|
import os |
|
import numpy as np |
|
import pandas as pd |
|
import json |
|
import pickle |
|
import datetime |
|
|
|
import hydra |
|
from config.config import cs |
|
from omegaconf import DictConfig |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
import time |
|
|
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
|
|
import rdkit.Chem as Chem |
|
from rdkit import RDLogger |
|
from rdkit.Chem import Descriptors |
|
RDLogger.DisableLog('rdApp.*') |
|
|
|
from Model.Transformer.model import Transformer |
|
from scripts.preprocess import make_counter ,make_transforms |
|
from Model.GCN import network |
|
from Model.GCN.utils import template_prediction, check_templates |
|
from scripts.beam_search import beam_decode, greedy_translate |
|
|
|
from Utils.utils import read_smilesset, RootNode, NormalNode, smi_tokenizer, MW_checker, is_empty |
|
from Utils.reward import getReward |
|
|
|
class MCTS(): |
|
def __init__(self, init_smiles, model, GCN_model, vocab, Reward, max_depth=10, c=1, step=0, n_valid=0, |
|
n_invalid=0, max_r=-1000, r_dict=None, src_transforms=None, beam_width=10, nbest=5, |
|
inf_max_len=256, beam_templates:list=None, rollout_depth=None, device=None, GCN_device=None, |
|
exp_num_sampling=None, roll_num_sampling=None): |
|
self.init_smiles = init_smiles |
|
self.model = model |
|
self.GCN_model = GCN_model |
|
self.vocab = vocab |
|
self.Reward = Reward |
|
self.max_depth = max_depth |
|
self.valid_smiles = {} |
|
self.terminate_smiles = {} |
|
self.c = c |
|
self.count = 0 |
|
self.max_score = max_r |
|
self.step = step |
|
self.n_valid = n_valid |
|
self.n_invalid = n_invalid |
|
self.total_nodes = 0 |
|
self.expand_max = 0 |
|
self.r_dict = r_dict |
|
self.transforms = src_transforms |
|
self.beam_width = beam_width |
|
self.nbest = nbest |
|
self.inf_max_len = inf_max_len |
|
self.beam_templates = beam_templates |
|
self.rollout_depth = rollout_depth |
|
self.device = device |
|
self.GCN_device = GCN_device |
|
self.gen_templates = [] |
|
self.num_sampling = exp_num_sampling |
|
self.roll_num_sampling = roll_num_sampling |
|
self.no_template = False |
|
self.smi_to_template = {} |
|
self.accum_time = 0 |
|
|
|
def select(self): |
|
raise NotImplementedError() |
|
|
|
def expand(self): |
|
raise NotImplementedError() |
|
|
|
def simulate(self): |
|
raise NotImplementedError() |
|
|
|
def backprop(self): |
|
raise NotImplementedError() |
|
|
|
def search(self, n_step): |
|
raise NotImplementedError() |
|
|
|
class ParseSelectMCTS(MCTS): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
self.root = RootNode() |
|
self.current_node = None |
|
self.next_smiles = {} |
|
self.rollout_result = {} |
|
scores, _, _ = self.Reward.reward([self.init_smiles]) |
|
_, self.init_score = scores[0] |
|
|
|
def select(self): |
|
''' |
|
search for the node with no child nodes and maximum UCB score |
|
''' |
|
self.current_node = self.root |
|
while len(self.current_node.children) != 0: |
|
self.current_node = self.current_node.select_children() |
|
if self.current_node.depth+1 > self.max_depth: |
|
tmp = self.current_node |
|
|
|
while self.current_node is not None: |
|
self.current_node.cum_score += -1 |
|
self.current_node.visit += 1 |
|
self.current_node = self.current_node.parent |
|
tmp.remove_Node() |
|
self.current_node = self.root |
|
|
|
def expand(self): |
|
''' |
|
self.no_template: If the output of template_prediction for selected node is empty, self.no_template = True |
|
self.next_smiles: key=smiles, value=reward score |
|
|
|
''' |
|
|
|
self.next_smiles = {} |
|
self.smi_to_template = {} |
|
self.expand_max = 0 |
|
|
|
''' prediction of reaction templates ''' |
|
matched_indices = [] |
|
input_smi = self.current_node.smi |
|
self.no_template = False |
|
indices = template_prediction(GCN_model=self.GCN_model, input_smi=input_smi, |
|
num_sampling=self.num_sampling, GCN_device=self.GCN_device) |
|
matched_indices = check_templates(indices, input_smi, self.r_dict) |
|
if len(matched_indices) != 0: |
|
self.gen_templates.extend(matched_indices) |
|
''' prediction of products ''' |
|
with torch.no_grad(): |
|
for i in matched_indices: |
|
input_conditional = smi_tokenizer(i + input_smi).split(' ') |
|
input_tokens = self.transforms(input_conditional).to(self.device) |
|
outputs = beam_decode(v=self.vocab, model=self.model, input_tokens=input_tokens, template_idx=i, |
|
device=self.device, inf_max_len=self.inf_max_len, beam_width=self.beam_width, |
|
nbest=self.nbest, Temp=1, beam_templates=self.beam_templates) |
|
for output in outputs: |
|
self.next_smiles[output] = 0 |
|
self.smi_to_template[output] = i |
|
self.check() |
|
else: |
|
self.no_template = True |
|
while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 10000): |
|
self.current_node.cum_score = -10000 |
|
self.current_node.visit = 10000 |
|
self.current_node = self.current_node.parent |
|
|
|
def check(self): |
|
valid_list = [] |
|
invalid_list = [] |
|
score_que = [] |
|
score = None |
|
reaction_path = [] |
|
tmp = self.current_node |
|
|
|
if len(self.next_smiles) == 0: |
|
self.current_node.cum_score = -100000 |
|
self.current_node.visit = 100000 |
|
self.current_node.remove_Node() |
|
print('0 molecules are expanded.') |
|
|
|
else: |
|
|
|
while self.current_node.depth > 0: |
|
reaction_path.insert(0, f'{self.current_node.template}.{self.current_node.smi}') |
|
self.current_node = self.current_node.parent |
|
self.current_node = tmp |
|
|
|
|
|
for smi in self.next_smiles.keys(): |
|
mol = Chem.MolFromSmiles(smi) |
|
if mol is None: |
|
self.n_invalid += 1 |
|
invalid_list.append(smi) |
|
elif (mol is not None) and (MW_checker(mol, 600) == True): |
|
score_que.append(smi) |
|
self.n_valid += 1 |
|
else: |
|
invalid_list.append(smi) |
|
|
|
scores, _, _ = self.Reward.reward(score_que) |
|
if len(scores) != 0: |
|
valid_scores = [] |
|
for smi, score in scores: |
|
template = self.smi_to_template[smi] |
|
path = reaction_path.copy() |
|
path.append(f'{template}.{smi}') |
|
path = '.'.join(path) |
|
if score is not None: |
|
self.valid_smiles[self.step, smi, path] = score |
|
valid_list.append((score, smi)) |
|
valid_scores.append(score) |
|
self.max_score = max(self.max_score, score) |
|
self.expand_max = max(self.expand_max, score) |
|
for smi in invalid_list: |
|
self.next_smiles.pop(smi) |
|
print(f'{len(self.next_smiles)} molecules are expanded.') |
|
else: |
|
self.no_template = True |
|
while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 100000): |
|
self.current_node.cum_score = -100000 |
|
self.current_node.visit = 100000 |
|
self.current_node = self.current_node.parent |
|
|
|
def simulate(self): |
|
'''rollout''' |
|
self.rollout_result = {} |
|
for orig_smi in self.next_smiles: |
|
depth = 0 |
|
smi_que = [orig_smi] |
|
max_smi = None |
|
max_score = -10000 |
|
while depth < self.rollout_depth: |
|
input_conditional = [] |
|
for next_smi in smi_que: |
|
if Chem.MolFromSmiles(next_smi) is not None: |
|
indices = template_prediction(self.GCN_model, next_smi, num_sampling=self.roll_num_sampling, GCN_device=self.GCN_device) |
|
matched_indices = check_templates(indices, next_smi, self.r_dict) |
|
for t in matched_indices: |
|
input_conditional.append(smi_tokenizer(t + next_smi).split(' ')) |
|
if is_empty(input_conditional) == False: |
|
with torch.no_grad(): |
|
input_tokens = self.transforms(input_conditional).to(self.device) |
|
output = greedy_translate(v=self.vocab, model=self.model, input_tokens=input_tokens, |
|
inf_max_len=self.inf_max_len, device=self.device) |
|
scores, max_smi_tmp, max_score_tmp = self.Reward.reward_remove_nan(output) |
|
if max_score_tmp is None: |
|
max_score_tmp = -10000 |
|
elif max_score < max_score_tmp: |
|
max_score = max_score_tmp |
|
max_smi = max_smi_tmp |
|
else: |
|
break |
|
depth += 1 |
|
smi_que = output |
|
if max_score > 0: |
|
self.next_smiles[orig_smi] = max_score |
|
self.rollout_result[orig_smi] = (max_smi, max_score) |
|
else: |
|
self.next_smiles[orig_smi] = 0 |
|
|
|
def backprop(self): |
|
for key, value in self.next_smiles.items(): |
|
child = NormalNode(smi=key, c=self.c) |
|
child.template = self.smi_to_template[key] |
|
child.cum_score += value |
|
child.imm_score = value |
|
child.id = self.total_nodes |
|
self.total_nodes += 1 |
|
try: |
|
child.rollout_result = self.rollout_result[key] |
|
except KeyError: |
|
child.rollout_result = ('Termination', -10000) |
|
self.current_node.add_Node(child) |
|
max_reward = max(self.next_smiles.values()) |
|
self.max_score = max(self.max_score, max_reward) |
|
while self.current_node is not None: |
|
self.current_node.visit += 1 |
|
self.current_node.cum_score += max_reward |
|
self.current_node.imm_score = max(self.current_node.imm_score, max_reward) |
|
self.current_node = self.current_node.parent |
|
|
|
def search(self, n_step): |
|
n = NormalNode(self.init_smiles) |
|
self.root.add_Node(n) |
|
while self.step < n_step: |
|
self.step += 1 |
|
if self.n_valid+self.n_invalid == 0: |
|
valid_rate = 0 |
|
else: |
|
valid_rate = self.n_valid/(self.n_valid+self.n_invalid) |
|
print(f'step:{self.step}, INIT_SCORE:{self.init_score}, MAX_SCORE:{self.max_score}, VALIDITY:{valid_rate}') |
|
self.select() |
|
print(f'selected_score:{self.current_node.imm_score}') |
|
self.expand() |
|
expand_max = self.expand_max if self.expand_max != 0 else None |
|
if self.no_template == True: |
|
print('no template') |
|
continue |
|
if len(self.next_smiles) != 0: |
|
self.simulate() |
|
self.backprop() |
|
|
|
@hydra.main(config_path=None, config_name='config', version_base=None) |
|
def main(cfg: DictConfig): |
|
date = datetime.datetime.now().strftime('%Y%m%d') |
|
num = 1 |
|
while True: |
|
out_dir = hydra.utils.get_original_cwd()+f"{cfg['mcts']['out_dir']}/{date}_{num}" |
|
if os.path.isdir(out_dir): |
|
num += 1 |
|
continue |
|
else: |
|
os.makedirs(out_dir, exist_ok=True) |
|
break |
|
print(f'{out_dir} was created.') |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
''' preprocess ''' |
|
src_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_train'] |
|
tgt_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_train'] |
|
src_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_valid'] |
|
tgt_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_valid'] |
|
data_dict = make_counter(src_train_path=src_train_path, |
|
tgt_train_path=tgt_train_path, |
|
src_valid_path=src_valid_path, |
|
tgt_valid_path=tgt_valid_path |
|
) |
|
src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True) |
|
|
|
'''input smiles set''' |
|
init_smiles = read_smilesset(hydra.utils.get_original_cwd() + cfg['mcts']['in_smiles_file']) |
|
n_valid = 0 |
|
n_invalid = 0 |
|
mcts = None |
|
|
|
''' load model ''' |
|
d_model = cfg['model']['dim_model'] |
|
num_encoder_layers = cfg['model']['num_encoder_layers'] |
|
num_decoder_layers = cfg['model']['num_decoder_layers'] |
|
nhead = cfg['model']['nhead'] |
|
dropout = cfg['model']['dropout'] |
|
dim_ff = cfg['model']['dim_ff'] |
|
ckpt = cfg['mcts']['ckpt_Transformer'] |
|
model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, |
|
dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device) |
|
ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt']) |
|
model.load_state_dict(ckpt['model_state_dict']) |
|
model.eval() |
|
|
|
''' load GCN model''' |
|
dim_GCN = cfg['GCN_train']['dim'] |
|
n_conv_hidden = cfg['GCN_train']['n_conv_hidden'] |
|
n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden'] |
|
ckpt_GCN = cfg['mcts']['ckpt_GCN'] |
|
GCN_model = network.MolecularGCN(dim = dim_GCN, |
|
n_conv_hidden = n_conv_hidden, |
|
n_mlp_hidden = n_mlp_hidden, |
|
dropout = dropout).to(device) |
|
GCN_model.load_state_dict(torch.load(hydra.utils.get_original_cwd() + ckpt_GCN)) |
|
GCN_model.eval() |
|
|
|
'''MCTS''' |
|
reward = getReward(name=cfg['mcts']['reward_name']) |
|
print('REWARD:',cfg['mcts']['reward_name']) |
|
with open(hydra.utils.get_original_cwd() + '/data/label_template.json') as f: |
|
r_dict = json.load(f) |
|
f.close() |
|
with open(hydra.utils.get_original_cwd()+'/data/beamsearch_template_list.txt', 'r') as f: |
|
beam_templates = f.read().splitlines() |
|
f.close() |
|
for start_smiles in init_smiles: |
|
input_smiles = start_smiles |
|
start = time.time() |
|
mcts = ParseSelectMCTS(input_smiles, model=model, GCN_model=GCN_model, vocab=v, Reward=reward, |
|
max_depth=cfg['mcts']['max_depth'], step=0, n_valid=n_valid, n_invalid=n_invalid, |
|
c=cfg['mcts']['ucb_c'], max_r=reward.max_r, r_dict=r_dict, src_transforms=src_transforms, |
|
beam_width=cfg['mcts']['beam_width'], nbest=cfg['mcts']['nbest'], |
|
beam_templates=beam_templates, rollout_depth=cfg['mcts']['rollout_depth'], |
|
roll_num_sampling=cfg['mcts']['roll_num_sampling'], device=device, |
|
GCN_device=device, exp_num_sampling=cfg['mcts']['exp_num_sampling']) |
|
mcts.search(n_step=cfg['mcts']['n_step']) |
|
reward.max_r = mcts.max_score |
|
n_valid += mcts.n_valid |
|
n_invalid += mcts.n_invalid |
|
end = time.time() |
|
print('Elapsed Time: %f' % (end-start)) |
|
|
|
generated_smiles = pd.DataFrame(columns=['SMILES', 'Reward', 'Imp', 'MW', 'step', 'reaction_path']) |
|
scores, _, _ = reward.reward([start_smiles]) |
|
start_reward = scores[0][1] |
|
for kv in mcts.valid_smiles.items(): |
|
step, smi, path = kv[0] |
|
step = int(step) |
|
try: |
|
w = Descriptors.MolWt(Chem.MolFromSmiles(smi)) |
|
except: |
|
w = 0 |
|
if (kv[1] is None) or (start_reward is None): |
|
Imp = None |
|
else: |
|
Imp = kv[1] - start_reward |
|
row = {'SMILES': smi, 'Reward': kv[1], 'Imp': Imp, |
|
'MW': w, 'step': step, 'reaction_path': path} |
|
generated_smiles = generated_smiles.append(row, ignore_index=True) |
|
generated_smiles = generated_smiles.sort_values('Reward', ascending=False) |
|
generated_smiles.to_csv(out_dir + f'/{start_smiles}.csv', index=False) |
|
|
|
if __name__ == '__main__': |
|
main() |
|
|