File size: 10,957 Bytes
e0d0d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import numpy as np
import math
from tqdm import tqdm
from copy import deepcopy
import random
import numpy as np
import warnings
warnings.filterwarnings('ignore')

from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
from rdkit.Chem import Descriptors

import torch

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def smi_tokenizer(smi):
    '''

    Tokenize a SMILES molecule or reaction

    '''
    import re
    pattern =  '(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])'
    regex = re.compile(pattern)
    tokens = [token for token in regex.findall(smi)]
    assert smi == ''.join(tokens)
    return ' '.join(tokens)

class Node:
    def __init__(self):
        self.parent = None
        self.template = None
        self.path = []
        self.depth = -100
        self.visit = 1
        self.children = []
        self.imm_score = 0
        self.cum_score = 0
        self.c = 1
        self.id = -1
        self.rollout_result = ('None', -1000)

    def add_Node(self, c):
        c.parent = self
        c.depth = self.depth + 1
        self.children.append(c)

    def calc_UCB(self):
        if self.visit == 0:
            ucb = 1e+6
        else:
            ucb = self.cum_score/self.visit + self.c*math.sqrt(2*math.log(self.parent.visit)/self.visit)
        return ucb

    def select_children(self):
        children_ucb = []
        for cn in self.children:
            children_ucb.append(cn.calc_UCB())
        max_ind = np.random.choice(np.where(np.array(children_ucb) == max(children_ucb))[0])
        return self.children[max_ind]

    def select_children_rand(self):
        indices = list(range(0, len(self.children)))
        ind = np.random.choice(indices)
        return self.children[ind]


class RootNode(Node):
    def __init__(self, c=1/np.sqrt(2)):
        super().__init__()
        self.smi = '&&'
        self.depth = 0

        self.c = c

class NormalNode(Node):
    def __init__(self, smi, c=1/np.sqrt(2)):
        super().__init__()
        self.smi = smi
        self.c = c
        self.template = None

    def remove_Node(self):
        self.parent.children.remove(self)

def read_smilesset(path):
    smiles_list = []
    with open(path) as f:
        for smiles in f:
            smiles_list.append(smiles.rstrip())

    return smiles_list

# caluculate the number of parameters
def tally_parameters(model):
    n_params = sum([p.nelement() for p in model.parameters()])
    enc = 0
    dec = 0
    for name, param in model.named_parameters():
        if 'encoder' in name:
            enc += param.nelement()
        elif 'decoder' or 'generator' in name:
            dec += param.nelement()
    return n_params, enc, dec


class EarlyStopping:
    def __init__(self, patience=10, ckpt_dir=None):
        '''引数: 最小値の非更新数カウンタ、表示設定、モデル格納path'''

        self.patience = patience    #設定ストップカウンタ
        self.counter = 0            #現在のカウンタ値
        self.best_score = None      #ベストスコア
        self.early_stop = False     #ストップフラグ
        self.val_loss_min = np.Inf   #前回のベストスコア記憶用
        self.path = ckpt_dir         #ベストモデル格納path

    def __call__(self, val_loss, step, optimizer, cur_loss, model):
        '''

        特殊(call)メソッド

        実際に学習ループ内で最小lossを更新したか否かを計算させる部分

        '''
        score = -val_loss

        if self.best_score is None:  #1Epoch目の処理
            self.best_score = score   #1Epoch目はそのままベストスコアとして記録する
            self.checkpoint(val_loss, step, optimizer, cur_loss, model)  #記録後にモデルを保存してスコア表示する
        elif score < self.best_score:  # ベストスコアを更新できなかった場合
            self.counter += 1   #ストップカウンタを+1
            print(f'Validation loss increased ({self.val_loss_min:.6f} --> {val_loss:.6f}).')
            self.checkpoint(val_loss, step, optimizer, cur_loss, model)
            print(f'EarlyStopping counter: {self.counter} out of {self.patience}')  #現在のカウンタを表示する 
            if self.counter >= self.patience:  #設定カウントを上回ったらストップフラグをTrueに変更
                self.early_stop = True
        else:  #ベストスコアを更新した場合
            self.best_score = score  #ベストスコアを上書き
            print(f'Validation loss decreased! ({self.val_loss_min:.6f} --> {val_loss:.6f}) Saving model ...')
            self.checkpoint(val_loss, step, optimizer, cur_loss, model)  #モデルを保存してスコア表示
            self.counter = 0  #ストップカウンタリセット

    def checkpoint(self, val_loss, step, optimizer, cur_loss, model):
        torch.save({'step': step,
                    'model_state_dict': model.state_dict(),
                    'optimizer_state_dict': optimizer.state_dict(),
                    'loss': cur_loss,}, f'{self.path}/ckpt_{step+1}.pth')
        self.val_loss_min = val_loss  #その時のlossを記録する

class AverageMeter(object):
    '''Computes and stores the average and current value'''
    def __init__(self):
        self.reset()

    def reset(self):
        self.value = 0 # latest value
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, value, n=1):
        self.value = value
        self.sum += value * n
        self.count += n
        self.avg = self.sum / self.count

# def accuracy(output, target, batch_size, v=None):
#     '''
#     Computes the accuracy of top1 prediction
    
#     output: (seq_length*batch_size, num_tokens)
#     target: (seq_length*batch_size)
#     '''
    
#     pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
#     true_pos = torch.nonzero(pad_mask).squeeze().tolist()
#     out_extracted = output[true_pos]
#     t_extracted = target[true_pos]
#     _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
#     pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
#     correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
#     # Tensor.eq: compute element-wise equality, correct: bool matrix
#     correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
    
#     # compute accuracy per whole molecule
#     target = target.reshape(-1, batch_size)
#     output = output.reshape(-1, batch_size, v.__len__())
#     _, pred = output.topk(10, 2, True, True)
#     top1, top5, top10 = pred[:, :, 0], pred[:, :, 0:4], pred[:, :, 0:9]
#     pred_list = [top1, top5, top10]
#     perfect_acc_list = []
#     EOS_token = v['<eos>']
#     for pred in pred_list:
#         correct_cum = 0
#         for i in range(batch_size):
#             t = target[:, i].tolist()
#             eos_idx = t.index(EOS_token)
#             t = t[0:eos_idx]
#             p = pred[:, i].tolist()
#             p = p[0:len(t)]
#             if t == p:
#                 correct_cum += 1
#         perfect_acc_list.append(correct_cum / batch_size)
#     return correct_rate.item(), perfect_acc_list

def accuracy(output, target, batch_size, v=None):
    '''

    Computes the accuracy of top1 prediction

    

    output: (seq_length*batch_size, num_tokens)

    target: (seq_length*batch_size)

    '''
    
    pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
    true_pos = torch.nonzero(pad_mask).squeeze().tolist()
    out_extracted = output[true_pos]
    t_extracted = target[true_pos]
    _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
    pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
    correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
    # Tensor.eq: compute element-wise equality, correct: bool matrix
    correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
    
    # compute accuracy per whole molecule
    target = target.reshape(-1, batch_size)
    output = output.reshape(-1, batch_size, v.__len__())
    _, pred = output.topk(1, 2, True, True)
    pred = pred.squeeze() # (seq, batch) -> (batch, seq)
    correct_cum = 0
    EOS_token = v['<eos>']
    for i in range(batch_size):
        t = target[:, i].tolist()
        eos_idx = t.index(EOS_token)
        t = t[0:eos_idx]
        p = pred[:, i].tolist()
        p = p[0:len(t)]
        if t == p:
            correct_cum += 1
    perfect_acc = correct_cum / batch_size
    return correct_rate.item(), perfect_acc

def calc_topk_perfect_acc(x, target, batch_size, EOS):
    '''

    x: predicted tensor of shape (seq, batch, k)

    target: (seq, batch)

    '''
    correct_cum = 0
    if x.dim() < 3:
        x = x.unsqueeze(-1)
    for i in range(batch_size):
        t = target[:, i].tolist()
        eos_idx = t.index(EOS)
        t = t[0:eos_idx]
        for j in range(x.size(2)):
            p = x[:, i, j].tolist()
            p = p[0:len(t)]
            if t == p:
                correct_cum += 1
                break
    return correct_cum / batch_size
    

def MW_checker(mol, threshold:int = 500):
    MW = Descriptors.ExactMolWt(mol)
    if MW > threshold:
        return False
    else:
        return True

def is_empty(li):
    return all(not sublist for sublist in li)

def torch_fix_seed(seed=42):
    # Python random
    random.seed(seed)
    # Numpy
    np.random.seed(seed)
    # Pytorch
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.use_deterministic_algorithms = True
    

# 例えばimport utils とした場合、そのutils.__name__ にはモジュール名(ファイル名)が格納される
# このファイルをimportで呼び出した場合、print(utils.__name__) の出力結果は'utils'
# ただし、importではなくコマンドラインで直接実行された場合は__name__ に __main__ が格納される
# よって、以下はimportされたときには実行されず、コマンドラインで実行されたときにだけ動く
if __name__ == '__main__':
    smiles_list = read_smilesset('Data/input/250k_rndm_zinc_drugs_clean.smi')
    vocab = []
    for smiles in tqdm(smiles_list):
        p = parse_smiles(smiles)
        vocab.extend(p)

    vocab = list(set(vocab))
    vocab.sort()
    print(vocab)