url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp at h2_left | v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β (if v = v then u else v) β binders
β’ u β binders | v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β u β binders
β’ u β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | tauto | v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β u β binders
β’ u β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | subst a1 | v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = y
β’ u β binders | v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β (if v = v then u else v) β binders
β’ u β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp at h2_right | v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β (if v = v then u else v) β binders
β’ u β binders | v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β u β binders
β’ u β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | tauto | v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β u β binders
β’ u β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp at h2 | v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
β’ fastAdmitsAux v u binders phi | v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
β’ fastAdmitsAux v u binders phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | exact phi_ih binders h1 h2 | v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
β’ fastAdmitsAux v u binders phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp at h2 | v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi | v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | tauto | v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | split_ifs at h2 | v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi))
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi | case pos
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
hβ : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
case neg
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
hβ : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | case pos c1 =>
left
exact c1 | v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | left | v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi | case h
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | exact c1 | case h
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | right | v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi | case h
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ fastAdmitsAux v u (binders βͺ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | apply phi_ih | case h
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ fastAdmitsAux v u (binders βͺ {x}) phi | case h.h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ v β binders βͺ {x}
case h.h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp | case h.h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ v β binders βͺ {x} | case h.h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ v β binders β§ Β¬v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | tauto | case h.h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ v β binders β§ Β¬v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp only [toIsBoundAux] at h2 | case h.h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi) | case h.h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi))
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | simp at h2 | case h.h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi))
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi) | case h.h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 : toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi)
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux | [677, 1] | [740, 17] | exact h2 | case h.h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : Β¬v = x
h2 : toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi)
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | induction F generalizing binders | F : Formula
v : VarName
binders : Finset VarName
β’ admitsAux v v binders F | case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ admitsAux v v binders (pred_const_ aβΒΉ aβ)
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ admitsAux v v binders (pred_var_ aβΒΉ aβ)
case eq_
v aβΒΉ aβ : VarName
binders : Finset VarName
β’ admitsAux v v binders (eq_ aβΒΉ aβ)
case true_
v : VarName
binders : Finset VarName
β’ admitsAux v v binders true_
case false_
v : VarName
binders : Finset VarName
β’ admitsAux v v binders false_
case not_
v : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβ.not_
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.imp_ aβ)
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.and_ aβ)
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.or_ aβ)
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.iff_ aβ)
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (forall_ aβΒΉ aβ)
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (exists_ aβΒΉ aβ)
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
β’ admitsAux v v binders (def_ aβΒΉ aβ) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | all_goals
simp only [admitsAux] | case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ admitsAux v v binders (pred_const_ aβΒΉ aβ)
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ admitsAux v v binders (pred_var_ aβΒΉ aβ)
case eq_
v aβΒΉ aβ : VarName
binders : Finset VarName
β’ admitsAux v v binders (eq_ aβΒΉ aβ)
case true_
v : VarName
binders : Finset VarName
β’ admitsAux v v binders true_
case false_
v : VarName
binders : Finset VarName
β’ admitsAux v v binders false_
case not_
v : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβ.not_
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.imp_ aβ)
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.and_ aβ)
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.or_ aβ)
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (aβΒΉ.iff_ aβ)
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (forall_ aβΒΉ aβ)
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders (exists_ aβΒΉ aβ)
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
β’ admitsAux v v binders (def_ aβΒΉ aβ) | case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders
case eq_
v aβΒΉ aβ : VarName
binders : Finset VarName
β’ (v = aβΒΉ β¨ v = aβ) β§ v β binders β v β binders
case not_
v : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβ
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v (binders βͺ {aβΒΉ}) aβ
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v (binders βͺ {aβΒΉ}) aβ
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | all_goals
tauto | case pred_const_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders
case pred_var_
v : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders
case eq_
v aβΒΉ aβ : VarName
binders : Finset VarName
β’ (v = aβΒΉ β¨ v = aβ) β§ v β binders β v β binders
case not_
v : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβ
case imp_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case and_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case or_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case iff_
v : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), admitsAux v v binders aβΒΉ
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v binders aβΒΉ β§ admitsAux v v binders aβ
case forall_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v (binders βͺ {aβΒΉ}) aβ
case exists_
v aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), admitsAux v v binders aβ
binders : Finset VarName
β’ admitsAux v v (binders βͺ {aβΒΉ}) aβ
case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | simp only [admitsAux] | case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
β’ admitsAux v v binders (def_ aβΒΉ aβ) | case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admitsAux_self | [760, 1] | [769, 10] | tauto | case def_
v : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
β’ v β aβ β§ v β binders β v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_self | [772, 1] | [778, 23] | simp only [admits] | F : Formula
v : VarName
β’ admits v v F | F : Formula
v : VarName
β’ admitsAux v v β
F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.admits_self | [772, 1] | [778, 23] | apply admitsAux_self | F : Formula
v : VarName
β’ admitsAux v v β
F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : Β¬isFreeIn v F
β’ admitsAux v u binders F | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (pred_const_ aβΒΉ aβ)
β’ admitsAux v u binders (pred_const_ aβΒΉ aβ)
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (pred_var_ aβΒΉ aβ)
β’ admitsAux v u binders (pred_var_ aβΒΉ aβ)
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (eq_ aβΒΉ aβ)
β’ admitsAux v u binders (eq_ aβΒΉ aβ)
case true_
v u : VarName
binders : Finset VarName
h1 : Β¬isFreeIn v true_
β’ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : Β¬isFreeIn v false_
β’ admitsAux v u binders false_
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v aβ.not_
β’ admitsAux v u binders aβ.not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.imp_ aβ)
β’ admitsAux v u binders (aβΒΉ.imp_ aβ)
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.and_ aβ)
β’ admitsAux v u binders (aβΒΉ.and_ aβ)
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.or_ aβ)
β’ admitsAux v u binders (aβΒΉ.or_ aβ)
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.iff_ aβ)
β’ admitsAux v u binders (aβΒΉ.iff_ aβ)
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (forall_ aβΒΉ aβ)
β’ admitsAux v u binders (forall_ aβΒΉ aβ)
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (exists_ aβΒΉ aβ)
β’ admitsAux v u binders (exists_ aβΒΉ aβ)
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (def_ aβΒΉ aβ)
β’ admitsAux v u binders (def_ aβΒΉ aβ) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | all_goals
simp only [isFreeIn] at h1
simp only [admitsAux] | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (pred_const_ aβΒΉ aβ)
β’ admitsAux v u binders (pred_const_ aβΒΉ aβ)
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (pred_var_ aβΒΉ aβ)
β’ admitsAux v u binders (pred_var_ aβΒΉ aβ)
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (eq_ aβΒΉ aβ)
β’ admitsAux v u binders (eq_ aβΒΉ aβ)
case true_
v u : VarName
binders : Finset VarName
h1 : Β¬isFreeIn v true_
β’ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : Β¬isFreeIn v false_
β’ admitsAux v u binders false_
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v aβ.not_
β’ admitsAux v u binders aβ.not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.imp_ aβ)
β’ admitsAux v u binders (aβΒΉ.imp_ aβ)
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.and_ aβ)
β’ admitsAux v u binders (aβΒΉ.and_ aβ)
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.or_ aβ)
β’ admitsAux v u binders (aβΒΉ.or_ aβ)
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (aβΒΉ.iff_ aβ)
β’ admitsAux v u binders (aβΒΉ.iff_ aβ)
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (forall_ aβΒΉ aβ)
β’ admitsAux v u binders (forall_ aβΒΉ aβ)
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v (exists_ aβΒΉ aβ)
β’ admitsAux v u binders (exists_ aβΒΉ aβ)
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (def_ aβΒΉ aβ)
β’ admitsAux v u binders (def_ aβΒΉ aβ) | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬(v = aβΒΉ β¨ v = aβ)
β’ (v = aβΒΉ β¨ v = aβ) β§ v β binders β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v aβ
β’ admitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(Β¬v = aβΒΉ β§ isFreeIn v aβ)
β’ admitsAux v u (binders βͺ {aβΒΉ}) aβ
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(Β¬v = aβΒΉ β§ isFreeIn v aβ)
β’ admitsAux v u (binders βͺ {aβΒΉ}) aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | all_goals
tauto | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬(v = aβΒΉ β¨ v = aβ)
β’ (v = aβΒΉ β¨ v = aβ) β§ v β binders β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isFreeIn v aβ
β’ admitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isFreeIn v aβΒΉ β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isFreeIn v aβ β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isFreeIn v aβΒΉ β¨ isFreeIn v aβ)
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | simp only [isFreeIn] at h1 | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isFreeIn v (def_ aβΒΉ aβ)
β’ admitsAux v u binders (def_ aβΒΉ aβ) | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ admitsAux v u binders (def_ aβΒΉ aβ) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | simp only [admitsAux] | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ admitsAux v u binders (def_ aβΒΉ aβ) | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | by_cases c1 : v = x | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
β’ admitsAux v u (binders βͺ {x}) phi | case pos
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : v = x
β’ admitsAux v u (binders βͺ {x}) phi
case neg
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : Β¬v = x
β’ admitsAux v u (binders βͺ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | apply mem_binders_imp_admitsAux | case pos
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : v = x
β’ admitsAux v u (binders βͺ {x}) phi | case pos.h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : v = x
β’ v β binders βͺ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | simp | case pos.h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : v = x
β’ v β binders βͺ {x} | case pos.h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : v = x
β’ v β binders β¨ v = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | tauto | case pos.h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : v = x
β’ v β binders β¨ v = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | apply phi_ih | case neg
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : Β¬v = x
β’ admitsAux v u (binders βͺ {x}) phi | case neg.h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : Β¬v = x
β’ Β¬isFreeIn v phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | tauto | case neg.h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isFreeIn v phi β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(Β¬v = x β§ isFreeIn v phi)
c1 : Β¬v = x
β’ Β¬isFreeIn v phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admitsAux | [782, 1] | [802, 10] | tauto | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ
β’ v β aβ β§ v β binders β u β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admits | [805, 1] | [812, 46] | simp only [admits] | F : Formula
v u : VarName
h1 : Β¬isFreeIn v F
β’ admits v u F | F : Formula
v u : VarName
h1 : Β¬isFreeIn v F
β’ admitsAux v u β
F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isFreeIn_imp_admits | [805, 1] | [812, 46] | exact not_isFreeIn_imp_admitsAux F v u β
h1 | F : Formula
v u : VarName
h1 : Β¬isFreeIn v F
β’ admitsAux v u β
F | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | induction F generalizing binders | F : Formula
v u : VarName
binders : Finset VarName
h1 : Β¬isBoundIn u F
h2 : u β binders
β’ admitsAux v u binders F | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (pred_const_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (pred_const_ aβΒΉ aβ)
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (pred_var_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (pred_var_ aβΒΉ aβ)
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (eq_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (eq_ aβΒΉ aβ)
case true_
v u : VarName
binders : Finset VarName
h1 : Β¬isBoundIn u true_
h2 : u β binders
β’ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : Β¬isBoundIn u false_
h2 : u β binders
β’ admitsAux v u binders false_
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u aβ.not_
h2 : u β binders
β’ admitsAux v u binders aβ.not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.imp_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.imp_ aβ)
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.and_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.and_ aβ)
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.or_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.or_ aβ)
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.iff_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.iff_ aβ)
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (forall_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (forall_ aβΒΉ aβ)
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (exists_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (exists_ aβΒΉ aβ)
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (def_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (def_ aβΒΉ aβ) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | all_goals
simp only [isBoundIn] at h1
simp only [admitsAux] | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (pred_const_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (pred_const_ aβΒΉ aβ)
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (pred_var_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (pred_var_ aβΒΉ aβ)
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (eq_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (eq_ aβΒΉ aβ)
case true_
v u : VarName
binders : Finset VarName
h1 : Β¬isBoundIn u true_
h2 : u β binders
β’ admitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : Β¬isBoundIn u false_
h2 : u β binders
β’ admitsAux v u binders false_
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u aβ.not_
h2 : u β binders
β’ admitsAux v u binders aβ.not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.imp_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.imp_ aβ)
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.and_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.and_ aβ)
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.or_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.or_ aβ)
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (aβΒΉ.iff_ aβ)
h2 : u β binders
β’ admitsAux v u binders (aβΒΉ.iff_ aβ)
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (forall_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (forall_ aβΒΉ aβ)
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u (exists_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (exists_ aβΒΉ aβ)
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (def_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (def_ aβΒΉ aβ) | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ (v = aβΒΉ β¨ v = aβ) β§ v β binders β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u aβ
h2 : u β binders
β’ admitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(u = aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u (binders βͺ {aβΒΉ}) aβ
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(u = aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u (binders βͺ {aβΒΉ}) aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | case forall_ x phi phi_ih | exists_ x phi phi_ih =>
push_neg at h1
cases h1
case intro h1_left h1_right =>
apply phi_ih (binders βͺ {x}) h1_right
simp
tauto | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(u = x β¨ isBoundIn u phi)
h2 : u β binders
β’ admitsAux v u (binders βͺ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | all_goals
tauto | case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ (v = aβΒΉ β¨ v = aβ) β§ v β binders β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬isBoundIn u aβ
h2 : u β binders
β’ admitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬isBoundIn u aβΒΉ β u β binders β admitsAux v u binders aβΒΉ
a_ihβ : β (binders : Finset VarName), Β¬isBoundIn u aβ β u β binders β admitsAux v u binders aβ
binders : Finset VarName
h1 : Β¬(isBoundIn u aβΒΉ β¨ isBoundIn u aβ)
h2 : u β binders
β’ admitsAux v u binders aβΒΉ β§ admitsAux v u binders aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | simp only [isBoundIn] at h1 | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬isBoundIn u (def_ aβΒΉ aβ)
h2 : u β binders
β’ admitsAux v u binders (def_ aβΒΉ aβ) | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ admitsAux v u binders (def_ aβΒΉ aβ) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | simp only [admitsAux] | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ admitsAux v u binders (def_ aβΒΉ aβ) | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | push_neg at h1 | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h1 : Β¬(u = x β¨ isBoundIn u phi)
h2 : u β binders
β’ admitsAux v u (binders βͺ {x}) phi | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1 : u β x β§ Β¬isBoundIn u phi
β’ admitsAux v u (binders βͺ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | cases h1 | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1 : u β x β§ Β¬isBoundIn u phi
β’ admitsAux v u (binders βͺ {x}) phi | case intro
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
leftβ : u β x
rightβ : Β¬isBoundIn u phi
β’ admitsAux v u (binders βͺ {x}) phi |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | case intro h1_left h1_right =>
apply phi_ih (binders βͺ {x}) h1_right
simp
tauto | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1_left : u β x
h1_right : Β¬isBoundIn u phi
β’ admitsAux v u (binders βͺ {x}) phi | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | apply phi_ih (binders βͺ {x}) h1_right | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1_left : u β x
h1_right : Β¬isBoundIn u phi
β’ admitsAux v u (binders βͺ {x}) phi | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1_left : u β x
h1_right : Β¬isBoundIn u phi
β’ u β binders βͺ {x} |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | simp | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1_left : u β x
h1_right : Β¬isBoundIn u phi
β’ u β binders βͺ {x} | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1_left : u β x
h1_right : Β¬isBoundIn u phi
β’ u β binders β§ Β¬u = x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | tauto | v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), Β¬isBoundIn u phi β u β binders β admitsAux v u binders phi
binders : Finset VarName
h2 : u β binders
h1_left : u β x
h1_right : Β¬isBoundIn u phi
β’ u β binders β§ Β¬u = x | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admitsAux | [816, 1] | [838, 10] | tauto | case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬False
h2 : u β binders
β’ v β aβ β§ v β binders β u β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits | [841, 1] | [849, 7] | simp only [admits] | F : Formula
v u : VarName
h1 : Β¬isBoundIn u F
β’ admits v u F | F : Formula
v u : VarName
h1 : Β¬isBoundIn u F
β’ admitsAux v u β
F |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits | [841, 1] | [849, 7] | apply not_isBoundIn_imp_admitsAux F v u β
h1 | F : Formula
v u : VarName
h1 : Β¬isBoundIn u F
β’ admitsAux v u β
F | F : Formula
v u : VarName
h1 : Β¬isBoundIn u F
β’ u β β
|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.not_isBoundIn_imp_admits | [841, 1] | [849, 7] | simp | F : Formula
v u : VarName
h1 : Β¬isBoundIn u F
β’ u β β
| no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | induction F generalizing binders | F : Formula
v t : VarName
binders : Finset VarName
h1 : Β¬occursIn t F
β’ admitsAux t v binders (replaceFreeAux v t binders F) | case pred_const_
v t : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬occursIn t (pred_const_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (pred_const_ aβΒΉ aβ))
case pred_var_
v t : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬occursIn t (pred_var_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (pred_var_ aβΒΉ aβ))
case eq_
v t aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬occursIn t (eq_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (eq_ aβΒΉ aβ))
case true_
v t : VarName
binders : Finset VarName
h1 : Β¬occursIn t true_
β’ admitsAux t v binders (replaceFreeAux v t binders true_)
case false_
v t : VarName
binders : Finset VarName
h1 : Β¬occursIn t false_
β’ admitsAux t v binders (replaceFreeAux v t binders false_)
case not_
v t : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t aβ.not_
β’ admitsAux t v binders (replaceFreeAux v t binders aβ.not_)
case imp_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.imp_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.imp_ aβ))
case and_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.and_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.and_ aβ))
case or_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.or_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.or_ aβ))
case iff_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.iff_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.iff_ aβ))
case forall_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (forall_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (forall_ aβΒΉ aβ))
case exists_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (exists_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (exists_ aβΒΉ aβ))
case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬occursIn t (def_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (def_ aβΒΉ aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | all_goals
simp only [occursIn] at h1
simp only [replaceFreeAux]
simp only [admitsAux] | case pred_const_
v t : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬occursIn t (pred_const_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (pred_const_ aβΒΉ aβ))
case pred_var_
v t : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : Β¬occursIn t (pred_var_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (pred_var_ aβΒΉ aβ))
case eq_
v t aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬occursIn t (eq_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (eq_ aβΒΉ aβ))
case true_
v t : VarName
binders : Finset VarName
h1 : Β¬occursIn t true_
β’ admitsAux t v binders (replaceFreeAux v t binders true_)
case false_
v t : VarName
binders : Finset VarName
h1 : Β¬occursIn t false_
β’ admitsAux t v binders (replaceFreeAux v t binders false_)
case not_
v t : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t aβ.not_
β’ admitsAux t v binders (replaceFreeAux v t binders aβ.not_)
case imp_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.imp_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.imp_ aβ))
case and_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.and_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.and_ aβ))
case or_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.or_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.or_ aβ))
case iff_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (aβΒΉ.iff_ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (aβΒΉ.iff_ aβ))
case forall_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (forall_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (forall_ aβΒΉ aβ))
case exists_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t (exists_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (exists_ aβΒΉ aβ))
case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬occursIn t (def_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (def_ aβΒΉ aβ)) | case pred_const_
v t : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ t β List.map (fun x => if v = x β§ x β binders then t else x) aβ β§ t β binders β v β binders
case pred_var_
v t : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ t β List.map (fun x => if v = x β§ x β binders then t else x) aβ β§ t β binders β v β binders
case eq_
v t aβΒΉ aβ : VarName
binders : Finset VarName
h1 : Β¬(t = aβΒΉ β¨ t = aβ)
β’ ((t = if v = aβΒΉ β§ aβΒΉ β binders then t else aβΒΉ) β¨ t = if v = aβ β§ aβ β binders then t else aβ) β§ t β binders β
v β binders
case not_
v t : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t aβ
β’ admitsAux t v binders (replaceFreeAux v t binders aβ)
case imp_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case and_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case or_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case iff_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case forall_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(t = aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v (binders βͺ {aβΒΉ}) (replaceFreeAux v t (binders βͺ {aβΒΉ}) aβ)
case exists_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(t = aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v (binders βͺ {aβΒΉ}) (replaceFreeAux v t (binders βͺ {aβΒΉ}) aβ)
case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ t β List.map (fun x => if v = x β§ x β binders then t else x) aβ β§ t β binders β v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case pred_const_ X xs | pred_var_ X xs | def_ X xs =>
simp
intro x a1 a2 a3
by_cases c1 : v = x β§ x β binders
case pos =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case neg =>
simp at c1
specialize a2 c1
subst a2
contradiction | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
β’ t β List.map (fun x => if v = x β§ x β binders then t else x) xs β§ t β binders β v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case eq_ x y =>
push_neg at h1
cases h1
case intro h1_left h1_right =>
intro a1
split_ifs at a1
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c2
case intro c2_left c2_right =>
subst c2_left
exact c2_right
case _ c1 c2 =>
tauto | v t x y : VarName
binders : Finset VarName
h1 : Β¬(t = x β¨ t = y)
β’ ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders β v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | all_goals
tauto | case not_
v t : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬occursIn t aβ
β’ admitsAux t v binders (replaceFreeAux v t binders aβ)
case imp_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case and_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case or_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case iff_
v t : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), Β¬occursIn t aβΒΉ β admitsAux t v binders (replaceFreeAux v t binders aβΒΉ)
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(occursIn t aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders aβΒΉ) β§ admitsAux t v binders (replaceFreeAux v t binders aβ)
case forall_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(t = aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v (binders βͺ {aβΒΉ}) (replaceFreeAux v t (binders βͺ {aβΒΉ}) aβ)
case exists_
v t aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), Β¬occursIn t aβ β admitsAux t v binders (replaceFreeAux v t binders aβ)
binders : Finset VarName
h1 : Β¬(t = aβΒΉ β¨ occursIn t aβ)
β’ admitsAux t v (binders βͺ {aβΒΉ}) (replaceFreeAux v t (binders βͺ {aβΒΉ}) aβ) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp only [occursIn] at h1 | case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : Β¬occursIn t (def_ aβΒΉ aβ)
β’ admitsAux t v binders (replaceFreeAux v t binders (def_ aβΒΉ aβ)) | case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ admitsAux t v binders (replaceFreeAux v t binders (def_ aβΒΉ aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp only [replaceFreeAux] | case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ admitsAux t v binders (replaceFreeAux v t binders (def_ aβΒΉ aβ)) | case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ admitsAux t v binders (def_ aβΒΉ (List.map (fun x => if v = x β§ x β binders then t else x) aβ)) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp only [admitsAux] | case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ admitsAux t v binders (def_ aβΒΉ (List.map (fun x => if v = x β§ x β binders then t else x) aβ)) | case def_
v t : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : t β aβ
β’ t β List.map (fun x => if v = x β§ x β binders then t else x) aβ β§ t β binders β v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
β’ t β List.map (fun x => if v = x β§ x β binders then t else x) xs β§ t β binders β v β binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
β’ β x β xs, ((v = x β x β binders) β x = t) β t β binders β v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | intro x a1 a2 a3 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
β’ β x β xs, ((v = x β x β binders) β x = t) β t β binders β v β binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | by_cases c1 : v = x β§ x β binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
β’ v β binders | case pos
v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : v = x β§ x β binders
β’ v β binders
case neg
v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : Β¬(v = x β§ x β binders)
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case pos =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : v = x β§ x β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case neg =>
simp at c1
specialize a2 c1
subst a2
contradiction | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : Β¬(v = x β§ x β binders)
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c1 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : v = x β§ x β binders
β’ v β binders | case intro
v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
leftβ : v = x
rightβ : x β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1_left : v = x
c1_right : x β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c1_left | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1_left : v = x
c1_right : x β binders
β’ v β binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
a3 : t β binders
a1 : v β xs
a2 : (v = v β v β binders) β v = t
c1_right : v β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c1_right | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
a3 : t β binders
a1 : v β xs
a2 : (v = v β v β binders) β v = t
c1_right : v β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | simp at c1 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : Β¬(v = x β§ x β binders)
β’ v β binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : v = x β x β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | specialize a2 c1 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a2 : (v = x β x β binders) β x = t
a3 : t β binders
c1 : v = x β x β binders
β’ v β binders | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a3 : t β binders
c1 : v = x β x β binders
a2 : x = t
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst a2 | v t : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : t β xs
x : VarName
a1 : x β xs
a3 : t β binders
c1 : v = x β x β binders
a2 : x = t
β’ v β binders | v : VarName
X : DefName
xs : List VarName
binders : Finset VarName
x : VarName
a1 : x β xs
c1 : v = x β x β binders
h1 : x β xs
a3 : x β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | contradiction | v : VarName
X : DefName
xs : List VarName
binders : Finset VarName
x : VarName
a1 : x β xs
c1 : v = x β x β binders
h1 : x β xs
a3 : x β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | push_neg at h1 | v t x y : VarName
binders : Finset VarName
h1 : Β¬(t = x β¨ t = y)
β’ ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders β v β binders | v t x y : VarName
binders : Finset VarName
h1 : t β x β§ t β y
β’ ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders β v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases h1 | v t x y : VarName
binders : Finset VarName
h1 : t β x β§ t β y
β’ ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders β v β binders | case intro
v t x y : VarName
binders : Finset VarName
leftβ : t β x
rightβ : t β y
β’ ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders β v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro h1_left h1_right =>
intro a1
split_ifs at a1
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right
case _ c1 c2 =>
cases c2
case intro c2_left c2_right =>
subst c2_left
exact c2_right
case _ c1 c2 =>
tauto | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
β’ ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders β v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | intro a1 | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
β’ ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders β v β binders | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
a1 : ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | split_ifs at a1 | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
a1 : ((t = if v = x β§ x β binders then t else x) β¨ t = if v = y β§ y β binders then t else y) β§ t β binders
β’ v β binders | case pos
v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
hβΒΉ : v = x β§ x β binders
hβ : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
β’ v β binders
case neg
v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
hβΒΉ : v = x β§ x β binders
hβ : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
β’ v β binders
case pos
v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
hβΒΉ : Β¬(v = x β§ x β binders)
hβ : v = y β§ y β binders
a1 : (t = x β¨ t = t) β§ t β binders
β’ v β binders
case neg
v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
hβΒΉ : Β¬(v = x β§ x β binders)
hβ : Β¬(v = y β§ y β binders)
a1 : (t = x β¨ t = y) β§ t β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : v = x β§ x β binders
c2 : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
cases c1
case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : v = x β§ x β binders
c2 : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
cases c2
case intro c2_left c2_right =>
subst c2_left
exact c2_right | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : Β¬(v = x β§ x β binders)
c2 : v = y β§ y β binders
a1 : (t = x β¨ t = t) β§ t β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case _ c1 c2 =>
tauto | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : Β¬(v = x β§ x β binders)
c2 : Β¬(v = y β§ y β binders)
a1 : (t = x β¨ t = y) β§ t β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c1 | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : v = x β§ x β binders
c2 : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
β’ v β binders | case intro
v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c2 : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
leftβ : v = x
rightβ : x β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c2 : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
c1_left : v = x
c1_right : x β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c1_left | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c2 : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
c1_left : v = x
c1_right : x β binders
β’ v β binders | v t y : VarName
binders : Finset VarName
h1_right : t β y
c2 : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
h1_left : t β v
c1_right : v β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c1_right | v t y : VarName
binders : Finset VarName
h1_right : t β y
c2 : v = y β§ y β binders
a1 : (t = t β¨ t = t) β§ t β binders
h1_left : t β v
c1_right : v β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c1 | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : v = x β§ x β binders
c2 : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
β’ v β binders | case intro
v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c2 : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
leftβ : v = x
rightβ : x β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c1_left c1_right =>
subst c1_left
exact c1_right | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c2 : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
c1_left : v = x
c1_right : x β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c1_left | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c2 : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
c1_left : v = x
c1_right : x β binders
β’ v β binders | v t y : VarName
binders : Finset VarName
h1_right : t β y
c2 : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
h1_left : t β v
c1_right : v β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c1_right | v t y : VarName
binders : Finset VarName
h1_right : t β y
c2 : Β¬(v = y β§ y β binders)
a1 : (t = t β¨ t = y) β§ t β binders
h1_left : t β v
c1_right : v β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | cases c2 | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : Β¬(v = x β§ x β binders)
c2 : v = y β§ y β binders
a1 : (t = x β¨ t = t) β§ t β binders
β’ v β binders | case intro
v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : Β¬(v = x β§ x β binders)
a1 : (t = x β¨ t = t) β§ t β binders
leftβ : v = y
rightβ : y β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | case intro c2_left c2_right =>
subst c2_left
exact c2_right | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : Β¬(v = x β§ x β binders)
a1 : (t = x β¨ t = t) β§ t β binders
c2_left : v = y
c2_right : y β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | subst c2_left | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : Β¬(v = x β§ x β binders)
a1 : (t = x β¨ t = t) β§ t β binders
c2_left : v = y
c2_right : y β binders
β’ v β binders | v t x : VarName
binders : Finset VarName
h1_left : t β x
c1 : Β¬(v = x β§ x β binders)
a1 : (t = x β¨ t = t) β§ t β binders
h1_right : t β v
c2_right : v β binders
β’ v β binders |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | exact c2_right | v t x : VarName
binders : Finset VarName
h1_left : t β x
c1 : Β¬(v = x β§ x β binders)
a1 : (t = x β¨ t = t) β§ t β binders
h1_right : t β v
c2_right : v β binders
β’ v β binders | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Var/One/Rec/Admits.lean | FOL.NV.Sub.Var.One.Rec.replaceFreeAux_admitsAux | [853, 1] | [905, 10] | tauto | v t x y : VarName
binders : Finset VarName
h1_left : t β x
h1_right : t β y
c1 : Β¬(v = x β§ x β binders)
c2 : Β¬(v = y β§ y β binders)
a1 : (t = x β¨ t = y) β§ t β binders
β’ v β binders | no goals |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.