Tracer / data /scripts /mcts.py
introvoyz041's picture
Migrated from GitHub
e0d0d76 verified
import os
import numpy as np
import pandas as pd
import json
import pickle
import datetime
import hydra
from config.config import cs
from omegaconf import DictConfig
import torch
import torch.nn.functional as F
import time
import warnings
warnings.filterwarnings('ignore')
import rdkit.Chem as Chem
from rdkit import RDLogger
from rdkit.Chem import Descriptors
RDLogger.DisableLog('rdApp.*')
from Model.Transformer.model import Transformer
from scripts.preprocess import make_counter ,make_transforms
from Model.GCN import network
from Model.GCN.utils import template_prediction, check_templates
from scripts.beam_search import beam_decode, greedy_translate
from Utils.utils import read_smilesset, RootNode, NormalNode, smi_tokenizer, MW_checker, is_empty
from Utils.reward import getReward
class MCTS():
def __init__(self, init_smiles, model, GCN_model, vocab, Reward, max_depth=10, c=1, step=0, n_valid=0,
n_invalid=0, max_r=-1000, r_dict=None, src_transforms=None, beam_width=10, nbest=5,
inf_max_len=256, beam_templates:list=None, rollout_depth=None, device=None, GCN_device=None,
exp_num_sampling=None, roll_num_sampling=None):
self.init_smiles = init_smiles
self.model = model
self.GCN_model = GCN_model
self.vocab = vocab
self.Reward = Reward
self.max_depth = max_depth
self.valid_smiles = {}
self.terminate_smiles = {}
self.c = c
self.count = 0
self.max_score = max_r
self.step = step
self.n_valid = n_valid
self.n_invalid = n_invalid
self.total_nodes = 0
self.expand_max = 0
self.r_dict = r_dict
self.transforms = src_transforms
self.beam_width = beam_width
self.nbest = nbest
self.inf_max_len = inf_max_len
self.beam_templates = beam_templates
self.rollout_depth = rollout_depth
self.device = device
self.GCN_device = GCN_device
self.gen_templates = []
self.num_sampling = exp_num_sampling
self.roll_num_sampling = roll_num_sampling
self.no_template = False
self.smi_to_template = {}
self.accum_time = 0
def select(self):
raise NotImplementedError()
def expand(self):
raise NotImplementedError()
def simulate(self):
raise NotImplementedError()
def backprop(self):
raise NotImplementedError()
def search(self, n_step):
raise NotImplementedError()
class ParseSelectMCTS(MCTS):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.root = RootNode()
self.current_node = None
self.next_smiles = {}
self.rollout_result = {}
scores, _, _ = self.Reward.reward([self.init_smiles])
_, self.init_score = scores[0]
def select(self):
'''
search for the node with no child nodes and maximum UCB score
'''
self.current_node = self.root
while len(self.current_node.children) != 0:
self.current_node = self.current_node.select_children()
if self.current_node.depth+1 > self.max_depth:
tmp = self.current_node
# update
while self.current_node is not None:
self.current_node.cum_score += -1
self.current_node.visit += 1
self.current_node = self.current_node.parent
tmp.remove_Node()
self.current_node = self.root
def expand(self):
'''
self.no_template: If the output of template_prediction for selected node is empty, self.no_template = True
self.next_smiles: key=smiles, value=reward score
'''
self.next_smiles = {}
self.smi_to_template = {}
self.expand_max = 0
''' prediction of reaction templates '''
matched_indices = []
input_smi = self.current_node.smi
self.no_template = False
indices = template_prediction(GCN_model=self.GCN_model, input_smi=input_smi,
num_sampling=self.num_sampling, GCN_device=self.GCN_device)
matched_indices = check_templates(indices, input_smi, self.r_dict)
if len(matched_indices) != 0:
self.gen_templates.extend(matched_indices)
''' prediction of products '''
with torch.no_grad():
for i in matched_indices:
input_conditional = smi_tokenizer(i + input_smi).split(' ')
input_tokens = self.transforms(input_conditional).to(self.device)
outputs = beam_decode(v=self.vocab, model=self.model, input_tokens=input_tokens, template_idx=i,
device=self.device, inf_max_len=self.inf_max_len, beam_width=self.beam_width,
nbest=self.nbest, Temp=1, beam_templates=self.beam_templates)
for output in outputs:
self.next_smiles[output] = 0
self.smi_to_template[output] = i
self.check()
else:
self.no_template = True
while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 10000):
self.current_node.cum_score = -10000
self.current_node.visit = 10000
self.current_node = self.current_node.parent
def check(self):
valid_list = []
invalid_list = []
score_que = []
score = None
reaction_path = []
tmp = self.current_node
if len(self.next_smiles) == 0:
self.current_node.cum_score = -100000
self.current_node.visit = 100000
self.current_node.remove_Node()
print('0 molecules are expanded.')
else:
# make reaction path
while self.current_node.depth > 0:
reaction_path.insert(0, f'{self.current_node.template}.{self.current_node.smi}')
self.current_node = self.current_node.parent
self.current_node = tmp
# scoring
for smi in self.next_smiles.keys():
mol = Chem.MolFromSmiles(smi)
if mol is None:
self.n_invalid += 1
invalid_list.append(smi)
elif (mol is not None) and (MW_checker(mol, 600) == True):
score_que.append(smi)
self.n_valid += 1
else:
invalid_list.append(smi)
scores, _, _ = self.Reward.reward(score_que)
if len(scores) != 0:
valid_scores = []
for smi, score in scores:
template = self.smi_to_template[smi]
path = reaction_path.copy()
path.append(f'{template}.{smi}')
path = '.'.join(path)
if score is not None:
self.valid_smiles[self.step, smi, path] = score
valid_list.append((score, smi))
valid_scores.append(score)
self.max_score = max(self.max_score, score)
self.expand_max = max(self.expand_max, score)
for smi in invalid_list:
self.next_smiles.pop(smi)
print(f'{len(self.next_smiles)} molecules are expanded.')
else:
self.no_template = True
while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 100000):
self.current_node.cum_score = -100000
self.current_node.visit = 100000
self.current_node = self.current_node.parent
def simulate(self):
'''rollout'''
self.rollout_result = {} # key:next_tokennext_smi, value:(smi, avg_score)
for orig_smi in self.next_smiles:
depth = 0
smi_que = [orig_smi]
max_smi = None
max_score = -10000
while depth < self.rollout_depth:
input_conditional = []
for next_smi in smi_que:
if Chem.MolFromSmiles(next_smi) is not None:
indices = template_prediction(self.GCN_model, next_smi, num_sampling=self.roll_num_sampling, GCN_device=self.GCN_device)
matched_indices = check_templates(indices, next_smi, self.r_dict)
for t in matched_indices:
input_conditional.append(smi_tokenizer(t + next_smi).split(' '))
if is_empty(input_conditional) == False:
with torch.no_grad():
input_tokens = self.transforms(input_conditional).to(self.device)
output = greedy_translate(v=self.vocab, model=self.model, input_tokens=input_tokens,
inf_max_len=self.inf_max_len, device=self.device) # output: list of SMILES
scores, max_smi_tmp, max_score_tmp = self.Reward.reward_remove_nan(output)
if max_score_tmp is None:
max_score_tmp = -10000
elif max_score < max_score_tmp:
max_score = max_score_tmp
max_smi = max_smi_tmp
else:
break
depth += 1
smi_que = output
if max_score > 0:
self.next_smiles[orig_smi] = max_score
self.rollout_result[orig_smi] = (max_smi, max_score)
else:
self.next_smiles[orig_smi] = 0
def backprop(self):
for key, value in self.next_smiles.items():
child = NormalNode(smi=key, c=self.c)
child.template = self.smi_to_template[key]
child.cum_score += value
child.imm_score = value
child.id = self.total_nodes
self.total_nodes += 1
try:
child.rollout_result = self.rollout_result[key]
except KeyError:
child.rollout_result = ('Termination', -10000)
self.current_node.add_Node(child)
max_reward = max(self.next_smiles.values())
self.max_score = max(self.max_score, max_reward)
while self.current_node is not None:
self.current_node.visit += 1
self.current_node.cum_score += max_reward
self.current_node.imm_score = max(self.current_node.imm_score, max_reward)
self.current_node = self.current_node.parent
def search(self, n_step):
n = NormalNode(self.init_smiles)
self.root.add_Node(n)
while self.step < n_step:
self.step += 1
if self.n_valid+self.n_invalid == 0:
valid_rate = 0
else:
valid_rate = self.n_valid/(self.n_valid+self.n_invalid)
print(f'step:{self.step}, INIT_SCORE:{self.init_score}, MAX_SCORE:{self.max_score}, VALIDITY:{valid_rate}')
self.select()
print(f'selected_score:{self.current_node.imm_score}')
self.expand()
expand_max = self.expand_max if self.expand_max != 0 else None
if self.no_template == True:
print('no template')
continue
if len(self.next_smiles) != 0:
self.simulate()
self.backprop()
@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
date = datetime.datetime.now().strftime('%Y%m%d')
num = 1
while True:
out_dir = hydra.utils.get_original_cwd()+f"{cfg['mcts']['out_dir']}/{date}_{num}"
if os.path.isdir(out_dir):
num += 1
continue
else:
os.makedirs(out_dir, exist_ok=True)
break
print(f'{out_dir} was created.')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
''' preprocess '''
src_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_train']
tgt_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_train']
src_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_valid']
tgt_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_valid']
data_dict = make_counter(src_train_path=src_train_path,
tgt_train_path=tgt_train_path,
src_valid_path=src_valid_path,
tgt_valid_path=tgt_valid_path
)
src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True)
'''input smiles set'''
init_smiles = read_smilesset(hydra.utils.get_original_cwd() + cfg['mcts']['in_smiles_file'])
n_valid = 0
n_invalid = 0
mcts = None
''' load model '''
d_model = cfg['model']['dim_model']
num_encoder_layers = cfg['model']['num_encoder_layers']
num_decoder_layers = cfg['model']['num_decoder_layers']
nhead = cfg['model']['nhead']
dropout = cfg['model']['dropout']
dim_ff = cfg['model']['dim_ff']
ckpt = cfg['mcts']['ckpt_Transformer']
model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'])
model.load_state_dict(ckpt['model_state_dict'])
model.eval()
''' load GCN model'''
dim_GCN = cfg['GCN_train']['dim']
n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
ckpt_GCN = cfg['mcts']['ckpt_GCN']
GCN_model = network.MolecularGCN(dim = dim_GCN,
n_conv_hidden = n_conv_hidden,
n_mlp_hidden = n_mlp_hidden,
dropout = dropout).to(device)
GCN_model.load_state_dict(torch.load(hydra.utils.get_original_cwd() + ckpt_GCN))
GCN_model.eval()
'''MCTS'''
reward = getReward(name=cfg['mcts']['reward_name'])
print('REWARD:',cfg['mcts']['reward_name'])
with open(hydra.utils.get_original_cwd() + '/data/label_template.json') as f:
r_dict = json.load(f)
f.close()
with open(hydra.utils.get_original_cwd()+'/data/beamsearch_template_list.txt', 'r') as f:
beam_templates = f.read().splitlines()
f.close()
for start_smiles in init_smiles:
input_smiles = start_smiles
start = time.time()
mcts = ParseSelectMCTS(input_smiles, model=model, GCN_model=GCN_model, vocab=v, Reward=reward,
max_depth=cfg['mcts']['max_depth'], step=0, n_valid=n_valid, n_invalid=n_invalid,
c=cfg['mcts']['ucb_c'], max_r=reward.max_r, r_dict=r_dict, src_transforms=src_transforms,
beam_width=cfg['mcts']['beam_width'], nbest=cfg['mcts']['nbest'],
beam_templates=beam_templates, rollout_depth=cfg['mcts']['rollout_depth'],
roll_num_sampling=cfg['mcts']['roll_num_sampling'], device=device,
GCN_device=device, exp_num_sampling=cfg['mcts']['exp_num_sampling'])
mcts.search(n_step=cfg['mcts']['n_step'])
reward.max_r = mcts.max_score
n_valid += mcts.n_valid
n_invalid += mcts.n_invalid
end = time.time()
print('Elapsed Time: %f' % (end-start))
generated_smiles = pd.DataFrame(columns=['SMILES', 'Reward', 'Imp', 'MW', 'step', 'reaction_path'])
scores, _, _ = reward.reward([start_smiles])
start_reward = scores[0][1]
for kv in mcts.valid_smiles.items():
step, smi, path = kv[0]
step = int(step)
try:
w = Descriptors.MolWt(Chem.MolFromSmiles(smi))
except:
w = 0
if (kv[1] is None) or (start_reward is None):
Imp = None
else:
Imp = kv[1] - start_reward
row = {'SMILES': smi, 'Reward': kv[1], 'Imp': Imp,
'MW': w, 'step': step, 'reaction_path': path}
generated_smiles = generated_smiles.append(row, ignore_index=True)
generated_smiles = generated_smiles.sort_values('Reward', ascending=False)
generated_smiles.to_csv(out_dir + f'/{start_smiles}.csv', index=False)
if __name__ == '__main__':
main()