url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MinkowskiCaratheodory.lean
convexHull_extremePoints
[20, 1]
[23, 53]
sorry
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s B : Set E hscomp : IsCompact s hsconv : Convex ℝ s ⊢ (convexHull ℝ) (extremePoints ℝ s) = s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MinkowskiCaratheodory.lean
closed_convexHull_extremePoints_of_compact_of_convex
[32, 1]
[35, 96]
rw [closure_convexHull_extremePoints hscomp hsconv, convexHull_extremePoints hscomp hsconv]
E : Type u_1 inst✝² : NormedAddCommGroup E inst✝¹ : NormedSpace ℝ E inst✝ : FiniteDimensional ℝ E x : E s B : Set E hscomp : IsCompact s hsconv : Convex ℝ s ⊢ closure ((convexHull ℝ) (extremePoints ℝ s)) = (convexHull ℝ) (extremePoints ℝ s)
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.totalDegree_f₁_add_totalDegree_f₂
[48, 1]
[56, 50]
refine (add_le_add (totalDegree_finset_sum _ _) $ (totalDegree_finset_sum _ _).trans $ Finset.sup_mono_fun fun a _ ↦ totalDegree_smul_le _ _).trans_lt ?_
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ (ZMod.f₁ s).totalDegree + (ZMod.f₂ s).totalDegree < 2 * p - 1
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ ((s.toEnumFinset.attach.sup fun i => (X i ^ (p - 1)).totalDegree) + s.toEnumFinset.attach.sup fun a => (X a ^ (p - 1)).totalDegree) < 2 * p - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.totalDegree_f₁_add_totalDegree_f₂
[48, 1]
[56, 50]
simp only [totalDegree_X_pow, ← two_mul]
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ ((s.toEnumFinset.attach.sup fun i => (X i ^ (p - 1)).totalDegree) + s.toEnumFinset.attach.sup fun a => (X a ^ (p - 1)).totalDegree) < 2 * p - 1
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ (2 * s.toEnumFinset.attach.sup fun i => p - 1) < 2 * p - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.totalDegree_f₁_add_totalDegree_f₂
[48, 1]
[56, 50]
refine (mul_le_mul_left' Finset.sup_const_le _).trans_lt ?_
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ (2 * s.toEnumFinset.attach.sup fun i => p - 1) < 2 * p - 1
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ 2 * (p - 1) < 2 * p - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.totalDegree_f₁_add_totalDegree_f₂
[48, 1]
[56, 50]
rw [mul_tsub, mul_one]
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ 2 * (p - 1) < 2 * p - 1
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ 2 * p - 2 < 2 * p - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.totalDegree_f₁_add_totalDegree_f₂
[48, 1]
[56, 50]
exact tsub_lt_tsub_left_of_le ((Fact.out : p.Prime).two_le.trans $ le_mul_of_one_le_left' one_le_two) one_lt_two
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) ⊢ 2 * p - 2 < 2 * p - 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
haveI : NeZero p := inferInstance
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
set N := Fintype.card {x // eval x (f₁ s) = 0 ∧ eval x (f₂ s) = 0}
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
let zero_sol : {x // eval x (f₁ s) = 0 ∧ eval x (f₂ s) = 0} := ⟨0, by simp [f₁, f₂, map_sum, (Fact.out : p.Prime).one_lt, tsub_eq_zero_iff_le]⟩
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
have hN₀ : 0 < N := @Fintype.card_pos _ _ ⟨zero_sol⟩
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
have hs' : 2 * p - 1 = Fintype.card s.toEnumFinset := by simp [hs]
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
have hpN : p ∣ N := char_dvd_card_solutions_of_add_lt p (totalDegree_f₁_add_totalDegree_f₂.trans_eq hs')
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
obtain ⟨x, hx⟩ := Fintype.exists_ne_of_one_lt_card ((Fact.out : p.Prime).one_lt.trans_le $ Nat.le_of_dvd hN₀ hpN) zero_sol
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
case intro n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
refine ⟨(s.toEnumFinset.attach.filter $ fun a ↦ x.1 a ≠ 0).1.map (Prod.fst ∘ ((↑) : s.toEnumFinset → ZMod p × ℕ)), le_iff_count.2 $ fun a ↦ ?_, ?_, ?_⟩
case intro n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ count a (Multiset.map (Prod.fst ∘ Subtype.val) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).val) ≤ count a s case intro.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ Multiset.card (Multiset.map (Prod.fst ∘ Subtype.val) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).val) = p case intro.refine_3 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (Multiset.map (Prod.fst ∘ Subtype.val) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).val).sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
simp [f₁, f₂, map_sum, (Fact.out : p.Prime).one_lt, tsub_eq_zero_iff_le]
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } ⊢ (eval 0) (ZMod.f₁ s) = 0 ∧ (eval 0) (ZMod.f₂ s) = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
simp [hs]
n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N ⊢ 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset }
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
simp only [← Finset.filter_val, Finset.card_val, Function.comp_apply, count_map]
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ count a (Multiset.map (Prod.fst ∘ Subtype.val) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).val) ≤ count a s
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ (Finset.filter (fun a_1 => a = (↑a_1).1) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach)).card ≤ count a s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
refine (Finset.card_le_card $ Finset.filter_subset_filter _ $ Finset.filter_subset _ _).trans_eq ?_
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ (Finset.filter (fun a_1 => a = (↑a_1).1) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach)).card ≤ count a s
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ (Finset.filter (fun a_1 => a = (↑a_1).1) s.toEnumFinset.attach).card = count a s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
refine (Finset.card_filter_attach (fun c : ZMod p × ℕ ↦ a = c.1) _).trans ?_
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ (Finset.filter (fun a_1 => a = (↑a_1).1) s.toEnumFinset.attach).card = count a s
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ (Finset.filter (fun c => a = c.1) s.toEnumFinset).card = count a s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
simp [toEnumFinset_filter_eq]
case intro.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol a : ZMod p ⊢ (Finset.filter (fun c => a = c.1) s.toEnumFinset).card = count a s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
simp only [card_map, ← Finset.filter_val, Finset.card_val, Function.comp_apply, count_map, ← Finset.map_val]
case intro.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ Multiset.card (Multiset.map (Prod.fst ∘ Subtype.val) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).val) = p
case intro.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).card = p
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
refine Nat.eq_of_dvd_of_lt_two_mul (Finset.card_pos.2 ?_).ne' ?_ $ (Finset.card_filter_le _ _).trans_lt ?_
case intro.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).card = p
case intro.refine_2.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).Nonempty case intro.refine_2.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ p ∣ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).card case intro.refine_2.refine_3 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ s.toEnumFinset.attach.card < 2 * p
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
rw [← Subtype.coe_ne_coe, Function.ne_iff] at hx
case intro.refine_2.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).Nonempty
case intro.refine_2.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : ∃ a, ↑x a ≠ ↑zero_sol a ⊢ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).Nonempty
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
exact hx.imp (fun a ha ↦ mem_filter.2 ⟨Finset.mem_attach _ _, ha⟩)
case intro.refine_2.refine_1 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : ∃ a, ↑x a ≠ ↑zero_sol a ⊢ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).Nonempty
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
rw [← CharP.cast_eq_zero_iff (ZMod p), ← Finset.sum_boole]
case intro.refine_2.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ p ∣ (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).card
case intro.refine_2.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (∑ x_1 ∈ s.toEnumFinset.attach, if ↑x x_1 ≠ 0 then 1 else 0) = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
simpa only [f₁, map_sum, ZMod.pow_card_sub_one, map_pow, eval_X] using x.2.1
case intro.refine_2.refine_2 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (∑ x_1 ∈ s.toEnumFinset.attach, if ↑x x_1 ≠ 0 then 1 else 0) = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
rw [Finset.card_attach, card_toEnumFinset, hs]
case intro.refine_2.refine_3 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ s.toEnumFinset.attach.card < 2 * p
case intro.refine_2.refine_3 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ 2 * p - 1 < 2 * p
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
exact tsub_lt_self (mul_pos zero_lt_two (Fact.out : p.Prime).pos) zero_lt_one
case intro.refine_2.refine_3 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ 2 * p - 1 < 2 * p
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.aux
[58, 1]
[101, 74]
simpa only [f₂, map_sum, ZMod.pow_card_sub_one, Finset.sum_map_val, Finset.sum_filter, smul_eval, map_pow, eval_X, mul_ite, mul_zero, mul_one] using x.2.2
case intro.refine_3 n p : ℕ inst✝ : Fact p.Prime s : Multiset (ZMod p) hs : Multiset.card s = 2 * p - 1 this : NeZero p N : ℕ := Fintype.card { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } zero_sol : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } := ⟨0, ⋯⟩ hN₀ : 0 < N hs' : 2 * p - 1 = Fintype.card { x // x ∈ s.toEnumFinset } hpN : p ∣ N x : { x // (eval x) (ZMod.f₁ s) = 0 ∧ (eval x) (ZMod.f₂ s) = 0 } hx : x ≠ zero_sol ⊢ (Multiset.map (Prod.fst ∘ Subtype.val) (Finset.filter (fun a => ↑x a ≠ 0) s.toEnumFinset.attach).val).sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
induction n using Nat.prime_composite_induction
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod n) hs : 2 * n - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = n ∧ t.sum = 0
case zero n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 0) hs : 2 * 0 - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = 0 ∧ t.sum = 0 case one n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 1) hs : 2 * 1 - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = 1 ∧ t.sum = 0 case prime n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) p✝ : ℕ a✝ : p✝.Prime s : Multiset (ZMod p✝) hs : 2 * p✝ - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = p✝ ∧ t.sum = 0 case composite n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a✝⁴ : ℕ a✝³ : 2 ≤ a✝⁴ a✝² : ∀ {s : Multiset (ZMod a✝⁴)}, 2 * a✝⁴ - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a✝⁴ ∧ t.sum = 0 b✝ : ℕ a✝¹ : 2 ≤ b✝ a✝ : ∀ {s : Multiset (ZMod b✝)}, 2 * b✝ - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b✝ ∧ t.sum = 0 s : Multiset (ZMod (a✝⁴ * b✝)) hs : 2 * (a✝⁴ * b✝) - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = a✝⁴ * b✝ ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
case zero => exact ⟨0, s.zero_le, card_zero, sum_zero⟩
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 0) hs : 2 * 0 - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = 0 ∧ t.sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
case one => obtain ⟨t, ht, hn⟩ := exists_le_card_eq hs; exact ⟨t, ht, hn, Subsingleton.elim _ _⟩
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 1) hs : 2 * 1 - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = 1 ∧ t.sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
case prime p hp => haveI := Fact.mk hp obtain ⟨t, hts, ht⟩ := exists_le_card_eq hs obtain ⟨u, hut, hu⟩ := aux ht exact ⟨u, hut.trans hts, hu⟩
n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
exact ⟨0, s.zero_le, card_zero, sum_zero⟩
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 0) hs : 2 * 0 - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = 0 ∧ t.sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
obtain ⟨t, ht, hn⟩ := exists_le_card_eq hs
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 1) hs : 2 * 1 - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = 1 ∧ t.sum = 0
case intro.intro n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 1) hs : 2 * 1 - 1 ≤ Multiset.card s t : Multiset (ZMod 1) ht : t ≤ s hn : Multiset.card t = 2 * 1 - 1 ⊢ ∃ t ≤ s, Multiset.card t = 1 ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
exact ⟨t, ht, hn, Subsingleton.elim _ _⟩
case intro.intro n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) s : Multiset (ZMod 1) hs : 2 * 1 - 1 ≤ Multiset.card s t : Multiset (ZMod 1) ht : t ≤ s hn : Multiset.card t = 2 * 1 - 1 ⊢ ∃ t ≤ s, Multiset.card t = 1 ∧ t.sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
haveI := Fact.mk hp
n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s this : Fact p.Prime ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
obtain ⟨t, hts, ht⟩ := exists_le_card_eq hs
n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s this : Fact p.Prime ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
case intro.intro n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s this : Fact p.Prime t : Multiset (ZMod p) hts : t ≤ s ht : Multiset.card t = 2 * p - 1 ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
obtain ⟨u, hut, hu⟩ := aux ht
case intro.intro n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s this : Fact p.Prime t : Multiset (ZMod p) hts : t ≤ s ht : Multiset.card t = 2 * p - 1 ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
case intro.intro.intro.intro n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s this : Fact p.Prime t : Multiset (ZMod p) hts : t ≤ s ht : Multiset.card t = 2 * p - 1 u : Multiset (ZMod p) hut : u ≤ t hu : Multiset.card u = p ∧ u.sum = 0 ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
exact ⟨u, hut.trans hts, hu⟩
case intro.intro.intro.intro n p✝ : ℕ inst✝ : Fact p✝.Prime s✝ : Multiset (ZMod p✝) p : ℕ hp : p.Prime s : Multiset (ZMod p) hs : 2 * p - 1 ≤ Multiset.card s this : Fact p.Prime t : Multiset (ZMod p) hts : t ≤ s ht : Multiset.card t = 2 * p - 1 u : Multiset (ZMod p) hut : u ≤ t hu : Multiset.card u = p ∧ u.sum = 0 ⊢ ∃ t ≤ s, Multiset.card t = p ∧ t.sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
suffices ∀ n ≤ 2 * b - 1, ∃ m : Multiset (Multiset $ ZMod $ a * b), Multiset.card m = n ∧ m.Pairwise _root_.Disjoint ∧ ∀ ⦃u : Multiset $ ZMod $ a * b⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples (a : ZMod $ a * b) by obtain ⟨m, hm⟩ := this _ le_rfl sorry
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s ⊢ ∃ t ≤ s, Multiset.card t = a * b ∧ t.sum = 0
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s ⊢ ∀ n ≤ 2 * b - 1, ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
rintro n hn
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s ⊢ ∀ n ≤ 2 * b - 1, ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ hn : n ≤ 2 * b - 1 ⊢ ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
induction' n with n ih
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ hn : n ≤ 2 * b - 1 ⊢ ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
case zero n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s hn : 0 ≤ 2 * b - 1 ⊢ ∃ m, Multiset.card m = 0 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a case succ n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 ⊢ ∃ m, Multiset.card m = n + 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
obtain ⟨m, hm⟩ := ih (Nat.le_of_succ_le hn)
case succ n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 ⊢ ∃ m, Multiset.card m = n + 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
case succ.intro n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ ∃ m, Multiset.card m = n + 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
have : 2 * a - 1 ≤ Multiset.card ((s - m.sum).map $ castHom (dvd_mul_right _ _) $ ZMod a) := by rw [card_map] refine (le_tsub_of_add_le_left $ le_trans ?_ hs).trans le_card_sub have : m.map Multiset.card = replicate (2 * a - 1) n := sorry rw [map_multiset_sum, this, sum_replicate, ← le_tsub_iff_right, tsub_tsub_tsub_cancel_right, ← mul_tsub, ← mul_tsub_one] sorry sorry sorry
case succ.intro n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ ∃ m, Multiset.card m = n + 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
case succ.intro n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : 2 * a - 1 ≤ Multiset.card (Multiset.map (⇑(castHom ⋯ (ZMod a))) (s - m.sum)) ⊢ ∃ m, Multiset.card m = n + 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
sorry
case succ.intro n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : 2 * a - 1 ≤ Multiset.card (Multiset.map (⇑(castHom ⋯ (ZMod a))) (s - m.sum)) ⊢ ∃ m, Multiset.card m = n + 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
obtain ⟨m, hm⟩ := this _ le_rfl
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s this : ∀ n ≤ 2 * b - 1, ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ ∃ t ≤ s, Multiset.card t = a * b ∧ t.sum = 0
case intro n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s this : ∀ n ≤ 2 * b - 1, ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = 2 * b - 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ ∃ t ≤ s, Multiset.card t = a * b ∧ t.sum = 0
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
sorry
case intro n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s this : ∀ n ≤ 2 * b - 1, ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = 2 * b - 1 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ ∃ t ≤ s, Multiset.card t = a * b ∧ t.sum = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
exact ⟨0, by simp⟩
case zero n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s hn : 0 ≤ 2 * b - 1 ⊢ ∃ m, Multiset.card m = 0 ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
simp
n p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s hn : 0 ≤ 2 * b - 1 ⊢ Multiset.card 0 = 0 ∧ Multiset.Pairwise _root_.Disjoint 0 ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ 0 → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
rw [card_map]
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ 2 * a - 1 ≤ Multiset.card (Multiset.map (⇑(castHom ⋯ (ZMod a))) (s - m.sum))
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ 2 * a - 1 ≤ Multiset.card (s - m.sum)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
refine (le_tsub_of_add_le_left $ le_trans ?_ hs).trans le_card_sub
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ 2 * a - 1 ≤ Multiset.card (s - m.sum)
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ Multiset.card m.sum + (2 * a - 1) ≤ 2 * (a * b) - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
have : m.map Multiset.card = replicate (2 * a - 1) n := sorry
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a ⊢ Multiset.card m.sum + (2 * a - 1) ≤ 2 * (a * b) - 1
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ Multiset.card m.sum + (2 * a - 1) ≤ 2 * (a * b) - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
rw [map_multiset_sum, this, sum_replicate, ← le_tsub_iff_right, tsub_tsub_tsub_cancel_right, ← mul_tsub, ← mul_tsub_one]
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ Multiset.card m.sum + (2 * a - 1) ≤ 2 * (a * b) - 1
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ (2 * a - 1) • n ≤ 2 * (a * (b - 1)) n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 1 ≤ 2 * a n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 2 * a - 1 ≤ 2 * (a * b) - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
sorry
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ (2 * a - 1) • n ≤ 2 * (a * (b - 1)) n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 1 ≤ 2 * a n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 2 * a - 1 ≤ 2 * (a * b) - 1
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 1 ≤ 2 * a n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 2 * a - 1 ≤ 2 * (a * b) - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
sorry
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 1 ≤ 2 * a n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 2 * a - 1 ≤ 2 * (a * b) - 1
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 2 * a - 1 ≤ 2 * (a * b) - 1
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/ErdosGinzburgZiv.lean
ZMod.exists_submultiset_eq_zero
[105, 1]
[136, 10]
sorry
n✝ p : ℕ inst✝ : Fact p.Prime s✝ : Multiset (ZMod p) a : ℕ ha : 2 ≤ a iha : ∀ {s : Multiset (ZMod a)}, 2 * a - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = a ∧ t.sum = 0 b : ℕ hb : 2 ≤ b ihb : ∀ {s : Multiset (ZMod b)}, 2 * b - 1 ≤ Multiset.card s → ∃ t ≤ s, Multiset.card t = b ∧ t.sum = 0 s : Multiset (ZMod (a * b)) hs : 2 * (a * b) - 1 ≤ Multiset.card s n : ℕ ih : n ≤ 2 * b - 1 → ∃ m, Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a hn : n + 1 ≤ 2 * b - 1 m : Multiset (Multiset (ZMod (a * b))) hm : Multiset.card m = n ∧ Multiset.Pairwise _root_.Disjoint m ∧ ∀ ⦃u : Multiset (ZMod (a * b))⦄, u ∈ m → Multiset.card u = 2 * a + 1 ∧ u.sum ∈ AddSubgroup.zmultiples ↑a this : Multiset.map (⇑Multiset.card) m = replicate (2 * a - 1) n ⊢ 2 * a - 1 ≤ 2 * (a * b) - 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Ico
[12, 1]
[14, 36]
rw [Icc_eq_cons_Ico h, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a b : α inst✝ : LocallyFiniteOrder α h : a ≤ b ⊢ f b * ∏ x ∈ Ico a b, f x = ∏ x ∈ Icc a b, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Ioc
[16, 1]
[18, 36]
rw [Icc_eq_cons_Ioc h, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a b : α inst✝ : LocallyFiniteOrder α h : a ≤ b ⊢ f a * ∏ x ∈ Ioc a b, f x = ∏ x ∈ Icc a b, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Ioi
[25, 1]
[27, 34]
rw [Ici_eq_cons_Ioi, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a✝ b : α inst✝ : LocallyFiniteOrderTop α a : α ⊢ f a * ∏ x ∈ Ioi a, f x = ∏ x ∈ Ici a, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Algebra/Order/BigOperators/LocallyFinite.lean
Finset.mul_prod_Iio
[34, 1]
[36, 34]
rw [Iic_eq_cons_Iio, prod_cons]
α : Type u_1 β : Type u_2 inst✝² : PartialOrder α inst✝¹ : CommMonoid β f : α → β a✝ b : α inst✝ : LocallyFiniteOrderBot α a : α ⊢ f a * ∏ x ∈ Iio a, f x = ∏ x ∈ Iic a, f x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Multipartite.lean
Finpartition.multipartiteGraph_adj_of_mem_parts
[18, 1]
[24, 72]
refine' ⟨_, fun hst u hu hau hbu => hst _⟩
α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α P : Finpartition univ s t : Finset α a b : α hs : s ∈ P.parts ht : t ∈ P.parts ha : a ∈ s hb : b ∈ t ⊢ P.multipartiteGraph.Adj a b ↔ s ≠ t
case refine'_1 α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α P : Finpartition univ s t : Finset α a b : α hs : s ∈ P.parts ht : t ∈ P.parts ha : a ∈ s hb : b ∈ t ⊢ P.multipartiteGraph.Adj a b → s ≠ t case refine'_2 α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α P : Finpartition univ s t : Finset α a b : α hs : s ∈ P.parts ht : t ∈ P.parts ha : a ∈ s hb : b ∈ t hst : s ≠ t u : Finset α hu : u ∈ P.parts hau : a ∈ u hbu : b ∈ u ⊢ s = t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Multipartite.lean
Finpartition.multipartiteGraph_adj_of_mem_parts
[18, 1]
[24, 72]
rintro hab rfl
case refine'_1 α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α P : Finpartition univ s t : Finset α a b : α hs : s ∈ P.parts ht : t ∈ P.parts ha : a ∈ s hb : b ∈ t ⊢ P.multipartiteGraph.Adj a b → s ≠ t
case refine'_1 α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α P : Finpartition univ s : Finset α a b : α hs : s ∈ P.parts ha : a ∈ s hab : P.multipartiteGraph.Adj a b ht : s ∈ P.parts hb : b ∈ s ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Multipartite.lean
Finpartition.multipartiteGraph_adj_of_mem_parts
[18, 1]
[24, 72]
exact hab hs ha hb
case refine'_1 α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α P : Finpartition univ s : Finset α a b : α hs : s ∈ P.parts ha : a ∈ s hab : P.multipartiteGraph.Adj a b ht : s ∈ P.parts hb : b ∈ s ⊢ False
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Mathlib/Combinatorics/SimpleGraph/Multipartite.lean
Finpartition.multipartiteGraph_adj_of_mem_parts
[18, 1]
[24, 72]
rw [P.eq_of_mem_parts hs hu ha hau, P.eq_of_mem_parts ht hu hb hbu]
case refine'_2 α : Type u_1 inst✝¹ : Fintype α inst✝ : DecidableEq α P : Finpartition univ s t : Finset α a b : α hs : s ∈ P.parts ht : t ∈ P.parts ha : a ∈ s hb : b ∈ t hst : s ≠ t u : Finset α hu : u ∈ P.parts hau : a ∈ u hbu : b ∈ u ⊢ s = t
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.symm
[27, 1]
[28, 95]
simpa [dist_comm, add_comm] using d
V : Type u_1 inst✝ : MetricSpace V u v w : V huv : u ≠ v huw : u ≠ w hvw : v ≠ w d : Dist.dist u v + Dist.dist v w = Dist.dist u w ⊢ Dist.dist w v + Dist.dist v u = Dist.dist w u
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_iff_of_ne
[32, 1]
[34, 48]
simp [MetricSpace.sbtw_iff, h12, h13, h23]
V : Type u_1 inst✝ : MetricSpace V u v w : V h12 : u ≠ v h13 : u ≠ w h23 : v ≠ w ⊢ sbtw u v w ↔ dist u v + dist v w = dist u w
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_mk
[36, 1]
[42, 14]
refine ⟨h12, ?_, h23, h.antisymm (dist_triangle _ _ _)⟩
V : Type u_1 inst✝ : MetricSpace V u v w : V h12 : u ≠ v h23 : v ≠ w h : dist u v + dist v w ≤ dist u w ⊢ sbtw u v w
V : Type u_1 inst✝ : MetricSpace V u v w : V h12 : u ≠ v h23 : v ≠ w h : dist u v + dist v w ≤ dist u w ⊢ u ≠ w
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_mk
[36, 1]
[42, 14]
rintro rfl
V : Type u_1 inst✝ : MetricSpace V u v w : V h12 : u ≠ v h23 : v ≠ w h : dist u v + dist v w ≤ dist u w ⊢ u ≠ w
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : dist u v + dist v u ≤ dist u u ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_mk
[36, 1]
[42, 14]
rw [dist_self] at h
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : dist u v + dist v u ≤ dist u u ⊢ False
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : dist u v + dist v u ≤ 0 ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_mk
[36, 1]
[42, 14]
replace h : dist v u ≤ 0 := by linarith [dist_comm v u]
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : dist u v + dist v u ≤ 0 ⊢ False
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : dist v u ≤ 0 ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_mk
[36, 1]
[42, 14]
simp only [dist_le_zero] at h
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : dist v u ≤ 0 ⊢ False
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : v = u ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_mk
[36, 1]
[42, 14]
exact h23 h
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : v = u ⊢ False
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
sbtw_mk
[36, 1]
[42, 14]
linarith [dist_comm v u]
V : Type u_1 inst✝ : MetricSpace V u v : V h12 : u ≠ v h23 : v ≠ u h : dist u v + dist v u ≤ 0 ⊢ dist v u ≤ 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.right_cancel
[44, 1]
[45, 99]
linarith [h.dist, h'.dist, dist_triangle u w x, dist_triangle u v w]
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w✝ u v w x : V h : sbtw u v x h' : sbtw v w x ⊢ Dist.dist u v + Dist.dist v w ≤ Dist.dist u w
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.asymm_right
[47, 1]
[51, 24]
have := h'.dist
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x ⊢ False
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x this : Dist.dist v u + Dist.dist u x = Dist.dist v x ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.asymm_right
[47, 1]
[51, 24]
rw [dist_comm] at this
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x this : Dist.dist v u + Dist.dist u x = Dist.dist v x ⊢ False
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x this : Dist.dist u v + Dist.dist u x = Dist.dist v x ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.asymm_right
[47, 1]
[51, 24]
have : Dist.dist u v = 0 := by linarith [h.dist]
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x this : Dist.dist u v + Dist.dist u x = Dist.dist v x ⊢ False
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x this✝ : Dist.dist u v + Dist.dist u x = Dist.dist v x this : Dist.dist u v = 0 ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.asymm_right
[47, 1]
[51, 24]
simp [h.ne12] at this
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x this✝ : Dist.dist u v + Dist.dist u x = Dist.dist v x this : Dist.dist u v = 0 ⊢ False
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.asymm_right
[47, 1]
[51, 24]
linarith [h.dist]
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x this : Dist.dist u v + Dist.dist u x = Dist.dist v x ⊢ Dist.dist u v = 0
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.trans_right'
[53, 1]
[55, 77]
rintro rfl
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w✝ u v w x : V h : sbtw u v x h' : sbtw v w x ⊢ u ≠ w
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x ⊢ False
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.trans_right'
[53, 1]
[55, 77]
exact h.asymm_right h'
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w u v x : V h : sbtw u v x h' : sbtw v u x ⊢ False
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/MetricBetween.lean
SBtw.sbtw.trans_right'
[53, 1]
[55, 77]
linarith [h.dist, h'.dist, dist_triangle u v w]
V : Type u_1 inst✝ : MetricSpace V u✝ v✝ w✝ u v w x : V h : sbtw u v x h' : sbtw v w x this : u ≠ w ⊢ Dist.dist u w + Dist.dist w x ≤ Dist.dist u x
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.coe_eq_one
[20, 1]
[21, 85]
rfl
α : Type u_1 inst✝ : Group α s : Subgroup α a : α ⊢ ↑s = ↑⊥ ↔ ↑s = 1
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.smul_coe
[23, 1]
[25, 97]
ext
α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s ⊢ a • ↑s = ↑s
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ x✝ ∈ a • ↑s ↔ x✝ ∈ ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.smul_coe
[23, 1]
[25, 97]
rw [Set.mem_smul_set_iff_inv_smul_mem]
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ x✝ ∈ a • ↑s ↔ x✝ ∈ ↑s
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ a⁻¹ • x✝ ∈ ↑s ↔ x✝ ∈ ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.smul_coe
[23, 1]
[25, 97]
exact Subgroup.mul_mem_cancel_left _ (inv_mem ha)
case h α : Type u_1 inst✝ : Group α s : Subgroup α a : α ha : a ∈ s x✝ : α ⊢ a⁻¹ • x✝ ∈ ↑s ↔ x✝ ∈ ↑s
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
rw [← Nat.card_prod, Nat.card_congr]
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ Nat.card ↥s * Nat.card ↑(QuotientGroup.mk '' t) = Nat.card ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↥s × ↑(QuotientGroup.mk '' t) ≃ ↑(t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
apply Equiv.trans (QuotientGroup.preimageMkEquivSubgroupProdSet _ _).symm
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↥s × ↑(QuotientGroup.mk '' t) ≃ ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' t)) ≃ ↑(t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
rw [QuotientGroup.preimage_image_mk]
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(QuotientGroup.mk ⁻¹' (QuotientGroup.mk '' t)) ≃ ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) ≃ ↑(t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
apply Set.BijOn.equiv id
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ ↑(⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) ≃ ↑(t * ↑s)
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ Set.BijOn id (⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) (t * ↑s)
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
convert Set.bijOn_id _
α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ Set.BijOn id (⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t) (t * ↑s)
case h.e'_5 α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ t * ↑s = ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
ext x
case h.e'_5 α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α ⊢ t * ↑s = ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
case h.e'_5.h α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s ↔ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
constructor
case h.e'_5.h α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s ↔ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s → x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t → x ∈ t * ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
simp only [Set.mem_iUnion, Set.mem_preimage, Subtype.exists, exists_prop, Set.mem_mul]
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ t * ↑s → x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ (∃ x_1 ∈ t, ∃ y ∈ ↑s, x_1 * y = x) → ∃ a ∈ s, x * a ∈ t
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
aesop
case h.e'_5.h.mp α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ (∃ x_1 ∈ t, ∃ y ∈ ↑s, x_1 * y = x) → ∃ a ∈ s, x * a ∈ t
no goals
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
simp only [Set.mem_iUnion, Set.mem_preimage, Subtype.exists, exists_prop, forall_exists_index, and_imp]
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ x ∈ ⋃ x, (fun x_1 => x_1 * ↑x) ⁻¹' t → x ∈ t * ↑s
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ ∀ x_1 ∈ s, x * x_1 ∈ t → x ∈ t * ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
intro y hys hxy
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x : α ⊢ ∀ x_1 ∈ s, x * x_1 ∈ t → x ∈ t * ↑s
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ x ∈ t * ↑s
https://github.com/YaelDillies/LeanCamCombi.git
034199694e3b91536d03bc4a8b0cdbd659cdf50f
LeanCamCombi/Kneser/Mathlib.lean
Subgroup.subgroup_mul_card_eq_mul
[28, 1]
[44, 41]
rw [← mul_inv_cancel_right x y]
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ x ∈ t * ↑s
case h.e'_5.h.mpr α : Type u_1 inst✝ : Group α s✝ : Subgroup α a : α s : Subgroup α t : Set α x y : α hys : y ∈ s hxy : x * y ∈ t ⊢ x * y * y⁻¹ ∈ t * ↑s