File size: 10,957 Bytes
e0d0d76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import numpy as np
import math
from tqdm import tqdm
from copy import deepcopy
import random
import numpy as np
import warnings
warnings.filterwarnings('ignore')
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
from rdkit.Chem import Descriptors
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def smi_tokenizer(smi):
'''
Tokenize a SMILES molecule or reaction
'''
import re
pattern = '(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])'
regex = re.compile(pattern)
tokens = [token for token in regex.findall(smi)]
assert smi == ''.join(tokens)
return ' '.join(tokens)
class Node:
def __init__(self):
self.parent = None
self.template = None
self.path = []
self.depth = -100
self.visit = 1
self.children = []
self.imm_score = 0
self.cum_score = 0
self.c = 1
self.id = -1
self.rollout_result = ('None', -1000)
def add_Node(self, c):
c.parent = self
c.depth = self.depth + 1
self.children.append(c)
def calc_UCB(self):
if self.visit == 0:
ucb = 1e+6
else:
ucb = self.cum_score/self.visit + self.c*math.sqrt(2*math.log(self.parent.visit)/self.visit)
return ucb
def select_children(self):
children_ucb = []
for cn in self.children:
children_ucb.append(cn.calc_UCB())
max_ind = np.random.choice(np.where(np.array(children_ucb) == max(children_ucb))[0])
return self.children[max_ind]
def select_children_rand(self):
indices = list(range(0, len(self.children)))
ind = np.random.choice(indices)
return self.children[ind]
class RootNode(Node):
def __init__(self, c=1/np.sqrt(2)):
super().__init__()
self.smi = '&&'
self.depth = 0
self.c = c
class NormalNode(Node):
def __init__(self, smi, c=1/np.sqrt(2)):
super().__init__()
self.smi = smi
self.c = c
self.template = None
def remove_Node(self):
self.parent.children.remove(self)
def read_smilesset(path):
smiles_list = []
with open(path) as f:
for smiles in f:
smiles_list.append(smiles.rstrip())
return smiles_list
# caluculate the number of parameters
def tally_parameters(model):
n_params = sum([p.nelement() for p in model.parameters()])
enc = 0
dec = 0
for name, param in model.named_parameters():
if 'encoder' in name:
enc += param.nelement()
elif 'decoder' or 'generator' in name:
dec += param.nelement()
return n_params, enc, dec
class EarlyStopping:
def __init__(self, patience=10, ckpt_dir=None):
'''引数: 最小値の非更新数カウンタ、表示設定、モデル格納path'''
self.patience = patience #設定ストップカウンタ
self.counter = 0 #現在のカウンタ値
self.best_score = None #ベストスコア
self.early_stop = False #ストップフラグ
self.val_loss_min = np.Inf #前回のベストスコア記憶用
self.path = ckpt_dir #ベストモデル格納path
def __call__(self, val_loss, step, optimizer, cur_loss, model):
'''
特殊(call)メソッド
実際に学習ループ内で最小lossを更新したか否かを計算させる部分
'''
score = -val_loss
if self.best_score is None: #1Epoch目の処理
self.best_score = score #1Epoch目はそのままベストスコアとして記録する
self.checkpoint(val_loss, step, optimizer, cur_loss, model) #記録後にモデルを保存してスコア表示する
elif score < self.best_score: # ベストスコアを更新できなかった場合
self.counter += 1 #ストップカウンタを+1
print(f'Validation loss increased ({self.val_loss_min:.6f} --> {val_loss:.6f}).')
self.checkpoint(val_loss, step, optimizer, cur_loss, model)
print(f'EarlyStopping counter: {self.counter} out of {self.patience}') #現在のカウンタを表示する
if self.counter >= self.patience: #設定カウントを上回ったらストップフラグをTrueに変更
self.early_stop = True
else: #ベストスコアを更新した場合
self.best_score = score #ベストスコアを上書き
print(f'Validation loss decreased! ({self.val_loss_min:.6f} --> {val_loss:.6f}) Saving model ...')
self.checkpoint(val_loss, step, optimizer, cur_loss, model) #モデルを保存してスコア表示
self.counter = 0 #ストップカウンタリセット
def checkpoint(self, val_loss, step, optimizer, cur_loss, model):
torch.save({'step': step,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': cur_loss,}, f'{self.path}/ckpt_{step+1}.pth')
self.val_loss_min = val_loss #その時のlossを記録する
class AverageMeter(object):
'''Computes and stores the average and current value'''
def __init__(self):
self.reset()
def reset(self):
self.value = 0 # latest value
self.avg = 0
self.sum = 0
self.count = 0
def update(self, value, n=1):
self.value = value
self.sum += value * n
self.count += n
self.avg = self.sum / self.count
# def accuracy(output, target, batch_size, v=None):
# '''
# Computes the accuracy of top1 prediction
# output: (seq_length*batch_size, num_tokens)
# target: (seq_length*batch_size)
# '''
# pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
# true_pos = torch.nonzero(pad_mask).squeeze().tolist()
# out_extracted = output[true_pos]
# t_extracted = target[true_pos]
# _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
# pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
# correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
# # Tensor.eq: compute element-wise equality, correct: bool matrix
# correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
# # compute accuracy per whole molecule
# target = target.reshape(-1, batch_size)
# output = output.reshape(-1, batch_size, v.__len__())
# _, pred = output.topk(10, 2, True, True)
# top1, top5, top10 = pred[:, :, 0], pred[:, :, 0:4], pred[:, :, 0:9]
# pred_list = [top1, top5, top10]
# perfect_acc_list = []
# EOS_token = v['<eos>']
# for pred in pred_list:
# correct_cum = 0
# for i in range(batch_size):
# t = target[:, i].tolist()
# eos_idx = t.index(EOS_token)
# t = t[0:eos_idx]
# p = pred[:, i].tolist()
# p = p[0:len(t)]
# if t == p:
# correct_cum += 1
# perfect_acc_list.append(correct_cum / batch_size)
# return correct_rate.item(), perfect_acc_list
def accuracy(output, target, batch_size, v=None):
'''
Computes the accuracy of top1 prediction
output: (seq_length*batch_size, num_tokens)
target: (seq_length*batch_size)
'''
pad_mask = (target != v['<pad>']) # padはFalse, それ以外はTrue
true_pos = torch.nonzero(pad_mask).squeeze().tolist()
out_extracted = output[true_pos]
t_extracted = target[true_pos]
_, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True)
pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch)
correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch)
# Tensor.eq: compute element-wise equality, correct: bool matrix
correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted)
# compute accuracy per whole molecule
target = target.reshape(-1, batch_size)
output = output.reshape(-1, batch_size, v.__len__())
_, pred = output.topk(1, 2, True, True)
pred = pred.squeeze() # (seq, batch) -> (batch, seq)
correct_cum = 0
EOS_token = v['<eos>']
for i in range(batch_size):
t = target[:, i].tolist()
eos_idx = t.index(EOS_token)
t = t[0:eos_idx]
p = pred[:, i].tolist()
p = p[0:len(t)]
if t == p:
correct_cum += 1
perfect_acc = correct_cum / batch_size
return correct_rate.item(), perfect_acc
def calc_topk_perfect_acc(x, target, batch_size, EOS):
'''
x: predicted tensor of shape (seq, batch, k)
target: (seq, batch)
'''
correct_cum = 0
if x.dim() < 3:
x = x.unsqueeze(-1)
for i in range(batch_size):
t = target[:, i].tolist()
eos_idx = t.index(EOS)
t = t[0:eos_idx]
for j in range(x.size(2)):
p = x[:, i, j].tolist()
p = p[0:len(t)]
if t == p:
correct_cum += 1
break
return correct_cum / batch_size
def MW_checker(mol, threshold:int = 500):
MW = Descriptors.ExactMolWt(mol)
if MW > threshold:
return False
else:
return True
def is_empty(li):
return all(not sublist for sublist in li)
def torch_fix_seed(seed=42):
# Python random
random.seed(seed)
# Numpy
np.random.seed(seed)
# Pytorch
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.use_deterministic_algorithms = True
# 例えばimport utils とした場合、そのutils.__name__ にはモジュール名(ファイル名)が格納される
# このファイルをimportで呼び出した場合、print(utils.__name__) の出力結果は'utils'
# ただし、importではなくコマンドラインで直接実行された場合は__name__ に __main__ が格納される
# よって、以下はimportされたときには実行されず、コマンドラインで実行されたときにだけ動く
if __name__ == '__main__':
smiles_list = read_smilesset('Data/input/250k_rndm_zinc_drugs_clean.smi')
vocab = []
for smiles in tqdm(smiles_list):
p = parse_smiles(smiles)
vocab.extend(p)
vocab = list(set(vocab))
vocab.sort()
print(vocab)
|