url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.replace_no_predVar
[107, 1]
[152, 24]
exact phi_ih h1
case h.e'_2 P : PredName zs : List VarName H : Formula x : VarName phi : Formula phi_ih : phi.predVarSet = ∅ → replace P zs H phi = phi h1 : phi.predVarSet = ∅ ⊢ replace P zs H phi = phi
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.replace_no_predVar
[107, 1]
[152, 24]
simp only [replace]
P : PredName zs : List VarName H : Formula X : DefName xs : List VarName h1 : (def_ X xs).predVarSet = ∅ ⊢ replace P zs H (def_ X xs) = def_ X xs
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
set E_ref := E
D : Type I : Interpretation D V V' : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula binders : Finset VarName h1 : admitsAux P zs H binders F h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E P zs H) V E F ↔ Holds D I V E (replace P zs H F)
D : Type I : Interpretation D V V' : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula binders : Finset VarName h1 : admitsAux P zs H binders F h2 : ∀ x ∉ binders, V x = V' x E_ref : Env := E ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
induction E generalizing F binders V
D : Type I : Interpretation D V V' : VarAssignment D E : Env F : Formula P : PredName zs : List VarName H : Formula binders : Finset VarName h1 : admitsAux P zs H binders F h2 : ∀ x ∉ binders, V x = V' x E_ref : Env := E ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
case nil D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula V : VarAssignment D F : Formula binders : Finset VarName h1 : admitsAux P zs H binders F h2 : ∀ x ∉ binders, V x = V' x E_ref : Env := [] ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) case cons D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) V : VarAssignment D F : Formula binders : Finset VarName h1 : admitsAux P zs H binders F h2 : ∀ x ∉ binders, V x = V' x E_ref : Env := head✝ :: tail✝ ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case nil.def_ X xs => simp only [replace] simp only [E_ref] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (replace P zs H (def_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
induction F generalizing binders V
case cons D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) V : VarAssignment D F : Formula binders : Finset VarName h1 : admitsAux P zs H binders F h2 : ∀ x ∉ binders, V x = V' x E_ref : Env := head✝ :: tail✝ ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F)
case cons.pred_const_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ a✝¹ a✝) ↔ Holds D I V E_ref (replace P zs H (pred_const_ a✝¹ a✝)) case cons.pred_var_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ : PredName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_var_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ a✝¹ a✝) ↔ Holds D I V E_ref (replace P zs H (pred_var_ a✝¹ a✝)) case cons.eq_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ a✝ : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (eq_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ a✝¹ a✝) ↔ Holds D I V E_ref (replace P zs H (eq_ a✝¹ a✝)) case cons.true_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders true_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref true_ ↔ Holds D I V E_ref (replace P zs H true_) case cons.false_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref false_ ↔ Holds D I V E_ref (replace P zs H false_) case cons.not_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝ ↔ Holds D I V E_ref (replace P zs H a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders a✝.not_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref a✝.not_ ↔ Holds D I V E_ref (replace P zs H a✝.not_) case cons.imp_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝¹ ↔ Holds D I V E_ref (replace P zs H a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝ ↔ Holds D I V E_ref (replace P zs H a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (a✝¹.imp_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (a✝¹.imp_ a✝) ↔ Holds D I V E_ref (replace P zs H (a✝¹.imp_ a✝)) case cons.and_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝¹ ↔ Holds D I V E_ref (replace P zs H a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝ ↔ Holds D I V E_ref (replace P zs H a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (a✝¹.and_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (a✝¹.and_ a✝) ↔ Holds D I V E_ref (replace P zs H (a✝¹.and_ a✝)) case cons.or_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝¹ ↔ Holds D I V E_ref (replace P zs H a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝ ↔ Holds D I V E_ref (replace P zs H a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (a✝¹.or_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (a✝¹.or_ a✝) ↔ Holds D I V E_ref (replace P zs H (a✝¹.or_ a✝)) case cons.iff_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ a✝ : Formula a_ih✝¹ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝¹ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝¹ ↔ Holds D I V E_ref (replace P zs H a✝¹)) a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝ ↔ Holds D I V E_ref (replace P zs H a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (a✝¹.iff_ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (a✝¹.iff_ a✝) ↔ Holds D I V E_ref (replace P zs H (a✝¹.iff_ a✝)) case cons.forall_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝ ↔ Holds D I V E_ref (replace P zs H a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (forall_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (forall_ a✝¹ a✝) ↔ Holds D I V E_ref (replace P zs H (forall_ a✝¹ a✝)) case cons.exists_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ : VarName a✝ : Formula a_ih✝ : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders a✝ → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref a✝ ↔ Holds D I V E_ref (replace P zs H a✝)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (exists_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ a✝¹ a✝) ↔ Holds D I V E_ref (replace P zs H (exists_ a✝¹ a✝)) case cons.def_ D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ a✝¹ : DefName a✝ : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ a✝¹ a✝) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ a✝¹ a✝) ↔ Holds D I V E_ref (replace P zs H (def_ a✝¹ a✝))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case pred_const_ X xs => simp only [replace] simp only [Holds] simp only [I'] simp only [Interpretation.usingPred]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) ↔ Holds D I V E_ref (replace P zs H (pred_const_ X xs))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case eq_ x y => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) ↔ Holds D I V E_ref (replace P zs H (eq_ x y))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case true_ | false_ => simp only [replace] simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref false_ ↔ Holds D I V E_ref (replace P zs H false_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case not_ phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] congr! 1 exact phi_ih V binders h1 h2
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi.not_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ ↔ Holds D I V E_ref (replace P zs H phi.not_)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case forall_ x phi phi_ih | exists_ x phi phi_ih => simp only [admitsAux] at h1 simp only [replace] simp only [Holds] first | apply forall_congr' | apply exists_congr intro d apply phi_ih (Function.updateITE V x d) (binders ∪ {x}) h1 intro v a1 simp only [Function.updateITE] simp at a1 push_neg at a1 cases a1 case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (exists_ x phi) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi))
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) ↔ Holds D I V E_ref (replace P zs H (pred_const_ X xs))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) ↔ Holds D I V E_ref (pred_const_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_const_ X xs) ↔ Holds D I V E_ref (pred_const_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ (I' D I V' E_ref P zs H).pred_const_ X (List.map V xs) ↔ I.pred_const_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [I']
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ (I' D I V' E_ref P zs H).pred_const_ X (List.map V xs) ↔ I.pred_const_ X (List.map V xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H else I.pred_var_ Q ds).pred_const_ X (List.map V xs) ↔ I.pred_const_ X (List.map V xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Interpretation.usingPred]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_const_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H else I.pred_var_ Q ds).pred_const_ X (List.map V xs) ↔ I.pred_const_ X (List.map V xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (pred_var_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) ↔ Holds D I V E_ref (replace P zs H (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) ↔ Holds D I V E_ref (replace P zs H (pred_var_ X xs))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) ↔ Holds D I V E_ref (replace P zs H (pred_var_ X xs))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (pred_var_ X xs) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (I' D I V' E_ref P zs H).pred_var_ X (List.map V xs) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [I']
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (I' D I V' E_ref P zs H).pred_var_ X (List.map V xs) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H else I.pred_var_ Q ds).pred_var_ X (List.map V xs) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Interpretation.usingPred]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) E_ref H else I.pred_var_ Q ds).pred_var_ X (List.map V xs) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (if X = P ∧ (List.map V xs).length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (if X = P ∧ (List.map V xs).length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
split_ifs at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : if X = P ∧ xs.length = zs.length then Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) else True h2 : ∀ x ∉ binders, V x = V' x ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h✝ : X = P ∧ xs.length = zs.length h1 : Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs) case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h✝ : ¬(X = P ∧ xs.length = zs.length) h1 : True ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case neg c1 => split_ifs case pos c2 => contradiction case neg c2 => simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Sub.Var.All.Rec.admits] at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1 : Var.All.Rec.admits (Function.updateListITE id zs xs) H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H ∧ ∀ x ∈ binders, ¬(isFreeIn x H ∧ x ∉ zs) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H ∧ ∀ x ∈ binders, isFreeIn x H → x ∈ zs ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
cases h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1 : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H ∧ ∀ x ∈ binders, isFreeIn x H → x ∈ zs ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
case intro D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length left✝ : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H right✝ : ∀ x ∈ binders, isFreeIn x H → x ∈ zs ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
have s1 : Holds D I (V ∘ Function.updateListITE id zs xs) E_ref H ↔ Holds D I V E_ref (Sub.Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) := by exact Sub.Var.All.Rec.substitution_theorem D I V E_ref (Function.updateListITE id zs xs) H h1_left
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (V ∘ Function.updateListITE id zs xs) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Function.updateListITE_comp] at s1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (V ∘ Function.updateListITE id zs xs) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE (V ∘ id) zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp at s1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE (V ∘ id) zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [s2] at s1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) h✝ : X = P ∧ xs.length = zs.length ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) h✝ : ¬(X = P ∧ xs.length = zs.length) ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case pos c2 => exact s1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) c2 : X = P ∧ xs.length = zs.length ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case neg _ => exact s1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) h✝ : ¬(X = P ∧ xs.length = zs.length) ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact Sub.Var.All.Rec.substitution_theorem D I V E_ref (Function.updateListITE id zs xs) H h1_left
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs ⊢ Holds D I (V ∘ Function.updateListITE id zs xs) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply Holds_coincide_Var
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ ∀ (v : VarName), isFreeIn v H → Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
intro v a1
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) ⊢ ∀ (v : VarName), isFreeIn v H → Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
by_cases c2 : v ∈ zs
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply Function.updateListITE_mem_eq_len V V' v zs (List.map V xs) c2
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs ⊢ zs.length = (List.map V xs).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
cases c1
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs ⊢ zs.length = (List.map V xs).length
case pos.intro D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs left✝ : X = P right✝ : xs.length = zs.length ⊢ zs.length = (List.map V xs).length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case pos.intro c1_left c1_right => simp symm exact c1_right
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs c1_left : X = P c1_right : xs.length = zs.length ⊢ zs.length = (List.map V xs).length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs c1_left : X = P c1_right : xs.length = zs.length ⊢ zs.length = (List.map V xs).length
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs c1_left : X = P c1_right : xs.length = zs.length ⊢ zs.length = xs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
symm
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs c1_left : X = P c1_right : xs.length = zs.length ⊢ zs.length = xs.length
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs c1_left : X = P c1_right : xs.length = zs.length ⊢ xs.length = zs.length
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact c1_right
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∈ zs c1_left : X = P c1_right : xs.length = zs.length ⊢ xs.length = zs.length
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
by_cases c3 : v ∈ binders
case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∈ binders ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∉ binders ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
specialize h1_right v c3 a1
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∈ binders ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∈ binders h1_right : v ∈ zs ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
contradiction
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∈ binders h1_right : v ∈ zs ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply Function.updateListITE_mem'
case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∉ binders ⊢ Function.updateListITE V zs (List.map V xs) v = Function.updateListITE V' zs (List.map V xs) v
case neg.h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∉ binders ⊢ V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact h2 v c3
case neg.h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s1 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) v : VarName a1 : isFreeIn v H c2 : v ∉ zs c3 : v ∉ binders ⊢ V v = V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact s1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) c2 : X = P ∧ xs.length = zs.length ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact s1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : X = P ∧ xs.length = zs.length h1_left : Var.All.Rec.admitsAux (Function.updateListITE id zs xs) ∅ H h1_right : ∀ x ∈ binders, isFreeIn x H → x ∈ zs s2 : Holds D I (Function.updateListITE V zs (List.map V xs)) E_ref H ↔ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H s1 : Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) h✝ : ¬(X = P ∧ xs.length = zs.length) ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True ⊢ (if X = P ∧ xs.length = zs.length then Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H else I.pred_var_ X (List.map V xs)) ↔ Holds D I V E_ref (if X = P ∧ xs.length = zs.length then Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H else pred_var_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True h✝ : X = P ∧ xs.length = zs.length ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H) case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True h✝ : ¬(X = P ∧ xs.length = zs.length) ⊢ I.pred_var_ X (List.map V xs) ↔ Holds D I V E_ref (pred_var_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case pos c2 => contradiction
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True c2 : X = P ∧ xs.length = zs.length ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case neg c2 => simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True c2 : ¬(X = P ∧ xs.length = zs.length) ⊢ I.pred_var_ X (List.map V xs) ↔ Holds D I V E_ref (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
contradiction
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True c2 : X = P ∧ xs.length = zs.length ⊢ Holds D I (Function.updateListITE V' zs (List.map V xs)) E_ref H ↔ Holds D I V E_ref (Var.All.Rec.fastReplaceFree (Function.updateListITE id zs xs) H)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ X : PredName xs : List VarName V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x c1 : ¬(X = P ∧ xs.length = zs.length) h1 : True c2 : ¬(X = P ∧ xs.length = zs.length) ⊢ I.pred_var_ X (List.map V xs) ↔ Holds D I V E_ref (pred_var_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) ↔ Holds D I V E_ref (replace P zs H (eq_ x y))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) ↔ Holds D I V E_ref (eq_ x y)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x y : VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (eq_ x y) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (eq_ x y) ↔ Holds D I V E_ref (eq_ x y)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref false_ ↔ Holds D I V E_ref (replace P zs H false_)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref false_ ↔ Holds D I V E_ref false_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders false_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref false_ ↔ Holds D I V E_ref false_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi.not_ h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ ↔ Holds D I V E_ref (replace P zs H phi.not_)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ ↔ Holds D I V E_ref (replace P zs H phi.not_)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ ↔ Holds D I V E_ref (replace P zs H phi.not_)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ ↔ Holds D I V E_ref (replace P zs H phi).not_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi.not_ ↔ Holds D I V E_ref (replace P zs H phi).not_
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ¬Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ ¬Holds D I V E_ref (replace P zs H phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ¬Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ ¬Holds D I V E_ref (replace P zs H phi)
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact phi_ih V binders h1 h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (phi.iff_ psi) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref (replace P zs H (phi.iff_ psi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (phi.iff_ psi) ↔ Holds D I V E_ref ((replace P zs H phi).iff_ (replace P zs H psi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
cases h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders phi ∧ admitsAux P zs H binders psi h2 : ∀ x ∉ binders, V x = V' x ⊢ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
case intro D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x left✝ : admitsAux P zs H binders phi right✝ : admitsAux P zs H binders psi ⊢ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
congr! 1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊢ (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D (I' D I V' E_ref P zs H) V E_ref psi) ↔ (Holds D I V E_ref (replace P zs H phi) ↔ Holds D I V E_ref (replace P zs H psi))
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi) case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact phi_ih V binders h1_left h2
case a.h.e'_1.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact psi_ih V binders h1_right h2
case a.h.e'_2.a D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ phi psi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) psi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders psi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)) V : VarAssignment D binders : Finset VarName h2 : ∀ x ∉ binders, V x = V' x h1_left : admitsAux P zs H binders phi h1_right : admitsAux P zs H binders psi ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref psi ↔ Holds D I V E_ref (replace P zs H psi)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [admitsAux] at h1
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (exists_ x phi) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (replace P zs H (exists_ x phi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (exists_ x (replace P zs H phi))
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (exists_ x phi) ↔ Holds D I V E_ref (exists_ x (replace P zs H phi))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∃ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ ∃ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
first | apply forall_congr' | apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∃ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ ∃ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
intro d
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi ↔ Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply phi_ih (Function.updateITE V x d) (binders ∪ {x}) h1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi ↔ Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ ∀ x_1 ∉ binders ∪ {x}, Function.updateITE V x d x_1 = V' x_1
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
intro v a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D ⊢ ∀ x_1 ∉ binders ∪ {x}, Function.updateITE V x d x_1 = V' x_1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ Function.updateITE V x d v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Function.updateITE]
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ Function.updateITE V x d v = V' v
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp at a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∪ {x} ⊢ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ ¬v = x ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
push_neg at a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ ¬v = x ⊢ (if v = x then d else V v) = V' v
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ v ≠ x ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
cases a1
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1 : v ∉ binders ∧ v ≠ x ⊢ (if v = x then d else V v) = V' v
case h.intro D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName left✝ : v ∉ binders right✝ : v ≠ x ⊢ (if v = x then d else V v) = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
case h.intro a1_left a1_right => simp only [if_neg a1_right] exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ (if v = x then d else V v) = V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply forall_congr'
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∀ (d : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ ∀ (d : D), Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply exists_congr
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ (∃ d, Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x d) E_ref phi) ↔ ∃ d, Holds D I (Function.updateITE V x d) E_ref (replace P zs H phi)
case h D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x ⊢ ∀ (a : D), Holds D (I' D I V' E_ref P zs H) (Function.updateITE V x a) E_ref phi ↔ Holds D I (Function.updateITE V x a) E_ref (replace P zs H phi)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [if_neg a1_right]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ (if v = x then d else V v) = V' v
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ V v = V' v
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
exact h2 v a1_left
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula head✝ : Definition tail✝ : List Definition tail_ih✝ : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tail✝; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := head✝ :: tail✝ x : VarName phi : Formula phi_ih : ∀ (V : VarAssignment D) (binders : Finset VarName), admitsAux P zs H binders phi → (∀ x ∉ binders, V x = V' x) → (Holds D (I' D I V' E_ref P zs H) V E_ref phi ↔ Holds D I V E_ref (replace P zs H phi)) V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H (binders ∪ {x}) phi h2 : ∀ x ∉ binders, V x = V' x d : D v : VarName a1_left : v ∉ binders a1_right : v ≠ x ⊢ V v = V' v
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (replace P zs H (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [E_ref]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula E_ref : Env := [] X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' [] P zs H) V [] (def_ X xs) ↔ Holds D I V [] (def_ X xs)
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (replace P zs H (def_ X xs))
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [E_ref]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' E_ref P zs H) V E_ref (def_ X xs) ↔ Holds D I V E_ref (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Holds]
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ Holds D (I' D I V' (hd :: tl) P zs H) V (hd :: tl) (def_ X xs) ↔ Holds D I V (hd :: tl) (def_ X xs)
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
split_ifs
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x ⊢ (if X = hd.name ∧ xs.length = hd.args.length then Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs)) ↔ if X = hd.name ∧ xs.length = hd.args.length then Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q else Holds D I V tl (def_ X xs)
case pos D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x h✝ : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q case neg D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x h✝ : ¬(X = hd.name ∧ xs.length = hd.args.length) ⊢ Holds D (I' D I V' (hd :: tl) P zs H) V tl (def_ X xs) ↔ Holds D I V tl (def_ X xs)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
specialize ih (Function.updateListITE V hd.args (List.map V xs)) hd.q
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition ih : ∀ (V : VarAssignment D) (F : Formula) (binders : Finset VarName), admitsAux P zs H binders F → (∀ x ∉ binders, V x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) V E_ref F ↔ Holds D I V E_ref (replace P zs H F) E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ⊢ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q) ⊢ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [replace_no_predVar P zs H hd.q hd.h2] at ih
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → let E_ref := tl; Holds D (I' D I V' E_ref P zs H) (Function.updateListITE V hd.args (List.map V xs)) E_ref hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) E_ref (replace P zs H hd.q) ⊢ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
apply Holds_coincide_PredVar
D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ Holds D (I' D I V' (hd :: tl) P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_ case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ ∀ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length hd.q → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [I']
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ (I' D I V' (hd :: tl) P zs H).pred_const_ = I.pred_const_
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [Interpretation.usingPred]
case h1 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ (Interpretation.usingPred D I fun Q ds => if Q = P ∧ ds.length = zs.length then Holds D I (Function.updateListITE V' zs ds) (hd :: tl) H else I.pred_var_ Q ds).pred_const_ = I.pred_const_
no goals
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Pred/One/Rec/Sub.lean
FOL.NV.Sub.Pred.One.Rec.substitution_theorem_aux
[188, 1]
[334, 13]
simp only [predVarOccursIn_iff_mem_predVarSet]
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ ∀ (P_1 : PredName) (ds : List D), predVarOccursIn P_1 ds.length hd.q → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)
case h2 D : Type I : Interpretation D V' : VarAssignment D P : PredName zs : List VarName H : Formula hd : Definition tl : List Definition E_ref : Env := hd :: tl X : DefName xs : List VarName V : VarAssignment D binders : Finset VarName h1 : admitsAux P zs H binders (def_ X xs) h2 : ∀ x ∉ binders, V x = V' x c1 : X = hd.name ∧ xs.length = hd.args.length ih : ∀ (binders : Finset VarName), admitsAux P zs H binders hd.q → (∀ x ∉ binders, Function.updateListITE V hd.args (List.map V xs) x = V' x) → (Holds D (I' D I V' tl P zs H) (Function.updateListITE V hd.args (List.map V xs)) tl hd.q ↔ Holds D I (Function.updateListITE V hd.args (List.map V xs)) tl hd.q) ⊢ ∀ (P_1 : PredName) (ds : List D), (P_1, ds.length) ∈ hd.q.predVarSet → ((I' D I V' (hd :: tl) P zs H).pred_var_ P_1 ds ↔ I.pred_var_ P_1 ds)