content
stringlengths
0
14.9M
filename
stringlengths
44
136
tabPanel('Home', value = 'tab_home_analyze', icon = icon('home'), navlistPanel(id = 'navlist_home', well = FALSE, widths = c(2, 10), source('ui/ui_rfm_home.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_home.R
tabPanel('RFM', value = 'tab_rfm', icon = icon('sitemap'), navlistPanel(id = 'navlist_rfm', well = FALSE, widths = c(2, 10), source('ui/ui_rfm_score_transaction.R', local = TRUE)[[1]], source('ui/ui_rfm_customer_1.R', local = TRUE)[[1]], source('ui/ui_rfm_customer_2.R', local = TRUE)[[1]], source('ui/ui_rfm_heat_map.R', local = TRUE)[[1]], source('ui/ui_rfm_bar_chart.R', local = TRUE)[[1]], source('ui/ui_rfm_histogram.R', local = TRUE)[[1]], source('ui/ui_rfm_scatter_plot.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm.R
tabPanel('Bar Chart', value = 'tab_rfm_barchart', fluidPage( fluidRow( column(6, align = 'left', h4('RFM Bar Chart'), p("Examine the distribution of monetary scores for the different combinations of frequency and recency scores.") ) ), hr(), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('plot_barchart', height = '500px') %>% withSpinner() ), column(2) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_bar_chart.R
tabPanel('Customer Data - I', value = 'tab_rfm_customer_score', # check box for transcation or customer data fluidPage( fluidRow( column(6, align = 'left', h4('RFM Analysis'), p('Recency, frequency and monetary value analysis for customer level data i.e. each row represents transactions of a customer and the data includes the number of days since the last transaction.') ), column(6, align = 'right', actionButton(inputId='rvsp1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://rfm.rsquaredacademy.com/reference/rfm_table_customer.html', '_blank')") ) ), hr(), fluidRow( column(2, align = "right", br(), h5("Unique ID:") ), column(2, align = "left", selectInput("rfm_customer_id_c", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_customer_id_c", "Select the variable representing the unique id of the customer.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Orders:") ), column(2, align = "left", selectInput("rfm_n_transactions_c", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_n_transactions_c", "Select the variable representing the number of orders/purchases.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h6("Days since last transaction:") ), column(2, align = "left", selectInput("rfm_recency_days_c", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_recency_days_c", "Select the variable representing the days since last transaction.", "bottom", options = list(container = "body") ) ) ), fluidRow( column(2, align = "right", br(), h5("Revenue:") ), column(2, align = "left", selectInput("rfm_total_revenue_c", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_total_revenue_c", "Select the variable representing the total revenue from the customer.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Analysis Date:") ), column(2, align = "left", dateInput("rfm_analysis_date_c", label = '', width = '150px'), bsTooltip("rfm_analysis_date_c", "Select the date of analysis.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Recency Bins:") ), column(2, align = "left", numericInput("rfm_recency_bins_c", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_recency_bins_c", "Specify the number of bins for recency.", "bottom", options = list(container = "body") ) ) ), fluidRow( column(2, align = "right", br(), h5("Frequency Bins:") ), column(2, align = "left", numericInput("rfm_frequency_bins_c", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_frequency_bins_c", "Specify the number of bins for frequency.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Monetary Bins:") ), column(2, align = "left", numericInput("rfm_monetary_bins_c", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_monetary_bins_c", "Specify the number of bins for monetary value", "bottom", options = list(container = "body") ) ) ), br(), fluidRow( column(12, align = "center", actionButton(inputId = 'submit_rfm_customer_score', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_rfm_customer_score", "Click here to view RFM score.", "bottom", options = list(container = "body")) ) ), fluidRow( br(), dataTableOutput('rfm_customer_score_out') %>% withSpinner() ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_customer_1.R
tabPanel('Customer Data - II', value = 'tab_rfm_customer_score_2', # check box for transcation or customer data fluidPage( fluidRow( column(6, align = 'left', h4('RFM Analysis'), p('Recency, frequency and monetary value analysis for customer level data i.e. each row represents transactions of a customer and the data includes the date of the latest transaction.') ), column(6, align = 'right', actionButton(inputId='rvsp1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://rfm.rsquaredacademy.com/reference/rfm_table_customer_2.html', '_blank')") ) ), hr(), fluidRow( column(2, align = "right", br(), h5("Unique ID:") ), column(2, align = "left", selectInput("rfm_customer_id_c_2", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_customer_id_c_2", "Select the variable representing the unique id of the customer.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Orders:") ), column(2, align = "left", selectInput("rfm_n_transactions_c_2", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_n_transactions_c_2", "Select the variable representing the number of orders/purchases.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h6("Latest Transaction Date:") ), column(2, align = "left", selectInput("rfm_order_date_c", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_order_date_c", "Select the variable representing the date of the latest order/transaction.", "bottom", options = list(container = "body") ) ) ), fluidRow( column(2, align = "right", br(), h5("Revenue:") ), column(2, align = "left", selectInput("rfm_total_revenue_c_2", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_total_revenue_c_2", "Select the variable representing the total revenue from the customer.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Analysis Date:") ), column(2, align = "left", dateInput("rfm_analysis_date_c_2", label = '', width = '150px'), bsTooltip("rfm_analysis_date_c_2", "Select the date of analysis.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Recency Bins:") ), column(2, align = "left", numericInput("rfm_recency_bins_c_2", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_recency_bins_c_2", "Specify the number of bins for recency.", "bottom", options = list(container = "body") ) ) ), fluidRow( column(2, align = "right", br(), h5("Frequency Bins:") ), column(2, align = "left", numericInput("rfm_frequency_bins_c_2", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_frequency_bins_c_2", "Specify the number of bins for frequency.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Monetary Bins:") ), column(2, align = "left", numericInput("rfm_monetary_bins_c_2", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_monetary_bins_c_2", "Specify the number of bins for monetary value", "bottom", options = list(container = "body") ) ) ), br(), fluidRow( column(12, align = "center", actionButton(inputId = 'submit_rfm_customer_score_2', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_rfm_customer_score_2", "Click here to view RFM score.", "bottom", options = list(container = "body")) ) ), fluidRow( br(), dataTableOutput('rfm_customer_score_out_2') %>% withSpinner() ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_customer_2.R
tabPanel('Heat Map', value = 'tab_rfm_heatmap', fluidPage( fluidRow( column(6, align = 'left', h4('RFM Heatmap'), p("The heat map shows the average monetary value for different categories of recency and frequency scores. Higher scores of frequency and recency are characterized by higher average monetary value as indicated by the darker areas in the heatmap.") ) ), hr(), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('plot_heatmap', height = '500px') %>% withSpinner() ), column(2) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_heat_map.R
tabPanel('Histogram', value = 'tab_rfm_histogram', fluidPage( fluidRow( column(6, align = 'left', h4('Histograms'), p("Histograms of recency, frequency and monetary value.") ) ), hr(), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('plot_histogram', height = '500px') %>% withSpinner() ), column(2) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_histogram.R
tabPanel("Home", value = "tab_rfm_home", fluidPage( fluidRow( column(12, align = 'center', h3('What type of data do you have?') ) ), br(), br(), fluidRow( column(3), column(4, align = 'center', h4('Transaction Level Data'), p('Each row represents a transaction/order.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_transaction', label = 'Click Here', width = '100px' ) ), column(3) ), br(), fluidRow( column(3), column(4, align = 'center', h4('Customer Level Data'), p('Each row represents transactions of a customer. The data includes the number of days since the last transaction.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_customer_1', label = 'Click Here', width = '100px' ) ), column(3) ), br(), fluidRow( column(3), column(4, align = 'center', h4('Customer Level Data'), p('Each row represents transactions of a customer. The data includes the date of the latest transaction.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_customer_2', label = 'Click Here', width = '100px' ) ), column(3) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_home.R
tabPanel('Scatter Plots', value = 'tab_rfm_scatter', fluidPage( fluidRow( column(6, align = 'left', h4('Scatter Plots'), p("Examine the relationship between recency, frequency and monetary values.") ) ), hr(), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('plot_scatter_1', height = '500px') %>% withSpinner() ), column(2) ), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('plot_scatter_2', height = '500px') %>% withSpinner() ), column(2) ), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('plot_scatter_3', height = '500px') %>% withSpinner() ), column(2) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_scatter_plot.R
tabPanel('Transaction Data', value = 'tab_rfm_transaction_score', # check box for transcation or customer data fluidPage( fluidRow( column(6, align = 'left', h4('RFM Analysis'), p('Recency, frequency and monetary value analysis for transaction level data i.e. each row represents a transaction/order.') ), column(6, align = 'right', actionButton(inputId='rvsp1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://rfm.rsquaredacademy.com/reference/rfm_table_order.html', '_blank')") ) ), hr(), fluidRow( column(2, align = "right", br(), h5("Unique ID:") ), column(2, align = "left", selectInput("rfm_customer_id_t", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_customer_id_t", "Select the variable representing the unique id of the customer.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Order Date:") ), column(2, align = "left", selectInput("rfm_order_date_t", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_order_date_t", "Select the variable representing the date of the order/transaction.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Revenue:") ), column(2, align = "left", selectInput("rfm_revenue_t", label = '', choices = "", selected = "", width = '150px' ), bsTooltip("rfm_revenue_t", "Select the variable representing the total revenue from the transaction.", "bottom", options = list(container = "body") ) ) ), fluidRow( column(2, align = "right", br(), h5("Analysis Date:") ), column(2, align = "left", dateInput("rfm_analysis_date_t", label = '', width = '150px'), bsTooltip("rfm_analysis_date_t", "Select the date of analysis.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Recency Bins:") ), column(2, align = "left", numericInput("rfm_recency_bins_t", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_recency_bins_t", "Specify the number of bins for recency.", "bottom", options = list(container = "body") ) ), column(2, align = "right", br(), h5("Frequency Bins:") ), column(2, align = "left", numericInput("rfm_frequency_bins_t", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_recency_bins_t", "Specify the number of bins for recency.", "bottom", options = list(container = "body") ) ) ), fluidRow( column(2, align = "right", br(), h5("Monetary Bins:") ), column(2, align = "left", numericInput("rfm_monetary_bins_t", label = '', min = 1, step = 1, value = 5, width = '150px' ), bsTooltip("rfm_monetary_bins_t", "Specify the number of bins for monetary value.", "bottom", options = list(container = "body") ) ) ), br(), fluidRow( column(12, align = "center", actionButton(inputId = 'submit_rfm_transaction_score', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_rfm_transaction_score", "Click here to view RFM score.", "bottom", options = list(container = "body")) ) ), fluidRow( br(), dataTableOutput('rfm_transaction_score_out') %>% withSpinner() ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_rfm_score_transaction.R
tabPanel('Screen', value = 'tab_scr', icon = icon('binoculars'), navlistPanel(id = 'navlist_scr', well = FALSE, widths = c(2, 10), source('ui/ui_screen.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_scr.R
tabPanel('Screen', value = 'tab_screen', fluidPage( fluidRow( column(8, align = 'left', h4('Data Screening'), p('Screen data for missing values, verify column names and data types.') ), column(4, align = 'right', actionButton(inputId='dscreenlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://descriptr.rsquaredacademy.com/reference/ds_screener.html', '_blank')"), actionButton(inputId='dscreenlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=03m17s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', verbatimTextOutput('screen') ) ), fluidRow( br(), column(12, align = 'center', actionButton('finalok', 'Approve', width = '120px', icon = icon('sign-out')), bsTooltip("finalok", "Click here to approve the data.", "top", options = list(container = "body")) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_screen.R
tabPanel('Segments', value = 'tab_segment', icon = icon('object-ungroup'), navlistPanel(id = 'navlist_rfm', well = FALSE, widths = c(2, 10), source('ui/ui_segments.R', local = TRUE)[[1]], source('ui/ui_segment_size.R', local = TRUE)[[1]], source('ui/ui_average_recency.R', local = TRUE)[[1]], source('ui/ui_average_frequency.R', local = TRUE)[[1]], source('ui/ui_average_monetary.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_segment.R
tabPanel("Segment Size", value = "tab_segment_size", fluidPage( fluidRow( column(6, align = 'left', h4('Segment Distribution'), p("Distribution of customers across the segments.") ) ), hr(), fluidRow( br(), br(), column(12, align = 'center', verbatimTextOutput('segment_size_out') %>% withSpinner() ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_segment_size.R
tabPanel("Segmentation", value = "tab_rfm_segments", fluidPage( fluidRow( column(6, align = 'left', h4('Generate Segments'), p("Classify customers based on the individual recency, frequency and monetary scores. Those customers who do not fall into any of the below segments will be classified as 'Others'.") ) ), hr(), fluidRow( column(6, align = "right", br(), h5("Number of Segments:")), column(6, align = "left", numericInput( inputId = "n_segments", label = "", min = 1, max = 10, step = 1, value = 5 ) ) ), hr(), fluidRow( column(1), column(2, h5('Segment')), column(3, h5('Recency Score')), column(3, h5('Frequency Score')), column(3, h5('Monetary Score')) ), column(12, uiOutput('segment_prep')), fluidRow( column(12, align = 'center', br(), actionButton(inputId="button_create_segments", label="Generate Segments", icon = icon('thumbs-up')), bsTooltip("button_create_segments", "Click here to generate segments.", "top", options = list(container = "body")), br(), br() ) ), fluidRow( br(), dataTableOutput("segment_out") ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_segments.R
tabPanel("Select Data", value = "tab_seldata", fluidPage( fluidRow( column(6, align = 'left', h4('Select Data Set'), p('Select a data set from the drop down box and click on submit.') ), column(6, align = 'right', actionButton(inputId='seldatalink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=01m14s', '_blank')") ) ), hr(), fluidRow( column(12, align = "center", selectInput( inputId = "sel_data", label = "Select a data set:", choices = '', # choices = c('csv', 'excel', 'json', 'spss', 'stata', 'sas'), selected = '', width = '200px', ) ) ), fluidRow( column(12, align = 'center', br(), actionButton(inputId = 'submit_seldata', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_seldata", "Click here to select data.", "bottom", options = list(container = "body"))) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_seldata.R
tabPanel('Select Variables', value = 'tab_selvar', fluidPage( fluidRow( column(6, align = 'left', h4('Select Variables'), p('Click on Yes to select variables.') ), column(6, align = 'right', actionButton(inputId='selvarlink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=02m19s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', h4('Do you want to select variables?') ) ), fluidRow( column(6, align = 'right', actionButton( inputId = 'button_selvar_yes', label = 'Yes', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'button_selvar_no', label = 'No', width = '120px' ) ) ), fluidRow( br(), br(), uiOutput('show_sel_button') ), fluidRow( uiOutput('sub_sel_button') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_select.R
tabPanel('Transform', value = 'tab_trans', icon = icon('rotate-right'), navlistPanel(id = 'navlist_trans', well = FALSE, widths = c(2, 10), source('ui/ui_seldata.R', local = TRUE)[[1]], source('ui/ui_transform2.R', local = TRUE)[[1]], source('ui/ui_select.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_trans.R
tabPanel('Transform', value = 'tab_transform', fluidPage( fluidRow( column(6, align = 'left', h4('Data Transformation'), p('Rename variables and modify data types.') ), column(6, align = 'right', actionButton(inputId='translink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=01m23s', '_blank')") ) ), hr(), fluidRow( column(3, tags$h5('Variable')), column(3, tags$h5('Rename Variable')), column(3, tags$h5('Modify Data Type')) ), column(12, uiOutput('trans_try')), fluidRow( tags$br() ), fluidRow( column(12, align = 'center', br(), actionButton(inputId="apply_changes", label="Apply Changes", icon = icon('thumbs-up')), bsTooltip("apply_changes", "Click here to apply changes to data.", "top", options = list(container = "body")), br(), br() ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_transform2.R
tabPanel('Get Data', value = 'tab_upload', icon = icon('server'), navlistPanel(id = 'navlist_up', well = FALSE, widths = c(2, 10), source('ui/ui_dataoptions.R', local = TRUE)[[1]], source('ui/ui_datafiles.R', local = TRUE)[[1]], source('ui/ui_datasamples.R', local = TRUE)[[1]] # source('ui/ui_upload.R', local = TRUE)[[1]], # source('ui/ui_excel.R', local = TRUE)[[1]], # source('ui/ui_json.R', local = TRUE)[[1]], # source('ui/ui_stata.R', local = TRUE)[[1]], # source('ui/ui_spss.R', local = TRUE)[[1]], # source('ui/ui_sas.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_up.R
tabPanel('View', value = 'tab_vi', icon = icon('sort'), navlistPanel(id = 'navlist_vi', well = FALSE, widths = c(2, 10), source('ui/ui_view.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_vi.R
tabPanel('View', value = 'tab_view', fluidPage( br(), fluidRow( column(6, align = 'left', actionButton(inputId='view2getdata', label=" Get Data", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='view2analyze', label="Analyze Data", icon = icon("long-arrow-right")) ) ), hr(), fluidRow( dataTableOutput(outputId = "table") ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_view.R
tabPanel("Home", value = "tab_welcome", icon = icon('home'), fluidPage( br(), fluidRow( column(2), column(3, align = 'left', br(), h3('RFM Analysis'), p('RFM (recency, frequency, monetary) analysis is a behavior based technique used to segment customers by examining their transaction history such as'), tags$ul( tags$li("how recently a customer has purchased (recency)"), tags$li("how often they purchase (frequency)"), tags$li("how much the customer spends (monetary)") ), p('It is based on the marketing axiom that 80% of your business comes from 20% of your customers. RFM helps to identify customers who are more likely to respond to promotions by segmenting them into various categories.') ), column(2), column(4, align = 'center', br(), br(), br(), img(src = 'rfm_main.png', width = '360px', height = '250px') ), column(1) ), br(), br(), br(), fluidRow( column(12, align = "center", actionButton(inputId='welcomebutton', label="Get Started", icon = icon("long-arrow-right")) ) ), fluidRow(hr()), # fluidRow( # column(12, align = "center", h4("Quick Demo")) # ), # fluidRow( # column(12, align = 'center', # div(style = "height:550px;", # br(), # br(), # tags$iframe(width="760", height="515", src="https://www.youtube.com/embed/aM0bjrYCvv8?rel=0&autoplay=0") # ) # ) # ), br(), br(), fluidRow( column(12, align = "center", h4("Data Sources")) ), fluidRow( column(12, align = "center", p("There are a few data sets available on the internet which can be used for learning RFM analysis and we list them below:") ) ), fluidRow( column(12, align = "center", a("Data Source 1", href = "http://shiny.rstudio.com/", target = "_blank")), br(), column(12, align = "center", a("Data Source 2", href = "http://shiny.rstudio.com/", target = "_blank")) ), br(), br(), br() ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_welcome.R
library(shiny) library(shinyBS) library(shinythemes) library(shinycssloaders) library(magrittr) library(shinycssloaders) shinyUI( navbarPage(HTML("rfm"), id = 'mainpage', # source('ui/ui_welcome.R', local = TRUE)[[1]], source('ui/ui_data.R', local = TRUE)[[1]], source('ui/ui_analyze.R', local = TRUE)[[1]], source('ui/ui_exit_button.R', local = TRUE)[[1]] ))
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui.R
output$binom_shape <- renderPlot({ vdist_binom_plot(input$binom_n, input$binom_p) }) output$bprob_plot <- renderPlot({ if (input$bprob_tail != 'interval') { vdist_binom_prob(input$bprob_n, input$bprob_p, input$bprob_s, input$bprob_tail) } else { vdist_binom_prob(input$bprob_n, input$bprob_p, c(input$bprob_tail_1, input$bprob_tail_2), input$bprob_tail) } }) output$bperc_plot <- renderPlot({ vdist_binom_perc(input$bperc_n, input$bperc_p, input$bperc_tp, input$bperc_tail) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/logic/logic_binom.R
output$chisq_shape <- renderPlot({ vdist_chisquare_plot(input$chisq_df, as.logical(input$chisq_norm)) }) output$chiprob_plot <- renderPlot({ vdist_chisquare_prob(input$chiprob_p, input$chiprob_df, input$chiprob_tail) }) output$chiperc_plot <- renderPlot({ print(vdist_chisquare_perc(input$chiperc_p, input$chiperc_df, input$chiperc_tail)) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/logic/logic_chisq.R
# Exit --------------------------------------------------------------- observe({ if (isTRUE(input$mainpage == "exit")) { stopApp() } })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/logic/logic_exit_button.R
output$f_shape <- renderPlot({ vdist_f_plot(input$f_numdf, input$f_dendf, as.logical(input$f_norm)) }) output$fprob_plot <- renderPlot({ vdist_f_prob(input$fprob_p, input$fprob_numdf, input$fprob_dendf, input$fprob_tail) }) output$fperc_plot <- renderPlot({ vdist_f_perc(input$fperc_p, input$fperc_numdf, input$fperc_dendf, input$fperc_tail) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/logic/logic_f.R
eda_menu <- eventReactive(input$finalok, { fluidRow( column(12), br(), column(12, align = 'center', h5('What do you want to do?') ), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate detailed descriptive statistics for a continuous variable: ') ), column(2, align = 'left', actionButton( inputId = 'button_1', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate frequency distribution of a categorical variable: ') ), column(2, align = 'left', actionButton( inputId = 'button_2', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate frequency distribution a continuous variable: ') ), column(2, align = 'left', actionButton( inputId = 'button_3', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate two way table of categorical variables: ') ), column(2, align = 'left', actionButton( inputId = 'button_4', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate multiple one way tables of categorical variables: ') ), column(2, align = 'left', actionButton( inputId = 'button_5', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate multiple two way tables of categorical variables: ') ), column(2, align = 'left', actionButton( inputId = 'button_6', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate grouped summary statistics: ') ), column(2, align = 'left', actionButton( inputId = 'button_7', label = 'Click Here', width = '120px' ) ), column(3) ) }) output$eda_options <- renderUI({ eda_menu() }) observeEvent(input$click_descriptive, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_eda_home') }) observeEvent(input$click_distributions, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_dist_home') }) observeEvent(input$click_inference, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer_home') }) observeEvent(input$click_model, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_model_home') }) observeEvent(input$click_visualize, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_home_viz') }) # observeEvent(input$click_visualize, { # updateNavbarPage(session, 'mainpage', selected = 'tab_viz_lib') # }) observeEvent(input$button_1, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_summary') }) observeEvent(input$button_2, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_fqual') }) observeEvent(input$button_3, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_fquant') }) observeEvent(input$button_4, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_cross') }) observeEvent(input$button_5, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_mult1') }) observeEvent(input$button_6, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_mult2') }) observeEvent(input$button_7, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_gsummary') }) observeEvent(input$button_dist_home_1, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_norm') }) observeEvent(input$button_dist_home_2, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_t') }) observeEvent(input$button_dist_home_3, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_chisq') }) observeEvent(input$button_dist_home_4, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_binom') }) observeEvent(input$button_dist_home_5, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_f') }) observeEvent(input$button_infer_home_1, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer1_home') }) observeEvent(input$button_infer_home_2, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer2_home') }) observeEvent(input$button_infer_home_3, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer3_home') }) # links for inferential statistics observeEvent(input$inf_menu_1_t, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_ttest') }) observeEvent(input$inf_menu_1_var, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_osvartest') }) observeEvent(input$inf_menu_1_prop, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_osproptest') }) observeEvent(input$inf_menu_1_chi, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_chigof') }) observeEvent(input$inf_menu_1_runs, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_runs') }) observeEvent(input$inf_menu_2_it, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_indttest') }) observeEvent(input$inf_menu_2_pt, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_indttest') }) observeEvent(input$inf_menu_2_binom, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_binomtest') }) observeEvent(input$inf_menu_2_var, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_tsvartest') }) observeEvent(input$inf_menu_2_prop, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_tsproptest') }) observeEvent(input$inf_menu_2_chi, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_chict') }) observeEvent(input$inf_menu_2_mcnemar, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_mcnemar') }) observeEvent(input$inf_menu_3_anova, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_anova') }) observeEvent(input$inf_menu_3_levene, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_levtest') }) observeEvent(input$inf_menu_3_cochran, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_cochran') }) ## visulization links observeEvent(input$click_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_viz_base') }) observeEvent(input$click_ggplot2, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_viz_gg') }) observeEvent(input$click_prh, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_viz_others') }) ## link viz libraries to tabs observeEvent(input$click_bar_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_bar') }) observeEvent(input$click_bar2_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_bar2') }) observeEvent(input$click_box_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_box') }) observeEvent(input$click_box2_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_box2') }) observeEvent(input$click_line_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_line') }) observeEvent(input$click_scatter_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_scatter') }) observeEvent(input$click_hist_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_hist') }) observeEvent(input$click_pie_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_pie') }) observeEvent(input$click_pie2_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_pie3d') }) ## ggplot2 observeEvent(input$click_bar_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbar') }) observeEvent(input$click_bar2_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbar2') }) observeEvent(input$click_box_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbox') }) observeEvent(input$click_box2_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbox2') }) observeEvent(input$click_line_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gline1') }) observeEvent(input$click_scatter_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gscatter') }) observeEvent(input$click_hist_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_ghist') }) observeEvent(input$click_pie_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gpie') }) observeEvent(input$click_line2_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gline2') }) ## others observeEvent(input$click_bar_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_bar_plot_1') }) observeEvent(input$click_bar2_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_bar_plot_2') }) observeEvent(input$click_box_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_box_plot_1') }) observeEvent(input$click_box2_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_box_plot_2') }) observeEvent(input$click_line_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_line_prh') }) observeEvent(input$click_scatter_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_scatter_prh') }) observeEvent(input$click_hist_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_hist_prh') }) observeEvent(input$click_pie_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_pie_prh') }) ## model links observeEvent(input$model_reg_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_regress') }) observeEvent(input$model_varsel_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_var_select') }) observeEvent(input$model_resdiag_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_res_diag') }) observeEvent(input$model_het_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_hetero') }) observeEvent(input$model_coldiag_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_regcollin') }) observeEvent(input$model_infl_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_inflobs') }) observeEvent(input$model_fit_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_mfit') }) observeEvent(input$model_varcontrib_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_regvarcont') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/logic/logic_home.R
output$norm_shape <- renderPlot({ vdist_normal_plot(input$norm_m, input$norm_sd) }) output$nprob_plot <- renderPlot({ vdist_normal_prob(input$nprob_p, input$nprob_m, input$nprob_sd, input$nprob_tail) }) output$nperc_plot <- renderPlot({ vdist_normal_perc(input$nperc_p, input$nperc_m, input$nperc_sd, input$nperc_tail) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/logic/logic_norm.R
output$t_shape <- renderPlot({ vdist_t_plot(input$t_df) }) output$tprob_plot <- renderPlot({ vdist_t_prob(input$tprob_p, input$tprob_df, input$tprob_tail) }) output$tperc_plot <- renderPlot({ vdist_t_perc(input$tperc_p, input$tperc_df, input$tperc_tail) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/logic/logic_t.R
library(vistributions) library(tibble) library(magrittr) library(ggplot2) shinyServer(function(input, output, session) { source("logic/logic_binom.R", local = T) source("logic/logic_f.R", local = T) source("logic/logic_t.R", local = T) source("logic/logic_norm.R", local = T) source("logic/logic_chisq.R", local = T) source("logic/logic_home.R", local = T) source("logic/logic_exit_button.R", local = T) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/server.R
navbarMenu('Visualize', icon = icon('search-plus'), source('ui/ui_homes.R', local = TRUE)[[1]], source('ui/ui_dist.R', local = TRUE)[[1]] )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_analyze.R
tabPanel('Binomial Distribution', value = 'tab_binom', fluidPage( fluidRow( column(12, fluidRow( column(8, align = 'left', h4('Binomial Distribution'), p('Visualize how changes in number of trials and the probability of success affect the shape of the binomial distribution. Compute/visualize probability from a given quantile and quantiles out of given probability.') ), column(4, align = 'right', actionButton(inputId='binomdist1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://descriptr.rsquaredacademy.com/reference/dist_binom_plot.html', '_blank')") ) ), hr(), tabsetPanel(type = 'tabs', tabPanel('Distribution Shape', column(4, column(6, align = 'center', br(), br(), numericInput('binom_n', 'Number of trials', value = 10, min = 1, step = 1 ), numericInput('binom_p', 'Probability', value = 0.3, min = 0, max = 1, step = 0.01 ) ) ), column(8, plotOutput('binom_shape', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Probability', column(4, column(6, align = 'center', br(), br(), numericInput('bprob_n', 'Number of trials', value = 10, min = 1, step = 1 ), numericInput('bprob_p', 'Probability', value = 0.3, min = 0, max = 1, step = 0.01 ), selectInput('bprob_tail', 'Tail', choices = c('lower', 'upper', 'exact', 'interval'), selected = 'lower' ), conditionalPanel( condition = "input.bprob_tail != 'interval'", numericInput('bprob_s', 'Success', value = 1, min = 0, step = 1) ), conditionalPanel( condition = "input.bprob_tail == 'interval'", numericInput('bprob_tail_1', 'Lower', value = 1, min = 0, step = 1), br(), numericInput('bprob_tail_2', 'Upper', value = 1, min = 0, step = 1) ) ) ), column(8, plotOutput('bprob_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Percentile', column(4, column(6, align = 'center', br(), br(), numericInput('bperc_n', 'Number of trials', value = 10, min = 1, step = 1 ), numericInput('bperc_p', 'Probability of Success', value = 0.3, min = 0, max = 1, step = 0.01 ), numericInput('bperc_tp', 'Aggregated Probability', value = 0.05, min = 0, max = 0.5, step = 0.01 ), selectInput('bperc_tail', 'Tail', choices = c('lower', 'upper'), selected = 'lower' ) ) ), column(8, plotOutput('bperc_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_binom.R
tabPanel('Chisquare Distribution', value = 'tab_chisq', fluidPage( fluidRow( column(8, align = 'left', h4('Chi Square Distribution'), p('Visualize how changes in degrees of freedom affect the shape of the chi square distribution. Compute/visualize quantiles out of given probability and probability from a given quantile.') ), column(4, align = 'right', actionButton(inputId='chidistlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://descriptr.rsquaredacademy.com/reference/dist_chi_plot.html', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Distribution Shape', column(4, column(6, align = 'center', br(), br(), numericInput('chisq_df', 'Degrees of freedom', value = 4, min = 1, step = 1 ), selectInput('chisq_norm', 'Normal Distribution', choices = c('TRUE' = TRUE, 'FALSE' = FALSE), selected = 'FALSE' ) ) ), column(8, plotOutput('chisq_shape', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Probability', column(4, column(6, align = 'center', br(), br(), numericInput('chiprob_p', 'Percentile', value = 2, min = 0, step = 1 ), numericInput('chiprob_df', 'Degrees of freedom', value = 4, min = 1, step = 1 ), selectInput('chiprob_tail', 'Tail', choices = c('lower', 'upper'), selected = 'lower' ) ) ), column(8, plotOutput('chiprob_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Percentile', column(4, column(6, align = 'center', br(), br(), numericInput('chiperc_p', 'Probability', value = 0.3, min = 0, step = 0.01, max = 1 ), numericInput('chiperc_df', 'Degrees of freedom', value = 4, min = 1, step = 1 ), selectInput('chiperc_tail', 'Tail', choices = c('lower', 'upper'), selected = 'lower' ) ) ), column(8, plotOutput('chiperc_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_chisq.R
tabPanel('Distributions', value = 'tab_dist', icon = icon('area-chart'), navlistPanel(id = 'navlist_dist', well = FALSE, widths = c(2, 10), source('ui/ui_normal.R', local = TRUE)[[1]], source('ui/ui_t.R', local = TRUE)[[1]], source('ui/ui_chisq.R', local = TRUE)[[1]], source('ui/ui_binom.R', local = TRUE)[[1]], source('ui/ui_f.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_dist.R
tabPanel('Distributions', value = 'tab_dist_home', fluidPage(theme = shinytheme('cerulean'), includeCSS("mystyle.css"), fluidRow( column(12), br(), column(12, align = 'center', h5('Visualize Probability Distributions') ), br(), br(), br(), column(3), column(4, align = 'left', h5('Normal Distribution') ), column(2, align = 'left', actionButton( inputId = 'button_dist_home_1', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('t Distribution') ), column(2, align = 'left', actionButton( inputId = 'button_dist_home_2', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Chi Square Distribution') ), column(2, align = 'left', actionButton( inputId = 'button_dist_home_3', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Binomial Distribution') ), column(2, align = 'left', actionButton( inputId = 'button_dist_home_4', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('F Distribution') ), column(2, align = 'left', actionButton( inputId = 'button_dist_home_5', label = 'Click Here', width = '120px' ) ), column(3) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_dist_home.R
# Exit ----------------------------------------------------------- tabPanel("", value = "exit", icon = icon("power-off"), br(), br(), br(), br(), br(), br(), # In case window does not close, one should see this message fluidRow(column(3), column(6, h2("Thank you for using", strong("vistributions"), "!"))), fluidRow(column(3), column(6, h4("Now you should close this window."))) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_exit_button.R
tabPanel('F Distribution', value = 'tab_f', fluidPage( fluidRow( column(7, align = 'left', h4('F Distribution'), p('Visualize how changes in degrees of freedom affect the shape of the F distribution. Compute/visualize quantiles out of given probability and probability from a given quantile.') ), column(5, align = 'right', actionButton(inputId='fdistlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://descriptr.rsquaredacademy.com/reference/dist_f_plot.html', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Distribution Shape', column(4, column(6, align = 'center', br(), br(), numericInput('f_numdf', 'Numerator Degrees of freedom', value = 4, min = 1, step = 1 ), numericInput('f_dendf', 'Denominator Degrees of freedom', value = 5, min = 1, step = 1 ), selectInput('f_norm', 'Normal Distribution', choices = c('TRUE' = TRUE, 'FALSE' = FALSE), selected = 'FALSE' ) ) ), column(8, plotOutput('f_shape', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Probability', column(4, column(6, align = 'center', br(), br(), numericInput('fprob_p', 'Percentile', value = 2, min = 0, step = 1 ), numericInput('fprob_numdf', 'Numerator Degrees of freedom', value = 4, min = 1, step = 1 ), numericInput('fprob_dendf', 'Denominator Degrees of freedom', value = 5, min = 1, step = 1 ), selectInput('fprob_tail', 'Tail', choices = c('lower', 'upper'), selected = 'lower' ) ) ), column(8, plotOutput('fprob_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Percentile', column(4, column(6, align = 'center', br(), br(), numericInput('fperc_p', 'Probability', value = 0.3, min = 0, step = 0.01, max = 1 ), numericInput('fperc_numdf', 'Numerator Degrees of freedom', value = 4, min = 1, step = 1 ), numericInput('fperc_dendf', 'Denominator Degrees of freedom', value = 5, min = 1, step = 1 ), selectInput('fperc_tail', 'Tail', choices = c('lower', 'upper'), selected = 'lower' ) ) ), column(8, plotOutput('fperc_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_f.R
tabPanel('Home', value = 'tab_home_analyze', icon = icon('home'), navlistPanel(id = 'navlist_home', well = FALSE, widths = c(2, 10), source('ui/ui_dist_home.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_homes.R
tabPanel('Normal Distribution', value = 'tab_norm', fluidPage( fluidRow( column(8, align = 'left', h4('Normal Distribution'), p('Visualize how changes in mean and standard deviation affect the shape of the normal distribution. Compute/visualize quantiles out of given probability and probability from a given quantile.') ), column(4, align = 'right', actionButton(inputId='ndistlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://descriptr.rsquaredacademy.com/reference/dist_norm_plot.html', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Distribution Shape', column(4, column(6, align = 'center', br(), br(), numericInput('norm_m', 'Mean', value = 0, step = 0.1), numericInput('norm_sd', 'Standard Deviation', value = 1, min = 0, step = 0.1) ) ), column(8, plotOutput('norm_shape', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Probability', column(4, column(6, align = 'center', br(), br(), numericInput('nprob_p', 'Percentile', value = 2, min = 0, step = 1), numericInput('nprob_m', 'Mean', value = 0, step = 0.1), numericInput('nprob_sd', 'Standard Deviation', value = 1, min = 0, step = 0.1), selectInput('nprob_tail', 'Tail', choices = c('lower', 'upper'), selected = 'lower' ) ) ), column(8, plotOutput('nprob_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Percentile', column(4, column(6, align = 'center', br(), br(), numericInput('nperc_p', 'Probability', value = 0.3, min = 0, step = 0.01, max = 1 ), numericInput('nperc_m', 'Mean', value = 0, step = 0.1), numericInput('nperc_sd', 'Standard Deviation', value = 1, min = 0, step = 0.1), selectInput('nperc_tail', 'Tail', choices = c('lower', 'upper'), selected = 'lower' ) ) ), column(8, plotOutput('nperc_plot', height = '400px') %>% shinycssloaders::withSpinner() ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_normal.R
tabPanel('t Distribution', value = 'tab_t', fluidPage( fluidRow( column(6, align = 'left', h4('t Distribution'), p('Visualize how degrees of freedom affect the shape of t distribution. Compute/visualize quantiles out of given probability and probability from a given quantile.') ), column(6, align = 'right', actionButton(inputId='tdistlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://descriptr.rsquaredacademy.com/reference/dist_t_plot.html', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Distribution Shape', column(2, column(12, align = 'center', br(), br(), numericInput('t_df', 'Degrees of Freedom', value = 1, min = 0, step = 1) ) ), column(10, plotOutput('t_shape', height = '500px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Probability', column(2, column(12, align = 'center', br(), br(), numericInput('tprob_p', 'Percentile', value = 2, min = 0, step = 1), numericInput('tprob_df', 'Degrees of Freedom', value = 1, min = 0, step = 1), selectInput('tprob_tail', 'Tail', choices = c('lower', 'upper', 'interval', 'both'), selected = 'lower' ) ) ), column(10, plotOutput('tprob_plot', height = '500px') %>% shinycssloaders::withSpinner() ) ), tabPanel('Find Percentile', column(2, column(12, align = 'center', br(), br(), numericInput('tperc_p', 'Probability', value = 0.3, min = 0, step = 0.01, max = 1 ), numericInput('tperc_df', 'Degrees of Freedom', value = 1, min = 0, step = 1), selectInput('tperc_tail', 'Tail', choices = c('lower', 'upper', 'both'), selected = 'lower' ) ) ), column(10, plotOutput('tperc_plot', height = '500px') %>% shinycssloaders::withSpinner() ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui/ui_t.R
library(shiny) library(shinyBS) library(shinythemes) library(magrittr) shinyUI( navbarPage(HTML("vistributions"), id = 'mainpage', source('ui/ui_analyze.R', local = TRUE)[[1]], source('ui/ui_exit_button.R', local = TRUE)[[1]] ))
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-vistributions/ui.R
library(plotly) barly1 <- function(x_data = NULL, data = NULL, b_name = NULL, b_orientation = 'v', b_text = NULL, bar_col = 'blue', bar_l_col = 'black', bar_l_wid = 1, bar_gap = 1, bar_opacity = 1, plot_width = NULL, plot_height = NULL, axis_range = FALSE, y_min, y_max, auto_size = TRUE, title = NA, x_title = NA, y_title = NA, x_showgrid = TRUE, y_showgrid = TRUE, ax_title_font_family = 'Arial, sans-serif', ax_title_font_size = 18, ax_title_font_color = 'black', ax_tick_font_family = 'Arial, sans-serif', ax_tick_font_size = 18, ax_tick_font_color = 'black', x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL, x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1, x_tickcolor = '#444', x_showticklab = TRUE, x_tickangle = 'auto', x_zeroline = FALSE, x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)", x_gridwidth = 1, x_zerolinecol = "#444", x_zerolinewidth = 1, x_linecol = '#444', x_linewidth = 1, y_autotick = TRUE, y_ticks = 'outside', y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5, y_tickwidth = 1, y_tickcolor = '#444', y_showticklab = TRUE, y_tickangle = 'auto', y_zeroline = FALSE, y_showline = TRUE, y_gridcolor = "rgb(204, 204, 204)", y_gridwidth = 1, y_zerolinecol = "#444", y_zerolinewidth = 1, y_linecol = '#444', y_linewidth = 1, left_margin = 80, right_margin = 80, top_margin = 100, bottom_margin = 80, padding = 0, add_annotate = FALSE, x_annotate, y_annotate, text_annotate, annotate_xanchor = 'auto', show_arrow, arrow_head = 1, ax_annotate = 20, ay_annotate = -40, annotate_family = 'sans-serif', annotate_size = 14, annotate_col = 'red') { x <- data %>% select(x_data) %>% unlist() %>% levels() y <- data %>% select(x_data) %>% table() %>% as.vector() data <- data.frame(x, y) # style axes title and tickfont f1 <- list( family = ax_title_font_family, size = ax_title_font_size, color = ax_title_font_color ) f2 <- list( family = ax_tick_font_family, size = ax_tick_font_size, color = ax_tick_font_color ) xaxis <- list( title = x_title, showgrid = x_showgrid, autotick = x_autotick, ticks = x_ticks, tick0 = x_tick0, dtick = x_dtick, ticklen = x_ticklen, tickwidth = x_tickwidth, tickcolor = x_tickcolor, titlefont = f1, showticklabels = x_showticklab, tickangle = x_tickangle, tickfont = f2, zeroline = x_zeroline, showline = x_showline, gridcolor = x_gridcolor, gridwidth = x_gridwidth, zerolinecolor = x_zerolinecol, zerolinewidth = x_zerolinewidth, linecolor = x_linecol, linewidth = x_linewidth ) yaxis <- list( title = y_title, showgrid = y_showgrid, autotick = y_autotick, ticks = y_ticks, tick0 = y_tick0, dtick = y_dtick, ticklen = y_ticklen, tickwidth = y_tickwidth, tickcolor = y_tickcolor, titlefont = f1, showticklabels = y_showticklab, tickangle = y_tickangle, tickfont = f2, zeroline = y_zeroline, showline = y_showline, mirror = 'ticks', gridcolor = y_gridcolor, gridwidth = y_gridwidth, zerolinecolor = y_zerolinecol, zerolinewidth = y_zerolinewidth, linecolor = y_linecol, linewidth = y_linewidth ) # margins m <- list( l = left_margin, r = right_margin, t = top_margin, b = bottom_margin, pad = padding ) # annotations if(add_annotate) { a <- list( x = x_annotate, y = y_annotate, text = text_annotate, xref = 'x', yref = 'y', xanchor = annotate_xanchor, showarrow = show_arrow, arrowhead = arrow_head, ax = ax_annotate, ay = ay_annotate, font = list( family = annotate_family, size = annotate_size, color = annotate_col ) ) } p <- plot_ly(data, x = ~x, y = ~y, type = "bar", name = b_name, orientation = b_orientation, text = b_text, marker = list(color = bar_col, opacity = bar_opacity, line = list( color = bar_l_col, width = bar_l_wid, gap = bar_gap )), width = plot_width, height = plot_height) %>% layout( title = title, xaxis = xaxis, yaxis = yaxis, autosize = auto_size, margin = m ) if(add_annotate) { p <- p %>% layout(annotations = a) } if(axis_range) { p <- p %>% layout( yaxis = list( range = list(y_min, y_max) ) ) } p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/barly1.R
barly2 <- function(x, y, data, auto_size = TRUE, plot_width = NULL, plot_height = NULL, axis_range = FALSE, y_min, y_max, title = NA, show_legend = TRUE, x_title = NA, y_title = NA, x_showgrid = TRUE, y_showgrid = TRUE, ax_title_font_family = 'Arial, sans-serif', ax_title_font_size = 18, ax_title_font_color = 'black', ax_tick_font_family = 'Arial, sans-serif', ax_tick_font_size = 18, ax_tick_font_color = 'black', x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL, x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1, x_tickcolor = '#444', x_showticklab = TRUE, x_tickangle = 'auto', x_zeroline = FALSE, x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)", x_gridwidth = 1, x_zerolinecol = "#444", x_zerolinewidth = 1, x_linecol = '#444', x_linewidth = 1, y_autotick = TRUE, y_ticks = 'outside', y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5, y_tickwidth = 1, y_tickcolor = '#444', y_showticklab = TRUE, y_tickangle = 'auto', y_zeroline = FALSE, y_showline = TRUE, y_gridcolor = "rgb(204, 204, 204)", y_gridwidth = 1, y_zerolinecol = "#444", y_zerolinewidth = 1, y_linecol = '#444', y_linewidth = 1, left_margin = 80, right_margin = 80, top_margin = 100, bottom_margin = 80, padding = 0, leg_x = 100, leg_y = 0.5, leg_orientation = 'v', leg_font_family = 'sans-serif', leg_font_size = 12, leg_font_color = '#000', leg_bg_color = '#E2E2E2', leg_border_col = "#FFFFFF", leg_border_width = 2, add_annotate = FALSE, x_annotate, y_annotate, text_annotate, annotate_xanchor = 'auto', show_arrow, arrow_head = 1, ax_annotate = 20, ay_annotate = -40, annotate_family = 'sans-serif', annotate_size = 14, annotate_col = 'red') { d <- data %>% select_(x, y) t <- d %>% table() %>% as.data.frame.matrix() col1 <- t %>% rownames() %>% as.numeric() dat <- cbind(col1, t) colnames(dat)[1] <- x cname <- colnames(dat) # style axes title and tickfont f1 <- list( family = ax_title_font_family, size = ax_title_font_size, color = ax_title_font_color ) f2 <- list( family = ax_tick_font_family, size = ax_tick_font_size, color = ax_tick_font_color ) xaxis <- list( title = x_title, showgrid = x_showgrid, autotick = x_autotick, ticks = x_ticks, tick0 = x_tick0, dtick = x_dtick, ticklen = x_ticklen, tickwidth = x_tickwidth, tickcolor = x_tickcolor, titlefont = f1, showticklabels = x_showticklab, tickangle = x_tickangle, tickfont = f2, zeroline = x_zeroline, showline = x_showline, gridcolor = x_gridcolor, gridwidth = x_gridwidth, zerolinecolor = x_zerolinecol, zerolinewidth = x_zerolinewidth, linecolor = x_linecol, linewidth = x_linewidth ) yaxis <- list( title = y_title, showgrid = y_showgrid, autotick = y_autotick, ticks = y_ticks, tick0 = y_tick0, dtick = y_dtick, ticklen = y_ticklen, tickwidth = y_tickwidth, tickcolor = y_tickcolor, titlefont = f1, showticklabels = y_showticklab, tickangle = y_tickangle, tickfont = f2, zeroline = y_zeroline, showline = y_showline, mirror = 'ticks', gridcolor = y_gridcolor, gridwidth = y_gridwidth, zerolinecolor = y_zerolinecol, zerolinewidth = y_zerolinewidth, linecolor = y_linecol, linewidth = y_linewidth ) # margins m <- list( l = left_margin, r = right_margin, t = top_margin, b = bottom_margin, pad = padding ) # legend l <- list( x = leg_x, y = leg_y, orientation = leg_orientation, font = list( family = leg_font_family, size = leg_font_size, color = leg_font_color), bgcolor = leg_bg_color, bordercolor = leg_border_col, borderwidth = leg_border_width) # annotations if(add_annotate) { a <- list( x = x_annotate, y = y_annotate, text = text_annotate, xref = 'x', yref = 'y', xanchor = annotate_xanchor, showarrow = show_arrow, arrowhead = arrow_head, ax = ax_annotate, ay = ay_annotate, font = list( family = annotate_family, size = annotate_size, color = annotate_col ) ) } p <- plot_ly(dat, x = dat[, 1], y = dat[, 2], type = 'bar', name = cname[2]) j <- dim(dat)[2] for (i in 3:j) { p <- p %>% add_trace(y = dat[, i], name = cname[i]) } p <- p %>% layout( title = title, xaxis = xaxis, yaxis = yaxis, autosize = auto_size, margin = m, legend = l, showlegend = show_legend ) if(add_annotate) { p <- p %>% layout(annotations = a) } if(axis_range) { p <- p %>% layout( yaxis = list( range = list(y_min, y_max) ) ) } p } # test barly2('cyl', 'gear', mtcars)
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/barly2.R
# bivariate bar_plotb <- function(counts, horizontal = FALSE, color = 'blue', border = "black", besides = FALSE, title = NA, xlab = NA, labels = NA, space = NA, width = 1, axes = TRUE, axislty = 0, offset = 0, ylab = NA, colmain = "black", colaxis = "black", collab = "black", fontmain = 1, fontaxis = 1, fontlab = 1, cexmain = 1, cexaxis = 1, cexlab = 1, leg = FALSE, leg_x, leg_y, legend, leg_point, leg_colour, leg_boxtype, leg_boxcol, leg_boxlty, leg_boxlwd, leg_boxborcol, leg_boxxjust, leg_boxyjust, leg_textcol, leg_textfont, leg_textcolumns, leg_texthoriz, leg_title, leg_titlecol, leg_textadj, text_p = NA, text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA, text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5, m_col = "black", m_font = 1, m_cex = 1) { if (leg == TRUE) { legtext <- NULL } else { legtext <- rownames(counts) } # bar plot barplot(height = counts, horiz = horizontal, col = color, border = border, beside = besides, legend = legtext, main = title, xlab = xlab, width = width, density = NULL, angle = 45, axes = axes, axis.lty = axislty, offset = offset, ylab = ylab, col.main = colmain, col.axis = colaxis, col.lab = collab, font.main = fontmain, font.axis = fontaxis, font.lab = fontlab, cex.main = cexmain, cex.axis = cexaxis, cex.lab = cexlab) if (is.null(leg_colour)) { pcol <- 'blue' } else { pcol <- leg_colour } # legend if (leg == TRUE) { legend(leg_x, leg_y, legend = legend, pch = leg_point, col = pcol, bty = leg_boxtype, bg = leg_boxcol, box.lty = leg_boxlty, box.lwd = leg_boxlwd, box.col = leg_boxborcol, xjust = leg_boxxjust, yjust = leg_boxyjust, text.col = leg_textcol, text.font = leg_textfont, ncol = leg_textcolumns, horiz = leg_texthoriz, title = leg_title, title.col = leg_titlecol, title.adj = leg_textadj) } # add text inside the plot text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col, cex = text_size) # add text on the mar-gins of the plot mtext(m_text, side = m_side, line = m_line, adj = m_adj, col = m_col, font = m_font, cex = m_cex) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bbar-plot.R
# bivariate box_plotb <- function(x, y, color = 'blue', borders = 'black', title = NA, subs = NA, xlabel = NA, ylabel = NA, horiz = FALSE, notches = FALSE, ranges = 1.5, outlines = TRUE, varwidths = FALSE, labels, colmain = "black", colsub = "black", colaxis = "black", collab = "black", fontmain = 1, fontsub = 1, fontaxis = 1, fontlab = 1, cexmain = 1, cexsub = 1, cexaxis = 1, cexlab = 1, text_p = NA, text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA, text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5, m_col = "black", m_font = 1, m_cex = 1, ab_col = "black") { x <- as.factor(x) boxplot(y ~ x, col = color, border = borders, main = title, sub = subs, xlab = xlabel, ylab = ylabel, horizontal = horiz, notch = notches, range = ranges, outline = outlines, names = labels, varwidth = varwidths, col.main = colmain, col.sub = colsub, col.axis = colaxis, col.lab = collab, font.main = fontmain, font.sub = fontsub, font.axis = fontaxis, font.lab = fontlab, cex.main = cexmain, cex.sub = cexsub, cex.axis = cexaxis, cex.lab = cexlab) # # legend # if (leg == TRUE) { # legend(leg_x, leg_y, # legend = legend, pch = leg_point, col = leg_colour, # bty = leg_boxtype, bg = leg_boxcol, # box.lty = leg_boxlty, box.lwd = leg_boxlwd, # box.col = leg_boxborcol, xjust = leg_boxxjust, # yjust = leg_boxyjust, text.col = leg_textcol, # text.font = leg_textfont, ncol = leg_textcolumns, # horiz = leg_texthoriz, title = leg_title, # title.col = leg_titlecol, title.adj = leg_textadj) # } # add text inside the plot text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col, cex = text_size) # add text on the mar-gins of the plot mtext(m_text, side = m_side, line = m_line, adj = m_adj, col = m_col, font = m_font, cex = m_cex) } # leg = FALSE, leg_x, leg_y, legend, # leg_point = 15, leg_colour, leg_boxtype, leg_boxcol, leg_boxlty, leg_boxlwd, # leg_boxborcol, leg_boxxjust, leg_boxyjust, leg_textcol, leg_textfont, # leg_textcolumns, leg_texthoriz, leg_title, leg_titlecol, leg_textadj,
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bbox-plot.R
bibar <- function(data, x, y, horizontal = FALSE, stacked = FALSE) { da <- data %>% select_(x, y) %>% table() xcat <- da %>% rownames() %>% as.numeric() types <- da %>% ncol() %>% seq_len() if (horizontal) { h <- highchart() %>% hc_chart(type = 'bar') %>% hc_xAxis(categories = xcat) if (stacked) { h <- h %>% hc_plotOptions(bar = list(stacking = 'normal')) } } else { h <- highchart() %>% hc_chart(type = 'column') %>% hc_xAxis(categories = xcat) if (stacked) { h <- h %>% hc_plotOptions(column = list(stacking = 'normal')) } } for (i in types) { h <- h %>% hc_add_series(data = da[i, ] %>% as.vector()) } h }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bibar.R
bobar <- function(x_data = NULL, data = NULL, fig_title = NULL, x_lab = NULL, y_lab = NULL, x_grid = TRUE, y_grid = TRUE, bar_width = 0.9, bar_hover = TRUE, bar_col = NULL, bar_f_alpha = 1, bar_l_col = NULL, bar_l_alpha = 1) { xdata <- data %>% select_(x_data) %>% table() %>% as.vector() xlev <- data %>% select_(x_data) %>% unlist() %>% levels() ba <- figure(title = fig_title, xlab = x_lab, ylab = y_lab, xgrid = x_grid, ygrid = y_grid, legend_location = NULL) %>% ly_bar(x = xlev, y = xdata, hover = bar_hover, width = bar_width, fill_color = bar_col, fill_alpha = bar_f_alpha, line_color = bar_l_col, line_alpha = bar_l_alpha) ba }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bobar.R
bobar2 <- function(data = NULL, var_1 = NULL, var_2 = NULL, fig_title = NULL, x_lab = NULL, y_lab = NULL, x_grid = TRUE, y_grid = TRUE, legend_loc = 'top_right', bar_pos = 'dodge', bar_hover = TRUE, bar_width = 0.9, bar_f_alpha = 1) { ba <- figure(title = fig_title, xlab = x_lab, ylab = y_lab, xgrid = x_grid, ygrid = y_grid, legend_location = legend_loc) %>% ly_bar(data = mtcars, x = var_1, y = rep(1, length(var_1)), position = bar_pos, color = var_2, hover = bar_hover, width = bar_width, fill_alpha = bar_f_alpha) ba }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bobar2.R
bobox <- function(x_data = NULL, data = NULL, fig_title = NULL, x_lab = NULL, y_lab = NULL, x_grid = TRUE, y_grid = TRUE, legend_loc = NULL, box_w = 0.9, box_col = NULL, box_alp = 1, box_l_col = NULL, box_out_gly = 1, box_out_size = 10) { p <- figure(title = fig_title, xlab = x_lab, ylab = y_lab, xgrid = x_grid, ygrid = y_grid, legend_location = legend_loc) %>% ly_boxplot(x = x_data, data = data, width = box_w, fill_color = box_col, fill_alpha = box_alp, line_color = box_l_col, outlier_glyph = box_out_gly, outlier_size = box_out_size) p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bobox.R
bobox2 <- function(data = NULL, x_data = NULL, y_data = NULL, fig_title = NULL, x_lab = NULL, y_lab = NULL, x_grid = TRUE, y_grid = TRUE, legend_loc = 'top_right', box_w = 0.9, box_alp = 1, box_out_gly = 1, box_out_size = 10) { p <- figure(title = fig_title, xlab = x_lab, ylab = y_lab, xgrid = x_grid, ygrid = y_grid, legend_location = legend_loc) %>% ly_boxplot(data = data, x = x_data, y = y_data, width = box_w, fill_alpha = box_alp, outlier_glyph = box_out_gly, outlier_size = box_out_size) p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bobox2.R
bohist <- function(data = NULL, x_data = NULL, fig_title = NULL, x_lab = NULL, y_lab = NULL, h_breaks = 5, h_freq = TRUE, h_incl_low = TRUE, h_right = TRUE, h_fill_col = 'blue', add_density = FALSE, den_col = 'black', den_alpha = 1, den_width = 1, den_type = 1, den_leg = FALSE) { xdata <- data %>% select_(x_data) %>% unlist() h <- figure(title = fig_title, xlab = x_lab, ylab = y_lab, legend_location = NULL) %>% ly_hist(x = xdata, data = data, breaks = h_breaks, freq = h_freq, include.lowest = h_incl_low, right = h_right, fill_color = h_fill_col) if(add_density) { h <- ly_density(x = xdata, data = data, color = den_col, alpha = den_alpha, width = den_width, type = den_type, legend = den_leg) } h }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/bohist.R
boline <- function(data = data, x_data = NULL, y_data = NULL, fig_title = NULL, x_lab = NULL, y_lab = NULL, l_color = NULL, l_type = 1, l_width = 1, l_alpha = 1) { suppressWarnings( p <- figure(title = fig_title, xlab = x_lab, ylab = y_lab, legend_location = NULL) %>% ly_lines(x = x_data, y = y_data, data = data, color = l_color, type = l_type, width = l_width, alpha = l_alpha, legend = FALSE) ) p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/boline.R
bokatter <- function(data = NULL, x_data = NULL, y_data = NULL, fig_title = NULL, x_lab = NULL, y_lab = NULL, x_grid = TRUE, y_grid = TRUE, glyph = 21, point_size = 10, inner_col = 'blue', inner_alpha = 1, add_line = FALSE, line_a = NULL, line_b = NULL, line_color = 'black', line_alpha = NULL, line_width = 1, line_type = 1) { suppressWarnings( p <- figure(title = fig_title, xlab = x_lab, ylab = y_lab, xgrid = x_grid, ygrid = y_grid) %>% ly_points(x = x_data, y = y_data, data = data, glyph = glyph, size = point_size, fill_color = inner_col, fill_alpha = inner_alpha, hover = list(x_data, y_data)) ) suppressWarnings( if(add_line) { suppressWarnings( p <- p %>% ly_abline(a = line_a, b = line_b, color = line_color, width = line_width, alpha = line_alpha, type = line_type, legend = NULL) ) } ) p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/boscatter.R
boxly1 <- function(data = NULL, y = NULL, b_points = "outliers", o_col = 'rgb(8,81,156)', o_out_col = 'rgba(219, 64, 82, 0.6)', o_out_size = 2, auto_size = TRUE, plot_width = NULL, plot_height = NULL, axis_range = FALSE, x_min, x_max, y_min, y_max, name = NA, title = NA, show_legend = TRUE, x_title = NA, y_title = NA, x_showgrid = TRUE, y_showgrid = TRUE, ax_title_font_family = 'Arial, sans-serif', ax_title_font_size = 18, ax_title_font_color = 'black', ax_tick_font_family = 'Arial, sans-serif', ax_tick_font_size = 18, ax_tick_font_color = 'black', x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL, x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1, x_tickcolor = '#444', x_showticklab = TRUE, x_tickangle = 'auto', x_zeroline = FALSE, x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)", x_gridwidth = 1, x_zerolinecol = "#444", x_zerolinewidth = 1, x_linecol = '#444', x_linewidth = 1, y_autotick = TRUE, y_ticks = 'outside', y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5, y_tickwidth = 1, y_tickcolor = '#444', y_showticklab = TRUE, y_tickangle = 'auto', y_zeroline = FALSE, y_showline = TRUE, y_gridcolor = "rgb(204, 204, 204)", y_gridwidth = 1, y_zerolinecol = "#444", y_zerolinewidth = 1, y_linecol = '#444', y_linewidth = 1, left_margin = 80, right_margin = 80, top_margin = 100, bottom_margin = 80, padding = 0, leg_x = 100, leg_y = 0.5, leg_orientation = 'v', leg_font_family = 'sans-serif', leg_font_size = 12, leg_font_color = '#000', leg_bg_color = '#E2E2E2', leg_border_col = "#FFFFFF", leg_border_width = 2, add_annotate = FALSE, x_annotate, y_annotate, text_annotate, annotate_xanchor = 'auto', show_arrow, arrow_head = 1, ax_anntate = 20, ay_annotate = -40, annotate_family = 'sans-serif', annotate_size = 14, annotate_col = 'red') { # style axes title and tickfont f1 <- list( family = ax_title_font_family, size = ax_title_font_size, color = ax_title_font_color ) f2 <- list( family = ax_tick_font_family, size = ax_tick_font_size, color = ax_tick_font_color ) xaxis <- list( title = x_title, showgrid = x_showgrid, autotick = x_autotick, ticks = x_ticks, tick0 = x_tick0, dtick = x_dtick, ticklen = x_ticklen, tickwidth = x_tickwidth, tickcolor = x_tickcolor, titlefont = f1, showticklabels = x_showticklab, tickangle = x_tickangle, tickfont = f2, zeroline = x_zeroline, showline = x_showline, gridcolor = x_gridcolor, gridwidth = x_gridwidth, zerolinecolor = x_zerolinecol, zerolinewidth = x_zerolinewidth, linecolor = x_linecol, linewidth = x_linewidth ) yaxis <- list( title = y_title, showgrid = y_showgrid, autotick = y_autotick, ticks = y_ticks, tick0 = y_tick0, dtick = y_dtick, ticklen = y_ticklen, tickwidth = y_tickwidth, tickcolor = y_tickcolor, titlefont = f1, showticklabels = y_showticklab, tickangle = y_tickangle, tickfont = f2, zeroline = y_zeroline, showline = y_showline, mirror = 'ticks', gridcolor = y_gridcolor, gridwidth = y_gridwidth, zerolinecolor = y_zerolinecol, zerolinewidth = y_zerolinewidth, linecolor = y_linecol, linewidth = y_linewidth ) # margins m <- list( l = left_margin, r = right_margin, t = top_margin, b = bottom_margin, pad = padding ) # legend l <- list( x = leg_x, y = leg_y, orientation = leg_orientation, font = list( family = leg_font_family, size = leg_font_size, color = leg_font_color), bgcolor = leg_bg_color, bordercolor = leg_border_col, borderwidth = leg_border_width) # annotations if(add_annotate) { a <- list( x = x_annotate, y = y_annotate, text = text_annotate, xref = 'x', yref = 'y', xanchor = annotate_xanchor, showarrow = show_arrow, arrowhead = arrow_head, ax = ax_annotate, ay = ay_annotate, font = list( family = annotate_family, size = annotate_size, color = annotate_col ) ) } if(!is.null(data)) { y <- data %>% select_(y) %>% unlist() } p <- plot_ly(type = "box", width = plot_width, height = plot_height) %>% add_boxplot(y = y, name = name, boxpoints = b_points, marker = list(color = o_col, outliercolor = o_out_col, line = list(outliercolor = o_out_col, outlierwidth = o_out_size)), line = list(color = o_col) ) %>% layout( title = title, xaxis = xaxis, yaxis = yaxis, autosize = auto_size, margin = m, legend = l, showlegend = show_legend ) if(add_annotate) { p <- p %>% layout(annotations = a) } if(axis_range) { p <- p %>% layout( xaxis = list( range = list(x_min, x_max) ), yaxis = list( range = list(y_min, y_max) ) ) } p } # p <- boxly1(mtcars, 'mpg', outliers = "suspectedoutliers") # p # y3 <- c(0.75, 5.25, 5.5, 6, 6.2, 6.6, 6.80, 7.0, 7.2, 7.5, 7.5, 7.75, 8.15, 8.15, 8.65, 8.93, 9.2, 9.5, 10, 10.25, 11.5, 12, 16, 20.90, 22.3, 23.25) p <- boxly1(y = y3, b_points = "suspectedoutliers") p
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/boxly1.R
boxly2 <- function(data = NULL, y = NULL, b_points = "outliers", x = NULL, o_col = 'rgb(8,81,156)', o_out_col = 'rgba(219, 64, 82, 0.6)', o_out_size = 2, auto_size = TRUE, plot_width = NULL, plot_height = NULL, axis_range = FALSE, x_min, x_max, y_min, y_max, name = NA, title = NA, show_legend = TRUE, x_title = NA, y_title = NA, x_showgrid = TRUE, y_showgrid = TRUE, ax_title_font_family = 'Arial, sans-serif', ax_title_font_size = 18, ax_title_font_color = 'black', ax_tick_font_family = 'Arial, sans-serif', ax_tick_font_size = 18, ax_tick_font_color = 'black', x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL, x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1, x_tickcolor = '#444', x_showticklab = TRUE, x_tickangle = 'auto', x_zeroline = FALSE, x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)", x_gridwidth = 1, x_zerolinecol = "#444", x_zerolinewidth = 1, x_linecol = '#444', x_linewidth = 1, y_autotick = TRUE, y_ticks = 'outside', y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5, y_tickwidth = 1, y_tickcolor = '#444', y_showticklab = TRUE, y_tickangle = 'auto', y_zeroline = FALSE, y_showline = TRUE, y_gridcolor = "rgb(204, 204, 204)", y_gridwidth = 1, y_zerolinecol = "#444", y_zerolinewidth = 1, y_linecol = '#444', y_linewidth = 1, left_margin = 80, right_margin = 80, top_margin = 100, bottom_margin = 80, padding = 0, leg_x = 100, leg_y = 0.5, leg_orientation = 'v', leg_font_family = 'sans-serif', leg_font_size = 12, leg_font_color = '#000', leg_bg_color = '#E2E2E2', leg_border_col = "#FFFFFF", leg_border_width = 2, add_annotate = FALSE, x_annotate, y_annotate, text_annotate, annotate_xanchor = 'auto', show_arrow, arrow_head = 1, ax_anntate = 20, ay_annotate = -40, annotate_family = 'sans-serif', annotate_size = 14, annotate_col = 'red') { # style axes title and tickfont f1 <- list( family = ax_title_font_family, size = ax_title_font_size, color = ax_title_font_color ) f2 <- list( family = ax_tick_font_family, size = ax_tick_font_size, color = ax_tick_font_color ) xaxis <- list( title = x_title, showgrid = x_showgrid, autotick = x_autotick, ticks = x_ticks, tick0 = x_tick0, dtick = x_dtick, ticklen = x_ticklen, tickwidth = x_tickwidth, tickcolor = x_tickcolor, titlefont = f1, showticklabels = x_showticklab, tickangle = x_tickangle, tickfont = f2, zeroline = x_zeroline, showline = x_showline, gridcolor = x_gridcolor, gridwidth = x_gridwidth, zerolinecolor = x_zerolinecol, zerolinewidth = x_zerolinewidth, linecolor = x_linecol, linewidth = x_linewidth ) yaxis <- list( title = y_title, showgrid = y_showgrid, autotick = y_autotick, ticks = y_ticks, tick0 = y_tick0, dtick = y_dtick, ticklen = y_ticklen, tickwidth = y_tickwidth, tickcolor = y_tickcolor, titlefont = f1, showticklabels = y_showticklab, tickangle = y_tickangle, tickfont = f2, zeroline = y_zeroline, showline = y_showline, mirror = 'ticks', gridcolor = y_gridcolor, gridwidth = y_gridwidth, zerolinecolor = y_zerolinecol, zerolinewidth = y_zerolinewidth, linecolor = y_linecol, linewidth = y_linewidth ) # margins m <- list( l = left_margin, r = right_margin, t = top_margin, b = bottom_margin, pad = padding ) # legend l <- list( x = leg_x, y = leg_y, orientation = leg_orientation, font = list( family = leg_font_family, size = leg_font_size, color = leg_font_color), bgcolor = leg_bg_color, bordercolor = leg_border_col, borderwidth = leg_border_width) # annotations if(add_annotate) { a <- list( x = x_annotate, y = y_annotate, text = text_annotate, xref = 'x', yref = 'y', xanchor = annotate_xanchor, showarrow = show_arrow, arrowhead = arrow_head, ax = ax_annotate, ay = ay_annotate, font = list( family = annotate_family, size = annotate_size, color = annotate_col ) ) } y <- data %>% select_(y) %>% unlist() x <- data %>% select_(x) %>% unlist() %>% as.factor() p <- plot_ly(data = data, y = y, color = x, boxpoints = b_points, type = "box", width = plot_width, height = plot_height) %>% layout( title = title, xaxis = xaxis, yaxis = yaxis, autosize = auto_size, margin = m, legend = l, showlegend = show_legend ) if(add_annotate) { p <- p %>% layout(annotations = a) } if(axis_range) { p <- p %>% layout( xaxis = list( range = list(x_min, x_max) ), yaxis = list( range = list(y_min, y_max) ) ) } p } mtcars$cyl <- as.factor(mtcars$cyl) p <- boxly2(mtcars, y = 'mpg', x = 'cyl') p
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/boxly2.R
source('helper/utils.R') source('helper/output.R') freq_cont <- function(dframe, x, bins = 5) UseMethod("freq_cont") freq_cont.default <- function(dframe, x, bins = 5) { if(!is.data.frame(dframe)) { stop('dframe must be a data frame') } if(!is.numeric(bins)) { stop('bins must be integer value') } if (!is.character(x)) { stop('x must be character') } if (!x %in% colnames(dframe)) { stop('x must be a column in dframe') } if(is.numeric(bins)) { bins <- as.integer(bins) } var_name <- x data <- dframe %>% select_(x) %>% as.data.frame() %>% unlist() %>% na.omit() n_bins <- bins inta <- intervals(data, bins) result <- freq(data, bins, inta) data_len <- length(data) cum <- cumsum(result) per <- percent(result, data_len) cum_per <- percent(cum, data_len) out <- list(breaks = inta, frequency = result, cumulative = cum, percent = per, cum_percent = cum_per, bins = n_bins, data = data, varname = var_name) class(out) <- "freq_cont" return(out) } print.freq_cont <- function(x, ...) { print_fcont(x) } hist.freq_cont <- function(x, col = 'blue', ...) { ymax <- max(x$frequency) + 2 h <- hist(x$data, breaks = x$breaks, main = paste('Histogram of', x$varname), xlab = x$varname, ylab = 'Frequency', ylim = c(0, ymax), col = col) text(h$mids, h$counts + 1, labels = h$counts, adj = 0.5, pos = 1) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/freq-cont.R
ggbibar <- function(data, x, y, stacked = TRUE, horizontal = FALSE, yaxlimit = FALSE, y1 = NA, y2 = NA, theme = "Default", title = NULL, xlab = NULL, ylab = NULL, sub = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = FALSE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { if (stacked) { posit <- 'stack' } else { posit <- 'dodge' } p <- ggplot(data, aes_string(x)) + geom_bar(aes_string(fill = y), position = posit) if (horizontal) { p <- p + coord_flip() } if (yaxlimit) { p <- p + ylim(y1, y2) p } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p } ggbibar(mtcars, 'cyl', 'gear', horizontal = TRUE, stacked = FALSE)
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggbibar.R
ggbox1 <- function(data, y, notch = FALSE, fill = 'blue', col = 'black', o_col = 'red', o_fill = 'yellow', o_shape = 22, theme = "Default", o_alpha = 0.8, o_size = 2, add_jitter = FALSE, j_width = 0.1, j_height = 0.1, j_fill = 'blue', j_col = 'black', j_shape = 22, j_size = 2, j_alpha = 0.8, horizontal = FALSE, yaxlimit = FALSE, y1 = NA, y2 = NA, title = NULL, xlab = NULL, ylab = NULL, sub = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = TRUE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { p <- ggplot(data, aes_string(x = factor(1), y = y)) + geom_boxplot(notch = notch, fill = fill, color = col, outlier.color = o_col, outlier.fill = o_fill, outlier.shape = o_shape, outlier.alpha = o_alpha, outlier.size = o_size) if (add_jitter) { p <- p + geom_jitter(width = j_width, height = j_height, alpha = j_alpha, fill = j_fill, col = j_col, shape = j_shape, size = j_size) } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), plot.subtitle = element_text(color = sub_col, family = sub_fam, face = sub_face, size = sub_size, hjust = sub_hjust, vjust = sub_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if (yaxlimit) { p <- p + ylim(y1, y2) p } if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if (horizontal) { p <- p + coord_flip() } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggbox1.R
ggbox2 <- function(data, x, y, notch = FALSE, fill = 'blue', col = 'black', o_col = 'red', o_fill = 'yellow', o_shape = 22, theme = "Default", o_alpha = 0.8, o_size = 2, add_jitter = FALSE, j_width = 0.1, j_height = 0.1, j_fill = 'blue', j_col = 'black', j_shape = 22, j_size = 2, j_alpha = 0.8, horizontal = FALSE, yaxlimit = FALSE, y1 = NA, y2 = NA, title = NULL, xlab = NULL, ylab = NULL, sub = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = FALSE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { p <- ggplot(data, aes_string(x = x, y = y)) + geom_boxplot(notch = notch, fill = fill, color = col, outlier.color = o_col, outlier.fill = o_fill, outlier.shape = o_shape, outlier.alpha = o_alpha, outlier.size = o_size) if (add_jitter) { p <- p + geom_jitter(width = j_width, height = j_height, alpha = j_alpha, fill = j_fill, col = j_col, shape = j_shape, size = j_size) } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), plot.subtitle = element_text(color = sub_col, family = sub_fam, face = sub_face, size = sub_size, hjust = sub_hjust, vjust = sub_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if (yaxlimit) { p <- p + ylim(y1, y2) p } if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if (horizontal) { p <- p + coord_flip() } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggbox2.R
gghist <- function(data, x, bins = 5, fill = 'blue', col = 'black', yaxlimit = FALSE, y1 = NA, y2 = NA, theme = "Default", title = NULL, xlab = NULL, ylab = NULL, sub = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = FALSE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { p <- ggplot(data, aes_string(x)) + geom_histogram(bins = bins, fill = fill, color = col) if (yaxlimit) { p <- p + ylim(y1, y2) p } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), plot.subtitle = element_text(color = sub_col, family = sub_fam, face = sub_face, size = sub_size, hjust = sub_hjust, vjust = sub_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p } gghist(mtcars, 'mpg')
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/gghist.R
# gdp <- readr::read_csv('J:/R/ggplot_xplorerr/gdp.csv') # p <- ggplot(gdp) + # geom_line(aes(x = year, y = india), col = 'blue') + # geom_line(aes(x = year, y = china), col = 'red') # p ggline <- function(data, x, columns, cols = 'black', theme = "Default", alphas = 1, ltypes = 1, sizes = 1, yaxlimit = FALSE, y1 = NA, y2 = NA, title = NULL, xlab = NULL, ylab = NULL, sub = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = FALSE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { x <- data %>% select(x) %>% pull(1) column <- data %>% select(columns) j <- column %>% ncol() n <- j %>% seq_len() nam <- column %>% names() if (length(cols) == 1) { cols <- rep(cols, j) } if (length(alphas) == 1) { alphas <- rep(alphas, j) } if (length(ltypes) == 1) { ltypes <- rep(ltypes, j) } if (length(sizes) == 1) { sizes <- rep(sizes, j) } p <- ggplot(data) for (i in n) { p <- p + geom_line(aes_string(x = x, y = column[[i]]), color = cols[[i]], alpha = alphas[[i]], linetype = ltypes[[i]], size = sizes[[i]]) } if (yaxlimit) { p <- p + ylim(y1, y2) p } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), plot.subtitle = element_text(color = sub_col, family = sub_fam, face = sub_face, size = sub_size, hjust = sub_hjust, vjust = sub_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p } # ggline(gdp, 'year', c('india', 'china'))
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggline.R
ggline2 <- function(data, x, columns, groups, cols = NULL, ltypes = NULL, sizes = NULL, theme = "Default", yaxlimit = FALSE, y1 = NA, y2 = NA, title = NULL, xlab = NULL, ylab = NULL, sub = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = FALSE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { # x <- data %>% # select(x) %>% # pull(1) # # column <- data %>% # select(columns) # # groupvar <- data %>% # select(groups) p <- ggplot(data) p <- p + geom_line(aes_string(x = x, y = columns, group = groups, color = cols, linetype = ltypes, size = sizes)) if (yaxlimit) { p <- p + ylim(y1, y2) p } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), plot.subtitle = element_text(color = sub_col, family = sub_fam, face = sub_face, size = sub_size, hjust = sub_hjust, vjust = sub_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggline2.R
library(ggplot2) library(dplyr) library(scales) ggpie <- function(data, x, title = NULL, xlab = NULL, ylab = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { da <- data %>% select(x) df <- tibble::as_data_frame(table(da)) colnames(df) <- c('group', 'value') p <- ggplot(df, aes(x = '', y = value, fill = group)) + geom_bar(width = 1, stat = 'identity') + xlab('') + ylab('') + coord_polar(theta = 'y', start = 0) + theme(axis.text.x = element_blank(), axis.text.y = element_blank()) + theme_void() + scale_fill_discrete(guide = guide_legend(title = x)) + geom_text(aes(label = scales::percent(value/sum(value))), position = position_stack(vjust = 0.5)) p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } p }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggpie.R
library(ggplot2) # add text annotations gscatter <- function(data, x, y, aes_var = FALSE, reg_line = FALSE, reg_method = 'lm', reg_se = TRUE, theme = "Default", title = NULL, xlab = NULL, ylab = NULL, sub = NULL, color = 'black', shape = 1, size = 1, fill = 'black', xaxlimit = FALSE, yaxlimit = FALSE, x1 = NA, x2 = NA, y1 = NA, y2 = NA, title_col = 'black', title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, title_vjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = FALSE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { if(aes_var) { if(is.numeric(shape)) { p <- ggplot(data = data, mapping = aes_string(x = x, y = y, colour = color, shape = color, size = size)) + geom_point() } else { p <- ggplot(data = data, mapping = aes_string(x = x, y = y, colour = color, shape = shape, size = size)) + geom_point() } if(is.numeric(size)) { p <- p + labs(size = 'Size') } } else { p <- ggplot(data = data, mapping = aes_string(x = x, y = y)) + geom_point(colour = color, shape = shape, size = size, fill = fill) } if(reg_line) { p <- p + geom_smooth(method = reg_method, se = reg_se) p } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), plot.subtitle = element_text(color = sub_col, family = sub_fam, face = sub_face, size = sub_size, hjust = sub_hjust, vjust = sub_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if(xaxlimit) { p <- p + xlim(x1, x2) p } if (yaxlimit) { p <- p + ylim(y1, y2) p } if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p } # test # mtcars$cyl <- as.factor(mtcars$cyl) # mtcars$gear <- as.factor(mtcars$gear) # mtcars$am <- as.factor(mtcars$am) # gscatter(mtcars, 'disp', 'mpg', aes_var = TRUE, # color = 'cyl') # k <- gscatter(mtcars, 'disp', 'mpg', aes_var = FALSE, # color = 'red', shape = 22, size = 3, fill = 'blue', # reg_line = TRUE, reg_method = 'loess', reg_se = FALSE)
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggscatter.R
library(ggplot2) # mtcars$cyl <- as.factor(mtcars$cyl) # mtcars$gear <- as.factor(mtcars$gear) ggbar1 <- function(data, column, bar_col = 'blue', bor_col = 'black', theme = "Default", yaxlimit = FALSE, y1 = NA, y2 = NA, horizontal = FALSE, title = NULL, xlab = NULL, ylab = NULL, sub = NULL, title_col = 'black', title_vjust = 0.5, title_fam = 'serif', title_face = 'plain', title_size = 10, title_hjust = 0.5, sub_col = 'black', sub_fam = 'serif', sub_face = 'plain', sub_size = 10, sub_hjust = 0.5, sub_vjust = 0.5, xax_col = 'black', xax_fam = 'serif', xax_face = 'plain', xax_size = 10, xax_hjust = 0.5, xax_vjust = 0.5, yax_col = 'black', yax_fam = 'serif', yax_face = 'plain', yax_size = 10, yax_hjust = 0.5, yax_vjust = 0.5, remove_xax = FALSE, remove_yax = FALSE, add_text = FALSE, xloc = NA, yloc = NA, label = NA, tex_color = NA, tex_size = NA) { p <- ggplot(data, aes_string(column)) + geom_bar(fill = bar_col, col = bor_col) if (yaxlimit) { p <- p + ylim(y1, y2) p } p <- p + ggtitle(title) + xlab(xlab) + ylab(ylab) + theme( plot.title = element_text(color = title_col, family = title_fam, face = title_face, size = title_size, hjust = title_hjust, vjust = title_vjust), plot.subtitle = element_text(color = sub_col, family = sub_fam, face = sub_face, size = sub_size, hjust = sub_hjust, vjust = sub_vjust), axis.title.x = element_text(color = xax_col, family = xax_fam, face = xax_face, size = xax_size, hjust = xax_hjust, vjust = xax_vjust), axis.title.y = element_text(color = yax_col, family = yax_fam, face = yax_face, size = yax_size, hjust = yax_hjust, vjust = yax_vjust) ) if (horizontal) { p <- p + coord_flip() } if(remove_xax) { p <- p + theme( axis.title.x = element_blank() ) p } if(remove_yax) { p <- p + theme( axis.title.y = element_blank() ) p } if(add_text) { p <- p + annotate("text", x = xloc, y = yloc, label = label, color = tex_color, size = tex_size) p } if (theme == "Classic Dark") { p <- p + theme_bw() } else if (theme == "Light") { p <- p + theme_light() } else if (theme == "Minimal") { p <- p + theme_minimal() } else if (theme == "Dark") { p <- p + theme_dark() } else if (theme == "Classic") { p <- p + theme_classic() } else if (theme == "Empty") { p <- p + theme_void() } p } ggbar1(mtcars, 'cyl', yaxlimit = TRUE, y1 = 0, y2 = 20, horizontal = TRUE)
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ggunibar.R
library(highcharter) highbox <- function(data, y, x, col = 'blue', xax_title = '', xax_title_align = 'center', xax_title_col = 'black', title = '', xax_title_ftype = 'italic', xax_title_fsize = '18px', yax_title = '', yax_title_col = 'black', yax_title_ftype = 'italic', yax_title_fsize = '18px', title_align = 'center', title_col = 'black', title_ftype = 'italic', title_size = '12px', sub = '', sub_align = 'center', sub_col = 'black', sub_ftype = 'italic', sub_size = '12px') { da <- data %>% select_(y, x) colnames(da) <- c('y', 'x') h <- hcboxplot(x = da$y, var = da$x, color = col) h <- h %>% hc_xAxis(categories = levels(as.factor(da$x)), title = list(text = xax_title, align = xax_title_align, style = list(color = xax_title_col, fontWeight = xax_title_ftype, fontSize = xax_title_fsize))) %>% hc_yAxis( title = list(text = yax_title, style = list(color = yax_title_col, fontWeight = yax_title_ftype, fontSize = yax_title_fsize)), opposite = FALSE) %>% hc_title(text = title, align = title_align, style = list(color = title_col, fontWeight = title_ftype, fontSize = title_size)) %>% hc_subtitle(text = sub, align = sub_align, style = list(color = sub_col, fontWeight = sub_ftype, fontSize = sub_size)) h } mtcars$gear <- as.factor(mtcars$gear) highbox(mtcars, 'disp', 'gear')
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/hibox2.R
highist <- function(data, column, xlab = ' ', color = 'blue') { da <- data %>% select_(column) %>% pull(1) h <- hchist(da, name = xlab) h %>% hc_colors(colors = color) %>% hc_yAxis(title = list(text = 'Frequency')) } highist(mtcars, 'mpg', xlab = 'Miles Per Gallon', color = 'red')
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/highhist.R
library(highcharter) # title # subtitile # axis # legend # plotoptions # gdp <- readr::read_csv('gdp.csv') highline <- function(data, x, columns, add_labels = FALSE) { x <- data %>% select_(x) %>% pull(1) column <- data %>% select(columns) n <- column %>% ncol() %>% seq_len() nam <- column %>% names() h <- highchart() %>% hc_xAxis(categories = x) for (i in n) { h <- h %>% hc_add_series(name = nam[i], data = column[[i]]) } if (add_labels) { h %>% hc_plotOptions(line = list(dataLabels = list(enabled = TRUE))) } h } # highline(gdp, 'year', c('india', 'china'), add_labels = TRUE)
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/highline.R
highpie <- function(data, column) { da <- data %>% select_(column) %>% pull(1) %>% as.factor() freq <- da %>% table() %>% as.vector() labels <- da %>% levels() highchart() %>% hc_chart(type = 'pie') %>% hc_add_series_labels_values(labels, freq, name = "Pie", colorByPoint = TRUE, type = "pie") } # highpie(mtcars, 'cyl')
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/highpie.R
library(plotly) histly <- function(data = NULL, y = NULL, hist_orient = 'v', hist_opacity = 1, hist_type = 'count', auto_binx = TRUE, xbins_start = NULL, xbins_end = NULL, xbins_size = NULL, hist_col = 'blue', hist_l_col = 'black', hist_l_w = 1, hist_bargap = 0, auto_size = TRUE, plot_width = NULL, plot_height = NULL, axis_range = FALSE, x_min, x_max, y_min, y_max, title = NA, x_title = NA, y_title = NA, x_showgrid = TRUE, y_showgrid = TRUE, ax_title_font_family = 'Arial, sans-serif', ax_title_font_size = 18, ax_title_font_color = 'black', ax_tick_font_family = 'Arial, sans-serif', ax_tick_font_size = 18, ax_tick_font_color = 'black', x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL, x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1, x_tickcolor = '#444', x_showticklab = TRUE, x_tickangle = 'auto', x_zeroline = FALSE, x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)", x_gridwidth = 1, x_zerolinecol = "#444", x_zerolinewidth = 1, x_linecol = '#444', x_linewidth = 1, y_autotick = TRUE, y_ticks = 'outside', y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5, y_tickwidth = 1, y_tickcolor = '#444', y_showticklab = TRUE, y_tickangle = 'auto', y_zeroline = FALSE, y_showline = TRUE, y_gridcolor = "rgb(204, 204, 204)", y_gridwidth = 1, y_zerolinecol = "#444", y_zerolinewidth = 1, y_linecol = '#444', y_linewidth = 1, left_margin = 80, right_margin = 80, top_margin = 100, bottom_margin = 80, padding = 0, add_annotate = FALSE, x_annotate, y_annotate, text_annotate, annotate_xanchor = 'auto', show_arrow, arrow_head = 1, ax_anntate = 20, ay_annotate = -40, annotate_family = 'sans-serif', annotate_size = 14, annotate_col = 'red') { y1 <- data %>% select_(y) %>% unlist() f1 <- list( family = ax_title_font_family, size = ax_title_font_size, color = ax_title_font_color ) f2 <- list( family = ax_tick_font_family, size = ax_tick_font_size, color = ax_tick_font_color ) xaxis <- list( title = x_title, showgrid = x_showgrid, autotick = x_autotick, ticks = x_ticks, tick0 = x_tick0, dtick = x_dtick, ticklen = x_ticklen, tickwidth = x_tickwidth, tickcolor = x_tickcolor, titlefont = f1, showticklabels = x_showticklab, tickangle = x_tickangle, tickfont = f2, zeroline = x_zeroline, showline = x_showline, gridcolor = x_gridcolor, gridwidth = x_gridwidth, zerolinecolor = x_zerolinecol, zerolinewidth = x_zerolinewidth, linecolor = x_linecol, linewidth = x_linewidth ) yaxis <- list( title = y_title, showgrid = y_showgrid, autotick = y_autotick, ticks = y_ticks, tick0 = y_tick0, dtick = y_dtick, ticklen = y_ticklen, tickwidth = y_tickwidth, tickcolor = y_tickcolor, titlefont = f1, showticklabels = y_showticklab, tickangle = y_tickangle, tickfont = f2, zeroline = y_zeroline, showline = y_showline, mirror = 'ticks', gridcolor = y_gridcolor, gridwidth = y_gridwidth, zerolinecolor = y_zerolinecol, zerolinewidth = y_zerolinewidth, linecolor = y_linecol, linewidth = y_linewidth ) # margins m <- list( l = left_margin, r = right_margin, t = top_margin, b = bottom_margin, pad = padding ) if(add_annotate) { a <- list( x = x_annotate, y = y_annotate, text = text_annotate, xref = 'x', yref = 'y', xanchor = annotate_xanchor, showarrow = show_arrow, arrowhead = arrow_head, ax = ax_annotate, ay = ay_annotate, font = list( family = annotate_family, size = annotate_size, color = annotate_col ) ) } if(hist_orient == 'v') { p <- plot_ly(data, x = y1, type = "histogram", opacity = hist_opacity, histnorm = hist_type, autobinx = auto_binx, xbins = list( start = xbins_start, end = xbins_end, size = xbins_size ), marker = list( color = hist_col, line = list( color = hist_l_col, width = hist_l_w ) ) ) } else { p <- plot_ly(data, y = y1, type = "histogram", opacity = hist_opacity, histnorm = hist_type, autobinx = auto_binx, xbins = list( start = xbins_start, end = xbins_end, size = xbins_size ), marker = list( color = hist_col, line = list( color = hist_l_col, width = hist_l_w ) ) ) } p <- p %>% layout( title = title, xaxis = xaxis, yaxis = yaxis, autosize = auto_size, margin = m, bargap = hist_bargap ) if(add_annotate) { p <- p %>% layout(annotations = a) } if(axis_range) { p <- p %>% layout( xaxis = list( range = list(x_min, x_max) ), yaxis = list( range = list(y_min, y_max) ) ) } p } h <- histly(mtcars, 'mpg', hist_orient = "h") h
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/histly.R
# histogram hist_plot <- function(x, bins, title = NA, xlab = NA, ylab = NA, ylimit = NULL, probability = FALSE, right = TRUE, axes = TRUE, labels = FALSE, col = NULL, border = 'black', colmain = "black", colsub = "black", colaxis = "black", collab = "black", fontmain = 1, fontsub = 1, fontaxis = 1, fontlab = 1, cexmain = 1, cexsub = 1, cexaxis = 1, cexlab = 1, leg = FALSE, leg_x, leg_y, legend, leg_point = 15, leg_colour, leg_boxtype, leg_boxcol, leg_boxlty, leg_boxlwd, leg_boxborcol, leg_boxxjust, leg_boxyjust, leg_textcol, leg_textfont, leg_textcolumns, leg_texthoriz, leg_title, leg_titlecol, leg_textadj, text_p = NA, text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA, text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5, m_col = "black", m_font = 1, m_cex = 1) { # hist function hist(x, breaks = bins, main = title, xlab = xlab, ylab = ylab, ylim = ylimit, probability = probability, right = right, axes = axes, labels = labels, density = NULL, angle = 45, col = col, border = border, col.main = colmain, col.sub = colsub,col.axis = colaxis, col.lab = collab, font.main = fontmain, font.sub = fontsub, font.axis = fontaxis, font.lab = fontlab, cex.main = cexmain, cex.sub = cexsub, cex.axis = cexaxis, cex.lab = cexlab) # legend if (leg == TRUE) { legend(leg_x, leg_y, legend = legend, pch = leg_point, col = leg_colour, bty = leg_boxtype, bg = leg_boxcol, box.lty = leg_boxlty, box.lwd = leg_boxlwd, box.col = leg_boxborcol, xjust = leg_boxxjust, yjust = leg_boxyjust, text.col = leg_textcol, text.font = leg_textfont, ncol = leg_textcolumns, horiz = leg_texthoriz, title = leg_title, title.col = leg_titlecol, title.adj = leg_textadj) } # add text inside the plot text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col, cex = text_size) # add text on the margins of the plot mtext(m_text, side = m_side, line = m_line, adj = m_adj, col = m_col, font = m_font, cex = m_cex) } # histogram test # hist_plot(mtcars$disp, bins = 5, colours = "blue", border = "red")
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/histogram.R
hscatter <- function(data, x, y, xax_title = '', xax_title_align = 'center', xax_tick_int = 5, xax_title_col = 'black', xax_title_ftype = 'italic', xax_title_fsize = '18px', yax_title = '', yax_title_col = 'black', yax_title_ftype = 'italic', yax_title_fsize = '18px', point_size = 4, scatter_series_name = ' ', point_col = 'blue', point_shape = 'circle', fit_line = FALSE, line_col = 'red', line_width = 0.1, point_on_line = FALSE, title = '', title_align = 'center', title_col = 'black', title_ftype = 'italic', title_size = '12px', sub = '', sub_align = 'center', sub_col = 'black', sub_ftype = 'italic', sub_size = '12px') { da <- data %>% select_(x, y) %>% arrange_(x) colnames(da) <- c('x', 'y') j <- seq(from = min(da$x), to = max(da$x), length.out = length(da$x)) fit <- lm(y ~ x, data = da) new <- tibble::tibble(x = j) fits <- tibble::tibble(value = predict(fit, newdata = new)) h <- highchart() %>% hc_xAxis(categories = da$x, tickInterval = xax_tick_int, title = list(text = xax_title, align = xax_title_align, style = list(color = xax_title_col, fontWeight = xax_title_ftype, fontSize = xax_title_fsize))) %>% hc_yAxis(title = list(text = yax_title, style = list(color = yax_title_col, fontWeight = yax_title_ftype, fontSize = yax_title_fsize)), opposite = FALSE) %>% hc_add_series(type = "scatter", data = da$y, name = scatter_series_name, marker = list(radius = point_size)) %>% hc_plotOptions(line = list(color = line_col, marker = list(lineWidth = line_width, enabled = point_on_line)), scatter = list(marker = list(symbol = point_shape), color = point_col)) %>% hc_title(text = title, align = title_align, style = list(color = title_col, fontWeight = title_ftype, fontSize = title_size)) %>% hc_subtitle(text = sub, align = sub_align, style = list(color = sub_col, fontWeight = sub_ftype, fontSize = sub_size)) if (fit_line) { h <- h %>% hc_add_series(type = "line", data = fits$value, name = 'Regression Line', pointIntervalUnit = 0) } h }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/hscatter.R
# line graph line_graph <- function(x, y, linetype = 1, linewidth = 1, colour = "black", title = NA, subtitle = NA, xlabel = NA, ylabel = NA, add_points = FALSE, shape, size, point_col, point_bg, ylim_l = NULL, ylim_u = NULL, extra_lines = NULL, extra_vars = NULL, extra_cols = NULL, ltys = NULL, lwds = NULL, extra_p = FALSE, pcolors = NULL, pbgcolors = NULL, pshapes = NULL, psizes = NULL, colmain = "black", colsub = "black", colaxis = "black", collab = "black", fontmain = 1, fontsub = 1, fontaxis = 1, fontlab = 1, cexmain = 1, cexsub = 1, cexaxis = 1, cexlab = 1, text_p = NA, text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA, text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5, m_col = "black", m_font = 1, m_cex = 1, leg = FALSE, leg_x, leg_y, legend, leg_line, leg_point, leg_colour, leg_boxtype, leg_boxcol, leg_boxlty, leg_boxlwd, leg_boxborcol, leg_boxxjust, leg_boxyjust, leg_textcol, leg_textfont, leg_textcolumns, leg_texthoriz, leg_title, leg_titlecol, leg_textadj) { # empty plot plot(y, type = 'n', xaxt = 'n', main = title, sub = subtitle, xlab = xlabel, ylab = ylabel, ylim =c(ylim_l, ylim_u), col.main = colmain, col.sub = colsub, col.axis = colaxis, col.lab = collab, font.main = fontmain, font.sub = fontsub, font.axis = fontaxis, font.lab = fontlab, cex.main = cexmain, cex.sub = cexsub, cex.axis = cexaxis, cex.lab = cexlab ) # add lines lines(x = y, lty = linetype, lwd = linewidth, col = colour) # axis labels axis(1, at = seq_len(length(x)), labels = x) # add points if (add_points) { points(x = y, pch = shape, cex = size, col = point_col, bg = point_bg) } # additional lines and points if (!is.null(extra_lines)) { for (i in seq_len(extra_lines)) { lines(x = extra_vars[, i], lty = ltys[i], lwd = lwds[i], col = extra_cols[i] ) if (extra_p) { points(x = extra_vars[i], pch = pshapes[i], cex = psizes[i], col = pcolors[i], bg = pbgcolors[i]) } } } if (leg == TRUE) { legend(leg_x, leg_y, legend = legend, lty = leg_line, pch = leg_point, col = leg_colour, bty = leg_boxtype, bg = leg_boxcol, box.lty = leg_boxlty, box.lwd = leg_boxlwd, box.col = leg_boxborcol, xjust = leg_boxxjust, yjust = leg_boxyjust, text.col = leg_textcol, text.font = leg_textfont, ncol = leg_textcolumns, horiz = leg_texthoriz, title = leg_title, title.col = leg_titlecol, title.adj = leg_textadj) } # add text inside the plot text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col, cex = text_size) # add text on the margins of the plot mtext(m_text, side = m_side, line = m_line, adj = m_adj, col = m_col, font = m_font, cex = m_cex) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/line-plot.R
library(dplyr) library(plotly) linely <- function(data, x, y, mode = 'lines', lcol = 'blue', lwidth = 1, ltype = 'plain', title = NULL, p_bgcol = NULL, plot_bgcol = NULL, title_family = 'Arial', title_size = 12, title_color = 'black', axis_modify = FALSE, x_min, x_max, y_min, y_max, x_title = NULL, x_showline = FALSE, x_showgrid = TRUE, x_gridcol = NULL, x_showticklabels = TRUE, x_lcol = NULL, x_lwidth = NULL, x_zline = FALSE, x_autotick = TRUE, x_ticks = TRUE, x_tickcol = 'black', x_ticklen = NULL, x_tickw = NULL, x_ticfont = 'Arial', x_tickfsize = 10, x_tickfcol = 'black', y_title = NULL, y_showline = FALSE, y_showgrid = TRUE, y_gridcol = NULL, y_showticklabels = TRUE, y_lcol = NULL, y_lwidth = NULL, y_zline = FALSE, y_autotick = TRUE, y_ticks = TRUE, y_tickcol = 'black', y_ticklen = NULL, y_tickw = NULL, y_ticfont = 'Arial', y_tickfsize = 10, y_tickfcol = 'black', ax_family = 'Arial', ax_size = 12, ax_color = 'black', add_txt = FALSE, t_x, t_y, t_text, t_showarrow = FALSE, t_font = 'Arial', t_size = 10, t_col = 'blue') { yax <- data %>% select(y) %>% pull(1) xax <- data %>% select(x) %>% pull(1) p <- plot_ly(data = data, type = "scatter", mode = mode, x = xax, y = yax, line = list( color = lcol, width = lwidth, dash = ltype )) title_font <- list( family = title_family, size = title_size, color = title_color ) axis_font <- list( family = ax_family, size = ax_size, color = ax_color ) xaxis <- list(title = x_title, titlefont = axis_font, showline = x_showline, showgrid = x_showgrid, gridcolor = x_gridcol, showticklabels = x_showticklabels, linecolor = x_lcol, linewidth = x_lwidth, zeroline = x_zline, autotick = x_autotick, ticks = x_ticks, tickcolor = x_tickcol, tickwidth = x_tickw, ticklen = x_ticklen, tickfont = list(family = x_ticfont, size = x_tickfsize, color = x_tickfcol)) yaxis <- list(title = y_title, titlefont = axis_font, showline = y_showline, showgrid = y_showgrid, gridcolor = y_gridcol, showticklabels = y_showticklabels, linecolor = y_lcol, linewidth = y_lwidth, zeroline = y_zline, autotick = y_autotick, ticks = y_ticks, tickcolor = y_tickcol, tickwidth = y_tickw, ticklen = y_ticklen, tickfont = list(family = y_ticfont, size = y_tickfsize, color = y_tickfcol)) p <- p %>% layout(title = title, font = title_font, paper_bgcolor = p_bgcol, plot_bgcolor = plot_bgcol, xaxis = xaxis, yaxis = yaxis) if(add_txt) { annote <- list( x = t_x, y = t_y, text = t_text, font = list(family = t_font, size = t_size, color = t_col), showarrow = t_showarrow ) p <- p %>% layout(annotations = annote) } if(axis_modify) { p <- p %>% layout( xaxis = list( range = list(x_min, x_max) ), yaxis = list( range = list(y_min, y_max) ) ) } p } # data1 <- c(7.2, 7.6, 6.8, 6.5, 7) # data2 <- c(6.8, 7.2, 7.8, 7, 6.2) # data <- data.frame(x = data1, y = data2) # # p <- linely(gdp, 'india', mode = 'lines+markers', title = 'Line Chart', # x_title = 'Year', y_title = 'Growth', axis_modify = TRUE, # x_min = 0, x_max = 7, y_min = 4, y_max = 9) # p
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/linely.R
print_stats <- function(data) { n <- nchar(format(data$uss, nsmall = 2)) width1 <- 52 + (2 * n) width2 <- as.integer(width1 / 2) width3 <- width2 - 5 width4 <- width2 - 2 col1 <- max(nchar(as.character(data$lowobs))) col2 <- max(nchar(as.character(data$highobs))) col3 <- max(nchar(as.character(data$lowobsi))) col4 <- max(nchar(as.character(data$highobsi))) v <- nchar("Value") ol <- max(col1, col2, col3, col4, v) gap <- width4 - (2 * ol) cat(formatc("Univariate Analysis", width1), "\n\n", formatl("N"), formatr(data$obs, n), formats(), formatl("Variance"), formatr(data$variance, n), "\n", formatl("Missing"), formatr(data$missing, n), formats(), formatl("Std Deviation"), formatr(data$stdev, n), "\n", formatl("Mean"), formatr(data$avg, n), formats(), formatl("Range"), formatr(data$range, n), "\n", formatl("Median"), formatr(data$median, n), formats(), formatl("Interquartile Range"), formatr(data$iqrange, n), "\n", formatl("Mode"), formatr(data$mode, n), formats(), formatl("Uncorrected SS"), formatr(data$uss, n), "\n", formatl("Trimmed Mean"), formatr(data$tavg, n), formats(), formatl("Corrected SS"), formatr(data$css, n), "\n", formatl("Skewness"), formatr(data$skew, n), formats(), formatl("Coeff Variation"), formatr(data$cvar, n), "\n", formatl("Kurtosis"), formatr(data$kurtosis, n), formats(), formatl("Std Error Mean"), formatr(data$sem, n), "\n\n", formatc("Quantiles", width1), "\n\n", formatc("Quantile", width2), formatc("Value", width2), "\n\n", formatc("Max ", width2), formatnc(data$Max, width2), "\n", formatc("99% ", width2), formatnc(data$per99, width2), "\n", formatc("95% ", width2), formatnc(data$per95, width2), "\n", formatc("90% ", width2), formatnc(data$per90, width2), "\n", formatc("Q3 ", width2), formatnc(data$per75, width2), "\n", formatc("Median ", width2), formatnc(data$median, width2), "\n", formatc("Q1 ", width2), formatnc(data$per25, width2), "\n", formatc("10% ", width2), formatnc(data$per10, width2), "\n", formatc("5% ", width2), formatnc(data$per5, width2), "\n", formatc("1% ", width2), formatnc(data$per1, width2), "\n", formatc("Min ", width2), formatnc(data$min, width2), "\n\n", formatc("Extreme Values", width1), "\n\n", formatc("Low", width2), formatc("High", width2), "\n\n", formatol("Obs", ol), format_gap(gap), formatol("Value", ol), formats(), formatol("Obs", ol), format_gap(gap), formatol("Value", ol), "\n") for (i in seq_len(5)) { cat("",formatol(data$lowobsi[i], ol), format_gap(gap), formatol(data$lowobs[i], ol), formats(), formatol(data$highobsi[i], ol), format_gap(gap), formatol(data$highobs[i], ol), "\n") } } print_cross <- function(data) { p <- length(data$var2_levels) q <- p + 2 h <- p + 1 r <- (h * 15) - 3 f <- length(data$var1_levels) g <- f + 2 h <- p + 1 col_names <- c(data$varnames[1], data$var2_levels, "Row Total") col_totals <- c("Column Total", data$column_totals, data$obs) cat(formatter(" Cell Contents\n"), "|---------------|\n", "|", formatter("Frequency"), "|\n", "|", formatter("Percent"), "|\n", "|", formatter("Row Pct"), "|\n", "|", formatter("Col Pct"), "|\n", "|---------------|\n\n", "Total Observations: ", data$obs, "\n\n") cat("-", rep("---------------", q), sep = "") cat("\n") cat("| |", format(data$varnames[2], width = r, justify = "centre"), "|") cat("\n") cat("-", rep("---------------", q), sep = "") cat("\n|") for (i in seq_along(col_names)) { cat(formatter(col_names[i]), "|") } cat("\n-", rep("---------------", q), sep = "") cat("\n") for (i in seq_len(f)) { cat("|") for (j in seq_len(q)) { cat(formatter(data$twowaytable[i, j]), "|") } cat("\n") cat("| |") for (j in seq_len(p)) { cat(formatter(data$percent_table[i, j]), "|") } cat(" |") cat("\n") cat("| |") for (j in seq_len(h)) { cat(formatter(data$row_percent[i, j]), "|") } cat("\n") cat("| |") for (j in seq_len(p)) { cat(formatter(data$column_percent[i, j]), "|") } cat(" |") cat("\n-", rep("---------------", q), sep = "") cat("\n") } cat("|") for (i in seq_along(col_totals)) { cat(formatter(col_totals[i]), "|") } cat("\n") cat("| |") for (i in seq_along(data$percent_column)) { cat(formatter(data$percent_column[i]), "|") } cat(" |") cat("\n-", rep("---------------", q), sep = "") cat("\n") } print_cross2 <- function(data) { # output formatting p <- length(data$variable_levels) q <- p + 2 h <- p + 1 r <- (h * 15) - 3 f <- length(data$row_name) g <- f + 2 h <- p + 1 tu <- q * 15 cat(format(paste(data$variable_names[1], 'vs', data$variable_names[2]), width = tu, justify = 'centre'), '\n') cat("-", rep("---------------", q), sep = "") cat("\n") cat("| |", format(data$variable_names[2], width = r, justify = "centre"), "|") cat("\n") cat("-", rep("---------------", q), sep = "") cat("\n|") for (i in seq_along(data$column_names)) { cat(formatter(data$column_names[i]), "|") } cat("\n-", rep("---------------", q), sep = "") cat("\n") for (i in seq_len(f)) { cat("|") for (j in seq_len(q)) { cat(formatter(data$twowaytable[i, j]), "|") } cat("\n") cat("| |") for (j in seq_len(p)) { cat(formatter(data$percent_table[i, j]), "|") } cat(" |") cat("\n") cat("| |") for (j in seq_len(h)) { cat(formatter(data$row_percent[i, j]), "|") } cat("\n") cat("| |") for (j in seq_len(p)) { cat(formatter(data$column_percent[i, j]), "|") } cat(" |") cat("\n-", rep("---------------", q), sep = "") cat("\n") } cat("|") for (i in seq_along(data$column_totals)) { cat(formatter(data$column_totals[i]), "|") } cat("\n") cat("| |") for (i in seq_along(data$percent_column)) { cat(formatter(data$percent_column[i]), "|") } cat(" |") cat("\n-", rep("---------------", q), sep = "") cat("\n\n\n") } print_screen <- function(x) { columns <- c(' Column Name ', ' Data Type ', ' Levels ', ' Missing ', ' Missing (%) ') len_col <- as.vector(sapply(columns, nchar)) xlev <- lapply(x$levels, paste, collapse = " ") %>% lapply(nchar) %>% unlist %>% max lengths <- list(x$Variables, x$Types, xlev, x$Missing, x$MissingPer) n <- length(columns) nlist <- list() for (i in seq_len(n)) { nlist[[i]] <- max(len_col[i], max(sapply(lengths[[i]], nchar))) } clengths <- unlist(nlist) clengths[3] <- max(10, xlev) dash <- sum(clengths) + 6 cat(rep("-",dash), sep = "") cat("\n|") for(i in seq_len(n)) { cat(format(columns[i], width = clengths[i], justify = 'centre'), "|", sep = "") } cat("\n", rep("-",dash), sep = "") cat("\n") for (i in seq_len(x$Columns)) { cat("|", format(x$Variables[i], width = clengths[1], justify = 'centre'), "|", format(x$Types[i], width = clengths[2], justify = 'centre'), "|", format(paste(x$levels[[i]], collapse = " "), width = clengths[3], justify = 'centre'), "|", format(as.character(x$Missing[i]), width = clengths[4], justify = 'centre'), "|", format(as.character(x$MissingPer[i]), width = clengths[5], justify = 'centre'), "|\n", sep = "" ) } cat(rep("-",dash), sep = "") cat("\n\n") cat(' Overall Missing Values ', x$MissingTotal, "\n", 'Percentage of Missing Values ', x$MissingTotPer, "%\n", 'Rows with Missing Values ', x$MissingRows, "\n", "Columns With Missing Values ", x$MissingCols, "\n") } print_fcont <- function(data) { cat(format(paste('Variable:', data$varname), width = 77, justify = 'centre'), '\n') cat("|---------------------------------------------------------------------------| | Cumulative Cumulative | | Bins | Frequency | Frequency | Percent | Percent | |---------------------------------------------------------------------------|") for (i in seq_len(data$bins)) { k <- i + 1 cat("\n|", formata(data$breaks[i], 1, 5), "-", formata(data$breaks[k], 1, 5), "|", formata(data$frequency[i], 2, 12), "|", formata(data$cumulative[i], 2, 12), "|", formatas(data$percent[i], 2, 12), "|", formatas(data$cum_percent[i], 2, 12), "|") cat("\n|---------------------------------------------------------------------------|") } } print_ftable <- function(data) { nr <- nrow(data$ftable) nc <- ncol(data$ftable) cat(format(paste('Variable:', data$varname), width = 76, justify = 'centre'), '\n') cat("|--------------------------------------------------------------------------| | Cumulative Cumulative | | Levels | Frequency | Frequency | Percent | Percent | |--------------------------------------------------------------------------|\n") for (i in seq_len(nr)) { for (j in seq_len(nc)) { cat("|", formatter_freq(data$ftable[i, j])) } cat("|") cat("\n|--------------------------------------------------------------------------|\n") } cat('\n\n') } print_ftable2 <- function(data) { nr <- nrow(data$ftable) nc <- ncol(data$ftable) cat(format(paste('Variable:', data$varname), width = 76, justify = 'centre'), '\n') cat("|--------------------------------------------------------------------------| | Cumulative Cumulative | | Levels | Frequency | Frequency | Percent | Percent | |--------------------------------------------------------------------------|\n") for (i in seq_len(nr)) { for (j in seq_len(nc)) { cat("|", formatter_freq(data$ftable[i, j])) } cat("|") cat("\n|--------------------------------------------------------------------------|\n") } cat('\n\n') } print_group <- function(data) { line <- 23 n <- 21 n_names <- max(nchar(data$stats[2, c(-1)])) n_uss <- max(nchar(data$stats[12, c(-1)])) w <- max(n_names, n_uss) + 2 cola <- ncol(data$stats) col <- cola - 1 ow <- 23 * cola - col row <- nrow(data$stats) cat(format(paste(data$yvar, 'by', data$xvar), width = ow, justify = 'centre'), '\n') cat(rep('-', ow), sep = '', '\n') cat('|') for (i in seq_len(cola)) { cat(format(colnames(data$stats)[i], width = n, justify = 'right'), '|', sep = '') } cat('\n') cat(rep('-', ow), sep = '', '\n') for (i in seq_len(row)) { cat('|') for (j in seq_len(cola)) { cat(format(data$stats[i, j], width = n, justify = 'right'), '|', sep = '') } cat('\n') } cat(rep('-', ow), sep = '', '\n') }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/output.R
# plotting functions # scatter plot pie_plot <- function(x, lab, edg = 200, title = NULL, clock = FALSE, rad = 0.8, initangle = 45, ang = 45, bord = NULL, colors = NULL, den = NULL, ltype = NULL, colmain = 'black', fontmain = 1, cexmain = 1) { # basic plot pie(x, labels = lab, edges = edg, main = title, clockwise = clock, radius = rad, init.angle = initangle, density = den, angle = ang, border = bord, col = colors, lty = ltype, col.main = colmain, font.main = fontmain, cex.main = cexmain) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/pie-plot.R
library(plotrix) # 3D pie chart pie3_plot <- function(x, lab = NULL, edg = NA, title = NULL, rad = 1, bord = NULL, colors = NULL, high = 0.1, begin = 0, labpos = NULL, labcol = NULL, labcex = 1.5, labrad = 1.25, explo = 0, shd = 0.8, colmain = 'black', fontmain = 1, cexmain = 1) { # basic plot pie3D(x, labels = lab, edges = edg, main = title, radius = rad, border = bord, col = colors, height = high, start = begin, labelpos = labpos, labelcol = labcol, labelcex = labcex, labelrad = labrad, explode = explo, shade = shd, col.main = colmain, font.main = fontmain, cex.main = cexmain) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/pie3d-plot.R
piely <- function(data = NULL, x = NULL, text_pos = 'inside', text_font = 'Arial', text_info = 'label+percent', itext_f_col = 'black', itext_f_fam = 'Arial', itext_f_size = 14, hover_info = 'text', text_direction = 'anticlockwise', text_rotation = 0, pie_pull = 0, pie_hole = 0, col_opacity = 0.9, pie_l_col = '#FFFFFF', pie_l_w = 1, auto_size = TRUE, plot_width = NULL, plot_height = NULL, axis_range = FALSE, x_min, x_max, y_min, y_max, symbol = 'circle', size = 5, title = NA, show_legend = TRUE, x_title = NA, y_title = NA, x_showgrid = FALSE, y_showgrid = FALSE, ax_title_font_family = 'Arial, sans-serif', ax_title_font_size = 18, ax_title_font_color = 'black', ax_tick_font_family = 'Arial, sans-serif', ax_tick_font_size = 18, ax_tick_font_color = 'black', x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL, x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1, x_tickcolor = '#444', x_showticklab = FALSE, x_tickangle = 'auto', x_zeroline = FALSE, x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)", x_gridwidth = 1, x_zerolinecol = "#444", x_zerolinewidth = 1, x_linecol = '#444', x_linewidth = 1, y_autotick = TRUE, y_ticks = 'outside', y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5, y_tickwidth = 1, y_tickcolor = '#444', y_showticklab = FALSE, y_tickangle = 'auto', y_zeroline = FALSE, y_showline = TRUE, y_gridcolor = "rgb(204, 204, 204)", y_gridwidth = 1, y_zerolinecol = "#444", y_zerolinewidth = 1, y_linecol = '#444', y_linewidth = 1, left_margin = 80, right_margin = 80, top_margin = 100, bottom_margin = 80, padding = 0, leg_x = 100, leg_y = 0.5, leg_orientation = 'v', leg_font_family = 'sans-serif', leg_font_size = 12, leg_font_color = '#000', leg_bg_color = '#E2E2E2', leg_border_col = "#FFFFFF", leg_border_width = 2, add_annotate = FALSE, x_annotate, y_annotate, text_annotate, annotate_xanchor = 'auto', show_arrow, arrow_head = 1, ax_anntate = 20, ay_annotate = -40, annotate_family = 'sans-serif', annotate_size = 14, annotate_col = 'red') { f1 <- list( family = ax_title_font_family, size = ax_title_font_size, color = ax_title_font_color ) f2 <- list( family = ax_tick_font_family, size = ax_tick_font_size, color = ax_tick_font_color ) xaxis <- list( title = x_title, showgrid = x_showgrid, autotick = x_autotick, ticks = x_ticks, tick0 = x_tick0, dtick = x_dtick, ticklen = x_ticklen, tickwidth = x_tickwidth, tickcolor = x_tickcolor, titlefont = f1, showticklabels = x_showticklab, tickangle = x_tickangle, tickfont = f2, zeroline = x_zeroline, showline = x_showline, gridcolor = x_gridcolor, gridwidth = x_gridwidth, zerolinecolor = x_zerolinecol, zerolinewidth = x_zerolinewidth, linecolor = x_linecol, linewidth = x_linewidth ) yaxis <- list( title = y_title, showgrid = y_showgrid, autotick = y_autotick, ticks = y_ticks, tick0 = y_tick0, dtick = y_dtick, ticklen = y_ticklen, tickwidth = y_tickwidth, tickcolor = y_tickcolor, titlefont = f1, showticklabels = y_showticklab, tickangle = y_tickangle, tickfont = f2, zeroline = y_zeroline, showline = y_showline, mirror = 'ticks', gridcolor = y_gridcolor, gridwidth = y_gridwidth, zerolinecolor = y_zerolinecol, zerolinewidth = y_zerolinewidth, linecolor = y_linecol, linewidth = y_linewidth ) # margins m <- list( l = left_margin, r = right_margin, t = top_margin, b = bottom_margin, pad = padding ) # legend l <- list( x = leg_x, y = leg_y, orientation = leg_orientation, font = list( family = leg_font_family, size = leg_font_size, color = leg_font_color), bgcolor = leg_bg_color, bordercolor = leg_border_col, borderwidth = leg_border_width) # annotations if(add_annotate) { a <- list( x = x_annotate, y = y_annotate, text = text_annotate, xref = 'x', yref = 'y', xanchor = annotate_xanchor, showarrow = show_arrow, arrowhead = arrow_head, ax = ax_annotate, ay = ay_annotate, font = list( family = annotate_family, size = annotate_size, color = annotate_col ) ) } x1 <- data %>% select_(x) %>% unlist() %>% as.factor() %>% levels() y <- data %>% select_(x) %>% table() %>% as.vector() data <- data.frame(x1, y) p <- plot_ly(data, labels = x1, values = y, type = 'pie', textposition = text_pos, textinfo = text_info, textfont = text_font, insidetextfont = list(color = itext_f_col, family = itext_f_fam, size = itext_f_size), hoverinfo = hover_info, direction = text_direction, rotation = text_rotation, pull = pie_pull, hole = pie_hole, opacity = col_opacity, marker = list(line = list(color = pie_l_col, width = pie_l_w))) %>% layout( title = title, xaxis = xaxis, yaxis = yaxis, autosize = auto_size, margin = m, legend = l, showlegend = show_legend ) if(add_annotate) { p <- p %>% layout(annotations = a) } if(axis_range) { p <- p %>% layout( xaxis = list( range = list(x_min, x_max) ), yaxis = list( range = list(y_min, y_max) ) ) } p } p <- piely(mtcars, 'cyl') p
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/piely.R
# plotting functions # scatter plot scatter_plot <- function(x, y, title = NA, sub = NA, xlab = NA, ylab = NA, colours = "black", fill = NULL, shape = 18, xlim_min = NULL, xlim_max = NULL, ylim_min = NULL, ylim_max = NULL, size = 1, colmain = "black", colsub = "black", colaxis = "black", collab = "black", fontmain = 1, fontsub = 1, fontaxis = 1, fontlab = 1, cexmain = 1, cexsub = 1, cexaxis = 1, cexlab = 1, text_p = NA, text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA, text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5, m_col = "black", m_font = 1, m_cex = 1, fitline = FALSE, col_abline = 'black', lty_abline = 1, lwd_abline = 1) { # basic plot plot(x = x, y = y, type = 'p', main = title, sub = sub, xlab = xlab, ylab = ylab, xlim = c(xlim_min, xlim_max), ylim = c(ylim_min, ylim_max), col = colours, bg = fill, pch = shape, cex = size, col.main = colmain, col.sub = colsub, col.axis = colaxis, col.lab = collab, font.main = fontmain, font.sub = fontsub, font.axis = fontaxis, font.lab = fontlab, cex.main = cexmain, cex.sub = cexsub, cex.axis = cexaxis, cex.lab = cexlab) # add text inside the plot text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col, cex = text_size) # add text on the margins of the plot mtext(m_text, side = m_side, line = m_line, adj = m_adj, col = m_col, font = m_font, cex = m_cex) # fit a regression line if (fitline) { abline(lm(y ~ x), col = col_abline, lty = lty_abline, lwd = lwd_abline) } } # scatter plot test # scatter_plot(mtcars$disp, mtcars$mpg, # title = "Scatter Plot", sub = "Fuck", xlab = "Boobs", ylab ="Tits", # xlim_min = 0, xlim_max = 600, ylim_min = 0, ylim_max = 50, colours = "red", # m_text = "Fuck You", m_side = 3, m_line = 0.5, m_adj = 1)
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/scatter-plot.R
library(plotly) scatterly <- function(data, x, y, name = NA, text = NA, color = '#1F77B4', opacity = 1, auto_size = TRUE, plot_width = NULL, plot_height = NULL, axis_range = FALSE, x_min, x_max, y_min, y_max, symbol = 'circle', size = 5, title = NA, show_legend = TRUE, x_title = NA, y_title = NA, x_showgrid = TRUE, y_showgrid = TRUE, fit_line = FALSE, line_col = 'red', line_type = 'dashed', line_width = 1, ax_title_font_family = 'Arial, sans-serif', ax_title_font_size = 18, ax_title_font_color = 'black', ax_tick_font_family = 'Arial, sans-serif', ax_tick_font_size = 18, ax_tick_font_color = 'black', x_autotick = TRUE, x_ticks = 'outside', x_tick0 = NULL, x_dtick = NULL, x_ticklen = 5, x_tickwidth = 1, x_tickcolor = '#444', x_showticklab = TRUE, x_tickangle = 'auto', x_zeroline = FALSE, x_showline = TRUE, x_gridcolor = "rgb(204, 204, 204)", x_gridwidth = 1, x_zerolinecol = "#444", x_zerolinewidth = 1, x_linecol = '#444', x_linewidth = 1, y_autotick = TRUE, y_ticks = 'outside', y_tick0 = NULL, y_dtick = NULL, y_ticklen = 5, y_tickwidth = 1, y_tickcolor = '#444', y_showticklab = TRUE, y_tickangle = 'auto', y_zeroline = FALSE, y_showline = TRUE, y_gridcolor = "rgb(204, 204, 204)", y_gridwidth = 1, y_zerolinecol = "#444", y_zerolinewidth = 1, y_linecol = '#444', y_linewidth = 1, left_margin = 80, right_margin = 80, top_margin = 100, bottom_margin = 80, padding = 0, leg_x = 100, leg_y = 0.5, leg_orientation = 'v', leg_font_family = 'sans-serif', leg_font_size = 12, leg_font_color = '#000', leg_bg_color = '#E2E2E2', leg_border_col = "#FFFFFF", leg_border_width = 2, add_annotate = FALSE, x_annotate, y_annotate, text_annotate, annotate_xanchor = 'auto', show_arrow, arrow_head = 1, ax_anntate = 20, ay_annotate = -40, annotate_family = 'sans-serif', annotate_size = 14, annotate_col = 'red') { x <- data %>% select_(x) %>% unlist() y <- data %>% select_(y) %>% unlist() # style axes title and tickfont f1 <- list( family = ax_title_font_family, size = ax_title_font_size, color = ax_title_font_color ) f2 <- list( family = ax_tick_font_family, size = ax_tick_font_size, color = ax_tick_font_color ) xaxis <- list( title = x_title, showgrid = x_showgrid, autotick = x_autotick, ticks = x_ticks, tick0 = x_tick0, dtick = x_dtick, ticklen = x_ticklen, tickwidth = x_tickwidth, tickcolor = x_tickcolor, titlefont = f1, showticklabels = x_showticklab, tickangle = x_tickangle, tickfont = f2, zeroline = x_zeroline, showline = x_showline, gridcolor = x_gridcolor, gridwidth = x_gridwidth, zerolinecolor = x_zerolinecol, zerolinewidth = x_zerolinewidth, linecolor = x_linecol, linewidth = x_linewidth ) yaxis <- list( title = y_title, showgrid = y_showgrid, autotick = y_autotick, ticks = y_ticks, tick0 = y_tick0, dtick = y_dtick, ticklen = y_ticklen, tickwidth = y_tickwidth, tickcolor = y_tickcolor, titlefont = f1, showticklabels = y_showticklab, tickangle = y_tickangle, tickfont = f2, zeroline = y_zeroline, showline = y_showline, mirror = 'ticks', gridcolor = y_gridcolor, gridwidth = y_gridwidth, zerolinecolor = y_zerolinecol, zerolinewidth = y_zerolinewidth, linecolor = y_linecol, linewidth = y_linewidth ) # margins m <- list( l = left_margin, r = right_margin, t = top_margin, b = bottom_margin, pad = padding ) # legend l <- list( x = leg_x, y = leg_y, orientation = leg_orientation, font = list( family = leg_font_family, size = leg_font_size, color = leg_font_color), bgcolor = leg_bg_color, bordercolor = leg_border_col, borderwidth = leg_border_width) # annotations if(add_annotate) { a <- list( x = x_annotate, y = y_annotate, text = text_annotate, xref = 'x', yref = 'y', xanchor = annotate_xanchor, showarrow = show_arrow, arrowhead = arrow_head, ax = ax_annotate, ay = ay_annotate, font = list( family = annotate_family, size = annotate_size, color = annotate_col ) ) } p <- plot_ly(data = data, type = "scatter", mode = "markers", x = x, y = y, name = name, text = text, marker = list( color = color, opacity = opacity, symbol = symbol, size = size ), width = plot_width, height = plot_height) %>% layout( title = title, xaxis = xaxis, yaxis = yaxis, autosize = auto_size, margin = m, legend = l, showlegend = show_legend ) if(add_annotate) { p <- p %>% layout(annotations = a) } if(axis_range) { p <- p %>% layout( xaxis = list( range = list(x_min, x_max) ), yaxis = list( range = list(y_min, y_max) ) ) } if(fit_line) { p <- p %>% add_trace(x = x, y = ~fitted(lm(y ~ x)), mode = 'markers+lines', line = list( color = line_col, dash = line_type, width = line_width ) ) p } p } # test mtcars$cyl <- as.factor(mtcars$cyl) scatterly(mtcars, 'disp', 'mpg', text = 'disp, mpg', size = 8, color = 'cyl', title = 'Displacement vs Mileage', axis_range = FALSE, x_min = 0, x_max = 600, y_min = 0, y_max = 50, x_title = 'Displacement', y_title = 'Miles Per Gallon', show_legend = TRUE, x_showgrid = F, fit_line = T)
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/scatterly.R
# activity flow # Step 1: Upload data or use demo data # Step 2: Choose the type of data being plotted # Options: a. Grouped Data # b. Ungrouped Data # Step 3: Choose whether a single plot should be built or multiple plots based on a grouping variable # Options: Select a grouping variable # barplot # univariate bar_plotu <- function(x, horizontal = FALSE, color = NULL, border = "black", title = NA, xlab = NA, labels = NA, space = NA, width = 1, axes = TRUE, axislty = 0, offset = 0, ylab = NA, colmain = "black", colsub = "black", colaxis = "black", collab = "black", fontmain = 1, fontsub = 1, fontaxis = 1, fontlab = 1, cexmain = 1, cexsub = 1, cexaxis = 1, cexlab = 1, leg = FALSE, leg_x, leg_y, legend, leg_point, leg_colour, leg_boxtype, leg_boxcol, leg_boxlty, leg_boxlwd, leg_boxborcol, leg_boxxjust, leg_boxyjust, leg_textcol, leg_textfont, leg_textcolumns, leg_texthoriz, leg_title, leg_titlecol, leg_textadj, text_p = NA, text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA, text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5, m_col = "black", m_font = 1, m_cex = 1) { counts <- table(x) # bar plot barplot(counts, horiz = horizontal, col = color, border = border, main = title, xlab = xlab, names.arg = labels, space = space, width = width, density = NULL, angle = 45, axes = axes, axis.lty = axislty, offset = offset, ylab = ylab, col.main = colmain, col.sub = colsub, col.axis = colaxis, col.lab = collab, font.main = fontmain, font.sub = fontsub, font.axis = fontaxis, font.lab = fontlab, cex.main = cexmain, cex.sub = cexsub, cex.axis = cexaxis, cex.lab = cexlab) # legend if (leg == TRUE) { legend(leg_x, leg_y, legend = legend, pch = leg_point, col = leg_colour, bty = leg_boxtype, bg = leg_boxcol, box.lty = leg_boxlty, box.lwd = leg_boxlwd, box.col = leg_boxborcol, xjust = leg_boxxjust, yjust = leg_boxyjust, text.col = leg_textcol, text.font = leg_textfont, ncol = leg_textcolumns, horiz = leg_texthoriz, title = leg_title, title.col = leg_titlecol, title.adj = leg_textadj) } # add text inside the plot text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col, cex = text_size) # add text on the mar-gins of the plot mtext(m_text, side = m_side, line = m_line, adj = m_adj, col = m_col, font = m_font, cex = m_cex) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ubar_plot.R
# box plots # univariate box_plotu <- function(x, title = NA, xlabel = NA, ylabel = NA, colour = 'blue', borders = 'black', horiz = FALSE, notches = FALSE, ranges = 1.5, outlines = TRUE, varwidths = FALSE, colmain = "black", colsub = "black", colaxis = "black", collab = "black", fontmain = 1, fontsub = 1, fontaxis = 1, fontlab = 1, cexmain = 1, cexsub = 1, cexaxis = 1, cexlab = 1, text_p = NA, text_x_loc = NA, text_y_loc = NA, text_col = "black", text_font = NA, text_size = NA, m_text = NA, m_side = 3, m_line = 0.5, m_adj = 0.5, m_col = "black", m_font = 1, m_cex = 1) { boxplot(x, main = title, xlab = xlabel, ylab = ylabel, col = colour, border = borders, horizontal = horiz, notch = notches, range = ranges, outline = outlines, varwidth = varwidths, col.main = colmain, col.sub = colsub, col.axis = colaxis, col.lab = collab, font.main = fontmain, font.sub = fontsub, font.axis = fontaxis, font.lab = fontlab, cex.main = cexmain, cex.sub = cexsub, cex.axis = cexaxis, cex.lab = cexlab) # add text inside the plot text(text_x_loc, text_y_loc, text_p, font = text_font, col = text_col, cex = text_size) # add text on the mar-gins of the plot mtext(m_text, side = m_side, line = m_line, adj = m_adj, col = m_col, font = m_font, cex = m_cex) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/ubox-plot.R
library(highcharter) library(dplyr) library(magrittr) highbar <- function(data, column, title = '', name = '', horizontal = FALSE) { da <- data %>% select_(column) %>% pull(1) %>% as.factor() lev <- da %>% levels() tab <- da %>% table() %>% as.vector() if (horizontal) { bartype <- 'bar' } else { bartype <- 'column' } highchart() %>% hc_chart(type = bartype) %>% hc_title(text = title) %>% hc_xAxis(categories = lev) %>% hc_add_series(data = tab, name = name) } highbar(mtcars, 'cyl', horizontal = TRUE) data <- mtcars column <- 'cyl'
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/unibar.R
formatter_freq <- function(x) { x %>% as.character() %>% format(width = 13, justify = "centre") } formatter <- function(x) { x %>% as.character() %>% format(width = 13, justify = "right") } percent <- function(x, y) { out <- round((x / y) * 100, 2) } formata <- function(x, round, width, justify = "centre") { x %>% round(round) %>% as.character() %>% format(width = width, justify = justify) } formatas <- function(x, round, width, justify = "centre") { return(format(x, width = width, justify = justify)) } bin_size <- function(data, bins) { return((max(data, na.rm = TRUE) - min(data, na.rm = TRUE)) / bins) } intervals <- function(data, bins, na.rm = TRUE) { binsize <- bin_size(data, bins) bin <- bins - 1 interval <- min(data) for (i in seq_len(bin)) { out <- interval[i] + binsize interval <- c(interval, out) } interval <- c(interval, max(data)) return(interval) } freq <- function(data, bins, inta) { result <- c() for (i in seq_len(bins)) { k <- i + 1 freq <- data >= inta[i] & data <= inta[k] out <- length(data[freq]) result <- c(result, out) } return(result) } div_by <- function(x) { 1 / x } standardize <- function(x, avg, stdev, p) { ((x - avg) / stdev) ^ p } sums <- function(x, q) { avg <- mean(x) stdev <- sd(x) result <- sum(sapply(x, standardize, avg, stdev, q)) return(result) } md_helper <- function(x, y) { abs(x - y) } std_error <- function(x) { sd(x) / (length(x) ^ 0.5) } uss <- function(x, y) { (x - y) ^ 2 } stat_uss <- function(x) { sum(x ^ 2) } formatl <- function(x) { x %>% format(nsmall = 2) %>% format(width = 20, justify = "left") } formatol <- function(x, w) { format(as.character(x), width = w, justify = "centre") } formatr <- function(x, w) { x %>% rounda() %>% format(nsmall = 2, width = w, justify = "right") } formatc <- function(x, w) { if (is.numeric(x)) { ret <- x %>% round(2) %>% as.character(x) %>% format(width = w, justify = "centre") } else { ret <- x %>% as.character(x) %>% format(width = w, justify = "centre") } return(ret) } formatnc <- function(x, w) { x %>% round(2) %>% format(nsmall = 2) %>% format(width = w, justify = "centre") } formats <- function() { x <- rep(" ") } format_gap <- function(w) { x <- rep("", w) } return_pos <- function(data, number) { out <- c() for (i in seq_len(length(data))) { if (data[i] == number) { out <- c(out, i) } } return(out) } row_pct <- function(mat, tot) { rows <- dim(mat)[1] l <- length(tot) result <- c() for (i in seq_len(rows)) { diva <- mat[i, ] / tot[i] result <- rbind(result, diva) } rownames(result) <- NULL return(result) } col_pct <- function(mat, tot) { cols <- dim(mat)[2] l <- length(tot) result <- c() for (i in seq_len(cols)) { diva <- mat[, i] / tot[i] result <- cbind(result, diva) } colnames(result) <- NULL return(result) } rounda <- function(x) { round(x, 2) } l <- function(x) { x <- as.character(x) k <- grep("\\$", x) if (length(k) == 1) { temp <- strsplit(x, "\\$") out <- temp[[1]][2] } else { out <- x } return(out) } fround <- function(x) { format(round(x, 2), nsmall = 2) } pol_chi <- function(l1, l2, df, col) { x <- c(l1, seq(l1, l2, 0.01), l2) y <- c(0, dchisq(seq(l1, l2, 0.01), df), 0) polygon(x, y, col = col) } pol_f <- function(l1, l2, num_df, den_df, col) { x <- c(l1, seq(l1, l2, 0.01), l2) y <- c(0, df(seq(l1, l2, 0.01), num_df, den_df), 0) polygon(x, y, col = col) } pol_cord <- function(l1, l2, mean, sd, col) { x <- c(l1, seq(l1, l2, 0.01), l2) y <- c(0, dnorm(seq(l1, l2, 0.01), mean, sd), 0) polygon(x, y, col = col) } xaxp <- function(mean, el) { xl <- mean - el xu <- mean + el x <- seq(xl, xu, 0.01) return(x) } seqlp <- function(mean, sd, el) { lmin <- mean - (el * sd) lmax <- mean + (el * sd) l <- seq(lmin, lmax, sd) return(l) } xmmp <- function(mean, sd, el) { xmin <- mean - (el * sd) xmax <- mean + (el * sd) out <- c(xmin, xmax) return(out) } xax <- function(mean) { xl <- mean - 3 xu <- mean + 3 x <- seq(xl, xu, 0.01) return(x) } seql <- function(mean, sd) { lmin <- mean - (5 * sd) lmax <- mean + (5 * sd) l <- seq(lmin, lmax, sd) return(l) } xmm <- function(mean, sd) { xmin <- mean - (5 * sd) xmax <- mean + (5 * sd) out <- c(xmin, xmax) return(out) } seqln <- function(mean, sd) { lmin <- mean - 3 * sd lmax <- mean + 3 * sd l <- seq(lmin, lmax, sd) return(l) } xmn <- function(mean, sd) { xmin <- mean - 3 * sd xmax <- mean + 3 * sd out <- c(xmin, xmax) return(out) } pol_t <- function(l1, l2, df, col) { x <- c(l1, seq(l1, l2, 0.01), l2) y <- c(0, dt(seq(l1, l2, 0.01), df), 0) polygon(x, y, col = col) } # ss <- function(x) { # return(x ^ 2) # } # # fl <- function(x, w) { # x <- as.character(x) # ret <- format(x, width = w, justify = "left") # return(ret) # } # # fc <- function(x, w) { # x <- as.character(x) # ret <- format(x, width = w, justify = "centre") # return(ret) # } # formatrc <- function(x, w) { # x <- as.character(x) # ret <- format(x, width = w, justify = "right") # return(ret) # } paired_data <- function(x, y) { d <- tibble(x = x, y = y) %>% mutate(z = x - y) %>% gather() return(d) } paired_stats <- function(data, key, value) { d <- data %>% group_by_(key) %>% select_(value, key) %>% summarise_each(funs(length, mean, sd)) %>% as_data_frame() %>% mutate( se = sd / sqrt(length) ) %>% select(-(key:length)) %>% round(2) return(d) } samp_err <- function(sigma, n) { sigma / (n ^ 0.5) } conf_int_t <- function(u, s, n, alpha = 0.05) { a <- alpha / 2 df <- n - 1 error <- round(qt(a, df), 3) * -1 lower <- u - (error * samp_err(s, n)) upper <- u + (error * samp_err(s, n)) result <- c(lower, upper) return(result) } cor_sig <- function(corr, n) { t <- corr / ((1 - (corr ^ 2)) / (n - 2)) ^ 0.5 df <- n - 2 sig <- (1 - pt(t, df)) * 2 return(round(sig, 4)) } formatter_pair <- function(x, w) { x1 <- format(x, nsmall = 2) x2 <- as.character(x1) ret <- format(x2, width = w, justify = "centre") return(ret) } fg <- function(x, w) { x %>% as.character() %>% format(width = w, justify = 'centre') } fs <- function() { rep(" ") }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/helper/utils.R
source("helper/ubar_plot.R") # update variable selection for bar plots # observe({ # updateSelectInput(session, 'ubar_select', choices = names(data())) # }) observeEvent(input$finalok, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "ubar_select", choices = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'ubar_select', choices = '', selected = '') } else { updateSelectInput(session, 'ubar_select', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "ubar_select", choices = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'ubar_select', choices = '', selected = '') } else { updateSelectInput(session, 'ubar_select', choices = names(f_data)) } }) # selected data selectedVar <- reactive({ req(input$ubar_select) bar_data <- final_split$train[, input$ubar_select] }) # dynamic UI for bar colors output$ui_ncolbar <- renderUI({ ncol <- as.integer(input$ncolbar) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_barcol_", i), label = paste0("Bar ", i, " Color"), value = 'blue') }) } }) colours_bar <- reactive({ ncol <- as.integer(input$ncolbar) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_barcol_", i)]] })) colors <- unlist(collect) } colors }) # dynamic UI for bar border colors output$ui_nborbar <- renderUI({ ncol <- as.integer(input$nborbar) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_bor_", i), label = paste0("Border Color ", i), value = 'black') }) } }) borders_bar <- reactive({ ncol <- as.integer(input$nborbar) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_bor_", i)]] })) colors <- unlist(collect) } colors }) # dynamic UI for bar labels output$ui_nbarlabel <- renderUI({ ncol <- as.integer(input$nbarlabel) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_barlabel_", i), label = paste0("Bar ", i, " Label")) }) } }) labels_bar <- reactive({ ncol <- as.integer(input$nbarlabel) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_barlabel_", i)]] })) colors <- unlist(collect) } colors }) # dynamic UI for bar width output$ui_nbarwidth <- renderUI({ ncol <- as.integer(input$nbarwidth) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { numericInput(paste("n_barwidth_", i), label = paste0("Bar ", i, " Width"), value = 1, min = 1) }) } }) widths_bar <- reactive({ ncol <- as.integer(input$nbarwidth) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_barwidth_", i)]] })) colors <- unlist(collect) } colors }) # # dynamic UI for shading density # output$ui_nbardensity <- renderUI({ # ncol <- as.integer(input$nbardensity) # lapply(1:ncol, function(i) { # numericInput(paste("n_bardensity_", i), # label = paste0("Bar ", i, " Density"), # value = 0, min = 0) # }) # }) # density_bar <- reactive({ # ncol <- as.integer(input$nbardensity) # collect <- list(lapply(1:ncol, function(i) { # input[[paste("n_bardensity_", i)]] # })) # colors <- unlist(collect) # }) # # dynamic UI for shading angle # output$ui_nbarangle <- renderUI({ # ncol <- as.integer(input$nbarangle) # lapply(1:ncol, function(i) { # numericInput(paste("n_barangle_", i), # label = paste0("Bar ", i, " Angle"), # value = 0, min = 0) # }) # }) # angle_bar <- reactive({ # ncol <- as.integer(input$nbarangle) # collect <- list(lapply(1:ncol, function(i) { # input[[paste("n_barangle_", i)]] # })) # colors <- unlist(collect) # }) # dynamic UI for legend names output$ui_legnames <- renderUI({ ncol <- as.integer(input$leg_names) lapply(1:ncol, function(i) { textInput(paste("n_names_", i), label = paste0("Legend Name ", i)) }) }) # dynamic UI for legend border output$ui_legpoint <- renderUI({ ncol <- as.integer(input$leg_point) lapply(1:ncol, function(i) { numericInput(paste("n_point_", i), label = paste0("Legend Point ", i), value = 1) }) }) # vector of legend names name_bar <- reactive({ ncol <- as.integer(input$leg_names) collect <- list(lapply(1:ncol, function(i) { input[[paste("n_names_", i)]] })) names <- unlist(collect) }) # vector of point types point_bar <- reactive({ ncol <- as.integer(input$leg_point) collect <- list(lapply(1:ncol, function(i) { input[[paste("n_point_", i)]] })) names <- unlist(collect) }) # bar plot output$ubar_plot_1 <- renderPlot({ bar_plotu( x = selectedVar(), horizontal = input$ubar_horiz, title = input$ubar_title, xlab = input$ubar_xlabel, space = input$ubar_barspace, ylab = input$ubar_ylabel ) }) output$ubar_plot_2 <- renderPlot({ bar_plotu( x = selectedVar(), horizontal = input$ubar_horiz, color = colours_bar(), border = borders_bar(), title = input$ubar_title, xlab = input$ubar_xlabel, labels = labels_bar(), space = input$ubar_barspace, width = widths_bar(), ylab = input$ubar_ylabel ) }) output$ubar_plot_3 <- renderPlot({ bar_plotu( selectedVar(), input$ubar_horiz, colours_bar(), borders_bar(), input$ubar_title, input$ubar_xlabel, labels_bar(), input$ubar_barspace, widths_bar(), input$ubar_axes, input$ubar_axislty, input$ubar_offset, input$ubar_ylabel ) }) output$ubar_plot_4 <- renderPlot({ bar_plotu( selectedVar(), input$ubar_horiz, colours_bar(), borders_bar(), input$ubar_title, input$ubar_xlabel, labels_bar(), input$ubar_barspace, widths_bar(), input$ubar_axes, input$ubar_axislty, input$ubar_offset, input$ubar_ylabel, leg = input$leg_yn, leg_x = input$leg_x, leg_y = input$leg_y, legend = name_bar(), leg_point = point_bar(), leg_colour = colours_bar(), leg_boxtype = input$leg_boxtype, leg_boxcol = input$leg_boxcol, leg_boxlty = input$leg_boxlty, leg_boxlwd = input$leg_boxlwd, leg_boxborcol = input$leg_boxborcol, leg_boxxjust = input$leg_boxxjust, leg_boxyjust = input$leg_boxyjust, leg_textcol = input$leg_textcol, leg_textfont = input$leg_textfont, leg_textcolumns = input$leg_textcolumns, leg_texthoriz = input$leg_texthoriz, leg_title = input$leg_title, leg_titlecol = input$leg_titlecol, leg_textadj = input$leg_textadj ) }) output$ubar_plot_5 <- renderPlot({ bar_plotu( selectedVar(), input$ubar_horiz, colours_bar(), borders_bar(), input$ubar_title, input$ubar_xlabel, labels_bar(), input$ubar_barspace, widths_bar(), input$ubar_axes, input$ubar_axislty, input$ubar_offset, input$ubar_ylabel, input$ubar_coltitle, input$ubar_colsub, input$ubar_colaxis, input$ubar_collabel, input$ubar_fontmain, input$ubar_fontsub, input$ubar_fontaxis, input$ubar_fontlab, input$ubar_cexmain, input$ubar_cexsub, input$ubar_cexaxis, input$ubar_cexlab, input$leg_yn, input$leg_x, input$leg_y, name_bar(), point_bar(), colours_bar(), input$leg_boxtype, input$leg_boxcol, input$leg_boxlty, input$leg_boxlwd, input$leg_boxborcol, input$leg_boxxjust, input$leg_boxyjust, input$leg_textcol, input$leg_textfont, input$leg_textcolumns, input$leg_texthoriz, input$leg_title, input$leg_titlecol, input$leg_textadj, input$ubar_plottext, input$ubar_text_x_loc, input$ubar_text_y_loc, input$ubar_textcolor, input$ubar_textfont, input$ubar_textsize, input$ubar_mtextplot, input$ubar_mtext_side, input$ubar_mtext_line, input$ubar_mtextadj, input$ubar_mtextcolor, input$ubar_mtextfont, input$ubar_mtextsize ) }) output$ubar_plot_final <- renderPlot({ bar_plotu( selectedVar(), input$ubar_horiz, colours_bar(), borders_bar(), input$ubar_title, input$ubar_xlabel, labels_bar(), input$ubar_barspace, widths_bar(), input$ubar_axes, input$ubar_axislty, input$ubar_offset, input$ubar_ylabel, input$ubar_coltitle, input$ubar_colsub, input$ubar_colaxis, input$ubar_collabel, input$ubar_fontmain, input$ubar_fontsub, input$ubar_fontaxis, input$ubar_fontlab, input$ubar_cexmain, input$ubar_cexsub, input$ubar_cexaxis, input$ubar_cexlab, input$leg_yn, input$leg_x, input$leg_y, name_bar(), point_bar(), colours_bar(), input$leg_boxtype, input$leg_boxcol, input$leg_boxlty, input$leg_boxlwd, input$leg_boxborcol, input$leg_boxxjust, input$leg_boxyjust, input$leg_textcol, input$leg_textfont, input$leg_textcolumns, input$leg_texthoriz, input$leg_title, input$leg_titlecol, input$leg_textadj, input$ubar_plottext, input$ubar_text_x_loc, input$ubar_text_y_loc, input$ubar_textcolor, input$ubar_textfont, input$ubar_textsize, input$ubar_mtextplot, input$ubar_mtext_side, input$ubar_mtext_line, input$ubar_mtextadj, input$ubar_mtextcolor, input$ubar_mtextfont, input$ubar_mtextsize ) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_bar.R
source("helper/bbar-plot.R") # update variable selection for bar plots observe({ updateSelectInput(session, 'bar2_select_x', choices = names(data())) updateSelectInput(session, 'bar2_select_y', choices = names(data())) }) observeEvent(input$finalok, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!is.null(dim(f_data)), 'Please select two factor variables.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'bar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bar2_select_y', choices = names(fdata), selected = names(fdata)) } else if (ncol(f_data) < 1) { updateSelectInput(session, 'bar2_select_x', choices = '', selected = '') updateSelectInput(session, 'bar2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'bar2_select_x', choices = names(f_data)) updateSelectInput(session, 'bar2_select_y', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!is.null(dim(f_data)), 'Please select two factor variables.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'bar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bar2_select_y', choices = names(fdata), selected = names(fdata)) } else if (ncol(f_data) < 1) { updateSelectInput(session, 'bar2_select_x', choices = '', selected = '') updateSelectInput(session, 'bar2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'bar2_select_x', choices = names(f_data)) updateSelectInput(session, 'bar2_select_y', choices = names(f_data)) } }) # selected data selected_x_bar2 <- reactive({ req(input$bar2_select_x) bar_data <- final_split$train[, input$bar2_select_x] }) selected_y_bar2 <- reactive({ req(input$bar2_select_y) bar_data <- final_split$train[, input$bar2_select_y] }) counts_bar2 <- reactive({ table(selected_x_bar2(), selected_y_bar2()) }) # dynamic UI for bar colors output$ui_ncolbar2 <- renderUI({ ncol <- as.integer(input$ncolbar2) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_bar2col_", i), label = paste0("Bar ", i, " Color"), value = 'blue') }) } }) colours_bar2 <- reactive({ ncol <- as.integer(input$ncolbar2) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_bar2col_", i)]] })) colors <- unlist(collect) } colors }) # dynamic UI for bar border colors output$ui_nborbar2 <- renderUI({ ncol <- as.integer(input$nborbar2) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_bor2_", i), label = paste0("Bar ", i, " Border Color"), value = 'black') }) } }) borders_bar2 <- reactive({ ncol <- as.integer(input$nborbar2) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_bor2_", i)]] })) colors <- unlist(collect) } colors }) # dynamic UI for bar labels output$ui_nbarlabel2 <- renderUI({ ncol <- as.integer(input$nbarlabel2) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_bar2label_", i), label = paste0("Bar ", i, " Label")) }) } }) labels_bar2 <- reactive({ ncol <- as.integer(input$nbarlabel2) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_bar2label_", i)]] })) colors <- unlist(collect) } colors }) # dynamic UI for bar width output$ui_nbarwidth2 <- renderUI({ ncol <- as.integer(input$nbarwidth2) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { numericInput(paste("n_bar2width_", i), label = paste0("Bar ", i, " Width"), value = 1, min = 1) }) } }) widths_bar2 <- reactive({ ncol <- as.integer(input$nbarwidth2) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_bar2width_", i)]] })) colors <- unlist(collect) } colors }) # dynamic UI for bar space # output$ui_nbarspace2 <- renderUI({ # ncol <- as.integer(input$nbarspace2) # # lapply(1:ncol, function(i) { # numericInput(paste("n_bar2space_", i), # label = paste0("n_bar2space_", i), # value = 0, min = 0, max = 2, step = 1) # }) # }) # # spaces_bar2 <- reactive({ # ncol <- as.integer(input$nbarspace2) # # collect <- list(lapply(1:ncol, function(i) { # input[[paste("n_bar2space_", i)]] # })) # # colors <- unlist(collect) # # }) # # dynamic UI for shading density # output$ui_nbardensity2 <- renderUI({ # ncol <- as.integer(input$nbardensity2) # lapply(1:ncol, function(i) { # numericInput(paste("n_bar2density_", i), # label = paste0("Bar ", i, " Density"), # value = 1, min = 1) # }) # }) # density_bar2 <- reactive({ # ncol <- as.integer(input$nbardensity2) # collect <- list(lapply(1:ncol, function(i) { # input[[paste("n_bar2density_", i)]] # })) # colors <- unlist(collect) # }) # # dynamic UI for shading angle # output$ui_nbarangle2 <- renderUI({ # ncol <- as.integer(input$nbarangle2) # lapply(1:ncol, function(i) { # numericInput(paste("n_bar2angle_", i), # label = paste0("Bar ", i, " Shading Angle"), # value = 1, min = 1) # }) # }) # angle_bar2 <- reactive({ # ncol <- as.integer(input$nbarangle2) # collect <- list(lapply(1:ncol, function(i) { # input[[paste("n_bar2angle_", i)]] # })) # colors <- unlist(collect) # }) # dynamic UI for legend names output$ui_bar2_legnames <- renderUI({ ncol <- as.integer(input$bar2_legnames) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_namesbar2_", i), label = paste0("Legend Name ", i)) }) } }) # dynamic UI for legend border output$ui_bar2_legpoint <- renderUI({ ncol <- as.integer(input$bar2_leg_point) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { numericInput(paste("n_pointbar2_", i), label = paste0("Legend Point ", i), value = 15) }) } }) # vector of legend names name_bar2 <- reactive({ ncol <- as.integer(input$bar2_legnames) if (ncol < 1) { names <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_namesbar2_", i)]] })) names <- unlist(collect) } names }) # vector of point types point_bar2 <- reactive({ ncol <- as.integer(input$bar2_leg_point) if (ncol < 1) { names <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_pointbar2_", i)]] })) names <- unlist(collect) } names }) output$bbar_plot_1 <- renderPlot({ barplot(height = counts_bar2(), horiz = as.logical(input$bar2_horiz), beside = as.logical(input$bar2_beside), main = input$bar2_title, xlab = input$bar2_xlabel, ylab = input$bar2_ylabel) }) output$bbar_plot_2 <- renderPlot({ barplot(height = counts_bar2(), horiz = as.logical(input$bar2_horiz), beside = as.logical(input$bar2_beside), main = input$bar2_title, xlab = input$bar2_xlabel, ylab = input$bar2_ylabel, col = colours_bar2(), border = borders_bar2(), width = widths_bar2(), names.arg = labels_bar2()) }) output$bbar_plot_3 <- renderPlot({ barplot(height = counts_bar2(), horiz = as.logical(input$bar2_horiz), beside = as.logical(input$bar2_beside), main = input$bar2_title, xlab = input$bar2_xlabel, ylab = input$bar2_ylabel, col = colours_bar2(), border = borders_bar2(), width = widths_bar2(), names.arg = labels_bar2(), axes = input$bar2_axes, axis.lty = input$bar2_axislty, offset = input$bar2_offset) }) output$bbar_plot_4 <- renderPlot({ bar_plotb( counts_bar2(), as.logical(input$bar2_horiz), colours_bar2(), borders_bar2(), besides = as.logical(input$bar2_beside), title = input$bar2_title, xlab = input$bar2_xlabel, labels_bar2(), width = widths_bar2(), axes = input$bar2_axes, axislty = input$bar2_axislty, offset = input$bar2_offset, ylab = input$bar2_ylabel, leg = as.logical(input$bar2_leg_yn), leg_x = input$bar2_leg_x, leg_y = input$bar2_leg_y, legend = name_bar2(), leg_point = point_bar2(), leg_colour = colours_bar2(), leg_boxtype = input$bar2_leg_boxtype, leg_boxcol = input$bar2_leg_boxcol, leg_boxlty = input$bar2_leg_boxlty, leg_boxlwd = input$bar2_leg_boxlwd, leg_boxborcol = input$bar2_leg_boxborcol, leg_boxxjust = input$bar2_leg_boxxjust, leg_boxyjust = input$bar2_leg_boxyjust, leg_textcol = input$bar2_leg_textcol, leg_textfont = input$bar2_leg_textfont, leg_textcolumns = input$bar2_leg_textcolumns, leg_texthoriz = input$bar2_leg_texthoriz, leg_title = input$bar2_leg_title, leg_titlecol = input$bar2_leg_titlecol, leg_textadj = input$bar2_leg_textadj) }) output$bbar_plot_5 <- renderPlot({ bar_plotb( counts_bar2(), as.logical(input$bar2_horiz), colours_bar2(), borders_bar2(), besides = as.logical(input$bar2_beside), title = input$bar2_title, xlab = input$bar2_xlabel, labels_bar2(), width = widths_bar2(), axes = input$bar2_axes, axislty = input$bar2_axislty, offset = input$bar2_offset, ylab = input$bar2_ylabel, leg = as.logical(input$bar2_leg_yn), leg_x = input$bar2_leg_x, leg_y = input$bar2_leg_y, legend = name_bar2(), leg_point = point_bar2(), leg_colour = colours_bar2(), leg_boxtype = input$bar2_leg_boxtype, leg_boxcol = input$bar2_leg_boxcol, leg_boxlty = input$bar2_leg_boxlty, leg_boxlwd = input$bar2_leg_boxlwd, leg_boxborcol = input$bar2_leg_boxborcol, leg_boxxjust = input$bar2_leg_boxxjust, leg_boxyjust = input$bar2_leg_boxyjust, leg_textcol = input$bar2_leg_textcol, leg_textfont = input$bar2_leg_textfont, leg_textcolumns = input$bar2_leg_textcolumns, leg_texthoriz = input$bar2_leg_texthoriz, leg_title = input$bar2_leg_title, leg_titlecol = input$bar2_leg_titlecol, leg_textadj = input$bar2_leg_textadj, colmain = input$bar2_coltitle, colaxis = input$bar2_colaxis, collab = input$bar2_collabel, cexmain = input$bar2_cexmain, cexaxis = input$bar2_cexaxis, cexlab = input$bar2_cexlab, fontmain = input$bar2_fontmain, fontaxis = input$bar2_fontaxis, fontlab = input$bar2_fontlab, text_p = input$bar2_plottext, text_x_loc = input$bar2_text_x_loc, text_y_loc = input$bar2_text_y_loc, text_col = input$bar2_textcolor, text_font = input$bar2_textfont, text_size = input$bar2_textsize, m_text = input$bar2_mtextplot, m_side = input$bar2_mtext_side, m_line = input$bar2_mtext_line, m_adj = input$bar2_mtextadj, m_col = input$bar2_mtextcolor, m_font = input$bar2_mtextfont, m_cex = input$bar2_mtextsize ) }) output$bbar_plot_final <- renderPlot({ bar_plotb( counts_bar2(), as.logical(input$bar2_horiz), colours_bar2(), borders_bar2(), besides = as.logical(input$bar2_beside), title = input$bar2_title, xlab = input$bar2_xlabel, labels_bar2(), width = widths_bar2(), axes = input$bar2_axes, axislty = input$bar2_axislty, offset = input$bar2_offset, ylab = input$bar2_ylabel, leg = as.logical(input$bar2_leg_yn), leg_x = input$bar2_leg_x, leg_y = input$bar2_leg_y, legend = name_bar2(), leg_point = point_bar2(), leg_colour = colours_bar2(), leg_boxtype = input$bar2_leg_boxtype, leg_boxcol = input$bar2_leg_boxcol, leg_boxlty = input$bar2_leg_boxlty, leg_boxlwd = input$bar2_leg_boxlwd, leg_boxborcol = input$bar2_leg_boxborcol, leg_boxxjust = input$bar2_leg_boxxjust, leg_boxyjust = input$bar2_leg_boxyjust, leg_textcol = input$bar2_leg_textcol, leg_textfont = input$bar2_leg_textfont, leg_textcolumns = input$bar2_leg_textcolumns, leg_texthoriz = input$bar2_leg_texthoriz, leg_title = input$bar2_leg_title, leg_titlecol = input$bar2_leg_titlecol, leg_textadj = input$bar2_leg_textadj, colmain = input$bar2_coltitle, colaxis = input$bar2_colaxis, collab = input$bar2_collabel, cexmain = input$bar2_cexmain, cexaxis = input$bar2_cexaxis, cexlab = input$bar2_cexlab, fontmain = input$bar2_fontmain, fontaxis = input$bar2_fontaxis, fontlab = input$bar2_fontlab, text_p = input$bar2_plottext, text_x_loc = input$bar2_text_x_loc, text_y_loc = input$bar2_text_y_loc, text_col = input$bar2_textcolor, text_font = input$bar2_textfont, text_size = input$bar2_textsize, m_text = input$bar2_mtextplot, m_side = input$bar2_mtext_side, m_line = input$bar2_mtext_line, m_adj = input$bar2_mtextadj, m_col = input$bar2_mtextcolor, m_font = input$bar2_mtextfont, m_cex = input$bar2_mtextsize ) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_bar2.R
source('helper/barly1.R') source('helper/bobar.R') source('helper/unibar.R') observeEvent(input$finalok, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'barly1_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobar1_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibar1_select_x', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'barly1_select_x', choices = '', selected = '') updateSelectInput(session, 'bobar1_select_x', choices = '', selected = '') updateSelectInput(session, 'hibar1_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'barly1_select_x', choices = names(f_data)) updateSelectInput(session, 'bobar1_select_x', choices = names(f_data)) updateSelectInput(session, 'hibar1_select_x', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'barly1_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobar1_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibar1_select_x', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'barly1_select_x', choices = '', selected = '') updateSelectInput(session, 'bobar1_select_x', choices = '', selected = '') updateSelectInput(session, 'hibar1_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'barly1_select_x', choices = names(f_data)) updateSelectInput(session, 'bobar1_select_x', choices = names(f_data)) updateSelectInput(session, 'hibar1_select_x', choices = names(f_data)) } }) output$barly1_plot_1 <- plotly::renderPlotly({ barly1(data = final_split$train, x_data = input$barly1_select_x, title = input$barly1_title, x_title = input$barly1_xlabel, y_title = input$barly1_ylabel, bar_col = input$barly1_color, b_text = input$barly1_btext) }) output$bobar1_plot_1 <- rbokeh::renderRbokeh({ bobar(data = final_split$train, x_data = input$bobar1_select_x, fig_title = input$bobar1_title, x_lab = input$bobar1_xlabel, y_lab = input$bobar1_ylabel, x_grid = input$bobar1_xgrid, y_grid = input$bobar1_ygrid, bar_width = input$bobar1_width, bar_hover = input$bobar1_hover, bar_col = input$bobar1_color, bar_f_alpha = input$bobar1_alpha, bar_l_col = input$bobar1_lcolor, bar_l_alpha = input$bobar1_lalpha) }) output$hibar1_plot_1 <- highcharter::renderHighchart({ highbar(data = final_split$train, column = input$hibar1_select_x, title = input$hibar1_title, name = input$hibar1_xlabel) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_bar_plot_1.R
source('helper/barly2.R') source('helper/bobar2.R') source('helper/bibar.R') observeEvent(input$finalok, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'barly2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'barly2_select_y', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobar2_select_y', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibar2_select_y', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'barly2_select_x', choices = '', selected = '') updateSelectInput(session, 'barly2_select_y', choices = '', selected = '') updateSelectInput(session, 'bobar2_select_x', choices = '', selected = '') updateSelectInput(session, 'bobar2_select_y', choices = '', selected = '') updateSelectInput(session, 'hibar2_select_x', choices = '', selected = '') updateSelectInput(session, 'hibar2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'barly2_select_x', choices = names(f_data)) updateSelectInput(session, 'barly2_select_y', choices = names(f_data)) updateSelectInput(session, 'bobar2_select_x', choices = names(f_data)) updateSelectInput(session, 'bobar2_select_y', choices = names(f_data)) updateSelectInput(session, 'hibar2_select_x', choices = names(f_data)) updateSelectInput(session, 'hibar2_select_y', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'barly2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'barly2_select_y', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobar2_select_y', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibar2_select_y', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'barly2_select_x', choices = '', selected = '') updateSelectInput(session, 'barly2_select_y', choices = '', selected = '') updateSelectInput(session, 'bobar2_select_x', choices = '', selected = '') updateSelectInput(session, 'bobar2_select_y', choices = '', selected = '') updateSelectInput(session, 'hibar2_select_x', choices = '', selected = '') updateSelectInput(session, 'hibar2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'barly2_select_x', choices = names(f_data)) updateSelectInput(session, 'barly2_select_y', choices = names(f_data)) updateSelectInput(session, 'bobar2_select_x', choices = names(f_data)) updateSelectInput(session, 'bobar2_select_y', choices = names(f_data)) updateSelectInput(session, 'hibar2_select_x', choices = names(f_data)) updateSelectInput(session, 'hibar2_select_y', choices = names(f_data)) } }) output$barly2_plot_1 <- plotly::renderPlotly({ barly2(data = final_split$train, x = input$barly2_select_x, y = input$barly2_select_y, title = input$barly2_title, x_title = input$barly2_xlabel, y_title = input$barly2_ylabel) }) output$bobar2_plot_1 <- rbokeh::renderRbokeh({ bobar2(data = final_split$train, var_1 = input$bobar2_select_x, var_2 = input$bobar2_select_y, fig_title = input$bobar2_title, x_lab = input$bobar2_xlabel, y_lab = input$bobar2_ylabel, x_grid = input$bobar2_xgrid, y_grid = input$bobar2_ygrid, legend_loc = input$bobar2_legloc, bar_pos = input$bobar2_type, bar_hover = input$bobar2_hover, bar_width = input$bobar2_width, bar_f_alpha = input$bobar2_alpha) }) output$hibar2_plot_1 <- highcharter::renderHighchart({ bibar(data = final_split$train, x = input$hibar2_select_x, y = input$hibar2_select_y, horizontal = input$hibar2_horiz, stacked = input$hibar2_stack) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_bar_plot_2.R
library(shiny) source("helper/ubox-plot.R") # update variable selection for bar plots observe({ updateSelectInput(session, 'ubox_select', choices = names(data())) }) observeEvent(input$finalok, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'ubox_select', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'ubox_select', choices = '', selected = '') } else { updateSelectInput(session, 'ubox_select', choices = names(num_data)) } }) observeEvent(input$submit_part_train_per, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'ubox_select', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'ubox_select', choices = '', selected = '') } else { updateSelectInput(session, 'ubox_select', choices = names(num_data)) } }) # selected data ubox_data <- reactive({ req(input$ubox_select) box_data <- final_split$train[, input$ubox_select] }) # bar plot* output$ubox_plot_1 <- renderPlot({ box_plotu(ubox_data(), input$ubox_title, input$ubox_xlabel, input$ubox_ylabel, input$ubox_colour, input$ubox_borcolour) }) output$ubox_plot_2 <- renderPlot({ box_plotu(ubox_data(), input$ubox_title, input$ubox_xlabel, input$ubox_ylabel, input$ubox_colour, input$ubox_borcolour, as.logical(input$ubox_horiz), as.logical(input$ubox_notch), input$ubox_range, as.logical(input$ubox_outline), as.logical(input$ubox_varwidth)) }) output$ubox_plot_3 <- renderPlot({ box_plotu(ubox_data(), input$ubox_title, input$ubox_xlabel, input$ubox_ylabel, input$ubox_colour, input$ubox_borcolour, as.logical(input$ubox_horiz), as.logical(input$ubox_notch), input$ubox_range, as.logical(input$ubox_outline), as.logical(input$ubox_varwidth), text_p = input$ubox_plottext, text_x_loc = input$ubox_text_x_loc, text_y_loc = input$ubox_text_y_loc, text_col = input$ubox_textcolor, text_font = input$ubox_textfont, text_size = input$ubox_textsize, m_text = input$ubox_mtextplot, m_side = input$ubox_mtext_side, m_line = input$ubox_mtext_line, m_adj = input$ubox_mtextadj, m_col = input$ubox_mtextcolor, m_font = input$ubox_mtextfont, m_cex = input$ubox_mtextsize) }) # bar plot output$ubox_plot_4 <- renderPlot({ box_plotu( ubox_data(), input$ubox_title, input$ubox_xlabel, input$ubox_ylabel, input$ubox_colour, input$ubox_borcolour, as.logical(input$ubox_horiz), as.logical(input$ubox_notch), input$ubox_range, as.logical(input$ubox_outline), as.logical(input$ubox_varwidth), input$ubox_coltitle, input$ubox_colsub, input$ubox_colaxis, input$ubox_collabel, input$ubox_fontmain, input$ubox_fontsub, input$ubox_fontaxis, input$ubox_fontlab, input$ubox_cexmain, input$ubox_cexsub, input$ubox_cexaxis, input$ubox_cexlab, text_p = input$ubox_plottext, text_x_loc = input$ubox_text_x_loc, text_y_loc = input$ubox_text_y_loc, text_col = input$ubox_textcolor, text_font = input$ubox_textfont, text_size = input$ubox_textsize, m_text = input$ubox_mtextplot, m_side = input$ubox_mtext_side, m_line = input$ubox_mtext_line, m_adj = input$ubox_mtextadj, m_col = input$ubox_mtextcolor, m_font = input$ubox_mtextfont, m_cex = input$ubox_mtextsize ) }) # bar plot output$ubox_plot_final <- renderPlot({ box_plotu( ubox_data(), input$ubox_title, input$ubox_xlabel, input$ubox_ylabel, input$ubox_colour, input$ubox_borcolour, as.logical(input$ubox_horiz), as.logical(input$ubox_notch), input$ubox_range, as.logical(input$ubox_outline), as.logical(input$ubox_varwidth), input$ubox_coltitle, input$ubox_colsub, input$ubox_colaxis, input$ubox_collabel, input$ubox_fontmain, input$ubox_fontsub, input$ubox_fontaxis, input$ubox_fontlab, input$ubox_cexmain, input$ubox_cexsub, input$ubox_cexaxis, input$ubox_cexlab, text_p = input$ubox_plottext, text_x_loc = input$ubox_text_x_loc, text_y_loc = input$ubox_text_y_loc, text_col = input$ubox_textcolor, text_font = input$ubox_textfont, text_size = input$ubox_textsize, m_text = input$ubox_mtextplot, m_side = input$ubox_mtext_side, m_line = input$ubox_mtext_line, m_adj = input$ubox_mtextadj, m_col = input$ubox_mtextcolor, m_font = input$ubox_mtextfont, m_cex = input$ubox_mtextsize ) }) # plot download # output$box_downloadGraph <- downloadHandler( # filename <- function() { # paste(input$box_fileName, ".png") # }, # content <- function(file) { # png(file) # plot <- box_plot( # box_plotu( # selectedVar(), # input$box_col, input$box_bordercol, input$box_title, # input$box_subtitle, input$box_xlabel, input$box_ylabel, # input$box_coltitle, input$box_colsub, input$box_colaxis, # input$box_collabel, input$box_fontmain, input$box_fontsub, # input$box_fontaxis, input$box_fontlab, input$box_cexmain, # input$box_cexsub, input$box_cexaxis, input$box_cexlab, # input$box_plottext, input$box_text_x_loc, input$box_text_y_loc, # input$box_textcolor, input$box_textfont, input$box_textsize, # input$box_mtextplot, input$box_mtext_side, input$box_mtext_line, # input$box_mtextadj, input$box_mtextcolor, input$box_mtextfont, # input$box_mtextsize # ) # ) # print(plot) # dev.off() # } # )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_box.R
library(shiny) source("helper/bbox-plot.R") # update variable selection for bar plots observe({ updateSelectInput(session, 'bbox_select_x', choices = names(filt_data$p)) updateSelectInput(session, 'bbox_select_y', choices = names(filt_data$p)) }) observeEvent(input$finalok, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] f_data <- final_split$train[, sapply(final_split$train, is.factor)] if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "bbox_select_x", choices = names(fdata)) } else { updateSelectInput(session, 'bbox_select_x', choices = names(f_data)) } if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'bbox_select_y', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'bbox_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'bbox_select_y', choices = names(num_data)) } }) observeEvent(input$submit_part_train_per, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] f_data <- final_split$train[, sapply(final_split$train, is.factor)] if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, inputId = "bbox_select_x", choices = names(fdata)) } else { updateSelectInput(session, 'bbox_select_x', choices = names(f_data)) } if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'bbox_select_y', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'bbox_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'bbox_select_y', choices = names(num_data)) } }) f_split <- reactiveValues(num_data = NULL) num_data1 <- eventReactive(input$button_split_no, { numdata <- final_split$train[, sapply(final_split$train, is.factor)] if (is.factor(numdata)) { out <- 1 } else { out <- ncol(numdata) } out }) num_data2 <- eventReactive(input$submit_part_train_per, { numdata <- final_split$train[, sapply(final_split$train, is.factor)] if (is.factor(numdata)) { out <- 1 } else { out <- ncol(numdata) } out }) observeEvent(input$button_split_no, { f_split$num_data <- num_data1() }) observeEvent(input$submit_part_train_per, { f_split$num_data <- num_data2() }) # selected data bbox_x <- eventReactive(input$box2_create, { # req(input$bbox_select_x) if (f_split$num_data > 0) { box_data <- final_split$train[, input$bbox_select_x] } else { box_data <- NULL } box_data }) bbox_y <- eventReactive(input$box2_create, { # req(input$bbox_select_y) box_data <- final_split$train[, input$bbox_select_y] }) n_labels <- eventReactive(input$box2_create, { if (!is.null(bbox_x())) { k <- nlevels(bbox_x()) } k }) observeEvent(input$box2_create, { # req(input$bbox_select_x) if (!is.null(bbox_x())) { updateNumericInput(session, 'nbox2label', value = n_labels()) } }) # dynamic UI for histogram colors output$ui_ncolbox2 <- renderUI({ ncol <- as.integer(input$ncolbox2) lapply(1:ncol, function(i) { textInput(paste("n_box2col_", i), label = paste0("Box Color ", i), value = 'blue') }) }) colours_box2 <- reactive({ ncol <- as.integer(input$ncolbox2) collect <- list(lapply(1:ncol, function(i) { input[[paste("n_box2col_", i)]] })) colors <- unlist(collect) }) # dynamic UI for histogram border colors output$ui_nborbox2 <- renderUI({ ncol <- as.integer(input$nborbox2) lapply(1:ncol, function(i) { textInput(paste("n_box2bor_", i), label = paste0("Border Color ", i), value = 'black') }) }) borders_box2 <- reactive({ ncol <- as.integer(input$nborbox2) collect <- list(lapply(1:ncol, function(i) { input[[paste("n_box2bor_", i)]] })) colors <- unlist(collect) }) output$ui_nbox2label <- renderUI({ ncol <- as.integer(input$nbox2label) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_box2label_", i), label = paste0("Label ", i)) }) } }) labels_box2 <- reactive({ ncol <- as.integer(input$nbox2label) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_box2label_", i)]] })) colors <- unlist(collect) } colors }) output$ui_box2_legnames <- renderUI({ ncol <- as.integer(input$box2_legnames) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { textInput(paste("n_legnamesbox2_", i), label = paste0("Legend Name ", i)) }) } }) output$ui_box2_legpoint <- renderUI({ ncol <- as.integer(input$box2_leg_point) if (ncol < 1) { NULL } else { lapply(1:ncol, function(i) { numericInput(paste("n_pointbox2_", i), label = paste0("Legend Point ", i), value = 15) }) } }) name_box2 <- reactive({ ncol <- as.integer(input$box2_legnames) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_legnamesbox2_", i)]] })) colors <- unlist(collect) } colors }) point_box2 <- reactive({ ncol <- as.integer(input$box2_leg_point) if (ncol < 1) { colors <- NULL } else { collect <- list(lapply(1:ncol, function(i) { input[[paste("n_pointbox2_", i)]] })) colors <- unlist(collect) } colors }) # bar plot output$bbox_plot_1 <- renderPlot({ if (!is.null(bbox_x())) { box_plotb(bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel) } }) output$bbox_plot_2 <- renderPlot({ box_plotb(bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth)) }) output$bbox_plot_3 <- renderPlot({ box_plotb(bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), labels = labels_box2()) }) # bar plot output$bbox_plot_5 <- renderPlot({ box_plotb( bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), text_p = input$bbox_plottext, text_x_loc = input$bbox_text_x_loc, text_y_loc = input$bbox_text_y_loc, text_col = input$bbox_textcolor, text_font = input$bbox_textfont, text_size = input$bbox_textsize, m_text = input$bbox_mtextplot, m_side = input$bbox_mtext_side, m_line = input$bbox_mtext_line, m_adj = input$bbox_mtextadj, m_col = input$bbox_mtextcolor, m_font = input$bbox_mtextfont, m_cex = input$bbox_mtextsize ) }) # bar plot output$bbox_plot_6 <- renderPlot({ box_plotb( bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), labels = labels_box2(), input$bbox_coltitle, input$bbox_colsub, input$bbox_colaxis, input$bbox_collabel, fontmain = input$bbox_fontmain, fontsub = input$bbox_fontsub, fontaxis = input$bbox_fontaxis, fontlab = input$bbox_fontlab, input$bbox_cexmain, input$bbox_cexsub, input$bbox_cexaxis, input$bbox_cexlab, text_p = input$bbox_plottext, text_x_loc = input$bbox_text_x_loc, text_y_loc = input$bbox_text_y_loc, text_col = input$bbox_textcolor, text_font = input$bbox_textfont, text_size = input$bbox_textsize, m_text = input$bbox_mtextplot, m_side = input$bbox_mtext_side, m_line = input$bbox_mtext_line, m_adj = input$bbox_mtextadj, m_col = input$bbox_mtextcolor, m_font = input$bbox_mtextfont, m_cex = input$bbox_mtextsize ) }) # bar plot output$bbox_plot_final <- renderPlot({ box_plotb( bbox_x(), bbox_y(), title = input$bbox_title, subs = input$bbox_subtitle, xlabel = input$bbox_xlabel, ylabel = input$bbox_ylabel, horiz = as.logical(input$bbox_horiz), notches = as.logical(input$bbox_notch), ranges = input$bbox_range, outlines = as.logical(input$bbox_outline), varwidths = as.logical(input$bbox_varwidth), color = colours_box2(), borders = borders_box2(), labels = labels_box2(), input$bbox_coltitle, input$bbox_colsub, input$bbox_colaxis, input$bbox_collabel, fontmain = input$bbox_fontmain, fontsub = input$bbox_fontsub, fontaxis = input$bbox_fontaxis, fontlab = input$bbox_fontlab, input$bbox_cexmain, input$bbox_cexsub, input$bbox_cexaxis, input$bbox_cexlab, text_p = input$bbox_plottext, text_x_loc = input$bbox_text_x_loc, text_y_loc = input$bbox_text_y_loc, text_col = input$bbox_textcolor, text_font = input$bbox_textfont, text_size = input$bbox_textsize, m_text = input$bbox_mtextplot, m_side = input$bbox_mtext_side, m_line = input$bbox_mtext_line, m_adj = input$bbox_mtextadj, m_col = input$bbox_mtextcolor, m_font = input$bbox_mtextfont, m_cex = input$bbox_mtextsize ) }) # plot download # output$box_downloadGraph <- downloadHandler( # filename <- function() { # paste(input$box_fileName, ".png") # }, # content <- function(file) { # png(file) # plot <- box_plot( # box_plotu( # selectedVar(), # input$box_col, input$box_bordercol, input$box_title, # input$box_subtitle, input$box_xlabel, input$box_ylabel, # input$box_coltitle, input$box_colsub, input$box_colaxis, # input$box_collabel, input$box_fontmain, input$box_fontsub, # input$box_fontaxis, input$box_fontlab, input$box_cexmain, # input$box_cexsub, input$box_cexaxis, input$box_cexlab, # input$box_plottext, input$box_text_x_loc, input$box_text_y_loc, # input$box_textcolor, input$box_textfont, input$box_textsize, # input$box_mtextplot, input$box_mtext_side, input$box_mtext_line, # input$box_mtextadj, input$box_mtextcolor, input$box_mtextfont, # input$box_mtextsize # ) # ) # print(plot) # dev.off() # } # )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_box2.R
source('helper/boxly1.R') source('helper/bobox.R') observeEvent(input$finalok, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'boxly1_select_x', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'bobox1_select_x', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'boxly1_select_x', choices = '', selected = '') updateSelectInput(session, 'bobox1_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'boxly1_select_x', choices = names(num_data)) updateSelectInput(session, 'bobox1_select_x', choices = names(num_data)) } }) observeEvent(input$submit_part_train_per, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'boxly1_select_x', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'bobox1_select_x', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'boxly1_select_x', choices = '', selected = '') updateSelectInput(session, 'bobox1_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'boxly1_select_x', choices = names(num_data)) updateSelectInput(session, 'bobox1_select_x', choices = names(num_data)) } }) output$boxly1_plot_1 <- plotly::renderPlotly({ boxly1(data = final_split$train, y = input$boxly1_select_x, title = input$boxly1_title, name = input$boxly1_xlabel, x_title = NULL, y_title = input$boxly1_ylabel) }) output$bobox1_plot_1 <- rbokeh::renderRbokeh({ bobox(data = final_split$train, x_data = input$bobox1_select_x, fig_title = input$bobox1_title, x_lab = input$bobox1_xlabel, y_lab = input$bobox1_ylabel, , x_grid = input$bobox1_xgrid, y_grid = input$bobox1_ygrid, box_w = input$bobox1_width, box_col = input$bobox1_color, box_alp = input$bobox1_alpha, box_l_col = input$bobox1_lcolor, box_out_gly = input$bobox1_oshape, box_out_size = input$bobox1_osize) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_box_plot_1.R
source('helper/boxly2.R') source('helper/bobox2.R') source('helper/hibox2.R') observeEvent(input$finalok, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'boxly2_select_y', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'bobox2_select_y', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'hibox2_select_y', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'boxly2_select_y', choices = '', selected = '') updateSelectInput(session, 'bobox2_select_y', choices = '', selected = '') updateSelectInput(session, 'hibox2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'boxly2_select_y', choices = names(num_data)) updateSelectInput(session, 'bobox2_select_y', choices = names(num_data)) updateSelectInput(session, 'hibox2_select_y', choices = names(num_data)) } f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'boxly2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobox2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibox2_select_x', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'boxly2_select_x', choices = '', selected = '') updateSelectInput(session, 'bobox2_select_x', choices = '', selected = '') updateSelectInput(session, 'hibox2_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'boxly2_select_x', choices = names(f_data)) updateSelectInput(session, 'bobox2_select_x', choices = names(f_data)) updateSelectInput(session, 'hibox2_select_x', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'boxly2_select_y', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'bobox2_select_y', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'hibox2_select_y', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'boxly2_select_y', choices = '', selected = '') updateSelectInput(session, 'bobox2_select_y', choices = '', selected = '') updateSelectInput(session, 'hibox2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'boxly2_select_y', choices = names(num_data)) updateSelectInput(session, 'bobox2_select_y', choices = names(num_data)) updateSelectInput(session, 'hibox2_select_y', choices = names(num_data)) } f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'boxly2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'bobox2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'hibox2_select_x', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'boxly2_select_x', choices = '', selected = '') updateSelectInput(session, 'bobox2_select_x', choices = '', selected = '') updateSelectInput(session, 'hibox2_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'boxly2_select_x', choices = names(f_data)) updateSelectInput(session, 'bobox2_select_x', choices = names(f_data)) updateSelectInput(session, 'hibox2_select_x', choices = names(f_data)) } }) output$boxly2_plot_1 <- plotly::renderPlotly({ boxly2(data = final_split$train, y = input$boxly2_select_y, x = input$boxly2_select_x, title = input$boxly2_title, x_title = input$boxly2_ylabel, y_title = input$boxly2_ylabel) }) output$bobox2_plot_1 <- rbokeh::renderRbokeh({ bobox2(data = final_split$train, y_data = input$bobox2_select_y, x_data = input$bobox2_select_x, fig_title = input$bobox2_title, x_lab = input$bobox2_ylabel, y_lab = input$bobox2_ylabel, x_grid = input$bobox2_xgrid, y_grid = input$bobox2_ygrid, box_w = input$bobox2_width, box_alp = input$bobox2_alpha, box_out_gly = input$bobox2_oshape, box_out_size = input$bobox2_osize, legend_loc = input$bobox2_legloc) }) output$hibox2_plot_1 <- highcharter::renderHighchart({ highbox(data = final_split$train, y = input$hibox2_select_y, x = input$hibox2_select_x, title = input$hibox2_title, xax_title = input$hibox2_ylabel, yax_title = input$hibox2_ylabel) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_box_plot_2.R
observeEvent(input$sample_data_yes, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_use_sample') }) file_upload_options <- eventReactive(input$upload_files_yes, { fluidRow( column(3, align = 'center', actionButton( inputId = 'upload_csv_file', label = 'CSV', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_xls_file', label = 'XLS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_xlsx_file', label = 'XLSX', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_json_file', label = 'JSON', width = '120px' ) ), column(12, br()), column(3, align = 'center', actionButton( inputId = 'upload_stata_file', label = 'STATA', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_spss_file', label = 'SPSS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_sas_file', label = 'SAS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_rds_file', label = 'RDS', width = '120px' ) ) ) }) output$upload_file_links <- renderUI({ file_upload_options() }) observeEvent(input$upload_csv_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tab_uploadfile', selected = 'tab_upload_csv') }) observeEvent(input$upload_xls_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_excel') }) observeEvent(input$upload_xlsx_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_excel') }) observeEvent(input$upload_json_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_json') }) observeEvent(input$upload_stata_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_stata') }) observeEvent(input$upload_spss_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_spss') }) observeEvent(input$upload_sas_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_sas') }) observeEvent(input$upload_rds_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_rds') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_dataoptions.R
# Exit --------------------------------------------------------------- observe({ if (isTRUE(input$mainpage == "exit")) { stopApp() } })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_exit_button.R
filt_ui <- eventReactive(input$button_filt_yes, { fluidRow( column(12, align = 'center', selectInput( inputId = 'dplyr_filter', label = 'Filter:', choices = '', selected = '', width = '120px' ) ), column(12, align = 'center', selectInput( inputId = 'dplyr_filt_op', label = 'Select Operator', choices = c('<', '>', '<=', '>=', '=='), selected = '', width = '120px' ) ), column(12, align = 'center', textInput( inputId = 'dplyr_filt_val', label = 'Value', value = '20', width = '120px' ) ), column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dply_filt', label = 'Filter', width = '120px', icon = icon('check')), bsTooltip("submit_dply_filt", "Click here to filter data.", "bottom", options = list(container = "body")) ) ) }) output$filt_render <- renderUI( filt_ui() ) observeEvent(input$button_filt_yes, { updateSelectInput( session, inputId = "dplyr_filter", choices = names(final_sel$a), selected = names(final_sel$a) ) }) observeEvent(input$submit_dply_selvar, { updateSelectInput( session, inputId = "dplyr_filter", choices = names(finalsel()), selected = names(finalsel()) ) }) filt_data <- reactiveValues(p = NULL) observeEvent(input$submit_dply_selvar, { filt_data$p <- final_sel$a }) observeEvent(input$button_filt_yes, { filt_data$p <- final_sel$a }) observeEvent(input$submit_dply_filt, { filt_data$p <- filt_data$p %>% filter_(paste(input$dplyr_filter, input$dplyr_filt_op, input$dplyr_filt_val)) }) observeEvent(input$button_filt_no, { filt_data$p <- final_sel$a }) observeEvent(input$button_filt_no, { updateNavbarPage(session, 'mainpage', selected = 'tab_scr') updateNavlistPanel(session, 'navlist_trans', 'tab_screen') }) filttrans <- eventReactive(input$button_filt_yes, { fluidRow( column(6, align = 'left', actionButton(inputId='filt2dvarsel', label="Select Variables", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='filt2screen', label="Screen Data", icon = icon("long-arrow-right")) ) ) }) output$filt_trans <- renderUI({ filttrans() }) observeEvent(input$filt2dvarsel, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_selvar') }) observeEvent(input$filt2screen, { updateNavbarPage(session, 'mainpage', selected = 'tab_scr') updateNavlistPanel(session, 'navlist_trans', 'tab_screen') }) # filtered <- eventReactive(input$submit_dply_filt, { # k <- final_sel() %>% # filter_(paste(input$dplyr_filter, input$dplyr_filt_op, input$dplyr_filt_val)) # k # # k <- filter_(final_sel(), paste(input$dplyr_filter, input$dplyr_filt_op, input$dplyr_filt_val)) # # k # })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_filter.R
source('helper/ggunibar.R') observeEvent(input$finalok, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'gbar_select_x', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'gbar_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'gbar_select_x', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'gbar_select_x', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'gbar_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'gbar_select_x', choices = names(f_data)) } }) gselectedbar <- reactive({ req(input$gbar_select_x) out <- final_split$train %>% select(input$gbar_select_x) out }) ybarmax <- reactive({ out <- gselectedbar() %>% select(1) %>% table() %>% max out }) output$ui_gbaryrange_min <- renderUI({ df <- final_split$train if (is.null(df)) return(NULL) numericInput('gbary_range_min', 'Y Axis Min', value = 0, min = 0) }) output$ui_gbaryrange_max <- renderUI({ df <- final_split$train if (is.null(df)) return(NULL) numericInput('gbary_range_max', 'Y Axis Max', value = ybarmax()) }) output$gbar_plot_1 <- renderPlot({ ggbar1(data = final_split$train, column = input$gbar_select_x, horizontal = input$gbar_horiz, title = input$gbar_title, sub = input$gbar_subtitle, xlab = input$gbar_xlabel, ylab = input$gbar_ylabel, bar_col = input$gbar_barcol, bor_col = input$gbar_borcol) }) output$gbar_plot_2 <- renderPlot({ ggbar1(data = final_split$train, column = input$gbar_select_x, horizontal = input$gbar_horiz, bar_col = input$gbar_barcol, bor_col = input$gbar_borcol, title = input$gbar_title, sub = input$gbar_subtitle, xlab = input$gbar_xlabel, ylab = input$gbar_ylabel, yaxlimit = TRUE, y1 = input$gbary_range_min, y2 = input$gbary_range_max, remove_xax = input$gbar_remx, remove_yax = input$gbar_remy) }) output$gbar_plot_3 <- renderPlot({ ggbar1(data = final_split$train, column = input$gbar_select_x, horizontal = input$gbar_horiz, title = input$gbar_title, sub = input$gbar_subtitle, xlab = input$gbar_xlabel, bar_col = input$gbar_barcol, bor_col = input$gbar_borcol, ylab = input$gbar_ylabel, yaxlimit = TRUE, y1 = input$gbary_range_min, y2 = input$gbary_range_max, remove_xax = input$gbar_remx, remove_yax = input$gbar_remy, add_text = input$gbar_text, xloc = input$gbar_text_x_loc, yloc = input$gbar_text_y_loc, label = input$gbar_plottext, tex_color = input$gbar_textcolor, tex_size = input$gbar_textsize) }) output$gbar_plot_4 <- renderPlot({ ggbar1(data = final_split$train, column = input$gbar_select_x, horizontal = input$gbar_horiz, title = input$gbar_title, sub = input$gbar_subtitle, xlab = input$gbar_xlabel, bar_col = input$gbar_barcol, bor_col = input$gbar_borcol, ylab = input$gbar_ylabel, yaxlimit = TRUE, y1 = input$gbary_range_min, y2 = input$gbary_range_max, remove_xax = input$gbar_remx, remove_yax = input$gbar_remy, add_text = input$gbar_text, xloc = input$gbar_text_x_loc, yloc = input$gbar_text_y_loc, label = input$gbar_plottext, tex_color = input$gbar_textcolor, tex_size = input$gbar_textsize, title_col = input$gbar_title_col, title_fam = input$gbar_title_fam, title_face = input$gbar_title_font, title_size = input$gbar_title_size, title_hjust = input$gbar_title_hjust, title_vjust = input$gbar_title_vjust, sub_col = input$gbar_sub_col, sub_fam = input$gbar_sub_fam, sub_face = input$gbar_subtitle_font, sub_size = input$gbar_sub_size, sub_hjust = input$gbar_sub_hjust, sub_vjust = input$gbar_sub_vjust, xax_col = input$gbar_xlab_col, xax_fam = input$gbar_xlab_fam, xax_face = input$gbar_xlab_font, xax_size = input$gbar_xlab_size, xax_hjust = input$gbar_xlab_hjust, xax_vjust = input$gbar_xlab_vjust, yax_col = input$gbar_ylab_col, yax_fam = input$gbar_ylab_fam, yax_face = input$gbar_ylab_font, yax_size = input$gbar_ylab_size, yax_hjust = input$gbar_ylab_hjust, yax_vjust = input$gbar_ylab_vjust) }) output$gbar_plot_5 <- renderPlot({ ggbar1(data = final_split$train, column = input$gbar_select_x, horizontal = input$gbar_horiz, title = input$gbar_title, sub = input$gbar_subtitle, xlab = input$gbar_xlabel, bar_col = input$gbar_barcol, bor_col = input$gbar_borcol, ylab = input$gbar_ylabel, yaxlimit = TRUE, y1 = input$gbary_range_min, y2 = input$gbary_range_max, remove_xax = input$gbar_remx, remove_yax = input$gbar_remy, add_text = input$gbar_text, xloc = input$gbar_text_x_loc, yloc = input$gbar_text_y_loc, label = input$gbar_plottext, tex_color = input$gbar_textcolor, tex_size = input$gbar_textsize, title_col = input$gbar_title_col, title_fam = input$gbar_title_fam, title_face = input$gbar_title_font, title_size = input$gbar_title_size, title_hjust = input$gbar_title_hjust, title_vjust = input$gbar_title_vjust, sub_col = input$gbar_sub_col, sub_fam = input$gbar_sub_fam, sub_face = input$gbar_subtitle_font, sub_size = input$gbar_sub_size, sub_hjust = input$gbar_sub_hjust, sub_vjust = input$gbar_sub_vjust, xax_col = input$gbar_xlab_col, xax_fam = input$gbar_xlab_fam, xax_face = input$gbar_xlab_font, xax_size = input$gbar_xlab_size, xax_hjust = input$gbar_xlab_hjust, xax_vjust = input$gbar_xlab_vjust, yax_col = input$gbar_ylab_col, yax_fam = input$gbar_ylab_fam, yax_face = input$gbar_ylab_font, yax_size = input$gbar_ylab_size, yax_hjust = input$gbar_ylab_hjust, yax_vjust = input$gbar_ylab_vjust, theme = input$gbar_theme) }) output$gbar_plot_6 <- renderPlot({ ggbar1(data = final_split$train, column = input$gbar_select_x, horizontal = input$gbar_horiz, title = input$gbar_title, sub = input$gbar_subtitle, xlab = input$gbar_xlabel, bar_col = input$gbar_barcol, bor_col = input$gbar_borcol, ylab = input$gbar_ylabel, yaxlimit = TRUE, y1 = input$gbary_range_min, y2 = input$gbary_range_max, remove_xax = input$gbar_remx, remove_yax = input$gbar_remy, add_text = input$gbar_text, xloc = input$gbar_text_x_loc, yloc = input$gbar_text_y_loc, label = input$gbar_plottext, tex_color = input$gbar_textcolor, tex_size = input$gbar_textsize, title_col = input$gbar_title_col, title_fam = input$gbar_title_fam, title_face = input$gbar_title_font, title_size = input$gbar_title_size, title_hjust = input$gbar_title_hjust, title_vjust = input$gbar_title_vjust, sub_col = input$gbar_sub_col, sub_fam = input$gbar_sub_fam, sub_face = input$gbar_subtitle_font, sub_size = input$gbar_sub_size, sub_hjust = input$gbar_sub_hjust, sub_vjust = input$gbar_sub_vjust, xax_col = input$gbar_xlab_col, xax_fam = input$gbar_xlab_fam, xax_face = input$gbar_xlab_font, xax_size = input$gbar_xlab_size, xax_hjust = input$gbar_xlab_hjust, xax_vjust = input$gbar_xlab_vjust, yax_col = input$gbar_ylab_col, yax_fam = input$gbar_ylab_fam, yax_face = input$gbar_ylab_font, yax_size = input$gbar_ylab_size, yax_hjust = input$gbar_ylab_hjust, yax_vjust = input$gbar_ylab_vjust, theme = input$gbar_theme) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_gbar.R
source('helper/ggbibar.R') observeEvent(input$finalok, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'gbar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'gbar2_select_y', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'gbar2_select_x', choices = '', selected = '') updateSelectInput(session, 'gbar2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'gbar2_select_x', choices = names(f_data)) updateSelectInput(session, 'gbar2_select_y', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] # validate(need(!dim(f_data)[2] == 0, 'No factor variables in the data.')) if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'gbar2_select_x', choices = names(fdata), selected = names(fdata)) updateSelectInput(session, 'gbar2_select_y', choices = names(fdata), selected = names(fdata)) } else if (dim(f_data)[2] == 0) { updateSelectInput(session, 'gbar2_select_x', choices = '', selected = '') updateSelectInput(session, 'gbar2_select_y', choices = '', selected = '') } else { updateSelectInput(session, 'gbar2_select_x', choices = names(f_data)) updateSelectInput(session, 'gbar2_select_y', choices = names(f_data)) } }) gselectedbar2 <- reactive({ req(input$gbar_select_x) out <- final_split$train %>% select(input$gbar2_select_x, input$gbar2_select_y) out }) ybar2max <- reactive({ out <- gselectedbar2() %>% select(1, 2) %>% table() %>% max out }) output$ui_gbar2yrange_min <- renderUI({ df <- final_split$train if (is.null(df)) return(NULL) numericInput('gbar2y_range_min', 'Y Axis Min', value = 0, min = 0) }) output$ui_gbar2yrange_max <- renderUI({ df <- final_split$train if (is.null(df)) return(NULL) numericInput('gbar2y_range_max', 'Y Axis Max', value = ybar2max()) }) output$gbar2_plot_1 <- renderPlot({ ggbibar(data = final_split$train, x = input$gbar2_select_x, y = input$gbar2_select_y, stacked = input$gbar2_stack, horizontal = input$gbar2_horiz, title = input$gbar2_title, sub = input$gbar2_subtitle, xlab = input$gbar2_xlabel, ylab = input$gbar2_ylabel) }) output$gbar2_plot_2 <- renderPlot({ ggbibar(data = final_split$train, x = input$gbar2_select_x, y = input$gbar2_select_y, stacked = input$gbar2_stack, horizontal = input$gbar2_horiz, title = input$gbar2_title, sub = input$gbar2_subtitle, xlab = input$gbar2_xlabel, ylab = input$gbar2_ylabel, yaxlimit = TRUE, y1 = input$gbar2y_range_min, y2 = input$gbar2y_range_max, remove_xax = input$gbar2_remx, remove_yax = input$gbar2_remy) }) output$gbar2_plot_3 <- renderPlot({ ggbibar(data = final_split$train, x = input$gbar2_select_x, y = input$gbar2_select_y, stacked = input$gbar2_stack, horizontal = input$gbar2_horiz, title = input$gbar2_title, sub = input$gbar2_subtitle, xlab = input$gbar2_xlabel, ylab = input$gbar2_ylabel, yaxlimit = TRUE, y1 = input$gbar2y_range_min, y2 = input$gbar2y_range_max, remove_xax = input$gbar2_remx, remove_yax = input$gbar2_remy, add_text = input$gbar2_text, xloc = input$gbar2_text_x_loc, yloc = input$gbar2_text_y_loc, label = input$gbar2_plottext, tex_color = input$gbar2_textcolor, tex_size = input$gbar2_textsize) }) output$gbar2_plot_4 <- renderPlot({ ggbibar(data = final_split$train, x = input$gbar2_select_x, y = input$gbar2_select_y, stacked = input$gbar2_stack, horizontal = input$gbar2_horiz, title = input$gbar2_title, sub = input$gbar2_subtitle, xlab = input$gbar2_xlabel, ylab = input$gbar2_ylabel, yaxlimit = TRUE, y1 = input$gbar2y_range_min, y2 = input$gbar2y_range_max, remove_xax = input$gbar2_remx, remove_yax = input$gbar2_remy, add_text = input$gbar2_text, xloc = input$gbar2_text_x_loc, yloc = input$gbar2_text_y_loc, label = input$gbar2_plottext, tex_color = input$gbar2_textcolor, tex_size = input$gbar2_textsize, title_col = input$gbar2_title_col, title_fam = input$gbar2_title_fam, title_face = input$gbar2_title_font, title_size = input$gbar2_title_size, title_hjust = input$gbar2_title_hjust, title_vjust = input$gbar2_title_vjust, sub_col = input$gbar2_sub_col, sub_fam = input$gbar2_sub_fam, sub_face = input$gbar2_subtitle_font, sub_size = input$gbar2_sub_size, sub_hjust = input$gbar2_sub_hjust, sub_vjust = input$gbar2_sub_vjust, xax_col = input$gbar2_xlab_col, xax_fam = input$gbar2_xlab_fam, xax_face = input$gbar2_xlab_font, xax_size = input$gbar2_xlab_size, xax_hjust = input$gbar2_xlab_hjust, xax_vjust = input$gbar2_xlab_vjust, yax_col = input$gbar2_ylab_col, yax_fam = input$gbar2_ylab_fam, yax_face = input$gbar2_ylab_font, yax_size = input$gbar2_ylab_size, yax_hjust = input$gbar2_ylab_hjust, yax_vjust = input$gbar2_ylab_vjust) }) output$gbar2_plot_5 <- renderPlot({ ggbibar(data = final_split$train, x = input$gbar2_select_x, y = input$gbar2_select_y, stacked = input$gbar2_stack, horizontal = input$gbar2_horiz, title = input$gbar2_title, sub = input$gbar2_subtitle, xlab = input$gbar2_xlabel, ylab = input$gbar2_ylabel, yaxlimit = TRUE, y1 = input$gbar2y_range_min, y2 = input$gbar2y_range_max, remove_xax = input$gbar2_remx, remove_yax = input$gbar2_remy, add_text = input$gbar2_text, xloc = input$gbar2_text_x_loc, yloc = input$gbar2_text_y_loc, label = input$gbar2_plottext, tex_color = input$gbar2_textcolor, tex_size = input$gbar2_textsize, title_col = input$gbar2_title_col, title_fam = input$gbar2_title_fam, title_face = input$gbar2_title_font, title_size = input$gbar2_title_size, title_hjust = input$gbar2_title_hjust, title_vjust = input$gbar2_title_vjust, sub_col = input$gbar2_sub_col, sub_fam = input$gbar2_sub_fam, sub_face = input$gbar2_subtitle_font, sub_size = input$gbar2_sub_size, sub_hjust = input$gbar2_sub_hjust, sub_vjust = input$gbar2_sub_vjust, xax_col = input$gbar2_xlab_col, xax_fam = input$gbar2_xlab_fam, xax_face = input$gbar2_xlab_font, xax_size = input$gbar2_xlab_size, xax_hjust = input$gbar2_xlab_hjust, xax_vjust = input$gbar2_xlab_vjust, yax_col = input$gbar2_ylab_col, yax_fam = input$gbar2_ylab_fam, yax_face = input$gbar2_ylab_font, yax_size = input$gbar2_ylab_size, yax_hjust = input$gbar2_ylab_hjust, yax_vjust = input$gbar2_ylab_vjust, theme = input$gbar2_theme) }) output$gbar2_plot_6 <- renderPlot({ ggbibar(data = final_split$train, x = input$gbar2_select_x, y = input$gbar2_select_y, stacked = input$gbar2_stack, horizontal = input$gbar2_horiz, title = input$gbar2_title, sub = input$gbar2_subtitle, xlab = input$gbar2_xlabel, ylab = input$gbar2_ylabel, yaxlimit = TRUE, y1 = input$gbar2y_range_min, y2 = input$gbar2y_range_max, remove_xax = input$gbar2_remx, remove_yax = input$gbar2_remy, add_text = input$gbar2_text, xloc = input$gbar2_text_x_loc, yloc = input$gbar2_text_y_loc, label = input$gbar2_plottext, tex_color = input$gbar2_textcolor, tex_size = input$gbar2_textsize, title_col = input$gbar2_title_col, title_fam = input$gbar2_title_fam, title_face = input$gbar2_title_font, title_size = input$gbar2_title_size, title_hjust = input$gbar2_title_hjust, title_vjust = input$gbar2_title_vjust, sub_col = input$gbar2_sub_col, sub_fam = input$gbar2_sub_fam, sub_face = input$gbar2_subtitle_font, sub_size = input$gbar2_sub_size, sub_hjust = input$gbar2_sub_hjust, sub_vjust = input$gbar2_sub_vjust, xax_col = input$gbar2_xlab_col, xax_fam = input$gbar2_xlab_fam, xax_face = input$gbar2_xlab_font, xax_size = input$gbar2_xlab_size, xax_hjust = input$gbar2_xlab_hjust, xax_vjust = input$gbar2_xlab_vjust, yax_col = input$gbar2_ylab_col, yax_fam = input$gbar2_ylab_fam, yax_face = input$gbar2_ylab_font, yax_size = input$gbar2_ylab_size, yax_hjust = input$gbar2_ylab_hjust, yax_vjust = input$gbar2_ylab_vjust, theme = input$gbar2_theme) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_gbar2.R
source('helper/ggbox1.R') observeEvent(input$finalok, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'gbox_select_x', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'gbox_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'gbox_select_x', choices = names(num_data)) } }) observeEvent(input$submit_part_train_per, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'gbox_select_x', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'gbox_select_x', choices = '', selected = '') } else { updateSelectInput(session, 'gbox_select_x', choices = names(num_data)) } }) gselectedbox <- reactive({ req(input$gbox_select_x) out <- final_split$train %>% select(input$gbox_select_x) out }) yboxmax <- reactive({ out <- gselectedbox() %>% select(1) %>% max out }) output$ui_gboxyrange_min <- renderUI({ df <- final_split$train if (is.null(df)) return(NULL) numericInput('gboxy_range_min', 'Y Axis Min', value = 0, min = 0) }) output$ui_gboxyrange_max <- renderUI({ df <- final_split$train if (is.null(df)) return(NULL) numericInput('gboxy_range_max', 'Y Axis Max', value = yboxmax()) }) output$gbox_plot_1 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col) }) output$gbox_plot_2 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col, o_col = input$gbox_ocol, o_fill = input$gbox_ofill, o_shape = input$gbox_oshape, o_alpha = input$gbox_oalpha, o_size = input$gbox_osize ) }) output$gbox_plot_3 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col, o_col = input$gbox_ocol, o_fill = input$gbox_ofill, o_shape = input$gbox_oshape, o_alpha = input$gbox_oalpha, o_size = input$gbox_osize, add_jitter = input$gbox_jitter, j_width = input$gbox_jwidth, j_height = input$gbox_jheight, j_fill = input$gbox_jfill, j_col = input$gbox_jcol, j_shape = input$gbox_jshape, j_size = input$gbox_jsize, j_alpha = input$gbox_jalpha ) }) output$gbox_plot_4 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col, o_col = input$gbox_ocol, o_fill = input$gbox_ofill, o_shape = input$gbox_oshape, o_alpha = input$gbox_oalpha, o_size = input$gbox_osize, add_jitter = input$gbox_jitter, j_width = input$gbox_jwidth, j_height = input$gbox_jheight, j_fill = input$gbox_jfill, j_col = input$gbox_jcol, j_shape = input$gbox_jshape, j_size = input$gbox_jsize, j_alpha = input$gbox_jalpha, yaxlimit = TRUE, y1 = input$gboxy_range_min, y2 = input$gboxy_range_max, remove_xax = input$gbox_remx, remove_yax = input$gbox_remy ) }) output$gbox_plot_5 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col, o_col = input$gbox_ocol, o_fill = input$gbox_ofill, o_shape = input$gbox_oshape, o_alpha = input$gbox_oalpha, o_size = input$gbox_osize, add_jitter = input$gbox_jitter, j_width = input$gbox_jwidth, j_height = input$gbox_jheight, j_fill = input$gbox_jfill, j_col = input$gbox_jcol, j_shape = input$gbox_jshape, j_size = input$gbox_jsize, j_alpha = input$gbox_jalpha, yaxlimit = TRUE, y1 = input$gboxy_range_min, y2 = input$gboxy_range_max, remove_xax = input$gbox_remx, remove_yax = input$gbox_remy, add_text = input$gbox_text, xloc = input$gbox_text_x_loc, yloc = input$gbox_text_y_loc, label = input$gbox_plottext, tex_color = input$gbox_textcolor, tex_size = input$gbox_textsize ) }) output$gbox_plot_6 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col, o_col = input$gbox_ocol, o_fill = input$gbox_ofill, o_shape = input$gbox_oshape, o_alpha = input$gbox_oalpha, o_size = input$gbox_osize, add_jitter = input$gbox_jitter, j_width = input$gbox_jwidth, j_height = input$gbox_jheight, j_fill = input$gbox_jfill, j_col = input$gbox_jcol, j_shape = input$gbox_jshape, j_size = input$gbox_jsize, j_alpha = input$gbox_jalpha, yaxlimit = TRUE, y1 = input$gboxy_range_min, y2 = input$gboxy_range_max, remove_xax = input$gbox_remx, remove_yax = input$gbox_remy, add_text = input$gbox_text, xloc = input$gbox_text_x_loc, yloc = input$gbox_text_y_loc, label = input$gbox_plottext, tex_color = input$gbox_textcolor, tex_size = input$gbox_textsize, title_col = input$gbox_title_col, title_fam = input$gbox_title_fam, title_face = input$gbox_title_font, title_size = input$gbox_title_size, title_hjust = input$gbox_title_hjust, title_vjust = input$gbox_title_vjust, sub_col = input$gbox_sub_col, sub_fam = input$gbox_sub_fam, sub_face = input$gbox_subtitle_font, sub_size = input$gbox_sub_size, sub_hjust = input$gbox_sub_hjust, sub_vjust = input$gbox_sub_vjust, xax_col = input$gbox_xlab_col, xax_fam = input$gbox_xlab_fam, xax_face = input$gbox_xlab_font, xax_size = input$gbox_xlab_size, xax_hjust = input$gbox_xlab_hjust, xax_vjust = input$gbox_xlab_vjust, yax_col = input$gbox_ylab_col, yax_fam = input$gbox_ylab_fam, yax_face = input$gbox_ylab_font, yax_size = input$gbox_ylab_size, yax_hjust = input$gbox_ylab_hjust, yax_vjust = input$gbox_ylab_vjust ) }) output$gbox_plot_7 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col, o_col = input$gbox_ocol, o_fill = input$gbox_ofill, o_shape = input$gbox_oshape, o_alpha = input$gbox_oalpha, o_size = input$gbox_osize, add_jitter = input$gbox_jitter, j_width = input$gbox_jwidth, j_height = input$gbox_jheight, j_fill = input$gbox_jfill, j_col = input$gbox_jcol, j_shape = input$gbox_jshape, j_size = input$gbox_jsize, j_alpha = input$gbox_jalpha, yaxlimit = TRUE, y1 = input$gboxy_range_min, y2 = input$gboxy_range_max, remove_xax = input$gbox_remx, remove_yax = input$gbox_remy, add_text = input$gbox_text, xloc = input$gbox_text_x_loc, yloc = input$gbox_text_y_loc, label = input$gbox_plottext, tex_color = input$gbox_textcolor, tex_size = input$gbox_textsize, title_col = input$gbox_title_col, title_fam = input$gbox_title_fam, title_face = input$gbox_title_font, title_size = input$gbox_title_size, title_hjust = input$gbox_title_hjust, title_vjust = input$gbox_title_vjust, sub_col = input$gbox_sub_col, sub_fam = input$gbox_sub_fam, sub_face = input$gbox_subtitle_font, sub_size = input$gbox_sub_size, sub_hjust = input$gbox_sub_hjust, sub_vjust = input$gbox_sub_vjust, xax_col = input$gbox_xlab_col, xax_fam = input$gbox_xlab_fam, xax_face = input$gbox_xlab_font, xax_size = input$gbox_xlab_size, xax_hjust = input$gbox_xlab_hjust, xax_vjust = input$gbox_xlab_vjust, yax_col = input$gbox_ylab_col, yax_fam = input$gbox_ylab_fam, yax_face = input$gbox_ylab_font, yax_size = input$gbox_ylab_size, yax_hjust = input$gbox_ylab_hjust, yax_vjust = input$gbox_ylab_vjust, theme = input$gbox_theme ) }) output$gbox_plot_8 <- renderPlot({ ggbox1(data = final_split$train, y = input$gbox_select_x, horizontal = input$gbox_horiz, notch = input$gbox_notch, title = input$gbox_title, sub = input$gbox_subtitle, xlab = input$gbox_xlabel, ylab = input$gbox_ylabel, fill = input$gbox_fill, col = input$gbox_col, o_col = input$gbox_ocol, o_fill = input$gbox_ofill, o_shape = input$gbox_oshape, o_alpha = input$gbox_oalpha, o_size = input$gbox_osize, add_jitter = input$gbox_jitter, j_width = input$gbox_jwidth, j_height = input$gbox_jheight, j_fill = input$gbox_jfill, j_col = input$gbox_jcol, j_shape = input$gbox_jshape, j_size = input$gbox_jsize, j_alpha = input$gbox_jalpha, yaxlimit = TRUE, y1 = input$gboxy_range_min, y2 = input$gboxy_range_max, remove_xax = input$gbox_remx, remove_yax = input$gbox_remy, add_text = input$gbox_text, xloc = input$gbox_text_x_loc, yloc = input$gbox_text_y_loc, label = input$gbox_plottext, tex_color = input$gbox_textcolor, tex_size = input$gbox_textsize, title_col = input$gbox_title_col, title_fam = input$gbox_title_fam, title_face = input$gbox_title_font, title_size = input$gbox_title_size, title_hjust = input$gbox_title_hjust, title_vjust = input$gbox_title_vjust, sub_col = input$gbox_sub_col, sub_fam = input$gbox_sub_fam, sub_face = input$gbox_subtitle_font, sub_size = input$gbox_sub_size, sub_hjust = input$gbox_sub_hjust, sub_vjust = input$gbox_sub_vjust, xax_col = input$gbox_xlab_col, xax_fam = input$gbox_xlab_fam, xax_face = input$gbox_xlab_font, xax_size = input$gbox_xlab_size, xax_hjust = input$gbox_xlab_hjust, xax_vjust = input$gbox_xlab_vjust, yax_col = input$gbox_ylab_col, yax_fam = input$gbox_ylab_fam, yax_face = input$gbox_ylab_font, yax_size = input$gbox_ylab_size, yax_hjust = input$gbox_ylab_hjust, yax_vjust = input$gbox_ylab_vjust, theme = input$gbox_theme ) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-visualize/logic/logic_gbox.R