url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2_left
v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders
v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
subst a1
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = y ⊒ u βˆ‰ binders
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2_right
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_ ⊒ fastAdmitsAux v u binders phi
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ⊒ fastAdmitsAux v u binders phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
exact phi_ih binders h1 h2
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ⊒ fastAdmitsAux v u binders phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi)) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
split_ifs at h2
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi)) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
case pos v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h✝ : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi case neg v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h✝ : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case pos c1 => left exact c1
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
left
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
case h v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
exact c1
case h v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
right
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
case h v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ fastAdmitsAux v u (binders βˆͺ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
apply phi_ih
case h v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ fastAdmitsAux v u (binders βˆͺ {x}) phi
case h.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ v βˆ‰ binders βˆͺ {x} case h.h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp
case h.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ v βˆ‰ binders βˆͺ {x}
case h.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ v βˆ‰ binders ∧ Β¬v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
case h.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ v βˆ‰ binders ∧ Β¬v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp only [toIsBoundAux] at h2
case h.h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
case h.h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)) ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
case h.h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)) ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
case h.h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi) ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
exact h2
case h.h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : Β¬v = x h2 : toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi) ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_self
[760, 1]
[769, 10]
induction F generalizing binders
F : Formula v : VarName binders : Finset VarName ⊒ admitsAux v v binders F
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ admitsAux v v binders (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ admitsAux v v binders (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName binders : Finset VarName ⊒ admitsAux v v binders (eq_ a✝¹ a✝) case true_ v : VarName binders : Finset VarName ⊒ admitsAux v v binders true_ case false_ v : VarName binders : Finset VarName ⊒ admitsAux v v binders false_ case not_ v : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName ⊒ admitsAux v v binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_self
[760, 1]
[769, 10]
all_goals simp only [admitsAux]
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ admitsAux v v binders (pred_const_ a✝¹ a✝) case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ admitsAux v v binders (pred_var_ a✝¹ a✝) case eq_ v a✝¹ a✝ : VarName binders : Finset VarName ⊒ admitsAux v v binders (eq_ a✝¹ a✝) case true_ v : VarName binders : Finset VarName ⊒ admitsAux v v binders true_ case false_ v : VarName binders : Finset VarName ⊒ admitsAux v v binders false_ case not_ v : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝.not_ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.imp_ a✝) case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.and_ a✝) case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.or_ a✝) case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (a✝¹.iff_ a✝) case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (forall_ a✝¹ a✝) case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders (exists_ a✝¹ a✝) case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName ⊒ admitsAux v v binders (def_ a✝¹ a✝)
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders case eq_ v a✝¹ a✝ : VarName binders : Finset VarName ⊒ (v = a✝¹ ∨ v = a✝) ∧ v βˆ‰ binders β†’ v βˆ‰ binders case not_ v : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v (binders βˆͺ {a✝¹}) a✝ case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v (binders βˆͺ {a✝¹}) a✝ case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_self
[760, 1]
[769, 10]
all_goals tauto
case pred_const_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders case pred_var_ v : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders case eq_ v a✝¹ a✝ : VarName binders : Finset VarName ⊒ (v = a✝¹ ∨ v = a✝) ∧ v βˆ‰ binders β†’ v βˆ‰ binders case not_ v : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝ case imp_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case and_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case or_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case iff_ v : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v binders a✝¹ ∧ admitsAux v v binders a✝ case forall_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v (binders βˆͺ {a✝¹}) a✝ case exists_ v a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), admitsAux v v binders a✝ binders : Finset VarName ⊒ admitsAux v v (binders βˆͺ {a✝¹}) a✝ case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_self
[760, 1]
[769, 10]
simp only [admitsAux]
case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName ⊒ admitsAux v v binders (def_ a✝¹ a✝)
case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admitsAux_self
[760, 1]
[769, 10]
tauto
case def_ v : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_self
[772, 1]
[778, 23]
simp only [admits]
F : Formula v : VarName ⊒ admits v v F
F : Formula v : VarName ⊒ admitsAux v v βˆ… F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.admits_self
[772, 1]
[778, 23]
apply admitsAux_self
F : Formula v : VarName ⊒ admitsAux v v βˆ… F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : ¬isFreeIn v F ⊒ admitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isFreeIn v (pred_const_ a✝¹ a✝) ⊒ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isFreeIn v (pred_var_ a✝¹ a✝) ⊒ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬isFreeIn v (eq_ a✝¹ a✝) ⊒ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : Β¬isFreeIn v true_ ⊒ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : Β¬isFreeIn v false_ ⊒ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v a✝.not_ ⊒ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.imp_ a✝) ⊒ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.and_ a✝) ⊒ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.or_ a✝) ⊒ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.iff_ a✝) ⊒ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (forall_ a✝¹ a✝) ⊒ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (exists_ a✝¹ a✝) ⊒ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬isFreeIn v (def_ a✝¹ a✝) ⊒ admitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
all_goals simp only [isFreeIn] at h1 simp only [admitsAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isFreeIn v (pred_const_ a✝¹ a✝) ⊒ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isFreeIn v (pred_var_ a✝¹ a✝) ⊒ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬isFreeIn v (eq_ a✝¹ a✝) ⊒ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : Β¬isFreeIn v true_ ⊒ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : Β¬isFreeIn v false_ ⊒ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v a✝.not_ ⊒ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.imp_ a✝) ⊒ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.and_ a✝) ⊒ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.or_ a✝) ⊒ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (a✝¹.iff_ a✝) ⊒ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (forall_ a✝¹ a✝) ⊒ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v (exists_ a✝¹ a✝) ⊒ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬isFreeIn v (def_ a✝¹ a✝) ⊒ admitsAux v u binders (def_ a✝¹ a✝)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬(v = a✝¹ ∨ v = a✝) ⊒ (v = a✝¹ ∨ v = a✝) ∧ v βˆ‰ binders β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v a✝ ⊒ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(Β¬v = a✝¹ ∧ isFreeIn v a✝) ⊒ admitsAux v u (binders βˆͺ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(Β¬v = a✝¹ ∧ isFreeIn v a✝) ⊒ admitsAux v u (binders βˆͺ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬(v = a✝¹ ∨ v = a✝) ⊒ (v = a✝¹ ∨ v = a✝) ∧ v βˆ‰ binders β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isFreeIn v a✝ ⊒ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝¹ β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isFreeIn v a✝ β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isFreeIn v a✝¹ ∨ isFreeIn v a✝) ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
simp only [isFreeIn] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : ¬isFreeIn v (def_ a✝¹ a✝) ⊒ admitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ admitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
simp only [admitsAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ admitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
by_cases c1 : v = x
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) ⊒ admitsAux v u (binders βˆͺ {x}) phi
case pos v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : v = x ⊒ admitsAux v u (binders βˆͺ {x}) phi case neg v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : Β¬v = x ⊒ admitsAux v u (binders βˆͺ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
apply mem_binders_imp_admitsAux
case pos v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : v = x ⊒ admitsAux v u (binders βˆͺ {x}) phi
case pos.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : v = x ⊒ v ∈ binders βˆͺ {x}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
simp
case pos.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : v = x ⊒ v ∈ binders βˆͺ {x}
case pos.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : v = x ⊒ v ∈ binders ∨ v = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
tauto
case pos.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : v = x ⊒ v ∈ binders ∨ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
apply phi_ih
case neg v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : Β¬v = x ⊒ admitsAux v u (binders βˆͺ {x}) phi
case neg.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : Β¬v = x ⊒ Β¬isFreeIn v phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
tauto
case neg.h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isFreeIn v phi β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(Β¬v = x ∧ isFreeIn v phi) c1 : Β¬v = x ⊒ Β¬isFreeIn v phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux
[782, 1]
[802, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ a✝ ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admits
[805, 1]
[812, 46]
simp only [admits]
F : Formula v u : VarName h1 : ¬isFreeIn v F ⊒ admits v u F
F : Formula v u : VarName h1 : Β¬isFreeIn v F ⊒ admitsAux v u βˆ… F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admits
[805, 1]
[812, 46]
exact not_isFreeIn_imp_admitsAux F v u βˆ… h1
F : Formula v u : VarName h1 : Β¬isFreeIn v F ⊒ admitsAux v u βˆ… F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : Β¬isBoundIn u F h2 : u βˆ‰ binders ⊒ admitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isBoundIn u (pred_const_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isBoundIn u (pred_var_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬isBoundIn u (eq_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : Β¬isBoundIn u true_ h2 : u βˆ‰ binders ⊒ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : Β¬isBoundIn u false_ h2 : u βˆ‰ binders ⊒ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u a✝.not_ h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.imp_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.and_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.or_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.iff_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (forall_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (exists_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬isBoundIn u (def_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
all_goals simp only [isBoundIn] at h1 simp only [admitsAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isBoundIn u (pred_const_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬isBoundIn u (pred_var_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬isBoundIn u (eq_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : Β¬isBoundIn u true_ h2 : u βˆ‰ binders ⊒ admitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : Β¬isBoundIn u false_ h2 : u βˆ‰ binders ⊒ admitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u a✝.not_ h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.imp_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.and_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.or_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (a✝¹.iff_ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (forall_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u (exists_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬isBoundIn u (def_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (def_ a✝¹ a✝)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ (v = a✝¹ ∨ v = a✝) ∧ v βˆ‰ binders β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u a✝ h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(u = a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u (binders βˆͺ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(u = a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u (binders βˆͺ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
case forall_ x phi phi_ih | exists_ x phi phi_ih => push_neg at h1 cases h1 case intro h1_left h1_right => apply phi_ih (binders βˆͺ {x}) h1_right simp tauto
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(u = x ∨ isBoundIn u phi) h2 : u βˆ‰ binders ⊒ admitsAux v u (binders βˆͺ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ (v = a✝¹ ∨ v = a✝) ∧ v βˆ‰ binders β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬isBoundIn u a✝ h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝¹ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), Β¬isBoundIn u a✝ β†’ u βˆ‰ binders β†’ admitsAux v u binders a✝ binders : Finset VarName h1 : Β¬(isBoundIn u a✝¹ ∨ isBoundIn u a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders a✝¹ ∧ admitsAux v u binders a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
simp only [isBoundIn] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬isBoundIn u (def_ a✝¹ a✝) h2 : u βˆ‰ binders ⊒ admitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ admitsAux v u binders (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
simp only [admitsAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ admitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
push_neg at h1
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h1 : Β¬(u = x ∨ isBoundIn u phi) h2 : u βˆ‰ binders ⊒ admitsAux v u (binders βˆͺ {x}) phi
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1 : u β‰  x ∧ Β¬isBoundIn u phi ⊒ admitsAux v u (binders βˆͺ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
cases h1
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1 : u β‰  x ∧ Β¬isBoundIn u phi ⊒ admitsAux v u (binders βˆͺ {x}) phi
case intro v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders left✝ : u β‰  x right✝ : Β¬isBoundIn u phi ⊒ admitsAux v u (binders βˆͺ {x}) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
case intro h1_left h1_right => apply phi_ih (binders βˆͺ {x}) h1_right simp tauto
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1_left : u β‰  x h1_right : Β¬isBoundIn u phi ⊒ admitsAux v u (binders βˆͺ {x}) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
apply phi_ih (binders βˆͺ {x}) h1_right
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1_left : u β‰  x h1_right : Β¬isBoundIn u phi ⊒ admitsAux v u (binders βˆͺ {x}) phi
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1_left : u β‰  x h1_right : Β¬isBoundIn u phi ⊒ u βˆ‰ binders βˆͺ {x}
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
simp
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1_left : u β‰  x h1_right : Β¬isBoundIn u phi ⊒ u βˆ‰ binders βˆͺ {x}
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1_left : u β‰  x h1_right : Β¬isBoundIn u phi ⊒ u βˆ‰ binders ∧ Β¬u = x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
tauto
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), Β¬isBoundIn u phi β†’ u βˆ‰ binders β†’ admitsAux v u binders phi binders : Finset VarName h2 : u βˆ‰ binders h1_left : u β‰  x h1_right : Β¬isBoundIn u phi ⊒ u βˆ‰ binders ∧ Β¬u = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux
[816, 1]
[838, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬False h2 : u βˆ‰ binders ⊒ v ∈ a✝ ∧ v βˆ‰ binders β†’ u βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits
[841, 1]
[849, 7]
simp only [admits]
F : Formula v u : VarName h1 : ¬isBoundIn u F ⊒ admits v u F
F : Formula v u : VarName h1 : Β¬isBoundIn u F ⊒ admitsAux v u βˆ… F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits
[841, 1]
[849, 7]
apply not_isBoundIn_imp_admitsAux F v u βˆ… h1
F : Formula v u : VarName h1 : Β¬isBoundIn u F ⊒ admitsAux v u βˆ… F
F : Formula v u : VarName h1 : Β¬isBoundIn u F ⊒ u βˆ‰ βˆ…
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits
[841, 1]
[849, 7]
simp
F : Formula v u : VarName h1 : Β¬isBoundIn u F ⊒ u βˆ‰ βˆ…
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
induction F generalizing binders
F : Formula v t : VarName binders : Finset VarName h1 : ¬occursIn t F ⊒ admitsAux t v binders (replaceFreeAux v t binders F)
case pred_const_ v t : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬occursIn t (pred_const_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (pred_const_ a✝¹ a✝)) case pred_var_ v t : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬occursIn t (pred_var_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (pred_var_ a✝¹ a✝)) case eq_ v t a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬occursIn t (eq_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (eq_ a✝¹ a✝)) case true_ v t : VarName binders : Finset VarName h1 : Β¬occursIn t true_ ⊒ admitsAux t v binders (replaceFreeAux v t binders true_) case false_ v t : VarName binders : Finset VarName h1 : Β¬occursIn t false_ ⊒ admitsAux t v binders (replaceFreeAux v t binders false_) case not_ v t : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t a✝.not_ ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝.not_) case imp_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.imp_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.imp_ a✝)) case and_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.and_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.and_ a✝)) case or_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.or_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.or_ a✝)) case iff_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.iff_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.iff_ a✝)) case forall_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (forall_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (forall_ a✝¹ a✝)) case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (exists_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (exists_ a✝¹ a✝)) case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬occursIn t (def_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
all_goals simp only [occursIn] at h1 simp only [replaceFreeAux] simp only [admitsAux]
case pred_const_ v t : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬occursIn t (pred_const_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (pred_const_ a✝¹ a✝)) case pred_var_ v t : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : Β¬occursIn t (pred_var_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (pred_var_ a✝¹ a✝)) case eq_ v t a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬occursIn t (eq_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (eq_ a✝¹ a✝)) case true_ v t : VarName binders : Finset VarName h1 : Β¬occursIn t true_ ⊒ admitsAux t v binders (replaceFreeAux v t binders true_) case false_ v t : VarName binders : Finset VarName h1 : Β¬occursIn t false_ ⊒ admitsAux t v binders (replaceFreeAux v t binders false_) case not_ v t : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t a✝.not_ ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝.not_) case imp_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.imp_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.imp_ a✝)) case and_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.and_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.and_ a✝)) case or_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.or_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.or_ a✝)) case iff_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (a✝¹.iff_ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (a✝¹.iff_ a✝)) case forall_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (forall_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (forall_ a✝¹ a✝)) case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t (exists_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (exists_ a✝¹ a✝)) case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : Β¬occursIn t (def_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝))
case pred_const_ v t : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ t ∈ List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) a✝ ∧ t βˆ‰ binders β†’ v βˆ‰ binders case pred_var_ v t : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ t ∈ List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) a✝ ∧ t βˆ‰ binders β†’ v βˆ‰ binders case eq_ v t a✝¹ a✝ : VarName binders : Finset VarName h1 : Β¬(t = a✝¹ ∨ t = a✝) ⊒ ((t = if v = a✝¹ ∧ a✝¹ βˆ‰ binders then t else a✝¹) ∨ t = if v = a✝ ∧ a✝ βˆ‰ binders then t else a✝) ∧ t βˆ‰ binders β†’ v βˆ‰ binders case not_ v t : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t a✝ ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝) case imp_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case and_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case or_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case iff_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case forall_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(t = a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v (binders βˆͺ {a✝¹}) (replaceFreeAux v t (binders βˆͺ {a✝¹}) a✝) case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(t = a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v (binders βˆͺ {a✝¹}) (replaceFreeAux v t (binders βˆͺ {a✝¹}) a✝) case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ t ∈ List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) a✝ ∧ t βˆ‰ binders β†’ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case pred_const_ X xs | pred_var_ X xs | def_ X xs => simp intro x a1 a2 a3 by_cases c1 : v = x ∧ x βˆ‰ binders case pos => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right case neg => simp at c1 specialize a2 c1 subst a2 contradiction
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs ⊒ t ∈ List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) xs ∧ t βˆ‰ binders β†’ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case eq_ x y => push_neg at h1 cases h1 case intro h1_left h1_right => intro a1 split_ifs at a1 case _ c1 c2 => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right case _ c1 c2 => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right case _ c1 c2 => cases c2 case intro c2_left c2_right => subst c2_left exact c2_right case _ c1 c2 => tauto
v t x y : VarName binders : Finset VarName h1 : Β¬(t = x ∨ t = y) ⊒ ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders β†’ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
all_goals tauto
case not_ v t : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬occursIn t a✝ ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝) case imp_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case and_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case or_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case iff_ v t : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝¹ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(occursIn t a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders a✝¹) ∧ admitsAux t v binders (replaceFreeAux v t binders a✝) case forall_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(t = a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v (binders βˆͺ {a✝¹}) (replaceFreeAux v t (binders βˆͺ {a✝¹}) a✝) case exists_ v t a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), Β¬occursIn t a✝ β†’ admitsAux t v binders (replaceFreeAux v t binders a✝) binders : Finset VarName h1 : Β¬(t = a✝¹ ∨ occursIn t a✝) ⊒ admitsAux t v (binders βˆͺ {a✝¹}) (replaceFreeAux v t (binders βˆͺ {a✝¹}) a✝)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
simp only [occursIn] at h1
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : ¬occursIn t (def_ a✝¹ a✝) ⊒ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝))
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
simp only [replaceFreeAux]
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ admitsAux t v binders (replaceFreeAux v t binders (def_ a✝¹ a✝))
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ admitsAux t v binders (def_ a✝¹ (List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
simp only [admitsAux]
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ admitsAux t v binders (def_ a✝¹ (List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) a✝))
case def_ v t : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : t βˆ‰ a✝ ⊒ t ∈ List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) a✝ ∧ t βˆ‰ binders β†’ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
simp
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs ⊒ t ∈ List.map (fun x => if v = x ∧ x βˆ‰ binders then t else x) xs ∧ t βˆ‰ binders β†’ v βˆ‰ binders
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs ⊒ βˆ€ x ∈ xs, ((v = x β†’ x ∈ binders) β†’ x = t) β†’ t βˆ‰ binders β†’ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
intro x a1 a2 a3
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs ⊒ βˆ€ x ∈ xs, ((v = x β†’ x ∈ binders) β†’ x = t) β†’ t βˆ‰ binders β†’ v βˆ‰ binders
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
by_cases c1 : v = x ∧ x βˆ‰ binders
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders ⊒ v βˆ‰ binders
case pos v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : v = x ∧ x βˆ‰ binders ⊒ v βˆ‰ binders case neg v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : Β¬(v = x ∧ x βˆ‰ binders) ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case pos => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : v = x ∧ x βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case neg => simp at c1 specialize a2 c1 subst a2 contradiction
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : Β¬(v = x ∧ x βˆ‰ binders) ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
cases c1
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : v = x ∧ x βˆ‰ binders ⊒ v βˆ‰ binders
case intro v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders left✝ : v = x right✝ : x βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case intro c1_left c1_right => subst c1_left exact c1_right
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1_left : v = x c1_right : x βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
subst c1_left
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1_left : v = x c1_right : x βˆ‰ binders ⊒ v βˆ‰ binders
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs a3 : t βˆ‰ binders a1 : v ∈ xs a2 : (v = v β†’ v ∈ binders) β†’ v = t c1_right : v βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
exact c1_right
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs a3 : t βˆ‰ binders a1 : v ∈ xs a2 : (v = v β†’ v ∈ binders) β†’ v = t c1_right : v βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
simp at c1
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : Β¬(v = x ∧ x βˆ‰ binders) ⊒ v βˆ‰ binders
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : v = x β†’ x ∈ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
specialize a2 c1
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a2 : (v = x β†’ x ∈ binders) β†’ x = t a3 : t βˆ‰ binders c1 : v = x β†’ x ∈ binders ⊒ v βˆ‰ binders
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a3 : t βˆ‰ binders c1 : v = x β†’ x ∈ binders a2 : x = t ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
subst a2
v t : VarName X : DefName xs : List VarName binders : Finset VarName h1 : t βˆ‰ xs x : VarName a1 : x ∈ xs a3 : t βˆ‰ binders c1 : v = x β†’ x ∈ binders a2 : x = t ⊒ v βˆ‰ binders
v : VarName X : DefName xs : List VarName binders : Finset VarName x : VarName a1 : x ∈ xs c1 : v = x β†’ x ∈ binders h1 : x βˆ‰ xs a3 : x βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
contradiction
v : VarName X : DefName xs : List VarName binders : Finset VarName x : VarName a1 : x ∈ xs c1 : v = x β†’ x ∈ binders h1 : x βˆ‰ xs a3 : x βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
push_neg at h1
v t x y : VarName binders : Finset VarName h1 : Β¬(t = x ∨ t = y) ⊒ ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders β†’ v βˆ‰ binders
v t x y : VarName binders : Finset VarName h1 : t β‰  x ∧ t β‰  y ⊒ ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders β†’ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
cases h1
v t x y : VarName binders : Finset VarName h1 : t β‰  x ∧ t β‰  y ⊒ ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders β†’ v βˆ‰ binders
case intro v t x y : VarName binders : Finset VarName left✝ : t β‰  x right✝ : t β‰  y ⊒ ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders β†’ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case intro h1_left h1_right => intro a1 split_ifs at a1 case _ c1 c2 => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right case _ c1 c2 => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right case _ c1 c2 => cases c2 case intro c2_left c2_right => subst c2_left exact c2_right case _ c1 c2 => tauto
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y ⊒ ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders β†’ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
intro a1
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y ⊒ ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders β†’ v βˆ‰ binders
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y a1 : ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
split_ifs at a1
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y a1 : ((t = if v = x ∧ x βˆ‰ binders then t else x) ∨ t = if v = y ∧ y βˆ‰ binders then t else y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
case pos v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y h✝¹ : v = x ∧ x βˆ‰ binders h✝ : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders case neg v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y h✝¹ : v = x ∧ x βˆ‰ binders h✝ : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders case pos v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y h✝¹ : Β¬(v = x ∧ x βˆ‰ binders) h✝ : v = y ∧ y βˆ‰ binders a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders case neg v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y h✝¹ : Β¬(v = x ∧ x βˆ‰ binders) h✝ : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = x ∨ t = y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case _ c1 c2 => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : v = x ∧ x βˆ‰ binders c2 : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case _ c1 c2 => cases c1 case intro c1_left c1_right => subst c1_left exact c1_right
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : v = x ∧ x βˆ‰ binders c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case _ c1 c2 => cases c2 case intro c2_left c2_right => subst c2_left exact c2_right
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : Β¬(v = x ∧ x βˆ‰ binders) c2 : v = y ∧ y βˆ‰ binders a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case _ c1 c2 => tauto
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : Β¬(v = x ∧ x βˆ‰ binders) c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = x ∨ t = y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
cases c1
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : v = x ∧ x βˆ‰ binders c2 : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
case intro v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c2 : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders left✝ : v = x right✝ : x βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case intro c1_left c1_right => subst c1_left exact c1_right
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c2 : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders c1_left : v = x c1_right : x βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
subst c1_left
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c2 : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders c1_left : v = x c1_right : x βˆ‰ binders ⊒ v βˆ‰ binders
v t y : VarName binders : Finset VarName h1_right : t β‰  y c2 : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders h1_left : t β‰  v c1_right : v βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
exact c1_right
v t y : VarName binders : Finset VarName h1_right : t β‰  y c2 : v = y ∧ y βˆ‰ binders a1 : (t = t ∨ t = t) ∧ t βˆ‰ binders h1_left : t β‰  v c1_right : v βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
cases c1
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : v = x ∧ x βˆ‰ binders c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
case intro v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders left✝ : v = x right✝ : x βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case intro c1_left c1_right => subst c1_left exact c1_right
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders c1_left : v = x c1_right : x βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
subst c1_left
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders c1_left : v = x c1_right : x βˆ‰ binders ⊒ v βˆ‰ binders
v t y : VarName binders : Finset VarName h1_right : t β‰  y c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders h1_left : t β‰  v c1_right : v βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
exact c1_right
v t y : VarName binders : Finset VarName h1_right : t β‰  y c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = t ∨ t = y) ∧ t βˆ‰ binders h1_left : t β‰  v c1_right : v βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
cases c2
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : Β¬(v = x ∧ x βˆ‰ binders) c2 : v = y ∧ y βˆ‰ binders a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
case intro v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : Β¬(v = x ∧ x βˆ‰ binders) a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders left✝ : v = y right✝ : y βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
case intro c2_left c2_right => subst c2_left exact c2_right
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : Β¬(v = x ∧ x βˆ‰ binders) a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders c2_left : v = y c2_right : y βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
subst c2_left
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : Β¬(v = x ∧ x βˆ‰ binders) a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders c2_left : v = y c2_right : y βˆ‰ binders ⊒ v βˆ‰ binders
v t x : VarName binders : Finset VarName h1_left : t β‰  x c1 : Β¬(v = x ∧ x βˆ‰ binders) a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders h1_right : t β‰  v c2_right : v βˆ‰ binders ⊒ v βˆ‰ binders
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
exact c2_right
v t x : VarName binders : Finset VarName h1_left : t β‰  x c1 : Β¬(v = x ∧ x βˆ‰ binders) a1 : (t = x ∨ t = t) ∧ t βˆ‰ binders h1_right : t β‰  v c2_right : v βˆ‰ binders ⊒ v βˆ‰ binders
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux
[853, 1]
[905, 10]
tauto
v t x y : VarName binders : Finset VarName h1_left : t β‰  x h1_right : t β‰  y c1 : Β¬(v = x ∧ x βˆ‰ binders) c2 : Β¬(v = y ∧ y βˆ‰ binders) a1 : (t = x ∨ t = y) ∧ t βˆ‰ binders ⊒ v βˆ‰ binders
no goals