url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E (h1_phi'.iff_ h1_psi') ↔ Holds D J V E (h1_phi.iff_ h1_psi)
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (Holds D I V E h1_phi' ↔ Holds D I V E h1_psi') ↔ (Holds D J V E h1_phi ↔ Holds D J V E h1_psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
congr! 1
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (Holds D I V E h1_phi' ↔ Holds D I V E h1_psi') ↔ (Holds D J V E h1_phi ↔ Holds D J V E h1_psi)
case a.h.e'_1.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_phi' ↔ Holds D J V E h1_phi case a.h.e'_2.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_psi' ↔ Holds D J V E h1_psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h1_ih_1 V h2
case a.h.e'_1.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_phi' ↔ Holds D J V E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h1_ih_2 V h2
case a.h.e'_2.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_psi' ↔ Holds D J V E h1_psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E (exists_ h1_x h1_phi') ↔ Holds D J V E (exists_ h1_x h1_phi)
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆƒ d, Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆƒ d, Holds D J (Function.updateITE V h1_x d) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
first | apply forall_congr' | apply exists_congr
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆƒ d, Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆƒ d, Holds D J (Function.updateITE V h1_x d) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro d
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ Holds D I (Function.updateITE V h1_x d) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x d) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply h1_ih
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ Holds D I (Function.updateITE V h1_x d) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x d) E h1_phi
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro Q ds a1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds)
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
specialize h2 Q ds a1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
have s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H := by apply Holds_coincide_Var intro v a1 apply Function.updateListITE_updateIte intro contra subst contra contradiction
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [h2] at s1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact s1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply forall_congr'
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆ€ (d : D), Holds D J (Function.updateITE V h1_x d) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply exists_congr
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆƒ d, Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆƒ d, Holds D J (Function.updateITE V h1_x d) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Holds_coincide_Var
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ βˆ€ (v : VarName), isFreeIn v H β†’ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro v a1
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ βˆ€ (v : VarName), isFreeIn v H β†’ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Function.updateListITE_updateIte
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Β¬v = h1_x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro contra
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Β¬v = h1_x
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H contra : v = h1_x ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
subst contra
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H contra : v = h1_x ⊒ False
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H h1_1 : Β¬isFreeIn v H ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
contradiction
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H h1_1 : Β¬isFreeIn v H ⊒ False
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
cases E
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E (def_ X xs) ↔ Holds D J V E (def_ X xs)
case nil D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) [] H ↔ J.pred_var_ P ds) ⊒ Holds D I V [] (def_ X xs) ↔ Holds D J V [] (def_ X xs) case cons D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D head✝ : Definition tail✝ : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (head✝ :: tail✝) H ↔ J.pred_var_ P ds) ⊒ Holds D I V (head✝ :: tail✝) (def_ X xs) ↔ Holds D J V (head✝ :: tail✝) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
case nil => simp only [Holds]
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) [] H ↔ J.pred_var_ P ds) ⊒ Holds D I V [] (def_ X xs) ↔ Holds D J V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) [] H ↔ J.pred_var_ P ds) ⊒ Holds D I V [] (def_ X xs) ↔ Holds D J V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) ⊒ Holds D I V (hd :: tl) (def_ X xs) ↔ Holds D J V (hd :: tl) (def_ X xs)
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D J V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
split_ifs
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D J V tl (def_ X xs)
case pos D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) h✝ : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q case neg D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) h✝ : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D J V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Holds_coincide_PredVar
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ I.pred_const_ = J.pred_const_ case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h3_const
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ I.pred_const_ = J.pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [predVarOccursIn_iff_mem_predVarSet]
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ hd.q.predVarSet β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [hd.h2]
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ hd.q.predVarSet β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ βˆ… β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ βˆ… β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Holds_coincide_PredVar
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D J V tl (def_ X xs)
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ I.pred_const_ = J.pred_const_ case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h3_const
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ I.pred_const_ = J.pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [predVarOccursIn]
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), False β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), False β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [IsValid] at h2
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : F.IsValid ⊒ F'.IsValid
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [IsValid]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
intro D I V E
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
let J : Interpretation D := { nonempty := I.nonempty pred_const_ := I.pred_const_ pred_var_ := fun (Q : PredName) (ds : List D) => if (Q = P ∧ ds.length = zs.length) then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds }
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
obtain s1 := substitution_theorem D I J V E F P zs H F' h1
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ I.pred_const_ = J.pred_const_ β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [Interpretation.pred_var_] at s1
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ I.pred_const_ = J.pred_const_ β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [s2]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) s2 : Holds D I V E F' ↔ Holds D J V E F ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) s2 : Holds D I V E F' ↔ Holds D J V E F ⊒ Holds D J V E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
apply h2
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) s2 : Holds D I V E F' ↔ Holds D J V E F ⊒ Holds D J V E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
apply s1
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F' ↔ Holds D J V E F
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds) case h3_const F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ True case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
intro Q ds a1
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
cases a1
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
case h2.intro F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D left✝ : Q = P right✝ : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
case h2.intro a1_left a1_right => simp simp only [if_pos a1_right]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [if_pos a1_right]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp
case h3_const F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ True
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
intro Q ds a1
case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)
case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Β¬(Q = P ∧ ds.length = zs.length) ⊒ I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [if_neg a1]
case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Β¬(Q = P ∧ ds.length = zs.length) ⊒ I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
induction h1 generalizing V V'
D : Type I : Interpretation D V V' : VarAssignment D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula h1 : IsSubAux Οƒ binders F F' h2 : βˆ€ v ∈ binders, V v = V' (Οƒ v) h3 : βˆ€ (v : VarName), Οƒ v βˆ‰ binders β†’ V v = V' (Οƒ v) h4 : βˆ€ v ∈ binders, v = Οƒ v ⊒ Holds D I V E F ↔ Holds D I V' E F'
case pred_const_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName X✝ : PredName xs✝ : List VarName a✝ : βˆ€ v ∈ xs✝, v βˆ‰ binders✝ β†’ Οƒβœ v βˆ‰ binders✝ V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (pred_const_ X✝ xs✝) ↔ Holds D I V' E (pred_const_ X✝ (List.map Οƒβœ xs✝)) case pred_var_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName X✝ : PredName xs✝ : List VarName a✝ : βˆ€ v ∈ xs✝, v βˆ‰ binders✝ β†’ Οƒβœ v βˆ‰ binders✝ V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (pred_var_ X✝ xs✝) ↔ Holds D I V' E (pred_var_ X✝ (List.map Οƒβœ xs✝)) case eq_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName x✝ y✝ : VarName a✝ : βˆ€ (v : VarName), v = x✝ ∨ v = y✝ β†’ v βˆ‰ binders✝ β†’ Οƒβœ v βˆ‰ binders✝ V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (eq_ x✝ y✝) ↔ Holds D I V' E (eq_ (Οƒβœ x✝) (Οƒβœ y✝)) case true_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E true_ ↔ Holds D I V' E true_ case false_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E false_ ↔ Holds D I V' E false_ case not_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName phi✝ phi'✝ : Formula a✝ : IsSubAux Οƒβœ binders✝ phi✝ phi'✝ a_ih✝ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝) V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E phi✝.not_ ↔ Holds D I V' E phi'✝.not_ case imp_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName phi✝ psi✝ phi'✝ psi'✝ : Formula a✝¹ : IsSubAux Οƒβœ binders✝ phi✝ phi'✝ a✝ : IsSubAux Οƒβœ binders✝ psi✝ psi'✝ a_ih✝¹ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝) a_ih✝ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝) V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (phi✝.imp_ psi✝) ↔ Holds D I V' E (phi'✝.imp_ psi'✝) case and_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName phi✝ psi✝ phi'✝ psi'✝ : Formula a✝¹ : IsSubAux Οƒβœ binders✝ phi✝ phi'✝ a✝ : IsSubAux Οƒβœ binders✝ psi✝ psi'✝ a_ih✝¹ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝) a_ih✝ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝) V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (phi✝.and_ psi✝) ↔ Holds D I V' E (phi'✝.and_ psi'✝) case or_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName phi✝ psi✝ phi'✝ psi'✝ : Formula a✝¹ : IsSubAux Οƒβœ binders✝ phi✝ phi'✝ a✝ : IsSubAux Οƒβœ binders✝ psi✝ psi'✝ a_ih✝¹ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝) a_ih✝ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝) V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (phi✝.or_ psi✝) ↔ Holds D I V' E (phi'✝.or_ psi'✝) case iff_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName phi✝ psi✝ phi'✝ psi'✝ : Formula a✝¹ : IsSubAux Οƒβœ binders✝ phi✝ phi'✝ a✝ : IsSubAux Οƒβœ binders✝ psi✝ psi'✝ a_ih✝¹ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝) a_ih✝ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v)) β†’ (βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v)) β†’ (βˆ€ v ∈ binders✝, v = Οƒβœ v) β†’ (Holds D I V E psi✝ ↔ Holds D I V' E psi'✝) V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (phi✝.iff_ psi✝) ↔ Holds D I V' E (phi'✝.iff_ psi'✝) case forall_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName x✝ : VarName phi✝ phi'✝ : Formula a✝ : IsSubAux (Function.updateITE Οƒβœ x✝ x✝) (binders✝ βˆͺ {x✝}) phi✝ phi'✝ a_ih✝ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝ βˆͺ {x✝}, V v = V' (Function.updateITE Οƒβœ x✝ x✝ v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒβœ x✝ x✝ v βˆ‰ binders✝ βˆͺ {x✝} β†’ V v = V' (Function.updateITE Οƒβœ x✝ x✝ v)) β†’ (βˆ€ v ∈ binders✝ βˆͺ {x✝}, v = Function.updateITE Οƒβœ x✝ x✝ v) β†’ (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝) V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (forall_ x✝ phi✝) ↔ Holds D I V' E (forall_ x✝ phi'✝) case exists_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName x✝ : VarName phi✝ phi'✝ : Formula a✝ : IsSubAux (Function.updateITE Οƒβœ x✝ x✝) (binders✝ βˆͺ {x✝}) phi✝ phi'✝ a_ih✝ : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders✝ βˆͺ {x✝}, V v = V' (Function.updateITE Οƒβœ x✝ x✝ v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒβœ x✝ x✝ v βˆ‰ binders✝ βˆͺ {x✝} β†’ V v = V' (Function.updateITE Οƒβœ x✝ x✝ v)) β†’ (βˆ€ v ∈ binders✝ βˆͺ {x✝}, v = Function.updateITE Οƒβœ x✝ x✝ v) β†’ (Holds D I V E phi✝ ↔ Holds D I V' E phi'✝) V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (exists_ x✝ phi✝) ↔ Holds D I V' E (exists_ x✝ phi'✝) case def_ D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName X✝ : DefName xs✝ : List VarName a✝ : βˆ€ v ∈ xs✝, v βˆ‰ binders✝ β†’ Οƒβœ v βˆ‰ binders✝ V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E (def_ X✝ xs✝) ↔ Holds D I V' E (def_ X✝ (List.map Οƒβœ xs✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case true_ | false_ => simp only [Holds]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E false_ ↔ Holds D I V' E false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
case not_ Οƒ' binders' phi phi' _ ih_2 => simp only [Holds] congr! 1 exact ih_2 V V' h2 h3 h4
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi phi' : Formula a✝ : IsSubAux Οƒ' binders' phi phi' ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E phi.not_ ↔ Holds D I V' E phi'.not_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E (pred_var_ X' xs') ↔ Holds D I V' E (pred_var_ X' (List.map Οƒ' xs'))
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map V' (List.map Οƒ' xs'))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map V' (List.map Οƒ' xs'))
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map (V' ∘ Οƒ') xs')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
congr! 1
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ I.pred_var_ X' (List.map V xs') ↔ I.pred_var_ X' (List.map (V' ∘ Οƒ') xs')
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ List.map V xs' = List.map (V' ∘ Οƒ') xs'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [List.map_eq_map_iff]
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ List.map V xs' = List.map (V' ∘ Οƒ') xs'
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ βˆ€ x ∈ xs', V x = (V' ∘ Οƒ') x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro x a1
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ βˆ€ x ∈ xs', V x = (V' ∘ Οƒ') x
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' ⊒ V x = (V' ∘ Οƒ') x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' ⊒ V x = (V' ∘ Οƒ') x
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' ⊒ V x = V' (Οƒ' x)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
by_cases c1 : x ∈ binders'
case a.h.e'_4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' ⊒ V x = V' (Οƒ' x)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' c1 : x ∈ binders' ⊒ V x = V' (Οƒ' x) case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' c1 : x βˆ‰ binders' ⊒ V x = V' (Οƒ' x)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h2 x c1
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' c1 : x ∈ binders' ⊒ V x = V' (Οƒ' x)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply h3
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' c1 : x βˆ‰ binders' ⊒ V x = V' (Οƒ' x)
case neg.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' c1 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact ih_1 x a1 c1
case neg.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName X' : PredName xs' : List VarName ih_1 : βˆ€ v ∈ xs', v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v x : VarName a1 : x ∈ xs' c1 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E (eq_ x y) ↔ Holds D I V' E (eq_ (Οƒ' x) (Οƒ' y))
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ V x = V y ↔ V' (Οƒ' x) = V' (Οƒ' y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
congr! 1
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ V x = V y ↔ V' (Οƒ' x) = V' (Οƒ' y)
case a.h.e'_2 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ V x = V' (Οƒ' x) case a.h.e'_3 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ V y = V' (Οƒ' y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
by_cases c1 : x ∈ binders'
case a.h.e'_2 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ V x = V' (Οƒ' x)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x ∈ binders' ⊒ V x = V' (Οƒ' x) case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ V x = V' (Οƒ' x)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h2 x c1
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x ∈ binders' ⊒ V x = V' (Οƒ' x)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply h3
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ V x = V' (Οƒ' x)
case neg.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply ih_1
case neg.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ Οƒ' x βˆ‰ binders'
case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ x = x ∨ x = y case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ x βˆ‰ binders'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ x = x ∨ x = y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact c1
case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : x βˆ‰ binders' ⊒ x βˆ‰ binders'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
by_cases c1 : y ∈ binders'
case a.h.e'_3 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ V y = V' (Οƒ' y)
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y ∈ binders' ⊒ V y = V' (Οƒ' y) case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ V y = V' (Οƒ' y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h2 y c1
case pos D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y ∈ binders' ⊒ V y = V' (Οƒ' y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply h3
case neg D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ V y = V' (Οƒ' y)
case neg.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ Οƒ' y βˆ‰ binders'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply ih_1
case neg.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ Οƒ' y βˆ‰ binders'
case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ y = x ∨ y = y case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ y βˆ‰ binders'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp
case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ y = x ∨ y = y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact c1
case neg.a.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x y : VarName ih_1 : βˆ€ (v : VarName), v = x ∨ v = y β†’ v βˆ‰ binders' β†’ Οƒ' v βˆ‰ binders' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v c1 : y βˆ‰ binders' ⊒ y βˆ‰ binders'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒβœ : VarName β†’ VarName binders✝ : Finset VarName V V' : VarAssignment D h2 : βˆ€ v ∈ binders✝, V v = V' (Οƒβœ v) h3 : βˆ€ (v : VarName), Οƒβœ v βˆ‰ binders✝ β†’ V v = V' (Οƒβœ v) h4 : βˆ€ v ∈ binders✝, v = Οƒβœ v ⊒ Holds D I V E false_ ↔ Holds D I V' E false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi phi' : Formula a✝ : IsSubAux Οƒ' binders' phi phi' ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E phi.not_ ↔ Holds D I V' E phi'.not_
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi phi' : Formula a✝ : IsSubAux Οƒ' binders' phi phi' ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Β¬Holds D I V E phi ↔ Β¬Holds D I V' E phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
congr! 1
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi phi' : Formula a✝ : IsSubAux Οƒ' binders' phi phi' ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Β¬Holds D I V E phi ↔ Β¬Holds D I V' E phi'
case a.h.e'_1.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi phi' : Formula a✝ : IsSubAux Οƒ' binders' phi phi' ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E phi ↔ Holds D I V' E phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact ih_2 V V' h2 h3 h4
case a.h.e'_1.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi phi' : Formula a✝ : IsSubAux Οƒ' binders' phi phi' ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E phi ↔ Holds D I V' E phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi psi phi' psi' : Formula a✝¹ : IsSubAux Οƒ' binders' phi phi' a✝ : IsSubAux Οƒ' binders' psi psi' phi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') psi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E psi ↔ Holds D I V' E psi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E (phi.iff_ psi) ↔ Holds D I V' E (phi'.iff_ psi')
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi psi phi' psi' : Formula a✝¹ : IsSubAux Οƒ' binders' phi phi' a✝ : IsSubAux Οƒ' binders' psi psi' phi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') psi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E psi ↔ Holds D I V' E psi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ (Holds D I V E phi ↔ Holds D I V E psi) ↔ (Holds D I V' E phi' ↔ Holds D I V' E psi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
congr! 1
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi psi phi' psi' : Formula a✝¹ : IsSubAux Οƒ' binders' phi phi' a✝ : IsSubAux Οƒ' binders' psi psi' phi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') psi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E psi ↔ Holds D I V' E psi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ (Holds D I V E phi ↔ Holds D I V E psi) ↔ (Holds D I V' E phi' ↔ Holds D I V' E psi')
case a.h.e'_1.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi psi phi' psi' : Formula a✝¹ : IsSubAux Οƒ' binders' phi phi' a✝ : IsSubAux Οƒ' binders' psi psi' phi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') psi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E psi ↔ Holds D I V' E psi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E phi ↔ Holds D I V' E phi' case a.h.e'_2.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi psi phi' psi' : Formula a✝¹ : IsSubAux Οƒ' binders' phi phi' a✝ : IsSubAux Οƒ' binders' psi psi' phi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') psi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E psi ↔ Holds D I V' E psi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E psi ↔ Holds D I V' E psi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply phi_ih_2 V V' h2 h3 h4
case a.h.e'_1.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi psi phi' psi' : Formula a✝¹ : IsSubAux Οƒ' binders' phi phi' a✝ : IsSubAux Οƒ' binders' psi psi' phi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') psi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E psi ↔ Holds D I V' E psi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E phi ↔ Holds D I V' E phi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply psi_ih_2 V V' h2 h3 h4
case a.h.e'_2.a D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName phi psi phi' psi' : Formula a✝¹ : IsSubAux Οƒ' binders' phi phi' a✝ : IsSubAux Οƒ' binders' psi psi' phi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') psi_ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders', V v = V' (Οƒ' v)) β†’ (βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v)) β†’ (βˆ€ v ∈ binders', v = Οƒ' v) β†’ (Holds D I V E psi ↔ Holds D I V' E psi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E psi ↔ Holds D I V' E psi'
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp at ih_2
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ v ∈ binders' βˆͺ {x}, V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' βˆͺ {x} β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ v ∈ binders' βˆͺ {x}, v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
have s1 : βˆ€ (v : VarName), Β¬ v = x β†’ v ∈ binders' β†’ Β¬ Οƒ' v = x
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') ⊒ βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro v a1 a2 contra
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') ⊒ βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') v : VarName a1 : Β¬v = x a2 : v ∈ binders' contra : Οƒ' v = x ⊒ False D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply a1
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') v : VarName a1 : Β¬v = x a2 : v ∈ binders' contra : Οƒ' v = x ⊒ False D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') v : VarName a1 : Β¬v = x a2 : v ∈ binders' contra : Οƒ' v = x ⊒ v = x D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [← contra]
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') v : VarName a1 : Β¬v = x a2 : v ∈ binders' contra : Οƒ' v = x ⊒ v = x D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') v : VarName a1 : Β¬v = x a2 : v ∈ binders' contra : Οƒ' v = x ⊒ v = Οƒ' v D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
exact h4 v a2
case s1 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') v : VarName a1 : Β¬v = x a2 : v ∈ binders' contra : Οƒ' v = x ⊒ v = Οƒ' v D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
simp only [Holds]
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ Holds D I V E (exists_ x phi) ↔ Holds D I V' E (exists_ x phi')
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V' x d) E phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
first | apply forall_congr'| apply exists_congr
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V' x d) E phi'
case h D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V' x a) E phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro d
case h D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V' x a) E phi'
case h D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ Holds D I (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V' x d) E phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply ih_2
case h D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ Holds D I (Function.updateITE V x d) E phi ↔ Holds D I (Function.updateITE V' x d) E phi'
case h.h2 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v) case h.h3 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v) case h.h4 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply forall_congr'
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V x d) E phi) ↔ βˆ€ (d : D), Holds D I (Function.updateITE V' x d) E phi'
case h D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V' x a) E phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
apply exists_congr
D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ (βˆƒ d, Holds D I (Function.updateITE V x d) E phi) ↔ βˆƒ d, Holds D I (Function.updateITE V' x d) E phi'
case h D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V x a) E phi ↔ Holds D I (Function.updateITE V' x a) E phi'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/All/Ind/Sub.lean
FOL.NV.Sub.Var.All.Ind.substitution_theorem_aux
[129, 1]
[273, 17]
intro v a1
case h.h2 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D ⊒ βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)
case h.h2 D : Type I : Interpretation D E : Env Οƒ : VarName β†’ VarName binders : Finset VarName F F' : Formula Οƒ' : VarName β†’ VarName binders' : Finset VarName x : VarName phi phi' : Formula a✝ : IsSubAux (Function.updateITE Οƒ' x x) (binders' βˆͺ {x}) phi phi' V V' : VarAssignment D h2 : βˆ€ v ∈ binders', V v = V' (Οƒ' v) h3 : βˆ€ (v : VarName), Οƒ' v βˆ‰ binders' β†’ V v = V' (Οƒ' v) h4 : βˆ€ v ∈ binders', v = Οƒ' v ih_2 : βˆ€ (V V' : VarAssignment D), (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), Function.updateITE Οƒ' x x v βˆ‰ binders' β†’ Β¬Function.updateITE Οƒ' x x v = x β†’ V v = V' (Function.updateITE Οƒ' x x v)) β†’ (βˆ€ (v : VarName), v ∈ binders' ∨ v = x β†’ v = Function.updateITE Οƒ' x x v) β†’ (Holds D I V E phi ↔ Holds D I V' E phi') s1 : βˆ€ (v : VarName), Β¬v = x β†’ v ∈ binders' β†’ ¬σ' v = x d : D v : VarName a1 : v ∈ binders' ∨ v = x ⊒ Function.updateITE V x d v = Function.updateITE V' x d (Function.updateITE Οƒ' x x v)