content
stringlengths
0
14.9M
filename
stringlengths
44
136
## File Name: cdm_timecat.R ## File Version: 0.02 cdm_timecat <- function(z0, label, print=FALSE) { if (print){ cat(label) ; z1 <- Sys.time(); print(z1-z0) ; z0 <- z1 } return(z0) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_timecat.R
## File Name: cdm_trim_increment.R ## File Version: 0.10 cdm_trim_increment <- function( increment, max.increment, type=1 ) { increment[ is.na(increment) ] <- 0 if ( type==1){ increment <- ifelse(abs(increment)> max.increment, sign(increment)*max.increment, increment ) } if ( type==2){ eps <- 1E-80 ci <- ceiling( abs(increment) / ( abs( max.increment) + eps ) ) increment <- ifelse( abs( increment) > abs(max.increment), increment/(2*ci), increment ) } return(increment) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_trim_increment.R
## File Name: check.input.R ## File Version: 1.14 ################################################################################ # check consistency of input to din-method (data, q.matrix, ...) # ################################################################################ check.input <- function( data, q.matrix, conv.crit=0.001, maxit=100, constraint.guess=NULL, constraint.slip=NULL, guess.init=rep(.2, ncol(data) ), slip.init=guess.init, weights=rep( 1, nrow( data ) ), rule="DINA", progress=TRUE ){ # Call: from din() # Input: cf. din() # Output: if possible cleaned arguments # else a warning message which leads to the termination of the procedure. ################################################################################ # check consistency of data object # ################################################################################ # check for data classes matrix and data.frame if ((data.class(data) !="matrix") & (data.class(data) !="data.frame")) return(warning("data must be matrix or data frame")) data <- as.matrix(data) # check for data entries being dichotomous or missing gt <- data[ is.na( data )==F ] # gt <- data[ ! is.na( data) ] # if(any(gt==9||gt==99||gt==.99)){ if( sum(gt==9 ) + sum(gt==99 ) + sum(gt==.99) > 0 ){ return(warning("Recode your data! Only responses with values 0 or 1 (or NA) are valid.", "\nMaybe missing values coded as 9, 99, .99.\n")) } # return all response pattern not containing NA gt <- unique( gt[ gt %in% c(0,1)==F ] ) if(length(gt) > 0){ return(warning("Recode your data! Only responses with values 0 or 1 (or NA) are valid.\n")) } # check for provision of row- and colnames if(is.null(rownames(data))) rownames(data) <- 1:nrow(data) if(is.null(colnames(data))) colnames(data) <- paste("Item",1:ncol(data),sep="") ################################################################################ # check consistency of q.matrix object # ################################################################################ # check for data classes matrix and data.frame if ((data.class(q.matrix) !="matrix") & (data.class(q.matrix) !="data.frame")) return(warning("data must be matrix or data frame")) att.lbl <- attributes(q.matrix)$skill.labels q.matrix <- as.matrix(q.matrix) # return all response pattern not containing NA # gt_q <- data[ is.na( q.matrix )==F ] gt_q <- q.matrix[ ! is.na( q.matrix ) ] # gt_q <- unique( gt_q[ gt_q %in% c(0,1)==F ] ) gt_q <- setdiff( unique( gt_q ), c(0,1) ) if(length(gt) > 0){ return(warning("Check your Q-matrix! Only values 0 or 1 are valid.\n")) } # check if q.matrix obtains same number of items as the data set if(nrow(q.matrix)!=ncol(data)){ return(warning("Check your Q-matrix! Number of assigned items (rows) must fit the number of items in the data (columns).\n")) } # return warning message if there is a Zero-Row in the q.matrix rq <- rowSums(q.matrix) if (min(rq)==0){ return(warning("Check your Q-matrix! The following items are not related to attributes:" , "\n", "Items ", paste( (1:(nrow(q.matrix)))[ rq==0], collapse=", " ), "\n" ))} # check for provision of row- and colnames if(is.null(rownames(q.matrix))) rownames(q.matrix) <- paste("Item",1:nrow(q.matrix),sep="") if(is.null(colnames(q.matrix))) colnames(q.matrix) <- paste("Skill",1:ncol(q.matrix),sep="") # check for provision of skill labels if(is.null(att.lbl)) attr(q.matrix, "skill.labels") <- colnames(q.matrix) if(length(att.lbl) !=ncol(q.matrix) & length(att.lbl) !=0){ attr(q.matrix, "skill.labels") <- colnames(q.matrix) warning("Unreasonable number of skill labels; skill labels replaced by colnames of q.matrix") }else{ attr(q.matrix, "skill.labels") <- att.lbl } ################################################################################ # check consistency of arguments for parameter estimation routine # ################################################################################ if(!is.numeric(conv.crit)|!is.numeric(maxit)) return(warning("Check your routine criteria")) if(conv.crit<=0|maxit<1) return(warning("Check your routine criteria")) ################################################################################ # check consistency of constraint arguments for parameter boundaries # ################################################################################ # slip constraints see help files if(!is.null(constraint.slip)){ #NULL permitted if (any(is.na(constraint.slip))|any(!is.numeric(constraint.slip))| #numeric values only (!is.vector(constraint.slip) & (data.class(constraint.slip) !="matrix") & (data.class(constraint.slip) !="data.frame"))| #object typ (length(constraint.slip %% 2 !=0) & ncol(constraint.slip)!=2)){ #two columns! return(warning("check your error parameter constraints. See Help-files.")) } if(is.vector(constraint.slip)) # try(constraint.slip <- matrix(constraint.slip, ncol=2, byrow=T)) if(data.class(constraint.slip)=="data.frame"){ onstraint.slip <- as.matrix(constraint.slip) } if(any(duplicated(constraint.slip[,1]))| #no duplicates any(!constraint.slip[,1]%in%1:ncol(data))| #first column may only be indicees all(!(constraint.slip[,2]>=0 & constraint.slip[,2]<=1))){ #all entries between 0 and 1 return(warning("check your error parameter constraints. See Help-files.")) } } # guessing constraints see help files if(!is.null(constraint.guess)){ #NULL permitted if(any(is.na(constraint.guess))|any(!is.numeric(constraint.guess))| #numeric values only (!is.vector(constraint.guess) & (data.class(constraint.guess) !="matrix") & (data.class(constraint.guess) !="data.frame"))| #object typ (length(constraint.guess)%%2!=0 & ncol(constraint.guess)!=2)){ #two columns! return(warning("check your error parameter constraints. See Help-files.")) } # if(is.vector(constraint.guess)) # try(constraint.guess <- matrix(constraint.guess, ncol=2, byrow=T)) if(data.class(constraint.guess)=="data.frame"){ constraint.guess <- as.matrix(constraint.guess) } if(any(duplicated(constraint.guess[,1])) | #no duplicates any(!constraint.guess[,1] %in% 1:ncol(data))| #first column may only be indicees all(!(constraint.guess[,2]>=0&constraint.guess[,2]<=1))){ #all entries between 0 and 1 return(warning("check your error parameter constraints. See Help-files.")) } } ################################################################################ # check consistency of init arguments # ################################################################################ # slipping initialization see help files # try({slip.init <- as.vector(slip.init) # guess.init <- as.vector(guess.init)}, silent=T) if(!is.null(slip.init)){ if(any(is.na(slip.init))| !all(is.numeric(slip.init))| !all(slip.init>=0&slip.init<=1)| (length(slip.init)!=ncol(data))) return(warning("Check your initial error parameter values. See Help-files.")) } # guessing initialization see help files if(!is.null(guess.init)){ if(any(is.na(guess.init))| !all(is.numeric(guess.init))| !all(guess.init>=0&guess.init<=1)| (length(guess.init)!=ncol(data))) return(warning("Check your initial error parameter values. See Help-files.")) } ################################################################################ # check consistency of weight argument # ################################################################################ # weight see help files # try(weights <- as.vector(weights), silent=T) if(any(is.na(weights)) | is.null(weights) | !all(is.numeric(weights)) | !all(weights>0)| (length(weights)!=nrow(data))) return(warning("Check your specificated weights of the response patterns. See Help-files.")) ################################################################################ # check consistency of rule argument # ################################################################################ # rule specification see help files if(length(rule)!=1 & length(rule)!=ncol(data)){ return(warning("Check the condensation rule for parameter estimation. The character string has to be of length 1 or of length ncol(data).")) } # try(if(!all(unique(rule)%in%c("DINA", "DINO"))) if(!all(unique(rule)%in%c("DINA", "DINO"))){ return(warning("Check the condensation rule for parameter estimation. Only \"DINA\" and \"DINO\" possible.")) } ################################################################################ # check consistency of progress argument # ################################################################################ # progress see help files if(!(is.logical(progress))){ return(warning("Check specification whether or not the estimation progress should be printed.")) } return(list("data"=data, "q.matrix"=q.matrix, "conv.crit"=conv.crit, "maxit"=maxit, "constraint.guess"=constraint.guess, "constraint.slip"=constraint.slip, "guess.init"=guess.init, "slip.init"=slip.init, "weights"=weights, "rule"=rule, "progress"=progress)) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/check.input.R
## File Name: chisq_compute.R ## File Version: 0.02 chisq_compute <- function(obs, exp) { chisq <- sum( ( obs - exp)^2 / exp ) return(chisq) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/chisq_compute.R
## File Name: coef.R ## File Version: 0.06 ######################## # coef for din object coef.din <- function (object, ...) { cof <- object$coef return(cof) } ######################## # coef for gdina object coef.gdina <- function (object, ...) { cof <- object$coef return(cof) } ######################## # coef for gdm object coef.gdm <- function (object, ...) { cof <- object$item return(cof) } ######################## # coef for mcdina object coef.mcdina <- function (object, ...) { cof <- object$item return(cof) } ######################## # coef for slca object coef.slca <- function (object, ...) { cof <- object$Xlambda return(cof) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/coef.R
## File Name: confint.din.R ## File Version: 0.172 # confidence interval for objects of class din confint.din <- function(object, parm, level=.95, extended=FALSE, ind.item.skillprobs=TRUE, ind.item=FALSE, diagcov=FALSE, h=.001,...) { if ( ! missing( parm) ){ partable <- object$partable g1 <- parm %in% partable$parnames if ( mean(g1) < 1 ){ stop("Not all requested parameters in parameter table!\n") } p1 <- partable[ partable$free,] g1 <- parm %in% p1[,"parnames"] if ( mean(g1) < 1 ){ extended <- TRUE } } v1 <- vcov( object, extended=extended, infomat=FALSE, ind.item.skillprobs=ind.item.skillprobs, ind.item=ind.item, diagcov=diagcov, h=h,...) c1 <- attr( v1, "coef" ) c1 <- c1[ ! duplicated(names(c1) ) ] se1 <- sqrt( diag( v1 ) ) q1 <- stats::qnorm( 1 - (1-level)/2 ) res <- data.frame( c1 - q1*se1, c1+q1*se1) rownames(res) <- names(c1) colnames(res) <- c("2.5 %", "97.5 %") if ( ! missing(parm) ){ res <- res[ parm, ] } return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/confint.din.R
## File Name: csink.R ## File Version: 1.02 csink <- function( file) { if ( ! is.null( file ) ){ sink() } }
/scratch/gouwar.j/cran-all/cranData/CDM/R/csink.R
## File Name: dataframe_summary.R ## File Version: 0.11 dataframe_summary <- function( dfr, exclude_index, labels, na.rm=TRUE ) { if ( ! is.null(exclude_index) ){ dfr1 <- dfr[, - exclude_index, drop=FALSE] } else { dfr1 <- dfr } dfr_summary <- data.frame( "Parm"=labels, "M"=apply( dfr1, 2, mean, na.rm=na.rm), "SD"=apply( dfr1, 2, stats::sd, na.rm=na.rm), "Min"=apply( dfr1, 2, min, na.rm=na.rm), "Max"=apply( dfr1, 2, max, na.rm=na.rm ) ) rownames(dfr_summary) <- NULL return(dfr_summary) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/dataframe_summary.R
## File Name: deltaMethod.R ## File Version: 0.11 ############################################################### deltaMethod <- function( derived.pars, est, Sigma, h=1E-5 ) { #*** ND <- length(derived.pars) #** select h parameters according to size of parameters abs_par <- abs(est) hvec <- h * ifelse( abs_par > 1, abs_par, 1 ) NP <- length(est) #** create design matrix M0 <- matrix( est, nrow=1, ncol=NP) M1 <- diag(hvec) M1 <- M0[ rep(1,NP), ] + M1 M2 <- as.data.frame( rbind( M0, M1 ) ) colnames(M2) <- names(est) #--- loop over parameters A <- matrix( NA, nrow=ND, ncol=NP) rownames(A) <- names(derived.pars) colnames(A) <- names(est) derived.est <- rep( NA, ND) names(derived.est) <- names(derived.pars) for (dd in 1:ND){ #dd <- 1 Md <- stats::model.matrix(derived.pars[[dd]], M2 ) if ( ncol(Md) > 1 ){ Md <- Md[,2] } A[ dd, ] <- ( Md[-1] - Md[1] ) / hvec derived.est[dd] <- Md[1] } #--- covariance matrix derived.Sigma <- A %*% Sigma %*% t(A) #--- univariate tests se <- sqrt( diag(derived.Sigma) ) univarTest <- data.frame( parm=names(derived.pars), est=derived.est, se=se, t=derived.est / se, p=2*stats::pnorm( - abs( derived.est / se) ) ) rownames(univarTest) <- NULL #--- multivariate test R <- diag(ND) wt <- WaldTest( delta=derived.est, vcov=derived.Sigma, R=R, nobs=NA) #--- output res <- list( coef=derived.est, vcov=derived.Sigma, se=se, A=A, univarTest=univarTest, WaldTest=wt) return(res) } ###############################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/deltaMethod.R
## File Name: din.R ## File Version: 2.524 ################################################################################ # Main function for parameter estimation in cognitive diagnosis models # ################################################################################ din <- function( data, q.matrix, skillclasses=NULL, conv.crit=0.001, dev.crit=10^(-5), maxit=500, constraint.guess=NULL, constraint.slip=NULL, guess.init=rep(.2, ncol(data) ), slip.init=guess.init, guess.equal=FALSE, slip.equal=FALSE, zeroprob.skillclasses=NULL, weights=rep( 1, nrow( data ) ), rule="DINA", wgt.overrelax=0, wgtest.overrelax=FALSE, param.history=FALSE, seed=0, progress=TRUE, guess.min=0, slip.min=0, guess.max=1, slip.max=1) { # data: a required matrix of binary response data, whereas the items are in the columns # and the response pattern in the rows. NA values are allowed. # # q.matrix: a required binary matrix describing which attributes are required, coded by 1, # and which attributes are not required, coded by 0, to master the items, whereas the # attributes are in the columns and the items in the rows. # # conv.crit: termination criterion of the iterations defined as the maximum change in parameter # estimates. Iteration ends if maximal parameter change is below this value. # # maxit: maximal number of iterations. # # constraint.guess: an optional matrix of fixed guessing parameters. The first column of this # matrix indicates the items whose guessing parameters are fixed and the second column # the values the guessing parameters are fixed to. # # constraint.slip: an optional matrix of fixed slipping parameters. The first column of this matrix # indicates the items whose guessing parameters are fixed and the second column the values # the guessing parameters are fixed to. # # guess.init: an optional initial vector of guessing parameters. Guessing parameters are bounded between # 0 and 1. # # slip.init: an optional initial vector of guessing parameters. Slipping parameters are bounded between # 0 and 1. # # guess.equal: an optional logical indicating if all guessing parameters are equal to each other # # slip.equal: an optional logical indicating if all slipping parameters are equal to each other # # zeroprob.skillclasses: an optional vector of integers which indicates which skill classes should have # zero probability # # weights: an optional vector of weights for the response pattern. Noninteger weights allow for different # sampling schemes. # # wgt.overrelax ... convergence weight (overrelaxed EM)=> w=0 standard EM # rule: an optional character string or vector of character strings specifying the model rule that is used. # The character strings must be of "DINA" or "DINO". If a vector of character strings is specified, # implying an itemwise condensation rule, the vector must be of length ncol(data). The default is the # condensation rule "DINA" for all items. # # progress: an optional logical indicating whether the function should print the progress of iteration. z0 <- Sys.time() if ( progress){ cat("---------------------------------------------------------------------------------\n") } cl <- match.call() ################################################################################ # check consistency of input (data, q.matrix, ...) # ################################################################################ I <- ncol(data) if ( is.null( colnames(data) ) ){ colnames(data) <- paste0("I", 1:I ) } # different inits if seed larger than zero if ( seed > 0 ){ set.seed(seed) slip.init <- stats::runif( I, 0, .4 ) guess.init <- stats::runif( I, 0, .4 ) } clean <- check.input(data, q.matrix, conv.crit, maxit, constraint.guess, constraint.slip, guess.init, slip.init, weights, rule, progress) if (is.character(clean)) return(clean) dat.items <- clean$data; q.matrix <- clean$q.matrix; conv.crit <- clean$conv.crit; maxit <- clean$maxit; constraint.guess <- clean$constraint.guess; constraint.slip <- clean$constraint.slip; guess.init <- clean$guess.init; slip.init <- clean$slip.init; weights <- clean$weights; rule <- clean$rule; progress <- clean$progress ################################################################################ # model specification: DINA, DINO or itemwise specification of DINA or DINO # ################################################################################ if ( length(rule)==1){ if ( rule=="DINA" ){ r1 <- "DINA MODEL" } if ( rule=="DINO" ){ r1 <- "DINO MODEL" } } else { r1 <- "Mixed DINA & DINO Model" } ################################################################################ # display on R console # ################################################################################ disp <- r1 s1 <- Sys.time() if (progress){ cat(disp,"\n") cat( "**", paste(s1), "\n" ) cat("---------------------------------------------------------------------------------\n") utils::flush.console() } ################################################################################ # definition of model parameters # ################################################################################ I <- nrow(dat.items) # number of persons J <- ncol(dat.items) # number of items K <- ncol(q.matrix) # number of attributes L <- 2^K # number of latent class pattern of attributes dat.items <- as.matrix( dat.items) q.matrix <- as.matrix( q.matrix) ################################################################################ # Initialization and missing data handling # ################################################################################ # initialize guessing and slipping parameters # without constraints, the default is set equal to .2 for all items guess <- guess.init ; slip <- slip.init # missing data is coded by 9 resp <- 1 - is.na(dat.items) dat.items[ resp==0 ] <- 9 # standardize weights such that the sum of defined weights is equal to the number of rows in the data frame weights <- nrow(dat.items)*weights / sum(weights ) ################################################################################ # calculate item response patterns # ################################################################################ # string with item response patterns item.patt.subj <- dat.items[,1] for (jj in 2:J){ item.patt.subj <- paste( item.patt.subj, dat.items[,jj], sep="") } # calculate frequency of each item response pattern a2 <- rowsum( rep(1,I), item.patt.subj) item.patt <- a2[,1] # sort item response pattern according to their absolute frequencies six <- item.patt # define data frame 'item.patt' with item response pattern and its frequency (weight) item.patt <- cbind( "pattern"=names(six), "freq"=as.numeric(as.vector( six ) ) ) # calculate weighted frequency for each item response pattern h1 <- rowsum( weights, item.patt.subj ) item.patt[,2] <- h1[ match( item.patt[,1], rownames(h1) ), 1] item.patt.freq <- as.numeric(item.patt[,2]) ################################################################################ # generate all attribute patterns # ################################################################################ attr.patt <- matrix( rep( 0, K*L), ncol=K) h1 <- 2 if ( K >=2 ){ for(ll in 1:(K-1) ){ lk <- utils::combn( 1:K, ll ) for ( jj in 1:( ncol(lk) ) ){ attr.patt[ h1, lk[,jj] ] <- 1 h1 <- h1 + 1 } } } attr.patt[ L, ] <- rep( 1, K ) if ( ! is.null( skillclasses) ){ attr.patt <- skillclasses L <- nrow(attr.patt) } if ( ! is.null(colnames(q.matrix) ) ){ if (ncol(attr.patt)==ncol(q.matrix) ){ colnames(attr.patt) <- colnames(q.matrix) } } # combine all attributes in an attribute pattern as a string attr.patt.c <- apply( attr.patt, 1, FUN=function(ll){ paste(ll,collapse="" ) } ) ################################################################################ # uniform prior distribution of all latent class patterns # ################################################################################ attr.prob <- rep( 1/L, L ) if ( seed > 0 ){ attr.prob <- stats::runif( L, 0, 10/ L ) attr.prob <- attr.prob / sum( attr.prob ) } ################################################################################ # some prelimaries for EM algorithm # ################################################################################ # split item response pattern in a data frame with items as columns spl <- sapply( as.vector(item.patt[,1]), FUN=function(ii){ strsplit( ii, split=NULL) } ) item.patt.split <- matrix( rep( 0, length(spl) * J ), ncol=J ) for (ll in 1:length(spl) ){ item.patt.split[ ll, ] <- as.numeric( spl[[ll]] ) } # response pattern matrix: each observed entry corresponds to a 1, each unobserved entry to a 0 resp.patt <- 1* ( item.patt.split !=9 ) # number of item response patterns IP <- nrow(item.patt.split) # constraints for guessing and slipping parameters if ( ! is.null( constraint.slip ) ){ slip[ constraint.slip[,1] ] <- constraint.slip[,2] } if ( ! is.null( constraint.guess ) ){ guess[ constraint.guess[,1] ] <- constraint.guess[,2] } iter <- 1 # Iteration number likediff <- 1 # Difference in likelihood estimates loglike <- 0 # init for log-Likelihood # init value for maximum parameter change in likelihood maximization dev.change <- max.par.change <- 1000 # calculate for each item how many attributes are necessary for solving the items # according to the specified DINA or DINO rule comp <- ( rowSums(q.matrix) )*( rule=="DINA") + 1* ( rule=="DINO" ) # need number of components for I.lj ... compL <- cdm_matrix1( comp, ncol=L) attrpatt.qmatr <- tcrossprod( q.matrix, attr.patt ) # compute latent response latresp <- apply( attr.patt, 1, FUN=function(attr.patt.ll){ attr.patt.ll <- cdm_matrix2( attr.patt.ll, nrow=J) ind <- 1*(rowSums(q.matrix * attr.patt.ll) >=comp ) return(ind) } ) latresp1 <- latresp==1 # response patterns cmresp <- colMeans( resp.patt ) some.missings <- if( mean(cmresp) < 1){ TRUE } else { FALSE } # calculations for expected counts # this matrix is needed for computing R.lj ipr <- item.patt.split*item.patt.freq*resp.patt ipfr <- item.patt.freq*resp.patt item_patt_split1 <- item.patt.split==1 resp_patt_bool <- resp.patt==1 # response indicator list resp.ind.list <- list( 1:J ) for (i in 1:J){ resp.ind.list[[i]] <- which( resp.patt[,i]==1) } # parameter history if ( param.history ){ likelihood.history <- rep(NA, maxit ) slip.history <- guess.history <- matrix( NA, nrow=maxit, ncol=ncol(data) ) } ones_matrix <- matrix( 1, nrow=IP, ncol=L ) # cat(" *** init proc ") ; z1 <- Sys.time(); print(z1-z0) ; z0 <- z1 ################################################################################ # BEGIN OF THE ITERATION LOOP # ################################################################################ while ( iter <=maxit & ( ( max.par.change > conv.crit ) | ( dev.change > dev.crit ) ) ){ ################################################################################ # STEP I: # # calculate P(X_i | alpha_l): # # probability of each item response pattern given an attribute pattern # ################################################################################ pjm <- cdm_rcpp_din_calc_prob( latresp1=latresp1, guess=guess, slip=slip, J=J, L=L ) pjM <- array( pjm, dim=c(J,2,L) ) res.hwt <- cdm_calc_posterior( rprobs=pjM, gwt=ones_matrix, resp=item.patt.split, nitems=J, resp.ind.list=resp.ind.list, normalization=FALSE, thetasamp.density=NULL, snodes=0 ) p.xi.aj <- res.hwt$hwt #-- set likelihood for skill classes with zero probability to zero if ( ! is.null(zeroprob.skillclasses) ){ p.xi.aj[, zeroprob.skillclasses ] <- 0 } ################################################################################ # STEP II: # # calculate P( \alpha_l | X_i ): # # posterior probability of each attribute pattern given the item response pattern ################################################################################ #-- posterior probabilities P( \alpha_l | X_i ) p.aj.xi <- cdm_matrix2( attr.prob, nrow=IP ) * p.xi.aj attr.prob0 <- attr.prob if ( ! is.null( zeroprob.skillclasses ) ){ p.aj.xi[, zeroprob.skillclasses ] <- 0 } p.aj.xi <- p.aj.xi / rowSums( p.aj.xi ) #-- calculate marginal probability P(\alpha_l) for attribute alpha_l attr.prob <- colSums( p.aj.xi * item.patt.freq ) / I ################################################################################ # STEP III: # # calculate I_{lj} and R_{lj} # # for a derivation see De La Torre (2008, Journal of Educational and # # Behavioral Statistics) # # I_{lj} ... expected frequency of persons in attribute class l for item j # # (in case of no missing data I_{lj}=I_l for all items j # # R_{lj} ... expected frequency of persons in attribute class l for item j # # which correctly solve item j # ################################################################################ if ( some.missings ){ I.lj <- crossprod( ipfr, p.aj.xi ) } else { I.lj <- cdm_matrix2( crossprod( item.patt.freq, p.aj.xi), nrow=J ) } R.lj <- cdm_rcpp_din_calc_counts( p_aj_xi=p.aj.xi, item_patt_freq=item.patt.freq, item_patt_split1=item_patt_split1, resp_patt_bool=resp_patt_bool, J=J, L=L ) colnames(I.lj) <- colnames(R.lj) <- attr.patt.c rownames(I.lj) <- rownames(R.lj) <- colnames(data) ################################################################################ # STEP IV: # # calculate R_j0, I_j0, I_j1, R_j1 # # R_{j1} ... expected frequency of students which correctly solve item j and # # possess all necessary attributes for this item # # I_{j1} ... expected frequency of students which correctly solve the item # # I_{j0}, R_{j0} ... expected frequencies of students which incorrectly # # solve the item # ################################################################################ ness <- attrpatt.qmatr >=compL ness0 <- ! ness I.j0 <- rowSums( ness0 * I.lj ) I.j1 <- rowSums( ness * I.lj ) R.j0 <- rowSums( ness0 * R.lj ) R.j1 <- rowSums( ness * R.lj ) ################################################################################ # STEP V: # # M-Step: update slipping and guessing parameters. # # The guessing parameter 'guess.new' can be calculated as R.j0 / I.j0 # # -> correct solution for item j if not all necessary attributes are possessed ################################################################################ pseudo_count <- .05 I.j0[ I.j0==0] <- pseudo_count I.j1[ I.j1==0] <- pseudo_count guess.new <- R.j0 / I.j0 slip.new <- ( I.j1 - R.j1 ) / I.j1 # equal guessing and slipping parameter if (guess.equal){ guess.new <- rep( sum(R.j0) / sum(I.j0), J ) } if (slip.equal){ slip.new <- rep( sum( I.j1 - R.j1 ) / sum( I.j1), J ) } #*** overrelaxed convergence if ( wgt.overrelax > 0 ){ eps1 <- 1e-5 if ( wgtest.overrelax & ( iter > 2) ){ l1 <- c( guess.new, slip.new ) l2 <- c( guess, slip ) l3 <- c( guess.old, slip.old ) lambda <- sum( abs( l1 - l2 ) ) / sum( abs( l3 - l2 ) ) wgt.overrelax <- lambda / ( 2 - lambda ) wgt.overrelax[ wgt.overrelax <=0 ] <- eps1 wgt.overrelax[ wgt.overrelax >=.98 ] <- .98 } guess.new <- guess.new + wgt.overrelax * ( guess.new - guess ) slip.new <- slip.new + wgt.overrelax * ( slip.new - slip ) guess.new[ guess.new < 0 ] <- 0 slip.new[ slip.new < 0 ] <- 0 if ( wgtest.overrelax ){ slip.old <- slip guess.old <- guess } } # constrained slipping and guessing parameter if ( ! is.null( constraint.slip ) ){ slip.new[ constraint.slip[,1] ] <- constraint.slip[,2] } if ( ! is.null( constraint.guess ) ){ guess.new[ constraint.guess[,1] ] <- constraint.guess[,2] } #*** adjustment parameters if ( guess.min > 0 ){ guess.new <- ifelse( guess.new < guess.min, guess.min, guess.new ) } if ( guess.max < 1 ){ guess.new <- ifelse( guess.new > guess.max, guess.max, guess.new ) } if ( slip.min > 0 ){ slip.new <- ifelse( slip.new < slip.min, slip.min, slip.new ) } if ( slip.max < 1 ){ slip.new <- ifelse( slip.new > slip.max, slip.max, slip.new ) } # calculate the updated likelihood eps0 <- 1e-300 like_individual <- rowSums( p.xi.aj * cdm_matrix2( attr.prob, nrow=IP) ) like.new <- sum( log( like_individual + eps0 ) * item.patt.freq ) likediff <- abs( loglike - like.new ) loglike <- like.new dev.change <- abs( likediff / loglike ) # maximum parameter change max.par.change <- max( abs( guess.new - guess ), abs( slip.new - slip ), abs( attr.prob - attr.prob0 ) ) # define estimates which are updated in this iteration guess <- guess.new slip <- slip.new if (progress) { cat( "Iter. ",iter, " :", substring( paste(Sys.time()), first=11 ), ", ", " loglike=", round( like.new, 7), " / max. param. ch. : ", round( max.par.change, 6), " / relative deviance change : ", round( dev.change, 6) ) if( wgt.overrelax > 0){ cat(" / overrelax. parameter=", round( wgt.overrelax, 4 )) } cat("\n", sep="") utils::flush.console() # Output is flushing on the console } if ( param.history ){ likelihood.history[iter] <- like.new slip.history[iter,] <- slip guess.history[iter,] <- guess } iter <- iter + 1 # new iteration number } ################################################################################ # END OF THE ITERATION LOOP # ################################################################################ # cat(" *** iterations ") ; z1 <- Sys.time(); print(z1-z0) ; z0 <- z1 # set likelihood for skill classes with zero probability to zero if ( ! is.null(zeroprob.skillclasses) ){ p.xi.aj[, zeroprob.skillclasses ] <- 0 } # calculate posterior probability for each attribute pattern pattern <- data.frame( freq=round(as.numeric(item.patt[,-1]),3), mle.est=attr.patt.c[ max.col( p.xi.aj ) ], mle.post=rowMaxs( p.xi.aj ) / rowSums( p.xi.aj ), map.est=attr.patt.c[ max.col( p.aj.xi ) ], map.post=rowMaxs( p.aj.xi ) ) # calculate posterior probabilities for all skills separately attr.postprob <- p.aj.xi %*% attr.patt colnames( attr.postprob ) <- paste("post.attr",1:K, sep="") pattern <- cbind( pattern, attr.postprob ) ################################################################################ # estimation of the standard errors for slipping and guessing parameters # # guessing parameters (DINA and DINO) # # NOTE: In this calculation of standard errors, sample weights were not # # taken into account. Use for example the bootstrap to do some inference. # ################################################################################ se.guess <- sapply( 1:J, FUN=function(jj){ indA0.jj <- rowSums( q.matrix[jj,] * attr.patt ) < comp[jj] l1 <- rowSums( p.aj.xi * outer( resp.patt[,jj], rep(1,L) ) * ( outer( item.patt.split[,jj ], rep(1,L) ) - guess[ jj ] ) * outer( rep(1,IP), indA0.jj ) ) ( sum( item.patt.freq * l1^2 ) / guess[jj]^2 / (1-guess[jj])^2 )^(-.5) } ) # equal guessing parameter if ( guess.equal ){ se.guess <- rep( sqrt( 1 / sum( 1/ se.guess^2 ) ), J ) } # constrained guessing parameter if ( ! is.null( constraint.guess ) ){ se.guess[ constraint.guess[,1] ] <- NA } guess <- data.frame( est=guess, se=se.guess ) # slipping parameter (DINA and DINO) se.slip <- sapply( 1:J, FUN=function(jj){ indA0.jj <- rowSums( q.matrix[jj,] * attr.patt ) >=comp[jj] l1 <- rowSums( p.aj.xi * outer( resp.patt[,jj], rep(1,L) ) * ( outer( item.patt.split[,jj ], rep(1,L) ) - 1 + slip[ jj ] ) * outer( rep(1,IP), indA0.jj ) ) ( sum( item.patt.freq * l1^2 ) / slip[jj]^2 / (1-slip[jj])^2 )^(-.5) } ) # equal slipping parameter if ( slip.equal ){ se.slip <- rep( sqrt( 1 / sum( 1/ se.slip^2 ) ), J ) } # constrained slipping parameter if ( ! is.null( constraint.slip ) ){ se.slip[ constraint.slip[,1] ] <- NA } slip <- data.frame( est=slip, se=se.slip ) # attribute pattern attr.prob <- matrix( attr.prob, ncol=1) colnames( attr.prob ) <- "class.prob" rownames( attr.prob ) <- attr.patt.c # pattern for seperate skills skill.patt <- matrix(apply( matrix( rep( attr.prob, K ), ncol=K) * attr.patt, 2, sum ),ncol=1) # rownames(skill.patt) <- paste("Skill_", colnames(q.matrix),sep="") rownames(skill.patt) <- colnames(q.matrix) colnames(skill.patt) <- "skill.prob" # calculation of the AIC und BIC bb <- 0 if ( ! is.null( constraint.guess) ){ bb <- bb + nrow(constraint.guess) } if ( ! is.null( constraint.slip ) ){ bb <- bb + nrow(constraint.slip) } if( guess.equal){ bb <- bb + J - 1 } if( slip.equal){ bb <- bb + J - 1 } # collect number of parameters pars <- data.frame( "itempars"=2*J - bb ) # number of skill classes pars$skillpars <- L - 1 - length( zeroprob.skillclasses ) Np <- pars$itempars + pars$skillpars aic <- -2*loglike + 2*Np bic <- -2*loglike + log(I)*Np rownames( p.aj.xi ) <- rownames( pattern ) # output rownames posterior probabilities pattern <- data.frame(pattern) # convert pattern to numeric format for (vv in seq(1,ncol(pattern))[ -c(2,4) ] ){ pattern[,vv ] <- as.numeric( paste( pattern[,vv] ) ) } # subject pattern # changed item.patt.subj$pattern.index (ARb 2012-06-05) item.patt.subj <- data.frame( "case"=1:(nrow(data) ), "pattern"=item.patt.subj, "pattern.index"=match( item.patt.subj, item.patt[,1] ) ) # attribute pattern (expected frequencies) attr.prob <- data.frame( attr.prob ) attr.prob$class.expfreq <- attr.prob[,1] * nrow(data) #***** # modify output (ARb 2012-06-05) pattern <- pattern[ item.patt.subj$pattern.index, ] pattern[,1] <- paste( item.patt.subj$pattern ) colnames(pattern)[1] <- "pattern" p.aj.xi__ <- p.aj.xi p.aj.xi <- p.aj.xi[ item.patt.subj$pattern.index, ] rownames(p.aj.xi) <- pattern$pattern colnames(p.aj.xi) <- rownames(attr.prob) p.xi.aj <- p.xi.aj[ item.patt.subj$pattern.index, ] rownames(p.xi.aj) <- pattern$pattern colnames(p.xi.aj) <- colnames(p.aj.xi) ######################################### # item fit [ items, theta, categories ] # # n.ik [ 1:TP, 1:I, 1:(K+1), 1:G ] n.ik <- array( 0, dim=c(L, J, 2, 1 ) ) n.ik[,, 2, 1 ] <- t(R.lj) n.ik[,, 1, 1 ] <- t(I.lj-R.lj) pi.k <- array( 0, dim=c(L,1) ) pi.k[,1] <- attr.prob$class.prob probs <- aperm( pjM, c(3,1,2) ) itemfit.rmsea <- itemfit.rmsea( n.ik, pi.k, probs )$rmsea #***** datfr <- data.frame( round( cbind( guess, slip ), 3 ) ) colnames(datfr) <- c("guess", "se.guess", "slip", "se.slip" ) rownames(datfr) <- colnames( dat.items ) datfr <- data.frame( "type"=rule, datfr ) datfr$rmsea <- itemfit.rmsea names(itemfit.rmsea) <- colnames(data) s2 <- Sys.time() #****** # parameter table for din object res.partable <- din.partable( guess, slip, attribute.patt=attr.prob, data=data, rule=paste0(datfr$type), guess.equal, slip.equal, constraint.guess, constraint.slip, zeroprob.skillclasses, attribute.patt.splitted=attr.patt ) partable <- res.partable$partable vcov.derived <- res.partable$vcov.derived if (progress){ cat("---------------------------------------------------------------------------------\n") } # coefficients p1 <- partable[ partable$free, ] p1 <- p1[ ! duplicated(p1$parindex), ] p11 <- p1$value names(p11) <- p1$parnames res <- list( coef=p11, item=datfr, guess=guess, slip=slip, "IDI"=round(1 - guess[,1] - slip[,1],4), "itemfit.rmsea"=itemfit.rmsea, "mean.rmsea"=mean(itemfit.rmsea), loglike=loglike, AIC=aic, BIC=bic, "Npars"=pars, posterior=p.aj.xi, "like"=p.xi.aj, "data"=data, "q.matrix"=q.matrix, pattern=pattern, attribute.patt=attr.prob, skill.patt=skill.patt, "subj.pattern"=item.patt.subj, "attribute.patt.splitted"=attr.patt, "display"=disp, "item.patt.split"=item.patt.split, "item.patt.freq"=item.patt.freq, "model.type"=r1, "rule"=rule, "zeroprob.skillclasses"=zeroprob.skillclasses, "weights"=weights, "pjk"=pjM, "I"=I, "I.lj"=I.lj, "R.lj"=R.lj, "partable"=partable, "vcov.derived"=vcov.derived, "seed"=seed, "start.analysis"=s1, "end.analysis"=s2, "iter"=iter , "converged"=iter < maxit ) res$timediff <- s2 - s1 if (progress){ print(s2-s1) } if (param.history){ param.history <- list( "likelihood.history"=likelihood.history, "slip.history"=slip.history, "guess.history"=guess.history ) res$param.history <- param.history } # control parameters control <- list( q.matrix=q.matrix, skillclasses=skillclasses, conv.crit=conv.crit, dev.crit=dev.crit, maxit=maxit, constraint.guess=constraint.guess, constraint.slip=constraint.slip, guess.init=guess.init, slip.init=slip.init, guess.equal=guess.equal, slip.equal=slip.equal, zeroprob.skillclasses=zeroprob.skillclasses, weights=weights, rule=rule, wgt.overrelax=wgt.overrelax, wgtest.overrelax=wgtest.overrelax, latresp=latresp, resp.ind.list=resp.ind.list ) res$control <- control res$call <- cl class(res) <- "din" return(res) } # cat("calc.like") ; z1 <- Sys.time(); print(z1-z0) ; z0 <- z1
/scratch/gouwar.j/cran-all/cranData/CDM/R/din.R
## File Name: din.deterministic.R ## File Version: 1.126 #*** Deterministic din estimation din.deterministic <- function( dat, q.matrix, rule="DINA", method="JML", conv=.001, maxiter=300, increment.factor=1.05, progress=TRUE) { #--- data preparations dat0 <- dat I <- ncol(dat) N <- nrow(dat) dat[ is.na(dat) ] <- 0 dat.resp <- 1*(1-is.na(dat0)) if ( length(rule)==1 ){ rule <- rep( rule, I ) } dat <- as.matrix(dat) dat.resp <- as.matrix(dat.resp) # define attribute patterns attr.patt <- define.attribute.space(q.matrix=q.matrix) AP <- nrow(attr.patt) rownames(q.matrix) <- colnames(dat) # compute latent responses latresp <- compute.latent.response( attr.patt=attr.patt, q.matrix=q.matrix, rule=rule) # initial guessing and slipping parameters guess <- stats::runif( I, .1, .15) slip <- stats::runif( I, .1, .15) max.increment <- 1 # initial latent response vector latresp.est <- latresp[ rep(1,N), ] parchange <- 1000 if ( method=="weighted.hamming"){ pbar <- colMeans( dat0, na.rm=TRUE ) guess <- slip <- 1 / ( pbar * ( 1 - pbar ) ) maxiter <- 1 } if ( method=="hamming"){ guess <- slip <- rep(.2,I) maxiter <- 1 } iter <- 0 while( ( iter < maxiter ) & (parchange > conv) ){ slip0 <- slip guess0 <- guess latresp.est0 <- latresp.est # compute individual deviations if (method!="JML"){ res <- cdm_rcpp_din_deterministic_devcrit( DAT=dat, DATRESP=dat.resp, LATRESP=latresp, GUESS=guess, SLIP=slip ) } if (method=="JML"){ res <- cdm_rcpp_din_jml_devcrit(DAT=dat, DATRESP=dat.resp, LATRESP=latresp, GUESS=guess, SLIP=slip ) } # compute individual classifications attr.est <- attr.patt[ res$indexcrit, ] attr.est.index <- res$indexcrit # extract estimated latent responses latresp.est <- latresp[ attr.est.index, ] # changes in estimated skill patterns latresp.change <- mean( abs( latresp.est - latresp.est0 ) ) # calculate guessing and slipping parameters # slipping L1 <- ( latresp.est==1 ) * (dat.resp==1 ) L2 <- L1*(dat==1) slip <- 1 - colSums(L2) / ( colSums(L1) + .00001 ) # guessing L1 <- ( latresp.est==0 ) * (dat.resp==1 ) L2 <- L1*(dat==0) guess <- 1 - colSums(L2) / ( colSums(L1) + .00001 ) # update increment if (maxiter > 1){ increment <- guess - guess0 max.increment <- max.increment/increment.factor guess <- guess0 + ifelse( abs( increment) > max.increment, sign(increment)*max.increment, increment ) increment <- slip - slip0 slip <- slip0 + ifelse( abs( increment) > max.increment, sign(increment)*max.increment, increment ) } max.increment <- parchange <- max( abs( c(guess-guess0, slip-slip0) ) ) # extract deviation value if ( method!="JML"){ devval <- sum(res$mincrit) } else { devval <- sum(-2*log(res$mincrit)) } iter <- iter + 1 # print progress if (progress){ cat("Iteration", iter ) if ( method=="JML"){ cat(" | Deviance=",round(devval,3) ) cat("\n ****") } if ( method!="JML"){ cat(" |") } cat(" Average change in classifications=",round(latresp.change,5) ) if (method %in% c("JML","adaptive") ){ cat(" | Max. param. change=", round( max.increment,6), "\n") } else { cat("\n") } utils::flush.console() } } #--- compute prediction error prederror <- sum( dat.resp * abs( dat - latresp.est ) ) / sum( dat.resp ) if (progress){ cat("-------------------\n" ) cat("Average predictor error=",round(prederror,9) ) cat("\n") } # collect output values res <- list( attr.est=latresp.est, criterion=devval, guess=guess, slip=slip, prederror=prederror, q.matrix=q.matrix, dat=dat0 ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/din.deterministic.R
## File Name: din.deterministic_alg.R ## File Version: 0.182 ############################################################## # link to Rcpp functions din.deterministic.devcrit <- function( dat, datresp, latresp, guess, slip ) { res <- cdm_rcpp_din_deterministic_devcrit( dat, datresp, latresp, guess, slip ) return(res) } #********** # JML estimation function din.jml.devcrit <- function( dat, datresp, latresp, guess, slip ) { res <- cdm_rcpp_din_jml_devcrit(dat, datresp, latresp, guess, slip ) return(res) } ################################################################# # define different attribute pattern for dichotomous attributes define.attribute.space <- function( q.matrix ) { nodes <- c(0,1) K <- ncol(q.matrix) attr.patt <- as.matrix( expand.grid( as.data.frame( matrix(rep(nodes, K), ncol=K)))) if ( ! is.null( colnames(q.matrix) ) ){ colnames(attr.patt) <- colnames(q.matrix) } return(attr.patt) } ################################################################# # compute latent responses compute.latent.response <- function( attr.patt, q.matrix, rule=NULL) { AP <- nrow(attr.patt) I <- nrow(q.matrix) if ( is.null(rule) ){ rule <- rep("DINA", I ) } latresp <- matrix( NA, nrow=AP, ncol=I) colnames(latresp) <- rownames(q.matrix) for (ii in 1:I){ comp.ii <- 1 if ( rule[ii]=="DINA"){ comp.ii <- sum(q.matrix[ii,] ) } latresp[,ii] <- 1 * ( attr.patt %*% q.matrix[ii,] >=comp.ii ) } return( as.matrix(latresp) ) } ##################################################################### # calculate deviation criterion # loop over attributes calc.devcrit <- function( dat, dat.resp, latresp,slip, guess, N, I, AP) { dev.crit <- matrix( NA, nrow=N, ncol=AP ) for (aa in 1:AP){ lat.aa <- matrix( latresp[aa,], nrow=N, ncol=I, byrow=TRUE) dev.crit[,aa] <- rowSums( slip * ( lat.aa - dat ) * ( lat.aa==1 ) * dat.resp + guess * ( dat - lat.aa ) * ( lat.aa==0 ) * dat.resp ) } return(dev.crit) } #######################################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/din.deterministic_alg.R
## File Name: din.equivalent.class.R ## File Version: 0.191 #**** calculation of equivalent skill classes din.equivalent.class <-function( q.matrix, rule="DINA") { Q <- q.matrix # Matrix with all skill classes S <- expand.grid( as.data.frame( t( matrix( rep( c(0,1), each=ncol(Q)), ncol=2 )))) J <- nrow(Q) if ( length(rule)==1){ rule <- rep( rule, J ) } rownames(S) <- paste0("Skills_", apply( S, 1, FUN=function(ll){ paste(ll, collapse="" ) } ) ) # Calculation of latent response of every skill class A <- din_equivalent_class_latent_response(q.matrix=Q,S=S,rule=rule) A <- t(A) I <- nrow(A) # calculate latent responses latent.response <- paste0("LatResp_", sapply( 1:I, FUN=function(ii){ paste( A[ ii, ], collapse="" ) } ) ) skillclasses <- data.frame( "skillclass"=rownames(S) ) skillclasses$latent.response <- latent.response # define distinguishable skill classes skillclasses$distinguish.class <- match( latent.response, unique( latent.response ) ) # calculates how many skill classes correspond to the same latent response latent.response <- table( latent.response ) six <- sort( latent.response, index.return=FALSE, decreasing=TRUE) gini_mod <- cdm_gini( as.numeric(six) ) res <- list( "latent.responseM"=A, "latent.response"=latent.response, "S"=S, "gini"=gini_mod, "skillclasses"=skillclasses ) cat( nrow(S), "Skill classes |", max( skillclasses$distinguish.class ), " distinguishable skill classes |", "Gini coefficient=", round( gini_mod,3 ), "\n") return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/din.equivalent.class.R
## File Name: din.partable.R ## File Version: 0.24 ############################################## # parameter table for the din model din.partable <- function( guess, slip, attribute.patt, data, rule, guess.equal, slip.equal, constraint.guess, constraint.slip, zeroprob.skillclasses, attribute.patt.splitted ) { # parameters J <- nrow(guess) L <- nrow(attribute.patt) items <- colnames(data) K <- ncol(attribute.patt.splitted) #************** # create parameter table partable <- data.frame( "partype"=c( rep( c("guess","slip"), J), rep("probs", L), rep("margprobs", K ) ) ) partable$parindex <- c( 1:J, J + 1:J, 2*J + 1:(L-1), 0, rep( 0, K )) partable$item <- c( rep(1:J, each=2 ), rep(0,L+K) ) partable$item.name <- c( rep(colnames(data),each=2), rep("",L+K) ) partable$skillclass <- c( rep(0,2*J), 1:(L), rep(0,K)) partable$varyindex <- c( rep(1:J, each=2 ), 1:(L-1), 0, rep(0,K)) m1 <- paste0( rep( items, each=2 ), "_", c( "guess", "slip" ) ) partable$parnames <- c( m1, paste0( "prob_class", 1:L ), paste0( "prob_skill", 1:K )) dfr <- cbind( guess$est, slip$est ) dfr <- matrix( t(dfr), nrow=1, byrow=TRUE ) # marginal skill probabilities margskills <- colSums( attribute.patt.splitted * attribute.patt[,1] ) partable$value <- c( dfr[1,], attribute.patt[,1], margskills ) partable$fixed <- FALSE partable$free <- partable$parindex > 0 partable$rule <- c( rep(rule,2), rep("",L+K) ) partable$totindex <- 1:(nrow(partable)) #************************** # include item parameter constraints if (guess.equal){ p1 <- partable[ partable$partype=="guess", ] partable[ p1$totindex, "parindex" ] <- p1$parindex[1] partable[ p1$totindex, "parnames" ] <- "all_guess" } if (slip.equal){ p1 <- partable[ partable$partype=="slip", ] partable[ p1$totindex, "parindex" ] <- p1$parindex[1] partable[ p1$totindex, "parnames" ] <- "all_slip" } if ( ! is.null(constraint.slip) ){ p1 <- partable[ ( partable$partype=="slip" ) & ( partable$item %in% constraint.slip[,1] ), ] partable[ p1$totindex, "fixed" ] <- TRUE partable[ p1$totindex, "free" ] <- FALSE partable[ p1$totindex, "parindex" ] <- 0 } if ( ! is.null(constraint.guess) ){ p1 <- partable[ ( partable$partype=="guess" ) & ( partable$item %in% constraint.guess[,1] ), ] partable[ p1$totindex, "fixed" ] <- TRUE partable[ p1$totindex, "free" ] <- FALSE partable[ p1$totindex, "parindex" ] <- 0 } if ( ! is.null(zeroprob.skillclasses) ){ p1 <- partable[ ( partable$partype=="probs" ) & ( partable$skillclass %in% zeroprob.skillclasses ), ] partable[ p1$totindex, "fixed" ] <- TRUE partable[ p1$totindex, "free" ] <- FALSE partable[ p1$totindex, "parindex" ] <- 0 } #********************************* # include parameter transformation matrix estpars <- unique( partable[ partable$parindex > 0, "parnames" ] ) allpars <- unique( partable$parnames ) MP <- length(allpars) FP <- length(estpars) A <- matrix( 0, nrow=MP, ncol=FP) rownames(A) <- allpars colnames(A) <- estpars # free parameters a1 <- match( estpars, allpars ) A[ cbind( a1, 1:FP ) ] <- 1 # probabilities of last class probs_names <- partable[ partable$partype=="probs", "parnames" ] v1 <- probs_names[ length(probs_names ) ] v2 <- intersect( setdiff( probs_names, v1 ), estpars ) A[ v1, v2 ] <- - 1 # marginal skill probabilities rownames(attribute.patt.splitted) <- probs_names colnames(attribute.patt.splitted) <- partable[ partable$partype=="margprobs", "parnames" ] attribute.patt.splitted <- ( attribute.patt.splitted - 1 ) a1 <- t(attribute.patt.splitted) a1 <- a1[, intersect( estpars, colnames(a1) ) ] A[ rownames(a1), colnames(a1) ] <- a1 #********************************* # introduce new parameter index partable$parindex <- match( partable$parindex, sort(unique(partable$parindex) ) ) - 1 res <- list( "partable"=partable, "vcov.derived"=list("A"=A) ) return(res) } ###########################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/din.partable.R
## File Name: din.validate.qmatrix.R ## File Version: 1.429 #---- Q-matrix validation based on the DINA model din.validate.qmatrix <- function( object, IDI_diff=.02, print=TRUE ) { s1 <- Sys.time() #--- extract original Q-matrix q.matrix <- object$q.matrix rule <- object$rule if (length(rule)==1){ rule <- rep( rule, nrow(q.matrix) ) } # extract estimated parameters guess <- object$guess[,1] slip <- object$slip[,1] # calculate originally estimated IDI IDI <- 1 - slip - guess #**** # define all possible Q-matrix vectors nodes <- c(0,1) K <- ncol(q.matrix) L <- 2^K q.matrix.poss <- as.matrix( expand.grid( as.data.frame( matrix( rep(nodes, K), ncol=K ) ) ) ) colnames(q.matrix.poss) <- colnames(q.matrix) q.matrix.poss <- q.matrix.poss[ ! ( rowMeans( q.matrix.poss ) %in% c(0) ), ] QQM <- nrow(q.matrix.poss) # number of possible Q-matrix vectors #**** # extract data and attributes data <- object$data I <- ncol(data) # number of items I.lj <- object$I.lj R.lj <- object$R.lj attr.patt <- object$attribute.patt.splitted # calculate modification item parameters coef.modified <- matrix( 0, nrow=QQM*I, ncol=4 ) colnames(coef.modified) <- c("item", "qmatrix.row", "guess", "slip" ) coef.modified <- as.data.frame( coef.modified ) coef.modified$item <- rep( 1:I, QQM ) coef.modified$qmatrix.row <- rep( 1:QQM, each=I ) #-- Q-matrix validation core function res <- cdm_rcpp_din_validate_update_qmatrix( qmatrix_poss=q.matrix.poss, attr_patt=attr.patt, Ilj=I.lj, Rlj=R.lj, I=I, L=L, K=K, rule=rule ) coef.modified$guess <- res$guess_M coef.modified$slip <- res$slip_M coef.modified <- coef.modified[ order( coef.modified$item ), ] coef.modified$IDI <- 1 - coef.modified$slip - coef.modified$guess # look for original rows coef.modified$qmatrix.orig <- 1*( rowMeans(q.matrix.poss[ coef.modified$qmatrix.row,] ==q.matrix[ coef.modified$item, ] )==1 ) coef.modified$IDI.orig <- IDI[ coef.modified$item ] coef.modified$delta.IDI <- coef.modified$IDI - coef.modified$IDI.orig # restructure matrix coef.modified coef.modified <- data.frame( item=colnames(data)[ coef.modified$item ], itemindex=coef.modified$item, q.matrix.poss[ coef.modified$qmatrix.row, ], coef.modified[, - c(1:2) ] ) #-- calculate maximum delta index per item # a1 <- stats::aggregate( coef.modified$IDI, list( coef.modified$itemindex ), max ) a1 <- cdm_rcpp_din_validate_aggregate_max( IDI=coef.modified$IDI, itemindex=coef.modified$itemindex, I=I) coef.modified$max.IDI <- a1[ coef.modified$itemindex, 2] coef.modified <- coef.modified[ order(coef.modified$itemindex - coef.modified$IDI ),] # print output coef.modified2 <- coef.modified improve <- coef.modified2$IDI - coef.modified$IDI.orig > IDI_diff coef.modified2 <- coef.modified2[ improve, ] nochange <- nrow(coef.modified2)==0 # calculate proposed Q-matrix q.matrix.prop <- q.matrix if ( ! nochange ){ items <- unique( coef.modified2$itemindex ) for (ii in items ){ c2 <- ( coef.modified2[ coef.modified2$itemindex==ii, ] )[1,] q.matrix.prop[ ii, ] <- as.vector( t(c2[ 1, seq(3, 3+K -1) ]) ) } } if ( print ){ if ( ! nochange ){ print( coef.modified2 ) cat("\nProposed Q-matrix:\n\n") print(q.matrix.prop) } if ( nochange ){ cat("No Q-matrix entries should be changed.\n") } } s2 <- Sys.time() res <- list( coef.modified=coef.modified, coef.modified.short=coef.modified2, q.matrix.prop=q.matrix.prop, time_diff=s2 - s1 ) class(res) <- "din.validate.qmatrix" return(res) } # cat("* loop") ; z1 <- Sys.time(); print(z1-z0) ; z0 <- z1
/scratch/gouwar.j/cran-all/cranData/CDM/R/din.validate.qmatrix.R
## File Name: din_equivalent_class_latent_response.R ## File Version: 0.04 #********************************************************** # calculates a latent response under the din function din_equivalent_class_latent_response <- function( q.matrix, S, rule="DINA") { Q <- as.matrix(q.matrix) S <- as.matrix(S) L <- matrix(nrow=nrow(Q), ncol=nrow(S)) SQ <- S %*% t(Q) nums <- rowSums(Q) nums <- ifelse( rule=="DINO", 1, nums ) nums <- matrix( nums, nrow=nrow(SQ), ncol=ncol(SQ), byrow=TRUE ) SQ <- 1 * ( SQ >=nums ) L <- t(SQ) colnames(L) <- rownames(S) return(L) } din.latent.response <- din_equivalent_class_latent_response
/scratch/gouwar.j/cran-all/cranData/CDM/R/din_equivalent_class_latent_response.R
## File Name: din_identifiability.R ## File Version: 0.071 din_identifiability <- function(q.matrix) { K <- ncol(q.matrix) I <- nrow(q.matrix) if (is.null(colnames(q.matrix))){ colnames(q.matrix) <- paste0("Skill", 1:K) } skills <- colnames(q.matrix) #* search for identity matrix (single loadings) vec0 <- rep(0,K) index_single <- cdm_create_vector(names=skills, val=NA) is_single <- cdm_create_vector(names=skills, val=FALSE) for (kk in 1:K){ vec1 <- vec0 vec1[kk] <- 1 rm1 <- rowMeans( q.matrix==cdm_matrix2(vec1, nrow=I) ) ind1 <- which( rm1==1 )[1] index_single[kk] <- ind1 if ( ! is.na(ind1) ){ is_single[kk] <- TRUE } } #- each of the attributes measured by at least three items skills_items <- colSums(q.matrix) is_three_items <- skills_items >=3 #- distinctness of columns in submatrix submat_distinct <- TRUE Q_ast <- q.matrix[-na.omit(index_single),] for (ii in 1:(K-1)){ for (jj in (ii+1):K){ submat_distinct <- submat_distinct & ( !( mean( Q_ast[,ii]==Q_ast[,jj] )==1 )) } } # Q-matrix information item_M <- mean( rowSums(q.matrix) ) qmat_stat <- list(item_M=item_M, skills_items=skills_items) dina_identified <- prod(is_single) & prod(is_three_items) & submat_distinct #-- output res <- list( index_single=index_single, is_single=is_single, is_three_items=is_three_items, submat_distinct=submat_distinct, q.matrix=q.matrix, I=I, K=K, qmat_stat=qmat_stat, dina_identified=dina_identified) class(res) <- "din_identifiability" return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/din_identifiability.R
## File Name: discrim.index.R ## File Version: 0.11 discrim.index <- function(object, ...) { UseMethod("discrim.index") } discrim_index_cdm <- function( object, ...) { attr_patt <- object$attribute.patt.splitted probs <- IRT.irfprob(object) skill_names <- colnames(object$q.matrix) res <- discrim_index_computation( attr_patt=attr_patt, probs=probs, skill_names=skill_names, item_names=dimnames(probs)[[1]] ) return(res) } discrim.index.din <- discrim_index_cdm discrim.index.gdina <- discrim_index_cdm discrim.index.mcdina <- discrim_index_cdm
/scratch/gouwar.j/cran-all/cranData/CDM/R/discrim.index.R
## File Name: discrim_index_computation.R ## File Version: 0.222 discrim_index_computation <- function( attr_patt, probs, skill_names=NULL, item_names=NULL) { #-- matrix containing attribute vectors for comparison comp_matrix <- cdm_rcpp_discrimination_index_attribute_patterns(attr_patt=attr_patt) #--- compute discrimination indices probs_ <- as.vector(probs) dim_probs <- dim(probs) ncat <- dim_probs[2] K <- ncol(attr_patt) discrim_item_attribute <- cdm_rcpp_discrimination_index_calc( comp_matrix=comp_matrix, probs=probs_, dim_probs=dim_probs, K=K ) colnames(discrim_item_attribute) <- skill_names #--- item discrimination index IDI idi <- cdm_rcpp_discrimination_index_idi( probs=probs_, dim_probs=dim_probs, K=K ) names(idi) <- item_names #--- discrimination index at test level discrim_test <- cdm_rcpp_discrimination_index_test_level( discrim_item_attribute=discrim_item_attribute) #--- labelling if ( is.null(skill_names)){ skill_names <- colnames(attr_patt) } if ( is.null(item_names) ){ item_names <- dimnames(probs)[[1]] } colnames(discrim_item_attribute) <- skill_names discrim_item_attribute <- data.frame( item=item_names, discrim_item_attribute ) #--- output res <- list( comp_matrix=comp_matrix, discrim_item_attribute=discrim_item_attribute, discrim_test=discrim_test, idi=idi) class(res) <- "discrim.index" return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/discrim_index_computation.R
## File Name: dpm_calc_probs.R ## File Version: 0.02 dpm_calc_probs <- function( vh ) { N_max <- length(vh) probs <- rep( 1, N_max) probs[1] <- vh[1] for (tt in 2:N_max){ probs[tt] <- vh[tt] * prod( 1 - vh[ 1:(tt-1)] ) } return(probs) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/dpm_calc_probs.R
## File Name: entropy.lca.R ## File Version: 0.194 #--- entropy for din, gdina and mcdina objects entropy.lca <- function( object ) { posterior <- object$like data <- object$data weights <- object$control$weights pjk <- object$pjk if ( inherits(object,"mcdina") ){ weights <- object$weights data <- object$dat data <- data - 1 pjk <- object$pik[,,,1] } skillspace <- object$attribute.patt.splitted q.matrix <- object$q.matrix data.resp <- 1-is.na(data) data[is.na(data) ] <- 0 N <- length(weights) weights <- N / sum(weights) * weights L <- nrow(skillspace ) K <- ncol(skillspace) I <- ncol(data) eps <- 1E-10 posterior <- posterior / rowSums( posterior ) #*** calculate entropy for whole test entropy.total <- 1 + sum( weights * posterior * log( posterior + eps) )/N/log(L) #*** maximum number of skills maxskill <- apply( skillspace, 2, max ) #*** entropy for each skill entropy.skill <- rep(0,K) for (kk in 1:K){ # kk <- 1 Nkk <- maxskill[kk] posterior.kk <- matrix(NA, nrow=N, ncol=Nkk+1 ) for (vv in 0:Nkk){ posterior.kk[,vv+1] <- rowSums( posterior[, skillspace[,kk]==vv ] ) } entropy.skill[kk] <- 1 + sum( weights * posterior.kk * log(posterior.kk+eps))/ N / log(Nkk+1) } #******** entropy for each item entropyM <- matrix( NA, nrow=I+1, ncol=K +1 ) entropyM[1,] <- c( entropy.total, entropy.skill ) for (ii in 1:I){ weights.ii <- weights * data.resp[,ii] N.ii <- sum(weights.ii) pjk.ii <- pjk[ii,,] pjkM <- pjk.ii[ data[,ii] +1, ] posterior.ii <- pjkM posterior.ii <- posterior.ii / rowSums( posterior.ii ) entropyM[ii+1,1] <- 1 + sum( weights.ii * posterior.ii * log(posterior.ii + eps) )/N.ii/log(L) for (kk in 1:K){ # skill kk and item ii Nkk <- maxskill[kk] posterior.kk <- matrix(NA, nrow=N, ncol=Nkk+1 ) for (vv in 0:Nkk){ posterior.kk[,vv+1] <- rowSums( posterior.ii[, skillspace[,kk]==vv ] ) } entropyM[ii+1,kk+1] <- 1 + sum( weights * posterior.kk * log(posterior.kk + eps) )/N/log(Nkk+1) } } res <- data.frame( "item"=c("test", colnames(data) ), entropyM ) colnames(res)[-1] <- c("entr_test",paste0("entr_skill", 1:K ) ) res2 <- list( "entropy"=res ) class(res2) <- "entropy.lca" return(res2) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/entropy.lca.R
## File Name: equivalent.dina.R ## File Version: 2.20 equivalent.dina <- function (q.matrix, reparameterization="B") { reparametrization <- reparameterization K <- ncol(q.matrix) I <- nrow(q.matrix) if (is.null(colnames(q.matrix))) { colnames(q.matrix) <- paste("S", 1:K, sep="") } if (is.null(rownames(q.matrix))) { rownames(q.matrix) <- paste("I", 1:I, sep="") } L <- 2^K dich_vec <- c(0,1) dfr <- as.matrix( dich_vec, ncol=1) rownames(dfr) <- NULL for (kk in 2:K){ dfr <- rbind( cbind( dfr, 0), cbind( dfr, 1) ) } attr.patt <- as.matrix(dfr) alpha <- attr.patt l1 <- apply(alpha, 1, FUN=function(hh) { paste(hh, collapse="") }) alpha <- matrix(NA, L, K) for (kk in 1:K) { alpha[, kk] <- as.numeric(substring(l1, kk, kk)) } alpha <- data.frame(alpha) rownames(alpha) <- l1 colnames(alpha) <- colnames(q.matrix) #*** link to alpha.ast alpha_ast_index <- alpha[,1] for ( kk in 2:K){ alpha_ast_index <- alpha_ast_index + 2^(kk-1)*alpha[,kk] } #--- reparametrization B if (reparametrization=="B") { qclasses <- q.matrix[,1] for (kk in 2:K){ qclasses <- qclasses + 2^(kk-1) * q.matrix[,kk] } uqclasses <- setdiff(unique(qclasses),0) qclasses <- match( qclasses, uqclasses ) L1 <- length( uqclasses ) q.matrix.ast <- matrix(0, I, L1) q.matrix.ast[ cbind(1:I, qclasses) ] <- 1 qclasses[ is.na(qclasses) ] <- -9 rownames(q.matrix.ast) <- rownames(q.matrix) v1 <- rep( "", L1 ) for (cc in 1:L1){ q_cc <- q.matrix[ which(qclasses==cc),, drop=FALSE] q_cc <- q_cc[1,] v1[cc] <- paste0("S*", paste0( q_cc, collapse="" ) ) } colnames(q.matrix.ast) <- v1 alpha.ast <- matrix(0, L, L1) rownames(alpha.ast) <- rownames(alpha) colnames(alpha.ast) <- colnames(q.matrix.ast) for (tt in 1:L){ alpha_tt <- alpha[ tt, ] for (ll in 1:L1){ q_ll <- q.matrix[ qclasses==ll,, drop=FALSE] q_ll <- q_ll[1,] v_tt_ll <- prod( alpha_tt^q_ll ) if (v_tt_ll==1 ){ alpha.ast[tt,ll] <- 1 } } } } #---------------------------------------------- #--- reparametrization A if (reparametrization=="A") { alpha.ast <- matrix(0, L, L) rownames(alpha.ast) <- rownames(alpha) colnames(alpha.ast) <- rownames(alpha) diag(alpha.ast) <- 1 alpha.ast <- alpha.ast[, -1] q.matrix.ast <- matrix(0, I, L) rownames(q.matrix.ast) <- rownames(q.matrix) colnames(q.matrix.ast) <- paste("S*", rownames(alpha), sep="") for (ii in 1:I) { q.ii <- q.matrix[ii, ] a1 <- rep(0,L) for (hh in 1:L){ v_hh <- prod( alpha[hh, ]^q.ii ) if ( v_hh==1 ){ a1[hh] <- 1 } } q.matrix.ast[ii, ] <- a1 } q.matrix.ast[ rowSums(q.matrix)==0, ] <- 0 q.matrix.ast <- q.matrix.ast[, -1] } #--- OUTPUT res <- list(q.matrix=q.matrix, q.matrix.ast=q.matrix.ast, alpha=alpha, alpha.ast=alpha.ast ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/equivalent.dina.R
## File Name: equivalent.skillclasses.R ## File Version: 0.16 #********************************************************** # calculates a latent response under the din function din.latent.response <- function( q.matrix, S, rule="DINA") { Q <- as.matrix(q.matrix) S <- as.matrix(S) L <- matrix(nrow=nrow(Q), ncol=nrow(S)) SQ <- S %*% t(Q) nums <- rowSums(Q) nums <- ifelse( rule=="DINO", 1, nums ) nums <- matrix( nums, nrow=nrow(SQ), ncol=ncol(SQ), byrow=TRUE ) SQ <- 1 * ( SQ >=nums ) L <- t(SQ) colnames(L) <- rownames(S) return(L) } ################################### # calculation of equivalent skill classes din.equivalent.class <-function( q.matrix, rule="DINA") { Q <- q.matrix # Matrix with all skill classes S <- expand.grid( as.data.frame( t( matrix( rep( c(0,1), each=ncol(Q) ), ncol=2 )))) J <- nrow(Q) if ( length(rule)==1){ rule <- rep( rule, J ) } rownames(S) <- paste0("Skills_", apply( S, 1, FUN=function(ll){ paste(ll, collapse="" ) } ) ) # Calculation of latent response of every skill class A <- din.latent.response(Q,S,rule=rule) A <- t(A) I <- nrow(A) # calculate latent responses latent.response <- paste0("LatResp_", sapply( 1:I, FUN=function(ii){ paste( A[ ii, ], collapse="" ) } ) ) skillclasses <- data.frame( "skillclass"=rownames(S) ) skillclasses$latent.response <- latent.response # define distinguishable skill classes skillclasses$distinguish.class <- match( latent.response, unique( latent.response ) ) # calculates how many skill classes correspond to the same latent response latent.response <- table( latent.response ) six <- sort( latent.response, index.return=FALSE, decreasing=TRUE) gini_mod <- cdm_gini( as.numeric(six) ) res <- list( "latent.responseM"=A, "latent.response"=latent.response, "S"=S, "gini"=gini_mod, "skillclasses"=skillclasses ) cat( nrow(S), "Skill classes |", max( skillclasses$distinguish.class ), " distinguishable skill classes |", "Gini coefficient=", round( gini_mod,3 ), "\n") return(res) } #--- Gini coefficient, function simply copied from the R ineq package cdm_gini <- function(x) { n <- length(x) x <- sort(x) G <- sum(x * 1:n) G <- 2 * G/(n * sum(x)) G - 1 - (1/n) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/equivalent.skillclasses.R
## File Name: eval_likelihood.R ## File Version: 0.08 eval_likelihood <- function( data, irfprob, prior=NULL, normalization=FALSE, N=NULL ) { long_format <- inherits(x=data, what="data_long_format") if ( is.null(N) ){ N <- nrow(data) if (long_format){ N <- data[ N, 1 ] + 1 } } TP <- dim(irfprob)[3] #-- set prior if no prior is provided if (is.null(prior)){ prior <- matrix(1, nrow=N, ncol=TP) } if (is.vector(prior)){ prior <- matrix( prior, nrow=N, ncol=TP, byrow=TRUE) } #-- evaluate likelihood in Rcpp res <- cdm_rcpp_eval_likelihood(data=data, irfprob=as.vector(irfprob), dim_irfprob=dim(irfprob), prior=prior, normalization=normalization, long_format=long_format, N=N ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/eval_likelihood.R
## File Name: expand_matrix.R ## File Version: 0.03 expand_matrix <- function(x) { NR <- nrow(x) NC <- ncol(x) NY <- max(NR,NC) y <- x if (NR!=NC){ y <- matrix(0,nrow=NY,ncol=NY) if (NR < NC){ y[ 1:NR, ] <- x } if (NR > NC){ y[, 1:NC ] <- x } } return(y) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/expand_matrix.R
## File Name: gdd.R ## File Version: 0.19 ################################################################# # generalized distance discriminating method gdd <- function( data, q.matrix, theta, b, a, skillclasses=NULL) { data <- as.matrix(data) data_isna <- is.na(data) dataresp <- as.matrix( 1 - data_isna ) data[ data_isna ] <- 0 q.matrix <- as.matrix(q.matrix) skillspace <- skillclasses # compute ideal response pattern res <- ideal.response.pattern( q.matrix, skillspace ) idealresp <- res$idealresp skillspace <- res$skillspace # apply generalized distance discriminating method written in Rcpp res <- cdm_rcpp_generalized_distance_method( data=data, dataresp=dataresp, idealresp=idealresp, theta=theta, a=a, b=b ) # extract results distmatrix <- res$dist skillclass.est <- skillspace[ res$est_skill, ] res <- list( skillclass.est=skillspace, distmatrix=distmatrix, skillspace=skillspace, theta=theta ) return(res) } ###############################################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdd.R
## File Name: gdina.R ## File Version: 9.351 ################################################################################ # GDINA Model ################################################################################ gdina <- function( data, q.matrix, skillclasses=NULL, conv.crit=0.0001, dev.crit=.1, maxit=1000, linkfct="identity", Mj=NULL, group=NULL, invariance=TRUE, method=NULL, delta.init=NULL, delta.fixed=NULL, delta.designmatrix=NULL, delta.basispar.lower=NULL, delta.basispar.upper=NULL, delta.basispar.init=NULL, zeroprob.skillclasses=NULL, attr.prob.init=NULL, attr.prob.fixed=NULL, reduced.skillspace=NULL, reduced.skillspace.method=2, HOGDINA=-1, Z.skillspace=NULL, weights=rep(1, nrow(data)), rule="GDINA", bugs=NULL, regular_lam=0, regular_type="none", regular_alpha=NA, regular_tau=NA, regular_weights=NULL, mono.constr=FALSE, prior_intercepts=NULL, prior_slopes=NULL, progress=TRUE, progress.item=FALSE, mstep_iter=10, mstep_conv=1E-4, increment.factor=1.01, fac.oldxsi=0, max.increment=.3, avoid.zeroprobs=FALSE, seed=0, save.devmin=TRUE, calc.se=TRUE, se_version=1, PEM=TRUE, PEM_itermax=maxit, cd=FALSE, cd_steps=1, mono_maxiter=10, freq_weights=FALSE, optimizer="CDM", ... ) { cl <- CALL <- match.call() s1 <- Sys.time() display <- cdm_summary_display() if (progress){ cat(display) cdm_print_summary_package(pack="CDM") } time1 <- list( "s1"=Sys.time() ) ######################################################### # treat sequential items ######################################################### res <- gdina_proc_sequential_items( data=data, q.matrix=q.matrix ) data <- res$data sequential <- res$sequential q.matrix <- res$q.matrix ######################################################### # in case of item parameter noninvariance restructure dataset ######################################################### res <- gdina_proc_noninvariance_multiple_groups( data=data, q.matrix=q.matrix, invariance=invariance, group=group ) data <- res$data q.matrix <- res$q.matrix ######################################################## # add item and attribute labels if necessary ######################################################## if ( is.null( colnames( data ) ) ){ colnames(data) <- paste( "Item", seq(1,ncol(data)), sep="") } if ( is.null( colnames( q.matrix ) ) ){ colnames(q.matrix) <- paste( "Attr", seq(1,ncol(q.matrix)), sep="") } ################################################################################ # check consistency of input (data, q.matrix, ...) # ################################################################################ dat.items <- data #---- check of admissible rules res <- gdina_proc_check_admissible_rules(rule=rule) #---- RRUM model specifications res <- gdina_proc_spec_rrum( rule=rule, method=method, linkfct=linkfct, optimizer=optimizer) rrum.params <- res$rrum.params rrum.model <- res$rrum.model method <- res$method linkfct <- res$linkfct rule <- res$rule optimizer <- res$optimizer ################################################################################ # model specification: DINA, DINO or itemwise specification of DINA or DINO # ################################################################################ r1 <- "GDINA Model" ################################################################################ # multiple group estimation ################################################################################ res <- gdina_proc_multiple_group_objects(group=group) G <- res$G group <- res$group group0 <- res$group0 groupre <- res$groupre group.stat <- res$group.stat group2 <- res$group2 #---- parameters for HOGDINA model tetrachoric <- NULL if (HOGDINA >=0){ res <- gdina_proc_hogdina_theta_distribution(G=G) theta.k <- res$theta.k reduced.skillspace <- res$reduced.skillspace wgt.theta <- res$wgt.theta } ################################################################################ # display on R console # ################################################################################ disp <- r1 #--- display progress res <- gdina_progress_start_estimation( progress=progress, linkfct=linkfct, disp=disp, G=G, groupre=groupre, s1=s1, display=display ) ################################################################################ # definition of model parameters # ################################################################################ res <- gdina_proc_define_model_parameters( dat.items=dat.items, q.matrix=q.matrix, rule=rule, HOGDINA=HOGDINA, G=G ) rule <- res$rule dat.items <- res$dat.items q.matrix <- res$q.matrix a.attr <- res$a.attr b.attr <- res$b.attr I <- res$I J <- res$J K <- res$K a0 <- Sys.time() ################################################################################ # Initialization and missing data handling # ################################################################################ # recode missing data by 9 resp <- 1 - is.na(dat.items) dat.items[ resp==0 ] <- 9 #--- standardize weights such that the sum of defined weights is equal to the number of rows in the data frame weights <- gdina_standardize_weights( weights=weights ) ################################################################################ # calculate item response patterns # ################################################################################ res <- gdina_proc_item_response_patterns( dat.items=dat.items, J=J, G=G, weights=weights, group=group, freq_weights=freq_weights ) item.patt.subj <- res$item.patt.subj item.patt <- res$item.patt six <- res$six item.patt.freq <- res$item.patt.freq ################################################################################ # generate all attribute patterns # ################################################################################ res <- gdina_create_attribute_patterns( q.matrix=q.matrix, skillclasses=skillclasses, zeroprob.skillclasses=zeroprob.skillclasses, Z.skillspace=Z.skillspace, G=G, reduced.skillspace=reduced.skillspace ) K <- res$K maxAttr <- res$maxAttr attr.patt <- res$attr.patt L <- res$L attr.patt.c <- res$attr.patt.c reduced.skillspace <- res$reduced.skillspace Z.skillspace <- res$Z.skillspace Z <- res$Z beta <- res$beta covbeta <- res$covbeta ncolZ <- res$ncolZ q.entries <- res$q.entries if ( reduced.skillspace ){ res <- gdina_attribute_patterns_reduced_skillspace( attr.patt=attr.patt, K=K, maxAttr=maxAttr, q.matrix=q.matrix, Z.skillspace=Z.skillspace, G=G ) Z <- res$Z ncolZ <- res$ncolZ beta <- res$beta } ################################################################################ # assign uniform prior distribution of all latent class patterns ################################################################################ res <- gdina_init_class_probabilities( G=G, L=L, seed=seed, attr.prob.init=attr.prob.init ) attr.prob <- res$attr.prob ################################################################################ # create design matrices ################################################################################ res <- gdina_create_designmatrices( J=J, Mj=Mj, Aj=Aj, q.matrix=q.matrix, rule=rule, L=L, attr.patt=attr.patt, mono.constr=mono.constr, bugs=bugs) Mj <- res$Mj Mj.userdefined <- res$Mj.userdefined Aj <- res$Aj Nattr.items <- res$Nattr.items necc.attr <- res$necc.attr aggr.attr.patt <- res$aggr.attr.patt attr.items <- res$attr.items aggr.patt.designmatrix <- res$aggr.patt.designmatrix Mj.index <- res$Mj.index Aj_mono_constraints <- res$Aj_mono_constraints ############################################################################### # initial item parameters ############################################################################### delta <- gdina_init_item_parameters( delta.init=delta.init, linkfct=linkfct, J=J, seed=seed, Mj=Mj, delta.basispar.init=delta.basispar.init, delta.designmatrix=delta.designmatrix, Mj.index=Mj.index, rule=rule ) #------ some compute inverse matrices for least squares estimation invM.list <- gdina_proc_uls_inverse_matrices(Mj=Mj, J=J) if ( fac.oldxsi>=1){ fac.oldxsi <- 0 } djj_old <- as.list( 1:J ) ################################################################################ # some prelimaries for EM algorithm # ################################################################################ res <- gdina_proc_split_item_response_patterns( item.patt=item.patt, J=J, freq_weights=freq_weights, resp=resp, dat.items=dat.items) IP <- res$IP resp.patt <- res$resp.patt item.patt.split <- res$item.patt.split iter <- 1 # Iteration number likediff <- 1 # Difference in likelihood estimates opt_fct <- loglike <- 0 # init for log-Likelihood # init value for maximum parameter change in likelihood maximization max.par.change <- 1000 devchange <- 1000 # analyze response patterns if there are some missings cmresp <- colMeans( resp.patt ) some.missings <- mean(cmresp) < 1 # calculations for expected counts # response indicator list resp.ind.list <- list( 1:J ) for (i in 1:J){ resp.ind.list[[i]] <- which( resp.patt[,i]==1) } # this matrix ipr is needed for computing R.lj if (G==1){ ipr <- item.patt.split * item.patt.freq*resp.patt } disp <- "...........................................................\n" #** for reduced skillspace if (reduced.skillspace){ if (G==1){ item_patt_freq_matr <- cdm_matrix1( item.patt.freq, ncol=L ) } else { item_patt_freq_matr <- array( NA, dim=c(nrow(item.patt.freq), L, G ) ) for (gg in 1:G){ item_patt_freq_matr[,,gg] <- cdm_matrix1( item.patt.freq[,gg], ncol=L ) } } } #--- attribute probabilities if (!is.null(attr.prob.fixed)){ attr.prob <- attr.prob.fixed } #--- delta parameter indices res <- gdina_proc_delta_indices(delta=delta, Mj=Mj) delta_indices <- res$delta_indices delta_partable <- res$delta_partable delta_vec <- unlist(delta) # reconvert vector into a list delta <- gdina_delta_convert_into_list( delta_vec=delta_vec, delta_indices=delta_indices, J=J ) #-- preliminaries PEM acceleration if (PEM){ envir <- environment() if (! reduced.skillspace){ pem_pars <- c("delta_vec","attr.prob") } if (reduced.skillspace){ pem_pars <- c("delta_vec","beta") } if (HOGDINA > 0){ PEM <- FALSE } pem_output_vars <- unique( c( pem_pars, "delta.new","attr.prob") ) parmlist <- cdm_pem_inits_assign_parmlist(pem_pars=pem_pars, envir=envir) res <- cdm_pem_inits( parmlist=parmlist) pem_parameter_index <- res$pem_parameter_index pem_parameter_sequence <- res$pem_parameter_sequence } deviance.history <- rep(NA, maxit) #--- choose regularization, coordinate descent and monotonicity constraints res <- gdina_proc_regularization( regular_type=regular_type, cd=cd, mono.constr=mono.constr, linkfct=linkfct, method=method, PEM=PEM, regular_lam=regular_lam, regular_alpha=regular_alpha, regular_tau=regular_tau, rule=rule, optimizer=optimizer) linkfct <- res$linkfct save.devmin <- res$save.devmin method <- res$method regularization <- res$regularization cd_algorithm <- res$cd_algorithm PEM <- res$PEM regular_lam <- res$regular_lam regular_alpha <- res$regular_alpha regular_tau <- res$regular_tau regularization_types <- res$regularization_types optimizer <- res$optimizer #--- process prior distributions res <- gdina_proc_prior_distribution( prior_intercepts=prior_intercepts, prior_slopes=prior_slopes, method=method, linkfct=linkfct, PEM=PEM ) prior_intercepts <- res$prior_intercepts prior_slopes <- res$prior_slopes linkfct <- res$linkfct method <- res$method use_prior <- res$use_prior PEM <- res$PEM #**** some precalculations ones_matrix <- matrix( 1, nrow=IP, ncol=L ) #******************************** # extract parameters with minimal deviances dev.min <- 1E99 R.lj.gg <- I.lj.gg <- NULL suffstat_probs <- as.list(1:J) devchange <- 0 ################################################################################ # BEGIN OF THE ITERATION LOOP # ################################################################################ while ( ( iter <=maxit ) & ( ( max.par.change > conv.crit ) | ( devchange > dev.crit ) ) ) { ################################################################################ # STEP I: # # calculate P(X_i | alpha_l): # # probability of each item response pattern given an attribute pattern # ################################################################################ #--- calculate item response probabilities pjM <- gdina_calc_prob( progress=progress, iter=iter, disp=disp, J=J, L=L, aggr.attr.patt=aggr.attr.patt, Mj=Mj, delta=delta, linkfct=linkfct ) #--- calculate individual likelihood p.xi.aj <- gdina_calc_individual_likelihood( IP=IP, L=L, pjM=pjM, item.patt.split=item.patt.split, J=J, resp.ind.list=resp.ind.list, zeroprob.skillclasses=zeroprob.skillclasses, ones_matrix=ones_matrix ) ################################################################################ # STEP II: # # calculate P( \alpha_l | X_i ): # # posterior probability of each attribute pattern given the item response pattern ################################################################################ res <- gdina_calc_individual_posterior( G=G, IP=IP, attr.prob=attr.prob, p.xi.aj=p.xi.aj, L=L, I=I, zeroprob.skillclasses=zeroprob.skillclasses, reduced.skillspace=reduced.skillspace, item.patt.freq=item.patt.freq, attr.prob.fixed=attr.prob.fixed) p.aj.xi <- res$p.aj.xi attr.prob <- res$attr.prob ####################################################################### # STEP II0: higher order GDINA model ####################################################################### if (HOGDINA >=0){ res <- gdina_attribute_structure_hogdina( G=G, attr.prob=attr.prob, attr.patt=attr.patt, wgt.theta=wgt.theta, HOGDINA=HOGDINA, a.attr=a.attr, b.attr=b.attr, theta.k=theta.k, tetrachoric=tetrachoric ) a.attr <- res$a.attr b.attr <- res$b.attr attr.prob <- res$attr.prob tetrachoric <- res$tetrachoric } ####################################################################### # STEP IIa: reduction of skill space ####################################################################### if (reduced.skillspace){ res <- gdina_reduced_skillspace_multiple_groups( Z=Z, reduced.skillspace.method=reduced.skillspace.method, item_patt_freq_matr=item_patt_freq_matr, p.aj.xi=p.aj.xi, G=G ) beta <- res$beta attr.prob <- res$attr.prob } ################################################################################ # STEP III: # # calculate I_{lj} and R_{lj} # # for a derivation see De La Torre (2008, Journal of Educational and # # Behavioral Statistics) # # I_{lj} ... expected frequency of persons in attribute class l for item j # # (in case of no missing data I_{lj}=I_l for all items j # # R_{lj} ... expected frequency of persons in attribute class l for item j # # which correctly solve item j # ################################################################################ res <- gdina_calc_expected_counts( G=G, J=J, L=L, item.patt.freq=item.patt.freq, p.aj.xi=p.aj.xi, some.missings=some.missings, ipr=ipr, attr.patt.c=attr.patt.c, resp.patt=resp.patt, item.patt.split=item.patt.split, data=data) I.lj <- res$I.lj R.lj <- res$R.lj I.lj.gg <- res$I.lj.gg R.lj.gg <- res$R.lj.gg ################################################################################ # STEP IV: # # M Step # # GDINA Model # ################################################################################ res <- gdina_mstep_item_parameters( R.lj=R.lj, I.lj=I.lj, aggr.patt.designmatrix=aggr.patt.designmatrix, max.increment=max.increment, increment.factor=increment.factor, J=J, Aj=Aj, Mj=Mj, delta=delta, method=method, avoid.zeroprobs=avoid.zeroprobs, invM.list=invM.list, linkfct=linkfct, rule=rule, iter=iter, fac.oldxsi=fac.oldxsi, rrum.model=rrum.model, delta.fixed=delta.fixed, devchange=devchange, mstep_iter=mstep_iter, mstep_conv=mstep_conv, Mj.index=Mj.index, suffstat_probs=suffstat_probs, regular_lam=regular_lam, regular_type=regular_type, cd_steps=cd_steps, mono.constr=mono.constr, Aj_mono_constraints=Aj_mono_constraints, mono_maxiter=mono_maxiter, regular_alpha=regular_alpha, regular_tau=regular_tau, regularization_types=regularization_types, prior_intercepts=prior_intercepts, prior_slopes=prior_slopes, use_prior=use_prior, optimizer=optimizer, regularization=regularization, regular_weights=regular_weights ) delta.new <- res$delta.new suffstat_probs <- res$suffstat_probs mono_constraints_fitted <- res$mono_constraints_fitted penalty <- res$penalty ll_value <- res$ll_value logprior_value <- res$logprior_value numb_regular_pars <- res$numb_regular_pars delta_regularized <- res$delta_regularized ########################################################################## # estimation with a design matrix for delta parameters ########################################################################## if ( ! is.null( delta.designmatrix ) ){ delta.new <- gdina_mstep_item_parameters_designmatrix( delta.new=delta.new, delta.designmatrix=delta.designmatrix, delta.basispar.lower=delta.basispar.lower, delta.basispar.upper=delta.basispar.upper, Mj.index=Mj.index, J=J) } delta_vec <- unlist(delta.new) #-- PEM acceleration if (PEM){ #-- collect all parameters in a list parmlist <- cdm_pem_inits_assign_parmlist(pem_pars=pem_pars, envir=envir) #-- define log-likelihood function ll_fct <- gdina_calc_loglikelihood #- extract parameters ll_args <- list( delta_vec=delta_vec, beta=beta, attr.prob=attr.prob, Z=Z, delta_indices=delta_indices, J=J, iter=iter, disp=disp, L=L, aggr.attr.patt=aggr.attr.patt, Mj=Mj, linkfct=linkfct, IP=IP, item.patt.split=item.patt.split, resp.ind.list=resp.ind.list, zeroprob.skillclasses=zeroprob.skillclasses, item.patt.freq=item.patt.freq, loglike=loglike, G=G, reduced.skillspace=reduced.skillspace ) #-- apply general acceleration function (take care of the correct iteration index: # it must start at zero) res <- cdm_pem_acceleration( iter=iter-1, pem_parameter_index=pem_parameter_index, pem_parameter_sequence=pem_parameter_sequence, pem_pars=pem_pars, PEM_itermax=PEM_itermax, parmlist=parmlist, ll_fct=ll_fct, ll_args=ll_args, deviance.history=deviance.history ) #-- collect output PEM <- res$PEM pem_parameter_sequence <- res$pem_parameter_sequence cdm_pem_acceleration_assign_output_parameters( res_ll_fct=res$res_ll_fct, vars=pem_output_vars, envir=envir, update=res$pem_update ) } ################################################# #--- calculate deviance res <- gdina_calc_deviance( p.xi.aj=p.xi.aj, attr.prob=attr.prob, item.patt.freq=item.patt.freq, loglike=loglike, G=G, IP=IP, regularization=regularization, penalty=penalty, opt_fct=opt_fct, logprior_value=logprior_value) like.new <- res$like.new likediff <- res$likediff opt_fct <- res$opt_fct opt_fct_change <- res$opt_fct_change loglikeold <- loglike loglike <- like.new #--- maximum parameter change max.par.change <- gdina_maximum_parameter_change( delta=delta, delta.new=delta.new, linkfct=linkfct ) delta <- delta.new # reset delta parameter estimates #--- progress EM algorithm res <- gdina_progress_em_algorithm( delta=delta, data=data, like.new=like.new, loglikeold=loglikeold, max.par.change=max.par.change, iter=iter, progress=progress, progress.item=progress.item, regularization=regularization, penalty=penalty, opt_fct=opt_fct, opt_fct_change=opt_fct_change, ll_value=ll_value, regular_type=regular_type, logprior_value=logprior_value, use_prior=use_prior, numb_regular_pars=numb_regular_pars) utils::flush.console() # Output is flushing on the console devchange <- abs( 2*(like.new-loglikeold) ) #**** update parameters at minimal deviance dev <- -2*like.new deviance.history[iter] <- dev if (save.devmin){ if ( dev < dev.min ){ iter.min <- iter delta.min <- delta dev.min <- dev p.aj.xi.min <- p.aj.xi p.xi.aj.min <- p.xi.aj R.lj.min <- R.lj I.lj.min <- I.lj attr.prob.min <- attr.prob loglike.min <- loglike } } if ( ! save.devmin ){ iter.min <- iter } #******************************** iter <- iter + 1 # new iteration number } ################################################################################ # END OF THE ITERATION LOOP # ################################################################################ #*************************************** # use parameters with minimal deviance iterused <- iter - 1 if (save.devmin){ iter.min -> iter delta.min -> delta dev.min -> dev p.aj.xi.min -> p.aj.xi p.xi.aj.min -> p.xi.aj R.lj.min -> R.lj I.lj.min -> I.lj attr.prob.min -> attr.prob loglike.min -> loglike } #**************************************** #--- pattern output res <- gdina_post_pattern_output( G=G, p.xi.aj=p.xi.aj, zeroprob.skillclasses=zeroprob.skillclasses, item.patt=item.patt, attr.patt.c=attr.patt.c, p.aj.xi=p.aj.xi, item.patt.subj=item.patt.subj, group2=group2, attr.patt=attr.patt, K=K ) pattern <- res$pattern p.xi.aj <- res$p.xi.aj ##################################################### # itemwise standard error calculation res <- gdina_post_calc_se( G=G, p.aj.xi=p.aj.xi, item.patt.freq=item.patt.freq, attr.prob=attr.prob, p.xi.aj=p.xi.aj, IP=IP, J=J, calc.se=calc.se, aggr.attr.patt=aggr.attr.patt, Aj=Aj, Mj=Mj, R.lj=R.lj, I.lj=I.lj, item.patt.split=item.patt.split, resp.patt=resp.patt, delta=delta, linkfct=linkfct, rule=rule, avoid.zeroprobs=avoid.zeroprobs, data=data, se_version=se_version, method=method, delta.fixed=delta.fixed, q.matrix=q.matrix, delta_regularized=delta_regularized, regularization=regularization ) varmat.delta <- res$varmat.delta varmat.palj <- res$varmat.palj se.delta <- res$se.delta delta.summary <- res$delta.summary freq.pattern <- res$freq.pattern item.patt.freq <- res$item.patt.freq # compute RRUM parametrization if model is specified if (rrum.model){ rrum.params <- .rrum.param( delta.summary=delta.summary, q.matrix=q.matrix ) } #--- skill pattern and attribute pattern res <- gdina_post_skill_pattern( attr.prob=attr.prob, G=G, attr.patt.c=attr.patt.c, K=K, maxAttr=maxAttr, q.matrix=q.matrix, q.entries=q.entries, attr.patt=attr.patt ) attr.prob <- res$attr.prob skill.patt <- res$skill.patt #--- monotonicity boundaries and regularized parameters res <- gdina_postproc_regularized_constrained_parameters( mono.constr=mono.constr, delta=delta, Aj_mono_constraints=Aj_mono_constraints, Mj=Mj, linkfct=linkfct, regularization=regularization, data=data ) numb_bound_mono <- res$numb_bound_mono numb_regular_pars <- res$numb_regular_pars item_bound_mono <- res$item_bound_mono #--- calculation of the AIC und BIC res <- gdina_calc_ic( delta=delta, delta.designmatrix=delta.designmatrix, delta.fixed=delta.fixed, G=G, ncolZ=ncolZ, K=K, HOGDINA=HOGDINA, item.patt.freq=item.patt.freq, zeroprob.skillclasses=zeroprob.skillclasses, loglike=loglike, numb_regular_pars=numb_regular_pars, attr.prob.fixed=attr.prob.fixed ) Npars <- res$Npars aic <- res$aic bic <- res$bic caic <- res$caic Nskillpar <- res$Nskillpar Nipar <- res$Nipar ic <- res$ic #--- postprocess posterior distributions res <- gdina_post_posterior_output( G=G, p.aj.xi=p.aj.xi, p.xi.aj=p.xi.aj, pattern=pattern, data=data, item.patt.subj=item.patt.subj, item.patt=item.patt, attr.prob=attr.prob, group=group ) item.patt.subj <- res$item.patt.subj attr.prob <- res$attr.prob p.xi.aj <- res$p.xi.aj posterior <- res$posterior pattern <- res$pattern attr.prob0 <- res$attr.prob0 attr_prob <- res$attr_prob #--- item fit [ items, theta, categories ] res <- gdina_itemfit( L=L, J=J, R.lj=R.lj, I.lj=I.lj, item.patt.freq=item.patt.freq, G=G, attr.prob=attr.prob, data=data, pjM=pjM ) itemfit.rmsea <- res$itemfit.rmsea pi.k <- res$pi.k n.ik <- res$n.ik pi.k <- res$pi.k #---- calculate model implied probabilities probitem <- gdina_probitem( Mj=Mj, Aj=Aj, delta=delta, rule=rule, linkfct=linkfct, delta.summary=delta.summary, necc.attr=necc.attr ) #***************************** OUTPUT ********************************** if (progress){ cat(display) } iter <- iterused res <- list( coef=delta.summary, item=delta.summary, delta=delta, se.delta=se.delta, probitem=probitem, itemfit.rmsea=itemfit.rmsea, mean.rmsea=mean(itemfit.rmsea), loglike=loglike, deviance=-2*loglike, G=G, N=colSums( as.matrix(item.patt.freq) ), AIC=aic, BIC=bic, CAIC=caic, Npars=Npars, Nipar=Nipar, Nskillpar=Nskillpar, Nskillclasses=L, varmat.delta=varmat.delta, varmat.palj=varmat.palj, posterior=posterior, like=p.xi.aj, data=data, q.matrix=q.matrix, pattern=pattern, attribute.patt=attr.prob, skill.patt=skill.patt, attr.prob=attr_prob, subj.pattern=item.patt.subj, attribute.patt.splitted=attr.patt, pjk=pjM, Mj=Mj, Aj=Aj, rule=rule, linkfct=linkfct, delta.designmatrix=delta.designmatrix, reduced.skillspace=reduced.skillspace, Z.skillspace=if(reduced.skillspace){ Z } else { NULL }, beta=beta, covbeta=covbeta, display=disp, item.patt.split=item.patt.split, resp.ind.list=resp.ind.list, dat=item.patt.split, item.patt.freq=item.patt.freq, model.type=r1, iter=iter, iterused=iterused, rrum.model=rrum.model, rrum.params=rrum.params, group.stat=group.stat, NAttr=maxAttr, invariance=invariance, HOGDINA=HOGDINA, mono.constr=mono.constr, regularization=regularization, regular_lam=regular_lam, regular_alpha=regular_alpha, regular_tau=regular_tau, numb_bound_mono=numb_bound_mono, item_bound_mono=item_bound_mono, numb_regular_pars=numb_regular_pars, regular_type=regular_type, delta_regularized=delta_regularized, regular_weights=regular_weights, cd_algorithm=cd_algorithm, cd_steps=cd_steps, prior_intercepts=prior_intercepts, prior_slopes=prior_slopes, use_prior=use_prior, logprior_value=logprior_value, seed=seed, iter=iter, converged=iter < maxit, iter.min=iter.min, deviance.history=deviance.history, penalty=penalty, opt_fct=opt_fct, optimizer=optimizer, method=method, ic=ic ) if (HOGDINA>=0) { colnames(a.attr) <- paste0( "a.Gr", 1:G ) colnames(b.attr) <- paste0( "b.Gr", 1:G ) int.attr <- - b.attr / a.attr colnames(int.attr) <- paste0( "int.Gr", 1:G ) rownames(int.attr) <- rownames(b.attr) <- rownames(a.attr) <- colnames(q.matrix) res$a.attr <- a.attr res$b.attr <- b.attr res$int.attr <- int.attr res$attr.rf <- cbind( b.attr, a.attr, int.attr ) } # computation time time1$s2 <- Sys.time() res$time <- time1 # res$time$timediff <- print(res$time$s2 - res$time$s1) res$time$timediff <- res$time$s2 - res$time$s1 if ( progress ){ print(res$time$s2 - res$time$s1) } # control parameter control <- list( skillclasses=skillclasses, q.matrix=q.matrix, conv.crit=conv.crit, dev.crit=dev.crit, maxit=maxit, linkfct=linkfct, Mj=Mj, Aj=Aj, group=group, method=method, delta.designmatrix=delta.designmatrix, delta.basispar.lower=delta.basispar.lower, delta.basispar.upper=delta.basispar.upper, delta.basispar.init=delta.basispar.init, zeroprob.skillclasses=zeroprob.skillclasses, reduced.skillspace=reduced.skillspace, HOGDINA=HOGDINA, Z.skillspace=Z.skillspace, weights=weights, rule=rule, I.lj=I.lj, R.lj=R.lj, I.lj.gg=I.lj.gg, R.lj.gg=R.lj.gg, aggr.patt.designmatrix=aggr.patt.designmatrix, Mj.index=Mj.index, method=method, aggr.attr.patt=aggr.attr.patt, IP=IP, p.aj.xi=p.aj.xi,item.patt.split=item.patt.split, resp.patt=resp.patt, freq.pattern=freq.pattern, item.patt.freq=item.patt.freq,invM.list=invM.list, item.patt.subj=item.patt.subj, item.patt=item.patt, suffstat_probs=suffstat_probs, increment.factor=increment.factor, fac.oldxsi=fac.oldxsi, avoid.zeroprobs=avoid.zeroprobs, attr.prob=attr.prob0, delta.fixed=delta.fixed, sequential=sequential, invariance=invariance, se_version=se_version ) res$control <- control #--- create parameter table res$partable <- gdina_partable(res) #--- polychoric correlations res$polychor <- CDM.calc.polychor(res) res$call <- cl class(res) <- "gdina" return(res) } ################################################################## # cat(" *** time alg") ; z1 <- Sys.time(); print(z1-z0) ; z0 <- z1
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina.R
## File Name: gdina.dif.R ## File Version: 1.223 #** differential item functioning in the GDINA model #** Wald test is used for testing item-wise DIF gdina.dif <- function( object ) { ocontrol <- object$control G <- object$G J <- ncol(object$dat) delta.group <- as.list(1:G) varmat.group <- as.list(1:G) prob.exp.group <- varmat.group <- as.list(1:G) names(varmat.group) <- names(prob.exp.group) <- paste0("Group", 1:G ) ocoef <- object$coef for (gg in 1:G){ # gg <- 1 res.gg <- gdina_dif_compute( ocontrol=ocontrol, gg=gg, data=object$data) prob.exp.group[[gg]] <- res.gg$prob_exp names(prob.exp.group[[gg]]) <- colnames(object$data) delta.group[[gg]] <- res.gg$delta varmat.group[[gg]] <- res.gg$varmat.delta } ndj <- res.gg$ndj # expanded delta vectors and design matrix Rdesign <- varmat_all <- delta_all <- as.list(1:J) difstats <- data.frame( "item"=colnames(object$data), "X2"=NA, "df"=NA) dif_es <- rep(NA,J) for (jj in 1:J){ nj <- ndj[[jj]] delta.jj <- rep(NA, nj*G ) varmat.jj <- matrix(0, nj*G, nj*G ) Rdesign.jj <- matrix(0,nj*(G-1), nj*G ) for (gg in 1:G){ delta.jj[ 1:nj + nj*(gg-1) ] <- delta.group[[gg]][[jj]] varmat.jj[ 1:nj + nj*(gg-1), 1:nj + nj*(gg-1) ] <- varmat.group[[gg]][[jj]] if (gg <G){ for (vv in 1:nj){ Rdesign.jj[ vv + nj*(gg-1), vv + nj*(gg-1) ] <- 1 Rdesign.jj[ vv + nj*(gg-1), vv + nj*(gg) ] <- -1 } } ocoef[ ocoef$itemno== jj, paste0("est_Group",gg ) ] <- delta.group[[gg]][[jj]] ocoef[ ocoef$itemno== jj, paste0("se_Group",gg ) ] <- sqrt( diag(varmat.group[[gg]][[jj]] )) } varmat_all[[jj]] <- varmat.jj delta_all[[jj]] <- delta.jj Rdesign[[jj]] <- Rdesign.jj # calculate test value d0 <- Rdesign.jj %*% delta.jj # calculate variance matrix ivm <- solve( Rdesign.jj %*% varmat.jj %*% t(Rdesign.jj ) ) difstats[jj,"X2"] <- ( t(d0) %*% ivm %*% d0 )[1,1] difstats[jj,"df"] <- nrow(Rdesign.jj) # effect size in case of two groups if ( G==2 ){ tab1 <- prob.exp.group[[1]][[jj]] tab2 <- prob.exp.group[[2]][[jj]] g1 <- (tab1[,1]+tab2[,2])/2 g1 <- sum( g1 * abs( tab1[,2] - tab2[,2] ) ) dif_es[jj] <- g1 } } rownames(ocoef) <- paste0(ocoef$item,"_", ocoef$partype) difstats$p <- 1 - stats::pchisq( difstats$X2, df=difstats$df ) difstats$p.holm <- stats::p.adjust( difstats$p ) if (G==2){ difstats$UA <- dif_es } res <- list(difstats=difstats, coef=ocoef, delta_all=delta_all, varmat_all=varmat_all, prob.exp.group=prob.exp.group) class(res) <- "gdina.dif" return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina.dif.R
## File Name: gdina.wald.R ## File Version: 0.30 ###################################################### # Wald tests at item level gdina.wald <- function( object ) { varmat.delta <- object$varmat.delta delta <- object$delta rule <- object$control$rule #***** # checks whether gdina.wald can be applied if ( mean(rule=="GDINA") < 1 ){ stop("Specify a full GDINA model for performing a Wald test.\n") } Mj <- object$control$Mj q.matrix <- object$q.matrix I <- nrow(q.matrix) dat <- object$dat stats_vars <- c("_X2", "_df", "_p", "_sig", "_RMSEA", "_wgtdist", "_uwgtdist") SV <- length(stats_vars) # number of rules cdm_rules <- c("DINA", "DINO", "ACDM") SR <- length(cdm_rules) stats <- matrix( NA, nrow=I, ncol=SV*SR) v1 <- NULL for (ss in 1:SR){ v1 <- c( v1, paste0( cdm_rules[ss], stats_vars ) ) } colnames(stats) <- v1 #----------------- # extract relevant output suffstat_probs <- object$control$suffstat_probs Mj <- object$control$Mj Aj <- object$control$Aj attr.prob <- object$control$attr.prob aggr.attr.patt <- object$control$aggr.attr.patt link <- object$link #****************************************** # loop over items for (ii in 1:I){ delta.ii <- delta[[ii]] var.delta.ii <- varmat.delta[[ii]] # number of attributes Kii <- sum( q.matrix[ii,] ) Mj.ii <- Mj[[ii]][[1]] suffstat_probs.ii <- suffstat_probs[[ii]] pjj <- suffstat_probs.ii if ( link=="logit"){ pjj <- stats::qlogis(pjj) } if ( link=="log"){ pjj <- log(pjj) } aggr.attr.patt.ii <- aggr.attr.patt[[ii]] attr.prob.ii <- rowsum( attr.prob, aggr.attr.patt.ii ) Aj.ii <- Aj[[ii]] if (Kii>1){ nobs <- sum( 1 - is.na(dat[,ii] ) ) #-------------------------------- # Tests for different rules for (rule in cdm_rules){ R <- contraint_matrix( delta.ii, rule=rule, Kii, Mj.ii ) res <- WaldTest( delta.ii, var.delta.ii, R, nobs ) stats[ii,paste0(rule,"_X2")] <- res$X2 stats[ii,paste0(rule,"_df")] <- res$df stats[ii,paste0(rule,"_p")] <- res$p stats[ii,paste0(rule,"_RMSEA")] <- res$RMSEA Mj.ii0 <- .create.Mj( Aj.ii, rule)[[1]] res.ii <- calc_dist_restricted_model(pjj, Mj.ii0, attr.prob.ii, link, suffstat_probs.ii, aggr.attr.patt.ii) stats[ii,paste0(rule,"_wgtdist")] <- res.ii$wgtdist stats[ii,paste0(rule,"_uwgtdist")] <- res.ii$uwgtdist } } # end if Kii > 1 } # end item stats <- data.frame( "item"=colnames(dat), "NAttr"=rowSums(q.matrix), stats ) levels <- c(.01, .05 ) labels <- c("**", "*") for (rule in cdm_rules){ stats[,paste0(rule,"_sig")] <- label_significance_level( stats[,paste0(rule,"_p")], levels, labels ) } res <- list("stats"=stats, "cdm_rules"=cdm_rules) class(res) <- "gdina.wald" return(res) } ####################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina.wald.R
## File Name: gdina.wald_aux.R ## File Version: 0.18 ############################################## ############################################## # calculate restricted model and output # distance to estimated GDINA model calc_dist_restricted_model <- function(pjj, Mj.ii0, attr.prob.ii, link, suffstat_probs.ii, aggr.attr.patt.ii ) { mod0.ii <- stats::lm( pjj ~ 0 + Mj.ii0, weights=attr.prob.ii ) fitted.ii <- stats::fitted(mod0.ii) if ( link=="logit"){ fitted.ii <- stats::plogis(fitted.ii) } if ( link=="log"){ fitted.ii <- exp(fitted.ii) } # weighted distance dist.ii <- sum( attr.prob.ii * ( suffstat_probs.ii - fitted.ii)^2 ) # unweighted distance d1 <- ( suffstat_probs.ii - fitted.ii)^2 d1 <- as.vector(d1[ aggr.attr.patt.ii ]) d1 <- mean( d1 ) res <- list( "wgtdist"=dist.ii, "uwgtdist"=d1) return(res) } ################################################### ################################################### # creation of constraint matrix contraint_matrix <- function( delta.ii, rule, Kii, Mj.ii ) { Dii <- length(delta.ii) #*************************** # DINA if ( rule=="DINA"){ R <- matrix( 0, nrow=Dii-2, ncol=Dii) for (vv in 2:(Dii-1) ){ R[vv-1,vv] <- 1 } } #*************************** # ACDM if (rule=="ACDM"){ R <- matrix( 0, nrow=Dii-(Kii+1), ncol=Dii) for (vv in 1:(nrow(R)) ){ vv1 <- vv + ( Kii +1 ) R[vv,vv1] <- 1 } } #*************************** # DINO if (rule=="DINO"){ Dii <- ncol(Mj.ii) R <- matrix( 0, nrow=Dii-2, ncol=Dii) for (vv in 1:(Dii-2)){ R[vv,] <- Mj.ii[vv+2,] - Mj.ii[vv+1, ] } } #********************************** return(R) } ####################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina.wald_aux.R
## File Name: gdina_attr_rpf_hogdina.R ## File Version: 0.19 #################################### # function for calculating attribute response function gdina_attr_rpf_hogdina <- function( attr.patt, attr.prob, theta.k, wgt.theta, HOGDINA, tetrachoric=NULL ) { #- use weights for calculation of tetrachoric correlation wc <- cdm_tetrachoric( dat=attr.patt, weights=attr.prob, rho_init=tetrachoric$rho, maxit=200 ) b <- wc$tau NB <- length(b) TP <- length(theta.k) NAP <- nrow(attr.patt) if (HOGDINA>0){ upper_bound <- .99 L <- cdm_fa1( Sigma=wc$rho, method=1 )$L L <- as.vector( L ) L <- ifelse( L > upper_bound, upper_bound, L ) L <- L / ( max(1,max(L)) + .0025 ) L1 <- L / sqrt( 1 - L^2 ) } else { L1 <- L <- rep(0,NB) } b1 <- b / sqrt( 1-L^2 ) # calculate probabilities using the factor model probs <- stats::pnorm( L1 * matrix( theta.k, nrow=NB, ncol=TP, byrow=TRUE) - b1 ) probsL <- array( 0, dim=c( NB, 2, TP ) ) probsL[,2,] <- probs probsL[,1,] <- 1 - probs # probsL probsAP <- array( 1, dim=c( NAP, TP) ) for (kk in 1:NB){ probsAP <- probsAP * probsL[ kk, attr.patt[,kk] + 1, ] } # expected attribute probabilities attr.prob.exp <- rowSums( probsAP * matrix( wgt.theta, nrow=NAP, ncol=TP, byrow=TRUE ) ) res <- list( a.attr=L1, b.attr=b1, attr.prob.exp=attr.prob.exp, tetrachoric=wc) return(res) } ##################################################################### .attr.rpf <- gdina_attr_rpf_hogdina
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_attr_rpf_hogdina.R
## File Name: gdina_attribute_patterns_reduced_skillspace.R ## File Version: 0.10 gdina_attribute_patterns_reduced_skillspace <- function( attr.patt, K, maxAttr, q.matrix, Z.skillspace, G ) { A <- attr.patt # combinations kombis <- utils::combn( K, 2 ) KK <- ncol(kombis) B <- NULL for (kk in 1:KK){ B <- cbind( B, attr.patt[, kombis[1,kk] ] * attr.patt[, kombis[2,kk] ] ) } Z <- cbind( 1, A, B ) ncolZ <- ncol(Z) v1 <- c("Int", paste("A",1:K, sep="") ) v1 <- c(v1,apply( kombis, 2, FUN=function(ll){ paste( paste( "A", ll, sep=""), collapse="_" ) } )) colnames(Z) <- v1 m1 <- which( maxAttr > 1 ) if ( max(maxAttr) > 1 ){ Z1 <- Z[, m1, drop=FALSE ]^2 colnames(Z1) <- paste0( colnames(q.matrix)[m1], "*2") Z <- cbind( Z, Z1 ) } if ( ! is.null(Z.skillspace) ){ Z <- Z.skillspace } ncolZ <- ncol(Z) beta <- rep(0, ncolZ ) if (G > 1){ beta <- matrix( beta, nrow=ncolZ, ncol=G) } #----- OUTPUT res <- list(Z=Z, ncolZ=ncolZ, beta=beta ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_attribute_patterns_reduced_skillspace.R
## File Name: gdina_attribute_structure_hogdina.R ## File Version: 0.13 gdina_attribute_structure_hogdina <- function(G, attr.prob, attr.patt, wgt.theta, HOGDINA, a.attr, b.attr, theta.k, tetrachoric ) { tetrachoric0 <- list() for (gg in 1:G){ if (G==1){ ap.gg <- attr.prob } else { ap.gg <- attr.prob[,gg] } tetrachoric_init <- NULL if ( ! is.null(tetrachoric ) ){ tetrachoric_init <- tetrachoric[[gg]] } res <- gdina_attr_rpf_hogdina( attr.patt=attr.patt, attr.prob=ap.gg, theta.k=theta.k, wgt.theta=wgt.theta[,gg], HOGDINA=HOGDINA, tetrachoric=tetrachoric_init ) tetrachoric0[[gg]] <- res$tetrachoric if (G==1){ attr.prob <- res$attr.prob } else { attr.prob[,gg] <- res$attr.prob } a.attr[,gg] <- res$a.attr b.attr[,gg] <- res$b.attr } #--- OUTPUT res <- list( a.attr=a.attr, b.attr=b.attr, attr.prob=attr.prob, tetrachoric=tetrachoric0 ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_attribute_structure_hogdina.R
## File Name: gdina_calc_deviance.R ## File Version: 0.20 gdina_calc_deviance <- function( p.xi.aj, attr.prob, item.patt.freq, loglike, G, IP, regularization, penalty=0, opt_fct=0, logprior_value=0 ) { eps <- 1E-30 # calculate the updated likelihood p.xi.aj[ p.xi.aj > 1 ] <- 1 - eps p.xi.aj[ p.xi.aj < 0 ] <- eps if (G==1){ l1 <- rowSums( p.xi.aj * cdm_matrix2( attr.prob, nrow=IP ) ) + eps l1[ l1 < 0 ] <- eps } if (G>1){ l1 <- matrix( 0, IP, G ) for (gg in 1:G){ l1[,gg] <- rowSums( p.xi.aj * cdm_matrix2( attr.prob[,gg], nrow=IP ) ) + eps l1[ l1[,gg] < 0,gg] <- eps } } like.new <- sum( log( l1 ) * item.patt.freq ) likediff <- abs( loglike - like.new ) #--- regularization opt_fct_old <- opt_fct opt_fct <- -2*like.new + 2* penalty - 2*logprior_value opt_fct_change <- - opt_fct + opt_fct_old #--- OUTPUT res <- list( like.new=like.new, likediff=likediff, opt_fct=opt_fct, opt_fct_change=opt_fct_change) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_deviance.R
## File Name: gdina_calc_expected_counts.R ## File Version: 0.14 gdina_calc_expected_counts <- function( G, J, L, item.patt.freq, p.aj.xi, some.missings, ipr, attr.patt.c, resp.patt, item.patt.split, data ) { R.lj.gg <- I.lj.gg <- NULL #---------------------- single groups ------------------------------------------ if (G==1){ if ( some.missings ){ I.lj <- crossprod( item.patt.freq*resp.patt , p.aj.xi ) } else { I.lj <- matrix( crossprod( item.patt.freq, p.aj.xi ), nrow=J, ncol=L, byrow=TRUE ) } R.lj <- crossprod(ipr, p.aj.xi ) colnames(I.lj) <- colnames(R.lj) <- attr.patt.c rownames(I.lj) <- rownames(R.lj) <- colnames(data) } # end one group #---------------------- multiple groups ------------------------------------------ if (G > 1){ R.lj.gg <- I.lj.gg <- array( 0, c( J, L, G ) ) for (gg in 1:G){ I.lj.gg[,,gg] <- crossprod( item.patt.freq[,gg]*resp.patt, p.aj.xi[,,gg] ) R.lj.gg[,,gg] <- crossprod( item.patt.split * item.patt.freq[,gg] * resp.patt, p.aj.xi[,,gg] ) colnames(I.lj.gg) <- colnames(R.lj.gg) <- attr.patt.c rownames(I.lj.gg) <- rownames(R.lj.gg) <- colnames(data) } # calculate I.lj and R.lj I.lj <- I.lj.gg[,,1] R.lj <- R.lj.gg[,,1] for (gg in 2:G){ I.lj <- I.lj + I.lj.gg[,,gg] R.lj <- R.lj + R.lj.gg[,,gg] } } #--- OUTPUT res <- list( I.lj=I.lj, R.lj=R.lj, I.lj.gg=I.lj.gg, R.lj.gg=R.lj.gg) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_expected_counts.R
## File Name: gdina_calc_ic.R ## File Version: 0.08 gdina_calc_ic <- function( delta, delta.designmatrix, delta.fixed, G, ncolZ, K, HOGDINA, item.patt.freq, zeroprob.skillclasses, loglike, numb_regular_pars, attr.prob.fixed=NULL) { bb <- 0 Nipar <- length( unlist(delta) ) if ( ! is.null( delta.designmatrix ) ){ Nipar <- ncol(delta.designmatrix ) } if ( ! is.null( delta.fixed) ){ Nipar <- Nipar - sum(1 - is.na( unlist( delta.fixed )) ) } if ( ! is.na(numb_regular_pars) ){ Nipar <- Nipar - numb_regular_pars } Nskillpar <- G*ncolZ - length( zeroprob.skillclasses ) if (!is.null(attr.prob.fixed)){ Nskillpar <- 0 } if (HOGDINA==1){ Nskillpar <- 2*K*G } if (HOGDINA==0){ Nskillpar <- K*G } Npars <- Nipar - bb + Nskillpar II <- sum( item.patt.freq ) aic <- -2*loglike + 2 * Npars bic <- -2*loglike + Npars*log(II) caic <- -2*loglike + ( log(II) + 1 ) * Npars #*** create object ic ic <- list(deviance=-2*loglike, AIC=aic, BIC=bic, CAIC=caic) #---- OUTPUT res <- list(Npars=Npars, aic=aic, bic=bic, caic=caic, Nskillpar=Nskillpar, Nipar=Nipar, ic=ic) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_ic.R
## File Name: gdina_calc_individual_likelihood.R ## File Version: 0.06 gdina_calc_individual_likelihood <- function(IP, L, pjM, item.patt.split, J, resp.ind.list, zeroprob.skillclasses, ones_matrix=NULL) { if ( is.null(ones_matrix) ){ ones_matrix <- matrix( 1, nrow=IP, ncol=L ) } p.xi.aj <- cdm_calc_posterior( rprobs=pjM, gwt=ones_matrix, resp=item.patt.split, nitems=J, resp.ind.list=resp.ind.list, normalization=FALSE, thetasamp.density=NULL, snodes=0 )$hwt if ( ! is.null(zeroprob.skillclasses) ){ p.xi.aj[, zeroprob.skillclasses ] <- 0 } #--- OUTPUT return(p.xi.aj) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_individual_likelihood.R
## File Name: gdina_calc_individual_posterior.R ## File Version: 0.192 gdina_calc_individual_posterior <- function(G, IP, attr.prob, p.xi.aj, L, I, zeroprob.skillclasses, reduced.skillspace, item.patt.freq, attr.prob.fixed=NULL) { # posterior probabilities P( \alpha_l | X_i ) if (G==1){ p.aj.xi <- cdm_matrix2( x=attr.prob, nrow=IP) * p.xi.aj } else { p.aj.xi <- array( 0, c( IP, L, G ) ) for (gg in 1:G){ p.aj.xi[,,gg] <- cdm_matrix2( x=as.vector(attr.prob[,gg]), nrow=IP) * p.xi.aj } } if (G==1){ if ( ! is.null( zeroprob.skillclasses ) ){ p.aj.xi[, zeroprob.skillclasses ] <- 0 } p.aj.xi <- p.aj.xi / rowSums( p.aj.xi ) # calculate marginal probability P(\alpha_l) for attribute alpha_l if ( ! reduced.skillspace ){ attr.prob <- colSums( p.aj.xi * item.patt.freq ) / I } } if ( G > 1 ){ if ( ! is.null( zeroprob.skillclasses ) ){ for (gg in 1:G){ p.aj.xi[, zeroprob.skillclasses, gg ] <- 0 } } for( gg in 1:G){ p.aj.xi[,,gg] <- p.aj.xi[,,gg] / rowSums( p.aj.xi[,,gg] ) Igg <- sum( item.patt.freq[,gg] ) attr.prob[,gg] <- colSums( p.aj.xi[,,gg] * item.patt.freq[,gg] ) / Igg } } if (! is.null(attr.prob.fixed)){ attr.prob <- attr.prob.fixed } #---- OUTPUT res <- list( p.aj.xi=p.aj.xi, attr.prob=attr.prob) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_individual_posterior.R
## File Name: gdina_calc_loglikelihood.R ## File Version: 0.05 gdina_calc_loglikelihood <- function(delta_vec, beta, attr.prob, Z, delta_indices, J, iter, disp, L, aggr.attr.patt, Mj, linkfct, IP, item.patt.split, resp.ind.list, zeroprob.skillclasses, item.patt.freq, loglike, G, reduced.skillspace ) { # input: delta, attr.prob, beta # reconvert delta delta <- delta.new <- gdina_delta_convert_into_list( delta_vec=delta_vec, delta_indices=delta_indices, J=J) # beta parameter if ( ! is.null(beta) ){ if (G==1){ attr.prob <- reduced_skillspace_beta_2_probs( Z=Z, beta=beta ) } else { attr.prob <- matrix(NA, nrow=nrow(Z), ncol=G) for (gg in 1:G){ attr.prob[,gg] <- reduced_skillspace_beta_2_probs( Z=Z, beta=beta[,gg] ) } } } else { if (G==1){ attr.prob <- cdm_shrink_positive(x=attr.prob) } else { for (gg in 1:G){ attr.prob[,gg] <- cdm_shrink_positive(x=attr.prob[,gg]) } } } #-- calculate total log-likelihood pjM <- gdina_calc_prob( progress=FALSE, iter=iter, disp=disp, J=J, L=L, aggr.attr.patt=aggr.attr.patt, Mj=Mj, delta=delta, linkfct=linkfct ) p.xi.aj <- gdina_calc_individual_likelihood( IP=IP, L=L, pjM=pjM, item.patt.split=item.patt.split, J=J, resp.ind.list=resp.ind.list, zeroprob.skillclasses=zeroprob.skillclasses ) ll <- gdina_calc_deviance( p.xi.aj=p.xi.aj, attr.prob=attr.prob, item.patt.freq=item.patt.freq, loglike=loglike, G=G, IP=IP )$like.new res <- list( ll=ll, attr.prob=attr.prob, delta.new=delta.new, beta=beta, delta_vec=delta_vec ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_loglikelihood.R
## File Name: gdina_calc_prob.R ## File Version: 0.19 gdina_calc_prob <- function( progress, iter, disp, J, L, aggr.attr.patt, Mj, delta, linkfct) { if ( progress ){ cat(disp) cat("Iteration", iter, " ", paste( Sys.time() ), "\n" ) } pj1 <- matrix( 0, nrow=J, ncol=L ) #---- calculate P(X_j | alpha_l ) for (jj in 1:J){ ajj <- aggr.attr.patt[[jj]] mjjj <- Mj[[jj]][[1]] djj <- cdm_matrix2( delta[[jj]], nrow=nrow(mjjj) ) pj11 <- rowSums( mjjj * djj ) if (linkfct=="logit"){ pj11 <- stats::plogis( pj11 ) } if (linkfct=="log"){ pj11 <- exp(pj11) } pj1[jj,] <- pj11[ ajj ] } #-- restrict probabilities in calculations eps <- 1E-10 pj1[ pj1 < 0 ] <- eps pj1[ pj1 > 1 ] <- 1 - eps #-- create array pjM <- array( NA, dim=c(J,2,L) ) pjM[,1,] <- 1 - pj1 pjM[,2,] <- pj1 #--- OUTPUT return(pjM) } # cat( "\n Step 1a (calculate P(X_j|alpha_l)\n" ) ; a1 <- Sys.time() ; print(a1-a0) ; a0 <- a1
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_prob.R
## File Name: gdina_calc_prob_one_item.R ## File Version: 0.06 gdina_calc_prob_one_item <- function( J, jj, L, aggr.attr.patt, Mj, delta, linkfct) { pj1 <- matrix( 0, nrow=1, ncol=L ) #---- calculate P(X_j | alpha_l ) ajj <- ( aggr.attr.patt[[jj]] ) mjjj <- Mj[[jj]][[1]][ ajj, ] djj <- matrix( delta[[jj]], nrow=L, ncol=length(delta[[jj]]), byrow=TRUE ) pj1[1,] <- rowSums( mjjj * djj ) if (linkfct=="logit"){ pj1[1,] <- stats::plogis( pj1[1,] ) } if (linkfct=="log"){ pj1[1,] <- exp( pj1[1,] ) } #-- restrict probabilities in calculations eps <- 1E-10 pj1[ pj1 < 0 ] <- eps pj1[ pj1 > 1 ] <- 1 - eps #-- create array pjM <- array( NA, dim=c(1,2,L) ) pjM[,1,] <- 1 - pj1 pjM[,2,] <- pj1 pjM <- pjM[1,,] #--- OUTPUT return(pjM) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_calc_prob_one_item.R
## File Name: gdina_create_attribute_patterns.R ## File Version: 0.07 gdina_create_attribute_patterns <- function( q.matrix, skillclasses, zeroprob.skillclasses, Z.skillspace, G, reduced.skillspace ) { # extract unique Q-matrix entries K <- ncol(q.matrix) q.entries <- as.list( 1:K ) maxAttr <- rep(1,K) for (kk in 1:K){ q.entries[[kk]] <- sort(unique( c(0,q.matrix[,kk] ))) maxAttr[kk] <- length( q.entries[[kk]] ) - 1 } attr.patt <- as.matrix( expand.grid( q.entries ) ) if ( ! is.null(skillclasses) ){ attr.patt <- skillclasses } colnames(attr.patt) <- colnames(q.matrix) L <- nrow(attr.patt) # combine all attributes in an attribute pattern as a string attr.patt.c <- apply( attr.patt, 1, FUN=function(ll){ paste(ll,collapse="" ) } ) # create designmatrix for reduced skill space if ( is.null(reduced.skillspace) ){ if (K < 4){ reduced.skillspace <- FALSE } else { reduced.skillspace <- TRUE } } # if ( K < 4 | ( ! is.null( zeroprob.skillclasses ) ) | G > 1 ){ if ( ! is.null( zeroprob.skillclasses ) ){ reduced.skillspace <- FALSE } if ( ! is.null(Z.skillspace) ){ reduced.skillspace <- TRUE Z.skillspace <- as.matrix(Z.skillspace) } Z <- NULL covbeta <- NULL beta <- NULL ncolZ <- nrow(attr.patt)-1 #----- OUTPUT res <- list( K=K, maxAttr=maxAttr, attr.patt=attr.patt, L=L, attr.patt.c=attr.patt.c, reduced.skillspace=reduced.skillspace, Z.skillspace=Z.skillspace, Z=Z, beta=beta, covbeta=covbeta, ncolZ=ncolZ, q.entries=q.entries) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_create_attribute_patterns.R
## File Name: gdina_create_designmatrices.R ## File Version: 0.22 gdina_create_designmatrices <- function( J, Mj, Aj, q.matrix, rule, L, attr.patt, mono.constr, bugs=NULL ) { Mj.userdefined <- TRUE if ( is.null(Mj) ){ Mj.userdefined <- FALSE Mj <- as.list( rep("noe", J ) ) } if ( ! is.null(bugs) ){ bugs <- which( colnames(q.matrix) %in% bugs ) } # Notation for Mj and Aj follows De La Torre (2011) Aj <- NULL Aj_mono_constraints <- NULL Nattr.items <- rowSums(q.matrix >=1) # list of necessary attributes per item necc.attr <- as.list( rep(NA,J) ) # list of rows in attr.patt which correspond to attribute classes for one item attr.items <- NULL # list of indices of attribute patterns which should be aggregated for each item aggr.attr.patt <- NULL for (jj in 1:J){ # loop over items jj q_jj <- as.numeric(q.matrix[jj,]) nj1 <- necc.attr[[jj]] <- which( q.matrix[jj,] > 0 ) if ( length(nj1)==0 ){ stop( paste("Q matrix row ", jj, " has only zero entries\n", sep="") ) } Aj1 <- Aj[[jj]] <- gdina_designmatrices_create_Aj( Nattr.items[jj] ) #--- define monotonicity constraints if (mono.constr){ Aj_mono_constraints[[jj]] <- gdina_create_designmatrices_monotonicity_constraints(Ajjj=Aj[[jj]] ) } if ( ! Mj.userdefined ){ Mj[[jj]] <- gdina_designmatrices_create_Mj( Aj[[jj]], rule=rule[jj], q_jj=q_jj, bugs=bugs) } l1 <- as.list( 1 ) l2 <- rep(0,L) for (zz in seq(1,nrow(Aj1)) ){ # begin row zz Aj1zz <- outer( rep(1,nrow(attr.patt)), Aj1[zz,] ) apzz <- attr.patt[, nj1 ] apzz <- 1 * ( apzz >=q.matrix[ rep(jj,L),nj1] ) l1[[zz]] <- which( rowMeans( apzz==Aj1zz )==1) l2[ l1[[zz]] ] <- zz } # end row zz attr.items[[jj]] <- l1 aggr.attr.patt[[jj]] <- l2 } # end item jj #****** # indices for Mj Mj.index <- matrix( 0, J, 6 ) for (jj in 1:J){ Mj.index[jj,1] <- ncol( Mj[[jj]][[1]] ) Mj.index[jj,4] <- nrow( Aj[[jj]]) } Mj.index[,3] <- cumsum( Mj.index[,1] ) Mj.index[,2] <- c(1,Mj.index[-J,3] + 1 ) Mj.index[,6] <- cumsum( Mj.index[,4] ) Mj.index[,5] <- c(1,Mj.index[-J,6] + 1 ) # compute designmatrix of aggregation of pattern aggr.patt.designmatrix <- matrix( 0, L, max(Mj.index[,6]) ) for (jj in 1:J){ Mj.index.jj <- Mj.index[jj,] for (vv in seq(1,Mj.index.jj[4]) ){ aggr.patt.designmatrix[, Mj.index.jj[5] - 1 + vv ] <- 1 * ( aggr.attr.patt[[jj]]==vv ) } } #--- OUTPUT res <- list(Mj=Mj, Mj.userdefined=Mj.userdefined, Aj=Aj, Nattr.items=Nattr.items, necc.attr=necc.attr, aggr.attr.patt=aggr.attr.patt, attr.items=attr.items, aggr.patt.designmatrix=aggr.patt.designmatrix, Mj.index=Mj.index, Aj_mono_constraints=Aj_mono_constraints ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_create_designmatrices.R
## File Name: gdina_create_designmatrices_monotonicity_constraints.R ## File Version: 0.05 gdina_create_designmatrices_monotonicity_constraints <- function(Ajjj) { N_Ajjj <- nrow(Ajjj) Ajjj_sum <- rowSums(Ajjj) # compute distance matrix dist_Ajjj <- matrix( -9, nrow=N_Ajjj, ncol=N_Ajjj ) for (ii in 1:(N_Ajjj-1) ){ for (hh in (ii+1):N_Ajjj){ dist_Ajjj[hh,ii] <- sum( abs( Ajjj[hh,] - Ajjj[ii,] ) ) } } # define matrix for testing monotonicity constraints NC <- sum( dist_Ajjj==1 ) Ajjj_mono <- matrix( 0, nrow=NC, ncol=N_Ajjj) uu <- 1 for (ii in 1:N_Ajjj ){ for (hh in 1:N_Ajjj){ if ( dist_Ajjj[hh,ii]==1 ){ Ajjj_mono[uu,c(hh,ii) ] <- c(1,-1) uu <- uu + 1 } } } return(Ajjj_mono) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_create_designmatrices_monotonicity_constraints.R
## File Name: gdina_delta_convert_into_list.R ## File Version: 0.01 gdina_delta_convert_into_list <- function( delta_vec, delta_indices, J) { delta <- as.list(1:J) for ( ii in 1:J){ delta[[ ii ]] <- delta_vec[ delta_indices[[ii]] ] } return(delta) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_delta_convert_into_list.R
## File Name: gdina_designmatrices_create_Aj.R ## File Version: 0.12 #**** design matrices for GDINA model gdina_designmatrices_create_Aj <- function(nq) { Aj <- NULL if (nq==1){ Aj <- matrix( c(0,1), ncol=1 ) } if (nq==2){ Aj <- matrix( c( 0, 0, 1, 0, 0, 1, 1, 1 ), byrow=TRUE, ncol=2 ) } if (nq==3){ Aj <- matrix( c( 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1 ), byrow=TRUE, ncol=3 ) } if (nq==4){ Aj <- matrix( c( 0, 0, 0, 0, 1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1, 1,1,0,0, 1,0,1,0, 1,0,0,1, 0,1,1,0, 0,1,0,1, 0,0,1,1, 1,1,1,0, 1,0,1,1, 1,1,0,1, 0,1,1,1, 1, 1, 1,1), byrow=TRUE, ncol=4 ) } if (nq==5){ Aj <- matrix( c( 0,0,0,0,0, 1,0,0,0,0, 0,1,0,0,0, 0,0,1,0,0, 0,0,0,1,0, 0,0,0,0,1, 1,1,0,0,0, 1,0,1,0,0, 1,0,0,1,0, 1,0,0,0,1, 0,1,1,0,0, 0,1,0,1,0, 0,1,0,0,1, 0,0,1,1,0, 0,0,1,0,1, 0,0,0,1,1, 1,1,1,0,0, 1,1,0,1,0, 1,1,0,0,1, 1,0,1,1,0, 1,0,1,0,1, 1,0,0,1,1, 0,1,1,1,0, 0,1,1,0,1, 0,1,0,1,1, 0,0,1,1,1, 1,1,1,1,0, 1,1,1,0,1, 1,1,0,1,1, 1,0,1,1,1, 0,1,1,1,1, 1,1,1,1,1 ), byrow=TRUE, ncol=5 ) } if ( nq > 5){ Aj <- gdina_designmatrices_create_Aj_general(nq) } return(Aj) } .create.Aj <- gdina_designmatrices_create_Aj
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_designmatrices_create_Aj.R
## File Name: gdina_designmatrices_create_Aj_general.R ## File Version: 0.03 gdina_designmatrices_create_Aj_general <- function(nq) { Aj <- matrix( rep(0,nq), nrow=1, ncol=nq ) for (kk in 1:nq){ av <- t( utils::combn( nq, kk ) ) Aj1 <- matrix( 0, nrow=nrow(av), ncol=nq ) for (hh in 1:kk){ Aj1[ cbind( seq( 1, nrow(av) ), av[,hh] ) ] <- 1 } Aj <- rbind( Aj, Aj1 ) } return(Aj) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_designmatrices_create_Aj_general.R
## File Name: gdina_designmatrices_create_Mj.R ## File Version: 0.11 #*************************************************************** # design matrix Mj gdina_designmatrices_create_Mj <- function( Aj, rule="GDINA", q_jj=NULL, bugs=NULL) { K <- ncol(Aj) Mj <- NULL Mj.lab <- NULL #*********************************************** if (K==1){ Mj <- matrix( c( 1,0, 1,1 ), byrow=TRUE, ncol=2^1 ) Mj.lab <- c( "0", "1" ) } #*********************************************** if (K==2){ Mj <- matrix( c( 1,0,0,0, 1,1,0,0, 1,0,1,0, 1,1,1,1 ), byrow=TRUE, ncol=2^2 ) Mj.lab <- c( "0", "1", "2", "1-2" ) if (rule=="DINA"){ M <- 2^2 selv <- c(1,M) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv] } if (rule=="DINO"){ M <- 2^2 selv <- c(1,M) Mj <- Mj[,selv] Mj[,2] <- 1 ; Mj[1,2] <- 0 Mj.lab <- Mj.lab[ selv] Mj.lab[2] <- gsub("-", "|", Mj.lab[2] ) } if (rule=="ACDM" | rule=="GDINA1" ){ selv <- 1:3 Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } # In case of K=2, GDINA2=GDINA } #*********************************************** if (K==3){ Mj <- cbind( 1, sapply( 1:3, FUN=function(jj){ 1*(Aj[,jj]==1) } ) ) Mj.lab <- c( "0", 1:3 ) g2 <- utils::combn( 3, 2 ) Mj <- cbind( Mj, sapply( seq( 1, ncol(g2)), FUN=function(jj){ rowProds2(Aj[, g2[,jj] ]) } ) ) Mj.lab <- c( Mj.lab, apply( g2, 2, FUN=function(ll){ paste( ll, collapse="-" ) } ) ) g2 <- utils::combn( 3, 3 ) g2 <- matrix( g2, nrow=length(g2), ncol=1 ) Mj <- cbind( Mj, sapply( seq( 1, ncol(g2)), FUN=function(jj){ rowProds2(Aj[, g2[,jj] ]) } ) ) Mj.lab <- c( Mj.lab, apply( g2, 2, FUN=function(ll){ paste( ll, collapse="-" ) } ) ) if (rule=="DINA"){ M <- 2^3 selv <- c(1,M) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv] } if (rule=="DINO"){ M <- 2^3 selv <- c(1,M) Mj <- Mj[,selv] Mj[,2] <- 1 ; Mj[1,2] <- 0 Mj.lab <- Mj.lab[ selv] Mj.lab[2] <- gsub("-", "|", Mj.lab[2] ) } if (rule=="ACDM" | rule=="GDINA1"){ selv <- 1:4 Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } if (rule=="GDINA2"){ selv <- 1:7 Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } } #******************************************************************************************** if (K==4){ Mj <- cbind( 1, sapply( 1:4, FUN=function(jj){ 1*(Aj[,jj]==1) } ) ) Mj.lab <- c( "0", 1:4 ) for (kk in 2:4){ g2 <- utils::combn( 4, kk ) if (kk==4){ g2 <- matrix( g2, nrow=length(g2), ncol=1 ) } Mj <- cbind( Mj, sapply( seq( 1, ncol(g2)), FUN=function(jj){ rowProds2(Aj[, g2[,jj] ]) } ) ) Mj.lab <- c( Mj.lab, apply( g2, 2, FUN=function(ll){ paste( ll, collapse="-" ) } ) ) } if (rule=="DINA"){ M <- 2^4 selv <- c(1,M) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv] } if (rule=="DINO"){ M <- 2^4 selv <- c(1,M) Mj <- Mj[,selv] Mj[,2] <- 1 ; Mj[1,2] <- 0 Mj.lab <- Mj.lab[ selv] Mj.lab[2] <- gsub("-", "|", Mj.lab[2] ) } if (rule=="ACDM" | rule=="GDINA1"){ selv <- 1:5 Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } if (rule=="GDINA2"){ selv <- 1:( 1 + 4 + 6 ) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } } #*************************************** if (K==5){ Mj <- cbind( 1, sapply( 1:5, FUN=function(jj){ 1*(Aj[,jj]==1) } ) ) Mj.lab <- c( "0", 1:5 ) for (kk in 2:5){ g2 <- utils::combn( 5, kk ) if (kk==5){ g2 <- matrix( g2, nrow=length(g2), ncol=1 ) } Mj <- cbind( Mj, sapply( seq( 1, ncol(g2)), FUN=function(jj){ rowProds2(Aj[, g2[,jj] ]) } ) ) Mj.lab <- c( Mj.lab, apply( g2, 2, FUN=function(ll){ paste( ll, collapse="-" ) } ) ) } if (rule=="DINA"){ M <- 2^5 selv <- c(1,M) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv] } if (rule=="DINO"){ M <- 2^5 selv <- c(1,M) Mj <- Mj[,selv] Mj[,2] <- 1 ; Mj[1,2] <- 0 Mj.lab <- Mj.lab[ selv] Mj.lab[2] <- gsub("-", "|", Mj.lab[2] ) } if (rule=="ACDM" | rule=="GDINA1"){ selv <- 1:6 Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } if (rule=="GDINA2"){ selv <- 1:( 1 + 5 + 10 ) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } } #******************* if ( (K > 5 ) | ( rule=="SISM" ) ){ res <- gdina_designmatrices_create_Mj_general( K=K, Aj=Aj, rule=rule, bugs=bugs, q_jj=q_jj ) Mj <- res$Mj Mj.lab <- res$Mj.lab } res <- list( Mj, Mj.lab ) return(res) } ##################################################################### .create.Mj <- gdina_designmatrices_create_Mj
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_designmatrices_create_Mj.R
## File Name: gdina_designmatrices_create_Mj_general.R ## File Version: 0.07 gdina_designmatrices_create_Mj_general <- function( K, Aj, rule, bugs=NULL, q_jj=NULL ) { Mj <- cbind( 1, sapply( 1:K, FUN=function(jj){ 1*(Aj[,jj]==1) } ) ) Mj.lab <- c( "0", 1:K ) if (K>1){ for (kk in 2:K){ g2 <- utils::combn( K, kk ) if (kk==K){ g2 <- matrix( g2, nrow=length(g2), ncol=1 ) } Mj <- cbind( Mj, sapply( seq( 1, ncol(g2)), FUN=function(jj){ rowProds2(Aj[, g2[,jj] ]) } ) ) Mj.lab <- c( Mj.lab, apply( g2, 2, FUN=function(ll){ paste( ll, collapse="-" ) } ) ) } } else { Mj.lab <- c( "0", "1" ) } if (rule=="DINA"){ M <- 2^K selv <- c(1,M) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv] } if (rule=="DINO"){ M <- 2^K selv <- c(1,M) Mj <- Mj[,selv] Mj[,2] <- 1 Mj[1,2] <- 0 Mj.lab <- Mj.lab[ selv] Mj.lab[2] <- gsub("-", "|", Mj.lab[2] ) } if (rule=="ACDM" | rule=="GDINA1"){ selv <- 1:(K+1) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } if (rule=="GDINA2"){ selv <- 1:( 1 + K + K*(K-1)/2 ) Mj <- Mj[,selv] Mj.lab <- Mj.lab[ selv ] } #**** SISM model if (rule=="SISM"){ Q_entries <- which( q_jj > 0) K_jj1 <- length(q_jj) skills <- setdiff( 1:K_jj1, bugs ) skills_jj <- intersect( skills, Q_entries ) bugs_jj <- intersect( bugs, Q_entries ) if( length(skills_jj) > 0){ ind_skills <- seq(1, length(skills_jj),1 ) } else { ind_skills <- NULL } if( length(bugs_jj) > 0){ ind_bugs <- length(ind_skills) + seq(1, length(bugs_jj),1 ) } else { ind_bugs <- NULL } NS <- length(ind_skills) NB <- length(ind_bugs) Mj <- 0*Mj is_sism <- FALSE if ( (NS>0) & (NB>0) ){ Mj <- Mj[, 1:4] Mj.lab <- c("S0B1", "S0B0", "S1B1", "S1B0") is_sism <- TRUE } else { Mj <- Mj[,1:2] if (NS>0){ Mj.lab <- c("S0","S1") } if (NB>0){ Mj.lab <- c("B1","B0") } } #*** latent response corresponding to skills h1 <- 0 if (NS>1){ h1 <- rowMeans( Aj[, ind_skills] ) } if (NS==1){ h1 <- Aj[, ind_skills] } latresp_eta <- 1*( h1==1 ) #*** latent response bugs h1 <- 0 if (NB>1){h1 <- rowSums(Aj[,ind_bugs]) } if (NB==1){ h1 <- Aj[,ind_bugs] } latresp_gamma <- 1 * ( h1 > 0 ) if (is_sism){ Mj[ ( latresp_eta==0 ) & ( latresp_gamma==1), 1 ] <- 1 Mj[ ( latresp_eta==0 ) & ( latresp_gamma==0), 2 ] <- 1 Mj[ ( latresp_eta==1 ) & ( latresp_gamma==1), 3 ] <- 1 Mj[ ( latresp_eta==1 ) & ( latresp_gamma==0), 4 ] <- 1 } else { if (NS>0){ Mj[ latresp_eta==0, 1 ] <- 1 Mj[ latresp_eta==1, 2 ] <- 1 } if (NB>0){ Mj[ latresp_gamma==1, 1 ] <- 1 Mj[ latresp_gamma==0, 2 ] <- 1 } } } res <- list( Mj=Mj, Mj.lab=Mj.lab ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_designmatrices_create_Mj_general.R
## File Name: gdina_dif_compute.R ## File Version: 1.455 #-- auxiliary calculations in gdina model for #-- detection of differential item functioning gdina_dif_compute <- function( ocontrol, gg, data ) { aggr.patt.designmatrix <- ocontrol$aggr.patt.designmatrix Aj <- ocontrol$Aj Mj <- ocontrol$Mj Mj.index <- ocontrol$Mj.index linkfct <- ocontrol$linkfct rule <- ocontrol$rule method <- ocontrol$method aggr.attr.patt <- ocontrol$aggr.attr.patt IP <- ocontrol$IP p.aj.xi <- ocontrol$p.aj.xi[,,gg] ind1 <- match( ocontrol$item.patt[,1], ocontrol$item.patt.subj) ind1 <- stats::na.omit(ind1) # p.aj.xi <- p.aj.xi[ ind1, ] item.patt.split <- ocontrol$item.patt.split resp.patt <- ocontrol$resp.patt item.patt.freq <- ocontrol$item.patt.freq[,gg] freq.pattern <- ocontrol$freq.pattern invM.list <- ocontrol$invM.list eps <- eps2 <- 1E-10 J <- length(Mj) prob_exp <- varmat.delta <- varmat.palj <- delta <- ndj <- as.list(1:J) R.lj <- ocontrol$R.lj.gg[,,gg] I.lj <- ocontrol$I.lj.gg[,,gg] # calculation of expected counts R.ljM <- R.lj %*% aggr.patt.designmatrix I.ljM <- I.lj %*% aggr.patt.designmatrix for (jj in 1:J){ # begin item Ajjj <- Aj[[jj]] Mjjj <- Mj[[jj]][[1]] Rlj.ast <- R.ljM[ jj, Mj.index[jj,5]:Mj.index[jj,6] ] Ilj.ast <- I.ljM[ jj, Mj.index[jj,5]:Mj.index[jj,6] ] pjjj <- Rlj.ast / ( Ilj.ast + eps2 ) if (linkfct=="logit" ){ pjjj[ pjjj > 1-eps ] <- 1 - eps pjjj[ pjjj < eps ] <- eps pjjj <- stats::qlogis( pjjj ) } #***** if (linkfct=="log" ){ pjjj[ pjjj < eps ] <- eps pjjj <- log( pjjj ) } Wj <- diag( Ilj.ast ) if ( ( rule[jj]=="GDINA" )| ( method=="ULS" ) ){ invM <- invM.list[[jj]] delta.jj <- invM %*% crossprod(Mjjj,pjjj) } else { invM <- solve( crossprod(Mjjj, Wj ) %*% Mjjj + diag( rep( eps2, ncol(Mjjj) )) ) delta.jj <- tcrossprod( invM, Mjjj ) %*% Wj %*% pjjj } pjj_exp <- ( Mjjj %*% delta.jj )[,1] if ( linkfct=="logit" ){ pjj_exp <- stats::plogis( pjj_exp) } if ( linkfct=="log" ){ pjj_exp <- exp( pjj_exp) } # data frame with counts and expected probabilities prob_exp[[jj]] <- data.frame( "freq"=Ilj.ast / sum( Ilj.ast), "prob"=pjj_exp ) rownames(prob_exp[[jj]]) <- apply( Ajjj, 1, FUN=function(ll){ paste0("S", paste0( ll, collapse="") ) } ) delta[[jj]] <- delta.jj[,1] #**** variance matrix PAJXI <- p.aj.xi Ajjj <- Aj[[jj]] Mjjj <- Mj[[jj]][[1]] Mjj2 <- Mj[[jj]][[2]] apjj <- aggr.attr.patt[[jj]] M1 <- max( apjj ) p.ajast.xi <- matrix( 0, nrow=IP, ncol=M1 ) for (kk in 1:M1){ pg1 <- PAJXI[, apjj==kk ] if ( is.vector(pg1) ){ p.ajast.xi[,kk] <- pg1 } else { p.ajast.xi[,kk] <- rowSums( pg1 ) } } se_version <- ocontrol$se_version res_jj <- gdina_se_itemwise( R.lj_jj=R.lj[jj,], I.lj_jj=I.lj[jj,], apjj=apjj, Mjjj=Mjjj, Mjj2=Mjj2, PAJXI=PAJXI, IP=IP, item.patt.split_jj=item.patt.split[,jj], resp.patt_jj=resp.patt[,jj], freq.pattern=item.patt.freq, item.patt.freq=item.patt.freq, avoid.zeroprobs=FALSE, data=data, jj=jj, method=method, linkfct=linkfct, delta_jj=delta[[jj]], se_version=se_version ) Rlj.ast <- stats::aggregate( R.lj[jj,], list( aggr.attr.patt[[jj]]), sum ) Ilj.ast <- stats::aggregate( I.lj[jj,], list( aggr.attr.patt[[jj]]), sum ) pjjj <- Rlj.ast[,2] / Ilj.ast[,2] pjjjM <- outer( rep(1,IP), pjjj ) + eps nM <- ncol(pjjjM) x1 <- outer( item.patt.split[,jj], rep(1,nM) ) r1 <- outer( resp.patt[,jj] * item.patt.freq, rep(1,ncol(pjjjM) ) ) # Formula (17) for calculating the standard error mat.jj <- p.ajast.xi * ( x1 - pjjjM) / ( pjjjM * ( 1 - pjjjM ) ) infomat.jj <- matrix( 0, nM, nM ) for (kk1 in 1:nM){ for (kk2 in kk1:nM){ # frequency weights must be taken into account hh1 <- sum( mat.jj[,kk1] * mat.jj[,kk2] * item.patt.freq * resp.patt[,jj] * item.patt.split[,jj] ) infomat.jj[kk2,kk1] <- infomat.jj[kk1,kk2] <- hh1 } } try( a1 <- solve( infomat.jj + diag( eps2, ncol(infomat.jj) ) ) ) if ( is.null(a1)){ cat( "Item", colnames(data)[jj], "Singular item parameter covariance matrix\n") a1 <- NA*infomat.jj } varmat.palj[[jj]] <- Ijj <- a1 Wj <- diag( Ilj.ast[,2] ) if ( ( method=="ULS" ) ){ x1 <- t(Mjjj) %*% Mjjj diag(x1) <- diag(x1) + eps Wjjj <- solve(x1) %*% t(Mjjj) } else { x1 <- t(Mjjj) %*% Wj %*% Mjjj diag(x1) <- diag(x1) + eps Wjjj <- solve(x1) %*% t(Mjjj) %*% Wj } if ( linkfct=="logit" ){ pjjj.link <- 1 / ( ( pjjj * ( 1 - pjjj ) ) + eps2 ) pjjj.link <- diag( pjjj.link ) Wjjj <- Wjjj %*% pjjj.link } if ( linkfct=="log" ){ pjjj.link <- 1 / ( pjjj + eps2 ) pjjj.link <- diag( pjjj.link ) Wjjj <- Wjjj %*% pjjj.link } varmat.delta[[jj]] <- Wjjj %*% Ijj %*% t(Wjjj) # varmat.delta[[jj]] <- t(Wjjj) %*% Ijj %*% Wjjj # this is wrong!! varmat.delta[[jj]] <- res_jj$varmat.delta_jj ndj[[jj]] <- length( delta[[jj]] ) } # end jj #-- output res <- list( delta=delta, varmat.delta=varmat.delta, ndj=ndj, prob_exp=prob_exp ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_dif_compute.R
## File Name: gdina_init_class_probabilities.R ## File Version: 0.07 gdina_init_class_probabilities <- function( G, L, seed, attr.prob.init ) { if (G==1){ attr.prob <- rep( 1/L, L ) if ( seed > 0 ){ set.seed(seed) attr.prob <- cdm_sumnorm( stats::runif(L) ) } } else { attr.prob <- matrix( 1/L, L, G ) if ( seed > 0 ){ set.seed(seed) for (gg in 1:G){ attr.prob[,gg] <- cdm_sumnorm( stats::runif(L) ) } } } #--- initial class probabilities if ( ! is.null(attr.prob.init) ){ attr.prob <- attr.prob.init if (G==1){ attr.prob <- as.vector(attr.prob) } } #---- OUTPUT res <- list(attr.prob=attr.prob) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_init_class_probabilities.R
## File Name: gdina_init_item_parameters.R ## File Version: 0.10 gdina_init_item_parameters <- function( delta.init, linkfct, J, seed, Mj, delta.basispar.init, delta.designmatrix, Mj.index, rule ) { delta <- delta.init if ( is.null( delta.init ) ){ #**** identity link if (linkfct=="identity" ){ for (jj in 1:J){ N1jj <- ncol(Mj[[jj]][[1]]) l1 <- rep(0,N1jj) if ( seed==0 ){ dd1 <- .2 ; dd2 <- .6 } else { dd1 <- stats::runif( 1, 0, .4 ) dd2 <- stats::runif( 1, 0, 1 - dd1 - .1 ) } l1[1] <- dd1 l1[2:N1jj] <- rep( dd2 / (N1jj - 1), N1jj - 1 ) delta[[jj]] <- l1 } } #**** logit link if (linkfct=="logit" ){ for ( jj in 1:J){ N1jj <- ncol(Mj[[jj]][[1]]) l1 <- rep(0,N1jj) l1[1] <- -2 l1[-1] <- 4 / N1jj delta[[jj]] <- l1 } } #**** log link if (linkfct=="log" ){ for ( jj in 1:J){ N1jj <- ncol(Mj[[jj]][[1]]) l1 <- rep(0,N1jj) if ( seed==0 ){ dd1 <- -1.5 ; dd2 <- .75 } else { dd1 <- stats::runif( 1, -3, -1 ) dd2 <- stats::runif( 1, .25, 1 ) } l1[1] <- dd1 l1[N1jj] <- dd2 if ( rule[jj]=="ACDM"){ v1 <- .5 + 0*l1 v1[1] <- .80 l1 <- rrumpars2logpars(v1) } delta[[jj]] <- l1 } } } ########################### # import inits delta basis parameter if ( ! is.null( delta.basispar.init ) ){ u.delta <- delta.designmatrix %*% delta.basispar.init for (jj in 1:J){ delta[[jj]] <- u.delta[ seq( Mj.index[jj,2], Mj.index[jj,3] ), 1] } } #--- OUTPUT return(delta) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_init_item_parameters.R
## File Name: gdina_itemfit.R ## File Version: 0.05 gdina_itemfit <- function( L, J, R.lj, I.lj, item.patt.freq, G, attr.prob, data, pjM ) { # # n.ik [ 1:TP, 1:I, 1:(K+1), 1:G ] n.ik <- array( 0, dim=c(L, J, 2, 1 ) ) n.ik[,, 2, 1 ] <- t(R.lj) n.ik[,, 1, 1 ] <- t(I.lj-R.lj) pi.k <- array( 0, dim=c(L,1) ) if (G>1){ # item fit only in multiple group case g1 <- colSums( item.patt.freq ) g1 <- g1 / sum(g1) for (gg in 1:G){ pi.k[,1] <- pi.k[,1] + attr.prob[,gg] * g1[gg] } } if (G==1){ # item fit only in one group case pi.k[,1] <- attr.prob$class.prob } probs <- aperm( pjM, c(3,1,2) ) itemfit.rmsea <- itemfit.rmsea( n.ik=n.ik, pi.k=pi.k, probs=probs )$rmsea names(itemfit.rmsea) <- colnames(data) #--- OUTPUT res <- list( itemfit.rmsea=itemfit.rmsea, pi.k=pi.k, n.ik=n.ik, pi.k=pi.k) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_itemfit.R
## File Name: gdina_maximum_parameter_change.R ## File Version: 0.01 gdina_maximum_parameter_change <- function( delta, delta.new, linkfct ) { max.par.change <- max( abs( unlist( delta.new ) - unlist( delta ) ) ) if ( linkfct %in% c("logit","log") ){ max.par.change <- max( abs( stats::plogis(unlist( delta.new )) - stats::plogis( unlist( delta ) )) ) } return(max.par.change) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_maximum_parameter_change.R
## File Name: gdina_mstep_item_ml.R ## File Version: 0.952 #**** GDINA M-step item parameters gdina_mstep_item_ml <- function( pjjj, Ilj.ast, Rlj.ast, eps, avoid.zeroprobs, Mjjj, invM.list, linkfct, rule, method, iter, delta.new, max.increment, fac.oldxsi, jj, delta, rrum.model, delta.fixed, mstep_iter, mstep_conv, devchange, regular_type, regular_lam, cd_steps, mono.constr, Aj_mono_constraints_jj, mono_maxiter, regular_alpha, regular_tau, regularization_types, prior_intercepts, prior_slopes, use_prior, regular_weights=NULL, h=1e-4, optimizer="CDM", add_pseudo_count=.005 ) { eps2 <- eps delta_jj <- delta[[jj]] delta_jj0 <- delta[[jj]] if ( ! is.null(regular_weights) ){ regular_weights <- regular_weights[[jj]] } NP <- length(delta_jj) converged <- FALSE penalty <- 0 logprior_value <- 0 ii <- 0 max_increment <- max.increment Rlj.ast <- Rlj.ast + add_pseudo_count Ilj.ast <- Ilj.ast + 2*add_pseudo_count N <- sum(Ilj.ast) diag_only <- FALSE regularization <- FALSE if ( regular_type %in% regularization_types ){ diag_only <- TRUE regularization <- TRUE max_increment <- max( 3*regular_lam, max_increment ) } #---- prior function logprior_FUN <- function(x, p1, p2) { lp1 <- log_dgnorm(x=x[1], loc=p1[1], scale=p1[2], power=p1[3] ) lp2 <- log_dgnorm(x=x[-1], loc=p2[1], scale=p2[2], power=p2[3] ) lp <- sum(lp1) + sum(lp2) return(lp) } #---- #------------------ define log-likelihood function without prior ll_FUN0 <- function(x) { irf1 <- gdina_prob_item_designmatrix( delta_jj=x, Mjjj=Mjjj, linkfct=linkfct, eps_squeeze=eps ) ll <- - sum( Rlj.ast * log(abs(irf1)) + ( Ilj.ast - Rlj.ast ) * log( abs(1-irf1 ) ) ) return(ll) } #------------------ define log-likelihood function with prior ll_FUN <- function(x) { ll <- ll_FUN0(x=x) if (use_prior){ ll <- ll - logprior_FUN(x=x, p1=prior_intercepts, p2=prior_slopes) } return(ll) } #------------------ #------------------ #--- algorithm without monotonicity constraints if (optimizer=="CDM"){ delta_jj <- gdina_mstep_item_ml_algorithm( delta_jj=delta_jj, max_increment=max_increment, regular_lam=regular_lam, regular_type=regular_type, regularization=regularization, ll_FUN=ll_FUN, h=h, mstep_conv=mstep_conv, cd_steps=cd_steps, mstep_iter=mstep_iter, regular_alpha=regular_alpha, regular_tau=regular_tau, N=N, regular_weights=regular_weights) } if (optimizer=="optim"){ mod <- stats::optim(par=delta_jj, fn=ll_FUN, method="L-BFGS-B", control=list(maxit=mstep_iter) ) delta_jj <- mod$par } ll_value <- ll_FUN(x=delta_jj) #--- algorithm with monotonicity constraints if (mono.constr){ iterate_mono <- FALSE C <- 1 crit_pen <- 1E-10 delta_jj_uncon <- delta_jj irf1 <- gdina_prob_item_designmatrix( delta_jj=delta_jj, Mjjj=Mjjj, linkfct=linkfct, eps_squeeze=eps ) constraints_fitted_jj <- as.vector( Aj_mono_constraints_jj %*% irf1 ) penalty_constraints <- gdina_mstep_mono_constraints_penalty(x=constraints_fitted_jj) pen <- sum(penalty_constraints) if ( pen > crit_pen ){ iterate_mono <- TRUE } #------------------ define log-likelihood function with penalty ll_FUN_mono <- function(x) { irf1 <- gdina_prob_item_designmatrix( delta_jj=x, Mjjj=Mjjj, linkfct=linkfct, eps_squeeze=eps ) ll <- - sum( Rlj.ast * log(abs(irf1)) + ( Ilj.ast - Rlj.ast ) * log( abs(1 - irf1 ) ) ) if (use_prior){ ll <- ll - logprior_FUN(x=x, p1=prior_intercepts, p2=prior_slopes) } # constraints y <- gdina_mstep_mono_constraints_penalty( as.vector( Aj_mono_constraints_jj %*% irf1 ) ) y <- C * sum( y^2 ) ll <- ll + y return(ll) } #------------------ # res <- ll_FUN(x=delta_jj) ll_constraints <- function(x){ irf1 <- gdina_prob_item_designmatrix( delta_jj=x, Mjjj=Mjjj, linkfct=linkfct, eps_squeeze=eps ) con <- gdina_mstep_mono_constraints_penalty( as.vector( Aj_mono_constraints_jj %*% irf1 ) ) return(con) } #constraint function confun <- function(x){ ceq <- -ll_constraints(x=x) return(list(ceq=ceq,c=NULL)) } monocon <- ll_constraints(x=delta_jj) args <- list(start=delta_jj0, objective=ll_FUN, eqFun=ll_constraints, control=list(maxit=10*mstep_iter)) optim_fn <- gdina_mstep_item_ml_mono_optim_function() res <- do.call( what=optim_fn, args=args) delta_jj <- res$par ll_value <- ll_FUN_mono(x=delta_jj) } delta.new[[jj]] <- delta_jj if ( (fac.oldxsi > 0 ) & (iter>3) ){ fac.oldxsi1 <- fac.oldxsi * ( devchange >=0 ) delta.new[[jj]] <- fac.oldxsi1*delta[[jj]] + ( 1 - fac.oldxsi1 ) * delta.new[[jj]] } # fix delta parameter here!! if ( ! is.null( delta.fixed ) ){ delta.fixed.jj <- delta.fixed[[jj]] if ( ! is.na( delta.fixed.jj)[1] ){ delta.new[[jj]] <- delta.fixed.jj } } #-- penalty parameter for item delta_jj <- delta.new[[jj]] if (regularization){ x <- delta_jj[-1] penalty1 <- cdm_penalty_values( x=x, regular_type=regular_type, regular_lam=regular_lam, regular_alpha=regular_alpha, regular_tau=regular_tau ) if ( ! is.null(regular_weights) ){ penalty1 <- regular_weights[-1]*penalty1 } penalty <- N*sum(penalty1) ll_value <- ll_value - penalty } if (use_prior){ logprior_value <- logprior_FUN(x=delta_jj, p1=prior_intercepts, p2=prior_slopes) } #*** output res <- list( delta.new=delta.new, penalty=penalty, ll_value=ll_value, logprior_value=logprior_value) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_ml.R
## File Name: gdina_mstep_item_ml_algorithm.R ## File Version: 0.254 gdina_mstep_item_ml_algorithm <- function(delta_jj, max_increment, regular_lam, regular_type, regularization, ll_FUN, h, mstep_conv, cd_steps, mstep_iter, regular_alpha, regular_tau, N=NULL, regular_weights=NULL, ... ) { ii <- 0 converged <- FALSE while ( ! converged ){ delta_jj0 <- delta_jj #-- parameter update delta_jj <- gdina_mstep_item_ml_update_parameter( delta_jj=delta_jj, max_increment=max_increment, regular_lam=regular_lam, regular_type=regular_type, regularization=regularization, ll_FUN=ll_FUN, h=h, mstep_conv=mstep_conv, cd_steps=cd_steps, regular_alpha=regular_alpha, regular_tau=regular_tau, N=N, regular_weights=regular_weights, ...) ii <- ii + 1 decr <- max( abs( delta_jj - delta_jj0) ) if ( ii >=mstep_iter ){ converged <- TRUE } if ( decr < mstep_conv ){ converged <- TRUE } } # ----- end algorithm #---- output return(delta_jj) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_ml_algorithm.R
## File Name: gdina_mstep_item_ml_mono_optim_function.R ## File Version: 0.133 gdina_mstep_item_ml_mono_optim_function <- function() { CDM_require_namespace(pkg="ROI") fun <- cdm_attach_internal_function(pack="ROI", fun="nlminb2") # fun <- ROI::nlminb2 return(fun) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_ml_mono_optim_function.R
## File Name: gdina_mstep_item_ml_rrum.R ## File Version: 0.527 ##################################################### # GDINA M-step item parameters gdina_mstep_item_ml_rrum <- function( pjjj, Ilj.ast, Rlj.ast, eps, avoid.zeroprobs, Mjjj, invM.list, linkfct, rule, method, iter, delta.new, max.increment, fac.oldxsi, jj, delta, rrum.model, delta.fixed, mstep_iter, mstep_conv, devchange, optimizer="optim" ) { eps2 <- eps delta_jj <- delta[[jj]] delta_jj <- stats::qlogis( logpars2rrumpars(delta_jj) ) converged <- FALSE ii <- 0 max_increment <- max.increment eps <- 1E-6 eps <- 1E-3 Rlj.ast <- Rlj.ast + .005 Ilj.ast <- Ilj.ast + .05 #*** log-likelihood function ll_FUN <- function(x){ delta_jj <- x delta_jj <- rrumpars2logpars( stats::plogis(delta_jj) ) irf1 <- ( Mjjj %*% delta_jj )[,1] irf1 <- exp(irf1) irf1 <- cdm_squeeze( irf1, c(eps,1-eps) ) ll <- - sum( Rlj.ast * log(abs(irf1)) + ( Ilj.ast - Rlj.ast ) * log( abs(1 - irf1 ) ) ) return(ll) } ll_new <- ll0 <- ll_FUN(delta_jj) avoid_increasing_likelihood <- FALSE if (optimizer!="CDM"){ converged <- TRUE } #************************************* #*** optimization in R while ( ! converged ){ delta_jj0 <- delta_jj ll0 <- ll_new #*** Newton step res1 <- numerical_Hessian(par=delta_jj, h=1E-4, FUN=ll_FUN, gradient=TRUE, hessian=TRUE ) hessian <- - res1$hessian eps0 <- 1E-4 hessian <- hessian + diag(eps0, nrow(hessian) ) delta_change <- ( solve(hessian) %*% res1$grad )[,1] while( max(abs(delta_change)) > max_increment ){ delta_change <- ifelse( abs(delta_change) > max_increment, delta_change /2, delta_change ) } delta_jj <- delta_jj + delta_change ll_new <- ll_FUN(delta_jj) if ((ll_new > ll0)&(avoid_increasing_likelihood)){ tt <- .5 iterate <- TRUE iter_max <- 10 vv <- 1 while (iterate){ delta_jj <- delta_jj0 + tt*delta_change ll_new <- ll_FUN(delta_jj) tt <- tt / 2 if ( ll_new <=ll0){ iterate <- FALSE } vv <- vv + 1 if (vv > iter_max){ iterate <- FALSE converged <- TRUE } } } ii <- ii + 1 decr <- max( abs( delta_jj - delta_jj0) ) if ( ii >=mstep_iter ){ converged <- TRUE } if ( decr < mstep_conv ){ converged <- TRUE } } #******* optimization using optim if (optimizer=="optim"){ mod <- stats::optim(par=delta_jj, fn=ll_FUN, method="L-BFGS-B", control=list(maxit=mstep_iter)) delta_jj <- mod$par } #*** retransform delta_jj <- stats::plogis( delta_jj ) delta_jj <- rrumpars2logpars( delta_jj ) delta.new[[jj]] <- delta_jj if ( (fac.oldxsi > 0 ) & (iter>3)){ fac.oldxsi1 <- fac.oldxsi * ( devchange >=0 ) delta.new[[jj]] <- fac.oldxsi1*delta[[jj]] + ( 1 - fac.oldxsi1 ) * delta.new[[jj]] } # fix delta parameter here!! if ( ! is.null( delta.fixed ) ){ delta.fixed.jj <- delta.fixed[[jj]] if ( ! is.na( delta.fixed.jj)[1] ){ delta.new[[jj]] <- delta.fixed.jj } } #*** output res <- list( delta.new=delta.new ) return(res) } ######################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_ml_rrum.R
## File Name: gdina_mstep_item_ml_rrum2.R ## File Version: 1.11 ##################################################### # GDINA M-step item parameters gdina_mstep_item_ml_rrum2 <- function( pjjj, Ilj.ast, Rlj.ast, eps, avoid.zeroprobs, Mjjj, invM.list, linkfct, rule, method, iter, delta.new, max.increment, fac.oldxsi, jj, delta, rrum.model, delta.fixed, mstep_iter, mstep_conv, devchange) { eps2 <- eps delta_jj <- delta[[jj]] delta_jj <- stats::qlogis( logpars2rrumpars(delta_jj) ) converged <- FALSE ii <- 0 max_increment <- max.increment eps <- 1E-3 Rlj.ast <- Rlj.ast + .005 Ilj.ast <- Ilj.ast + .05 #*** define function ll_FUN <- function(par){ delta_jj <- par delta_jj <- rrumpars2logpars( stats::plogis(delta_jj) ) irf1 <- ( Mjjj %*% delta_jj )[,1] irf1 <- exp(irf1) irf1 <- cdm_squeeze( irf1, c(eps,1-eps) ) ll <- - sum( Rlj.ast * log(abs(irf1)) + ( Ilj.ast - Rlj.ast ) * log( abs(1 - irf1 ) ) ) return(ll) } #*** optimzation mstep_conv <- 1000 res0 <- stats::optim( par=delta_jj, fn=ll_FUN, method="BFGS", control=list( maxit=mstep_conv) ) delta_jj <- res0$par #*** retransform delta_jj <- stats::plogis( delta_jj ) delta_jj <- rrumpars2logpars( delta_jj ) delta.new[[jj]] <- delta_jj if ( (fac.oldxsi > 0 ) & (iter>3)){ fac.oldxsi1 <- fac.oldxsi * ( devchange >=0 ) delta.new[[jj]] <- fac.oldxsi1*delta[[jj]] + ( 1 - fac.oldxsi1 ) * delta.new[[jj]] } # fix delta parameter here!! if ( ! is.null( delta.fixed ) ){ delta.fixed.jj <- delta.fixed[[jj]] if ( ! is.na( delta.fixed.jj)[1] ){ delta.new[[jj]] <- delta.fixed.jj } } #*** output res <- list( delta.new=delta.new ) return(res) } ######################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_ml_rrum2.R
## File Name: gdina_mstep_item_ml_update_parameter.R ## File Version: 0.609 gdina_mstep_item_ml_update_parameter <- function( delta_jj, max_increment, regular_lam, regular_type, regularization, ll_FUN, h, mstep_conv, cd_steps, regular_alpha, regular_tau, N=NULL, regular_weights=NULL) { eps <- 1E-5 if (is.null(N)){ N <- 1 } #--- no regularization if ( ! regularization ){ res1 <- numerical_Hessian(par=delta_jj, h=h, FUN=ll_FUN, gradient=TRUE, hessian=TRUE, diag_only=FALSE ) grad <- res1$grad hessian <- - res1$hessian hessian <- cdm_add_ridge_diagonal(x=hessian, eps=eps ) delta_change <- as.vector( cdm_ginv(hessian) %*% grad ) delta_change <- cdm_trim_increment( increment=delta_change, max.increment=max_increment, type=2 ) delta_jj <- delta_jj + delta_change } #--- regularization if (regularization){ NP <- length(delta_jj) for (pp in 1:NP){ iterate_pp <- TRUE #cat("---------- pp=", pp, "----------------\n") vv <- 0 #- start iterations in coordinate descent algorithm while (iterate_pp){ delta_jj_pp <- delta_jj res <- numerical_Hessian_partial(par=delta_jj, FUN=ll_FUN, h=h, coordinate=pp ) grad <- res$grad hessian <- - res$hessian delta_change <- grad / ( abs(hessian) + eps ) delta_jj[pp] <- delta_jj[pp] - delta_change vv <- vv + 1 if (pp >=2){ x0 <- delta_jj[pp] regular_lam_temp <- regular_lam*N regular_tau_temp <- regular_tau*N #vt <- abs(hessian) / N vt <- abs(hessian) if ( ! is.null(regular_weights) ){ regular_lam_temp <- regular_lam_temp*regular_weights[pp] regular_tau_temp <- regular_tau_temp*regular_weights[pp] } delta_jj[pp] <- gdina_mstep_item_ml_update_parameter_regularization(x=x0, regular_type=regular_type, regular_lam=regular_lam_temp, regular_alpha=regular_alpha, regular_tau=regular_tau_temp, vt=vt ) } parchange_pp <- max( abs( delta_jj_pp - delta_jj )) if ( parchange_pp < mstep_conv ){ iterate_pp <- FALSE } if ( vv > cd_steps ){ iterate_pp <- FALSE } } # end while iterate_pp } # end pp } #--- output return(delta_jj) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_ml_update_parameter.R
## File Name: gdina_mstep_item_ml_update_parameter_regularization.R ## File Version: 0.23 gdina_mstep_item_ml_update_parameter_regularization <- function(x, regular_type, regular_lam, regular_alpha, regular_tau, vt=1) { x <- x*vt y <- cdm_parameter_regularization(x=x, regular_type=regular_type, regular_lam=regular_lam, regular_alpha=regular_alpha, regular_tau=regular_tau ) y <- y / vt return(y) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_ml_update_parameter_regularization.R
## File Name: gdina_mstep_item_parameters.R ## File Version: 0.671 gdina_mstep_item_parameters <- function(R.lj, I.lj, aggr.patt.designmatrix, max.increment, increment.factor, J, Aj, Mj, delta, method, avoid.zeroprobs, invM.list, linkfct, rule, iter, fac.oldxsi, rrum.model, delta.fixed, devchange, mstep_iter, mstep_conv, Mj.index, suffstat_probs, regular_lam, regular_type, cd_steps, mono.constr, Aj_mono_constraints, mono_maxiter, regular_alpha, regular_tau, regularization_types, prior_intercepts, prior_slopes, use_prior, optimizer="CDM", regularization=FALSE, regular_weights=NULL ) { mono_constraints_fitted <- NULL # calculation of expected counts R.ljM <- R.lj %*% aggr.patt.designmatrix I.ljM <- I.lj %*% aggr.patt.designmatrix penalty <- 0 ll_value <- 0 logprior_value <- 0 eps2 <- eps <- 1E-10 max.increment <- max.increment / increment.factor delta.new <- NULL #----- loop over items for (jj in 1:J){ # begin item Ajjj <- Aj[[jj]] Mjjj <- Mj[[jj]][[1]] Rlj.ast <- R.ljM[ jj, Mj.index[jj,5]:Mj.index[jj,6] ] Ilj.ast <- I.ljM[ jj, Mj.index[jj,5]:Mj.index[jj,6] ] pjjj <- Rlj.ast / ( Ilj.ast + eps2 ) suffstat_probs[[jj]] <- pjjj #--- define argument list if ( method %in% c("ULS","WLS","ML") ){ arglist <- list( pjjj=pjjj, Ilj.ast=Ilj.ast, Rlj.ast=Rlj.ast, eps=eps, avoid.zeroprobs=avoid.zeroprobs, Mjjj=Mjjj, invM.list=invM.list, linkfct=linkfct, rule=rule, method=method, iter=iter, delta.new=delta.new, max.increment=max.increment, fac.oldxsi=fac.oldxsi, jj=jj, delta=delta, rrum.model=rrum.model, delta.fixed=delta.fixed, devchange=devchange ) } #*** optimization ULS / WLS if ( method %in% c("ULS","WLS") ){ res_jj <- do.call( what=gdina_mstep_item_uls, args=arglist ) } #*** optimization ML rrum <- ( rule[jj]=="ACDM" ) & ( linkfct=="log") if ( method %in% c("ML") ){ arglist$mstep_iter <- mstep_iter arglist$mstep_conv <- mstep_conv if ( ! rrum ){ arglist$regular_lam <- regular_lam arglist$regular_type <- regular_type arglist$cd_steps <- cd_steps arglist$mono.constr <- mono.constr arglist$Aj_mono_constraints_jj <- Aj_mono_constraints[[jj]] arglist$mono_maxiter <- mono_maxiter arglist$regular_alpha <- regular_alpha arglist$regular_tau <- regular_tau arglist$regularization_types <- regularization_types arglist$prior_intercepts <- prior_intercepts arglist$prior_slopes <- prior_slopes arglist$use_prior <- use_prior arglist$optimizer <- optimizer arglist$regular_weights <- regular_weights #-- estimation step res_jj <- do.call( what=gdina_mstep_item_ml, args=arglist ) penalty <- penalty + res_jj$penalty ll_value <- ll_value + res_jj$ll_value logprior_value <- logprior_value + res_jj$logprior_value } if ( rrum ){ arglist$optimizer <- optimizer res_jj <- do.call( what=gdina_mstep_item_ml_rrum, args=arglist ) } } delta.new <- res_jj$delta.new } # end item # number of regularized item parameters res <- gdina_mstep_item_parameters_number_of_regularized_parameters( regularization=regularization, delta=delta, J=J) numb_regular_pars <- res$numb_regular_pars delta_regularized <- res$delta_regularized #----------------- OUTPUT ------------- res <- list( delta.new=delta.new, suffstat_probs=suffstat_probs, mono_constraints_fitted=mono_constraints_fitted, penalty=penalty, ll_value=ll_value, logprior_value=logprior_value, numb_regular_pars=numb_regular_pars, delta_regularized=delta_regularized) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_parameters.R
## File Name: gdina_mstep_item_parameters_designmatrix.R ## File Version: 0.05 gdina_mstep_item_parameters_designmatrix <- function( delta.new, delta.designmatrix, delta.basispar.lower, delta.basispar.upper, Mj.index, J ) { u.delta.new <- unlist( delta.new ) # calculate basis parameter of delta delta.basispar <- solve( t( delta.designmatrix) %*% delta.designmatrix ) %*% t(delta.designmatrix) %*% u.delta.new if ( ! is.null( delta.basispar.lower )){ delta.basispar <- ifelse( delta.basispar < delta.basispar.lower, delta.basispar.lower, delta.basispar ) } if ( ! is.null( delta.basispar.upper )){ delta.basispar <- ifelse( delta.basispar > delta.basispar.upper, delta.basispar.upper, delta.basispar ) } delta.new1 <- ( delta.designmatrix %*% delta.basispar )[,1] for (jj in 1:J){ delta.new[[jj]] <- delta.new1[ seq( Mj.index[jj,2], Mj.index[jj,3] ) ] } return(delta.new) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_parameters_designmatrix.R
## File Name: gdina_mstep_item_parameters_number_of_regularized_parameters.R ## File Version: 0.06 gdina_mstep_item_parameters_number_of_regularized_parameters <- function( regularization, delta, J, eps=1e-6) { #--- regularized parameters numb_regular_pars <- NA delta_regularized <- list() if (regularization){ numb_regular_pars <- 0 for (jj in 1:J){ delta_jj <- delta[[jj]] delta_reg <- abs( delta_jj ) < eps delta_reg[1] <- FALSE delta_regularized[[jj]] <- delta_reg numb_regular_pars <- numb_regular_pars + sum(delta_regularized[[jj]]) } } #--- output res <- list(numb_regular_pars=numb_regular_pars, delta_regularized=delta_regularized) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_parameters_number_of_regularized_parameters.R
## File Name: gdina_mstep_item_uls.R ## File Version: 0.34 ##################################################### # GDINA M-step item parameters gdina_mstep_item_uls <- function( pjjj, Ilj.ast, Rlj.ast, eps, avoid.zeroprobs, Mjjj, invM.list, linkfct, rule, method, iter, delta.new, max.increment, fac.oldxsi, jj, delta, rrum.model, delta.fixed, devchange) { eps2 <- eps if (linkfct=="logit" ){ pjjj <- cdm_squeeze( pjjj, c(eps,1-eps) ) pjjj <- stats::qlogis( pjjj ) } if (linkfct=="log" ){ pjjj <- cdm_squeeze( pjjj, c(eps,10) ) pjjj <- log( pjjj ) } Wj <- diag( Ilj.ast ) if ( avoid.zeroprobs ){ ind <- which( Ilj.ast < eps ) if ( length(ind) > 0 ){ Wj <- diag( Ilj.ast[-ind] ) Mjjj <- Mjjj[ - ind, ] pjjj <- pjjj[ - ind ] } } if ( ( rule[jj]=="GDINA" )| ( method=="ULS" ) ){ invM <- invM.list[[jj]] delta.jj <- invM %*% crossprod(Mjjj,pjjj) } else { invM <- solve( crossprod(Mjjj, Wj ) %*% Mjjj + diag( rep( eps2, ncol(Mjjj) )) ) delta.jj <- tcrossprod( invM, Mjjj ) %*% Wj %*% pjjj } djj <- delta.jj[,1] djj.change <- djj - delta[[jj]] if (linkfct=="identity" & (iter > 3) ){ step.change <- .20 djj.change <- ifelse( abs(djj.change) > step.change, djj.change / 2, djj.change ) } djj <- delta[[jj]] + djj.change if ( linkfct=="identity"){ if ( sum(djj) > 1 ){ djj <- djj / ( sum( djj ) ) } } ####################################################################### iter_min <- 10 djj <- ifelse ( is.na(djj), delta[[jj]], djj ) # control djj.change <- djj - delta[[jj]] while( max(abs(djj.change)) > max.increment ){ djj.change <- ifelse( abs(djj.change) > max.increment, djj.change / 2, djj.change ) } djj <- delta[[jj]] + djj.change if ( rrum.model & (iter > 10) ){ #--- # RRUM parametrization # log( P(X=1) )=b0 + b1*alpha1 + b2 * alpha2 # RRUM: # P(X=1)=pi * r1^( 1- alpha1) * r2^(1-alpha2) #=> log( P(X=1) )=log[ pi * r1 * r2 * r1^(-alpha1) * r2^(-alpha2) ] #=log( pi ) + log(r1) + log(r2) + -log(r1)*alpha1 + -log(r2) * alpha2 #=> b1=-log(r1) and r1=exp( -b1 ) #=> log(pi)=b0 + b1 + b2 and pi=exp( b0 + b1 + b2 ) d1 <- djj # d1 <- ifelse( d1 < 0, .1, d1 ) sum_d1 <- sum(d1) if ( sum_d1 > 0 ){ d1 <- d1 - sum(d1) } d1_samp <- stats::runif( length(d1), 0, .01 ) d1[-1] <- ifelse( d1[-1] < 0, d1_samp[-1], d1[-1] ) sum_d1 <- sum(d1) if ( sum_d1 > 0 ){ d1 <- d1 - sum(d1) } djj <- d1 } delta.new[[jj]] <- djj if ( (fac.oldxsi > 0 ) & (iter>3)){ fac.oldxsi1 <- fac.oldxsi * ( devchange >=0 ) delta.new[[jj]] <- fac.oldxsi1*delta[[jj]] + ( 1 - fac.oldxsi1 ) * delta.new[[jj]] } # fix delta parameter here!! if ( ! is.null( delta.fixed ) ){ delta.fixed.jj <- delta.fixed[[jj]] if ( ! is.na( delta.fixed.jj)[1] ){ delta.new[[jj]] <- delta.fixed.jj } } #--- OUTPUT res <- list( delta.new=delta.new ) return(res) } ######################################################
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_item_uls.R
## File Name: gdina_mstep_mono_constraints_penalty.R ## File Version: 0.06 gdina_mstep_mono_constraints_penalty <- function(x) { eps <- 1e-3 # y <- ifelse( x < 0, x^2, 0 ) y <- ifelse( x < 0, sqrt(x^2+eps), 0 ) return(y) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_mstep_mono_constraints_penalty.R
## File Name: gdina_partable.R ## File Version: 0.15 ################################################### # create parameter table for GDINA model gdina_partable <- function(res) { item <- res$item #************************** # item parameters dfr <- data.frame( "partype"="item", "parindex"=NA, "item"=item$itemno, "item.name"=item$item ) dfr$skillclass <- 0 dfr$varyindex <- dfr$item pa <- paste(item$partype.attr) pa <- ifelse( pa=="", "Int", pa ) dfr$parnames <- paste0( dfr$item.name, "_", gsub( "-", "_", pa ) ) dfr$value <- item$est # fixed vs. free parameters dfr$fixed <- FALSE dfr$free <- TRUE if ( ! is.null( res$control$delta.fixed ) ){ z1 <- res$control$delta.fixed m1 <- unlist( lapply( z1, FUN=function(ll){ sum( is.na( ll ) ) > 0 } ) ) m1 <- which( ! m1 ) dfr[ dfr$item %in% m1, "free"] <- FALSE dfr[ dfr$item %in% m1, "fixed"] <- TRUE } dfr$rule <- item$rule dfr$group <- 0 dfr$totindex <- NA dfr0 <- dfr #************************************* # skill class distribution G <- res$G ap0 <- ap <- res$attribute.patt if (G==1){ ap <- matrix( ap[,1], ncol=1 ) } dfr1 <- NULL for (gg in 1:G){ ap.names <- paste0("prob_class", rownames(ap0), "_group", gg) L <- nrow(ap) dfr <- data.frame( "partype"=rep("probs",L), "parindex"=NA, "item"=0, "item.name"="") dfr$skillclass <- 1:L dfr$varyindex <- NA dfr$parnames <- ap.names dfr$value <- ap[,gg] dfr$fixed <- FALSE dfr$free <- TRUE dfr$rule <- "" dfr$group <- gg dfr$totindex <- NA dfr1 <- rbind( dfr1, dfr ) } dfr0 <- rbind( dfr0, dfr1 ) #************************************* # marginal skill distribution G <- res$G ap0 <- ap <- res$skill.patt K <- nrow(ap) V <- ncol(ap) # gg <- 1 ap.names <- paste0("prob_skill", rownames(ap0) ) #, "_group", gg) apnames <- NULL l1 <- strsplit( colnames(ap0), split="prob", fixed=TRUE ) l1 <- unlist( lapply( l1, FUN=function(ll){ substring(ll[2],1,1) } ) ) l2 <- strsplit( colnames(ap0), split="group", fixed=TRUE ) l2 <- unlist( lapply( l2, FUN=function(ll){ substring(ll[2],1,1) } ) ) if (G==1 ){ l2 <- rep("1",V) } for (vv in 1:V){ apnames <- c( apnames, paste0( ap.names, "_lev", l1[vv], "_group", l2[vv]) ) } L <- K*V dfr <- data.frame( "partype"=rep("margprobs",L), "parindex"=NA, "item"=0, "item.name"="") dfr$skillclass <- 0 dfr$varyindex <- NA dfr$parnames <- apnames dfr$value <- as.vector(ap) dfr$fixed <- FALSE dfr$free <- TRUE dfr$rule <- "" dfr$group <- rep( l2, each=K) dfr$totindex <- NA dfr0 <- rbind( dfr0, dfr ) dfr0$totindex <- seq( 1, nrow(dfr0) ) return(dfr0) } ###################################################### gdina.partable <- gdina_partable
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_partable.R
## File Name: gdina_post_calc_se.R ## File Version: 0.152 gdina_post_calc_se <- function(G, p.aj.xi, item.patt.freq, attr.prob, p.xi.aj, IP, J, calc.se, aggr.attr.patt, Aj, Mj, R.lj, I.lj, item.patt.split, resp.patt, delta, linkfct, rule, avoid.zeroprobs, data, se_version, method, delta.fixed, q.matrix, delta_regularized, regularization) { varmat.delta <- NULL varmat.palj <- NULL se.delta <- NULL delta.summary <- NULL if (G==1){ PAJXI <- p.aj.xi } if (G>1){ a1 <- outer( rep(1,nrow(attr.prob) ), colSums( item.patt.freq ) ) / sum( item.patt.freq) attr.prob.tot <- rowSums( attr.prob * a1 ) PAJXI <- outer( rep(1,IP), attr.prob.tot ) * p.xi.aj PAJXI <- PAJXI / rowSums(PAJXI) } # matrix form of item.patt.freq if (G==1){ item.patt.freq <- matrix( item.patt.freq, ncol=1 ) } freq.pattern <- rowSums( item.patt.freq ) eps2 <- 1E-10 for (jj in 1:J){ se.jj <- NA if ( calc.se ){ Ajjj <- Aj[[jj]] Mjjj <- Mj[[jj]][[1]] apjj <- aggr.attr.patt[[jj]] R.lj_jj <- R.lj[jj,] I.lj_jj <- I.lj[jj,] Mjj2 <- Mj[[jj]][[2]] item.patt.split_jj <- item.patt.split[,jj] resp.patt_jj <- resp.patt[,jj] delta_jj <- delta[[jj]] res_jj <- gdina_se_itemwise( R.lj_jj=R.lj_jj, I.lj_jj=I.lj_jj, apjj=apjj, Mjjj=Mjjj, Mjj2=Mjj2, PAJXI=PAJXI, IP=IP, item.patt.split_jj=item.patt.split_jj, resp.patt_jj=resp.patt_jj, freq.pattern=freq.pattern, item.patt.freq=item.patt.freq, avoid.zeroprobs=avoid.zeroprobs, data=data, jj=jj, method=method, linkfct=linkfct, delta_jj=delta_jj, se_version=se_version ) varmat.delta[[jj]] <- res_jj$varmat.delta_jj varmat.palj[[jj]] <- res_jj$varmat.palj_jj se.jj <- sqrt( diag(varmat.delta[[jj]] ) ) } Mj_jj2 <- unlist(Mj[[jj]][2]) regul <- NULL if (regularization){ regul <- 1*delta_regularized[[jj]] } delta.summary.jj <- data.frame( link=linkfct, item=colnames(data)[jj], itemno=jj, partype=Mj_jj2) delta.summary.jj$rule <- rule[jj] delta.summary.jj$regul <- regul delta.summary.jj$est <- delta[[jj]] delta.summary.jj$se <- se.jj # fix delta parameter here!! if ( ! is.null( delta.fixed ) ){ delta.fixed.jj <- delta.fixed[[jj]] if ( ! is.na( delta.fixed.jj)[1] ){ delta.summary.jj$se <- 0 } } # colnames(delta.summary.jj)[4] <- "partype" delta.summary <- rbind( delta.summary, delta.summary.jj ) } delta.summary$partype.attr <- paste(delta.summary$partype) if (calc.se){ for (jj in 1:J){ ind.jj <- which( delta.summary$itemno==jj ) qjj <- which( q.matrix[ jj, ] > 0 ) pgjj <- pajj <- paste(delta.summary$partype.attr[ind.jj]) cjj <- paste(colnames(q.matrix)[qjj]) NN <- length(pajj) pajj <- gsub( "|", "-", pajj ) pajj <- gsub( "=", "-", pajj ) for (nn in 1:NN){ st1 <- as.numeric(unlist( strsplit( paste(pajj[nn]), "-" ) )) st1 <- st1[ ! is.na( st1 ) ] st1 <- st1[ st1 > 0 ] pgjj[nn] <- paste( cjj[ st1 ], collapse="-" ) } delta.summary$partype.attr[ind.jj] <- pgjj } } #--- OUTPUT res <- list( varmat.delta=varmat.delta, varmat.palj=varmat.palj, se.delta=se.delta, delta.summary=delta.summary, freq.pattern=freq.pattern, item.patt.freq=item.patt.freq) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_post_calc_se.R
## File Name: gdina_post_pattern_output.R ## File Version: 0.07 gdina_post_pattern_output <- function(G, p.xi.aj, zeroprob.skillclasses, item.patt, attr.patt.c, p.aj.xi, item.patt.subj, group2, attr.patt, K ) { # calculate posterior probability for each attribute pattern if (G==1){ # set likelihood for skill classes with zero probability to zero if ( ! is.null(zeroprob.skillclasses) ){ p.xi.aj[, zeroprob.skillclasses ] <- 0 } pattern <- data.frame( freq=round(as.numeric(item.patt[,-1]),3), mle.est=attr.patt.c[ max.col( p.xi.aj ) ], mle.post=rowMaxs( p.xi.aj ) / rowSums( p.xi.aj ), map.est=attr.patt.c[ max.col( p.aj.xi ) ], map.post=rowMaxs( p.aj.xi ) ) } if (G>1){ ind1 <- match( item.patt.subj, item.patt[,1] ) l1 <- attr.patt.c[ max.col( p.xi.aj ) ] pattern <- data.frame( "mle.est"=l1[ind1] ) l1 <- rowMaxs( p.xi.aj ) / rowSums( p.xi.aj ) pattern$mle.post <- l1[ind1] pattern$map.est <- NA pattern$map.post <- NA for (gg in 1:G){ # gg <- 1 ind.gg <- which( group2==gg ) ind2.gg <- match( item.patt.subj[ind.gg], item.patt[, 1] ) l1 <- attr.patt.c[ max.col( p.aj.xi[,,gg] ) ] pattern$map.est[ind.gg] <- l1[ind2.gg] l1 <- rowMaxs( p.aj.xi[,,gg] ) pattern$map.post[ind.gg] <- l1[ind2.gg] } } # calculate posterior probabilities for all skills separately if (G==1){ attr.postprob <- p.aj.xi %*% attr.patt colnames( attr.postprob ) <- paste("post.attr",1:K, sep="") pattern <- cbind( pattern, attr.postprob ) } #--------- OUTPUT res <- list( pattern=pattern, p.xi.aj=p.xi.aj ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_post_pattern_output.R
## File Name: gdina_post_posterior_output.R ## File Version: 0.10 gdina_post_posterior_output <- function(G, p.aj.xi, p.xi.aj, pattern, data, item.patt.subj, item.patt, attr.prob, group) { if (G==1){ rownames( p.aj.xi ) <- rownames( pattern ) # output rownames posterior probabilities pattern <- data.frame(pattern) # convert pattern to numeric format for (vv in seq(1,ncol(pattern))[ -c(2,4) ] ){ pattern[,vv ] <- as.numeric( paste( pattern[,vv] ) ) } # subject pattern item.patt.subj <- data.frame( "case"=1:(nrow(data) ), "pattern"=item.patt.subj, "pattern.index"=match( item.patt.subj, item.patt[,1] ) ) # attribute pattern (expected frequencies) attr.prob0 <- attr.prob attr.prob <- data.frame( attr.prob ) attr.prob$class.expfreq <- attr.prob[,1] * nrow(data) #***** pattern <- pattern[ item.patt.subj$pattern.index, ] pattern[,1] <- paste( item.patt.subj$pattern ) colnames(pattern)[1] <- "pattern" p.aj.xi <- p.aj.xi[ item.patt.subj$pattern.index, ] rownames(p.aj.xi) <- pattern$pattern p.xi.aj <- p.xi.aj[ item.patt.subj$pattern.index, ] rownames(p.xi.aj) <- pattern$pattern } #------- if (G==1){ posterior <- p.aj.xi } if (G>1){ ind <- match( item.patt.subj, item.patt[,1] ) p.xi.aj <- p.xi.aj[ ind, ] rownames(p.xi.aj) <- pattern$pattern p.aj.xi <- p.aj.xi[ ind,, ] rownames(p.aj.xi) <- pattern$pattern ND <- dim(p.aj.xi) posterior <- matrix( 0, nrow=ND[1], ncol=ND[2] ) for (gg in 1:G){ ind.gg <- which( group==gg ) posterior[ ind.gg, ] <- p.aj.xi[ ind.gg,, gg ] } attr.prob0 <- attr.prob } # labels likelihood colnames(p.xi.aj) <- paste(rownames(attr.prob)) if (G==1){ attr_prob <- as.vector( attr.prob$class.prob ) } else { attr_prob <- as.matrix( attr.prob ) } #--------- OUTPUT res <- list( item.patt.subj=item.patt.subj, attr.prob=attr.prob, p.xi.aj=p.xi.aj, posterior=posterior, pattern=pattern, attr.prob0=attr.prob0, attr_prob=attr_prob ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_post_posterior_output.R
## File Name: gdina_post_skill_pattern.R ## File Version: 0.08 gdina_post_skill_pattern <- function( attr.prob, G, attr.patt.c, K, maxAttr, q.matrix, q.entries, attr.patt ) { # attribute pattern if (G==1){ attr.prob <- matrix( attr.prob, ncol=1) colnames( attr.prob ) <- "class.prob" } if (G>1){ colnames( attr.prob ) <- paste( "class.prob.group", 1:G, sep="") } rownames( attr.prob ) <- attr.patt.c mA <- max(maxAttr) if (G==1){ sp <- NULL for (kk in 0:mA ){ skill.patt <- matrix(apply( matrix( rep( attr.prob, K ), ncol=K) * (attr.patt==kk), 2, sum ),ncol=1) rownames(skill.patt) <- colnames(q.matrix) colnames(skill.patt) <- paste0("skill.prob",kk ) sp <- cbind( sp, skill.patt ) } skill.patt <- sp for (kk in 1:K){ ind.kk <- setdiff( 1:mA, 1 + q.entries[[kk]] ) if ( length(ind.kk) > 0 ){ skill.patt[ kk,ind.kk ] <- NA } } } if (G>1){ sp <- NULL for (kk in 0:( mA ) ){ skill.patt <- matrix( 0, K, G ) for (gg in 1:G){ skill.patt[,gg] <- matrix(apply( matrix( rep( attr.prob[,gg], K ), ncol=K) * ( attr.patt==kk ), 2, sum ),ncol=1) } rownames(skill.patt) <- colnames(q.matrix) colnames(skill.patt) <- paste0( "skill.prob", kk, ".group", 1:G ) sp <- cbind( sp, skill.patt ) } skill.patt <- sp for (kk in 1:K){ v1 <- rep(1:mA,each=G) ind.kk <- setdiff( v1, rep(1 + q.entries[[kk]],each=G) ) ind.kk <- which( v1 %in% ind.kk ) if ( length(ind.kk) > 0 ){ skill.patt[ kk,ind.kk ] <- NA } } } #---- OUTPUT res <- list( attr.prob=attr.prob, skill.patt=skill.patt) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_post_skill_pattern.R
## File Name: gdina_postproc_regularized_constrained_parameters.R ## File Version: 0.14 gdina_postproc_regularized_constrained_parameters <- function( mono.constr, delta, Aj_mono_constraints, Mj, linkfct, regularization, data ) { #--- number of boundary estimates for monotonicity constraint numb_bound_mono <- NA J <- length(delta) item_bound_mono <- NULL if ( mono.constr ){ eps_squeeze <- 1E-5 eps <- 1E-3 numb_bound_mono <- 0 for (jj in 1:J){ delta_jj <- delta[[jj]] Aj_mono_constraints_jj <- Aj_mono_constraints[[jj]] Mjjj <- Mj[[jj]][[1]] irf1 <- gdina_prob_item_designmatrix( delta_jj=delta_jj, Mjjj=Mjjj, linkfct=linkfct, eps_squeeze=eps_squeeze ) constraints_fitted_jj <- as.vector( Aj_mono_constraints_jj %*% irf1 ) indi_bound <- any( constraints_fitted_jj < eps ) if (indi_bound){ numb_bound_mono <- numb_bound_mono + indi_bound item_bound_mono <- c( item_bound_mono, colnames(data)[jj] ) } } } #--- regularized parameters numb_regular_pars <- NA if (regularization){ numb_regular_pars <- 0 eps <- 1E-4 for (jj in 1:J){ delta_jj <- delta[[jj]] numb_regular_pars <- numb_regular_pars + sum( abs( delta_jj ) < eps ) } } #--- output res <- list( numb_bound_mono=numb_bound_mono, numb_regular_pars=numb_regular_pars, item_bound_mono=item_bound_mono) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_postproc_regularized_constrained_parameters.R
## File Name: gdina_prob_item_designmatrix.R ## File Version: 0.06 gdina_prob_item_designmatrix <- function( delta_jj, Mjjj, linkfct, eps_squeeze ) { irf1 <- ( Mjjj %*% delta_jj )[,1] if ( linkfct=="log"){ irf1 <- exp(irf1) } if ( linkfct=="logit"){ irf1 <- stats::plogis(irf1) } irf1 <- cdm_squeeze( irf1, c(eps_squeeze, 1-eps_squeeze) ) return(irf1) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_prob_item_designmatrix.R
## File Name: gdina_probitem.R ## File Version: 0.22 ################################################################################# # calculate model implied probabilities in GDINA models gdina_probitem <- function( Mj, Aj, delta, rule, linkfct, delta.summary, necc.attr=NULL) { I <- length(delta) pjj <- as.list( 1:I ) ljjj <- rep(0,I) for (ii in 1:I){ pjjt <- ( Mj[[ii]][[1]] %*% delta[[ii]] )[,1] names(pjjt) <- paste0("A",apply( Aj[[ii]], 1, FUN=function(ll){ paste(ll, collapse="") } ) ) if (linkfct=="logit"){ pjjt <- stats::plogis( pjjt ) } if (linkfct=="log"){ pjjt <- exp( pjjt ) } pjj[[ii]] <- pjjt ljjj[ii] <- length(pjjt) } pjj <- unlist( pjj ) res <- data.frame( "itemno"=rep(1:I, ljjj), "skillcomb"=names(pjj), "prob"=pjj ) dres <- NULL for (ii in 1:I){ dii <- delta.summary[ delta.summary$itemno==ii, ] dii <- dii[ nrow(dii), c("item", "rule", "partype.attr" ) ] necc_ii <- necc.attr[[ii]] dii$partype.attr <- paste0( names(necc_ii), collapse="-") colnames(dii)[3] <- "nessskill" dres <- rbind( dres, dii ) } res <- cbind( dres[ res$itemno, ], res ) rownames(res) <- NULL return(res) } ################################################################################# gdina.probitem <- gdina_probitem
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_probitem.R
## File Name: gdina_probs_invlink.R ## File Version: 0.03 gdina_probs_invlink <- function(probs, linkfct) { if ( linkfct=="logit"){ probs <- stats::plogis(probs) } if ( linkfct=="log"){ probs <- exp(probs) } return(probs) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_probs_invlink.R
## File Name: gdina_proc_check_admissible_rules.R ## File Version: 0.05 gdina_proc_check_admissible_rules <- function(rule) { admiss.rules <- c("GDINA", "ACDM", "DINA", "DINO", "GDINA1", "GDINA2", "RRUM", "SISM" ) i1 <- which( ! ( rule %in% admiss.rules ) ) if ( length(i1) > 0 ){ cat("The following rules are not implemented in gdina: ") cat( paste( unique( rule[i1] ), collapse=" " ), "\n" ) stop("Change your argument 'rule'") } }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_check_admissible_rules.R
## File Name: gdina_proc_define_model_parameters.R ## File Version: 0.06 gdina_proc_define_model_parameters <- function( dat.items, q.matrix, rule, HOGDINA, G ) { b.attr <- a.attr <- NULL I <- nrow(dat.items) # number of persons J <- ncol(dat.items) # number of items K <- ncol(q.matrix) # number of attributes dat.items <- as.matrix(dat.items) q.matrix <- as.matrix(q.matrix) if ( length(rule)==1){ rule <- rep( rule, J ) } if (HOGDINA >=0){ b.attr <- a.attr <- matrix( 0, nrow=K, ncol=G ) } #--- OUTPUT res <- list(rule=rule, dat.items=dat.items, q.matrix=q.matrix, a.attr=a.attr, b.attr=b.attr, I=I, J=J, K=K ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_define_model_parameters.R
## File Name: gdina_proc_delta_indices.R ## File Version: 0.05 gdina_proc_delta_indices <- function(delta, Mj) { I <- length(delta) dfr <- NULL NP <- 0 delta_indices <- list() for (ii in 1:I){ v1 <- delta[[ii]] Mj_ii <- Mj[[ii]][[2]] NV <- length(v1) g1 <- NP + 1:NV delta_indices[[ ii ]] <- g1 dfr1 <- data.frame("item"=ii, "np_item"=length(v1), "combi"=Mj_ii, "index"=g1, "val"=v1 ) dfr <- rbind( dfr, dfr1 ) NP <- NP + NV } h1 <- strsplit( paste(dfr$combi), split="-" ) dfr$order <- unlist( lapply( h1, FUN=function(hh){ length(hh) } ) ) dfr[ paste(dfr$combi)=="0", "order" ] <- 0 #---- output res <- list( delta_indices=delta_indices, delta_partable=dfr ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_delta_indices.R
## File Name: gdina_proc_hogdina_theta_distribution.R ## File Version: 0.03 gdina_proc_hogdina_theta_distribution <- function(G) { reduced.skillspace <- FALSE theta.k <- seq( -6,6, len=21 ) wgt.theta <- stats::dnorm( theta.k ) w1 <- wgt.theta / sum( wgt.theta ) wgt.theta <- matrix( w1, nrow=length(w1), ncol=G) #--- OUTPUT res <- list(theta.k=theta.k, reduced.skillspace=reduced.skillspace, wgt.theta=wgt.theta) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_hogdina_theta_distribution.R
## File Name: gdina_proc_item_response_patterns.R ## File Version: 0.29 gdina_proc_item_response_patterns <- function( dat.items, J, G, weights, group, freq_weights=TRUE) { # string with item response patterns if (freq_weights){ item.patt.subj <- dat.items[,1] for (jj in 2:J){ item.patt.subj <- paste( item.patt.subj, dat.items[,jj], sep="") } } else { N <- nrow(dat.items) item.patt.subj <- paste0( "P", 1E6 + 1:N ) } # calculate frequency of each item response pattern item.patt <- table( item.patt.subj ) # sort item response pattern according to their absolute frequencies six <- sort( item.patt, index.return=FALSE, decreasing=TRUE) # define data frame 'item.patt' with item response pattern and its frequency (weight) item.patt <- cbind( "pattern"=rownames(six), "freq"=as.numeric(as.vector(six) ) ) # calculate weighted frequency for each item response pattern if (G==1){ h1 <- rowsum( weights, item.patt.subj ) item.patt[,2] <- h1[ match( item.patt[,1], rownames(h1) ), 1] item.patt.freq <- as.numeric(item.patt[,2]) } if (G > 1){ item.patt.freq <- matrix( 0, nrow(item.patt), G ) for (gg in 1:G){ h1 <- rowsum( weights * (group==gg ), item.patt.subj ) item.patt[,2] <- h1[ match( item.patt[,1], rownames(h1) ), 1] item.patt.freq[,gg] <- as.numeric(item.patt[,2]) } } #---- OUTPUT res <- list(item.patt.subj=item.patt.subj, item.patt=item.patt, six=six, item.patt.freq=item.patt.freq) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_item_response_patterns.R
## File Name: gdina_proc_multiple_group_objects.R ## File Version: 0.08 gdina_proc_multiple_group_objects <- function(group) { G <- 1 group0 <- group groupre <- FALSE group2 <- NULL if ( is.factor( group ) ){ group <- paste( group ) } if ( ! is.null( group) ){ group0 <- group groups <- sort( unique( group) ) G <- length(groups) group2 <- match( group, groups ) if ( any( group !=group2 ) ){ group <- group2 groupre <- TRUE } } group.stat <- NULL if ( G > 1 ){ # group statistics a1 <- stats::aggregate( 1+0*group, list(group), sum ) a2 <- rep("",G) for (gg in 1:G){ a2[gg] <- group0[ which( group==gg )[1] ] } group.stat <- cbind( a2, a1 ) colnames(group.stat) <- c( "group.orig", "group", "N" ) } #---- OUTPUT res <- list(G=G, group=group, group0=group0, groupre=groupre, group.stat=group.stat, group2=group2) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_multiple_group_objects.R
## File Name: gdina_proc_noninvariance_multiple_groups.R ## File Version: 0.20 #--- handle non-invariance of multiple group parameters gdina_proc_noninvariance_multiple_groups <- function( data, q.matrix, invariance, group ) { create_pseudo_items <- TRUE invariant <- invariance invariance_TRUE <- mean( invariance==TRUE )==1 invariance_FALSE <- mean( invariance==FALSE )==1 if (invariance_TRUE ){ create_pseudo_items <- FALSE invariant <- NULL } if (invariance_FALSE){ invariant <- NULL } rownames(q.matrix) <- colnames(data) if ( ( ! is.null(group) ) & create_pseudo_items ){ I <- ncol(data) data <- item_by_group(dat=data, group=group, invariant=invariant) G <- length( unique(group) ) ind <- c( attr(data, "invariant_index"), attr(data, "noninvariant_index_extended") ) q.matrix <- q.matrix[ ind, ] rownames(q.matrix) <- colnames(data) } res <- list( data=data, q.matrix=q.matrix ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_noninvariance_multiple_groups.R
## File Name: gdina_proc_prior_distribution.R ## File Version: 0.09 gdina_proc_prior_distribution <- function( prior_intercepts, prior_slopes, method, linkfct, PEM ) { prior_intercepts_null <- is.null(prior_intercepts) prior_slopes_null <- is.null(prior_slopes) use_prior <- FALSE if ( ( ! prior_intercepts_null ) | ( ! prior_slopes_null ) ){ method <- "ML" linkfct <- "logit" use_prior <- TRUE PEM <- FALSE if (prior_intercepts_null){ prior_intercepts <- c(0,1,Inf) } if (prior_slopes_null){ prior_slopes <- c(0,1,Inf) } prior_intercepts <- gdina_proc_prior_distribution_extend_normal(prior=prior_intercepts) prior_slopes <- gdina_proc_prior_distribution_extend_normal(prior=prior_slopes) } #---- output res <- list(prior_intercepts=prior_intercepts, prior_slopes=prior_slopes, linkfct=linkfct, method=method, use_prior=use_prior, PEM=PEM) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_prior_distribution.R
## File Name: gdina_proc_prior_distribution_extend_normal.R ## File Version: 0.01 gdina_proc_prior_distribution_extend_normal <- function(prior) { if (length(prior)==2){ prior <- c(prior, 2) } return(prior) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_prior_distribution_extend_normal.R
## File Name: gdina_proc_regularization.R ## File Version: 0.24 gdina_proc_regularization <- function( regular_type, cd, mono.constr, linkfct, method, PEM, regular_lam, regular_alpha, regular_tau, rule, optimizer="CDM" ) { save.devmin <- TRUE regularization <- FALSE cd_algorithm <- FALSE regularization_types <- c("lasso","scad", "elnet","ridge", "scadL2", "tlp", "mcp") if ( sum(rule=="SISM") > 0 ){ method <- "ML" } if (regular_type %in% regularization_types ){ regularization <- TRUE cd_algorithm <- TRUE method <- "ML" } if ( cd ){ cd_algorithm <- TRUE } if ( mono.constr ){ linkfct <- "logit" method <- "ML" PEM <- FALSE } if (regularization){ save.devmin <- FALSE linkfct <- "logit" PEM <- FALSE optimizer <- "CDM" } if ( linkfct=="log"){ PEM <- FALSE } if ( ! ( regular_type %in% c("elnet", "scadL2") ) ){ regular_alpha <- NA } if ( ! ( regular_type %in% c("tlp") ) ){ regular_tau <- NA } #---- output res <- list( linkfct=linkfct, save.devmin=save.devmin, method=method, regularization=regularization, cd_algorithm=cd_algorithm, PEM=PEM, regular_lam=regular_lam, regular_alpha=regular_alpha, regular_tau=regular_tau, regularization_types=regularization_types, optimizer=optimizer ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_regularization.R
## File Name: gdina_proc_sequential_items.R ## File Version: 0.14 gdina_proc_sequential_items <- function( data, q.matrix ) { maxK <- max( data, na.rm=TRUE ) sequential <- FALSE if ( maxK > 1){ res0 <- sequential.items( data=data ) data <- res0$dat.expand iteminfo <- res0$iteminfo sequential <- TRUE if (! is.numeric(q.matrix[,1])){ q.matrix <- q.matrix[,-c(1:2)] } else { q.matrix <- q.matrix[ iteminfo$itemindex, ] rownames(q.matrix) <- colnames(data) } } res <- list( data=data, sequential=sequential, q.matrix=q.matrix ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_sequential_items.R
## File Name: gdina_proc_spec_rrum.R ## File Version: 0.12 gdina_proc_spec_rrum <- function(rule, method, linkfct, optimizer="CDM") { # estimation of a reduced RUM model rrum.params <- FALSE rrum.model <- FALSE if ( any( rule=="RRUM" ) ){ rule <- "ACDM" linkfct <- "log" if ( is.null(method) ){ method <- "ML" } rrum.model <- TRUE optimizer <- "optim" } else { if ( is.null(method) ){ method <- "WLS" } } #---- OUTPUT res <- list( rrum.params=rrum.params, rrum.model=rrum.model, method=method, linkfct=linkfct, rule=rule, optimizer=optimizer) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_spec_rrum.R
## File Name: gdina_proc_split_item_response_patterns.R ## File Version: 0.07 gdina_proc_split_item_response_patterns <- function( item.patt, J, freq_weights=TRUE, resp=NULL, dat.items=NULL ) { #---------- use frequency weights if (freq_weights ){ # split item response pattern in a data frame with items as columns spl <- sapply( as.vector(item.patt[,1]), FUN=function(ii){ strsplit( ii, split=NULL) } ) item.patt.split <- matrix( rep( 0, length(spl) * J ), ncol=J ) for (ll in 1:length(spl) ){ item.patt.split[ ll, ] <- as.numeric( spl[[ll]] ) } # response pattern matrix: each observed entry corresponds to a 1, # each unobserved entry to a 0 resp.patt <- 1* ( item.patt.split !=9 ) } #---------- do not use frequency weights if ( ! freq_weights ){ item.patt.split <- dat.items resp.patt <- resp } # number of item response patterns IP <- nrow(item.patt.split) #---- OUTPUT res <- list(IP=IP, resp.patt=resp.patt, item.patt.split=item.patt.split) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_split_item_response_patterns.R
## File Name: gdina_proc_uls_inverse_matrices.R ## File Version: 0.01 gdina_proc_uls_inverse_matrices <- function(Mj, J) { invM.list <- list( 1:J ) for (jj in 1:J){ Mjjj <- Mj[[jj]][[1]] invM.list[[jj]] <- solve( crossprod(Mjjj) ) } return(invM.list) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_proc_uls_inverse_matrices.R
## File Name: gdina_progress_em_algorithm.R ## File Version: 0.34 gdina_progress_em_algorithm <- function( delta, data, like.new, loglikeold, max.par.change, iter, progress, progress.item, regularization, penalty, opt_fct, opt_fct_change, ll_value, regular_type, logprior_value, use_prior, numb_regular_pars=NA) { digits_par_change <- 6 digits_opt_fct <- 5 digits_opt_fct_change <- 7 if (progress){ if (progress.item){ g1 <- unlist( lapply( delta, FUN=function(ll){ paste( round(ll,4), collapse=" " ) } )) g1 <- matrix( paste( colnames(data), g1 ), ncol=1) print(g1) } cat( "Deviance","=", round( -2*like.new, digits_opt_fct ) ) devchange <- 2*(like.new-loglikeold) if (iter >1){ cat(" | Deviance change","=", round( 2*(like.new-loglikeold), digits_opt_fct_change) ) } cat("\n" ) if (regularization | use_prior){ if ( regularization){ cat( "Penalty","=", round( penalty, digits_opt_fct ), "\n") cat( "Number of regularized parameters","=", numb_regular_pars, "\n") } if ( use_prior){ cat( "Log prior","=", round( logprior_value, digits_opt_fct ), "\n") } cat( "Optimization function","=", round( opt_fct, digits_opt_fct ) ) if (iter>1){ cat(" | Function change","=", round( opt_fct_change, digits_opt_fct_change) ) } cat("\n") } if ( ( ! regularization ) & ( ! use_prior ) ){ if ( devchange < 0 & iter>1){ cat( "**** Deviances decreases! Check for nonconvergence. ****\n") } } cat("Maximum parameter change:", round( max.par.change, digits_par_change), "\n") } }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_progress_em_algorithm.R
## File Name: gdina_progress_start_estimation.R ## File Version: 0.05 gdina_progress_start_estimation <- function( progress, linkfct, disp, G, groupre, s1, display) { if (progress){ cat(disp,"\n") cat( " Link function:", linkfct, "\n") if (G>1){ cat(" Multiple group estimation with",G,"groups\n") if (groupre){ cat( " Renumbered group identifier from 1 to",G,"\n") } } cat( " **", paste(s1), "\n" ) cat(display) utils::flush.console() } }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_progress_start_estimation.R
## File Name: gdina_reduced_skillspace.R ## File Version: 0.18 ################################################### # auxiliary function reduced skill space gdina_reduced_skillspace <- function( ntheta, Z, reduced.skillspace.method=2, eps=1E-10 ) { #*********************************** ntheta <- cdm_sumnorm( ntheta ) lntheta <- matrix(log(ntheta+eps),ncol=1 ) V <- diag( ntheta) #--------------------------- #*** skill space method 1 (CDM <=2.5) if ( reduced.skillspace.method==1){ Z1 <- crossprod(Z, V) %*% Z diag(Z1) <- diag(Z1)+eps covbeta <- solve(Z1) beta <- covbeta %*% ( crossprod(Z,V) %*% lntheta ) } #------------------------------ #*** skill space method 2 (CDM >=2.6) if ( reduced.skillspace.method==2){ mod <- stats::lm( lntheta ~ 0 + Z, weights=ntheta ) beta <- matrix( mod$coef, nrow=ncol(Z), ncol=1 ) beta[ is.na(beta) ] <- 0 } #******************************************* # calculate attribute probability attr.prob <- reduced_skillspace_beta_2_probs( Z=Z, beta=beta ) #***** output res <- list(beta=beta, attr.prob=attr.prob) return(res) } ############################################################ gdina.reduced.skillspace <- gdina_reduced_skillspace
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_reduced_skillspace.R
## File Name: gdina_reduced_skillspace_multiple_groups.R ## File Version: 0.10 gdina_reduced_skillspace_multiple_groups <- function( Z, reduced.skillspace.method, item_patt_freq_matr, p.aj.xi, G ) { #---- single group if (G==1){ res <- gdina_reduced_skillspace_single_group( Z=Z, reduced.skillspace.method=reduced.skillspace.method, ipmat=item_patt_freq_matr, post=p.aj.xi ) } #---- multiple groups if (G>1){ NZ <- ncol(Z) L <- nrow(Z) beta <- matrix(NA, nrow=NZ, ncol=G) attr.prob <- matrix(NA, nrow=L, ncol=G) for (gg in 1:G){ ipmat <- item_patt_freq_matr[,,gg] post <- p.aj.xi[,,gg] res <- gdina_reduced_skillspace_single_group( Z=Z, reduced.skillspace.method=reduced.skillspace.method, ipmat=ipmat, post=post ) beta[,gg] <- res$beta attr.prob[,gg] <- res$attr.prob } res <- list(beta=beta, attr.prob=attr.prob) } #--- output return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_reduced_skillspace_multiple_groups.R
## File Name: gdina_reduced_skillspace_single_group.R ## File Version: 0.04 gdina_reduced_skillspace_single_group <- function( Z, reduced.skillspace.method, ipmat, post ) { ntheta <- colSums( ipmat * post ) res <- gdina_reduced_skillspace( ntheta=ntheta, Z=Z, reduced.skillspace.method=reduced.skillspace.method ) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_reduced_skillspace_single_group.R
## File Name: gdina_se_itemwise.R ## File Version: 0.33 gdina_se_itemwise <- function( R.lj_jj, I.lj_jj, apjj, Mjjj, Mjj2, PAJXI, IP, item.patt.split_jj, resp.patt_jj, freq.pattern, item.patt.freq, avoid.zeroprobs , data, jj, method, linkfct, delta_jj, se_version ) { eps2 <- 1E-10 Rlj.ast <- rowsum( R.lj_jj, apjj)[,1] Ilj.ast <- rowsum( I.lj_jj, apjj)[,1] pjjj <- Rlj.ast / Ilj.ast varmat.palj_jj <- NULL infomat.jj <- NULL #********* standard error calculation observed log-likelihood per item if (se_version==1){ loglike_item_jj <- function(x){ pjjj_model <- ( Mjjj %*% x )[,1] pjjj_model <- gdina_probs_invlink(probs=pjjj_model, linkfct=linkfct) ll1 <- Rlj.ast * cdm_log(x=pjjj_model, eps=eps2) ll2 <- (Ilj.ast-Rlj.ast) * cdm_log(x=1-pjjj_model, eps=eps2) ll <- sum(ll1 + ll2) return(ll) } res_jj <- loglike_item_jj(x=delta_jj) hess_jj <- numerical_Hessian( par=delta_jj, FUN=loglike_item_jj ) varmat.delta_jj <- cdm_ginv( - hess_jj ) } #********* standard error calculation formulas de la Torre (2011) if (se_version==0){ Mjjj <- Mjjj[ sort(unique(apjj)), ] M1 <- length( unique(apjj) ) p.ajast.xi <- matrix( 0, nrow=IP, ncol=M1 ) for (kk in 1:M1){ pg1 <- PAJXI[, apjj==kk ] if ( is.vector(pg1)){ p.ajast.xi[,kk] <- pg1 } else { p.ajast.xi[,kk] <- rowSums( pg1 ) } } pjjjM <- outer( rep(1,IP), pjjj ) + eps2 nM <- ncol(pjjjM) x1 <- outer( item.patt.split_jj, rep(1,nM) ) r1 <- outer( resp.patt_jj * item.patt.freq, rep(1,ncol(pjjjM) ) ) # Formula (17) for calculating the standard error mat.jj <- p.ajast.xi * ( x1 - pjjjM) / ( pjjjM * ( 1 - pjjjM ) + eps2) infomat.jj <- matrix( 0, nM, nM ) for (kk1 in 1:nM){ for (kk2 in kk1:nM){ # frequency weights must be taken into account hh1 <- sum( mat.jj[,kk1] * mat.jj[,kk2] * freq.pattern * resp.patt_jj * item.patt.split_jj ) infomat.jj[kk2,kk1] <- infomat.jj[kk1,kk2] <- hh1 } } if ( avoid.zeroprobs ){ ind <- which( is.na(diag(infomat.jj) )) if ( length(ind) > 0 ){ infomat.jj <- infomat.jj[-ind, -ind] } } a1 <- try( solve( infomat.jj + diag( eps2, ncol(infomat.jj) ) ) ) if ( is(a1, "try-error") ){ cat( "Item", colnames(data)[jj], "Singular item parameter covariance matrix\n") a1 <- NA*infomat.jj } varmat.palj_jj <- Ijj <- a1 Wj <- diag( Ilj.ast[,2] ) if ( avoid.zeroprobs ){ ind <- which( Ilj.ast[,2] < eps2 ) if ( length(ind) > 0 ){ Wj <- diag( Ilj.ast[-ind,2] ) Mjjj <- Mjjj[ - ind, ] pjjj <- pjjj[ - ind ] } } if ( ( method=="ULS" ) ){ x1 <- t(Mjjj) %*% Mjjj diag(x1) <- diag(x1) + eps2 Wjjj <- solve( x1 ) %*% t(Mjjj) } else { x1 <- t(Mjjj) %*% Wj %*% Mjjj diag(x1) <- diag(x1) + eps2 Wjjj <- solve( x1 ) %*% t(Mjjj) %*% Wj } if ( linkfct=="logit" ){ pjjj.link <- 1 / ( ( pjjj * ( 1 - pjjj ) ) + eps2 ) pjjj.link <- diag( pjjj.link ) Wjjj <- Wjjj %*% pjjj.link } if ( linkfct=="log" ){ pjjj.link <- 1 / ( pjjj + eps2 ) pjjj.link <- diag( pjjj.link ) Wjjj <- Wjjj %*% pjjj.link } varmat.delta_jj <- Wjjj %*% Ijj %*% t(Wjjj) } #--- output res <- list( infomat.jj=infomat.jj, varmat.palj_jj=varmat.palj_jj, varmat.delta_jj=varmat.delta_jj) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_se_itemwise.R
## File Name: gdina_standardize_weights.R ## File Version: 0.01 gdina_standardize_weights <- function( weights ) { N <- length(weights) weights <- N*weights / sum(weights) return(weights) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdina_standardize_weights.R
## File Name: gdm.R ## File Version: 8.659 ########################################### # General Diagnostic Model ########################################### # #..........................# # OUTLINE: # #..........................# # # Input: # ------ # data ... polytomous responses # I Items with categories 0,1,...,K # group ... 1, ..., G # covariates and groups. Up to now, only use groups # theta.k ... Multidimensional ability design vector # as input. It is of dimension D and therefore a # a [TH,D] matrix (TH is the number of theta points) # Design matrix for smoothing of theta.k distribution # # Model: # ------ # P(X_{pi}=k)=g( b_ik + a_i1 q_i1k theta_i1 + ... + a_iD q_iD*k theta_iD ) # b_ik ... item-category difficulty # a_id ... item slopes # q_ik ... design matrix for slopes # * in general it will be (0,1,...,K) # but can be specified by the user # * The theta vectors can also be transformed in the R formula # framework. Therefore D* will in general be larger # than D. For example, an interaction \theta_1*\theta_2 or # theta^2 can be used in the estimation. # # Algorithm: # ---------- # b ... b[1:I,1:K] matrix of difficulties # a ... a[1:I,1:D] array of item slopes # n_tikg n.ik[1:TH,1:I,1:K,1:G] array of expected item responses # of ability pattern t at item i in category k and group g # pi.k ... [1:TH,1:G] marginal ability distribution in groups 1,...,G # # Specifications: # --------------- # o Q matrix: allocate items to dimensions: # can be either a matrix or an array # o matrix with fixed b or a parameters # o itemgroups for a and b parameters / constraints # est.a and est.b # o log-linear smoothing of ability distribution # -> design matrix of theta # # Details: # -------- # o If there are different categories per item, # then use the maximal category K for all items and # set b_{ik} to infinity if for item i categeory k # is not observed. # o Calculations of probabilities: # P(X_pi=k|\theta)=exp( b_{ik} + a_i1 * q_{i1k} theta_1 + # ... + a_{iD} * q_{i1D} theta_D ) / NN # The normalization constraint NN must be calculated # appropriately . # ################################################################# # GDM function # gdm <- function( data, theta.k, irtmodel="2PL", group=NULL, weights=rep(1, nrow(data)), Qmatrix=NULL,thetaDes=NULL, skillspace="loglinear", b.constraint=NULL, a.constraint=NULL, mean.constraint=NULL, Sigma.constraint=NULL, delta.designmatrix=NULL, standardized.latent=FALSE, centered.latent=FALSE, centerintercepts=FALSE, centerslopes=FALSE, maxiter=1000, conv=1E-5, globconv=1E-5, msteps=4, convM=.0005, decrease.increments=FALSE, use.freqpatt=FALSE, progress=TRUE, PEM=FALSE, PEM_itermax=maxiter, ...) { # mean.constraint [ dimension, group, value ] # Sigma.constraint [ dimension1, dimension2, group, value ] #************************* # data preparation s1 <- Sys.time() e1 <- environment() cl <- match.call() ## prevent from warnings in R CMD check "no visible binding" ## gdm: no visible binding for global variable 'TD' TD <- TP <- EAP.rel <- mean.trait <- sd.trait <- skewness.trait <- NULL K.item <- correlation.trait <- D <- NULL se.theta.k <- NULL data0 <- data <- as.matrix(data) dat.resp0 <- dat.resp <- 1 - is.na(data) dat <- data dat[ is.na(data) ] <- 0 dat0 <- dat # center slopes if ( irtmodel!="2PL" ){ centerslopes <- FALSE } # use frequency pattern. If yes, then some data preparation follows. if ( use.freqpatt ){ res <- gdm_data_prep( dat=dat, data=data, weights=weights, group=group ) weights <- res$weights dat <- res$dat dat.resp <- res$dat.resp data <- res$data item.patt <- res$item.patt } # maximal categories K <- max(dat) # list of indicator data frames dat.ind <- as.list( 1:(K+1) ) for (ii in 0:K){ dat.ind[[ii+1]] <- 1 * ( dat==ii )*dat.resp } I <- ncol(dat) # number of items n <- nrow(dat) #--- response patterns resp.ind.list <- gdm_proc_response_indicators(dat.resp=dat.resp) #-- process data for multiple groups res <- slca_proc_multiple_groups( group=group, n=n ) G <- res$G group <- res$group group0 <- res$group0 group.stat <- res$group.stat Ngroup <- res$Ngroup #--- theta design res <- gdm_thetadesign( theta.k=theta.k, thetaDes=thetaDes, Qmatrix=Qmatrix ) D <- res$D TD <- res$TD TP <- res$TP theta.k <- res$theta.k thetaDes <- res$thetaDes Qmatrix <- res$Qmatrix #--- starting values for b b <- gdm_inits_b( dat0=dat0, dat.resp0=dat.resp0, I=I, K=K ) #**** # item slope matrix # a[1:I,1:TD] ... Items x theta dimension # a <- matrix( 1, nrow=I, ncol=TD ) # item x category slopes are in principle also possible KK <- K # if KK==1 then a slope parameter for all items is estimated a <- array( 1, dim=c(I,TD,KK) ) # define Q matrix res <- gdm_Qmatrix( Qmatrix=Qmatrix, irtmodel=irtmodel, I=I, TD=TD, K=K, a=a ) Qmatrix <- res$Qmatrix a <- res$a #--- constraints on item parameters res <- gdm_constraints_itempars( b.constraint=b.constraint, a.constraint=a.constraint, K=K, TD=TD, Qmatrix=Qmatrix, a=a ) a.constraint <- res$a.constraint b.constraint <- res$b.constraint a <- res$a #--- starting values for distributions Sigma <- diag(1,D) pik <- mvtnorm::dmvnorm( matrix( theta.k,ncol=D), mean=rep(0,D), sigma=Sigma ) pi.k <- matrix( 0, nrow=TP, ncol=G ) for (gg in 1:G){ pi.k[,gg] <- cdm_sumnorm( pik ) } n.ik <- array( 0, dim=c(TP,I,K+1,G) ) #*** # extract number of skills per dimensions skill.levels <- rep(0,D) for (dd in 1:D){ skill.levels[dd] <- length( unique(theta.k[,dd] ) ) } #**** # create thetaDes design matrix for loglinear smoothing res <- gdm_create_delta_designmatrix( delta.designmatrix=delta.designmatrix, TP=TP, D=D, theta.k=theta.k, skill.levels=skill.levels, G=G ) delta <- res$delta covdelta <- res$covdelta delta.designmatrix <- res$delta.designmatrix se.a <- 0*a max.increment.a <- .3 max.increment.b <- 3 if ( standardized.latent ){ mean.constraint <- rbind( mean.constraint, cbind( 1:D, 1, 0 ) ) Sigma.constraint <- rbind( Sigma.constraint, cbind( 1:D, 1:D, 1, 1 ) ) skillspace <- "normal" } if ( centered.latent ){ mean.constraint <- rbind( mean.constraint, cbind( 1:D, 1, 0 ) ) skillspace <- "normal" } #*** # set constraints for a and b parameters if the maximal # item category differs from item to item res <- gdm_constraints_itempars2( b.constraint=b.constraint, a.constraint=a.constraint, K=K, TD=TD, I=I, dat=dat ) K.item <- res$K.item a.constraint <- res$a.constraint b.constraint <- res$b.constraint #*** # preparations for calc.counts res <- gdm_prep_calc_counts( K=K, G=G, group=group, weights=weights, dat.resp=dat.resp, dat.ind=dat.ind, use.freqpatt=use.freqpatt ) ind.group <- res$ind.group dat.ind2 <- res$dat.ind2 #-- preliminaries PEM acceleration if (PEM){ envir <- environment() pem_pars <- c("b","a","pi.k") if ( skillspace=="est"){ pem_pars <- c(pem_pars, "theta.k") } if ( skillspace=="loglinear"){ pem_pars <- c(pem_pars, "delta") } pem_output_vars <- unique( c( pem_pars ) ) parmlist <- cdm_pem_inits_assign_parmlist(pem_pars=pem_pars, envir=envir) res <- cdm_pem_inits( parmlist=parmlist) pem_parameter_index <- res$pem_parameter_index pem_parameter_sequence <- res$pem_parameter_sequence } deviance.history <- rep(NA, maxiter ) gwt0 <- matrix( 1, nrow=n, ncol=TP ) #--- # initial values algorithm dev <- 0 iter <- 0 globconv1 <- conv1 <- 1000 disp <- paste( paste( rep(".", 70 ), collapse=""),"\n", sep="") # timecat <- TRUE # timecat <- FALSE ############################################ # BEGIN MML Algorithm ############################################ while( ( iter < maxiter ) & ( ( globconv1 > globconv) | ( conv1 > conv) ) ){ z0 <- Sys.time() #**** # collect old parameters b0 <- b a0 <- a dev0 <- dev delta0 <- delta pi.k0 <- pi.k #**** #1 calculate probabilities probs <- gdm_calc_prob( a=a, b=b, thetaDes=thetaDes, Qmatrix=Qmatrix, I=I, K=K, TP=TP, TD=TD ) #***** #2 calculate individual likelihood res.hwt <- gdm_calc_posterior( probs=probs, gwt0=gwt0, dat=dat, I=I, resp.ind.list=resp.ind.list ) p.xi.aj <- res.hwt$hwt #***** #3 calculate posterior and marginal distributions res <- gdm_calc_post( pi.k=pi.k, group=group, p.xi.aj=p.xi.aj, weights=weights, G=G, ind.group=ind.group, use.freqpatt=use.freqpatt ) p.aj.xi <- res$p.aj.xi pi.k <- res$pi.k #***** #4 calculate expected counts # n.ik [ 1:TP, 1:I, 1:(K+1), 1:G ] res <- gdm_calc_counts( G=G, weights=weights, dat.ind=dat.ind, dat=dat, dat.resp=dat.resp, p.aj.xi=p.aj.xi, K=K, n.ik=n.ik, TP=TP, I=I, group=group, dat.ind2=dat.ind2, ind.group=ind.group, use.freqpatt=use.freqpatt ) n.ik <- res$n.ik N.ik <- res$N.ik #***** #5 M step: b parameter estimation # n.ik [1:TP,1:I,1:K,1:G] # probs[1:I,1:K,1:TP] res <- gdm_est_b( probs=probs, n.ik=n.ik, N.ik=N.ik, I=I, K=K, G=G, b=b, b.constraint=b.constraint, max.increment=max.increment.b, a=a, thetaDes=thetaDes, Qmatrix=Qmatrix, TP=TP, TD=TD, msteps=msteps, convM=convM, centerintercepts=centerintercepts, decrease.increments=decrease.increments ) b <- res$b se.b <- res$se.b max.increment.b <- res$max.increment.b #***** #6 M step: a parameter estimation if ( irtmodel=="2PL"){ res <- gdm_est_a( probs=probs, n.ik=n.ik, N.ik=N.ik, I=I, K=K, G=G, a=a, a.constraint=a.constraint, TD=TD, Qmatrix=Qmatrix, thetaDes=thetaDes, TP=TP, max.increment=max.increment.a, b=b, msteps=msteps, convM=convM, centerslopes=centerslopes, decrease.increments=decrease.increments ) a <- res$a se.a <- res$se.a max.increment.a <- res$max.increment.a } if ( irtmodel=="2PLcat"){ res <- gdm_est_a_cat( probs=probs, n.ik=n.ik, N.ik=N.ik, I=I, K=K, G=G, a=a, a.constraint=a.constraint, TD=TD, Qmatrix=Qmatrix, thetaDes=thetaDes, TP=TP, max.increment=max.increment.a, b=b, msteps=msteps, convM=convM, decrease.increments=decrease.increments ) a <- res$a se.a <- res$se.a max.increment.a <- res$max.increment.a } #***** #7 M step: estimate reduced skillspace if ( skillspace=="loglinear" ){ res <- gdm_est_skillspace( Ngroup=Ngroup, pi.k=pi.k, Z=delta.designmatrix, G=G, delta=delta ) pi.k <- res$pi.k delta <- res$delta covdelta <- res$covdelta } if ( skillspace=="normal" ){ res <- gdm_est_normalskills( pi.k=pi.k, theta.k=theta.k, irtmodel=irtmodel, G=G, D=D, mean.constraint=mean.constraint, Sigma.constraint=Sigma.constraint, standardized.latent=standardized.latent, p.aj.xi=p.aj.xi, group=group, ind.group=ind.group, weights=weights, b=b, a=a ) pi.k <- res$pi.k b <- res$b a <- res$a } # estimate skillspace if ( skillspace=="est" ){ res <- gdm_est_skillspace_traits( n.ik=n.ik, a=a, b=b, theta.k=theta.k, Qmatrix=Qmatrix, I=I, K=K, TP=TP, TD=TD, numdiff.parm=1E-3, max.increment=1, msteps=msteps, convM=convM ) theta.k <- res$theta.k se.theta.k <- res$se.theta.k thetaDes <- theta.k } #-- PEM acceleration if (PEM){ #-- collect all parameters in a list parmlist <- cdm_pem_inits_assign_parmlist(pem_pars=pem_pars, envir=envir) #-- define log-likelihood function ll_fct <- gdm_calc_loglikelihood #- extract parameters ll_args <- list( irtmodel=irtmodel, skillspace=skillspace, b=b, a=a, centerintercepts=centerintercepts, centerslopes=centerslopes, TD=TD, Qmatrix=Qmatrix, Ngroup=Ngroup, pi.k=pi.k, delta.designmatrix=delta.designmatrix, delta=delta, G=G, theta.k=theta.k, D=D, mean.constraint=mean.constraint, Sigma.constraint=Sigma.constraint, standardized.latent=standardized.latent, p.aj.xi=p.aj.xi, group=group, ind.group=ind.group, weights=weights, thetaDes=thetaDes, I=I, K=K, gwt0=gwt0, dat=dat, resp.ind.list=resp.ind.list, use.freqpatt=use.freqpatt, p.xi.aj=p.xi.aj, TP=TP ) #-- apply general acceleration function res <- cdm_pem_acceleration( iter=iter, pem_parameter_index=pem_parameter_index, pem_parameter_sequence=pem_parameter_sequence, pem_pars=pem_pars, PEM_itermax=PEM_itermax, parmlist=parmlist, ll_fct=ll_fct, ll_args=ll_args, deviance.history=deviance.history ) #-- collect output PEM <- res$PEM pem_parameter_sequence <- res$pem_parameter_sequence cdm_pem_acceleration_assign_output_parameters( res_ll_fct=res$res_ll_fct, vars=pem_output_vars, envir=envir, update=res$pem_update ) } #***** #8 calculate likelihood res <- gdm_calc_deviance( G=G, use.freqpatt=use.freqpatt, ind.group=ind.group, p.xi.aj=p.xi.aj, pi.k=pi.k, weights=weights ) ll <- res$ll dev <- res$dev deviance.history[iter+1] <- dev #~~~~~~~~~~~~~~~~~~~~~~~~~~ # display progress a_change <- gg0 <- max(abs( a - a0 )) b_change <- gg1 <- max(abs( b - b0 )) pardiff <- max( b_change, a_change ) deltadiff <- max( abs( pi.k - pi.k0 )) conv1 <- max( c(pardiff,deltadiff)) globconv1 <- abs( dev - dev0) iter <- iter + 1 res <- gdm_progress_em_algorithm( progress=progress, disp=disp, iter=iter, dev=dev, dev0=dev0, b_change=b_change, a_change=a_change, deltadiff=deltadiff ) } ############################################ # END MML Algorithm ############################################ # collect item parameters res <- gdm_collect_itempars( data=data, K=K, D=D, b=b, a=a, TD=TD, thetaDes=thetaDes, irtmodel=irtmodel, se.b=se.b, se.a=se.a, data0=data0 ) item <- res$item b <- res$b se.b <- res$se.b a <- res$a # calculate distribution properties res <- gdm_calc_distributionmoments( D=D, G=G, pi.k=pi.k, theta.k=theta.k ) mean.trait <- res$mean.trait sd.trait <- res$sd.trait skewness.trait <- res$skewness.trait correlation.trait <- res$correlation.trait # Information criteria ic <- gdm_calc_ic( dev=dev, dat=dat, G=G, skillspace=skillspace, irtmodel=irtmodel, K=K, D=D, TD=TD, I=I, b.constraint=b.constraint, a.constraint=a.constraint, mean.constraint=mean.constraint, Sigma.constraint=Sigma.constraint, delta.designmatrix=delta.designmatrix, standardized.latent=standardized.latent, data0=data0, centerslopes=centerslopes, TP=TP, centerintercepts=centerintercepts, centered.latent=centered.latent ) ######################################### # item fit [ items, theta, categories ] # # n.ik [ 1:TP, 1:I, 1:(K+1), 1:G ] probs <- aperm( probs, c(3,1,2) ) itemfit.rmsea <- itemfit.rmsea( n.ik, pi.k, probs, itemnames=colnames(data) ) item$itemfit.rmsea <- itemfit.rmsea$rmsea rownames(item) <- NULL # person parameters res <- gdm_person_parameters( data=data, D=D, theta.k=theta.k, p.xi.aj=p.xi.aj, p.aj.xi=p.aj.xi, weights=weights ) person <- res$person EAP.rel <- res$EAP.rel #************************* # collect output s2 <- Sys.time() res <- list( item=item, person=person, EAP.rel=EAP.rel, deviance=dev, ic=ic, b=b, se.b=se.b, a=a, se.a=se.a, itemfit.rmsea=itemfit.rmsea, mean.rmsea=mean(itemfit.rmsea$rmsea), Qmatrix=Qmatrix, pi.k=pi.k, mean.trait=mean.trait, sd.trait=sd.trait, skewness.trait=skewness.trait, correlation.trait=correlation.trait, pjk=probs, n.ik=n.ik, delta.designmatrix=delta.designmatrix, G=G, D=D, I=ncol(data), N=nrow(data), delta=delta, covdelta=covdelta, data=data, group.stat=group.stat ) res$p.xi.aj <- p.xi.aj ; res$posterior <- p.aj.xi res$skill.levels <- skill.levels res$K.item <- K.item res$theta.k <- theta.k res$thetaDes <- thetaDes res$se.theta.k <- NULL res$group <- group res$time <- list( s1=s1,s2=s2, timediff=s2-s1) res$skillspace <- skillspace res$iter <- iter res$converged <- iter < maxiter # some further values for modelfit.gdm res$AIC <- res$ic$AIC res$BIC <- res$ic$BIC res$Npars <- res$ic$np res$loglike <- - res$deviance / 2 res$irtmodel <- irtmodel res$deviance.history <- deviance.history # control arguments res$control$weights <- weights res$control$group <- group if (progress){ cat("----------------------------------- \n") cat("Start:", paste( s1), "\n") cat("End:", paste(s2), "\n") cat("Difference:", print(s2 -s1), "\n") cat("----------------------------------- \n") } class(res) <- "gdm" res$call <- cl return(res) } ################################################### # z0 <- cdm_timecat(z0, label=" *** gdm_calc_prob", timecat)
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdm.R
## File Name: gdm_Qmatrix.R ## File Version: 0.05 ################################################# # define Q matrix gdm_Qmatrix <- function(Qmatrix,irtmodel,I,TD,K,a) { # Q matrix [1:I, 1:TD, 1:K] if ( is.null(Qmatrix) ){ Qmatrix <- array( 1, dim=c(I,TD,K) ) # modify it possibly if (K>1 & ( irtmodel !="2PLcat" ) ){ for (kk in 2:K){Qmatrix[,,kk] <- kk*Qmatrix[,,1] } } if ( irtmodel=="2PLcat"){ for (kk in 2:K ){ a[,,kk] <- kk * a[,,kk] } } } res <- list(Qmatrix=Qmatrix, a=a) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdm_Qmatrix.R
## File Name: gdm_calc_counts.R ## File Version: 0.09 ################################################ # calculation of expected counts gdm_calc_counts <- function(G, weights, dat.ind, dat, dat.resp, p.aj.xi, K, n.ik, TP,I,group, dat.ind2, ind.group, use.freqpatt ) { # n.ik [ 1:TP, 1:I, 1:(K+1), 1:G ] # N.ik [ 1:TP, 1:I, 1:G ] N.ik <- array( 0, dim=c(TP,I,G) ) if (G==1){ gg <- 1 for (kk in 1:(K+1)){ # kk <- 1 # category 0 ( -> 1 ) dkk2 <- weights*dat.ind2[[kk]][[gg]] n.ik[,,kk,gg] <- crossprod( p.aj.xi, dkk2 ) N.ik[,,gg] <- N.ik[,,gg] + n.ik[,,kk,gg] } } if (G>1){ for (gg in 1:G){ # gg <- 1 ind.gg <- ind.group[[gg]] if ( ! use.freqpatt ){ t.p.aj.xi.gg <- t( p.aj.xi[ind.gg,] ) } if ( use.freqpatt ){ t.p.aj.xi.gg <- t( p.aj.xi[[gg]] ) } for (kk in 1:(K+1)){ # kk <- 1 # category 0 ( -> 1 ) dkk2 <- weights[ind.gg] * dat.ind2[[kk]][[gg]] if ( use.freqpatt ){ if (G>1){ dkk2 <- dkk2[ which(weights[,gg] > 0), ] } } n.ik[,,kk,gg] <- t.p.aj.xi.gg %*% dkk2 N.ik[,,gg] <- N.ik[,,gg] + n.ik[,,kk,gg] } } } #--- OUTPUT res <- list("n.ik"=n.ik, "N.ik"=N.ik ) return(res) } .gdm.calc.counts <- gdm_calc_counts
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdm_calc_counts.R
## File Name: gdm_calc_deviance.R ## File Version: 0.06 gdm_calc_deviance <- function(G, use.freqpatt, ind.group, p.xi.aj, pi.k, weights) { # n.ik [ TP, I, K+1, G ] # N.ik [ TP, I, G ] # probs [I, K+1, TP ] ll <- 0 for (gg in 1:G){ if ( ! use.freqpatt ){ ind.gg <- ind.group[[gg]] ll <- ll + sum( weights[ind.gg] * log( rowSums( p.xi.aj[ind.gg,] * matrix( pi.k[,gg], nrow=length(ind.gg), ncol=nrow(pi.k), byrow=TRUE ) ) ) ) } if ( use.freqpatt ){ if (G>1){ wgg <- weights[,gg] } if (G==1){ wgg <- weights } ll <- ll + sum( wgg * log( rowSums( p.xi.aj * matrix( pi.k[,gg], nrow=nrow(p.xi.aj), ncol=nrow(pi.k), byrow=TRUE ) ) ) ) } } dev <- -2*ll #--- OUTPUT res <- list( ll=ll, dev=dev) return(res) }
/scratch/gouwar.j/cran-all/cranData/CDM/R/gdm_calc_deviance.R