url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
tauto
case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), ¬occursIn t a✝ → admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : ¬(t = a✝¹ ∨ occursIn t a✝) ⊢ admitsAux t v (binders ∪ {a✝¹}) (replaceFreeAux v t (binders ∪ {a✝¹}) a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFree_admits
[908, 1]
[916, 44]
simp only [replaceFree]
F : Formula v t : VarName h1 : ¬occursIn t F ⊢ admits t v (replaceFree v t F)
F : Formula v t : VarName h1 : ¬occursIn t F ⊢ admits t v (replaceFreeAux v t ∅ F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFree_admits
[908, 1]
[916, 44]
simp only [admits]
F : Formula v t : VarName h1 : ¬occursIn t F ⊢ admits t v (replaceFreeAux v t ∅ F)
F : Formula v t : VarName h1 : ¬occursIn t F ⊢ admitsAux t v ∅ (replaceFreeAux v t ∅ F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFree_admits
[908, 1]
[916, 44]
exact replaceFreeAux_admitsAux F v t ∅ h1
F : Formula v t : VarName h1 : ¬occursIn t F ⊢ admitsAux t v ∅ (replaceFreeAux v t ∅ F)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
induction F generalizing S
F : Formula v u : VarName S T : Finset VarName h1 : admitsAux v u S F h2 : u ∉ T ⊢ admitsAux v u (S ∪ T) F
case pred_const_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u S (pred_const_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u S (pred_var_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (pred_var_ a✝¹ a✝) case eq_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : VarName S : Finset VarName h1 : admitsAux v u S (eq_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (eq_ a✝¹ a✝) case true_ v u : VarName T : Finset VarName h2 : u ∉ T S : Finset VarName h1 : admitsAux v u S true_ ⊢ admitsAux v u (S ∪ T) true_ case false_ v u : VarName T : Finset VarName h2 : u ∉ T S : Finset VarName h1 : admitsAux v u S false_ ⊢ admitsAux v u (S ∪ T) false_ case not_ v u : VarName T : Finset VarName h2 : u ∉ T a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝.not_ ⊢ admitsAux v u (S ∪ T) a✝.not_ case imp_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.imp_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.imp_ a✝) case and_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.and_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.and_ a✝) case or_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.or_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.or_ a✝) case iff_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.iff_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.iff_ a✝) case forall_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (forall_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (forall_ a✝¹ a✝) case exists_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (exists_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (exists_ a✝¹ a✝) case def_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : admitsAux v u S (def_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
all_goals simp only [admitsAux] at h1 simp only [admitsAux]
case pred_const_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u S (pred_const_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u S (pred_var_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (pred_var_ a✝¹ a✝) case eq_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : VarName S : Finset VarName h1 : admitsAux v u S (eq_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (eq_ a✝¹ a✝) case true_ v u : VarName T : Finset VarName h2 : u ∉ T S : Finset VarName h1 : admitsAux v u S true_ ⊢ admitsAux v u (S ∪ T) true_ case false_ v u : VarName T : Finset VarName h2 : u ∉ T S : Finset VarName h1 : admitsAux v u S false_ ⊢ admitsAux v u (S ∪ T) false_ case not_ v u : VarName T : Finset VarName h2 : u ∉ T a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝.not_ ⊢ admitsAux v u (S ∪ T) a✝.not_ case imp_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.imp_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.imp_ a✝) case and_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.and_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.and_ a✝) case or_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.or_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.or_ a✝) case iff_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (a✝¹.iff_ a✝) ⊢ admitsAux v u (S ∪ T) (a✝¹.iff_ a✝) case forall_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (forall_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (forall_ a✝¹ a✝) case exists_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S (exists_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (exists_ a✝¹ a✝) case def_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : admitsAux v u S (def_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝)
case pred_const_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S ⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T case pred_var_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S ⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T case eq_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : VarName S : Finset VarName h1 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ S → u ∉ S ⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ S ∪ T → u ∉ S ∪ T case not_ v u : VarName T : Finset VarName h2 : u ∉ T a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝ case imp_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ case and_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ case or_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ case iff_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ case forall_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u (S ∪ {a✝¹}) a✝ ⊢ admitsAux v u (S ∪ T ∪ {a✝¹}) a✝ case exists_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u (S ∪ {a✝¹}) a✝ ⊢ admitsAux v u (S ∪ T ∪ {a✝¹}) a✝ case def_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S ⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
case pred_const_ X xs | pred_var_ X xs | eq_ x y |def_ X xs => simp tauto
v u : VarName T : Finset VarName h2 : u ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs ∧ v ∉ S → u ∉ S ⊢ v ∈ xs ∧ v ∉ S ∪ T → u ∉ S ∪ T
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [Finset.union_right_comm S T {x}] tauto
v u : VarName T : Finset VarName h2 : u ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u S phi → admitsAux v u (S ∪ T) phi S : Finset VarName h1 : admitsAux v u (S ∪ {x}) phi ⊢ admitsAux v u (S ∪ T ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
all_goals tauto
case not_ v u : VarName T : Finset VarName h2 : u ∉ T a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝ case imp_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ case and_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ case or_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ case iff_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
simp only [admitsAux] at h1
case def_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : admitsAux v u S (def_ a✝¹ a✝) ⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝)
case def_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S ⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
simp only [admitsAux]
case def_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S ⊢ admitsAux v u (S ∪ T) (def_ a✝¹ a✝)
case def_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S → u ∉ S ⊢ v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
simp
v u : VarName T : Finset VarName h2 : u ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs ∧ v ∉ S → u ∉ S ⊢ v ∈ xs ∧ v ∉ S ∪ T → u ∉ S ∪ T
v u : VarName T : Finset VarName h2 : u ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs ∧ v ∉ S → u ∉ S ⊢ v ∈ xs → v ∉ S → v ∉ T → u ∉ S ∧ u ∉ T
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
tauto
v u : VarName T : Finset VarName h2 : u ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs ∧ v ∉ S → u ∉ S ⊢ v ∈ xs → v ∉ S → v ∉ T → u ∉ S ∧ u ∉ T
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
simp only [Finset.union_right_comm S T {x}]
v u : VarName T : Finset VarName h2 : u ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u S phi → admitsAux v u (S ∪ T) phi S : Finset VarName h1 : admitsAux v u (S ∪ {x}) phi ⊢ admitsAux v u (S ∪ T ∪ {x}) phi
v u : VarName T : Finset VarName h2 : u ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u S phi → admitsAux v u (S ∪ T) phi S : Finset VarName h1 : admitsAux v u (S ∪ {x}) phi ⊢ admitsAux v u (S ∪ {x} ∪ T) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
tauto
v u : VarName T : Finset VarName h2 : u ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u S phi → admitsAux v u (S ∪ T) phi S : Finset VarName h1 : admitsAux v u (S ∪ {x}) phi ⊢ admitsAux v u (S ∪ {x} ∪ T) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_add_binders
[920, 1]
[940, 10]
tauto
case iff_ v u : VarName T : Finset VarName h2 : u ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u S a✝¹ → admitsAux v u (S ∪ T) a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u S a✝ → admitsAux v u (S ∪ T) a✝ S : Finset VarName h1 : admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ ⊢ admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
induction F generalizing S
F : Formula v u : VarName S T : Finset VarName h1 : admitsAux v u (S ∪ T) F h2 : v ∉ T ⊢ admitsAux v u S F
case pred_const_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (pred_const_ a✝¹ a✝) ⊢ admitsAux v u S (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (pred_var_ a✝¹ a✝) ⊢ admitsAux v u S (pred_var_ a✝¹ a✝) case eq_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (eq_ a✝¹ a✝) ⊢ admitsAux v u S (eq_ a✝¹ a✝) case true_ v u : VarName T : Finset VarName h2 : v ∉ T S : Finset VarName h1 : admitsAux v u (S ∪ T) true_ ⊢ admitsAux v u S true_ case false_ v u : VarName T : Finset VarName h2 : v ∉ T S : Finset VarName h1 : admitsAux v u (S ∪ T) false_ ⊢ admitsAux v u S false_ case not_ v u : VarName T : Finset VarName h2 : v ∉ T a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) a✝.not_ ⊢ admitsAux v u S a✝.not_ case imp_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.imp_ a✝) ⊢ admitsAux v u S (a✝¹.imp_ a✝) case and_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.and_ a✝) ⊢ admitsAux v u S (a✝¹.and_ a✝) case or_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.or_ a✝) ⊢ admitsAux v u S (a✝¹.or_ a✝) case iff_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.iff_ a✝) ⊢ admitsAux v u S (a✝¹.iff_ a✝) case forall_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (forall_ a✝¹ a✝) ⊢ admitsAux v u S (forall_ a✝¹ a✝) case exists_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (exists_ a✝¹ a✝) ⊢ admitsAux v u S (exists_ a✝¹ a✝) case def_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (def_ a✝¹ a✝) ⊢ admitsAux v u S (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
all_goals simp only [admitsAux] at h1 simp only [admitsAux]
case pred_const_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (pred_const_ a✝¹ a✝) ⊢ admitsAux v u S (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (pred_var_ a✝¹ a✝) ⊢ admitsAux v u S (pred_var_ a✝¹ a✝) case eq_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (eq_ a✝¹ a✝) ⊢ admitsAux v u S (eq_ a✝¹ a✝) case true_ v u : VarName T : Finset VarName h2 : v ∉ T S : Finset VarName h1 : admitsAux v u (S ∪ T) true_ ⊢ admitsAux v u S true_ case false_ v u : VarName T : Finset VarName h2 : v ∉ T S : Finset VarName h1 : admitsAux v u (S ∪ T) false_ ⊢ admitsAux v u S false_ case not_ v u : VarName T : Finset VarName h2 : v ∉ T a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) a✝.not_ ⊢ admitsAux v u S a✝.not_ case imp_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.imp_ a✝) ⊢ admitsAux v u S (a✝¹.imp_ a✝) case and_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.and_ a✝) ⊢ admitsAux v u S (a✝¹.and_ a✝) case or_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.or_ a✝) ⊢ admitsAux v u S (a✝¹.or_ a✝) case iff_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (a✝¹.iff_ a✝) ⊢ admitsAux v u S (a✝¹.iff_ a✝) case forall_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (forall_ a✝¹ a✝) ⊢ admitsAux v u S (forall_ a✝¹ a✝) case exists_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) (exists_ a✝¹ a✝) ⊢ admitsAux v u S (exists_ a✝¹ a✝) case def_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (def_ a✝¹ a✝) ⊢ admitsAux v u S (def_ a✝¹ a✝)
case pred_const_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ v ∈ a✝ ∧ v ∉ S → u ∉ S case pred_var_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : PredName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ v ∈ a✝ ∧ v ∉ S → u ∉ S case eq_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : VarName S : Finset VarName h1 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ (v = a✝¹ ∨ v = a✝) ∧ v ∉ S → u ∉ S case not_ v u : VarName T : Finset VarName h2 : v ∉ T a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) a✝ ⊢ admitsAux v u S a✝ case imp_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ ⊢ admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ case and_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ ⊢ admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ case or_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ ⊢ admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ case iff_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ a✝ : Formula a_ih✝¹ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝¹ → admitsAux v u S a✝¹ a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T) a✝¹ ∧ admitsAux v u (S ∪ T) a✝ ⊢ admitsAux v u S a✝¹ ∧ admitsAux v u S a✝ case forall_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T ∪ {a✝¹}) a✝ ⊢ admitsAux v u (S ∪ {a✝¹}) a✝ case exists_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) a✝ → admitsAux v u S a✝ S : Finset VarName h1 : admitsAux v u (S ∪ T ∪ {a✝¹}) a✝ ⊢ admitsAux v u (S ∪ {a✝¹}) a✝ case def_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ v ∈ a✝ ∧ v ∉ S → u ∉ S
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
case pred_const_ X xs | pred_var_ X xs | eq_ x y | def_ X xs => simp at h1 tauto
v u : VarName T : Finset VarName h2 : v ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ v ∈ xs ∧ v ∉ S → u ∉ S
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
case not_ phi phi_ih => exact phi_ih S h1
v u : VarName T : Finset VarName h2 : v ∉ T phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi S : Finset VarName h1 : admitsAux v u (S ∪ T) phi ⊢ admitsAux v u S phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => tauto
v u : VarName T : Finset VarName h2 : v ∉ T phi psi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi psi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) psi → admitsAux v u S psi S : Finset VarName h1 : admitsAux v u (S ∪ T) phi ∧ admitsAux v u (S ∪ T) psi ⊢ admitsAux v u S phi ∧ admitsAux v u S psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [Finset.union_right_comm S T {x}] at h1 tauto
v u : VarName T : Finset VarName h2 : v ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi S : Finset VarName h1 : admitsAux v u (S ∪ T ∪ {x}) phi ⊢ admitsAux v u (S ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
simp only [admitsAux] at h1
case def_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : admitsAux v u (S ∪ T) (def_ a✝¹ a✝) ⊢ admitsAux v u S (def_ a✝¹ a✝)
case def_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ admitsAux v u S (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
simp only [admitsAux]
case def_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ admitsAux v u S (def_ a✝¹ a✝)
case def_ v u : VarName T : Finset VarName h2 : v ∉ T a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ v ∈ a✝ ∧ v ∉ S → u ∉ S
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
simp at h1
v u : VarName T : Finset VarName h2 : v ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs ∧ v ∉ S ∪ T → u ∉ S ∪ T ⊢ v ∈ xs ∧ v ∉ S → u ∉ S
v u : VarName T : Finset VarName h2 : v ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs → v ∉ S → v ∉ T → u ∉ S ∧ u ∉ T ⊢ v ∈ xs ∧ v ∉ S → u ∉ S
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
tauto
v u : VarName T : Finset VarName h2 : v ∉ T X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs → v ∉ S → v ∉ T → u ∉ S ∧ u ∉ T ⊢ v ∈ xs ∧ v ∉ S → u ∉ S
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
exact phi_ih S h1
v u : VarName T : Finset VarName h2 : v ∉ T phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi S : Finset VarName h1 : admitsAux v u (S ∪ T) phi ⊢ admitsAux v u S phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
tauto
v u : VarName T : Finset VarName h2 : v ∉ T phi psi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi psi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) psi → admitsAux v u S psi S : Finset VarName h1 : admitsAux v u (S ∪ T) phi ∧ admitsAux v u (S ∪ T) psi ⊢ admitsAux v u S phi ∧ admitsAux v u S psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
simp only [Finset.union_right_comm S T {x}] at h1
v u : VarName T : Finset VarName h2 : v ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi S : Finset VarName h1 : admitsAux v u (S ∪ T ∪ {x}) phi ⊢ admitsAux v u (S ∪ {x}) phi
v u : VarName T : Finset VarName h2 : v ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi S : Finset VarName h1 : admitsAux v u (S ∪ {x} ∪ T) phi ⊢ admitsAux v u (S ∪ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_del_binders
[943, 1]
[971, 10]
tauto
v u : VarName T : Finset VarName h2 : v ∉ T x : VarName phi : Formula phi_ih : ∀ (S : Finset VarName), admitsAux v u (S ∪ T) phi → admitsAux v u S phi S : Finset VarName h1 : admitsAux v u (S ∪ {x} ∪ T) phi ⊢ admitsAux v u (S ∪ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : admitsAux v u binders F h2 : isFreeIn v F h3 : v ∉ binders ⊢ u ∉ binders
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : admitsAux v u binders (pred_const_ a✝¹ a✝) h2 : isFreeIn v (pred_const_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : admitsAux v u binders (pred_var_ a✝¹ a✝) h2 : isFreeIn v (pred_var_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : admitsAux v u binders (eq_ a✝¹ a✝) h2 : isFreeIn v (eq_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case true_ v u : VarName binders : Finset VarName h1 : admitsAux v u binders true_ h2 : isFreeIn v true_ h3 : v ∉ binders ⊢ u ∉ binders case false_ v u : VarName binders : Finset VarName h1 : admitsAux v u binders false_ h2 : isFreeIn v false_ h3 : v ∉ binders ⊢ u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝.not_ h2 : isFreeIn v a✝.not_ h3 : v ∉ binders ⊢ u ∉ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.imp_ a✝) h2 : isFreeIn v (a✝¹.imp_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.and_ a✝) h2 : isFreeIn v (a✝¹.and_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.or_ a✝) h2 : isFreeIn v (a✝¹.or_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.iff_ a✝) h2 : isFreeIn v (a✝¹.iff_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (forall_ a✝¹ a✝) h2 : isFreeIn v (forall_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (exists_ a✝¹ a✝) h2 : isFreeIn v (exists_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : admitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
all_goals simp only [admitsAux] at h1 simp only [isFreeIn] at h2
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : admitsAux v u binders (pred_const_ a✝¹ a✝) h2 : isFreeIn v (pred_const_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : admitsAux v u binders (pred_var_ a✝¹ a✝) h2 : isFreeIn v (pred_var_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : admitsAux v u binders (eq_ a✝¹ a✝) h2 : isFreeIn v (eq_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case true_ v u : VarName binders : Finset VarName h1 : admitsAux v u binders true_ h2 : isFreeIn v true_ h3 : v ∉ binders ⊢ u ∉ binders case false_ v u : VarName binders : Finset VarName h1 : admitsAux v u binders false_ h2 : isFreeIn v false_ h3 : v ∉ binders ⊢ u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝.not_ h2 : isFreeIn v a✝.not_ h3 : v ∉ binders ⊢ u ∉ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.imp_ a✝) h2 : isFreeIn v (a✝¹.imp_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.and_ a✝) h2 : isFreeIn v (a✝¹.and_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.or_ a✝) h2 : isFreeIn v (a✝¹.or_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (a✝¹.iff_ a✝) h2 : isFreeIn v (a✝¹.iff_ a✝) h3 : v ∉ binders ⊢ u ∉ binders case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (forall_ a✝¹ a✝) h2 : isFreeIn v (forall_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders (exists_ a✝¹ a✝) h2 : isFreeIn v (exists_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : admitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders h2 : v = a✝¹ ∨ v = a✝ h3 : v ∉ binders ⊢ u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝ h2 : isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {a✝¹}) a✝ h2 : ¬v = a✝¹ ∧ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {a✝¹}) a✝ h2 : ¬v = a✝¹ ∧ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : (v = a✝¹ ∨ v = a✝) ∧ v ∉ binders → u ∉ binders h2 : v = a✝¹ ∨ v = a✝ h3 : v ∉ binders ⊢ u ∉ binders case not_ v u : VarName a✝ : Formula a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝ h2 : isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : ∀ (binders : Finset VarName), admitsAux v u binders a✝¹ → isFreeIn v a✝¹ → v ∉ binders → u ∉ binders a_ih✝ : ∀ (binders : Finset VarName), admitsAux v u binders a✝ → isFreeIn v a✝ → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ h3 : v ∉ binders ⊢ u ∉ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
simp only [admitsAux] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : admitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : isFreeIn v (def_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
simp only [isFreeIn] at h2
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : isFreeIn v (def_ a✝¹ a✝) h3 : v ∉ binders ⊢ u ∉ binders
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
cases h2
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h2 : ¬v = x ∧ isFreeIn v phi h3 : v ∉ binders ⊢ u ∉ binders
case intro v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders left✝ : ¬v = x right✝ : isFreeIn v phi ⊢ u ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
apply phi_ih binders
v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ u ∉ binders
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ admitsAux v u binders phi case h2 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ isFreeIn v phi case h3 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ v ∉ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
apply admitsAux_del_binders phi v u binders {x} h1
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ admitsAux v u binders phi
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ v ∉ {x}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
simp
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ v ∉ {x}
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ ¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
exact h2_left
case h1 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ ¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
exact h2_right
case h2 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ isFreeIn v phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
exact h3
case h3 v u x : VarName phi : Formula phi_ih : ∀ (binders : Finset VarName), admitsAux v u binders phi → isFreeIn v phi → v ∉ binders → u ∉ binders binders : Finset VarName h1 : admitsAux v u (binders ∪ {x}) phi h3 : v ∉ binders h2_left : ¬v = x h2_right : isFreeIn v phi ⊢ v ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_isFreeIn
[974, 1]
[998, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ ∧ v ∉ binders → u ∉ binders h2 : v ∈ a✝ h3 : v ∉ binders ⊢ u ∉ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
induction E generalizing F binders V
D : Type I : Interpretation D V V' : VarAssignment D E : Env v t : VarName binders : Finset VarName F : Formula h1 : fastAdmitsAux v t binders F h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) E F ↔ Holds D I V E (fastReplaceFree v t F)
case nil D : Type I : Interpretation D V' : VarAssignment D v t : VarName V : VarAssignment D binders : Finset VarName F : Formula h1 : fastAdmitsAux v t binders F h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) [] F ↔ Holds D I V [] (fastReplaceFree v t F) case cons D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) V : VarAssignment D binders : Finset VarName F : Formula h1 : fastAdmitsAux v t binders F h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) F ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
induction F generalizing binders V
case cons D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) V : VarAssignment D binders : Finset VarName F : Formula h1 : fastAdmitsAux v t binders F h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) F ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t F)
case cons.pred_const_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (pred_const_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (pred_const_ a✝¹ a✝)) case cons.pred_var_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (pred_var_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (pred_var_ a✝¹ a✝)) case cons.eq_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (eq_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (eq_ a✝¹ a✝)) case cons.true_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders true_ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) true_ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t true_) case cons.false_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders false_ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) false_ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t false_) case cons.not_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders a✝.not_ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝.not_ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝.not_) case cons.imp_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.imp_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.imp_ a✝)) case cons.and_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.and_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.and_ a✝)) case cons.or_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.or_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.or_ a✝)) case cons.iff_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.iff_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.iff_ a✝)) case cons.forall_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (forall_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (forall_ a✝¹ a✝)) case cons.exists_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (exists_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (exists_ a✝¹ a✝)) case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (def_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
all_goals simp only [fastAdmitsAux] at h1 simp only [fastReplaceFree] simp only [Holds]
case cons.pred_const_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (pred_const_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (pred_const_ a✝¹ a✝)) case cons.pred_var_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (pred_var_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (pred_var_ a✝¹ a✝)) case cons.eq_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (eq_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (eq_ a✝¹ a✝)) case cons.true_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders true_ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) true_ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t true_) case cons.false_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders false_ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) false_ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t false_) case cons.not_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders a✝.not_ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝.not_ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝.not_) case cons.imp_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.imp_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.imp_ a✝)) case cons.and_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.and_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.and_ a✝)) case cons.or_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.or_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.or_ a✝)) case cons.iff_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (a✝¹.iff_ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (a✝¹.iff_ a✝)) case cons.forall_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (forall_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (forall_ a✝¹ a✝)) case cons.exists_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (exists_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (exists_ a✝¹ a✝)) case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (def_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (def_ a✝¹ a✝))
case cons.pred_const_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ I.pred_const_ a✝¹ (List.map (Function.updateITE V v (V' t)) a✝) ↔ I.pred_const_ a✝¹ (List.map V (List.map (fun x => if v = x then t else x) a✝)) case cons.pred_var_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ I.pred_var_ a✝¹ (List.map (Function.updateITE V v (V' t)) a✝) ↔ I.pred_var_ a✝¹ (List.map V (List.map (fun x => if v = x then t else x) a✝)) case cons.eq_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : VarName V : VarAssignment D binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ Function.updateITE V v (V' t) a✝¹ = Function.updateITE V v (V' t) a✝ ↔ V (if v = a✝¹ then t else a✝¹) = V (if v = a✝ then t else a✝) case cons.not_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders a✝ h2 : ∀ v ∉ binders, V' v = V v ⊢ ¬Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ ¬Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝) case cons.imp_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders a✝¹ ∧ fastAdmitsAux v t binders a✝ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ → Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹) → Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝) case cons.and_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders a✝¹ ∧ fastAdmitsAux v t binders a✝ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ∧ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹) ∧ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝) case cons.or_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders a✝¹ ∧ fastAdmitsAux v t binders a✝ h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ∨ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹) ∨ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝) case cons.iff_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝¹ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders a✝¹ ∧ fastAdmitsAux v t binders a✝ h2 : ∀ v ∉ binders, V' v = V v ⊢ (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝¹ ↔ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝) ↔ (Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝¹) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) case cons.forall_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : v = a✝¹ ∨ fastAdmitsAux v t (binders ∪ {a✝¹}) a✝ h2 : ∀ v ∉ binders, V' v = V v ⊢ (∀ (d : D), Holds D I (Function.updateITE (Function.updateITE V v (V' t)) a✝¹ d) (head✝ :: tail✝) a✝) ↔ Holds D I V (head✝ :: tail✝) (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v t a✝)) case cons.exists_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders a✝ → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) a✝ ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t a✝)) V : VarAssignment D binders : Finset VarName h1 : v = a✝¹ ∨ fastAdmitsAux v t (binders ∪ {a✝¹}) a✝ h2 : ∀ v ∉ binders, V' v = V v ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) a✝¹ d) (head✝ :: tail✝) a✝) ↔ Holds D I V (head✝ :: tail✝) (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v t a✝)) case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE (Function.updateITE V v (V' t)) head✝.args (List.map (Function.updateITE V v (V' t)) a✝)) tail✝ head✝.q else Holds D I (Function.updateITE V v (V' t)) tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ (List.map (fun x => if v = x then t else x) a✝).length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V (List.map (fun x => if v = x then t else x) a✝))) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ (List.map (fun x => if v = x then t else x) a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case pred_const_ X xs | pred_var_ X xs => simp congr! 1 simp only [List.map_eq_map_iff] intro x a1 simp simp only [Function.updateITE] split_ifs case _ c1 c2 => subst c1 tauto case _ c1 c2 => subst c1 contradiction case _ c1 c2 => subst c2 contradiction case _ c1 c2 => rfl
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ I.pred_var_ X (List.map (Function.updateITE V v (V' t)) xs) ↔ I.pred_var_ X (List.map V (List.map (fun x => if v = x then t else x) xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case eq_ x y => simp only [Function.updateITE] simp only [eq_comm] congr! 1 all_goals split_ifs case _ c1 => subst c1 tauto case _ c1 => rfl
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ Function.updateITE V v (V' t) x = Function.updateITE V v (V' t) y ↔ V (if v = x then t else x) = V (if v = y then t else y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case not_ phi phi_ih => congr! 1 exact phi_ih V binders h1 h2
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders phi h2 : ∀ v ∉ binders, V' v = V v ⊢ ¬Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ ¬Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case forall_ x phi phi_ih | exists_ x phi phi_ih => split_ifs case _ c1 => subst c1 simp only [Holds] first | apply forall_congr' | apply exists_congr intro d congr! 1 funext x simp only [Function.updateITE] split_ifs <;> rfl case _ c1 => simp only [Holds] first | apply forall_congr' | apply exists_congr intro d cases h1 case inl h1 => contradiction case inr h1 => simp only [Function.updateITE_comm V v x d (V' t) c1] apply phi_ih (Function.updateITE V x d) (binders ∪ {x}) h1 simp only [Function.updateITE] simp push_neg intros v' a1 a2 simp only [if_neg a2] exact h2 v' a1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v t (binders ∪ {x}) phi h2 : ∀ v ∉ binders, V' v = V v ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) x d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [fastAdmitsAux] at h1
case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders (def_ a✝¹ a✝) h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (def_ a✝¹ a✝))
case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [fastReplaceFree]
case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t (def_ a✝¹ a✝))
case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (def_ a✝¹ (List.map (fun x => if v = x then t else x) a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [Holds]
case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V (head✝ :: tail✝) (def_ a✝¹ (List.map (fun x => if v = x then t else x) a✝))
case cons.def_ D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ a✝ → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE (Function.updateITE V v (V' t)) head✝.args (List.map (Function.updateITE V v (V' t)) a✝)) tail✝ head✝.q else Holds D I (Function.updateITE V v (V' t)) tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ (List.map (fun x => if v = x then t else x) a✝).length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V (List.map (fun x => if v = x then t else x) a✝))) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ (List.map (fun x => if v = x then t else x) a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ I.pred_var_ X (List.map (Function.updateITE V v (V' t)) xs) ↔ I.pred_var_ X (List.map V (List.map (fun x => if v = x then t else x) xs))
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ I.pred_var_ X (List.map (Function.updateITE V v (V' t)) xs) ↔ I.pred_var_ X (List.map (V ∘ fun x => if v = x then t else x) xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ I.pred_var_ X (List.map (Function.updateITE V v (V' t)) xs) ↔ I.pred_var_ X (List.map (V ∘ fun x => if v = x then t else x) xs)
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ List.map (Function.updateITE V v (V' t)) xs = List.map (V ∘ fun x => if v = x then t else x) xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [List.map_eq_map_iff]
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ List.map (Function.updateITE V v (V' t)) xs = List.map (V ∘ fun x => if v = x then t else x) xs
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ ∀ x ∈ xs, Function.updateITE V v (V' t) x = (V ∘ fun x => if v = x then t else x) x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
intro x a1
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ ∀ x ∈ xs, Function.updateITE V v (V' t) x = (V ∘ fun x => if v = x then t else x) x
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs ⊢ Function.updateITE V v (V' t) x = (V ∘ fun x => if v = x then t else x) x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs ⊢ Function.updateITE V v (V' t) x = (V ∘ fun x => if v = x then t else x) x
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs ⊢ Function.updateITE V v (V' t) x = V (if v = x then t else x)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [Function.updateITE]
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs ⊢ Function.updateITE V v (V' t) x = V (if v = x then t else x)
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs ⊢ (if x = v then V' t else V x) = V (if v = x then t else x)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
split_ifs
case a.h.e'_4 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs ⊢ (if x = v then V' t else V x) = V (if v = x then t else x)
case pos D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs h✝¹ : x = v h✝ : v = x ⊢ V' t = V t case neg D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs h✝¹ : x = v h✝ : ¬v = x ⊢ V' t = V x case pos D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs h✝¹ : ¬x = v h✝ : v = x ⊢ V x = V t case neg D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs h✝¹ : ¬x = v h✝ : ¬v = x ⊢ V x = V x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 c2 => subst c1 tauto
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : x = v c2 : v = x ⊢ V' t = V t
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 c2 => subst c1 contradiction
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : x = v c2 : ¬v = x ⊢ V' t = V x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 c2 => subst c2 contradiction
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : ¬x = v c2 : v = x ⊢ V x = V t
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 c2 => rfl
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : ¬x = v c2 : ¬v = x ⊢ V x = V x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
subst c1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : x = v c2 : v = x ⊢ V' t = V t
D : Type I : Interpretation D V' : VarAssignment D t : VarName head✝ : Definition tail✝ : List Definition X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux x t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V x (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree x t F)) h1 : x ∈ xs → t ∉ binders c2 : x = x ⊢ V' t = V t
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
tauto
D : Type I : Interpretation D V' : VarAssignment D t : VarName head✝ : Definition tail✝ : List Definition X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux x t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V x (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree x t F)) h1 : x ∈ xs → t ∉ binders c2 : x = x ⊢ V' t = V t
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
subst c1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : x = v c2 : ¬v = x ⊢ V' t = V x
D : Type I : Interpretation D V' : VarAssignment D t : VarName head✝ : Definition tail✝ : List Definition X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux x t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V x (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree x t F)) h1 : x ∈ xs → t ∉ binders c2 : ¬x = x ⊢ V' t = V x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
contradiction
D : Type I : Interpretation D V' : VarAssignment D t : VarName head✝ : Definition tail✝ : List Definition X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux x t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V x (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree x t F)) h1 : x ∈ xs → t ∉ binders c2 : ¬x = x ⊢ V' t = V x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
subst c2
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : ¬x = v c2 : v = x ⊢ V x = V t
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v a1 : v ∈ xs c1 : ¬v = v ⊢ V v = V t
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
contradiction
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v a1 : v ∈ xs c1 : ¬v = v ⊢ V v = V t
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
rfl
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : v ∈ xs → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v x : VarName a1 : x ∈ xs c1 : ¬x = v c2 : ¬v = x ⊢ V x = V x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [Function.updateITE]
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ Function.updateITE V v (V' t) x = Function.updateITE V v (V' t) y ↔ V (if v = x then t else x) = V (if v = y then t else y)
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ ((if x = v then V' t else V x) = if y = v then V' t else V y) ↔ V (if v = x then t else x) = V (if v = y then t else y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [eq_comm]
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ ((if x = v then V' t else V x) = if y = v then V' t else V y) ↔ V (if v = x then t else x) = V (if v = y then t else y)
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ ((if v = x then V' t else V x) = if v = y then V' t else V y) ↔ V (if v = x then t else x) = V (if v = y then t else y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ ((if v = x then V' t else V x) = if v = y then V' t else V y) ↔ V (if v = x then t else x) = V (if v = y then t else y)
case a.h.e'_2 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ (if v = x then V' t else V x) = V (if v = x then t else x) case a.h.e'_3 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ (if v = y then V' t else V y) = V (if v = y then t else y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
all_goals split_ifs case _ c1 => subst c1 tauto case _ c1 => rfl
case a.h.e'_2 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ (if v = x then V' t else V x) = V (if v = x then t else x) case a.h.e'_3 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ (if v = y then V' t else V y) = V (if v = y then t else y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
split_ifs
case a.h.e'_3 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v ⊢ (if v = y then V' t else V y) = V (if v = y then t else y)
case pos D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v h✝ : v = y ⊢ V' t = V t case neg D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v h✝ : ¬v = y ⊢ V y = V y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 => subst c1 tauto
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v c1 : v = y ⊢ V' t = V t
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 => rfl
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v c1 : ¬v = y ⊢ V y = V y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
subst c1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v c1 : v = y ⊢ V' t = V t
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = x ∨ v = v → t ∉ binders ⊢ V' t = V t
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
tauto
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = x ∨ v = v → t ∉ binders ⊢ V' t = V t
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
rfl
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x y : VarName V : VarAssignment D binders : Finset VarName h1 : v = x ∨ v = y → t ∉ binders h2 : ∀ v ∉ binders, V' v = V v c1 : ¬v = y ⊢ V y = V y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders phi h2 : ∀ v ∉ binders, V' v = V v ⊢ ¬Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ ¬Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders phi h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
exact phi_ih V binders h1 h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders phi h2 : ∀ v ∉ binders, V' v = V v ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
cases h1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders psi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)) V : VarAssignment D binders : Finset VarName h1 : fastAdmitsAux v t binders phi ∧ fastAdmitsAux v t binders psi h2 : ∀ v ∉ binders, V' v = V v ⊢ (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi) ↔ (Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi))
case intro D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders psi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v left✝ : fastAdmitsAux v t binders phi right✝ : fastAdmitsAux v t binders psi ⊢ (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi) ↔ (Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders psi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1_left : fastAdmitsAux v t binders phi h1_right : fastAdmitsAux v t binders psi ⊢ (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi) ↔ (Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi) ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi))
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders psi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1_left : fastAdmitsAux v t binders phi h1_right : fastAdmitsAux v t binders psi ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi) case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders psi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1_left : fastAdmitsAux v t binders phi h1_right : fastAdmitsAux v t binders psi ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
exact phi_ih V binders h1_left h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders psi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1_left : fastAdmitsAux v t binders phi h1_right : fastAdmitsAux v t binders psi ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
exact psi_ih V binders h1_right h2
case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders psi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1_left : fastAdmitsAux v t binders phi h1_right : fastAdmitsAux v t binders psi ⊢ Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) psi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v t (binders ∪ {x}) phi h2 : ∀ v ∉ binders, V' v = V v ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) x d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (if v = x then exists_ x phi else exists_ x (fastReplaceFree v t phi))
case pos D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v t (binders ∪ {x}) phi h2 : ∀ v ∉ binders, V' v = V v h✝ : v = x ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) x d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (exists_ x phi) case neg D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v t (binders ∪ {x}) phi h2 : ∀ v ∉ binders, V' v = V v h✝ : ¬v = x ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) x d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (exists_ x (fastReplaceFree v t phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 => subst c1 simp only [Holds] first | apply forall_congr' | apply exists_congr intro d congr! 1 funext x simp only [Function.updateITE] split_ifs <;> rfl
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v t (binders ∪ {x}) phi h2 : ∀ v ∉ binders, V' v = V v c1 : v = x ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) x d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (exists_ x phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
case _ c1 => simp only [Holds] first | apply forall_congr' | apply exists_congr intro d cases h1 case inl h1 => contradiction case inr h1 => simp only [Function.updateITE_comm V v x d (V' t) c1] apply phi_ih (Function.updateITE V x d) (binders ∪ {x}) h1 simp only [Function.updateITE] simp push_neg intros v' a1 a2 simp only [if_neg a2] exact h2 v' a1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v t (binders ∪ {x}) phi h2 : ∀ v ∉ binders, V' v = V v c1 : ¬v = x ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) x d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (exists_ x (fastReplaceFree v t phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
subst c1
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v t (binders ∪ {x}) phi h2 : ∀ v ∉ binders, V' v = V v c1 : v = x ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) x d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (exists_ x phi)
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (exists_ v phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi) ↔ Holds D I V (head✝ :: tail✝) (exists_ v phi)
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V v d) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V v d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v a) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
intro d
case h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v a) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v d) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
congr! 1
case h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D ⊢ Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v d) (head✝ :: tail✝) phi
case h.a.h.e'_3 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D ⊢ Function.updateITE (Function.updateITE V v (V' t)) v d = Function.updateITE V v d
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
funext x
case h.a.h.e'_3 D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D ⊢ Function.updateITE (Function.updateITE V v (V' t)) v d = Function.updateITE V v d
case h.a.h.e'_3.h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D x : VarName ⊢ Function.updateITE (Function.updateITE V v (V' t)) v d x = Function.updateITE V v d x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
simp only [Function.updateITE]
case h.a.h.e'_3.h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D x : VarName ⊢ Function.updateITE (Function.updateITE V v (V' t)) v d x = Function.updateITE V v d x
case h.a.h.e'_3.h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D x : VarName ⊢ (if x = v then d else if x = v then V' t else V x) = if x = v then d else V x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
split_ifs <;> rfl
case h.a.h.e'_3.h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi d : D x : VarName ⊢ (if x = v then d else if x = v then V' t else V x) = if x = v then d else V x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
apply forall_congr'
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ (∀ (d : D), Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V v d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v a) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.substitution_theorem_aux
[1001, 1]
[1136, 17]
apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ (∃ d, Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V v d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D V' : VarAssignment D v t : VarName head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName) (F : Formula), fastAdmitsAux v t binders F → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) tail✝ F ↔ Holds D I V tail✝ (fastReplaceFree v t F)) phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), fastAdmitsAux v t binders phi → (∀ v ∉ binders, V' v = V v) → (Holds D I (Function.updateITE V v (V' t)) (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) (fastReplaceFree v t phi)) V : VarAssignment D binders : Finset VarName h2 : ∀ v ∉ binders, V' v = V v h1 : v = v ∨ fastAdmitsAux v t (binders ∪ {v}) phi ⊢ ∀ (a : D), Holds D I (Function.updateITE (Function.updateITE V v (V' t)) v a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V v a) (head✝ :: tail✝) phi