url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [hd.h2]
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ ∀ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ hd.q.predVarSet → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ ∀ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ ∅ → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ ∀ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ ∅ → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ ∀ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length (def_ X xs) → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [I']
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Interpretation.usingPred]
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [predVarOccursIn]
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ ∀ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length (def_ X xs) → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ ∀ (P_1 : PredName) (ds : List D), False → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ ∀ (P_1 : PredName) (ds : List D), False → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
[337, 1]
[352, 9]
apply substitution_theorem_aux D I V V E F P zs H ∅
D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊢ Holds D (I' D I V E P zs H) V E F ↔ Holds D I V E (replace P zs H F)
case h1 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊢ admitsAux P zs H ∅ F case h2 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊢ ∀ x ∉ ∅, V x = V x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
[337, 1]
[352, 9]
exact h1
case h1 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊢ admitsAux P zs H ∅ F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem
[337, 1]
[352, 9]
simp
case h2 D : Type I : Interpretation D V : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F ⊢ ∀ x ∉ ∅, V x = V x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
simp only [IsValid] at h2
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : F.IsValid ⊢ (replace P zs H F).IsValid
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ (replace P zs H F).IsValid
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
simp only [IsValid]
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ (replace P zs H F).IsValid
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
intro D I V E
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F ⊢ ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E (replace P zs H F)
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I V E (replace P zs H F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
simp only [← substitution_theorem D I V E F P zs H h1]
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D I V E (replace P zs H F)
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D (I' D I V E P zs H) V E F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_is_valid
[355, 1]
[369, 11]
apply h2
F : Formula P : PredName zs : List VarName H : Formula h1 : admits P zs H F h2 : ∀ (D : Type) (I : Interpretation D) (V : VarAssignment D) (E : Env), Holds D I V E F D : Type I : Interpretation D V : VarAssignment D E : Env ⊢ Holds D (I' D I V E P zs H) V E F
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
induction E generalizing F V V'
D : Type I : Interpretation D V V' : VarAssignment D E : Env F : Formula h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v ⊢ Holds D I V E F ↔ Holds D I V' E F
case nil D : Type I : Interpretation D V V' : VarAssignment D F : Formula h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v ⊢ Holds D I V [] F ↔ Holds D I V' [] F case cons D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) V V' : VarAssignment D F : Formula h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case cons.def_ hd tl ih X xs => split_ifs case pos c1 => apply ih intro v a1 simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1 have s1 : v ∈ List.toFinset hd.args apply Finset.mem_of_subset hd.h1 a1 simp only [List.mem_toFinset] at s1 apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1 tauto case neg c1 => apply ih tauto
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q else Holds D I V' tl (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
induction F generalizing V V'
case cons D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) V V' : VarAssignment D F : Formula h1 : ∀ (v : VarName), isFreeIn v F → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I V' (head✝ :: tail✝) F
case cons.pred_const_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝) case cons.pred_var_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝) case cons.eq_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝) case cons.true_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_ case cons.false_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_ case cons.not_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_ case cons.imp_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝) case cons.and_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝) case cons.or_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝) case cons.iff_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝) case cons.forall_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝) case cons.exists_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝) case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
all_goals simp only [isFreeIn] at h1 simp only [Holds]
case cons.pred_const_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (pred_const_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_const_ a✝¹ a✝) case cons.pred_var_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (pred_var_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (pred_var_ a✝¹ a✝) case cons.eq_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (eq_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (eq_ a✝¹ a✝) case cons.true_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v true_ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I V' (head✝ :: tail✝) true_ case cons.false_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v false_ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I V' (head✝ :: tail✝) false_ case cons.not_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v a✝.not_ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I V' (head✝ :: tail✝) a✝.not_ case cons.imp_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.imp_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.imp_ a✝) case cons.and_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.and_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.and_ a✝) case cons.or_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.or_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.or_ a✝) case cons.iff_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (a✝¹.iff_ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I V' (head✝ :: tail✝) (a✝¹.iff_ a✝) case cons.forall_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (forall_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (forall_ a✝¹ a✝) case cons.exists_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (exists_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (exists_ a✝¹ a✝) case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
case cons.pred_const_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D h1 : ∀ v ∈ a✝, V v = V' v ⊢ I.pred_const_ a✝¹ (List.map V a✝) ↔ I.pred_const_ a✝¹ (List.map V' a✝) case cons.pred_var_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : PredName a✝ : List VarName V V' : VarAssignment D h1 : ∀ v ∈ a✝, V v = V' v ⊢ I.pred_var_ a✝¹ (List.map V a✝) ↔ I.pred_var_ a✝¹ (List.map V' a✝) case cons.eq_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : VarName V V' : VarAssignment D h1 : ∀ (v : VarName), v = a✝¹ ∨ v = a✝ → V v = V' v ⊢ V a✝¹ = V a✝ ↔ V' a✝¹ = V' a✝ case cons.not_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v a✝ → V v = V' v ⊢ ¬Holds D I V (head✝ :: tail✝) a✝ ↔ ¬Holds D I V' (head✝ :: tail✝) a✝ case cons.imp_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) a✝¹ → Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝¹ → Holds D I V' (head✝ :: tail✝) a✝ case cons.and_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∧ Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝¹ ∧ Holds D I V' (head✝ :: tail✝) a✝ case cons.or_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∨ Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝¹ ∨ Holds D I V' (head✝ :: tail✝) a✝ case cons.iff_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝¹ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v a✝¹ ∨ isFreeIn v a✝ → V v = V' v ⊢ (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) a✝) ↔ (Holds D I V' (head✝ :: tail✝) a✝¹ ↔ Holds D I V' (head✝ :: tail✝) a✝) case cons.forall_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = a✝¹ ∧ isFreeIn v a✝ → V v = V' v ⊢ (∀ (d : D), Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔ ∀ (d : D), Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) a✝ case cons.exists_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v a✝ → V v = V' v) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I V' (head✝ :: tail✝) a✝) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = a✝¹ ∧ isFreeIn v a✝ → V v = V' v ⊢ (∃ d, Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔ ∃ d, Holds D I (Function.updateITE V' a✝¹ d) (head✝ :: tail✝) a✝ case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D h1 : ∀ v ∈ a✝, V v = V' v ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V' head✝.args (List.map V' a✝)) tail✝ head✝.q else Holds D I V' tail✝ (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case pred_const_ X xs | pred_var_ X xs => congr! 1 simp only [List.map_eq_map_iff] exact h1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) X : PredName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case eq_ x y => simp at h1 cases h1 case intro h1_left h1_right => congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x y : VarName V V' : VarAssignment D h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v ⊢ V x = V y ↔ V' x = V' y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case not_ phi phi_ih => congr! 1 exact phi_ih V V' h1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v ⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp at h1 first | apply forall_congr' | apply exists_congr intro d apply phi_ih intro v a1 simp only [Function.updateITE] split_ifs <;> tauto
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp only [isFreeIn] at h1
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v (def_ a✝¹ a✝) → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D h1 : ∀ v ∈ a✝, V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp only [Holds]
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D h1 : ∀ v ∈ a✝, V v = V' v ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I V' (head✝ :: tail✝) (def_ a✝¹ a✝)
case cons.def_ D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) a✝¹ : DefName a✝ : List VarName V V' : VarAssignment D h1 : ∀ v ∈ a✝, V v = V' v ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V' head✝.args (List.map V' a✝)) tail✝ head✝.q else Holds D I V' tail✝ (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) X : PredName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ I.pred_var_ X (List.map V xs) ↔ I.pred_var_ X (List.map V' xs)
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) X : PredName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ List.map V xs = List.map V' xs
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp only [List.map_eq_map_iff]
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) X : PredName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ List.map V xs = List.map V' xs
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) X : PredName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ ∀ x ∈ xs, V x = V' x
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
exact h1
case a.h.e'_4 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) X : PredName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ ∀ x ∈ xs, V x = V' x
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp at h1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x y : VarName V V' : VarAssignment D h1 : ∀ (v : VarName), v = x ∨ v = y → V v = V' v ⊢ V x = V y ↔ V' x = V' y
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x y : VarName V V' : VarAssignment D h1 : V x = V' x ∧ V y = V' y ⊢ V x = V y ↔ V' x = V' y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
cases h1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x y : VarName V V' : VarAssignment D h1 : V x = V' x ∧ V y = V' y ⊢ V x = V y ↔ V' x = V' y
case intro D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x y : VarName V V' : VarAssignment D left✝ : V x = V' x right✝ : V y = V' y ⊢ V x = V y ↔ V' x = V' y
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case intro h1_left h1_right => congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x y : VarName V V' : VarAssignment D h1_left : V x = V' x h1_right : V y = V' y ⊢ V x = V y ↔ V' x = V' y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x y : VarName V V' : VarAssignment D h1_left : V x = V' x h1_right : V y = V' y ⊢ V x = V y ↔ V' x = V' y
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v ⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I V' (head✝ :: tail✝) phi
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
exact phi_ih V V' h1
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
congr! 1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔ (Holds D I V' (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) psi)
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply phi_ih V V'
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
intro v a1
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ ∀ (v : VarName), isFreeIn v phi → V v = V' v
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v phi ⊢ V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply h1
case a.h.e'_1.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v phi ⊢ V v = V' v
case a.h.e'_1.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v phi ⊢ isFreeIn v phi ∨ isFreeIn v psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
left
case a.h.e'_1.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v phi ⊢ isFreeIn v phi ∨ isFreeIn v psi
case a.h.e'_1.a.a.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v phi ⊢ isFreeIn v phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
exact a1
case a.h.e'_1.a.a.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v phi ⊢ isFreeIn v phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply psi_ih V V'
case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi
case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
intro v a1
case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v ⊢ ∀ (v : VarName), isFreeIn v psi → V v = V' v
case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v psi ⊢ V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply h1
case a.h.e'_2.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v psi ⊢ V v = V' v
case a.h.e'_2.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v psi ⊢ isFreeIn v phi ∨ isFreeIn v psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
right
case a.h.e'_2.a.a D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v psi ⊢ isFreeIn v phi ∨ isFreeIn v psi
case a.h.e'_2.a.a.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v psi ⊢ isFreeIn v psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
exact a1
case a.h.e'_2.a.a.h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) phi psi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) psi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v psi → V v = V' v) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I V' (head✝ :: tail✝) psi) V V' : VarAssignment D h1 : ∀ (v : VarName), isFreeIn v phi ∨ isFreeIn v psi → V v = V' v v : VarName a1 : isFreeIn v psi ⊢ isFreeIn v psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp at h1
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x ∧ isFreeIn v phi → V v = V' v ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
intro d
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D ⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply phi_ih
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D ⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
case h.h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D ⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
intro v a1
case h.h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D ⊢ ∀ (v : VarName), isFreeIn v phi → Function.updateITE V x d v = Function.updateITE V' x d v
case h.h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D v : VarName a1 : isFreeIn v phi ⊢ Function.updateITE V x d v = Function.updateITE V' x d v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp only [Function.updateITE]
case h.h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D v : VarName a1 : isFreeIn v phi ⊢ Function.updateITE V x d v = Function.updateITE V' x d v
case h.h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D v : VarName a1 : isFreeIn v phi ⊢ (if v = x then d else V v) = if v = x then d else V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
split_ifs <;> tauto
case h.h1 D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v d : D v : VarName a1 : isFreeIn v phi ⊢ (if v = x then d else V v) = if v = x then d else V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply forall_congr'
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply exists_congr
D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I (Function.updateITE V' x d) (head✝ :: tail✝) phi
case h D : Type I : Interpretation D head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tail✝ F ↔ Holds D I V' tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V V' : VarAssignment D), (∀ (v : VarName), isFreeIn v phi → V v = V' v) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V' (head✝ :: tail✝) phi) V V' : VarAssignment D h1 : ∀ (v : VarName), ¬v = x → isFreeIn v phi → V v = V' v ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I (Function.updateITE V' x a) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
split_ifs
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q else Holds D I V' tl (def_ X xs)
case pos D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v h✝ : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q case neg D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v h✝ : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case pos c1 => apply ih intro v a1 simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1 have s1 : v ∈ List.toFinset hd.args apply Finset.mem_of_subset hd.h1 a1 simp only [List.mem_toFinset] at s1 apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1 tauto
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
case neg c1 => apply ih tauto
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply ih
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V' hd.args (List.map V' xs)) tl hd.q
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
intro v a1
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length ⊢ ∀ (v : VarName), isFreeIn v hd.q → Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp only [isFreeIn_iff_mem_freeVarSet v hd.q] at a1
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : isFreeIn v hd.q ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
have s1 : v ∈ List.toFinset hd.args
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args.toFinset case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args.toFinset ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply Finset.mem_of_subset hd.h1 a1
case s1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet ⊢ v ∈ hd.args.toFinset case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args.toFinset ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args.toFinset ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
simp only [List.mem_toFinset] at s1
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args.toFinset ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply Function.updateListITE_fun_coincide_mem_eq_len V V' hd.args xs v h1 s1
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args ⊢ Function.updateListITE V hd.args (List.map V xs) v = Function.updateListITE V' hd.args (List.map V' xs) v
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args ⊢ hd.args.length = xs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
tauto
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : X = hd.name ∧ xs.length = hd.args.length v : VarName a1 : v ∈ hd.q.freeVarSet s1 : v ∈ hd.args ⊢ hd.args.length = xs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
apply ih
D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ Holds D I V tl (def_ X xs) ↔ Holds D I V' tl (def_ X xs)
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_Var
[101, 1]
[172, 12]
tauto
case h1 D : Type I : Interpretation D hd : Definition tl : List Definition ih : ∀ (V V' : VarAssignment D) (F : Formula), (∀ (v : VarName), isFreeIn v F → V v = V' v) → (Holds D I V tl F ↔ Holds D I V' tl F) X : DefName xs : List VarName V V' : VarAssignment D h1 : ∀ v ∈ xs, V v = V' v c1 : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ ∀ (v : VarName), isFreeIn v (def_ X xs) → V v = V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
induction E generalizing F V
D : Type I I' : Interpretation D V : VarAssignment D E : Env F : Formula h1 : I.pred_const_ = I'.pred_const_ h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V E F ↔ Holds D I' V E F
case nil D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ V : VarAssignment D F : Formula h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V [] F ↔ Holds D I' V [] F case cons D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) V : VarAssignment D F : Formula h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
case cons.def_ hd tl ih X xs => split_ifs case pos c1 => apply ih intro P ds a1 simp only [predVarOccursIn_iff_mem_predVarSet P ds.length] at a1 simp only [hd.h2] at a1 simp at a1 case neg c1 => apply ih intro P ds a1 simp only [predVarOccursIn] at a1
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tl F ↔ Holds D I' V tl F) X : DefName xs : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I' (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I' V tl (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
induction F generalizing V
case cons D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) V : VarAssignment D F : Formula h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) F ↔ Holds D I' V (head✝ :: tail✝) F
case cons.pred_const_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : PredName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) case cons.pred_var_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : PredName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) case cons.eq_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝) case cons.true_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_ case cons.false_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_ case cons.not_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_ case cons.imp_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝) case cons.and_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝) case cons.or_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝) case cons.iff_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝) case cons.forall_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝) case cons.exists_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝) case cons.def_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : DefName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
all_goals simp only [predVarOccursIn] at h2 simp only [Holds]
case cons.pred_const_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : PredName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (pred_const_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_const_ a✝¹ a✝) case cons.pred_var_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : PredName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (pred_var_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (pred_var_ a✝¹ a✝) case cons.eq_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (eq_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (eq_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (eq_ a✝¹ a✝) case cons.true_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length true_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) true_ ↔ Holds D I' V (head✝ :: tail✝) true_ case cons.false_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length false_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) false_ ↔ Holds D I' V (head✝ :: tail✝) false_ case cons.not_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝.not_ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) a✝.not_ ↔ Holds D I' V (head✝ :: tail✝) a✝.not_ case cons.imp_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.imp_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.imp_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.imp_ a✝) case cons.and_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.and_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.and_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.and_ a✝) case cons.or_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.or_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.or_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.or_ a✝) case cons.iff_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (a✝¹.iff_ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (a✝¹.iff_ a✝) ↔ Holds D I' V (head✝ :: tail✝) (a✝¹.iff_ a✝) case cons.forall_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (forall_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (forall_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (forall_ a✝¹ a✝) case cons.exists_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (exists_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (exists_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (exists_ a✝¹ a✝) case cons.def_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : DefName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
case cons.pred_const_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : PredName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_const_ a✝¹ (List.map V a✝) ↔ I'.pred_const_ a✝¹ (List.map V a✝) case cons.pred_var_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : PredName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), P = a✝¹ ∧ ds.length = a✝.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_var_ a✝¹ (List.map V a✝) ↔ I'.pred_var_ a✝¹ (List.map V a✝) case cons.not_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ¬Holds D I V (head✝ :: tail✝) a✝ ↔ ¬Holds D I' V (head✝ :: tail✝) a✝ case cons.imp_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) a✝¹ → Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝¹ → Holds D I' V (head✝ :: tail✝) a✝ case cons.and_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∧ Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝¹ ∧ Holds D I' V (head✝ :: tail✝) a✝ case cons.or_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) a✝¹ ∨ Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝¹ ∨ Holds D I' V (head✝ :: tail✝) a✝ case cons.iff_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝¹) a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝¹ ∨ predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (Holds D I V (head✝ :: tail✝) a✝¹ ↔ Holds D I V (head✝ :: tail✝) a✝) ↔ (Holds D I' V (head✝ :: tail✝) a✝¹ ↔ Holds D I' V (head✝ :: tail✝) a✝) case cons.forall_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (∀ (d : D), Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔ ∀ (d : D), Holds D I' (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝ case cons.exists_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) a✝ ↔ Holds D I' V (head✝ :: tail✝) a✝) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length a✝ → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (∃ d, Holds D I (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝) ↔ ∃ d, Holds D I' (Function.updateITE V a✝¹ d) (head✝ :: tail✝) a✝ case cons.def_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : DefName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I' (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I' V tail✝ (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
case pred_const_ X xs => simp only [h1]
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
case pred_var_ X xs => simp at h2 specialize h2 X (List.map V xs) simp at h2 exact h2
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
case not_ phi phi_ih => congr! 1 exact phi_ih V h2
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
case forall_ x phi phi_ih | exists_ x phi phi_ih => first | apply forall_congr' | apply exists_congr intro d exact phi_ih (Function.updateITE V x d) h2
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
simp only [predVarOccursIn] at h2
case cons.def_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : DefName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length (def_ a✝¹ a✝) → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
case cons.def_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : DefName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
simp only [Holds]
case cons.def_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : DefName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) (def_ a✝¹ a✝) ↔ Holds D I' V (head✝ :: tail✝) (def_ a✝¹ a✝)
case cons.def_ D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) a✝¹ : DefName a✝ : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I V tail✝ (def_ a✝¹ a✝)) ↔ if a✝¹ = head✝.name ∧ a✝.length = head✝.args.length then Holds D I' (Function.updateListITE V head✝.args (List.map V a✝)) tail✝ head✝.q else Holds D I' V tail✝ (def_ a✝¹ a✝)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
simp only [h1]
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), False → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_const_ X (List.map V xs) ↔ I'.pred_const_ X (List.map V xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
simp at h2
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), P = X ∧ ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
specialize h2 X (List.map V xs)
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), P = X → ds.length = xs.length → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
simp at h2
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : X = X → (List.map V xs).length = xs.length → (I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
exact h2
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) X : PredName xs : List VarName V : VarAssignment D h2 : I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs) ⊢ I.pred_var_ X (List.map V xs) ↔ I'.pred_var_ X (List.map V xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
congr! 1
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ¬Holds D I V (head✝ :: tail✝) phi ↔ ¬Holds D I' V (head✝ :: tail✝) phi
case a.h.e'_1.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
exact phi_ih V h2
case a.h.e'_1.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
congr! 1
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I V (head✝ :: tail✝) psi) ↔ (Holds D I' V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) psi)
case a.h.e'_1.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi case a.h.e'_2.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
apply phi_ih
case a.h.e'_1.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi
case a.h.e'_1.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
intro P ds a1
case a.h.e'_1.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
case a.h.e'_1.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length phi ⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
apply h2
case a.h.e'_1.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length phi ⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
case a.h.e'_1.a.h2.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length phi ⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
left
case a.h.e'_1.a.h2.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length phi ⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
case a.h.e'_1.a.h2.a.h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length phi ⊢ predVarOccursIn P ds.length phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
exact a1
case a.h.e'_1.a.h2.a.h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length phi ⊢ predVarOccursIn P ds.length phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
apply psi_ih
case a.h.e'_2.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi
case a.h.e'_2.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
intro P ds a1
case a.h.e'_2.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)
case a.h.e'_2.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length psi ⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
apply h2
case a.h.e'_2.a.h2 D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length psi ⊢ I.pred_var_ P ds ↔ I'.pred_var_ P ds
case a.h.e'_2.a.h2.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length psi ⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
right
case a.h.e'_2.a.h2.a D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length psi ⊢ predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi
case a.h.e'_2.a.h2.a.h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length psi ⊢ predVarOccursIn P ds.length psi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
exact a1
case a.h.e'_2.a.h2.a.h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) phi psi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) psi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) psi ↔ Holds D I' V (head✝ :: tail✝) psi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi ∨ predVarOccursIn P ds.length psi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) P : PredName ds : List D a1 : predVarOccursIn P ds.length psi ⊢ predVarOccursIn P ds.length psi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
first | apply forall_congr' | apply exists_congr
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
case h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
intro d
case h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
case h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) d : D ⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
exact phi_ih (Function.updateITE V x d) h2
case h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) d : D ⊢ Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
apply forall_congr'
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (∀ (d : D), Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∀ (d : D), Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
case h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Semantics.lean
FOL.NV.Holds_coincide_PredVar
[175, 1]
[236, 40]
apply exists_congr
D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ (∃ d, Holds D I (Function.updateITE V x d) (head✝ :: tail✝) phi) ↔ ∃ d, Holds D I' (Function.updateITE V x d) (head✝ :: tail✝) phi
case h D : Type I I' : Interpretation D h1 : I.pred_const_ = I'.pred_const_ head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length F → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V tail✝ F ↔ Holds D I' V tail✝ F) x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D), (∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds)) → (Holds D I V (head✝ :: tail✝) phi ↔ Holds D I' V (head✝ :: tail✝) phi) V : VarAssignment D h2 : ∀ (P : PredName) (ds : List D), predVarOccursIn P ds.length phi → (I.pred_var_ P ds ↔ I'.pred_var_ P ds) ⊢ ∀ (a : D), Holds D I (Function.updateITE V x a) (head✝ :: tail✝) phi ↔ Holds D I' (Function.updateITE V x a) (head✝ :: tail✝) phi