url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | linarith | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
sh : β {x : β Γ β}, dist x (c, z) < s β dist (uncurry f x) (uncurry f (c, z)) < e / 4
β’ 0 < s | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | linarith | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
sh : β {x : β Γ β}, dist x (c, z) < s β dist (uncurry f x) (uncurry f (c, z)) < e / 4
β’ 0 < e / 4 | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | simp only [mem_ball] at m β’ | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
sh : β {x : β Γ β}, dist x (c, z) < s β dist (uncurry f x) (uncurry f (c, z)) < e / 4
d w : β
m : (d β u β§ dist d c < s) β§ w β ball (f c z) (e / 4)
β’ w β ball (f d z) (e / 2) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
sh : β {x : β Γ β}, dist x (c, z) < s β dist (uncurry f x) (uncurry f (c, z)) < e / 4
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
β’ dist w (f d z) < e / 2 |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | specialize @sh β¨d, zβ© | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
sh : β {x : β Γ β}, dist x (c, z) < s β dist (uncurry f x) (uncurry f (c, z)) < e / 4
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
β’ dist w (f d z) < e / 2 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (d, z) (c, z) < s β dist (uncurry f (d, z)) (uncurry f (c, z)) < e / 4
β’ dist w (f d z) < e / 2 |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | simp only [Prod.dist_eq, dist_self, Function.uncurry] at sh | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (d, z) (c, z) < s β dist (uncurry f (d, z)) (uncurry f (c, z)) < e / 4
β’ dist w (f d z) < e / 2 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : max (dist d c) 0 < s β dist (f d z) (f c z) < e / 4
β’ dist w (f d z) < e / 2 |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | specialize sh (max_lt m.1.2 sp) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : max (dist d c) 0 < s β dist (f d z) (f c z) < e / 4
β’ dist w (f d z) < e / 2 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f d z) (f c z) < e / 4
β’ dist w (f d z) < e / 2 |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | rw [dist_comm] at sh | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f d z) (f c z) < e / 4
β’ dist w (f d z) < e / 2 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f c z) (f d z) < e / 4
β’ dist w (f d z) < e / 2 |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | calc dist w (f d z)
_ β€ dist w (f c z) + dist (f c z) (f d z) := by bound
_ < e / 4 + dist (f c z) (f d z) := by linarith [m.2]
_ β€ e / 4 + e / 4 := by linarith [sh]
_ = e / 2 := by ring | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f c z) (f d z) < e / 4
β’ dist w (f d z) < e / 2 | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | bound | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f c z) (f d z) < e / 4
β’ dist w (f d z) β€ dist w (f c z) + dist (f c z) (f d z) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | linarith [m.2] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f c z) (f d z) < e / 4
β’ dist w (f c z) + dist (f c z) (f d z) < e / 4 + dist (f c z) (f d z) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | linarith [sh] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f c z) (f d z) < e / 4
β’ e / 4 + dist (f c z) (f d z) β€ e / 4 + e / 4 | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | AnalyticOn.ball_subset_image_closedBall_param | [65, 1] | [101, 101] | ring | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
e r : β
u : Set β
fa : AnalyticOn β (uncurry f) (u ΓΛ’ closedBall z r)
rp : 0 < r
ep : 0 < e
un : u β π c
ef : β d β u, β w β sphere z r, e β€ βf d w - f d zβ
fn : β d β u, βαΆ (w : β) in π z, f d w β f d z
op : β d β u, ball (f d z) (e / 2) β f d '' closedBall z r
s : β
sp : s > 0
d w : β
m : (d β u β§ dist d c < s) β§ dist w (f c z) < e / 4
sh : dist (f c z) (f d z) < e / 4
β’ e / 4 + e / 4 = e / 2 | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | abs_sub_self_lt | [104, 1] | [105, 44] | simp [sub_self, Complex.abs.map_zero, rp] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
z : β
r : β
rp : 0 < r
β’ Complex.abs (z - z) < r | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rw [Filter.le_map_iff] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
β’ π (c, f c z) β€ Filter.map (fun p => (p.1, f p.1 p.2)) (π (c, z)) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
β’ β s β π (c, z), (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | intro s' sn | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
β’ β s β π (c, z), (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | generalize hs : s' β© {p | AnalyticAt β (uncurry f) p} = s | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have ss : s β s' := by rw [β hs]; apply inter_subset_left | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | replace sn : s β π (c, z) := by rw [β hs]; exact Filter.inter_mem sn fa.eventually_analyticAt | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | replace fa : AnalyticOn β (uncurry f) s := by rw [β hs]; apply inter_subset_right | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | refine Filter.mem_of_superset ?_ (image_subset _ ss) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
β’ (fun p => (p.1, f p.1 p.2)) '' s' β π (c, f c z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | clear ss hs s' | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rcases Metric.mem_nhds_iff.mp sn with β¨e, ep, esβ© | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rcases er with β¨r, rp, rs, frβ© | case intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
er : β r, 0 < r β§ closedBall (c, z) r β s β§ f c z β f c '' sphere z r
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have fc : ContinuousOn (fun w β¦ βf c w - f c zβ) (sphere z r) := by
apply ContinuousOn.norm; refine ContinuousOn.sub ?_ continuousOn_const
apply fa.along_snd.continuousOn.mono; intro x xs; apply rs
simp only [β closedBall_prod_same, mem_prod_eq]
use Metric.mem_closedBall_self rp.le, Metric.sphere_subset_closedBall xs | case intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rcases (isCompact_sphere _ _).exists_isMinOn (NormedSpace.sphere_nonempty.mpr rp.le) fc with
β¨x, xs, xmβ© | case intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | generalize he : βf c x - f c zβ = e | case intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
ep : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have ep : 0 < e := by
contrapose fr
simp only [norm_pos_iff, sub_ne_zero, not_not, mem_image, β he] at fr β’
use x, xs, fr | case intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
ep : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rcases Metric.uniformContinuousOn_iff.mp
((isCompact_closedBall _ _).uniformContinuousOn_of_continuous (fa.continuousOn.mono rs))
(e / 4) (by linarith) with
β¨t, tp, ftβ© | case intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have ef : β d, d β ball c (min t r) β β w, w β sphere z r β e / 2 β€ βf d w - f d zβ := by
intro d dt w wr; simp only [Complex.norm_eq_abs]
simp only [Complex.dist_eq, Prod.forall, mem_closedBall, Prod.dist_eq, max_le_iff, max_lt_iff,
Function.uncurry, and_imp] at ft
simp only [mem_ball, Complex.dist_eq, lt_min_iff] at dt
have a1 : abs (f d w - f c w) β€ e / 4 :=
(ft d w dt.2.le (le_of_eq wr) c w (abs_sub_self_lt rp).le (le_of_eq wr) dt.1
(abs_sub_self_lt tp)).le
have a2 : abs (f c z - f d z) β€ e / 4 := by
refine (ft c z (abs_sub_self_lt rp).le (abs_sub_self_lt rp).le d z
dt.2.le (abs_sub_self_lt rp).le ?_ (abs_sub_self_lt tp)).le
rw [β neg_sub, Complex.abs.map_neg]; exact dt.1
calc abs (f d w - f d z)
_ = abs (f c w - f c z + (f d w - f c w) + (f c z - f d z)) := by ring_nf
_ β₯ abs (f c w - f c z + (f d w - f c w)) - abs (f c z - f d z) := by bound
_ β₯ abs (f c w - f c z) - abs (f d w - f c w) - abs (f c z - f d z) := by bound
_ β₯ e - e / 4 - e / 4 := by rw [β he] at a1 a2 β’; exact sub_le_sub (sub_le_sub (xm wr) a1) a2
_ = e / 2 := by ring | case intro.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have ss : ball c (min t r) ΓΛ’ closedBall z r β s := by
refine _root_.trans ?_ rs; rw [β closedBall_prod_same]; apply prod_mono_left
exact _root_.trans (Metric.ball_subset_ball (min_le_right _ _)) Metric.ball_subset_closedBall | case intro.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | case intro.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
ss : ball c (min t r) ΓΛ’ closedBall z r β s
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact Filter.mem_of_superset ((fa.mono ss).ball_subset_image_closedBall_param rp (half_pos ep)
(Metric.ball_mem_nhds _ (by bound)) ef) (image_subset _ ss) | case intro.intro.intro.intro.intro.intro.intro.intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
ss : ball c (min t r) ΓΛ’ closedBall z r β s
β’ (fun p => (p.1, f p.1 p.2)) '' s β π (c, f c z) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rw [β hs] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
β’ s β s' | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
β’ s' β© {p | AnalyticAt β (uncurry f) p} β s' |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | apply inter_subset_left | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
β’ s' β© {p | AnalyticAt β (uncurry f) p} β s' | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rw [β hs] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
β’ s β π (c, z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
β’ s' β© {p | AnalyticAt β (uncurry f) p} β π (c, z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact Filter.inter_mem sn fa.eventually_analyticAt | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' : Set (β Γ β)
sn : s' β π (c, z)
s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
β’ s' β© {p | AnalyticAt β (uncurry f) p} β π (c, z) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rw [β hs] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
β’ AnalyticOn β (uncurry f) s | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
β’ AnalyticOn β (uncurry f) (s' β© {p | AnalyticAt β (uncurry f) p}) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | apply inter_subset_right | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
fa : AnalyticAt β (uncurry f) (c, z)
s' s : Set (β Γ β)
hs : s' β© {p | AnalyticAt β (uncurry f) p} = s
ss : s β s'
sn : s β π (c, z)
β’ AnalyticOn β (uncurry f) (s' β© {p | AnalyticAt β (uncurry f) p}) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have h := n.eventually_ne | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
β’ β r, 0 < r β§ closedBall (c, z) r β s β§ f c z β f c '' sphere z r | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : βαΆ (w : β) in π z, w β z β f c w β f c z
β’ β r, 0 < r β§ closedBall (c, z) r β s β§ f c z β f c '' sphere z r |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | contrapose h | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : βαΆ (w : β) in π z, w β z β f c w β f c z
β’ β r, 0 < r β§ closedBall (c, z) r β s β§ f c z β f c '' sphere z r | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : Β¬β r, 0 < r β§ closedBall (c, z) r β s β§ f c z β f c '' sphere z r
β’ Β¬βαΆ (w : β) in π z, w β z β f c w β f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [not_exists, Filter.not_frequently, not_not, not_and, not_exists] at h | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : Β¬β r, 0 < r β§ closedBall (c, z) r β s β§ f c z β f c '' sphere z r
β’ Β¬βαΆ (w : β) in π z, w β z β f c w β f c z | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
β’ Β¬βαΆ (w : β) in π z, w β z β f c w β f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [Filter.not_eventually, _root_.not_imp, not_not, Filter.eventually_iff,
Metric.mem_nhds_iff, not_exists, not_subset, mem_setOf, not_and] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
β’ Β¬βαΆ (w : β) in π z, w β z β f c w β f c z | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
β’ β x > 0, β a β ball z x, a β z β§ f c a = f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | intro r rp | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
β’ β x > 0, β a β ball z x, a β z β§ f c a = f c z | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
r : β
rp : r > 0
β’ β a β ball z r, a β z β§ f c a = f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | specialize h (min (e/2) (r/2)) ?_ ?_ | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
r : β
rp : r > 0
β’ β a β ball z r, a β z β§ f c a = f c z | case specialize_1
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
r : β
rp : r > 0
β’ 0 < min (e / 2) (r / 2)
case specialize_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
r : β
rp : r > 0
β’ closedBall (c, z) (min (e / 2) (r / 2)) β s
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
β’ β a β ball z r, a β z β§ f c a = f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | bound | case specialize_1
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
r : β
rp : r > 0
β’ 0 < min (e / 2) (r / 2) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact _root_.trans (Metric.closedBall_subset_ball (lt_of_le_of_lt (min_le_left _ _)
(half_lt_self ep))) es | case specialize_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
h : β (x : β), 0 < x β closedBall (c, z) x β s β f c z β f c '' sphere z x
r : β
rp : r > 0
β’ closedBall (c, z) (min (e / 2) (r / 2)) β s | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rcases (mem_image _ _ _).mp h with β¨w, ws, wzβ© | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
β’ β a β ball z r, a β z β§ f c a = f c z | case intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ β a β ball z r, a β z β§ f c a = f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | use w | case intro.intro
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ β a β ball z r, a β z β§ f c a = f c z | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ w β ball z r β§ w β z β§ f c w = f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | refine β¨?_, ?_, wzβ© | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ w β ball z r β§ w β z β§ f c w = f c z | case h.refine_1
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ w β ball z r
case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ w β z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact Metric.closedBall_subset_ball (lt_of_le_of_lt (min_le_right _ _) (half_lt_self rp))
(Metric.sphere_subset_closedBall ws) | case h.refine_1
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ w β ball z r | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | contrapose ws | case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
ws : w β sphere z (min (e / 2) (r / 2))
wz : f c w = f c z
β’ w β z | case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
wz : f c w = f c z
ws : Β¬w β z
β’ w β sphere z (min (e / 2) (r / 2)) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [not_not] at ws | case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
wz : f c w = f c z
ws : Β¬w β z
β’ w β sphere z (min (e / 2) (r / 2)) | case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
wz : f c w = f c z
ws : w = z
β’ w β sphere z (min (e / 2) (r / 2)) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [ws, Metric.mem_sphere, dist_self] | case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
wz : f c w = f c z
ws : w = z
β’ w β sphere z (min (e / 2) (r / 2)) | case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
wz : f c w = f c z
ws : w = z
β’ Β¬0 = min (e / 2) (r / 2) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact ne_of_lt (by bound) | case h.refine_2
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
wz : f c w = f c z
ws : w = z
β’ Β¬0 = min (e / 2) (r / 2) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | bound | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : r > 0
h : f c z β f c '' sphere z (min (e / 2) (r / 2))
w : β
wz : f c w = f c z
ws : w = z
β’ 0 < min (e / 2) (r / 2) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | apply ContinuousOn.norm | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ ContinuousOn (fun w => βf c w - f c zβ) (sphere z r) | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ ContinuousOn (fun x => f c x - f c z) (sphere z r) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | refine ContinuousOn.sub ?_ continuousOn_const | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ ContinuousOn (fun x => f c x - f c z) (sphere z r) | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ ContinuousOn (fun x => f c x) (sphere z r) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | apply fa.along_snd.continuousOn.mono | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ ContinuousOn (fun x => f c x) (sphere z r) | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ sphere z r β {y | (c, y) β s} |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | intro x xs | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
β’ sphere z r β {y | (c, y) β s} | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
x : β
xs : x β sphere z r
β’ x β {y | (c, y) β s} |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | apply rs | case h
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
x : β
xs : x β sphere z r
β’ x β {y | (c, y) β s} | case h.a
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
x : β
xs : x β sphere z r
β’ (c, x) β closedBall (c, z) r |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [β closedBall_prod_same, mem_prod_eq] | case h.a
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
x : β
xs : x β sphere z r
β’ (c, x) β closedBall (c, z) r | case h.a
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
x : β
xs : x β sphere z r
β’ c β closedBall c r β§ x β closedBall z r |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | use Metric.mem_closedBall_self rp.le, Metric.sphere_subset_closedBall xs | case h.a
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
e : β
ep : e > 0
es : ball (c, z) e β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
x : β
xs : x β sphere z r
β’ c β closedBall c r β§ x β closedBall z r | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | contrapose fr | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
ep : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
β’ 0 < e | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
ep : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
fr : Β¬0 < e
β’ Β¬f c z β f c '' sphere z r |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [norm_pos_iff, sub_ne_zero, not_not, mem_image, β he] at fr β’ | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
ep : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
fr : Β¬0 < e
β’ Β¬f c z β f c '' sphere z r | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
ep : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
fr : f c x = f c z
β’ β x β sphere z r, f c x = f c z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | use x, xs, fr | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
ep : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
fr : f c x = f c z
β’ β x β sphere z r, f c x = f c z | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | linarith | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
β’ e / 4 > 0 | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | intro d dt w wr | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
β’ β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
d : β
dt : d β ball c (min t r)
w : β
wr : w β sphere z r
β’ e / 2 β€ βf d w - f d zβ |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [Complex.norm_eq_abs] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
d : β
dt : d β ball c (min t r)
w : β
wr : w β sphere z r
β’ e / 2 β€ βf d w - f d zβ | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
d : β
dt : d β ball c (min t r)
w : β
wr : w β sphere z r
β’ e / 2 β€ Complex.abs (f d w - f d z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [Complex.dist_eq, Prod.forall, mem_closedBall, Prod.dist_eq, max_le_iff, max_lt_iff,
Function.uncurry, and_imp] at ft | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
d : β
dt : d β ball c (min t r)
w : β
wr : w β sphere z r
β’ e / 2 β€ Complex.abs (f d w - f d z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d : β
dt : d β ball c (min t r)
w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
β’ e / 2 β€ Complex.abs (f d w - f d z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | simp only [mem_ball, Complex.dist_eq, lt_min_iff] at dt | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d : β
dt : d β ball c (min t r)
w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
β’ e / 2 β€ Complex.abs (f d w - f d z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
β’ e / 2 β€ Complex.abs (f d w - f d z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have a1 : abs (f d w - f c w) β€ e / 4 :=
(ft d w dt.2.le (le_of_eq wr) c w (abs_sub_self_lt rp).le (le_of_eq wr) dt.1
(abs_sub_self_lt tp)).le | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
β’ e / 2 β€ Complex.abs (f d w - f d z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
β’ e / 2 β€ Complex.abs (f d w - f d z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | have a2 : abs (f c z - f d z) β€ e / 4 := by
refine (ft c z (abs_sub_self_lt rp).le (abs_sub_self_lt rp).le d z
dt.2.le (abs_sub_self_lt rp).le ?_ (abs_sub_self_lt tp)).le
rw [β neg_sub, Complex.abs.map_neg]; exact dt.1 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
β’ e / 2 β€ Complex.abs (f d w - f d z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
a2 : Complex.abs (f c z - f d z) β€ e / 4
β’ e / 2 β€ Complex.abs (f d w - f d z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | calc abs (f d w - f d z)
_ = abs (f c w - f c z + (f d w - f c w) + (f c z - f d z)) := by ring_nf
_ β₯ abs (f c w - f c z + (f d w - f c w)) - abs (f c z - f d z) := by bound
_ β₯ abs (f c w - f c z) - abs (f d w - f c w) - abs (f c z - f d z) := by bound
_ β₯ e - e / 4 - e / 4 := by rw [β he] at a1 a2 β’; exact sub_le_sub (sub_le_sub (xm wr) a1) a2
_ = e / 2 := by ring | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
a2 : Complex.abs (f c z - f d z) β€ e / 4
β’ e / 2 β€ Complex.abs (f d w - f d z) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | refine (ft c z (abs_sub_self_lt rp).le (abs_sub_self_lt rp).le d z
dt.2.le (abs_sub_self_lt rp).le ?_ (abs_sub_self_lt tp)).le | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
β’ Complex.abs (f c z - f d z) β€ e / 4 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
β’ Complex.abs (c - d) < t |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rw [β neg_sub, Complex.abs.map_neg] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
β’ Complex.abs (c - d) < t | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
β’ Complex.abs (d - c) < t |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact dt.1 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
β’ Complex.abs (d - c) < t | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | ring_nf | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
a2 : Complex.abs (f c z - f d z) β€ e / 4
β’ Complex.abs (f d w - f d z) = Complex.abs (f c w - f c z + (f d w - f c w) + (f c z - f d z)) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | bound | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
a2 : Complex.abs (f c z - f d z) β€ e / 4
β’ Complex.abs (f c w - f c z + (f d w - f c w) + (f c z - f d z)) β₯
Complex.abs (f c w - f c z + (f d w - f c w)) - Complex.abs (f c z - f d z) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | bound | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
a2 : Complex.abs (f c z - f d z) β€ e / 4
β’ Complex.abs (f c w - f c z + (f d w - f c w)) - Complex.abs (f c z - f d z) β₯
Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z) | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rw [β he] at a1 a2 β’ | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
a2 : Complex.abs (f c z - f d z) β€ e / 4
β’ Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z) β₯ e - e / 4 - e / 4 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ βf c x - f c zβ / 4
a2 : Complex.abs (f c z - f d z) β€ βf c x - f c zβ / 4
β’ Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z) β₯
βf c x - f c zβ - βf c x - f c zβ / 4 - βf c x - f c zβ / 4 |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact sub_le_sub (sub_le_sub (xm wr) a1) a2 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ βf c x - f c zβ / 4
a2 : Complex.abs (f c z - f d z) β€ βf c x - f c zβ / 4
β’ Complex.abs (f c w - f c z) - Complex.abs (f d w - f c w) - Complex.abs (f c z - f d z) β₯
βf c x - f c zβ - βf c x - f c zβ / 4 - βf c x - f c zβ / 4 | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | ring | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
d w : β
wr : w β sphere z r
ft :
β (a b : β),
Complex.abs (a - c) β€ r β
Complex.abs (b - z) β€ r β
β (a_3 b_1 : β),
Complex.abs (a_3 - c) β€ r β
Complex.abs (b_1 - z) β€ r β
Complex.abs (a - a_3) < t β Complex.abs (b - b_1) < t β Complex.abs (f a b - f a_3 b_1) < e / 4
dt : Complex.abs (d - c) < t β§ Complex.abs (d - c) < r
a1 : Complex.abs (f d w - f c w) β€ e / 4
a2 : Complex.abs (f c z - f d z) β€ e / 4
β’ e - e / 4 - e / 4 = e / 2 | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | refine _root_.trans ?_ rs | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ ball c (min t r) ΓΛ’ closedBall z r β s | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ ball c (min t r) ΓΛ’ closedBall z r β closedBall (c, z) r |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | rw [β closedBall_prod_same] | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ ball c (min t r) ΓΛ’ closedBall z r β closedBall (c, z) r | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ ball c (min t r) ΓΛ’ closedBall z r β closedBall c r ΓΛ’ closedBall z r |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | apply prod_mono_left | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ ball c (min t r) ΓΛ’ closedBall z r β closedBall c r ΓΛ’ closedBall z r | case hs
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ ball c (min t r) β closedBall c r |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | exact _root_.trans (Metric.ball_subset_ball (min_le_right _ _)) Metric.ball_subset_closedBall | case hs
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
β’ ball c (min t r) β closedBall c r | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_le_map_nhds_param' | [109, 1] | [180, 64] | bound | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : β β β β β
c z : β
n : NontrivialHolomorphicAt (f c) z
s : Set (β Γ β)
sn : s β π (c, z)
fa : AnalyticOn β (uncurry f) s
eβ : β
epβ : eβ > 0
es : ball (c, z) eβ β s
r : β
rp : 0 < r
rs : closedBall (c, z) r β s
fr : f c z β f c '' sphere z r
fc : ContinuousOn (fun w => βf c w - f c zβ) (sphere z r)
x : β
xs : x β sphere z r
xm : IsMinOn (fun w => βf c w - f c zβ) (sphere z r) x
e : β
he : βf c x - f c zβ = e
ep : 0 < e
t : β
tp : t > 0
ft : β x β closedBall (c, z) r, β y β closedBall (c, z) r, dist x y < t β dist (uncurry f x) (uncurry f y) < e / 4
ef : β d β ball c (min t r), β w β sphere z r, e / 2 β€ βf d w - f d zβ
ss : ball c (min t r) ΓΛ’ closedBall z r β s
β’ 0 < min t r | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | use n.holomorphicAt.2.holomorphicAt I I | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
β’ NontrivialHolomorphicAt (fun w => β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm w)))
(β(extChartAt π(β, β) z) z) | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
β’ βαΆ (w : β) in π (β(extChartAt π(β, β) z) z),
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm w)) β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | have c := n.nonconst | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
β’ βαΆ (w : β) in π (β(extChartAt π(β, β) z) z),
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm w)) β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c : βαΆ (w : S) in π z, f w β f z
β’ βαΆ (w : β) in π (β(extChartAt π(β, β) z) z),
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm w)) β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | contrapose c | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c : βαΆ (w : S) in π z, f w β f z
β’ βαΆ (w : β) in π (β(extChartAt π(β, β) z) z),
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm w)) β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
Β¬βαΆ (w : β) in π (β(extChartAt π(β, β) z) z),
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm w)) β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ Β¬βαΆ (w : S) in π z, f w β f z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | simp only [Filter.not_frequently, not_not, β extChartAt_map_nhds' I z,
Filter.eventually_map] at c β’ | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
Β¬βαΆ (w : β) in π (β(extChartAt π(β, β) z) z),
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm w)) β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ Β¬βαΆ (w : S) in π z, f w β f z | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z, f x = f z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | apply c.mp | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z, f x = f z | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) x))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) β
f x = f z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | apply ((isOpen_extChartAt_source I z).eventually_mem (mem_extChartAt_source I z)).mp | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) x))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) β
f x = f z | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z,
x β (extChartAt π(β, β) z).source β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) x))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) β
f x = f z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | apply (n.holomorphicAt.continuousAt.eventually_mem (extChartAt_source_mem_nhds I (f z))).mp | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z,
x β (extChartAt π(β, β) z).source β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) x))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) β
f x = f z | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z,
f x β (extChartAt π(β, β) (f z)).source β
x β (extChartAt π(β, β) z).source β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) x))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) β
f x = f z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | refine eventually_of_forall fun w fm m fn β¦ ?_ | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ βαΆ (x : S) in π z,
f x β (extChartAt π(β, β) (f z)).source β
x β (extChartAt π(β, β) z).source β
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) x))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z))) β
f x = f z | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
w : S
fm : f w β (extChartAt π(β, β) (f z)).source
m : w β (extChartAt π(β, β) z).source
fn :
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) w))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ f w = f z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | rw [PartialEquiv.left_inv _ m, PartialEquiv.left_inv _ (mem_extChartAt_source I z)] at fn | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
w : S
fm : f w β (extChartAt π(β, β) (f z)).source
m : w β (extChartAt π(β, β) z).source
fn :
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) w))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
β’ f w = f z | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
w : S
fm : f w β (extChartAt π(β, β) (f z)).source
m : w β (extChartAt π(β, β) z).source
fn : β(extChartAt π(β, β) (f z)) (f w) = β(extChartAt π(β, β) (f z)) (f z)
β’ f w = f z |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.inCharts | [183, 1] | [196, 77] | exact ((PartialEquiv.injOn _).eq_iff fm (mem_extChartAt_source _ _)).mp fn | case nonconst
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
c :
βαΆ (a : S) in π z,
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) a))) =
β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm (β(extChartAt π(β, β) z) z)))
w : S
fm : f w β (extChartAt π(β, β) (f z)).source
m : w β (extChartAt π(β, β) z).source
fn : β(extChartAt π(β, β) (f z)) (f w) = β(extChartAt π(β, β) (f z)) (f z)
β’ f w = f z | no goals |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_eq_map_nhds | [201, 1] | [225, 42] | refine le_antisymm ?_ n.holomorphicAt.continuousAt | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
β’ π (f z) = Filter.map f (π z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
β’ π (f z) β€ Filter.map f (π z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_eq_map_nhds | [201, 1] | [225, 42] | generalize hg : (fun x β¦ extChartAt I (f z) (f ((extChartAt I z).symm x))) = g | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
β’ π (f z) β€ Filter.map f (π z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
g : β β β
hg : (fun x => β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm x))) = g
β’ π (f z) β€ Filter.map f (π z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_eq_map_nhds | [201, 1] | [225, 42] | have ga : AnalyticAt β g (extChartAt I z z) := by rw [β hg]; exact n.holomorphicAt.2 | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
g : β β β
hg : (fun x => β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm x))) = g
β’ π (f z) β€ Filter.map f (π z) | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
g : β β β
hg : (fun x => β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm x))) = g
ga : AnalyticAt β g (β(extChartAt π(β, β) z) z)
β’ π (f z) β€ Filter.map f (π z) |
https://github.com/girving/ray.git | 0be790285dd0fce78913b0cb9bddaffa94bd25f9 | Ray/AnalyticManifold/OpenMapping.lean | NontrivialHolomorphicAt.nhds_eq_map_nhds | [201, 1] | [225, 42] | cases' ga.eventually_constant_or_nhds_le_map_nhds with h h | X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
g : β β β
hg : (fun x => β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm x))) = g
ga : AnalyticAt β g (β(extChartAt π(β, β) z) z)
β’ π (f z) β€ Filter.map f (π z) | case inl
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
g : β β β
hg : (fun x => β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm x))) = g
ga : AnalyticAt β g (β(extChartAt π(β, β) z) z)
h : βαΆ (z_1 : β) in π (β(extChartAt π(β, β) z) z), g z_1 = g (β(extChartAt π(β, β) z) z)
β’ π (f z) β€ Filter.map f (π z)
case inr
X : Type
instββΆ : TopologicalSpace X
S : Type
instββ΅ : TopologicalSpace S
instββ΄ : ChartedSpace β S
cms : AnalyticManifold π(β, β) S
T : Type
instβΒ³ : TopologicalSpace T
instβΒ² : ChartedSpace β T
cmt : AnalyticManifold π(β, β) T
U : Type
instβΒΉ : TopologicalSpace U
instβ : ChartedSpace β U
cmu : AnalyticManifold π(β, β) U
f : S β T
z : S
n : NontrivialHolomorphicAt f z
g : β β β
hg : (fun x => β(extChartAt π(β, β) (f z)) (f (β(extChartAt π(β, β) z).symm x))) = g
ga : AnalyticAt β g (β(extChartAt π(β, β) z) z)
h : π (g (β(extChartAt π(β, β) z) z)) β€ Filter.map g (π (β(extChartAt π(β, β) z) z))
β’ π (f z) β€ Filter.map f (π z) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.