url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
linarith
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) h : 1 - γ ≤ 1 - (α + β - α * β) ⊢ 1 - γ ≤ (1 - α) * (1 - β)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
rw [sub_le_iff_le_add, add_comm_sub]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 - γ ≤ 1 - (α + β - α * β)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 ≤ 1 + (γ - (α + β - α * β))
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
nth_rewrite 1 [← add_zero 1]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 ≤ 1 + (γ - (α + β - α * β))
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 + 0 ≤ 1 + (γ - (α + β - α * β))
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
rw [add_le_add_iff_left, le_sub_comm, sub_zero]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 + 0 ≤ 1 + (γ - (α + β - α * β))
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ α + β - α * β ≤ γ
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
rw [sub_eq_add_neg]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ α + β - α * β ≤ γ
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ α + β + -(α * β) ≤ γ
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
exact h0
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) h0 : α + β - α * β ≤ γ ⊢ α + β + -(α * β) ≤ γ
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
rw [halpha, hbeta, hgamma]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ α + β - α * β ≤ γ
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ schnirelmannDensity A + schnirelmannDensity B - schnirelmannDensity A * schnirelmannDensity B ≤ schnirelmannDensity (A + B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
apply le_schnirelmannDensity_add A B
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ schnirelmannDensity A + schnirelmannDensity B - schnirelmannDensity A * schnirelmannDensity B ≤ schnirelmannDensity (A + B)
case hA A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 0 ∈ A case hB A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 0 ∈ B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
exact hA
case hA A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 0 ∈ A
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
exact hB
case hB A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 0 ∈ B
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
mannTheorem
[243, 1]
[245, 8]
sorry
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ ⊢ min 1 (schnirelmannDensity A + schnirelmannDensity B) ≤ schnirelmannDensity (A + B)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rw [modPartitions]
α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s ⊢ (modPartitions s d hd h).parts = image (fun i => image (fun x => i + d * x) (range ((s - i - 1) / d + 1))) (range d)
α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s ⊢ { parts := image (fun i => filter (fun j => j % d = i) (range s)) (range d), supIndep := ⋯, sup_parts := ⋯, not_bot_mem := ⋯ }.parts = image (fun i => image (fun x => i + d * x) (range ((s - i - 1) / d + 1))) (range d)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
ext x
α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s ⊢ { parts := image (fun i => filter (fun j => j % d = i) (range s)) (range d), supIndep := ⋯, sup_parts := ⋯, not_bot_mem := ⋯ }.parts = image (fun i => image (fun x => i + d * x) (range ((s - i - 1) / d + 1))) (range d)
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ ⊢ x ∈ { parts := image (fun i => filter (fun j => j % d = i) (range s)) (range d), supIndep := ⋯, sup_parts := ⋯, not_bot_mem := ⋯ }.parts ↔ x ∈ image (fun i => image (fun x => i + d * x) (range ((s - i - 1) / d + 1))) (range d)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
simp only [mem_image, mem_range]
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ ⊢ x ∈ { parts := image (fun i => filter (fun j => j % d = i) (range s)) (range d), supIndep := ⋯, sup_parts := ⋯, not_bot_mem := ⋯ }.parts ↔ x ∈ image (fun i => image (fun x => i + d * x) (range ((s - i - 1) / d + 1))) (range d)
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ ⊢ (∃ a < d, filter (fun j => j % d = a) (range s) = x) ↔ ∃ a < d, image (fun x => a + d * x) (range ((s - a - 1) / d + 1)) = x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
refine' exists_congr fun i ↦ and_congr_right fun hi ↦ _
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ ⊢ (∃ a < d, filter (fun j => j % d = a) (range s) = x) ↔ ∃ a < d, image (fun x => a + d * x) (range ((s - a - 1) / d + 1)) = x
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ i : ℕ hi : i < d ⊢ filter (fun j => j % d = i) (range s) = x ↔ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
suffices ((range ((s - i - 1) / d + 1)).image fun x ↦ i + d * x) = (range s).filter fun j ↦ j % d = i by rw [this]
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ i : ℕ hi : i < d ⊢ filter (fun j => j % d = i) (range s) = x ↔ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = x
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ i : ℕ hi : i < d ⊢ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = filter (fun j => j % d = i) (range s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
clear x
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ i : ℕ hi : i < d ⊢ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = filter (fun j => j % d = i) (range s)
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d ⊢ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = filter (fun j => j % d = i) (range s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
ext j
case a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d ⊢ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = filter (fun j => j % d = i) (range s)
case a.a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ j ∈ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) ↔ j ∈ filter (fun j => j % d = i) (range s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
simp only [mem_image, mem_filter, mem_range, Nat.lt_add_one_iff]
case a.a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ j ∈ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) ↔ j ∈ filter (fun j => j % d = i) (range s)
case a.a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ (∃ a ≤ (s - i - 1) / d, i + d * a = j) ↔ j < s ∧ j % d = i
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
constructor
case a.a α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ (∃ a ≤ (s - i - 1) / d, i + d * a = j) ↔ j < s ∧ j % d = i
case a.a.mp α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ (∃ a ≤ (s - i - 1) / d, i + d * a = j) → j < s ∧ j % d = i case a.a.mpr α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ j < s ∧ j % d = i → ∃ a ≤ (s - i - 1) / d, i + d * a = j
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rw [this]
α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s x : Finset ℕ i : ℕ hi : i < d this : image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = filter (fun j => j % d = i) (range s) ⊢ filter (fun j => j % d = i) (range s) = x ↔ image (fun x => i + d * x) (range ((s - i - 1) / d + 1)) = x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rintro ⟨j, hj, rfl⟩
case a.a.mp α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ (∃ a ≤ (s - i - 1) / d, i + d * a = j) → j < s ∧ j % d = i
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j ≤ (s - i - 1) / d ⊢ i + d * j < s ∧ (i + d * j) % d = i
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rw [Nat.add_mul_mod_self_left, Nat.mod_eq_of_lt hi, eq_self_iff_true, and_true_iff, ← Nat.lt_sub_iff_add_lt', mul_comm]
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j ≤ (s - i - 1) / d ⊢ i + d * j < s ∧ (i + d * j) % d = i
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j ≤ (s - i - 1) / d ⊢ j * d < s - i
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rwa [Nat.le_div_iff_mul_le hd.bot_lt, Nat.le_sub_iff_add_le, Nat.succ_le_iff] at hj
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j ≤ (s - i - 1) / d ⊢ j * d < s - i
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j * d ≤ s - i - 1 ⊢ 1 ≤ s - i
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rw [Nat.succ_le_iff]
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j * d ≤ s - i - 1 ⊢ 1 ≤ s - i
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j * d ≤ s - i - 1 ⊢ 0 < s - i
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
exact Nat.sub_pos_of_lt (hi.trans_le h)
case a.a.mp.intro.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ hj : j * d ≤ s - i - 1 ⊢ 0 < s - i
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rintro ⟨hj, rfl⟩
case a.a.mpr α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s i : ℕ hi : i < d j : ℕ ⊢ j < s ∧ j % d = i → ∃ a ≤ (s - i - 1) / d, i + d * a = j
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ ∃ a ≤ (s - j % d - 1) / d, j % d + d * a = j
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
refine' ⟨j / d, _, Nat.mod_add_div _ _⟩
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ ∃ a ≤ (s - j % d - 1) / d, j % d + d * a = j
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ j / d ≤ (s - j % d - 1) / d
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rwa [Nat.le_div_iff_mul_le' hd.bot_lt, Nat.le_sub_iff_add_le, Nat.le_sub_iff_add_le', ← add_assoc, mul_comm, Nat.mod_add_div, Nat.add_one_le_iff]
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ j / d ≤ (s - j % d - 1) / d
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ j % d ≤ s case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ 1 ≤ s - j % d
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
rw [Nat.succ_le_iff]
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ 1 ≤ s - j % d
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ 0 < s - j % d
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
exact Nat.sub_pos_of_lt (hi.trans_le h)
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ 0 < s - j % d
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Partition/Finpartition.lean
Finpartition.modPartitions_parts_eq
[68, 1]
[94, 44]
exact hi.le.trans h
case a.a.mpr.intro α : Type u_1 β : Type u_2 inst✝¹ : DecidableEq α inst✝ : DecidableEq β s d : ℕ hd : d ≠ 0 h : d ≤ s j : ℕ hj : j < s hi : j % d < d ⊢ j % d ≤ s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.coe_eq_one
[20, 1]
[21, 85]
rfl
α : Type u_1 inst✝ : Group α s : Subgroup α a : α ⊢ ↑s = ↑⊥ ↔ ↑s = 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.smul_coe
[23, 1]
[25, 97]
ext
α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s ⊢ a • ↑s = ↑s
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ x✝ ∈ a • ↑s ↔ x✝ ∈ ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.smul_coe
[23, 1]
[25, 97]
rw [Set.mem_smul_set_iff_inv_smul_mem]
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ x✝ ∈ a • ↑s ↔ x✝ ∈ ↑s
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ a⁻¹ • x✝ ∈ ↑s ↔ x✝ ∈ ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.smul_coe
[23, 1]
[25, 97]
exact Subgroup.mul_mem_cancel_left _ (inv_mem ha)
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ a⁻¹ • x✝ ∈ ↑s ↔ x✝ ∈ ↑s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
rw [← Nat.card_prod, Nat.card_congr]
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ Nat.card ↥s * Nat.card ↑(QuotientGroup.mk '' t) = Nat.card ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↥s × ↑(QuotientGroup.mk '' t) ≃ ↑(t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
apply Equiv.trans (QuotientGroup.preimageMkEquivSubgroupProdSet _ _).symm
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↥s × ↑(QuotientGroup.mk '' t) ≃ ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' t)) ≃ ↑(t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
rw [QuotientGroup.preimage_image_mk]
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' t)) ≃ ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) ≃ ↑(t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
apply Set.BijOn.equiv id
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) ≃ ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ Set.BijOn id (⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) (t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
convert Set.bijOn_id _
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ Set.BijOn id (⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) (t * ↑s)
case h.e'_5 α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ t * ↑s = ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
ext x
case h.e'_5 α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ t * ↑s = ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
case h.e'_5.h α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s ↔ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
constructor
case h.e'_5.h α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s ↔ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s → x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t → x ∈ t * ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
simp only [Set.mem_iUnion, Set.mem_preimage, Subtype.exists, exists_prop, Set.mem_mul]
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s → x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ (∃ x_1 ∈ t, ∃ y ∈ ↑s, x_1 * y = x) → ∃ a ∈ s, x * a ∈ t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
aesop
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ (∃ x_1 ∈ t, ∃ y ∈ ↑s, x_1 * y = x) → ∃ a ∈ s, x * a ∈ t
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
simp only [Set.mem_iUnion, Set.mem_preimage, Subtype.exists, exists_prop, forall_exists_index, and_imp]
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t → x ∈ t * ↑s
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ ∀ x_1 ∈ s, x * x_1 ∈ t → x ∈ t * ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
intro y hys hxy
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ ∀ x_1 ∈ s, x * x_1 ∈ t → x ∈ t * ↑s
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ x ∈ t * ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
rw [← mul_inv_cancel_right x y]
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ x ∈ t * ↑s
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ x * y * y⁻¹ ∈ t * ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
apply Set.mul_mem_mul hxy (by simpa)
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ x * y * y⁻¹ ∈ t * ↑s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
simpa
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ y⁻¹ ∈ ↑s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.pairwiseDisjoint_smul
[53, 1]
[60, 80]
rintro _ ⟨a, rfl⟩ _ ⟨b, rfl⟩ hab
α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β ⊢ (range fun a => a • ↑s).PairwiseDisjoint id
case intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : (fun a => a • ↑s) a ≠ (fun a => a • ↑s) b ⊢ (Disjoint on id) ((fun a => a • ↑s) a) ((fun a => a • ↑s) b)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.pairwiseDisjoint_smul
[53, 1]
[60, 80]
simp only [Function.onFun, id_eq, disjoint_left] at hab ⊢
case intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : (fun a => a • ↑s) a ≠ (fun a => a • ↑s) b ⊢ (Disjoint on id) ((fun a => a • ↑s) a) ((fun a => a • ↑s) b)
case intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : a • ↑s ≠ b • ↑s ⊢ ∀ ⦃a_1 : β⦄, a_1 ∈ a • ↑s → a_1 ∉ b • ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.pairwiseDisjoint_smul
[53, 1]
[60, 80]
rintro _ ⟨c, hc, rfl⟩ ⟨d, hd, (hcd : b • d = a • c)⟩
case intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : a • ↑s ≠ b • ↑s ⊢ ∀ ⦃a_1 : β⦄, a_1 ∈ a • ↑s → a_1 ∉ b • ↑s
case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : a • ↑s ≠ b • ↑s c : β hc : c ∈ ↑s d : β hd : d ∈ ↑s hcd : b • d = a • c ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.pairwiseDisjoint_smul
[53, 1]
[60, 80]
refine' hab _
case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : a • ↑s ≠ b • ↑s c : β hc : c ∈ ↑s d : β hd : d ∈ ↑s hcd : b • d = a • c ⊢ False
case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : a • ↑s ≠ b • ↑s c : β hc : c ∈ ↑s d : β hd : d ∈ ↑s hcd : b • d = a • c ⊢ a • ↑s = b • ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.pairwiseDisjoint_smul
[53, 1]
[60, 80]
rw [← smul_coe hc, ← smul_assoc, ← hcd, smul_assoc, smul_coe hc, smul_coe hd]
case intro.intro.intro.intro.intro.intro α : Type u_1 β : Type u_2 inst✝³ : Group α inst✝² : Group β inst✝¹ : MulAction α β inst✝ : IsScalarTower α β β s : Subgroup β a b : α hab : a • ↑s ≠ b • ↑s c : β hc : c ∈ ↑s d : β hd : d ∈ ↑s hcd : b • d = a • c ⊢ a • ↑s = b • ↑s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Ico
[12, 1]
[14, 36]
rw [Icc_eq_cons_Ico h, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a b : α inst✝ : LocallyFiniteOrder α h : a ≤ b ⊢ f b * ∏ x ∈ Ico a b, f x = ∏ x ∈ Icc a b, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Ioc
[16, 1]
[18, 36]
rw [Icc_eq_cons_Ioc h, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a b : α inst✝ : LocallyFiniteOrder α h : a ≤ b ⊢ f a * ∏ x ∈ Ioc a b, f x = ∏ x ∈ Icc a b, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Ioi
[25, 1]
[27, 34]
rw [Ici_eq_cons_Ioi, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a✝ b : α inst✝ : LocallyFiniteOrderTop α a : α ⊢ f a * ∏ x ∈ Ioi a, f x = ∏ x ∈ Ici a, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Iio
[34, 1]
[36, 34]
rw [Iic_eq_cons_Iio, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a✝ b : α inst✝ : LocallyFiniteOrderBot α a : α ⊢ f a * ∏ x ∈ Iio a, f x = ∏ x ∈ Iic a, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.Pure.exists_facet
[36, 1]
[36, 89]
sorry
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n hs : s ∈ K ⊢ ∃ t ∈ K.facets, s ⊆ t
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.Pure.exists_face_of_card_le
[38, 1]
[44, 10]
by_cases H : s ∈ K.facets
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
case pos 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∈ K.facets ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k case neg 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∉ K.facets ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.Pure.exists_face_of_card_le
[38, 1]
[44, 10]
exact ⟨s, hs, Subset.rfl, hcard.antisymm <| h.trans (hK.2 H).ge⟩
case pos 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∈ K.facets ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.Pure.exists_face_of_card_le
[38, 1]
[44, 10]
unfold facets at H
case neg 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∉ K.facets ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
case neg 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∉ {s | s ∈ K.faces ∧ ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t} ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.Pure.exists_face_of_card_le
[38, 1]
[44, 10]
simp at H
case neg 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∉ {s | s ∈ K.faces ∧ ∀ ⦃t : Finset E⦄, t ∈ K.faces → s ⊆ t → s = t} ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
case neg 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∈ K → ∃ x ∈ K, s ⊆ x ∧ ¬s = x ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.Pure.exists_face_of_card_le
[38, 1]
[44, 10]
sorry
case neg 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.Pure n h : k ≤ n + 1 hs : s ∈ K hcard : s.card ≤ k H : s ∈ K → ∃ x ∈ K, s ⊆ x ∧ ¬s = x ⊢ ∃ t ∈ K, s ⊆ t ∧ t.card = k
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_unique
[46, 1]
[49, 59]
obtain ⟨s, hs⟩ := hK
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E hK : K.faces.Nonempty ha : K.Pure a hb : K.Pure b ⊢ a = b
case intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E ha : K.Pure a hb : K.Pure b s : Finset E hs : s ∈ K.faces ⊢ a = b
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_unique
[46, 1]
[49, 59]
obtain ⟨t, ht, -⟩ := ha.exists_facet hs
case intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E ha : K.Pure a hb : K.Pure b s : Finset E hs : s ∈ K.faces ⊢ a = b
case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E ha : K.Pure a hb : K.Pure b s : Finset E hs : s ∈ K.faces t : Finset E ht : t ∈ K.facets ⊢ a = b
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_unique
[46, 1]
[49, 59]
exact add_right_cancel ((ha.2 ht).symm.trans <| hb.2 ht)
case intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E ha : K.Pure a hb : K.Pure b s : Finset E hs : s ∈ K.faces t : Finset E ht : t ∈ K.facets ⊢ a = b
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_iff
[55, 1]
[64, 22]
refine' ⟨fun hK s hs => _, fun hK => ⟨fun s hs => _, fun s hs => _⟩⟩
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E ⊢ K.Pure n ↔ ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t
case refine'_1 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : K.Pure n s : Finset E hs : s ∈ K ⊢ ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t case refine'_2 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K ⊢ s.card ≤ n + 1 case refine'_3 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K.facets ⊢ s.card = n + 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_iff
[55, 1]
[64, 22]
obtain ⟨t, ht, hst⟩ := hK.exists_facet hs
case refine'_1 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : K.Pure n s : Finset E hs : s ∈ K ⊢ ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t
case refine'_1.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : K.Pure n s : Finset E hs : s ∈ K t : Finset E ht : t ∈ K.facets hst : s ⊆ t ⊢ ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_iff
[55, 1]
[64, 22]
exact ⟨t, ht.1, hK.2 ht, hst⟩
case refine'_1.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : K.Pure n s : Finset E hs : s ∈ K t : Finset E ht : t ∈ K.facets hst : s ⊆ t ⊢ ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_iff
[55, 1]
[64, 22]
obtain ⟨t, _, htcard, hst⟩ := hK hs
case refine'_2 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K ⊢ s.card ≤ n + 1
case refine'_2.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K t : Finset E left✝ : t ∈ K htcard : t.card = n + 1 hst : s ⊆ t ⊢ s.card ≤ n + 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_iff
[55, 1]
[64, 22]
exact (Finset.card_le_card hst).trans_eq htcard
case refine'_2.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K t : Finset E left✝ : t ∈ K htcard : t.card = n + 1 hst : s ⊆ t ⊢ s.card ≤ n + 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_iff
[55, 1]
[64, 22]
obtain ⟨t, ht, htcard, hst⟩ := hK hs.1
case refine'_3 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K.facets ⊢ s.card = n + 1
case refine'_3.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K.facets t : Finset E ht : t ∈ K htcard : t.card = n + 1 hst : s ⊆ t ⊢ s.card = n + 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.pure_iff
[55, 1]
[64, 22]
rwa [hs.2 ht hst]
case refine'_3.intro.intro.intro 𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E hK : ∀ ⦃s : Finset E⦄, s ∈ K → ∃ t ∈ K, t.card = n + 1 ∧ s ⊆ t s : Finset E hs : s ∈ K.facets t : Finset E ht : t ∈ K htcard : t.card = n + 1 hst : s ⊆ t ⊢ s.card = n + 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.facets_mono
[66, 1]
[70, 23]
refine' fun s hs => ⟨h hs.1, fun t ht hst => Finset.eq_of_subset_of_card_le hst _⟩
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s : Finset E K₁ K₂ : SimplicialComplex 𝕜 E h : K₁ ≤ K₂ hK₁ : K₁.Pure n hK₂ : K₂.Pure n ⊢ K₁.facets ⊆ K₂.facets
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E K₁ K₂ : SimplicialComplex 𝕜 E h : K₁ ≤ K₂ hK₁ : K₁.Pure n hK₂ : K₂.Pure n s : Finset E hs : s ∈ K₁.facets t : Finset E ht : t ∈ K₂.faces hst : s ⊆ t ⊢ t.card ≤ s.card
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.facets_mono
[66, 1]
[70, 23]
rw [hK₁.2 hs]
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E K₁ K₂ : SimplicialComplex 𝕜 E h : K₁ ≤ K₂ hK₁ : K₁.Pure n hK₂ : K₂.Pure n s : Finset E hs : s ∈ K₁.facets t : Finset E ht : t ∈ K₂.faces hst : s ⊆ t ⊢ t.card ≤ s.card
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E K₁ K₂ : SimplicialComplex 𝕜 E h : K₁ ≤ K₂ hK₁ : K₁.Pure n hK₂ : K₂.Pure n s : Finset E hs : s ∈ K₁.facets t : Finset E ht : t ∈ K₂.faces hst : s ⊆ t ⊢ t.card ≤ n + 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/SimplicialComplex/Pure.lean
Geometry.SimplicialComplex.facets_mono
[66, 1]
[70, 23]
exact hK₂.card_le ht
𝕜 : Type u_1 E : Type u_2 inst✝² : OrderedRing 𝕜 inst✝¹ : AddCommGroup E inst✝ : Module 𝕜 E a b n k : ℕ K : SimplicialComplex 𝕜 E s✝ : Finset E K₁ K₂ : SimplicialComplex 𝕜 E h : K₁ ≤ K₂ hK₁ : K₁.Pure n hK₂ : K₂.Pure n s : Finset E hs : s ∈ K₁.facets t : Finset E ht : t ∈ K₂.faces hst : s ⊆ t ⊢ t.card ≤ n + 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.prod_top
[46, 1]
[47, 53]
simp [mem_prod, LatticeHom.coe_fst]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ L✝ M : Sublattice α f : LatticeHom α β s t : Set α a✝ : α L : Sublattice α a : α × β ⊢ a ∈ L.prod ⊤ ↔ a ∈ comap (LatticeHom.fst α β) L
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.top_prod
[49, 1]
[50, 53]
simp [mem_prod, LatticeHom.coe_snd]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ L✝ M : Sublattice α f : LatticeHom α β s t : Set α a✝ : α L : Sublattice β a : α × β ⊢ a ∈ ⊤.prod L ↔ a ∈ comap (LatticeHom.snd α β) L
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.le_prod_iff
[61, 1]
[63, 36]
simp [SetLike.le_def, forall_and]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ L M✝ : Sublattice α f : LatticeHom α β s t : Set α a : α M : Sublattice β N : Sublattice (α × β) ⊢ N ≤ L.prod M ↔ N ≤ comap (LatticeHom.fst α β) L ∧ N ≤ comap (LatticeHom.snd α β) M
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.prod_eq_bot
[65, 1]
[66, 53]
simpa only [← coe_inj] using Set.prod_eq_empty_iff
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝² : Lattice α inst✝¹ : Lattice β inst✝ : Lattice γ L M✝ : Sublattice α f : LatticeHom α β s t : Set α a : α M : Sublattice β ⊢ L.prod M = ⊥ ↔ L = ⊥ ∨ M = ⊥
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.prod_eq_top
[68, 1]
[69, 85]
simpa only [← coe_inj] using Set.prod_eq_univ
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝⁴ : Lattice α inst✝³ : Lattice β inst✝² : Lattice γ L M✝ : Sublattice α f : LatticeHom α β s t : Set α a : α inst✝¹ : Nonempty α inst✝ : Nonempty β M : Sublattice β ⊢ L.prod M = ⊤ ↔ L = ⊤ ∧ M = ⊤
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.pi_empty
[93, 1]
[93, 96]
simp [mem_pi]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L✝ M : Sublattice α f : LatticeHom α β s t : Set α a✝ : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) L : (i : κ) → Sublattice (π i) a : (i : κ) → π i ⊢ a ∈ pi ∅ L ↔ a ∈ ⊤
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.pi_top
[95, 1]
[96, 31]
simp [mem_pi]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L M : Sublattice α f : LatticeHom α β s✝ t : Set α a✝ : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) s : Set κ a : (i : κ) → π i ⊢ (a ∈ pi s fun i => ⊤) ↔ a ∈ ⊤
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.pi_bot
[98, 1]
[99, 31]
simp [mem_pi]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝⁴ : Lattice α inst✝³ : Lattice β inst✝² : Lattice γ L M : Sublattice α f : LatticeHom α β s t : Set α a✝ : α κ : Type u_5 π : κ → Type u_6 inst✝¹ : (i : κ) → Lattice (π i) inst✝ : Nonempty κ a : (i : κ) → π i ⊢ (a ∈ pi univ fun i => ⊥) ↔ a ∈ ⊥
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.le_pi
[101, 1]
[102, 101]
simp [SetLike.le_def]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L✝ M✝ : Sublattice α f : LatticeHom α β s✝ t : Set α a : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) s : Set κ L : (i : κ) → Sublattice (π i) M : Sublattice ((i : κ) → π i) ⊢ M ≤ pi s L ↔ ∀ i ∈ s, M ≤ comap (Pi.evalLatticeHom π i) (L i)
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L✝ M✝ : Sublattice α f : LatticeHom α β s✝ t : Set α a : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) s : Set κ L : (i : κ) → Sublattice (π i) M : Sublattice ((i : κ) → π i) ⊢ (∀ ⦃x : (i : κ) → π i⦄, x ∈ M → ∀ i ∈ s, x i ∈ L i) ↔ ∀ i ∈ s, ∀ ⦃x : (i : κ) → π i⦄, x ∈ M → x i ∈ L i
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.le_pi
[101, 1]
[102, 101]
aesop
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L✝ M✝ : Sublattice α f : LatticeHom α β s✝ t : Set α a : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) s : Set κ L : (i : κ) → Sublattice (π i) M : Sublattice ((i : κ) → π i) ⊢ (∀ ⦃x : (i : κ) → π i⦄, x ∈ M → ∀ i ∈ s, x i ∈ L i) ↔ ∀ i ∈ s, ∀ ⦃x : (i : κ) → π i⦄, x ∈ M → x i ∈ L i
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.pi_univ_eq_bot
[104, 1]
[105, 28]
simp_rw [← coe_inj]
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L✝ M : Sublattice α f : LatticeHom α β s t : Set α a : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) L : (i : κ) → Sublattice (π i) ⊢ pi univ L = ⊥ ↔ ∃ i, L i = ⊥
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L✝ M : Sublattice α f : LatticeHom α β s t : Set α a : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) L : (i : κ) → Sublattice (π i) ⊢ ↑(pi univ L) = ↑⊥ ↔ ∃ i, ↑(L i) = ↑⊥
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Order/Sublattice.lean
Sublattice.pi_univ_eq_bot
[104, 1]
[105, 28]
simp
ι : Sort u_1 α : Type u_2 β : Type u_3 γ : Type u_4 inst✝³ : Lattice α inst✝² : Lattice β inst✝¹ : Lattice γ L✝ M : Sublattice α f : LatticeHom α β s t : Set α a : α κ : Type u_5 π : κ → Type u_6 inst✝ : (i : κ) → Lattice (π i) L : (i : κ) → Sublattice (π i) ⊢ ↑(pi univ L) = ↑⊥ ↔ ∃ i, ↑(L i) = ↑⊥
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Finite.lean
SimpleGraph.disjoint_edgeFinset
[8, 1]
[10, 68]
simp_rw [← Finset.disjoint_coe, coe_edgeFinset, disjoint_edgeSet]
α : Type u_1 G H : SimpleGraph α inst✝¹ : Fintype ↑G.edgeSet inst✝ : Fintype ↑H.edgeSet ⊢ Disjoint G.edgeFinset H.edgeFinset ↔ Disjoint G H
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Finite.lean
SimpleGraph.edgeFinset_eq_empty
[12, 1]
[13, 40]
rw [← edgeFinset_bot, edgeFinset_inj]
α : Type u_1 G H : SimpleGraph α inst✝ : Fintype ↑G.edgeSet ⊢ G.edgeFinset = ∅ ↔ G = ⊥
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Finite.lean
SimpleGraph.edgeFinset_nonempty
[15, 1]
[16, 60]
rw [Finset.nonempty_iff_ne_empty, edgeFinset_eq_empty.ne]
α : Type u_1 G H : SimpleGraph α inst✝ : Fintype ↑G.edgeSet ⊢ G.edgeFinset.Nonempty ↔ G ≠ ⊥
no goals
https://github.com/siddhartha-gadgil/proofs-and-programs-2023.git
92fd2d8464d8687b5b0bcd7b17612440c304d19c
PnP2023/Lec_03_08/Diaphontine.lean
eqn_solvable_divides
[50, 1]
[62, 32]
intro ⟨x, y, h⟩
a b c : ℤ ⊢ (∃ x y, a * x + b * y = c) → ↑(Int.gcd a b) ∣ c
a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ c
https://github.com/siddhartha-gadgil/proofs-and-programs-2023.git
92fd2d8464d8687b5b0bcd7b17612440c304d19c
PnP2023/Lec_03_08/Diaphontine.lean
eqn_solvable_divides
[50, 1]
[62, 32]
rw [← h]
a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ c
a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ a * x + b * y
https://github.com/siddhartha-gadgil/proofs-and-programs-2023.git
92fd2d8464d8687b5b0bcd7b17612440c304d19c
PnP2023/Lec_03_08/Diaphontine.lean
eqn_solvable_divides
[50, 1]
[62, 32]
apply dvd_add
a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ a * x + b * y
case h₁ a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ a * x case h₂ a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ b * y
https://github.com/siddhartha-gadgil/proofs-and-programs-2023.git
92fd2d8464d8687b5b0bcd7b17612440c304d19c
PnP2023/Lec_03_08/Diaphontine.lean
eqn_solvable_divides
[50, 1]
[62, 32]
trans a
case h₁ a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ a * x
a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ a a b c x y : ℤ h : a * x + b * y = c ⊢ a ∣ a * x
https://github.com/siddhartha-gadgil/proofs-and-programs-2023.git
92fd2d8464d8687b5b0bcd7b17612440c304d19c
PnP2023/Lec_03_08/Diaphontine.lean
eqn_solvable_divides
[50, 1]
[62, 32]
apply Int.gcd_dvd_left
a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ a
no goals
https://github.com/siddhartha-gadgil/proofs-and-programs-2023.git
92fd2d8464d8687b5b0bcd7b17612440c304d19c
PnP2023/Lec_03_08/Diaphontine.lean
eqn_solvable_divides
[50, 1]
[62, 32]
apply Int.dvd_mul_right
a b c x y : ℤ h : a * x + b * y = c ⊢ a ∣ a * x
no goals
https://github.com/siddhartha-gadgil/proofs-and-programs-2023.git
92fd2d8464d8687b5b0bcd7b17612440c304d19c
PnP2023/Lec_03_08/Diaphontine.lean
eqn_solvable_divides
[50, 1]
[62, 32]
trans b
case h₂ a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ b * y
a b c x y : ℤ h : a * x + b * y = c ⊢ ↑(Int.gcd a b) ∣ b a b c x y : ℤ h : a * x + b * y = c ⊢ b ∣ b * y