url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
linarith
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ 0 < s
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
linarith
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 ⊒ 0 < e / 4
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [mem_ball] at m ⊒
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ w ∈ ball (f c z) (e / 4) ⊒ w ∈ ball (f d z) (e / 2)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 ⊒ dist w (f d z) < e / 2
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
specialize @sh ⟨d, z⟩
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 sh : βˆ€ {x : β„‚ Γ— β„‚}, dist x (c, z) < s β†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 ⊒ dist w (f d z) < e / 2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (d, z) (c, z) < s β†’ dist (uncurry f (d, z)) (uncurry f (c, z)) < e / 4 ⊒ dist w (f d z) < e / 2
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [Prod.dist_eq, dist_self, Function.uncurry] at sh
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (d, z) (c, z) < s β†’ dist (uncurry f (d, z)) (uncurry f (c, z)) < e / 4 ⊒ dist w (f d z) < e / 2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : max (dist d c) 0 < s β†’ dist (f d z) (f c z) < e / 4 ⊒ dist w (f d z) < e / 2
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
specialize sh (max_lt m.1.2 sp)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : max (dist d c) 0 < s β†’ dist (f d z) (f c z) < e / 4 ⊒ dist w (f d z) < e / 2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f d z) (f c z) < e / 4 ⊒ dist w (f d z) < e / 2
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rw [dist_comm] at sh
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f d z) (f c z) < e / 4 ⊒ dist w (f d z) < e / 2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f c z) (f d z) < e / 4 ⊒ dist w (f d z) < e / 2
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
calc dist w (f d z) _ ≀ dist w (f c z) + dist (f c z) (f d z) := by bound _ < e / 4 + dist (f c z) (f d z) := by linarith [m.2] _ ≀ e / 4 + e / 4 := by linarith [sh] _ = e / 2 := by ring
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f c z) (f d z) < e / 4 ⊒ dist w (f d z) < e / 2
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
bound
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f c z) (f d z) < e / 4 ⊒ dist w (f d z) ≀ dist w (f c z) + dist (f c z) (f d z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
linarith [m.2]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f c z) (f d z) < e / 4 ⊒ dist w (f c z) + dist (f c z) (f d z) < e / 4 + dist (f c z) (f d z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
linarith [sh]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f c z) (f d z) < e / 4 ⊒ e / 4 + dist (f c z) (f d z) ≀ e / 4 + e / 4
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
ring
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ e r : ℝ u : Set β„‚ fa : AnalyticOn β„‚ (uncurry f) (u Γ—Λ’ closedBall z r) rp : 0 < r ep : 0 < e un : u ∈ 𝓝 c ef : βˆ€ d ∈ u, βˆ€ w ∈ sphere z r, e ≀ β€–f d w - f d zβ€– fn : βˆ€ d ∈ u, βˆƒαΆ  (w : β„‚) in 𝓝 z, f d w β‰  f d z op : βˆ€ d ∈ u, ball (f d z) (e / 2) βŠ† f d '' closedBall z r s : ℝ sp : s > 0 d w : β„‚ m : (d ∈ u ∧ dist d c < s) ∧ dist w (f c z) < e / 4 sh : dist (f c z) (f d z) < e / 4 ⊒ e / 4 + e / 4 = e / 2
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
abs_sub_self_lt
[104, 1]
[105, 44]
simp [sub_self, Complex.abs.map_zero, rp]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U z : β„‚ r : ℝ rp : 0 < r ⊒ Complex.abs (z - z) < r
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rw [Filter.le_map_iff]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) ⊒ 𝓝 (c, f c z) ≀ Filter.map (fun p => (p.1, f p.1 p.2)) (𝓝 (c, z))
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) ⊒ βˆ€ s ∈ 𝓝 (c, z), (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
intro s' sn
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) ⊒ βˆ€ s ∈ 𝓝 (c, z), (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
generalize hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have ss : s βŠ† s' := by rw [← hs]; apply inter_subset_left
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
replace sn : s ∈ 𝓝 (c, z) := by rw [← hs]; exact Filter.inter_mem sn fa.eventually_analyticAt
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
replace fa : AnalyticOn β„‚ (uncurry f) s := by rw [← hs]; apply inter_subset_right
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
refine Filter.mem_of_superset ?_ (image_subset _ ss)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s ⊒ (fun p => (p.1, f p.1 p.2)) '' s' ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
clear ss hs s'
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rcases Metric.mem_nhds_iff.mp sn with ⟨e, ep, es⟩
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rcases er with ⟨r, rp, rs, fr⟩
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s er : βˆƒ r, 0 < r ∧ closedBall (c, z) r βŠ† s ∧ f c z βˆ‰ f c '' sphere z r ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have fc : ContinuousOn (fun w ↦ β€–f c w - f c zβ€–) (sphere z r) := by apply ContinuousOn.norm; refine ContinuousOn.sub ?_ continuousOn_const apply fa.along_snd.continuousOn.mono; intro x xs; apply rs simp only [← closedBall_prod_same, mem_prod_eq] use Metric.mem_closedBall_self rp.le, Metric.sphere_subset_closedBall xs
case intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rcases (isCompact_sphere _ _).exists_isMinOn (NormedSpace.sphere_nonempty.mpr rp.le) fc with ⟨x, xs, xm⟩
case intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
generalize he : β€–f c x - f c zβ€– = e
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have ep : 0 < e := by contrapose fr simp only [norm_pos_iff, sub_ne_zero, not_not, mem_image, ← he] at fr ⊒ use x, xs, fr
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rcases Metric.uniformContinuousOn_iff.mp ((isCompact_closedBall _ _).uniformContinuousOn_of_continuous (fa.continuousOn.mono rs)) (e / 4) (by linarith) with ⟨t, tp, ft⟩
case intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have ef : βˆ€ d, d ∈ ball c (min t r) β†’ βˆ€ w, w ∈ sphere z r β†’ e / 2 ≀ β€–f d w - f d zβ€– := by intro d dt w wr; simp only [Complex.norm_eq_abs] simp only [Complex.dist_eq, Prod.forall, mem_closedBall, Prod.dist_eq, max_le_iff, max_lt_iff, Function.uncurry, and_imp] at ft simp only [mem_ball, Complex.dist_eq, lt_min_iff] at dt have a1 : abs (f d w - f c w) ≀ e / 4 := (ft d w dt.2.le (le_of_eq wr) c w (abs_sub_self_lt rp).le (le_of_eq wr) dt.1 (abs_sub_self_lt tp)).le have a2 : abs (f c z - f d z) ≀ e / 4 := by refine (ft c z (abs_sub_self_lt rp).le (abs_sub_self_lt rp).le d z dt.2.le (abs_sub_self_lt rp).le ?_ (abs_sub_self_lt tp)).le rw [← neg_sub, Complex.abs.map_neg]; exact dt.1 calc abs (f d w - f d z) _ = abs (f c w - f c z + (f d w - f c w) + (f c z - f d z)) := by ring_nf _ β‰₯ abs (f c w - f c z + (f d w - f c w)) - abs (f c z - f d z) := by bound _ β‰₯ abs (f c w - f c z) - abs (f d w - f c w) - abs (f c z - f d z) := by bound _ β‰₯ e - e / 4 - e / 4 := by rw [← he] at a1 a2 ⊒; exact sub_le_sub (sub_le_sub (xm wr) a1) a2 _ = e / 2 := by ring
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have ss : ball c (min t r) Γ—Λ’ closedBall z r βŠ† s := by refine _root_.trans ?_ rs; rw [← closedBall_prod_same]; apply prod_mono_left exact _root_.trans (Metric.ball_subset_ball (min_le_right _ _)) Metric.ball_subset_closedBall
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ss : ball c (min t r) Γ—Λ’ closedBall z r βŠ† s ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact Filter.mem_of_superset ((fa.mono ss).ball_subset_image_closedBall_param rp (half_pos ep) (Metric.ball_mem_nhds _ (by bound)) ef) (image_subset _ ss)
case intro.intro.intro.intro.intro.intro.intro.intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ss : ball c (min t r) Γ—Λ’ closedBall z r βŠ† s ⊒ (fun p => (p.1, f p.1 p.2)) '' s ∈ 𝓝 (c, f c z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rw [← hs]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ⊒ s βŠ† s'
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ⊒ s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} βŠ† s'
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
apply inter_subset_left
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ⊒ s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} βŠ† s'
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rw [← hs]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' ⊒ s ∈ 𝓝 (c, z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' ⊒ s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} ∈ 𝓝 (c, z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact Filter.inter_mem sn fa.eventually_analyticAt
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' : Set (β„‚ Γ— β„‚) sn : s' ∈ 𝓝 (c, z) s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' ⊒ s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} ∈ 𝓝 (c, z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rw [← hs]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) ⊒ AnalyticOn β„‚ (uncurry f) s
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) ⊒ AnalyticOn β„‚ (uncurry f) (s' ∩ {p | AnalyticAt β„‚ (uncurry f) p})
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
apply inter_subset_right
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z fa : AnalyticAt β„‚ (uncurry f) (c, z) s' s : Set (β„‚ Γ— β„‚) hs : s' ∩ {p | AnalyticAt β„‚ (uncurry f) p} = s ss : s βŠ† s' sn : s ∈ 𝓝 (c, z) ⊒ AnalyticOn β„‚ (uncurry f) (s' ∩ {p | AnalyticAt β„‚ (uncurry f) p})
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have h := n.eventually_ne
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s ⊒ βˆƒ r, 0 < r ∧ closedBall (c, z) r βŠ† s ∧ f c z βˆ‰ f c '' sphere z r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€αΆ  (w : β„‚) in 𝓝 z, w β‰  z β†’ f c w β‰  f c z ⊒ βˆƒ r, 0 < r ∧ closedBall (c, z) r βŠ† s ∧ f c z βˆ‰ f c '' sphere z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
contrapose h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€αΆ  (w : β„‚) in 𝓝 z, w β‰  z β†’ f c w β‰  f c z ⊒ βˆƒ r, 0 < r ∧ closedBall (c, z) r βŠ† s ∧ f c z βˆ‰ f c '' sphere z r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : Β¬βˆƒ r, 0 < r ∧ closedBall (c, z) r βŠ† s ∧ f c z βˆ‰ f c '' sphere z r ⊒ Β¬βˆ€αΆ  (w : β„‚) in 𝓝 z, w β‰  z β†’ f c w β‰  f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [not_exists, Filter.not_frequently, not_not, not_and, not_exists] at h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : Β¬βˆƒ r, 0 < r ∧ closedBall (c, z) r βŠ† s ∧ f c z βˆ‰ f c '' sphere z r ⊒ Β¬βˆ€αΆ  (w : β„‚) in 𝓝 z, w β‰  z β†’ f c w β‰  f c z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x ⊒ Β¬βˆ€αΆ  (w : β„‚) in 𝓝 z, w β‰  z β†’ f c w β‰  f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [Filter.not_eventually, _root_.not_imp, not_not, Filter.eventually_iff, Metric.mem_nhds_iff, not_exists, not_subset, mem_setOf, not_and]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x ⊒ Β¬βˆ€αΆ  (w : β„‚) in 𝓝 z, w β‰  z β†’ f c w β‰  f c z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x ⊒ βˆ€ x > 0, βˆƒ a ∈ ball z x, a β‰  z ∧ f c a = f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
intro r rp
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x ⊒ βˆ€ x > 0, βˆƒ a ∈ ball z x, a β‰  z ∧ f c a = f c z
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x r : ℝ rp : r > 0 ⊒ βˆƒ a ∈ ball z r, a β‰  z ∧ f c a = f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
specialize h (min (e/2) (r/2)) ?_ ?_
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x r : ℝ rp : r > 0 ⊒ βˆƒ a ∈ ball z r, a β‰  z ∧ f c a = f c z
case specialize_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x r : ℝ rp : r > 0 ⊒ 0 < min (e / 2) (r / 2) case specialize_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x r : ℝ rp : r > 0 ⊒ closedBall (c, z) (min (e / 2) (r / 2)) βŠ† s X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) ⊒ βˆƒ a ∈ ball z r, a β‰  z ∧ f c a = f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
bound
case specialize_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x r : ℝ rp : r > 0 ⊒ 0 < min (e / 2) (r / 2)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact _root_.trans (Metric.closedBall_subset_ball (lt_of_le_of_lt (min_le_left _ _) (half_lt_self ep))) es
case specialize_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s h : βˆ€ (x : ℝ), 0 < x β†’ closedBall (c, z) x βŠ† s β†’ f c z ∈ f c '' sphere z x r : ℝ rp : r > 0 ⊒ closedBall (c, z) (min (e / 2) (r / 2)) βŠ† s
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rcases (mem_image _ _ _).mp h with ⟨w, ws, wz⟩
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) ⊒ βˆƒ a ∈ ball z r, a β‰  z ∧ f c a = f c z
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ βˆƒ a ∈ ball z r, a β‰  z ∧ f c a = f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
use w
case intro.intro X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ βˆƒ a ∈ ball z r, a β‰  z ∧ f c a = f c z
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ w ∈ ball z r ∧ w β‰  z ∧ f c w = f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
refine ⟨?_, ?_, wz⟩
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ w ∈ ball z r ∧ w β‰  z ∧ f c w = f c z
case h.refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ w ∈ ball z r case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ w β‰  z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact Metric.closedBall_subset_ball (lt_of_le_of_lt (min_le_right _ _) (half_lt_self rp)) (Metric.sphere_subset_closedBall ws)
case h.refine_1 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ w ∈ ball z r
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
contrapose ws
case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ ws : w ∈ sphere z (min (e / 2) (r / 2)) wz : f c w = f c z ⊒ w β‰  z
case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ wz : f c w = f c z ws : Β¬w β‰  z ⊒ w βˆ‰ sphere z (min (e / 2) (r / 2))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [not_not] at ws
case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ wz : f c w = f c z ws : Β¬w β‰  z ⊒ w βˆ‰ sphere z (min (e / 2) (r / 2))
case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ wz : f c w = f c z ws : w = z ⊒ w βˆ‰ sphere z (min (e / 2) (r / 2))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [ws, Metric.mem_sphere, dist_self]
case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ wz : f c w = f c z ws : w = z ⊒ w βˆ‰ sphere z (min (e / 2) (r / 2))
case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ wz : f c w = f c z ws : w = z ⊒ Β¬0 = min (e / 2) (r / 2)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact ne_of_lt (by bound)
case h.refine_2 X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ wz : f c w = f c z ws : w = z ⊒ Β¬0 = min (e / 2) (r / 2)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
bound
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : r > 0 h : f c z ∈ f c '' sphere z (min (e / 2) (r / 2)) w : β„‚ wz : f c w = f c z ws : w = z ⊒ 0 < min (e / 2) (r / 2)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
apply ContinuousOn.norm
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ ContinuousOn (fun x => f c x - f c z) (sphere z r)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
refine ContinuousOn.sub ?_ continuousOn_const
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ ContinuousOn (fun x => f c x - f c z) (sphere z r)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ ContinuousOn (fun x => f c x) (sphere z r)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
apply fa.along_snd.continuousOn.mono
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ ContinuousOn (fun x => f c x) (sphere z r)
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ sphere z r βŠ† {y | (c, y) ∈ s}
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
intro x xs
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r ⊒ sphere z r βŠ† {y | (c, y) ∈ s}
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r x : β„‚ xs : x ∈ sphere z r ⊒ x ∈ {y | (c, y) ∈ s}
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
apply rs
case h X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r x : β„‚ xs : x ∈ sphere z r ⊒ x ∈ {y | (c, y) ∈ s}
case h.a X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r x : β„‚ xs : x ∈ sphere z r ⊒ (c, x) ∈ closedBall (c, z) r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [← closedBall_prod_same, mem_prod_eq]
case h.a X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r x : β„‚ xs : x ∈ sphere z r ⊒ (c, x) ∈ closedBall (c, z) r
case h.a X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r x : β„‚ xs : x ∈ sphere z r ⊒ c ∈ closedBall c r ∧ x ∈ closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
use Metric.mem_closedBall_self rp.le, Metric.sphere_subset_closedBall xs
case h.a X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e : ℝ ep : e > 0 es : ball (c, z) e βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r x : β„‚ xs : x ∈ sphere z r ⊒ c ∈ closedBall c r ∧ x ∈ closedBall z r
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
contrapose fr
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ⊒ 0 < e
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e fr : Β¬0 < e ⊒ Β¬f c z βˆ‰ f c '' sphere z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [norm_pos_iff, sub_ne_zero, not_not, mem_image, ← he] at fr ⊒
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e fr : Β¬0 < e ⊒ Β¬f c z βˆ‰ f c '' sphere z r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e fr : f c x = f c z ⊒ βˆƒ x ∈ sphere z r, f c x = f c z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
use x, xs, fr
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e fr : f c x = f c z ⊒ βˆƒ x ∈ sphere z r, f c x = f c z
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
linarith
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e ⊒ e / 4 > 0
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
intro d dt w wr
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ⊒ βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€–
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 d : β„‚ dt : d ∈ ball c (min t r) w : β„‚ wr : w ∈ sphere z r ⊒ e / 2 ≀ β€–f d w - f d zβ€–
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [Complex.norm_eq_abs]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 d : β„‚ dt : d ∈ ball c (min t r) w : β„‚ wr : w ∈ sphere z r ⊒ e / 2 ≀ β€–f d w - f d zβ€–
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 d : β„‚ dt : d ∈ ball c (min t r) w : β„‚ wr : w ∈ sphere z r ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [Complex.dist_eq, Prod.forall, mem_closedBall, Prod.dist_eq, max_le_iff, max_lt_iff, Function.uncurry, and_imp] at ft
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 d : β„‚ dt : d ∈ ball c (min t r) w : β„‚ wr : w ∈ sphere z r ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d : β„‚ dt : d ∈ ball c (min t r) w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
simp only [mem_ball, Complex.dist_eq, lt_min_iff] at dt
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d : β„‚ dt : d ∈ ball c (min t r) w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have a1 : abs (f d w - f c w) ≀ e / 4 := (ft d w dt.2.le (le_of_eq wr) c w (abs_sub_self_lt rp).le (le_of_eq wr) dt.1 (abs_sub_self_lt tp)).le
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
have a2 : abs (f c z - f d z) ≀ e / 4 := by refine (ft c z (abs_sub_self_lt rp).le (abs_sub_self_lt rp).le d z dt.2.le (abs_sub_self_lt rp).le ?_ (abs_sub_self_lt tp)).le rw [← neg_sub, Complex.abs.map_neg]; exact dt.1
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 a2 : Complex.abs (f c z - f d z) ≀ e / 4 ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
calc abs (f d w - f d z) _ = abs (f c w - f c z + (f d w - f c w) + (f c z - f d z)) := by ring_nf _ β‰₯ abs (f c w - f c z + (f d w - f c w)) - abs (f c z - f d z) := by bound _ β‰₯ abs (f c w - f c z) - abs (f d w - f c w) - abs (f c z - f d z) := by bound _ β‰₯ e - e / 4 - e / 4 := by rw [← he] at a1 a2 ⊒; exact sub_le_sub (sub_le_sub (xm wr) a1) a2 _ = e / 2 := by ring
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 a2 : Complex.abs (f c z - f d z) ≀ e / 4 ⊒ e / 2 ≀ Complex.abs (f d w - f d z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
refine (ft c z (abs_sub_self_lt rp).le (abs_sub_self_lt rp).le d z dt.2.le (abs_sub_self_lt rp).le ?_ (abs_sub_self_lt tp)).le
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 ⊒ Complex.abs (f c z - f d z) ≀ e / 4
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 ⊒ Complex.abs (c - d) < t
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rw [← neg_sub, Complex.abs.map_neg]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 ⊒ Complex.abs (c - d) < t
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 ⊒ Complex.abs (d - c) < t
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact dt.1
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 ⊒ Complex.abs (d - c) < t
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
ring_nf
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 a2 : Complex.abs (f c z - f d z) ≀ e / 4 ⊒ Complex.abs (f d w - f d z) = Complex.abs (f c w - f c z + (f d w - f c w) + (f c z - f d z))
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
bound
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 a2 : Complex.abs (f c z - f d z) ≀ e / 4 ⊒ Complex.abs (f c w - f c z + (f d w - f c w) + (f c z - f d z)) β‰₯ Complex.abs (f c w - f c z + (f d w - f c w)) - Complex.abs (f c z - f d z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
bound
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 a2 : Complex.abs (f c z - f d z) ≀ e / 4 ⊒ Complex.abs (f c w - f c z + (f d w - f c w)) - Complex.abs (f c z - f d z) β‰₯ Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rw [← he] at a1 a2 ⊒
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 a2 : Complex.abs (f c z - f d z) ≀ e / 4 ⊒ Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z) β‰₯ e - e / 4 - e / 4
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ β€–f c x - f c zβ€– / 4 a2 : Complex.abs (f c z - f d z) ≀ β€–f c x - f c zβ€– / 4 ⊒ Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z) β‰₯ β€–f c x - f c zβ€– - β€–f c x - f c zβ€– / 4 - β€–f c x - f c zβ€– / 4
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact sub_le_sub (sub_le_sub (xm wr) a1) a2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ β€–f c x - f c zβ€– / 4 a2 : Complex.abs (f c z - f d z) ≀ β€–f c x - f c zβ€– / 4 ⊒ Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z) β‰₯ β€–f c x - f c zβ€– - β€–f c x - f c zβ€– / 4 - β€–f c x - f c zβ€– / 4
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
ring
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 d w : β„‚ wr : w ∈ sphere z r ft : βˆ€ (a b : β„‚), Complex.abs (a - c) ≀ r β†’ Complex.abs (b - z) ≀ r β†’ βˆ€ (a_3 b_1 : β„‚), Complex.abs (a_3 - c) ≀ r β†’ Complex.abs (b_1 - z) ≀ r β†’ Complex.abs (a - a_3) < t β†’ Complex.abs (b - b_1) < t β†’ Complex.abs (f a b - f a_3 b_1) < e / 4 dt : Complex.abs (d - c) < t ∧ Complex.abs (d - c) < r a1 : Complex.abs (f d w - f c w) ≀ e / 4 a2 : Complex.abs (f c z - f d z) ≀ e / 4 ⊒ e - e / 4 - e / 4 = e / 2
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
refine _root_.trans ?_ rs
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ ball c (min t r) Γ—Λ’ closedBall z r βŠ† s
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ ball c (min t r) Γ—Λ’ closedBall z r βŠ† closedBall (c, z) r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
rw [← closedBall_prod_same]
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ ball c (min t r) Γ—Λ’ closedBall z r βŠ† closedBall (c, z) r
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ ball c (min t r) Γ—Λ’ closedBall z r βŠ† closedBall c r Γ—Λ’ closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
apply prod_mono_left
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ ball c (min t r) Γ—Λ’ closedBall z r βŠ† closedBall c r Γ—Λ’ closedBall z r
case hs X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ ball c (min t r) βŠ† closedBall c r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
exact _root_.trans (Metric.ball_subset_ball (min_le_right _ _)) Metric.ball_subset_closedBall
case hs X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ⊒ ball c (min t r) βŠ† closedBall c r
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_le_map_nhds_param'
[109, 1]
[180, 64]
bound
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : β„‚ β†’ β„‚ β†’ β„‚ c z : β„‚ n : NontrivialHolomorphicAt (f c) z s : Set (β„‚ Γ— β„‚) sn : s ∈ 𝓝 (c, z) fa : AnalyticOn β„‚ (uncurry f) s e✝ : ℝ ep✝ : e✝ > 0 es : ball (c, z) e✝ βŠ† s r : ℝ rp : 0 < r rs : closedBall (c, z) r βŠ† s fr : f c z βˆ‰ f c '' sphere z r fc : ContinuousOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x : β„‚ xs : x ∈ sphere z r xm : IsMinOn (fun w => β€–f c w - f c zβ€–) (sphere z r) x e : ℝ he : β€–f c x - f c zβ€– = e ep : 0 < e t : ℝ tp : t > 0 ft : βˆ€ x ∈ closedBall (c, z) r, βˆ€ y ∈ closedBall (c, z) r, dist x y < t β†’ dist (uncurry f x) (uncurry f y) < e / 4 ef : βˆ€ d ∈ ball c (min t r), βˆ€ w ∈ sphere z r, e / 2 ≀ β€–f d w - f d zβ€– ss : ball c (min t r) Γ—Λ’ closedBall z r βŠ† s ⊒ 0 < min t r
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
use n.holomorphicAt.2.holomorphicAt I I
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ NontrivialHolomorphicAt (fun w => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm w))) (↑(extChartAt π“˜(β„‚, β„‚) z) z)
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm w)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z)))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
have c := n.nonconst
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm w)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z)))
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm w)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z)))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
contrapose c
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z ⊒ βˆƒαΆ  (w : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm w)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z)))
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm w)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
simp only [Filter.not_frequently, not_not, ← extChartAt_map_nhds' I z, Filter.eventually_map] at c ⊒
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : Β¬βˆƒαΆ  (w : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm w)) β‰  ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ Β¬βˆƒαΆ  (w : S) in 𝓝 z, f w β‰  f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
apply c.mp
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x = f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ f x = f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ f x = f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ f x = f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ f x = f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ f x = f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
refine eventually_of_forall fun w fm m fn ↦ ?_
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ βˆ€αΆ  (x : S) in 𝓝 z, f x ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source β†’ x ∈ (extChartAt π“˜(β„‚, β„‚) z).source β†’ ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) x))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) β†’ f x = f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ f w = f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
rw [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at fn
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) w))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) ⊒ f w = f z
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f w) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z) ⊒ f w = f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.inCharts
[183, 1]
[196, 77]
exact ((PartialEquiv.injOn _).eq_iff fm (mem_extChartAt_source _ _)).mp fn
case nonconst X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z c : βˆ€αΆ  (a : S) in 𝓝 z, ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) a))) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm (↑(extChartAt π“˜(β„‚, β„‚) z) z))) w : S fm : f w ∈ (extChartAt π“˜(β„‚, β„‚) (f z)).source m : w ∈ (extChartAt π“˜(β„‚, β„‚) z).source fn : ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f w) = ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f z) ⊒ f w = f z
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
refine le_antisymm ?_ n.holomorphicAt.continuousAt
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) = Filter.map f (𝓝 z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
generalize hg : (fun x ↦ extChartAt I (f z) (f ((extChartAt I z).symm x))) = g
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
have ga : AnalyticAt β„‚ g (extChartAt I z z) := by rw [← hg]; exact n.holomorphicAt.2
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
NontrivialHolomorphicAt.nhds_eq_map_nhds
[201, 1]
[225, 42]
cases' ga.eventually_constant_or_nhds_le_map_nhds with h h
X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)
case inl X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : βˆ€αΆ  (z_1 : β„‚) in 𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z), g z_1 = g (↑(extChartAt π“˜(β„‚, β„‚) z) z) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z) case inr X : Type inst✝⁢ : TopologicalSpace X S : Type inst✝⁡ : TopologicalSpace S inst✝⁴ : ChartedSpace β„‚ S cms : AnalyticManifold π“˜(β„‚, β„‚) S T : Type inst✝³ : TopologicalSpace T inst✝² : ChartedSpace β„‚ T cmt : AnalyticManifold π“˜(β„‚, β„‚) T U : Type inst✝¹ : TopologicalSpace U inst✝ : ChartedSpace β„‚ U cmu : AnalyticManifold π“˜(β„‚, β„‚) U f : S β†’ T z : S n : NontrivialHolomorphicAt f z g : β„‚ β†’ β„‚ hg : (fun x => ↑(extChartAt π“˜(β„‚, β„‚) (f z)) (f (↑(extChartAt π“˜(β„‚, β„‚) z).symm x))) = g ga : AnalyticAt β„‚ g (↑(extChartAt π“˜(β„‚, β„‚) z) z) h : 𝓝 (g (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ≀ Filter.map g (𝓝 (↑(extChartAt π“˜(β„‚, β„‚) z) z)) ⊒ 𝓝 (f z) ≀ Filter.map f (𝓝 z)