url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
have real_set := pw.1
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } x : ℝ pw : ↑Set.univ ⊢ binary
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } x : ℝ pw : ↑Set.univ real_set : Set ℝ ⊢ binary
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
haveI := Classical.dec (x ∈ real_set)
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } x : ℝ pw : ↑Set.univ real_set : Set ℝ ⊢ binary
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } x : ℝ pw : ↑Set.univ real_set : Set ℝ this : Decidable (x ∈ real_set) ⊢ binary
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
exact (ite (x ∈ real_set) binary.one binary.zero)
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } x : ℝ pw : ↑Set.univ real_set : Set ℝ this : Decidable (x ∈ real_set) ⊢ binary
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
intro hite
case h.a.mp f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one → x ∈ ↑pw
case h.a.mp f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ hite : (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one ⊢ x ∈ ↑pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
split_ifs at hite with hi
case h.a.mp f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ hite : (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one ⊢ x ∈ ↑pw
case pos f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ hi : x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) hite : binary.one = binary.one ⊢ x ∈ ↑pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.powerset_univ, set_coe_cast] at hi
case pos f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ hi : x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) hite : binary.one = binary.one ⊢ x ∈ ↑pw
case pos f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ hite : binary.one = binary.one hi : x ∈ ↑pw ⊢ x ∈ ↑pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
exact hi
case pos f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ hite : binary.one = binary.one hi : x ∈ ↑pw ⊢ x ∈ ↑pw
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
intro el
case h.a.mpr f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ x ∈ ↑pw → (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one
case h.a.mpr f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw ⊢ (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
split_ifs with hi
case h.a.mpr f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw ⊢ (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one
case pos f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw hi : x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) ⊢ binary.one = binary.one case neg f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw hi : x ∉ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rfl
case pos f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw hi : x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) ⊢ binary.one = binary.one
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.powerset_univ, set_coe_cast] at hi
case neg f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw hi : x ∉ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) ⊢ False
case neg f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw hi : x ∉ ↑pw ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
exact hi el
case neg f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ el : x ∈ ↑pw hi : x ∉ ↑pw ⊢ False
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat
[181, 1]
[187, 40]
simp only [Cardinal.mk_powerset, Cardinal.mk_univ, Cardinal.mk_eq_aleph0, Cardinal.two_power_aleph0]
⊢ Cardinal.mk ↑(𝒫 Set.univ) = Cardinal.mk ↑(𝒫 Set.univ)
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
apply_fun Nat.factorization at h
m n q p : ℕ h : 2 ^ m * 3 ^ n = 2 ^ p * 3 ^ q ⊢ m = p ∧ n = q
m n q p : ℕ h : Nat.factorization (2 ^ m * 3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ m = p ∧ n = q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
rw [Nat.factorization_mul, Nat.factorization_mul] at h
m n q p : ℕ h : Nat.factorization (2 ^ m * 3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ m = p ∧ n = q
m n q p : ℕ h : Nat.factorization (2 ^ m) + Nat.factorization (3 ^ n) = Nat.factorization (2 ^ p) + Nat.factorization (3 ^ q) ⊢ m = p ∧ n = q case ha m n q p : ℕ h : Nat.factorization (2 ^ m) + Nat.factorization (3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 2 ^ p ≠ 0 case hb m n q p : ℕ h : Nat.factorization (2 ^ m) + Nat.factorization (3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 3 ^ q ≠ 0 case ha m n q p : ℕ h : Nat.factorization (2 ^ m * 3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 2 ^ m ≠ 0 case hb m n q p : ℕ h : Nat.factorization (2 ^ m * 3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 3 ^ n ≠ 0
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
all_goals positivity
case ha m n q p : ℕ h : Nat.factorization (2 ^ m) + Nat.factorization (3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 2 ^ p ≠ 0 case hb m n q p : ℕ h : Nat.factorization (2 ^ m) + Nat.factorization (3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 3 ^ q ≠ 0 case ha m n q p : ℕ h : Nat.factorization (2 ^ m * 3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 2 ^ m ≠ 0 case hb m n q p : ℕ h : Nat.factorization (2 ^ m * 3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 3 ^ n ≠ 0
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
simp_rw [Nat.factorization_pow] at h
m n q p : ℕ h : Nat.factorization (2 ^ m) + Nat.factorization (3 ^ n) = Nat.factorization (2 ^ p) + Nat.factorization (3 ^ q) ⊢ m = p ∧ n = q
m n q p : ℕ h : m • Nat.factorization 2 + n • Nat.factorization 3 = p • Nat.factorization 2 + q • Nat.factorization 3 ⊢ m = p ∧ n = q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
constructor
m n q p : ℕ h : m • Nat.factorization 2 + n • Nat.factorization 3 = p • Nat.factorization 2 + q • Nat.factorization 3 ⊢ m = p ∧ n = q
case left m n q p : ℕ h : m • Nat.factorization 2 + n • Nat.factorization 3 = p • Nat.factorization 2 + q • Nat.factorization 3 ⊢ m = p case right m n q p : ℕ h : m • Nat.factorization 2 + n • Nat.factorization 3 = p • Nat.factorization 2 + q • Nat.factorization 3 ⊢ n = q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
replace h := FunLike.congr_fun h 2
case left m n q p : ℕ h : m • Nat.factorization 2 + n • Nat.factorization 3 = p • Nat.factorization 2 + q • Nat.factorization 3 ⊢ m = p
case left m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 2 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 2 ⊢ m = p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
have : ¬ 2 ∣ 3 := by norm_num
case left m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 2 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 2 ⊢ m = p
case left m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 2 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 2 this : ¬2 ∣ 3 ⊢ m = p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
simp_rw [Finsupp.add_apply, Finsupp.smul_apply, Nat.prime_two.factorization_self, nsmul_one, Nat.factorization_eq_zero_of_not_dvd this, smul_zero, add_zero] at h
case left m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 2 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 2 this : ¬2 ∣ 3 ⊢ m = p
case left m n q p : ℕ this : ¬2 ∣ 3 h : ↑m = ↑p ⊢ m = p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
exact h
case left m n q p : ℕ this : ¬2 ∣ 3 h : ↑m = ↑p ⊢ m = p
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
norm_num
m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 2 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 2 ⊢ ¬2 ∣ 3
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
replace h := FunLike.congr_fun h 3
case right m n q p : ℕ h : m • Nat.factorization 2 + n • Nat.factorization 3 = p • Nat.factorization 2 + q • Nat.factorization 3 ⊢ n = q
case right m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 3 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 3 ⊢ n = q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
have : ¬ 3 ∣ 2 := Nat.not_dvd_of_pos_of_lt (by simp) (by simp)
case right m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 3 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 3 ⊢ n = q
case right m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 3 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 3 this : ¬3 ∣ 2 ⊢ n = q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
simp_rw [Finsupp.add_apply, Finsupp.smul_apply, Nat.prime_three.factorization_self, nsmul_one, Nat.factorization_eq_zero_of_not_dvd this, smul_zero, zero_add] at h
case right m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 3 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 3 this : ¬3 ∣ 2 ⊢ n = q
case right m n q p : ℕ this : ¬3 ∣ 2 h : ↑n = ↑q ⊢ n = q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
exact h
case right m n q p : ℕ this : ¬3 ∣ 2 h : ↑n = ↑q ⊢ n = q
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
simp
m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 3 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 3 ⊢ 0 < 2
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
simp
m n q p : ℕ h : ↑(m • Nat.factorization 2 + n • Nat.factorization 3) 3 = ↑(p • Nat.factorization 2 + q • Nat.factorization 3) 3 ⊢ 2 < 3
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
two_pow_three_pow_unique_factorization
[189, 1]
[205, 23]
positivity
case hb m n q p : ℕ h : Nat.factorization (2 ^ m * 3 ^ n) = Nat.factorization (2 ^ p * 3 ^ q) ⊢ 3 ^ n ≠ 0
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
let f : (𝒫 (Set.univ : Set (ℕ × ℕ))) → (𝒫 (Set.univ : Set ℕ)) := by intro a_set_of_nxn exact { val := {2^x.1 * 3^x.2 | x ∈ a_set_of_nxn.val} property := by simp only [Set.powerset_univ, Set.mem_univ] }
⊢ ∃ fg, Function.Bijective fg
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } ⊢ ∃ fg, Function.Bijective fg
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
let g : (𝒫 (Set.univ : Set ℕ)) → (𝒫 (Set.univ : Set (ℕ × ℕ))) := by intro a_set_of_n have a_set_of_nxn : Set (ℕ × ℕ) := a_set_of_n.val ×ˢ a_set_of_n.val exact { val := a_set_of_nxn, property := by simp }
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f ⊢ ∃ fg, Function.Bijective fg
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } ⊢ ∃ fg, Function.Bijective fg
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact Function.Embedding.schroeder_bernstein hf hg
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } hg : Function.Injective g ⊢ ∃ fg, Function.Bijective fg
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
intro a_set_of_nxn
⊢ ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ)
a_set_of_nxn : ↑(𝒫 Set.univ) ⊢ ↑(𝒫 Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact { val := {2^x.1 * 3^x.2 | x ∈ a_set_of_nxn.val} property := by simp only [Set.powerset_univ, Set.mem_univ] }
a_set_of_nxn : ↑(𝒫 Set.univ) ⊢ ↑(𝒫 Set.univ)
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp only [Set.powerset_univ, Set.mem_univ]
a_set_of_nxn : ↑(𝒫 Set.univ) ⊢ {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
rintro ⟨p, _⟩ ⟨q, _⟩ heq
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } ⊢ Function.Injective f
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : f { val := p, property := property✝¹ } = f { val := q, property := property✝ } ⊢ { val := p, property := property✝¹ } = { val := q, property := property✝ }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp only [f, Prod.exists, Subtype.mk.injEq, Set.ext_iff, Set.mem_setOf_eq] at heq
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : f { val := p, property := property✝¹ } = f { val := q, property := property✝ } ⊢ { val := p, property := property✝¹ } = { val := q, property := property✝ }
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x ⊢ { val := p, property := property✝¹ } = { val := q, property := property✝ }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
rw [Subtype.mk.injEq, Set.ext_iff]
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x ⊢ { val := p, property := property✝¹ } = { val := q, property := property✝ }
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x ⊢ ∀ (x : ℕ × ℕ), x ∈ p ↔ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
intro x
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x ⊢ ∀ (x : ℕ × ℕ), x ∈ p ↔ x ∈ q
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x x : ℕ × ℕ ⊢ x ∈ p ↔ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
let uniq := 2^x.1 * 3^x.2
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x x : ℕ × ℕ ⊢ x ∈ p ↔ x ∈ q
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 ⊢ x ∈ p ↔ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
specialize heq uniq
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ heq : ∀ (x : ℕ), (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = x) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = x x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 ⊢ x ∈ p ↔ x ∈ q
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 heq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p ↔ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
rcases heq with ⟨pimpq, qimpp⟩
case mk.mk f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 heq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) ↔ ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p ↔ x ∈ q
case mk.mk.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p ↔ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
constructor
case mk.mk.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p ↔ x ∈ q
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p → x ∈ q case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ q → x ∈ p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
intro hmemp
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p → x ∈ q
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p ⊢ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
have ⟨a, ⟨b, ⟨hmemq, heqfac⟩⟩⟩ := pimpq ⟨x.1, ⟨x.2, by simp only [Prod.mk.eta,and_true]; exact hmemp⟩⟩
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p ⊢ x ∈ q
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (a, b) ∈ q heqfac : 2 ^ a * 3 ^ b = uniq ⊢ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp_rw [uniq] at heqfac
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (a, b) ∈ q heqfac : 2 ^ a * 3 ^ b = uniq ⊢ x ∈ q
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (a, b) ∈ q heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 ⊢ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
have ⟨heq1, heq2⟩ := two_pow_three_pow_unique_factorization heqfac
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (a, b) ∈ q heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 ⊢ x ∈ q
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (a, b) ∈ q heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
rw [heq1, heq2] at hmemq
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (a, b) ∈ q heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ q
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (x.1, x.2) ∈ q heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact hmemq
case mk.mk.intro.mp f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p a b : ℕ hmemq : (x.1, x.2) ∈ q heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ q
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp only [Prod.mk.eta,and_true]
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p ⊢ (x.1, x.2) ∈ p ∧ 2 ^ x.1 * 3 ^ x.2 = uniq
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p ⊢ x ∈ p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact hmemp
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemp : x ∈ p ⊢ x ∈ p
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
intro hmemq
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq ⊢ x ∈ q → x ∈ p
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q ⊢ x ∈ p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
have ⟨a, ⟨b, ⟨hmemp, heqfac⟩⟩⟩ := qimpp ⟨x.1, ⟨x.2, by simp only [Prod.mk.eta,and_true]; exact hmemq⟩⟩
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q ⊢ x ∈ p
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (a, b) ∈ p heqfac : 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp_rw [uniq] at heqfac
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (a, b) ∈ p heqfac : 2 ^ a * 3 ^ b = uniq ⊢ x ∈ p
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (a, b) ∈ p heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 ⊢ x ∈ p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
have ⟨heq1, heq2⟩ := two_pow_three_pow_unique_factorization heqfac
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (a, b) ∈ p heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 ⊢ x ∈ p
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (a, b) ∈ p heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
rw [heq1, heq2] at hmemp
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (a, b) ∈ p heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ p
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (x.1, x.2) ∈ p heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ p
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact hmemp
case mk.mk.intro.mpr f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q a b : ℕ hmemp : (x.1, x.2) ∈ p heqfac : 2 ^ a * 3 ^ b = 2 ^ x.1 * 3 ^ x.2 heq1 : a = x.1 heq2 : b = x.2 ⊢ x ∈ p
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp only [Prod.mk.eta,and_true]
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q ⊢ (x.1, x.2) ∈ q ∧ 2 ^ x.1 * 3 ^ x.2 = uniq
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q ⊢ x ∈ q
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact hmemq
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } p : Set (ℕ × ℕ) property✝¹ : p ∈ 𝒫 Set.univ q : Set (ℕ × ℕ) property✝ : q ∈ 𝒫 Set.univ x : ℕ × ℕ uniq : ℕ := 2 ^ x.1 * 3 ^ x.2 pimpq : (∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq qimpp : (∃ a b, (a, b) ∈ q ∧ 2 ^ a * 3 ^ b = uniq) → ∃ a b, (a, b) ∈ p ∧ 2 ^ a * 3 ^ b = uniq hmemq : x ∈ q ⊢ x ∈ q
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
intro a_set_of_n
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f ⊢ ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ)
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f a_set_of_n : ↑(𝒫 Set.univ) ⊢ ↑(𝒫 Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
have a_set_of_nxn : Set (ℕ × ℕ) := a_set_of_n.val ×ˢ a_set_of_n.val
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f a_set_of_n : ↑(𝒫 Set.univ) ⊢ ↑(𝒫 Set.univ)
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f a_set_of_n : ↑(𝒫 Set.univ) a_set_of_nxn : Set (ℕ × ℕ) ⊢ ↑(𝒫 Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact { val := a_set_of_nxn, property := by simp }
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f a_set_of_n : ↑(𝒫 Set.univ) a_set_of_nxn : Set (ℕ × ℕ) ⊢ ↑(𝒫 Set.univ)
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f a_set_of_n : ↑(𝒫 Set.univ) a_set_of_nxn : Set (ℕ × ℕ) ⊢ a_set_of_nxn ∈ 𝒫 Set.univ
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
intros a b heq
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } ⊢ Function.Injective g
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) heq : g a = g b ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp only [g, Subtype.mk.injEq, Set.prod_eq_prod_iff] at heq
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) heq : g a = g b ⊢ a = b
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) heq : ↑a = ↑b ∧ ↑a = ↑b ∨ (↑a = ∅ ∨ ↑a = ∅) ∧ (↑b = ∅ ∨ ↑b = ∅) ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
rcases heq with (coe_eq | ⟨ha, hb⟩)
f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) heq : ↑a = ↑b ∧ ↑a = ↑b ∨ (↑a = ∅ ∨ ↑a = ∅) ∧ (↑b = ∅ ∨ ↑b = ∅) ⊢ a = b
case inl f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) coe_eq : ↑a = ↑b ∧ ↑a = ↑b ⊢ a = b case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) ha : ↑a = ∅ ∨ ↑a = ∅ hb : ↑b = ∅ ∨ ↑b = ∅ ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact SetCoe.ext coe_eq.1
case inl f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) coe_eq : ↑a = ↑b ∧ ↑a = ↑b ⊢ a = b
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp only [or_self] at ha
case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) ha : ↑a = ∅ ∨ ↑a = ∅ hb : ↑b = ∅ ∨ ↑b = ∅ ⊢ a = b
case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) hb : ↑b = ∅ ∨ ↑b = ∅ ha : ↑a = ∅ ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
simp only [or_self] at hb
case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) hb : ↑b = ∅ ∨ ↑b = ∅ ha : ↑a = ∅ ⊢ a = b
case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) ha : ↑a = ∅ hb : ↑b = ∅ ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
rw [←hb] at ha
case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) ha : ↑a = ∅ hb : ↑b = ∅ ⊢ a = b
case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) ha : ↑a = ↑b hb : ↑b = ∅ ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
power_nat_nat_card_eq_power_nat_csb
[207, 1]
[254, 53]
exact SetCoe.ext ha
case inr.intro f : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_nxn => { val := {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x}, property := (_ : {x | ∃ x_1 ∈ ↑a_set_of_nxn, 2 ^ x_1.1 * 3 ^ x_1.2 = x} ∈ 𝒫 Set.univ) } hf : Function.Injective f g : ↑(𝒫 Set.univ) → ↑(𝒫 Set.univ) := fun a_set_of_n => let_fun a_set_of_nxn := ↑a_set_of_n ×ˢ ↑a_set_of_n; { val := a_set_of_nxn, property := (_ : a_set_of_nxn ∈ 𝒫 Set.univ) } a b : ↑(𝒫 Set.univ) ha : ↑a = ↑b hb : ↑b = ∅ ⊢ a = b
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
intro hne
n : ↑N0 ⊢ n ≠ z → ∃ m, n = S m
n : ↑N0 hne : n ≠ z ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
let A := {n : N0 | n ≠ z → ∃ m : N0, n = S m}
n : ↑N0 hne : n ≠ z ⊢ ∃ m, n = S m
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
have hzmem : z ∈ A := by simp only [ne_eq, Subtype.exists, Set.mem_setOf_eq, not_true_eq_false, IsEmpty.forall_iff]
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} ⊢ ∃ m, n = S m
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
have hind : (∀ n : N0, n ∈ A → (S n) ∈ A) := by intros n _ simp only [ne_eq, Subtype.exists, Set.mem_setOf_eq] intro _ use n simp only [Subtype.coe_eta, Subtype.coe_prop, exists_const]
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A ⊢ ∃ m, n = S m
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
have heq := p3 A ⟨hzmem, hind⟩
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A ⊢ ∃ m, n = S m
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : Subtype.val '' A = N0 ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
simp [A, Set.ext_iff] at heq
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : Subtype.val '' A = N0 ⊢ ∃ m, n = S m
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : ∀ (x : α), (∃ (x_1 : x ∈ N0), ¬{ val := x, property := (_ : x ∈ N0) } = z → ∃ a, ∃ (b : a ∈ N0), { val := x, property := (_ : x ∈ N0) } = S { val := a, property := b }) ↔ x ∈ N0 ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
specialize heq n
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : ∀ (x : α), (∃ (x_1 : x ∈ N0), ¬{ val := x, property := (_ : x ∈ N0) } = z → ∃ a, ∃ (b : a ∈ N0), { val := x, property := (_ : x ∈ N0) } = S { val := a, property := b }) ↔ x ∈ N0 ⊢ ∃ m, n = S m
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : (∃ (x : ↑n ∈ N0), ¬{ val := ↑n, property := (_ : ↑n ∈ N0) } = z → ∃ a, ∃ (b : a ∈ N0), { val := ↑n, property := (_ : ↑n ∈ N0) } = S { val := a, property := b }) ↔ ↑n ∈ N0 ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
simp only [Subtype.coe_eta, Subtype.coe_prop, exists_const, iff_true] at heq
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : (∃ (x : ↑n ∈ N0), ¬{ val := ↑n, property := (_ : ↑n ∈ N0) } = z → ∃ a, ∃ (b : a ∈ N0), { val := ↑n, property := (_ : ↑n ∈ N0) } = S { val := a, property := b }) ↔ ↑n ∈ N0 ⊢ ∃ m, n = S m
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : ¬n = z → ∃ a, ∃ (h : a ∈ N0), n = S { val := a, property := (_ : a ∈ N0) } ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
rcases heq hne with ⟨a, ⟨h, heq⟩⟩
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : ¬n = z → ∃ a, ∃ (h : a ∈ N0), n = S { val := a, property := (_ : a ∈ N0) } ⊢ ∃ m, n = S m
case intro.intro n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq✝ : ¬n = z → ∃ a, ∃ (h : a ∈ N0), n = S { val := a, property := (_ : a ∈ N0) } a : α h : a ∈ N0 heq : n = S { val := a, property := (_ : a ∈ N0) } ⊢ ∃ m, n = S m
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
use { val := a, property := h }
case intro.intro n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq✝ : ¬n = z → ∃ a, ∃ (h : a ∈ N0), n = S { val := a, property := (_ : a ∈ N0) } a : α h : a ∈ N0 heq : n = S { val := a, property := (_ : a ∈ N0) } ⊢ ∃ m, n = S m
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
simp only [ne_eq, Subtype.exists, Set.mem_setOf_eq, not_true_eq_false, IsEmpty.forall_iff]
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} ⊢ z ∈ A
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
intros n _
n : ↑N0 hne : n ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A ⊢ ∀ n ∈ A, S n ∈ A
n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝ : n ∈ A ⊢ S n ∈ A
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
simp only [ne_eq, Subtype.exists, Set.mem_setOf_eq]
n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝ : n ∈ A ⊢ S n ∈ A
n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝ : n ∈ A ⊢ ¬S n = z → ∃ a, ∃ (b : a ∈ N0), S n = S { val := a, property := b }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
intro _
n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝ : n ∈ A ⊢ ¬S n = z → ∃ a, ∃ (b : a ∈ N0), S n = S { val := a, property := b }
n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝¹ : n ∈ A a✝ : ¬S n = z ⊢ ∃ a, ∃ (b : a ∈ N0), S n = S { val := a, property := b }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
use n
n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝¹ : n ∈ A a✝ : ¬S n = z ⊢ ∃ a, ∃ (b : a ∈ N0), S n = S { val := a, property := b }
case h n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝¹ : n ∈ A a✝ : ¬S n = z ⊢ ∃ (b : ↑n ∈ N0), S n = S { val := ↑n, property := b }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
every_nonzero_nat_successor
[270, 1]
[289, 34]
simp only [Subtype.coe_eta, Subtype.coe_prop, exists_const]
case h n✝ : ↑N0 hne : n✝ ≠ z A : Set ↑N0 := {n | n ≠ z → ∃ m, n = S m} hzmem : z ∈ A n : ↑N0 a✝¹ : n ∈ A a✝ : ¬S n = z ⊢ ∃ (b : ↑n ∈ N0), S n = S { val := ↑n, property := b }
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
let A := {b : N0 | plus (z, b) = b}
x : ↑N0 ⊢ plus (z, x) = x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} ⊢ plus (z, x) = x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
have hzmem : z ∈ A := by simp only [Set.mem_setOf_eq] exact zplus z
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} ⊢ plus (z, x) = x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A ⊢ plus (z, x) = x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
have hind : (∀ n : N0, n ∈ A → (S n) ∈ A) := by intros n hel simp only [Set.mem_setOf_eq] simp only [Set.mem_setOf_eq] at hel rw [splus, hel]
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A ⊢ plus (z, x) = x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A ⊢ plus (z, x) = x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
have heq := p3 A ⟨hzmem, hind⟩
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A ⊢ plus (z, x) = x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : Subtype.val '' A = N0 ⊢ plus (z, x) = x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
simp [A, Set.ext_iff] at heq
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : Subtype.val '' A = N0 ⊢ plus (z, x) = x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : ∀ (x : α), (∃ (x_1 : x ∈ N0), plus (z, { val := x, property := (_ : x ∈ N0) }) = { val := x, property := (_ : x ∈ N0) }) ↔ x ∈ N0 ⊢ plus (z, x) = x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
specialize heq x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : ∀ (x : α), (∃ (x_1 : x ∈ N0), plus (z, { val := x, property := (_ : x ∈ N0) }) = { val := x, property := (_ : x ∈ N0) }) ↔ x ∈ N0 ⊢ plus (z, x) = x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : (∃ (x_1 : ↑x ∈ N0), plus (z, { val := ↑x, property := (_ : ↑x ∈ N0) }) = { val := ↑x, property := (_ : ↑x ∈ N0) }) ↔ ↑x ∈ N0 ⊢ plus (z, x) = x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
simp only [Subtype.coe_eta, Subtype.coe_prop, exists_const, iff_true] at heq
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : (∃ (x_1 : ↑x ∈ N0), plus (z, { val := ↑x, property := (_ : ↑x ∈ N0) }) = { val := ↑x, property := (_ : ↑x ∈ N0) }) ↔ ↑x ∈ N0 ⊢ plus (z, x) = x
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : plus (z, x) = x ⊢ plus (z, x) = x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
exact heq
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A hind : ∀ n ∈ A, S n ∈ A heq : plus (z, x) = x ⊢ plus (z, x) = x
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
simp only [Set.mem_setOf_eq]
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} ⊢ z ∈ A
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} ⊢ plus (z, z) = z
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
exact zplus z
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} ⊢ plus (z, z) = z
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
intros n hel
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A ⊢ ∀ n ∈ A, S n ∈ A
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A n : ↑N0 hel : n ∈ A ⊢ S n ∈ A
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
zero_plus_x_eq_eq
[300, 1]
[317, 12]
simp only [Set.mem_setOf_eq]
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A n : ↑N0 hel : n ∈ A ⊢ S n ∈ A
x : ↑N0 A : Set ↑N0 := {b | plus (z, b) = b} hzmem : z ∈ A n : ↑N0 hel : n ∈ A ⊢ plus (z, S n) = S n