url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
by_cases c1 : v = x
case h.h2 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v) case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [if_pos c1]
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ d = if True then d else V' x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ d = if True then d else V' x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [if_neg c1]
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
cases a1
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
case neg.inl D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x h✝ : v ∈ binders' ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v) case neg.inr D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x h✝ : v = x ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c2 => simp only [s1 v c1 c2] simp exact h2 v c2
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c2 => contradiction
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v = x ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [s1 v c1 c2]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ V v = if False then d else V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ V v = if False then d else V' (Οƒ' v)
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ V v = V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h2 v c2
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ V v = V' (Οƒ' v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
contradiction
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v = x ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro v a1
case h.h3 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case h.h3 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
by_cases c1 : v = x
case h.h3 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : v = x ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v) case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : Β¬v = x ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Function.updateITE]
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : v = x ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : v = x ⊒ Β¬(if v = x then x else Οƒ' v) = x β†’ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [if_pos c1]
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : v = x ⊒ Β¬(if v = x then x else Οƒ' v) = x β†’ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : v = x ⊒ Β¬True β†’ d = if True then d else V' x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : v = x ⊒ Β¬True β†’ d = if True then d else V' x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Function.updateITE] at a1
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : Function.updateITE Οƒ' x x v βˆ‰ binders' c1 : Β¬v = x ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : (if v = x then x else Οƒ' v) βˆ‰ binders' c1 : Β¬v = x ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [if_neg c1] at a1
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : (if v = x then x else Οƒ' v) βˆ‰ binders' c1 : Β¬v = x ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Function.updateITE]
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' ⊒ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' ⊒ Β¬(if v = x then x else Οƒ' v) = x β†’ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [if_neg c1]
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' ⊒ Β¬(if v = x then x else Οƒ' v) = x β†’ (if v = x then d else V v) = if (if v = x then x else Οƒ' v) = x then d else V' (if v = x then x else Οƒ' v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' ⊒ ¬σ' v = x β†’ V v = if Οƒ' v = x then d else V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro a2
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' ⊒ ¬σ' v = x β†’ V v = if Οƒ' v = x then d else V' (Οƒ' v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' a2 : ¬σ' v = x ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [if_neg a2]
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' a2 : ¬σ' v = x ⊒ V v = if Οƒ' v = x then d else V' (Οƒ' v)
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' a2 : ¬σ' v = x ⊒ V v = V' (Οƒ' v)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply h3 v a1
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x a1 : Οƒ' v βˆ‰ binders' a2 : ¬σ' v = x ⊒ V v = V' (Οƒ' v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro v a1
case h.h4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v
case h.h4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x ⊒ v = Function.updateITE Οƒ' x x v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Function.updateITE]
case h.h4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x ⊒ v = Function.updateITE Οƒ' x x v
case h.h4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x ⊒ v = if v = x then x else Οƒ' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
split_ifs
case h.h4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x ⊒ v = if v = x then x else Οƒ' v
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x h✝ : v = x ⊒ v = x case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x h✝ : Β¬v = x ⊒ v = Οƒ' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c1 => exact c1
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c1 => cases a1 case _ c2 => exact h4 v c2 case _ c2 => contradiction
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ v = Οƒ' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact c1
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : v = x ⊒ v = x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
cases a1
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x c1 : Β¬v = x ⊒ v = Οƒ' v
case inl D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x h✝ : v ∈ binders' ⊒ v = Οƒ' v case inr D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x h✝ : v = x ⊒ v = Οƒ' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c2 => exact h4 v c2
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ v = Οƒ' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c2 => contradiction
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v = x ⊒ v = Οƒ' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h4 v c2
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v ∈ binders' ⊒ v = Οƒ' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
contradiction
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName c1 : Β¬v = x c2 : v = x ⊒ v = Οƒ' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
induction E
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E (def_ X' xs') ↔ Holds D I V' E (def_ X' (List.map Οƒ' xs'))
case nil D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V [] (def_ X' xs') ↔ Holds D I V' [] (def_ X' (List.map Οƒ' xs')) case cons D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v head✝ : Definition tail✝ : List Definition tail_ih✝ : Holds D I V tail✝ (def_ X' xs') ↔ Holds D I V' tail✝ (def_ X' (List.map Οƒ' xs')) ⊒ Holds D I V (head✝ :: tail✝) (def_ X' xs') ↔ Holds D I V' (head✝ :: tail✝) (def_ X' (List.map Οƒ' xs'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case nil => simp only [Holds]
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V [] (def_ X' xs') ↔ Holds D I V' [] (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V [] (def_ X' xs') ↔ Holds D I V' [] (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) ⊒ Holds D I V (hd :: tl) (def_ X' xs') ↔ Holds D I V' (hd :: tl) (def_ X' (List.map Οƒ' xs'))
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) ⊒ (if X' = hd.name ∧ xs'.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q else Holds D I V tl (def_ X' xs')) ↔ if X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q else Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
split_ifs
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) ⊒ (if X' = hd.name ∧ xs'.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q else Holds D I V tl (def_ X' xs')) ↔ if X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q else Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
case pos D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) h✝¹ : X' = hd.name ∧ xs'.length = hd.args.length h✝ : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) h✝¹ : X' = hd.name ∧ xs'.length = hd.args.length h✝ : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) case pos D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) h✝¹ : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) h✝ : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) h✝¹ : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) h✝ : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c1 c2 => simp only [List.length_map] at c2 contradiction
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c1 c2 => simp at c2 contradiction
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case _ c1 c2 => exact ih
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs')) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply Holds_coincide_Var
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs')) tl hd.q
case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v hd.q β†’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro v a1
case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ βˆ€ (v : VarName), isFreeIn v hd.q β†’ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
have s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs'
case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
case s1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊒ List.map V xs' = List.map (V' ∘ Οƒ') xs' case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [List.map_eq_map_iff]
case s1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊒ List.map V xs' = List.map (V' ∘ Οƒ') xs' case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
case s1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊒ βˆ€ x ∈ xs', V x = (V' ∘ Οƒ') x case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro x a2
case s1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊒ βˆ€ x ∈ xs', V x = (V' ∘ Οƒ') x case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
case s1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' ⊒ V x = (V' ∘ Οƒ') x case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
by_cases c3 : x ∈ binders'
case s1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' ⊒ V x = (V' ∘ Οƒ') x case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
case pos D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x ∈ binders' ⊒ V x = (V' ∘ Οƒ') x case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x βˆ‰ binders' ⊒ V x = (V' ∘ Οƒ') x case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [s1]
case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map V xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply Function.updateListITE_mem_eq_len
case h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ Function.updateListITE V hd.args (List.map (V' ∘ Οƒ') xs') v = Function.updateListITE V' hd.args (List.map (V' ∘ Οƒ') xs') v
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [isFreeIn_iff_mem_freeVarSet] at a1
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' a1 : v ∈ hd.q.freeVarSet ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
obtain s2 := hd.h1 a1
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' a1 : v ∈ hd.q.freeVarSet ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' a1 : v ∈ hd.q.freeVarSet s2 : v ∈ hd.args.toFinset ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp at s2
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' a1 : v ∈ hd.q.freeVarSet s2 : v ∈ hd.args.toFinset ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' a1 : v ∈ hd.q.freeVarSet s2 : v ∈ hd.args ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact s2
case h1.h1 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' a1 : v ∈ hd.q.freeVarSet s2 : v ∈ hd.args ⊒ v ∈ hd.args case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp at c2
case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ hd.args.length = (List.map (V' ∘ Οƒ') xs').length
case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ hd.args.length = xs'.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
tauto
case h1.h2 D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length v : VarName a1 : isFreeIn v hd.q s1 : List.map V xs' = List.map (V' ∘ Οƒ') xs' c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ hd.args.length = xs'.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h2 x c3
case pos D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x ∈ binders' ⊒ V x = (V' ∘ Οƒ') x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply h3 x
case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x βˆ‰ binders' ⊒ V x = (V' ∘ Οƒ') x
case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply ih_1 x a2 c3
case neg D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length v : VarName a1 : isFreeIn v hd.q x : VarName a2 : x ∈ xs' c3 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [List.length_map] at c2
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
contradiction
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : X' = hd.name ∧ xs'.length = hd.args.length c2 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs')) tl hd.q ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp at c2
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
contradiction
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : X' = hd.name ∧ xs'.length = hd.args.length ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' (List.map Οƒ' xs'))) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact ih
D : Type I : Interpretation D Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : DefName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v hd : Definition tl : List Definition ih : Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs')) c1 : Β¬(X' = hd.name ∧ xs'.length = hd.args.length) c2 : Β¬(X' = hd.name ∧ (List.map Οƒ' xs').length = hd.args.length) ⊒ Holds D I V tl (def_ X' xs') ↔ Holds D I V' tl (def_ X' (List.map Οƒ' xs'))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
apply substitution_theorem_aux D I (V ∘ Οƒ) V E Οƒ βˆ… F F' h1
D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ Holds D I (V ∘ Οƒ) E F ↔ Holds D I V E F'
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, (V ∘ Οƒ) v = V (Οƒ v) case h3 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ (v : VarName), Οƒ v βˆ‰ βˆ… β†’ (V ∘ Οƒ) v = V (Οƒ v) case h4 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, v = Οƒ v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
simp
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, (V ∘ Οƒ) v = V (Οƒ v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
simp
case h3 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ (v : VarName), Οƒ v βˆ‰ βˆ… β†’ (V ∘ Οƒ) v = V (Οƒ v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem
[276, 1]
[289, 9]
simp
case h4 D : Type I : Interpretation D V : VarAssignment D E : Env Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' ⊒ βˆ€ v ∈ βˆ…, v = Οƒ v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
simp only [IsValid] at h2
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : F.IsValid ⊒ F'.IsValid
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
simp only [IsValid]
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
intro D I V E
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
simp only [← substitution_theorem D I V E Οƒ F F' h1]
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_is_valid
[292, 1]
[304, 11]
apply h2
Οƒ : VarName β†’ VarName F F' : Formula h1 : IsSub Οƒ F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I (V ∘ Οƒ) E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
induction h1
Ξ” : List Formula F : Formula h1 : IsDeduct Ξ” F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”, Holds D I V E H) β†’ Holds D I V E F
case struct_1_ Ξ” : List Formula F : Formula Ξ”βœ : List Formula H✝ phi✝ : Formula a✝ : IsDeduct Ξ”βœ phi✝ a_ih✝ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”βœ, Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ H✝ :: Ξ”βœ, Holds D I V E H) β†’ Holds D I V E phi✝ case struct_2_ Ξ” : List Formula F : Formula Ξ”βœ : List Formula H✝ phi✝ : Formula a✝ : IsDeduct (H✝ :: H✝ :: Ξ”βœ) phi✝ a_ih✝ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ H✝ :: H✝ :: Ξ”βœ, Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ H✝ :: Ξ”βœ, Holds D I V E H) β†’ Holds D I V E phi✝ case struct_3_ Ξ” : List Formula F : Formula Ξ”_1✝ Ξ”_2✝ : List Formula H_1✝ H_2✝ phi✝ : Formula a✝ : IsDeduct (Ξ”_1✝ ++ [H_1✝] ++ [H_2✝] ++ Ξ”_2✝) phi✝ a_ih✝ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”_1✝ ++ [H_1✝] ++ [H_2✝] ++ Ξ”_2✝, Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”_1✝ ++ [H_2✝] ++ [H_1✝] ++ Ξ”_2✝, Holds D I V E H) β†’ Holds D I V E phi✝ case assume_ Ξ” : List Formula F phi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [phi✝], Holds D I V E H) β†’ Holds D I V E phi✝ case prop_0_ Ξ” : List Formula F : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E true_ case prop_1_ Ξ” : List Formula F phi✝ psi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (phi✝.imp_ (psi✝.imp_ phi✝)) case prop_2_ Ξ” : List Formula F phi✝ psi✝ chi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi✝.imp_ (psi✝.imp_ chi✝)).imp_ ((phi✝.imp_ psi✝).imp_ (phi✝.imp_ chi✝))) case prop_3_ Ξ” : List Formula F phi✝ psi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi✝.not_.imp_ psi✝.not_).imp_ (psi✝.imp_ phi✝)) case mp_ Ξ” : List Formula F : Formula Ξ”βœ : List Formula phi✝ psi✝ : Formula a✝¹ : IsDeduct Ξ”βœ (phi✝.imp_ psi✝) a✝ : IsDeduct Ξ”βœ phi✝ a_ih✝¹ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”βœ, Holds D I V E H) β†’ Holds D I V E (phi✝.imp_ psi✝) a_ih✝ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”βœ, Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”βœ, Holds D I V E H) β†’ Holds D I V E psi✝ case dt_ Ξ” : List Formula F : Formula Ξ”βœ : List Formula H✝ phi✝ : Formula a✝ : IsDeduct (H✝ :: Ξ”βœ) phi✝ a_ih✝ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ H✝ :: Ξ”βœ, Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”βœ, Holds D I V E H) β†’ Holds D I V E (H✝.imp_ phi✝) case pred_1_ Ξ” : List Formula F : Formula v✝ : VarName phi✝ psi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((forall_ v✝ (phi✝.imp_ psi✝)).imp_ ((forall_ v✝ phi✝).imp_ (forall_ v✝ psi✝))) case pred_2_ Ξ” : List Formula F : Formula v✝ t✝ : VarName phi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((forall_ v✝ phi✝).imp_ (Sub.Var.All.Rec.Fresh.sub (Function.updateITE id v✝ t✝) freshChar phi✝)) case pred_3_ Ξ” : List Formula F : Formula v✝ : VarName phi✝ : Formula a✝ : Β¬isFreeIn v✝ phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (phi✝.imp_ (forall_ v✝ phi✝)) case gen_ Ξ” : List Formula F : Formula v✝ : VarName phi✝ : Formula a✝ : IsDeduct [] phi✝ a_ih✝ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (forall_ v✝ phi✝) case eq_1_ Ξ” : List Formula F : Formula v✝ : VarName ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (eq_ v✝ v✝) case eq_2_pred_var_ Ξ” : List Formula F : Formula name✝ : PredName xs✝ ys✝ : List VarName a✝ : xs✝.length = ys✝.length ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((List.foldr and_ true_ (List.zipWith eq_ xs✝ ys✝)).imp_ ((pred_var_ name✝ xs✝).iff_ (pred_var_ name✝ ys✝))) case eq_2_eq_ Ξ” : List Formula F : Formula x_0✝ x_1✝ y_0✝ y_1✝ : VarName ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (((eq_ x_0✝ y_0✝).and_ (eq_ x_1✝ y_1✝)).imp_ ((eq_ x_0✝ x_1✝).iff_ (eq_ y_0✝ y_1✝))) case def_false_ Ξ” : List Formula F : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (false_.iff_ true_.not_) case def_and_ Ξ” : List Formula F phi✝ psi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi✝.and_ psi✝).iff_ (phi✝.imp_ psi✝.not_).not_) case def_or_ Ξ” : List Formula F phi✝ psi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi✝.or_ psi✝).iff_ (phi✝.not_.imp_ psi✝)) case def_iff_ Ξ” : List Formula F phi✝ psi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (((phi✝.iff_ psi✝).imp_ ((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_).imp_ (((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_.imp_ (phi✝.iff_ psi✝)).not_).not_ case def_exists_ Ξ” : List Formula F : Formula v✝ : VarName phi✝ : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((exists_ v✝ phi✝).iff_ (forall_ v✝ phi✝.not_).not_) case sub_ Ξ” : List Formula F : Formula Ξ”βœ : List Formula phi✝ : Formula Ο„βœ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝ : IsDeduct Ξ”βœ phi✝ a_ih✝ : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”βœ, Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ List.map (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο„βœ) Ξ”βœ, Holds D I V E H) β†’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο„βœ phi✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case struct_1_ Ξ”' H _ _ ih_2 => intro D I V E a1 apply ih_2 intro H' a2 simp at a1 cases a1 case _ a1_left a1_right => exact a1_right H' a2
Ξ” : List Formula F : Formula Ξ”' : List Formula H phi✝ : Formula a✝ : IsDeduct Ξ”' phi✝ ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”', Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H_1 ∈ H :: Ξ”', Holds D I V E H_1) β†’ Holds D I V E phi✝
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case struct_2_ Ξ”' H _ _ ih_2 => intro D I V E a1 apply ih_2 intro H' a2 simp at a1 cases a1 case _ a1_left a1_right => simp at a2 cases a2 case _ a2 => simp only [a2] exact a1_left case _ a2 => exact a1_right H' a2
Ξ” : List Formula F : Formula Ξ”' : List Formula H phi✝ : Formula a✝ : IsDeduct (H :: H :: Ξ”') phi✝ ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H_1 ∈ H :: H :: Ξ”', Holds D I V E H_1) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H_1 ∈ H :: Ξ”', Holds D I V E H_1) β†’ Holds D I V E phi✝
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case struct_3_ Ξ”_1 Ξ”_2 H_1 H_2 _ _ ih_2 => intro D I V E a1 apply ih_2 intro H' a2 simp at a1 apply a1 simp at a2 tauto
Ξ” : List Formula F : Formula Ξ”_1 Ξ”_2 : List Formula H_1 H_2 phi✝ : Formula a✝ : IsDeduct (Ξ”_1 ++ [H_1] ++ [H_2] ++ Ξ”_2) phi✝ ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”_1 ++ [H_1] ++ [H_2] ++ Ξ”_2, Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”_1 ++ [H_2] ++ [H_1] ++ Ξ”_2, Holds D I V E H) β†’ Holds D I V E phi✝
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case assume_ phi => intro D I V E a1 simp at a1 exact a1
Ξ” : List Formula F phi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [phi], Holds D I V E H) β†’ Holds D I V E phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case prop_0_ => intro D I V E _ simp only [Holds]
Ξ” : List Formula F : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E true_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case prop_1_ phi psi => intro D I V E _ simp only [Holds] tauto
Ξ” : List Formula F phi psi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (phi.imp_ (psi.imp_ phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case prop_2_ phi psi chi => intro D I V E _ simp only [Holds] tauto
Ξ” : List Formula F phi psi chi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi.imp_ (psi.imp_ chi)).imp_ ((phi.imp_ psi).imp_ (phi.imp_ chi)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case prop_3_ phi psi => intro D I V E _ simp only [Holds] tauto
Ξ” : List Formula F phi psi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi.not_.imp_ psi.not_).imp_ (psi.imp_ phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case pred_1_ v phi psi => intro D I V E _ simp only [Holds] intro a2 a3 d apply a2 d exact a3 d
Ξ” : List Formula F : Formula v : VarName phi psi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((forall_ v (phi.imp_ psi)).imp_ ((forall_ v phi).imp_ (forall_ v psi)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case pred_2_ v t phi => intro D I V E _ obtain s1 := FOL.NV.Sub.Var.All.Rec.Fresh.substitution_theorem D I V E (Function.updateITE id v t) freshChar phi simp only [Holds] intro a2 simp only [s1] simp only [Function.updateITE_comp_left] simp exact a2 (V t)
Ξ” : List Formula F : Formula v t : VarName phi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((forall_ v phi).imp_ (Sub.Var.All.Rec.Fresh.sub (Function.updateITE id v t) freshChar phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case pred_3_ v phi ih => intro D I V E _ simp only [Holds] intro a2 d have s1 : Holds D I (Function.updateITE V v d) E phi ↔ Holds D I V E phi { apply Holds_coincide_Var intro v' a1 simp only [Function.updateITE] split_ifs case _ c1 => subst c1 contradiction case _ c1 => rfl } simp only [s1] exact a2
Ξ” : List Formula F : Formula v : VarName phi : Formula ih : Β¬isFreeIn v phi ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (phi.imp_ (forall_ v phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case gen_ v phi _ ih_2 => intro D I V E _ simp only [Holds] intro d apply ih_2 simp
Ξ” : List Formula F : Formula v : VarName phi : Formula a✝ : IsDeduct [] phi ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E phi ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (forall_ v phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case eq_1_ v => intro D I V E _ simp only [Holds]
Ξ” : List Formula F : Formula v : VarName ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (eq_ v v)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case eq_2_eq_ x_0 x_1 y_0 y_1 => intro D I V E _ simp only [Holds] intro a2 cases a2 case _ a2_left a2_right => simp only [a2_left] simp only [a2_right]
Ξ” : List Formula F : Formula x_0 x_1 y_0 y_1 : VarName ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (((eq_ x_0 y_0).and_ (eq_ x_1 y_1)).imp_ ((eq_ x_0 x_1).iff_ (eq_ y_0 y_1)))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case def_false_ => intro D I V E _ simp only [Holds] tauto
Ξ” : List Formula F : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (false_.iff_ true_.not_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case def_and_ phi psi => intro D I V E _ simp only [Holds] tauto
Ξ” : List Formula F phi psi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi.and_ psi).iff_ (phi.imp_ psi.not_).not_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case def_or_ phi psi => intro D I V E _ simp only [Holds] tauto
Ξ” : List Formula F phi psi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((phi.or_ psi).iff_ (phi.not_.imp_ psi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case def_iff_ phi psi => intro D I V E _ simp only [Holds] tauto
Ξ” : List Formula F phi psi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E (((phi.iff_ psi).imp_ ((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_).imp_ (((phi.imp_ psi).imp_ (psi.imp_ phi).not_).not_.imp_ (phi.iff_ psi)).not_).not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case def_exists_ v phi => intro D I V E _ simp only [Holds] simp
Ξ” : List Formula F : Formula v : VarName phi : Formula ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ [], Holds D I V E H) β†’ Holds D I V E ((exists_ v phi).iff_ (forall_ v phi.not_).not_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
case sub_ Ξ”' phi Ο„ _ ih_2 => intro D I V E a1 simp at a1 obtain s1 := Sub.Pred.All.Rec.Option.Fresh.substitution_theorem D I V E freshChar Ο„ simp only [← s1] at a1 simp only [← s1] apply ih_2 exact a1
Ξ” : List Formula F : Formula Ξ”' : List Formula phi : Formula Ο„ : PredName β†’ β„• β†’ Option (List VarName Γ— Formula) a✝ : IsDeduct Ξ”' phi ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”', Holds D I V E H) β†’ Holds D I V E phi ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ List.map (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο„) Ξ”', Holds D I V E H) β†’ Holds D I V E (Sub.Pred.All.Rec.Option.Fresh.sub freshChar Ο„ phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
intro D I V E a1
Ξ” : List Formula F : Formula Ξ”' : List Formula H phi✝ : Formula a✝ : IsDeduct Ξ”' phi✝ ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”', Holds D I V E H) β†’ Holds D I V E phi✝ ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H_1 ∈ H :: Ξ”', Holds D I V E H_1) β†’ Holds D I V E phi✝
Ξ” : List Formula F : Formula Ξ”' : List Formula H phi✝ : Formula a✝ : IsDeduct Ξ”' phi✝ ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”', Holds D I V E H) β†’ Holds D I V E phi✝ D : Type I : Interpretation D V : VarAssignment D E : Env a1 : βˆ€ H_1 ∈ H :: Ξ”', Holds D I V E H_1 ⊒ Holds D I V E phi✝
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Program/Backend.lean
FOL.NV.Program.Backend.soundness
[793, 1]
[979, 13]
apply ih_2
Ξ” : List Formula F : Formula Ξ”' : List Formula H phi✝ : Formula a✝ : IsDeduct Ξ”' phi✝ ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”', Holds D I V E H) β†’ Holds D I V E phi✝ D : Type I : Interpretation D V : VarAssignment D E : Env a1 : βˆ€ H_1 ∈ H :: Ξ”', Holds D I V E H_1 ⊒ Holds D I V E phi✝
case a Ξ” : List Formula F : Formula Ξ”' : List Formula H phi✝ : Formula a✝ : IsDeduct Ξ”' phi✝ ih_2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), (βˆ€ H ∈ Ξ”', Holds D I V E H) β†’ Holds D I V E phi✝ D : Type I : Interpretation D V : VarAssignment D E : Env a1 : βˆ€ H_1 ∈ H :: Ξ”', Holds D I V E H_1 ⊒ βˆ€ H ∈ Ξ”', Holds D I V E H