content
stringlengths
0
14.9M
filename
stringlengths
44
136
tabPanel('Inference - 2', value = 'tab_infer2_home', fluidPage( fluidRow( br(), column(12, align = 'center', h5('What do you want to do?') ), br(), br() ), fluidRow( column(12), br(), column(3), column(4, align = 'left', h5('Independent Sample t Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_2_it', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Paired Sample t Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_2_pt', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Binomial Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_2_binom', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Two Sample Variance Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_2_var', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Two Sample Proportion Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_2_prop', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Chi Square Association Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_2_chi', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('McNemar Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_2_mcnemar', label = 'Click Here', width = '120px' ) ), column(3) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_infer2_home.R
tabPanel('Inference - 3', value = 'tab_infer3_home', fluidPage( fluidRow( br(), column(12, align = 'center', h5('What do you want to do?') ), br(), br() ), fluidRow( column(12), br(), column(3), column(4, align = 'left', h5('One Way ANOVA') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_3_anova', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Levene Test') ), column(2, align = 'left', actionButton( inputId = 'inf_menu_3_levene', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5("Cochran's Q Test") ), column(2, align = 'left', actionButton( inputId = 'inf_menu_3_cochran', label = 'Click Here', width = '120px' ) ), column(3) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_infer3_home.R
tabPanel('Inference', value = 'tab_infer_home', fluidPage( fluidRow( column(12), br(), column(12, align = 'center', h5('What do you want to do?') ), br(), br(), br(), column(3), column(4, align = 'left', h5('Comparison of one group to a hypothetical value') ), column(2, align = 'left', actionButton(inputId = 'button_infer_home_1', label = 'Click Here', width = '120px') ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Comparison of two groups') ), column(2, align = 'left', actionButton(inputId = 'button_infer_home_2', label = 'Click Here', width = '120px') ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Comparison of three or more groups') ), column(2, align = 'left', actionButton(inputId = 'button_infer_home_3', label = 'Click Here', width = '120px') ), column(3) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_infer_home.R
tabPanel('Inference', value = 'tab_infer', icon = icon('cogs'), navlistPanel(id = 'navlist_infer', well = FALSE, widths = c(2, 10), source('ui/ui_ttest.R', local = TRUE)[[1]], source('ui/ui_indttest.R', local = TRUE)[[1]], source('ui/ui_ptest.R', local = TRUE)[[1]], source('ui/ui_binomtest.R', local = TRUE)[[1]], source('ui/ui_osvar.R', local = TRUE)[[1]], source('ui/ui_tsvar.R', local = TRUE)[[1]], source('ui/ui_osprop.R', local = TRUE)[[1]], source('ui/ui_tsprop.R', local = TRUE)[[1]], source('ui/ui_anova.R', local = TRUE)[[1]], source('ui/ui_levene.R', local = TRUE)[[1]], source('ui/ui_chigof.R', local = TRUE)[[1]], source('ui/ui_chict.R', local = TRUE)[[1]], source('ui/ui_cochran.R', local = TRUE)[[1]], source('ui/ui_runs.R', local = TRUE)[[1]], source('ui/ui_mcnemar.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_inference.R
tabPanel('Levene Test', value = 'tab_levtest', fluidPage( fluidRow( column(6, align = 'left', h4('Levene Test'), p("Levene's robust test statistic for the equality of variances and the two statistics proposed by Brown and Forsythe that replace the mean in Levene's formula with alternative location estimators. The first alternative replaces the mean with the median. The second alternative replaces the mean with the 10% trimmed mean.") ), column(6, align = 'right', actionButton(inputId='levtestlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_levene_test.html', '_blank')"), actionButton(inputId='levtestlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=Yz5fhDhzMKI', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Using Variables', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variables:')), column(10, align = 'left', selectInput("var_levtest", label = '', width = '660px', choices = "", selected = "", multiple = TRUE, selectize = TRUE), bsTooltip("var_levtest", "Select variables.", "left", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_levtest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_levtest", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('levtest_out') ) ) ) ), tabPanel('Using Groups', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(2, align = 'left', selectInput("var_levtestg1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_levtestg1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Grouping Variable:')), column(2, align = 'left', selectInput("var_levtestg2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_levtestg2", "Select a grouping variable.", "left", options = list(container = "body"))), column(4, align = 'center', br(), actionButton(inputId = 'submit_levtestg', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_levtestg", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('levtestg_out') ) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_levene.R
tabPanel('McNemar Test', value = 'tab_mcnemar', fluidPage( fluidRow( column(8, align = 'left', h4('McNemar Test'), p('Test if the proportions of two dichotomous variables are equal in the same population.') ), column(4, align = 'right', actionButton(inputId='mclink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_mcnemar_test.html', '_blank')"), actionButton(inputId='mclink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=MrbnGGcF6ek', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Using Variables', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable 1:')), column(2, align = 'left', selectInput("var_mcnemar1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_mcnemar1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Variable 2:')), column(2, align = 'left', selectInput("var_mcnemar2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_mcnemar2", "Select a variable.", "left", options = list(container = "body"))), column(4, align = 'center', br(), actionButton(inputId = 'submit_mcnemar', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_mcnemar", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('mcnemar_out') ) ) ) ), tabPanel('Calculator', fluidPage( fluidRow( column(5, align = 'right', br(), h5('0')), column(1, align = 'right', br(), h5('')), column(1, align = 'right', br(), h5('1')) ), fluidRow( column(4, align = 'right', br(), h5('0')), column(2, align = 'left', numericInput("mc_00", label = '', width = '100px', min = 0, step = 1, value = 1)), # column(2, align = 'right', br(), h5('')), column(4, align = 'left', numericInput('mc_01', label = '', width = '100px', min = 0, value = 1, step = 1)) ), fluidRow( column(4, align = 'right', br(), h5('1')), column(2, align = 'left', numericInput("mc_10", label = '', width = '100px', min = 0, step = 1, value = 1)), # column(2, align = 'right', br(), h5('')), column(4, align = 'left', numericInput('mc_11', label = '', width = '100px', min = 0, value = 1, step = 1)) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_mcnemarc', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_mcnemarc", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('mcnemarc_out')) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_mcnemar.R
tabPanel('One Sample Proportion', value = 'tab_osproptest', fluidPage( fluidRow( column(6, align = 'left', h4('One Sample Proportion Test'), p('Compares proportion in one group to a specified population proportion.') ), column(6, align = 'right', actionButton(inputId='osproplink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_os_prop_test.html', '_blank')"), actionButton(inputId='osproplink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=K8BNGJYmvlI', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Using Variables', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(2, align = 'left', selectInput("var_osproptest", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_osproptest", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Probability:')), column(2, align = 'left', numericInput('osproptest_prob', label = '', min = 0, value = 0.5, max = 1, step = 0.01), bsTooltip("osproptest_prob", "Probability", "bottom", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(2, align = 'left', selectInput('osproptest_type', '', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("osproptest_type", "Alternative hypothesis", "bottom", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_osproptest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_osproptest", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('osproptest_out') ) ) ) ), tabPanel('Calculator', fluidPage( fluidRow( column(3, align = 'right', br(), h5('N:')), column(3, align = 'left', numericInput("n_ospropcalc", label = '', width = '150px', min = 0, step = 1, value = 1), bsTooltip("n_ospropcalc", "Number of observations", "left", options = list(container = "body"))), column(3, align = 'right', br(), h5('Hypothesized Proportion:')), column(3, align = 'left', numericInput('p_ospropcalc', label = '', width = '150px', min = 0, value = 0.5, step = 0.1, max = 1), bsTooltip("p_ospropcalc", "Hypothesized Proportion", "bottom", options = list(container = "body"))) ), fluidRow( column(3, align = 'right', br(), h5('Probability:')), column(3, align = 'left', numericInput('prob_ospropcalc', label = '', width = '150px', min = 0, value = 0.5, step = 0.1, max = 1), bsTooltip("prob_ospropcalc", "Probability", "bottom", options = list(container = "body"))), column(3, align = 'right', br(), h5('Alternative:')), column(3, align = 'left', selectInput('ospropcalc_type', '', width = '150px', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("ospropcalc_type", "Alternative hypothesis", "bottom", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_ospropcalc', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_ospropcalc", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('ospropcalc_out') ) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_osprop.R
tabPanel('One Sample Variance', value = 'tab_osvartest', fluidPage( fluidRow( column(6, align = 'left', h4('One Sample Variance Test'), p('Performs tests on the equality of standard deviations (variances).It tests that the standard deviation of a sample is equal to a hypothesized value.') ), column(6, align = 'right', actionButton(inputId='osvarlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_os_var_test.html', '_blank')"), actionButton(inputId='osvarlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=00ZCHwMPaFY', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(4, align = 'left', selectInput("var_osvartest", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_osvartest", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(4, align = 'left', selectInput('osvartest_type', '', width = '200px', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("osvartest_type", "Alternative hypothesis", "bottom", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Conf Int')), column(4, align = 'left', numericInput('osvartest_conf', label = '', width = '200px', min = 0, value = 0.95, step = 0.01), bsTooltip("osvartest_conf", "Confidence Level", "bottom", options = list(container = "body"))), column(2, align = 'right', br(), h5('Std. Deviation')), column(4, align = 'left', numericInput("sd_osvartest", label = '', width = '200px', min = 0, step = 0.1, value = 0.5), bsTooltip("sd_osvartest", "Specify standard deviation", "left", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_osvartest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_osvartest", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('osvartest_out') ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_osvar.R
tabPanel('Paired Sample t', value = 'tab_ptest', fluidPage( fluidRow( column(6, align = 'left', h4('Paired Sample t Test'), p('Tests that two samples have the same mean, assuming paired data.') ), column(6, align = 'right', actionButton(inputId='ab1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_ts_paired_ttest.html', '_blank')"), actionButton(inputId='ab3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=dgMJcgeXLL0', '_blank')") ) ), hr(), fluidRow( br(), column(2, align = 'right', br(), h5('Variable 1:')), column(4, align = 'left', selectInput("var_ptest1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_ptest1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Variable 2:')), column(4, align = 'left', selectInput("var_ptest2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_ptest2", "Select a variable.", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Conf Int')), column(4, align = 'left', numericInput('ptest_conf', label = '', width = '200px', min = 0, value = 0.95, step = 0.01), bsTooltip("ptest_conf", "Confidence Level", "bottom", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(4, align = 'left', selectInput('ptest_type', '', width = '200px', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("ptest_type", "Alternative hypothesis", "bottom", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_ptest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_ptest", "Click here to view t test result.", "bottom", options = list(container = "body")) ) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('ptest_out') ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_ptest.R
tabPanel('Runs Test', value = 'tab_runs', fluidPage( fluidRow( column(6, align = 'left', h4('Runs Test for Randomness'), p('Tests whether the observations are serially independent i.e. whether they occur in a random order, by counting how many runs there are above and below a threshold. By default, the median is used as the threshold. A small number of runs indicates positive serial correlation; a large number indicates negative serial correlation.') ), column(6, align = 'right', actionButton(inputId='runslink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_runs_test.html', '_blank')"), actionButton(inputId='runslink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=H12KM_uHbWc', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(4, align = 'left', selectInput("var_runs", label = '', width = '250px', choices = "", selected = ""), bsTooltip("var_runs", "Select a variable.", "left", options = list(container = "body"))), column(1, align = 'right', br(), h5('Drop:')), column(3, align = 'left', selectInput('runs_drop', '', width = '250px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("runs_drop", "Drop values equal to threshold.", "bottom", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Split:')), column(2, align = 'left', selectInput("runs_split", label = '', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("runs_split", "Recode data in binary format.", "left", options = list(container = "body"))), column(1, align = 'right', br(), h5('Mean:')), column(2, align = 'left', selectInput('runs_mean', '', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("runs_mean", "Use mean as the threshold.", "bottom", options = list(container = "body"))), column(1, align = 'right', br(), h5('Threshold')), column(2, align = 'left', numericInput('runs_thold', label = '', min = 0, step = 1, value = NA), bsTooltip("runs_thold", "threshold to be used for counting runs, specify 0 if data is coded as a binary.", "bottom", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_runs', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_runs", "Click here to view result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('runs_out') ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_runs.R
tabPanel('Screen', value = 'tab_scr', icon = icon('binoculars'), navlistPanel(id = 'navlist_scr', well = FALSE, widths = c(2, 10), source('ui/ui_screen.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_scr.R
tabPanel('Screen', value = 'tab_screen', fluidPage( fluidRow( column(8, align = 'left', h4('Data Screening'), p('Screen data for missing values, verify column names and data types.') ), column(4, align = 'right', actionButton(inputId='dscreenlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('http://www.rsquaredacademy.com/descriptr/reference/ds_screener.html', '_blank')"), actionButton(inputId='dscreenlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=lheslEn5icc#t=03m04s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', verbatimTextOutput('screen') ) ), fluidRow( br(), column(12, align = 'center', actionButton('finalok', 'Approve', width = '120px', icon = icon('sign-out')), bsTooltip("finalok", "Click here to approve the data.", "top", options = list(container = "body")) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_screen.R
tabPanel('Select', value = 'tab_sel', icon = icon('database'), navlistPanel(id = 'navlist_up', well = FALSE, widths = c(2, 10), source('ui/ui_seldata.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_sel.R
tabPanel("Select Data", value = "tab_seldata", fluidPage( fluidRow( column(6, align = 'left', h4('Select Data Set'), p('Select a data set from the drop down box and click on submit.') ), column(6, align = 'right', actionButton(inputId='seldatalink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=lheslEn5icc#t=01m10s', '_blank')") ) ), hr(), fluidRow( column(12, align = "center", selectInput( inputId = "sel_data", label = "Select a data set:", choices = '', # choices = c('csv', 'excel', 'json', 'spss', 'stata', 'sas'), selected = '', width = '200px', ) ) ), fluidRow( column(12, align = 'center', br(), actionButton(inputId = 'submit_seldata', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_seldata", "Click here to select data.", "bottom", options = list(container = "body"))) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_seldata.R
tabPanel('Select Variables', value = 'tab_selvar', fluidPage( fluidRow( column(6, align = 'left', h4('Select Variables'), p('Click on Yes to select variables.') ), column(6, align = 'right', actionButton(inputId='selvarlink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=lheslEn5icc#t=02m08s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', h4('Do you want to select variables?') ) ), fluidRow( column(6, align = 'right', actionButton( inputId = 'button_selvar_yes', label = 'Yes', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'button_selvar_no', label = 'No', width = '120px' ) ) ), fluidRow( br(), br(), uiOutput('show_sel_button') ), fluidRow( uiOutput('sub_sel_button') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_select.R
tabPanel('Transform', value = 'tab_trans', icon = icon('rotate-right'), navlistPanel(id = 'navlist_trans', well = FALSE, widths = c(2, 10), source('ui/ui_seldata.R', local = TRUE)[[1]], source('ui/ui_transform2.R', local = TRUE)[[1]], source('ui/ui_select.R', local = TRUE)[[1]], source('ui/ui_filter.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_trans.R
tabPanel('Transform', value = 'tab_transform', fluidPage( fluidRow( column(6, align = 'left', h4('Data Transformation'), p('Rename variables and modify data types.') ), column(6, align = 'right', actionButton(inputId='translink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=lheslEn5icc#t=01m20s', '_blank')") ) ), hr(), fluidRow( column(3, tags$h5('Variable')), column(3, tags$h5('Rename Variable')), column(3, tags$h5('Modify Data Type')) ), column(12, uiOutput('trans_try')), fluidRow( tags$br() ), fluidRow( column(12, align = 'center', br(), actionButton(inputId="apply_changes", label="Apply Changes", icon = icon('thumbs-up')), bsTooltip("apply_changes", "Click here to apply changes to data.", "top", options = list(container = "body")), br(), br() ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_transform2.R
tabPanel('Two Sample Proportion', value = 'tab_tsproptest', fluidPage( fluidRow( column(6, align = 'left', h4('Two Sample Proportion Test'), p('Tests on the equality of proportions using large-sample statistics. It tests that a sample has the same proportion within two independent groups or two samples have the same proportion.') ), column(6, align = 'right', actionButton(inputId='tsproplink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_ts_prop_test.html', '_blank')"), actionButton(inputId='tsproplink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=0HhnnSzj1JY', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Using Variables', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable 1:')), column(2, align = 'left', selectInput("var_tsproptest1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsproptest1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Variable 2:')), column(2, align = 'left', selectInput("var_tsproptest2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsproptest2", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(2, align = 'left', selectInput('tsproptest_type', '', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("tsproptest_type", "Alternative hypothesis", "bottom", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_tsproptest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_tsproptest", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('tsproptest_out') ) ) ) ), tabPanel('Using Groups', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(2, align = 'left', selectInput("var_tsproptestg1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsproptestg1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Grouping Variable:')), column(2, align = 'left', selectInput("var_tsproptestg2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsproptestg2", "Select a grouping variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(2, align = 'left', selectInput('tsproptestg_type', '', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("tsproptestg_type", "Alternative hypothesis", "bottom", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_tsproptestg', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_tsproptestg", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('tsproptestg_out') ) ) ) ), tabPanel('Calculator', fluidPage( fluidRow( column(2, align = 'right', br(), h5('n1:')), column(2, align = 'left', numericInput("n1_tspropcalc", label = '', width = '120px', min = 0, step = 1, value = 1), bsTooltip("n1_tspropcalc", "Number of observations", "left", options = list(container = "body"))), column(1, align = 'right', br(), h5('n2:')), column(2, align = 'left', numericInput("n2_tspropcalc", label = '', width = '120px', min = 0, step = 1, value = 1), bsTooltip("n2_tspropcalc", "Number of observations", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(3, align = 'left', selectInput('tspropcalc_type', '', width = '120px', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("tspropcalc_type", "Alternative hypothesis", "bottom", options = list(container = "body"))) ), fluidRow( column(4, align = 'right', br(), h5('Proportion 1:')), column(2, align = 'left', numericInput('prop_tspropcalc1', label = '', width = '150px', min = 0, value = 0.5, step = 0.1, max = 1), bsTooltip("prop_tspropcalc1", "Proportion 1", "bottom", options = list(container = "body"))), column(2, align = 'right', br(), h5('Proportion 2:')), column(4, align = 'left', numericInput('prop_tspropcalc2', label = '', width = '150px', min = 0, value = 0.5, step = 0.1, max = 1), bsTooltip("prop_tspropcalc2", "Proportion 2", "bottom", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_tspropcalc', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_tspropcalc", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('tspropcalc_out') ) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_tsprop.R
tabPanel('Two Sample Variance', value = 'tab_tsvartest', fluidPage( fluidRow( column(6, align = 'left', h4('Two Sample Variance Test'), p('Performs tests on the equality of standard deviations (variances).') ), column(6, align = 'right', actionButton(inputId='tsvarlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_ts_var_test.html', '_blank')"), actionButton(inputId='tsvarlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=H5XX3wmF1Sc', '_blank')") ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Using Variables', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable 1:')), column(2, align = 'left', selectInput("var_tsvartest1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsvartest1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Variable 2:')), column(2, align = 'left', selectInput("var_tsvartest2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsvartest2", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(2, align = 'left', selectInput('tsvartest_type', '', choices = c("less", "greater", "all"), selected = "all"), bsTooltip("tsvartest_type", "Alternative hypothesis", "bottom", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_tsvartest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_tsvartest", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('tsvartest_out') ) ) ) ), tabPanel('Using Groups', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(2, align = 'left', selectInput("var_tsvartestg1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsvartestg1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Grouping Variable:')), column(2, align = 'left', selectInput("var_tsvartestg2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_tsvartestg2", "Select grouping variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(2, align = 'left', selectInput('tsvartestg_type', '', choices = c("less", "greater", "all"), selected = "all"), bsTooltip("tsvartestg_type", "Alternative hypothesis", "bottom", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_tsvartestg', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_tsvartestg", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('tsvartestg_out') ) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_tsvar.R
tabPanel('One Sample t', value = 'tab_ttest', fluidPage( fluidRow( column(8, align = 'left', h4('One Sample t Test'), p('Performs t tests on the equality of means. It tests the hypothesis that a sample has a mean equal to a hypothesized value.') ), column(4, align = 'right', actionButton(inputId='ostlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://inferr.rsquaredacademy.com/reference/infer_os_t_test.html', '_blank')"), actionButton(inputId='ostlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=7eNfzplm86Y', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(4, align = 'left', selectInput("var_ttest", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_ttest", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Alternative:')), column(4, align = 'left', selectInput('ttest_type', '', width = '200px', choices = c("both", "less", "greater", "all"), selected = "both"), bsTooltip("ttest_type", "Alternative hypothesis", "bottom", options = list(container = "body")) ) ), fluidRow( column(2, align = 'right', br(), h5('alpha:')), column(4, align = 'left', numericInput('ttest_alpha', label = '', width = '200px', min = 0, value = 0.05, step = 0.01), bsTooltip("ttest_alpha", "Acceptable tolerance for type 1 error.", "bottom", options = list(container = "body"))), column(2, align = 'right', br(), h5('Mu:')), column(4, align = 'left', numericInput('ttest_mu', label = '', min = 0, value = 1, step = 1, width = '200px'), bsTooltip("ttest_mu", "True value of the mean.", "bottom", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_ttest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_ttest", "Click here to view t test result.", "bottom", options = list(container = "body")) ) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('ttest_out') ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_ttest.R
tabPanel('Get Data', value = 'tab_upload', icon = icon('server'), navlistPanel(id = 'navlist_up', well = FALSE, widths = c(2, 10), source('ui/ui_dataoptions.R', local = TRUE)[[1]], source('ui/ui_datafiles.R', local = TRUE)[[1]], source('ui/ui_datasamples.R', local = TRUE)[[1]] # source('ui/ui_upload.R', local = TRUE)[[1]], # source('ui/ui_excel.R', local = TRUE)[[1]], # source('ui/ui_json.R', local = TRUE)[[1]], # source('ui/ui_stata.R', local = TRUE)[[1]], # source('ui/ui_spss.R', local = TRUE)[[1]], # source('ui/ui_sas.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_up.R
tabPanel('View', value = 'tab_vi', icon = icon('sort'), navlistPanel(id = 'navlist_vi', well = FALSE, widths = c(2, 10), source('ui/ui_view.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_vi.R
tabPanel('View', value = 'tab_view', fluidPage( br(), fluidRow( column(6, align = 'left', actionButton(inputId='view2getdata', label=" Get Data", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='view2analyze', label="Analyze Data", icon = icon("long-arrow-right")) ) ), hr(), fluidRow( dataTableOutput(outputId = "table") ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui/ui_view.R
library(shiny) library(shinyBS) library(shinythemes) library(descriptr) library(dplyr) shinyUI( navbarPage(HTML("inferr"), id = 'mainpage', source('ui/ui_data.R', local = TRUE)[[1]], source('ui/ui_analyze.R', local = TRUE)[[1]], source('ui/ui_exit_button.R', local = TRUE)[[1]] ))
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/ui.R
fg <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "centre") } fk <- function(x, w) { format(x, width = w, justify = "centre", nsmall = 3) } fs <- function() { rep(" ") } fl <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "left") } fc <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "centre") } formatter_t <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "centre") } format_cil <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "centre") } format_ciu <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "centre") } formats_t <- function() { rep(" ") } formatter_pair <- function(x, w) { x1 <- format(x, nsmall = 2) x2 <- as.character(x1) ret <- format(x2, width = w, justify = "centre") return(ret) } fw <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "centre") } fn <- function(x, w) { x %>% as.character() %>% format(width = w, justify = "centre") } formats <- function() { rep(" ") }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/xpl-format.R
# one sample t test xpl_os_t_test <- function(data, x, mu = 0, alpha = 0.05, alternative = c("both", "less", "greater", "all"), ...) { xone <- data[[x]] if (!is.numeric(xone)) { stop("x must be numeric") } if (!is.numeric(mu)) { stop("mu must be numeric") } if (!is.numeric(alpha)) { stop("alpha must be numeric") } type <- match.arg(alternative) var_name <- x k <- ttest_comp(xone, mu, alpha, type) result <- list(conf = k$conf, confint = k$confint, df = k$df, Mean = k$Mean, mean_diff = k$mean_diff, mean_diff_l = k$mean_diff_l, mean_diff_u = k$mean_diff_u, mu = k$mu, n = k$n, p = k$p, p_l = k$p_l, p_u = k$p_u, stddev = k$stddev, std_err = k$std_err, test_stat = k$test_stat, type = type, var_name = var_name) print_ttest(result) } ttest_comp <- function(x, mu, alpha, type) { n <- length(x) a <- (alpha / 2) df <- n - 1 conf <- 1 - alpha Mean <- round(mean(x), 4) stddev <- round(stats::sd(x), 4) std_err <- round(stddev / sqrt(n), 4) test_stat <- round((Mean - mu) / std_err, 3) if (type == "less") { cint <- c(-Inf, test_stat + stats::qt(1 - alpha, df)) } else if (type == "greater") { cint <- c(test_stat - stats::qt(1 - alpha, df), Inf) } else { cint <- stats::qt(1 - a, df) cint <- test_stat + c(-cint, cint) } confint <- round(mu + cint * std_err, 4) mean_diff <- round((Mean - mu), 4) mean_diff_l <- confint[1] - mu mean_diff_u <- confint[2] - mu p_l <- stats::pt(test_stat, df) p_u <- stats::pt(test_stat, df, lower.tail = FALSE) if (p_l < 0.5) { p <- p_l * 2 } else { p <- p_u * 2 } out <- list(conf = conf, confint = confint, df = df, Mean = Mean, mean_diff = mean_diff, mean_diff_l = mean_diff_l, mean_diff_u = mean_diff_u, mu = mu, n = n, p = p, p_l = p_l, p_u = p_u, stddev = stddev, std_err = std_err, test_stat = test_stat) return(out) } # one way anova xpl_oneway_anova <- function(data, x, y, ...) { fdata <- data[c(x, y)] sample_mean <- anova_avg(fdata, x) sample_stats <- anova_split(fdata, x, y, sample_mean) k <- anova_calc(fdata, sample_stats, x, y) result <- list( adjusted_r2 = round(k$reg$adj.r.squared, 4), df_btw = k$df_sstr, df_total = k$df_sst, df_within = k$df_sse, fstat = k$f, group_stats = sample_stats[, c(1, 2, 3, 5)], ms_btw = k$mstr, ms_within = k$mse, obs = k$obs, pval = k$sig, r2 = round(k$reg$r.squared, 4), rmse = round(k$reg$sigma, 4), ss_between = k$sstr, ss_total = k$total, ss_within = k$ssee) print_owanova(result) } anova_split <- function(data, x, y, sample_mean) { dat <- data[c(y, x)] dm <- data.table(dat) by_factor <- dm[, .(length = length(get(x)), mean = mean(get(x)), var = stats::var(get(x)), sd = stats::sd(get(x))), by = y] by_factor[, ':='(sst = length * ((mean - sample_mean) ^ 2), sse = (length - 1) * var)] setDF(by_factor) by_factor <- by_factor[order(by_factor[, 1]),] return(by_factor) } anova_avg <- function(data, y) { mean(data[[y]]) } anova_calc <- function(data, sample_stats, x, y) { var_names <- names(data[c(x, y)]) sstr <- sample_stats %>% magrittr::use_series(sst) %>% sum() %>% round(3) ssee <- sample_stats %>% magrittr::use_series(sse) %>% sum() %>% round(3) total <- round(sstr + ssee, 3) df_sstr <- nrow(sample_stats) - 1 df_sse <- nrow(data) - nrow(sample_stats) df_sst <- nrow(data) - 1 mstr <- round(sstr / df_sstr, 3) mse <- round(ssee / df_sse, 3) f <- round(mstr / mse, 3) sig <- round(1 - stats::pf(f, df_sstr, df_sse), 3) obs <- nrow(data) regs <- paste(var_names[1], "~ as.factor(", var_names[2], ")") model <- stats::lm(stats::as.formula(regs), data = data) reg <- summary(model) out <- list( sstr = sstr, ssee = ssee, total = total, df_sstr = df_sstr, df_sse = df_sse, df_sst = df_sst, mstr = mstr, mse = mse, f = f, sig = sig, obs = obs, model = model, reg = reg ) return(out) } # chi square association test xpl_chisq_assoc_test <- function(data, x, y) { xone <- data[[x]] yone <- data[[y]] if (!is.factor(xone)) { stop("x must be a categorical variable") } if (!is.factor(yone)) { stop("y must be a categorical variable") } # dimensions k <- table(xone, yone) dk <- dim(k) ds <- prod(dk) nr <- dk[1] nc <- dk[2] if (ds == 4) { twoway <- matrix(table(xone, yone), nrow = 2) df <- df_chi(twoway) ef <- efmat(twoway) k <- pear_chsq(twoway, df, ef) m <- lr_chsq(twoway, df, ef) n <- yates_chsq(twoway) p <- mh_chsq(twoway, n$total, n$prod_totals) } else { twoway <- matrix(table(xone, yone), nrow = dk[1]) ef <- efm(twoway, dk) df <- df_chi(twoway) k <- pear_chi(twoway, df, ef) m <- lr_chsq2(twoway, df, ef, ds) } j <- chigf(xone, yone, k$chi) result <- if (ds == 4) { list( chisquare = k$chi, chisquare_adjusted = n$chi_y, chisquare_lr = m$chilr, chisquare_mantel_haenszel = p$chimh, contingency_coefficient = j$cc, cramers_v = j$cv, df = df, ds = ds, phi_coefficient = j$phi, pval_chisquare = k$sig, pval_chisquare_adjusted = n$sig_y, pval_chisquare_lr = m$sig_lr, pval_chisquare_mantel_haenszel = p$sig_mh ) } else { list( chisquare = k$chi, chisquare_lr = m$chilr, contingency_coefficient = j$cc, cramers_v = j$cv, df = df, ds = ds, phi_coefficient = j$phi, pval_chisquare = k$sig, pval_chisquare_lr = m$sig_lr ) } print_chisq_test(result) } df_chi <- function(twoway) { (nrow(twoway) - 1) * (ncol(twoway) - 1) } efmat <- function(twoway) { mat1 <- matrix(rowSums(twoway) / sum(twoway), nrow = 2) mat2 <- matrix(colSums(twoway), nrow = 1) mat1 %*% mat2 } pear_chsq <- function(twoway, df, ef) { chi <- round(sum(((twoway - ef) ^ 2) / ef), 4) sig <- round(stats::pchisq(chi, df, lower.tail = F), 4) list(chi = chi, sig = sig) } lr_chsq <- function(twoway, df, ef) { chilr <- round(2 * sum(matrix(log(twoway / ef), nrow = 1) %*% matrix(twoway, nrow = 4)), 4) sig_lr <- round(stats::pchisq(chilr, df, lower.tail = F), 4) list(chilr = chilr, sig_lr = sig_lr) } lr_chsq2 <- function(twoway, df, ef, ds) { chilr <- round(2 * sum(matrix(twoway, ncol = ds) %*% matrix(log(twoway / ef), nrow = ds)), 4) sig_lr <- round(stats::pchisq(chilr, df, lower.tail = F), 4) list(chilr = chilr, sig_lr = sig_lr) } yates_chsq <- function(twoway) { way2 <- twoway[, c(2, 1)] total <- sum(twoway) prods <- prod(diag(twoway)) - prod(diag(way2)) prod_totals <- prod(rowSums(twoway)) * prod(colSums(twoway)) chi_y <- round((total * (abs(prods) - (total / 2)) ^ 2) / prod_totals, 4) sig_y <- round(stats::pchisq(chi_y, 1, lower.tail = F), 4) list(chi_y = chi_y, sig_y = sig_y, total = total, prod_totals = prod_totals) } mh_chsq <- function(twoway, total, prod_totals) { num <- twoway[1] - ((rowSums(twoway)[1] * colSums(twoway)[1]) / total) den <- prod_totals / ((total ^ 3) - (total ^ 2)) chimh <- round((num ^ 2) / den, 4) sig_mh <- round(stats::pchisq(chimh, 1, lower.tail = F), 4) list(chimh = chimh, sig_mh = sig_mh) } efm <- function(twoway, dk) { mat1 <- matrix(rowSums(twoway) / sum(twoway), nrow = dk[1]) mat2 <- matrix(colSums(twoway), ncol = dk[2]) mat1 %*% mat2 } pear_chi <- function(twoway, df, ef) { chi <- round(sum(((twoway - ef) ^ 2) / ef), 4) sig <- round(stats::pchisq(chi, df, lower.tail = F), 4) list(chi = chi, sig = sig) } chigf <- function(x, y, chi) { twoway <- matrix(table(x, y), nrow = nlevels(as.factor(x)), ncol = nlevels(as.factor(y)) ) total <- sum(twoway) phi <- round(sqrt(chi / total), 4) cc <- round(sqrt(chi / (chi + total)), 4) q <- min(nrow(twoway), ncol(twoway)) cv <- round(sqrt(chi / (total * (q - 1))), 4) list(phi = phi, cc = cc, cv = cv) } # chi square goodness of fit test xpl_chisq_gof_test <- function(data, x, y, correct = FALSE) { xcheck <- data[[x]] xlen <- length(data[[x]]) xone <- as.vector(table(data[[x]])) if (!is.factor(xcheck)) { stop("x must be an object of class factor") } if (!is.numeric(y)) { stop("y must be numeric") } if (!is.logical(correct)) { stop("correct must be either TRUE or FALSE") } varname <- names(data[x]) n <- length(xone) if (length(y) != n) { stop("Length of y must be equal to the number of categories in x") } df <- n - 1 if (sum(y) == 1) { y <- xlen * y } if ((df == 1) || (correct == TRUE)) { k <- chi_cort(xone, y) } else { k <- chigof(xone, y) } sig <- round(stats::pchisq(k$chi, df, lower.tail = FALSE), 4) result <- list( categories = levels(xcheck), chisquare = k$chi, deviation = format(k$dev, nsmall = 2), degrees_of_freedom = df, expected_frequency = y, n_levels = nlevels(xcheck), observed_frequency = xone, pvalue = sig, sample_size = length(xcheck), std_residuals = format(k$std, nsmall = 2), varname = varname ) print_chisq_gof(result) } chi_cort <- function(x, y) { diff <- x - y - 0.5 dif <- abs(x - y) - 0.5 dif2 <- dif ^ 2 dev <- round((diff / y) * 100, 2) std <- round(diff / sqrt(y), 2) chi <- round(sum(dif2 / y), 4) list(dev = dev, std = std, chi = chi) } chigof <- function(x, y) { dif <- x - y dif2 <- dif ^ 2 dev <- round((dif / y) * 100, 2) std <- round(dif / sqrt(y), 2) chi <- round(sum(dif2 / y), 4) list(dev = dev, std = std, chi = chi) } # cochran's q test xpl_cochran_qtest <- function(data, vars) { fdata <- data[vars] if (ncol(fdata) < 3) { stop("Please specify at least 3 variables.") } if (any(sapply(lapply(fdata, as.factor), nlevels) > 2)) { stop("Please specify dichotomous/binary variables only.") } k <- cochran_comp(fdata) result <- list( df = k$df, n = k$n, pvalue = k$pvalue, q = k$q) print_cochran_test(result) } coch_data <- function(x, ...) { if (is.data.frame(x)) { data <- x %>% lapply(as.numeric) %>% as.data.frame() %>% `-`(1) } else { data <- cbind(x, ...) %>% apply(2, as.numeric) %>% `-`(1) %>% as.data.frame() } return(data) } cochran_comp <- function(data) { n <- nrow(data) k <- ncol(data) df <- k - 1 cs <- data %>% lapply(as.numeric) %>% as.data.frame() %>% magrittr::subtract(1) %>% sums() q <- coch(k, cs$cls_sum, cs$cl, cs$g, cs$gs_sum) pvalue <- 1 - stats::pchisq(q, df) list( df = df, n = n, pvalue = round(pvalue, 4), q = q) } sums <- function(data) { cl <- colSums(data) cls_sum <- sum(cl ^ 2) g <- rowSums(data) gs_sum <- sum(g ^ 2) list( cl = cl, cls_sum = cls_sum, g = g, gs_sum = gs_sum) } coch <- function(k, cls_sum, cl, g, gs_sum) { ((k - 1) * ((k * cls_sum) - (sum(cl) ^ 2))) / ((k * sum(g)) - gs_sum) } # independent sample t test xpl_ts_ind_ttest <- function(data, x, y, confint = 0.95, alternative = c("both", "less", "greater", "all"), ...) { yone <- names(data[y]) if (check_x(data, x)) { stop("x must be a binary factor variable", call. = FALSE) } if (check_level(data, x) > 2) { stop("x must be a binary factor variable", call. = FALSE) } method <- match.arg(alternative) var_y <- yone alpha <- 1 - confint a <- alpha / 2 h <- indth(data, x, y, a) grp_stat <- h g_stat <- as.matrix(h) comb <- indcomb(data, y, a) k <- indcomp(grp_stat, alpha) j <- indsig(k$n1, k$n2, k$s1, k$s2, k$mean_diff) m <- indpool(k$n1, k$n2, k$mean_diff, k$se_dif) result <- list(alternative = method, combined = comb, confint = confint, conf_diff = round(k$conf_diff, 5), den_df = k$n2 - 1, df_pooled = m$df_pooled, df_satterthwaite = j$d_f, f = round(k$s1 / k$s2, 4), f_sig = fsig(k$s1, k$s2, k$n1, k$n2), levels = g_stat[, 1], lower = g_stat[, 8], mean = g_stat[, 3], mean_diff = round(k$mean_diff, 3), n = k$n, num_df = k$n1 - 1, obs = g_stat[, 2], sd = g_stat[, 4], sd_dif = round(k$sd_dif, 3), se = g_stat[, 5], se_dif = round(k$se_dif, 3), sig = j$sig, sig_l = j$sig_l, sig_pooled_l = m$sig_pooled_l, sig_pooled_u = m$sig_pooled_u, sig_pooled = m$sig_pooled, sig_u = j$sig_u, t_pooled = round(m$t_pooled, 4), t_satterthwaite = round(j$t, 4), upper = g_stat[, 9], var_y = var_y) print_two_ttest(result) } indth <- function(data, x, y, a) { h <- data_split(data, x, y) h$df <- h$length - 1 h$error <- stats::qt(a, h$df) * -1 h$lower <- h$mean_t - (h$error * h$std_err) h$upper <- h$mean_t + (h$error * h$std_err) return(h) } data_split <- function(data, x, y) { dat <- data.table(data[c(x, y)]) out <- dat[, .(length = length(get(y)), mean_t = mean_t(get(y)), sd_t = sd_t(get(y)), std_err = std_err(get(y))), by = x] setDF(out) } indcomb <- function(data, y, a) { comb <- da(data, y) comb$df <- comb$length - 1 comb$error <- stats::qt(a, comb$df) * -1 comb$lower <- round(comb$mean_t - (comb$error * comb$std_err), 5) comb$upper <- round(comb$mean_t + (comb$error * comb$std_err), 5) names(comb) <- NULL return(comb) } da <- function(data, y) { dat <- data[[y]] data.frame(length = length(dat), mean_t = mean_t(dat), sd_t = sd_t(dat), std_err = std_err(dat)) } mean_t <- function(x) { x %>% mean() %>% round(3) } sd_t <- function(x) { x %>% stats::sd() %>% round(3) } std_err <- function(x) { x %>% stats::sd() %>% divide_by(x %>% length() %>% sqrt()) %>% round(3) } indcomp <- function(grp_stat, alpha) { n1 <- grp_stat[1, 2] n2 <- grp_stat[2, 2] n <- n1 + n2 means <- grp_stat[, 3] mean_diff <- means[1] - means[2] sd1 <- grp_stat[1, 4] sd2 <- grp_stat[2, 4] s1 <- grp_stat[1, 4] ^ 2 s2 <- grp_stat[2, 4] ^ 2 sd_dif <- sd_diff(n1, n2, s1, s2) se_dif <- se_diff(n1, n2, s1, s2) conf_diff <- conf_int_p(mean_diff, se_dif, alpha = alpha) list(conf_diff = conf_diff, mean_diff = mean_diff, n = n, n1 = n1, n2 = n2, s1 = s1, s2 = s2, sd1 = sd1, sd2 = sd2, sd_dif = sd_dif, se_dif = se_dif) } sd_diff <- function(n1, n2, s1, s2) { n1 <- n1 - 1 n2 <- n2 - 1 n <- (n1 + n2) - 2 (n1 * s1) %>% add(n2 * s2) %>% divide_by(n) %>% raise_to_power(0.5) } se_diff <- function(n1, n2, s1, s2) { df <- n1 + n2 - 2 n_1 <- n1 - 1 n_2 <- n2 - 1 (n_1 * s1) %>% add(n_2 * s2) %>% divide_by(df) -> v (1 / n1) %>% add(1 / n2) %>% multiply_by(v) %>% sqrt() } conf_int_p <- function(u, se, alpha = 0.05) { a <- alpha / 2 error <- round(stats::qnorm(a), 3) * -1 lower <- u - (error * se) upper <- u + (error * se) c(lower, upper) } indsig <- function(n1, n2, s1, s2, mean_diff) { d_f <- as.vector(df(n1, n2, s1, s2)) t <- mean_diff / (((s1 / n1) + (s2 / n2)) ^ 0.5) sig_l <- round(stats::pt(t, d_f), 4) sig_u <- round(stats::pt(t, d_f, lower.tail = FALSE), 4) if (sig_l < 0.5) { sig <- round(stats::pt(t, d_f) * 2, 4) } else { sig <- round(stats::pt(t, d_f, lower.tail = FALSE) * 2, 4) } list(d_f = d_f, sig_l = sig_l, sig_u = sig_u, sig = sig, t = t) } df <- function(n1, n2, s1, s2) { sn1 <- s1 / n1 sn2 <- s2 / n2 m1 <- 1 / (n1 - 1) m2 <- 1 / (n2 - 1) num <- (sn1 + sn2) ^ 2 den <- (m1 * (sn1 ^ 2)) + (m2 * (sn2 ^ 2)) round(num / den) } fsig <- function(s1, s2, n1, n2) { round(min( stats::pf((s1 / s2), (n1 - 1), (n2 - 1)), stats::pf((s1 / s2), (n1 - 1), (n2 - 1), lower.tail = FALSE ) ) * 2, 4) } indpool <- function(n1, n2, mean_diff, se_dif) { df_pooled <- (n1 + n2) - 2 t_pooled <- mean_diff / se_dif sig_pooled_l <- round(stats::pt(t_pooled, df_pooled), 4) sig_pooled_u <- round(stats::pt(t_pooled, df_pooled, lower.tail = FALSE), 4) if (sig_pooled_l < 0.5) { sig_pooled <- round(stats::pt(t_pooled, df_pooled) * 2, 4) } else { sig_pooled <- round(stats::pt(t_pooled, df_pooled, lower.tail = FALSE) * 2, 4) } list(df_pooled = df_pooled, sig_pooled_l = sig_pooled_l, sig_pooled_u = sig_pooled_u, sig_pooled = sig_pooled, t_pooled = t_pooled) } check_x <- function(data, x) { !is.factor(data[[x]]) } check_level <- function(data, x) { nlevels(data[[x]]) } # levene test xpl_levene_test <- function(data, variables = NULL, group_var = "NULL", trim_mean = 0.1) { groupvar <- group_var varyables <- variables fdata <- data[varyables] if (groupvar == "NULL") { z <- as.list(fdata) ln <- unlist(lapply(z, length)) ly <- seq_len(length(z)) if (length(z) < 2) { stop("Please specify at least two variables.", call. = FALSE) } out <- xpl_gvar(ln, ly) fdata <- unlist(z) groupvars <- out %>% unlist() %>% as.factor() } else { fdata <- fdata[[1]] groupvars <- data[[groupvar]] if (length(fdata) != length(groupvars)) { stop("Length of variable and group_var do not match.", call. = FALSE) } } k <- lev_comp(fdata, groupvars, trim_mean) out <- list(avg = k$avg, avgs = k$avgs, bf = k$bf, bft = k$bft, d_df = k$d_df, lens = k$lens, lev = k$lev, levs = k$levs, n = k$n, n_df = k$n_df, p_bf = k$p_bf, p_bft = k$p_bft, p_lev = k$p_lev, sd = k$sd, sds = k$sds) print_levene_test(out) } lev_metric <- function(cvar, gvar, loc, ...) { metric <- tapply(cvar, gvar, loc, ...) y <- abs(cvar - metric[gvar]) result <- stats::anova(stats::lm(y ~ gvar)) list( fstat = result$`F value`[1], p = result$`Pr(>F)`[1] ) } lev_comp <- function(variable, group_var, trim.mean) { comp <- stats::complete.cases(variable, group_var) n <- length(comp) k <- nlevels(group_var) cvar <- variable[comp] gvar <- group_var[comp] lens <- tapply(cvar, gvar, length) avgs <- tapply(cvar, gvar, mean) sds <- tapply(cvar, gvar, stats::sd) bf <- lev_metric(cvar, gvar, mean) lev <- lev_metric(cvar, gvar, stats::median) bft <- lev_metric(cvar, gvar, mean, trim = trim.mean) list( avg = round(mean(cvar), 2), avgs = round(avgs, 2), bf = round(bf$fstat, 4), bft = round(bft$fstat, 4), d_df = (n - k), lens = lens, lev = round(lev$fstat, 4), levs = levels(gvar), n = n, n_df = (k - 1), p_bf = round(bf$p, 4), p_bft = round(bft$p, 4), p_lev = round(lev$p, 4), sd = round(stats::sd(cvar), 2), sds = round(sds, 2)) } # mcnemar test xpl_mcnemar_test <- function(data, x = NULL, y = NULL) { if (is.matrix(data) | is.table(data)) { dat <- mcdata(data) } else { dat <- table(data[c(x, y)]) } k <- mccomp(dat) result <- list(cases = k$cases, controls = k$controls, cpvalue = k$cpvalue, cstat = k$cstat, df = k$df, exactp = k$exactp, kappa = k$kappa, kappa_cil = k$kappa_cil, kappa_ciu = k$kappa_ciu, odratio = k$odratio, pvalue = k$pvalue, ratio = k$ratio, statistic = k$statistic, std_err = k$std_err, tbl = dat) print_mcnemar_test(result) } mcdata <- function(x, y) { if (!is.matrix(x)) { stop("x must be either a table or a matrix") } if (is.matrix(x)) { if (length(x) != 4) { stop("x must be a 2 x 2 matrix") } } dat <- x return(dat) } mctestp <- function(dat) { retrieve <- matrix(c(1, 2, 2, 1), nrow = 2) dat[retrieve] } tetat <- function(p) { ((p[1] - p[2]) ^ 2) / sum(p) } mcpval <- function(test_stat, df) { 1 - stats::pchisq(test_stat, df) } mcpex <- function(dat) { 2 * min(stats::pbinom(dat[2], sum(dat[2], dat[3]), 0.5), stats::pbinom(dat[3], sum(dat[2], dat[3]), 0.5)) } mcstat <- function(p) { ((abs(p[1] - p[2]) - 1) ^ 2) / sum(p) } mccpval <- function(cstat, df) { 1 - stats::pchisq(cstat, df) } mckappa <- function(dat) { agreement <- sum(diag(dat)) / sum(dat) expected <- sum(rowSums(dat) * colSums(dat)) / (sum(dat) ^ 2) (agreement - expected) / (1 - expected) } mcserr <- function(dat, kappa) { expected <- sum(rowSums(dat) * colSums(dat)) / (sum(dat) ^ 2) serr(dat, kappa, expected) } mcconf <- function(std_err, kappa) { alpha <- 0.05 interval <- stats::qnorm(1 - (alpha / 2)) * std_err ci_lower <- kappa - interval ci_upper <- kappa + interval list(ci_lower = ci_lower, ci_upper = ci_upper) } prop_fact <- function(dat, p) { dat_per <- dat / sum(dat) row_sum <- rowSums(dat_per) col_sum <- colSums(dat_per) controls <- 1 - col_sum[2] cases <- 1 - row_sum[2] ratio <- cases / controls odds_ratio <- p[1] / p[2] list(cases = cases, controls = controls, odds_ratio = odds_ratio, ratio = ratio ) } serr <- function(dat, kappa, expected) { dat_per <- dat / sum(dat) row_sum <- rowSums(dat_per) row_sum[3] <- sum(row_sum) col_sum <- colSums(dat_per) dat_per <- rbind(dat_per, col_sum) dat_per <- cbind(dat_per, row_sum) d1 <- dim(dat_per) dat_per[d1[1], d1[2]] <- 1.0 diagonal <- diag(dat_per) a <- diagonal[1] * (1 - (row_sum[1] + col_sum[1]) * (1 - kappa)) ^ 2 + diagonal[2] * (1 - (row_sum[2] + col_sum[2]) * (1 - kappa)) ^ 2 x1 <- dat_per[lower.tri(dat_per)][1] x2 <- dat_per[upper.tri(dat_per)][1] b <- ((1 - kappa) ^ 2) * ((x1 * (row_sum[1] + col_sum[2]) ^ 2) + (x2 * (row_sum[2] + col_sum[1]) ^ 2)) c <- ((kappa) - expected * (1 - kappa)) ^ 2 variance <- ((a + b - c) / ((1 - expected) ^ 2)) / sum(dat) sqrt(variance) } mccomp <- function(dat) { p <- mctestp(dat) test_stat <- tetat(p) df <- nrow(dat) - 1 pvalue <- mcpval(test_stat, df) exactp <- mcpex(dat) cstat <- mcstat(p) cpvalue <- mccpval(cstat, df) kappa <- mckappa(dat) std_err <- mcserr(dat, kappa) clu <- mcconf(std_err, kappa) k <- prop_fact(dat, p) list(cases = round(k$cases, 4), controls = round(k$controls, 4), cpvalue = cpvalue, cstat = cstat, df = df, exactp = round(exactp, 4), kappa = round(kappa, 4), kappa_cil = round(clu$ci_lower, 4), kappa_ciu = round(clu$ci_upper, 4), odratio = round(k$odds_ratio, 4), pvalue = round(pvalue, 4), ratio = round(k$ratio, 4), statistic = round(test_stat, 4), std_err = round(std_err, 4)) } # one sample proportion test xpl_os_prop_test <- function(data, variable = NULL, prob = 0.5, phat = 0.5, alternative = c("both", "less", "greater", "all")) { if (is.numeric(data)) { method <- match.arg(alternative) k <- prop_comp( data, prob = prob, phat = phat, alternative = method ) } else { fdata <- data[[variable]] n1 <- length(fdata) n2 <- fdata %>% table() %>% `[[`(2) phat <- round(n2 / n1, 4) prob <- prob method <- match.arg(alternative) k <- prop_comp( n1, prob = prob, phat = phat, alternative = method ) } result <- list(alt = k$alt, deviation = k$deviation, exp = k$exp, n = k$n, obs = k$obs, p = k$p, phat = k$phat, sig = k$sig, std = k$std, z = k$z) print_prop_test(result) } prop_comp <- function(n, prob, alternative, phat) { n <- n phat <- phat p <- prob q <- 1 - p obs <- c(n * (1 - phat), n * phat) exp <- n * c(q, p) dif <- obs - exp dev <- round((dif / exp) * 100, 2) std <- round(dif / sqrt(exp), 2) num <- phat - prob den <- sqrt((p * q) / n) z <- round(num / den, 4) lt <- round(stats::pnorm(z), 4) ut <- round(1 - stats::pnorm(z), 4) tt <- round((1 - stats::pnorm(abs(z))) * 2, 4) alt <- alternative if (alt == "all") { sig <- c("two-both" = tt, "less" = lt, "greater" = ut) } else if (alt == "greater") { sig <- ut } else if (alt == "less") { sig <- lt } else { sig <- tt } out <- list(alt = alt, deviation = format(dev, nsmall = 2), exp = exp, n = n, obs = obs, p = prob, phat = phat, sig = sig, std = format(std, nsmall = 2), z = z) return(out) } # one sample variance test xpl_os_var_test <- function(data, x, sd, confint = 0.95, alternative = c("both", "less", "greater", "all"), ...) { xone <- data[[x]] if (!is.numeric(xone)) { stop("x must be numeric") } if (!is.numeric(sd)) { stop("sd must be numeric") } if (!is.numeric(confint)) { stop("confint must be numeric") } type <- match.arg(alternative) varname <- names(data[x]) k <- osvar_comp(xone, sd, confint) result <- list(chi = round(k$chi, 4), c_lwr = k$c_lwr, conf = k$conf, c_upr = k$c_upr, df = k$df, n = k$n, p_lower = k$p_lower, p_two = k$p_two, p_upper = k$p_upper, sd = k$sd, se = round(k$se, 4), sigma = round(k$sigma, 4), type = type, var_name = varname, xbar = round(k$xbar, 4)) print_os_vartest(result) } osvar_comp <- function(x, sd, confint) { n <- length(x) df <- n - 1 xbar <- mean(x) sigma <- stats::sd(x) se <- sigma / sqrt(n) chi <- df * ((sigma / sd) ^ 2) p_lower <- stats::pchisq(chi, df) p_upper <- stats::pchisq(chi, df, lower.tail = F) if (p_lower < 0.5) { p_two <- stats::pchisq(chi, df) * 2 } else { p_two <- stats::pchisq(chi, df, lower.tail = F) * 2 } conf <- confint a <- (1 - conf) / 2 al <- 1 - a tv <- df * sigma c_lwr <- round(tv / stats::qchisq(al, df), 4) c_upr <- round(tv / stats::qchisq(a, df), 4) list(chi = chi, c_lwr = c_lwr, conf = conf, c_upr = c_upr, df = df, n = n, p_lower = p_lower, p_two = p_two, p_upper = p_upper, sd = sd, se = se, sigma = sigma, xbar = xbar) } # paired t test xpl_ts_paired_ttest <- function(data, x, y, confint = 0.95, alternative = c("both", "less", "greater", "all")) { xone <- data[[x]] yone <- data[[y]] method <- match.arg(alternative) var_names <- names(data[c(x, y)]) k <- paired_comp(xone, yone, confint, var_names) result <- list( Obs = k$Obs, b = k$b, conf_int1 = k$conf_int1, conf_int2 = k$conf_int2, conf_int_diff = k$conf_int_diff, corr = k$corr, corsig = k$corsig, tstat = k$tstat, p_lower = k$p_lower, p_upper = k$p_upper, p_two_tail = k$p_two_tail, var_names = var_names, xy = k$xy, df = k$df, alternative = method, confint = confint ) print_paired_ttest(result) } paired_comp <- function(x, y, confint, var_names) { n <- length(x) df <- (n - 1) xy <- paste(var_names[1], "-", var_names[2]) data_prep <- paired_data(x, y) b <- paired_stats(data_prep, "key", "value") corr <- round(stats::cor(x, y), 4) corsig <- cor_sig(corr, n) alpha <- 1 - confint confint1 <- conf_int_t(b[[1, 1]], b[[1, 2]], n, alpha = alpha) %>% round(2) confint2 <- conf_int_t(b[[2, 1]], b[[2, 2]], n, alpha = alpha) %>% round(2) confint3 <- conf_int_t(b[[3, 1]], b[[3, 2]], n, alpha = alpha) %>% round(2) t <- round(b[[3, 1]] / b[[3, 3]], 4) p_l <- stats::pt(t, df) p_u <- stats::pt(t, df, lower.tail = FALSE) p <- stats::pt(abs(t), df, lower.tail = FALSE) * 2 list( Obs = n, b = b, conf_int1 = confint1, conf_int2 = confint2, conf_int_diff = confint3, corr = round(corr, 2), corsig = round(corsig, 2), tstat = t, p_lower = p_l, p_upper = p_u, p_two_tail = p, xy = xy, df = df ) } paired_data <- function(x, y) { j <- data.frame(x = x, y = y) j$z <- j$x - j$y val <- data.frame(value = c(j$x, j$y, j$z)) key <- rep(c("x", "y", "z"), each = nrow(j)) cbind(key = key, value = val) } paired_stats <- function(data, key, value) { dat <- data.table(data[c("value", "key")]) out <- dat[, .(length = length(value), mean = mean(value), sd = stats::sd(value)), by = key] out[, ':='(se = sd / sqrt(length))] setDF(out) out[, c(-1, -2)] } cor_sig <- function(corr, n) { t <- corr / ((1 - (corr ^ 2)) / (n - 2)) ^ 0.5 df <- n - 2 sig <- (1 - stats::pt(t, df)) * 2 round(sig, 4) } conf_int_t <- function(u, s, n, alpha = 0.05) { a <- alpha / 2 df <- n - 1 error <- round(stats::qt(a, df), 3) * -1 lower <- u - (error * samp_err(s, n)) upper <- u + (error * samp_err(s, n)) c(lower, upper) } samp_err <- function(sigma, n) { sigma / (n ^ 0.5) } # runs test xpl_runs_test <- function(data, x, drop = FALSE, split = FALSE, mean = FALSE, threshold = NA) { xone <- data[[x]] n <- length(xone) if (is.na(threshold)) { y <- unique(xone) if (sum(y) == 1) { stop("Use 0 as threshold if the data is coded as a binary.") } } if (!(is.na(threshold))) { thresh <- threshold } else if (mean) { thresh <- mean(xone) } else { thresh <- stats::median(xone, na.rm = TRUE) } if (drop) { xone <- xone[xone != thresh] } if (split) { x_binary <- ifelse(xone > thresh, 1, 0) } else { x_binary <- xone %>% lapply(nruns2, thresh) %>% unlist(use.names = FALSE) } n_runs <- xpl_nsignC(x_binary) n1 <- sum(x_binary) n0 <- length(x_binary) - n1 exp_runs <- expruns(n0, n1) sd_runs <- sdruns(n0, n1) test_stat <- (n_runs - exp_runs) / (sd_runs ^ 0.5) sig <- 2 * (1 - stats::pnorm(abs(test_stat), lower.tail = TRUE)) result <- list(mean = exp_runs, n = n, n_above = n1, n_below = n0, n_runs = n_runs, p = sig, threshold = thresh, var = sd_runs, z = test_stat) print_runs_test(result) } # expected runs expruns <- function(n0, n1) { N <- n0 + n1 return(((2 * n0 * n1) / N) + 1) } # standard deviation of runs sdruns <- function(n0, n1) { N <- n0 + n1 n <- 2 * n0 * n1 return(((n * (n - N)) / ((N ^ 2) * (N - 1)))) } nruns2 <- function(data, value) { if (data <= value) { return(0) } else { return(1) } } # two sample proportion test xpl_ts_prop_test <- function(data, var1, var2, alternative = c("both", "less", "greater", "all"), ...) { varone <- data[[var1]] vartwo <- data[[var2]] alt <- match.arg(alternative) k <- prop_comp2(varone, vartwo, alt) result <- list(alt = alt, n1 = k$n1, n2 = k$n2, phat1 = k$phat1, phat2 = k$phat2, sig = k$sig, z = k$z) print_ts_prop_test(result) } xpl_ts_prop_grp <- function(data, var, group, alternative = c("both", "less", "greater", "all")) { varone <- data[[var]] groupone <- data[[group]] if (nlevels(groupone) > 2) { stop("Grouping variable must be a binary factor variables.", call. = FALSE) } n <- tapply(varone, groupone, length) n1 <- n[[1]] n2 <- n[[2]] y <- tapply(varone, groupone, table) y1 <- y[[1]][[2]] y2 <- y[[2]][[2]] phat1 <- y1 / n1 phat2 <- y2 / n2 phat <- sum(y1, y2) / sum(n1, n2) num <- (phat1 - phat2) den1 <- phat * (1 - phat) den2 <- (1 / n1) + (1 / n2) den <- sqrt(den1 * den2) z <- num / den lt <- stats::pnorm(z) ut <- round(stats::pnorm(z, lower.tail = FALSE), 4) tt <- round(stats::pnorm(abs(z), lower.tail = FALSE) * 2, 4) alt <- match.arg(alternative) if (alt == "all") { sig <- c("both" = tt, "less" = lt, "greater" = ut) } else if (alt == "greater") { sig <- ut } else if (alt == "less") { sig <- lt } else { sig <- tt } out <- list(alt = alt, n1 = n1, n2 = n2, phat1 = phat1, phat2 = phat2, sig = round(sig, 3), z = round(z, 3)) print_ts_prop_test(out) } xpl_ts_prop_calc <- function(n1, n2, p1, p2, alternative = c("both", "less", "greater", "all"), ...) { n1 <- n1 n2 <- n2 phat1 <- p1 phat2 <- p2 phat <- sum(n1 * p1, n2 * p2) / sum(n1, n2) num <- (phat1 - phat2) den1 <- phat * (1 - phat) den2 <- (1 / n1) + (1 / n2) den <- sqrt(den1 * den2) z <- num / den lt <- stats::pnorm(z) ut <- round(stats::pnorm(z, lower.tail = FALSE), 4) tt <- round(stats::pnorm(abs(z), lower.tail = FALSE) * 2, 4) alt <- match.arg(alternative) if (alt == "all") { sig <- c("both" = tt, "less" = lt, "greater" = ut) } else if (alt == "greater") { sig <- ut } else if (alt == "less") { sig <- lt } else { sig <- tt } out <- list(alt = alt, n1 = n1, n2 = n2, phat1 = round(phat1, 3), phat2 = round(phat2, 3), sig = round(sig, 3), z = round(z, 3)) print_ts_prop_test(out) } prop_comp2 <- function(var1, var2, alt) { n1 <- length(var1) n2 <- length(var2) y1 <- table(var1)[[2]] y2 <- table(var2)[[2]] phat1 <- round(y1 / n1, 4) phat2 <- round(y2 / n2, 4) phat <- sum(y1, y2) / sum(n1, n2) num <- (phat1 - phat2) den1 <- phat * (1 - phat) den2 <- (1 / n1) + (1 / n2) den <- sqrt(den1 * den2) z <- round(num / den, 4) lt <- round(stats::pnorm(z), 4) ut <- round(stats::pnorm(z, lower.tail = FALSE), 4) tt <- round(stats::pnorm(abs(z), lower.tail = FALSE) * 2, 4) if (alt == "all") { sig <- c("two-tail" = tt, "lower-tail" = lt, "upper-tail" = ut) } else if (alt == "greater") { sig <- ut } else if (alt == "less") { sig <- lt } else { sig <- tt } list(n1 = n1, n2 = n2, phat1 = phat1, phat2 = phat2, sig = round(sig, 3), z = round(z, 3)) } # two sample variance test xpl_ts_var_test <- function(data, variables = NULL, group_var = "NULL", alternative = c("less", "greater", "all")) { groupvar <- group_var varyables <- variables fdata <- data[varyables] if (groupvar == "NULL") { z <- as.list(fdata) ln <- unlist(lapply(z, length)) ly <- seq_len(length(z)) if (length(z) < 2) { stop("Please specify at least two variables.", call. = FALSE) } out <- xpl_gvar(ln, ly) fdata <- unlist(z) groupvars <- out %>% unlist() %>% as.factor() lev <- names(data[varyables]) } else { fdata <- fdata[[1]] groupvars <- data[[groupvar]] lev <- levels(groupvars) if (length(fdata) != length(groupvars)) { stop("Length of variable and group_var do not match.", call. = FALSE) } } type <- match.arg(alternative) k <- var_comp(fdata, groupvars) out <- list(avg = k$avg, avgs = k$avgs, f = k$f, len = k$len, lens = k$lens, lev = lev, lower = k$lower, n1 = k$n1, n2 = k$n2, sd = k$sd, sds = k$sds, se = k$se, ses = k$ses, type = type, upper = k$upper, vars = k$vars) print_var_test(out) } var_comp <- function(variable, group_var) { comp <- stats::complete.cases(variable, group_var) cvar <- variable[comp] gvar <- group_var[comp] d <- data.frame(cvar, gvar) vals <- tibble_stats(d, "cvar", "gvar") lass <- tbl_stats(d, "cvar") lens <- vals[[2]] vars <- vals[[4]] f <- vars[1] / vars[2] n1 <- lens[1] - 1 n2 <- lens[2] - 1 lower <- stats::pf(f, n1, n2) upper <- stats::pf(f, n1, n2, lower.tail = FALSE) list(avg = round(lass[2], 2), avgs = round(vals[[3]], 2), f = round(f, 4), len = lass[1], lens = lens, lower = round(lower, 4), n1 = n1, n2 = n2, sd = round(lass[3], 2), sds = round(vals[[5]], 2), se = round(lass[4], 2), ses = round(vals[[6]], 2), upper = round(upper, 4), vars = round(vars, 2)) } tibble_stats <- function(data, x, y) { dat <- data.table(data[c(x, y)]) out <- dat[, .(length = length(get(x)), mean = mean(get(x)), var = stats::var(get(x)), sd = stats::sd(get(x))), by = y] out[, ':='(ses = sd / sqrt(length))] setDF(out) out <- out[order(out[, 1]),] return(out) } tbl_stats <- function(data, y) { dat <- data[[y]] c(length(dat), mean(dat), sd(dat), (sd(dat) / sqrt(length(dat)))) } # binomial test xpl_binom_calc <- function(n, success, prob = 0.5, ...) { if (!is.numeric(n)) { stop("n must be an integer") } if (!is.numeric(success)) { stop("success must be an integer") } if (!is.numeric(prob)) { stop("prob must be numeric") } if ((prob < 0) | (prob > 1)) { stop("prob must be between 0 and 1") } k <- binom_comp(n, success, prob) out <- list( exp_k = k$exp_k, exp_p = k$exp_p, k = k$k, n = n, obs_p = k$obs_p, pval_lower = k$lower, pval_upper = k$upper ) print_binom(out) } xpl_binom_test <- function(data, variable, prob = 0.5) { varyable <- variable fdata <- data[[varyable]] if (!is.factor(fdata)) { stop("variable must be of type factor", call. = FALSE) } if (nlevels(fdata) > 2) { stop("Binomial test is applicable only to binary data i.e. categorical data with 2 levels.", call. = FALSE) } if (!is.numeric(prob)) { stop("prob must be numeric", call. = FALSE) } if ((prob < 0) | (prob > 1)) { stop("prob must be between 0 and 1", call. = FALSE) } n <- length(fdata) k <- table(fdata)[[2]] xpl_binom_calc(n, k, prob) } binom_comp <- function(n, success, prob) { n <- n k <- success obs_p <- k / n exp_k <- round(n * prob) lt <- stats::pbinom(k, n, prob, lower.tail = T) ut <- stats::pbinom(k - 1, n, prob, lower.tail = F) p_opp <- round(stats::dbinom(k, n, prob), 9) i_p <- stats::dbinom(exp_k, n, prob) i_k <- exp_k if (k < exp_k) { while (i_p > p_opp) { i_k <- i_k + 1 i_p <- round(stats::dbinom(i_k, n, prob), 9) if (round(i_p) == p_opp) { break } } ttf <- stats::pbinom(k, n, prob, lower.tail = T) + stats::pbinom(i_k - 1, n, prob, lower.tail = F) } else { while (p_opp <= i_p) { i_k <- i_k - 1 i_p <- stats::dbinom(i_k, n, prob) if (round(i_p) == p_opp) { break } } i_k <- i_k tt <- stats::pbinom(i_k, n, prob, lower.tail = T) + stats::pbinom(k - 1, n, prob, lower.tail = F) ttf <- ifelse(tt <= 1, tt, 1) } list( n = n, k = k, exp_k = exp_k, obs_p = obs_p, exp_p = prob, ik = i_k, lower = round(lt, 6), upper = round(ut, 6), two_tail = round(ttf, 6) ) }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/xpl-helpers.R
print_owanova <- function(data) { # width w1 <- nchar("Between Groups") w2 <- max(nchar("Squares"), nchar(data$ss_between), nchar(data$ss_within), nchar(data$ss_total)) w3 <- max(nchar("DF"), nchar(data$df_btw), nchar(data$df_btw), nchar(data$df_within), nchar(data$df_total)) w4 <- max(nchar("Mean Square"), nchar(data$ms_btw), nchar(data$ms_within)) w5 <- max(nchar("F"), nchar(data$fstat)) w6 <- max(nchar("Sig."), nchar(format(data$pval, nsmall = 4))) w <- sum(w1, w2, w3, w4, w5, w6, 21) w7 <- nchar(data$rmse) dc <- as.vector(data$group_stats[, 1]) w8 <- max(nchar("Category"), max(nchar(dc))) w9 <- max(nchar("N"), max(nchar(data$group_stats[[2]]))) w10 <- max(nchar("Mean"), max(nchar(format(data$group_stats[[3]], nsmall = 3)))) w11 <- max(nchar("Std. Dev."), max(nchar(format(data$group_stats[[4]], nsmall = 3)))) wr <- sum(w8, w9, w10, w11, 13) p <- format(data$pval, nsmall = 4) q <- nrow(data$group_stats) s <- length(data$group_stats) cat(fg("ANOVA", w), "\n") cat(rep("-", w), sep = "", "\n") cat(fg("", w1), fs(), fg("Sum of", w2), fs(), fg("", w3), fs(), fg("", w4), fs(), fg("", w5), fs(), fg("", w6), "\n") cat(fg("", w1), fs(), fg("Squares", w2), fs(), fg("DF", w3), fs(), fg("Mean Square", w4), fs(), fg("F", w5), fs(), fg("Sig.", w6), "\n") cat(rep("-", w), sep = "", "\n") cat(fl("Between Groups", w1), fs(), fg(data$ss_between, w2), fs(), fg(data$df_btw, w3), fs(), fg(data$ms_btw, w4), fs(), fg(data$fstat, w5), fs(), fg(data$pval, w6), "\n") cat(fl("Within Groups", w1), fs(), fg(data$ss_within, w2), fs(), fg(data$df_within, w3), fs(), fg(data$ms_within, w4), fs(), fg("", w5), fs(), fg("", w6), "\n") cat(fl("Total", w1), fs(), fg(data$ss_total, w2), fs(), fg(data$df_total, w3), fs(), fg("", w4), fs(), fg("", w5), fs(), fg("", w6), "\n") cat(rep("-", w), sep = "", "\n\n") cat(fg("Report", wr), "\n") cat(rep("-", wr), sep = "", "\n") cat(fg("Category", w8), fs(), fg("N", w9), fs(), fg("Mean", w10), fs(), fg("Std. Dev.", w11), "\n") cat(rep("-", wr), sep = "", "\n") for (i in seq_len(q)) { cat( fc(data$group_stats[[i, 1]], w8), fs(), fg(data$group_stats[[i, 2]], w9), fs(), fk(format(round(data$group_stats[[i, 3]], 3), nsmall = 3), w10), fs(), fk(format(round(data$group_stats[[i, 4]], 3), nsmall = 3), w11), "\n" ) } cat(rep("-", wr), sep = "", "\n\n") cat(fl("Number of obs", 13), "=", fl(data$obs, w7), fs(), fl("R-squared", 13), "=", data$r2, "\n") cat(fl("Root MSE", 13), "=", data$rmse, fs(), fl("Adj R-squared", 13), "=", data$adjusted_r2, "\n\n") } print_binom <- function(data) { # widths w1 <- nchar("Group") w2 <- max(nchar("N"), nchar(data$n)) w3 <- max(nchar("Obs. Prop"), nchar(data$obs_p)) w4 <- max(nchar("Exp. Prop"), nchar(data$exp_p)) w <- sum(w1, w2, w3, w4, 13) k0 <- data$n - data$k p0 <- 1 - data$obs_p e0 <- 1 - data$exp_p cat(format("Binomial Test", width = w, justify = "centre"), "\n") cat(" ", rep("-", w), sep = "", "\n") cat( " ", format("Group", width = w1, justify = "left"), fs(), format("N", width = w2, justify = "centre"), fs(), format("Obs. Prop", width = w3, justify = "centre"), fs(), format("Exp. Prop", width = w4, justify = "centre"), "\n" ) cat(" ", rep("-", w), sep = "", "\n") cat( " ", format("0", width = w1, justify = "centre"), fs(), format(k0, width = w2, justify = "right"), fs(), format(p0, width = w3, justify = "centre"), fs(), format(e0, width = w4, justify = "centre", nsmall = 3), "\n" ) cat( " ", format("1", width = w1, justify = "centre"), fs(), format(data$k, width = w2, justify = "right"), fs(), format(data$obs_p, width = w3, justify = "centre"), fs(), format(data$exp_p, width = w4, justify = "centre", nsmall = 3), "\n" ) cat(" ", rep("-", w), sep = "", "\n") # test summary widths w6 <- nchar("Lower") w7 <- nchar(paste0("Pr(k <= ", data$k, " or k >= ", data$k, ")")) w8 <- nchar(paste0("Pr(k <= ", data$k, " or k >= ", data$k, ")")) w9 <- 8 w10 <- sum(w6, w7, w9, 9) w11 <- sum(w6, w8, w9, 9) if (data$k < data$exp_k) { cat("\n\n", format("Test Summary", width = w11, justify = "centre"), "\n") cat(" ", rep("-", w11), sep = "", "\n") cat( " ", format("Tail", width = w6, justify = "left"), fs(), format("Prob", width = w8, justify = "centre"), fs(), format("p-value", width = w9, justify = "centre"), "\n" ) cat(" ", rep("-", w11), sep = "", "\n") cat( " ", format("Lower", width = w6, justify = "left"), fs(), format(paste0("Pr(k <= ", data$k, ")"), width = w8, justify = "centre"), fs(), format(as.character(data$pval_lower), width = w9, justify = "centre"), "\n" ) cat( " ", format("Upper", width = w6, justify = "left"), fs(), format(paste0("Pr(k >= ", data$k, ")"), width = w8, justify = "centre"), fs(), format(as.character(data$pval_upper), width = w9, justify = "centre"), "\n" ) cat(" ", rep("-", w11), sep = "", "\n") } else { cat("\n\n", format("Test Summary", width = w10, justify = "centre"), "\n") cat(" ", rep("-", w10), sep = "", "\n") cat( " ", format("Tail", width = w6, justify = "left"), fs(), format("Prob", width = w7, justify = "centre"), fs(), format("p-value", width = w9, justify = "centre"), "\n" ) cat(" ", rep("-", w10), sep = "", "\n") cat( " ", format("Lower", width = w6, justify = "left"), fs(), format(paste0("Pr(k <= ", data$k, ")"), width = w7, justify = "centre"), fs(), format(as.character(data$pval_lower), width = w9, justify = "centre"), "\n" ) cat( " ", format("Upper", width = w6, justify = "left"), fs(), format(paste0("Pr(k >= ", data$k, ")"), width = w7, justify = "centre"), fs(), format(as.character(data$pval_upper), width = w9, justify = "centre"), "\n" ) cat(" ", rep("-", w10), sep = "", "\n") } } print_ttest <- function(data) { null_l <- paste0("Ho: mean(", data$var_name, ") >=", as.character(data$mu)) alt_l <- paste0(" Ha: mean(", data$var_name, ") <", as.character(data$mu)) null_u <- paste0("Ho: mean(", data$var_name, ") <=", as.character(data$mu)) alt_u <- paste0("Ha: mean(", data$var_name, ") >", as.character(data$mu)) null_t <- paste0("Ho: mean(", data$var_name, ") ~=", as.character(data$mu)) alt_t <- paste0("Ha: mean(", data$var_name, ") !=", as.character(data$mu)) all_l <- paste("Ha: mean <", as.character(data$mu)) all_u <- paste("Ha: mean >", as.character(data$mu)) all_t <- paste("Ha: mean ~=", as.character(data$mu)) char_p_l <- format(data$p_l, digits = 0, nsmall = 4) char_p_u <- format(data$p_u, digits = 0, nsmall = 4) char_p <- format(data$p, digits = 0, nsmall = 4) all_p_l <- paste("P < t =", char_p_l) all_p_t <- paste("P > |t| =", char_p) all_p_u <- paste("P > t =", char_p_u) all_tval <- paste0(" t = ", as.character(data$test_stat)) # formatting output # compute the characters of each output and decide the overall width var_width <- max(nchar("Variable"), nchar(data$var_name)) obs_width <- max(nchar("Obs"), nchar(data$n)) mean_width <- max(nchar("Mean"), nchar(data$Mean)) se_width <- max(nchar("Std. Err."), nchar(data$std_err)) sd_width <- max(nchar("Std. Dev."), nchar(data$stddev)) conf_length <- nchar(data$confint[1]) + nchar(data$confint[2]) conf_str <- paste0("[", data$conf * 100, "% Conf. Interval]") confint_length <- nchar(conf_str) if (conf_length > confint_length) { conf_width <- round(conf_length / 2) } else { conf_width <- round(confint_length / 2) } t_width <- nchar(data$test_stat) df_width <- max(nchar("DF"), nchar(data$df)) p_width <- max(nchar("2 Tailed"), nchar(round(data$p, 5))) md_width <- max(nchar("Difference"), nchar(data$mean_diff)) md_length <- nchar(data$mean_diff_l) + nchar(data$mean_diff_u) if (md_length > confint_length) { md_conf_width <- floor(md_length / 2) } else { md_conf_width <- floor(confint_length / 2) } width_1 <- sum(var_width, obs_width, mean_width, se_width, sd_width, ceiling(conf_width * 2), 26) width_2 <- sum(var_width, t_width, df_width, p_width, md_width, ceiling(md_conf_width * 2), 26) all_width <- round(width_1 / 3) cat( format("One-Sample Statistics", width = width_1, justify = "centre"), "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("Obs", obs_width), formats_t(), formatter_t("Mean", mean_width), formats_t(), formatter_t("Std. Err.", se_width), formats_t(), formatter_t("Std. Dev.", sd_width), formats_t(), formatter_t(conf_str, conf_width), "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(data$n, obs_width), formats_t(), formatter_t(data$Mean, mean_width), formats_t(), formatter_t(data$std_err, sd_width), formats_t(), formatter_t(data$stddev, se_width), formats_t(), format_cil(data$confint[1], conf_width), format_ciu(data$confint[2], conf_width), "\n" ) cat(rep("-", width_1), sep = "") # print result if (data$type == "less") { cat("\n\n", format("Lower Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre"), "\n") cat("\n", format(null_l, width = width_2, justify = "centre")) cat("\n", format(alt_l, width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("t", t_width), formats_t(), formatter_t("DF", df_width), formats_t(), formatter_t("Sig", p_width), formats_t(), formatter_t("Mean Diff.", md_width), formats_t(), formatter_t(conf_str, md_conf_width), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(round(data$test_stat, 3), t_width), formats_t(), formatter_t(data$df, df_width), formats_t(), formatter_t(round(data$p_l, 5), p_width), formats_t(), formatter_t(data$mean_diff, md_width), formats_t(), format_cil(round(data$mean_diff_l, 4), md_conf_width), format_ciu(round(data$mean_diff_u, 4), md_conf_width), "\n" ) cat(rep("-", width_2), sep = "") } else if (data$type == "greater") { cat("\n\n", format("Upper Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre"), "\n") cat("\n", format(null_u, width = width_2, justify = "centre")) cat("\n", format(alt_u, width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("t", t_width), formats_t(), formatter_t("DF", df_width), formats_t(), formatter_t("Sig", p_width), formats_t(), formatter_t("Mean Diff.", md_width), formats_t(), formatter_t(conf_str, md_conf_width), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(round(data$test_stat, 3), t_width), formats_t(), formatter_t(data$df, df_width), formats_t(), formatter_t(round(data$p_l, 5), p_width), formats_t(), formatter_t(data$mean_diff, md_width), formats_t(), format_cil(round(data$mean_diff_l, 4), md_conf_width), format_ciu(round(data$mean_diff_u, 4), md_conf_width), "\n" ) cat(rep("-", width_2), sep = "") } else if (data$type == "both") { cat("\n\n", format("Two Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre"), "\n") cat("\n", format(null_t, width = width_2, justify = "centre")) cat("\n", format(alt_t, width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("t", t_width), formats_t(), formatter_t("DF", df_width), formats_t(), formatter_t("Sig", p_width), formats_t(), formatter_t("Mean Diff.", md_width), formats_t(), formatter_t(conf_str, md_conf_width), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(round(data$test_stat, 3), t_width), formats_t(), formatter_t(data$df, df_width), formats_t(), formatter_t(round(data$p_l, 5), p_width), formats_t(), formatter_t(data$mean_diff, md_width), formats_t(), format_cil(round(data$mean_diff_l, 4), md_conf_width), format_ciu(round(data$mean_diff_u, 4), md_conf_width), "\n" ) cat(rep("-", width_2), sep = "") } else { cat("\n\n", format(null_t, width = width_2, justify = "centre")) cat("\n\n", format(all_l, width = all_width, justify = "centre"), format(all_t, width = all_width, justify = "centre"), format(all_u, width = all_width, justify = "centre"), "\n") cat(format(all_tval, width = all_width, justify = "centre"), format(all_tval, width = all_width, justify = "centre"), format(all_tval, width = all_width, justify = "centre")) cat("\n", format(all_p_l, width = all_width, justify = "centre"), format(all_p_t, width = all_width, justify = "centre"), format(all_p_u, width = all_width, justify = "centre")) } } print_paired_ttest <- function(data) { char_p_u <- format(data$p_upper, digits = 0, nsmall = 3) char_p_l <- format(data$p_lower, digits = 0, nsmall = 3) char_p <- format(data$p_two_tail, digits = 0, nsmall = 3) # hypothesis heading hyp_null <- paste0("Ho: mean(", data$var_names[1], " - ", data$var_names[2], ") = ", "0") hyp_lt <- paste0("Ha: mean(", data$var_names[1], " - ", data$var_names[2], ") < ", "0") hyp_ut <- paste0("Ha: mean(", data$var_names[1], " - ", data$var_names[2], ") > ", "0") hyp_2t <- paste0("Ha: mean(", data$var_names[1], " - ", data$var_names[2], ") ~= ", "0") conf <- data$confint * 100 conf_char <- paste0("[", conf, "% Conf. Interval]") # all tests combines all_null <- paste0("Ho: mean(", data$var_names[1], " - ", data$var_names[2], ") = mean(diff) = ", "0") all_p_l <- paste("P < t =", char_p_l) all_p_t <- paste("P > |t| =", char_p) all_p_u <- paste("P > t =", char_p_u) all_tval <- paste0(" t = ", as.character(data$tstat)) # formatting output var_width1 <- max(nchar("Variables"), nchar(data$var_names[1]), nchar(data$var_names[2]), nchar("diff")) var_width <- max(nchar("Variables"), nchar(data$xy)) obs_width <- max(nchar("Obs"), nchar(data$Obs)) mean_width <- max(nchar("Mean"), nchar(format(max(data$b[["mean"]]), nsmall = 2))) se_width <- max(nchar("Std. Err."), nchar(format(max(data$b[["se"]]), nsmall = 2))) sd_width <- max(nchar("Std. Dev."), nchar(format(max(data$b[["sd"]]), nsmall = 2))) corr_width <- nchar("Correlation") corsig_width <- max(nchar("Sig."), nchar(data$corsig)) t_width <- nchar(data$tstat) df_width <- max(nchar("DF"), nchar(data$df)) p_width <- max(nchar("Sig."), nchar(format(data$corsig, nsmall = 3))) conf_length <- max(sum(nchar(data$conf_int1)), sum(nchar(data$conf_int2))) if (conf_length > 20) { conf_width <- conf_length conf_l_width <- ceiling(conf_width / 2) conf_u_width <- ceiling(conf_width / 2) } else { conf_width <- 20 conf_l_width <- 10 conf_u_width <- 10 } space1 <- 20 space2 <- 13 space3 <- 13 width_1 <- sum(var_width1, obs_width, mean_width, se_width, sd_width, conf_width, space1) width_2 <- sum(var_width, obs_width, corr_width, corsig_width, space2) width_3 <- sum(var_width, t_width, df_width, p_width, space3) cat(format("Paired Samples Statistics", width = width_1, justify = "centre"), "\n") cat(rep("-", width_1), sep = "", "\n") cat( formatter_pair("Variables", var_width1), formats_t(), formatter_pair("Obs", obs_width), formats_t(), formatter_pair("Mean", mean_width), formats_t(), formatter_pair("Std. Err.", se_width), formats_t(), formatter_pair("Std. Dev.", sd_width), formats_t(), conf_char, "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_pair(data$var_names[1], var_width1), formats_t(), formatter_pair(data$Obs, obs_width), formats_t(), formatter_pair(data$b[[1, 1]], mean_width), formats_t(), formatter_pair(data$b[[1, 3]], se_width), formats_t(), formatter_pair(data$b[[1, 2]], sd_width), formats_t(), format_cil(data$conf_int1[[1]], conf_l_width), format_ciu(data$conf_int1[[2]], conf_u_width) ) cat( "\n", formatter_pair(data$var_names[2], var_width1), formats_t(), formatter_pair(data$Obs, obs_width), formats_t(), formatter_pair(data$b[[2, 1]], mean_width), formats_t(), formatter_pair(data$b[[2, 3]], se_width), formats_t(), formatter_pair(data$b[[2, 2]], sd_width), formats_t(), format_cil(data$conf_int2[[1]], conf_l_width), format_ciu(data$conf_int2[[2]], conf_u_width), "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_pair("diff", var_width1), formats_t(), formatter_pair(data$Obs, obs_width), formats_t(), formatter_pair(data$b[[3, 1]], mean_width), formats_t(), formatter_pair(data$b[[3, 3]], se_width), formats_t(), formatter_pair(data$b[[3, 2]], sd_width), formats_t(), format_cil(data$conf_int_diff[[1]], conf_l_width), format_ciu(data$conf_int_diff[[2]], conf_u_width), "\n" ) cat(rep("-", width_1), sep = "") cat("\n\n", format("Paired Samples Correlations", width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_pair("Variables", var_width), formats_t(), formatter_pair("Obs", obs_width), formats_t(), formatter_pair("Correlation", corr_width), formats_t(), formatter_pair("Sig.", corsig_width) ) cat( "\n", formatter_pair(paste(data$var_names[1], "&", data$var_names[2]), var_width), formats_t(), formatter_pair(data$Obs, obs_width), formats_t(), formatter_pair(data$corr, corr_width), formats_t(), format(data$corsig, corsig_width), "\n" ) cat(rep("-", width_2), sep = "", "\n\n") # print output if (data$alternative == "less") { cat(format("Paired Samples Test", width = width_3, justify = "centre"), "\n") cat(format("-------------------", width = width_3, justify = "centre"), "\n") cat(format(hyp_null, width = width_3, justify = "centre"), "\n") cat(format(hyp_lt, width = width_3, justify = "centre"), "\n\n") cat(rep("-", width_3), sep = "") cat( "\n", formatter_pair("Variables", var_width), formats_t(), formatter_pair("t", t_width), formats_t(), formatter_pair("df", df_width), formats_t(), formatter_pair("Sig.", p_width), "\n" ) cat(rep("-", width_3), sep = "") cat( "\n", formatter_pair(paste(data$var_names[1], "-", data$var_names[2]), var_width), formats_t(), formatter_pair(data$tstat, t_width), formats_t(), format(data$df, df_width), formats_t(), formatter_pair(char_p_l, p_width), "\n" ) cat(rep("-", width_3), sep = "") } else if (data$alternative == "greater") { cat(format("Paired Samples Test", width = width_3, justify = "centre"), "\n") cat(format("-------------------", width = width_3, justify = "centre"), "\n") cat(format(hyp_null, width = width_3, justify = "centre"), "\n") cat(format(hyp_ut, width = width_3, justify = "centre"), "\n\n") cat(rep("-", width_3), sep = "") cat( "\n", formatter_pair("Variables", var_width), formats_t(), formatter_pair("t", t_width), formats_t(), formatter_pair("df", df_width), formats_t(), formatter_pair("Sig.", p_width), "\n" ) cat(rep("-", width_3), sep = "") cat( "\n", formatter_pair(paste(data$var_names[1], "-", data$var_names[2]), var_width), formats_t(), formatter_pair(data$tstat, t_width), formats_t(), format(data$df, df_width), formats_t(), formatter_pair(char_p_u, p_width), "\n" ) cat(rep("-", width_3), sep = "") } else if (data$alternative == "both") { cat(format("Paired Samples Test", width = width_3, justify = "centre"), "\n") cat(format("-------------------", width = width_3, justify = "centre"), "\n") cat(format(hyp_null, width = width_3, justify = "centre"), "\n") cat(format(hyp_2t, width = width_3, justify = "centre"), "\n\n") cat(rep("-", width_3), sep = "") cat( "\n", formatter_pair("Variables", var_width), formats_t(), formatter_pair("t", t_width), formats_t(), formatter_pair("df", df_width), formats_t(), formatter_pair("Sig.", p_width), "\n" ) cat(rep("-", width_3), sep = "") cat( "\n", formatter_pair(paste(data$var_names[1], "-", data$var_names[2]), var_width), formats_t(), formatter_pair(data$tstat, t_width), formats_t(), format(data$df, df_width), formats_t(), formatter_pair(char_p, p_width), "\n" ) cat(rep("-", width_3), sep = "") } else { cat(format(all_null, width = 72, justify = "centre"), "\n\n") cat( format("Ha: mean(diff) < 0", width = 24, justify = "centre"), format("Ha: mean(diff) ~= 0", width = 24, justify = "centre"), format("Ha: mean(diff) > 0", width = 24, justify = "centre"), "\n" ) cat(format(all_tval, width = 24, justify = "centre"), format(all_tval, width = 24, justify = "centre"), format(all_tval, width = 24, justify = "centre"), "\n") cat(format(all_p_l, width = 24, justify = "centre"), format(all_p_t, width = 24, justify = "centre"), format(all_p_u, width = 24, justify = "centre"), "\n") } } print_two_ttest <- function(data) { char_sig <- format(data$sig, digits = 0, nsmall = 4) char_sig_l <- format(data$sig_l, digits = 0, nsmall = 4) char_sig_u <- format(data$sig_u, digits = 0, nsmall = 4) char_sig_pooled <- format(data$sig_pooled, digits = 0, nsmall = 4) char_sig_pooled_l <- format(data$sig_pooled_l, digits = 0, nsmall = 4) char_sig_pooled_u <- format(data$sig_pooled_u, digits = 0, nsmall = 4) # hypothesis heading hyp_null <- paste0("Ho: mean(", data$levels[1], ") - mean(", data$levels[2], ") = diff = ", "0") hyp_lt <- paste0("Ha: diff < ", "0") hyp_2t <- paste0("Ha: diff ~= ", "0") hyp_ut <- paste0("Ha: diff > ", "0") conf <- data$confint * 100 conf_char <- paste0("[", conf, "% Conf. Interval]") # all tests combines all_p_l <- paste("P < t =", char_sig_pooled_l) all_p_t <- paste("P > |t| =", char_sig_pooled) all_p_u <- paste("P > t =", char_sig_pooled_u) all_s_l <- paste("P < t =", char_sig_l) all_s_t <- paste("P > |t| =", char_sig) all_s_u <- paste("P > t =", char_sig_u) p_tval <- paste0(" t = ", as.character(data$t_pooled)) s_tval <- paste0(" t = ", as.character(data$t_satterthwaite)) # format output grp_w <- max(nchar(data$levels[1]), nchar(data$levels[2]), nchar("Combined"), 10) obs_w <- max(nchar("Obs"), nchar(data$obs[1]), nchar(data$obs[2]), nchar(data$n)) mean_w <- max(nchar("Mean"), nchar(data$mean[1]), nchar(data$mean[2]), nchar(data$mean_diff), nchar(data$combined[2])) se_w <- max(nchar("Std. Err."), nchar(data$se[1]), nchar(data$se[2]), nchar(data$combined[4]), nchar(data$se_dif)) sd_w <- max(nchar("Std. Dev."), nchar(data$sd[1]), nchar(data$sd[2]), nchar(data$combined[3]), nchar(data$sd_dif)) df_w <- max(nchar("DF"), nchar(as.vector(data$df_pooled)), nchar(as.vector(data$df_satterthwaite))) t_w <- max(nchar("t Value"), nchar(as.vector(data$t_pooled)), nchar(as.vector(data$t_satterthwaite))) pt_w <- max( nchar("P > |t|"), nchar(as.vector(char_sig)), nchar(as.vector(char_sig_l)), nchar(as.vector(char_sig_u)), nchar(as.vector(char_sig_pooled)), nchar(as.vector(char_sig_pooled_l)), nchar(as.vector(char_sig_u)) ) numdf_w <- max(nchar("Num DF"), nchar(as.vector(data$num_df)), nchar(as.vector(data$den_df))) f_w <- max(nchar("F Value"), nchar(as.vector(data$f))) fp_w <- max(nchar("P > F"), nchar(as.vector(data$f_sig))) conf_length <- nchar(data$lower[1]) + nchar(data$upper[1]) if (conf_length > 20) { conf_width <- conf_length conf_l_width <- ceiling(conf_width / 2) conf_u_width <- floor(conf_width / 2) } else { conf_width <- 20 conf_l_width <- 10 conf_u_width <- 10 } w1 <- sum(grp_w, obs_w, mean_w, se_w, sd_w, conf_width, 20) w2 <- sum(grp_w, 13, 9, df_w, t_w, pt_w, 20) w3 <- sum(grp_w, 8, numdf_w, numdf_w, f_w, fp_w, 20) cat(fw("Group Statistics", w = w1), "\n") cat(rep("-", w1), sep = "", "\n") cat( fw("Group", w = grp_w), formats_t(), fw("Obs", w = obs_w), formats_t(), fw("Mean", w = mean_w), formats_t(), fw("Std. Err.", w = se_w), formats_t(), fw("Std. Dev.", w = sd_w), formats_t(), conf_char, "\n" ) cat(rep("-", w1), sep = "", "\n") cat( fw((data$levels[1]), w = grp_w), formats_t(), fn(data$obs[1], w = obs_w), formats_t(), fn(data$mean[1], w = mean_w), formats_t(), fn(data$se[1], w = se_w), formats_t(), fn(data$sd[1], w = sd_w), formats_t(), fn(data$lower[1], w = conf_l_width), fn(data$upper[1], w = conf_u_width), "\n" ) cat( fw((data$levels[2]), w = grp_w), formats_t(), fn(data$obs[2], w = obs_w), formats_t(), fn(data$mean[2], w = mean_w), formats_t(), fn(data$se[2], w = se_w), formats_t(), fn(data$sd[2], w = sd_w), formats_t(), fn(data$lower[2], w = conf_l_width), fn(data$upper[2], w = conf_u_width), "\n" ) cat(rep("-", w1), sep = "", "\n") cat( fw("combined", w = grp_w), formats_t(), fn(data$n, w = obs_w), formats_t(), fn(data$combined[2], w = mean_w), formats_t(), fn(data$combined[4], w = se_w), formats_t(), fn(data$combined[3], w = sd_w), formats_t(), fn(data$combined[7], w = conf_l_width), fn(data$combined[8], w = conf_u_width), "\n" ) cat(rep("-", w1), sep = "", "\n") cat( fw(("diff"), w = grp_w), formats_t(), fn(data$n, w = obs_w), formats_t(), fn(data$mean_diff, w = mean_w), formats_t(), fn(as.vector(data$se_dif), w = se_w), formats_t(), fn(as.vector(data$sd_dif), w = sd_w), formats_t(), fn(as.vector(data$conf_diff[1]), w = conf_l_width), fn(as.vector(data$conf_diff[2]), w = conf_u_width), "\n" ) cat(rep("-", w1), sep = "", "\n\n") if (data$alternative == "less") { cat(fw("Independent Samples Test", w = w2), "\n") cat(fw("------------------------", w = w2), "\n\n") cat(fw(hyp_null, w = w2), "\n") cat(fw(hyp_lt, w = w2), "\n\n") cat(rep("-", w2), sep = "", "\n") cat( fw("Variable", w = grp_w), formats_t(), fw("Method", w = 13), formats_t(), fw("Variances", w = 9), formats_t(), fw("DF", w = df_w), formats_t(), fw("t Value", w = t_w), formats_t(), fw("P < t", w = pt_w), "\n" ) cat(rep("-", w2), sep = "", "\n") cat( fw(data$var_y, w = grp_w), formats_t(), fw("Pooled", w = 13), formats_t(), fw("Equal", w = 9), formats_t(), fn(data$df_pooled, w = df_w), formats_t(), fw(data$t_pooled, w = t_w), formats_t(), fw(char_sig_pooled_l, w = pt_w), "\n" ) cat( fw(data$var_y, w = grp_w), formats_t(), fw("Satterthwaite", w = 13), formats_t(), fw("Unequal", w = 9), formats_t(), fn(data$df_satterthwaite, w = df_w), formats_t(), fw(data$t_satterthwaite, w = t_w), formats_t(), fw(char_sig_l, w = pt_w), "\n" ) cat(rep("-", w2), sep = "", "\n\n") } else if (data$alternative == "greater") { cat(fw("Independent Samples Test", w = w2), "\n") cat(fw("------------------------", w = w2), "\n\n") cat(fw(hyp_null, w = w2), "\n") cat(fw(hyp_ut, w = w2), "\n\n") cat(rep("-", w2), sep = "", "\n") cat( fw("Variable", w = grp_w), formats_t(), fw("Method", w = 13), formats_t(), fw("Variances", w = 9), formats_t(), fw("DF", w = df_w), formats_t(), fw("t Value", w = t_w), formats_t(), fw("P > t", w = pt_w), "\n" ) cat(rep("-", w2), sep = "", "\n") cat( fw(data$var_y, w = grp_w), formats_t(), fw("Pooled", w = 13), formats_t(), fw("Equal", w = 9), formats_t(), fn(data$df_pooled, w = df_w), formats_t(), fw(data$t_pooled, w = t_w), formats_t(), fw(char_sig_pooled_u, w = pt_w), "\n" ) cat( fw(data$var_y, w = grp_w), formats_t(), fw("Satterthwaite", w = 13), formats_t(), fw("Unequal", w = 9), formats_t(), fn(data$df_satterthwaite, w = df_w), formats_t(), fw(data$t_satterthwaite, w = t_w), formats_t(), fw(char_sig_u, w = pt_w), "\n" ) cat(rep("-", w2), sep = "", "\n\n") } else if (data$alternative == "both") { cat(fw("Independent Samples Test", w = w2), "\n") cat(fw("------------------------", w = w2), "\n\n") cat(fw(hyp_null, w = w2), "\n") cat(fw(hyp_2t, w = w2), "\n\n") cat(rep("-", w2), sep = "", "\n") cat( fw("Variable", w = grp_w), formats_t(), fw("Method", w = 13), formats_t(), fw("Variances", w = 9), formats_t(), fw("DF", w = df_w), formats_t(), fw("t Value", w = t_w), formats_t(), fw("P > |t|", w = pt_w), "\n" ) cat(rep("-", w2), sep = "", "\n") cat( fw(data$var_y, w = grp_w), formats_t(), fw("Pooled", w = 13), formats_t(), fw("Equal", w = 9), formats_t(), fn(data$df_pooled, w = df_w), formats_t(), fw(data$t_pooled, w = t_w), formats_t(), fw(char_sig_pooled, w = pt_w), "\n" ) cat( fw(data$var_y, w = grp_w), formats_t(), fw("Satterthwaite", w = 13), formats_t(), fw("Unequal", w = 9), formats_t(), fn(data$df_satterthwaite, w = df_w), formats_t(), fw(data$t_satterthwaite, w = t_w), formats_t(), fw(char_sig, w = pt_w), "\n" ) cat(rep("-", w2), sep = "", "\n\n") } else { cat(fw("Independent Samples Test", w = 72), "\n") cat(fw("------------------------", w = w2), "\n\n") cat(format(hyp_null, width = 72, justify = "centre"), "\n\n") cat( format("Ha: diff < 0", width = 24, justify = "centre"), format("Ha: diff ~= 0", width = 24, justify = "centre"), format("Ha: diff > 0", width = 24, justify = "centre"), "\n\n" ) cat( format("", width = 24, justify = "centre"), format("Pooled", width = 24, justify = "centre"), format("", width = 24, justify = "centre"), "\n" ) cat(rep("-", 72), sep = "", "\n") cat(format(p_tval, width = 24, justify = "centre"), format(p_tval, width = 24, justify = "centre"), format(p_tval, width = 24, justify = "centre"), "\n") cat(format(all_p_l, width = 24, justify = "centre"), format(all_p_t, width = 24, justify = "centre"), format(all_p_u, width = 24, justify = "centre"), "\n\n") cat( format("", width = 24, justify = "centre"), format("Satterthwaite", width = 24, justify = "centre"), format("", width = 24, justify = "centre"), "\n" ) cat(rep("-", 72), sep = "", "\n") cat(format(s_tval, width = 24, justify = "centre"), format(s_tval, width = 24, justify = "centre"), format(s_tval, width = 24, justify = "centre"), "\n") cat(format(all_s_l, width = 24, justify = "centre"), format(all_s_t, width = 24, justify = "centre"), format(all_s_u, width = 24, justify = "centre"), "\n\n\n") } cat(fw("Test for Equality of Variances", w = w3), "\n") cat(rep("-", w3), sep = "", "\n") cat( fw("Variable", w = grp_w), formats_t(), fw("Method", w = 8), formats_t(), fw("Num DF", w = numdf_w), formats_t(), fw("Den DF", w = numdf_w), formats_t(), fw("F Value", w = f_w), formats_t(), fw("P > F", w = fp_w), "\n" ) cat(rep("-", w3), sep = "", "\n") cat( fw(data$var_y, w = grp_w), formats_t(), fw("Folded F", w = 8), formats_t(), fn(data$num_df, w = numdf_w), formats_t(), fn(data$den_df, w = numdf_w), formats_t(), fn(data$f, w = f_w), formats_t(), fn(data$f_sig, w = fp_w), "\n" ) cat(rep("-", w3), sep = "") } print_prop_test <- function(data) { cwidth <- max(nchar("z"), nchar("DF"), nchar("Pr(|Z| > |z|)"), nchar("Sample Size"), nchar("phat")) nwidth <- max(nchar(data$z), nchar(data$p0), nchar(data$sig[1]), nchar(data$n), nchar(data$phat)) w1 <- sum(cwidth, nwidth, 6) lw <- max(nchar("Variable"), nchar(data$varname)) ow <- max(nchar("Observed"), nchar(data$n)) ew <- max(nchar("Expected"), nchar(data$exp)) dw <- max(nchar("% Deviation"), nchar(data$deviation)) rw <- max(nchar("Std. Residuals"), nchar(data$std)) w <- sum(lw, ow, ew, dw, rw, 16) names <- c(0, 1) if (data$alt == "less") { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Sample Size", width = cwidth, justify = "left"), formats(), format(data$n, width = nwidth, justify = "right"), "\n") cat(format("Exp Prop", width = cwidth, justify = "left"), formats(), format(data$p, width = nwidth, justify = "right"), "\n") cat(format("Obs Prop", width = cwidth, justify = "left"), formats(), format(data$phat, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(Z < z)", width = cwidth, justify = "left"), formats(), format(data$sig, width = nwidth, justify = "right"), "\n\n") } else if (data$alt == "greater") { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Sample Size", width = cwidth, justify = "left"), formats(), format(data$n, width = nwidth, justify = "right"), "\n") cat(format("Exp Prop", width = cwidth, justify = "left"), formats(), format(data$p, width = nwidth, justify = "right"), "\n") cat(format("Obs Prop", width = cwidth, justify = "left"), formats(), format(data$phat, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(Z > z)", width = cwidth, justify = "left"), formats(), format(data$sig, width = nwidth, justify = "right"), "\n\n") } else if (data$alt == "both") { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Sample Size", width = cwidth, justify = "left"), formats(), format(data$n, width = nwidth, justify = "right"), "\n") cat(format("Exp Prop", width = cwidth, justify = "left"), formats(), format(data$p, width = nwidth, justify = "right"), "\n") cat(format("Obs Prop", width = cwidth, justify = "left"), formats(), format(data$phat, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(|Z| > |z|)", width = cwidth, justify = "left"), formats(), format(data$sig, width = nwidth, justify = "right"), "\n\n") } else { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Sample Size", width = cwidth, justify = "left"), formats(), format(data$n, width = nwidth, justify = "right"), "\n") cat(format("Exp Prop", width = cwidth, justify = "left"), formats(), format(data$p, width = nwidth, justify = "right"), "\n") cat(format("Obs Prop", width = cwidth, justify = "left"), formats(), format(data$phat, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(|Z| > |z|)", width = cwidth, justify = "left"), formats(), format(unname(data$sig[1]), width = nwidth, justify = "right"), "\n") cat(format("Pr(Z < z)", width = cwidth, justify = "left"), formats(), format(unname(data$sig[2]), width = nwidth, justify = "right"), "\n") cat(format("Pr(Z > z)", width = cwidth, justify = "left"), formats(), format(unname(data$sig[3]), width = nwidth, justify = "right"), "\n\n") } cat(rep("-", w), sep = "", "\n") cat(fg("Category", lw), fs(), fg("Observed", ow), fs(), fg("Expected", ew), fs(), fg("% Deviation", dw), fs(), fg("Std. Residuals", rw), "\n") cat(rep("-", w), sep = "", "\n") for (i in seq_len(length(data$obs))) { cat( fg(names[i], lw), fs(), fg(data$obs[i], ow), fs(), fg(data$exp[i], ew), fs(), fg(data$deviation[i], dw), fs(), fg(data$std[i], rw), "\n" ) } cat(rep("-", w), sep = "", "\n") } print_ts_prop_test <- function(data) { cwidth <- max(nchar("z"), nchar("Pr(|Z| > |z|)"), nchar("Total Observations")) nwidth <- max(nchar(data$z), nchar(data$sig[1]), nchar(data$n1), nchar(data$n2)) w1 <- sum(cwidth, nwidth, 6) totobs <- sum(data$n1, data$n2) if (data$alt == "less") { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Total Observations", width = cwidth, justify = "left"), formats(), format(totobs, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(Z < z)", width = cwidth, justify = "left"), formats(), format(data$sig, width = nwidth, justify = "right"), "\n\n") } else if (data$alt == "greater") { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Total Observations", width = cwidth, justify = "left"), formats(), format(totobs, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(Z > z)", width = cwidth, justify = "left"), formats(), format(data$sig, width = nwidth, justify = "right"), "\n\n") } else if (data$alt == "both") { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Total Observations", width = cwidth, justify = "left"), formats(), format(totobs, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(|Z| < |z|)", width = cwidth, justify = "left"), formats(), format(data$sig, width = nwidth, justify = "right"), "\n\n") } else { cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Total Observations", width = cwidth, justify = "left"), formats(), format(totobs, width = nwidth, justify = "right"), "\n") cat(format("z", width = cwidth, justify = "left"), formats(), format(data$z, width = nwidth, justify = "right"), "\n") cat(format("Pr(|Z| < |z|)", width = cwidth, justify = "left"), formats(), format(unname(data$sig[1]), width = nwidth, justify = "right"), "\n") cat(format("Pr(Z < z)", width = cwidth, justify = "left"), formats(), format(unname(data$sig[2]), width = nwidth, justify = "right"), "\n") cat(format("Pr(Z > z)", width = cwidth, justify = "left"), formats(), format(unname(data$sig[3]), width = nwidth, justify = "right"), "\n\n") } } print_os_vartest <- function(data) { null_l <- paste0("Ho: sd(", data$var_name, ") >= ", as.character(data$sd)) alt_l <- paste0(" Ha: sd(", data$var_name, ") < ", as.character(data$sd)) null_u <- paste0("Ho: sd(", data$var_name, ") <= ", as.character(data$sd)) alt_u <- paste0("Ha: sd(", data$var_name, ") > ", as.character(data$sd)) null_t <- paste0("Ho: sd(", data$var_name, ") = ", as.character(data$sd)) alt_t <- paste0("Ha: sd(", data$var_name, ") != ", as.character(data$sd)) all_l <- paste("Ha: sd <", as.character(data$sd)) all_u <- paste("Ha: sd >", as.character(data$sd)) all_t <- paste("Ha: sd !=", as.character(data$sd)) char_p_l <- format(data$p_lower, digits = 0, nsmall = 4) char_p_u <- format(data$p_upper, digits = 0, nsmall = 4) char_p <- format(data$p_two, digits = 0, nsmall = 4) all_p_l <- paste("Pr(C < c) =", char_p_l) if (data$p_lower < 0.5) { all_p_t <- paste("2 * Pr(C < c) =", char_p) } else { all_p_t <- paste("2 * Pr(C > c) =", char_p) } all_p_u <- paste("Pr(C > c) =", char_p_u) all_tval <- paste0(" c = ", as.character(data$chi)) # formatting output # compute the characters of each output and decide the overall width var_width <- max(nchar("Variable"), nchar(data$var_name)) obs_width <- max(nchar("Obs"), nchar(data$n)) mean_width <- max(nchar("Mean"), nchar(data$xbar)) se_width <- max(nchar("Std. Err."), nchar(data$se)) sd_width <- max(nchar("Std. Dev."), nchar(data$sigma)) conf_length <- nchar(data$c_lwr) + nchar(data$c_upr) conf_str <- paste0("[", data$conf * 100, "% Conf. Interval]") confint_length <- nchar(conf_str) if (conf_length > confint_length) { conf_width <- round(conf_length / 2) } else { conf_width <- round(confint_length / 2) } c_width <- nchar(data$chi) df_width <- max(nchar("DF"), nchar(data$df)) p_width <- max(nchar("2 Tailed"), nchar(round(data$p_two, 5))) md_width <- max(nchar("Difference"), nchar(data$mean_diff)) md_length <- nchar(data$mean_diff_l) + nchar(data$mean_diff_u) width_1 <- sum(var_width, obs_width, mean_width, se_width, sd_width, ceiling(conf_width * 2), 21) width_2 <- sum(var_width, c_width, df_width, p_width, 12) all_width <- round(width_1 / 3) width_3 <- all_width * 3 cat( format("One-Sample Statistics", width = width_1, justify = "centre"), "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("Obs", obs_width), formats_t(), formatter_t("Mean", mean_width), formats_t(), formatter_t("Std. Err.", se_width), formats_t(), formatter_t("Std. Dev.", sd_width), formats_t(), formatter_t(conf_str, conf_width), "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(data$n, obs_width), formats_t(), formatter_t(data$xbar, mean_width), formats_t(), formatter_t(data$se, se_width), formats_t(), formatter_t(data$sigma, sd_width), formats_t(), format_cil(data$c_lwr, conf_width), format_ciu(data$c_upr, conf_width), "\n" ) cat(rep("-", width_1), sep = "") # print result if (data$type == "less") { cat("\n\n", format("Lower Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre")) cat("\n", format(null_l, width = width_2, justify = "centre")) cat("\n", format(alt_l, width = width_2, justify = "centre"), "\n\n") cat(format("Chi-Square Test for Variance", width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("c", c_width), formats_t(), formatter_t("DF", df_width), formats_t(), formatter_t("Sig", p_width), formats_t(), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(round(data$chi, 3), c_width), formats_t(), formatter_t(data$df, df_width), formats_t(), formatter_t(char_p_l, p_width), "\n" ) cat(rep("-", width_2), sep = "") } else if (data$type == "greater") { cat("\n\n", format("Upper Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre")) cat("\n", format(null_u, width = width_2, justify = "centre")) cat("\n", format(alt_u, width = width_2, justify = "centre"), "\n\n") cat(format("Chi-Square Test for Variance", width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("c", c_width), formats_t(), formatter_t("DF", df_width), formats_t(), formatter_t("Sig", p_width), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(round(data$chi, 3), c_width), formats_t(), formatter_t(data$df, df_width), formats_t(), formatter_t(char_p_u, p_width), "\n" ) cat(rep("-", width_2), sep = "") } else if (data$type == "both") { cat("\n\n", format("Two Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre")) cat("\n", format(null_t, width = width_2, justify = "centre")) cat("\n", format(alt_t, width = width_2, justify = "centre"), "\n\n") cat(format("Chi-Square Test for Variance", width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("Variable", var_width), formats_t(), formatter_t("c", c_width), formats_t(), formatter_t("DF", df_width), formats_t(), formatter_t("Sig", p_width), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$var_name, var_width), formats_t(), formatter_t(round(data$chi, 3), c_width), formats_t(), formatter_t(data$df, df_width), formats_t(), formatter_t(char_p, p_width), "\n" ) cat(rep("-", width_2), sep = "") } else { cat("\n\n", format(null_t, width = width_3, justify = "centre")) cat("\n\n", format(all_l, width = all_width, justify = "centre"), format(all_t, width = all_width, justify = "centre"), format(all_u, width = all_width, justify = "centre"), "\n") cat(format(all_tval, width = all_width, justify = "centre"), format(all_tval, width = all_width, justify = "centre"), format(all_tval, width = all_width, justify = "centre")) cat("\n", format(all_p_l, width = all_width, justify = "centre"), format(all_p_t, width = all_width, justify = "centre"), format(all_p_u, width = all_width, justify = "centre")) } } print_chisq_test <- function(x) { width1 <- nchar("Likelihood Ratio Chi-Square") width2 <- max(nchar(x$df)) width3 <- max( nchar(x$chisquare), nchar(x$chisquare_lr), nchar(x$chisquare_mantel_haenszel), nchar(x$chisquare_adjusted), nchar(x$phi_coefficient), nchar(x$contingency_coefficient), nchar(x$cramers_v) ) width4 <- 6 widthn <- sum(width1, width2, width3, width4, 12) if (x$ds == 4) { cat(format("Chi Square Statistics", width = widthn, justify = "centre"), "\n\n") cat( format("Statistics", width = width1, justify = "left"), formats(), format("DF", width = width2, justify = "centre"), formats(), format("Value", width = width3, justify = "centre"), formats(), format("Prob", width = width4, justify = "centre"), "\n", sep = "" ) cat(rep("-", widthn), sep = "", "\n") cat( format("Chi-Square", width = width1, justify = "left"), formats(), format(x$df, width = width2, justify = "centre"), formats(), format(x$chisquare, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(x$pval_chisquare, width = width4, justify = "right", nsmall = 4, scientific = F), "\n", sep = "" ) cat( format("Likelihood Ratio Chi-Square", width = width1, justify = "left"), formats(), format(x$df, width = width2, justify = "centre"), formats(), format(x$chisquare_lr, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(x$pval_chisquare_lr, width = width4, justify = "right", nsmall = 4, scientific = F), "\n", sep = "" ) cat( format("Continuity Adj. Chi-Square", width = width1, justify = "left"), formats(), format(x$df, width = width2, justify = "right"), formats(), format(x$chisquare_adjusted, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(x$pval_chisquare_adjusted, width = width4, justify = "right", nsmall = 4, scientific = F), "\n", sep = "" ) cat( format("Mantel-Haenszel Chi-Square", width = width1, justify = "left"), formats(), format(x$df, width = width2, justify = "right"), formats(), format(x$chisquare_mantel_haenszel, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(x$pval_chisquare_mantel_haenszel, width = width4, justify = "right", nsmall = 4, scientific = F), "\n", sep = "" ) cat( format("Phi Coefficient", width = width1, justify = "left"), formats(), format(" ", width = width2, justify = "right"), formats(), format(x$phi_coefficient, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(" ", width = width4, justify = "right"), "\n", sep = "" ) cat( format("Contingency Coefficient", width = width1, justify = "left"), formats(), format(" ", width = width2, justify = "right"), formats(), format(x$contingency_coefficient, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(" ", width = width4, justify = "right"), "\n", sep = "" ) cat( format("Cramer's V", width = width1, justify = "left"), formats(), format(" ", width = width2, justify = "right"), formats(), format(x$cramers_v, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(" ", width = width4, justify = "right"), "\n", sep = "" ) cat(rep("-", widthn), sep = "", "\n") } else { cat(format("Chi Square Statistics", width = widthn, justify = "centre"), "\n\n") cat( format("Statistics", width = width1, justify = "left"), formats(), format("DF", width = width2, justify = "centre"), formats(), format("Value", width = width3, justify = "centre"), formats(), format("Prob", width = width4, justify = "centre"), "\n", sep = "" ) cat(rep("-", widthn), sep = "", "\n") cat( format("Chi-Square", width = width1, justify = "left"), formats(), format(x$df, width = width2, justify = "centre"), formats(), format(x$chisquare, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(x$pval_chisquare, width = width4, justify = "right", nsmall = 4, scientific = F), "\n", sep = "" ) cat( format("Likelihood Ratio Chi-Square", width = width1, justify = "left"), formats(), format(x$df, width = width2, justify = "centre"), formats(), format(x$chisquare_lr, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(x$pval_chisquare_lr, width = width4, justify = "right", nsmall = 4, scientific = F), "\n", sep = "" ) cat( format("Phi Coefficient", width = width1, justify = "left"), formats(), format(" ", width = width2, justify = "right"), formats(), format(x$phi_coefficient, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(" ", width = width4, justify = "right"), "\n", sep = "" ) cat( format("Contingency Coefficient", width = width1, justify = "left"), formats(), format(" ", width = width2, justify = "right"), formats(), format(x$contingency_coefficient, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(" ", width = width4, justify = "right"), "\n", sep = "" ) cat( format("Cramer's V", width = width1, justify = "left"), formats(), format(" ", width = width2, justify = "right"), formats(), format(x$cramers_v, width = width3, justify = "centre", nsmall = 4, scientific = F), formats(), format(" ", width = width4, justify = "right"), "\n", sep = "" ) cat(rep("-", widthn), sep = "", "\n") } } print_chisq_gof <- function(data) { cwidth <- max(nchar("Chi-Square"), nchar("DF"), nchar("Pr > Chi Sq"), nchar("Sample Size")) nwidth <- max(nchar(data$chisquare), nchar(data$degrees_of_freedom), nchar(data$pvalue), nchar(data$sample_size)) w1 <- sum(cwidth, nwidth, 6) lw <- max(nchar("Variable"), nchar(data$categories)) ow <- max(nchar("Observed"), nchar(data$observed_frequency)) ew <- max(nchar("Expected"), nchar(data$expected_frequency)) dw <- max(nchar("% Deviation"), nchar(data$deviation)) rw <- max(nchar("Std. Residuals"), nchar(data$std_residuals)) w <- sum(lw, ow, ew, dw, rw, 16) cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("Chi-Square", width = cwidth, justify = "left"), formats(), format(data$chisquare, width = nwidth, justify = "right"), "\n") cat(format("DF", width = cwidth, justify = "left"), formats(), format(data$degrees_of_freedom, width = nwidth, justify = "right"), "\n") cat(format("Pr > Chi Sq", width = cwidth, justify = "left"), formats(), format(data$pvalue, width = nwidth, justify = "right"), "\n") cat(format("Sample Size", width = cwidth, justify = "left"), formats(), format(data$sample_size, width = nwidth, justify = "right"), "\n\n") cat(format(paste("Variable:", data$varname), width = w, justify = "centre"), "\n") cat(rep("-", w), sep = "", "\n") cat(fg("Category", lw), fs(), fg("Observed", ow), fs(), fg("Expected", ew), fs(), fg("% Deviation", dw), fs(), fg("Std. Residuals", rw), "\n") cat(rep("-", w), sep = "", "\n") for (i in seq_len(data$n_levels)) { cat( fg(data$categories[i], lw), fs(), fg(data$observed_frequency[i], ow), fs(), fg(data$expected_frequency[i], ew), fs(), fg(data$deviation[i], dw), fs(), fg(data$std_residuals[i], rw), "\n" ) } cat(rep("-", w), sep = "", "\n") } print_runs_test <- function(x) { cat( "Runs Test\n", "Total Cases: ", x$n, "\n", "Test Value : ", x$threshold, "\n", "Cases < Test Value: ", x$n_below, "\n", "Cases > Test Value: ", x$n_above, "\n", "Number of Runs: ", x$n_runs, "\n", "Expected Runs: ", x$mean, "\n", "Variance (Runs): ", x$var, "\n", "z Statistic: ", x$z, "\n", "p-value: ", x$p, "\n" ) } print_cochran_test <- function(data) { cwidth <- max(nchar("N"), nchar("Cochran's Q"), nchar("df"), nchar("p value")) nwidth <- max(nchar(data$n), nchar(data$q), nchar(data$df), nchar(data$pvalue)) w1 <- sum(cwidth, nwidth, 6) cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("N", width = cwidth, justify = "left"), formats(), format(data$n, width = nwidth, justify = "right"), "\n") cat(format("Cochran's Q", width = cwidth, justify = "left"), formats(), format(data$q, width = nwidth, justify = "right"), "\n") cat(format("df", width = cwidth, justify = "left"), formats(), format(data$df, width = nwidth, justify = "right"), "\n") cat(format("p value", width = cwidth, justify = "left"), formats(), format(data$pvalue, width = nwidth, justify = "right"), "\n") cat(rep("-", w1), sep = "", "\n") } print_mcnemar_test <- function(data) { cwidth1 <- max( nchar("McNemar's chi2"), nchar("DF"), nchar("Pr > chi2"), nchar("Exact Pr >= chi2") ) nwidth1 <- max( nchar(data$tatistic), nchar(data$df), nchar(data$pvalue), nchar(data$exactp) ) w1 <- sum(cwidth1, nwidth1, 6) cwidth2 <- max( nchar("Kappa"), nchar("ASE"), nchar("95% Lower Conf Limit"), nchar("95% Upper Conf Limit") ) nwidth2 <- max( nchar(data$kappa), nchar(data$std_err), nchar(data$kappa_cil), nchar(data$kappa_ciu) ) w2 <- sum(cwidth2, nwidth2, 6) cwidth3 <- max( nchar("Cases"), nchar("Controls"), nchar("Ratio"), nchar("Odds Ratio") ) nwidth3 <- max( nchar(data$cases), nchar(data$controls), nchar(data$ratio), nchar(data$odratio) ) w3 <- sum(cwidth3, nwidth3, 6) tcs <- colSums(data$tbl) trs <- rowSums(data$tbl) twidth1 <- 5 twidth2 <- max(nchar(data$tbl[, 1]), nchar(tcs[1])) twidth3 <- max(nchar(data$tbl[, 2]), nchar(tcs[2])) twidth4 <- max(5, nchar(sum(trs))) w4 <- sum(twidth1, twidth2, twidth3, twidth4, 18) twidth5 <- sum(twidth2, twidth3) cat( format(" ", width = twidth1, justify = "centre"), formats(), format("Controls", width = twidth5, justify = "left"), "\n" ) cat(rep("-", w4), sep = "", "\n") cat( format("Cases", width = twidth1, justify = "centre"), formats(), format("0", width = twidth2, justify = "centre"), formats(), format("1", width = twidth3, justify = "centre"), formats(), format("Total", width = twidth4, justify = "centre"), "\n" ) cat(rep("-", w4), sep = "", "\n") cat( format("0", width = twidth1, justify = "centre"), formats(), format(data$tbl[1, 1], width = twidth2, justify = "centre"), formats(), format(data$tbl[1, 2], width = twidth3, justify = "centre"), formats(), format(trs[1], width = twidth4, justify = "centre"), "\n" ) cat( format("1", width = twidth1, justify = "centre"), formats(), format(data$tbl[2, 1], width = twidth2, justify = "centre"), formats(), format(data$tbl[2, 2], width = twidth3, justify = "centre"), formats(), format(trs[2], width = twidth4, justify = "centre"), "\n" ) cat(rep("-", w4), sep = "", "\n") cat( format("Total", width = twidth1, justify = "centre"), formats(), format(tcs[1], width = twidth2, justify = "centre"), formats(), format(tcs[2], width = twidth3, justify = "centre"), formats(), format(sum(trs), width = twidth4, justify = "centre"), "\n" ) cat(rep("-", w4), sep = "", "\n\n") cat(format("McNemar's Test", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat(format("McNemar's chi2", width = cwidth1, justify = "left"), formats(), format(data$statistic, width = nwidth1, justify = "right"), "\n") cat(format("DF", width = cwidth1, justify = "left"), formats(), format(data$df, width = nwidth1, justify = "right"), "\n") cat(format("Pr > chi2", width = cwidth1, justify = "left"), formats(), format(data$pvalue, width = nwidth1, justify = "right"), "\n") cat(format("Exact Pr >= chi2", width = cwidth1, justify = "left"), formats(), format(data$exactp, width = nwidth1, justify = "right"), "\n") cat(rep("-", w1), sep = "", "\n\n") cat(format("Kappa Coefficient", width = w2, justify = "centre"), "\n") cat(rep("-", w2), sep = "", "\n") cat(format("Kappa", width = cwidth2, justify = "left"), formats(), format(data$kappa, width = nwidth2, justify = "right"), "\n") cat(format("ASE", width = cwidth2, justify = "left"), formats(), format(data$std_err, width = nwidth2, justify = "right"), "\n") cat(format("95% Lower Conf Limit", width = cwidth2, justify = "left"), formats(), format(data$kappa_cil, width = nwidth2, justify = "right"), "\n") cat(format("95% Upper Conf Limit", width = cwidth2, justify = "left"), formats(), format(data$kappa_ciu, width = nwidth2, justify = "right"), "\n") cat(rep("-", w2), sep = "", "\n\n") cat(format("Proportion With Factor", width = w3, justify = "centre"), "\n") cat(rep("-", w3), sep = "", "\n") cat(format("cases", width = cwidth3, justify = "left"), formats(), format(data$cases, width = nwidth3, justify = "right"), "\n") cat(format("controls", width = cwidth3, justify = "left"), formats(), format(data$controls, width = nwidth3, justify = "right"), "\n") cat(format("ratio", width = cwidth3, justify = "left"), formats(), format(data$ratio, width = nwidth3, justify = "right"), "\n") cat(format("odds ratio", width = cwidth3, justify = "left"), formats(), format(data$odratio, width = nwidth3, justify = "right"), "\n") cat(rep("-", w3), sep = "", "\n") } print_levene_test <- function(data) { lw <- max(nchar("Levels"), nchar(data$levs), nchar("Total")) ow <- max(nchar("Frequency"), nchar(data$lens), nchar(data$n)) ew <- max(nchar("Mean"), nchar(data$avgs), nchar(data$avg)) dw <- max(nchar("Std. Dev."), nchar(data$sds), nchar(data$sd)) w <- sum(lw, ow, ew, dw, 12) cwidth <- max( nchar("Statistic"), nchar("Brown and Forsythe"), nchar("Levene"), nchar("Brown and Forsythe (Trimmed Mean)") ) nwidth <- max(nchar("Num DF"), nchar(data$n_df)) dwidth <- max(nchar("Den DF"), nchar(data$d_df)) ewidth <- max(nchar("F"), nchar(data$bf), nchar(data$lev), nchar(data$bft)) fwidth <- max(nchar("Pr > F"), nchar(data$p_bf), nchar(data$p_lev), nchar(data$p_bft)) w1 <- sum(cwidth, nwidth, dwidth, ewidth, fwidth, 16) cat(format("Summary Statistics", width = w, justify = "centre"), "\n") cat( fg("Levels", lw), fs(), fg("Frequency", ow), fs(), fg("Mean", ew), fs(), fg("Std. Dev", dw), "\n" ) cat(rep("-", w), sep = "", "\n") for (i in seq_len(length(data$levs))) { cat( fg(data$levs[i], lw), fs(), fg(data$lens[i], ow), fs(), fg(data$avgs[i], ew), fs(), fg(data$sds[i], dw), "\n" ) } cat(rep("-", w), sep = "", "\n") cat( fg("Total", lw), fs(), fg(data$n, ow), fs(), fg(data$avg, ew), fs(), fg(data$sd, dw), "\n" ) cat(rep("-", w), sep = "", "\n\n") cat(format("Test Statistics", width = w1, justify = "centre"), "\n") cat(rep("-", w1), sep = "", "\n") cat( format("Statistic", width = cwidth, justify = "left"), fs(), format("Num DF", width = nwidth, justify = "right"), fs(), format("Den DF", width = dwidth, justify = "right"), fs(), format("F", width = ewidth, justify = "right"), fs(), format("Pr > F", width = fwidth, justify = "right"), "\n" ) cat(rep("-", w1), sep = "", "\n") cat( format("Brown and Forsythe", width = cwidth, justify = "left"), fs(), format(data$n_df, width = nwidth, justify = "right"), fs(), format(data$d_df, width = dwidth, justify = "right"), fs(), format(data$bf, width = ewidth, justify = "right"), fs(), format(data$p_bf, width = fwidth, justify = "right"), "\n" ) cat( format("Levene", width = cwidth, justify = "left"), fs(), format(data$n_df, width = nwidth, justify = "right"), fs(), format(data$d_df, width = dwidth, justify = "right"), fs(), format(data$lev, width = ewidth, justify = "right"), fs(), format(data$p_lev, width = fwidth, justify = "right"), "\n" ) cat( format("Brown and Forsythe (Trimmed Mean)", width = cwidth, justify = "left"), fs(), format(data$n_df, width = nwidth, justify = "right"), fs(), format(data$d_df, width = dwidth, justify = "right"), fs(), format(data$bft, width = ewidth, justify = "right"), fs(), format(data$p_bft, width = fwidth, justify = "right"), "\n" ) cat(rep("-", w1), sep = "", "\n") } print_var_test <- function(data) { var_width <- max(nchar("combined"), nchar(data$lev)) obs_width <- max(nchar("Obs"), nchar(data$lens), nchar(data$len)) mean_width <- max(nchar("Mean"), nchar(data$avgs), nchar(data$avg)) se_width <- max(nchar("Std. Err."), nchar(data$ses), nchar(data$se)) sd_width <- max(nchar("Std. Dev."), nchar(data$sds), nchar(data$sd)) width_1 <- sum(var_width, obs_width, mean_width, se_width, sd_width, 16) rto <- paste0("ratio = sd(", data$lev[1], ") / (", data$lev[2], ")") nhyp <- "Ho: ratio = 1" lhyp <- "Ha: ratio < 1" uhyp <- "Ha: ratio > 1" char_p_l <- format(data$lower, digits = 0, nsmall = 4) char_p_u <- format(data$upper, digits = 0, nsmall = 4) all_p_l <- paste("Pr(F < f) =", char_p_l) all_p_u <- paste("Pr(F > f) =", char_p_u) f_width <- nchar(data$f) df1_width <- max(nchar("Num DF"), nchar(data$n1)) df2_width <- max(nchar("Den DF"), nchar(data$n2)) p_width <- max(nchar("p"), nchar(char_p_l)) width_2 <- sum(f_width, df1_width, df2_width, p_width, 12) width_3 <- sum(f_width, df1_width, df2_width, 8) all_width <- sum(nchar(all_p_l), nchar(all_p_u), 4) cat( format("Variance Ratio Test", width = width_1, justify = "centre"), "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_t("Group", var_width), formats_t(), formatter_t("Obs", obs_width), formats_t(), formatter_t("Mean", mean_width), formats_t(), formatter_t("Std. Err.", se_width), formats_t(), formatter_t("Std. Dev.", sd_width), "\n" ) cat(rep("-", width_1), sep = "", "\n") for (i in seq_len(length(data$avgs))) { cat( formatter_t(data$lev[i], var_width), formats_t(), formatter_t(data$lens[i], obs_width), formats_t(), formatter_t(data$avgs[i], mean_width), formats_t(), formatter_t(data$ses[i], se_width), formats_t(), formatter_t(data$sds[i], sd_width), "\n" ) } cat(rep("-", width_1), sep = "") cat( "\n", formatter_t("combined", var_width), formats_t(), formatter_t(data$len, obs_width), formats_t(), formatter_t(data$avg, mean_width), formats_t(), formatter_t(data$se, se_width), formats_t(), formatter_t(data$sd, sd_width), "\n" ) cat(rep("-", width_1), sep = "") if (data$type == "less") { cat("\n\n", format("Lower Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre")) cat("\n", format(rto, width = width_2, justify = "centre")) cat("\n", format(nhyp, width = width_2, justify = "centre")) cat("\n", format(lhyp, width = width_2, justify = "centre"), "\n\n") cat(format("Variance Ratio Test", width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("F", f_width), formats_t(), formatter_t("Num DF", df1_width), formats_t(), formatter_t("Den DF", df2_width), formats_t(), formatter_t("p", p_width), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$f, f_width), formats_t(), formatter_t(data$n1, df1_width), formats_t(), formatter_t(data$n2, df2_width), formats_t(), formatter_t(char_p_l, p_width), "\n" ) cat(rep("-", width_2), sep = "") } else if (data$type == "greater") { cat("\n\n", format("Upper Tail Test", width = width_2, justify = "centre")) cat("\n", format("---------------", width = width_2, justify = "centre")) cat("\n", format(nhyp, width = width_2, justify = "centre")) cat("\n", format(uhyp, width = width_2, justify = "centre"), "\n\n") cat(format("Variance Ratio Test", width = width_2, justify = "centre"), "\n") cat(rep("-", width_2), sep = "") cat( "\n", formatter_t("F", f_width), formats_t(), formatter_t("Num DF", df1_width), formats_t(), formatter_t("Den DF", df2_width), formats_t(), formatter_t("p", p_width), "\n" ) cat(rep("-", width_2), sep = "") cat( "\n", formatter_t(data$f, f_width), formats_t(), formatter_t(data$n1, df1_width), formats_t(), formatter_t(data$n2, df2_width), formats_t(), formatter_t(char_p_u, p_width), "\n" ) cat(rep("-", width_2), sep = "") } else { cat("\n\n", format("Variance Ratio Test", width = width_1, justify = "centre"), "\n") cat(rep("-", width_1), sep = "") cat( "\n", formatter_t("F", (width_1 / 3)), formatter_t("Num DF", (width_1 / 3)), formatter_t("Den DF", (width_1 / 3)), "\n" ) cat(rep("-", width_1), sep = "") cat( "\n", formatter_t(data$f, (width_1 / 3)), formatter_t(data$n1, (width_1 / 3)), formatter_t(data$n2, (width_1 / 3)), "\n" ) cat(rep("-", width_1), sep = "") cat("\n\n", format("Null & Alternate Hypothesis", width = all_width, justify = "centre"), "\n") cat(rep("-", all_width), sep = "", "\n") cat(format(rto, width = all_width, justify = "centre")) cat("\n", format(nhyp, width = all_width, justify = "centre")) cat( "\n\n", format(lhyp, width = (all_width / 2), justify = "centre"), format(uhyp, width = (all_width / 2), justify = "centre") ) cat( "\n", format(all_p_l, width = (all_width / 2), justify = "centre"), format(all_p_u, width = (all_width / 2), justify = "centre") ) cat("\n", rep("-", all_width), sep = "") } }
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-inferr/xpl-output.R
# collinearity diagnostics d_diag_coll <- eventReactive(input$submit_colldiag, { # validate(need((input$collin_fmla != ''), 'Please specify model')) data <- final_split$train }) diag_coll_mod <- eventReactive(input$submit_colldiag, { k <- lm(input$collin_fmla, data = d_diag_coll()) k }) result <- eventReactive(input$submit_colldiag, { if (input$colldiag_use_prev) { ols_coll_diag(all_use_n()) } else { ols_coll_diag(diag_coll_mod()) } }) output$colldiag <- renderPrint({ result() })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_collin.R
observeEvent(input$sample_data_yes, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_use_sample') }) file_upload_options <- eventReactive(input$upload_files_yes, { fluidRow( column(3, align = 'center', actionButton( inputId = 'upload_csv_file', label = 'CSV', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_xls_file', label = 'XLS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_xlsx_file', label = 'XLSX', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_json_file', label = 'JSON', width = '120px' ) ), column(12, br()), column(3, align = 'center', actionButton( inputId = 'upload_stata_file', label = 'STATA', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_spss_file', label = 'SPSS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_sas_file', label = 'SAS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_rds_file', label = 'RDS', width = '120px' ) ) ) }) output$upload_file_links <- renderUI({ file_upload_options() }) observeEvent(input$upload_csv_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tab_uploadfile', selected = 'tab_upload_csv') }) observeEvent(input$upload_xls_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_excel') }) observeEvent(input$upload_xlsx_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_excel') }) observeEvent(input$upload_json_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_json') }) observeEvent(input$upload_stata_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_stata') }) observeEvent(input$upload_spss_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_spss') }) observeEvent(input$upload_sas_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_sas') }) observeEvent(input$upload_rds_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_rds') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_dataoptions.R
# Exit --------------------------------------------------------------- observe({ if (isTRUE(input$mainpage == "exit")) { stopApp() } })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_exit_button.R
filt_ui <- eventReactive(input$button_filt_yes, { fluidRow( column(12, align = 'center', selectInput( inputId = 'dplyr_filter', label = 'Filter:', choices = '', selected = '', width = '120px' ) ), column(12, align = 'center', selectInput( inputId = 'dplyr_filt_op', label = 'Select Operator', choices = c('<', '>', '<=', '>=', '=='), selected = '', width = '120px' ) ), column(12, align = 'center', textInput( inputId = 'dplyr_filt_val', label = 'Value', value = '20', width = '120px' ) ), column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dply_filt', label = 'Filter', width = '120px', icon = icon('check')), bsTooltip("submit_dply_filt", "Click here to filter data.", "bottom", options = list(container = "body")) ) ) }) output$filt_render <- renderUI( filt_ui() ) observeEvent(input$button_filt_yes, { updateSelectInput( session, inputId = "dplyr_filter", choices = names(final_sel$a), selected = names(final_sel$a) ) }) observeEvent(input$submit_dply_selvar, { updateSelectInput( session, inputId = "dplyr_filter", choices = names(finalsel()), selected = names(finalsel()) ) }) filt_data <- reactiveValues(p = NULL) observeEvent(input$submit_dply_selvar, { filt_data$p <- final_sel$a }) observeEvent(input$button_filt_yes, { filt_data$p <- final_sel$a }) observeEvent(input$submit_dply_filt, { filt_data$p <- filt_data$p %>% filter_(paste(input$dplyr_filter, input$dplyr_filt_op, input$dplyr_filt_val)) }) observeEvent(input$button_filt_no, { filt_data$p <- final_sel$a }) observeEvent(input$button_filt_no, { updateNavbarPage(session, 'mainpage', selected = 'tab_scr') updateNavlistPanel(session, 'navlist_trans', 'tab_screen') }) filttrans <- eventReactive(input$button_filt_yes, { fluidRow( column(6, align = 'left', actionButton(inputId='filt2dvarsel', label="Select Variables", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='filt2screen', label="Screen Data", icon = icon("long-arrow-right")) ) ) }) output$filt_trans <- renderUI({ filttrans() }) observeEvent(input$filt2dvarsel, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_selvar') }) observeEvent(input$filt2screen, { updateNavbarPage(session, 'mainpage', selected = 'tab_scr') updateNavlistPanel(session, 'navlist_trans', 'tab_screen') }) # filtered <- eventReactive(input$submit_dply_filt, { # k <- final_sel() %>% # filter_(paste(input$dplyr_filter, input$dplyr_filt_op, input$dplyr_filt_val)) # k # # k <- filter_(final_sel(), paste(input$dplyr_filter, input$dplyr_filt_op, input$dplyr_filt_val)) # # k # })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_filter.R
# Breusch Pagan Test d_het_bp <- eventReactive(input$submit_het_bp, { # validate(need((input$het_bp_fmla != ''), 'Please specify model')) data <- final_split$train }) mnames <- eventReactive(input$submit_regress, { k <- colnames(model.matrix(model()$model)[, -1]) k }) het_bp_mod <- eventReactive(input$submit_het_bp, { k <- lm(input$het_bp_fmla, data = d_het_bp()) k }) bpvars <- eventReactive(input$submit_het_bp, { k <- colnames(model.matrix(het_bp_mod())[, -1]) k }) observe({ if (input$het_bp_fv == FALSE) { if (input$bp_use_prev) { updateSelectInput(session, inputId = "het_bp_vars", choices = mnames(), selected = mnames()[1]) } else { updateSelectInput(session, inputId = "het_bp_vars", choices = bpvars(), selected = bpvars()[1]) } } else { if (input$bp_use_prev) { updateSelectInput(session, inputId = "het_bp_vars", choices = mnames(), selected = '') } else { updateSelectInput(session, inputId = "het_bp_vars", choices = bpvars(), selected = '') } } }) result_bp <- eventReactive(input$submit_het_bp, { if (input$het_bp_fv == FALSE) { if (input$bp_use_prev) { ols_test_breusch_pagan(all_use_n(), as.logical(input$het_bp_fv), as.logical(input$het_bp_rhs), as.logical(input$het_bp_mult), as.character(input$het_bp_padj), input$het_bp_vars) } else { ols_test_breusch_pagan(het_bp_mod(), as.logical(input$het_bp_fv), as.logical(input$het_bp_rhs), as.logical(input$het_bp_mult), as.character(input$het_bp_padj), input$het_bp_vars) } } else { if (input$bp_use_prev) { ols_test_breusch_pagan(all_use_n(), as.logical(input$het_bp_fv), as.logical(input$het_bp_rhs), as.logical(input$het_bp_mult), as.character(input$het_bp_padj)) } else { ols_test_breusch_pagan(het_bp_mod(), as.logical(input$het_bp_fv), as.logical(input$het_bp_rhs), as.logical(input$het_bp_mult), as.character(input$het_bp_padj)) } } }) output$het_bp_out <- renderPrint({ result_bp() }) # f test for heteroskedasticity d_het_f <- eventReactive(input$submit_het_f, { # validate(need((input$het_f_fmla != ''), 'Please specify model')) data <- final_split$train }) het_f_mod <- eventReactive(input$submit_het_f, { k <- lm(input$het_f_fmla, data = d_het_f()) k }) fvars <- eventReactive(input$submit_het_f, { k <- colnames(model.matrix(het_f_mod())[, -1]) k }) observe({ if (input$het_f_fv == FALSE) { if (input$f_use_prev) { updateSelectInput(session, inputId = "het_f_vars", choices = mnames(), selected = mnames()[1]) } else { updateSelectInput(session, inputId = "het_f_vars", choices = fvars(), selected = fvars()[1]) } } else { if (input$f_use_prev) { updateSelectInput(session, inputId = "het_f_vars", choices = mnames(), selected = '') } else { updateSelectInput(session, inputId = "het_f_vars", choices = fvars(), selected = '') } } }) result_f <- eventReactive(input$submit_het_f, { if (input$het_f_fv == FALSE) { if (input$f_use_prev) { ols_test_f(all_use_n(), as.logical(input$het_f_fv), as.logical(input$het_f_rhs), input$het_f_vars) } else { ols_test_f(het_f_mod(), as.logical(input$het_f_fv), as.logical(input$het_f_rhs), input$het_f_vars) } } else { if (input$f_use_prev) { ols_test_f(all_use_n(), as.logical(input$het_f_fv), as.logical(input$het_f_rhs)) } else { ols_test_f(het_f_mod(), as.logical(input$het_f_fv), as.logical(input$het_f_rhs)) } } }) output$het_f_out <- renderPrint({ result_f() }) # score test d_het_score <- eventReactive(input$submit_het_score, { # validate(need((input$het_score_fmla != ''), 'Please specify model')) data <- final_split$train }) het_score_mod <- eventReactive(input$submit_het_score, { k <- lm(input$het_score_fmla, data = d_het_score()) k }) scorevars <- eventReactive(input$submit_het_score, { k <- colnames(model.matrix(het_score_mod())[, -1]) k }) observe({ if (input$het_score_fv == FALSE) { if (input$score_use_prev) { updateSelectInput(session, inputId = "het_score_vars", choices = mnames(), selected = mnames()[1]) } else { updateSelectInput(session, inputId = "het_score_vars", choices = scorevars(), selected = scorevars()[1]) } } else { if (input$score_use_prev) { updateSelectInput(session, inputId = "het_score_vars", choices = mnames(), selected = '') } else { updateSelectInput(session, inputId = "het_score_vars", choices = scorevars(), selected = '') } } }) result_score <- eventReactive(input$submit_het_score, { if (input$het_score_fv == FALSE) { if (input$score_use_prev) { ols_test_score(all_use_n(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs), input$het_score_vars) } else { ols_test_score(het_score_mod(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs), input$het_score_vars) } } else { if (input$score_use_prev) { ols_test_score(all_use_n(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs)) } else { ols_test_score(het_score_mod(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs)) } } }) output$het_score_out <- renderPrint({ result_score() }) # output$het_score_out <- renderPrint({ # if (input$het_score_fv == FALSE) { # if (input$score_use_prev) { # ols_score_test(all_use_n(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs), # input$het_score_vars) # } else { # ols_score_test(het_score_mod(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs), # input$het_score_vars) # } # } else { # if (input$score_use_prev) { # ols_score_test(all_use_n(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs)) # } else { # ols_score_test(het_score_mod(), as.logical(input$het_score_fv), as.logical(input$het_score_rhs)) # } # } # }) # bartlett test observe({ updateSelectInput(session,inputId = "var_bartest", choices = names(data()), selected = '') updateSelectInput(session,inputId = "var_bartestg1", choices = names(data()), selected = '') updateSelectInput(session,inputId = "var_bartestg2", choices = names(data()), selected = '') }) observeEvent(input$button_split_no, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'var_bartest', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'var_bartestg1', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'var_bartest', choices = '', selected = '') updateSelectInput(session, 'var_bartestg1', choices = '', selected = '') } else { updateSelectInput(session, 'var_bartest', choices = names(num_data)) updateSelectInput(session, 'var_bartestg1', choices = names(num_data)) } if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'var_bartestg2', choices = names(fdata), selected = names(fdata)) } else if (ncol(f_data) < 1) { updateSelectInput(session, 'var_bartestg2', choices = '', selected = '') } else { updateSelectInput(session, 'var_bartestg2', choices = names(f_data)) } }) observeEvent(input$submit_part_train_per, { f_data <- final_split$train[, sapply(final_split$train, is.factor)] num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, 'var_bartest', choices = names(numdata), selected = names(numdata)) updateSelectInput(session, 'var_bartestg1', choices = names(numdata), selected = names(numdata)) } else if (ncol(num_data) < 1) { updateSelectInput(session, 'var_bartest', choices = '', selected = '') updateSelectInput(session, 'var_bartestg1', choices = '', selected = '') } else { updateSelectInput(session, 'var_bartest', choices = names(num_data)) updateSelectInput(session, 'var_bartestg1', choices = names(num_data)) } if (is.null(dim(f_data))) { k <- final_split$train %>% map(is.factor) %>% unlist() j <- names(which(k == TRUE)) fdata <- tibble::as_data_frame(f_data) colnames(fdata) <- j updateSelectInput(session, 'var_bartestg2', choices = names(fdata), selected = names(fdata)) } else if (ncol(f_data) < 1) { updateSelectInput(session, 'var_bartestg2', choices = '', selected = '') } else { updateSelectInput(session, 'var_bartestg2', choices = names(f_data)) } }) d_bartest <- eventReactive(input$submit_bartest, { # validate(need((input$var_bartest != ''), 'Please select variables')) req(input$var_bartest) data <- final_split$train[, c(input$var_bartest)] ols_test_bartlett(data) }) output$bartest_out <- renderPrint({ d_bartest() }) d_bartestg <- eventReactive(input$submit_bartestg, { # validate(need((input$var_bartestg1 != '' & input$var_bartestg2 != ''), 'Please select variables')) req(input$var_bartestg1) req(input$var_bartestg2) data <- final_split$train[, c(input$var_bartestg1, input$var_bartestg2)] k <- ols_test_bartlett(data[, 1], group_var = data[, 2]) k }) output$bartestg_out <- renderPrint({ d_bartestg() }) d_bartmod <- eventReactive(input$submit_bartestf, { # validate(need((input$bartest_fmla != ''), 'Please specify a model.')) data <- final_split$train k <- lm(input$bartest_fmla, data = data) ols_test_bartlett(k) }) # bartmod <- reactive({ # k # }) output$bartestf_out <- renderPrint({ d_bartmod() })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_hetero.R
eda_menu <- eventReactive(input$click_descriptive, { fluidRow( column(12), br(), column(12, align = 'center', h5('What do you want to do?') ), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate detailed descriptive statistics for a continuous variable: ') ), column(2, align = 'left', actionButton( inputId = 'button_1', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate frequency distribution of a categorical variable: ') ), column(2, align = 'left', actionButton( inputId = 'button_2', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate frequency distribution a continuous variable: ') ), column(2, align = 'left', actionButton( inputId = 'button_3', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate two way table of categorical variables: ') ), column(2, align = 'left', actionButton( inputId = 'button_4', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate multiple one way tables of categorical variables: ') ), column(2, align = 'left', actionButton( inputId = 'button_5', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate multiple two way tables of categorical variables: ') ), column(2, align = 'left', actionButton( inputId = 'button_6', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Generate grouped summary statistics: ') ), column(2, align = 'left', actionButton( inputId = 'button_7', label = 'Click Here', width = '120px' ) ), column(3) ) }) output$eda_options <- renderUI({ eda_menu() }) observeEvent(input$click_descriptive, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_eda_home') }) observeEvent(input$click_distributions, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_dist_home') }) observeEvent(input$click_inference, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer_home') }) observeEvent(input$click_model, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_model_home') }) observeEvent(input$click_visualize, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_home_viz') }) # observeEvent(input$click_visualize, { # updateNavbarPage(session, 'mainpage', selected = 'tab_viz_lib') # }) observeEvent(input$button_1, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_summary') }) observeEvent(input$button_2, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_fqual') }) observeEvent(input$button_3, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_fquant') }) observeEvent(input$button_4, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_cross') }) observeEvent(input$button_5, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_mult1') }) observeEvent(input$button_6, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_mult2') }) observeEvent(input$button_7, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_gsummary') }) observeEvent(input$button_dist_home_1, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_norm') }) observeEvent(input$button_dist_home_2, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_t') }) observeEvent(input$button_dist_home_3, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_chisq') }) observeEvent(input$button_dist_home_4, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_binom') }) observeEvent(input$button_dist_home_5, { updateNavbarPage(session, 'mainpage', selected = 'tab_dist') updateNavlistPanel(session, 'navlist_dist', 'tab_f') }) observeEvent(input$button_infer_home_1, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer1_home') }) observeEvent(input$button_infer_home_2, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer2_home') }) observeEvent(input$button_infer_home_3, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_infer3_home') }) # links for inferential statistics observeEvent(input$inf_menu_1_t, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_ttest') }) observeEvent(input$inf_menu_1_var, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_osvartest') }) observeEvent(input$inf_menu_1_prop, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_osproptest') }) observeEvent(input$inf_menu_1_chi, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_chigof') }) observeEvent(input$inf_menu_1_runs, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_runs') }) observeEvent(input$inf_menu_2_it, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_indttest') }) observeEvent(input$inf_menu_2_pt, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_indttest') }) observeEvent(input$inf_menu_2_binom, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_binomtest') }) observeEvent(input$inf_menu_2_var, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_tsvartest') }) observeEvent(input$inf_menu_2_prop, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_tsproptest') }) observeEvent(input$inf_menu_2_chi, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_chict') }) observeEvent(input$inf_menu_2_mcnemar, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_mcnemar') }) observeEvent(input$inf_menu_3_anova, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_anova') }) observeEvent(input$inf_menu_3_levene, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_levtest') }) observeEvent(input$inf_menu_3_cochran, { updateNavbarPage(session, 'mainpage', selected = 'tab_infer') updateNavlistPanel(session, 'navlist_infer', 'tab_cochran') }) ## visulization links observeEvent(input$click_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_viz_base') }) observeEvent(input$click_ggplot2, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_viz_gg') }) observeEvent(input$click_prh, { updateNavbarPage(session, 'mainpage', selected = 'tab_viz_home') updateNavlistPanel(session, 'navlist_vizmenu', 'tab_viz_others') }) ## link viz libraries to tabs observeEvent(input$click_bar_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_bar') }) observeEvent(input$click_bar2_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_bar2') }) observeEvent(input$click_box_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_box') }) observeEvent(input$click_box2_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_box2') }) observeEvent(input$click_line_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_line') }) observeEvent(input$click_scatter_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_scatter') }) observeEvent(input$click_hist_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_hist') }) observeEvent(input$click_pie_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_pie') }) observeEvent(input$click_pie2_base, { updateNavbarPage(session, 'mainpage', selected = 'tab_base') updateNavlistPanel(session, 'navlist_base', 'tab_pie3d') }) ## ggplot2 observeEvent(input$click_bar_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbar') }) observeEvent(input$click_bar2_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbar2') }) observeEvent(input$click_box_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbox') }) observeEvent(input$click_box2_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gbox2') }) observeEvent(input$click_line_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gline1') }) observeEvent(input$click_scatter_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gscatter') }) observeEvent(input$click_hist_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_ghist') }) observeEvent(input$click_pie_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gpie') }) observeEvent(input$click_line2_gg, { updateNavbarPage(session, 'mainpage', selected = 'tab_gg') updateNavlistPanel(session, 'navlist_gg', 'tab_gline2') }) ## others observeEvent(input$click_bar_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_bar_plot_1') }) observeEvent(input$click_bar2_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_bar_plot_2') }) observeEvent(input$click_box_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_box_plot_1') }) observeEvent(input$click_box2_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_box_plot_2') }) observeEvent(input$click_line_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_line_prh') }) observeEvent(input$click_scatter_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_scatter_prh') }) observeEvent(input$click_hist_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_hist_prh') }) observeEvent(input$click_pie_others, { updateNavbarPage(session, 'mainpage', selected = 'tab_others') updateNavlistPanel(session, 'navlist_others', 'tab_pie_prh') }) ## model links observeEvent(input$model_reg_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_regress') }) observeEvent(input$model_varsel_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_var_select') }) observeEvent(input$model_resdiag_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_res_diag') }) observeEvent(input$model_het_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_hetero') }) observeEvent(input$model_coldiag_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_regcollin') }) observeEvent(input$model_infl_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_inflobs') }) observeEvent(input$model_fit_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_mfit') }) observeEvent(input$model_varcontrib_click, { updateNavbarPage(session, 'mainpage', selected = 'tab_reg') updateNavlistPanel(session, 'navlist_reg', 'tab_regvarcont') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_home.R
output$ui_inflobslink <- renderUI({ if (input$inflobs_select == "Cook's D Bar Plot") { fluidRow( column(6, align = 'left', h4("Cook's D Bar Plot"), p("Bar Plot of Cook's distance to detect observations that strongly influence fitted values of the model.") ), column(6, align = 'right', actionButton(inputId='cdbplink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_cooksd_bar.html', '_blank')") ) ) } else if (input$inflobs_select == "Cook's D Chart") { fluidRow( column(6, align = 'left', h4("Cook's D Chart"), p("Chart of Cook's distance to detect observations that strongly influence fitted values of the model.") ), column(6, align = 'right', actionButton(inputId='cdclink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_cooksd_chart.html', '_blank')") ) ) } else if (input$inflobs_select == "DFBETAs Panel") { fluidRow( column(6, align = 'left', h4('DFBETAS Panel'), p("Panel of plots to detect influential observations using DFBETAs.") ), column(6, align = 'right', actionButton(inputId='dfblink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_dfbetas.html', '_blank')") ) ) } else if (input$inflobs_select == "DFFITS Plot") { fluidRow( column(6, align = 'left', h4('DFFITS Plot'), p("Plot for detecting influential observations using DFFITS.") ), column(6, align = 'right', actionButton(inputId='dfitslink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_dffits.html', '_blank')") ) ) } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { fluidRow( column(6, align = 'left', h4('Deleted Studentized Residual vs Predicted Plot'), p('Plot for detecting outliers.') ), column(6, align = 'right', actionButton(inputId='dsrvsplink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_stud_fit.html', '_blank')") ) ) } else if (input$inflobs_select == "Hadi Plot") { fluidRow( column(6, align = 'left', h4('Hadi Plot'), p("Plot for detecting outliers based on Hadi's influence measure.") ), column(6, align = 'right', actionButton(inputId='hadiplink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_hadi.html', '_blank')") ) ) } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { fluidRow( column(6, align = 'left', h4('Studentized Residual vs Leverage Plot'), p('Graph for detecting influential observations.') ), column(6, align = 'right', actionButton(inputId='srvslev1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_lev.html', '_blank')") ) ) } else if (input$inflobs_select == "Studentized Residual Plot") { fluidRow( column(6, align = 'left', h4('Studentized Residual Plot'), p('Graph for identifying outliers.') ), column(6, align = 'right', actionButton(inputId='srplot1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_stud.html', '_blank')") ) ) } else if (input$inflobs_select == "Studentized Residual Chart") { fluidRow( column(6, align = 'left', h4('Studentized Residual Chart'), p('Graph for identifying outliers.') ), column(6, align = 'right', actionButton(inputId='srchart1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_stand.html', '_blank')") ) ) } else if (input$inflobs_select == "Potential Residual Plot") { fluidRow( column(6, align = 'left', h4('Potential Residual Plot'), p('Graph for identifying outliers.') ), column(6, align = 'right', actionButton(inputId='potreslink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_pot.html', '_blank')") ) ) } }) output$ui_inflobsfmla <- renderUI({ if (input$inflobs_select == "Cook's D Bar Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("cooksb_fmla", label = '', width = '660px', value = ""), bsTooltip("cooksb_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "Potential Residual Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("potres_fmla", label = '', width = '660px', value = ""), bsTooltip("potres_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "Cook's D Chart") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("cooksc_fmla", label = '', width = '660px', value = ""), bsTooltip("cooksc_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "DFBETAs Panel") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("dfbetas_fmla", label = '', width = '660px', value = ""), bsTooltip("dfbetas_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("dsresp_fmla", label = '', width = '660px', value = ""), bsTooltip("dsresp_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "DFFITS Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("dffits_fmla", label = '', width = '660px', value = ""), bsTooltip("dffits_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("sreslev_fmla", label = '', width = '660px', value = ""), bsTooltip("sreslev_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "Studentized Residual Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("studres_fmla", label = '', width = '660px', value = ""), bsTooltip("studres_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "Studentized Residual Chart") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("sreschart_fmla", label = '', width = '660px', value = ""), bsTooltip("sreschart_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$inflobs_select == "Hadi Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("hadiplot_fmla", label = '', width = '660px', value = ""), bsTooltip("hadiplot_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } }) output$ui_inflobssubmit <- renderUI({ if (input$inflobs_select == "Cook's D Bar Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_cooksb', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_cooksb", "Click here to view test results.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "Potential Residual Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_potres_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_potres_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "Cook's D Chart") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_cooksc', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_cooksc", "Click here to view test results.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "DFBETAs Panel") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dfbetas', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_dfbetas", "Click here to view test results.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dsresp_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_dsresp_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "DFFITS Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dffits', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_dffits", "Click here to view test results.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_sreslev_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_sreslev_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "Studentized Residual Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_sresp_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_cprp_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "Studentized Residual Chart") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_sreschart_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_sreschart_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$inflobs_select == "Hadi Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_hadiplot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_hadiplot", "Click here to view test results.", "bottom", options = list(container = "body"))) ) } }) output$ui_inflobsprev <- renderUI({ if (input$inflobs_select == "Cook's D Bar Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'cdbp_use_prev', label = '', value = FALSE), bsTooltip("cdbp_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "Potential Residual Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'potres_use_prev', label = '', value = FALSE), bsTooltip("potres_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "Cook's D Chart") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'cooksc_use_prev', label = '', value = FALSE), bsTooltip("cooksc_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "DFBETAs Panel") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'dfb_use_prev', label = '', value = FALSE), bsTooltip("dfb_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'dsresp_use_prev', label = '', value = FALSE), bsTooltip("dsresp_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "DFFITS Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'dfits_use_prev', label = '', value = FALSE), bsTooltip("dfits_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'sreslev_use_prev', label = '', value = FALSE), bsTooltip("sreslev_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "Studentized Residual Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'sres_use_prev', label = '', value = FALSE), bsTooltip("sres_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "Studentized Residual Chart") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'sreschart_use_prev', label = '', value = FALSE), bsTooltip("sreschart_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$inflobs_select == "Hadi Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'hadip_use_prev', label = '', value = FALSE), bsTooltip("hadip_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } }) d_potres_mod <- eventReactive(input$submit_potres_plot, { # validate(need((input$potres_fmla != ''), 'Please specify model')) data <- final_split$train }) d_dsresp_mod <- eventReactive(input$submit_dsresp_plot, { # validate(need((input$dsresp_fmla != ''), 'Please specify model')) data <- final_split$train }) d_sreslev_mod <- eventReactive(input$submit_sreslev_plot, { # validate(need((input$sreslev_fmla != ''), 'Please specify model')) data <- final_split$train }) d_sres_mod <- eventReactive(input$submit_sresp_plot, { # validate(need((input$studres_fmla != ''), 'Please specify model')) data <- final_split$train }) d_sreschart_mod <- eventReactive(input$submit_sreschart_plot, { # validate(need((input$sreschart_fmla != ''), 'Please specify model')) data <- final_split$train }) d_dffits <- eventReactive(input$submit_dffits, { # validate(need((input$dffits_fmla != ''), 'Please specify model')) data <- final_split$train }) d_cdbp <- eventReactive(input$submit_cooksb, { # validate(need((input$cooksb_fmla != ''), 'Please specify model')) data <- final_split$train }) d_cdc <- eventReactive(input$submit_cooksc, { # validate(need((input$cooksc_fmla != ''), 'Please specify model')) data <- final_split$train }) d_hadi <- eventReactive(input$submit_hadiplot, { # validate(need((input$hadiplot_fmla != ''), 'Please specify model')) data <- final_split$train }) potres_mod <- reactive({ k <- lm(input$potres_fmla, data = d_potres_mod()) k }) dsresp_mod <- reactive({ k <- lm(input$dsresp_fmla, data = d_dsresp_mod()) k }) sreslev_mod <- reactive({ k <- lm(input$sreslev_fmla, data = d_sreslev_mod()) k }) sres_mod <- reactive({ k <- lm(input$studres_fmla, data = d_sres_mod()) k }) sreschart_mod <- reactive({ k <- lm(input$sreschart_fmla, data = d_sreschart_mod()) k }) dfits_mod <- eventReactive(input$submit_dffits, { k <- lm(input$dffits_fmla, data = d_dffits()) k }) cdbp_mod <- eventReactive(input$submit_cooksb, { k <- lm(input$cooksb_fmla, data = d_cdbp()) k }) cdc_mod <- eventReactive(input$submit_cooksc, { k <- lm(input$cooksc_fmla, data = d_cdc()) k }) hadi_mod <- eventReactive(input$submit_hadiplot, { k <- lm(input$hadiplot_fmla, data = d_hadi()) k }) d_dfbetas <- eventReactive(input$submit_dfbetas, { # validate(need((input$dfbetas_fmla != ''), 'Please specify model')) data <- final_split$train }) dfbetas_mod <- eventReactive(input$submit_dfbetas, { k <- lm(input$dfbetas_fmla, data = d_dfbetas()) k }) plot_n <- reactive({ if (input$dfb_use_prev) { (length(all_use_n()$coefficients) * 500) / 2 } else { (length(dfbetas_mod()$coefficients) * 500) / 2 } }) output$ui_inflobsplot <- renderUI({ if (input$inflobs_select == "Cook's D Bar Plot") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "Potential Residual Plot") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "Cook's D Chart") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "DFBETAs Panel") { column(12, align = 'center', plotOutput('inflobsplot', height = paste0(plot_n(), 'px'))) } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "DFFITS Plot") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "Studentized Residual Plot") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "Studentized Residual Chart") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } else if (input$inflobs_select == "Hadi Plot") { column(12, align = 'center', plotOutput('inflobsplot', height = '500px')) } }) output$ui_inflobsprint <- renderUI({ if (input$inflobs_select == "Cook's D Bar Plot") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "Potential Residual Plot") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "Cook's D Chart") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "DFBETAs Panel") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "DFFITS Plot") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "Studentized Residual Plot") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "Studentized Residual Chart") { column(12, align = 'center', verbatimTextOutput('inflobs')) } else if (input$inflobs_select == "Hadi Plot") { column(12, align = 'center', verbatimTextOutput('inflobs')) } }) result_cdbp <- eventReactive(input$submit_cooksb, { if (input$cdbp_use_prev) { ols_plot_cooksd_bar(all_use_n()) } else { ols_plot_cooksd_bar(cdbp_mod()) } }) result_cdc <- eventReactive(input$submit_cooksc, { if (input$cooksc_use_prev) { ols_plot_cooksd_chart(all_use_n()) } else { ols_plot_cooksd_chart(cdc_mod()) } }) result_potres <- eventReactive(input$submit_potres_plot, { if(input$potres_use_prev) { ols_plot_resid_pot(all_use_n()) } else { ols_plot_resid_pot(potres_mod()) } }) result_dfbetas <- eventReactive(input$submit_dfbetas, { if (input$dfb_use_prev) { ols_plot_dfbetas(all_use_n()) } else { ols_plot_dfbetas(dfbetas_mod()) } }) result_dsrvsp <- eventReactive(input$submit_dsresp_plot, { if(input$dsresp_use_prev) { ols_plot_resid_stud_fit(all_use_n()) } else { ols_plot_resid_stud_fit(dsresp_mod()) } }) result_dffits <- eventReactive(input$submit_dffits, { if (input$dfits_use_prev) { ols_plot_dffits(all_use_n()) } else { ols_plot_dffits(dfits_mod()) } }) result_srvslev <- eventReactive(input$submit_sreslev_plot, { if(input$sreslev_use_prev) { ols_plot_resid_lev(all_use_n()) } else { ols_plot_resid_lev(sreslev_mod()) } }) result_srplot <- eventReactive(input$submit_sresp_plot, { if(input$sres_use_prev) { ols_plot_resid_stud(all_use_n()) } else { ols_plot_resid_stud(sres_mod()) } }) result_srchart <- eventReactive(input$submit_sreschart_plot, { if(input$sreschart_use_prev) { ols_plot_resid_stand(all_use_n()) } else { ols_plot_resid_stand(sreschart_mod()) } }) result_hadi <- eventReactive(input$submit_hadiplot, { if (input$hadip_use_prev) { ols_plot_hadi(all_use_n()) } else { ols_plot_hadi(hadi_mod()) } }) output$inflobsplot <- renderPlot({ if (input$inflobs_select == "Cook's D Bar Plot") { result_cdbp() } else if (input$inflobs_select == "Potential Residual Plot") { result_potres() } else if (input$inflobs_select == "Cook's D Chart") { result_cdc() } else if (input$inflobs_select == "DFBETAs Panel") { result_dfbetas() } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { result_dsrvsp() } else if (input$inflobs_select == "DFFITS Plot") { result_dffits() } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { result_srvslev() } else if (input$inflobs_select == "Studentized Residual Plot") { result_srplot() } else if (input$inflobs_select == "Standardized Residual Chart") { result_srchart() } else if (input$inflobs_select == "Hadi Plot") { result_hadi() } }) output$inflobs <- renderPrint({ if (input$inflobs_select == "Cook's D Bar Plot") { k <- result_cdbp() k } else if (input$inflobs_select == "Cook's D Chart") { k <- result_cdc() k } else if (input$inflobs_select == "DFBETAs Panel") { k <- result_dfbetas() k } else if (input$inflobs_select == "Deleted Stud Resid vs Fitted") { k <- result_dsrvsp() k } else if (input$inflobs_select == "DFFITS Plot") { k <- result_dffits() k } else if (input$inflobs_select == "Studentized Residuals vs Leverage") { k <- result_srvslev() k } else if (input$inflobs_select == "Studentized Residual Plot") { k <- result_srplot() k } else if (input$inflobs_select == "Studentized Residual Chart") { k <- result_srchart() k } })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_inflobs2.R
output$ui_mfitlink <- renderUI({ if (input$mfit_select == "Residual Fit Spread Plot") { fluidRow( column(6, align = 'left', h4('Residual Fit Spread Plot'), p('Plot to detect non-linearity, influential observations and outliers.') ), column(6, align = 'right', actionButton(inputId='rfslink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_fit_spread.html', '_blank')") ) ) } else if (input$mfit_select == "Part & Partial Correlations") { fluidRow( column(6, align = 'left', h4('Part & Partial Correlations'), p('Zero-order, part and partial correlations.') ), column(6, align = 'right', actionButton(inputId='corlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_correlations.html', '_blank')") ) ) } else if (input$mfit_select == "Observed vs Fitted Plot") { fluidRow( column(6, align = 'left', h4('Observed vs Fitted Plot'), p('Plot of observed vs fitted values to assess the fit of the model.') ), column(6, align = 'right', actionButton(inputId='ovsplink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_obs_fit.html', '_blank')") ) ) } else if (input$mfit_select == "Lack of Fit F Test") { fluidRow( column(6, align = 'left', h4('Lack of Fit F Test'), p('Assess how much of the error in prediction is due to lack of model fit.') ), column(6, align = 'right', actionButton(inputId='lfitlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_pure_error_anova.html', '_blank')") ) ) } else if (input$mfit_select == "Diagnostics Panel") { fluidRow( column(6, align = 'left', h4('Diagnostics Panel'), p('Panel of plots for regression diagnostics.') ), column(6, align = 'right', actionButton(inputId='dpanelink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_diagnostics.html', '_blank')") ) ) } }) output$ui_mfitfmla <- renderUI({ if (input$mfit_select == "Residual Fit Spread Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("rfs_fmla", label = '', width = '660px', value = ""), bsTooltip("rfs_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mfit_select == "Part & Partial Correlations") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("corr_fmla", label = '', width = '660px', value = ""), bsTooltip("corr_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mfit_select == "Observed vs Fitted Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("ovsp_fmla", label = '', width = '660px', value = ""), bsTooltip("ovsp_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mfit_select == "Lack of Fit F Test") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("lfit_fmla", label = '', width = '660px', value = ""), bsTooltip("lfit_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mfit_select == "Diagnostics Panel") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("dpanel_fmla", label = '', width = '660px', value = ""), bsTooltip("dpanel_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } }) output$ui_mfitsubmit <- renderUI({ if (input$mfit_select == "Residual Fit Spread Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_rfsplot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_rfsplot", "Click here to view test results.", "bottom", options = list(container = "body"))) ) } else if (input$mfit_select == "Part & Partial Correlations") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_corr', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_corr", "Click here to correlations.", "bottom", options = list(container = "body"))) ) } else if (input$mfit_select == "Observed vs Fitted Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_ovsplot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_ovsplot", "Click here to view plot.", "bottom", options = list(container = "body"))) ) } else if (input$mfit_select == "Lack of Fit F Test") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_lfit', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_lfit", "Click here to view test results.", "bottom", options = list(container = "body"))) ) } else if (input$mfit_select == "Diagnostics Panel") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dpanel', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_dpanel", "Click here to view panel.", "bottom", options = list(container = "body"))) ) } }) output$ui_mfitprev <- renderUI({ if (input$mfit_select == "Residual Fit Spread Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'rfs_use_prev', label = '', value = FALSE), bsTooltip("rfs_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mfit_select == "Part & Partial Correlations") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'corr_use_prev', label = '', value = FALSE), bsTooltip("corr_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mfit_select == "Observed vs Fitted Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'ovsp_use_prev', label = '', value = FALSE), bsTooltip("ovsp_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mfit_select == "Lack of Fit F Test") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'lfit_use_prev', label = '', value = FALSE), bsTooltip("lfit_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mfit_select == "Diagnostics Panel") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'dpanel_use_prev', label = '', value = FALSE), bsTooltip("dpanel_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } }) output$ui_mfitout <- renderUI({ if (input$mfit_select == "Residual Fit Spread Plot") { fluidRow( br(), column(12, align = 'center', plotOutput('mfitrfs', height = '500px')) ) } else if (input$mfit_select == "Part & Partial Correlations") { fluidRow( br(), column(12, align = 'center', verbatimTextOutput('mfitcorr')) ) } else if (input$mfit_select == "Observed vs Fitted Plot") { fluidRow( br(), column(12, align = 'center', plotOutput('mfitovfp', height = '500px')) ) } else if (input$mfit_select == "Lack of Fit F Test") { fluidRow( br(), column(12, align = 'center', verbatimTextOutput('mfitlfit')) ) } else if (input$mfit_select == "Diagnostics Panel") { fluidRow( br(), column(12, align = 'center', plotOutput('mfitdpanel', height = '2500px')) ) } }) d_rfs_mod <- eventReactive(input$submit_rfsplot, { if (input$rfs_use_prev) { ols_plot_resid_fit_spread(all_use_n()) } else { k <- lm(input$rfs_fmla, data = final_split$train) ols_plot_resid_fit_spread(k) } }) d_corr_mod <- eventReactive(input$submit_corr, { if(input$corr_use_prev) { ols_correlations(all_use_n()) } else { k <- lm(input$corr_fmla, data = final_split$train) ols_correlations(k) } }) d_ovsp_mod <- eventReactive(input$submit_ovsplot, { if (input$ovsp_use_prev) { ols_plot_obs_fit(all_use_n()) } else { k <- lm(input$ovsp_fmla, data = final_split$train) ols_plot_obs_fit(k) } }) d_lfit_mod <- eventReactive(input$submit_lfit, { if (input$lfit_use_prev) { ols_pure_error_anova(all_use_n()) } else { k <- lm(input$lfit_fmla, data = final_split$train) ols_pure_error_anova(k) } }) d_dpanel_mod <- eventReactive(input$submit_dpanel, { if(input$dpanel_use_prev) { ols_plot_diagnostics(all_use_n()) } else { k <- lm(input$dpanel_fmla, data = final_split$train) ols_plot_diagnostics(k) } }) output$mfitrfs <- renderPlot({ d_rfs_mod() }) output$mfitcorr <- renderPrint({ print(d_corr_mod()) }) output$mfitovfp <- renderPlot({ d_ovsp_mod() }) output$mfitlfit <- renderPrint({ print(d_lfit_mod()) }) output$mfitdpanel <- renderPlot({ d_dpanel_mod() })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_mfit2.R
output$ui_mselectlink <- renderUI({ if (input$mselect == "All Possible") { fluidRow( column(6, align = 'left', h4('All Subset Regression'), p('Fits all regressions involving one regressor, two regressors, three regressors, and so on. It tests all possible subsets of the set of potential independent variables.') ), column(6, align = 'right', actionButton(inputId='allsub1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_step_all_possible.html', '_blank')") ) ) } else if (input$mselect == "Best Subset") { fluidRow( column(6, align = 'left', h4('Best Subset Regression'), p("Select the subset of predictors that do the best at meeting some well-defined objective criterion, such as having the largest R2 value or the smallest MSE, Mallow's Cp or AIC.") ), column(6, align = 'right', actionButton(inputId='bestsub1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_step_best_subset.html', '_blank')") ) ) } else if (input$mselect == "Stepwise") { fluidRow( column(6, align = 'left', h4('Stepwise Regression'), p('Build regression model from a set of candidate predictor variables by entering and removing predictors based on p values, in a stepwise manner until there is no variable left to enter or remove any more.') ), column(6, align = 'right', actionButton(inputId='stepwise1', label="Help", icon = icon("question-circle"), onclick ="window.open('https:/olsrr.rsquaredacademy.com/reference/ols_step_both_p.html', '_blank')") ) ) } else if (input$mselect == "Forward") { fluidRow( column(6, align = 'left', h4('Stepwise Forward Regression'), p('Build regression model from a set of candidate predictor variables by entering predictors based on p values, in a stepwise manner until there is no variable left to enter any more.') ), column(6, align = 'right', actionButton(inputId='stepf1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_step_forward_p.html', '_blank')") ) ) } else if (input$mselect == "Backward") { fluidRow( column(6, align = 'left', h4('Stepwise Backward Regression'), p('Build regression model from a set of candidate predictor variables by removing predictors based on p values, in a stepwise manner until there is no variable left to remove any more.') ), column(6, align = 'right', actionButton(inputId='stepb1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_step_backward_p.html', '_blank')") ) ) } else if (input$mselect == "stepAIC Forward") { fluidRow( column(6, align = 'left', h4('stepAIC Forward Regression'), p('Build regression model from a set of candidate predictor variables by entering predictors based on Akaike Information Criteria, in a stepwise manner until there is no variable left to enter any more.') ), column(6, align = 'right', actionButton(inputId='stepaicf1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_step_forward_aic.html', '_blank')") ) ) } else if (input$mselect == "stepAIC Backward") { fluidRow( column(6, align = 'left', h4('stepAIC Backward Regression'), p('Build regression model from a set of candidate predictor variables by removing predictors based on Akaike Information Criteria, in a stepwise manner until there is no variable left to remove any more.') ), column(6, align = 'right', actionButton(inputId='stepaicb1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_step_backward_aic.html', '_blank')") ) ) } else if (input$mselect == "stepAIC Both") { fluidRow( column(6, align = 'left', h4('stepAIC(Both) Regression'), p('Build regression model from a set of candidate predictor variables by entering and removing predictors based on Akaike Information Criteria, in a stepwise manner until there is no variable left to enter or remove any more.') ), column(6, align = 'right', actionButton(inputId='stepaicbo1', label="Help", icon = icon("question-circle"), onclick ="window.open('olsrr.rsquaredacademy.com/reference/ols_step_both_aic.html', '_blank')") ) ) } }) output$ui_mselectfmla <- renderUI({ if (input$mselect == "All Possible") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("allsub_fmla", label = '', width = '660px', value = ""), bsTooltip("allsub_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mselect == "Best Subset") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("bestsub_fmla", label = '', width = '660px', value = ""), bsTooltip("bestsub_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mselect == "Stepwise") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("stepwise_fmla", label = '', width = '860px', value = ""), bsTooltip("stepwise_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mselect == "Forward") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("forward_fmla", label = '', width = '660px', value = ""), bsTooltip("forward_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mselect == "Backward") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("backward_fmla", label = '', width = '660px', value = ""), bsTooltip("backrward_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Forward") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("aicforward_fmla", label = '', width = '660px', value = ""), bsTooltip("aicforward_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Backward") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("aicbackward_fmla", label = '', width = '660px', value = ""), bsTooltip("aicbackrward_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Both") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("aicboth_fmla", label = '', width = '660px', value = ""), bsTooltip("aicboth_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } }) output$ui_mselectprev <- renderUI({ if (input$mselect == "All Possible") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'all_use_model', label = '', value = FALSE), bsTooltip("all_use_model", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mselect == "Best Subset") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'best_use_prev', label = '', value = FALSE), bsTooltip("best_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mselect == "Stepwise") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'step_use_prev', label = '', value = FALSE), bsTooltip("step_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mselect == "Forward") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'stepf_use_model', label = '', value = FALSE), bsTooltip("stepf_use_model", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mselect == "Backward") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'stepb_use_model', label = '', value = FALSE), bsTooltip("stepb_use_model", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mselect == "stepAIC Forward") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'stepaicf_use_model', label = '', value = FALSE), bsTooltip("stepaicf_use_model", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mselect == "stepAIC Backward") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'stepaicb_use_model', label = '', value = FALSE), bsTooltip("stepaicb_use_model", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$mselect == "stepAIC Both") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'saicbo_use_model', label = '', value = FALSE), bsTooltip("saicbo_use_model", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } }) output$ui_mselectrow1 <- renderUI({ if (input$mselect == "All Possible") { } else if (input$mselect == "Best Subset") { } else if (input$mselect == "Stepwise") { fluidRow( column(2, align = 'right', br(), h5('Prob (Enter):')), column(2, align = 'left', numericInput("stepwise_pent", label = '', width = '200px', value = 0.3, min = 0, max = 1, step = 0.01), bsTooltip("stepwise_pent", "Minimum p value for adding variable to model.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Prob (Removal):')), column(2, align = 'left', numericInput("stepwise_prem", label = '', width = '200px', value = 0.3, min = 0, max = 1, step = 0.01), bsTooltip("stepwise_prem", "Maximum p value for removing variable from model.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Details:')), column(2, align = 'left', selectInput('stepwise_details', '', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("stepwise_details", "Print model selection details.", "left", options = list(container = "body"))) ) } else if (input$mselect == "Forward") { fluidRow( column(2, align = 'right', br(), h5('Prob (Enter):')), column(4, align = 'left', numericInput("forward_pent", label = '', width = '200px', value = 0.3, min = 0, max = 1, step = 0.01), bsTooltip("forward_pent", "Minimum p value for adding variable to model.", "left", options = list(container = "body"))) ) } else if (input$mselect == "Backward") { fluidRow( column(2, align = 'right', br(), h5('Prob (Removal):')), column(4, align = 'left', numericInput("backward_prem", label = '', width = '200px', value = 0.3, min = 0, max = 1, step = 0.01), bsTooltip("backward_prem", "Minimum p value for removing variables from model.", "left", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Forward") { fluidRow( column(2, align = 'right', br(), h5('Details:')), column(4, align = 'left', selectInput('aicforward_details', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("aicforward_details", "Print model selection details.", "left", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Backward") { fluidRow( column(2, align = 'right', br(), h5('Details:')), column(4, align = 'left', selectInput('aicbackward_details', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("aicbackward_details", "Print model selection details.", "left", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Both") { fluidRow( column(2, align = 'right', br(), h5('Details:')), column(4, align = 'left', selectInput('aicboth_details', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("aicboth_details", "Print model selection details.", "left", options = list(container = "body"))) ) } }) output$ui_mselectrow2 <- renderUI({ if (input$mselect == "All Possible") { } else if (input$mselect == "Best Subset") { } else if (input$mselect == "Stepwise") { } else if (input$mselect == "Forward") { fluidRow( column(2, align = 'right', br(), h5('Details:')), column(4, align = 'left', selectInput('forward_details', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("forward_details", "Print model selection details.", "left", options = list(container = "body"))) ) } else if (input$mselect == "Backward") { fluidRow( column(2, align = 'right', br(), h5('Details:')), column(4, align = 'left', selectInput('backward_details', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("backward_details", "Print model selection details.", "left", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Forward") { } else if (input$mselect == "stepAIC Backward") { } else if (input$mselect == "stepAIC Both") { } }) output$ui_mselectsubmit <- renderUI({ if (input$mselect == "All Possible") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_allsub', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_allsub", "Click here to view all subsets regression.", "bottom", options = list(container = "body"))) ) } else if (input$mselect == "Best Subset") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_bestsub', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_bestsub", "Click here to view best subsets regression.", "bottom", options = list(container = "body"))) ) } else if (input$mselect == "Stepwise") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_stepwise', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_stepwise", "Click here to view stepwise regression.", "bottom", options = list(container = "body"))) ) } else if (input$mselect == "Forward") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_forward', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_forward", "Click here to view best stepwise forward regression.", "bottom", options = list(container = "body"))) ) } else if (input$mselect == "Backward") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_backward', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_backward", "Click here to view stepwise backward elimination.", "bottom", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Forward") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_aicforward', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_aicforward", "Click here to view forward selection based on AIC.", "bottom", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Backward") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_aicbackward', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_aicbackward", "Click here to view backward elimination based on AIC.", "bottom", options = list(container = "body"))) ) } else if (input$mselect == "stepAIC Both") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_aicboth', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_aicboth", "Click here to view stepwise regression based on AIC.", "bottom", options = list(container = "body"))) ) } }) output$ui_mseloutput <- renderUI({ if (input$mselect == "All Possible") { fluidRow( br(), uiOutput('all_title1'), # column(12, align = 'center', h4('All Subset Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('allsub_out')), hr() ) } else if (input$mselect == "Best Subset") { fluidRow( br(), uiOutput('best_title1'), # column(12, align = 'center', h4('Best Subset Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('bestsub_out')), hr() ) } else if (input$mselect == "Stepwise") { fluidRow( br(), uiOutput('swise_title1'), # column(12, align = 'center', h4('Stepwise Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('stepwise_out')), hr() ) } else if (input$mselect == "Forward") { fluidRow( br(), uiOutput('forward_title1'), # column(12, align = 'center', h4('Stepwise Forward Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('forward_out')), hr() ) } else if (input$mselect == "Backward") { fluidRow( br(), uiOutput('backward_title1'), # column(12, align = 'center', h4('Stepwise Backward Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('backward_out')), hr() ) } else if (input$mselect == "stepAIC Forward") { fluidRow( br(), uiOutput('sforward_title1'), # column(12, align = 'center', h4('stepAIC Forward Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('aicforward_out')), hr() ) } else if (input$mselect == "stepAIC Backward") { fluidRow( br(), uiOutput('sbackward_title1'), # column(12, align = 'center', h4('stepAIC Backward Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('aicbackward_out')), hr() ) } else if (input$mselect == "stepAIC Both") { fluidRow( br(), uiOutput('sboth_title1'), # column(12, align = 'center', h4('stepAIC Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('aicboth_out')), hr() ) } }) output$ui_mselplot <- renderUI({ if (input$mselect == "All Possible") { fluidRow( br(), uiOutput('all_title2'), # column(12, align = 'center', h4('All Subset Regression Plot')), hr(), br(), column(12, plotOutput('allsub_plot', height = '1500px')) ) } else if (input$mselect == "Best Subset") { fluidRow( br(), uiOutput('best_title2'), # column(12, align = 'center', h4('Best Subset Regression Plot')), hr(), br(), column(12, plotOutput('bestsub_plot', height = '1500px')) ) } else if (input$mselect == "Stepwise") { fluidRow( br(), uiOutput('swise_title2'), # column(12, align = 'center', h4('Stepwise Regression Plot')), hr(), br(), column(12, plotOutput('stepwise_plot', height = '1500px')) ) } else if (input$mselect == "Forward") { fluidRow( br(), uiOutput('forward_title2'), # column(12, align = 'center', h4('Stepwise Forward Regression Plot')), hr(), br(), column(12, plotOutput('forward_plot', height = '1500px')) ) } else if (input$mselect == "Backward") { fluidRow( br(), uiOutput('backward_title2'), # column(12, align = 'center', h4('Stepwise Backward Regression Plot')), hr(), br(), column(12, plotOutput('backward_plot', height = '1500px')) ) } else if (input$mselect == "stepAIC Forward") { fluidRow( br(), uiOutput('sforward_title2'), # column(12, align = 'center', h4('stepAIC Forward Regression Plot')), hr(), br(), column(12, plotOutput('aicforward_plot', height = '500px')) ) } else if (input$mselect == "stepAIC Backward") { fluidRow( br(), uiOutput('sbackward_title2'), # column(12, align = 'center', h4('stepAIC Backward Regression Plot')), hr(), br(), column(12, plotOutput('aicbackward_plot', height = '500px')) ) } else if (input$mselect == "stepAIC Both") { fluidRow( br(), uiOutput('sboth_title2'), # column(12, align = 'center', h4('stepAIC Regression Plot')), hr(), br(), column(12, plotOutput('aicboth_plot', height = '500px')) ) } }) # # main regression # all_use_n <- reactive({ # k <- model() # object <- k$model # formul <- formula(object) # data <- eval(object$call$data) # n <- lm(formul, data = data) # n # }) # all subset # d_allsub <- eventReactive(input$submit_allsub, { # # validate(need((input$allsub_fmla != ''), 'Please specify model')) # data <- final_split$train # }) allsub_model <- eventReactive(input$submit_allsub, { if (input$all_use_model) { ols_step_all_possible(all_use_n()) } else { model <- lm(input$allsub_fmla, data = final_split$train) ols_step_all_possible(model) } }) a1_title <- eventReactive(input$submit_allsub, { column(12, align = 'center', h4('All Subset Regression')) }) output$all_title1 <- renderUI({ a1_title() }) a2_title <- eventReactive(input$submit_allsub, { column(12, align = 'center', h4('All Subset Regression Plot')) }) output$all_title2 <- renderUI({ a2_title() }) output$allsub_out <- renderPrint({ allsub_model() }) # output$allsub_plot <- renderPlot({ # plot(allsub_model()) # }) bestsub_model <- eventReactive(input$submit_bestsub, { if (input$best_use_prev) { ols_step_best_subset(all_use_n()) } else { data <- final_split$train model <- lm(input$bestsub_fmla, data = data) ols_step_best_subset(model) } }) b1_title <- eventReactive(input$submit_bestsub, { column(12, align = 'center', h4('Best Subset Regression')) }) output$best_title1 <- renderUI({ b1_title() }) b2_title <- eventReactive(input$submit_allsub, { column(12, align = 'center', h4('Best Subset Regression Plot')) }) output$best_title2 <- renderUI({ b2_title() }) output$bestsub_out <- renderPrint({ bestsub_model() }) output$bestsub_plot <- renderPlot({ plot(bestsub_model()) }) stepwise_model <- eventReactive(input$submit_stepwise, { if (input$step_use_prev) { ols_step_both_p(all_use_n(), input$stepwise_pent, input$stepwise_prem, as.logical(input$stepwise_details)) } else { model <- lm(input$stepwise_fmla, data = final_split$train) ols_step_both_p(model, input$stepwise_pent, input$stepwise_prem, as.logical(input$stepwise_details)) } }) s1_title <- eventReactive(input$submit_stepwise, { column(12, align = 'center', h4('Stepwise Regression')) }) output$swise_title1 <- renderUI({ s1_title() }) s2_title <- eventReactive(input$submit_stepwise, { column(12, align = 'center', h4('Stepwise Regression Plot')) }) output$swise_title2 <- renderUI({ s2_title() }) output$stepwise_out <- renderPrint({ print(stepwise_model()) }) output$stepwise_plot <- renderPlot({ plot(stepwise_model()) }) forward_model <- eventReactive(input$submit_forward, { if (input$stepf_use_model) { ols_step_forward_p(all_use_n(), input$forward_pent, as.logical(input$forward_details)) } else { model <- lm(input$forward_fmla, data = final_split$train) ols_step_forward_p(model, input$forward_pent, as.logical(input$forward_details)) } }) f1_title <- eventReactive(input$submit_forward, { column(12, align = 'center', h4('Stepwise Forward Regression')) }) output$forward_title1 <- renderUI({ f1_title() }) f2_title <- eventReactive(input$submit_forward, { column(12, align = 'center', h4('Stepwise Forward Regression Plot')) }) output$forward_title2 <- renderUI({ f2_title() }) output$forward_out <- renderPrint({ print(forward_model()) }) output$forward_plot <- renderPlot({ plot(forward_model()) }) backward_model <- eventReactive(input$submit_backward, { if (input$stepb_use_model) { ols_step_backward_p(all_use_n(), input$backward_prem, as.logical(input$backward_details)) } else { model <- lm(input$backward_fmla, data = final_split$train) ols_step_backward_p(model, input$backward_prem, as.logical(input$backward_details)) } }) ba1_title <- eventReactive(input$submit_backward, { column(12, align = 'center', h4('Stepwise Backward Regression')) }) output$backward_title1 <- renderUI({ ba1_title() }) ba2_title <- eventReactive(input$submit_backward, { column(12, align = 'center', h4('Stepwise Backward Regression Plot')) }) output$backward_title2 <- renderUI({ ba2_title() }) output$backward_out <- renderPrint({ print(backward_model()) }) output$backward_plot <- renderPlot({ plot(backward_model()) }) aicforward_model <- eventReactive(input$submit_aicforward, { if (input$stepaicf_use_model) { ols_step_forward_aic(all_use_n(), as.logical(input$aicforward_details)) } else { model <- lm(input$aicforward_fmla, data = final_split$train) ols_step_forward_aic(model, as.logical(input$aicforward_details)) } }) af1_title <- eventReactive(input$submit_aicforward, { column(12, align = 'center', h4('stepAIC Forward Regression')) }) output$sforward_title1 <- renderUI({ af1_title() }) af2_title <- eventReactive(input$submit_aicforward, { column(12, align = 'center', h4('stepAIC Forward Regression Plot')) }) output$sforward_title2 <- renderUI({ af2_title() }) output$aicforward_out <- renderPrint({ print(aicforward_model()) }) output$aicforward_plot <- renderPlot({ plot(aicforward_model()) }) aicbackward_model <- eventReactive(input$submit_aicbackward, { if (input$stepaicb_use_model) { ols_step_backward_aic(all_use_n(), as.logical(input$aicbackward_details)) } else { model <- lm(input$aicbackward_fmla, data = final_split$train) ols_step_backward_aic(model, as.logical(input$aicbackward_details)) } }) ab1_title <- eventReactive(input$submit_aicbackward, { column(12, align = 'center', h4('stepAIC Backward Regression')) }) output$sbackward_title1 <- renderUI({ ab1_title() }) ab2_title <- eventReactive(input$submit_aicbackward, { column(12, align = 'center', h4('stepAIC Backward Regression Plot')) }) output$sbackward_title2 <- renderUI({ ab2_title() }) output$aicbackward_out <- renderPrint({ print(aicbackward_model()) }) output$aicbackward_plot <- renderPlot({ plot(aicbackward_model()) }) aicboth_model <- eventReactive(input$submit_aicboth, { if (input$saicbo_use_model) { ols_step_both_aic(all_use_n(), as.logical(input$aicboth_details)) } else { model <- lm(input$aicboth_fmla, data = final_split$train) ols_step_both_aic(model, as.logical(input$aicboth_details)) } }) bo1_title <- eventReactive(input$submit_aicboth, { column(12, align = 'center', h4('stepAIC Regression')) }) output$sboth_title1 <- renderUI({ bo1_title() }) bo2_title <- eventReactive(input$submit_aicboth, { column(12, align = 'center', h4('stepAIC Regression Plot')) }) output$sboth_title2 <- renderUI({ bo2_title() }) output$aicboth_out <- renderPrint({ print(aicboth_model()) }) output$aicboth_plot <- renderPlot({ plot(aicboth_model()) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_mselection2.R
partition_ui <- eventReactive(input$button_split_yes, { fluidRow( column(12, align = 'center', numericInput( inputId = 'part_train_per', label = 'Training Set', min = 0, max = 1, value = 0.5, step = 0.01, width = '120px' ) ), column(12, align = 'center', br(), actionButton(inputId = 'submit_part_train_per', label = 'Partition', width = '120px', icon = icon('check')), bsTooltip("submit_part_train_per", "Click here to partition data.", "bottom", options = list(container = "body")) ), column(12, br(), br(), column(6, align = 'right', downloadButton("downloadTrain", "Download Training Data")), column(6, align = 'left', downloadButton("downloadTest", "Download Test Data")) ), br(), br(), column(12, align = 'center', br(), actionButton(inputId = 'start_modeling', label = 'Start Modeling', width = '140px', icon = icon('check')) ) ) }) output$ui_partition <- renderUI({ partition_ui() }) final_split <- reactiveValues(train = NULL, test = NULL) trainpart <- eventReactive(input$button_split_yes, { out <- createDataPartition( y = final_sample$d[[1]], p = input$part_train_per, list = FALSE ) as.vector(out) }) observeEvent(input$submit_part_train_per, { final_split$train <- final_sample$d[trainpart(), ] final_split$test <- final_sample$d[-trainpart(), ] }) observeEvent(input$button_split_no, { final_split$train <- final_sample$d }) output$downloadTrain <- downloadHandler( filename = function() { paste("train_data.csv", sep = "") }, content = function(file) { write.csv(final_split$train, file, row.names = FALSE) } ) output$downloadTest <- downloadHandler( filename = function() { paste("test_data.csv", sep = "") }, content = function(file) { write.csv(final_split$test, file, row.names = FALSE) } ) observeEvent(input$start_modeling, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_analyze_home') }) observeEvent(input$button_split_no, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_analyze_home') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_partition.R
d_cprp_mod <- eventReactive(input$submit_cprp_plot, { if(input$cprp_use_prev) { ols_plot_comp_plus_resid(all_use_n()) } else { k <- lm(input$cprp_fmla, data = final_split$train) ols_plot_comp_plus_resid(k) } }) output$cprplot <- renderPlot({ d_cprp_mod() }) # added variable plot d_diag_advar <- eventReactive(input$submit_avplot, { if (input$advar_use_prev) { model <- all_use_n() data <- final_split$train xnames <- colnames(attr(model$terms, 'factors')) nl <- xnames %>% length() resp <- rownames(attr(model$terms, 'factors'))[1] myplots <- list() for(i in seq_len(nl)) { x <- olsrr:::advarx(data, i, xnames) y <- olsrr:::advary(data, i, resp, xnames) d <- tibble(x, y) p <- eval(substitute(ggplot(d, aes(x = x, y = y)) + geom_point(colour = 'blue', size = 2) + xlab(paste(xnames[i], " | Others")) + ylab(paste(resp, " | Others")) + stat_smooth(method="lm", se=FALSE), list(i = i))) # print(p) j <- i myplots[[j]] <- p } do.call(grid.arrange, c(myplots, list(ncol = 2))) } else { model <- lm(input$avplot_fmla, data = final_split$train) data <- eval(model$call$data) xnames <- colnames(attr(model$terms, 'factors')) nl <- xnames %>% length() resp <- rownames(attr(model$terms, 'factors'))[1] myplots <- list() for(i in seq_len(nl)) { x <- olsrr:::advarx(data, i, xnames) y <- olsrr:::advary(data, i, resp, xnames) d <- tibble(x, y) p <- eval(substitute(ggplot(d, aes(x = x, y = y)) + geom_point(colour = 'blue', size = 2) + xlab(paste(xnames[i], " | Others")) + ylab(paste(resp, " | Others")) + stat_smooth(method="lm", se=FALSE), list(i = i))) # print(p) j <- i myplots[[j]] <- p } do.call(grid.arrange, c(myplots, list(ncol = 2))) } }) output$avplot <- renderPlot({ print(d_diag_advar()) }) observeEvent(input$button_split_no, { updateSelectInput(session, inputId = "resreg_var", choices = names(final_split$train)) }) observeEvent(input$submit_part_train_per, { updateSelectInput(session, inputId = "resreg_var", choices = names(final_split$train)) }) d_resreg_mod <- eventReactive(input$submit_resreg_plot, { if(input$resreg_use_prev) { rvsr_plot_shiny(all_use_n(), final_split$train, as.character(input$resreg_var)) } else { k <- lm(input$resreg_fmla, data = final_split$train) rvsr_plot_shiny(k, final_split$train, as.character(input$resreg_var)) } }) # d_resreg <- eventReactive(input$submit_resreg_plot, { # # validate(need((input$resreg_var != ''), 'Please select a variable.')) # data <- tibble::as_data_frame(final_split$train[, c(input$resreg_var)]) # data # }) output$rvsrplot <- renderPlot({ d_resreg_mod() })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_regdiag.R
d_regress <- eventReactive(input$submit_regress, { # validate(need((input$regress_fmla != ''), 'Please specify model')) data <- final_split$train k <- ols_regress(input$regress_fmla, data = data) k }) model <- reactive({ d_regress() }) r1_title <- eventReactive(input$submit_regress, { column(12, align = 'center', h4('Regression Result')) }) output$reg1_title <- renderUI({ r1_title() }) output$regress_out <- renderPrint({ d_regress() }) # main regression all_use_n <- eventReactive(input$submit_regress, { data <- final_split$train k <- lm(input$regress_fmla, data = data) k })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_regress.R
output$ui_resdiaglink <- renderUI({ if (input$restrial1 == "Residual vs Predicted Plot") { fluidRow( column(6, align = 'left', h4('Residual vs Predicted Plot'), p('Plot to detect non-linearity, unequal error variances, and outliers.') ), column(6, align = 'right', actionButton(inputId='rvsp1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_fit.html', '_blank')") ) ) } else if (input$restrial1 == "Residual Box Plot") { fluidRow( column(6, align = 'left', h4('Residual Box Plot') ), column(6, align = 'right', actionButton(inputId='rbplot1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_box.html', '_blank')") ) ) } else if (input$restrial1 == "Residual Histogram") { fluidRow( column(6, align = 'left', h4('Residual Histogram'), p('Histogram of residuals for detecting violation of normality assumption.') ), column(6, align = 'right', actionButton(inputId='rhist1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_hist.html', '_blank')") ) ) } else if (input$restrial1 == "Residual QQ Plot") { fluidRow( column(6, align = 'left', h4('Residual QQ Plot'), p('Graph for detecting violation of normality assumption.') ), column(6, align = 'right', actionButton(inputId='rqq1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_qq.html', '_blank')") ) ) } else if (input$restrial1 == "Normality Test") { fluidRow( column(6, align = 'left', h4('Normality Test'), p('Test for detecting violation of normality assumption.') ), column(6, align = 'right', actionButton(inputId='resnorm1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_test_normality.html', '_blank')") ) ) } }) output$ui_resdiagfmla <- renderUI({ if (input$restrial1 == "Residual vs Predicted Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("respred_fmla", label = '', width = '660px', value = ""), bsTooltip("respred_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$restrial1 == "Residual Box Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("resbox_fmla", label = '', width = '660px', value = ""), bsTooltip("resbox_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$restrial1 == "Residual Histogram") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("reshist_fmla", label = '', width = '660px', value = ""), bsTooltip("reshist_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$restrial1 == "Residual QQ Plot") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("resqq_fmla", label = '', width = '660px', value = ""), bsTooltip("resqq_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } else if (input$restrial1 == "Normality Test") { fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("resnorm_fmla", label = '', width = '660px', value = ""), bsTooltip("resnorm_fmla", "Specify model formula", "left", options = list(container = "body"))) ) } }) output$ui_resdiagsubmit <- renderUI({ if (input$restrial1 == "Residual vs Predicted Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_respred_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_respred_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$restrial1 == "Residual Box Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_resbox_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_resbox_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$restrial1 == "Residual Histogram") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_reshist_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_reshist_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$restrial1 == "Residual QQ Plot") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_resqq_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_resqq_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ) } else if (input$restrial1 == "Normality Test") { fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_resnorm', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_resnorm", "Click here to view normality test result.", "bottom", options = list(container = "body"))) ) } }) output$ui_resdiagprev <- renderUI({ if (input$restrial1 == "Residual vs Predicted Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'respred_use_prev', label = '', value = FALSE), bsTooltip("respred_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$restrial1 == "Residual Box Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'resbox_use_prev', label = '', value = FALSE), bsTooltip("resbox_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$restrial1 == "Residual Histogram") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'reshist_use_prev', label = '', value = FALSE), bsTooltip("reshist_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$restrial1 == "Residual QQ Plot") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'resqq_use_prev', label = '', value = FALSE), bsTooltip("resqq_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } else if (input$restrial1 == "Normality Test") { fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'resnorm_use_prev', label = '', value = FALSE), bsTooltip("resnorm_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ) } }) output$ui_resdiagout <- renderUI({ if (input$restrial1 == "Residual vs Predicted Plot") { fluidRow( br(), column(12, align = 'center', plotOutput('resvsplot', height = '500px')) ) } else if (input$restrial1 == "Residual Box Plot") { fluidRow( br(), column(12, align = 'center', plotOutput('resboxplot', height = '500px')) ) } else if (input$restrial1 == "Residual Histogram") { fluidRow( br(), column(12, align = 'center', plotOutput('reshistplot', height = '500px')) ) } else if (input$restrial1 == "Residual QQ Plot") { fluidRow( br(), column(12, align = 'center', plotOutput('resqqplot', height = '500px')) ) } else if (input$restrial1 == "Normality Test") { fluidRow( br(), column(12, align = 'center', verbatimTextOutput('resnormtest')) ) } }) d_respred_mod <- eventReactive(input$submit_respred_plot, { if(input$respred_use_prev) { ols_plot_resid_fit(all_use_n()) } else { k <- lm(input$respred_fmla, data = final_split$train) ols_plot_resid_fit(k) } }) d_resbox_mod <- eventReactive(input$submit_resbox_plot, { if(input$resbox_use_prev) { ols_plot_resid_box(all_use_n()) } else { k <- lm(input$resbox_fmla, data = final_split$train) ols_plot_resid_box(k) } }) d_reshist_mod <- eventReactive(input$submit_reshist_plot, { if(input$reshist_use_prev) { ols_plot_resid_hist(all_use_n()) } else { k <- lm(input$reshist_fmla, data = final_split$train) ols_plot_resid_hist(k) } }) d_resqq_mod <- eventReactive(input$submit_resqq_plot, { if(input$resqq_use_prev) { ols_plot_resid_qq(all_use_n()) } else { k <- lm(input$resqq_fmla, data = final_split$train) ols_plot_resid_qq(k) } }) d_resnorm_mod <- eventReactive(input$submit_resnorm, { if(input$resnorm_use_prev) { ols_test_normality(all_use_n()) } else { k <- lm(input$resnorm_fmla, data = final_split$train) ols_test_normality(k) } }) output$resvsplot <- renderPlot({ print(d_respred_mod()) }) output$resboxplot <- renderPlot({ print(d_resbox_mod()) }) output$reshistplot <- renderPlot({ print(d_reshist_mod()) }) output$resqqplot <- renderPlot({ print(d_resqq_mod()) }) output$resnormtest <- renderPrint({ print(d_resnorm_mod()) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_resdiagtrial.R
samp_yes <- eventReactive(input$button_sample_yes, { fluidRow( column(12, align = 'center', tags$div(class = 'header', id = 'samp_div', tags$h5('How do you want to sample?') ) # h5('How do you want to sample?') ), br(), br(), column(6, align = 'right', actionButton( inputId = 'button_samp_per', label = 'Percentage', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'button_samp_n', label = 'Observations', width = '120px' ) ) ) }) # samp_no <- eventReactive(input$button_sample_no, { # fluidRow( # br(), # tags$div(class = 'header', id = 'samp_remove_no', # tags$h6('Click on Analyze in the drop down menu to explore the data.') # ) # ) # }) output$samp_yes_no <- renderUI({ samp_yes() }) # output$samp_no_yes <- renderUI({ # samp_no() # }) samp_per_options <- eventReactive(input$button_samp_per, { fluidRow( column(12, align = 'center', numericInput( inputId = 'samp_size_per', label = 'Sample Size', min = 0, max = 1, value = 1, step = 0.01, width = '120px' ) ), column(12, align = 'center', br(), actionButton(inputId = 'submit_samp_per_size', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_samp_per_size", "Click here to select variables.", "bottom", options = list(container = "body")) ) ) }) samp_obs_options <- eventReactive(input$button_samp_n, { fluidRow( column(12, align = 'center', numericInput( inputId = 'samp_size_n', label = 'Sample Size', min = 0, value = 0, step = 1, width = '120px' ) ), column(12, align = 'center', br(), actionButton(inputId = 'submit_samp_obs_size', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_samp_obs_size", "Click here to select variables.", "bottom", options = list(container = "body")) ) ) }) output$samp_per_option <- renderUI({ samp_per_options() }) output$samp_obs_option <- renderUI({ samp_obs_options() }) observeEvent(input$button_sample_no, { removeUI( selector = "div:has(> #button_samp_per)" ) removeUI( selector = "div:has(> #button_samp_n)" ) removeUI( selector = "div:has(> #samp_div)" ) removeUI( selector = "div:has(> #samp_size_n)" ) removeUI( selector = "div:has(> #submit_samp_obs_size)" ) removeUI( selector = "div:has(> #samp_size_per)" ) removeUI( selector = "div:has(> #submit_samp_per_size)" ) }) observeEvent(input$button_sample_yes, { removeUI( selector = "div:has(> #samp_remove_no)" ) }) observeEvent(input$button_samp_per, { removeUI( selector = "div:has(> #samp_size_n)" ) removeUI( selector = "div:has(> #submit_samp_obs_size)" ) }) observeEvent(input$button_samp_n, { removeUI( selector = "div:has(> #samp_size_per)" ) removeUI( selector = "div:has(> #submit_samp_per_size)" ) }) observeEvent(input$button_samp_n, { updateNumericInput( session, inputId = 'samp_size_n', label = 'Sample Size', min = 0, value = nrow(filt_data$p), max = nrow(filt_data$p), step = 1 ) }) final_sample <- reactiveValues(d = NULL) samp1 <- eventReactive(input$submit_samp_per_size, { final_sample$d <- dplyr::sample_frac(filt_data$p, size = input$samp_size_per, replace = FALSE) }) samp2 <- eventReactive(input$submit_samp_obs_size, { final_sample$d <- dplyr::sample_n(filt_data$p, size = input$samp_size_n, replace = FALSE) }) observeEvent(input$submit_samp_per_size, { final_sample$d <- samp1() }) observeEvent(input$submit_samp_obs_size, { final_sample$d <- samp2() }) observeEvent(input$button_sample_no, { final_sample$d <- filt_data$p }) observeEvent(input$button_sample_no, { updateNavbarPage(session, 'mainpage', selected = 'tab_partition') }) observeEvent(input$submit_samp_obs_size, { updateNavbarPage(session, 'mainpage', selected = 'tab_partition') }) observeEvent(input$submit_samp_per_size, { updateNavbarPage(session, 'mainpage', selected = 'tab_partition') }) # output$samp_type <- renderUI({ # if (input$data_samp == 'Percentage') { # numericInput( # inputId = 'samp_size', # label = 'Sample Size', # min = 0, # max = 1, # value = 0.7, # step = 0.01 # ) # } else { # numericInput( # inputId = 'samp_size', # label = 'Sample Size', # min = 0, # value = 0, # step = 1 # ) # } # }) # observeEvent(input$finalok, { # if (input$data_samp == 'Observations') { # updateNumericInput( # inputId = 'samp_size', # label = 'Sample Size', # min = 0, # value = nrow(final()), # max = nrow(final()), # step = 1 # ) # } # }) # final_sample <- eventReactive(input$submit_samp, { # if (input$data_samp == 'Percentage') { # out <- dplyr::sample_frac(filtered(), size = input$samp_size, replace = FALSE) # } else { # out <- dplyr::sample_n(filtered(), size = input$samp_size, replace = FALSE) # } # out # })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_sample.R
# output output$screen <- renderPrint({ ds_screener(filt_data$p) }) observeEvent(input$finalok, { updateNavbarPage(session, 'mainpage', selected = 'tab_sample') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_screen.R
show_but_sel <- eventReactive(input$button_selvar_yes, { column(12, align = 'center', selectInput( inputId = 'dplyr_selvar', label = '', choices = '', selected = '', multiple = TRUE, selectize = TRUE ) ) }) output$show_sel_button <- renderUI({ show_but_sel() }) sel_sub_but <- eventReactive(input$button_selvar_yes, { column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dply_selvar', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_seldata", "Click here to select variables.", "bottom", options = list(container = "body")) ) }) output$sub_sel_button <- renderUI({ sel_sub_but() }) observe({ updateSelectInput( session, inputId = "dplyr_selvar", choices = names(data()), selected = names(data()) ) }) observeEvent(input$button_selvar_yes, { updateSelectInput( session, inputId = "dplyr_selvar", choices = names(final()), selected = names(final()) ) }) final_sel <- reactiveValues(a = NULL) finalsel <- eventReactive(input$submit_dply_selvar, { k <- final() %>% select(input$dplyr_selvar) k }) observeEvent(input$submit_dply_selvar, { final_sel$a <- finalsel() }) observeEvent(input$button_selvar_no, { final_sel$a <- final() }) observeEvent(input$button_selvar_no, { removeUI( selector = "div:has(> #dplyr_selvar)" ) removeUI( selector = "div:has(> #submit_dply_selvar)" ) }) observeEvent(input$button_selvar_no, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_filter') }) observeEvent(input$submit_dply_selvar, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_filter') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_select.R
library(stringr) output$trans_try <- renderUI({ ncol <- as.integer(ncol(uploadata$t)) lapply(1:ncol, function(i) { fluidRow( column(3, selectInput(paste("n_col_", i), label = '', width = '150px', choices = names(uploadata$t)[i], selected = names(uploadata$t)[i]) ), column(3, textInput(paste("new_name_", i), label = '', width = '150px', value = names(uploadata$t)[i]) ), column(3, selectInput(paste0("data_type_", i), label = '', width = '150px', choices = c('numeric', 'factor', 'Date', 'character', 'integer'), selected = class(uploadata$t[[i]])) ), column(3, conditionalPanel(condition = paste(paste0("input.data_type_", i), "== 'Date'"), column(4, br(), tags$h5('Format')), column(8, selectInput(paste("date_type_", i), label = '', width = '150px', choices = c('%d %m %y', '%d %m %Y', '%y %m %d', '%Y %m %d', '%d %y %m', '%d %Y %m', '%m %d %y', '%m %d %Y', '%y %d %m', '%Y %d %m', '%m %y %d', '%m %Y %d', '%d/%m/%y', '%d/%m/%Y', '%y/m /%d', '%Y/%m/%d', '%d/%y/%m', '%d/%Y/%m', '%m/%d/%y', '%m/%d/%Y', '%y/%d/%m', '%Y/%d/%m', '%m/%y/%d', '%m/%Y/%d', '%d-%m-%y', '%d-%m-%Y', '%y-m -%d', '%Y-%m-%d', '%d-%y-%m', '%d-%Y-%m', '%m-%d-%y', '%m-%d-%Y', '%y-%d-%m', '%Y-%d-%m', '%m-%y-%d', '%m-%Y-%d' ), selected = '%Y %m %d') ) ) ) ) }) }) original <- reactive({ uploadata$t }) save_names <- reactive({ names(original()) }) n <- reactive({ length(original()) }) data_types <- reactive({ ncol <- as.integer(ncol(uploadata$t)) collect <- list(lapply(1:ncol, function(i) { input[[paste0("data_type_", i)]] })) colors <- unlist(collect) }) new_names <- reactive({ ncol <- as.integer(ncol(uploadata$t)) collect <- list(lapply(1:ncol, function(i) { input[[paste("new_name_", i)]] })) colors <- unlist(collect) colnames <- str_replace(colors, " ", "_") }) # original <- reactive({ # data() # }) # save_names <- reactive({ # names(original()) # }) # n <- reactive({ # length(original()) # }) # data_types <- reactive({ # ncol <- as.integer(ncol(data())) # collect <- list(lapply(1:ncol, function(i) { # input[[paste0("data_type_", i)]] # })) # colors <- unlist(collect) # }) # new_names <- reactive({ # ncol <- as.integer(ncol(data())) # collect <- list(lapply(1:ncol, function(i) { # input[[paste("new_name_", i)]] # })) # colors <- unlist(collect) # colnames <- str_replace(colors, " ", "_") # }) copy <- eventReactive(input$apply_changes, { out <- list() for (i in seq_len(n())) { if (data_types()[i] == 'Date') { inp <- eval(parse(text = paste0('input$', paste0('date_type_', i)))) out[[i]] <- eval(parse(text = paste0("as.", data_types()[i], "(original()$", save_names()[i], ", ", inp, ")"))) } else { out[[i]] <- eval(parse(text = paste0("as.", data_types()[i], "(original()$", save_names()[i], ")"))) } } names(out) <- new_names() return(out) }) final <- eventReactive(input$apply_changes, { data.frame(copy(), stringsAsFactors = F) }) observeEvent(input$apply_changes, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_selvar') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_transform2.R
# importing data inFile1 <- reactive({ if(is.null(input$file1)) { return(NULL) } else { input$file1 } }) data1 <- reactive({ if(is.null(inFile1())) { return(NULL) } else { read.csv(inFile1()$datapath, header = input$header, sep = input$sep, quote = input$quote) } }) # importing data inFile2 <- reactive({ if(is.null(input$file2)) { return(NULL) } else { input$file2 } }) data2 <- reactive({ if(is.null(inFile2())) { return(NULL) } else { ext <- tools::file_ext(inFile2()$name) file.rename(inFile2()$datapath, paste(inFile2()$datapath, ext, sep=".")) readxl::read_excel( path = paste(inFile2()$datapath, ext, sep="."), sheet = input$sheet_n ) } }) # importing data inFile3 <- reactive({ if(is.null(input$file3)) { return(NULL) } else { input$file3 } }) data3 <- reactive({ if(is.null(inFile3())) { return(NULL) } else { jsonlite::fromJSON(inFile3()$datapath) } }) # importing data inFile4 <- reactive({ if(is.null(input$file4)) { return(NULL) } else { input$file4 } }) data4 <- reactive({ if(is.null(inFile4())) { return(NULL) } else { haven::read_sas(inFile4()$datapath) } }) inFile5 <- reactive({ if(is.null(input$file5)) { return(NULL) } else { input$file5 } }) data5 <- reactive({ if(is.null(inFile5())) { return(NULL) } else { haven::read_sav(inFile5()$datapath) } }) inFile6 <- reactive({ if(is.null(input$file6)) { return(NULL) } else { input$file6 } }) data6 <- reactive({ if(is.null(inFile6())) { return(NULL) } else { haven::read_stata(inFile6()$datapath) } }) inFile7 <- reactive({ if(is.null(input$file7)) { return(NULL) } else { input$file7 } }) data7 <- reactive({ if(is.null(inFile7())) { return(NULL) } else { readRDS(inFile7()$datapath) } }) observe({ updateSelectInput( session, inputId = 'sel_data', label = '', choices = c(input$file1$name, input$file2$name, input$file3$name, input$file4$name, input$file5$name, input$file6$name, input$file7$name), selected = '' ) }) ext_type <- reactive({ ext <- tools::file_ext(input$sel_data) }) # choosing sample data sampdata <- reactiveValues(s = NULL) observeEvent(input$german_data, { data("GermanCredit") sampdata$s <- GermanCredit }) observeEvent(input$iris_data, { sampdata$s <- iris }) observeEvent(input$mtcars_data, { sampdata$s <- descriptr::mtcarz }) observeEvent(input$hsb_data, { sampdata$s <- inferr::hsb }) observeEvent(input$mpg_data, { sampdata$s <- mpg }) observeEvent(input$diamonds_data, { sampdata$s <- diamonds }) uploadata <- reactiveValues(t = NULL) observeEvent(input$submit_seldata, { if (ext_type() == 'csv') { uploadata$t <- data1() } else if (ext_type() == 'xls') { uploadata$t <- data2() } else if (ext_type() == 'xlsx') { uploadata$t <- data2() } else if (ext_type() == 'json') { uploadata$t <- data3() } else if (ext_type() == 'sas7bdat') { uploadata$t <- data4() } else if (ext_type() == 'sav') { uploadata$t <- uploadata$t <- data5() } else if (ext_type() == 'dta') { uploadata$t <- data6() } else { uploadata$t <- data7() } }) observeEvent(input$use_sample_data, { uploadata$t <- sampdata$s }) observeEvent(input$use_sample_data, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_transform') }) observeEvent(input$submit_seldata, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_transform') }) observeEvent(input$csv2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$csv2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$excel2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$excel2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$json2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$json2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$stata2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$stata2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$spss2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$spss2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$sas2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$sas2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$rds2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$rds2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$welcomebutton, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_upload.R
output$table <- renderDataTable({ final_split$train }) observeEvent(input$view2getdata, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$view2analyze, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_summary') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/logic/logic_view.R
library(shiny) library(ggplot2) library(descriptr) library(olsrr) library(dplyr) library(grid) library(gridExtra) library(purrr) library(tidyr) library(tibble) library(readxl) library(readr) library(jsonlite) library(magrittr) library(tools) library(caret) library(lubridate) library(scales) library(stringr) library(inferr) shinyServer(function(input, output, session) { source("logic/logic_dataoptions.R", local = T) source("logic/logic_upload.R", local = T) source("logic/logic_transform2.R", local = T) source("logic/logic_select.R", local = T) source("logic/logic_filter.R", local = T) source("logic/logic_screen.R", local = T) source("logic/logic_sample.R", local = T) source("logic/logic_partition.R", local = T) source("logic/logic_view.R", local = T) source("logic/logic_regress.R", local = T) # source("logic/logic_mselection2.R", local = T) source("logic/logic_resdiagtrial.R", local = T) source("logic/logic_hetero.R", local = T) source("logic/logic_collin.R", local = T) source("logic/logic_inflobs2.R", local = T) source("logic/logic_mfit2.R", local = T) source("logic/logic_regdiag.R", local = T) source("logic/logic_home.R", local = T) source("logic/logic_exit_button.R", local = T) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/server.R
navbarMenu('Analyze', icon = icon('search-plus'), source('ui/ui_homes.R', local = TRUE)[[1]], source('ui/ui_mlr.R', local = TRUE)[[1]] )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_analyze.R
tabPanel('Collinearity Diagnostics', value = 'tab_regcollin', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Collinearity Diagnostics'), p('Variance inflation factor, tolerance, eigenvalues and condition indices.') ), column(6, align = 'right', actionButton(inputId='cdiaglink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_coll_diag.html', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("collin_fmla", label = '', width = '660px', value = ""), bsTooltip("collin_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'colldiag_use_prev', label = '', value = FALSE), bsTooltip("colldiag_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_colldiag', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_colldiag", "Click here to view collinearity diagnostics.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('colldiag')) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_collin.R
navbarMenu('Data', icon = icon('database'), source('ui/ui_up.R', local = TRUE)[[1]], source('ui/ui_trans.R', local = TRUE)[[1]], source('ui/ui_scr.R', local = TRUE)[[1]], source('ui/ui_sample.R', local = TRUE)[[1]], source('ui/ui_partition.R', local = TRUE)[[1]], source('ui/ui_vi.R', local = TRUE)[[1]] )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_data.R
tabPanel('Upload File', value = 'tab_uploadfile', fluidPage( includeCSS("mystyle.css"), fluidRow( column(12, tabsetPanel(type = 'tabs', id = 'tabset_upload', tabPanel('CSV', value = 'tab_upload_csv', fluidPage( br(), fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a comma or tab separated file.') ), column(4, align = 'right', actionButton(inputId='uploadlink2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=00m25s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput('file1', 'Data Set:', accept = c('text/csv', '.csv', 'text/comma-separated-values,text/plain') ) ) ), fluidRow( column(12, align = 'center', checkboxInput('header', 'Header', TRUE)) ), fluidRow( column(12, align = 'center', selectInput('sep', 'Separator', choices = c('Comma' = ',', 'Semicolon' = ';', 'Tab' = '\t'), selected = ',') ) ), fluidRow( column(12, align = 'center', selectInput('quote', 'Quote', choices = c('None' = '', 'Double Quote' = '"', 'Single Quote' = "'"), selected = '') ) ), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='csv2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='csv2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('Excel', value = 'tab_upload_excel', fluidPage( br(), fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .xls or .xlsx file.') ), column(4, align = 'right', actionButton(inputId='uploadlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=00m25s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file2', label = 'Choose file:', accept = c('.xls', '.xlsx') ) ) ), fluidRow( column(12, align = 'center', numericInput( inputId = 'sheet_n', label = 'Sheet', value = 1, min = 1, step = 1, width = '120px' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='excel2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='excel2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('JSON', value = 'tab_upload_json', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .json file.') ), column(4, align = 'right', actionButton(inputId='uploadjson', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=00m25s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file3', label = 'Choose file:', accept = '.json' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='json2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='json2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('STATA', value = 'tab_upload_stata', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .dta file.') ), column(4, align = 'right', actionButton(inputId='uploadstata', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=00m25s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file6', label = 'Choose file:', accept = '.dta' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='stata2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='stata2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('SPSS', value = 'tab_upload_spss', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .sav file.') ), column(4, align = 'right', actionButton(inputId='uploadspss', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=00m25s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file5', label = 'Choose file:', accept = '.sav' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='spss2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='spss2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('SAS', value = 'tab_upload_sas', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .sas7bdat file.') ), column(4, align = 'right', actionButton(inputId='uploadsas', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=00m25s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file4', label = 'Choose file:', accept = '.sas7bdat' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='sas2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='sas2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('RDS', value = 'tab_upload_rds', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a RDS file.') ), column(4, align = 'right', actionButton(inputId='uploadrds2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file7', label = 'Choose file:', accept = '' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='rds2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='rds2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_datafiles.R
tabPanel('Data Sources', value = 'tab_datasources', fluidPage(theme = shinytheme('cerulean'), includeCSS("mystyle.css"), fluidRow( column(12, align = 'center', h4('Use sample data or upload a file') ) ), fluidRow( column(6, align = 'right', actionButton( inputId = 'sample_data_yes', label = 'Sample Data', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'upload_files_yes', label = 'Upload File', width = '120px' ) ) ), br(), fluidRow( column(12, align = 'center', h6('The app takes a few seconds to load. Please wait for ~12 seconds.') ) ), br(), br(), fluidRow( uiOutput('upload_file_links') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_dataoptions.R
tabPanel('Sample Data', value = 'tab_use_sample', fluidPage( includeCSS("mystyle.css"), fluidRow( column(12, align = 'center', h5('Click on a sample for more information') ) ), br(), fluidRow( column(4, align = 'center', actionButton( inputId = 'german_data', label = 'German Credit', width = '200px', onclick ="window.open('https://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)', 'newwindow', 'width=800,height=600')" ) ), column(4, align = 'center', actionButton( inputId = 'iris_data', label = 'Iris', width = '200px', onclick ="window.open('https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html', 'newwindow', 'width=800,height=600')" ) ), column(4, align = 'center', actionButton( inputId = 'mtcars_data', label = 'mtcars', width = '200px', onclick ="window.open('https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html', 'newwindow', 'width=800,height=600')" ) ) ), fluidRow(column(12, br())), fluidRow( column(4, align = 'center', actionButton( inputId = 'mpg_data', label = 'mpg', width = '200px', onclick ="window.open('http://ggplot2.tidyverse.org/reference/mpg.html', 'newwindow', 'width=800,height=600')" ) ), column(4, align = 'center', actionButton( inputId = 'hsb_data', label = 'hsb', width = '200px', onclick ="window.open('http://www.rsquaredacademy.com/descriptr/reference/hsb.html', 'newwindow', 'width=800,height=600')" ) ), column(4, align = 'center', actionButton( inputId = 'diamonds_data', label = 'diamonds', width = '200px', onclick ="window.open('http://ggplot2.tidyverse.org/reference/diamonds.html', 'newwindow', 'width=800,height=600')" ) ) ), br(), br(), br(), fluidRow( column(12, align = 'center', actionButton( inputId = 'use_sample_data', label = 'Use Sample Data', width = '200px' ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_datasamples.R
# Exit ----------------------------------------------------------- tabPanel("", value = "exit", icon = icon("power-off"), br(), br(), br(), br(), br(), br(), # In case window does not close, one should see this message fluidRow(column(3), column(6, h2("Thank you for using", strong("olsrr"), "!"))), fluidRow(column(3), column(6, h4("Now you should close this window."))) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_exit_button.R
tabPanel('Filter', value = 'tab_filter', fluidPage( fluidRow( column(6, align = 'left', h4('Filter Data'), p('Click on Yes to filter data.') ), column(6, align = 'right', actionButton(inputId='fildatalink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=02m34s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', h4('Do you want to filter data?') ), column(6, align = 'right', actionButton( inputId = 'button_filt_yes', label = 'Yes', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'button_filt_no', label = 'No', width = '120px' ) ) ), br(), br(), fluidRow( uiOutput('filt_render') ), fluidRow( uiOutput('filt_trans') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_filter.R
tabPanel('Heteroskedasticity', value = 'tab_hetero', fluidPage( fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Breusch Pagan Test', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Breusch Pagan Test'), p('Test for constant variance. It assumes that the error terms are normally distributed.') ), column(6, align = 'right', actionButton(inputId='bplink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_test_breusch_pagan.html', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("het_bp_fmla", label = '', width = '870px', value = ""), bsTooltip("het_bp_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'bp_use_prev', label = '', value = FALSE), bsTooltip("bp_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ), fluidRow( column(2, align = 'right', br(), h5('Fitted Values:')), column(4, align = 'left', selectInput('het_bp_fv', '', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("het_bp_fv", "Use fitted values of regression model.", "left", options = list(container = "body")) ), column(3, align = 'right', br(), h5('p Value Adjustment:')), column(3, align = 'left', selectInput('het_bp_padj', '', choices = c("none", "bonferroni", "sidak", "holm"), selected = "none"), bsTooltip("het_bp_padj", "Options for p value adjustment.", "bottom", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('RHS:')), column(4, align = 'left', selectInput('het_bp_rhs', '', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("het_bp_rhs", "Use explanatory variables of model.", "left", options = list(container = "body")) ), column(3, align = 'right', br(), h5('Variables:')), column(3, align = 'left', selectInput("het_bp_vars", label = '', choices = "", selected = "", multiple = TRUE, selectize = TRUE), bsTooltip("het_bp_vars", "Select variables for heteroskedasticity test.", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Multiple:')), column(4, align = 'left', selectInput('het_bp_mult', '', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("het_bp_mult", "Perform multiple tests.", "left", options = list(container = "body")) ) ), fluidRow( column(4, offset = 4, align = 'center', br(), br(), actionButton(inputId = 'submit_het_bp', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_het_bp", "Click here to view test results.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, verbatimTextOutput('het_bp_out')) ) ) ), tabPanel('Bartlett Test', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Bartlett Test'), p('Test if k samples have equal variances.') ), column(6, align = 'right', actionButton(inputId='bartlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_test_bartlett.html', '_blank')") ) ), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Using Variables', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variables:')), column(10, align = 'left', selectInput("var_bartest", label = '', width = '660px', choices = "", selected = "", multiple = TRUE, selectize = TRUE), bsTooltip("var_bartest", "Select variables.", "left", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_bartest', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_levtest", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('bartest_out') ) ) ) ), tabPanel('Using Groups', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Variable:')), column(2, align = 'left', selectInput("var_bartestg1", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_bartestg1", "Select a variable.", "left", options = list(container = "body"))), column(2, align = 'right', br(), h5('Grouping Variable:')), column(2, align = 'left', selectInput("var_bartestg2", label = '', width = '200px', choices = "", selected = ""), bsTooltip("var_bartestg2", "Select a grouping variable.", "left", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_bartestg', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_bartestg", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('bartestg_out') ) ) ) ), tabPanel('Using Formula', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("bartest_fmla", label = '', width = '660px', value = ""), bsTooltip("bartest_fmla", "Specify a formula", "left", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_bartestf', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_bartestf", "Click here to view test result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('bartestf_out') ) ) ) ) ) ) ) ) ), tabPanel('F Test', fluidPage( br(), fluidRow( column(6, align = 'left', h4('F Test'), p('Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).') ), column(6, align = 'right', actionButton(inputId='freglink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_test_f.html', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("het_f_fmla", label = '', width = '660px', value = ""), bsTooltip("het_f_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'f_use_prev', label = '', value = FALSE), bsTooltip("f_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ), fluidRow( column(2, align = 'right', br(), h5('Variables:')), column(10, align = 'left', selectInput("het_f_vars", label = '', width = '660px', choices = "", selected = "", multiple = TRUE, selectize = TRUE), bsTooltip("het_f_vars", "Select variables for heteroskedasticity test.", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Fitted Values:')), column(4, align = 'left', selectInput('het_f_fv', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("het_f_fv", "Use fitted values of regression model.", "left", options = list(container = "body")) ) ), fluidRow( column(2, align = 'right', br(), h5('RHS:')), column(4, align = 'left', selectInput('het_f_rhs', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("het_f_rhs", "Use explanatory variables of model.", "left", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_het_f', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_het_f", "Click here to view test results.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, verbatimTextOutput('het_f_out')) ) ) ), tabPanel('Score Test', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Score Test'), p('Test for heteroskedasticity under the assumption that the errors are independent and identically distributed (i.i.d.).') ), column(6, align = 'right', actionButton(inputId='scorelink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_test_score.html', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("het_score_fmla", label = '', width = '660px', value = ""), bsTooltip("het_score_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'score_use_prev', label = '', value = FALSE), bsTooltip("score_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ), fluidRow( column(2, align = 'right', br(), h5('Variables:')), column(10, align = 'left', selectInput("het_score_vars", label = '', width = '660px', choices = "", selected = "", multiple = TRUE, selectize = TRUE), bsTooltip("het_score_vars", "Select variables for heteroskedasticity test.", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Fitted Values:')), column(4, align = 'left', selectInput('het_score_fv', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("het_score_fv", "Use fitted values of regression model.", "left", options = list(container = "body")) ) ), fluidRow( column(2, align = 'right', br(), h5('RHS:')), column(4, align = 'left', selectInput('het_score_rhs', '', width = '200px', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), bsTooltip("het_score_rhs", "Use explanatory variables of model.", "left", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_het_score', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_het_score", "Click here to view test results.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, verbatimTextOutput('het_score_out')) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_hetero.R
tabPanel("Home", value = "tab_analyze_home", fluidPage( fluidRow( column(12, align = 'center', h3('What do you want to do?') ) ), br(), br(), fluidRow( column(1), column(2, align = 'right', img(src = 'summary1.png', width = '100px', height = '100px') ), column(6, align = 'center', h4('Descriptive Statisics'), p('Generate descriptive/summary statistics.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_descriptive', label = 'Click Here', width = '100px' ) ), column(1) ), br(), fluidRow( column(1), column(2, align = 'right', img(src = 'normal.png', width = '100px', height = '100px') ), column(6, align = 'center', h4('Statistical Distributions'), p('Explore and visualize different statistical distributions.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_distributions', label = 'Click Here', width = '100px' ) ), column(1) ), br(), fluidRow( column(1), column(2, align = 'right', img(src = 'ttest3.jpg', width = '100px', height = '100px') ), column(6, align = 'center', h4('Hypothesis Testing'), p('Test hypothesis using parametric and non-parametric tests.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_inference', label = 'Click Here', width = '100px' ) ), column(1) ), br(), fluidRow( column(1), column(2, align = 'right', img(src = 'simple_reg.png', width = '100px', height = '100px') ), column(6, align = 'center', h4('Model Building'), p('Tools for building simple and multiple linear regression models.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_model', label = 'Click Here', width = '100px' ) ), column(1) ), br(), fluidRow( column(1), column(2, align = 'right', img(src = 'visualize2.png', width = '100px', height = '100px') ), column(6, align = 'center', h4('Data Visualization'), p('Visualize data using ggplot2, rbokeh, plotly and highcharts.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_visualize', label = 'Click Here', width = '100px' ) ), column(1) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_home.R
tabPanel('Home', value = 'tab_home_analyze', icon = icon('home'), navlistPanel(id = 'navlist_home', well = FALSE, widths = c(2, 10), source('ui/ui_model_home.R', local = TRUE)[[1]]) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_homes.R
tabPanel('Measures of Influence', value = 'tab_inflobs', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Select Procedure:')), column(4, align = 'left', selectInput('inflobs_select', label = '', width = '300px', choices = c("Cook's D Bar Plot", "Cook's D Chart", "DFBETAs Panel", "DFFITS Plot", "Studentized Residual Plot", "Studentized Residual Chart", "Studentized Residuals vs Leverage", "Deleted Stud Resid vs Fitted", "Hadi Plot", "Potential Residual Plot"), selected = "Cook's D Bar Plot") ) ), hr(), fluidRow( column(12, uiOutput("ui_inflobslink")) ), hr(), fluidRow( column(12, uiOutput("ui_inflobsfmla")) ), fluidRow( column(12, uiOutput("ui_inflobsprev")) ), fluidRow( column(12, uiOutput("ui_inflobssubmit")) ), fluidRow( br(), column(12, uiOutput('ui_inflobsplot')) ), fluidRow( br(), column(12, uiOutput('ui_inflobsprint')) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_inflobs2.R
tabPanel('Model Fit Assessment', value = 'tab_mfit', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Select Procedure:')), column(4, align = 'left', selectInput('mfit_select', label = '', width = '300px', choices = c("Residual Fit Spread Plot", "Part & Partial Correlations", "Observed vs Fitted Plot", "Lack of Fit F Test", "Diagnostics Panel"), selected = "Residual Fit Spread Plot") ) ), hr(), fluidRow( column(12, uiOutput("ui_mfitlink")) ), hr(), fluidRow( column(12, uiOutput("ui_mfitfmla")) ), fluidRow( column(12, uiOutput("ui_mfitprev")) ), fluidRow( column(12, uiOutput("ui_mfitsubmit")) ), fluidRow( column(12, uiOutput("ui_mfitout")) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_mfit2.R
tabPanel('Linear Regression', value = 'tab_reg', icon = icon('cubes'), navlistPanel(id = 'navlist_reg', well = FALSE, widths = c(2, 10), source('ui/ui_regress.R', local = TRUE)[[1]], # source('ui/ui_mselection2.R', local = TRUE)[[1]], source('ui/ui_resdiagtrial.R', local = TRUE)[[1]], source('ui/ui_hetero.R', local = TRUE)[[1]], source('ui/ui_collin.R', local = TRUE)[[1]], source('ui/ui_inflobs2.R', local = TRUE)[[1]], source('ui/ui_mfit2.R', local = TRUE)[[1]], source('ui/ui_regdiag.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_mlr.R
tabPanel('Model Building', value = 'tab_model_home', fluidPage( fluidRow( br(), column(12, align = 'center', h3('What do you want to do?') ), br(), br() ), fluidRow( column(12), br(), column(3), column(4, align = 'left', h5('Regression') ), column(2, align = 'left', actionButton( inputId = 'model_reg_click', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Residual Diagnostics') ), column(2, align = 'left', actionButton( inputId = 'model_resdiag_click', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Heteroskedasticity Tests') ), column(2, align = 'left', actionButton( inputId = 'model_het_click', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Collinearity Diagnostics') ), column(2, align = 'left', actionButton( inputId = 'model_coldiag_click', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Measures of Influence') ), column(2, align = 'left', actionButton( inputId = 'model_infl_click', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Model Fit Assessment') ), column(2, align = 'left', actionButton( inputId = 'model_fit_click', label = 'Click Here', width = '120px' ) ), column(3), br(), br(), br(), column(3), column(4, align = 'left', h5('Variable Contribution') ), column(2, align = 'left', actionButton( inputId = 'model_varcontrib_click', label = 'Click Here', width = '120px' ) ), column(3) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_model_home.R
tabPanel('Variable Selection', value = 'tab_var_select', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Select Procedure:')), column(4, align = 'left', selectInput('mselect', label = '', width = '300px', choices = c("All Possible", "Best Subset", "Stepwise", "Forward", "Backward", "stepAIC Forward", "stepAIC Backward", "stepAIC Both"), selected = "Residual vs Predicted Plot") ) ), hr(), fluidRow( column(12, uiOutput("ui_mselectlink")) ), hr(), fluidRow( column(12, uiOutput("ui_mselectfmla")) ), fluidRow( column(12, uiOutput("ui_mselectprev")) ), fluidRow( column(12, uiOutput("ui_mselectrow1")) ), fluidRow( column(12, uiOutput("ui_mselectrow2")) ), fluidRow( column(12, uiOutput("ui_mselectsubmit")) ), fluidRow( column(12, uiOutput('ui_mseloutput')) ), fluidRow( column(12, uiOutput('ui_mselplot')) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_mselection2.R
tabPanel('Partition', value = 'tab_partition', icon = icon('cut'), fluidPage( fluidRow( column(6, align = 'left', h4('Partition Data'), p('Click on Yes to partition data into training and test set.') ), column(6, align = 'right', actionButton(inputId='partitionlink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=04m24s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', h4('Do you want to partition data into training set and testing set?') ) ), fluidRow( column(6, align = 'right', actionButton( inputId = 'button_split_yes', label = 'Yes', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'button_split_no', label = 'No', width = '120px' ) ) ), br(), br(), fluidRow( uiOutput('ui_partition') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_partition.R
tabPanel('Variable Contribution', value = 'tab_regvarcont', fluidPage( fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Added Variable Plot', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Added Variable Plot'), p('Added variable plot provides information about the marginal importance of a predictor variable, given the other predictor variables already in the model. It shows the marginal importance of the variable in reducing the residual variability.') ), column(6, align = 'right', actionButton(inputId='advarlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_added_variable.html', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("avplot_fmla", label = '', width = '660px', value = ""), bsTooltip("avplot_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'advar_use_prev', label = '', value = FALSE), bsTooltip("advar_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_avplot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_avplot", "Click here to view added variable plot.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', verbatimTextOutput('avplotdata')) ), fluidRow( br(), column(12, align = 'center', plotOutput('avplot')) ) ) ), tabPanel('Residual Plus Component Plot', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Residual Plus Component Plot'), p('The residual plus component plot indicates whether any non-linearity is present in the relationship between response and predictor variables and can suggest possible transformations for linearizing the data.') ), column(6, align = 'right', actionButton(inputId='regcprp1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_comp_plus_resid.html', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("cprp_fmla", label = '', width = '660px', value = ""), bsTooltip("cprp_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'cprp_use_prev', label = '', value = FALSE), bsTooltip("cprp_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_cprp_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_cprp_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', plotOutput('cprplot')) ) ) ), tabPanel('Residual vs Regressor Plot', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Residual vs Regressor Plot'), p('Graph to determine whether we should add a new predictor to the model already containing other predictors. The residuals from the model is regressed on the new predictor and if the plot shows non random pattern, you should consider adding the new predictor to the model.') ), column(6, align = 'right', actionButton(inputId='rvsrlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_plot_resid_regressor.html', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("resreg_fmla", label = '', width = '660px', value = ""), bsTooltip("resreg_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Select Regressor:')), column(2, align = 'left', selectInput('resreg_var', 'Select Variable', choices = "", selected = ""), bsTooltip("resreg_var", "Select a variable not in the model.", "left", options = list(container = "body"))) ), fluidRow( column(2, align = 'right', br(), h5('Use previous model:')), column(2, align = 'left', br(), checkboxInput(inputId = 'resreg_use_prev', label = '', value = FALSE), bsTooltip("resreg_use_prev", "Use model from Regression Tab.", "left", options = list(container = "body")) ) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_resreg_plot', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_resreg_plot", "Click here to view regression result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), column(12, align = 'center', plotOutput('rvsrplot')) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_regdiag.R
tabPanel('Regression', value = 'tab_regress', fluidPage( br(), fluidRow( column(6, align = 'left', h4('Multiple Linear Regression'), p('Ordinary least squares regression.') ), column(6, align = 'right', actionButton(inputId='mlr1', label="Help", icon = icon("question-circle"), onclick ="window.open('https://olsrr.rsquaredacademy.com/reference/ols_regress.html', '_blank')"), actionButton(inputId='mlr3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=04m50s', '_blank')") ) ), hr(), fluidRow( column(2, align = 'right', br(), h5('Model Formula:')), column(10, align = 'left', textInput("regress_fmla", label = '', width = '660px', value = ""), bsTooltip("regress_fmla", "Specify model formula", "left", options = list(container = "body"))) ), fluidRow( column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_regress', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_regress", "Click here to view regression result.", "bottom", options = list(container = "body"))) ), fluidRow( br(), uiOutput('reg1_title'), # column(12, align = 'center', h4('Regression Result')), hr(), column(12, align = 'center', verbatimTextOutput('regress_out')), hr() ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_regress.R
tabPanel('Residual Diagnostics', value = 'tab_res_diag', fluidPage( fluidRow( column(2, align = 'right', br(), h5('Select Procedure:')), column(4, align = 'left', selectInput('restrial1', label = '', width = '300px', choices = c("Residual vs Predicted Plot", "Residual Box Plot", "Residual Histogram", "Residual QQ Plot", "Normality Test"), selected = "Residual vs Predicted Plot") ) ), hr(), fluidRow( column(12, uiOutput("ui_resdiaglink")) ), hr(), fluidRow( column(12, uiOutput("ui_resdiagfmla")) ), fluidRow( column(12, uiOutput("ui_resdiagprev")) ), fluidRow( column(12, uiOutput("ui_resdiagsubmit")) ), fluidRow( br(), column(12, uiOutput("ui_resdiagout")) # column(12, align = 'center', plotOutput('resdiagplot', height = '500px')) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_resdiagtrial.R
tabPanel('Sample', value = 'tab_sample', icon = icon('random'), fluidPage( fluidRow( column(6, align = 'left', h4('Sample Data'), p('Click on Yes to create a random sample of data.') ), column(6, align = 'right', actionButton(inputId='samplelink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=03m47s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', h4('Draw a random sample of the data?') ) ), fluidRow( column(6, align = 'right', actionButton( inputId = 'button_sample_yes', label = 'Yes', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'button_sample_no', label = 'No', width = '120px' ) ) ), br(), br(), fluidRow( column(12, align = 'center', uiOutput('samp_yes_no') ), br(), br() # column(12, align = 'center', # uiOutput('samp_no_yes') # ) ), fluidRow( br(), br(), uiOutput('samp_per_option') ), fluidRow( uiOutput('samp_obs_option') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_sample.R
tabPanel('Screen', value = 'tab_scr', icon = icon('binoculars'), navlistPanel(id = 'navlist_scr', well = FALSE, widths = c(2, 10), source('ui/ui_screen.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_scr.R
tabPanel('Screen', value = 'tab_screen', fluidPage( fluidRow( column(8, align = 'left', h4('Data Screening'), p('Screen data for missing values, verify variable names and data types.') ), column(4, align = 'right', actionButton(inputId='dscreenlink1', label="Help", icon = icon("question-circle"), onclick ="window.open('www.rsquaredacademy.com/descriptr/reference/ds_screener.html', '_blank')"), actionButton(inputId='dscreenlink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=03m09s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', verbatimTextOutput('screen') ) ), fluidRow( br(), column(12, align = 'center', actionButton('finalok', 'Approve', width = '120px', icon = icon('sign-out')), bsTooltip("finalok", "Click here to approve the data.", "top", options = list(container = "body")) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_screen.R
tabPanel('Select', value = 'tab_sel', icon = icon('database'), navlistPanel(id = 'navlist_up', well = FALSE, widths = c(2, 10), source('ui/ui_seldata.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_sel.R
tabPanel("Select Data", value = "tab_seldata", fluidPage( fluidRow( column(6, align = 'left', h4('Select Data Set'), p('Select a data set from the drop down box and click on submit.') ), column(6, align = 'right', actionButton(inputId='seldatalink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=01m11s', '_blank')") ) ), hr(), fluidRow( column(12, align = "center", selectInput( inputId = "sel_data", label = "Select a data set:", choices = '', # choices = c('csv', 'excel', 'json', 'spss', 'stata', 'sas'), selected = '', width = '200px', ) ) ), fluidRow( column(12, align = 'center', br(), actionButton(inputId = 'submit_seldata', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_seldata", "Click here to select data.", "bottom", options = list(container = "body"))) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_seldata.R
tabPanel('Select Variables', value = 'tab_selvar', fluidPage( fluidRow( column(6, align = 'left', h4('Select Variables'), p('Click on Yes to select variables.') ), column(6, align = 'right', actionButton(inputId='selvarlink', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=02m13s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', h4('Do you want to select variables?') ) ), fluidRow( column(6, align = 'right', actionButton( inputId = 'button_selvar_yes', label = 'Yes', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'button_selvar_no', label = 'No', width = '120px' ) ) ), fluidRow( br(), br(), uiOutput('show_sel_button') ), fluidRow( uiOutput('sub_sel_button') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_select.R
tabPanel('Transform', value = 'tab_trans', icon = icon('rotate-right'), navlistPanel(id = 'navlist_trans', well = FALSE, widths = c(2, 10), source('ui/ui_seldata.R', local = TRUE)[[1]], source('ui/ui_transform2.R', local = TRUE)[[1]], source('ui/ui_select.R', local = TRUE)[[1]], source('ui/ui_filter.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_trans.R
tabPanel('Transform', value = 'tab_transform', fluidPage( fluidRow( column(6, align = 'left', h4('Data Transformation'), p('Rename variables and modify data types.') ), column(6, align = 'right', actionButton(inputId='translink3', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=X8b0beNJ64A#t=01m20s', '_blank')") ) ), hr(), fluidRow( column(3, tags$h5('Variable')), column(3, tags$h5('Rename Variable')), column(3, tags$h5('Modify Data Type')) ), column(12, uiOutput('trans_try')), fluidRow( tags$br() ), fluidRow( column(12, align = 'center', br(), actionButton(inputId="apply_changes", label="Apply Changes", icon = icon('thumbs-up')), bsTooltip("apply_changes", "Click here to apply changes to data.", "top", options = list(container = "body")), br(), br() ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_transform2.R
tabPanel('Get Data', value = 'tab_upload', icon = icon('server'), navlistPanel(id = 'navlist_up', well = FALSE, widths = c(2, 10), source('ui/ui_dataoptions.R', local = TRUE)[[1]], source('ui/ui_datafiles.R', local = TRUE)[[1]], source('ui/ui_datasamples.R', local = TRUE)[[1]] # source('ui/ui_upload.R', local = TRUE)[[1]], # source('ui/ui_excel.R', local = TRUE)[[1]], # source('ui/ui_json.R', local = TRUE)[[1]], # source('ui/ui_stata.R', local = TRUE)[[1]], # source('ui/ui_spss.R', local = TRUE)[[1]], # source('ui/ui_sas.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_up.R
tabPanel('View', value = 'tab_vi', icon = icon('sort'), navlistPanel(id = 'navlist_vi', well = FALSE, widths = c(2, 10), source('ui/ui_view.R', local = TRUE)[[1]] ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_vi.R
tabPanel('View', value = 'tab_view', fluidPage( br(), fluidRow( column(6, align = 'left', actionButton(inputId='view2getdata', label=" Get Data", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='view2analyze', label="Analyze Data", icon = icon("long-arrow-right")) ) ), hr(), fluidRow( dataTableOutput(outputId = "table") ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui/ui_view.R
library(shiny) library(shinyBS) library(shinythemes) library(descriptr) library(dplyr) shinyUI( navbarPage(HTML("olsrr"), id = 'mainpage', source('ui/ui_data.R', local = TRUE)[[1]], source('ui/ui_analyze.R', local = TRUE)[[1]], source('ui/ui_exit_button.R', local = TRUE)[[1]] ))
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-olsrr/ui.R
observeEvent(input$sample_data_yes, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_use_sample') }) file_upload_options <- eventReactive(input$upload_files_yes, { fluidRow( column(3, align = 'center', actionButton( inputId = 'upload_csv_file', label = 'CSV', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_xls_file', label = 'XLS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_xlsx_file', label = 'XLSX', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_json_file', label = 'JSON', width = '120px' ) ), column(12, br()), column(3, align = 'center', actionButton( inputId = 'upload_stata_file', label = 'STATA', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_spss_file', label = 'SPSS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_sas_file', label = 'SAS', width = '120px' ) ), column(3, align = 'center', actionButton( inputId = 'upload_rds_file', label = 'RDS', width = '120px' ) ) ) }) output$upload_file_links <- renderUI({ file_upload_options() }) observeEvent(input$upload_csv_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tab_uploadfile', selected = 'tab_upload_csv') }) observeEvent(input$upload_xls_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_excel') }) observeEvent(input$upload_xlsx_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_excel') }) observeEvent(input$upload_json_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_json') }) observeEvent(input$upload_stata_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_stata') }) observeEvent(input$upload_spss_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_spss') }) observeEvent(input$upload_sas_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_sas') }) observeEvent(input$upload_rds_file, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_uploadfile') updateTabsetPanel(session, 'tabset_upload', selected = 'tab_upload_rds') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_dataoptions.R
# Exit --------------------------------------------------------------- observe({ if (isTRUE(input$mainpage == "exit")) { stopApp() } })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_exit_button.R
observeEvent(input$click_transaction, { updateNavbarPage(session, 'mainpage', selected = 'tab_rfm') updateNavlistPanel(session, 'navlist_rfm', 'tab_rfm_transaction_score') }) observeEvent(input$click_customer_1, { updateNavbarPage(session, 'mainpage', selected = 'tab_rfm') updateNavlistPanel(session, 'navlist_rfm', 'tab_rfm_customer_score') }) observeEvent(input$click_customer_2, { updateNavbarPage(session, 'mainpage', selected = 'tab_rfm') updateNavlistPanel(session, 'navlist_rfm', 'tab_rfm_customer_score_2') }) observeEvent(input$welcomebutton, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_home.R
observeEvent(input$finalok, { updateSelectInput( session, inputId = "rfm_customer_id_c", choices = names(final_sel$a), selected = names(final_sel$a) ) updateSelectInput( session, inputId = "rfm_n_transactions_c", choices = names(final_sel$a), selected = names(final_sel$a) ) updateSelectInput( session, inputId = "rfm_recency_days_c", choices = names(final_sel$a), selected = names(final_sel$a) ) updateSelectInput( session, inputId = "rfm_total_revenue_c", choices = names(final_sel$a), selected = names(final_sel$a) ) }) observeEvent(input$finalok, { updateSelectInput( session, inputId = "rfm_customer_id_t", choices = names(final_sel$a), selected = names(final_sel$a) ) updateSelectInput( session, inputId = "rfm_order_date_t", choices = names(final_sel$a), selected = names(final_sel$a) ) updateSelectInput( session, inputId = "rfm_revenue_t", choices = names(final_sel$a), selected = names(final_sel$a) ) }) comp_rfm_transaction_score <- eventReactive(input$submit_rfm_transaction_score, { rfm_table_order(data = final_sel$a, customer_id = !! sym(as.character(input$rfm_customer_id_t)), order_date = !! sym(as.character(input$rfm_order_date_t)), revenue = !! sym(as.character(input$rfm_revenue_t)), analysis_date = input$rfm_analysis_date_t, recency_bins = input$rfm_recency_bins_t, frequency_bins = input$rfm_frequency_bins_t, monetary_bins = input$rfm_monetary_bins_t) }) comp_rfm_customer_score <- eventReactive(input$submit_rfm_customer_score, { rfm_table_customer(data = final_sel$a, customer_id = !! sym(as.character(input$rfm_customer_id_c)), n_transactions = !! sym(as.character(input$rfm_n_transactions_c)), recency_days = !! sym(as.character(input$rfm_recency_days_c)), total_revenue = !! sym(as.character(input$rfm_total_revenue_c)), analysis_date = input$rfm_analysis_date_c, recency_bins = input$rfm_recency_bins_c, frequency_bins = input$rfm_frequency_bins_c, monetary_bins = input$rfm_monetary_bins_c) }) comp_rfm_customer_score_2 <- eventReactive(input$submit_rfm_customer_score_2, { rfm_table_customer(data = final_sel$a, customer_id = !! sym(as.character(input$rfm_customer_id_c_2)), n_transactions = !! sym(as.character(input$rfm_n_transactions_c_2)), recency_days = !! sym(as.character(input$rfm_order_date_c)), total_revenue = !! sym(as.character(input$rfm_total_revenue_c_2)), analysis_date = input$rfm_analysis_date_c_2, recency_bins = input$rfm_recency_bins_c_2, frequency_bins = input$rfm_frequency_bins_c_2, monetary_bins = input$rfm_monetary_bins_c_2) }) output$rfm_transaction_score_out <- renderDataTable({ comp_rfm_transaction_score() %>% use_series(rfm) %>% as.data.frame() }) output$rfm_customer_score_out <- renderDataTable({ comp_rfm_customer_score() %>% use_series(rfm) %>% as.data.frame() }) output$rfm_customer_score_out_2 <- renderDataTable({ comp_rfm_customer_score_2() %>% use_series(rfm) %>% as.data.frame() }) rfm_final_score <- reactiveValues(a = NULL) observeEvent(input$submit_rfm_transaction_score, { rfm_final_score$a <- comp_rfm_transaction_score() }) observeEvent(input$submit_rfm_customer_score, { rfm_final_score$a <- comp_rfm_customer_score() }) observeEvent(input$submit_rfm_customer_score_2, { rfm_final_score$a <- comp_rfm_customer_score_2() }) rfm_heatmap_generate <- reactiveValues(a = NULL) observeEvent(input$submit_rfm_transaction_score, { rfm_heatmap_generate$a <- rfm_heatmap(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score, { rfm_heatmap_generate$a <- rfm_heatmap(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score_2, { rfm_heatmap_generate$a <- rfm_heatmap(rfm_final_score$a) }) output$plot_heatmap <- renderPlot({ print(rfm_heatmap_generate$a) }) rfm_barchart_generate <- reactiveValues(a = NULL) observeEvent(input$submit_rfm_transaction_score, { rfm_barchart_generate$a <- rfm_bar_chart(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score, { rfm_barchart_generate$a <- rfm_bar_chart(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score_2, { rfm_barchart_generate$a <- rfm_bar_chart(rfm_final_score$a) }) output$plot_barchart <- renderPlot({ print(rfm_barchart_generate$a) }) rfm_histogram_generate <- reactiveValues(a = NULL) observeEvent(input$submit_rfm_transaction_score, { rfm_histogram_generate$a <- rfm_histograms(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score, { rfm_histogram_generate$a <- rfm_histograms(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score_2, { rfm_histogram_generate$a <- rfm_histograms(rfm_final_score$a) }) output$plot_histogram <- renderPlot({ print(rfm_histogram_generate$a) }) rfm_scatter_1_generate <- reactiveValues(a = NULL) observeEvent(input$submit_rfm_transaction_score, { rfm_scatter_1_generate$a <- rfm_rm_plot(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score, { rfm_scatter_1_generate$a <- rfm_rm_plot(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score_2, { rfm_scatter_1_generate$a <- rfm_rm_plot(rfm_final_score$a) }) output$plot_scatter_1 <- renderPlot({ print(rfm_scatter_1_generate$a) }) rfm_scatter_2_generate <- reactiveValues(a = NULL) observeEvent(input$submit_rfm_transaction_score, { rfm_scatter_2_generate$a <- rfm_fm_plot(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score, { rfm_scatter_2_generate$a <- rfm_fm_plot(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score_2, { rfm_scatter_2_generate$a <- rfm_fm_plot(rfm_final_score$a) }) output$plot_scatter_2 <- renderPlot({ print(rfm_scatter_2_generate$a) }) rfm_scatter_3_generate <- reactiveValues(a = NULL) observeEvent(input$submit_rfm_transaction_score, { rfm_scatter_3_generate$a <- rfm_rf_plot(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score, { rfm_scatter_3_generate$a <- rfm_rf_plot(rfm_final_score$a) }) observeEvent(input$submit_rfm_customer_score_2, { rfm_scatter_3_generate$a <- rfm_rf_plot(rfm_final_score$a) }) output$plot_scatter_3 <- renderPlot({ print(rfm_scatter_3_generate$a) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_rfm_score.R
# output output$screen <- renderPrint({ ds_screener(final_sel$a) }) observeEvent(input$finalok, { updateNavbarPage(session, 'mainpage', selected = 'tab_home_analyze') updateNavlistPanel(session, 'navlist_home', 'tab_rfm_home') }) final_split <- reactiveValues(train = NULL) observeEvent(input$finalok, { final_split$train <- final_sel$a })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_screen.R
library(purrr) library(ggplot2) output$segment_prep <- renderUI({ ncol <- as.integer(input$n_segments) lapply(1:ncol, function(i) { fluidRow( column(3, textInput(paste("segment_name_", i), label = '', width = '150px', value = "") ), column(3, sliderInput(paste("recency_interval_", i), label = '', min = 1, max = 5, value = c(2, 4), step = 1) ), column(3, sliderInput(paste("frequency_interval_", i), label = '', min = 1, max = 5, value = c(2, 4), step = 1) ), column(3, sliderInput(paste("monetary_interval_", i), label = '', min = 1, max = 5, value = c(2, 4), step = 1) ) ) }) }) segment_names <- reactive({ ncol <- as.integer(input$n_segments) collect <- list(lapply(1:ncol, function(i) { input[[paste("segment_name_", i)]] })) unlist(collect) }) recency_lower <- reactive({ ncol <- as.integer(input$n_segments) collect <- list(lapply(1:ncol, function(i) { input[[paste("recency_interval_", i)]] })) collect[[1]] %>% map_int(1) }) recency_upper <- reactive({ ncol <- as.integer(input$n_segments) collect <- list(lapply(1:ncol, function(i) { input[[paste("recency_interval_", i)]] })) collect[[1]] %>% map_int(2) }) frequency_lower <- reactive({ ncol <- as.integer(input$n_segments) collect <- list(lapply(1:ncol, function(i) { input[[paste("frequency_interval_", i)]] })) collect[[1]] %>% map_int(1) }) frequency_upper <- reactive({ ncol <- as.integer(input$n_segments) collect <- list(lapply(1:ncol, function(i) { input[[paste("frequency_interval_", i)]] })) collect[[1]] %>% map_int(2) }) monetary_lower <- reactive({ ncol <- as.integer(input$n_segments) collect <- list(lapply(1:ncol, function(i) { input[[paste("monetary_interval_", i)]] })) collect[[1]] %>% map_int(1) }) monetary_upper <- reactive({ ncol <- as.integer(input$n_segments) collect <- list(lapply(1:ncol, function(i) { input[[paste("monetary_interval_", i)]] })) collect[[1]] %>% map_int(2) }) prep_segment <- eventReactive(input$button_create_segments, { rfm_score_table <- rfm_final_score$a %>% use_series(rfm) for (i in seq_len(input$n_segments)) { rfm_score_table$segment[((rfm_score_table$recency_score %>% between(recency_lower()[i], recency_upper()[i])) & (rfm_score_table$frequency_score %>% between(frequency_lower()[i], frequency_upper()[i])) & (rfm_score_table$monetary_score %>% between(monetary_lower()[i], monetary_upper()[i])))] <- segment_names()[i] } rfm_score_table$segment[is.na(rfm_score_table$segment)] <- "Others" rfm_score_table %>% select( customer_id, segment, rfm_score, transaction_count, recency_days, amount ) }) output$segment_out <- renderDataTable({ prep_segment() }) output$segment_size_out <- renderPrint({ prep_segment() %>% count(segment) %>% arrange(desc(n)) %>% rename(Segment = segment, Count = n) %>% kable() %>% kable_styling(full_width = TRUE, font_size = 30) }) fill_segments <- reactive({ input$n_segments + 1 }) output$segment_average_recency <- renderPlot({ data <- prep_segment() %>% group_by(segment) %>% select(segment, recency_days) %>% summarize(median(recency_days)) %>% rename(segment = segment, avg_recency = `median(recency_days)`) %>% arrange(avg_recency) n_fill <- nrow(data) ggplot(data, aes(segment, avg_recency)) + geom_bar(stat = "identity", fill = brewer.pal(n = n_fill, name = "Set1")) + xlab("Segment") + ylab("Median Recency") + ggtitle("Median Recency by Segment") + coord_flip() + theme( plot.title = element_text(hjust = 0.5) ) }) output$segment_average_frequency <- renderPlot({ data <- prep_segment() %>% group_by(segment) %>% select(segment, transaction_count) %>% summarize(median(transaction_count)) %>% rename(segment = segment, avg_frequency = `median(transaction_count)`) %>% arrange(avg_frequency) n_fill <- nrow(data) ggplot(data, aes(segment, avg_frequency)) + geom_bar(stat = "identity", fill = brewer.pal(n = n_fill, name = "Set1")) + xlab("Segment") + ylab("Median Frequency") + ggtitle("Median Frequency by Segment") + coord_flip() + theme( plot.title = element_text(hjust = 0.5) ) }) output$segment_average_monetary <- renderPlot({ data <- prep_segment() %>% group_by(segment) %>% select(segment, amount) %>% summarize(median(amount)) %>% rename(segment = segment, avg_monetary = `median(amount)`) %>% arrange(avg_monetary) n_fill <- nrow(data) ggplot(data, aes(segment, avg_monetary)) + geom_bar(stat = "identity", fill = brewer.pal(n = n_fill, name = "Set1")) + xlab("Segment") + ylab("Median Monetary Value") + ggtitle("Median Monetary Value by Segment") + coord_flip() + theme( plot.title = element_text(hjust = 0.5) ) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_segments.R
show_but_sel <- eventReactive(input$button_selvar_yes, { column(12, align = 'center', selectInput( inputId = 'dplyr_selvar', label = '', choices = '', selected = '', multiple = TRUE, selectize = TRUE ) ) }) output$show_sel_button <- renderUI({ show_but_sel() }) sel_sub_but <- eventReactive(input$button_selvar_yes, { column(12, align = 'center', br(), br(), actionButton(inputId = 'submit_dply_selvar', label = 'Submit', width = '120px', icon = icon('check')), bsTooltip("submit_seldata", "Click here to select variables.", "bottom", options = list(container = "body")) ) }) output$sub_sel_button <- renderUI({ sel_sub_but() }) observe({ updateSelectInput( session, inputId = "dplyr_selvar", choices = names(data()), selected = names(data()) ) }) observeEvent(input$button_selvar_yes, { updateSelectInput( session, inputId = "dplyr_selvar", choices = names(final()), selected = names(final()) ) }) final_sel <- reactiveValues(a = NULL) finalsel <- eventReactive(input$submit_dply_selvar, { k <- final() %>% select(input$dplyr_selvar) k }) observeEvent(input$submit_dply_selvar, { final_sel$a <- finalsel() }) observeEvent(input$button_selvar_no, { final_sel$a <- final() }) observeEvent(input$button_selvar_no, { removeUI( selector = "div:has(> #dplyr_selvar)" ) removeUI( selector = "div:has(> #submit_dply_selvar)" ) }) observeEvent(input$button_selvar_no, { updateNavbarPage(session, 'mainpage', selected = 'tab_scr') updateNavlistPanel(session, 'navlist_trans', 'tab_screen') }) observeEvent(input$submit_dply_selvar, { updateNavbarPage(session, 'mainpage', selected = 'tab_scr') updateNavlistPanel(session, 'navlist_trans', 'tab_screen') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_select.R
library(stringr) output$trans_try <- renderUI({ ncol <- as.integer(ncol(uploadata$t)) lapply(1:ncol, function(i) { fluidRow( column(3, selectInput(paste("n_col_", i), label = '', width = '150px', choices = names(uploadata$t)[i], selected = names(uploadata$t)[i]) ), column(3, textInput(paste("new_name_", i), label = '', width = '150px', value = names(uploadata$t)[i]) ), column(3, selectInput(paste0("data_type_", i), label = '', width = '150px', choices = c('numeric', 'factor', 'Date', 'character', 'integer'), selected = class(uploadata$t[[i]])) ), column(3, conditionalPanel(condition = paste(paste0("input.data_type_", i), "== 'Date'"), column(4, br(), tags$h5('Format')), column(8, selectInput(paste("date_type_", i), label = '', width = '150px', choices = c('%d %m %y', '%d %m %Y', '%y %m %d', '%Y %m %d', '%d %y %m', '%d %Y %m', '%m %d %y', '%m %d %Y', '%y %d %m', '%Y %d %m', '%m %y %d', '%m %Y %d', '%d/%m/%y', '%d/%m/%Y', '%y/m /%d', '%Y/%m/%d', '%d/%y/%m', '%d/%Y/%m', '%m/%d/%y', '%m/%d/%Y', '%y/%d/%m', '%Y/%d/%m', '%m/%y/%d', '%m/%Y/%d', '%d-%m-%y', '%d-%m-%Y', '%y-m -%d', '%Y-%m-%d', '%d-%y-%m', '%d-%Y-%m', '%m-%d-%y', '%m-%d-%Y', '%y-%d-%m', '%Y-%d-%m', '%m-%y-%d', '%m-%Y-%d' ), selected = '%Y %m %d') ) ) ) ) }) }) original <- reactive({ uploadata$t }) save_names <- reactive({ names(original()) }) n <- reactive({ length(original()) }) data_types <- reactive({ ncol <- as.integer(ncol(uploadata$t)) collect <- list(lapply(1:ncol, function(i) { input[[paste0("data_type_", i)]] })) colors <- unlist(collect) }) new_names <- reactive({ ncol <- as.integer(ncol(uploadata$t)) collect <- list(lapply(1:ncol, function(i) { input[[paste("new_name_", i)]] })) colors <- unlist(collect) colnames <- str_replace(colors, " ", "_") }) # original <- reactive({ # data() # }) # save_names <- reactive({ # names(original()) # }) # n <- reactive({ # length(original()) # }) # data_types <- reactive({ # ncol <- as.integer(ncol(data())) # collect <- list(lapply(1:ncol, function(i) { # input[[paste0("data_type_", i)]] # })) # colors <- unlist(collect) # }) # new_names <- reactive({ # ncol <- as.integer(ncol(data())) # collect <- list(lapply(1:ncol, function(i) { # input[[paste("new_name_", i)]] # })) # colors <- unlist(collect) # colnames <- str_replace(colors, " ", "_") # }) copy <- eventReactive(input$apply_changes, { out <- list() for (i in seq_len(n())) { if (data_types()[i] == 'Date') { inp <- eval(parse(text = paste0('input$', paste0('date_type_', i)))) out[[i]] <- eval(parse(text = paste0("as.", data_types()[i], "(original()$", save_names()[i], ", ", inp, ")"))) } else { out[[i]] <- eval(parse(text = paste0("as.", data_types()[i], "(original()$", save_names()[i], ")"))) } } names(out) <- new_names() return(out) }) final <- eventReactive(input$apply_changes, { data.frame(copy(), stringsAsFactors = F) }) observeEvent(input$apply_changes, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_selvar') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_transform2.R
library(rfm) # importing data inFile1 <- reactive({ if(is.null(input$file1)) { return(NULL) } else { input$file1 } }) data1 <- reactive({ if(is.null(inFile1())) { return(NULL) } else { read.csv(inFile1()$datapath, header = input$header, sep = input$sep, quote = input$quote) } }) # importing data inFile2 <- reactive({ if(is.null(input$file2)) { return(NULL) } else { input$file2 } }) data2 <- reactive({ if(is.null(inFile2())) { return(NULL) } else { ext <- tools::file_ext(inFile2()$name) file.rename(inFile2()$datapath, paste(inFile2()$datapath, ext, sep=".")) readxl::read_excel( path = paste(inFile2()$datapath, ext, sep="."), sheet = input$sheet_n ) } }) # importing data inFile3 <- reactive({ if(is.null(input$file3)) { return(NULL) } else { input$file3 } }) data3 <- reactive({ if(is.null(inFile3())) { return(NULL) } else { jsonlite::fromJSON(inFile3()$datapath) } }) # importing data inFile4 <- reactive({ if(is.null(input$file4)) { return(NULL) } else { input$file4 } }) data4 <- reactive({ if(is.null(inFile4())) { return(NULL) } else { haven::read_sas(inFile4()$datapath) } }) inFile5 <- reactive({ if(is.null(input$file5)) { return(NULL) } else { input$file5 } }) data5 <- reactive({ if(is.null(inFile5())) { return(NULL) } else { haven::read_sav(inFile5()$datapath) } }) inFile6 <- reactive({ if(is.null(input$file6)) { return(NULL) } else { input$file6 } }) data6 <- reactive({ if(is.null(inFile6())) { return(NULL) } else { haven::read_stata(inFile6()$datapath) } }) inFile7 <- reactive({ if(is.null(input$file7)) { return(NULL) } else { input$file7 } }) data7 <- reactive({ if(is.null(inFile7())) { return(NULL) } else { readRDS(inFile7()$datapath) } }) observe({ updateSelectInput( session, inputId = 'sel_data', label = '', choices = c(input$file1$name, input$file2$name, input$file3$name, input$file4$name, input$file5$name, input$file6$name, input$file7$name), selected = '' ) }) ext_type <- reactive({ ext <- tools::file_ext(input$sel_data) }) # choosing sample data sampdata <- reactiveValues(s = NULL) observeEvent(input$orders_data, { sampdata$s <- rfm_data_orders }) observeEvent(input$customer_data, { sampdata$s <- rfm_data_customer }) uploadata <- reactiveValues(t = NULL) observeEvent(input$submit_seldata, { if (ext_type() == 'csv') { uploadata$t <- data1() } else if (ext_type() == 'xls') { uploadata$t <- data2() } else if (ext_type() == 'xlsx') { uploadata$t <- data2() } else if (ext_type() == 'json') { uploadata$t <- data3() } else if (ext_type() == 'sas7bdat') { uploadata$t <- data4() } else if (ext_type() == 'sav') { uploadata$t <- uploadata$t <- data5() } else if (ext_type() == 'dta') { uploadata$t <- data6() } else { uploadata$t <- data7() } }) observeEvent(input$use_sample_data, { uploadata$t <- sampdata$s }) observeEvent(input$use_sample_data, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_transform') }) observeEvent(input$submit_seldata, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_transform') }) observeEvent(input$csv2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$csv2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$excel2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$excel2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$json2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$json2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$stata2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$stata2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$spss2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$spss2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$sas2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$sas2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$rds2datasrc, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$rds2datatrans, { updateNavbarPage(session, 'mainpage', selected = 'tab_trans') updateNavlistPanel(session, 'navlist_trans', 'tab_seldata') }) observeEvent(input$welcomebutton, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_upload.R
output$table <- renderDataTable({ final_sel$a }) observeEvent(input$view2getdata, { updateNavbarPage(session, 'mainpage', selected = 'tab_upload') updateNavlistPanel(session, 'navlist_up', 'tab_datasources') }) observeEvent(input$view2analyze, { updateNavbarPage(session, 'mainpage', selected = 'tab_eda') updateNavlistPanel(session, 'navlist_eda', 'tab_summary') })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/logic_view.R
tabPanel("Home", value = "tab_rfm_home", fluidPage( fluidRow( column(12, align = 'center', h3('What type of data do you have?') ) ), br(), br(), fluidRow( column(1), column(2, align = 'right', img(src = 'summary1.png', width = '100px', height = '100px') ), column(6, align = 'center', h4('Transaction Data'), p('Each row represents a transaction/order.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_transaction', label = 'Click Here', width = '100px' ) ), column(1) ), br(), fluidRow( column(1), column(2, align = 'right', img(src = 'summary1.png', width = '100px', height = '100px') ), column(6, align = 'center', h4('Customer Data'), p('Each row represents transactions of a customer. The data includes the number of days since the last transaction.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_customer_1', label = 'Click Here', width = '100px' ) ), column(1) ), fluidRow( column(1), column(2, align = 'right', img(src = 'summary1.png', width = '100px', height = '100px') ), column(6, align = 'center', h4('Customer Data'), p('Each row represents transactions of a customer. The data includes the date of the latest transaction.') ), column(2, align = 'left', br(), actionButton( inputId = 'click_customer_2', label = 'Click Here', width = '100px' ) ), column(1) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/logic/ui_rfm_home.R
library(rfm) library(descriptr) library(dplyr) library(tibble) library(readxl) library(haven) library(readr) library(jsonlite) library(magrittr) library(tools) library(lubridate) library(scales) library(stringr) library(rlang) library(ggplot2) library(forcats) library(purrr) library(RColorBrewer) library(knitr) library(kableExtra) shinyServer(function(input, output, session) { source("logic/logic_dataoptions.R", local = T) source("logic/logic_upload.R", local = T) source("logic/logic_transform2.R", local = T) source("logic/logic_select.R", local = T) source("logic/logic_screen.R", local = T) source("logic/logic_view.R", local = T) source("logic/logic_home.R", local = T) source("logic/logic_exit_button.R", local = T) source("logic/logic_rfm_score.R", local = T) source("logic/logic_segments.R", local = T) })
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/server.R
navbarMenu('Analyze', icon = icon('search-plus'), source('ui/ui_home.R', local = TRUE)[[1]], source('ui/ui_rfm.R', local = TRUE)[[1]], source('ui/ui_segment.R', local = TRUE)[[1]] )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_analyze.R
tabPanel("Median Frequency", value = "tab_average_frequency", fluidPage( fluidRow( column(6, align = 'left', h4('Median Frequency by Segment') ) ), hr(), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('segment_average_frequency') %>% withSpinner() ), column(2) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_average_frequency.R
tabPanel("Median Monetary Value", value = "tab_average_monetary", fluidPage( fluidRow( column(6, align = 'left', h4('Median Monetary Value by Segment') ) ), hr(), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('segment_average_monetary') %>% withSpinner() ), column(2) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_average_monetary.R
tabPanel("Median Recency", value = "tab_average_recency", fluidPage( fluidRow( column(6, align = 'left', h4('Median Recency by Segment') ) ), hr(), fluidRow( br(), br(), column(2), column(8, align = 'center', plotOutput('segment_average_recency') %>% withSpinner() ), column(2) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_average_recency.R
navbarMenu('Data', icon = icon('database'), source('ui/ui_up.R', local = TRUE)[[1]], source('ui/ui_trans.R', local = TRUE)[[1]], source('ui/ui_scr.R', local = TRUE)[[1]], source('ui/ui_vi.R', local = TRUE)[[1]] )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_data.R
tabPanel('Upload File', value = 'tab_uploadfile', fluidPage( includeCSS("mystyle.css"), fluidRow( column(12, tabsetPanel(type = 'tabs', id = 'tabset_upload', tabPanel('CSV', value = 'tab_upload_csv', fluidPage( br(), fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a comma or tab separated file.') ), column(4, align = 'right', actionButton(inputId='uploadlink2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput('file1', 'Data Set:', accept = c('text/csv', '.csv', 'text/comma-separated-values,text/plain') ) ) ), fluidRow( column(12, align = 'center', checkboxInput('header', 'Header', TRUE)) ), fluidRow( column(12, align = 'center', selectInput('sep', 'Separator', choices = c('Comma' = ',', 'Semicolon' = ';', 'Tab' = '\t'), selected = ',') ) ), fluidRow( column(12, align = 'center', selectInput('quote', 'Quote', choices = c('None' = '', 'Double Quote' = '"', 'Single Quote' = "'"), selected = '') ) ), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='csv2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='csv2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('Excel', value = 'tab_upload_excel', fluidPage( br(), fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .xls or .xlsx file.') ), column(4, align = 'right', actionButton(inputId='uploadexcel2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file2', label = 'Choose file:', accept = c('.xls', '.xlsx') ) ) ), fluidRow( column(12, align = 'center', numericInput( inputId = 'sheet_n', label = 'Sheet', value = 1, min = 1, step = 1, width = '120px' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='excel2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='excel2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('JSON', value = 'tab_upload_json', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .json file.') ), column(4, align = 'right', actionButton(inputId='uploadjson2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file3', label = 'Choose file:', accept = '.json' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='json2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='json2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('STATA', value = 'tab_upload_stata', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .dta file.') ), column(4, align = 'right', actionButton(inputId='uploadstata2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file6', label = 'Choose file:', accept = '.dta' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='stata2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='stata2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('SPSS', value = 'tab_upload_spss', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .sav file.') ), column(4, align = 'right', actionButton(inputId='uploadspss2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file5', label = 'Choose file:', accept = '.sav' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='spss2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='spss2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('SAS', value = 'tab_upload_sas', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a .sas7bdat file.') ), column(4, align = 'right', actionButton(inputId='uploadsas2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file4', label = 'Choose file:', accept = '.sas7bdat' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='sas2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='sas2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ), tabPanel('RDS', value = 'tab_upload_rds', br(), fluidPage( fluidRow( column(8, align = 'left', h4('Upload Data'), p('Upload data from a RDS file.') ), column(4, align = 'right', actionButton(inputId='uploadrds2', label="Demo", icon = icon("video-camera"), onclick ="window.open('https://www.youtube.com/watch?v=IckaPr19Bvc#t=00m29s', '_blank')") ) ), hr(), fluidRow( column(12, align = 'center', fileInput( inputId = 'file7', label = 'Choose file:', accept = '' ) ) ), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), br(), fluidRow( column(6, align = 'left', actionButton(inputId='rds2datasrc', label="Data Sources", icon = icon("long-arrow-left")) ), column(6, align = 'right', actionButton(inputId='rds2datatrans', label="Data Selection", icon = icon("long-arrow-right")) ) ) ) ) ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_datafiles.R
tabPanel('Data Sources', value = 'tab_datasources', fluidPage(theme = shinytheme('cerulean'), includeCSS("mystyle.css"), fluidRow( column(12, align = 'center', h4('Use sample data or upload a file') ) ), fluidRow( column(6, align = 'right', actionButton( inputId = 'sample_data_yes', label = 'Sample Data', width = '120px' ) ), column(6, align = 'left', actionButton( inputId = 'upload_files_yes', label = 'Upload File', width = '120px' ) ) ), br(), fluidRow( column(12, align = 'center', h6('The app takes a few seconds to load. Please wait for ~12 seconds.') ) ), br(), br(), fluidRow( uiOutput('upload_file_links') ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_dataoptions.R
tabPanel('Sample Data', value = 'tab_use_sample', fluidPage( includeCSS("mystyle.css"), fluidRow( column(12, align = 'center', h5('Click on a sample for more information') ) ), br(), fluidRow( column(6, align = 'center', actionButton( inputId = 'orders_data', label = 'Transaction Data', width = '200px', onclick ="window.open('https://rfm.rsquaredacademy.com/reference/rfm_data_orders.html', 'newwindow', 'width=800,height=600')" ) ), column(6, align = 'center', actionButton( inputId = 'customer_data', label = 'Customer Data', width = '200px', onclick ="window.open('https://rfm.rsquaredacademy.com/reference/rfm_data_customer.html', 'newwindow', 'width=800,height=600')" ) ) ), br(), br(), br(), fluidRow( column(12, align = 'center', actionButton( inputId = 'use_sample_data', label = 'Use Sample Data', width = '200px' ) ) ) ) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_datasamples.R
# Exit ----------------------------------------------------------- tabPanel("", value = "exit", icon = icon("power-off"), br(), br(), br(), br(), br(), br(), # In case window does not close, one should see this message fluidRow(column(3), column(6, h2("Thank you for using", strong("rfm"), "!"))), fluidRow(column(3), column(6, h4("Now you should close this window."))) )
/scratch/gouwar.j/cran-all/cranData/xplorerr/inst/app-rfm/ui/ui_exit_button.R