url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
|
---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases q | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
q : β β Ο_0 β Ο_1
p_0 : Ο_0
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
q β stop_state_list) =
match (Sum.inr (Sum.inl p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | case inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
valβ : β
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inl valβ β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl valβ) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False
case inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
valβ : Ο_0 β Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr valβ β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr valβ) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
simp
intro xs a1
cases a1
case _ left =>
cases left
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp
case _ right =>
cases right
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inl q_0 β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
cases q_0
case _ q_0 =>
simp
sorry
case _ q_0 =>
simp
sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : Ο_0 β Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr q_0 β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inl q_0 β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
β’ β (x : List (β β Ο_0 β Ο_1)),
((β a β M_0.epsilon_arrow_list, a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = x) β¨
β a β M_0.accepting_state_list, a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = x) β
Sum.inl q_0 β x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | intro xs a1 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
β’ β (x : List (β β Ο_0 β Ο_1)),
((β a β M_0.epsilon_arrow_list, a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = x) β¨
β a β M_0.accepting_state_list, a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = x) β
Sum.inl q_0 β x | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
a1 :
(β a β M_0.epsilon_arrow_list, a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = xs) β¨
β a β M_0.accepting_state_list, a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases a1 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
a1 :
(β a β M_0.epsilon_arrow_list, a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = xs) β¨
β a β M_0.accepting_state_list, a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | case inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
hβ : β a β M_0.epsilon_arrow_list, a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = xs
β’ Sum.inl q_0 β xs
case inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
hβ : β a β M_0.accepting_state_list, a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ left =>
cases left
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
left : β a β M_0.epsilon_arrow_list, a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ right =>
cases right
case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
right : β a β M_0.accepting_state_list, a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases left | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
left : β a β M_0.epsilon_arrow_list, a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = xs
β’ Sum.inl q_0 β xs | case intro
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
wβ : EpsilonArrow Ο_0
hβ : wβ β M_0.epsilon_arrow_list β§ wβ.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) wβ.stop_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2 : x β M_0.epsilon_arrow_list β§ x.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases a2 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2 : x β M_0.epsilon_arrow_list β§ x.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs | case intro
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
leftβ : x β M_0.epsilon_arrow_list
rightβ : x.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2_left : x β M_0.epsilon_arrow_list
a2_right : x.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases a2_right | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2_left : x β M_0.epsilon_arrow_list
a2_right : x.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs | case intro
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2_left : x β M_0.epsilon_arrow_list
leftβ : x.start_state = p_0
rightβ : List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2_left : x β M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp only [β a2_right_right] | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2_left : x β M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β xs | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2_left : x β M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β List.map (Sum.inr β Sum.inl) x.stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_0
a2_left : x β M_0.epsilon_arrow_list
a2_right_left : x.start_state = p_0
a2_right_right : List.map (Sum.inr β Sum.inl) x.stop_state_list = xs
β’ Sum.inl q_0 β List.map (Sum.inr β Sum.inl) x.stop_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases right | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
right : β a β M_0.accepting_state_list, a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | case intro
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
wβ : Ο_0
hβ : wβ β M_0.accepting_state_list β§ wβ = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ x a2 =>
cases a2
case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2 : x β M_0.accepting_state_list β§ x = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases a2 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2 : x β M_0.accepting_state_list β§ x = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | case intro
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
leftβ : x β M_0.accepting_state_list
rightβ : x = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ a2_left a2_right =>
cases a2_right
case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2_left : x β M_0.accepting_state_list
a2_right : x = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases a2_right | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2_left : x β M_0.accepting_state_list
a2_right : x = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | case intro
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2_left : x β M_0.accepting_state_list
leftβ : x = p_0
rightβ : List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ a2_right_left a2_right_right =>
simp only [β a2_right_right]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2_left : x β M_0.accepting_state_list
a2_right_left : x = p_0
a2_right_right : List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp only [β a2_right_right] | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2_left : x β M_0.accepting_state_list
a2_right_left : x = p_0
a2_right_right : List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β xs | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2_left : x β M_0.accepting_state_list
a2_right_left : x = p_0
a2_right_right : List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β List.map (Sum.inr β Sum.inr) M_1.starting_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : Ο_0
a2_left : x β M_0.accepting_state_list
a2_right_left : x = p_0
a2_right_right : List.map (Sum.inr β Sum.inr) M_1.starting_state_list = xs
β’ Sum.inl q_0 β List.map (Sum.inr β Sum.inr) M_1.starting_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases q_0 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : Ο_0 β Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr q_0 β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | case inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 valβ : Ο_0
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inl valβ) β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl valβ)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False
case inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
valβ : Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inr valβ) β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr valβ)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
simp
sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_0
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inl q_0) β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
simp
sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inr q_0) β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_0
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inl q_0) β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_0
β’ (β stop_state_list,
((β a β M_0.epsilon_arrow_list,
a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = stop_state_list) β¨
β a β M_0.accepting_state_list,
a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = stop_state_list) β§
Sum.inr (Sum.inl q_0) β stop_state_list) β
β stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q_0 β stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_0
β’ (β stop_state_list,
((β a β M_0.epsilon_arrow_list,
a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = stop_state_list) β¨
β a β M_0.accepting_state_list,
a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = stop_state_list) β§
Sum.inr (Sum.inl q_0) β stop_state_list) β
β stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q_0 β stop_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inl p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inr q_0) β stop_state_list) =
match (Sum.inr (Sum.inl p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : Ο_1
β’ (β stop_state_list,
((β a β M_0.epsilon_arrow_list,
a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = stop_state_list) β¨
β a β M_0.accepting_state_list,
a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = stop_state_list) β§
Sum.inr (Sum.inr q_0) β stop_state_list) β
p_0 β M_0.accepting_state_list β§ q_0 β M_1.starting_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
q_0 : Ο_1
β’ (β stop_state_list,
((β a β M_0.epsilon_arrow_list,
a.start_state = p_0 β§ List.map (Sum.inr β Sum.inl) a.stop_state_list = stop_state_list) β¨
β a β M_0.accepting_state_list,
a = p_0 β§ List.map (Sum.inr β Sum.inr) M_1.starting_state_list = stop_state_list) β§
Sum.inr (Sum.inr q_0) β stop_state_list) β
p_0 β M_0.accepting_state_list β§ q_0 β M_1.starting_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases q | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
q : β β Ο_0 β Ο_1
p_0 : Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
q β stop_state_list) =
match (Sum.inr (Sum.inr p_0), q) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | case inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
valβ : β
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inl valβ β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl valβ) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False
case inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
valβ : Ο_0 β Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr valβ β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr valβ) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
simp
intro xs x a1 a2 a3
simp only [β a3]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inl q_0 β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
cases q_0
case _ q_0 =>
simp
intro xs x a1 a2 a3
simp only [β a3]
simp
case _ q_0 =>
simp
sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0 β Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr q_0 β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inl q_0 β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inl q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
β’ β (x : List (β β Ο_0 β Ο_1)),
β x_1 β M_1.epsilon_arrow_list,
x_1.start_state = p_0 β List.map (Sum.inr β Sum.inr) x_1.stop_state_list = x β Sum.inl q_0 β x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | intro xs x a1 a2 a3 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
β’ β (x : List (β β Ο_0 β Ο_1)),
β x_1 β M_1.epsilon_arrow_list,
x_1.start_state = p_0 β List.map (Sum.inr β Sum.inr) x_1.stop_state_list = x β Sum.inl q_0 β x | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inl q_0 β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp only [β a3] | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inl q_0 β xs | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inl q_0 β List.map (Sum.inr β Sum.inr) x.stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : β
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inl q_0 β List.map (Sum.inr β Sum.inr) x.stop_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases q_0 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0 β Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr q_0 β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr q_0) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | case inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
valβ : Ο_0
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inl valβ) β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl valβ)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False
case inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 valβ : Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inr valβ) β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr valβ)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
simp
intro xs x a1 a2 a3
simp only [β a3]
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inl q_0) β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ q_0 =>
simp
sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inr q_0) β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inl q_0) β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inl q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
β’ β (x : List (β β Ο_0 β Ο_1)),
β x_1 β M_1.epsilon_arrow_list,
x_1.start_state = p_0 β List.map (Sum.inr β Sum.inr) x_1.stop_state_list = x β Sum.inr (Sum.inl q_0) β x |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | intro xs x a1 a2 a3 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
β’ β (x : List (β β Ο_0 β Ο_1)),
β x_1 β M_1.epsilon_arrow_list,
x_1.start_state = p_0 β List.map (Sum.inr β Sum.inr) x_1.stop_state_list = x β Sum.inr (Sum.inl q_0) β x | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inr (Sum.inl q_0) β xs |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp only [β a3] | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inr (Sum.inl q_0) β xs | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inr (Sum.inl q_0) β List.map (Sum.inr β Sum.inr) x.stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
q_0 : Ο_0
xs : List (β β Ο_0 β Ο_1)
x : EpsilonArrow Ο_1
a1 : x β M_1.epsilon_arrow_list
a2 : x.start_state = p_0
a3 : List.map (Sum.inr β Sum.inr) x.stop_state_list = xs
β’ Sum.inr (Sum.inl q_0) β List.map (Sum.inr β Sum.inr) x.stop_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_1
β’ (β stop_state_list,
{ start_state := Sum.inr (Sum.inr p_0), stop_state_list := stop_state_list } β
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inl arrow.start_state,
stop_state_list := List.map Sum.inl arrow.stop_state_list })
M_0.epsilon_arrow_list) ++
List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
(List.map
(fun arrow =>
{ start_state := Sum.inr arrow.start_state,
stop_state_list := List.map Sum.inr arrow.stop_state_list })
M_1.epsilon_arrow_list) ++
List.map
(fun accepting_state =>
{ start_state := accepting_state,
stop_state_list := List.map Sum.inr (List.map Sum.inr M_1.starting_state_list) })
(List.map Sum.inr (List.map Sum.inl M_0.accepting_state_list)) β§
Sum.inr (Sum.inr q_0) β stop_state_list) =
match (Sum.inr (Sum.inr p_0), Sum.inr (Sum.inr q_0)) with
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inl q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_0.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inr p'), Sum.inr (Sum.inr q')) =>
β stop_state_list,
{ start_state := p', stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q' β stop_state_list
| (Sum.inr (Sum.inl p'), Sum.inr (Sum.inr q')) => p' β M_0.accepting_state_list β§ q' β M_1.starting_state_list
| x => False | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_1
β’ (β stop_state_list,
(β a β M_1.epsilon_arrow_list,
a.start_state = p_0 β§ List.map (Sum.inr β Sum.inr) a.stop_state_list = stop_state_list) β§
Sum.inr (Sum.inr q_0) β stop_state_list) β
β stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q_0 β stop_state_list |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | sorry | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 q_0 : Ο_1
β’ (β stop_state_list,
(β a β M_1.epsilon_arrow_list,
a.start_state = p_0 β§ List.map (Sum.inr β Sum.inr) a.stop_state_list = stop_state_list) β§
Sum.inr (Sum.inr q_0) β stop_state_list) β
β stop_state_list,
{ start_state := p_0, stop_state_list := stop_state_list } β M_1.epsilon_arrow_list β§ q_0 β stop_state_list | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | constructor | case right.right
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
β’ ((fun state => state β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False) β§
(fun state => state β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | case right.right.left
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
β’ (fun state => state β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False
case right.right.right
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
β’ (fun state => state β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | funext p | case right.right.left
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
β’ (fun state => state β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | case right.right.left.h
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p : β β Ο_0 β Ο_1
β’ (p β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match p with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases p | case right.right.left.h
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p : β β Ο_0 β Ο_1
β’ (p β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match p with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | case right.right.left.h.inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : β
β’ (Sum.inl valβ β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inl valβ with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False
case right.right.left.h.inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : Ο_0 β Ο_1
β’ (Sum.inr valβ β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr valβ with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : β
β’ (Sum.inl p_0 β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inl p_0 with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
cases p_0
case _ p_0 =>
simp
case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0 β Ο_1
β’ (Sum.inr p_0 β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr p_0 with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : β
β’ (Sum.inl p_0 β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inl p_0 with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases p_0 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0 β Ο_1
β’ (Sum.inr p_0 β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr p_0 with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | case inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : Ο_0
β’ (Sum.inr (Sum.inl valβ) β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr (Sum.inl valβ) with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False
case inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : Ο_1
β’ (Sum.inr (Sum.inr valβ) β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr (Sum.inr valβ) with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
β’ (Sum.inr (Sum.inl p_0) β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr (Sum.inl p_0) with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
β’ (Sum.inr (Sum.inr p_0) β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr (Sum.inr p_0) with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
β’ (Sum.inr (Sum.inl p_0) β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr (Sum.inl p_0) with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
β’ (Sum.inr (Sum.inr p_0) β List.map Sum.inr (List.map Sum.inl M_0.starting_state_list)) =
match Sum.inr (Sum.inr p_0) with
| Sum.inr (Sum.inl p') => p' β M_0.starting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | funext p | case right.right.right
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
β’ (fun state => state β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) = fun p =>
match p with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | case right.right.right.h
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p : β β Ο_0 β Ο_1
β’ (p β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match p with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases p | case right.right.right.h
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p : β β Ο_0 β Ο_1
β’ (p β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match p with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | case right.right.right.h.inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : β
β’ (Sum.inl valβ β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inl valβ with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False
case right.right.right.h.inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : Ο_0 β Ο_1
β’ (Sum.inr valβ β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr valβ with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : β
β’ (Sum.inl p_0 β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inl p_0 with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
cases p_0
case _ p_0 =>
simp
case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0 β Ο_1
β’ (Sum.inr p_0 β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr p_0 with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : β
β’ (Sum.inl p_0 β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inl p_0 with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | cases p_0 | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0 β Ο_1
β’ (Sum.inr p_0 β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr p_0 with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | case inl
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : Ο_0
β’ (Sum.inr (Sum.inl valβ) β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr (Sum.inl valβ) with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False
case inr
Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
valβ : Ο_1
β’ (Sum.inr (Sum.inr valβ) β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr (Sum.inr valβ) with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
β’ (Sum.inr (Sum.inl p_0) β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr (Sum.inl p_0) with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | case _ p_0 =>
simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
β’ (Sum.inr (Sum.inr p_0) β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr (Sum.inr p_0) with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_0
β’ (Sum.inr (Sum.inl p_0) β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr (Sum.inl p_0) with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/Parsing/RegExpToEpsilonNFA.lean | match_concat_EpsilonNFA_toAbstract | [557, 1] | [690, 19] | simp | Ξ± : Type
instβ : DecidableEq Ξ±
Ο_0 Ο_1 : Type
M_0 : EpsilonNFA Ξ± Ο_0
M_1 : EpsilonNFA Ξ± Ο_1
p_0 : Ο_1
β’ (Sum.inr (Sum.inr p_0) β List.map Sum.inr (List.map Sum.inr M_1.accepting_state_list)) =
match Sum.inr (Sum.inr p_0) with
| Sum.inr (Sum.inr p') => p' β M_1.accepting_state_list
| x => False | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | induction h1 generalizing V | D : Type
I J : Interpretation D
V : VarAssignment D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h1 : IsSub P zs H A B
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
β’ Holds D I V E B β Holds D J V E A | case pred_const_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
Xβ : PredName
xsβ : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (pred_const_ Xβ xsβ) β Holds D J V E (pred_const_ Xβ xsβ)
case pred_not_occurs_in
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
Xβ : PredName
xsβ : List VarName
aβ : Β¬(Xβ = P β§ xsβ.length = zs.length)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (pred_var_ Xβ xsβ) β Holds D J V E (pred_var_ Xβ xsβ)
case pred_occurs_in
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
Xβ : PredName
tsβ : List VarName
aβΒΉ : Xβ = P β§ tsβ.length = zs.length
aβ : Var.All.Rec.admits (Function.updateListITE id zs tsβ) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs tsβ) H) β Holds D J V E (pred_var_ P tsβ)
case eq_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
xβ yβ : VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (eq_ xβ yβ) β Holds D J V E (eq_ xβ yβ)
case true_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E true_ β Holds D J V E true_
case false_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E false_ β Holds D J V E false_
case not_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
phiβ phi'β : Formula
aβ : IsSub P zs H phiβ phi'β
a_ihβ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E phi'β β Holds D J V E phiβ)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E phi'β.not_ β Holds D J V E phiβ.not_
case imp_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
phiβ psiβ phi'β psi'β : Formula
aβΒΉ : IsSub P zs H phiβ phi'β
aβ : IsSub P zs H psiβ psi'β
a_ihβΒΉ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E phi'β β Holds D J V E phiβ)
a_ihβ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E psi'β β Holds D J V E psiβ)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (phi'β.imp_ psi'β) β Holds D J V E (phiβ.imp_ psiβ)
case and_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
phiβ psiβ phi'β psi'β : Formula
aβΒΉ : IsSub P zs H phiβ phi'β
aβ : IsSub P zs H psiβ psi'β
a_ihβΒΉ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E phi'β β Holds D J V E phiβ)
a_ihβ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E psi'β β Holds D J V E psiβ)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (phi'β.and_ psi'β) β Holds D J V E (phiβ.and_ psiβ)
case or_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
phiβ psiβ phi'β psi'β : Formula
aβΒΉ : IsSub P zs H phiβ phi'β
aβ : IsSub P zs H psiβ psi'β
a_ihβΒΉ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E phi'β β Holds D J V E phiβ)
a_ihβ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E psi'β β Holds D J V E psiβ)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (phi'β.or_ psi'β) β Holds D J V E (phiβ.or_ psiβ)
case iff_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
phiβ psiβ phi'β psi'β : Formula
aβΒΉ : IsSub P zs H phiβ phi'β
aβ : IsSub P zs H psiβ psi'β
a_ihβΒΉ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E phi'β β Holds D J V E phiβ)
a_ihβ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E psi'β β Holds D J V E psiβ)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (phi'β.iff_ psi'β) β Holds D J V E (phiβ.iff_ psiβ)
case forall_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
xβ : VarName
phiβ phi'β : Formula
aβΒΉ : Β¬isFreeIn xβ H
aβ : IsSub P zs H phiβ phi'β
a_ihβ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E phi'β β Holds D J V E phiβ)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (forall_ xβ phi'β) β Holds D J V E (forall_ xβ phiβ)
case exists_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
xβ : VarName
phiβ phi'β : Formula
aβΒΉ : Β¬isFreeIn xβ H
aβ : IsSub P zs H phiβ phi'β
a_ihβ :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E phi'β β Holds D J V E phiβ)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (exists_ xβ phi'β) β Holds D J V E (exists_ xβ phiβ)
case def_
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
Xβ : DefName
xsβ : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (def_ Xβ xsβ) β Holds D J V E (def_ Xβ xsβ) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | case pred_const_ h1_X h1_ts =>
simp only [Holds]
simp only [h3_const] | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (pred_const_ h1_X h1_ts) β Holds D J V E (pred_const_ h1_X h1_ts) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | case pred_occurs_in h1_X h1_ts h1_1 h1_2 =>
obtain s1 := Sub.Var.All.Rec.substitution_theorem D I V E (Function.updateListITE id zs h1_ts) H h1_2
obtain s2 := Function.updateListITE_comp id V zs h1_ts
simp only [s2] at s1
simp at s1
specialize h2 h1_X (List.map V h1_ts)
simp only [s1] at h2
simp only [Holds]
apply h2
simp
exact h1_1 | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | case eq_ h1_x h1_y =>
simp only [Holds] | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_x h1_y : VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (eq_ h1_x h1_y) β Holds D J V E (eq_ h1_x h1_y) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | case true_ | false_ =>
simp only [Holds] | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E false_ β Holds D J V E false_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | case not_ h1_phi h1_phi' _ h1_ih =>
simp only [Holds]
congr! 1
exact h1_ih V h2 | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_phi h1_phi' : Formula
aβ : IsSub P zs H h1_phi h1_phi'
h1_ih :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E h1_phi' β Holds D J V E h1_phi)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E h1_phi'.not_ β Holds D J V E h1_phi.not_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | case
forall_ h1_x h1_phi h1_phi' h1_1 _ h1_ih
| exists_ h1_x h1_phi h1_phi' h1_1 _ h1_ih =>
simp only [Holds]
first | apply forall_congr' | apply exists_congr
intro d
apply h1_ih
intro Q ds a1
specialize h2 Q ds a1
have s1 :
Holds D I (Function.updateListITE (Function.updateITE V h1_x d) zs ds) E H β
Holds D I (Function.updateListITE V zs ds) E H :=
by
apply Holds_coincide_Var
intro v a1
apply Function.updateListITE_updateIte
intro contra
subst contra
contradiction
simp only [h2] at s1
exact s1 | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_x : VarName
h1_phi h1_phi' : Formula
h1_1 : Β¬isFreeIn h1_x H
aβ : IsSub P zs H h1_phi h1_phi'
h1_ih :
β (V : VarAssignment D),
(β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)) β
(Holds D I V E h1_phi' β Holds D J V E h1_phi)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (exists_ h1_x h1_phi') β Holds D J V E (exists_ h1_x h1_phi) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp only [Holds] | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (pred_const_ h1_X h1_ts) β Holds D J V E (pred_const_ h1_X h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ I.pred_const_ h1_X (List.map V h1_ts) β J.pred_const_ h1_X (List.map V h1_ts) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp only [h3_const] | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ I.pred_const_ h1_X (List.map V h1_ts) β J.pred_const_ h1_X (List.map V h1_ts) | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp at h1_1 | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : Β¬(h1_X = P β§ h1_ts.length = zs.length)
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (pred_var_ h1_X h1_ts) β Holds D J V E (pred_var_ h1_X h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
β’ Holds D I V E (pred_var_ h1_X h1_ts) β Holds D J V E (pred_var_ h1_X h1_ts) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | apply Holds_coincide_PredVar | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
β’ Holds D I V E (pred_var_ h1_X h1_ts) β Holds D J V E (pred_var_ h1_X h1_ts) | case h1
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
β’ I.pred_const_ = J.pred_const_
case h2
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ h1_X h1_ts) β (I.pred_var_ P ds β J.pred_var_ P ds) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | exact h3_const | case h1
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
β’ I.pred_const_ = J.pred_const_ | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | intro X ds a1 | case h2
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
β’ β (P : PredName) (ds : List D),
predVarOccursIn P ds.length (pred_var_ h1_X h1_ts) β (I.pred_var_ P ds β J.pred_var_ P ds) | case h2
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
X : PredName
ds : List D
a1 : predVarOccursIn X ds.length (pred_var_ h1_X h1_ts)
β’ I.pred_var_ X ds β J.pred_var_ X ds |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp only [predVarOccursIn] at a1 | case h2
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
X : PredName
ds : List D
a1 : predVarOccursIn X ds.length (pred_var_ h1_X h1_ts)
β’ I.pred_var_ X ds β J.pred_var_ X ds | case h2
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
X : PredName
ds : List D
a1 : X = h1_X β§ ds.length = h1_ts.length
β’ I.pred_var_ X ds β J.pred_var_ X ds |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | cases a1 | case h2
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
X : PredName
ds : List D
a1 : X = h1_X β§ ds.length = h1_ts.length
β’ I.pred_var_ X ds β J.pred_var_ X ds | case h2.intro
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
X : PredName
ds : List D
leftβ : X = h1_X
rightβ : ds.length = h1_ts.length
β’ I.pred_var_ X ds β J.pred_var_ X ds |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | subst a1_left | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
h1_1 : h1_X = P β Β¬h1_ts.length = zs.length
X : PredName
ds : List D
a1_left : X = h1_X
a1_right : ds.length = h1_ts.length
β’ I.pred_var_ X ds β J.pred_var_ X ds | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
β’ I.pred_var_ X ds β J.pred_var_ X ds |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | apply h3_var | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
β’ I.pred_var_ X ds β J.pred_var_ X ds | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
β’ Β¬(X = P β§ ds.length = zs.length) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
β’ Β¬(X = P β§ ds.length = zs.length) | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
β’ X = P β Β¬ds.length = zs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | intro a2 | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
β’ X = P β Β¬ds.length = zs.length | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
a2 : X = P
β’ Β¬ds.length = zs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | subst a2 | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_ts : List VarName
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h1_1 : X = P β Β¬h1_ts.length = zs.length
a2 : X = P
β’ Β¬ds.length = zs.length | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : X = X β Β¬h1_ts.length = zs.length
β’ Β¬ds.length = zs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp at h1_1 | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : X = X β Β¬h1_ts.length = zs.length
β’ Β¬ds.length = zs.length | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
β’ Β¬ds.length = zs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | intro contra | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
β’ Β¬ds.length = zs.length | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ False |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | apply h1_1 | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ False | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ h1_ts.length = zs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | trans List.length ds | case a
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ h1_ts.length = zs.length | D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ h1_ts.length = ds.length
D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ ds.length = zs.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp only [eq_comm] | D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ h1_ts.length = ds.length | D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ ds.length = h1_ts.length |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | exact a1_right | D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ ds.length = h1_ts.length | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | exact contra | D : Type
I J : Interpretation D
E : Env
A : Formula
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h1_ts : List VarName
V : VarAssignment D
X : PredName
ds : List D
a1_right : ds.length = h1_ts.length
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = X β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h2 :
β (Q : PredName) (ds : List D),
Q = X β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ X ds)
h1_1 : Β¬h1_ts.length = zs.length
contra : ds.length = zs.length
β’ ds.length = zs.length | no goals |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | obtain s1 := Sub.Var.All.Rec.substitution_theorem D I V E (Function.updateListITE id zs h1_ts) H h1_2 | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s1 :
Holds D I (V β Function.updateListITE id zs h1_ts) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | obtain s2 := Function.updateListITE_comp id V zs h1_ts | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s1 :
Holds D I (V β Function.updateListITE id zs h1_ts) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s1 :
Holds D I (V β Function.updateListITE id zs h1_ts) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
s2 : V β Function.updateListITE id zs h1_ts = Function.updateListITE (V β id) zs (List.map V h1_ts)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp only [s2] at s1 | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s1 :
Holds D I (V β Function.updateListITE id zs h1_ts) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
s2 : V β Function.updateListITE id zs h1_ts = Function.updateListITE (V β id) zs (List.map V h1_ts)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s2 : V β Function.updateListITE id zs h1_ts = Function.updateListITE (V β id) zs (List.map V h1_ts)
s1 :
Holds D I (Function.updateListITE (V β id) zs (List.map V h1_ts)) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | simp at s1 | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s2 : V β Function.updateListITE id zs h1_ts = Function.updateListITE (V β id) zs (List.map V h1_ts)
s1 :
Holds D I (Function.updateListITE (V β id) zs (List.map V h1_ts)) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s2 : V β Function.updateListITE id zs h1_ts = Function.updateListITE (V β id) zs (List.map V h1_ts)
s1 :
Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) |
https://github.com/pthomas505/FOL.git | 097a4abea51b641d144539b9a0f7516f3b9d818c | FOL/NV/Sub/Pred/One/Ind/Sub.lean | FOL.NV.Sub.Pred.One.Ind.substitution_theorem | [131, 1] | [245, 15] | specialize h2 h1_X (List.map V h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
h2 :
β (Q : PredName) (ds : List D),
Q = P β§ ds.length = zs.length β (Holds D I (Function.updateListITE V zs ds) E H β J.pred_var_ P ds)
s2 : V β Function.updateListITE id zs h1_ts = Function.updateListITE (V β id) zs (List.map V h1_ts)
s1 :
Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) | D : Type
I J : Interpretation D
E : Env
A : Formula
P : PredName
zs : List VarName
H B : Formula
h3_const : I.pred_const_ = J.pred_const_
h3_var : β (Q : PredName) (ds : List D), Β¬(Q = P β§ ds.length = zs.length) β (I.pred_var_ Q ds β J.pred_var_ Q ds)
h1_X : PredName
h1_ts : List VarName
h1_1 : h1_X = P β§ h1_ts.length = zs.length
h1_2 : Var.All.Rec.admits (Function.updateListITE id zs h1_ts) H
V : VarAssignment D
s2 : V β Function.updateListITE id zs h1_ts = Function.updateListITE (V β id) zs (List.map V h1_ts)
s1 :
Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H β
Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H)
h2 :
h1_X = P β§ (List.map V h1_ts).length = zs.length β
(Holds D I (Function.updateListITE V zs (List.map V h1_ts)) E H β J.pred_var_ P (List.map V h1_ts))
β’ Holds D I V E (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs h1_ts) H) β Holds D J V E (pred_var_ P h1_ts) |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.