File size: 16,926 Bytes
e0d0d76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 |
import os
import numpy as np
import pandas as pd
import json
import pickle
import datetime
import hydra
from config.config import cs
from omegaconf import DictConfig
import torch
import torch.nn.functional as F
import time
import warnings
warnings.filterwarnings('ignore')
import rdkit.Chem as Chem
from rdkit import RDLogger
from rdkit.Chem import Descriptors
RDLogger.DisableLog('rdApp.*')
from Model.Transformer.model import Transformer
from scripts.preprocess import make_counter ,make_transforms
from Model.GCN import network
from Model.GCN.utils import template_prediction, check_templates
from scripts.beam_search import beam_decode, greedy_translate
from Utils.utils import read_smilesset, RootNode, NormalNode, smi_tokenizer, MW_checker, is_empty
from Utils.reward import getReward
class MCTS():
def __init__(self, init_smiles, model, GCN_model, vocab, Reward, max_depth=10, c=1, step=0, n_valid=0,
n_invalid=0, max_r=-1000, r_dict=None, src_transforms=None, beam_width=10, nbest=5,
inf_max_len=256, beam_templates:list=None, rollout_depth=None, device=None, GCN_device=None,
exp_num_sampling=None, roll_num_sampling=None):
self.init_smiles = init_smiles
self.model = model
self.GCN_model = GCN_model
self.vocab = vocab
self.Reward = Reward
self.max_depth = max_depth
self.valid_smiles = {}
self.terminate_smiles = {}
self.c = c
self.count = 0
self.max_score = max_r
self.step = step
self.n_valid = n_valid
self.n_invalid = n_invalid
self.total_nodes = 0
self.expand_max = 0
self.r_dict = r_dict
self.transforms = src_transforms
self.beam_width = beam_width
self.nbest = nbest
self.inf_max_len = inf_max_len
self.beam_templates = beam_templates
self.rollout_depth = rollout_depth
self.device = device
self.GCN_device = GCN_device
self.gen_templates = []
self.num_sampling = exp_num_sampling
self.roll_num_sampling = roll_num_sampling
self.no_template = False
self.smi_to_template = {}
self.accum_time = 0
def select(self):
raise NotImplementedError()
def expand(self):
raise NotImplementedError()
def simulate(self):
raise NotImplementedError()
def backprop(self):
raise NotImplementedError()
def search(self, n_step):
raise NotImplementedError()
class ParseSelectMCTS(MCTS):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.root = RootNode()
self.current_node = None
self.next_smiles = {}
self.rollout_result = {}
scores, _, _ = self.Reward.reward([self.init_smiles])
_, self.init_score = scores[0]
def select(self):
'''
search for the node with no child nodes and maximum UCB score
'''
self.current_node = self.root
while len(self.current_node.children) != 0:
self.current_node = self.current_node.select_children()
if self.current_node.depth+1 > self.max_depth:
tmp = self.current_node
# update
while self.current_node is not None:
self.current_node.cum_score += -1
self.current_node.visit += 1
self.current_node = self.current_node.parent
tmp.remove_Node()
self.current_node = self.root
def expand(self):
'''
self.no_template: If the output of template_prediction for selected node is empty, self.no_template = True
self.next_smiles: key=smiles, value=reward score
'''
self.next_smiles = {}
self.smi_to_template = {}
self.expand_max = 0
''' prediction of reaction templates '''
matched_indices = []
input_smi = self.current_node.smi
self.no_template = False
indices = template_prediction(GCN_model=self.GCN_model, input_smi=input_smi,
num_sampling=self.num_sampling, GCN_device=self.GCN_device)
matched_indices = check_templates(indices, input_smi, self.r_dict)
if len(matched_indices) != 0:
self.gen_templates.extend(matched_indices)
''' prediction of products '''
with torch.no_grad():
for i in matched_indices:
input_conditional = smi_tokenizer(i + input_smi).split(' ')
input_tokens = self.transforms(input_conditional).to(self.device)
outputs = beam_decode(v=self.vocab, model=self.model, input_tokens=input_tokens, template_idx=i,
device=self.device, inf_max_len=self.inf_max_len, beam_width=self.beam_width,
nbest=self.nbest, Temp=1, beam_templates=self.beam_templates)
for output in outputs:
self.next_smiles[output] = 0
self.smi_to_template[output] = i
self.check()
else:
self.no_template = True
while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 10000):
self.current_node.cum_score = -10000
self.current_node.visit = 10000
self.current_node = self.current_node.parent
def check(self):
valid_list = []
invalid_list = []
score_que = []
score = None
reaction_path = []
tmp = self.current_node
if len(self.next_smiles) == 0:
self.current_node.cum_score = -100000
self.current_node.visit = 100000
self.current_node.remove_Node()
print('0 molecules are expanded.')
else:
# make reaction path
while self.current_node.depth > 0:
reaction_path.insert(0, f'{self.current_node.template}.{self.current_node.smi}')
self.current_node = self.current_node.parent
self.current_node = tmp
# scoring
for smi in self.next_smiles.keys():
mol = Chem.MolFromSmiles(smi)
if mol is None:
self.n_invalid += 1
invalid_list.append(smi)
elif (mol is not None) and (MW_checker(mol, 600) == True):
score_que.append(smi)
self.n_valid += 1
else:
invalid_list.append(smi)
scores, _, _ = self.Reward.reward(score_que)
if len(scores) != 0:
valid_scores = []
for smi, score in scores:
template = self.smi_to_template[smi]
path = reaction_path.copy()
path.append(f'{template}.{smi}')
path = '.'.join(path)
if score is not None:
self.valid_smiles[self.step, smi, path] = score
valid_list.append((score, smi))
valid_scores.append(score)
self.max_score = max(self.max_score, score)
self.expand_max = max(self.expand_max, score)
for smi in invalid_list:
self.next_smiles.pop(smi)
print(f'{len(self.next_smiles)} molecules are expanded.')
else:
self.no_template = True
while (len(self.current_node.children) == 0) or (min([cn.visit for cn in self.current_node.children]) >= 100000):
self.current_node.cum_score = -100000
self.current_node.visit = 100000
self.current_node = self.current_node.parent
def simulate(self):
'''rollout'''
self.rollout_result = {} # key:next_tokennext_smi, value:(smi, avg_score)
for orig_smi in self.next_smiles:
depth = 0
smi_que = [orig_smi]
max_smi = None
max_score = -10000
while depth < self.rollout_depth:
input_conditional = []
for next_smi in smi_que:
if Chem.MolFromSmiles(next_smi) is not None:
indices = template_prediction(self.GCN_model, next_smi, num_sampling=self.roll_num_sampling, GCN_device=self.GCN_device)
matched_indices = check_templates(indices, next_smi, self.r_dict)
for t in matched_indices:
input_conditional.append(smi_tokenizer(t + next_smi).split(' '))
if is_empty(input_conditional) == False:
with torch.no_grad():
input_tokens = self.transforms(input_conditional).to(self.device)
output = greedy_translate(v=self.vocab, model=self.model, input_tokens=input_tokens,
inf_max_len=self.inf_max_len, device=self.device) # output: list of SMILES
scores, max_smi_tmp, max_score_tmp = self.Reward.reward_remove_nan(output)
if max_score_tmp is None:
max_score_tmp = -10000
elif max_score < max_score_tmp:
max_score = max_score_tmp
max_smi = max_smi_tmp
else:
break
depth += 1
smi_que = output
if max_score > 0:
self.next_smiles[orig_smi] = max_score
self.rollout_result[orig_smi] = (max_smi, max_score)
else:
self.next_smiles[orig_smi] = 0
def backprop(self):
for key, value in self.next_smiles.items():
child = NormalNode(smi=key, c=self.c)
child.template = self.smi_to_template[key]
child.cum_score += value
child.imm_score = value
child.id = self.total_nodes
self.total_nodes += 1
try:
child.rollout_result = self.rollout_result[key]
except KeyError:
child.rollout_result = ('Termination', -10000)
self.current_node.add_Node(child)
max_reward = max(self.next_smiles.values())
self.max_score = max(self.max_score, max_reward)
while self.current_node is not None:
self.current_node.visit += 1
self.current_node.cum_score += max_reward
self.current_node.imm_score = max(self.current_node.imm_score, max_reward)
self.current_node = self.current_node.parent
def search(self, n_step):
n = NormalNode(self.init_smiles)
self.root.add_Node(n)
while self.step < n_step:
self.step += 1
if self.n_valid+self.n_invalid == 0:
valid_rate = 0
else:
valid_rate = self.n_valid/(self.n_valid+self.n_invalid)
print(f'step:{self.step}, INIT_SCORE:{self.init_score}, MAX_SCORE:{self.max_score}, VALIDITY:{valid_rate}')
self.select()
print(f'selected_score:{self.current_node.imm_score}')
self.expand()
expand_max = self.expand_max if self.expand_max != 0 else None
if self.no_template == True:
print('no template')
continue
if len(self.next_smiles) != 0:
self.simulate()
self.backprop()
@hydra.main(config_path=None, config_name='config', version_base=None)
def main(cfg: DictConfig):
date = datetime.datetime.now().strftime('%Y%m%d')
num = 1
while True:
out_dir = hydra.utils.get_original_cwd()+f"{cfg['mcts']['out_dir']}/{date}_{num}"
if os.path.isdir(out_dir):
num += 1
continue
else:
os.makedirs(out_dir, exist_ok=True)
break
print(f'{out_dir} was created.')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
''' preprocess '''
src_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_train']
tgt_train_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_train']
src_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['src_valid']
tgt_valid_path = hydra.utils.get_original_cwd()+cfg['mcts']['tgt_valid']
data_dict = make_counter(src_train_path=src_train_path,
tgt_train_path=tgt_train_path,
src_valid_path=src_valid_path,
tgt_valid_path=tgt_valid_path
)
src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True)
'''input smiles set'''
init_smiles = read_smilesset(hydra.utils.get_original_cwd() + cfg['mcts']['in_smiles_file'])
n_valid = 0
n_invalid = 0
mcts = None
''' load model '''
d_model = cfg['model']['dim_model']
num_encoder_layers = cfg['model']['num_encoder_layers']
num_decoder_layers = cfg['model']['num_decoder_layers']
nhead = cfg['model']['nhead']
dropout = cfg['model']['dropout']
dim_ff = cfg['model']['dim_ff']
ckpt = cfg['mcts']['ckpt_Transformer']
model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers,
dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device)
ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'])
model.load_state_dict(ckpt['model_state_dict'])
model.eval()
''' load GCN model'''
dim_GCN = cfg['GCN_train']['dim']
n_conv_hidden = cfg['GCN_train']['n_conv_hidden']
n_mlp_hidden = cfg['GCN_train']['n_mlp_hidden']
ckpt_GCN = cfg['mcts']['ckpt_GCN']
GCN_model = network.MolecularGCN(dim = dim_GCN,
n_conv_hidden = n_conv_hidden,
n_mlp_hidden = n_mlp_hidden,
dropout = dropout).to(device)
GCN_model.load_state_dict(torch.load(hydra.utils.get_original_cwd() + ckpt_GCN))
GCN_model.eval()
'''MCTS'''
reward = getReward(name=cfg['mcts']['reward_name'])
print('REWARD:',cfg['mcts']['reward_name'])
with open(hydra.utils.get_original_cwd() + '/data/label_template.json') as f:
r_dict = json.load(f)
f.close()
with open(hydra.utils.get_original_cwd()+'/data/beamsearch_template_list.txt', 'r') as f:
beam_templates = f.read().splitlines()
f.close()
for start_smiles in init_smiles:
input_smiles = start_smiles
start = time.time()
mcts = ParseSelectMCTS(input_smiles, model=model, GCN_model=GCN_model, vocab=v, Reward=reward,
max_depth=cfg['mcts']['max_depth'], step=0, n_valid=n_valid, n_invalid=n_invalid,
c=cfg['mcts']['ucb_c'], max_r=reward.max_r, r_dict=r_dict, src_transforms=src_transforms,
beam_width=cfg['mcts']['beam_width'], nbest=cfg['mcts']['nbest'],
beam_templates=beam_templates, rollout_depth=cfg['mcts']['rollout_depth'],
roll_num_sampling=cfg['mcts']['roll_num_sampling'], device=device,
GCN_device=device, exp_num_sampling=cfg['mcts']['exp_num_sampling'])
mcts.search(n_step=cfg['mcts']['n_step'])
reward.max_r = mcts.max_score
n_valid += mcts.n_valid
n_invalid += mcts.n_invalid
end = time.time()
print('Elapsed Time: %f' % (end-start))
generated_smiles = pd.DataFrame(columns=['SMILES', 'Reward', 'Imp', 'MW', 'step', 'reaction_path'])
scores, _, _ = reward.reward([start_smiles])
start_reward = scores[0][1]
for kv in mcts.valid_smiles.items():
step, smi, path = kv[0]
step = int(step)
try:
w = Descriptors.MolWt(Chem.MolFromSmiles(smi))
except:
w = 0
if (kv[1] is None) or (start_reward is None):
Imp = None
else:
Imp = kv[1] - start_reward
row = {'SMILES': smi, 'Reward': kv[1], 'Imp': Imp,
'MW': w, 'step': step, 'reaction_path': path}
generated_smiles = generated_smiles.append(row, ignore_index=True)
generated_smiles = generated_smiles.sort_values('Reward', ascending=False)
generated_smiles.to_csv(out_dir + f'/{start_smiles}.csv', index=False)
if __name__ == '__main__':
main()
|