Tracer / data /Utils /utils.py
introvoyz041's picture
Migrated from GitHub
e0d0d76 verified
import numpy as np
import math
from tqdm import tqdm
from copy import deepcopy
import random
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
from rdkit.Chem import Descriptors
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def smi_tokenizer(smi):
'''
Tokenize a SMILES molecule or reaction
'''
import re
pattern = '(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])'
regex = re.compile(pattern)
tokens = [token for token in regex.findall(smi)]
assert smi == ''.join(tokens)
return ' '.join(tokens)
class Node:
def __init__(self):
self.parent = None
self.template = None
self.path = []
self.depth = -100
self.visit = 1
self.children = []
self.imm_score = 0
self.cum_score = 0
self.c = 1
self.id = -1
self.rollout_result = ('None', -1000)
def add_Node(self, c):
c.parent = self
c.depth = self.depth + 1
self.children.append(c)
def calc_UCB(self):
if self.visit == 0:
ucb = 1e+6
else:
ucb = self.cum_score/self.visit + self.c*math.sqrt(2*math.log(self.parent.visit)/self.visit)
return ucb
def select_children(self):
children_ucb = []
for cn in self.children:
children_ucb.append(cn.calc_UCB())
max_ind = np.random.choice(np.where(np.array(children_ucb) == max(children_ucb))[0])
return self.children[max_ind]
def select_children_rand(self):
indices = list(range(0, len(self.children)))
ind = np.random.choice(indices)
return self.children[ind]
class RootNode(Node):
def __init__(self, c=1/np.sqrt(2)):
super().__init__()
self.smi = '&&'
self.depth = 0
self.c = c
class NormalNode(Node):
def __init__(self, smi, c=1/np.sqrt(2)):
super().__init__()
self.smi = smi
self.c = c
self.template = None
def remove_Node(self):
self.parent.children.remove(self)
def read_smilesset(path):
smiles_list = []
with open(path) as f:
for smiles in f:
smiles_list.append(smiles.rstrip())
return smiles_list
# caluculate the number of parameters
def tally_parameters(model):
n_params = sum([p.nelement() for p in model.parameters()])
enc = 0
dec = 0
for name, param in model.named_parameters():
if 'encoder' in name:
enc += param.nelement()
elif 'decoder' or 'generator' in name:
dec += param.nelement()
return n_params, enc, dec
class EarlyStopping:
def __init__(self, patience=10, ckpt_dir=None):
'''引数: 最小値の非更新数カウンタ、表示設定、モデル格納path'''
self.patience = patience #設定ストップカウンタ
self.counter = 0 #現在のカウンタ値
self.best_score = None #ベストスコア
self.early_stop = False #ストップフラグ
self.val_loss_min = np.Inf #前回のベストスコア記憶用
self.path = ckpt_dir #ベストモデル格納path
def __call__(self, val_loss, step, optimizer, cur_loss, model):
'''
特殊(call)メソッド
実際に学習ループ内で最小lossを更新したか否かを計算させる部分
'''
score = -val_loss
if self.best_score is None: #1Epoch目の処理
self.best_score = score #1Epoch目はそのままベストスコアとして記録する
self.checkpoint(val_loss, step, optimizer, cur_loss, model) #記録後にモデルを保存してスコア表示する
elif score < self.best_score: # ベストスコアを更新できなかった場合
self.counter += 1 #ストップカウンタを+1
print(f'Validation loss increased ({self.val_loss_min:.6f} --> {val_loss:.6f}).')
self.checkpoint(val_loss, step, optimizer, cur_loss, model)
print(f'EarlyStopping counter: {self.counter} out of {self.patience}') #現在のカウンタを表示する
if self.counter >= self.patience: #設定カウントを上回ったらストップフラグをTrueに変更
self.early_stop = True
else: #ベストスコアを更新した場合
self.best_score = score #ベストスコアを上書き
print(f'Validation loss decreased! ({self.val_loss_min:.6f} --> {val_loss:.6f}) Saving model ...')
self.checkpoint(val_loss, step, optimizer, cur_loss, model) #モデルを保存してスコア表示
self.counter = 0 #ストップカウンタリセット
def checkpoint(self, val_loss, step, optimizer, cur_loss, model):
torch.save({'step': step,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': cur_loss,}, f'{self.path}/ckpt_{step+1}.pth')
self.val_loss_min = val_loss #その時のlossを記録する
class AverageMeter(object):
'''Computes and stores the average and current value'''
def __init__(self):
self.reset()
def reset(self):
self.value = 0 # latest value
self.avg = 0
self.sum = 0
self.count = 0
def update(self, value, n=1):
self.value = value
self.sum += value * n
self.count += n
self.avg = self.sum / self.count
# def accuracy(output, target, batch_size, v=None):
# '''
# Computes the accuracy of top1 prediction
# output: (seq_length*batch_size, num_tokens)
# target: (seq_length*batch_size)
# '''
# pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
# true_pos = torch.nonzero(pad_mask).squeeze().tolist()
# out_extracted = output[true_pos]
# t_extracted = target[true_pos]
# _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
# pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
# correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
# # Tensor.eq: compute element-wise equality, correct: bool matrix
# correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
# # compute accuracy per whole molecule
# target = target.reshape(-1, batch_size)
# output = output.reshape(-1, batch_size, v.__len__())
# _, pred = output.topk(10, 2, True, True)
# top1, top5, top10 = pred[:, :, 0], pred[:, :, 0:4], pred[:, :, 0:9]
# pred_list = [top1, top5, top10]
# perfect_acc_list = []
# EOS_token = v['<eos>']
# for pred in pred_list:
# correct_cum = 0
# for i in range(batch_size):
# t = target[:, i].tolist()
# eos_idx = t.index(EOS_token)
# t = t[0:eos_idx]
# p = pred[:, i].tolist()
# p = p[0:len(t)]
# if t == p:
# correct_cum += 1
# perfect_acc_list.append(correct_cum / batch_size)
# return correct_rate.item(), perfect_acc_list
def accuracy(output, target, batch_size, v=None):
'''
Computes the accuracy of top1 prediction
output: (seq_length*batch_size, num_tokens)
target: (seq_length*batch_size)
'''
pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
true_pos = torch.nonzero(pad_mask).squeeze().tolist()
out_extracted = output[true_pos]
t_extracted = target[true_pos]
_, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
# Tensor.eq: compute element-wise equality, correct: bool matrix
correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
# compute accuracy per whole molecule
target = target.reshape(-1, batch_size)
output = output.reshape(-1, batch_size, v.__len__())
_, pred = output.topk(1, 2, True, True)
pred = pred.squeeze() # (seq, batch) -> (batch, seq)
correct_cum = 0
EOS_token = v['<eos>']
for i in range(batch_size):
t = target[:, i].tolist()
eos_idx = t.index(EOS_token)
t = t[0:eos_idx]
p = pred[:, i].tolist()
p = p[0:len(t)]
if t == p:
correct_cum += 1
perfect_acc = correct_cum / batch_size
return correct_rate.item(), perfect_acc
def calc_topk_perfect_acc(x, target, batch_size, EOS):
'''
x: predicted tensor of shape (seq, batch, k)
target: (seq, batch)
'''
correct_cum = 0
if x.dim() < 3:
x = x.unsqueeze(-1)
for i in range(batch_size):
t = target[:, i].tolist()
eos_idx = t.index(EOS)
t = t[0:eos_idx]
for j in range(x.size(2)):
p = x[:, i, j].tolist()
p = p[0:len(t)]
if t == p:
correct_cum += 1
break
return correct_cum / batch_size
def MW_checker(mol, threshold:int = 500):
MW = Descriptors.ExactMolWt(mol)
if MW > threshold:
return False
else:
return True
def is_empty(li):
return all(not sublist for sublist in li)
def torch_fix_seed(seed=42):
# Python random
random.seed(seed)
# Numpy
np.random.seed(seed)
# Pytorch
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms = True
# 例えばimport utils とした場合、そのutils.__name__ にはモジュール名(ファイル名)が格納される
# このファイルをimportで呼び出した場合、print(utils.__name__) の出力結果は'utils'
# ただし、importではなくコマンドラインで直接実行された場合は__name__ に __main__ が格納される
# よって、以下はimportされたときには実行されず、コマンドラインで実行されたときにだけ動く
if __name__ == '__main__':
smiles_list = read_smilesset('Data/input/250k_rndm_zinc_drugs_clean.smi')
vocab = []
for smiles in tqdm(smiles_list):
p = parse_smiles(smiles)
vocab.extend(p)
vocab = list(set(vocab))
vocab.sort()
print(vocab)