url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
sum_schnirelmannDensity_ge_one_sumset_nat
[100, 1]
[109, 45]
exact countelements_nonneg A 0
case inl A B : Set ℕ n : ℕ hA : 0 ∈ A hB : 0 ∈ B hAB : 1 ≤ schnirelmannDensity A + schnirelmannDensity B ⊢ 0 ≤ countelements A 0 + countelements B 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
sum_schnirelmannDensity_ge_one_sumset_nat
[100, 1]
[109, 45]
positivity
A B : Set ℕ n✝ : ℕ hA : 0 ∈ A hB : 0 ∈ B hAB : 1 ≤ schnirelmannDensity A + schnirelmannDensity B n : ℕ hn : n ≠ 0 ⊢ 0 < ↑n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
sum_schnirelmannDensity_ge_one_sumset_nat
[100, 1]
[109, 45]
push_cast
A B : Set ℕ n✝ : ℕ hA : 0 ∈ A hB : 0 ∈ B hAB : 1 ≤ schnirelmannDensity A + schnirelmannDensity B n : ℕ hn : n ≠ 0 ⊢ ↑(filter (fun x => x ∈ A) (Ioc 0 n)).card / ↑n + ↑(filter (fun x => x ∈ B) (Ioc 0 n)).card / ↑n = ↑(countelements A n + countelements B n) / ↑n
A B : Set ℕ n✝ : ℕ hA : 0 ∈ A hB : 0 ∈ B hAB : 1 ≤ schnirelmannDensity A + schnirelmannDensity B n : ℕ hn : n ≠ 0 ⊢ ↑(filter (fun x => x ∈ A) (Ioc 0 n)).card / ↑n + ↑(filter (fun x => x ∈ B) (Ioc 0 n)).card / ↑n = (↑(countelements A n) + ↑(countelements B n)) / ↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
sum_schnirelmannDensity_ge_one_sumset_nat
[100, 1]
[109, 45]
rw [add_div]
A B : Set ℕ n✝ : ℕ hA : 0 ∈ A hB : 0 ∈ B hAB : 1 ≤ schnirelmannDensity A + schnirelmannDensity B n : ℕ hn : n ≠ 0 ⊢ ↑(filter (fun x => x ∈ A) (Ioc 0 n)).card / ↑n + ↑(filter (fun x => x ∈ B) (Ioc 0 n)).card / ↑n = (↑(countelements A n) + ↑(countelements B n)) / ↑n
A B : Set ℕ n✝ : ℕ hA : 0 ∈ A hB : 0 ∈ B hAB : 1 ≤ schnirelmannDensity A + schnirelmannDensity B n : ℕ hn : n ≠ 0 ⊢ ↑(filter (fun x => x ∈ A) (Ioc 0 n)).card / ↑n + ↑(filter (fun x => x ∈ B) (Ioc 0 n)).card / ↑n = ↑(countelements A n) / ↑n + ↑(countelements B n) / ↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
sum_schnirelmannDensity_ge_one_sumset_nat
[100, 1]
[109, 45]
rfl
A B : Set ℕ n✝ : ℕ hA : 0 ∈ A hB : 0 ∈ B hAB : 1 ≤ schnirelmannDensity A + schnirelmannDensity B n : ℕ hn : n ≠ 0 ⊢ ↑(filter (fun x => x ∈ A) (Ioc 0 n)).card / ↑n + ↑(filter (fun x => x ∈ B) (Ioc 0 n)).card / ↑n = ↑(countelements A n) / ↑n + ↑(countelements B n) / ↑n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
set α := schnirelmannDensity A with halpha
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B ⊢ schnirelmannDensity A + schnirelmannDensity B - schnirelmannDensity A * schnirelmannDensity B ≤ schnirelmannDensity (A + B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A ⊢ α + schnirelmannDensity B - α * schnirelmannDensity B ≤ schnirelmannDensity (A + B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
set β := schnirelmannDensity B with hbeta
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A ⊢ α + schnirelmannDensity B - α * schnirelmannDensity B ≤ schnirelmannDensity (A + B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B ⊢ α + β - α * β ≤ schnirelmannDensity (A + B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have dum : α * (1 - β) + β = α + β - α * β := by ring
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B ⊢ α + β - α * β ≤ schnirelmannDensity (A + B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ α + β - α * β ≤ schnirelmannDensity (A + B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [← dum]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ α + β - α * β ≤ schnirelmannDensity (A + B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ α * (1 - β) + β ≤ schnirelmannDensity (A + B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rintro n
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
obtain rfl | n1 := n.eq_zero_or_pos
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
case inl A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ (α * (1 - β) + β) * ↑0 ≤ ↑(countelements (A + B) 0) case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
ring
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B ⊢ α * (1 - β) + β = α + β - α * β
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [schnirelmannDensity]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) ⊢ α * (1 - β) + β ≤ schnirelmannDensity (A + B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) ⊢ α * (1 - β) + β ≤ ⨅ n, ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑n)).card / ↑↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have : Nonempty {n // n ≠ 0} := by use 1 trivial
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) ⊢ α * (1 - β) + β ≤ ⨅ n, ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑n)).card / ↑↑n
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } ⊢ α * (1 - β) + β ≤ ⨅ n, ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑n)).card / ↑↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
apply le_ciInf
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } ⊢ α * (1 - β) + β ≤ ⨅ n, ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑n)).card / ↑↑n
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } ⊢ ∀ (x : { n // 0 < n }), α * (1 - β) + β ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card / ↑↑x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
intro x
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } ⊢ ∀ (x : { n // 0 < n }), α * (1 - β) + β ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card / ↑↑x
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } ⊢ α * (1 - β) + β ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card / ↑↑x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hx : (x : ℝ) ≠ 0 := by aesop
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } ⊢ α * (1 - β) + β ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card / ↑↑x
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 ⊢ α * (1 - β) + β ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card / ↑↑x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [le_div_iff]
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 ⊢ α * (1 - β) + β ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card / ↑↑x
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 ⊢ (α * (1 - β) + β) * ↑↑x ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 ⊢ 0 < ↑↑x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
use 1
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) ⊢ Nonempty { n // n ≠ 0 }
case property A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) ⊢ 1 ≠ 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
trivial
case property A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) ⊢ 1 ≠ 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
aesop
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } ⊢ ↑↑x ≠ 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
specialize main x
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 ⊢ (α * (1 - β) + β) * ↑↑x ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 main : (α * (1 - β) + β) * ↑↑x ≤ ↑(countelements (A + B) ↑x) ⊢ (α * (1 - β) + β) * ↑↑x ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact main
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 main : (α * (1 - β) + β) * ↑↑x ≤ ↑(countelements (A + B) ↑x) ⊢ (α * (1 - β) + β) * ↑↑x ≤ ↑(filter (fun x => x ∈ A + B) (Ioc 0 ↑x)).card
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
positivity
case H A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β main : ∀ (n : ℕ), (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n) this : Nonempty { n // n ≠ 0 } x : { n // 0 < n } hx : ↑↑x ≠ 0 ⊢ 0 < ↑↑x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
ring_nf
case inl A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ (α * (1 - β) + β) * ↑0 ≤ ↑(countelements (A + B) 0)
case inl A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ 0 ≤ ↑(countelements (A + B) 0)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
positivity
case inl A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β ⊢ 0 ≤ ↑(countelements (A + B) 0)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have claim : countelements A n + β * (n - countelements A n) ≤ countelements (⋃ a : A, {c ∈ A + B | 0 < c - a ∧ (c : ℕ) ≤ (next_elm A a n)}) n := by have hcc (a : A) : 1 + countelements B (next_elm A a n - a - 1) ≤ countelements {c ∈ A + B | 0 < c - a ∧ (c : ℕ) ≤ (next_elm A a n)} n := by sorry have hax (a x : A) (hh : a ≠ x) : {c ∈ A + B | 0 < c - a ∧ (c : ℕ) ≤ (next_elm A a n)} ∩ {c ∈ A + B | 0 < c - x ∧ (c : ℕ) ≤ next_elm A x n} = ∅ := by sorry sorry
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have ht : countelements A n + β * (n - countelements A n) ≤ countelements (A + B) n := by apply le_trans claim _ norm_cast
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hc1 : countelements A n * (1 - β) + β * n = countelements A n + β * (n - countelements A n) := by ring_nf
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hc3 : α * n * (1 - β) + β * n = (α * (1 - β) + β) * n := by ring_nf
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : α * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : α * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n hc3 : α * ↑n * (1 - β) + β * ↑n = (α * (1 - β) + β) * ↑n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [hc1] at hc2
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : α * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n hc3 : α * ↑n * (1 - β) + β * ↑n = (α * (1 - β) + β) * ↑n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : α * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc3 : α * ↑n * (1 - β) + β * ↑n = (α * (1 - β) + β) * ↑n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [hc3] at hc2
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : α * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc3 : α * ↑n * (1 - β) + β * ↑n = (α * (1 - β) + β) * ↑n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : (α * (1 - β) + β) * ↑n ≤ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc3 : α * ↑n * (1 - β) + β * ↑n = (α * (1 - β) + β) * ↑n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact le_trans hc2 ht
case inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : (α * (1 - β) + β) * ↑n ≤ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc3 : α * ↑n * (1 - β) + β * ↑n = (α * (1 - β) + β) * ↑n ⊢ (α * (1 - β) + β) * ↑n ≤ ↑(countelements (A + B) n)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
simp only [tsub_pos_iff_lt, Set.sep_and, Set.iUnion_coe_set, Nat.lt_one_iff, coe_Icc, not_le, Set.subset_inter_iff, Set.iUnion_subset_iff]
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n)
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ (∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ A + B) ∧ ∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ Set.Icc 1 n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
constructor
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ (∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ A + B) ∧ ∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ Set.Icc 1 n
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ ∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ A + B case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ ∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ Set.Icc 1 n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
intro i hi x hx
case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ ∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ Set.Icc 1 n
case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : x ∈ {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊢ x ∈ Set.Icc 1 n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
simp only [Set.mem_inter_iff, Set.mem_setOf_eq] at hx
case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : x ∈ {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊢ x ∈ Set.Icc 1 n
case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ∈ Set.Icc 1 n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [Set.mem_Icc]
case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ∈ Set.Icc 1 n
case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ 1 ≤ x ∧ x ≤ n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
constructor
case right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ 1 ≤ x ∧ x ≤ n
case right.left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ 1 ≤ x case right.right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ≤ n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
obtain ⟨hx1, hx2, hx3⟩ := hx
case right.right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ≤ n
case right.right.intro.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B hx3 : x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ≤ n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [next_elm] at hx3
case right.right.intro.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B hx3 : x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ≤ n
case right.right.intro.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B hx3 : x ≤ if h : (filter (fun x => x ∈ A) (Ioc (↑⟨i, ⋯⟩) n)).Nonempty then (filter (fun x => x ∈ A) (Ioc (↑⟨i, ⋯⟩) n)).min' h else n ⊢ x ≤ n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
simp only [mem_Ioc, and_imp, ne_eq, ite_not] at hx3
case right.right.intro.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B hx3 : x ≤ if h : (filter (fun x => x ∈ A) (Ioc (↑⟨i, ⋯⟩) n)).Nonempty then (filter (fun x => x ∈ A) (Ioc (↑⟨i, ⋯⟩) n)).min' h else n ⊢ x ≤ n
case right.right.intro.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B hx3 : x ≤ if h : (filter (fun x => x ∈ A) (Ioc i n)).Nonempty then (filter (fun x => x ∈ A) (Ioc i n)).min' ⋯ else n ⊢ x ≤ n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
split_ifs at hx3 with h
case right.right.intro.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B hx3 : x ≤ if h : (filter (fun x => x ∈ A) (Ioc i n)).Nonempty then (filter (fun x => x ∈ A) (Ioc i n)).min' ⋯ else n ⊢ x ≤ n
case pos A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B h : (filter (fun x => x ∈ A) (Ioc i n)).Nonempty hx3 : x ≤ (filter (fun x => x ∈ A) (Ioc i n)).min' ⋯ ⊢ x ≤ n case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B h : ¬(filter (fun x => x ∈ A) (Ioc i n)).Nonempty hx3 : x ≤ n ⊢ x ≤ n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
intro i hi x hx
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 ⊢ ∀ (i : ℕ) (i_1 : i ∈ A), {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊆ A + B
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : x ∈ {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊢ x ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [Set.mem_inter_iff] at hx
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : x ∈ {x | x ∈ A + B ∧ i < x} ∩ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊢ x ∈ A + B
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : x ∈ {x | x ∈ A + B ∧ i < x} ∧ x ∈ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊢ x ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
simp only [Set.mem_setOf_eq] at hx
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : x ∈ {x | x ∈ A + B ∧ i < x} ∧ x ∈ {x | x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n} ⊢ x ∈ A + B
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact hx.1.1
case left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ x ∈ A + B
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rcases i.eq_zero_or_pos with i0 | i1
case right.left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n ⊢ 1 ≤ x
case right.left.inl A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i0 : i = 0 ⊢ 1 ≤ x case right.left.inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i1 : i > 0 ⊢ 1 ≤ x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [Nat.succ_le]
case right.left.inl A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i0 : i = 0 ⊢ 1 ≤ x
case right.left.inl A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i0 : i = 0 ⊢ 0 < x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [← i0]
case right.left.inl A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i0 : i = 0 ⊢ 0 < x
case right.left.inl A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i0 : i = 0 ⊢ i < x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact hx.1.2
case right.left.inl A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i0 : i = 0 ⊢ i < x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [Nat.succ_le]
case right.left.inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i1 : i > 0 ⊢ 1 ≤ x
case right.left.inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i1 : i > 0 ⊢ 0 < x
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
apply lt_trans i1 hx.1.2
case right.left.inr A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx : (x ∈ A + B ∧ i < x) ∧ x ∈ A + B ∧ x ≤ next_elm A ⟨i, ⋯⟩ n i1 : i > 0 ⊢ 0 < x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact hx3.trans (mem_Ioc.1 (mem_filter.1 $ min'_mem _ _).1).2
case pos A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B h : (filter (fun x => x ∈ A) (Ioc i n)).Nonempty hx3 : x ≤ (filter (fun x => x ∈ A) (Ioc i n)).min' ⋯ ⊢ x ≤ n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
simpa using hx3
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 i : ℕ hi : i ∈ A x : ℕ hx1 : x ∈ A + B ∧ i < x hx2 : x ∈ A + B h : ¬(filter (fun x => x ∈ A) (Ioc i n)).Nonempty hx3 : x ≤ n ⊢ x ≤ n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [countelements, countelements]
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) ⊢ countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) ⊢ (filter (fun x => x ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) (Icc 1 n)).card ≤ (filter (fun x => x ∈ A + B) (Icc 1 n)).card
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
apply card_le_card
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) ⊢ (filter (fun x => x ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) (Icc 1 n)).card ≤ (filter (fun x => x ∈ A + B) (Icc 1 n)).card
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) ⊢ filter (fun x => x ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) (Icc 1 n) ⊆ filter (fun x => x ∈ A + B) (Icc 1 n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
intro y
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) ⊢ filter (fun x => x ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) (Icc 1 n) ⊆ filter (fun x => x ∈ A + B) (Icc 1 n)
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ ⊢ y ∈ filter (fun x => x ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) (Icc 1 n) → y ∈ filter (fun x => x ∈ A + B) (Icc 1 n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
repeat rw [mem_filter]
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ ⊢ y ∈ filter (fun x => x ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) (Icc 1 n) → y ∈ filter (fun x => x ∈ A + B) (Icc 1 n)
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ ⊢ y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} → y ∈ Icc 1 n ∧ y ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
intro hy
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ ⊢ y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} → y ∈ Icc 1 n ∧ y ∈ A + B
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy : y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ Icc 1 n ∧ y ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
constructor
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy : y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ Icc 1 n ∧ y ∈ A + B
case a.left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy : y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ Icc 1 n case a.right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy : y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [mem_filter]
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ ⊢ y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} → y ∈ filter (fun x => x ∈ A + B) (Icc 1 n)
case a A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ ⊢ y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} → y ∈ Icc 1 n ∧ y ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact hy.1
case a.left A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy : y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ Icc 1 n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
obtain ⟨hy1, hy2⟩ := hy
case a.right A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy : y ∈ Icc 1 n ∧ y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ A + B
case a.right.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy1 : y ∈ Icc 1 n hy2 : y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hs : y ∈ (A + B) ∩ (Icc 1 n) := by aesop
case a.right.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy1 : y ∈ Icc 1 n hy2 : y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ A + B
case a.right.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy1 : y ∈ Icc 1 n hy2 : y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} hs : y ∈ (A + B) ∩ ↑(Icc 1 n) ⊢ y ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [Set.mem_inter_iff] at hs
case a.right.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy1 : y ∈ Icc 1 n hy2 : y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} hs : y ∈ (A + B) ∩ ↑(Icc 1 n) ⊢ y ∈ A + B
case a.right.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy1 : y ∈ Icc 1 n hy2 : y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} hs : y ∈ A + B ∧ y ∈ ↑(Icc 1 n) ⊢ y ∈ A + B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact hs.1
case a.right.intro A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy1 : y ∈ Icc 1 n hy2 : y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} hs : y ∈ A + B ∧ y ∈ ↑(Icc 1 n) ⊢ y ∈ A + B
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
aesop
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) y : ℕ hy1 : y ∈ Icc 1 n hy2 : y ∈ ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊢ y ∈ (A + B) ∩ ↑(Icc 1 n)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hcc (a : A) : 1 + countelements B (next_elm A a n - a - 1) ≤ countelements {c ∈ A + B | 0 < c - a ∧ (c : ℕ) ≤ (next_elm A a n)} n := by sorry
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n ⊢ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n)
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n hcc : ∀ (a : ↑A), 1 + countelements B (next_elm A a n - ↑a - 1) ≤ countelements {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} n ⊢ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hax (a x : A) (hh : a ≠ x) : {c ∈ A + B | 0 < c - a ∧ (c : ℕ) ≤ (next_elm A a n)} ∩ {c ∈ A + B | 0 < c - x ∧ (c : ℕ) ≤ next_elm A x n} = ∅ := by sorry
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n hcc : ∀ (a : ↑A), 1 + countelements B (next_elm A a n - ↑a - 1) ≤ countelements {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} n ⊢ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n)
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n hcc : ∀ (a : ↑A), 1 + countelements B (next_elm A a n - ↑a - 1) ≤ countelements {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} n hax : ∀ (a x : ↑A), a ≠ x → {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ∩ {c | c ∈ A + B ∧ 0 < c - ↑x ∧ c ≤ next_elm A x n} = ∅ ⊢ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
sorry
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n hcc : ∀ (a : ↑A), 1 + countelements B (next_elm A a n - ↑a - 1) ≤ countelements {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} n hax : ∀ (a x : ↑A), a ≠ x → {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ∩ {c | c ∈ A + B ∧ 0 < c - ↑x ∧ c ≤ next_elm A x n} = ∅ ⊢ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
sorry
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n a : ↑A ⊢ 1 + countelements B (next_elm A a n - ↑a - 1) ≤ countelements {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
sorry
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n hcc : ∀ (a : ↑A), 1 + countelements B (next_elm A a n - ↑a - 1) ≤ countelements {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} n a x : ↑A hh : a ≠ x ⊢ {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ∩ {c | c ∈ A + B ∧ 0 < c - ↑x ∧ c ≤ next_elm A x n} = ∅
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
apply le_trans claim _
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ⊢ ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n)
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ⊢ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ≤ ↑(countelements (A + B) n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
norm_cast
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ⊢ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ≤ ↑(countelements (A + B) n)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
ring_nf
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) ⊢ ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n))
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [halpha]
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ⊢ α * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
by_cases hbo : β = 1
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
case pos A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : β = 1 ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [hbo]
case pos A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : β = 1 ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
case pos A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : β = 1 ⊢ schnirelmannDensity A * ↑n * (1 - 1) + 1 * ↑n ≤ ↑(countelements A n) * (1 - 1) + 1 * ↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
simp only [sub_self, mul_zero, one_mul, zero_add, le_refl]
case pos A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : β = 1 ⊢ schnirelmannDensity A * ↑n * (1 - 1) + 1 * ↑n ≤ ↑(countelements A n) * (1 - 1) + 1 * ↑n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hbn : 0 < (1 - schnirelmannDensity B) := by rw [hbeta] at hbo rw [lt_sub_iff_add_lt, zero_add, lt_iff_le_and_ne] exact ⟨schnirelmannDensity_le_one, hbo⟩
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
simp only [add_le_add_iff_right, sub_pos, sub_neg]
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n * (1 - β) ≤ ↑(countelements A n) * (1 - β)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [← le_div_iff (hbn)]
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n * (1 - β) ≤ ↑(countelements A n) * (1 - β)
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n) * (1 - β) / (1 - schnirelmannDensity B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [mul_div_assoc]
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n) * (1 - β) / (1 - schnirelmannDensity B)
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n) * ((1 - β) / (1 - schnirelmannDensity B))
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
have hun : (1 - schnirelmannDensity B) / (1 - schnirelmannDensity B) = 1 := by rw [div_self] positivity
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n) * ((1 - β) / (1 - schnirelmannDensity B))
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B hun : (1 - schnirelmannDensity B) / (1 - schnirelmannDensity B) = 1 ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n) * ((1 - β) / (1 - schnirelmannDensity B))
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [hun, mul_one]
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B hun : (1 - schnirelmannDensity B) / (1 - schnirelmannDensity B) = 1 ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n) * ((1 - β) / (1 - schnirelmannDensity B))
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B hun : (1 - schnirelmannDensity B) / (1 - schnirelmannDensity B) = 1 ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact schnirelmannDensity_mul_le_card_filter
case neg A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B hun : (1 - schnirelmannDensity B) / (1 - schnirelmannDensity B) = 1 ⊢ schnirelmannDensity A * ↑n ≤ ↑(countelements A n)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [hbeta] at hbo
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 ⊢ 0 < 1 - schnirelmannDensity B
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬schnirelmannDensity B = 1 ⊢ 0 < 1 - schnirelmannDensity B
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [lt_sub_iff_add_lt, zero_add, lt_iff_le_and_ne]
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬schnirelmannDensity B = 1 ⊢ 0 < 1 - schnirelmannDensity B
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬schnirelmannDensity B = 1 ⊢ schnirelmannDensity B ≤ 1 ∧ schnirelmannDensity B ≠ 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
exact ⟨schnirelmannDensity_le_one, hbo⟩
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬schnirelmannDensity B = 1 ⊢ schnirelmannDensity B ≤ 1 ∧ schnirelmannDensity B ≠ 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
rw [div_self]
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ (1 - schnirelmannDensity B) / (1 - schnirelmannDensity B) = 1
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ 1 - schnirelmannDensity B ≠ 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
positivity
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hbo : ¬β = 1 hbn : 0 < 1 - schnirelmannDensity B ⊢ 1 - schnirelmannDensity B ≠ 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
le_schnirelmannDensity_add
[115, 1]
[216, 26]
ring_nf
A✝ B✝ : Set ℕ n✝ : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B dum : α * (1 - β) + β = α + β - α * β n : ℕ n1 : n > 0 lem : ⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n} ⊆ (A + B) ∩ ↑(Icc 1 n) aux : countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n ≤ countelements (A + B) n claim : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (⋃ a, {c | c ∈ A + B ∧ 0 < c - ↑a ∧ c ≤ next_elm A a n}) n) ht : ↑(countelements A n) + β * (↑n - ↑(countelements A n)) ≤ ↑(countelements (A + B) n) hc1 : ↑(countelements A n) * (1 - β) + β * ↑n = ↑(countelements A n) + β * (↑n - ↑(countelements A n)) hc2 : α * ↑n * (1 - β) + β * ↑n ≤ ↑(countelements A n) * (1 - β) + β * ↑n ⊢ α * ↑n * (1 - β) + β * ↑n = (α * (1 - β) + β) * ↑n
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
let α := schnirelmannDensity A
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
have halpha : α = schnirelmannDensity A := rfl
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
let β := schnirelmannDensity B
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
have hbeta : β = schnirelmannDensity B := rfl
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
let γ := schnirelmannDensity (A + B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
have hgamma : γ = schnirelmannDensity (A + B) := rfl
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/Schnirelmann.lean
schnirelmannDensity_for_two
[218, 1]
[239, 11]
rw [← halpha, ← hbeta, ← hgamma]
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 - schnirelmannDensity (A + B) ≤ (1 - schnirelmannDensity A) * (1 - schnirelmannDensity B)
A✝ B✝ : Set ℕ n : ℕ A B : Set ℕ hA : 0 ∈ A hB : 0 ∈ B α : ℝ := schnirelmannDensity A halpha : α = schnirelmannDensity A β : ℝ := schnirelmannDensity B hbeta : β = schnirelmannDensity B γ : ℝ := schnirelmannDensity (A + B) hgamma : γ = schnirelmannDensity (A + B) ⊢ 1 - γ ≤ (1 - α) * (1 - β)