url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [s1] at h2
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ Holds D J V E (pred_var_ P h1_ts)
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ Holds D J V E (pred_var_ P h1_ts)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ Holds D J V E (pred_var_ P h1_ts)
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply h2
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ h1_X = P ∧ (List.map V h1_ts).length = zs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ h1_X = P ∧ (List.map V h1_ts).length = zs.length
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ h1_X = P ∧ h1_ts.length = zs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h1_1
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_X : PredName h1_ts : List VarName h1_1 : h1_X = P ∧ h1_ts.length = zs.length h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H V : VarAssignment D s2 : V ∘ Function.updateListITE id zs h1_ts = Function.updateListITE (V ∘ id) zs (List.map V h1_ts) s1 : Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H ↔ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) h2 : h1_X = P ∧ (List.map V h1_ts).length = zs.length β†’ (Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) ↔ J.pred_var_ P (List.map V h1_ts)) ⊒ h1_X = P ∧ h1_ts.length = zs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x h1_y : VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E (eq_ h1_x h1_y) ↔ Holds D J V E (eq_ h1_x h1_y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E false_ ↔ Holds D J V E false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_phi'.not_ ↔ Holds D J V E h1_phi.not_
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Β¬Holds D I V E h1_phi' ↔ Β¬Holds D J V E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
congr! 1
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Β¬Holds D I V E h1_phi' ↔ Β¬Holds D J V E h1_phi
case a.h.e'_1.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_phi' ↔ Holds D J V E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h1_ih V h2
case a.h.e'_1.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_phi' ↔ Holds D J V E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E (h1_phi'.iff_ h1_psi') ↔ Holds D J V E (h1_phi.iff_ h1_psi)
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (Holds D I V E h1_phi' ↔ Holds D I V E h1_psi') ↔ (Holds D J V E h1_phi ↔ Holds D J V E h1_psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
congr! 1
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (Holds D I V E h1_phi' ↔ Holds D I V E h1_psi') ↔ (Holds D J V E h1_phi ↔ Holds D J V E h1_psi)
case a.h.e'_1.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_phi' ↔ Holds D J V E h1_phi case a.h.e'_2.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_psi' ↔ Holds D J V E h1_psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h1_ih_1 V h2
case a.h.e'_1.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_phi' ↔ Holds D J V E h1_phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h1_ih_2 V h2
case a.h.e'_2.a D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_psi h1_phi' h1_psi' : Formula a✝¹ : IsSub P zs H h1_phi h1_phi' a✝ : IsSub P zs H h1_psi h1_psi' h1_ih_1 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) h1_ih_2 : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_psi' ↔ Holds D J V E h1_psi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E h1_psi' ↔ Holds D J V E h1_psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E (exists_ h1_x h1_phi') ↔ Holds D J V E (exists_ h1_x h1_phi)
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆƒ d, Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆƒ d, Holds D J (Function.updateITE V h1_x d) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
first | apply forall_congr' | apply exists_congr
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆƒ d, Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆƒ d, Holds D J (Function.updateITE V h1_x d) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro d
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ Holds D I (Function.updateITE V h1_x d) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x d) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply h1_ih
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ Holds D I (Function.updateITE V h1_x d) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x d) E h1_phi
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro Q ds a1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds)
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
specialize h2 Q ds a1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
have s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H := by apply Holds_coincide_Var intro v a1 apply Function.updateListITE_updateIte intro contra subst contra contradiction
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [h2] at s1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact s1
case h.h2 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds s1 : Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ J.pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply forall_congr'
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆ€ (d : D), Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆ€ (d : D), Holds D J (Function.updateITE V h1_x d) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply exists_congr
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ (βˆƒ d, Holds D I (Function.updateITE V h1_x d) E h1_phi') ↔ βˆƒ d, Holds D J (Function.updateITE V h1_x d) E h1_phi
case h D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ βˆ€ (a : D), Holds D I (Function.updateITE V h1_x a) E h1_phi' ↔ Holds D J (Function.updateITE V h1_x a) E h1_phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Holds_coincide_Var
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H ↔ Holds D I (Function.updateListITE V zs ds) E H
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ βˆ€ (v : VarName), isFreeIn v H β†’ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro v a1
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds ⊒ βˆ€ (v : VarName), isFreeIn v H β†’ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Function.updateListITE_updateIte
case h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Function.updateListITE (Function.updateITE V h1_x d) zs ds v = Function.updateListITE V zs ds v
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Β¬v = h1_x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
intro contra
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H ⊒ Β¬v = h1_x
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H contra : v = h1_x ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
subst contra
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_x : VarName h1_phi h1_phi' : Formula h1_1 : Β¬isFreeIn h1_x H a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H contra : v = h1_x ⊒ False
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H h1_1 : Β¬isFreeIn v H ⊒ False
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
contradiction
case h1.h1 D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) h1_phi h1_phi' : Formula a✝ : IsSub P zs H h1_phi h1_phi' h1_ih : βˆ€ (V : VarAssignment D), (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ (Holds D I V E h1_phi' ↔ Holds D J V E h1_phi) V : VarAssignment D d : D Q : PredName ds : List D a1✝ : Q = P ∧ ds.length = zs.length h2 : Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds v : VarName a1 : isFreeIn v H h1_1 : Β¬isFreeIn v H ⊒ False
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
cases E
D : Type I J : Interpretation D E : Env A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds) ⊒ Holds D I V E (def_ X xs) ↔ Holds D J V E (def_ X xs)
case nil D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) [] H ↔ J.pred_var_ P ds) ⊒ Holds D I V [] (def_ X xs) ↔ Holds D J V [] (def_ X xs) case cons D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D head✝ : Definition tail✝ : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (head✝ :: tail✝) H ↔ J.pred_var_ P ds) ⊒ Holds D I V (head✝ :: tail✝) (def_ X xs) ↔ Holds D J V (head✝ :: tail✝) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
case nil => simp only [Holds]
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) [] H ↔ J.pred_var_ P ds) ⊒ Holds D I V [] (def_ X xs) ↔ Holds D J V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) [] H ↔ J.pred_var_ P ds) ⊒ Holds D I V [] (def_ X xs) ↔ Holds D J V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [Holds]
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) ⊒ Holds D I V (hd :: tl) (def_ X xs) ↔ Holds D J V (hd :: tl) (def_ X xs)
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D J V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
split_ifs
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) ⊒ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D J V tl (def_ X xs)
case pos D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) h✝ : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q case neg D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) h✝ : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D J V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Holds_coincide_PredVar
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D J (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ I.pred_const_ = J.pred_const_ case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h3_const
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ I.pred_const_ = J.pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [predVarOccursIn_iff_mem_predVarSet]
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length hd.q β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ hd.q.predVarSet β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [hd.h2]
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ hd.q.predVarSet β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ βˆ… β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : X = hd.name ∧ xs.length = hd.args.length ⊒ βˆ€ (P : PredName) (ds : List D), (P, ds.length) ∈ βˆ… β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
apply Holds_coincide_PredVar
D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ Holds D I V tl (def_ X xs) ↔ Holds D J V tl (def_ X xs)
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ I.pred_const_ = J.pred_const_ case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
exact h3_const
case h1 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ I.pred_const_ = J.pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp only [predVarOccursIn]
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ X xs) β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), False β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_theorem
[131, 1]
[245, 15]
simp
case h2 D : Type I J : Interpretation D A : Formula P : PredName zs : List VarName H B : Formula h3_const : I.pred_const_ = J.pred_const_ h3_var : βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds) X : DefName xs : List VarName V : VarAssignment D hd : Definition tl : List Definition h2 : βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) (hd :: tl) H ↔ J.pred_var_ P ds) c1 : Β¬(X = hd.name ∧ xs.length = hd.args.length) ⊒ βˆ€ (P : PredName) (ds : List D), False β†’ (I.pred_var_ P ds ↔ J.pred_var_ P ds)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [IsValid] at h2
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : F.IsValid ⊒ F'.IsValid
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [IsValid]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ F'.IsValid
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
intro D I V E
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊒ βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
let J : Interpretation D := { nonempty := I.nonempty pred_const_ := I.pred_const_ pred_var_ := fun (Q : PredName) (ds : List D) => if (Q = P ∧ ds.length = zs.length) then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds }
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
obtain s1 := substitution_theorem D I J V E F P zs H F' h1
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ I.pred_const_ = J.pred_const_ β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [Interpretation.pred_var_] at s1
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ J.pred_var_ P ds)) β†’ I.pred_const_ = J.pred_const_ β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ J.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F'
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [s2]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) s2 : Holds D I V E F' ↔ Holds D J V E F ⊒ Holds D I V E F'
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) s2 : Holds D I V E F' ↔ Holds D J V E F ⊒ Holds D J V E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
apply h2
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) s2 : Holds D I V E F' ↔ Holds D J V E F ⊒ Holds D J V E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
apply s1
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ Holds D I V E F' ↔ Holds D J V E F
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds) case h3_const F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ True case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
intro Q ds a1
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
cases a1
case h2 F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Q = P ∧ ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
case h2.intro F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D left✝ : Q = P right✝ : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
case h2.intro a1_left a1_right => simp simp only [if_pos a1_right]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [if_pos a1_right]
F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1_left : Q = P a1_right : ds.length = zs.length ⊒ Holds D I (Function.updateListITE V zs ds) E H ↔ if ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp
case h3_const F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ True
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
intro Q ds a1
case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) ⊒ βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)
case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Β¬(Q = P ∧ ds.length = zs.length) ⊒ I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Ind/Sub.lean
FOL.NV.Sub.Pred.One.Ind.substitution_is_valid
[248, 1]
[282, 11]
simp only [if_neg a1]
case h3_var F F' : Formula P : PredName zs : List VarName H : Formula h1 : IsSub P zs H F F' h2 : βˆ€ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env J : Interpretation D := { nonempty := β‹―, pred_const_ := I.pred_const_, pred_var_ := fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds } s1 : (βˆ€ (Q : PredName) (ds : List D), Q = P ∧ ds.length = zs.length β†’ (Holds D I (Function.updateListITE V zs ds) E H ↔ if True ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ P ds)) β†’ True β†’ (βˆ€ (Q : PredName) (ds : List D), Β¬(Q = P ∧ ds.length = zs.length) β†’ (I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds)) β†’ (Holds D I V E F' ↔ Holds D J V E F) Q : PredName ds : List D a1 : Β¬(Q = P ∧ ds.length = zs.length) ⊒ I.pred_var_ Q ds ↔ if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V zs ds) E H else I.pred_var_ Q ds
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
induction s
Ξ± : Type s : Str Ξ± ⊒ βˆƒ n, List.reverse s ∈ exp Ξ± n
case nil Ξ± : Type ⊒ βˆƒ n, [].reverse ∈ exp Ξ± n case cons Ξ± : Type head✝ : Ξ± tail✝ : List Ξ± tail_ih✝ : βˆƒ n, tail✝.reverse ∈ exp Ξ± n ⊒ βˆƒ n, (head✝ :: tail✝).reverse ∈ exp Ξ± n
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
case nil => apply Exists.intro 0 exact exp.zero
Ξ± : Type ⊒ βˆƒ n, [].reverse ∈ exp Ξ± n
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
case cons hd tl ih => apply Exists.elim ih intro n a1 apply Exists.intro (n + 1) simp exact exp.succ n hd tl.reverse a1
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n ⊒ βˆƒ n, (hd :: tl).reverse ∈ exp Ξ± n
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
apply Exists.intro 0
Ξ± : Type ⊒ βˆƒ n, [].reverse ∈ exp Ξ± n
α : Type ⊒ [].reverse ∈ exp α 0
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
exact exp.zero
α : Type ⊒ [].reverse ∈ exp α 0
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
apply Exists.elim ih
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n ⊒ βˆƒ n, (hd :: tl).reverse ∈ exp Ξ± n
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n ⊒ βˆ€ (a : β„•), tl.reverse ∈ exp Ξ± a β†’ βˆƒ n, (hd :: tl).reverse ∈ exp Ξ± n
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
intro n a1
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n ⊒ βˆ€ (a : β„•), tl.reverse ∈ exp Ξ± a β†’ βˆƒ n, (hd :: tl).reverse ∈ exp Ξ± n
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n n : β„• a1 : tl.reverse ∈ exp Ξ± n ⊒ βˆƒ n, (hd :: tl).reverse ∈ exp Ξ± n
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
apply Exists.intro (n + 1)
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n n : β„• a1 : tl.reverse ∈ exp Ξ± n ⊒ βˆƒ n, (hd :: tl).reverse ∈ exp Ξ± n
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n n : β„• a1 : tl.reverse ∈ exp Ξ± n ⊒ (hd :: tl).reverse ∈ exp Ξ± (n + 1)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
simp
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n n : β„• a1 : tl.reverse ∈ exp Ξ± n ⊒ (hd :: tl).reverse ∈ exp Ξ± (n + 1)
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n n : β„• a1 : tl.reverse ∈ exp Ξ± n ⊒ tl.reverse ++ [hd] ∈ exp Ξ± (n + 1)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp
[53, 1]
[67, 40]
exact exp.succ n hd tl.reverse a1
Ξ± : Type hd : Ξ± tl : List Ξ± ih : βˆƒ n, tl.reverse ∈ exp Ξ± n n : β„• a1 : tl.reverse ∈ exp Ξ± n ⊒ tl.reverse ++ [hd] ∈ exp Ξ± (n + 1)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.str_mem_exp
[70, 1]
[77, 13]
obtain s1 := rev_str_mem_exp s.reverse
Ξ± : Type s : Str Ξ± ⊒ βˆƒ n, s ∈ exp Ξ± n
Ξ± : Type s : Str Ξ± s1 : βˆƒ n, (List.reverse s).reverse ∈ exp Ξ± n ⊒ βˆƒ n, s ∈ exp Ξ± n
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.str_mem_exp
[70, 1]
[77, 13]
simp only [List.reverse_reverse] at s1
Ξ± : Type s : Str Ξ± s1 : βˆƒ n, (List.reverse s).reverse ∈ exp Ξ± n ⊒ βˆƒ n, s ∈ exp Ξ± n
Ξ± : Type s : Str Ξ± s1 : βˆƒ n, s ∈ exp Ξ± n ⊒ βˆƒ n, s ∈ exp Ξ± n
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.str_mem_exp
[70, 1]
[77, 13]
exact s1
Ξ± : Type s : Str Ξ± s1 : βˆƒ n, s ∈ exp Ξ± n ⊒ βˆƒ n, s ∈ exp Ξ± n
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp_str_len
[80, 1]
[91, 48]
induction s
α : Type s : Str α ⊒ List.reverse s ∈ exp α (List.length s)
case nil α : Type ⊒ [].reverse ∈ exp α [].length case cons α : Type head✝ : α tail✝ : List α tail_ih✝ : tail✝.reverse ∈ exp α tail✝.length ⊒ (head✝ :: tail✝).reverse ∈ exp α (head✝ :: tail✝).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp_str_len
[80, 1]
[91, 48]
case nil => simp exact exp.zero
α : Type ⊒ [].reverse ∈ exp α [].length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp_str_len
[80, 1]
[91, 48]
case cons hd tl ih => simp exact exp.succ tl.length hd tl.reverse ih
α : Type hd : α tl : List α ih : tl.reverse ∈ exp α tl.length ⊒ (hd :: tl).reverse ∈ exp α (hd :: tl).length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp_str_len
[80, 1]
[91, 48]
simp
α : Type ⊒ [].reverse ∈ exp α [].length
α : Type ⊒ [] ∈ exp α 0
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp_str_len
[80, 1]
[91, 48]
exact exp.zero
α : Type ⊒ [] ∈ exp α 0
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp_str_len
[80, 1]
[91, 48]
simp
α : Type hd : α tl : List α ih : tl.reverse ∈ exp α tl.length ⊒ (hd :: tl).reverse ∈ exp α (hd :: tl).length
α : Type hd : α tl : List α ih : tl.reverse ∈ exp α tl.length ⊒ tl.reverse ++ [hd] ∈ exp α (tl.length + 1)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.rev_str_mem_exp_str_len
[80, 1]
[91, 48]
exact exp.succ tl.length hd tl.reverse ih
α : Type hd : α tl : List α ih : tl.reverse ∈ exp α tl.length ⊒ tl.reverse ++ [hd] ∈ exp α (tl.length + 1)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.str_mem_exp_str_len
[94, 1]
[101, 13]
obtain s1 := rev_str_mem_exp_str_len s.reverse
α : Type s : Str α ⊒ s ∈ exp α (List.length s)
α : Type s : Str α s1 : (List.reverse s).reverse ∈ exp α (List.reverse s).length ⊒ s ∈ exp α (List.length s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.str_mem_exp_str_len
[94, 1]
[101, 13]
simp at s1
α : Type s : Str α s1 : (List.reverse s).reverse ∈ exp α (List.reverse s).length ⊒ s ∈ exp α (List.length s)
α : Type s : Str α s1 : s ∈ exp α (List.length s) ⊒ s ∈ exp α (List.length s)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.str_mem_exp_str_len
[94, 1]
[101, 13]
exact s1
α : Type s : Str α s1 : s ∈ exp α (List.length s) ⊒ s ∈ exp α (List.length s)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.mem_exp_imp_str_len_eq
[104, 1]
[116, 17]
induction h1
Ξ± : Type s : Str Ξ± n : β„• h1 : s ∈ exp Ξ± n ⊒ List.length s = n
case zero Ξ± : Type s : Str Ξ± n : β„• ⊒ [].length = 0 case succ Ξ± : Type s : Str Ξ± n n✝ : β„• a✝¹ : Ξ± s✝ : Str Ξ± a✝ : s✝ ∈ exp Ξ± n✝ a_ih✝ : List.length s✝ = n✝ ⊒ List.length (s✝ ++ [a✝¹]) = n✝ + 1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.mem_exp_imp_str_len_eq
[104, 1]
[116, 17]
case zero => simp
Ξ± : Type s : Str Ξ± n : β„• ⊒ [].length = 0
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.mem_exp_imp_str_len_eq
[104, 1]
[116, 17]
case succ m a s ih_1 ih_2 => simp exact ih_2
Ξ± : Type s✝ : Str Ξ± n m : β„• a : Ξ± s : Str Ξ± ih_1 : s ∈ exp Ξ± m ih_2 : List.length s = m ⊒ List.length (s ++ [a]) = m + 1
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.mem_exp_imp_str_len_eq
[104, 1]
[116, 17]
simp
Ξ± : Type s : Str Ξ± n : β„• ⊒ [].length = 0
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.mem_exp_imp_str_len_eq
[104, 1]
[116, 17]
simp
Ξ± : Type s✝ : Str Ξ± n m : β„• a : Ξ± s : Str Ξ± ih_1 : s ∈ exp Ξ± m ih_2 : List.length s = m ⊒ List.length (s ++ [a]) = m + 1
Ξ± : Type s✝ : Str Ξ± n m : β„• a : Ξ± s : Str Ξ± ih_1 : s ∈ exp Ξ± m ih_2 : List.length s = m ⊒ List.length s = m
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.mem_exp_imp_str_len_eq
[104, 1]
[116, 17]
exact ih_2
Ξ± : Type s✝ : Str Ξ± n m : β„• a : Ξ± s : Str Ξ± ih_1 : s ∈ exp Ξ± m ih_2 : List.length s = m ⊒ List.length s = m
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.all_str_mem_kleene_closure
[153, 1]
[160, 24]
simp only [kleene_closure]
α : Type s : Str α ⊒ s ∈ kleene_closure α
Ξ± : Type s : Str Ξ± ⊒ s ∈ ⋃ n, exp Ξ± n
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.all_str_mem_kleene_closure
[153, 1]
[160, 24]
simp
Ξ± : Type s : Str Ξ± ⊒ s ∈ ⋃ n, exp Ξ± n
Ξ± : Type s : Str Ξ± ⊒ βˆƒ i, s ∈ exp Ξ± i
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.all_str_mem_kleene_closure
[153, 1]
[160, 24]
exact str_mem_exp s
Ξ± : Type s : Str Ξ± ⊒ βˆƒ i, s ∈ exp Ξ± i
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.thm_2
[192, 1]
[198, 36]
symm
α : Type s t u : Str α ⊒ s ++ (t ++ u) = s ++ t ++ u
α : Type s t u : Str α ⊒ s ++ t ++ u = s ++ (t ++ u)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Strings.thm_2
[192, 1]
[198, 36]
exact (List.append_assoc s t u)
α : Type s t u : Str α ⊒ s ++ t ++ u = s ++ (t ++ u)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Languages.thm_3_a
[237, 1]
[243, 9]
simp only [concat]
Ξ± : Type L : Language Ξ± ⊒ concat L βˆ… = βˆ…
Ξ± : Type L : Language Ξ± ⊒ {x | βˆƒ s ∈ L, βˆƒ t ∈ βˆ…, s ++ t = x} = βˆ…
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Languages.thm_3_a
[237, 1]
[243, 9]
simp
Ξ± : Type L : Language Ξ± ⊒ {x | βˆƒ s ∈ L, βˆƒ t ∈ βˆ…, s ++ t = x} = βˆ…
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Languages.thm_3_b
[246, 1]
[252, 9]
simp only [concat]
Ξ± : Type L : Language Ξ± ⊒ concat βˆ… L = βˆ…
Ξ± : Type L : Language Ξ± ⊒ {x | βˆƒ s ∈ βˆ…, βˆƒ t ∈ L, s ++ t = x} = βˆ…
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/Parsing/Text.lean
Languages.thm_3_b
[246, 1]
[252, 9]
simp
Ξ± : Type L : Language Ξ± ⊒ {x | βˆƒ s ∈ βˆ…, βˆƒ t ∈ L, s ++ t = x} = βˆ…
no goals