url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex1.lean
inter_rectangles
[168, 1]
[193, 18]
exact hlei1
case mpr.left x : ℝ × ℝ mem : x ∈ Set.singleton (1, 0) i : ℝ hle0i : 0 ≤ i hlei1 : i ≤ 1 mem' : x = (1, 0) ⊢ i ≤ 1
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex1.lean
inter_rectangles
[168, 1]
[193, 18]
rw [mem']
case mpr.right x : ℝ × ℝ mem : x ∈ Set.singleton (1, 0) i : ℝ hle0i : 0 ≤ i hlei1 : i ≤ 1 mem' : x = (1, 0) ⊢ x ≤ (1, i)
case mpr.right x : ℝ × ℝ mem : x ∈ Set.singleton (1, 0) i : ℝ hle0i : 0 ≤ i hlei1 : i ≤ 1 mem' : x = (1, 0) ⊢ (1, 0) ≤ (1, i)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex1.lean
inter_rectangles
[168, 1]
[193, 18]
simp
case mpr.right x : ℝ × ℝ mem : x ∈ Set.singleton (1, 0) i : ℝ hle0i : 0 ≤ i hlei1 : i ≤ 1 mem' : x = (1, 0) ⊢ (1, 0) ≤ (1, i)
case mpr.right x : ℝ × ℝ mem : x ∈ Set.singleton (1, 0) i : ℝ hle0i : 0 ≤ i hlei1 : i ≤ 1 mem' : x = (1, 0) ⊢ 0 ≤ i
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex1.lean
inter_rectangles
[168, 1]
[193, 18]
exact hle0i
case mpr.right x : ℝ × ℝ mem : x ∈ Set.singleton (1, 0) i : ℝ hle0i : 0 ≤ i hlei1 : i ≤ 1 mem' : x = (1, 0) ⊢ 0 ≤ i
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
have hucnt : ¬(Set.Countable (({0, 1} : Set ℕ) ×ˢ (Set.univ : Set ℝ))) := by intro hcnt have hun : ({0, 1} : Set ℕ) = {0} ∪ {1} := by rw [Set.union_comm, Set.union_singleton] rw [hun] at hcnt simp_rw [Set.union_prod, Set.countable_union, Set.countable_iff_exists_injective] at hcnt rcases hcnt with ⟨⟨f, finj⟩⟩ let g : ↑(Set.univ : Set ℝ) → ({0} ×ˢ (Set.univ : Set ℝ)) := λ r => ⟨((0 : ℕ), r), by simp⟩ have ginj : Function.Injective g := by intro a b heq simp only [Subtype.mk.injEq, Prod.mk.injEq, true_and] at heq exact SetCoe.ext heq let fg : ↑(Set.univ : Set ℝ) → ℕ := f ∘ g have fginj := Function.Injective.comp finj ginj exact Cardinal.not_countable_real (Set.countable_iff_exists_injective.mpr ⟨fg, fginj⟩)
⊢ Uncountable ({0, 1} ×ˢ Set.univ)
hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ Uncountable ({0, 1} ×ˢ Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
constructor
hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ Uncountable ({0, 1} ×ˢ Set.univ)
case left hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ ¬Set.Countable ({0, 1} ×ˢ Set.univ) case right hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ Set.Infinite ({0, 1} ×ˢ Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
intro hcnt
⊢ ¬Set.Countable ({0, 1} ×ˢ Set.univ)
hcnt : Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
have hun : ({0, 1} : Set ℕ) = {0} ∪ {1} := by rw [Set.union_comm, Set.union_singleton]
hcnt : Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ False
hcnt : Set.Countable ({0, 1} ×ˢ Set.univ) hun : {0, 1} = {0} ∪ {1} ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
rw [hun] at hcnt
hcnt : Set.Countable ({0, 1} ×ˢ Set.univ) hun : {0, 1} = {0} ∪ {1} ⊢ False
hcnt : Set.Countable (({0} ∪ {1}) ×ˢ Set.univ) hun : {0, 1} = {0} ∪ {1} ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
simp_rw [Set.union_prod, Set.countable_union, Set.countable_iff_exists_injective] at hcnt
hcnt : Set.Countable (({0} ∪ {1}) ×ˢ Set.univ) hun : {0, 1} = {0} ∪ {1} ⊢ False
hun : {0, 1} = {0} ∪ {1} hcnt : (∃ f, Function.Injective f) ∧ ∃ f, Function.Injective f ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
rcases hcnt with ⟨⟨f, finj⟩⟩
hun : {0, 1} = {0} ∪ {1} hcnt : (∃ f, Function.Injective f) ∧ ∃ f, Function.Injective f ⊢ False
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
let g : ↑(Set.univ : Set ℝ) → ({0} ×ˢ (Set.univ : Set ℝ)) := λ r => ⟨((0 : ℕ), r), by simp⟩
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f ⊢ False
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
have ginj : Function.Injective g := by intro a b heq simp only [Subtype.mk.injEq, Prod.mk.injEq, true_and] at heq exact SetCoe.ext heq
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ⊢ False
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ginj : Function.Injective g ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
let fg : ↑(Set.univ : Set ℝ) → ℕ := f ∘ g
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ginj : Function.Injective g ⊢ False
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ginj : Function.Injective g fg : ↑Set.univ → ℕ := f ∘ g ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
have fginj := Function.Injective.comp finj ginj
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ginj : Function.Injective g fg : ↑Set.univ → ℕ := f ∘ g ⊢ False
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ginj : Function.Injective g fg : ↑Set.univ → ℕ := f ∘ g fginj : Function.Injective (f ∘ g) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
exact Cardinal.not_countable_real (Set.countable_iff_exists_injective.mpr ⟨fg, fginj⟩)
case intro.intro hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ginj : Function.Injective g fg : ↑Set.univ → ℕ := f ∘ g fginj : Function.Injective (f ∘ g) ⊢ False
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
rw [Set.union_comm, Set.union_singleton]
hcnt : Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ {0, 1} = {0} ∪ {1}
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
simp
hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f r : ↑Set.univ ⊢ (0, ↑r) ∈ {0} ×ˢ Set.univ
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
intro a b heq
hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } ⊢ Function.Injective g
hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } a b : ↑Set.univ heq : g a = g b ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
simp only [Subtype.mk.injEq, Prod.mk.injEq, true_and] at heq
hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } a b : ↑Set.univ heq : g a = g b ⊢ a = b
hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } a b : ↑Set.univ heq : ↑a = ↑b ⊢ a = b
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
exact SetCoe.ext heq
hun : {0, 1} = {0} ∪ {1} right✝ : ∃ f, Function.Injective f f : ↑({0} ×ˢ Set.univ) → ℕ finj : Function.Injective f g : ↑Set.univ → ↑({0} ×ˢ Set.univ) := fun r => { val := (0, ↑r), property := (_ : (0, ↑r) ∈ {0} ×ˢ Set.univ) } a b : ↑Set.univ heq : ↑a = ↑b ⊢ a = b
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
exact hucnt
case left hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ ¬Set.Countable ({0, 1} ×ˢ Set.univ)
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
have hncnt {α : Type} {s : Set α} : ¬Set.Countable s → Set.Infinite s := by contrapose simp only [Set.mem_singleton_iff, Set.not_infinite, not_not, Set.Finite.countable] exact Set.Finite.countable
case right hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) ⊢ Set.Infinite ({0, 1} ×ˢ Set.univ)
case right hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) hncnt : ∀ {α : Type} {s : Set α}, ¬Set.Countable s → Set.Infinite s ⊢ Set.Infinite ({0, 1} ×ˢ Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
exact hncnt hucnt
case right hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) hncnt : ∀ {α : Type} {s : Set α}, ¬Set.Countable s → Set.Infinite s ⊢ Set.Infinite ({0, 1} ×ˢ Set.univ)
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
contrapose
hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) α : Type s : Set α ⊢ ¬Set.Countable s → Set.Infinite s
hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) α : Type s : Set α ⊢ ¬Set.Infinite s → ¬¬Set.Countable s
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
simp only [Set.mem_singleton_iff, Set.not_infinite, not_not, Set.Finite.countable]
hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) α : Type s : Set α ⊢ ¬Set.Infinite s → ¬¬Set.Countable s
hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) α : Type s : Set α ⊢ Set.Finite s → Set.Countable s
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
prod_bin_real_uncountable
[8, 1]
[41, 22]
exact Set.Finite.countable
hucnt : ¬Set.Countable ({0, 1} ×ˢ Set.univ) α : Type s : Set α ⊢ Set.Finite s → Set.Countable s
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
rcases hcntiA with ⟨hcntA, _⟩
α : Type A B : Set α hsub : A ⊆ B hcntiA : Countably_Infinite A hucnt : Uncountable B ⊢ Uncountable (B \ A)
case intro α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A ⊢ Uncountable (B \ A)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
constructor
case intro α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A ⊢ Uncountable (B \ A)
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A ⊢ ¬Set.Countable (B \ A) case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A ⊢ Set.Infinite (B \ A)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
intro hcntmin
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A ⊢ ¬Set.Countable (B \ A)
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hcntmin : Set.Countable (B \ A) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
have hcntB := Set.Countable.union hcntA hcntmin
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hcntmin : Set.Countable (B \ A) ⊢ False
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hcntmin : Set.Countable (B \ A) hcntB : Set.Countable (A ∪ B \ A) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
rw [Set.union_diff_cancel hsub] at hcntB
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hcntmin : Set.Countable (B \ A) hcntB : Set.Countable (A ∪ B \ A) ⊢ False
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hcntmin : Set.Countable (B \ A) hcntB : Set.Countable B ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
exact hucnt.1 hcntB
case intro.left α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hcntmin : Set.Countable (B \ A) hcntB : Set.Countable B ⊢ False
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
intro hfin
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A ⊢ Set.Infinite (B \ A)
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
have hcnt := Set.Finite.countable hfin
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) ⊢ False
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) hcnt : Set.Countable (B \ A) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
have hcntB := Set.Countable.union hcntA hcnt
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) hcnt : Set.Countable (B \ A) ⊢ False
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) hcnt : Set.Countable (B \ A) hcntB : Set.Countable (A ∪ B \ A) ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
rw [Set.union_diff_cancel hsub] at hcntB
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) hcnt : Set.Countable (B \ A) hcntB : Set.Countable (A ∪ B \ A) ⊢ False
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) hcnt : Set.Countable (B \ A) hcntB : Set.Countable B ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
uncountable_minus_countably_infinite_uncountable
[44, 1]
[62, 24]
exact hucnt.1 hcntB
case intro.right α : Type A B : Set α hsub : A ⊆ B hucnt : Uncountable B hcntA : Set.Countable A right✝ : Set.Infinite A hfin : Set.Finite (B \ A) hcnt : Set.Countable (B \ A) hcntB : Set.Countable B ⊢ False
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_gt_real_card
[69, 1]
[75, 40]
simp only [Cardinal.mk_univ, indicator]
⊢ Cardinal.mk ↑indicator > Cardinal.mk ↑Set.univ
⊢ Cardinal.mk (ℝ → ↑binary') > Cardinal.mk ℝ
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_gt_real_card
[69, 1]
[75, 40]
rw [binary', ←Cardinal.power_def, Cardinal.mk_insert (by simp), Cardinal.mk_singleton]
⊢ Cardinal.mk (ℝ → ↑binary') > Cardinal.mk ℝ
⊢ (1 + 1) ^ Cardinal.mk ℝ > Cardinal.mk ℝ
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_gt_real_card
[69, 1]
[75, 40]
ring_nf
⊢ (1 + 1) ^ Cardinal.mk ℝ > Cardinal.mk ℝ
⊢ 2 ^ Cardinal.mk ℝ > Cardinal.mk ℝ
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_gt_real_card
[69, 1]
[75, 40]
exact Cardinal.cantor (Cardinal.mk ℝ)
⊢ 2 ^ Cardinal.mk ℝ > Cardinal.mk ℝ
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_gt_real_card
[69, 1]
[75, 40]
simp
⊢ 0 ∉ {1}
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
rcases b with ⟨hv, hp⟩
b : ↑binary' hb : ¬↑b = 1 ⊢ ↑b = 0
case mk hv : ℕ hp : hv ∈ binary' hb : ¬↑{ val := hv, property := hp } = 1 ⊢ ↑{ val := hv, property := hp } = 0
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
dsimp only at *
case mk hv : ℕ hp : hv ∈ binary' hb : ¬↑{ val := hv, property := hp } = 1 ⊢ ↑{ val := hv, property := hp } = 0
case mk hv : ℕ hp : hv ∈ binary' hb : ¬hv = 1 ⊢ hv = 0
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
rw [binary'] at hp
case mk hv : ℕ hp : hv ∈ binary' hb : ¬hv = 1 ⊢ hv = 0
case mk hv : ℕ hp : hv ∈ {0, 1} hb : ¬hv = 1 ⊢ hv = 0
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
simp only [Set.mem_singleton_iff, Set.mem_insert_iff] at hp
case mk hv : ℕ hp : hv ∈ {0, 1} hb : ¬hv = 1 ⊢ hv = 0
case mk hv : ℕ hb : ¬hv = 1 hp : hv = 0 ∨ hv = 1 ⊢ hv = 0
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
rcases hp with (h0 | h1)
case mk hv : ℕ hb : ¬hv = 1 hp : hv = 0 ∨ hv = 1 ⊢ hv = 0
case mk.inl hv : ℕ hb : ¬hv = 1 h0 : hv = 0 ⊢ hv = 0 case mk.inr hv : ℕ hb : ¬hv = 1 h1 : hv = 1 ⊢ hv = 0
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
exact h0
case mk.inl hv : ℕ hb : ¬hv = 1 h0 : hv = 0 ⊢ hv = 0
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
exfalso
case mk.inr hv : ℕ hb : ¬hv = 1 h1 : hv = 1 ⊢ hv = 0
case mk.inr.h hv : ℕ hb : ¬hv = 1 h1 : hv = 1 ⊢ False
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary'_zero_eq_iff_one_eq
[77, 1]
[89, 16]
exact hb h1
case mk.inr.h hv : ℕ hb : ¬hv = 1 h1 : hv = 1 ⊢ False
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
cases b
a b : binary hb : b = binary.one ↔ a = binary.one ⊢ b = binary.zero ↔ a = binary.zero
case zero a : binary hb : binary.zero = binary.one ↔ a = binary.one ⊢ binary.zero = binary.zero ↔ a = binary.zero case one a : binary hb : binary.one = binary.one ↔ a = binary.one ⊢ binary.one = binary.zero ↔ a = binary.zero
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
simp only [false_iff, forall_true_left] at *
case zero a : binary hb : binary.zero = binary.one ↔ a = binary.one ⊢ binary.zero = binary.zero ↔ a = binary.zero
case zero a : binary hb : ¬a = binary.one ⊢ True ↔ a = binary.zero
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
cases a
case zero a : binary hb : ¬a = binary.one ⊢ True ↔ a = binary.zero
case zero.zero hb : ¬binary.zero = binary.one ⊢ True ↔ binary.zero = binary.zero case zero.one hb : ¬binary.one = binary.one ⊢ True ↔ binary.one = binary.zero
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
simp only
case zero.zero hb : ¬binary.zero = binary.one ⊢ True ↔ binary.zero = binary.zero
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
simp only [not_true_eq_false] at *
case zero.one hb : ¬binary.one = binary.one ⊢ True ↔ binary.one = binary.zero
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
simp only [true_iff, false_iff] at *
case one a : binary hb : binary.one = binary.one ↔ a = binary.one ⊢ binary.one = binary.zero ↔ a = binary.zero
case one a : binary hb : a = binary.one ⊢ ¬a = binary.zero
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
cases a
case one a : binary hb : a = binary.one ⊢ ¬a = binary.zero
case one.zero hb : binary.zero = binary.one ⊢ ¬binary.zero = binary.zero case one.one hb : binary.one = binary.one ⊢ ¬binary.one = binary.zero
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
simp only at *
case one.zero hb : binary.zero = binary.one ⊢ ¬binary.zero = binary.zero
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_zero_eq_iff_one_eq
[97, 1]
[110, 36]
simp only [not_false_eq_true]
case one.one hb : binary.one = binary.one ⊢ ¬binary.one = binary.zero
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_ne_one_eq_zero
[112, 1]
[119, 39]
cases b
b : binary hb : ¬b = binary.one ⊢ b = binary.zero
case zero hb : ¬binary.zero = binary.one ⊢ binary.zero = binary.zero case one hb : ¬binary.one = binary.one ⊢ binary.one = binary.zero
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_ne_one_eq_zero
[112, 1]
[119, 39]
simp only
case zero hb : ¬binary.zero = binary.one ⊢ binary.zero = binary.zero
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
binary_ne_one_eq_zero
[112, 1]
[119, 39]
simp only [not_true_eq_false] at *
case one hb : ¬binary.one = binary.one ⊢ binary.one = binary.zero
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
let f : indicator' → (𝒫 (Set.univ : Set ℝ)) := by rw [indicator'] rintro ⟨fn, _⟩ exact { val := Set.preimage fn {binary.one} property := by simp only [Set.powerset_univ, Set.mem_univ] }
⊢ ∃ f, Function.Bijective f
f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ ∃ f, Function.Bijective f
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
use f
f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ ∃ f, Function.Bijective f
case h f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ Function.Bijective f
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
constructor
case h f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ Function.Bijective f
case h.left f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ Function.Injective f case h.right f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ Function.Surjective f
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rw [indicator']
⊢ ↑indicator' → ↑(𝒫 Set.univ)
⊢ ↑Set.univ → ↑(𝒫 Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rintro ⟨fn, _⟩
⊢ ↑Set.univ → ↑(𝒫 Set.univ)
case mk fn : ℝ → binary property✝ : fn ∈ Set.univ ⊢ ↑(𝒫 Set.univ)
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
exact { val := Set.preimage fn {binary.one} property := by simp only [Set.powerset_univ, Set.mem_univ] }
case mk fn : ℝ → binary property✝ : fn ∈ Set.univ ⊢ ↑(𝒫 Set.univ)
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.powerset_univ, Set.mem_univ]
fn : ℝ → binary property✝ : fn ∈ Set.univ ⊢ fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rintro ⟨fa, _⟩ ⟨fb, _⟩ heq
case h.left f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ Function.Injective f
case h.left.mk.mk f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' heq : f { val := fa, property := property✝¹ } = f { val := fb, property := property✝ } ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.powerset_univ] at f
case h.left.mk.mk f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' heq : f { val := fa, property := property✝¹ } = f { val := fb, property := property✝ } ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' heq : f✝ { val := fa, property := property✝¹ } = f✝ { val := fb, property := property✝ } f : ↑indicator' → ↑Set.univ ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [eq_mpr_eq_cast, cast_eq, Subtype.mk.injEq] at heq
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' heq : f✝ { val := fa, property := property✝¹ } = f✝ { val := fb, property := property✝ } f : ↑indicator' → ↑Set.univ ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : fa ⁻¹' {binary.one} = fb ⁻¹' {binary.one} ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rw [Set.ext_iff] at heq
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : fa ⁻¹' {binary.one} = fb ⁻¹' {binary.one} ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : ∀ (x : ℝ), x ∈ fa ⁻¹' {binary.one} ↔ x ∈ fb ⁻¹' {binary.one} ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.mem_preimage, Set.mem_singleton_iff] at heq
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : ∀ (x : ℝ), x ∈ fa ⁻¹' {binary.one} ↔ x ∈ fb ⁻¹' {binary.one} ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : ∀ (x : ℝ), fa x = binary.one ↔ fb x = binary.one ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
exact SetCoe.ext heqv
case h.left.mk.mk f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : ∀ (x : ℝ), fa x = binary.one ↔ fb x = binary.one heqv : fa = fb ⊢ { val := fa, property := property✝¹ } = { val := fb, property := property✝ }
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
ext x
f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : ∀ (x : ℝ), fa x = binary.one ↔ fb x = binary.one ⊢ fa = fb
case h f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : ∀ (x : ℝ), fa x = binary.one ↔ fb x = binary.one x : ℝ ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
specialize heq x
case h f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ heq : ∀ (x : ℝ), fa x = binary.one ↔ fb x = binary.one x : ℝ ⊢ fa x = fb x
case h f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
have hzero_iff := binary_zero_eq_iff_one_eq heq
case h f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one ⊢ fa x = fb x
case h f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
by_cases heqfa : fa x = binary.one
case h f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero ⊢ fa x = fb x
case pos f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : fa x = binary.one ⊢ fa x = fb x case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
have heqfbzero := heq.mp heqfa
case pos f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : fa x = binary.one ⊢ fa x = fb x
case pos f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : fa x = binary.one heqfbzero : fb x = binary.one ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rw [←heqfbzero] at heqfa
case pos f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : fa x = binary.one heqfbzero : fb x = binary.one ⊢ fa x = fb x
case pos f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : fa x = fb x heqfbzero : fb x = binary.one ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
exact heqfa
case pos f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : fa x = fb x heqfbzero : fb x = binary.one ⊢ fa x = fb x
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
have heqfazero := binary_ne_one_eq_zero heqfa
case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one ⊢ fa x = fb x
case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one heqfazero : fa x = binary.zero ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
have heqfbone := hzero_iff.mp heqfazero
case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one heqfazero : fa x = binary.zero ⊢ fa x = fb x
case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one heqfazero : fa x = binary.zero heqfbone : fb x = binary.zero ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rw [←heqfbone] at heqfazero
case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one heqfazero : fa x = binary.zero heqfbone : fb x = binary.zero ⊢ fa x = fb x
case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one heqfazero : fa x = fb x heqfbone : fb x = binary.zero ⊢ fa x = fb x
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
exact heqfazero
case neg f✝ : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } fa : ℝ → binary property✝¹ : fa ∈ indicator' fb : ℝ → binary property✝ : fb ∈ indicator' f : ↑indicator' → ↑Set.univ x : ℝ heq : fa x = binary.one ↔ fb x = binary.one hzero_iff : fa x = binary.zero ↔ fb x = binary.zero heqfa : ¬fa x = binary.one heqfazero : fa x = fb x heqfbone : fb x = binary.zero ⊢ fa x = fb x
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
intro pw
case h.right f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } ⊢ Function.Surjective f
case h.right f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ∃ a, f a = pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
use a
case h.right f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ ∃ a, f a = pw
case h f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ f a = pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [eq_mpr_eq_cast, cast_eq, eq_mp_eq_cast, Set.powerset_univ, set_coe_cast]
case h f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ f a = pw
case h f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ { val := (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one}, property := (_ : ↑{ val := fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero, property := (_ : (fun x => x ∈ Set.univ) fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) } ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } = pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
apply Subtype.eq
case h f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ { val := (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one}, property := (_ : ↑{ val := fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero, property := (_ : (fun x => x ∈ Set.univ) fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) } ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } = pw
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ ↑{ val := (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one}, property := (_ : ↑{ val := fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero, property := (_ : (fun x => x ∈ Set.univ) fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) } ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } = ↑pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.powerset_univ, set_coe_cast, Set.ext_iff]
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ ↑{ val := (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one}, property := (_ : ↑{ val := fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero, property := (_ : (fun x => x ∈ Set.univ) fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) } ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } = ↑pw
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ ∀ (x : ℝ), x ∈ (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one} ↔ x ∈ ↑pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
intro x
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } ⊢ ∀ (x : ℝ), x ∈ (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one} ↔ x ∈ ↑pw
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ x ∈ (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one} ↔ x ∈ ↑pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.powerset_univ, set_coe_cast, Set.mem_preimage, Set.mem_singleton_iff]
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ x ∈ (fun x => if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) ⁻¹' {binary.one} ↔ x ∈ ↑pw
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one ↔ x ∈ ↑pw
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
constructor
case h.a f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one ↔ x ∈ ↑pw
case h.a.mp f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one → x ∈ ↑pw case h.a.mpr f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) a : ↑indicator' := Eq.mpr (_ : ↑indicator' = ↑Set.univ) { val := fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero, property := (_ : (fun x => let_fun real_set := ↑(Eq.mp (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw); if x ∈ real_set then binary.one else binary.zero) ∈ Set.univ) } x : ℝ ⊢ x ∈ ↑pw → (if x ∈ ↑(cast (_ : ↑(𝒫 Set.univ) = ↑Set.univ) pw) then binary.one else binary.zero) = binary.one
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
rw [indicator']
f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ↑indicator'
f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ↑Set.univ
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
constructor
f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ↑Set.univ
case property f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ?val ∈ Set.univ case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ℝ → binary
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.mem_univ]
case property f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ?val ∈ Set.univ
no goals
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
intro x
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) ⊢ ℝ → binary
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) x : ℝ ⊢ binary
https://github.com/aronerben/lean4-playground.git
5efced915ecee24cd723d28d00aa63f9c7ea0a9c
meetings/ex5.lean
indicator_card_eq_powerset_card_bij
[123, 1]
[178, 20]
simp only [Set.powerset_univ] at pw
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } pw : ↑(𝒫 Set.univ) x : ℝ ⊢ binary
case val f : ↑indicator' → ↑(𝒫 Set.univ) := Eq.mpr (_ : (↑indicator' → ↑(𝒫 Set.univ)) = (↑Set.univ → ↑(𝒫 Set.univ))) fun a => Subtype.casesOn a fun fn property => { val := fn ⁻¹' {binary.one}, property := (_ : fn ⁻¹' {binary.one} ∈ 𝒫 Set.univ) } x : ℝ pw : ↑Set.univ ⊢ binary