content
stringlengths 0
14.9M
| filename
stringlengths 44
136
|
---|---|
## File Name: IRT.marginal_posterior.R
## File Version: 0.13
IRT.marginal_posterior <- function(object, dim, remove_zeroprobs=TRUE, ...)
{
UseMethod("IRT.marginal_posterior")
}
IRT_marginal_posterior_compute <- function(object, dim,
remove_zeroprobs=TRUE, ... )
{
post <- IRT.posterior(object=object)
theta <- attr(post, "theta")
skill_names <- colnames(theta)
if ( ! is.numeric(dim) ){
dim <- match(dim, skill_names)
}
ND <- length(dim)
if (remove_zeroprobs){
ind <- which( colSums(post) > 0 )
post <- post[, ind, drop=FALSE]
theta <- theta[ ind,, drop=FALSE]
}
N <- nrow(post)
LD <- length(dim)
sp <- ""
for (ll in 1:LD){
sp <- paste0(sp,theta[,ll])
}
spu <- sort(unique(sp))
NS <- length(spu)
index_sp <- match(sp, spu)
marg_post <- matrix(NA, nrow=N, ncol=NS)
colnames(marg_post) <- spu
for (ss in 1:NS){
marg_post[,ss] <- rowSums( post[, index_sp==ss] )
}
# MAP estimate
map <- spu[ max.col(marg_post) ]
# skill design
theta <- strsplit(spu, split="")
theta <- matrix( as.numeric(unlist(theta)), ncol=ND, byrow=TRUE)
colnames(theta) <- skill_names[dim]
rownames(theta) <- spu
#-- output
res <- list(marg_post=marg_post, map=map, theta=theta)
return(res)
}
IRT.marginal_posterior.gdina <- IRT_marginal_posterior_compute
IRT.marginal_posterior.din <- IRT_marginal_posterior_compute
IRT.marginal_posterior.mcdina <- IRT_marginal_posterior_compute
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.marginal_posterior.R
|
## File Name: IRT.modelfit.R
## File Version: 0.21
###########################################################
IRT.modelfit <- function (object, ...)
{
UseMethod("IRT.modelfit")
}
###########################################################
# general model fit function for CDM objects
IRT.modelfit.CDM <- function( object, mod )
{
res <- modelfit.cor.din( dinobj=object)
res$IRT.IC <- IRT.IC(object)
res$objname <- mod
class(res) <- paste0("IRT.modelfit.", class(object) )
return(res)
}
###########################################################
###########################################################
# IRT.modelfit for objects of class din, gdina
IRT.modelfit.din <- function( object, ... )
{
cl <- paste(match.call())[2]
res <- IRT.modelfit.CDM( object, mod=cl )
return(res)
}
#####################################################
# IRT.modelfit for gdina objects
IRT.modelfit.gdina <- function( object, ... )
{
cl <- paste(match.call())[2]
res <- IRT.modelfit.CDM( object, mod=cl )
return(res)
}
#############################################################
#####################################################
# IRT.modelfit for gdm objects
IRT.modelfit.gdm <- function( object, ... )
{
cl <- paste(match.call())[2]
res <- IRT.modelfit.CDM( object, mod=cl )
return(res)
}
#############################################################
############################################################
# summary
summary.IRT.modelfit.helper <- function( object, ... )
{
cat("Test of Global Model Fit\n")
obji <- object$modelfit.test
cdm_print_summary_data_frame(obji=obji, from=2, digits=3, rownames_null=FALSE)
#------
cat("\nFit Statistics\n")
obji <- object$modelfit.stat
cdm_print_summary_data_frame(obji=obji, from=1, digits=3, rownames_null=FALSE)
}
#################################################################
# summary.modelfit.cor.din
summary.IRT.modelfit.din <- summary.IRT.modelfit.helper
summary.IRT.modelfit.gdina <- summary.IRT.modelfit.helper
summary.IRT.modelfit.gdm <- summary.IRT.modelfit.helper
# summary.IRT.modelfit.gdm <- summary.modelfit.cor.gdm
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.modelfit.R
|
## File Name: IRT.parameterTable.R
## File Version: 0.06
###########################################################
# extracts used dataset
IRT.parameterTable <- function(object, ...)
{
UseMethod("IRT.parameterTable")
}
###########################################################
# IRT.data.din <- function( object, ... ){
# dat <- object$dat
# attr(dat,"weights") <- object$control$weights
# attr(dat,"group") <- object$control$group
# return(dat)
# }
############################################################
# IRT.data.gdina <- IRT.data.din
# IRT.data.gdm <- IRT.data.din
# IRT.data.mcdina <- IRT.data.din
# IRT.data.slca <- IRT.data.din
#############################################################
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.parameterTable.R
|
## File Name: IRT.posterior.R
## File Version: 0.15
###########################################################
# extracts the individual posterior
IRT.posterior <- function (object, ...)
{
UseMethod("IRT.posterior")
}
###########################################################
###########################################################
# object of class din
IRT.posterior.din <- function( object, ... )
{
ll <- object$posterior
attr(ll,"theta") <- object$attribute.patt.splitted
attr(ll,"prob.theta") <- object$attribute.patt$class.prob
attr(ll,"G") <- 1
return(ll)
}
###########################################################
###########################################################
# object of class gdina
IRT.posterior.gdina <- function( object, ... )
{
ll <- object$posterior
attr(ll,"theta") <- object$attribute.patt.splitted
attr(ll,"prob.theta") <- object$attribute.patt[, 1:object$G ]
attr(ll,"G") <- object$G
return(ll)
}
############################################################
###########################################################
# object of class mcdina
IRT.posterior.mcdina <- function( object, ... )
{
ll <- object$posterior
attr(ll,"theta") <- object$attribute.patt.splitted
attr(ll,"prob.theta") <- object$attribute.patt
attr(ll,"G") <- object$G
return(ll)
}
############################################################
###########################################################
# object of class gdm
IRT.posterior.gdm <- function( object, ... )
{
ll <- object$posterior
attr(ll,"theta") <- object$theta.k
attr(ll,"prob.theta") <- object$pi.k
attr(ll,"G") <- object$G
return(ll)
}
############################################################
###########################################################
# object of class slca
IRT.posterior.slca <- function( object, ... )
{
ll <- object$posterior
attr(ll,"theta") <- NA
res <- list( "delta"=object$delta,
"delta.designmatrix"=object$delta.designmatrix )
attr(ll,"skillspace") <- res
attr(ll,"prob.theta") <- object$pi.k
attr(ll,"G") <- object$G
return(ll)
}
############################################################
###########################################################
# object of class reglca
IRT.posterior.reglca <- function( object, ... )
{
ll <- object$p.aj.xi
attr(ll,"theta") <- NA
attr(ll,"prob.theta") <- object$class_probs
attr(ll,"G") <- object$G
return(ll)
}
############################################################
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.posterior.R
|
## File Name: IRT.predict.R
## File Version: 1.29
########################################################################
# function for predicting item responses based on posterior
IRT.predict <- function( object, dat, group=1 )
{
resp <- as.matrix(dat)
# post1 <- IRT.posterior( object )
irf1 <- IRT.irfprob( object )
irf1[ is.na(irf1) ] <- 0
N <- nrow(resp)
I <- ncol(resp)
TP <- dim(irf1)[3]
K <- dim(irf1)[2]
if ( length( dim(irf1) )==4 ){
# handle case with group-wise item response functions
irf1 <- irf1[,,,group]
}
irf1_ <- as.numeric(irf1)
# call Rcpp function
res0 <- cdm_rcpp_irt_predict( resp=resp, irf1=irf1_, K=K, TP=TP )
probs.categ <- array( res0$probs_categ, dim=c(N,K,TP,I) )
pred <- res0$pred
var1 <- res0$var1
resid1 <- res0$resid1
sresid1 <- res0$sresid1
# output
res <- list( "expected"=pred, "probs.categ"=probs.categ,
"variance"=var1, "residuals"=resid1, "stand.resid"=sresid1 )
return(res)
}
#######################################################################
# cat("output\n") ; a1 <- Sys.time() ; print( a1- a0 ) ; a0 <- a1
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.predict.R
|
## File Name: IRT.predict.R.R
## File Version: 0.09
########################################################################
# function for predicting item responses based on posterior
IRT.predict.R <- function( object, dat, group=1 )
{
resp <- dat
irf1 <- IRT.irfprob( object )
irf1[ is.na(irf1) ] <- 0
N <- nrow(resp)
I <- ncol(resp)
TP <- dim(irf1)[3]
K <- dim(irf1)[2]
if ( length( dim(irf1) )==4 ){
# handle case with group-wise item response functions
irf1 <- irf1[,,,group]
}
pred <- array( 0, dim=c(N,TP,I) )
dimnames(pred)[[3]] <- colnames(resp)
var1 <- pred
# category-wise predictions
pred.categ <- array( 0, dim=c(N,K,TP,I) )
dimnames(pred.categ)[[4]] <- colnames(resp)
#-------------------------
for (ii in 1:I){
# ii <- 32
v1 <- rep(0,N)
kk <- 1
irf.ii <- matrix( irf1[ii,kk,], nrow=N, ncol=TP, byrow=TRUE )
pred.categ[,kk,,ii] <- irf.ii
for (kk in 2:K){
irf.ii <- matrix( irf1[ii,kk,], nrow=N, ncol=TP, byrow=TRUE )
p1 <- irf.ii
pred.categ[,kk,,ii] <- p1
v1 <- (kk-1) * p1 + v1
}
pred[,,ii] <- v1
ind.ii <- which( is.na(resp[,ii]) )
if ( length(ind.ii) > 0 ){
pred[ ind.ii,,ii ] <- NA
pred.categ[ ind.ii, 1:K,,ii ] <- NA
}
for (kk in 1:K){
var1[,,ii ] <- var1[,,ii] + pred.categ[, kk,, ii] * ( ( kk-1 ) - pred[,,ii] )^2
}
}
#----------------------
# compute residuals
resp1 <- array( 0, dim=c(N,TP,I) )
for (tt in 1:TP){
resp1[,tt,] <- resp
}
resid1 <- resp1 - pred
sresid1 <- resid1 / sqrt( var1 )
# output
res <- list( "expected"=pred, "probs.categ"=pred.categ,
"variance"=var1, "residuals"=resid1, "stand.resid"=sresid1 )
return(res)
}
#######################################################################
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.predict.R.R
|
## File Name: IRT.repDesign.R
## File Version: 0.18
########################################################
IRT.repDesign <- function( data, wgt=NULL, jktype="JK_TIMSS",
jkzone=NULL, jkrep=NULL, jkfac=NULL, fayfac=1,
wgtrep="W_FSTR", ngr=100, Nboot=200, seed=.Random.seed )
{
# BIFIEsurvey must be loaded
CDM_require_namespace("BIFIEsurvey")
data <- as.data.frame(data)
#*************************
# apply Jackknife (Bootstrap) routine
if ( jktype !="BOOT"){
bdat2 <- BIFIEsurvey::BIFIE.data.jack(data, wgt=wgt, jktype=jktype,
pv_vars=NULL, jkzone=jkzone, jkrep=jkrep,
jkfac=jkfac, fayfac=1,
wgtrep=wgtrep, pvpre=NULL, ngr=ngr,
seed=seed, cdata=FALSE)
} else {
bdat2 <- BIFIEsurvey::BIFIE.data.boot( data, wgt=wgt, pv_vars=NULL,
Nboot=Nboot, seed=seed, cdata=FALSE)
}
cat("+++ Generated IRT.repDesign object\n")
# output
res <- list( "wgt"=bdat2$wgt, "wgtrep"=bdat2$wgtrep,
"fayfac"=bdat2$fayfac, "RR"=ncol( bdat2$wgtrep) )
class(res) <- "IRT.repDesign"
return(res)
}
########################################################################
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.repDesign.R
|
## File Name: IRT.se.R
## File Version: 0.03
###########################################################
IRT.se <- function (object, ...)
{
UseMethod("IRT.se")
}
###########################################################
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.se.R
|
## File Name: IRT.se.din.R
## File Version: 0.12
#########################################################################
IRT.se.din <- function( object, extended=FALSE, parm=NULL,
level=.95, infomat=FALSE, ind.item.skillprobs=TRUE,
ind.item=FALSE, diagcov=FALSE, h=.001, ... )
{
if ( ! missing( parm) ){
partable <- object$partable
g1 <- parm %in% partable$parnames
if ( mean(g1) < 1 ){
stop("Not all requested parameters in parameter table!\n")
}
}
# variance covariance matrix
v1 <- vcov( object, extended=extended, infomat=FALSE,ind.item.skillprobs=ind.item.skillprobs,
ind.item=ind.item, diagcov=diagcov, h=h,...)
# confidence intervals
res <- data.frame( "parameter"=names(attr( v1, "coef")) )
res$est <- attr(v1,"coef")
res$se <- sqrt( diag(v1) )
level1 <- round( 100*( 1 - level ) / 2, 1 )
quant1 <- abs( stats::qnorm( ( 1-level) / 2) )
res[, paste0( level1, " %" ) ] <- res$est - quant1*res$se
res[, paste0( 100-level1, " %" ) ] <- res$est + quant1*res$se
partable <- object$partable
ind1 <- match( res$parameter, partable$parnames )
vars1 <- c("partype", "parindex" )
res <- cbind( partable[ ind1, vars1 ], res )
vars2 <- c( "item", "item.name", "skillclass", "fixed","free",
"rule", "totindex" )
res <- cbind( res, partable[ ind1, vars2 ])
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT.se.din.R
|
## File Name: IRT_RMSD_calc_distributions.R
## File Version: 0.07
IRT_RMSD_calc_distributions <- function( n.ik, pi.k, eps=1E-30 )
{
# probs ... [ classes, items, categories ]
# n.ik ... [ classes, items, categories, groups ]
# N.ik ... [ classes, items, categories]
N.ik <- n.ik[,,,1]
G <- dim(n.ik)[4]
pitot <- pi.k[,1]
eps <- 1E-10
if (G>1){
for (gg in 2:G ){
N.ik <- N.ik + n.ik[,,,gg]
pitot <- pitot + pi.k[,gg]
}
}
#*** extract maximum number of categories
maxK <- apply( N.ik, c(2,3), sum, na.rm=TRUE )
maxK <- rowSums( maxK > eps )
# calculate summed counts
N.ik_tot <- array( 0, dim=dim(N.ik) )
N.ik_tot[,,1] <- N.ik[,,1,drop=FALSE]
K <- dim(N.ik)[3]
for (kk in 2:K){
N.ik_tot[,,1] <- N.ik_tot[,,1,drop=FALSE] + N.ik[,,kk,drop=FALSE]
}
for (kk in 2:K){
N.ik_tot[,,kk] <- N.ik_tot[,,1]
}
# calculate itemwise statistics
p.ik_observed <- N.ik / ( N.ik_tot + eps )
p.ik_observed <- replace_NA( p.ik_observed, value=0 )
# define class weights
pi.k_tot <- array( 0, dim=dim(p.ik_observed) )
for (kk in 1:K){
pi.k_tot[,,kk] <- matrix( pitot, nrow=dim(pi.k_tot)[1],
ncol=dim(pi.k_tot)[2], byrow=FALSE )
}
#--- output
res <- list( N.ik=N.ik, N.ik_tot=N.ik_tot, p.ik_observed=p.ik_observed,
pi.k_tot=pi.k_tot, maxK=maxK, K=K )
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_RMSD_calc_distributions.R
|
## File Name: IRT_RMSD_calc_md.R
## File Version: 2.17
#-- MD statistic
IRT_RMSD_calc_md <- function( n.ik, pi.k, probs, eps=1e-30 )
{
# probs ... [ classes, items, categories ]
# n.ik ... [ classes, items, categories, groups ]
# N.ik ... [ classes, items, categories]
N.ik <- n.ik[,,,1]
G <- dim(n.ik)[4]
pitot <- pi.k[,1]
eps <- 1E-10
if (G>1){
for (gg in 2:G){
N.ik <- N.ik + n.ik[,,,gg]
pitot <- pitot + pi.k[,gg]
}
}
#*** extract maximum number of categories
maxK <- apply( N.ik, c(2,3), sum, na.rm=TRUE )
maxK <- rowSums( maxK > eps )
# calculate summed counts
N.ik_tot <- array( 0, dim=dim(N.ik) )
N.ik_tot[,,1] <- N.ik[,,1,drop=FALSE]
K <- dim(N.ik)[3]
for (kk in 2:K){
N.ik_tot[,,1] <- N.ik_tot[,,1,drop=FALSE] + N.ik[,,kk,drop=FALSE]
}
for (kk in 2:K){
N.ik_tot[,,kk] <- N.ik_tot[,,1]
}
# calculate itemwise statistics
p.ik_observed <- N.ik / ( N.ik_tot + eps )
p.ik_observed[ is.na( p.ik_observed ) ] <- 0
# define class weights
pi.k_tot <- array( 0, dim=dim(p.ik_observed) )
for (kk in 1:K){
pi.k_tot[,,kk] <- matrix( pitot, nrow=dim(pi.k_tot)[1], ncol=dim(pi.k_tot)[2], byrow=FALSE )
}
# calculate statistics
dist.item <- pi.k_tot * ( p.ik_observed - probs )
h1 <- 0 * dist.item[,,1]
for (kk in 2:K){
h1 <- h1 + (kk-1) * dist.item[,,kk]
}
itemfit.md <- colSums( h1 / ( maxK - 1) )
v1 <- apply(p.ik_observed, 2, sum)
itemfit.md[ v1==0 ] <- NA
return(itemfit.md)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_RMSD_calc_md.R
|
## File Name: IRT_RMSD_calc_rmsd.R
## File Version: 3.34
#--- auxiliary function RMSD calculation
IRT_RMSD_calc_rmsd <- function( n.ik, pi.k, probs, eps=1E-30 )
{
#*** compute distributions based on expected counts
res <- IRT_RMSD_calc_distributions( n.ik=n.ik, pi.k=pi.k, eps=eps )
pi.k_tot <- res$pi.k_tot
p.ik_observed <- res$p.ik_observed
maxK <- res$maxK
K <- res$K
N.ik <- res$N.ik
eps1 <- 1
eps0 <- 1E-20
#------------------------------------------------
#*** RMSD fit statistic
dist.item <- pi.k_tot * ( p.ik_observed - probs )^2
h1 <- IRT_RMSD_proc_dist_item(dist.item=dist.item)
RMSD <- sqrt( colSums( h1 ) / maxK )
#*** bias corrected RMSD statistic
N.it <- array(0, dim=dim(N.ik) )
K <- dim(N.ik)[3]
for (kk in 1:K){
N.it[,, 1] <- N.it[,,1] + N.ik[,,kk]
}
for (kk in 2:K){
N.it[,, kk] <- N.it[,,1]
}
N.it <- N.it # + 1
p.ik_obs_var <- probs * ( 1 - probs ) / ( N.it + eps0 )
p.ik_samp_var <- pi.k_tot^2 * p.ik_obs_var
h2 <- IRT_RMSD_proc_dist_item(dist.item=p.ik_samp_var)
h2 <- colSums( h2 ) / maxK
RMSD_bc <- RMSD^2 - h2
RMSD_bc <- sign(RMSD_bc)*sqrt( abs(RMSD_bc) )
#------------------------------------------------
#*** MD fit statistic
dist.item <- pi.k_tot * ( p.ik_observed - probs )
h1 <- IRT_RMSD_proc_dist_item(dist.item=dist.item)
MD <- colSums( h1 ) / ( maxK - 1)
#------------------------------------------------
#*** MAD fit statistic
dist.item <- pi.k_tot * abs( p.ik_observed - probs )
h1 <- IRT_RMSD_proc_dist_item(dist.item=dist.item)
MAD <- colSums(h1) / maxK
RMSD <- cdm_replace_inf(x=RMSD)
RMSD_bc <- cdm_replace_inf(x=RMSD_bc)
MD <- cdm_replace_inf(x=MD)
MAD <- cdm_replace_inf(x=MAD)
#--- output
res <- list( RMSD=RMSD, RMSD_bc=RMSD_bc, MD=MD, MAD=MAD )
return(res)
}
rmsea_aux <- function( n.ik, pi.k, probs, eps=1E-30 )
{
res <- IRT_RMSD_calc_rmsd( n.ik=n.ik, pi.k=pi.k, probs=probs, eps=eps )
return( res$RMSD )
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_RMSD_calc_rmsd.R
|
## File Name: IRT_RMSD_proc_dist_item.R
## File Version: 0.05
IRT_RMSD_proc_dist_item <- function(dist.item)
{
#--- processing
dist.item <- replace_NA( dist.item, value=0 )
h1 <- array3_sum( dist.item )
return(h1)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_RMSD_proc_dist_item.R
|
## File Name: IRT_RMSD_summary_print_statistics.R
## File Version: 0.07
IRT_RMSD_summary_print_statistics <- function( stat_summary, stat, digits)
{
obji <- stat_summary
NC <- ncol(obji)
for (gg in 2:NC ){
obji[,gg] <- round( obji[,gg], digits=digits)
}
print( obji )
cat("\n")
obji <- stat
NC <- ncol(obji)
for (gg in 2:NC ){
obji[,gg] <- round( obji[,gg], digits=digits)
}
print(obji)
}
summary.IRT.RMSD_print_statistics <- IRT_RMSD_summary_print_statistics
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_RMSD_summary_print_statistics.R
|
## File Name: IRT_frequencies_default.R
## File Version: 0.09
IRT_frequencies_default <- function(data, post, probs, weights=NULL)
{
dim_probs <- dim(probs)
K <- dim_probs[2]
I <- dim_probs[1]
TP <- dim_probs[3]
N <- nrow(data)
#--- preparation item response data
dat <- data
dat.ind <- 1 - is.na(dat)
dat[ is.na(dat) ] <- 0
if (is.null(weights)){
weights <- rep(1,N)
}
#--- univariate observed frequencies
uni_obs <- matrix( 0, nrow=I, ncol=K)
items <- colnames(dat)
categories <- paste0("Cat", 1:K - 1 )
rownames(uni_obs) <- items
colnames(uni_obs) <- categories
for (kk in 1:K){
uni_obs[,kk] <- colSums( ( dat==kk - 1) * dat.ind * weights )
}
#--- univariate expected frequencies
uni_exp <- 0*uni_obs
for (ii in 1:I){
for (kk in 1:K){
counts_ii_kk <- dat.ind[,ii] * weights * post
uni_exp[ii,kk] <- sum( t(counts_ii_kk) * probs[ii,kk,] )
}
}
#--- univariate marginals descriptive statistics
M_obs <- rep(NA, I)
names(M_obs) <- items
SD_obs <- SD_exp <- M_exp <- M_obs
for (ii in 1:I){
res <- univar_table_statistics( freq=uni_obs[ii,] )
M_obs[ii] <- res$M
SD_obs[ii] <- res$SD
res <- univar_table_statistics( freq=uni_exp[ii,] )
M_exp[ii] <- res$M
SD_exp[ii] <- res$SD
}
#--- bivariate frequency tables
biv_obs <- array( 0, dim=c(I,I,K,K) )
dimnames(biv_obs) <- list( items, items, categories, categories )
biv_exp <- biv_obs
biv_N <- matrix(0,nrow=I,ncol=I)
dimnames(biv_N) <- list(items, items)
chisq <- cov_obs <- cov_exp <- cor_exp <- cor_obs <- biv_N
attr( chisq, "df") <- chisq
for (ii in 1:I){
for (jj in ii:I){
for (kk in 1:K){
for (hh in 1:K){
dat_temp <- ( dat[,ii]==kk-1 ) * ( dat[,jj]==hh - 1 ) * dat.ind[,ii] * dat.ind[,jj] * weights
biv_obs[ii,jj,kk,hh] <- sum( dat_temp )
counts_temp <- dat.ind[,ii] * dat.ind[,jj] * weights * post
biv_exp[ii,jj,kk,hh] <- sum( t(counts_temp) * probs[ii,kk,] * probs[jj,hh,] )
}
}
biv_N[ii,jj] <- biv_N[jj,ii] <- sum(biv_obs[ii,jj,,])
biv_obs[jj,ii,,] <- biv_obs[ii,jj,,]
biv_exp[jj,ii,,] <- biv_exp[ii,jj,,]
}
}
for (ii in 1:I){
for (jj in ii:I){
res <- bivariate_table_statistics(freqtable=biv_obs[ii,jj,,])
cov_obs[ii,jj] <- cov_obs[jj,ii] <- res$cov
cor_obs[ii,jj] <- cor_obs[jj,ii] <- res$cor
res <- bivariate_table_statistics(freqtable=biv_exp[ii,jj,,])
K1 <- res$K1
K2 <- res$K2
cov_exp[ii,jj] <- cov_exp[jj,ii] <- res$cov
cor_exp[ii,jj] <- cor_exp[jj,ii] <- res$cor
chisq[ii,jj] <- chisq[jj,ii] <- chisq_compute(obs=biv_obs[ii,jj,,], exp=biv_exp[ii,jj,,])
attr(chisq, "df")[ii,jj] <- attr(chisq, "df")[jj,ii] <- (K1-1)*(K2-1)
}
}
diag(chisq) <- NA
attr(chisq, "p") <- 1 - stats::pchisq(chisq, df=attr(chisq,"df") )
#--- output
res <- list( uni_obs=uni_obs, uni_exp=uni_exp, M_obs=M_obs, M_exp=M_exp, SD_obs=SD_obs,
SD_exp=SD_exp, biv_obs=biv_obs, biv_exp=biv_exp, biv_N=biv_N,
cov_obs=cov_obs, cov_exp=cov_exp, cor_obs=cor_obs, cor_exp=cor_exp,
chisq=chisq )
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_frequencies_default.R
|
## File Name: IRT_se_gdina.R
## File Version: 0.21
IRT_se_gdina <- function(object, h=1E-4)
{
dat <- object$dat
resp.ind.list <- object$resp.ind.list
delta <- object$delta
attr.prob <- object$attr.prob
aggr.attr.patt <- object$control$aggr.attr.patt
Aj <- object$Aj
Mj <- object$Mj
p.xi.aj <- object$like
J <- ncol(dat)
linkfct <- object$control$linkfct
item.patt.split <- object$control$item.patt.split
item.patt.freq <- object$item.patt.freq
IP <- nrow(item.patt.split)
zeroprob.skillclasses <- object$zeroprob.skillclasses
resp.ind.list <- object$resp.ind.list
G <- object$G
L <- object$Nskillclasses
group <- object$G
reduced.skillspace <- object$reduced.skillspace
beta <- object$beta
Z.skillspace <- object$Z.skillspace
if (G==1){
item.patt.freq <- as.vector(item.patt.freq)
}
progress <- FALSE
iter <- 1E2
#-- handle reduced skill space
if (reduced.skillspace){
if (G==1){
attr.prob <- reduced_skillspace_beta_2_probs( Z=Z.skillspace, beta=beta )
}
if (G>1){
attr.prob <- matrix(NA, nrow=L, ncol=G)
for (gg in 1:G){
attr.prob[,gg] <- reduced_skillspace_beta_2_probs( Z=Z.skillspace, beta=beta[,gg] )
}
}
}
# no reduced skillspace
if (! reduced.skillspace){
eps <- 2*h
beta <- matrix( 0, nrow=L-1, ncol=G)
bounds <- c(eps, 1E3)
if (G==1){
beta[,1] <- cdm_sumnorm_squeeze( vec=attr.prob, bounds=bounds )[-L]
} else {
for (gg in 1:G){
beta[,gg] <- cdm_sumnorm_squeeze( vec=attr.prob[,gg], bounds=bounds )[-L]
}
}
}
arglist <- list( J=J, L=L, aggr.attr.patt=aggr.attr.patt, Mj=Mj,
delta=delta, linkfct=linkfct, IP=IP,
item.patt.split=item.patt.split, resp.ind.list=resp.ind.list,
zeroprob.skillclasses=zeroprob.skillclasses, G=G, item.patt.freq=item.patt.freq,
beta=beta, Z.skillspace=Z.skillspace, reduced.skillspace=reduced.skillspace,
return_all=TRUE)
res <- do.call( what=IRT_se_gdina_calc_individual_likelihood, args=arglist )
loglike <- res$loglike
p.xi.aj <- res$p.xi.aj
p.aj.xi <- res$p.aj.xi
like_ind <- res$like_ind
#--- derivatives based with respect to delta
delta1 <- delta
jj <- 5 # item
pp <- 1 # parameter
delta1[[jj]][[pp]] <- delta[[jj]][[pp]] + h
arglist1 <- arglist
arglist1$return_all <- FALSE
arglist1$delta <- delta1
loglike1 <- do.call( what=IRT_se_gdina_calc_individual_likelihood, args=arglist1 )
d1 <- ( loglike1 - loglike ) / h
# Revalpr("d1")
eps <- 1E-20
prob_args <- list( J=J, jj=jj, L=L, aggr.attr.patt=aggr.attr.patt, Mj=Mj, delta=delta, linkfct=linkfct)
pj0 <- do.call( gdina_calc_prob_one_item, args=prob_args )
prob_args1 <- prob_args
delta1 <- delta
delta1[[jj]][[pp]] <- delta[[jj]][[pp]] + h
prob_args1$delta <- delta1
pj1 <- do.call( gdina_calc_prob_one_item, args=prob_args1 )
delta1 <- delta
delta1[[jj]][[pp]] <- delta[[jj]][[pp]] - h
prob_args1$delta <- delta1
pj2 <- do.call( gdina_calc_prob_one_item, args=prob_args1 )
like_der <- matrix( 0, nrow=IP, ncol=L)
resp_jj <- resp.ind.list[[jj]]
data_jj <- item.patt.split[ resp_jj, jj ] + 1
like_der[ resp_jj, ] <- ( pj1[ data_jj, ] - pj2[ data_jj, ] ) / (2*h) / pj0[ data_jj, ]
if (G==1){
d1a <- sum( rowSums( p.aj.xi * like_der ) * item.patt.freq )
} else {
d1a <- 0
for (gg in 1:G){
d1a <- d1a + sum( rowSums( p.aj.xi[,,gg] * like_der ) * item.patt.freq[,gg] )
}
}
#---- derivatives with respect to beta
bb <- 4
gg <- 1
beta1 <- beta
beta1[bb,gg] <- beta[bb,gg] + h
arglist1 <- arglist
arglist1$return_all <- FALSE
arglist1$beta <- beta1
loglike1 <- do.call( what=IRT_se_gdina_calc_individual_likelihood, args=arglist1 )
d1 <- ( loglike1 - loglike ) / h
beta1 <- beta
beta1[bb,gg] <- beta[bb,gg] - h
arglist1 <- arglist
arglist1$return_all <- FALSE
arglist1$beta <- beta1
loglike2 <- do.call( what=IRT_se_gdina_calc_individual_likelihood, args=arglist1 )
d1b <- ( loglike1 - loglike2 ) / (2*h)
# Revalpr("d1b")
beta1[bb,gg] <- beta[bb,gg] + h
skill_args <- list( beta=beta1, Z.skillspace=Z.skillspace, reduced.skillspace=reduced.skillspace, G=G)
attr.prob1 <- do.call( what=IRT_se_gdina_calc_skill_distribution, args=skill_args )
beta1[bb,gg] <- beta[bb,gg] - h
skill_args$beta <- beta1
attr.prob2 <- do.call( what=IRT_se_gdina_calc_skill_distribution, args=skill_args )
if (G==1){
attr_prob1 <- attr.prob1
attr_prob2 <- attr.prob2
attr_prob <- attr.prob
post <- p.aj.xi
freq <- item.patt.freq
} else {
attr_prob1 <- attr.prob1[,gg]
attr_prob2 <- attr.prob2[,gg]
attr_prob <- attr.prob[,gg]
post <- p.aj.xi[,,gg]
freq <- item.patt.freq[,gg]
}
M1 <- cdm_matrix2( ( attr_prob1 - attr_prob2 ) / (2*h) / ( attr_prob + eps ), nrow=IP)
d1a <- sum( rowSums( post * M1 ) * freq )
### This function is yet incomplete. But the remaining derivatives can be simply calculated.
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_se_gdina.R
|
## File Name: IRT_se_gdina_calc_individual_likelihood.R
## File Version: 0.19
IRT_se_gdina_calc_individual_likelihood <- function(J, L, aggr.attr.patt, Mj, delta, linkfct,
IP, item.patt.split, resp.ind.list, zeroprob.skillclasses, G, item.patt.freq,
Z.skillspace, beta, reduced.skillspace, return_all=FALSE )
{
pjM <- gdina_calc_prob( progress=FALSE, iter=100, disp="", J=J, L=L,
aggr.attr.patt=aggr.attr.patt, Mj=Mj, delta=delta, linkfct=linkfct )
p.xi.aj <- gdina_calc_individual_likelihood( IP=IP, L=L, pjM=pjM, item.patt.split=item.patt.split,
J=J, resp.ind.list=resp.ind.list, zeroprob.skillclasses=zeroprob.skillclasses )
#--- compute attribute probabilities
attr.prob <- IRT_se_gdina_calc_skill_distribution( beta=beta, Z.skillspace=Z.skillspace,
reduced.skillspace=reduced.skillspace, G=G, eps=1E-5 )
eps <- 1E-30
#--- calculate the updated likelihood
p.xi.aj[ p.xi.aj > 1 ] <- 1 - eps
p.xi.aj[ p.xi.aj < 0 ] <- eps
if (G==1){
l1 <- rowSums( p.xi.aj * cdm_matrix2( attr.prob, nrow=IP ) ) + eps
l1[ l1 < 0 ] <- eps
like_ind <- l1
loglike <- sum( log(l1) * item.patt.freq )
}
if (G>1){
like_ind <- array( 0, dim=c(IP, L, G) )
loglike <- 0
for (gg in 1:G){
l1 <- rowSums( p.xi.aj * cdm_matrix2( attr.prob[,gg], nrow=IP ) ) + eps
l1[ l1 < 0 ] <- eps
like_ind[,,gg] <- l1
loglike <- loglike + sum( log(l1) * item.patt.freq[,gg] )
}
}
#--- update posterior if requested
if (return_all){
res <- gdina_calc_individual_posterior(G=G, IP=IP, attr.prob=attr.prob, p.xi.aj=p.xi.aj, L=L,
I=0, zeroprob.skillclasses=zeroprob.skillclasses,
reduced.skillspace=reduced.skillspace, item.patt.freq=item.patt.freq)
p.aj.xi <- res$p.aj.xi
}
#--- output
res <- loglike
if (return_all){
res <- list( loglike=loglike, p.xi.aj=p.xi.aj, p.aj.xi=p.aj.xi, like_ind=like_ind )
}
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_se_gdina_calc_individual_likelihood.R
|
## File Name: IRT_se_gdina_calc_skill_distribution.R
## File Version: 0.09
IRT_se_gdina_calc_skill_distribution <- function(beta, Z.skillspace, reduced.skillspace, G, eps=1E-5 )
{
#--- adapt to multiple group case
#--- reduced skill space
if (reduced.skillspace){
L <- nrow(Z.skillspace)
if (G==1){
attr.prob <- reduced_skillspace_beta_2_probs( Z=Z.skillspace, beta=beta )
} else {
attr.prob <- matrix( NA, nrow=L, ncol=G)
for (gg in 1:G){
attr.prob[,gg] <- reduced_skillspace_beta_2_probs( Z=Z.skillspace, beta=beta[,gg] )
}
}
}
#--- no reduced skill space
if ( ! reduced.skillspace ){
bounds <- c(eps, 1E2)
if (G==1){
attr.prob <- c( beta, 1 - sum(beta) )
attr.prob <- cdm_sumnorm_squeeze(vec=attr.prob, bounds=bounds)
} else {
L <- nrow(beta) + 1
attr.prob <- matrix( NA, nrow=L, ncol=G)
for (gg in 1:G){
b1 <- beta[,gg]
b1 <- c( b1, 1 - sum(b1) )
attr.prob[,gg] <- cdm_sumnorm_squeeze(vec=b1, bounds=bounds)
}
}
}
return(attr.prob)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/IRT_se_gdina_calc_skill_distribution.R
|
## File Name: RcppExports.R
## File Version: 8.002006
# Generated by using Rcpp::compileAttributes() -> do not edit by hand
# Generator token: 10BE3573-1514-4C36-9D1C-5A225CD40393
cdm_rcpp_din_deterministic_devcrit <- function(DAT, DATRESP, LATRESP, GUESS, SLIP) {
.Call('_CDM_cdm_rcpp_din_deterministic_devcrit', PACKAGE='CDM', DAT, DATRESP, LATRESP, GUESS, SLIP)
}
cdm_rcpp_din_jml_devcrit <- function(DAT, DATRESP, LATRESP, GUESS, SLIP) {
.Call('_CDM_cdm_rcpp_din_jml_devcrit', PACKAGE='CDM', DAT, DATRESP, LATRESP, GUESS, SLIP)
}
cdm_rcpp_din_calc_prob <- function(latresp1, guess, slip, J, L) {
.Call('_CDM_cdm_rcpp_din_calc_prob', PACKAGE='CDM', latresp1, guess, slip, J, L)
}
cdm_rcpp_din_calc_counts <- function(p_aj_xi, item_patt_freq, item_patt_split1, resp_patt_bool, J, L) {
.Call('_CDM_cdm_rcpp_din_calc_counts', PACKAGE='CDM', p_aj_xi, item_patt_freq, item_patt_split1, resp_patt_bool, J, L)
}
cdm_rcpp_din_validate_aggregate_max <- function(IDI, itemindex, I) {
.Call('_CDM_cdm_rcpp_din_validate_aggregate_max', PACKAGE='CDM', IDI, itemindex, I)
}
cdm_rcpp_din_validate_update_qmatrix <- function(qmatrix_poss, attr_patt, Ilj, Rlj, I, L, K, rule) {
.Call('_CDM_cdm_rcpp_din_validate_update_qmatrix', PACKAGE='CDM', qmatrix_poss, attr_patt, Ilj, Rlj, I, L, K, rule)
}
cdm_rcpp_discrimination_index_attribute_patterns <- function(attr_patt) {
.Call('_CDM_cdm_rcpp_discrimination_index_attribute_patterns', PACKAGE='CDM', attr_patt)
}
cdm_rcpp_discrimination_index_calc <- function(comp_matrix, probs, dim_probs, K) {
.Call('_CDM_cdm_rcpp_discrimination_index_calc', PACKAGE='CDM', comp_matrix, probs, dim_probs, K)
}
cdm_rcpp_discrimination_index_test_level <- function(discrim_item_attribute) {
.Call('_CDM_cdm_rcpp_discrimination_index_test_level', PACKAGE='CDM', discrim_item_attribute)
}
cdm_rcpp_discrimination_index_idi <- function(probs, dim_probs, K) {
.Call('_CDM_cdm_rcpp_discrimination_index_idi', PACKAGE='CDM', probs, dim_probs, K)
}
cdm_rcpp_est_calc_accuracy_version2_consistency_helper <- function(post, est, max_est_index, N, prob_theta, eps) {
.Call('_CDM_cdm_rcpp_est_calc_accuracy_version2_consistency_helper', PACKAGE='CDM', post, est, max_est_index, N, prob_theta, eps)
}
cdm_rcpp_data_prep_long_format <- function(data) {
.Call('_CDM_cdm_rcpp_data_prep_long_format', PACKAGE='CDM', data)
}
cdm_rcpp_normalize_matrix_row <- function(x) {
.Call('_CDM_cdm_rcpp_normalize_matrix_row', PACKAGE='CDM', x)
}
cdm_rcpp_eval_likelihood_calc_wide_format <- function(data, irfprob, dim_irfprob, like0) {
.Call('_CDM_cdm_rcpp_eval_likelihood_calc_wide_format', PACKAGE='CDM', data, irfprob, dim_irfprob, like0)
}
cdm_rcpp_eval_likelihood_calc_long_format <- function(data_long, irfprob, dim_irfprob, like0) {
.Call('_CDM_cdm_rcpp_eval_likelihood_calc_long_format', PACKAGE='CDM', data_long, irfprob, dim_irfprob, like0)
}
cdm_rcpp_eval_likelihood <- function(data, irfprob, dim_irfprob, prior, normalization, long_format, N) {
.Call('_CDM_cdm_rcpp_eval_likelihood', PACKAGE='CDM', data, irfprob, dim_irfprob, prior, normalization, long_format, N)
}
cdm_rcpp_generalized_distance_method <- function(data, dataresp, idealresp, theta, a, b) {
.Call('_CDM_cdm_rcpp_generalized_distance_method', PACKAGE='CDM', data, dataresp, idealresp, theta, a, b)
}
cdm_rcpp_ideal_resp_pattern <- function(qmatrix, skillspace) {
.Call('_CDM_cdm_rcpp_ideal_resp_pattern', PACKAGE='CDM', qmatrix, skillspace)
}
cdm_rcpp_irt_classify_individuals <- function(like) {
.Call('_CDM_cdm_rcpp_irt_classify_individuals', PACKAGE='CDM', like)
}
cdm_rcpp_irt_predict <- function(resp, irf1, K, TP) {
.Call('_CDM_cdm_rcpp_irt_predict', PACKAGE='CDM', resp, irf1, K, TP)
}
cdm_rcpp_itemfit_sx2_calc_scoredistribution <- function(P1, Q1) {
.Call('_CDM_cdm_rcpp_itemfit_sx2_calc_scoredistribution', PACKAGE='CDM', P1, Q1)
}
cdm_rcpp_kli_id <- function(pjk, sc) {
.Call('_CDM_cdm_rcpp_kli_id', PACKAGE='CDM', pjk, sc)
}
cdm_rcpp_mcdina_probs_pcm_groups <- function(dat, dat_resp_bool, group, probs, CC, TP) {
.Call('_CDM_cdm_rcpp_mcdina_probs_pcm_groups', PACKAGE='CDM', dat, dat_resp_bool, group, probs, CC, TP)
}
cdm_rcpp_mcdina_calccounts_pcm_groups <- function(dat, dat_resp_bool, group, fyiqk, pik, CC, weights) {
.Call('_CDM_cdm_rcpp_mcdina_calccounts_pcm_groups', PACKAGE='CDM', dat, dat_resp_bool, group, fyiqk, pik, CC, weights)
}
cdm_rcpp_modelfit_cor2 <- function(posterior, data, data_resp_bool, probs1, probs0, ip, expiijj) {
.Call('_CDM_cdm_rcpp_modelfit_cor2', PACKAGE='CDM', posterior, data, data_resp_bool, probs1, probs0, ip, expiijj)
}
cdm_rcpp_modelfit_cor_counts <- function(data, data_resp_bool) {
.Call('_CDM_cdm_rcpp_modelfit_cor_counts', PACKAGE='CDM', data, data_resp_bool)
}
cdm_rcpp_sim_model_item_responses <- function(theta_index, irfprob, dim_irfprob) {
.Call('_CDM_cdm_rcpp_sim_model_item_responses', PACKAGE='CDM', theta_index, irfprob, dim_irfprob)
}
cdm_rcpp_slca_calc_probs <- function(XdesM, dimXdes, Xlambda) {
.Call('_CDM_cdm_rcpp_slca_calc_probs', PACKAGE='CDM', XdesM, dimXdes, Xlambda)
}
cdm_rcpp_slca_calc_deriv <- function(XdesM, dimXdes, Xlambda, probs, nik, Nik) {
.Call('_CDM_cdm_rcpp_slca_calc_deriv', PACKAGE='CDM', XdesM, dimXdes, Xlambda, probs, nik, Nik)
}
cdm_rcpp_slca_calc_Xdes <- function(XDES, dimXdes) {
.Call('_CDM_cdm_rcpp_slca_calc_Xdes', PACKAGE='CDM', XDES, dimXdes)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/RcppExports.R
|
## File Name: WaldTest.R
## File Version: 0.13
#################################################
# helper function Wald test
WaldTest <- function( delta, vcov, R, nobs, cvec=NULL, eps=1E-10 )
{
NR <- nrow(R)
if ( is.null(cvec) ){
cvec <- rep( 0, NR )
}
Rdii <- R %*% delta - cvec
v1 <- R %*% vcov %*% t(R)
diag(v1) <- diag(v1) * ( 1 + eps )
stat <- ( t( Rdii ) %*% solve( v1 ) %*% Rdii )[1,1]
stats <- list()
stats["X2"] <- stat
stats["df"] <- NR
stats["p"] <- stats::pchisq( stat, df=NR, lower.tail=FALSE)
l1 <- stats$X2 / stats$df - 1
l1 <- if ( l1 < 0 ){ 0 } else { sqrt(l1 / ( nobs - 1 )) }
stats["RMSEA"] <- l1
return(stats)
}
##############################################
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/WaldTest.R
|
## File Name: abs_approx.R
## File Version: 0.08
# quadratic approximation of the absolute value function
abs_approx <- function( x, eps=1E-5)
{
res <- sqrt( x^2 + eps )
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/abs_approx.R
|
## File Name: abs_approx_D1.R
## File Version: 0.04
abs_approx_D1 <- function( x, eps=1E-5){
res <- x / sqrt( x^2 + eps )
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/abs_approx_D1.R
|
## File Name: anova.din.R
## File Version: 1.14
anova.din <- IRT.anova
anova.gdina <- anova.din
anova.gdm <- anova.din
anova.mcdina <- anova.din
anova.slca <- anova.din
anova.reglca <- anova.din
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/anova.din.R
|
## File Name: array3_sum.R
## File Version: 0.01
#*** summation of the third margin in a three-dimensional array
array3_sum <- function( arr )
{
dimA <- dim(arr)
K <- dimA[ 3 ]
h1 <- arr[,,1]
if (K>=2){
for (kk in 2:K){
h1 <- h1 + arr[,,kk]
}
}
return(h1)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/array3_sum.R
|
## File Name: attach_environment.R
## File Version: 0.04
#######################################
# attach all elements in an environment
attach_environment <- function( res, envir )
{
CC <- length(res)
for (cc in 1:CC){
assign( names(res)[cc], res[[cc]], envir=envir )
}
}
.attach.environment <- attach_environment
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/attach_environment.R
|
## File Name: bivariate_table_statistics.R
## File Version: 0.06
bivariate_table_statistics <- function( freqtable, values=NULL)
{
freqtable <- expand_matrix(x=freqtable)
K <- nrow(freqtable)
if (is.null(values)){
values <- seq(0,K-1)
}
#--- first item
freq1 <- rowSums(freqtable)
res <- univar_table_statistics(freq=freq1)
M1 <- res$M
SD1 <- res$SD
K1 <- sum( freq1 > 0 )
#--- second item
freq2 <- colSums(freqtable)
res <- univar_table_statistics(freq=freq2)
M2 <- res$M
SD2 <- res$SD
K2 <- sum( freq2 > 0 )
#--- bivariate statistics
valuesM <- outer( values, values )
probs <- freqtable / sum( freqtable )
cov1 <- sum( probs * valuesM ) - M1 * M2
cor1 <- cov1 / SD1 / SD2
#--- output
res <- list( cov=cov1, cor=cor1, M1=M1, SD1=SD1, K1=K1, M2=M2, SD2=SD2, K2=K2)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/bivariate_table_statistics.R
|
## File Name: cat_paste.R
## File Version: 0.03
cat_paste <- function(...)
{
args <- list(...)
N1 <- length(args)
res <- args[[1]]
if (N1 > 1){
for (nn in 2:N1){
res <- paste0( res, args[[nn]] )
}
}
cat(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cat_paste.R
|
## File Name: cdi.kli.R
## File Version: 0.181
#--- cognitive diagnostic indices
cdi.kli <- function( object )
{
# object must be of class din or gdina
if ( ! inherits(object, c("din","gdina") ) ){
stop("This functions only supports objects of class din or gdina!")
}
items <- colnames( object$data )
q.matrix <- object$q.matrix
pjk0 <- pjk <- object$pjk # [ items, categories, skills ]
skillclasses <- as.matrix( object$attribute.patt.splitted )
#-- rearrange probabilities
pjk <- aperm( pjk, c(1,3,2) )
dpjk <- dim(pjk)
pjk <- matrix( pjk, nrow=dpjk[1], ncol=dpjk[2]*dpjk[3] )
eps <- 1E-7 # prevent division by zero
pjk <- ( pjk + eps ) / ( 1 + 2*eps )
#-- apply Rcpp function for calculation
res0 <- cdm_rcpp_kli_id( pjk=pjk, sc=skillclasses )
#-- arrange Kullback Leibler information
kli <- array( res0$kli, dim=c( res0$TP, res0$TP, res0$I ) )
kli <- aperm( kli, c(3,1,2) )
# arrange output
res <- list( test_disc=sum(res0$glob_item), attr_disc=colSums(res0$attr_item),
glob_item_disc=res0$glob_item, attr_item_disc=res0$attr_item,
KLI=kli, skillclasses=res0$skillclasses, hdist=res0$hdist, pjk=pjk0,
q.matrix=q.matrix )
# complete summary in a table
dfr <- cbind( res0$glob_item, res0$attr_item )
l1 <- c( sum(res0$glob_item), colSums( res0$attr_item ) )
dfr <- rbind( l1, dfr )
rownames(dfr) <- NULL
colnames(dfr) <- c( "cdi_test", paste0( "cdi_skill", 1:( ncol(dfr) -1 ) ) )
dfr <- data.frame( "item"=c("test", items ), dfr )
# names
names(res$attr_disc) <- colnames(res$attr_item_disc) <- colnames(q.matrix)
dimnames(res$KLI)[[1]] <- items
names(res$glob_item_disc) <- rownames(res$attr_item_disc) <- items
res$summary <- dfr
class(res) <- "cdi.kli"
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdi.kli.R
|
## File Name: cdm.est.calc.accuracy.R
## File Version: 2.52
#**** CDM classification accuracy
cdm.est.class.accuracy <- function( cdmobj, n.sims=0, version=2 )
{
CALL <- match.call()
#*** version 1
if (version==1){
dfr <- cdm_est_calc_accuracy_version1(cdmobj=cdmobj, n.sims=n.sims)
res <- list( statistics=dfr, version=version)
cdm_est_calc_accuracy_version1_print(object=res)
}
#*** version 2
if (version==2){
dfr <- cdm_est_calc_accuracy_version2( cdmobj=cdmobj, n.sims=n.sims )
res <- list( statistics=dfr, version=version)
cdm_est_calc_accuracy_version1_print(object=res)
}
#--- output
res$CALL <- CALL
class(res) <- "cdm.est.class.accuracy"
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm.est.calc.accuracy.R
|
## File Name: cdm_add_ridge_diagonal.R
## File Version: 0.03
cdm_add_ridge_diagonal <- function(x, eps=1E-10 )
{
D <- ncol(x)
rx <- x + diag( eps, D )
return(rx)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_add_ridge_diagonal.R
|
## File Name: cdm_attach_exported_function.R
## File Version: 0.01
cdm_attach_exported_function <- function(pack, fun)
{
CDM_require_namespace(pkg=pack)
fn <- paste0(pack, paste0(rep(":",2), collapse=""), fun)
fn <- eval(parse(text=fn))
return(fn)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_attach_exported_function.R
|
## File Name: cdm_attach_internal_function.R
## File Version: 0.03
cdm_attach_internal_function <- function(pack, fun)
{
CDM_require_namespace(pkg=pack)
fn <- paste0(pack, paste0(rep(":",3), collapse=""), fun)
fn <- eval(parse(text=fn))
return(fn)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_attach_internal_function.R
|
## File Name: cdm_calc_increment.R
## File Version: 0.142
cdm_calc_increment <- function( d1, d2, max.increment, eps=1E-10, adj_fac=.98, type=1 )
{
increment <- d1 / ( abs( d2 + eps ) )
increment[ is.na(increment) ] <- 0
#--- vector increment
if (is.vector(increment) ){
increment <- cdm_trim_increment( increment=increment, max.increment=max.increment,
type=type )
}
#--- matrix increment
if (is.matrix(increment) ){
K <- ncol(increment)
for (kk in 1:K){
increment[,kk] <- cdm_trim_increment( increment=increment[,kk],
max.increment=max.increment, type=type)
}
}
#--- adjust maximum increment
max.increment <- max(abs(increment)) / adj_fac
#--- output
res <- list(increment=increment, max.increment=max.increment)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_calc_increment.R
|
## File Name: cdm_calc_increment_regularization.R
## File Version: 0.363
cdm_calc_increment_regularization <- function( d1, d2, x0, regular_lam_used,
max.increment, regular_type, regular_n=1, eps=1E-10, adj_fac=.98)
{
d2a <- ( abs(d2) + eps )
val <- x0 + d1 / d2a
vt <- d2a
val1 <- vt*val
regular_lam_used <- regular_n * regular_lam_used
updated <- cdm_parameter_regularization(x=val1, regular_type=regular_type,
regular_lam=regular_lam_used)
updated <- updated / vt
increment <- updated - x0
max.increment <- 3
increment <- cdm_trim_increment( increment=increment, max.increment=max.increment )
updated <- x0 + increment
#- compute indicator for regularized estimate
parm_regularized <- ( regular_lam_used > 0 ) & ( abs(updated) < eps )
numb_regularized <- sum(parm_regularized)
max.increment <- max(abs(increment)) / adj_fac
#--- output
res <- list( increment=increment, updated=updated, max.increment=max.increment,
parm_regularized=parm_regularized, numb_regularized=numb_regularized)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_calc_increment_regularization.R
|
## File Name: cdm_calc_information_criteria.R
## File Version: 0.03
cdm_calc_information_criteria <- function(ic)
{
dev <- ic$deviance
# AIC
ic$AIC <- dev + 2*ic$np
# BIC
ic$BIC <- dev + ( log(ic$n) )*ic$np
# CAIC (conistent AIC)
ic$CAIC <- dev + ( log(ic$n) + 1 )*ic$np
# corrected AIC
ic$AICc <- ic$AIC + 2*ic$np * ( ic$np + 1 ) / ( ic$n - ic$np - 1 )
#--- output
return(ic)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_calc_information_criteria.R
|
## File Name: cdm_calc_ll_with_counts.R
## File Version: 0.03
cdm_calc_ll_with_counts <- function( an.ik, pjk, eps=1E-20 )
{
colSums( colSums( an.ik * log(pjk+eps) ))
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_calc_ll_with_counts.R
|
## File Name: cdm_calc_posterior.R
## File Version: 1.175
#--- compute posterior distribution
cdm_calc_posterior <- function(rprobs, gwt, resp, nitems,
resp.ind.list, normalization=TRUE,
thetasamp.density=NULL, snodes=0 )
{
if ( snodes==0 ){
fx <- gwt
} else {
# calculate individual 'sampling weight'
swt <- fx <- gwt / outer( rep(1, nrow(gwt)), thetasamp.density )
}
nstud <- nrow(fx)
# using C Code
storage.mode(resp) <- "integer"
fx <- .Call( '_CDM_calcfx', PACKAGE='CDM', fx, rprobs, resp.ind.list, resp)
# numerical integration
if ( snodes==0 ){
rfx <- rowSums(fx)
if (normalization ){
hwt <- fx / rfx
} else {
hwt <- fx
}
}
# Monte Carlo integration
if ( snodes > 0 ){
rfx <- rowMeans(fx)
if (normalization ){
hwt <- fx / rfx
} else {
hwt <- fx
}
}
res <- list("hwt"=hwt, "rfx"=rfx )
if ( snodes > 0 ){
res[["swt" ]] <- swt
}
return(res)
}
#..........................................................
calc_posterior.v2 <- cdm_calc_posterior
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_calc_posterior.R
|
## File Name: cdm_create_vector.R
## File Version: 0.01
cdm_create_vector <- function(names, val)
{
N <- length(names)
y <- rep(val, N)
names(y) <- names
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_create_vector.R
|
## File Name: cdm_est_calc_accuracy_version1.R
## File Version: 0.045
cdm_est_calc_accuracy_version1 <- function( cdmobj, n.sims=0 )
{
# original data
data <- cdmobj$data
# likelihood
p.xi.aj <- cdmobj$like
# class probabilities
class.prob <- cdmobj$attribute.patt$class.prob
# MLE (orginal data)
c1 <- cdm_est_calc_accuracy_version1_computation( p.xi.aj=p.xi.aj,
est.class=cdmobj$pattern$mle.est,
class.prob=class.prob)
# MAP (original data)
c2 <- cdm_est_calc_accuracy_version1_computation( p.xi.aj=p.xi.aj,
est.class=cdmobj$pattern$map.est,
class.prob=class.prob)
dfr <- rbind( c1, c2 )
rownames(dfr) <- c("MLE", "MAP" )
if ( inherits(cdmobj,"gdina") ){
n.sims <- 0
}
#--- simulated classification
if ( sum(is.na(data) ) > 0 & ( n.sims > 0 ) ){
n.sims <- nrow(data)
}
if ( n.sims > 0 ){
I <- ncol(data)
# splitted attribute pattern
attr.splitted <- cdmobj$attribute.patt.splitted
# attribute classes
ac <- cdmobj$attribute.patt
rownames(attr.splitted) <- rownames(ac)
class.prob <- ac$class.prob
CC <- nrow(ac)
# sample patterns
classes.sim <- sample( 1:CC, prob=class.prob, size=n.sims, replace=TRUE)
alpha.sim <- attr.splitted[ classes.sim,,drop=FALSE]
# simulate according to the din model
guess0 <- cdmobj$guess[,1]
slip0 <- cdmobj$slip[,1]
# simulated data (first data set)
simdata1 <- sim.din(N=n.sims, q.matrix=cdmobj$q.matrix,
guess=guess0, slip=slip0, rule=cdmobj$rule,alpha=alpha.sim)
# simulated data (second data set)
simdata2 <- sim.din(N=n.sims, q.matrix=cdmobj$q.matrix,
guess=guess0, slip=slip0, rule=cdmobj$rule,alpha=alpha.sim)
# handle missings
d1 <- simdata1$dat
if ( sum( is.na( data) ) > 0 ){ d1[ is.na(data) ] <- NA }
simdata1$dat <- d1
d1 <- simdata2$dat
if ( sum( is.na( data) ) > 0 ){ d1[ is.na(data) ] <- NA }
simdata2$dat <- d1
# classification of students according
# fixed item parameters
# I <- length(guess0)
mod1 <- din( simdata1$dat, q.matrix=cdmobj$q.matrix,
constraint.guess=cbind(1:I, guess0),
constraint.slip=cbind(1:I, slip0 ),
rule=cdmobj$rule, progress=FALSE, skillclasses=attr.splitted,
zeroprob.skillclasses=cdmobj$zeroprob.skillclasses )
mod2 <- din( simdata2$dat, q.matrix=cdmobj$q.matrix,
constraint.guess=cbind(1:I, guess0),
constraint.slip=cbind(1:I, slip0 ),
rule=cdmobj$rule, progress=FALSE, skillclasses=attr.splitted,
zeroprob.skillclasses=cdmobj$zeroprob.skillclasses)
# compare MLE estimates
dfr1 <- data.frame( "true"=paste( rownames(alpha.sim) ) )
dfr1$mle.simdata1 <- paste( mod1$pattern$mle.est )
dfr1$mle.simdata2 <- paste( mod2$pattern$mle.est )
# classification consistency
dfr11 <- data.frame( "P_c_sim"=mean( dfr1[,2]==dfr1[,3] ) )
dfr11$P_a_sim <- mean( dfr1[,1]==dfr1[,3] )
# compare MAP estimates
dfr1 <- data.frame( "true"=paste( rownames(alpha.sim) ) )
dfr1$mle.simdata1 <- paste( mod1$pattern$map.est )
dfr1$mle.simdata2 <- paste( mod2$pattern$map.est )
dfr12 <- data.frame( "P_c_sim"=mean( dfr1[,2]==dfr1[,3] ) )
# accuracy
dfr12$P_a_sim <- mean( dfr1[,1]==dfr1[,3] )
dfr11 <- rbind( dfr11, dfr12 )
rownames(dfr11) <- c( "MLE", "MAP" )
dfr <- cbind( dfr, dfr11 )
}
#********************************************
# marginal classification
# likelihood
p.xi.aj <- cdmobj$like
# splitted attribute pattern
attribute.patt.splitted <- cdmobj$attribute.patt.splitted
# number of skills
K <- ncol( attribute.patt.splitted )
dfr10 <- NULL
for (kk in 1:K){
# compute marginal likelihood distribution
ind.kk0 <- which( attribute.patt.splitted[, kk ]==0 )
ind.kk1 <- which( attribute.patt.splitted[, kk ]==1 )
# marginal likelihood
pxiaj_kk <- cbind( rowSums( p.xi.aj[, ind.kk0 ] ), rowSums( p.xi.aj[, ind.kk1 ]))
colnames(pxiaj_kk) <- c("0", "1" )
patt1 <- 1 * ( cdmobj$pattern[, paste0( "post.attr", kk ) ] > .5 )
c1 <- cdmobj$skill.patt[kk,1]
class.prob.kk <- c( 1-c1, c1 )
c2 <- cdm_est_calc_accuracy_version1_computation( p.xi.aj=pxiaj_kk,
est.class=patt1, class.prob=class.prob.kk)
dfr10 <- rbind( dfr10, c2 )
}
rownames(dfr10) <- paste0( "MAP_Skill", 1:K)
if (n.sims>0){ dfr10 <- cbind( dfr10, NA, NA ) }
colnames(dfr10) <- colnames(dfr)
dfr <- rbind( dfr, dfr10 )
dfr <- dfr[, order( paste(colnames(dfr))) ]
return(dfr)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_est_calc_accuracy_version1.R
|
## File Name: cdm_est_calc_accuracy_version1_computation.R
## File Version: 0.03
#**** estimate classification accuracy and consistency
cdm_est_calc_accuracy_version1_computation <- function( p.xi.aj, est.class, class.prob )
{
m0 <- matrix( colSums(p.xi.aj), nrow=nrow(p.xi.aj), ncol=ncol(p.xi.aj), byrow=TRUE)
p.xi.aj <- p.xi.aj / m0
# calculate class index
est.class.index <- match( paste(est.class), colnames(p.xi.aj ) )
# calculate formula (5)
CC <- ncol( p.xi.aj )
# classification probability matrix
class.prob.matrix2 <- class.prob.matrix1 <- matrix( NA, CC, CC )
for (aa in 1:CC){
for (cc in 1:CC){
class.prob.matrix1[cc,aa] <- sum( p.xi.aj[ est.class.index==cc, aa ] )^2
class.prob.matrix2[cc,aa] <- sum( p.xi.aj[ est.class.index==cc, aa ] )
}
}
# classification consistency
P_c <- sum( colSums( class.prob.matrix1 ) * class.prob )
# marginal classification accuracy
P_a <- sum( diag( class.prob.matrix2 ) * class.prob )
#**** calculate kappa
M1 <- class.prob.matrix1
p1 <- rowSums(M1)
p2 <- colSums(M1)
h1 <- outer( p1, p2 )
#--- output
res <- data.frame( P_c=P_c, P_a=P_a )
return(res)
}
.est.class.accuracy <- cdm_est_calc_accuracy_version1_computation
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_est_calc_accuracy_version1_computation.R
|
## File Name: cdm_est_calc_accuracy_version1_print.R
## File Version: 0.01
cdm_est_calc_accuracy_version1_print <- function( object, digits=3 )
{
print( object$statistics, digits=digits )
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_est_calc_accuracy_version1_print.R
|
## File Name: cdm_est_calc_accuracy_version2.R
## File Version: 0.153
cdm_est_calc_accuracy_version2 <- function( cdmobj, n.sims=0 )
{
#*** simulation based measures
irfprob <- IRT.irfprob(cdmobj)
theta <- attr(irfprob, "theta")
TP <- nrow(theta)
prob_theta <- attr(irfprob, "prob.theta")
prob_theta <- cdm_shrink_positive(x=prob_theta)
prior <- prob_theta
data <- IRT.data(cdmobj)
N <- nrow(data)
if (n.sims==0){
n.sims <- N
}
sizes <- round( n.sims*prob_theta )
theta_index <- rep(1:TP, sizes)
K <- ncol(theta) # number of skills
skill_names <- colnames(theta)
if (is.null(skill_names)){
skill_names <- paste0("skill",1:K)
}
statistics_names <- c( "MLE_patt", "MAP_patt", paste0("MLE_", skill_names),
paste0("MAP_", skill_names) )
#-- simulate item responses
dat1 <- sim_model(object=NULL, irfprob=irfprob, theta_index=theta_index, data=data,
N_sim=n.sims )$dat
dat2 <- sim_model(object=NULL, irfprob=irfprob, theta_index=theta_index, data=data,
N_sim=n.sims )$dat
#-- compute classifications based on simulated data
class1 <- cdm_est_calc_accuracy_version2_classify_simulated_data( data=dat1,
irfprob=irfprob, prior=prior)
class2 <- cdm_est_calc_accuracy_version2_classify_simulated_data( data=dat2,
irfprob=irfprob, prior=prior)
#-- compute accuracy and consistency
dfr <- as.data.frame( matrix( 0, nrow=2*(1+K), ncol=4 ) )
colnames(dfr) <- c("Pa_est", "Pa_sim", "Pc_est", "Pc_sim")
rownames(dfr) <- statistics_names
estimators <- c("MLE", "MAP")
#-- multivariate pattern
for (pp in estimators ){
dfr[ paste0(pp, "_patt"), "Pa_sim" ] <- ( mean( theta_index==class1[[pp]] ) +
mean( theta_index==class2[[pp]] ) ) / 2
dfr[ paste0(pp, "_patt"), "Pc_sim" ] <- mean( class1[[pp]]==class2[[pp]] )
}
#-- single skills
for (kk in 1:K){
for (pp in estimators){
theta_index_kk <- theta[ theta_index, kk]
est1_kk <- theta[ class1[[pp]], kk]
est2_kk <- theta[ class2[[pp]], kk]
dfr[ paste0(pp, "_", skill_names[kk] ), "Pa_sim" ] <-
( mean( theta_index_kk==est1_kk ) +
mean( theta_index_kk==est2_kk ) ) / 2
dfr[ paste0(pp, "_", skill_names[kk] ), "Pc_sim" ] <- mean( est1_kk==est2_kk )
}
}
#**** estimated statistics
like <- IRT.likelihood(cdmobj)
post <- IRT.posterior(cdmobj)
eps <- 1E-7
for (pp in estimators){
if (pp=="MLE"){ matr <- like } else { matr <- post }
est <- cdm_rcpp_irt_classify_individuals(like=as.matrix(matr))$class_index
index <- cbind(1:N, est)
#*** accuracy
dfr[ paste0(pp, "_patt"), "Pa_est" ] <- sum( post[ index ] ) / N
theta_est <- theta[ est, ]
for (kk in 1:K){
post0 <- sum( post[, theta[,kk]==0 ] * ( theta_est[, kk ]==0 ) ) / N
post1 <- sum( post[, theta[,kk]==1 ] * ( theta_est[, kk ]==1 ) ) / N
dfr[ paste0(pp, "_", skill_names[kk] ), "Pa_est" ] <- post0 + post1
}
#*** consistency
val <- cdm_rcpp_est_calc_accuracy_version2_consistency_helper( post=post,
est=est-1, max_est_index=TP, N=N, prob_theta=prob_theta, eps=eps )
dfr[ paste0(pp, "_patt"), "Pc_est" ] <- val
for (kk in 1:K){
est_kk <- theta[ est, kk]
val <- cdm_rcpp_est_calc_accuracy_version2_consistency_helper( post=post,
est=est_kk, max_est_index=2, N=N, prob_theta=prob_theta, eps=eps )
dfr[ paste0(pp, "_", skill_names[kk] ), "Pc_est" ] <- val
}
}
#--- output
return(dfr)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_est_calc_accuracy_version2.R
|
## File Name: cdm_est_calc_accuracy_version2_classify_simulated_data.R
## File Version: 0.04
cdm_est_calc_accuracy_version2_classify_simulated_data <- function( data, irfprob, prior)
{
like <- eval_likelihood(data=data, irfprob=irfprob, prior=NULL, normalization=FALSE)
res_like <- cdm_rcpp_irt_classify_individuals(like=like)
post <- eval_likelihood(data=data, irfprob=irfprob, prior=prior, normalization=TRUE)
res_post <- cdm_rcpp_irt_classify_individuals(like=post)
#--- output
res <- list( like=like, MLE=res_like$class_index, post=post, MAP=res_post$class_index)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_est_calc_accuracy_version2_classify_simulated_data.R
|
## File Name: cdm_fa1.R
## File Version: 0.08
#--- function for unidimensional factor analysis
cdm_fa1 <- function(Sigma, method=1, maxit=50, conv=1E-5)
{
# Sigma is a correlation matrix
I <- ncol(Sigma)
L <- matrix(.6, nrow=I, ncol=1)
iter <- 0
iterate <- TRUE
#--- begin iterations
while (iterate){
L0 <- L
#--- method=1 -> different item loadings
if (method==1){
for (ll in 1:I){
y <- Sigma[ll,-ll]
x <- L[-ll,1]
L[ll,1] <- sum(x*y) / sum(x^2)
}
}
#--- method=2 -> equal item loadings
if (method==2){
val <- ( sum(Sigma) - I ) / ( I^2 - I )
L <- matrix( sqrt(val), nrow=I, ncol=1)
}
iter <- iter + 1
parchange <- max( abs(L0 - L))
if (iter >=maxit){ iterate <- FALSE }
if (parchange < conv){ iterate <- FALSE }
}
#--- output
res <- list(iter=iter, L=L, parchange=parchange)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_fa1.R
|
## File Name: cdm_fisherz.R
## File Version: 0.04
## copy from psych::fisherz
cdm_fisherz <- function(rho)
{
0.5 * log((1 + rho)/(1 - rho))
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_fisherz.R
|
## File Name: cdm_fit_normal.R
## File Version: 0.051
cdm_fit_normal <- function(x, w)
{
theta.k <- x
if ( is.vector(theta.k) ){
theta.k <- matrix( theta.k, ncol=1 )
}
D <- ncol(theta.k)
#---- unidimensional model
if (D==1){
mg <- sum( theta.k[,1] * w )
sdg <- sum( theta.k[,1]^2 * w ) - mg^2
}
#---- multidimensional model
if (D>1){
mean.gg <- rep(0,D)
Sigma.gg <- diag(0,D)
for (dd in 1:D){
mean.gg[dd] <- sum( w * theta.k[,dd] )
}
for (dd1 in 1:D){
for (dd2 in dd1:D){
Sigma.gg[dd1,dd2] <- sum( w * (theta.k[,dd1] - mean.gg[dd1] )*
(theta.k[,dd2] - mean.gg[dd2] ) )
Sigma.gg[dd2,dd1] <- Sigma.gg[dd1,dd2]
}
}
mg <- mean.gg
sdg <- Sigma.gg
}
#---- output
res <- list( Mu=mg, Sigma=sdg)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_fit_normal.R
|
## File Name: cdm_gini.R
## File Version: 0.03
# Gini coefficient, function simply copied from the R ineq package
cdm_gini <- function(x)
{
n <- length(x)
x <- sort(x)
G <- sum(x * 1:n)
G <- 2 * G/(n * sum(x))
G - 1 - (1/n)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_gini.R
|
## File Name: cdm_ginv.R
## File Version: 0.02
cdm_ginv <- function(x,...)
{
CDM_require_namespace("MASS")
y <- MASS::ginv(X=x)
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_ginv.R
|
## File Name: cdm_include_fixed_parameters.R
## File Version: 0.04
cdm_include_fixed_parameters <- function( parm, se_parm, parm_fixed )
{
#--- vector of parameters
if ( is.vector(parm) ){
if ( ! is.null( parm_fixed ) ){
parm[ parm_fixed[,1] ] <- parm_fixed[,2]
se_parm[ parm_fixed[,1] ] <- 0
}
}
#--- matrix of parameters
if ( is.matrix(parm) ){
if ( ! is.null( parm_fixed ) ){
parm[ parm_fixed[,1:2,drop=FALSE] ] <- parm_fixed[,3,drop=FALSE]
se_parm[ parm_fixed[,1:2,drop=FALSE] ] <- 0
}
}
#-------------------------------------
#--- output
res <- list( parm=parm, se_parm=se_parm)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_include_fixed_parameters.R
|
## File Name: cdm_increment_trimming_after_mstep.R
## File Version: 0.072
cdm_increment_trimming_after_mstep <- function( parm, parm0, max.increment0, type )
{
c1 <- cdm_trim_increment( increment=parm-parm0, max.increment=max.increment0,
type=2 )
parm <- parm0 + c1
max.increment0 <- min( max.increment0, max(abs(parm - parm0)) )
#--- output
res <- list( parm=parm, max.increment0=max.increment0)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_increment_trimming_after_mstep.R
|
## File Name: cdm_ll_numerical_differentiation.R
## File Version: 0.04
cdm_ll_numerical_differentiation <- function(ll0, ll1, ll2, h)
{
d1 <- ( ll1 - ll2 ) / ( 2 * h ) # negative sign?
# second order derivative
# f(x+h)+f(x-h)=2*f(x) + f''(x)*h^2
d2 <- ( ll1 + ll2 - 2*ll0 ) / h^2
#--- output
res <- list( d1=d1, d2=d2)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_ll_numerical_differentiation.R
|
## File Name: cdm_log.R
## File Version: 0.04
cdm_log <- function(x, eps)
{
x <- ifelse(x < eps, eps, x)
y <- log(x)
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_log.R
|
## File Name: cdm_matrix1.R
## File Version: 0.02
cdm_matrix1 <- function( x, ncol )
{
x <- as.vector(x)
y <- matrix( x, nrow=length(x), ncol=ncol, byrow=FALSE )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_matrix1.R
|
## File Name: cdm_matrix2.R
## File Version: 0.03
cdm_matrix2 <- function( x, nrow )
{
x <- as.vector(x)
y <- matrix( x, nrow=nrow, ncol=length(x), byrow=TRUE )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_matrix2.R
|
## File Name: cdm_matrixstring.R
## File Version: 0.01
############################################################
# calculates a string pattern consisting of matrix entries
# matr <- skillclasses
# string <- "Q"
cdm_matrixstring <- function( matr, string )
{
VV <- ncol(matr)
l1 <- string
for ( vv in 1:VV){
l1 <- paste0( l1, matr[,vv] )
}
return(l1)
}
#################################################################
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_matrixstring.R
|
## File Name: cdm_parameter_regularization.R
## File Version: 0.213
cdm_parameter_regularization <- function(x, regular_type, regular_lam,
regular_alpha=NULL, regular_tau=NULL)
{
y <- x
#--- scad
if ( regular_type=="scad"){
y <- cdm_penalty_threshold_scad( beta=x, lambda=regular_lam)
}
#--- lasso
if ( regular_type=="lasso"){
y <- cdm_penalty_threshold_lasso( val=x, eta=regular_lam )
}
#--- ridge
if ( regular_type=="ridge"){
y <- cdm_penalty_threshold_ridge( beta=x, lambda=regular_lam )
}
#--- elastic net
if ( regular_type=="elnet"){
y <- cdm_penalty_threshold_elnet( beta=x, lambda=regular_lam,
alpha=regular_alpha )
}
#--- scadL2
if ( regular_type=="scadL2"){
y <- cdm_penalty_threshold_scadL2( beta=x, lambda=regular_lam,
alpha=regular_alpha)
}
#--- tlp
if ( regular_type=="tlp"){
y <- cdm_penalty_threshold_tlp( beta=x, lambda=regular_lam, tau=regular_tau)
}
#--- mcp
if ( regular_type=="mcp"){
y <- cdm_penalty_threshold_mcp( beta=x, lambda=regular_lam)
}
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_parameter_regularization.R
|
## File Name: cdm_pem_acceleration.R
## File Version: 0.132
cdm_pem_acceleration <- function( iter, pem_parameter_index, pem_parameter_sequence,
pem_pars, PEM_itermax, parmlist, ll_fct, ll_args, deviance.history=NULL )
{
res0 <- ll <- NULL
PEM <- TRUE
#-- transform into a vector
pem_parm <- cdm_pem_collect_parameters( parmlist=parmlist,
pem_parameter_index=pem_parameter_index )
#-- collect parameters in initial iterations
pem_parameter_sequence <- cdm_pem_parameter_sequence_initial_iterations(
pem_parm=pem_parm,
pem_parameter_sequence=pem_parameter_sequence,
iter=iter )
pem_update <- FALSE
if ( ( iter %% 2==0 ) & ( iter > 0 ) & ( iter < PEM_itermax ) ){
pem_update <- TRUE
pem_parameter_sequence$P2 <- pem_parm
#** baseline likelihood
ll_args <- cdm_pem_include_ll_args( ll_args=ll_args,
pem_parm=pem_parm, pem_pars=pem_pars,
pem_parameter_index=pem_parameter_index )
res0 <- res <- do.call( what=ll_fct, args=ll_args )
ll0 <- ll <- res$ll
P0 <- pem_parameter_sequence$P0
P1 <- pem_parameter_sequence$P1
P2 <- pem_parameter_sequence$P2
iterate <- TRUE
ii <- 0
#--- begin PEM iterations
while (iterate){
ll_args0 <- ll_args
res0 <- res
ll0 <- ll
tt <- cdm_pem_algorithm_compute_t( i=ii )
Pnew <- cdm_pem_algorithm_compute_Pnew( tt=tt, P0=P0, P1=P1, P2=P2 )
ll_args <- cdm_pem_include_ll_args( ll_args=ll_args, pem_parm=Pnew,
pem_pars=pem_pars, pem_parameter_index=pem_parameter_index )
res <- do.call( what=ll_fct, args=ll_args )
ll <- res$ll
if ( is.na(ll) ){
ll <- -Inf
}
if ( ll < ll0 ){
iterate <- FALSE
}
ii <- ii + 1
}
#--- end PEM iterations
ll <- res0$ll
pem_parameter_sequence$P0 <- P1
pem_parameter_sequence$P1 <- P2
}
if (iter > PEM_itermax){
PEM <- FALSE
}
if ( ! is.null( deviance.history) ){
diff_history <- diff( deviance.history[ 1:iter ] )
NL0 <- 15
NL <- min( NL0, iter ) # number of lags
if ( iter > NL0 ){
diff2 <- diff_history[ seq( iter - 1, iter - NL, -1 ) ]
PEM <- ! ( sum( ( diff2 < 0 ) ) > ( .35 * NL0 ) )
}
}
#--- output
res <- list(ll=ll, pem_parameter_sequence=pem_parameter_sequence, PEM=PEM,
res_ll_fct=res0, pem_update=pem_update )
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_acceleration.R
|
## File Name: cdm_pem_acceleration_assign_output_parameters.R
## File Version: 0.03
cdm_pem_acceleration_assign_output_parameters <- function(res_ll_fct, vars, envir, update)
{
if (update){
for (vv in vars){
assign( vv, res_ll_fct[[ vv ]], envir=envir )
}
}
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_acceleration_assign_output_parameters.R
|
## File Name: cdm_pem_adjust_dimension.R
## File Version: 0.04
cdm_pem_adjust_dimension <- function(x, x_dim )
{
if ( length(x_dim)==2 ){
x <- matrix(x, nrow=x_dim[1], ncol=x_dim[2] )
}
if ( length(x_dim) >=3){
x <- array(x, dim=x_dim )
}
return(x)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_adjust_dimension.R
|
## File Name: cdm_pem_algorithm_compute_Pnew.R
## File Version: 0.01
cdm_pem_algorithm_compute_Pnew <- function( tt, P0, P1, P2)
{
Pnew <- (1-tt)^2 * P0 + 2*tt*(1-tt)*P1 + tt^2 * P2
return(Pnew)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_algorithm_compute_Pnew.R
|
## File Name: cdm_pem_algorithm_compute_t.R
## File Version: 0.01
cdm_pem_algorithm_compute_t <- function( i, a=1.5, h=0.1)
{
return( 1 + a^i * h )
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_algorithm_compute_t.R
|
## File Name: cdm_pem_collect_parameters.R
## File Version: 0.03
cdm_pem_collect_parameters <- function( parmlist, pem_parameter_index )
{
NV <- pem_parameter_index[["__length_parameter_vector"]]
parm <- rep(0, NV)
NP <- pem_parameter_index[["__n_parameters"]]
NPL <- length(parmlist)
for (pp in 1:NPL){
var_pp <- names(parmlist)[pp]
parm_index_pp <- pem_parameter_index[[ var_pp ]]
x <- as.vector(parmlist[[pp]])
parm[ parm_index_pp$index ] <- x
}
return(parm)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_collect_parameters.R
|
## File Name: cdm_pem_create_parameter_index.R
## File Version: 0.07
cdm_pem_create_parameter_index <- function( parmlist )
{
NP <- length(parmlist)
parm_index <- list()
parmlist_names <- names(parmlist)
parm_index_names <- rep("", NP)
last_index <- 0
for (pp in 1:NP){
x <- parmlist[[pp]]
x_pp <- list()
parm_index_names[pp] <- parmlist_names[pp]
x_dim <- cdm_pem_extract_dimension(x=x)
NX <- prod(x_dim)
x_index <- last_index + seq( 1, NX )
x_pp$index <- x_index
last_index <- max(x_index)
x_pp$dim <- x_dim
parm_index[[pp]] <- x_pp
}
names(parm_index) <- parm_index_names
#-- more meta-information about parameters
parm_index[["__n_parameters"]] <- NP
parm_index[["__length_parameter_vector"]] <- last_index
return(parm_index)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_create_parameter_index.R
|
## File Name: cdm_pem_extract_dimension.R
## File Version: 0.01
cdm_pem_extract_dimension <- function(x)
{
x_dim <- NULL
if ( is.vector(x) ){
x_dim <- length(x)
}
if ( is.matrix(x) | is.array(x) | is.data.frame(x) ){
x_dim <- dim(x)
}
return(x_dim)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_extract_dimension.R
|
## File Name: cdm_pem_extract_parameters.R
## File Version: 0.01
cdm_pem_extract_parameters <- function( parm, parmgroup, pem_parameter_index )
{
info <- pem_parameter_index[[ parmgroup ]]
x_dim <- info$dim
x <- parm[ info$index ]
x <- cdm_pem_adjust_dimension(x=x, x_dim=x_dim )
return(x)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_extract_parameters.R
|
## File Name: cdm_pem_include_ll_args.R
## File Version: 0.032
cdm_pem_include_ll_args <- function(ll_args, pem_parm, pem_pars, pem_parameter_index)
{
for (pp in pem_pars){
ll_args[[ pp ]] <- cdm_pem_extract_parameters( parm=pem_parm, parmgroup=pp,
pem_parameter_index=pem_parameter_index )
}
return(ll_args)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_include_ll_args.R
|
## File Name: cdm_pem_inits.R
## File Version: 0.05
cdm_pem_inits <- function( parmlist )
{
pem_parameter_index <- cdm_pem_create_parameter_index( parmlist=parmlist )
pem_parameter_sequence <- list()
#--- output
res <- list(pem_parameter_index=pem_parameter_index,
pem_parameter_sequence=pem_parameter_sequence )
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_inits.R
|
## File Name: cdm_pem_inits_assign_parmlist.R
## File Version: 0.02
cdm_pem_inits_assign_parmlist <- function(pem_pars, envir)
{
parmlist <- list()
NP <- length(pem_pars)
for (pp in 1:NP){
p1 <- get( pem_pars[pp], pos=envir )
parmlist[[ pp ]] <- p1
}
names(parmlist) <- pem_pars
return(parmlist)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_inits_assign_parmlist.R
|
## File Name: cdm_pem_parameter_sequence_initial_iterations.R
## File Version: 0.04
cdm_pem_parameter_sequence_initial_iterations <- function( pem_parm,
pem_parameter_sequence, iter )
{
if (iter < 3){
for (ii in 0:2){
if (iter==ii){
pem_parameter_sequence[[ paste0("P",ii) ]] <- pem_parm
}
}
}
return(pem_parameter_sequence)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_pem_parameter_sequence_initial_iterations.R
|
## File Name: cdm_penalty_threshold_elnet.R
## File Version: 0.05
cdm_penalty_threshold_elnet <- function( beta, lambda, alpha )
{
lam1 <- lambda * alpha
lam2 <- lambda * ( 1 - alpha )
res <- cdm_soft_threshold( val=beta, eta=lam1 )
res <- res / ( 1 + 2*lam2 )
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_threshold_elnet.R
|
## File Name: cdm_penalty_threshold_lasso.R
## File Version: 0.05
cdm_penalty_threshold_lasso <- function( val, eta )
{
res <- val
res <- ifelse( abs(val) < eta, 0, res )
res <- ifelse( val > eta, val - eta, res )
res <- ifelse( val < - eta, val + eta, res )
return(res)
}
cdm_soft_threshold <- cdm_penalty_threshold_lasso
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_threshold_lasso.R
|
## File Name: cdm_penalty_threshold_mcp.R
## File Version: 0.04
cdm_penalty_threshold_mcp <- function(beta, lambda, a=3.7)
{
y <- cdm_penalty_threshold_lasso(val=beta, eta=lambda ) / ( 1 - 1/ a )
y <- ifelse( abs(beta) > a*lambda, beta, y )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_threshold_mcp.R
|
## File Name: cdm_penalty_threshold_ridge.R
## File Version: 0.03
cdm_penalty_threshold_ridge <- function(beta, lambda)
{
y <- beta / ( 1 + 2*lambda )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_threshold_ridge.R
|
## File Name: cdm_penalty_threshold_scad.R
## File Version: 0.05
cdm_penalty_threshold_scad <- function(beta, lambda, a=3.7)
{
sign_beta <- sign(beta)
#-- 2*lambda < abs(beta) < a*lambda
y <- ( ( a - 1 ) * beta - sign_beta * a * lambda ) / ( a - 2 )
#-- abs(beta) > a*lambda
y <- ifelse( abs(beta) > a*lambda, beta, y )
#-- abs(beta) < 2*lambda
z <- ( abs(beta) - lambda )
z <- ifelse( z < 0, 0, z )
y <- ifelse( abs(beta) < 2*lambda, z*sign_beta, y )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_threshold_scad.R
|
## File Name: cdm_penalty_threshold_scadL2.R
## File Version: 0.05
cdm_penalty_threshold_scadL2 <- function(beta, lambda, alpha, a=3.7)
{
lam1 <- lambda*alpha
lam2 <- lambda*(1-alpha)
sign_beta <- sign(beta)
#-- 2*lambda < abs(beta) < a*lambda
y <- ( ( a - 1 ) * beta - sign_beta * a * lam1 ) / ( -1 + ( a - 1 )*(1+2*lam2) )
#-- abs(beta) > a*lambda
y <- ifelse( abs(beta) > a*lambda, beta / ( 1 + 2*lam2), y )
#-- abs(beta) < 2*lambda
z <- ( abs(beta) - lambda )
z <- ifelse( z < 0, 0, z )
y <- ifelse( abs(beta) < 2*lambda, z*sign_beta / ( 1 + 2*lam2), y )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_threshold_scadL2.R
|
## File Name: cdm_penalty_threshold_tlp.R
## File Version: 0.06
cdm_penalty_threshold_tlp <- function( beta, tau, lambda )
{
lambda_j <- lambda / tau * ( abs(beta) < tau )
res <- cdm_penalty_threshold_lasso( val=beta, eta=lambda_j)
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_threshold_tlp.R
|
## File Name: cdm_penalty_values.R
## File Version: 0.202
cdm_penalty_values <- function(x, regular_type, regular_lam, regular_tau=NULL,
regular_alpha=NULL)
{
penalty <- 0
if (regular_type=="scad"){
penalty <- cdm_penalty_values_scad( x=x, lambda=regular_lam )
}
if (regular_type=="lasso"){
penalty <- cdm_penalty_values_lasso( x=x, lambda=regular_lam )
}
if (regular_type=="ridge"){
penalty <- cdm_penalty_values_ridge( x=x, lambda=regular_lam )
}
if (regular_type=="elnet"){
penalty <- cdm_penalty_values_elnet( x=x, lambda=regular_lam,
alpha=regular_alpha )
}
if (regular_type=="scadL2"){
penalty <- cdm_penalty_values_scadL2( x=x, lambda=regular_lam,
alpha=regular_alpha )
}
if (regular_type=="tlp"){
penalty <- cdm_penalty_values_tlp_approximation( x=x, lambda=regular_lam,
tau=regular_tau )
}
if (regular_type=="mcp"){
penalty <- cdm_penalty_values_mcp( x=x, lambda=regular_lam )
}
return(penalty)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values.R
|
## File Name: cdm_penalty_values_elnet.R
## File Version: 0.02
cdm_penalty_values_elnet <- function( x, lambda, alpha )
{
lam1 <- lambda * alpha
lam2 <- lambda * ( 1 - alpha )
y <- lam1 * abs(x) + lam2 * x^2
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_elnet.R
|
## File Name: cdm_penalty_values_lasso.R
## File Version: 0.05
cdm_penalty_values_lasso <- function( x, lambda )
{
y <- lambda * abs(x)
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_lasso.R
|
## File Name: cdm_penalty_values_mcp.R
## File Version: 0.05
cdm_penalty_values_mcp <- function( x, lambda, a=3.7 )
{
y <- lambda * abs(x) - x^2 / ( 2 * a )
y <- ifelse( abs(x) > a*lambda, a * lambda^2 / 2, y )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_mcp.R
|
## File Name: cdm_penalty_values_ridge.R
## File Version: 0.02
cdm_penalty_values_ridge <- function( x, lambda )
{
y <- lambda * x^2
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_ridge.R
|
## File Name: cdm_penalty_values_scad.R
## File Version: 0.18
cdm_penalty_values_scad <- function( x, lambda, a=3.7 )
{
y <- lambda * abs(x)
y <- ifelse( ( abs(x) > lambda ) & ( abs(x) < a*lambda ),
-( x^2 - 2*a*lambda*abs(x) + lambda^2 )/ 2 / ( a-1), y )
y <- ifelse( abs(x) > a*lambda, (a+1) * lambda^2 / 2, y )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_scad.R
|
## File Name: cdm_penalty_values_scadL2.R
## File Version: 0.03
cdm_penalty_values_scadL2 <- function( x, lambda, alpha )
{
lam1 <- lambda * alpha
lam2 <- lambda * ( 1 - alpha )
y <- cdm_penalty_values_scad(x=x, lambda=lam1) + lam2*x^2
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_scadL2.R
|
## File Name: cdm_penalty_values_tlp.R
## File Version: 0.04
cdm_penalty_values_tlp <- function(x, tau )
{
y <- abs(x) / tau
y <- ifelse( y > 1, 1, y )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_tlp.R
|
## File Name: cdm_penalty_values_tlp_approximation.R
## File Version: 0.10
cdm_penalty_values_tlp_approximation <- function(x, tau, lambda )
{
y <- abs(x) / tau
J1 <- y
J2 <- y - ifelse( y - 1 < 0, y, 1 )
z <- lambda*(J1 - J2)
return(z)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_penalty_values_tlp_approximation.R
|
## File Name: cdm_positivity_restriction.R
## File Version: 0.02
cdm_positivity_restriction <- function(x, positive)
{
x <- ifelse( ( x < 0 ) & positive, 0, x )
return(x)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_positivity_restriction.R
|
## File Name: cdm_print_summary_call.R
## File Version: 0.05
cdm_print_summary_call <- function(object, call_name="call")
{
CALL <- object[[ call_name ]]
s3 <- paste0(CALL, collapse=" ")
if ( nchar(s3) < 3000 ){
cat("Call:\n")
print( CALL )
cat("\n")
}
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_print_summary_call.R
|
## File Name: cdm_print_summary_computation_time.R
## File Version: 0.04
cdm_print_summary_computation_time <- function(object, time_name="time", time_start="s1",
time_end="s2")
{
comp_time <- object[[ time_name ]]
s1 <- comp_time[[ time_start ]]
s2 <- comp_time[[ time_end ]]
cat( "Date of Analysis:", paste( s2 ), "\n" )
cat("Computation Time:", print( s2 - s1), "\n\n")
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_print_summary_computation_time.R
|
## File Name: cdm_print_summary_data_frame.R
## File Version: 0.072
cdm_print_summary_data_frame <- function(obji, from=NULL, to=NULL, digits=3,
rownames_null=FALSE)
{
if (is.vector(obji)){
obji <- round(obji, digits)
} else {
if (is.null(from)){
from <- 1
}
if (is.null(to)){
to <- ncol(obji)
}
ind <- seq( from, to )
for (vv in ind){
obji_vv <- obji[,vv]
if ( is.numeric(obji_vv) ){
obji[, vv ] <- round( obji_vv, digits )
}
}
}
if (rownames_null){
rownames(obji) <- NULL
}
print(obji)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_print_summary_data_frame.R
|
## File Name: cdm_print_summary_information_criteria.R
## File Version: 0.212
cdm_print_summary_information_criteria <- function(object, digits_crit=0,
digits_penalty=2)
{
deviance <- object$ic$deviance
#*** labels information criteria
labels <- list( AIC=paste0("AIC ","=", " -2*LL + 2*p" ) )
labels$AICc <- paste0("AICc ","=",
" -2*LL + 2*p + 2*p*(p+1)/(n-p-1) (bias corrected AIC)" )
labels$BIC <- paste0("BIC ","=", " -2*LL + log(n)*p " )
labels$CAIC <- paste0("CAIC ","=", " -2*LL + [log(n)+1]*p (consistent AIC) " )
#*** display criteria
crits <- intersect(names(labels), names(object$ic))
for (crit_name in crits){
res <- cdm_print_summary_information_criteria_one_criterium( object=object,
crit_name=crit_name, labels=labels, digits_crit=digits_crit,
digits_penalty=digits_penalty )
}
cat("\n")
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_print_summary_information_criteria.R
|
## File Name: cdm_print_summary_information_criteria_one_criterium.R
## File Version: 0.042
cdm_print_summary_information_criteria_one_criterium <- function(object, crit_name,
labels, digits_crit, digits_penalty)
{
deviance <- object$ic$deviance
crit <- object$ic[[ crit_name ]]
cat( crit_name, "=", round( crit, digits_crit ), " | penalty", "=",
round( crit - deviance, digits_penalty ),
" |", labels[[ crit_name ]], " \n" )
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_print_summary_information_criteria_one_criterium.R
|
## File Name: cdm_print_summary_package.R
## File Version: 0.03
cdm_print_summary_package <- function(pack="CDM")
{
d1 <- utils::packageDescription(pack)
cat( paste( d1$Package, " ", d1$Version, " (", d1$Date, ")", sep=""), "\n" )
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_print_summary_package.R
|
## File Name: cdm_replace_inf.R
## File Version: 0.04
cdm_replace_inf <- function(x)
{
x[ x==Inf ] <- NA
return(x)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_replace_inf.R
|
## File Name: cdm_shrink_positive.R
## File Version: 0.02
cdm_shrink_positive <- function(x, sum1=TRUE)
{
y <- ifelse(x<0, 0, x)
if (sum1){
y <- y / sum(y)
}
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_shrink_positive.R
|
## File Name: cdm_sort_unique.R
## File Version: 0.01
cdm_sort_unique <- function(x)
{
if( ! ( is.numeric(x) ) ){
gr2 <- unique( sort(paste(x) ))
} else {
gr2 <- unique( sort(x) )
}
return(gr2)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_sort_unique.R
|
## File Name: cdm_squeeze.R
## File Version: 0.05
#*********************************
# copied squeeze function from mice package
cdm_squeeze <- function (x, bounds )
{
x[x < bounds[1] ] <- bounds[1]
x[x > bounds[2] ] <- bounds[2]
return(x)
}
squeeze.cdm <- cdm_squeeze
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_squeeze.R
|
## File Name: cdm_summary_display.R
## File Version: 0.01
cdm_summary_display <- function(symbol="-", len=65)
{
res <- paste0( paste0( rep(symbol, len), collapse="" ), "\n")
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_summary_display.R
|
## File Name: cdm_sumnorm.R
## File Version: 0.02
cdm_sumnorm <- function(vec, norm=1)
{
vec <- as.vector(vec)
res <- vec / sum(vec) * norm
return(res)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_sumnorm.R
|
## File Name: cdm_sumnorm_squeeze.R
## File Version: 0.01
cdm_sumnorm_squeeze <- function(vec, bounds)
{
y <- cdm_sumnorm( vec=cdm_squeeze(x=vec, bounds=bounds) )
return(y)
}
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_sumnorm_squeeze.R
|
## File Name: cdm_tetrachoric.R
## File Version: 0.20
####################################################################
# hogdina: tetrachoric correlation
cdm_tetrachoric <- function( dat, weights, rho_init=NULL,
delta=.007, maxit=10000, maxval=.999 )
{
# process data
dat <- as.matrix(dat)
# calculate tau
tau <- - stats::qnorm( colSums( dat * weights ) / sum( weights ) )
w2 <- sqrt(weights)
dat.resp <- 1 - is.na(dat)
dat[ dat.resp==0] <- 9
I <- ncol(dat)
# calculate frequencies
dfr <- data.frame( "item1"=rep(1:I,I), "item2"=rep(1:I, each=I ) )
h1 <- crossprod( 1*(dat==1), (dat==0) )
dfr$f11 <- matrix( crossprod( ( dat==1 )*w2, (w2*( dat==1 ))), ncol=1, byrow=TRUE )
dfr$f10 <- matrix( crossprod( ( dat==1 )*w2, (w2*( dat==0 ))), ncol=1, byrow=TRUE )
dfr$f01 <- matrix( crossprod( ( dat==0 )*w2, (w2*( dat==1 ))), ncol=1, byrow=TRUE )
dfr$f00 <- matrix( crossprod( ( dat==0 )*w2, (w2*( dat==0 ))), ncol=1, byrow=TRUE )
dfr$ftot <- dfr$f11 + dfr$f10 + dfr$f01 + dfr$f00
dfr$p11 <- dfr$f11 / dfr$ftot
dfr$pi1 <- ( dfr$f11 + dfr$f10 ) / dfr$ftot
dfr$pi2 <- ( dfr$f11 + dfr$f01 ) / dfr$ftot
# subdataset of dfr
dfr <- dfr[ dfr$item1 > dfr$item2, ]
dfr <- dfr[ dfr$ftot > 0, ]
dfr$qi1 <- stats::qnorm( dfr$pi1)
dfr$qi2 <- stats::qnorm( dfr$pi2)
# functions defined by Cengiz Zopluoglu
L <- function(r,h,k) {
(1/(2*pi*sqrt(1-r^2)))*exp(-((h^2-2*h*k*r+k^2)/(2*(1-r^2))))
}
S <- function(x,r,h,k) {
x-(L(r,h,k)*delta)
}
A0 <- dfr$A0 <- dfr$p11 - dfr$pi1 * dfr$pi2
dfr$r0 <- delta / 2
#-- include inits if provided
if ( ( ! is.null(rho_init) ) & ( is.matrix(rho_init) ) ){
dfr$r0 <- rho_init[ lower.tri(rho_init) ]
dfr$r0 <- ifelse( dfr$r0==maxval, maxval - 10*( 1 - maxval ), dfr$r0 )
}
dfr$iter <- 0
dfr$iter <- 0
dfr$conv <- 0
ii <- 0
vars <- c("A0","r0","iter","conv")
while( ( mean( dfr$conv) < 1 ) & ( ii < maxit ) ){
# iterations
dfr0 <- dfr
#***
ii <- ii+1
dfr$A0 <- dfr$A0 - delta * L( dfr$r0, dfr$qi1, dfr$qi2 )
dfr$r0 <- dfr$r0 + delta
dfr$iter <- ii
ind <- which( dfr$A0 < 0 )
if ( length(ind) > 0 ){
h1 <- dfr$r0 - delta/2 + dfr$A0 / L( dfr0$r0, dfr$qi1, dfr$qi2 )
dfr$r0[ind] <- h1[ind]
dfr$conv[ind] <- 1
}
i2 <- which( dfr$conv==1 & dfr0$conv==1 )
if (length(i2) > 0){
dfr[ i2, vars] <- dfr0[ i2, vars]
}
dfr$r0 <- ifelse( abs(dfr$r0) > maxval, sign(dfr$r0)*maxval, dfr$r0 )
dfr$conv <- ifelse( abs(dfr$r0) >=maxval, 1, dfr$conv )
}
TC <- matrix(NA, I, I )
diag(TC) <- 1
TC[ as.matrix(dfr[, c("item1","item2") ] ) ] <- dfr$r0
TC[ as.matrix(dfr[, c("item2","item1") ] ) ] <- dfr$r0
res <- list("tau"=tau, "rho"=TC )
return(res)
}
.tetrachoric.hogdina <- cdm_tetrachoric
|
/scratch/gouwar.j/cran-all/cranData/CDM/R/cdm_tetrachoric.R
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.