) plot.title <- paste("Wickets-ER Plot of", theTeam, "against all opposition all matches") if(plot == 1){ #ggplot2 l %>% mutate(quadrant = case_when(wickets > x_lower & ER > y_lower ~ "Q1", wickets <= x_lower & ER > y_lower ~ "Q2", wickets <= x_lower & ER <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wickets,ER,color=quadrant)) + geom_text(aes(wickets,ER,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets") + ylab("Economy rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- l %>% mutate(quadrant = case_when(wickets > x_lower & ER > y_lower ~ "Q1", wickets <= x_lower & ER > y_lower ~ "Q2", wickets <= x_lower & ER <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wickets,ER,color=quadrant)) + geom_text(aes(wickets,ER,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets") + ylab("Economy rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Nov 2021 # Function: teamWicketsERPlotMatch # This function computes the wickets vs ER of team in match # ########################################################################################### #' @title #' Team wickets vs ER against in match #' #' @description #' This function computes wickets vs ER in match #' #' @usage #' teamWicketsERPlotMatch(match,t1,t2,plot=1) #' #' @param match #' The match of the team against opposition #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketsERPlotMatch(match,t1,t2,plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERPlotMatch <- function(match,t1,t2,plot=1){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=NULL team=bowler=ball=wides=noballs=runsConceded=overs=NULL over=wickets=maidens=str_extract=quantile=quadrant=ER=ggplotly=NULL a <-filter(match,team!=t1) a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(wicketPlayerOut)) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if there are any if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } # Arrange in descending order of wickets and runs and ascending order for maidens l <-arrange(l,desc(wickets),desc(runs),maidens) l$ER = l$runs/l$overs x_lower <- quantile(l$wickets,p=0.66,na.rm = TRUE) y_lower <- quantile(l$ER,p=0.66,na.rm = TRUE) plot.title <- paste("Wickets-ER Plot of", t1, "in match against ", t2) if(plot == 1){ #ggplot2 l %>% mutate(quadrant = case_when(wickets > x_lower & ER > y_lower ~ "Q1", wickets <= x_lower & ER > y_lower ~ "Q2", wickets <= x_lower & ER <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wickets,ER,color=quadrant)) + geom_text(aes(wickets,ER,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets") + ylab("Economy rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- l %>% mutate(quadrant = case_when(wickets > x_lower & ER > y_lower ~ "Q1", wickets <= x_lower & ER > y_lower ~ "Q2", wickets <= x_lower & ER <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wickets,ER,color=quadrant)) + geom_text(aes(wickets,ER,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets") + ylab("Economy rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Nov 2021 # Function: teamWicketsERPlotOppnAllMatches # This function computes the wickets vs ER of team against all opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER against all opposition all matches #' #' @description #' This function computes wickets vs ER against all oppositions in all matches #' #' @usage #' teamWicketsERPlotOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketsERPlotOppnAllMatches(matches,t1,t2,plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERPlotOppnAllMatches <- function(matches,t1,t2,plot=1){ noBalls=wides=team=runs=bowler=wicketKind=wicketPlayerOut=ER=quantile=quadrant=NULL team=bowler=ball=wides=noballs=runsConceded=overs=ggplotly=NULL over=wickets=maidens=NULL a <-filter(matches,team!=t1) a1 <- unlist(strsplit(a$ball[1],"\\.")) # Create a string for substitution 1st or 2nd a2 <- paste(a1[1],"\\.",sep="") # only wides and noballs need to be included with runs for bowlers. # Note: byes and legbyes should not be included b <- a %>% select(bowler,ball,noballs,wides,runs,wicketKind,wicketPlayerOut) %>% #mutate(over=gsub("1st\\.","",ball)) %>% mutate(over=gsub(a2,"",ball)) %>% mutate(over=gsub("\\.\\d+","",over)) #Calculate the number of maiden overs c <- summarise(group_by(b,bowler,over),sum(runs,wides,noballs)) names(c) <- c("bowler","over","runsConceded") d <-summarize(group_by(c,bowler),maidens=sum(runsConceded==0)) #Compute total runs conceded (runs_wides+noballs) e <- summarize(group_by(c,bowler),runs=sum(runsConceded)) # Calculate the number of overs bowled by each bwler f <- select(c,bowler,over) g <- summarise(group_by(f,bowler),overs=length(unique(over))) #Compute number of wickets h <- b %>% select(bowler,wicketKind,wicketPlayerOut) %>% filter(wicketPlayerOut != "nobody") i <- summarise(group_by(h,bowler),wickets=length(wicketPlayerOut)) #Join the over & maidens j <- full_join(g,d,by="bowler") # Add runs k <- full_join(j,e,by="bowler") # Add wickets l <- full_join(k,i,by="bowler") # Set NAs to 0 if there are any if(sum(is.na(l$wickets)) != 0){ l[is.na(l$wickets),]$wickets=0 } # Arrange in descending order of wickets and runs and ascending order for maidens l <-arrange(l,desc(wickets),desc(runs),maidens) l$ER = l$runs/l$overs x_lower <- quantile(l$wickets,p=0.66,na.rm = TRUE) y_lower <- quantile(l$ER,p=0.66,na.rm = TRUE) plot.title <- paste("Wickets-ER of ", t1, " in all matches against ", t2) if(plot == 1){ #ggplot2 l %>% mutate(quadrant = case_when(wickets > x_lower & ER > y_lower ~ "Q1", wickets <= x_lower & ER > y_lower ~ "Q2", wickets <= x_lower & ER <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wickets,ER,color=quadrant)) + geom_text(aes(wickets,ER,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets") + ylab("Economy rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- l %>% mutate(quadrant = case_when(wickets > x_lower & ER > y_lower ~ "Q1", wickets <= x_lower & ER > y_lower ~ "Q2", wickets <= x_lower & ER <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wickets,ER,color=quadrant)) + geom_text(aes(wickets,ER,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets") + ylab("Economy rate") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERPlotOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 23 Nov 2021 # Function: teamWicketsERPowerPlayPlotAllOppnAllMatches # This function computes the wickets vs ER of team in powewrplay against all opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER in powewrplay against all opposition all matches #' #' @description #' This function computes wickets vs ER in powewrplay against all oppositions in all matches #' #' @usage #' teamWicketsERPowerPlayPlotAllOppnAllMatches(matches,t1, plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketsERPowerPlayPlotAllOppnAllMatches(matches, t1, plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERPowerPlayPlotAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsMiddleOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERPowerPlay=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsPowerPlay=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERPowerPlay=total/count *6) a41 <- a31 %>% select(bowler,ERPowerPlay) a42=inner_join(a4,a41,by="bowler") x_lower <- 1/2 * min(a42$wicketsPowerPlay + max(a42$wicketsPowerPlay)) y_lower <- 1/2 * min(a42$ERPowerPlay + max(a42$ERPowerPlay)) x_lower <- quantile(a42$wicketsPowerPlay,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERPowerPlay,p=0.66,na.rm = TRUE) plot.title <- paste("Wickets-ER Plot of", t1, "in Power play against all opposition all matches") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsPowerPlay > x_lower & ERPowerPlay > y_lower ~ "Q1", wicketsPowerPlay <= x_lower & ERPowerPlay > y_lower ~ "Q2", wicketsPowerPlay <= x_lower & ERPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsPowerPlay,ERPowerPlay,color=quadrant)) + geom_text(aes(wicketsPowerPlay,ERPowerPlay,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Power play") + ylab("Economy rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsPowerPlay > x_lower & ERPowerPlay > y_lower ~ "Q1", wicketsPowerPlay <= x_lower & ERPowerPlay > y_lower ~ "Q2", wicketsPowerPlay <= x_lower & ERPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsPowerPlay,ERPowerPlay,color=quadrant)) + geom_text(aes(wicketsPowerPlay,ERPowerPlay,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Power play") + ylab("Economy rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERPowerPlayPlotAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketsERPowerPlayPlotMatch # This function computes the wickets vs ER of team in powewrplay against opposition in match # ########################################################################################### #' @title #' Team wickets vs ER in powewrplay against opposition in match #' #' @description #' This function computes wickets vs ER in powewrplay against oppositions in match #' #' @usage #' teamWicketsERPowerPlayPlotMatch(match,t1,t2, plot=1) #' #' @param match #' The match of the team against opposition #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' Opposition Team #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketsERPowerPlayPlotMatch(match,t1,t2,plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketsERPowerPlayPlotMatch <- function(match,t1,t2,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsMiddleOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERPowerPlay=NULL # Filter the performance of team1 a <-filter(match,team!=t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsPowerPlay=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERPowerPlay=total/count *6) a41 <- a31 %>% select(bowler,ERPowerPlay) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsPowerPlay,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERPowerPlay,p=0.33,na.rm = TRUE) plot.title <- paste("Wickets-ER in Power play of ", t1, " against ", t2 ) if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsPowerPlay > x_lower & ERPowerPlay > y_lower ~ "Q1", wicketsPowerPlay <= x_lower & ERPowerPlay > y_lower ~ "Q2", wicketsPowerPlay <= x_lower & ERPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsPowerPlay,ERPowerPlay,color=quadrant)) + geom_text(aes(wicketsPowerPlay,ERPowerPlay,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Power play") + ylab("Economy rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsPowerPlay > x_lower & ERPowerPlay > y_lower ~ "Q1", wicketsPowerPlay <= x_lower & ERPowerPlay > y_lower ~ "Q2", wicketsPowerPlay <= x_lower & ERPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsPowerPlay,ERPowerPlay,color=quadrant)) + geom_text(aes(wicketsPowerPlay,ERPowerPlay,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Power play") + ylab("Economy rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERPowerPlayPlotMatch.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 27 Nov 2021 # Function: teamWicketERPowerPlayPlotOppnAllMatches # This function computes the wickets vs ER of team in powewrplay against opposition in all matches # ########################################################################################### #' @title #' Team wickets vs ER in powewrplay against opposition all matches #' #' @description #' This function computes wickets vs ER in powewrplay against oppositions in all matches #' #' @usage #' teamWicketERPowerPlayPlotOppnAllMatches(matches,t1,t2,plot=1) #' #' @param matches #' The matches of the team against all oppositions and all matches #' #' @param t1 #' Team for which bowling performance is required #' #' @param t2 #' Opposition Team #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' teamWicketERPowerPlayPlotOppnAllMatches(matches,t1,t2,plot=1) #'} #' @seealso #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesMain}}\cr #' \code{\link{teamBowlersVsBatsmenAllOppnAllMatchesPlot}}\cr #' #' @export #' teamWicketERPowerPlayPlotOppnAllMatches <- function(matches,t1,t2,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsMiddleOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=str_extract=quantile=quadrant=ERPowerPlay=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsPowerPlay=sum(wickets)) a21 <- select(a1,team,bowler,date,totalRuns) a31 <- a21 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERPowerPlay=total/count *6) a41 <- a31 %>% select(bowler,ERPowerPlay) a42=inner_join(a4,a41,by="bowler") x_lower <- quantile(a42$wicketsPowerPlay,p=0.66,na.rm = TRUE) y_lower <- quantile(a42$ERPowerPlay,p=0.33,na.rm = TRUE) plot.title <- paste("Wickets-ER in Power play of ", t1, " against ", t2, " all matches") if(plot == 1){ #ggplot2 a42 %>% mutate(quadrant = case_when(wicketsPowerPlay > x_lower & ERPowerPlay > y_lower ~ "Q1", wicketsPowerPlay <= x_lower & ERPowerPlay > y_lower ~ "Q2", wicketsPowerPlay <= x_lower & ERPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsPowerPlay,ERPowerPlay,color=quadrant)) + geom_text(aes(wicketsPowerPlay,ERPowerPlay,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Power play") + ylab("Economy rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) } else if(plot == 2){ #ggplotly g <- a42 %>% mutate(quadrant = case_when(wicketsPowerPlay > x_lower & ERPowerPlay > y_lower ~ "Q1", wicketsPowerPlay <= x_lower & ERPowerPlay > y_lower ~ "Q2", wicketsPowerPlay <= x_lower & ERPowerPlay <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(wicketsPowerPlay,ERPowerPlay,color=quadrant)) + geom_text(aes(wicketsPowerPlay,ERPowerPlay,label=bowler,color=quadrant)) + geom_point() + xlab("Wickets - Power play") + ylab("Economy rate - Power play") + geom_vline(xintercept = x_lower,linetype="dashed") + # plot vertical line geom_hline(yintercept = y_lower,linetype="dashed") + # plot horizontal line ggtitle(plot.title) ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/teamWicketsERPowerPlayPlotOppnAllMatches.R
####################################################################################### # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topERBowlerAcrossOversAllOppnAllMatches.R # This function computes the best ER by bowlers in all matches against all opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the best ER by bowlers against all team in powerplay, middle and death overs #' #' @description #' This function computes the best ER by bowlers against akk team in in powerplay, middle and death overs #' #' @usage #' topERBowlerAcrossOversAllOppnAllMatches(matches,t1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' topERBowlerAcrossOversAllOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topERBowlerAcrossOversAllOppnAllMatches <- function(matches,t1) { team=ball=totalRuns=total=ERPowerPlay=ERMiddleOvers=ERDeathOvers=quantile=bowler=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,bowler,date,totalRuns) a3 <- a2 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERPowerPlay=total/count *6) %>% filter(count > quantile(count,prob=0.25,na.rm = TRUE)) a4 <- a3 %>% select(bowler,ERPowerPlay) %>% arrange(ERPowerPlay) # Middle overs b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,bowler,date,totalRuns) b3 <- b2 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERMiddleOvers=total/count *6) %>% filter(count > quantile(count,prob=0.25,na.rm = TRUE)) b4 <- b3 %>% select(bowler,ERMiddleOvers) %>% arrange(ERMiddleOvers) #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,bowler,date,totalRuns) c3 <- c2 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERDeathOvers=total/count *6) %>% filter(count > quantile(count,prob=0.25,na.rm = TRUE)) c4 <- c3 %>% select(bowler,ERDeathOvers) %>% arrange(ERDeathOvers) val=min(dim(a4)[1],dim(b4)[1],dim(c4)[1]) m=cbind(a4[1:val,],b4[1:val,],c4[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topERBowlerAcrossOversAllOppnAllMatches.R
####################################################################################### # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topERBowlerAcrossOversOppnAllMatches.R # This function computes the best ER by bowlers in matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the best ER by bowlers against team in powerplay, middle and death overs #' #' @description #' This function computes the best ER by bowlers against team in in powerplay, middle and death overs #' #' @usage #' topERBowlerAcrossOversOppnAllMatches(matches,t1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' #' topERBowlerAcrossOversOppnAllMatches.R(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topERBowlerAcrossOversOppnAllMatches <- function(matches,t1) { team=ball=totalRuns=total=ERPowerPlay=ERMiddleOvers=ERDeathOvers=bowler=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,team,bowler,date,totalRuns) a3 <- a2 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERPowerPlay=total/count *6) a4 <- a3 %>% select(bowler,ERPowerPlay) %>% arrange(ERPowerPlay) # Middle overs b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,team,bowler,date,totalRuns) b3 <- b2 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERMiddleOvers=total/count *6) b4 <- b3 %>% select(bowler,ERMiddleOvers) %>% arrange(ERMiddleOvers) #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,team,bowler,date,totalRuns) c3 <- c2 %>% group_by(bowler) %>% summarise(total=sum(totalRuns),count=n(), ERDeathOvers=total/count *6) c4 <- c3 %>% select(bowler,ERDeathOvers) %>% arrange(ERDeathOvers) val=min(dim(a4)[1],dim(b4)[1],dim(c4)[1]) m=cbind(a4[1:val,],b4[1:val,],c4[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topERBowlerAcrossOversOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topRunsBatsmenAcrossOversAllOppnAllMatches.R # This function computes the top runs scorers in matches against all opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the most runs scored by batsmen against all team in powerplay, middle and death overs #' #' @description #' This function computes the most runs by batsman against all team in in powerplay, middle and death overs #' #' @usage #' topRunsBatsmenAcrossOversAllOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' topRunsBatsmenAcrossOversAllOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topRunsBatsmenAcrossOversAllOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=runsPowerPlay=runsMiddleOvers=runsDeathOvers=batsman=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman) a3 <- a2 %>% group_by(batsman) %>% summarise(runsPowerPlay= sum(totalRuns)) %>% arrange(desc(runsPowerPlay)) # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,ball,totalRuns,batsman) b3 <- b2 %>% group_by(batsman) %>% summarise(runsMiddleOvers= sum(totalRuns)) %>% arrange(desc(runsMiddleOvers)) c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,ball,totalRuns,batsman) c3 <- c2 %>% group_by(batsman) %>% summarise(runsDeathOvers= sum(totalRuns)) %>% arrange(desc(runsDeathOvers)) val=min(dim(a3)[1],dim(b3)[1],dim(c3)[1]) m=cbind(a3[1:val,],b3[1:val,],c3[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topRunsBatsmenAcrossOversAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topRunsBatsmenAcrossOversOppnAllMatches.R # This function computes the top runs scorers in matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the most runs scored by batsmen against team in powerplay, middle and death overs #' #' @description #' This function computes the most runs by batsman against team in in powerplay, middle and death overs #' #' @usage #' topRunsBatsmenAcrossOversOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' topRunsBatsmenAcrossOversOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topRunsBatsmenAcrossOversOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=runsPowerPlay=runsMiddleOvers=runsDeathOvers=matches=str_extract=NULL ggplotly=batsman=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman) a3 <- a2 %>% group_by(batsman) %>% summarise(runsPowerPlay= sum(totalRuns)) %>% arrange(desc(runsPowerPlay)) # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,ball,totalRuns,batsman) b3 <- b2 %>% group_by(batsman) %>% summarise(runsMiddleOvers= sum(totalRuns)) %>% arrange(desc(runsMiddleOvers)) c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,ball,totalRuns,batsman) c3 <- c2 %>% group_by(batsman) %>% summarise(runsDeathOvers= sum(totalRuns)) %>% arrange(desc(runsDeathOvers)) val=min(dim(a3)[1],dim(b3)[1],dim(c3)[1]) m=cbind(a3[1:val,],b3[1:val,],c3[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topRunsBatsmenAcrossOversOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topSRBatsmenAcrossOversAllOppnAllMatches.R # This function computes the highest SR by batsmen in matches against all opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the highest SR by batsmen against all team in powerplay, middle and death overs #' #' @description #' This function computes the highest SR by batsmen by batsman against all team in in powerplay, middle and death overs #' #' @usage #' topSRBatsmenAcrossOversAllOppnAllMatches(matches,t1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The team of the match #' #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' topSRBatsmenAcrossOversAllOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topSRBatsmenAcrossOversAllOppnAllMatches <- function(matches,t1) { team=ball=totalRuns=total=SRinPowerpPlay=SRinMiddleOvers=SRinDeathOvers=batsman=str_extract=runs=count=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinPowerpPlay=runs/count*100) %>% arrange(desc(SRinPowerpPlay)) %>% select(batsman,SRinPowerpPlay) # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,ball,totalRuns,batsman,date) b3 <- b2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinMiddleOvers=runs/count*100) %>% arrange(desc(SRinMiddleOvers)) %>% select(batsman,SRinMiddleOvers) c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,ball,totalRuns,batsman,date) c3 <- c2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinDeathOvers=runs/count*100) %>% arrange(desc(SRinDeathOvers)) %>% select(batsman,SRinDeathOvers) val=min(dim(a3)[1],dim(b3)[1],dim(c3)[1]) m=cbind(a3[1:val,],b3[1:val,],c3[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topSRBatsmenAcrossOversAllOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topSRBatsmenAcrossOversOppnAllMatches.R # This function computes the highest SR by batsmen in matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the highest SR by batsmen against team in powerplay, middle and death overs #' #' @description #' This function computes the highest SR by batsmen by batsman against team in in powerplay, middle and death overs #' #' @usage #' topSRBatsmenAcrossOversOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' topSRBatsmenAcrossOversOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topSRBatsmenAcrossOversOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=SRinPowerpPlay=SRinMiddleOvers=SRinDeathOvers=batsman=runs=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinPowerpPlay=runs/count*100) %>% arrange(desc(SRinPowerpPlay)) %>% select(batsman,SRinPowerpPlay) # Middle overs I b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,ball,totalRuns,batsman,date) b3 <- b2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinMiddleOvers=runs/count*100) %>% arrange(desc(SRinMiddleOvers)) %>% select(batsman,SRinMiddleOvers) c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,ball,totalRuns,batsman,date) c3 <- c2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinDeathOvers=runs/count*100) %>% arrange(desc(SRinDeathOvers)) %>% select(batsman,SRinDeathOvers) val=min(dim(a3)[1],dim(b3)[1],dim(c3)[1]) m=cbind(a3[1:val,],b3[1:val,],c3[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topSRBatsmenAcrossOversOppnAllMatches.R
######################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topWicketsBowlerAcrossOversAllOppnAllMatches # This function best wicket takes in all matches against all opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the most wickets by bowlers against all team in powerplay, middle and death overs #' #' @description #' This function computes the highest wickets by bowlers against all team in in powerplay, middle and death overs #' #' @usage #' topWicketsBowlerAcrossOversAllOppnAllMatches(matches,t1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' topWicketsBowlerAcrossOversAllOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topWicketsBowlerAcrossOversAllOppnAllMatches <- function(matches,t1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsMiddleOvers=wicketsDeathOvers=bowler=str_extract=NULL ggplotly=wicketPlayerOut=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsPowerPlay=sum(wickets)) %>% arrange(desc(wicketsPowerPlay)) # Middle overs b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,date,bowler,wicketPlayerOut) b3 <- b2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) b4 <- b3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsMiddleOvers=sum(wickets)) %>% arrange(desc(wicketsMiddleOvers)) #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,date,bowler,wicketPlayerOut) c3 <- c2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) c4 <- c3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsDeathOvers=sum(wickets)) %>% arrange(desc(wicketsDeathOvers)) val=min(dim(a4)[1],dim(b4)[1],dim(c4)[1]) m=cbind(a4[1:val,],b4[1:val,],c4[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topWicketsBowlerAcrossOversAllOppnAllMatches.R
######################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 5 Nov 2021 # Function: topWicketsBowlerAcrossOversOppnAllMatches # This function computes the best ER by bowlers in matches against opposition in powerplay, middle and death overs # ########################################################################################### #' @title #' Compute the best ER by bowlers against team in powerplay, middle and death overs #' #' @description #' This function computes the highest wickets by bowlers against team in in powerplay, middle and death overs #' #' @usage #' topWicketsBowlerAcrossOversOppnAllMatches(matches,t1,plot=1) #' #' @param matches #' The dataframe of the matches #' #' @param t1 #' The 1st team of the match #' #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #' # Plot tne match worm plot #' topWicketsBowlerAcrossOversOppnAllMatches(matches,'England') #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' topWicketsBowlerAcrossOversOppnAllMatches <- function(matches,t1,plot=1) { team=ball=totalRuns=total=wickets=wicketsPowerPlay=wicketsMiddleOvers=wicketsDeathOvers=bowler=wicketPlayerOut=str_extract=NULL ggplotly=NULL # Filter the performance of team1 a <-filter(matches,team!=t1) # Power play a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,date,bowler,wicketPlayerOut) a3 <- a2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) a4 <- a3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsPowerPlay=sum(wickets)) %>% arrange(desc(wicketsPowerPlay)) # Middle overs b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,date,bowler,wicketPlayerOut) b3 <- b2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) b4 <- b3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsMiddleOvers=sum(wickets)) %>% arrange(desc(wicketsMiddleOvers)) #Death overs c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,date,bowler,wicketPlayerOut) c3 <- c2 %>% group_by(bowler,date) %>% filter(wicketPlayerOut != "nobody") %>% mutate(wickets =n()) c4 <- c3 %>% select(date,bowler,wickets) %>% distinct(date,bowler,wickets) %>% group_by(bowler) %>% summarise(wicketsDeathOvers=sum(wickets)) %>% arrange(desc(wicketsDeathOvers)) val=min(dim(a4)[1],dim(b4)[1],dim(c4)[1]) m=cbind(a4[1:val,],b4[1:val,],c4[1:val,]) m }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/topWicketsBowlerAcrossOversOppnAllMatches.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Dec 2022 # Function: winProbabilityDL # This function computes the ball by ball win probability using Deep Learning Keras # ########################################################################################### #' @title #' Plot the win probability using Deep Learning model #' #' @description #' This function plots the win probability of the teams in a T20 match #' #' @usage #' winProbabilityDL(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get the match details #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' # Plot tne match worm plot #' winProbabilityDL(a,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' winProbabilityDL <- function(match,t1,t2,plot=1){ team=ball=totalRuns=wicketPlayerOut=ballsRemaining=runs=numWickets=runsMomentum=perfIndex=isWinner=NULL predict=ml_model=winProbability=ggplotly=runs=runRate=batsman=bowler=NULL batsmanIdx=bowlerIdx=NULL if (match$winner[1] == "NA") { print("Match no result ************************") return() } team1Size=0 requiredRuns=0 # Read batsman, bowler vectors batsmanMap=readRDS("batsmanMap.rds") bowlerMap=readRDS("bowlerMap.rds") teams=unique(match$team) teamA=teams[1] # Filter the performance of team1 a <-filter(match,team==teamA) #Balls in team 1's innings ballsIn1stInnings= dim(a)[1] b <- select(a,batsman, bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date) c <-mutate(b,ball=gsub("1st\\.","",ball)) # Compute the total runs scored by team d <- mutate(c,runs=cumsum(totalRuns)) # Check if team1 won or lost the match if(match$winner[1]== teamA){ d$isWinner=1 } else{ d$isWinner=0 } #Get the ball num d$ballNum = seq.int(nrow(d)) # Compute the balls remaining for the team d$ballsRemaining = ballsIn1stInnings - d$ballNum +1 # Wickets lost by team d$wicketNum = d$wicketPlayerOut != "nobody" d=d %>% mutate(numWickets=cumsum(d$wicketNum==TRUE)) #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d$perfIndex = (d$runs/d$ballNum) * (11 - d$numWickets) # Compute run rate d$runRate = (d$runs/d$ballNum) d$runsMomentum = (11 - d$numWickets)/d$ballsRemaining df8 = select(d, batsman,bowler,ballNum, ballsRemaining, runs, runRate,numWickets,runsMomentum,perfIndex, isWinner) df9=left_join(df8,batsmanMap) df9=left_join(df9,bowlerMap) dfa = select(df9, batsmanIdx,bowlerIdx,ballNum,ballsRemaining,runs,runRate,numWickets, runsMomentum,perfIndex, isWinner) print(dim(dfa)) ############################################################################################# ######## Team 2 # Compute for Team 2 # Required runs is the team made by team 1 + 1 requiredRuns=d[dim(d)[1],]$runs +1 teamB=teams[2] # Filter the performance of team1 a1 <-filter(match,team==teamB) #Balls in team 1's innings ballsIn2ndInnings= dim(a1)[1] + 1 b1 <- select(a1,batsman,bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date) c1 <-mutate(b1,ball=gsub("2nd\\.","",ball)) # Compute total Runs d1 <- mutate(c1,runs=cumsum(totalRuns)) # Check of team2 is winner if(match$winner[1]== teamB){ d1$isWinner=1 } else{ d1$isWinner=0 } # Compute ball number d1$ballNum= ballsIn1stInnings + seq.int(nrow(d1)) # Compute remaining balls in 2nd innings d1$ballsRemaining= ballsIn2ndInnings - seq.int(nrow(d1)) # Compute wickets remaining d1$wicketNum = d1$wicketPlayerOut != "nobody" d1=d1 %>% mutate(numWickets=cumsum(d1$wicketNum==TRUE)) ballNum=d1$ballNum - ballsIn1stInnings #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d1$perfIndex = (d1$runs/ballNum) * (11 - d1$numWickets) #Compute required runs d1$requiredRuns = requiredRuns - d1$runs d1$runRate = (d1$requiredRuns/d1$ballsRemaining) d1$runsMomentum = (11 - d1$numWickets)/d1$ballsRemaining # Rename required runs as runs df10 = select(d1,batsman,bowler,ballNum,ballsRemaining, requiredRuns,runRate,numWickets,runsMomentum,perfIndex, isWinner) names(df10) =c("batsman","bowler","ballNum","ballsRemaining","runs","runRate","numWickets","runsMomentum","perfIndex","isWinner") print(dim(df10)) df11=left_join(df10,batsmanMap) df11=left_join(df11,bowlerMap) df2=rbind(df9,df11) dfb = select(df11, batsmanIdx,bowlerIdx,ballNum,ballsRemaining,runs,runRate,numWickets, runsMomentum,perfIndex, isWinner) print(dim(dfb)) # load the model m=predict(dl_model,dfa,type = "prob") m1=m*100 m2=matrix(m1) n=predict(dl_model,dfb,type="prob") n1=n*100 n2=matrix(n1) m3= 100-n2 n3=100-m2 team1=rbind(m2,m3) team2=rbind(n3,n2) team11=as.data.frame(cbind(df2$ballNum,team1)) names(team11) = c("ballNum","winProbability") team22=as.data.frame(cbind(df2$ballNum,team2)) names(team22) = c("ballNum","winProbability") # Add labels to chart team 1 #Mark when players were dismissed k <- cbind(b,m1) k$ballNum = seq.int(nrow(k)) k1= filter(k,wicketPlayerOut != "nobody") k2 = select(k1,ballNum,m1,wicketPlayerOut) #print(k2) # Mark when batsman started batsmen = unique(k$batsman) p = data.frame(matrix(nrow = 0, ncol = dim(k[2]))) for(bman in batsmen){ l <-k %>% filter(batsman == bman) n=l[1,] p=rbind(p,n) } p1 = select(p,ballNum,m1,batsman) #print(p1) # Add labels to team 2 #Mark when players were dismissed r <- cbind(b1,n1) r$ballNum = seq.int(nrow(r)) r1= filter(r,wicketPlayerOut != "nobody") r2 = select(r1,ballNum,n1,wicketPlayerOut) # Mark when batsman started batsmen = unique(r$batsman) s = data.frame(matrix(nrow = 0, ncol = dim(k[2]))) for(bman1 in batsmen){ t1 <-r %>% filter(batsman == bman1) t2=t1[1,] s=rbind(s,t2) } s1 = select(s,ballNum,n1,batsman) # Plot both lines if(plot ==1){ #ggplot df3 = as.data.frame(cbind(d$ballNum,m1)) names(df3) <- c("ballNum","winProbability") df4 = as.data.frame(cbind(d1$ballNum,n1)) names(df4) <- c("ballNum","winProbability") maxBallNum = max(df3$ballNum) df4$ballNum = df4$ballNum - maxBallNum g <- ggplot() + geom_line(data = df3, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = df4, aes(x = ballNum, y = winProbability, color = teamB))+ geom_point(data=k2, aes(x=ballNum, y=m1,color="blue"),shape=15) + geom_text(data=k2, aes(x=ballNum,y=m1,label=wicketPlayerOut,color="blue"),nudge_x =0.5,nudge_y = 0.5)+ geom_point(data=p1, aes(x=ballNum, y=m1,colour="red"),shape=16) + geom_text(data=p1, aes(x=ballNum,y=m1,label=batsman,colour="red"),nudge_x =0.5,nudge_y = 0.5) + geom_point(data=r2, aes(x=ballNum, y=n1,colour="black"),shape=15) + geom_text(data=r2, aes(x=ballNum,y=n1,label=wicketPlayerOut,colour="black"),nudge_x =0.5,nudge_y = 0.5) + geom_point(data=s1, aes(x=ballNum, y=n1,colour="grey"),shape=16) + geom_text(data=s1, aes(x=ballNum,y=n1,label=batsman,colour="grey"),nudge_x =0.5,nudge_y = 0.5)+ geom_vline(xintercept=36, linetype="dashed", color = "red") + geom_vline(xintercept=96, linetype="dashed", color = "red") + ggtitle("Ball-by-ball Deep Learning Win Probability (Overlapping)") ggplotly(g) }else { #ggplotly g <- ggplot() + geom_line(data = team11, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = team22, aes(x = ballNum, y = winProbability, color = teamB))+ ggtitle("Ball-by-ball Deep Learning Win Probability (Side-by-side)") ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/winProbDL.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 28 Feb 2023 # Function: winProbabilityGAN # This function computes the ball by ball win probability using GAN and synthetic data # ########################################################################################### #' @title #' Plot the win probability using GAN model #' #' @description #' This function plots the win probability of the teams in a T20 match #' #' @usage #' winProbabilityGAN(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get the match details #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' # Plot tne match worm plot #' winProbabilityGAN(a,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' winProbabilityGAN <- function(match,t1,t2,plot=1){ team=ball=totalRuns=wicketPlayerOut=ballsRemaining=runs=numWickets=runsMomentum=perfIndex=isWinner=NULL predict=ml_model=winProbability=ggplotly=runs=runRate=batsman=bowler=NULL batsmanIdx=bowlerIdx=NULL if (match$winner[1] == "NA") { print("Match no result ************************") return() } team1Size=0 requiredRuns=0 # Read batsman, bowler vectors batsmanMap=readRDS("batsmanMap.rds") bowlerMap=readRDS("bowlerMap.rds") teamA=match$team[grep("1st.0.1",match$ball)] # Filter the performance of team1 a <-filter(match,team==teamA) #Balls in team 1's innings ballsIn1stInnings= dim(a)[1] b <- select(a,batsman, bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date) c <-mutate(b,ball=gsub("1st\\.","",ball)) # Compute the total runs scored by team d <- mutate(c,runs=cumsum(totalRuns)) # Check if team1 won or lost the match if(match$winner[1]== teamA){ d$isWinner=1 } else{ d$isWinner=0 } #Get the ball num d$ballNum = seq.int(nrow(d)) # Compute the balls remaining for the team d$ballsRemaining = ballsIn1stInnings - d$ballNum +1 # Wickets lost by team d$wicketNum = d$wicketPlayerOut != "nobody" d=d %>% mutate(numWickets=cumsum(d$wicketNum==TRUE)) #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d$perfIndex = (d$runs/d$ballNum) * (11 - d$numWickets) # Compute run rate d$runRate = (d$runs/d$ballNum) d$runsMomentum = (11 - d$numWickets)/d$ballsRemaining df8 = select(d, batsman,bowler,ballNum, ballsRemaining, runs, runRate,numWickets,runsMomentum,perfIndex, isWinner) df9=left_join(df8,batsmanMap) df9=left_join(df9,bowlerMap) dfa = select(df9, batsmanIdx,bowlerIdx,ballNum,ballsRemaining,runs,runRate,numWickets, runsMomentum,perfIndex, isWinner) print(dim(dfa)) ############################################################################################# ######## Team 2 # Compute for Team 2 # Required runs is the team made by team 1 + 1 requiredRuns=d[dim(d)[1],]$runs +1 teamB=match$team[grep("2nd.0.1",match$ball)] # Filter the performance of team1 a1 <-filter(match,team==teamB) #Balls in team 1's innings ballsIn2ndInnings= dim(a1)[1] + 1 b1 <- select(a1,batsman,bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date) c1 <-mutate(b1,ball=gsub("2nd\\.","",ball)) # Compute total Runs d1 <- mutate(c1,runs=cumsum(totalRuns)) # Check of team2 is winner if(match$winner[1]== teamB){ d1$isWinner=1 } else{ d1$isWinner=0 } # Compute ball number d1$ballNum= ballsIn1stInnings + seq.int(nrow(d1)) # Compute remaining balls in 2nd innings d1$ballsRemaining= ballsIn2ndInnings - seq.int(nrow(d1)) # Compute wickets remaining d1$wicketNum = d1$wicketPlayerOut != "nobody" d1=d1 %>% mutate(numWickets=cumsum(d1$wicketNum==TRUE)) ballNum=d1$ballNum - ballsIn1stInnings #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d1$perfIndex = (d1$runs/ballNum) * (11 - d1$numWickets) #Compute required runs d1$requiredRuns = requiredRuns - d1$runs d1$runRate = (d1$requiredRuns/d1$ballsRemaining) d1$runsMomentum = (11 - d1$numWickets)/d1$ballsRemaining # Rename required runs as runs df10 = select(d1,batsman,bowler,ballNum,ballsRemaining, requiredRuns,runRate,numWickets,runsMomentum,perfIndex, isWinner) names(df10) =c("batsman","bowler","ballNum","ballsRemaining","runs","runRate","numWickets","runsMomentum","perfIndex","isWinner") print(dim(df10)) df11=left_join(df10,batsmanMap) df11=left_join(df11,bowlerMap) df2=rbind(df9,df11) dfb = select(df11, batsmanIdx,bowlerIdx,ballNum,ballsRemaining,runs,runRate,numWickets, runsMomentum,perfIndex, isWinner) print(dim(dfb)) # load the model m=predict(gan_model,dfa,type = "prob") m1=m*100 m2=matrix(m1) n=predict(dl_model,dfb,type="prob") n1=n*100 n2=matrix(n1) m3= 100-n2 n3=100-m2 team1=rbind(m2,m3) team2=rbind(n3,n2) team11=as.data.frame(cbind(df2$ballNum,team1)) names(team11) = c("ballNum","winProbability") team22=as.data.frame(cbind(df2$ballNum,team2)) names(team22) = c("ballNum","winProbability") # Plot both lines if(plot ==1){ #ggplot df3 = as.data.frame(cbind(d$ballNum,m1)) names(df3) <- c("ballNum","winProbability") df4 = as.data.frame(cbind(d1$ballNum,n1)) names(df4) <- c("ballNum","winProbability") maxBallNum = max(df3$ballNum) df4$ballNum = df4$ballNum - maxBallNum g <- ggplot() + geom_line(data = df3, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = df4, aes(x = ballNum, y = winProbability, color = teamB))+ geom_vline(xintercept=36, linetype="dashed", color = "red") + geom_vline(xintercept=96, linetype="dashed", color = "red") + ggtitle("Ball-by-ball Deep Learning Win Probability (Overlapping)") ggplotly(g) }else { #ggplotly g <- ggplot() + geom_line(data = team11, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = team22, aes(x = ballNum, y = winProbability, color = teamB))+ ggtitle("Ball-by-ball Deep Learning Win Probability (Side-by-side)") ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/winProbGAN.R
########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Dec 2022 # Function: winProbabilityLR # This function computes the ball by ball win probability using Logistic Regression model # ########################################################################################### #' @title #' Plot the win probability using Logistic Regression model #' #' @description #' This function plots the win probability of the teams in a T20 match #' #' @usage #' winProbabilityLR(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get the match details #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' # Plot tne match worm plot #' winProbabilityLR(a,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' winProbabilityLR <- function(match,t1,t2,plot=1){ team=ball=totalRuns=wicketPlayerOut=ballsRemaining=runs=numWickets=runsMomentum=perfIndex=isWinner=NULL predict=winProbability=ggplotly=runs=runRate=batsman=bowler=NULL if (match$winner[1] == "NA") { print("Match no result ************************") return() } team1Size=0 requiredRuns=0 teams=unique(match$team) teamA=teams[1] # Filter the performance of team1 a <-filter(match,team==teamA) #Balls in team 1's innings ballsIn1stInnings= dim(a)[1] b <- select(a,batsman, bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date) c <-mutate(b,ball=gsub("1st\\.","",ball)) # Compute the total runs scored by team d <- mutate(c,runs=cumsum(totalRuns)) # Check if team1 won or lost the match if(match$winner[1]== teamA){ d$isWinner=1 } else{ d$isWinner=0 } #Get the ball num d$ballNum = seq.int(nrow(d)) # Compute the balls remaining for the team d$ballsRemaining = ballsIn1stInnings - d$ballNum +1 # Wickets lost by team d$wicketNum = d$wicketPlayerOut != "nobody" d=d %>% mutate(numWickets=cumsum(d$wicketNum==TRUE)) #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d$perfIndex = (d$runs/d$ballNum) * (11 - d$numWickets) # Compute run rate d$runRate = (d$runs/d$ballNum) d$runsMomentum = (11 - d$numWickets)/d$ballsRemaining df = select(d, batsman,bowler,ballNum, ballsRemaining, runs, runRate,numWickets,runsMomentum,perfIndex, isWinner) print(dim(df)) ############################################################################################# ######## Team 2 # Compute for Team 2 # Required runs is the team made by team 1 + 1 requiredRuns=d[dim(d)[1],]$runs +1 teamB=teams[2] # Filter the performance of team1 a1 <-filter(match,team==teamB) #Balls in team 1's innings ballsIn2ndInnings= dim(a1)[1] + 1 b1 <- select(a1,batsman,bowler,ball,totalRuns,wicketPlayerOut,team1,team2,date) c1 <-mutate(b1,ball=gsub("2nd\\.","",ball)) # Compute total Runs d1 <- mutate(c1,runs=cumsum(totalRuns)) # Check of team2 is winner if(match$winner[1]== teamB){ d1$isWinner=1 } else{ d1$isWinner=0 } # Compute ball number d1$ballNum= ballsIn1stInnings + seq.int(nrow(d1)) # Compute remaining balls in 2nd innings d1$ballsRemaining= ballsIn2ndInnings - seq.int(nrow(d1)) # Compute wickets remaining d1$wicketNum = d1$wicketPlayerOut != "nobody" d1=d1 %>% mutate(numWickets=cumsum(d1$wicketNum==TRUE)) ballNum=d1$ballNum - ballsIn1stInnings #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d1$perfIndex = (d1$runs/ballNum) * (11 - d1$numWickets) #Compute required runs d1$requiredRuns = requiredRuns - d1$runs d1$runRate = (d1$requiredRuns/d1$ballsRemaining) d1$runsMomentum = (11 - d1$numWickets)/d1$ballsRemaining # Rename required runs as runs df1 = select(d1,batsman,bowler,ballNum,ballsRemaining, requiredRuns,runRate,numWickets,runsMomentum,perfIndex, isWinner) names(df1) =c("batsman","bowler","ballNum","ballsRemaining","runs","runRate","numWickets","runsMomentum","perfIndex","isWinner") print(dim(df1)) df2=rbind(df,df1) # load the model #ml_model <- readRDS("glmLR.rds") a1=select(df,batsman,bowler,ballNum,ballsRemaining, runs,runRate,numWickets,runsMomentum,perfIndex) m=predict(final_lr_model,a1,type = "prob") m1=m$.pred_1*100 m2=matrix(m1) b2=select(df1,batsman,bowler,ballNum,ballsRemaining, runs,runRate,numWickets,runsMomentum,perfIndex) n=predict(final_lr_model,b2,type="prob") n1=n1=n$.pred_1*100 n2=matrix(n1) m3= 100-n2 n3=100-m2 team1=rbind(m2,m3) team2=rbind(n3,n2) team11=as.data.frame(cbind(df2$ballNum,team1)) names(team11) = c("ballNum","winProbability") team22=as.data.frame(cbind(df2$ballNum,team2)) names(team22) = c("ballNum","winProbability") # Add labels to chart team 1 #Mark when players were dismissed k <- cbind(b,m1) k$ballNum = seq.int(nrow(k)) k1= filter(k,wicketPlayerOut != "nobody") k2 = select(k1,ballNum,m1,wicketPlayerOut) #print(k2) # Mark when batsman started batsmen = unique(k$batsman) p = data.frame(matrix(nrow = 0, ncol = dim(k[2]))) for(bman in batsmen){ l <-k %>% filter(batsman == bman) n=l[1,] p=rbind(p,n) } p1 = select(p,ballNum,m1,batsman) #print(p1) # Add labels to team 2 #Mark when players were dismissed r <- cbind(b1,n1) r$ballNum = seq.int(nrow(r)) r1= filter(r,wicketPlayerOut != "nobody") r2 = select(r1,ballNum,n1,wicketPlayerOut) #print(r2) # Mark when batsman started batsmen = unique(r$batsman) s = data.frame(matrix(nrow = 0, ncol = dim(k[2]))) for(bman1 in batsmen){ t1 <-r %>% filter(batsman == bman1) t2=t1[1,] s=rbind(s,t2) } s1 = select(s,ballNum,n1,batsman) #print(s1) # Plot both lines if(plot ==1){ #ggplot2 df3 = as.data.frame(cbind(d$ballNum,m1)) names(df3) <- c("ballNum","winProbability") df4 = as.data.frame(cbind(d1$ballNum,n1)) names(df4) <- c("ballNum","winProbability") maxBallNum = max(df3$ballNum) df4$ballNum = df4$ballNum - maxBallNum g <- ggplot() + geom_line(data = df3, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = df4, aes(x = ballNum, y = winProbability, color = teamB))+ geom_point(data=k2, aes(x=ballNum, y=m1,color="blue"),shape=15) + geom_text(data=k2, aes(x=ballNum,y=m1,label=wicketPlayerOut,color="blue"),nudge_x =0.5,nudge_y = 0.5)+ geom_point(data=p1, aes(x=ballNum, y=m1,colour="red"),shape=16) + geom_text(data=p1, aes(x=ballNum,y=m1,label=batsman,colour="red"),nudge_x =0.5,nudge_y = 0.5) + geom_point(data=r2, aes(x=ballNum, y=n1,colour="black"),shape=15) + geom_text(data=r2, aes(x=ballNum,y=n1,label=wicketPlayerOut,colour="black"),nudge_x =0.5,nudge_y = 0.5) + geom_point(data=s1, aes(x=ballNum, y=n1,colour="grey"),shape=16) + geom_text(data=s1, aes(x=ballNum,y=n1,label=batsman,colour="grey"),nudge_x =0.5,nudge_y = 0.5)+ geom_vline(xintercept=36, linetype="dashed", color = "red") + geom_vline(xintercept=96, linetype="dashed", color = "red") + ggtitle("Ball-by-ball Logistic Regression Win Probability (Overlapping)") ggplotly(g) }else { #ggplotly g <- ggplot() + geom_line(data = team11, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = team22, aes(x = ballNum, y = winProbability, color = teamB))+ ggtitle("Ball-by-ball Logistic Regression Win Probability (Side-by-side)") ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/winProbLR.R
########################################################################################## ########################################################################################## # Designed and developed by Tinniam V Ganesh # Date : 25 Dec 2022 # Function: winProbabiltyRF # This function computes the ball by ball win probability using Random Forest model # ########################################################################################### #' @title #' Plot the win probability using Random Forest model #' #' @description #' This function plots the win probability of the teams in a T20 match #' #' @usage #' winProbabilityRF(match,t1,t2,plot=1) #' #' @param match #' The dataframe of the match #' #' @param t1 #' The 1st team of the match #' #' @param t2 #' the 2nd team in the match #' #' @param plot #' Plot=1 (static), Plot=2(interactive) #' #' @return none #' #' @references #' \url{https://cricsheet.org/}\cr #' \url{https://gigadom.in/}\cr #' \url{https://github.com/tvganesh/yorkrData/} #' #' @author #' Tinniam V Ganesh #' @note #' Maintainer: Tinniam V Ganesh \email{[email protected]} #' #' @examples #' \dontrun{ #' #Get the match details #' a <- getMatchDetails("England","Pakistan","2006-09-05",dir="../temp") #' #' # Plot tne match worm plot #' winProbabilityRF(a,'England',"Pakistan") #' } #' @seealso #' \code{\link{getBatsmanDetails}}\cr #' \code{\link{getBowlerWicketDetails}}\cr #' \code{\link{batsmanDismissals}}\cr #' \code{\link{getTeamBattingDetails}}\cr #' #' @export #' winProbabilityRF <- function(match,t1,t2,plot=1){ team=ball=totalRuns=wicketPlayerOut=ballsRemaining=runs=numWickets=runsMomentum=perfIndex=isWinner=NULL predict=winProbability=ggplotly=runs=runRate=batsman=bowler=NULL if (match$winner[1] == "NA") { print("Match no result ************************") return() } team1Size=0 requiredRuns=0 teamA=match$team[grep("1st.0.1",match$ball)] # Filter the performance of team1 a <-filter(match,team==teamA) #Balls in team 1's innings ballsIn1stInnings= dim(a)[1] b <- select(a,batsman, bowler, ball,totalRuns,wicketPlayerOut,team1,team2,date) c <-mutate(b,ball=gsub("1st\\.","",ball)) # Compute the total runs scored by team d <- mutate(c,runs=cumsum(totalRuns)) # Check if team1 won or lost the match if(match$winner[1]== teamA){ d$isWinner=1 } else{ d$isWinner=0 } #Get the ball num d$ballNum = seq.int(nrow(d)) # Compute the balls remaining for the team d$ballsRemaining = ballsIn1stInnings - d$ballNum +1 # Wickets lost by team d$wicketNum = d$wicketPlayerOut != "nobody" d=d %>% mutate(numWickets=cumsum(d$wicketNum==TRUE)) #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d$perfIndex = (d$runs/d$ballNum) * (11 - d$numWickets) # Compute run rate d$runRate = (d$runs/d$ballNum) d$runsMomentum = (11 - d$numWickets)/d$ballsRemaining df = select(d, batsman, bowler, ballNum, ballsRemaining, runs, runRate,numWickets,runsMomentum,perfIndex, isWinner) print(dim(df)) ############################################################################################# ######## Team 2 # Compute for Team 2 # Required runs is the team made by team 1 + 1 requiredRuns=d[dim(d)[1],]$runs +1 teamB=match$team[grep("2nd.0.1",match$ball)] # Filter the performance of team1 a1 <-filter(match,team==teamB) #Balls in team 1's innings ballsIn2ndInnings= dim(a1)[1] + 1 b1 <- select(a1,batsman, bowler, ball,totalRuns,wicketPlayerOut,team1,team2,date) c1 <-mutate(b1,ball=gsub("2nd\\.","",ball)) # Compute total Runs d1 <- mutate(c1,runs=cumsum(totalRuns)) # Check of team2 is winner if(match$winner[1]== teamB){ d1$isWinner=1 } else{ d1$isWinner=0 } # Compute ball number d1$ballNum= ballsIn1stInnings + seq.int(nrow(d1)) # Compute remaining balls in 2nd innings d1$ballsRemaining= ballsIn2ndInnings - seq.int(nrow(d1)) # Compute wickets remaining d1$wicketNum = d1$wicketPlayerOut != "nobody" d1=d1 %>% mutate(numWickets=cumsum(d1$wicketNum==TRUE)) ballNum=d1$ballNum - ballsIn1stInnings #Performance index is based on run rate (runs scored/ ball number) with wickets in hand d1$perfIndex = (d1$runs/ballNum) * (11 - d1$numWickets) #Compute required runs d1$requiredRuns = requiredRuns - d1$runs d1$runRate = (d1$requiredRuns/d1$ballsRemaining) d1$runsMomentum = (11 - d1$numWickets)/d1$ballsRemaining # Rename required runs as runs df1 = select(d1,batsman, bowler, ballNum,ballsRemaining, requiredRuns,runRate,numWickets,runsMomentum,perfIndex, isWinner) names(df1) =c("batsman","bowler","ballNum","ballsRemaining","runs","runRate","numWickets","runsMomentum","perfIndex","isWinner") print(dim(df1)) df2=rbind(df,df1) a1=select(df,batsman,bowler,ballNum,ballsRemaining, runs,runRate,numWickets,runsMomentum,perfIndex) m=predict(final_model,a1,type = "prob") m1=m$.pred_1*100 m2=matrix(m1) b1=select(df1,batsman,bowler,ballNum,ballsRemaining, runs,runRate,numWickets,runsMomentum,perfIndex) n=predict(final_model,b1,type="prob") n1=n$.pred_1*100 n2=matrix(n1) m3= 100-n2 n3=100-m2 team1=rbind(m2,m3) team2=rbind(n3,n2) team11=as.data.frame(cbind(df2$ballNum,team1)) names(team11) = c("ballNum","winProbability") team22=as.data.frame(cbind(df2$ballNum,team2)) names(team22) = c("ballNum","winProbability") # Plot both lines if(plot ==1){ #ggplot2 ggplot() + geom_line(data = team11, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = team22, aes(x = ballNum, y = winProbability, color = teamB))+ ggtitle(bquote(atop(.("Win Probability based on Random Forest model"), atop(italic("Data source:http://cricsheet.org/"),"")))) }else { #ggplotly g <- ggplot() + geom_line(data = team11, aes(x = ballNum, y = winProbability, color = teamA)) + geom_line(data = team22, aes(x = ballNum, y = winProbability, color = teamB))+ ggtitle("Win Probability based on Random Forest model") ggplotly(g) } }
/scratch/gouwar.j/cran-all/cranData/yorkr/R/winProbRF.R
#' Data from the young elite swimmers study #' #' This is the data used for the young elite swimmers #' study (Castillo-Aguilar et al. 2021). It contains records from #' 26 competitive swimmers from ages 10 to 16 on 5 different #' competitive time periods. #' #' @format This is a data.table object containing 27 variables and 130 rows #' #' - \code{period}: Factor. Time periods from two competitions. #' - \code{subject}: Factor. Subject ID. #' - \code{sex}: Factor. Subject's sex (Male of Female). #' - \code{age}: Numeric. Subject's age in years. #' - \code{weight}: Numeric. Weight in kilograms. #' - \code{height}: Numeric. Heigh in centimeters. #' - \code{fat}: Numeric. Body fat in percentage. #' - \code{bmi}: Numeric. Body mass index. #' - \code{ffmi}: Numeric. Fat free mass index. #' - \code{sp}: Numeric. Systolic blood pressure in mmHg. #' - \code{dp}: Numeric. Diastolic blood pressure in mmHg. #' - \code{map}: Numeric. Mean arterial pressure in mmHg. #' - \code{pp}: Numeric. Pulse pressure in mmHg. #' - \code{sdnn_pre}: Numeric. SDNN (Time domain parameter) pre-wingate test. #' - \code{rmssd_pre}: Numeric. RMSSD (Time domain parameter) pre-wingate test. #' - \code{vlf_pre}: Numeric. VLF (Frequency domain parameter) pre-wingate test. #' - \code{lf_pre}: Numeric. LF (Frequency domain parameter) pre-wingate test. #' - \code{hf_pre}: Numeric. HF (Frequency domain parameter) pre-wingate test. #' - \code{sdnn_post}: Numeric. SDNN (Time domain parameter) post-wingate test. #' - \code{rmssd_post}: Numeric. RMSSD (Time domain parameter) post-wingate test. #' - \code{vlf_post}: Numeric. VLF (Frequency domain parameter) post-wingate test. #' - \code{lf_post}: Numeric. LF (Frequency domain parameter) post-wingate test. #' - \code{hf_post}: Numeric. HF (Frequency domain parameter) post-wingate test. #' - \code{power_peak}: Numeric. Peak power output in Watts. #' - \code{power_mean}: Numeric. Mean power output in Watts. #' - \code{power_min}: Numeric. Minimum power output in Watts. #' - \code{fatigue}: Numeric. Fatigue index in percentage. #' #' @source #' \doi{10.3389/fphys.2021.769085} "swimmers"
/scratch/gouwar.j/cran-all/cranData/youngSwimmers/R/dataset.R
#' youngSwimmers #' #' Data from the young elite swimmers study. #' #' @keywords internal "_PACKAGE" ## usethis namespace: start #' @importFrom data.table := #' @importFrom data.table .BY #' @importFrom data.table .EACHI #' @importFrom data.table .GRP #' @importFrom data.table .I #' @importFrom data.table .N #' @importFrom data.table .NGRP #' @importFrom data.table .SD #' @importFrom data.table data.table #' @importFrom lifecycle deprecated ## usethis namespace: end NULL
/scratch/gouwar.j/cran-all/cranData/youngSwimmers/R/youngSwimmers-package.R
#' @export as.data.frame.ypr_population <- function(x, ...) { chk_unused(...) x <- unclass(x) as.data.frame(x) } #' @export as.data.frame.ypr_populations <- function(x, ...) { chk_unused(...) x <- lapply(x, as.data.frame) do.call("rbind", x) } #' @export as.data.frame.ypr_ecotypes <- function(x, ...) { chk_unused(...) rname <- attr(x, "names") x <- lapply(x, as.data.frame) do.call("rbind", x) }
/scratch/gouwar.j/cran-all/cranData/ypr/R/as-data-frame.R
#' @export tibble::as_tibble #' @export as_tibble.ypr_population <- function(x, ...) { chk_unused(...) as_tibble(as.data.frame(x)) } #' @export as_tibble.ypr_populations <- function(x, ...) { chk_unused(...) as_tibble(as.data.frame(x)) } #' @export as_tibble.ypr_ecotypes <- function(x, ...) { chk_unused(...) as_tibble(as.data.frame(x)) }
/scratch/gouwar.j/cran-all/cranData/ypr/R/as-tibble.R
#' Coerce to an Ecotypes Object #' #' @param x The object to coerce. #' @param ... Additional arguments. #' @return An object of class ypr_ecotypes. #' @family ecotypes #' @export as_ypr_ecotypes <- function(x, ...) { UseMethod("as_ypr_ecotypes") } #' @describeIn as_ypr_ecotypes Coerce a data.frame to an Ecotypes Object #' #' @export #' @examples #' as_ypr_ecotypes(as.data.frame(ypr_ecotypes(Ls = c(10, 15, 20)))) as_ypr_ecotypes.data.frame <- function(x, ...) { chk_data(x) chk_unused(...) x <- split(x, seq_len(nrow(x))) x <- lapply(x, as_ypr_population) class(x) <- "ypr_ecotypes" check_ecotypes(x) names(x) <- ypr_names(x) x } #' @describeIn as_ypr_ecotypes Coerce a Population Object to an Ecotypes Object #' @export #' @examples #' as_ypr_ecotypes(ypr_population()) as_ypr_ecotypes.ypr_population <- function(x, ...) { check_population(x) chk_unused(...) x <- list(x) class(x) <- "ypr_ecotypes" names(x) <- ypr_names(x) x } #' @describeIn as_ypr_ecotypes Coerce a Populations Object to an Ecotypes Object #' #' @export #' @examples #' as_ypr_ecotypes(ypr_populations(Ls = c(10, 15, 20))) as_ypr_ecotypes.ypr_populations <- function(x, ...) { check_populations(x) chk_unused(...) class(x) <- c("ypr_ecotypes") check_ecotypes(x) x } #' @describeIn as_ypr_ecotypes Coerce an Ecotypes Object to an Ecotypes Object #' #' @export #' @examples #' as_ypr_ecotypes(ypr_ecotypes(Ls = c(10, 15, 20))) as_ypr_ecotypes.ypr_ecotypes <- function(x, ...) { check_ecotypes(x) chk_unused(...) x }
/scratch/gouwar.j/cran-all/cranData/ypr/R/as-ypr-ecotypes.R
#' Coerce to a Population Object #' #' @param x The object to coerce. #' @param ... Unused. #' @return An object of class ypr_population. #' @family population #' @export as_ypr_population <- function(x, ...) { UseMethod("as_ypr_population") } #' @describeIn as_ypr_population Coerce a data.frame to an Population Object #' #' @export #' @examples #' as_ypr_population(as.data.frame(ypr_population())) as_ypr_population.data.frame <- function(x, ...) { chk_data(x) chk_unused(...) do.call("ypr_population", x) } #' @describeIn as_ypr_population Coerce a Population Object to an Population Object #' #' @export #' @examples #' as_ypr_population(ypr_populations()) as_ypr_population.ypr_population <- function(x, ...) { check_population(x) chk_unused(...) x } #' @describeIn as_ypr_population Coerce a Populations Object of length 1 to a Population Object #' #' @export #' @examples #' as_ypr_population(ypr_populations()) as_ypr_population.ypr_populations <- function(x, ...) { chk_list(x) chk_unused(...) check_dim(x, dim = length, values = 1L) x <- check_population(x[[1]]) x } #' @describeIn as_ypr_population Coerce a Ecotypes Object of length 1 to a Population Object #' #' @export #' @examples #' as_ypr_population(ypr_ecotypes()) as_ypr_population.ypr_ecotypes <- function(x, ...) { chk_list(x) chk_unused(...) check_dim(x, dim = length, values = 1L) x <- check_population(x[[1]]) x }
/scratch/gouwar.j/cran-all/cranData/ypr/R/as-ypr-population.R
#' Coerce to a Populations Object #' #' @param x The object to coerce. #' @param ... Unused. #' @return An object of class ypr_ecotypes. #' @family populations #' @export as_ypr_populations <- function(x, ...) { UseMethod("as_ypr_populations") } #' @describeIn as_ypr_population Coerce a data.frame to a Populations Object #' #' @export #' @examples #' as_ypr_populations(as.data.frame(ypr_populations(Rk = c(3, 4)))) as_ypr_populations.data.frame <- function(x, ...) { chk_data(x) chk_unused(...) x <- split(x, seq_len(nrow(x))) x <- lapply(x, as_ypr_population) class(x) <- "ypr_populations" names(x) <- ypr_names(x) x } #' @describeIn as_ypr_populations Coerce a Population Object to an Population Object #' #' @export #' @examples #' as_ypr_populations(ypr_population()) as_ypr_populations.ypr_population <- function(x, ...) { check_population(x) chk_unused(...) x <- list(x) class(x) <- "ypr_populations" names(x) <- ypr_names(x) x } #' @describeIn as_ypr_populations Coerce a Populations Object of length 1 to a Population Object #' #' @export #' @examples #' as_ypr_populations(ypr_populations()) as_ypr_populations.ypr_populations <- function(x, ...) { check_populations(x) chk_unused(...) x } #' @describeIn as_ypr_populations Coerce a Ecotypes Object of length 1 to a Population Object #' #' @export #' @examples #' as_ypr_populations(ypr_ecotypes()) as_ypr_populations.ypr_ecotypes <- function(x, ...) { check_ecotypes(x) chk_unused(...) class(x) <- "ypr_populations" x }
/scratch/gouwar.j/cran-all/cranData/ypr/R/as-ypr-populations.R
check_parameters <- function(tmax, k, Linf, t0, k2, Linf2, L2, Wb, Ls, Sp, es, tR, Rk, BH, fb, n, nL, Ln, Sm, pi, Lv, Vp, Llo, Lup, rho, Hm, Nc, Wa, fa, Rmax, q, RPR) { chk_s3_class(tmax, "integer") chk_scalar(tmax) chk_not_any_na(tmax) chk_range(tmax, c(1L, 100L)) chk_s3_class(k, "numeric") chk_scalar(k) chk_not_any_na(k) chk_range(k, c(0.015, 15)) chk_s3_class(Linf, "numeric") chk_scalar(Linf) chk_not_any_na(Linf) chk_range(Linf, c(1, 1000)) chk_s3_class(t0, "numeric") chk_scalar(t0) chk_not_any_na(t0) chk_range(t0, c(-10, 10)) chk_s3_class(k2, "numeric") chk_scalar(k2) chk_not_any_na(k2) chk_range(k2, c(0, 15)) chk_s3_class(Linf2, "numeric") chk_scalar(Linf2) chk_not_any_na(Linf2) chk_range(Linf2, c(1, 1000)) chk_s3_class(L2, "numeric") chk_scalar(L2) chk_not_any_na(L2) chk_range(L2, c(-100, 1000)) chk_s3_class(Wb, "numeric") chk_scalar(Wb) chk_not_any_na(Wb) chk_range(Wb, c(2, 4)) chk_s3_class(Ls, "numeric") chk_scalar(Ls) chk_not_any_na(Ls) chk_range(Ls, c(-100, 1000)) chk_s3_class(Sp, "numeric") chk_scalar(Sp) chk_not_any_na(Sp) chk_range(Sp, c(0, 1000)) chk_s3_class(es, "numeric") chk_scalar(es) chk_not_any_na(es) chk_range(es, c(0.01, 1)) chk_s3_class(tR, "integer") chk_scalar(tR) chk_not_any_na(tR) chk_range(tR, c(0L, 10L)) chk_s3_class(Rk, "numeric") chk_scalar(Rk) chk_not_any_na(Rk) chk_range(Rk, c(1, 100)) chk_s3_class(BH, "integer") chk_scalar(BH) chk_not_any_na(BH) chk_range(BH, c(0L, 1L)) chk_s3_class(fb, "numeric") chk_scalar(fb) chk_not_any_na(fb) chk_range(fb, c(0.5, 2)) chk_s3_class(n, "numeric") chk_scalar(n) chk_not_any_na(n) chk_range(n, c(0, 1)) chk_s3_class(nL, "numeric") chk_scalar(nL) chk_not_any_na(nL) chk_range(nL, c(0, 1)) chk_s3_class(Ln, "numeric") chk_scalar(Ln) chk_not_any_na(Ln) chk_range(Ln, c(-100, 1000)) chk_s3_class(Sm, "numeric") chk_scalar(Sm) chk_not_any_na(Sm) chk_range(Sm, c(0, 1)) chk_s3_class(pi, "numeric") chk_scalar(pi) chk_not_any_na(pi) chk_range(pi, c(0, 1)) chk_s3_class(Lv, "numeric") chk_scalar(Lv) chk_not_any_na(Lv) chk_range(Lv, c(-100, 1000)) chk_s3_class(Vp, "numeric") chk_scalar(Vp) chk_not_any_na(Vp) chk_range(Vp, c(0, 100)) chk_s3_class(Llo, "numeric") chk_scalar(Llo) chk_not_any_na(Llo) chk_range(Llo, c(0, 1000)) chk_s3_class(Lup, "numeric") chk_scalar(Lup) chk_not_any_na(Lup) chk_range(Lup, c(0, 1000)) chk_s3_class(rho, "numeric") chk_scalar(rho) chk_not_any_na(rho) chk_range(rho, c(0, 1)) chk_s3_class(Hm, "numeric") chk_scalar(Hm) chk_not_any_na(Hm) chk_range(Hm, c(0, 1)) chk_s3_class(Nc, "numeric") chk_scalar(Nc) chk_not_any_na(Nc) chk_range(Nc, c(0, 1)) chk_s3_class(Wa, "numeric") chk_scalar(Wa) chk_not_any_na(Wa) chk_range(Wa, c(0.001, 0.1)) chk_s3_class(fa, "numeric") chk_scalar(fa) chk_not_any_na(fa) chk_range(fa, c(1e-04, 100)) chk_s3_class(Rmax, "numeric") chk_scalar(Rmax) chk_not_any_na(Rmax) chk_range(Rmax, c(1, 1e+06)) chk_s3_class(q, "numeric") chk_scalar(q) chk_not_any_na(q) chk_range(q, c(0, 1)) chk_s3_class(RPR, "numeric") chk_scalar(RPR) chk_not_any_na(RPR) chk_range(RPR, c(0, 100)) invisible(list(tmax = tmax, k = k, Linf = Linf, t0 = t0, k2 = k2, Linf2 = Linf2, L2 = L2, Wb = Wb, Ls = Ls, Sp = Sp, es = es, tR = tR, Rk = Rk, BH = BH, fb = fb, n = n, nL = nL, Ln = Ln, Sm = Sm, pi = pi, Lv = Lv, Vp = Vp, Llo = Llo, Lup = Lup, rho = rho, Hm = Hm, Nc = Nc, Wa = Wa, fa = fa, Rmax = Rmax, q = q, RPR = RPR)) }
/scratch/gouwar.j/cran-all/cranData/ypr/R/check-parameters.R
#' Check Population #' #' Checks if an ypr_population object with valid parameter values. #' #' @inherit chk::check_data #' @family check #' @export #' #' @examples #' check_population(ypr_population()) check_population <- function(x, x_name = NULL) { if (is.null(x_name)) x_name <- deparse_backtick_chk(substitute(x)) chk_string(x_name, x_name = "x_name") chk_s3_class(x, "ypr_population", x_name = x_name) chk_named(x, x_name = x_name) chk_unique(names(x), x_name = x_name) chk_superset(names(x), parameters(), x_name = x_name) do.call("check_parameters", x) invisible(x) } #' Check Populations #' #' Checks if an ypr_populations object with valid parameter values. #' #' @inherit chk::check_data #' @family check #' @export #' #' @examples #' check_populations(ypr_populations()) check_populations <- function(x, x_name = NULL) { if (is.null(x_name)) x_name <- deparse_backtick_chk(substitute(x)) chk_list(x, x_name = x_name) chk_s3_class(x, "ypr_populations", x_name) x_name <- paste("elements of", x_name) chk_all(x, check_population, x_name = x_name) invisible(x) } #' Check Ecotypes #' #' Checks if an ypr_ecotypes object with valid parameter values. #' #' @inherit chk::check_data #' @family check #' @export #' #' @examples #' check_ecotypes(ypr_ecotypes()) check_ecotypes <- function(x, x_name = NULL) { if (is.null(x_name)) x_name <- deparse_backtick_chk(substitute(x)) chk_list(x, x_name = x_name) chk_s3_class(x, "ypr_ecotypes", x_name) x_name <- paste("elements of", x_name) chk_all(x, check_population, x_name = x_name) check_same(x, "BH") check_same(x, "Rk") check_same(x, "tR") check_same(x, "Rmax") check_same(x, "pi") check_same(x, "Nc") check_same(x, "Hm") check_same(x, "Llo") check_same(x, "Lup") check_same(x, "rho") check_same(x, "q") data <- as_tibble(x) data$RPR <- NULL if(anyDuplicated(data)) { chk::abort_chk("ecotypes must have unique life-histories.", tidy = FALSE) } invisible(x) } check_same <- function(x, parameter) { class(x) <- "ypr_populations" values <- ypr_get_par(x, parameter) if (length(unique(values)) != 1) { chk::abort_chk("`", parameter, "` must be the same across all elements.", tidy = FALSE) } }
/scratch/gouwar.j/cran-all/cranData/ypr/R/check.R
check_parameters <- function(tmax, k, Linf, t0, k2, Linf2, L2, Wb, Ls, Sp, es, tR, Rk, BH, fb, n, nL, Ln, Sm, pi, Lv, Vp, Llo, Lup, rho, Hm, Nc, Wa, fa, Rmax, q, RPR) { chk_s3_class(tmax, "integer") chk_scalar(tmax) chk_not_any_na(tmax) chk_range(tmax, c(1L, 100L)) chk_s3_class(k, "numeric") chk_scalar(k) chk_not_any_na(k) chk_range(k, c(0.015, 15)) chk_s3_class(Linf, "numeric") chk_scalar(Linf) chk_not_any_na(Linf) chk_range(Linf, c(1, 1000)) chk_s3_class(t0, "numeric") chk_scalar(t0) chk_not_any_na(t0) chk_range(t0, c(-10, 10)) chk_s3_class(k2, "numeric") chk_scalar(k2) chk_not_any_na(k2) chk_range(k2, c(0, 15)) chk_s3_class(Linf2, "numeric") chk_scalar(Linf2) chk_not_any_na(Linf2) chk_range(Linf2, c(1, 1000)) chk_s3_class(L2, "numeric") chk_scalar(L2) chk_not_any_na(L2) chk_range(L2, c(-100, 1000)) chk_s3_class(Wb, "numeric") chk_scalar(Wb) chk_not_any_na(Wb) chk_range(Wb, c(2, 4)) chk_s3_class(Ls, "numeric") chk_scalar(Ls) chk_not_any_na(Ls) chk_range(Ls, c(-100, 1000)) chk_s3_class(Sp, "numeric") chk_scalar(Sp) chk_not_any_na(Sp) chk_range(Sp, c(0, 1000)) chk_s3_class(es, "numeric") chk_scalar(es) chk_not_any_na(es) chk_range(es, c(0.01, 1)) chk_s3_class(tR, "integer") chk_scalar(tR) chk_not_any_na(tR) chk_range(tR, c(0L, 10L)) chk_s3_class(Rk, "numeric") chk_scalar(Rk) chk_not_any_na(Rk) chk_range(Rk, c(0, 100)) chk_s3_class(BH, "integer") chk_scalar(BH) chk_not_any_na(BH) chk_range(BH, c(0L, 1L)) chk_s3_class(fb, "numeric") chk_scalar(fb) chk_not_any_na(fb) chk_range(fb, c(0.5, 2)) chk_s3_class(n, "numeric") chk_scalar(n) chk_not_any_na(n) chk_range(n, c(0, 1)) chk_s3_class(nL, "numeric") chk_scalar(nL) chk_not_any_na(nL) chk_range(nL, c(0, 1)) chk_s3_class(Ln, "numeric") chk_scalar(Ln) chk_not_any_na(Ln) chk_range(Ln, c(-100, 1000)) chk_s3_class(Sm, "numeric") chk_scalar(Sm) chk_not_any_na(Sm) chk_range(Sm, c(0, 1)) chk_s3_class(pi, "numeric") chk_scalar(pi) chk_not_any_na(pi) chk_range(pi, c(0, 1)) chk_s3_class(Lv, "numeric") chk_scalar(Lv) chk_not_any_na(Lv) chk_range(Lv, c(-100, 1000)) chk_s3_class(Vp, "numeric") chk_scalar(Vp) chk_not_any_na(Vp) chk_range(Vp, c(0, 100)) chk_s3_class(Llo, "numeric") chk_scalar(Llo) chk_not_any_na(Llo) chk_range(Llo, c(0, 1000)) chk_s3_class(Lup, "numeric") chk_scalar(Lup) chk_not_any_na(Lup) chk_range(Lup, c(0, 1000)) chk_s3_class(rho, "numeric") chk_scalar(rho) chk_not_any_na(rho) chk_range(rho, c(0, 1)) chk_s3_class(Hm, "numeric") chk_scalar(Hm) chk_not_any_na(Hm) chk_range(Hm, c(0, 1)) chk_s3_class(Nc, "numeric") chk_scalar(Nc) chk_not_any_na(Nc) chk_range(Nc, c(0, 1)) chk_s3_class(Wa, "numeric") chk_scalar(Wa) chk_not_any_na(Wa) chk_range(Wa, c(0.001, 0.1)) chk_s3_class(fa, "numeric") chk_scalar(fa) chk_not_any_na(fa) chk_range(fa, c(1e-04, 100)) chk_s3_class(Rmax, "numeric") chk_scalar(Rmax) chk_not_any_na(Rmax) chk_range(Rmax, c(1, 1e+06)) chk_s3_class(q, "numeric") chk_scalar(q) chk_not_any_na(q) chk_range(q, c(0, 1)) chk_s3_class(RPR, "numeric") chk_scalar(RPR) chk_not_any_na(RPR) chk_range(RPR, c(0, 100)) }
/scratch/gouwar.j/cran-all/cranData/ypr/R/chk-parameters.R
#' Adams Lake Bull Trout Population Parameters (2003) #' #' The population parameters for Bull Trout in Adams Lake from Bison et al #' (2003) #' @references Bison, R., O’Brien, D., and Martell, S.J.D. 2003. An Analysis of #' Sustainable Fishing Options for Adams Lake Bull Trout Using Life History #' and Telemetry Data. BC Ministry of Water Land and Air Protection, Kamloops, #' B.C. #' @format An object of class [ypr_population()]. #' @family data #' @examples #' adams_bt_03 #' ypr_plot_yield(adams_bt_03) "adams_bt_03" #' Chilliwack Lake Bull Trout Populations Parameters (2005) #' #' The populations parameters for Bull Trout in Chilliwack Lake from Taylor #' (2005) #' #' @references Taylor, J.L. 2005. Sustainability of the Chilliwack Lake Char #' Fishery. Ministry of Water, Land and Air Protection, Surrey, B.C. #' @format An object of class [ypr_populations()]. #' @family populations #' @family data #' @examples #' chilliwack_bt_05 #' yield <- ypr_tabulate_yield(chilliwack_bt_05, type = "optimal") #' yield$pi <- round(yield$pi, 2) #' yield <- yield[c("Llo", "Hm", "Rk", "pi")] #' yield <- tidyr::spread(yield, Rk, pi) #' yield <- yield[order(-yield$Hm), ] #' yield #' \dontrun{ #' ypr_plot_yield(chilliwack_bt_05, plot_values = FALSE) + #' ggplot2::facet_grid(Rk ~ Hm) + #' ggplot2::aes(group = Llo, linetype = Llo) #' } "chilliwack_bt_05" #' Kootenay Lake Bull Trout Population Parameters (2013) #' #' The population parameters for Bull Trout in Kootenay Lake from Andrusak and #' Thorley (2013) #' #' The estimates should not be used for management. #' @references Andrusak, G.F., and Thorley, J.L. 2013. Kootenay Lake #' Exploitation Study: Fishing and Natural Mortality of Large Rainbow Trout #' and Bull Trout: 2013 Annual Report. A Poisson Consulting Ltd. and Redfish #' Consulting Ltd. Report, Habitat Conservation Trust Foundation, Victoria, #' BC. #' @format An object of class [ypr_population()]. #' @family data #' @examples #' kootenay_bt_13 #' ypr_plot_yield(kootenay_bt_13) "kootenay_bt_13" #' Kootenay Lake Rainbow Trout Population Parameters (2013) #' #' The population parameters for Rainbow Trout in Kootenay Lake from Andrusak #' and Thorley (2013) #' #' The estimates should not be used for management. #' @references Andrusak, G.F., and Thorley, J.L. 2013. Kootenay Lake #' Exploitation Study: Fishing and Natural Mortality of Large Rainbow Trout #' and Bull Trout: 2013 Annual Report. A Poisson Consulting Ltd. and Redfish #' Consulting Ltd. Report, Habitat Conservation Trust Foundation, Victoria, #' BC. #' @format An object of class [ypr_population()]. #' @family data #' @examples #' kootenay_rb_13 #' ypr_plot_yield(kootenay_rb_13) "kootenay_rb_13" #' Kootenay Lake Rainbow Trout Population Parameters #' #' The population parameters for Rainbow Trout in Kootenay Lake. #' #' The estimates are liable to change and should not be used for management. #' @references Thorley, J.L., and Andrusak, G.F. 2017. The fishing and natural #' mortality of large, piscivorous Bull Trout and Rainbow Trout in Kootenay #' Lake, British Columbia (2008–2013). PeerJ 5: e2874. doi:10.7717/peerj.2874. #' @format An object of class [ypr_population()]. #' @family data #' @examples #' kootenay_rb #' ypr_plot_yield(kootenay_rb) "kootenay_rb" #' Quesnel Lake Bull Trout Population Parameters #' #' The population parameters for Bull Trout in Quesnel Lake, BC. #' #' The estimates are liable to change and should not be used for management. #' @format An object of class [ypr_population()]. #' @family data #' @examples #' quesnel_bt #' ypr_plot_yield(quesnel_bt) "quesnel_bt" #' Quesnel Lake Rainbow Trout Population Parameters #' #' The population parameters for Rainbow Trout in Quesnel Lake, BC. #' #' The estimates are liable to change and should not be used for management. #' @format An object of class [ypr_population()]. #' @family data #' @examples #' quesnel_rb #' ypr_plot_yield(quesnel_rb) "quesnel_rb" #' Quesnel Lake Lake Trout Population Parameters #' #' The population parameters for Lake Trout in Quesnel Lake, BC. #' #' The estimates are liable to change and should not be used for management. #' @format An object of class [ypr_population()]. #' @family data #' @examples #' quesnel_lt #' ypr_plot_yield(quesnel_lt) "quesnel_lt"
/scratch/gouwar.j/cran-all/cranData/ypr/R/data.R
#' Detabulate Population Parameters #' #' @param x A data frame with columns Parameter and Value specifying one or more #' parameters and their values. #' @return An object of class [ypr_population()] #' @family tabulate #' @family parameters #' @export #' @examples #' ypr_detabulate_parameters(ypr_tabulate_parameters(ypr_population())) ypr_detabulate_parameters <- function(x) { chk_s3_class(x, "data.frame") chk_superset(colnames(x), c("Parameter", "Value")) chk_s3_class(x$Parameter, "character") chk_not_any_na(x$Parameter) chk_subset(x$Parameter, parameters()) chk_unique(x$Parameter) chk_numeric(x$Value) chk_not_any_na(x$Value) chk_range(x$Value, c(min(.parameters$Lower), max(.parameters$Upper))) x <- merge( x, .parameters[c("Parameter", "Integer")], by = "Parameter", sort = FALSE ) parameters <- as.list(x$Value) names(parameters) <- x$Parameter parameters <- mapply(function(x, y) if (y == 1) as.integer(x) else x, parameters, x$Integer, SIMPLIFY = FALSE ) population <- do.call("ypr_population", parameters) population }
/scratch/gouwar.j/cran-all/cranData/ypr/R/detabulate.R
#' Create Ecotypes Object #' #' Creates an ypr_ecotypes object. #' #' @inheritParams params #' @return An [ypr_ecotypes()] objects #' @family ecotypes #' @export #' @examples #' ypr_ecotypes(Linf = c(1, 2)) #' ypr_ecotypes(Linf = c(1, 2), t0 = c(0, 0.5)) ypr_ecotypes <- function(..., names = NULL) { chk_null_or(names, vld = vld_character) x <- ypr_populations(..., expand = FALSE, names = names) x <- as_ypr_ecotypes(x) if(is.null(names)) { names <- ypr_names(x) } names(x) <- names x }
/scratch/gouwar.j/cran-all/cranData/ypr/R/ecotypes.R
#' Expand Populations #' #' An object of class [ypr_population()] of all unique combinations of parameter #' values. #' #' @inheritParams params #' @return An object of class `ypr_population`. #' @family populations #' @export #' @examples #' ypr_populations_expand( #' ypr_populations( #' Rk = c(2.5, 4, 2.5), #' Hm = c(0.1, 0.2, 0.1) #' ) #' ) ypr_populations_expand <- function(populations) { populations <- as.data.frame(populations) populations <- unique(populations) populations <- as.list(populations) populations <- lapply(populations, function(x) sort(unique(x))) populations <- expand.grid(populations) populations <- unique(populations) as_ypr_populations(populations) }
/scratch/gouwar.j/cran-all/cranData/ypr/R/expand.R
#' Exploitation Probability #' #' Converts capture probabilities into exploitation probabilities based on the #' release and handling mortality probabilities where the probability of #' exploitation includes handling mortalities. The calculation assumes that a #' released fish cannot be recaught in the same year. #' #' In the case of no release (or 100% handling mortalities) the exploitation #' probability is identical to the capture probability. Otherwise it is less. #' #' @inheritParams params #' @param pi A vector of capture probabilities to calculate the exploitation #' probabilities for. #' @return A vector of exploitation probabilities. #' @family calculate #' @export #' @examples #' ypr_exploitation(ypr_population(pi = 0.4)) #' ypr_exploitation(ypr_population(pi = 0.4, rho = 0.6, Hm = 0.2)) ypr_exploitation <- function(object, pi = ypr_get_par(object)) { chkor_vld(vld_is(object, "ypr_population"), vld_is(object, "ypr_ecotypes")) chk_numeric(pi) chk_not_any_na(pi) chk_range(pi) rho <- ypr_get_par(object, "rho") Hm <- ypr_get_par(object, "Hm") pi * (1 - rho) + pi * rho * Hm }
/scratch/gouwar.j/cran-all/cranData/ypr/R/exploitation.R