url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.approx_potential_large
[132, 1]
[151, 9]
linarith
c' z' : โ„‚ z : Box cz : Complex.abs c' โ‰ค Complex.abs z' z6 : 6 โ‰ค Complex.abs z' zm : z' โˆˆ approx z โŠข 0 < Complex.abs z'
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
set s := superF 2
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating โŠข โ‹ฏ.potential c' โ†‘z' โˆˆ approx (c.potential z n r).1
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 โŠข s.potential c' โ†‘z' โˆˆ approx (c.potential z n r).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Box.potential]
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 โŠข s.potential c' โ†‘z' โˆˆ approx (c.potential z n r).1
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := c.normSq.hi; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hcs : (normSq c).hi = cs
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := c.normSq.hi; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hi : iterate c z (cs.max 9) n = i
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
by_cases csn : cs = nan
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case pos c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : cs = nan โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [hi, Interval.hi_eq_nan, Floating.val_lt_val]
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan โŠข s.potential c' โ†‘z' โˆˆ approx (match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hie : i.exit = ie
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan โŠข s.potential c' โ†‘z' โˆˆ approx (match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan ie : Exit hie : i.exit = ie โŠข s.potential c' โ†‘z' โˆˆ approx (match ie with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
induction ie
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan ie : Exit hie : i.exit = ie โŠข s.potential c' โ†‘z' โˆˆ approx (match ie with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.count c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg.nan c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.nan โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.nan with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [csn, Floating.nan_max, iterate_nan, Interval.approx_nan, mem_univ]
case pos c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : cs = nan โŠข s.potential c' โ†‘z' โˆˆ approx (let cs := cs; let i := iterate c z (cs.max 9) n; match i.exit with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => let rc := (r.mul r true).max (cs.max 36); let j := iterate c i.z rc 1000; match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => let zs := i.z.normSq.hi; if zs = nan โˆจ 16 < zs โˆจ 16 < cs then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hzs : (normSq i.z) = zs
case neg.count c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.count c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
by_cases bad : zs = nan โˆจ (16 : Floating).val < zs.hi.val โˆจ (16 : Floating).val < cs.val
case neg.count c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case pos c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1 case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : ยฌ(zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val) โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Floating.val_lt_val, bad, โ†“reduceIte, Interval.approx_nan, mem_univ]
case pos c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [bad, โ†“reduceIte]
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : ยฌ(zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val) โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : ยฌ(zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val) โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [not_or, not_lt, โ†hzs] at bad
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : ยฌ(zs = nan โˆจ 16.val < zs.hi.val โˆจ 16.val < cs.val) โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : ยฌi.z.normSq = nan โˆง i.z.normSq.hi.val โ‰ค 16.val โˆง cs.val โ‰ค 16.val โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rcases bad with โŸจzsn, z4, c4โŸฉ
case neg c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs bad : ยฌi.z.normSq = nan โˆง i.z.normSq.hi.val โ‰ค 16.val โˆง cs.val โ‰ค 16.val โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16.val c4 : cs.val โ‰ค 16.val โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Floating.val_ofNat] at c4 z4
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16.val c4 : cs.val โ‰ค 16.val โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค โ†‘16 c4 : cs.val โ‰ค โ†‘16 โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [โ† hcs, Nat.cast_ofNat, Interval.hi_eq_nan] at c4 z4 csn zsn
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค โ†‘16 c4 : cs.val โ‰ค โ†‘16 โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply Interval.mem_approx_iter_sqrt' s.potential_nonneg
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan โŠข s.potential c' โ†‘z' โˆˆ approx (potential_small.iter_sqrt i.n)
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan โŠข s.potential c' โ†‘z' ^ 2 ^ i.n โˆˆ approx potential_small
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [โ†s.potential_eqn_iter, f_f'_iter]
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan โŠข s.potential c' โ†‘z' ^ 2 ^ i.n โˆˆ approx potential_small
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan โŠข s.potential c' โ†‘((f' 2 c')^[i.n] z') โˆˆ approx potential_small
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hw' : (f' 2 c')^[i.n] z' = w'
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan โŠข s.potential c' โ†‘((f' 2 c')^[i.n] z') โˆˆ approx potential_small
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' โŠข s.potential c' โ†‘w' โˆˆ approx potential_small
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have le4 : Real.sqrt 16 โ‰ค 4 := by rw [Real.sqrt_le_iff]; norm_num
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' โŠข s.potential c' โ†‘w' โˆˆ approx potential_small
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข s.potential c' โ†‘w' โˆˆ approx potential_small
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply approx_potential_small
case neg.intro.intro c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข s.potential c' โ†‘w' โˆˆ approx potential_small
case neg.intro.intro.c4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข Complex.abs c' โ‰ค 4 case neg.intro.intro.z4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข Complex.abs w' โ‰ค 4
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Real.sqrt_le_iff]
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' โŠข โˆš16 โ‰ค 4
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' โŠข 0 โ‰ค 4 โˆง 16 โ‰ค 4 ^ 2
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
norm_num
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' โŠข 0 โ‰ค 4 โˆง 16 โ‰ค 4 ^ 2
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact le_trans (Box.abs_le_sqrt_normSq cm csn) (le_trans (Real.sqrt_le_sqrt c4) le4)
case neg.intro.intro.c4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข Complex.abs c' โ‰ค 4
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
refine le_trans (Box.abs_le_sqrt_normSq ?_ zsn) (le_trans (Real.sqrt_le_sqrt z4) le4)
case neg.intro.intro.z4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข Complex.abs w' โ‰ค 4
case neg.intro.intro.z4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข w' โˆˆ approx i.z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [โ†hw', โ†hi]
case neg.intro.intro.z4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข w' โˆˆ approx i.z
case neg.intro.intro.z4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข (f' 2 c')^[(iterate c z (cs.max 9) n).n] z' โˆˆ approx (iterate c z (cs.max 9) n).z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact mem_approx_iterate cm zm _
case neg.intro.intro.z4 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i hie : i.exit = Exit.count zs : Interval hzs : i.z.normSq = zs zsn : ยฌi.z.normSq = nan z4 : i.z.normSq.hi.val โ‰ค 16 c4 : c.normSq.hi.val โ‰ค 16 csn : ยฌc.normSq = nan w' : โ„‚ hw' : (f' 2 c')^[i.n] z' = w' le4 : โˆš16 โ‰ค 4 โŠข (f' 2 c')^[(iterate c z (cs.max 9) n).n] z' โˆˆ approx (iterate c z (cs.max 9) n).z
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j
case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [hj]
case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.large with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j โŠข s.potential c' โ†‘z' โˆˆ approx (match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hje : j.exit = je
case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j โŠข s.potential c' โ†‘z' โˆˆ approx (match j.exit with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j je : Exit hje : j.exit = je โŠข s.potential c' โ†‘z' โˆˆ approx (match je with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
induction je
case neg.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j je : Exit hje : j.exit = je โŠข s.potential c' โ†‘z' โˆˆ approx (match je with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
case neg.large.count c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.count โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.large with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1 case neg.large.nan c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.nan โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.nan with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Interval.approx_nan, mem_univ]
case neg.large.count c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.count โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.count with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.large with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large โŠข s.potential c' โ†‘z' โˆˆ approx (j.z.potential_large.iter_sqrt (i.n + j.n))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hn : i.n + j.n = n
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large โŠข s.potential c' โ†‘z' โˆˆ approx (j.z.potential_large.iter_sqrt (i.n + j.n))
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : โ„• hn : i.n + j.n = n โŠข s.potential c' โ†‘z' โˆˆ approx (j.z.potential_large.iter_sqrt n)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply Interval.mem_approx_iter_sqrt' s.potential_nonneg
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : โ„• hn : i.n + j.n = n โŠข s.potential c' โ†‘z' โˆˆ approx (j.z.potential_large.iter_sqrt n)
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : โ„• hn : i.n + j.n = n โŠข s.potential c' โ†‘z' ^ 2 ^ n โˆˆ approx j.z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [โ†s.potential_eqn_iter, f_f'_iter, โ†hj] at hje โŠข
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.large n : โ„• hn : i.n + j.n = n โŠข s.potential c' โ†‘z' ^ 2 ^ n โˆˆ approx j.z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large โŠข s.potential c' โ†‘((f' 2 c')^[n] z') โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
generalize hw' : (f' 2 c')^[n] z' = w'
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large โŠข s.potential c' โ†‘((f' 2 c')^[n] z') โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z := by rw [โ†hi]; exact mem_approx_iterate cm zm _
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have jl := iterate_large cm izm hje
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have jrn := ne_nan_of_iterate (hje.trans_ne (by decide))
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 jrn : (r.mul r true).max (cs.max 36) โ‰  nan โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [hj, โ† Function.iterate_add_apply, add_comm _ i.n, hn, hw'] at jl
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 jrn : (r.mul r true).max (cs.max 36) โ‰  nan โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jrn : (r.mul r true).max (cs.max 36) โ‰  nan jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [ne_eq, Floating.max_eq_nan, not_or] at jrn
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jrn : (r.mul r true).max (cs.max 36) โ‰  nan jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [Floating.val_max jrn.1 (Floating.max_ne_nan.mpr jrn.2), Floating.val_max jrn.2.1 jrn.2.2, max_lt_iff, max_lt_iff, Floating.val_ofNat, Nat.cast_eq_ofNat] at jl
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
apply approx_potential_large
case neg.large.large c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข s.potential c' โ†‘w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large
case neg.large.large.cz c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข Complex.abs c' โ‰ค Complex.abs w' case neg.large.large.z6 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข 6 โ‰ค Complex.abs w' case neg.large.large.zm c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [โ†hi]
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' โŠข (f' 2 c')^[i.n] z' โˆˆ approx i.z
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' โŠข (f' 2 c')^[(iterate c z (cs.max 9) nโœ).n] z' โˆˆ approx (iterate c z (cs.max 9) nโœ).z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact mem_approx_iterate cm zm _
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' โŠข (f' 2 c')^[(iterate c z (cs.max 9) nโœ).n] z' โˆˆ approx (iterate c z (cs.max 9) nโœ).z
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
decide
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : ((r.mul r true).max (cs.max 36)).val < Complex.abs ((f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z')) ^ 2 โŠข Exit.large โ‰  Exit.nan
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
refine le_trans ?_ (le_trans (Real.sqrt_le_sqrt jl.2.1.le) ?_)
case neg.large.large.cz c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข Complex.abs c' โ‰ค Complex.abs w'
case neg.large.large.cz.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข Complex.abs c' โ‰ค cs.val.sqrt case neg.large.large.cz.refine_2 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข (Complex.abs w' ^ 2).sqrt โ‰ค Complex.abs w'
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [โ† hcs, Interval.hi_eq_nan] at csn โŠข
case neg.large.large.cz.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข Complex.abs c' โ‰ค cs.val.sqrt
case neg.large.large.cz.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan csn : ยฌc.normSq = nan โŠข Complex.abs c' โ‰ค c.normSq.hi.val.sqrt
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact abs_le_sqrt_normSq cm csn
case neg.large.large.cz.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan csn : ยฌc.normSq = nan โŠข Complex.abs c' โ‰ค c.normSq.hi.val.sqrt
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [apply_nonneg, Real.sqrt_sq, le_refl]
case neg.large.large.cz.refine_2 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข (Complex.abs w' ^ 2).sqrt โ‰ค Complex.abs w'
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
refine le_trans ?_ (le_trans (Real.sqrt_le_sqrt jl.2.2.le) ?_)
case neg.large.large.z6 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข 6 โ‰ค Complex.abs w'
case neg.large.large.z6.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข 6 โ‰ค โˆš36 case neg.large.large.z6.refine_2 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข (Complex.abs w' ^ 2).sqrt โ‰ค Complex.abs w'
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
have e : (36 : โ„) = 6 ^ 2 := by norm_num
case neg.large.large.z6.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข 6 โ‰ค โˆš36
case neg.large.large.z6.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan e : 36 = 6 ^ 2 โŠข 6 โ‰ค โˆš36
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [e, Real.sqrt_sq (by norm_num)]
case neg.large.large.z6.refine_1 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan e : 36 = 6 ^ 2 โŠข 6 โ‰ค โˆš36
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
norm_num
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข 36 = 6 ^ 2
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
norm_num
c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan e : 36 = 6 ^ 2 โŠข 0 โ‰ค 6
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [apply_nonneg, Real.sqrt_sq, le_refl]
case neg.large.large.z6.refine_2 c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข (Complex.abs w' ^ 2).sqrt โ‰ค Complex.abs w'
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
rw [โ†hw', โ†hn, add_comm _ j.n, Function.iterate_add_apply, โ†hj]
case neg.large.large.zm c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข w' โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
case neg.large.large.zm c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข (f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z') โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
exact mem_approx_iterate cm izm _
case neg.large.large.zm c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z nโœ : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) nโœ = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j n : โ„• hn : i.n + j.n = n hje : (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit = Exit.large w' : โ„‚ hw' : (f' 2 c')^[n] z' = w' izm : (f' 2 c')^[i.n] z' โˆˆ approx i.z jl : (r.mul r true).val < Complex.abs w' ^ 2 โˆง cs.val < Complex.abs w' ^ 2 โˆง 36 < Complex.abs w' ^ 2 jrn : ยฌr.mul r true = nan โˆง ยฌcs = nan โˆง ยฌ36 = nan โŠข (f' 2 c')^[(iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n] ((f' 2 c')^[i.n] z') โˆˆ approx (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Interval.approx_nan, mem_univ]
case neg.large.nan c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.large j : Iter hj : iterate c i.z ((r.mul r true).max (cs.max 36)) 1000 = j hje : j.exit = Exit.nan โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.nan with | Exit.large => (j.z.potential_large.iter_sqrt (i.n + j.n), PotentialMode.large) | x => (nan, PotentialMode.nan)).1
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential
[153, 1]
[212, 46]
simp only [Interval.approx_nan, mem_univ]
case neg.nan c' z' : โ„‚ c z : Box cm : c' โˆˆ approx c zm : z' โˆˆ approx z n : โ„• r : Floating s : Super (f 2) 2 OnePoint.infty := superF 2 cs : Floating hcs : c.normSq.hi = cs i : Iter hi : iterate c z (cs.max 9) n = i csn : ยฌcs = nan hie : i.exit = Exit.nan โŠข s.potential c' โ†‘z' โˆˆ approx (match Exit.nan with | Exit.nan => (nan, PotentialMode.nan) | Exit.large => match (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).exit with | Exit.large => ((iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).z.potential_large.iter_sqrt (i.n + (iterate c i.z ((r.mul r true).max (cs.max 36)) 1000).n), PotentialMode.large) | x => (nan, PotentialMode.nan) | Exit.count => if i.z.normSq = nan โˆจ 16.val < i.z.normSq.hi.val โˆจ 16.val < cs.val then (nan, PotentialMode.nan) else (potential_small.iter_sqrt i.n, PotentialMode.small)).1
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/Render/Potential.lean
Box.mem_approx_potential'
[214, 1]
[217, 83]
simp only [_root_.potential, RiemannSphere.fill_coe, mem_approx_potential cm cm]
c' : โ„‚ c : Box cm : c' โˆˆ approx c n : โ„• r : Floating โŠข _root_.potential 2 โ†‘c' โˆˆ approx (c.potential c n r).1
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have fh : HolomorphicOn I I f (closedBall z r) := fun _ m โ†ฆ (fa _ m).holomorphicAt I I
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€– โŠข NontrivialHolomorphicAt f z
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€– fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) โŠข NontrivialHolomorphicAt f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have zs : z โˆˆ closedBall z r := mem_closedBall_self rp.le
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€– fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) โŠข NontrivialHolomorphicAt f z
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€– fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r โŠข NontrivialHolomorphicAt f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
use fh _ zs
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€– fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r โŠข NontrivialHolomorphicAt f z
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€– fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r โŠข โˆƒแถ  (w : โ„‚) in ๐“ z, f w โ‰  f z
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
contrapose ef
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e ef : โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€– fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r โŠข โˆƒแถ  (w : โ„‚) in ๐“ z, f w โ‰  f z
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : ยฌโˆƒแถ  (w : โ„‚) in ๐“ z, f w โ‰  f z โŠข ยฌโˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€–
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [Filter.not_frequently, not_not] at ef
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : ยฌโˆƒแถ  (w : โ„‚) in ๐“ z, f w โ‰  f z โŠข ยฌโˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€–
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z โŠข ยฌโˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€–
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [not_forall, not_le]
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z โŠข ยฌโˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f w - f zโ€–
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z โŠข โˆƒ x, โˆƒ (_ : x โˆˆ sphere z r), โ€–f x - f zโ€– < e
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
have zrs : z + r โˆˆ sphere z r := by simp only [mem_sphere, Complex.dist_eq, add_sub_cancel_left, Complex.abs_ofReal, abs_of_pos rp]
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z โŠข โˆƒ x, โˆƒ (_ : x โˆˆ sphere z r), โ€–f x - f zโ€– < e
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z zrs : z + โ†‘r โˆˆ sphere z r โŠข โˆƒ x, โˆƒ (_ : x โˆˆ sphere z r), โ€–f x - f zโ€– < e
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
use z + r, zrs
case nonconst X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z zrs : z + โ†‘r โˆˆ sphere z r โŠข โˆƒ x, โˆƒ (_ : x โˆˆ sphere z r), โ€–f x - f zโ€– < e
case h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z zrs : z + โ†‘r โˆˆ sphere z r โŠข โ€–f (z + โ†‘r) - f zโ€– < e
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [fh.const_of_locally_const' zs (convex_closedBall z r).isPreconnected ef (z + r) (Metric.sphere_subset_closedBall zrs), sub_self, norm_zero, ep]
case h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z zrs : z + โ†‘r โˆˆ sphere z r โŠข โ€–f (z + โ†‘r) - f zโ€– < e
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
nontrivial_local_of_global
[46, 1]
[61, 29]
simp only [mem_sphere, Complex.dist_eq, add_sub_cancel_left, Complex.abs_ofReal, abs_of_pos rp]
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ z : โ„‚ e r : โ„ fa : AnalyticOn โ„‚ f (closedBall z r) rp : 0 < r ep : 0 < e fh : HolomorphicOn ๐“˜(โ„‚, โ„‚) ๐“˜(โ„‚, โ„‚) f (closedBall z r) zs : z โˆˆ closedBall z r ef : โˆ€แถ  (x : โ„‚) in ๐“ z, f x = f z โŠข z + โ†‘r โˆˆ sphere z r
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have fn : โˆ€ d, d โˆˆ u โ†’ โˆƒแถ  w in ๐“ z, f d w โ‰  f d z := by refine fun d m โ†ฆ (nontrivial_local_of_global (fa.along_snd.mono ?_) rp ep (ef d m)).nonconst simp only [โ† closedBall_prod_same, mem_prod_eq, setOf_mem_eq, iff_true_iff.mpr m, true_and_iff, subset_refl]
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– โŠข (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r โˆˆ ๐“ (c, f c z)
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z โŠข (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r โˆˆ ๐“ (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have op : โˆ€ d, d โˆˆ u โ†’ ball (f d z) (e / 2) โІ f d '' closedBall z r := by intro d du; refine DiffContOnCl.ball_subset_image_closedBall ?_ rp (ef d du) (fn d du) have e : f d = uncurry f โˆ˜ fun w โ†ฆ (d, w) := rfl rw [e]; apply DifferentiableOn.diffContOnCl; apply AnalyticOn.differentiableOn refine fa.comp (analyticOn_const.prod (analyticOn_id _)) ?_ intro w wr; simp only [closure_ball _ rp.ne'] at wr simp only [โ† closedBall_prod_same, mem_prod_eq, du, wr, true_and_iff, du]
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z โŠข (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r โˆˆ ๐“ (c, f c z)
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r โŠข (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r โˆˆ ๐“ (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rcases Metric.continuousAt_iff.mp (fa (c, z) (mk_mem_prod (mem_of_mem_nhds un) (mem_closedBall_self rp.le))).continuousAt (e / 4) (by linarith) with โŸจs, sp, shโŸฉ
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r โŠข (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r โˆˆ ๐“ (c, f c z)
case intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r โˆˆ ๐“ (c, f c z)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rw [mem_nhds_prod_iff]
case intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r โˆˆ ๐“ (c, f c z)
case intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข โˆƒ u_1 โˆˆ ๐“ c, โˆƒ v โˆˆ ๐“ (f c z), u_1 ร—หข v โІ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine โŸจu โˆฉ ball c s, Filter.inter_mem un (Metric.ball_mem_nhds c (by linarith)), ?_โŸฉ
case intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข โˆƒ u_1 โˆˆ ๐“ c, โˆƒ v โˆˆ ๐“ (f c z), u_1 ร—หข v โІ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
case intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข โˆƒ v โˆˆ ๐“ (f c z), (u โˆฉ ball c s) ร—หข v โІ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
use ball (f c z) (e / 4), Metric.ball_mem_nhds _ (by linarith)
case intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข โˆƒ v โˆˆ ๐“ (f c z), (u โˆฉ ball c s) ร—หข v โІ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข (u โˆฉ ball c s) ร—หข ball (f c z) (e / 4) โІ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro โŸจd, wโŸฉ m
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 โŠข (u โˆฉ ball c s) ร—หข ball (f c z) (e / 4) โІ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d, w) โˆˆ (u โˆฉ ball c s) ร—หข ball (f c z) (e / 4) โŠข (d, w) โˆˆ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [mem_inter_iff, mem_prod_eq, mem_image, @mem_ball _ _ c, lt_min_iff] at m op โŠข
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d, w) โˆˆ (u โˆฉ ball c s) ร—หข ball (f c z) (e / 4) โŠข (d, w) โˆˆ (fun p => (p.1, f p.1 p.2)) '' u ร—หข closedBall z r
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have wm : w โˆˆ ball (f d z) (e / 2) := by simp only [mem_ball] at m โŠข specialize @sh โŸจd, zโŸฉ; simp only [Prod.dist_eq, dist_self, Function.uncurry] at sh specialize sh (max_lt m.1.2 sp); rw [dist_comm] at sh calc dist w (f d z) _ โ‰ค dist w (f c z) + dist (f c z) (f d z) := by bound _ < e / 4 + dist (f c z) (f d z) := by linarith [m.2] _ โ‰ค e / 4 + e / 4 := by linarith [sh] _ = e / 2 := by ring
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
specialize op d m.1.1 wm
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) op : w โˆˆ f d '' closedBall z r โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rcases (mem_image _ _ _).mp op with โŸจy, yr, ywโŸฉ
case right X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) op : w โˆˆ f d '' closedBall z r โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
case right.intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) op : w โˆˆ f d '' closedBall z r y : โ„‚ yr : y โˆˆ closedBall z r yw : f d y = w โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
useโŸจd, yโŸฉ
case right.intro.intro X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) op : w โˆˆ f d '' closedBall z r y : โ„‚ yr : y โˆˆ closedBall z r yw : f d y = w โŠข โˆƒ x, (x.1 โˆˆ u โˆง x.2 โˆˆ closedBall z r) โˆง (x.1, f x.1 x.2) = (d, w)
case h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) op : w โˆˆ f d '' closedBall z r y : โ„‚ yr : y โˆˆ closedBall z r yw : f d y = w โŠข ((d, y).1 โˆˆ u โˆง (d, y).2 โˆˆ closedBall z r) โˆง ((d, y).1, f (d, y).1 (d, y).2) = (d, w)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [mem_prod_eq, Prod.ext_iff, yw, and_true_iff, eq_self_iff_true, true_and_iff, yr, m.1.1]
case h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z s : โ„ sp : s > 0 sh : โˆ€ {x : โ„‚ ร— โ„‚}, dist x (c, z) < s โ†’ dist (uncurry f x) (uncurry f (c, z)) < e / 4 d w : โ„‚ m : (d โˆˆ u โˆง dist d c < s) โˆง w โˆˆ ball (f c z) (e / 4) wm : w โˆˆ ball (f d z) (e / 2) op : w โˆˆ f d '' closedBall z r y : โ„‚ yr : y โˆˆ closedBall z r yw : f d y = w โŠข ((d, y).1 โˆˆ u โˆง (d, y).2 โˆˆ closedBall z r) โˆง ((d, y).1, f (d, y).1 (d, y).2) = (d, w)
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine fun d m โ†ฆ (nontrivial_local_of_global (fa.along_snd.mono ?_) rp ep (ef d m)).nonconst
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– โŠข โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– d : โ„‚ m : d โˆˆ u โŠข closedBall z r โІ {y | (d, y) โˆˆ u ร—หข closedBall z r}
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [โ† closedBall_prod_same, mem_prod_eq, setOf_mem_eq, iff_true_iff.mpr m, true_and_iff, subset_refl]
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– d : โ„‚ m : d โˆˆ u โŠข closedBall z r โІ {y | (d, y) โˆˆ u ร—หข closedBall z r}
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro d du
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z โŠข โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u โŠข ball (f d z) (e / 2) โІ f d '' closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine DiffContOnCl.ball_subset_image_closedBall ?_ rp (ef d du) (fn d du)
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u โŠข ball (f d z) (e / 2) โІ f d '' closedBall z r
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u โŠข DiffContOnCl โ„‚ (f d) (ball z r)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
have e : f d = uncurry f โˆ˜ fun w โ†ฆ (d, w) := rfl
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u โŠข DiffContOnCl โ„‚ (f d) (ball z r)
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข DiffContOnCl โ„‚ (f d) (ball z r)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
rw [e]
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข DiffContOnCl โ„‚ (f d) (ball z r)
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข DiffContOnCl โ„‚ (uncurry f โˆ˜ fun w => (d, w)) (ball z r)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
apply DifferentiableOn.diffContOnCl
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข DiffContOnCl โ„‚ (uncurry f โˆ˜ fun w => (d, w)) (ball z r)
case h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข DifferentiableOn โ„‚ (uncurry f โˆ˜ fun w => (d, w)) (closure (ball z r))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
apply AnalyticOn.differentiableOn
case h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข DifferentiableOn โ„‚ (uncurry f โˆ˜ fun w => (d, w)) (closure (ball z r))
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข AnalyticOn โ„‚ (uncurry f โˆ˜ fun w => (d, w)) (closure (ball z r))
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
refine fa.comp (analyticOn_const.prod (analyticOn_id _)) ?_
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข AnalyticOn โ„‚ (uncurry f โˆ˜ fun w => (d, w)) (closure (ball z r))
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข MapsTo (fun w => (d, w)) (closure (ball z r)) (u ร—หข closedBall z r)
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
intro w wr
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) โŠข MapsTo (fun w => (d, w)) (closure (ball z r)) (u ร—หข closedBall z r)
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) w : โ„‚ wr : w โˆˆ closure (ball z r) โŠข (fun w => (d, w)) w โˆˆ u ร—หข closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [closure_ball _ rp.ne'] at wr
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) w : โ„‚ wr : w โˆˆ closure (ball z r) โŠข (fun w => (d, w)) w โˆˆ u ร—หข closedBall z r
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) w : โ„‚ wr : w โˆˆ closedBall z r โŠข (fun w => (d, w)) w โˆˆ u ร—หข closedBall z r
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
simp only [โ† closedBall_prod_same, mem_prod_eq, du, wr, true_and_iff, du]
case h.h X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ eโœ r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < eโœ un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, eโœ โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z d : โ„‚ du : d โˆˆ u e : f d = uncurry f โˆ˜ fun w => (d, w) w : โ„‚ wr : w โˆˆ closedBall z r โŠข (fun w => (d, w)) w โˆˆ u ร—หข closedBall z r
no goals
https://github.com/girving/ray.git
0be790285dd0fce78913b0cb9bddaffa94bd25f9
Ray/AnalyticManifold/OpenMapping.lean
AnalyticOn.ball_subset_image_closedBall_param
[65, 1]
[101, 101]
linarith
X : Type instโœโถ : TopologicalSpace X S : Type instโœโต : TopologicalSpace S instโœโด : ChartedSpace โ„‚ S cms : AnalyticManifold ๐“˜(โ„‚, โ„‚) S T : Type instโœยณ : TopologicalSpace T instโœยฒ : ChartedSpace โ„‚ T cmt : AnalyticManifold ๐“˜(โ„‚, โ„‚) T U : Type instโœยน : TopologicalSpace U instโœ : ChartedSpace โ„‚ U cmu : AnalyticManifold ๐“˜(โ„‚, โ„‚) U f : โ„‚ โ†’ โ„‚ โ†’ โ„‚ c z : โ„‚ e r : โ„ u : Set โ„‚ fa : AnalyticOn โ„‚ (uncurry f) (u ร—หข closedBall z r) rp : 0 < r ep : 0 < e un : u โˆˆ ๐“ c ef : โˆ€ d โˆˆ u, โˆ€ w โˆˆ sphere z r, e โ‰ค โ€–f d w - f d zโ€– fn : โˆ€ d โˆˆ u, โˆƒแถ  (w : โ„‚) in ๐“ z, f d w โ‰  f d z op : โˆ€ d โˆˆ u, ball (f d z) (e / 2) โІ f d '' closedBall z r โŠข e / 4 > 0
no goals