|
import numpy as np
|
|
import math
|
|
from tqdm import tqdm
|
|
from copy import deepcopy
|
|
import random
|
|
import numpy as np
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
|
|
from rdkit import RDLogger
|
|
RDLogger.DisableLog('rdApp.*')
|
|
from rdkit.Chem import Descriptors
|
|
|
|
import torch
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
def smi_tokenizer(smi):
|
|
'''
|
|
Tokenize a SMILES molecule or reaction
|
|
'''
|
|
import re
|
|
pattern = '(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])'
|
|
regex = re.compile(pattern)
|
|
tokens = [token for token in regex.findall(smi)]
|
|
assert smi == ''.join(tokens)
|
|
return ' '.join(tokens)
|
|
|
|
class Node:
|
|
def __init__(self):
|
|
self.parent = None
|
|
self.template = None
|
|
self.path = []
|
|
self.depth = -100
|
|
self.visit = 1
|
|
self.children = []
|
|
self.imm_score = 0
|
|
self.cum_score = 0
|
|
self.c = 1
|
|
self.id = -1
|
|
self.rollout_result = ('None', -1000)
|
|
|
|
def add_Node(self, c):
|
|
c.parent = self
|
|
c.depth = self.depth + 1
|
|
self.children.append(c)
|
|
|
|
def calc_UCB(self):
|
|
if self.visit == 0:
|
|
ucb = 1e+6
|
|
else:
|
|
ucb = self.cum_score/self.visit + self.c*math.sqrt(2*math.log(self.parent.visit)/self.visit)
|
|
return ucb
|
|
|
|
def select_children(self):
|
|
children_ucb = []
|
|
for cn in self.children:
|
|
children_ucb.append(cn.calc_UCB())
|
|
max_ind = np.random.choice(np.where(np.array(children_ucb) == max(children_ucb))[0])
|
|
return self.children[max_ind]
|
|
|
|
def select_children_rand(self):
|
|
indices = list(range(0, len(self.children)))
|
|
ind = np.random.choice(indices)
|
|
return self.children[ind]
|
|
|
|
|
|
class RootNode(Node):
|
|
def __init__(self, c=1/np.sqrt(2)):
|
|
super().__init__()
|
|
self.smi = '&&'
|
|
self.depth = 0
|
|
|
|
self.c = c
|
|
|
|
class NormalNode(Node):
|
|
def __init__(self, smi, c=1/np.sqrt(2)):
|
|
super().__init__()
|
|
self.smi = smi
|
|
self.c = c
|
|
self.template = None
|
|
|
|
def remove_Node(self):
|
|
self.parent.children.remove(self)
|
|
|
|
def read_smilesset(path):
|
|
smiles_list = []
|
|
with open(path) as f:
|
|
for smiles in f:
|
|
smiles_list.append(smiles.rstrip())
|
|
|
|
return smiles_list
|
|
|
|
|
|
def tally_parameters(model):
|
|
n_params = sum([p.nelement() for p in model.parameters()])
|
|
enc = 0
|
|
dec = 0
|
|
for name, param in model.named_parameters():
|
|
if 'encoder' in name:
|
|
enc += param.nelement()
|
|
elif 'decoder' or 'generator' in name:
|
|
dec += param.nelement()
|
|
return n_params, enc, dec
|
|
|
|
|
|
class EarlyStopping:
|
|
def __init__(self, patience=10, ckpt_dir=None):
|
|
'''引数: 最小値の非更新数カウンタ、表示設定、モデル格納path'''
|
|
|
|
self.patience = patience
|
|
self.counter = 0
|
|
self.best_score = None
|
|
self.early_stop = False
|
|
self.val_loss_min = np.Inf
|
|
self.path = ckpt_dir
|
|
|
|
def __call__(self, val_loss, step, optimizer, cur_loss, model):
|
|
'''
|
|
特殊(call)メソッド
|
|
実際に学習ループ内で最小lossを更新したか否かを計算させる部分
|
|
'''
|
|
score = -val_loss
|
|
|
|
if self.best_score is None:
|
|
self.best_score = score
|
|
self.checkpoint(val_loss, step, optimizer, cur_loss, model)
|
|
elif score < self.best_score:
|
|
self.counter += 1
|
|
print(f'Validation loss increased ({self.val_loss_min:.6f} --> {val_loss:.6f}).')
|
|
self.checkpoint(val_loss, step, optimizer, cur_loss, model)
|
|
print(f'EarlyStopping counter: {self.counter} out of {self.patience}')
|
|
if self.counter >= self.patience:
|
|
self.early_stop = True
|
|
else:
|
|
self.best_score = score
|
|
print(f'Validation loss decreased! ({self.val_loss_min:.6f} --> {val_loss:.6f}) Saving model ...')
|
|
self.checkpoint(val_loss, step, optimizer, cur_loss, model)
|
|
self.counter = 0
|
|
|
|
def checkpoint(self, val_loss, step, optimizer, cur_loss, model):
|
|
torch.save({'step': step,
|
|
'model_state_dict': model.state_dict(),
|
|
'optimizer_state_dict': optimizer.state_dict(),
|
|
'loss': cur_loss,}, f'{self.path}/ckpt_{step+1}.pth')
|
|
self.val_loss_min = val_loss
|
|
|
|
class AverageMeter(object):
|
|
'''Computes and stores the average and current value'''
|
|
def __init__(self):
|
|
self.reset()
|
|
|
|
def reset(self):
|
|
self.value = 0
|
|
self.avg = 0
|
|
self.sum = 0
|
|
self.count = 0
|
|
|
|
def update(self, value, n=1):
|
|
self.value = value
|
|
self.sum += value * n
|
|
self.count += n
|
|
self.avg = self.sum / self.count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def accuracy(output, target, batch_size, v=None):
|
|
'''
|
|
Computes the accuracy of top1 prediction
|
|
|
|
output: (seq_length*batch_size, num_tokens)
|
|
target: (seq_length*batch_size)
|
|
'''
|
|
|
|
pad_mask = (target != v['<pad>'])
|
|
true_pos = torch.nonzero(pad_mask).squeeze().tolist()
|
|
out_extracted = output[true_pos]
|
|
t_extracted = target[true_pos]
|
|
_, pred = out_extracted.topk(1, 1, True, True)
|
|
pred = pred.t()
|
|
correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred))
|
|
|
|
correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
|
|
|
|
|
|
target = target.reshape(-1, batch_size)
|
|
output = output.reshape(-1, batch_size, v.__len__())
|
|
_, pred = output.topk(1, 2, True, True)
|
|
pred = pred.squeeze()
|
|
correct_cum = 0
|
|
EOS_token = v['<eos>']
|
|
for i in range(batch_size):
|
|
t = target[:, i].tolist()
|
|
eos_idx = t.index(EOS_token)
|
|
t = t[0:eos_idx]
|
|
p = pred[:, i].tolist()
|
|
p = p[0:len(t)]
|
|
if t == p:
|
|
correct_cum += 1
|
|
perfect_acc = correct_cum / batch_size
|
|
return correct_rate.item(), perfect_acc
|
|
|
|
def calc_topk_perfect_acc(x, target, batch_size, EOS):
|
|
'''
|
|
x: predicted tensor of shape (seq, batch, k)
|
|
target: (seq, batch)
|
|
'''
|
|
correct_cum = 0
|
|
if x.dim() < 3:
|
|
x = x.unsqueeze(-1)
|
|
for i in range(batch_size):
|
|
t = target[:, i].tolist()
|
|
eos_idx = t.index(EOS)
|
|
t = t[0:eos_idx]
|
|
for j in range(x.size(2)):
|
|
p = x[:, i, j].tolist()
|
|
p = p[0:len(t)]
|
|
if t == p:
|
|
correct_cum += 1
|
|
break
|
|
return correct_cum / batch_size
|
|
|
|
|
|
def MW_checker(mol, threshold:int = 500):
|
|
MW = Descriptors.ExactMolWt(mol)
|
|
if MW > threshold:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
def is_empty(li):
|
|
return all(not sublist for sublist in li)
|
|
|
|
def torch_fix_seed(seed=42):
|
|
|
|
random.seed(seed)
|
|
|
|
np.random.seed(seed)
|
|
|
|
torch.manual_seed(seed)
|
|
torch.cuda.manual_seed(seed)
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.use_deterministic_algorithms = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
smiles_list = read_smilesset('Data/input/250k_rndm_zinc_drugs_clean.smi')
|
|
vocab = []
|
|
for smiles in tqdm(smiles_list):
|
|
p = parse_smiles(smiles)
|
|
vocab.extend(p)
|
|
|
|
vocab = list(set(vocab))
|
|
vocab.sort()
|
|
print(vocab)
|
|
|